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Abstract 

 

The work presented in this thesis focuses on extending a transform from 

Mathematical Morphology, known as the Hit-or-Miss transform (HMT), in order to 

make it more robust for detecting features of interest in the presence of noise in 

digital images. The extension that is described here requires that a single parameter is 

determined for correct functionality. A novel design tool which allows this parameter 

to be accurately estimated is proposed as part of this work. An efficient method for 

computing the extended transform is also presented.  

 

The HMT is a well known morphological transform that is capable of identifying 

features in digital images. When image features contain noise, texture or some other 

distortion, the HMT may fail. Various researchers have extended the HMT in 

different ways to make it more robust to noise. The most successful, and most recent 

extensions of the HMT for noise robustness, use rank order operators in place of 

standard morphological erosions and dilations. A major issue with most of these 

methods is that no technique is provided for calculating the parameters that are 

introduced to generalise the HMT, and, in most cases, these parameters are 

determined empirically.  

 

In this thesis, a new conceptual interpretation of the HMT is presented which uses 

percentage occupancy (PO) functions to implement the erosion and dilation operators 

of the HMT. When implemented in this way, the strictness of these PO functions can 

easily be relaxed in order to allow slacker fitting of the structuring elements. 

Relaxing the strict conditions of the transform is shown to improve the performance 

of the routine when processing noisy data.  

 

This thesis also introduces a novel design tool which is derived directly from the 

operators that are used to implement the aforementioned PO functions. This design 

tool can be used to determine a suitable value for the only parameter in the proposed 

extension of the HMT. Further, it can be used to estimate parameters for other 

generalisations of the HMT that have been described in the literature in order to 
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improve their noise robustness. The power of the proposed technique is demonstrated 

and tested using sets of very noisy images. Further, a number of comparisons are 

performed in order to validate the method that is introduced in this work when 

compared with the most recent extensions of the HMT.   

 

One drawback with this method is that a direct implementation of the technique is 

computationally expensive. However, it is possible to implement the proposed 

method using rank-order filters in place of the percentage occupancy functions. Rank 

order filters are used in a multitude of image processing tasks. Their application can 

range from simple pre-processing tasks which aim to reduce/remove noise, to more 

complex problems where such filters can be used in combination to detect and 

segment image features. There is, therefore, a need to develop fast algorithms to 

compute the output of this class of filter in general.   

 

A number of methods for efficiently computing the output of specific rank order 

filters have been presented over the years. For example, numerous fast algorithms 

exist that can be used for calculating the output of the median filter. Fast algorithms 

for calculating morphological erosions and dilations - which, like the median filter, 

are a special case of the more general rank order filter - have also been proposed. In 

this thesis, these techniques are extended and combined such that it is possible to 

efficiently compute any rank, using any arbitrarily shaped window, making it 

possible to quickly compute the output of any rank order filter. The fast algorithm 

which is described is compared to an optimised technique for computing the output 

of this class of filter, and significant gains in speed are demonstrated when using the 

proposed technique. Further, it is shown that this efficient filtering algorithm can be 

used to produce an extremely fast implementation of the generalised HMT that is 

described in this work. The fast generalised HMT is compared with a number of 

other extensions and generalisations of the HMT that have been proposed in the 

literature over the years. 
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1 Introduction 
 

Mathematical Morphology, first introduced by Matheron [1] and Serra [2] and later 

extended by Heijmans [3], provides an extremely powerful set of tools for image 

processing. Among these is the Hit-or-Miss Transform (HMT) [2], which is capable 

of identifying groups of connected pixels that comply with certain geometric 

properties. The HMT has been used by a large number of researchers in a wide range 

of application areas, including: medical image processing [4], [5]; optical character 

recognition [6]; face localisation, [7]; astronomical imaging [8]; and remote sensing 

[9], [10] and [11].  

 

Although the HMT is widely used, one of the major drawbacks with the standard 

transform is that it will fail to detect objects of interest if there is noise in a given 

image, or if image features are extremely textured. In fact, it takes only a single pixel 

in the foreground of a sought feature to fall to the level of the background (or below 

it) for the transform fail. Similarly, if just one pixel in the surrounding background of 

a feature reaches the level of the foreground (or above it) as a result of noise, the 

transform will fail. This sensitivity makes the standard transform unusable when 

image data is extremely noisy. The aim of this thesis is to extend the standard HMT 

in order to overcome these difficulties. 

 

The main motivation for this work was application driven. The author was provided 

with a set of images containing cancer cells and was asked if it would be possible to 

detect and segment the cells automatically. The data sets were noisy, and there was 

some variation in the geometry and intensity of the cells that were visible in the 

image. However, the cells appeared to be geometrically well defined, and as a result, 

the standard HMT was tested to determine whether or not it would be capable of 

locating these cells in the images. Initially, this seemed like a reasonable approach. 

However, after trying a number of composite structuring elements (SEs), it became 

clear that it was not possible to detect all of the cells using one pair of SEs due to the 

levels of noise that were present in the image. As a result, the aim of this PhD thesis 

was to extend the standard transform such that it would be capable of detecting these 
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cancer cells, and more generally, to make the transform capable of detecting any 

features that could be represented by a composite SE, in very noisy data.     

 

There has been significant interest in extending the HMT over many years in order to 

make it more robust to noise, and a number of authors have presented their own 

techniques and methods for achieving this. Some of these techniques modify the SEs 

that are used to search for features of interest, others apply pre-processing to increase 

the likelihood of successful detection, while others modify the conditions of the 

transform itself. All of these extensions are thoroughly explained and discussed in the 

literature review that is provided in Chapter 3. However, it is pointed out here, that 

one aspect that most of these techniques have in common, no matter which form the 

extension takes, is that the proposed extended transform generally requires some 

parameter to be accurately determined for successful operation. In some cases, these 

parameters are determined empirically. However, in most cases no generic solution 

for setting these parameters is provided. The values of the parameters can be critical 

to the detection task and therefore require further study. 

 

This thesis aims to address this issue by introducing a novel extension to the HMT 

that is accompanied by a robust method for setting its parameters. It will be shown, 

that in addition to estimating parameters for the method that is proposed in this 

thesis, this design tool can be used to determine the equivalent parameters for other 

HMTs that have been proposed in the literature.  

1.1 Organisation of Thesis 

 

The remainder of this thesis is set out in the following chapters. 

 

Chapter 2 introduces the fundamental morphological operators of erosion and 

dilation, as well as the notation, and some more advanced morphological operators 

that are used in this thesis. This chapter is not intended to provide an exhaustive 

coverage of mathematical morphology, but it should provide sufficient detail that 

referring to alternative texts is not required to understand this thesis and its 

contributions. 
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Chapter 3 provides an extensive literature review which puts the techniques that are 

proposed in this thesis in context. It discusses the original definition of the HMT for 

application to binary images and its numerous extensions for the greyscale case. 

Techniques that are used to improve the performance of both the binary and 

greyscale HMTs when image data is noisy are also discussed. Then, a number of 

techniques which can be used to improve the efficiency of morphological operators 

and other rank order filters are reviewed.  

 

Chapter 4 defines and discusses a number of existing greyscale HMTs and places 

them in context. The new conceptual HMT, called the POHMT, is then presented, 

before it is extended in order to make it more robust in the presence of noise. Two 

methods for setting the transform‟s single parameter are provided, and some results 

are shown. 

 

Chapter 5 introduces a novel design tool that can be used to reliably set the only 

parameter of the extended HMT that is described in Chapter 4. An explanation of this 

design tool is provided, and examples are used to show how it may be used for 

setting the single parameter of the POHMT, and for setting similar parameters of 

competing techniques. A large number of experimental results are provided in this 

chapter to demonstrate how this novel design tool and the extended HMT (Chapter 4) 

can be used to detect features in very noisy data. 

 

Chapter 6 presents a fast algorithm for computing the output of rank order filters 

using arbitrarily shaped windows. The method is demonstrated for the general case 

of rank order filtering, before the relationship between the extended HMT and rank 

order filters is explained. The efficient algorithm is tested under a number of 

conditions and it is then shown that implementing the extended HMT, using this 

efficient algorithm, provides significant reductions in the time taken to compute the 

output of the routine.  

 

Chapter 7 provides some concluding remarks and gives suggestions for further work.  
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1.2 Original Contributions of the Work 

 

It is believed that the novel contributions of this work are: 

 

 A new conceptual definition of the greyscale HMT (Chapter 4) 

 

 An extension of this greyscale HMT, known as a Percentage Occupancy Hit-

or-Miss Transform (POHMT) for improved accuracy in noise (Chapter 4) 

 

 A technique for estimating the parameter of the POHMT using noise models 

(Chapter 4) 

 

 A novel design tool known as a Percentage Occupancy (PO) plot (Chapter 5) 

 

 A method to make the POHMT operate as a discriminatory filter (Chapter 5) 

 

 A description of an efficient method for computing the output of arbitrarily 

shaped rank order filters (Chapter 6) 

 

 A set of equations that can be used to compute the “critical points” of an 

arbitrarily shaped window (Chapter 6) 

 

Each of these contributions will now be explained in more detail.   

 

In Chapter 4 of this thesis, a novel conceptual definition of the standard HMT is 

presented, and this is placed in the context of a number of existing greyscale HMTs. 

In the definition proposed here, the traditional morphological operators that are used 

to implement the HMT are replaced with two PO functions that allow features in the 

image to be marked if they simultaneously occupy 100% of both SEs. Defining the 

standard greyscale HMT in this way facilitates the novel extension of the transform 

(presented in this thesis) which relaxes the strict conditions of the transform itself.  
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The second novel contribution of this work is the POHMT which is introduced in 

this thesis in order to overcome the difficulties that are faced by the standard 

transform when it is presented with noise. An empirical method is used to determine 

a suitable value for the single parameter of the POHMT at this stage, and then a 

novel approach, based on analysing noise models (cropped from the image), is used 

for this purpose. A comparison of these approaches is provided.   

 

The POHMT bears resemblance to some existing methods which aim to overcome 

the HMT‟s sensitivity to noise in so far as the POHMT essentially replaces 

traditional morphological operators with more general rank order filters. The 

difference here, however, is that a completely original design tool, known as a 

percentage occupancy plot, is introduced which can be used to determine a suitable 

value for the single parameter that must be fixed before using the POHMT. Another 

advantage of the approach taken here is that this novel PO plot can be used by other 

researchers to set similar parameters for their own routines. This is demonstrated in 

Chapter 5, where a number of greyscale HMTs are modified and their parameters are 

estimated using the new design tool. It is also shown that the PO plot can be analysed 

in such a way that it is possible to make the POHMT function as a discriminatory 

filter that is capable of selectively marking and discarding features in the image.  

     

In addition to extending the HMT and introducing a novel design tool, this thesis 

presents an efficient method for computing the output of arbitrarily shaped rank 

order filters. The efficient algorithm that is presented here extends and combines two 

techniques that have already been presented in the literature: one for efficiently 

computing the output of the median filter; and a second for fast computation of 

morphological operators. The novel contribution in this work lies in describing how 

these methods can be combined and used to compute the output of any rank order 

filter defined by an arbitrarily shaped window. Further, a mathematical formulation 

is introduced which can be used to calculate the required set of so called “critical 

points” in the SE. As will be explained, these points are used to keep track of values 

entering and leaving the arbitrary window as it moves around the image.     
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The new fast algorithm can be used to increase the efficiency of any process that 

makes use of rank order filters, for example, when pre-processing image data to 

remove noise, or, in more complex filtering tasks. Of more direct importance here, is 

that the efficient algorithm for computing rank order filters can be used to implement 

a fast POHMT. It is shown in Chapter 6 that the single parameter of the POHMT can 

be used to set the rank parameter of the efficient rank filters before the fast POHMT 

is then demonstrated to compute the output of the transform in times which cannot be 

achieved by existing algorithms.  

 

The ideas and techniques that are proposed in this thesis are placed in the context of 

the leading methods for computing the HMT when image data is noisy. It is shown 

by example how the new design tool can be used to set parameters for alternative 

HMTs. Further, the extent to which the setting of these parameters has on improving 

the noise robustness of these HMTs is quantified and compared to the POHMT. All 

of the algorithms and ideas that are presented in this thesis are compared with the 

state-of-the-art techniques in the area.  
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2 Mathematical Morphology and Related Techniques 
 

This chapter introduces the fundamental theory and background that is required to 

understand the terms and techniques that are discussed and used in this thesis. The 

major contribution of this work lies in a new conceptual extension of a transform 

which exists in the area of Mathematical Morphology. Therefore, this chapter 

focuses mainly on introducing and defining the fundamental operators that underpin 

Mathematical Morphology.  

 

Mathematical Morphology aims to analyse features and structures in images based 

on their shape and size, hence the name morphology. In [12], it is said to be 

mathematical in the sense that it is defined in terms of set theory, integral geometry 

and lattice algebra. Morphological transforms are commonly used to perform a 

number of tasks ranging from image filtering through to segmentation and extraction 

of image features. The two fundamental morphological operators are known as 

erosion (a shrinking operator) and dilation (a growing operator). Most other 

morphological transforms and operators can be derived from these two fundamental 

operators.  

 

This chapter sets out the notation that will be used in this thesis and introduces some 

properties of morphological operators. The concept of a structuring element, which is 

critical in most morphological operations, is then introduced. Erosion and dilation are 

defined for application to both binary and greyscale images. A number of other 

transforms that are used in this thesis are also defined and explained by example. The 

standard Hit-or-Miss Transform which is extended, and is hence the focus of this 

thesis, is also defined in this section. Finally, this chapter concludes by explaining 

the relationship between morphological operators and rank order filters which is 

required for complete comprehension of the extensions made to the HMT in the 

subsequent chapters.  
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2.1 Preliminaries and Properties of Mathematical 
Morphology 

 

In this section some preliminaries are introduced, and properties that facilitate the 

discussion and analysis of morphological operators, are defined. 

2.1.1 Set Representation of Binary Images 

 

Pixels in a binary image are either “on” or “off”. By convention, in this thesis, “on” 

pixels have a value, 1, and off pixels have a value, 0. An example of a binary image 

is shown in Figure 2.1. Black regions in the image correspond to off pixels which 

represent the image background (BG), while white pixels correspond to the on pixels 

which make up the image foreground (FG).      

 

 

 

Figure 2.1 Binary Image 

 

 

Mathematically, a binary image f can be described as a mapping of the support of f, 

 supp f , into  0,1 , where  supp f  belongs to 2E  . More formally, 

 

   :   supp 0,1f f E   (2.1) 

 

where for all x E ,  f x is either 0 or 1.  
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2.1.2 Set Representation of Greyscale Images 

 

The dynamic range of a greyscale image is determined by the bitdepth per image 

pixel. That is, instead of mapping the support of f into 0,1  as was the case with the 

binary image (where the bitdepth is 1),  supp f  of a greyscale image is mapped into 

the bounded set  0,1,2,...,2 1n  , where n denotes the number of bits that are used to 

represent each image pixel. That is, 

 

   :   supp 0,1,2,...,2 1nf f E   . (2.2) 

 

An example of a greyscale image is shown in Figure 2.2(a). In morphology, 

greyscale images are often interpreted as a topographic surface where the intensity of 

an image pixel can be thought of as an elevation in the topography. As such, a 

greyscale image can be viewed as a 3D surface as shown in Figure 2.2(b). 

 

(a) (b)  

Figure 2.2 Greyscale Images (a) Greyscale image of the moon. (b) Topographic representation of 

(a) 

 

Greyscale images, like the one shown in Figure 2.2, commute with threshold 

decomposition. This means that greyscale images can be thought of as a stack of 

binary images or level sets (not including the one at 0t   for which all pixels have a 

value of one).  
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That is, 

 

 
2 1

1

LS

n

t

t

f f




  
(2.3) 

 

 

where                                   
 1 if 

LS
0 otherwise

t

f x t
x

 
 


. 
(2.4) 

 

 

The definition of the greyscale image given in Equation (2.3) implies that there exists 

a binary image, LSt  (See Equation (2.4)), for each greyscale level that can be 

assigned to a pixel in the greyscale image. It follows that when  LS 1t x   for some 

level t, that  LSt x  will equal 1 for all values between this level t and 0. This 

property has been exploited by a number of researchers [12], [13], [14], and, to some 

extent, this property is exploited in this thesis.    

 

2.1.3 Translation Invariance 

 

Let   denote some arbitrary image transform. A transform,  , is translation 

invariant if: applying the transform to some image f and translating the result is 

equivalent to translating the image prior to applying the transform. That is, 

 

    is translation invariant  b b
f f        (2.5) 

 

where,  bf f b b E    i.e. the translation of image f by some vector b.  
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2.1.4 Scale Invariance 

 

A transform,  ,  is scale invariant if the result of applying   to a scaled version of 

an image, is equivalent to first applying the transform and then scaling the output by 

the same factor. Let  denote some positive, non zero, scale factor, then  

 

    is scale invariant f f         . (2.6) 

 

 

A number of morphological operations can be scale invariant.   

2.1.5 Increasingness 

 

Let f and g represent two separate images where  and g,f   g is less than or equal 

to f. A transform is said to be increasing if it preserves this ordering relationship. 

That is, 

 

    is increasing  , ,f g g f g f        .  (2.7) 

 

   

Many morphological operators are increasing. 

2.1.6 Extensivity  

 

A transform is extensive if the result of applying the transform to an image f is 

greater than or equal to f.  

 

  is extensive  .f f    (2.8) 

 

 

Adding the same positive greylevel to all pixels in a given image could be considered 

as an extensive operator.  
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2.1.7  Anti-extensivity 

 

A transform is said to be anti-extensive if the result of applying the transform to an 

image f is less than or equal to f.  

 

  is anti-extensive  .f f    (2.9) 

 

 

Subtracting the same positive greylevel from all pixels in a given image could be 

considered as an anti-extensive operator.  

 

2.1.8 Idempotence 

 

A transform is said to be idempotent if the result of applying it more than once has 

no further affect on the result of applying it the first time. That is, 

 

    is idempotent f f        . (2.10) 

 

 

It is entirely redundant to apply an idempotent transform more than once to an image. 

 

2.1.9 Duality 

 

Let   and   denote two transforms and cf denote the complement of f where for all 

x,      2 1c nf x f x   . Then   and   are dual with respect to complementation 

if applying   to f is equivalent to applying   to cf and taking the complement of 

the result. That is, 

 

    and  are dual w.r.t. complementation  
c

cf f     
 

 
(2.11) 

 

Duality is a key property of morphological operators. Every morphological operator 

has its dual [15]. 
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If some properties of a transform are known then it is possible to infer the 

following for   [12],  

 

 

if  is idempotent      is idempotent,

if  is extensive         is anti-extensive,

if  is anti-extensive   is extensive,

if  is increasing        is increasing.

 

 

 

 









 

2.2 Fundamental Morphological Operations 

 

After defining the concept of a structuring element, the elementary morphological 

operations of erosion and dilation are defined in this section. Opening and Closing 

which are dual morphological operators, derived from erosion and dilation, are also 

presented. 

 

Before going any further, the notation that is used throughout the remainder of this 

thesis will now be defined.  For binary operations, let X represent a binary set and B 

represent a SE where X and B are sets in 2D space, 2E  . For greyscale images and 

greyscale operations, let ET be the set of all greylevel functions from a subspace of E 

to T where  ,T      or  ,T      such that T is a complete lattice with 

respect to the order “ ”. Let EI T , denote a greyscale image, and E

NFB T denote a 

greyscale SE.  

2.2.1 Structuring Elements 

 

In mathematical morphology, a structuring element is a small set (often a subset of 

the image being processed) that is used to probe the image that is being processed. 

SEs can be defined as 2D (flat SEs) binary sets, or as 3D (non-flat/greyscale SEs) 

functions, in which case, greyscale values can be assigned to the points in the SE. 

Flat (2D) SEs are much more commonly used than SEs of any other dimension. The 

main reason being that flat SEs are insensitive to variations in image intensity.  

 

SEs must be designed with respect to some common point, known as the origin. This 

allows the positioning of the SE in an image and it defines the pixel for which the 
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output of any morphological operator will be calculated. In fact, the origin of the SE 

is often located in its centre; however, this is not a requirement. The origin of the SE 

can be placed anywhere inside or outside of the SE. The size and shape of the SE 

determine exactly what the outcome of the morphological operation will be. For 

example, the larger the SE, the greater the affect of applying some morphological 

transform. Some commonly used SEs are shown in Figure 2.3. 

 

(a) (b) (c)  

Figure 2.3 Three basic structuring elements (a) Diamond (b) Square (c) Hexagon. The origin of 

these SEs is marked by a black dot and corresponds to the centre pixel in the SEs shown here. 

 

Of course, structuring elements can be designed to have any arbitrary shape and size, 

their geometry is not restricted to the examples shown in Figure 2.3. SE selection is 

usually determined by the structure of features in the image that are to be suppressed 

or preserved. It should be noted that the SEs shown in Figure 2.3 are flat SEs 

showing the spatial support of the elementary diamond, square and hexagonal SEs. 

Although non-flat SEs would have the same support, and hence the same shape that 

is illustrated in Figure 2.3, this support would be mapped into the bounded set 

 0,1,2,...,2 1n   in order to make a small greyscale image that can be used to probe 

the data that is to be processed. Care must be taken when designing non-flat SEs in 

order to ensure that results are accurate, reliable, and do not go out of range. 
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2.2.2 Erosion 

 

Computing the erosion of a binary set X by SE B can be thought of as a process of 

translating B to every point in X, and marking in the output image, points in X where 

the SE B is completely contained in X. The result of eroding a binary set X by SE B is 

a set containing the locus of points that correspond to places where B fits inside X. 

Adopting the notation used by Gonzalez and Woods in [16], the erosion of X by B, 

denoted X Ө B, may be written, 

   

X Ө B  .xx B X   (2.12) 

 

 

Although the notation used in [16] has been adopted here, it should be noted that an 

equivalent way to denote an erosion of X by B that is commonly used in the literature 

is to write  B X . An example of erosion is shown in Figure 2.4.  

 

(a) (c)(b)  

Figure 2.4 Example of binary erosion (a) Original image (512 512), (b) SE used to erode the 

image shown in (a), (c) Result of eroding the original image (a) by SE (b). 

 

It is clear by comparing Figure 2.4(a) and Figure 2.4(c), that erosion is a shrinking 

operator which: reduces the dimensions of features that can contain the SE; and 

removes features that are too small to contain the SE.  

 

An alternative method for implementing erosion is to calculate the intersection of all 

translations of the set X by the negative vectors of B, 
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X Ө B .b

b B

X



  (2.13) 

 

 

This definition of erosion is equivalent to Minkowski subtraction. An illustrative 

example of how this method works is shown in Figure 2.5. The example shown in 

Figure 2.5 uses 1D profiles to represent a binary image and it shows how the image 

can be translated before computing the erosion by calculating the intersection of all 

the image translates. The SE that has been used in Figure 2.5 is a three pixel wide 

horizontal line with its origin in the centre of the SE.  

 

X

X 1X 1X 

(a) (c)

(b) (d)

B XӨB

XӨB

 

Figure 2.5 Example of binary erosion implemented by translating the image by the points in the 

SE and computing the intersection of all translates. (a) Original image and SE illustration. (b) 

Original image and the translations of this image by the negative vectors of the SE. (c) Result of 

erosion where the shaded magenta profile highlights the intersection of all image translations. 

(d) Result of eroding X by B, the leftmost feature is narrower in the eroded result than in X. 

Further, the rightmost feature of X has been removed by eroding.   

 

The definition of erosion that is given in Equation (2.13) can be directly extended for 

processing greyscale images by replacing the intersection operation with the infimum 

(inf.) and the binary set X with a greyscale image I [12], 

   

I Ө B .b
b B

I


   (2.14) 

 

 



 17 

This technique for implementing erosion is demonstrated in Figure 2.6 using 1D 

intensity profiles. As was the case in Figure 2.5, 1D profiles have been used to 

illustrate this process where the SE, as before, is a three pixel wide horizontal line, 

with its origin in the centre.   

 

I

I

1I

1I

(a) (c)

(b) (d)

B

IӨB

IӨB

 

Figure 2.6 Example of greyscale erosion implemented by translating the image by the points in 

the SE and computing the infimum of all translates. (a) Original image and SE illustration. (b) 

Original image and the translations of this image by the negative vectors of the SE. (c) Result of 

erosion where the shaded magenta profile highlights the infimum of all image translations. (d) 

Final eroded result. 

 

It is also possible to compute a greyscale erosion by translating the SE to all points in 

the image, and writing in the output image, the minimum value of the pixels that 

coincide with the SE when its origin is coincident with some point x E . That is, 

 

[I Ө B]     min .
b B

x I x b


   (2.15) 

 

 

By reference of Figure 2.7, it is clear that erosion removes isolated bright points and 

generally darkens the image. This is extremely apparent by comparing the eyes, and 

the scarf attached to the hat, in the images shown in Figure 2.7(a) and Figure 2.7(b). 
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(a) (b)  

Figure 2.7 Example of greyscale erosion, (a) Original image (512 512) and (b) the result of 

eroding the image shown in (a) with a small, flat 3x3 square SE. 

  

Until now, only flat SEs have been used in the definitions of erosion that have been 

provided. If non-flat SEs are used, then Equation (2.15) can be modified to account 

for the greylevels in the SE. That is, 

 

[I Ө BNF]       min ,
NF NF

NF NF NF
b B

x I x b B b


    (2.16) 

 

 

where, for all points x with which the SE coincides, the greyscale values of the SE 

are subtracted from the corresponding image pixels before the minimum of the 

resulting values is computed.  

 

Since only flat SE are used in the applications of the transform that is proposed in 

this work, a further discussion and/or demonstration of greyscale morphology, using 

non-flat SEs, is beyond the scope of this thesis. However, a number of the 

morphological transforms that are defined in this section, and throughout this thesis, 

are given using both flat and non-flat SEs for completeness.  
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2.2.3 Dilation 

 

Dilation is the dual of erosion with respect to complementation. It can be described 

as a process of translating a SE to every point in X, and marking in the output image, 

points in X where the SE touches an object in the foreground. The dilation of X by B, 

denoted X B , may be written as, 

  

  ˆ
x

X B x B X    
(2.17) 

 

 

where B̂ denotes the reflection of the SE B. Some researchers chose to denote the 

dilation of X by B using  B X , however, the X B  notation is used here. An 

example of dilation is shown in Figure 2.8 using the same image that was eroded in 

Figure 2.4. 

 

(a) (c)(b)  

Figure 2.8 Example of binary dilation (a) Original image (512 512), (b) SE used to dilate the 

image shown in (a), (c) Result of dilating the original image (a) by SE (b). 

 

It is clear by observation of Figure 2.8 that dilation grows/expands image features. It 

is also clear that the shape of the SE distorts the shape of the features in the dilated 

image, where the smaller circles in Figure 2.8(c) appear more hexagonal than 

anything else. This effect can also be observed on the larger circles in the image, 

however, the extent of the distortion is not quite so obvious on these features.  Since 

it expands image features, dilation is capable of connecting regions that are 
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unconnected in the original image. This can be observed in the top right of Figure 

2.8(c) where a small circle and a large circle have expanded so much that they are 

connected following dilation.  This may or may not be a desired effect when 

computing the dilation of an image. As such, care should be taken when designing 

the SE that is used for a particular application. 

 

An alternative method that can be used to implement a morphological dilation is to 

calculate the union of all translations of the set X by the positive vectors of B, 

 

.b

b B

X B X


   (2.18) 

 

 

This definition of dilation is equivalent to Minkowski addition. An illustrative 

example of how this method works is shown in Figure 2.9. The example in Figure 

2.9 shows how the image can be translated before computing the dilation by 

calculating the union of all image translates. The SE that has been used in Figure 2.9 

is a three pixel wide horizontal line with its origin in the centre. It is shown in Figure 

2.9(a).  

X BX

X 1X 1X  X B

(a) (c)

(b) (d)

B

 

Figure 2.9 Example of binary dilation implemented by translating the image by the points in the 

SE and computing the union of all translates. (a) Original image and SE illustration. (b) 

Original image and the translations of this image by the positive vectors of the SE. (c) Result of 

dilation where the shaded magenta profile highlights the union of all image translations. (d) 

Result of dilating X by B, both features in the original image have become wider following 

dilation.   
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The definition of dilation that is given in Equation (2.18) can be directly extended for 

processing greyscale images by replacing the union operator with the supremum 

(sup.) and the binary set X with a greyscale image I, 

  

.b
b B

I B I


   (2.19) 

 

 

Using Equation (2.19) to implement dilation is demonstrated in Figure 2.10 where 

1D profiles have been used to represent the image and the SE is a three pixel wide 

horizontal line with its origin in the centre.   

 

I B
I

I

1I

1I

I B

(a) (c)

(b) (d)

B

 

Figure 2.10 Example of greyscale dilation implemented by translating the image by the points in 

the SE and computing the supremum of all translates. (a) Original image and SE illustration. (b) 

Original image and the translations of this image by the positive vectors of the SE. (c) Result of 

dilation where the shaded magenta profile highlights the supremum of all image translations. (d) 

Final dilated result. 

 

It is also possible to compute a greyscale dilation by translating the SE to all points 

in the image, and writing in the output image, the maximum value of the pixels that 

coincide with the SE when its origin is coincident with some point x E . That is, 

 

     max .
b B

I B x I x b


    (2.20) 
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By reference of Figure 2.11, it can be seen that dilation enhances/expands isolated 

bright points and generally brightens the greyscale image. This is particularly clear 

by close observation of the eyes, the scarf extending from the hat, and the bright 

spots that can be seen in the right side of the image shown in Figure 2.11(b).  

 

(a) (b)  

Figure 2.11 Example of greyscale dilation, (a) Original image (512 512), and (b) the result of 

dilating the image shown in (a) with a small, flat 3x3 square SE. 

  

If non-flat SEs are used to dilate an image, then Equation (2.20) can be modified to 

account for the greylevels assigned to the points in the SE. That is, 

 

       max ,
NF NF

NF NF NF NF
b B

I B x I x b B b


     (2.21) 

 

 

where for all points x that coincide with the SE, the greyscale values of the SE are 

added to the corresponding image pixels before the maximum of the resulting values 

is computed.  
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2.2.4 Opening 

 

There exists no inverse transform to the elementary morphological operations of 

erosion and dilation [12]. This means that following a morphological erosion it is, in 

general, impossible to exactly restore the original image from the eroded result. 

Clearly, any points that are completely removed by the erosion can never be 

recovered (See Figure 2.4). Further, the exact geometry of features that have been 

shrunk by the erosion cannot always be accurately be recovered. One approach that 

can be used to recover as much as possible, is to dilate the eroded image in an 

attempt to restore the features that have been shrunk in the eroded result. This 

technique is known as opening. 

 

A morphological opening is defined as the erosion of an image, followed by the 

dilation of the result, using the same SE. Mathematically, an opening may be written 

in terms of the appropriate (binary or greyscale) definitions of erosion and dilation 

that are given in Section 2.2.2 and Section 2.2.3, 

 

I B   (I Ө B) B , (2.22) 

 

 

where I B  denotes the opening of an image I by the SE B. 

 

Opening tends to smooth contours in the image, remove isolated bright points, and 

break tenuous connections between regions in the image [16]. An example of using 

opening to separate elliptical features in a binary image is shown in Figure 2.12. The 

image is a synthetic example where the features of interest (elliptical regions) have 

been connected by narrow fibres.   
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(a) (b) (c) (d)  

Figure 2.12 Example of opening. (a) Disk SE used for the erosion and dilation (opening). This SE 

can be included in the elliptical features of interest, but is too large to fit inside the fibres. (b) 

Original image (512 512) which is to be opened (c) Erosion of the image shown in (b) using the 

SE shown in (a). (d) Dilation of (c) – Opening of (b) – using the SE shown in (a). 

 

By reference of Figure 2.12 it is clear that the morphological opening has 

successfully isolated the features of interest. If nothing more, the task of accurately 

counting the individual features in the image is now trivial following the opening. 

Clearly, there are 9 elliptical features in the image. However, prior to applying the 

morphological opening, any simple counting algorithm would have counted only one 

connected component in the image shown in Figure 2.12(b).  

 

It should be noted, that although the features of interest have been restored to almost 

their original size by dilating the eroded image, much of the shape information has 

actually been lost in the opening. The results of the opening could be improved by 

using a smaller SE. A smaller SE would not distort the elliptical shape of the features 

of interest quite so much, but it would still be capable of removing the fibres that 

connect the features in Figure 2.12(b). An alternative method (in this idealised case) 

would be to use the feature itself as a SE – this would actually guarantee that the 

features of interest could be exactly reconstructed, without distortion, while still 

removing the fibres. The SE that has been used in Figure 2.12 is clearly not optimal 

for this problem, however, it has been used to allow this discussion of opening and 

SE selection.        
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2.2.5 Closing 

 

Morphological closing is the dual of opening with respect to complementation. 

Closing is defined as a dilation of an image, followed by an erosion of the dilated 

image, where the same SE is used for both operations. Mathematically, closing may 

be written, 

 

 I B I B   Ө B (2.23) 

 

    

where, I B  denotes the closing of I, by SE B. Any of the definitions of erosion and 

dilation that are provided in Section 2.2.2 and Section 2.2.3 may be substituted into 

Equation (2.23) provided that comply with the image data that is being processed. 

 

Closing tends to smooth image contours, remove holes in the image foreground, and 

to join any disconnected regions in an image [16]. A simple example that uses 

closing to reconnect lines that have been broken as a result of thresholding is shown 

in Figure 2.13.  

 
Dilated Closed

(a) (b) (c) (d)
 

Figure 2.13 Example of image closing. (a) Horizontal line SE used for the dilation and erosion 

(closing) which can be used to reconnect the broken lines in the image that have been introduced 

by thresholding. (b) Original image (512 512) which is to be closed (c) Dilation of the image 

shown in (b) using the SE shown in (a) to connect the lines. (d) Erosion of (c) – Closing of (b) – 

using the SE shown in (a). The morphological closing reconnects the lines and restores them to 

their original width. 

 

Since there is no noise in Figure 2.13 and there are no features present other than 

fragments of the broken lines, the problem is a simple one that can be solved by 

closing. The horizontal line SE was chosen to be wider than the greatest gap between 

the line fragments. This means that the dilation can successfully close the gaps with 
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the minor drawback that the width of the line is extended after dilation. Eroding the 

dilated image to complete the closing simply restores the lines to their width in the 

original image.  

2.2.6 Open-Close and Close-Open Operations 

 

Since only binary examples have been used to demonstrate the properties of opening 

and closing, this subsection has been included to demonstrate a useful application of 

opening and closing on greyscale images. However, instead of demonstrating these 

separately, as was done previously, this example shows that an open-close operation, 

and a close-open operation, can be used to filter out noise in greyscale images. The 

open-close operation is simply an opening of the image followed by a closing of this 

result. The close-open operation is a closing of the image followed by an opening of 

the result. An example of these operators filtering out noise in a greyscale image that 

has been corrupted by salt and pepper noise is shown in Figure 2.14. 

 

(a) (b) (c)

(d) (e) (f)  

Figure 2.14 Example of using open-close and close-open operators to filter noise using the 

elementary diamond SE (See Figure 2.3). (a) Noisy image (321 481) (b) Opened image – salt 

noise suppressed. (c) Open-Close image – salt and pepper noise has been suppressed by first 

opening and then closing the image. (d) Noisy image (321 481). (e) Closed image – pepper noise 

suppressed. (f) Close-Open image, salt and pepper noise removed. 

 

Clearly both of these methods perform well in reducing the noise. The elementary 5 

point diamond SE (resembling a cross as shown in Figure 2.3) was used here. This 

allowed the impulsive noise points to be attenuated without overly affecting the 
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detail and texture that is contained in the image itself. Filtering the image in this way 

exploits the fact that opening and closing can be used to remove respectively bright 

and dark points while attempting to restore the original content of the image based on 

the neighbourhood of pixels that is defined by the SE. 

  

2.2.7 Properties of the Fundamental Morphological Operators 

 

In this section, some of the properties of the four morphological transforms that have 

been discussed to this point are detailed. 

 

Erosion and dilation are dual operators with respect to complementation and 

reflection. That is,  

 

(I Ө B) ˆc cI B  . (2.24) 

 

 

It follows that, 

 

 
c cI B I   Ө B̂ . 

(2.25) 

 

  

Further to these being dual transforms, both erosion and dilation are translation 

invariant, increasing transforms. The obvious difference between the two is that 

dilation expands image features while erosion shrinks them. However dilation is not 

an extensive transform and erosion is not anti-extensive. Consider the case that an 

image is eroded by a SE which does not contain the origin. In this case, points which 

are not present in the original image may be introduced the eroded result. 

 

Opening and closing are dual operators with respect to complementation and 

reflection. That is, 
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   ˆc cI B I B  , 
(2.26) 

 

and                                               ˆc cI B I B  .                         
(2.27) 

 

 

Like erosion and dilation, opening and closing are translation invariant, increasing 

transforms. Closing is extensive and opening is anti-extensive. A further property of 

opening and closing is idempotence, where applying an opening or closing more than 

once has no further affect on the result. 

 

The final observation of these four morphological operators involves the order 

relation that exists between the transforms. The following order relation of the four 

morphological operators that have been discussed here is shown below with respect 

to image I, 

 

I Ө .B I B I I B I B       (2.28) 

 

 

where F G means that for every point in G, the corresponding pixel in F is always 

less than or equal to the intensity of the same point in G. 

 

2.3 The Hit-or-Miss Transform 

 

The Hit-or-Miss Transform is defined in this section for application to binary images. 

Extending the binary HMT for processing greyscale images is not a trivial task, and 

as a result, it has been defined by a number of researchers in recent years. These 

definitions all differ from each other in their implementation; however, they all 

return equivalent results. Since a new conceptual greyscale HMT is introduced in this 

thesis, it is appropriate that a discussion of the greyscale HMTs and the provision of 

their various definitions is deferred until Chapter 4. The new conceptual HMT, 

presented in this thesis is defined in Chapter 4 and hence for now only the standard 

binary HMT, [2] is described.  
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The HMT is a morphological transform that, among other things, can be used for 

template matching. Until this point, the morphological operators and transforms that 

have been discussed have used only one SE. The HMT uses two SEs in order to 

match features in a given image. One SE, denoted BFG, is known as the foreground 

SE which searches the image for places where it can be entirely contained in the 

image foreground. A second SE, denoted BBG, is known as the background SE and it 

searches for places in the image where it can fit around features to match their 

background neighbourhood. The HMT then marks the locations where both the 

foreground SE and the background SE simultaneously fit the image to find a match.   

  

Mathematically, the HMT of a binary image X is the intersection of an erosion of X 

and an erosion of the complement of X by a complementary pair of SEs, BFG and BBG 

respectively, where X, BFG and BBG are sets in 2D space, 2E  . BFG and BBG are 

defined relative to a common origin in E where the composite SE 
FG BGB B B   

and
FG BGB B  . That is, 

 

( )BHMT X   (X Ө BFG ) ( cX Ө BBG) (2.29) 

 

A feature is detected by the HMT if there is at least one point x E  such that the 

foreground SE (BFG)x is included in X whilst the background SE (BBG)x is 

simultaneously included in its complement, where    |
x

B b x b B   , see [2], 

[12], [17], [18]. A diagrammatic example of the HMT locating features in a binary 

image is shown in Figure 2.15. Note that this is simply an illustration to demonstrate 

the operation of HMT and that in this example the foreground pixels are grey on a 

white background for convenience when printing. 
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X

X

(a) (b) (c)  

Figure 2.15 Illustrative example of the HMT. (a) Complementary SE, BFG (top, blue) and BBG 

(bottom, red) are defined relative to a common origin in the centre of BFG. (b) Image that is 

being processed. (c) Marker produced by the HMT that contains the locations where both BFG 

and BBG simultaneously fit the image.  

 

The HMT returns a “marker” (See Figure 2.15(c)) consisting of single pixels or 

groups of pixels indicating the presence and locations of the objects that have the 

features specified by B. Any feature whose geometry matches that of both SEs will 

be marked in the output of the HMT. If the SEs are thought of as a combined, 

composite entity, then any solid feature whose boundary lies between that of the 

foreground and the background SE will be detected by the HMT. This idea is 

demonstrated in Figure 2.16.  

 

X

 

 

Figure 2.16 Composite SE created by combing the foreground and background SE to detect 

features of interest. Any solid feature, like the arbitrarily shaped object here, whose boundary 

lies between that of the foreground SE and background SE will be detected by the HMT.  

 

The HMT and its extension for the processing of greyscale data is treated thoroughly 

in Chapter 4 where a novel extension of this transform is presented. 
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2.4 Morphological Reconstruction 

 

Strictly speaking, this branch of morphology is generally addressed under the 

heading of geodesic operations [12]. Unlike the morphological operations that have 

been covered to this point, geodesic operators use two input images. Morphological 

operations are applied to one of the images, while the other is used to constrain the 

transform that is being applied to the first image. An extensive discussion of 

geodesic morphology is beyond the scope of this thesis, however, it is required that a 

definition of reconstruction by dilation is provided here. This is essential as 

reconstruction by dilation is used to reconstruct image features throughout this thesis, 

particularly in Chapter 4 where it is used to accurately reconstruct features that are 

detected by the extension of the HMT that is discussed there.  

 

To facilitate the explanation of reconstruction by dilation, geodesic erosion and 

dilation are introduced and demonstrated by example. Reconstruction by dilation is 

then defined and explained by example. Although the definition of reconstruction by 

erosion is provided for completeness, it is not exemplified or used again in this work. 

For a thorough explanation of this branch of morphology see [12], [16]. 

2.4.1 Geodesic Erosion  

 

Geodesic erosion requires two input images. Generally, the image to which 

morphological operations are iteratively applied is called the marker, while the other 

image, known as the mask, constrains the transform that is being applied iteratively 

to the marker. Let F denote the marker and G denote the mask. It is required that the 

support of F,  supp F , is equal to the support of G,  supp G  and that 

 and x , .x F G F G      Geodesic erosion of size u applied to image F, denoted 

 u

GE F , may now be defined, 

 

         1 1u u

G G GE F E E F
 

 
 

(2.30) 

 

 

where u denotes the iteration step and, 
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   1

GE F  (F Ө B) G  (2.31) 

 

 

Note that 
   0

GE F F . An example of the technique for computing 
   1

GE F  is 

shown in Figure 2.17. 

 

X 

Marker, F

Mask, G

SE, B    1

GE F F Ө B GF Ө B

 

 

Figure 2.17 Illustration of computing a geodesic erosion 

 

It is clear that the mask used in the geodesic erosion restricts the erosion in such a 

way that it is not possible to erode any pixels that are present in the mask. No matter 

how many times the geodesic erosion is performed, the result will always be greater 

than or equal to the mask. This is clear by interpretation of Figure 2.17. 

2.4.2 Geodesic Dilation 

 

Like geodesic erosion, geodesic dilation requires a marker, F, and mask, G. It is still 

required that the support of F,  supp F , is equal to the support of G,  supp G . 

However, for geodesic dilation, it is required that  and x , .x F G F G      

Geodesic dilation of size u of image F, denoted  u

GD F , may now be defined, 
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         1 1
,

u u

G G GD F D D F
 

 
 

(2.32) 

 

 

where u denotes the iteration step, and 

  

     1

GD F F B G   . (2.33) 

 

 

Note that  0

GD F F . The technique for computing    1

GD F  is illustrated in Figure 

2.18. 

  

X 

Marker, F

Mask, G

SE, B      1

GD F F B G  F B

 

Figure 2.18 Illustration of computing a geodesic dilation 

 

The extensivity of the elementary dilation is restricted by the mask when geodesic 

dilation is performed. No matter how many times the geodesic dilation is performed 

using the same marker and mask, there is no point at which the result will ever be 

greater than the mask. This is clear if the illustration shown in Figure 2.18 and the 

definitions of geodesic dilation given in Equation (2.32) and Equation (2.33) are 

fully understood.  

 

 

 



 34 

2.4.3 Reconstruction by Dilation 

 

Reconstruction by dilation, denoted  D

GR F , iteratively applies geodesic dilation to 

the marker image until its application has no further effect on the result. 

Reconstruction by dilation, by this definition, is idempotent. Mathematically, the 

reconstruction by dilation may be written, 

  

     uD

G GR F D F , (2.34) 

 

 

 where 
   u

GD F  denotes a geodesic dilation which is iterated until 

       1u u

G GD F D F


 . 

 

In words, the first step for computing a reconstruction by dilation is to compute 

   1

GD F  using Equation (2.33). To compute 
   2

GD F , Equation (2.32) should be 

used, where the marker is now 
   1

GD F  that was computed in the previous step, see 

Figure 2.19. Next, 
   3

GD F  may be computed using Equation (2.32), where the 

marker is now the image 
   2

GD F ,  that was computed in the previous step. This 

process continues by iteratively incrementing u until 
       1u u

G GD F D F


 . In order 

to determine this convergence point, a comparison of the current result, and the 

previous one must be performed. This comparison may be implemented by 

computing the difference image,
       1u u

G GD D F D F


  . If D   then 

       1u u

G GD F D F


 . An illustrative example of performing reconstruction by 

dilation to fully reconstruct the feature that was shown in the mask of Figure 2.18 is 

shown in Figure 2.19.   
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Marker, F Mask, G

X

SE, B

     1

GD F F B G          2 1

G GD F D F B G   
 

       3 2

G GD F D F B G   
 

       4 3

G GD F D F B G   
 

       5 4

G GD F D F B G   
   

 

Figure 2.19 Illustration of reconstruction by dilation 

 

The size of the reconstruction by dilation that is illustrated in Figure 2.19 is 4, as it 

requires four geodesic dilations before convergence. The convergence is detected 

when 
       5 4

G GD F D F  and hence there is no point in applying the transform any 

further. It is clear by reference of Figure 2.19 that this is the case.  

   

2.4.4 Reconstruction by Erosion 

 

Reconstruction by erosion, denoted  E

GR F , iteratively applies geodesic erosion to 

the marker image until its application has no further effect on the result. 

Reconstruction by erosion, like reconstruction by dilation, is idempotent. 

Mathematically, the reconstruction by erosion may be written, 
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     uE

G GR F E F , (2.35) 

 

 

 where    u

GE F  is a geodesic erosion iterated until        1u u

G GE F E F


 . 

 

Since this transform is not used in this thesis, and since it is clear from the definition 

of reconstruction by dilation how this transform may be implemented, a further 

discussion has been neglected here. The interested reader is referred to [12] for a 

more detailed explanation of this transform. 

 

2.5  Rank Order Filters and Mathematical Morphology 

 

A number of approaches that aim to extend the HMT in order to make it more robust 

to noise use rank order filters in place of traditional morphological operations. The 

extension of the HMT that is presented in this thesis may be implemented using rank 

order filters. In fact, the fast algorithm that is presented in Chapter 6 directly exploits 

a number of properties of rank order filters in order to make the routine more 

efficient. For this reason, a brief overview of rank order filters is provided here. A 

formal definition that can be used to compute the output of any rank order filter is 

then given before the relationship that exists between rank order filters and 

mathematical morphology is discussed and demonstrated.  

 

Rank order filters are a set of non-linear filters that are commonly used to pre-

process image data, although they can be designed to perform more complex tasks. 

The output of a rank order filter, of rank k, at a point x in an image, may be computed 

in two steps. First, it is necessary to sort into ascending order, the image pixels that 

are coincident with a window, W, when it is centred on a point, x, as it scans the 

image. The value assigned to point x in the output image is then the value of the kth 

order statistic of the image pixels that are coincident with W when it is centred on x. 

For example, let 1 2, ... mp p p represent a set of arbitrary pixel intensities that are 

coincident with some window, W, where ( )m Card W  i.e. the cardinality of the set 

W. These values must first be sorted into ascending order such that, 
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(1) (2) ( )... mp p p   , 
(2.36) 

  

then ( )kp represents the kth order statistic  [19]. The output of, ,W k  a rank order 

filter, of rank k with window W, when centred at a point x, is the value ( )kp . For a 

point x, in an image I, the output of the rank order filter is given by,  

 

 , ( ) ( ) th order statistic ( ) .W k
w W

I x k I x w


      (2.37) 

 

 

Perhaps the best known and most commonly used rank order filter is the median 

filter [19] which is often used as a pre-processing step in image analysis to 

remove/reduce noise whilst preserving edges. In this case the output of the rank order 

filter is simply the value that lies in the median (or centre) rank. 

 

The relationship between morphological operators and rank order filters is well 

documented in the literature, [20], [21], [22]. By recognising that the window, W, in 

Equation (2.37) is equivalent to a morphological SE, B, i.e. W B , it is clear that 

standard morphological erosions and dilations are in fact a special case of rank order 

filters. This relationship is discussed in detail in [12] where it is shown that the 

minimum rank filter, where k = 1, using a window (SE) B, is equivalent to an 

erosion, I B . It is also shown that the maximum rank filter, where k = m, using B, 

is equivalent to a dilation, I B . That is, 

    

,1BI B   
(2.38) 

 

and                                               ,B mI B   . 
(2.39) 

 

This relationship allows the implementation of erosions and dilations using 

techniques for fast rank filtering (see Chapter 6). Further, this relationship makes it 

possible to relax morphological transforms by replacing erosions and dilations with 

rank order operators where k is not restricted to be either 1 (min filter) or m (max 

Ө 

Ө 
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filter) and can in fact take on any rank between these values, i.e. 1 k m  . This can 

be useful when image data is noisy as discussed in Chapter 4. 

2.6 Summary 

 

This chapter has laid out the notation that is used throughout this thesis and it has 

defined a number of elementary morphological transforms that will be used and/or 

developed in this work. It also provides an insight into the relationship between rank 

order filters and morphological operators which is critical for understanding the 

extensions of the HMT that are presented later in this thesis. Recognising this 

relationship is also critical for understanding the fast algorithm that is used to 

implement the extension of the HMT that is proposed in Chapter 4. Efficient 

techniques for computing the output of the morphological transforms that have been 

presented here are described briefly in the next chapter, and in Chapter 6, where an 

efficient technique is described that can be used to compute the output of any rank 

filter defined by any arbitrarily shaped window.  

 

This chapter has also provided a number of sources where further information can be 

found on all aspects of morphology. The terms and techniques that have been defined 

here will be used to facilitate the discussion of the state-of-the-art research of the Hit-

or-Miss Transform in the next Chapter.  
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3 The Hit-or-Miss Transform and Efficient Algorithms 
for Computing Morphological Operators: A Review 
of the Relevant Literature 

 

This literature review is divided into two main sections. The HMT is addressed first 

in Section 3.1, where a number of techniques that have been used to modify the 

original definition of this transform are discussed and described. Section 3.1 aims to 

bring the reader up to speed with the state of the art research in this specific area of 

mathematical morphology and its applications. Then, in Section 3.2, a review of a 

number of methods for improving the efficiency of computing morphological 

transforms, and other more general rank order filters, is provided. In addition to 

describing a number of efficient algorithms for computing the output of these filters, 

this discussion introduces two specific techniques that can be combined to produce 

the fast algorithm that is described in Chapter 6. Further, it should be noted that the 

techniques which are summarised in Section 3.2 can be used to improve the 

efficiency of each of the morphological transforms that were discussed in the 

previous chapter.  

 

The intention of this literature review is to place the contributions of the next three 

chapters of this thesis in context with the leading research in this area. Although a 

large number of contributions and methods are summarised here, the specific 

transforms which are closely related to work that is presented in this thesis will be 

described in more detail at the appropriate places in the subsequent chapters.  

 

3.1 The Hit-or-Miss Transform 

 

The HMT has been around for more than 40 years and in this time a great number of 

researchers have used and modified its original definition, in various ways, for their 

own specific purposes. This chapter takes the reader through a number of significant 

developments of the HMT. The discussion begins with the original definition of the 

HMT for application to binary images. Its extension for processing greyscale images 
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is then discussed, before a number of generalisations which have been proposed in 

order to make this transform more robust in the presence of noise are reviewed. 

Throughout the discussion in this section, it becomes clear that there exists a 

conceptual gap in the literature where authors have neglected to provide suitable 

methods that can be used to accurately determine optimal values for the parameters 

that are introduced to generalise the HMT.  

 

3.1.1 The Binary HMT 

 

Since erosion, and hence dilation, can be implemented as a special case of the HMT, 

this transform is described as “the universal morphological transform upon which the 

theory of Mathematical Morphology is based” in [23].  As such, for the processing of 

binary images, the HMT is well defined. It involves searching an image for locations 

where a pair of predefined templates simultaneously fit the image foreground, and its 

surrounding background, as defined by the templates. These templates, known as 

structuring elements in morphology, are designed to match the shape and size of 

features of interest in the foreground and background of the image (See Chapter 2, 

Section 2.3). If the SEs are designed to closely match the geometry of the image 

features that are of interest, just one noisy pixel in either the foreground or 

background, can cause this transform to fail, since the SEs will no longer fit as a 

result of the noise.  

 

As will be explained in Section 3.1.3, a number of researchers have proposed 

techniques that aim to circumvent this issue. 

 

3.1.2 The Greyscale HMT 

 

Unlike most morphological transforms, extending the HMT for processing greyscale 

images is not straightforward. The reason for this, is that the HMT is not an 

increasing transform [4], [8], [12], [24].  As a result, a number of researchers have 

made this extension independently, and hence a number of different definitions of the 
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greyscale HMT exist in the literature. These are described briefly in this section, 

however, a much more thorough discussion of these different HMTs, and their 

equivalences, can be found in  [8], [24], and [25], and in Chapter 4 of this thesis.  

 

In 1996, two a greyscale HMTs were presented in the literature [26], [27]. The first 

of these was presented in June of that year by Khosravi and Schafer [26]. In [26], the 

authors implement their greyscale HMT using a single SE with which they erode the 

image and its negative (by the negative SE) before computing the superposition of 

these two results. Points in the resulting image, whose value is 0, become the points 

of this greyscale HMT.  

 

The second greyscale HMT, published in September of that year, was defined by 

Ronse [27]. This greyscale HMT uses a foreground and background SE. It marks 

points in an image where the foreground SE can be raised higher than the level to 

which the background SE can be lowered when the origins of the SEs are centred at 

some point in the image. The HMT proposed by Ronse is possibly easier to 

understand - given an understanding of the binary HMT – than the one presented in 

[26], since it resembles the binary HMT to some extent, and it is therefore more 

intuitive to visualise. From now on, Ronse‟s HMT will be denoted RHMT and the 

greyscale HMT proposed by Khosravi and Shafer will be written KHMT. 

 

In 2002, two greyscale HMTs were proposed by Soille in [28], and these were also 

explained in [12]. The greyscale HMTs were named the unconstrained HMT 

(UHMT) and the constrained HMT (CHMT) in [28]. Intuitively, the latter is a 

constrained version of the former, where the CHMT is more restrictive than the 

UHMT requiring that a specific fitting criterion be met by whichever SE contains the 

origin. For generality, and since the CHMT is not directly related to the work 

presented in this thesis, only the UHMT is considered from this point forward. The 

UHMT is very similar to the RHMT in that it searches for places where the 

foreground SE can be raised to a level which is higher than the lowest point that can 

be reached by the background SE. However, the transforms differ in the value which 

is assigned to points which record a “hit”. 
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In 2003 Barrat et al. presented a technique which they call morphological probing [5] 

- this will be referred to as BHMT in this thesis. The authors state that the technique 

they propose for processing image data is based on the principle of mechanical 

profiling which is described in their paper as a technique for measuring surface 

height variations, using a probe. They describe this mechanical profiling as a process 

of passing a probe across a surface, while measuring and recording the movement of 

the probe as it traces the profile of the surface that is under inspection. Essentially, 

the technique proposed for pattern matching in images in [5] is a greyscale HMT 

which uses two SEs (probes as they are called in [5]) to inspect an image from above 

and below its surface in order to locate features of interest. Places are marked in the 

image when the probes come into contact with each other from above and below the 

topographic surface of the image. It is shown in [8], and in Chapter 4 of this thesis, 

that the BHMT is equivalent to the KHMT.  

 

A unified theory for computing the output of greyscale HMTs, based mainly on the 

greyscale HMTs proposed by Ronse and Soille, is given in [24]. In this paper [24], 

the authors describe the HMTs proposed in [27] (RHMT) and [28] (UHMT), before 

extending the method proposed in [28] (UHMT) such that it can use greyscale SEs as 

opposed to flat ones. A unified theory for computing greyscale HMTs is then 

presented, and it is demonstrated that the value of pixels in the output image may be 

assigned in a number of ways.  

 

It is shown in [8] and [25], and in Chapter 4 of this thesis, that the RHMT and the 

UHMT resemble each other since pixels which are marked in the output of both 

transforms correspond to locations where the result of processing the image with the 

foreground SE is greater than the result of processing the data with the background 

SE. It is also shown that the KHMT and the BHMT are similar since both of these 

transforms evaluate the distance between the SEs in order to determine whether or 

not a pixel should be marked in the output of the transform. It is pointed out in [8], 

[25], and Chapter 4, that although each of these HMTs are defined in a slightly 

different way, the output of each transform is equivalent. A summary of each of 

these HMTs is provided in Table 3.1. 
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Transform Author Description 

KHMT Khosravi                     

and Schafer [26] 

Uses a single SE to erode the image and its 

negative (by the negative SE). Points in the 

result of adding these two eroded images 

whose value is 0 are points of the KHMT.  

RHMT Ronse  [27]   Uses a foreground SE and a background SE. 

Returns the result of a foreground erosion 

where both SEs fit the image. 

UHMT Soille [12], [28] 

 

Uses a foreground SE and a background SE.  

Returns the number of levels for which both 

SEs simultaneously fit the image. 

BHMT Barrat et al. [5] Uses a foreground SE and a background SE - 

called probes in [5]. When the probes come 

into contact with each other (from above and 

below the surface) at some point in the image, 

this point is marked in the output of the HMT.  
 

Table 3.1 Summary of existing greyscale HMTs 

 

Despite many definitions of the HMT that have been proposed in [5],  [24], [26], 

[27],  [28], the issues which cause the binary HMT to fail in the presence of noise, 

have the same effect on the greyscale HMT. If just one pixel in the foreground of the 

feature of interest drops below the level of the background neighbourhood (as 

defined by the background SE), then the SEs can be prevented from fitting. 

Similarly, if the intensity of just one pixel in the background surrounding a feature of 

interest reaches the level of the foreground, the transform will fail. As a result, a 

number of researchers have presented techniques that aim to extend the greyscale 

HMT in order to improve its robustness to noise.  

 

In Section 3.1.3, a number of techniques that have aimed to make the HMT more 

robust in the presence of noise are reviewed.  
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3.1.3 Extensions of the HMT for Better Accuracy and Improved 
Robustness when Processing Noisy Data 

 

Various researchers have introduced generalisations and extensions that make the 

standard HMT more robust when processing noisy data. At a high level, these 

extensions can be summarised as follows: 

 

 Pre-processing is used to aid the fitting of the SEs 

 

 The SEs are modified in some way to improve robustness to noise 

 

 The definition of the transform is modified by relaxing the strict fitting 

conditions of the HMT 

 

Some authors apply one of the aforementioned techniques to improve noise 

robustness, others try a few of these individually, or in some cases, authors present 

some combination of these techniques, in order to try and overcome the difficulties 

associated with using the HMT to process noisy data. Some authors consider only the 

binary HMT, whilst others consider only the greyscale HMT, and some authors 

provide methods that can be used to generalise both.  

 

In this section a number of existing techniques will be described. The extensions will 

be grouped together in sections based on the methods that have been used (see 

above) to improve the robustness of the transform. In cases where authors have 

employed a combination of the aforementioned techniques, the contribution that is 

claimed by author (or is otherwise considered) to be the major contribution of the 

work will be used to determine the heading under which these extensions are 

described. In other cases, where authors have perhaps considered various approaches 

to extending the HMT, and have paid equal attention to each method, then the 

appropriate section of these papers is referred to under different headings in the 

following section. It is also noted throughout the following discussion whether or not 

the authors presented their extension for binary data, greyscale data, or both. 
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In [4], Naegel et al. briefly discuss some techniques that are commonly used to make 

the HMT perform more accurately in the presence of noise. However, the authors of  

[4] focus on describing algorithms that have been developed in [29], [30] and [31] 

which address a different problem. Therefore, further discussion of the methods 

described there [4], are deemed to be beyond the scope of this thesis. 

3.1.3.1 Pre-processing the Image Data 

 

Bloomberg and Maragos present a Blur Hit-Miss transform in [32] in order to help 

make the binary HMT more robust in the presence of noise. However, the main focus 

of this paper, [32], lies in using the HMT to present generalised openings and 

closings and, as such, many of the contributions and discussions in that paper are 

beyond the scope of this thesis. Only the contributions in [32] that are relevant to this 

body of work are presented in this thesis. It should be noted that the definitions given 

in [32] are for binary morphology. However, in their conclusions the authors explain 

how their techniques may be applied to greyscale images.  

 

The authors propose in [32], that in contrast to the exact match between the SEs and 

a sought pattern that is required by the standard HMT, that their proposed blur HMT, 

requires two slightly less restrictive conditions to be satisfied for successful 

detection. The first is that there must be an ON pixel within some radius, 1r  of each 

“hit”, and that there must be an OFF pixel within some radius 2r  of each “miss”. The 

authors explain that this improves the robustness of the HMT when noisy pixels 

appear close to the border of sought features in the image.  

 

The authors go on to explain that this idea of a blur HMT can be implemented quite 

easily using morphological operators. The first step is to dilate the image using an SE 

of radius 1r  before applying the foreground erosion of the HMT. The second step is 

to dilate the complement of the image using an SE of radius 2r  before applying the 

background erosion of the HMT. These pre-processing steps help to remove noise 

and make it easier for the SEs to match patterns by slightly modifying the geometry 

of features in a given image. While it is obvious that this method can make the 
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standard HMT less sensitive to noise, particularly when the borders of a sought 

feature are distorted, no examples or experimental results are provided to explain or 

support this claim. Also, no method for accurately selecting appropriate values for  
1r  

and 
2r  are provided in [32]. 

 

More recently, Bloomberg and Vincent proposed a blur Hit-or-Miss transform and 

applied it to pattern detection in document images [6]. This transform was initially 

presented in [32] (described above), however, as the previous paragraph explained, 

only the definition and a very brief description of the transform was provided there. 

The authors point out that although rank order filters can be used to improve the 

performance of the HMT, the blur HMT offers a more efficient alternative as 

erosions and dilations can be computed using efficient Boolean operations when 

processing binary data. The authors also point out that a large number of researchers 

have focused on modifying the templates that are used in the detection process [33], 

[34], [35] and [36]. However, while Bloomberg and Vincent agree that modifying the 

templates is useful for improving the performance of the HMT in noisy images, they 

argue that techniques which modify the image have been overlooked.  

 

The authors of [6] begin by defining the binary HMT before describing the blur 

HMT and introducing the concept of blur SEs. It is explained that the so called blur 

SEs can be used in one of two ways. They are either used to dilate the image, as was 

the case in [32] or, alternatively, they can be used to erode the templates that are used 

to match features in the image data. While it is explained that either approach can be 

taken, the authors conclude that since there is generally more salt and pepper noise in 

the image data than on the templates, that it is best to use the blur SEs to dilate the 

image. The blur HMT is therefore defined in the same way as in [32], where the first 

blur SE is used to dilate the image foreground, and a second blur SE is used to dilate 

image complement. Taking this approach provides a number of advantages: dilating 

the foreground using the first blur SE suppresses impulsive noise while, at the same 

time, it expands the foreground of the image to allow better fitting of the foreground 

template. Similarly, dilating the background by the second blur SE removes 

impulsive noise, while expanding the background regions to allow better fitting of 
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the background template. It will be explained in Section 3.1.3.2, how sub-sampled 

versions of the foreground and background templates can be used in order to increase 

the efficiency of the blur HMT.     

 

Perret et al. in [8] use pre-processing techniques to estimate one of the parameters of 

their Fuzzy HMT (FHMT) and to reduce the noise in the image data which is to be 

processed. This allows them to estimate an appropriate level at which they should 

apply their SEs in order to locate the best match. In this paper [8], the authors also 

point out that when images are distorted by impulsive noise the performance of the 

HMT can often be improved by applying a rank order filter, such as the median filter 

[16], to clean up the image before applying the standard HMT. However, this 

approach is only recommended for the case of impulsive noise. Further, it requires 

additional computation prior to performing template matching using the HMT. 

3.1.3.2 Modifying the SEs 

 

In [33], Zhao and Daut present a technique for the detection of imperfect shapes 

using the HMT. The authors focus on applications of the binary HMT and state that 

the majority of the noise and distortion encountered in their work is introduced by 

the thresholding process that is used to obtain a binary image from greyscale data. 

The authors point out that examining the problem closely reveals that most 

distortions of the sought features actually occur at their boundaries.  

 

In order to improve the performance of the HMT when matching such imperfect 

shapes, the authors design a set of templates which resemble the geometry of the 

feature that they wish to detect. They include in this set a number of variations of the 

sought feature which represent the distorted, imperfect shapes that they aim to match 

and locate in the image. These templates are then smoothed using a morphological 

opening, before the boundaries of these smoothed features are used to locate 

imperfect shapes in the image, using the HMT. It is also explained in [33] that lower 

and upper bounds can be determined for shape variation and hence the boundary of 

SEs, representing these extreme shape variations, can be used with the HMT.  
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The authors provide an example of their improved HMT when applied to the 

problem of character recognition and achieve promising results. They also point out 

in this paper [33] that the idea of using the boundary of the HMT templates was 

originally proposed in their earlier work which was presented in [37]. Using the 

boundary of the templates for robustness to noise has the added advantage that it 

significantly reduces the number of computations at every pixel to which the HMT is 

applied [33]. This makes the transform more efficient when compared with using the 

entire SE. 

 

In [38], the same authors discuss the use of the binary HMT for detecting what they 

refer to as both perfect and imperfect shapes. The paper begins by thoroughly 

describing the technique of using the boundary of the HMT templates as an 

alternative to using the entire template with this transformation (see above). The 

authors explain that using a subset of the template allows accurate detection of the 

sought pattern while eliminating a large number of redundant computations that are 

performed when using the entire template to achieve the same goal. The problem of 

detecting imperfect shapes is then addressed, and the authors provide a more 

thorough description of the technique that is presented in [33] (and summarised 

above). The authors point out that using a large set of SEs which contains the 

possible variations in appearance of the sought template would be computationally 

expensive. They also explain that lower and upper bounds for the possible variation 

of the sought features can be determined. The boundary of SEs which represent these 

lower and upper bounds of shape variation can therefore be used as SEs in the HMT. 

This allows better matching of the templates with imperfect features, while keeping 

computational costs to a minimum.   

 

Zhao and Daut demonstrate, using a number of SE pairs, that by increasing the 

spatial distance between the foreground and background templates, the permitted 

variation in the shape of the sought feature increases. This increase in the permitted 

shape variation improves the likelihood of successful detection when sought features 

have been distorted. However, this also increases the likelihood of erroneously 

detecting features which are not of interest (see Chapter 2, Section 2.3). The authors 
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also demonstrate in [38], that it is possible to use the skeleton of the sought feature, 

and the skeleton of its complement, as respectively the foreground, and background 

SEs, when applying the HMT. The authors demonstrate that this approach allows not 

only imperfect shapes, which have been distorted by noise to be detected, but also, 

that it is possible to detect features whose orientation is slightly different to that of 

the templates. 

 

In [26], after describing their greyscale HMT (KHMT), Khosravi and Schafer present 

two techniques in an attempt to generalise this transform for improved performance 

in noise. One proposal is that the SEs that are used for template matching are 

decomposed into a number of sub-templates. These sub-templates are then applied 

separately to the data before the resulting images are used to compute the output of 

the HMT. The authors also test the performance of their greyscale HMT by replacing 

the strict morphological operators with rank order operators as will be discussed in 

Section 3.1.3.3, however, for now, only modifications to the SEs are discussed. 

 

The authors state in [26], that their greyscale HMT can be made more robust in the 

presence of impulsive noise by reducing the size of the templates used for matching 

features in the image. They state that this fact motivated their efforts in testing the 

performance of the HMT using a series of sub-templates which are obtained from 

decomposing the original template. The authors demonstrate that decomposing the 

templates, and applying these independently to the data in the presence of impulsive 

noise before combining the results, provides a significant improvement in accuracy 

when compared with using the original template in a single pass of the image. They 

point out, that when applying this technique to data which is corrupted by impulsive 

noise, the greater the number of partitions of the template, the more robust is the 

routine. 

 

The authors demonstrate in [26], that partitioning the template into a small number of 

sub-templates also provides improved performance in the presence of Gaussian 

noise. However, increasing the number of partitions in this case, does not necessarily 

mean improved performance. It is clear from the experimental results presented in 
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[26], that as the number of partitions increases, the results can in fact be worse 

(contain more errors) than when using a standard greyscale HMT with the original 

template and no partitioning. The authors also demonstrate, by experimentation, that 

when decomposing the SEs into sub-templates, the points in each sub-template 

should be sampled from the entire set of points in the SE. That is, the decomposition 

process should not be restricted in such a way that samples for each template are 

selected from distinct, non-overlapping regions of the template itself.       

 

It was mentioned briefly in Section 3.1.3.1 that Bloomberg and Vincent, [6], use sub-

sampled versions of their templates in order to improve the efficiency of the blur 

HMT. In their paper they explain that blur SEs can be applied either to the image 

itself, or to the templates which are used to match features in the image. In the 

previous discussion of the blur HMT in Section 3.1.3.1, it was noted that the authors 

chose to apply the blur SEs to the image. However, when considering fast 

implementations, the authors point out that they can actually subsample the template 

to reduce the number of computations per image pixel, and that as a direct result of 

sub-sampling the templates, they essentially implement their blur HMT. That is, sub-

sampling the templates is deemed to be similar to eroding the them by the 

appropriate blur SEs. The authors use a number of sub-sampling techniques and 

conclude that sub-sampling the templates following a regular grid provides the best 

results.  

 

In [39], Doh et al. propose an algorithm which uses a so called “synthetic SE” in 

order to allow the HMT to detect features in clutter. The authors point out that the 

performance of morphological operators when applied to object recognition tasks is 

critically dependent on the SEs that are used. They therefore suggest that an optimal 

SE be designed which is capable of improving the detection rate of the HMT while 

reducing the number of false alarms. In addition to this, the authors relax the strict 

fitting criteria of the standard HMT by implementing the erosions using thresholded 

correlation operators. The authors explain that by varying the threshold they are 

essentially introducing rank order filters in order to reduce the likelihood of the 

transform failing in the presence of noise, distortion or clutter. 
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Doh et al. point out that when using the HMT, the foreground SE is often designed to 

match the feature of interest while the background SE is designed as the complement 

of the foreground template. The authors then present what they call synthetic SEs 

and demonstrate that the synthetic foreground SE may be computed by calculating 

the intersection of all “true-class” foreground SEs. By a similar technique, the 

synthetic background SE is computed by calculating the union of the foreground SEs 

and taking the complement of the result. These SEs are defined in terms of set theory 

and hence it is assumed that the authors use only flat SEs in their synthetic HMT 

(SHMT). By this approach, the spatial separation between the borders of the 

foreground SE and background SE will be maximised to allow all features of interest 

to be matched by the synthetic SE in a single pass of the image. 

 

The authors use real and synthetic image data to test their synthetic SE when using 

their SHMT. They explain that the SHMT implements two thresholded correlations, 

one for the synthetic foreground SE and one using the synthetic background SE. The 

result of the SHMT is then computed by calculating the intersection of these 

thresholded results. Doh et al. create their synthetic SEs by cropping examples of the 

features that they wish to detect, from the image, and they use these to compute the 

foreground and background synthetic SEs as described earlier. In the case that 

greyscale images are to be processed, these images are thresholded before the SEs 

are selected and used to generate the synthetic SEs. These synthetic binary SEs are 

then applied to the thresholded binary image. 

 

The authors point out that the threshold value that is applied after correlation affects 

the output of the transform. It appears that when the image data is not distorted by 

noise, this parameter is set such that the standard HMT is implemented. It also 

explained that after performing the correlation on the real experimental data, the 

results contain a large amount of distortion. The authors therefore modify the 

threshold parameter arbitrarily such that different values are used for the foreground 

and background operations.  
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While the authors present a set of results which confirm that it is possible to use their 

synthetic SEs and a rank order HMT to detect features in the presence of noise, 

distortion and clutter, no robust method is provided for setting the threshold/rank 

parameter in their routine. Instead, the authors appear to set this critical parameter 

based on the mean and variance value of the image. They then “tweak” this 

parameter after the correlation has been applied in order to optimise their results by 

reducing the number of false alarms. A robust method for setting this parameter is 

clearly required.  

 

It should also be noted that it is obvious that increasing the spatial separation 

between the foreground SE and background SE will allow greater variation of 

features to be detected by the standard HMT. However, the suggestion of computing 

the synthetic SEs using the method proposed in [39] does provide a robust method 

for setting this increased spatial separation. The only drawback is that in [39], the 

authors appear to generate these synthetic templates by cropping features of interest 

from the test image itself. They then create the synthetic SEs before applying them to 

the same image from which they were generated. It is no surprise therefore that the 

features are located in the image by the HMT when using this approach. It would be 

more appropriate to select features of interest from a set of training data and use 

these to generate the synthetic SEs. Then the SHMT could be applied to a set of 

unseen validation/test images, which contain variations of the features of interest, 

and these features could be located using the synthetic SEs. In fact, Harvey et al. in 

[11] adopt this approach when using the HMT for ship detection in satellite imagery. 

In [11], the authors extend the method proposed in [39] for computing synthetic SEs 

such that it can be used for greyscale templates. Further, Harvey et al. design their 

synthetic SEs using a set of training data and then apply their extended transform 

[39] to both the training set and an unseen test set for validation.     

3.1.3.3 Modifying the Transform 

 

In [40], Maragos discusses the problem of image matching and template matching 

and presents a number of techniques that can be applied to solve problems in this 

area. The paper is mainly theoretical and no experimental results are provided. Since 
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the focus of this thesis is template matching using the HMT, only the relevant 

sections of [40] are discussed here.  

 

In [40], Maragos describes the idea of template matching and defines the binary 

HMT which can be used for this purpose. The author explains that the HMT is 

directly related to linear correlation, provided that the output of this correlation is 

thresholded appropriately. This was also demonstrated in [39] where the authors 

varied the threshold, following linear correlation, to implement the standard HMT 

and an extension of this which relaxes the strictness of the transform. Maragos points 

out in [40], that the HMT is sensitive to noise and that small amounts of this can 

cause the transform to fail. He states that in [41] Crimmins and Brown proposed that 

a large number of templates, which include possible variations of the spatial 

appearance of the sought feature due to noise, can be used to search for that feature 

in noisy data. Consequently, Maragos points out that in using this approach, it would 

be difficult to account for all possible distortions of a feature without having to apply 

the transform an unrealistically large number of times with an extensive set of SEs.  

 

As an alternative, Maragos proposes in [40], that in place of erosions and dilations, a 

measure of how well the SEs fit the image at each point be calculated to allow partial 

fitting of the templates. He points out that a measure of fitness may be calculated by 

computing the sum of pixels which coincide with the SEs at each point and dividing 

the result of this summation by the number of points in the corresponding SE (note: 

this only applies to binary case). In this way, the measure of fitness can be calculated 

for each point in the image and its value may be allocated to each pixel of the output 

image. Maragos points out that this method allows the HMT to perform better in 

noise. However, the author also states that an appropriate threshold value must be 

identified when using this modified HMT. Although this point is mentioned in [40], 

the issue of determining a suitable value for this parameter is not formally addressed, 

and hence no method is provided for its robust estimation.  

 

Maragos, [40], goes on to explain a relationship that exists between a statistical 

hypothesis testing approach to template matching and binary correlation. The author 
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uses a binary image containing the sought template which is corrupted by synthetic 

impulsive noise and proves that applying the statistical approach is equivalent to 

performing a linear, binary, cross correlation of an image with a template and 

thresholding the result. Since the probability distribution of the noise model that is 

used is known, a value for the threshold can be computed in terms of the mean value 

of the signal and the probability of the noise. However, no method for setting this 

value in the more general case, where, for example, the distribution of the noise in 

the image is not known, is provided in [40]. Often, in real applications the exact 

probability distribution of noise is not available, and hence alternative techniques for 

determining a suitable value for this rank parameter must be investigated. 

 

Maragos, [40], also talks about relaxing the strictness of morphological operators by 

using rank order filters, and states that this is theoretically equivalent to applying 

linear correlation and varying the threshold that is used. The author points out that 

the rank filter can be applied to greyscale images, and states that the rank reflects the 

area/portion of the SE which fits the signal at any given pixel. However, no robust 

technique for setting this threshold or rank parameter is provided in [40].  

 

In [32], and in addition to the blur HMT that was proposed in this paper as described 

in Section 3.1.3.1, Bloomberg and Maragos provide a definition for a Rank Hit-Miss 

Transform to make the transform more robust to noise. The authors first demonstrate 

that rank order filtering is equivalent to thresholded correlation, as was described in 

[40], and demonstrated in [39]. They then use rank order filters in place of erosions 

to improve the performance of the HMT when processing noisy data. The authors 

explain that the use of rank filters imposes looser fitting conditions than the erosion 

when searching for a feature using a pre-defined template. They also state that these 

ideas have been applied to several problems where template matching has been used 

locate features in binary data [42],  [43], [44].  

 

The authors [32] explain the steps that may be taken to relax the conditions of the 

standard HMT using rank filters before stating that this can be used to implement a 

generalised rank opening which consists of applying a rank HMT and dilating the 
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result by the foreground SE. However, no method for accurately determining an 

appropriate rank for the rank HMT (or any variation of this), or an appropriate 

threshold for using thresholded correlation, is provided in this paper. In fact, as was 

pointed out in Section 3.1.3.1, the authors do not provide any experimental results 

which demonstrate applications of the blur HMT, rank HMT, or the generalised rank 

order blur opening.    

 

It was explained in Section 3.1.3.2, that Khosravi and Schafer, [26], investigated the 

possibility of sub-sampling the SEs to improve the performance of the HMT when 

operating in noisy data. In addition to this, they investigate the possibility of using 

rank order filters in place of the traditional morphological operations in order to 

assess the robustness of this extension when the transform is presented with noise.  

 

The authors test the performance of their rank order HMT in the presence of 

Gaussian noise and impulsive noise. Empirical techniques are used to determine 

lower and upper limits for the value of the rank parameter and the authors conclude 

that these limits are determined by impulsive noise and Gaussian noise, respectively. 

However, no formula or robust method (other than the exhaustive empirical one) is 

provided for computing these limits. Further, no method for determining the 

appropriate value that should be used for the rank parameter in order to locate a 

feature of interest in any specific image data is provided in [26]. 

 

In [21], Soille presents a number of rank HMTs which have been developed for the 

processing of binary images, [32], [45], [46], [47], [48]. However, no greyscale rank 

HMTs appear to be presented in [21], and no robust techniques that can be used to 

set parameters for these rank HMTs are provided. Later, in [12], Soille presents a 

rank HMT which can be applied to greyscale data. The author explains that this is a 

generalisation of the UHMT which imposes only partial fitting constraints on the 

SEs. Soille suggests that rank HMTs perform better than the standard HMT when the 

geometry of sought patterns is perhaps unknown or distorted in some way. The 

author does not provide any technique that can be used to determine the rank 
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parameter, and no examples of the rank HMT being applied to any problems are 

given in [12].  

 

It should be noted, that in [47], Cassasent et al. actually perform a series of 

experiments in order to examine the effect of varying the threshold of their 

foreground and background correlation operations when detecting binary rectangles 

of different sizes in noise. The authors use a series of synthetic images for this 

purpose, and they apply their transform a large number of times while varying the 

threshold in order to analyse its effect. Using their set of synthetic data, the authors 

demonstrate that it is possible to determine theoretical limits for each threshold 

parameter (one for the foreground and the other for the background), and they show 

how these limits can be used to detect rectangles of various sizes in noisy data using 

their rank HMT. However, when applying their rank HMT to real data, the authors 

arbitrarily set their rank parameters (based on heuristics) to be lower than their pre 

computed theoretical limits. While this further relaxes the strictness of their rank 

HMT and allows successful detection of their features of interest, the authors do not 

fully exploit the approach which was used to asses the effect of varying the threshold 

in the first place.  

 

More recently, in [8], Perret et al. present a Fuzzy Hit-or-Miss transform which they 

use to detect so called Low Surface Brightness Galaxies (LSBs) in very noisy 

astronomical images. The method in [8] appears to be an extension and more 

thorough description of the method described in [49]. The authors, [8], begin by 

introducing the problem and they state that LSBs are not yet fully understood by 

astronomers. They also point out that due to the low SNR in image data (as a result 

of long exposure times) no method for automatically segmenting these features 

currently exists (until the methods presented in [8]). Later in this paper, the authors 

state that a tool for characterising astronomical objects was developed in [50], and 

that this has been tested for detecting LSBs using a segmentation map generated by a 

Bayesian approach which is described in [51]. The authors point out that the method 

proposed in [51] does not deal with the shape knowledge that is available.  
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Perret et al. then explain the binary HMT by example, before reviewing a number of 

greyscale HMTs that have been presented over the years. Further, the authors 

provide a comprehensive review of techniques that have been proposed in the 

literature which aim to make the HMT more robust in the presence of noise. These 

papers, and a number of others, have been reviewed in this thesis. The authors also 

describe some generic approaches which can be used to improve the robustness of 

the UHMT, the RHMT, the BHMT and the KHMT, in the presence of noise. These 

are transform dependent and involve either: increasing the distance between the SEs 

used by the HMT, or, modifying the threshold that is used at the output of the 

transform. These techniques will be addressed in more detail in Chapter 5. 

 

Having reviewed existing techniques, the authors point out that in [40] Maragos 

defined an extended HMT for the binary case which allowed the extent to which the 

SEs matched features in the image to be computed. By measuring how well the SEs 

fit the image at each point, it is possible to relax the strict conditions of the standard 

HMT by allowing partial fitting of the SEs. This is the basis for the FHMT which is 

defined in [8]. It is also the basis of the extended HMT that is presented in Chapter 4.  

 

After providing the required background material, Perret et al. define the FHMT 

which measures how well a pair of greyscale SEs fit each point in a given image 

when raised through all possible greylevels. The authors then discuss implementation 

issues and point out that it is possible to restrict the application of the SEs at each 

point in the image to only a small number of greylevels that are close to the intensity 

of the signal of interest. They also point out that it is possible to estimate a suitable 

level at which to apply the SEs from an average filtered version of the original 

image. The resultant value of each pixel of the average filtered image may be used as 

an estimate of the intensity level at which to apply the SEs when they coincide with 

the corresponding pixel in the image under study. The authors also discuss the issue 

of setting a suitable distance between the SEs and conclude, that where available, 

local noise estimates can be used for this purpose.  
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The authors go on to talk about the specific application of their FHMT to the 

problem of LSB detection. They explain a number of difficulties in the detection 

process posed by low SNR and the low surface intensity of the LSBs themselves. 

Further, the LSBs can appear in any orientation and their geometry can vary 

significantly. The authors then describe an algorithm based on the FHMT and they 

explain that the first step in the process is to design a large set of SEs that can be 

used as templates to locate the LSBs in the image. The authors also point out that a 

background map is required since the intensity of the LSBs can be very similar to 

that of the noisy background. Also the original image is pre-processed using a 

median filter to reduce noise before the set of templates, the background map, and 

the median filtered image, are passed to the FHMT for processing. The output of the 

FHMT is thresholded in order to locate the position of the LSBs in the image.   

 

The authors are able to describe the LSBs using a sophisticated mathematical model 

which incorporates a number of parameters including scale length, orientation, 

brightness and elongation. This is used to generate a set of SEs which contains a total 

of 640 templates. The authors then explain that the background map is computed by 

windowing (partitioning) the image to be processed and using the sigma clipping 

method. This is a common technique used in astronomical image analysis, and, as 

such, it is not referenced in [8]. However, the authors describe this process by 

explaining that it is computed in two steps. In the first pass, the mean value, , and 

the standard deviation,  , of all pixels in each window is computed. Then, the 

method masks all pixels whose value is greater than k   or lower than k  , 

and step one is repeated iteratively until convergence. The authors point out that a 

typical value for k is 3, and the reader is referred to [52] for further information. 

 

Having generated the set of templates and described the process by which they obtain 

the background map, the authors perform median filtering on the original image and 

use this to estimate an appropriate level, t T , at which to apply the SEs in order to 

perform template matching using their FHMT. For each pixel in the median filtered 

image, the authors transpose their greyscale SEs to the estimated intensity for this 

pixel in the image. The distance between the SEs is then fixed by using the standard 
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deviation of the local noise estimates,  , from the background model. That is, the 

maximum value of the foreground SE is raised to the level t  , and the background 

SE is raised to the level t  . When the appropriate level has been determined, and 

a suitable distance has been fixed between the SEs, each SE in the large pre-

computed set is then applied to this pixel at level t.  The FHMT is used to compute a 

score for each pixel based on how well each of the SEs fit the image when fixed at 

level t. The highest score for each pixel, which is computed for the best fitting SE, is 

allocated to the corresponding pixel in the output image to produce a so called “score 

map”.     

 

When the score map has been computed using the FHMT, the final output of the 

algorithm is computed by thresholding the map in order to locate the position of the 

LSBs. Perret et al. state that using a threshold of 80% provides a good result, which 

would imply that this parameter has been determined empirically. By thresholding 

the score map, the authors obtain a binary image from which they wish to reconstruct 

the final LSB segmentation map. Although the authors point out that they can 

achieve this by geodesic operations, they chose to simply dilate the markers in the 

output image by the foreground SE which provided the best score. The reason, is that 

the software which is used to document the results obtained in the segmentation map 

(created by dilating the markers in the thresholded score map) performs better when 

the edges of features are well defined.   

 

The authors state that processing a 512x512 image using their algorithm, and the 

entire set of SEs, takes around 20 mins to complete. Therefore, a few approaches are 

used to improve the efficiency of this routine. These are: 

 

1. Sub-sampling of the SEs – as suggested in [6] 

2. Sub-sampling of the image data at a scale of 1:2, also suggested in [6] but not 

implemented there 

3. Abandoning the computation for pixels when it is clear that the threshold 

cannot be reached 
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Perret et al. point out that the last optimisation technique is heuristic and is based on 

processing the data in two steps. In the first step, possible points of interest are 

identified by applying a small subset of the entire set of templates to the image and 

using a low threshold. Points remaining after the first pass are then tested using the 

full algorithm. Using the described approach, the authors reduce the computation 

time from 20 minutes to around 2 minutes per image. The authors concede that using 

this heuristic approach could potentially lead to LSBs being missed in the detection 

process. 

 

Perret et al. go on to present an impressive set of results when locating the LSBs in 

image data with low SNR. They compare their method to an approach based on 

traditional correlation, [16], and conclude that while this performs well, their method 

outperforms this technique for LSB detection. However, although the authors state 

that they vary the threshold at the output of the correlation, they do not state exactly 

how they determine an optimal value for this parameter. They state only that they 

adjust this threshold (presumably by experimentation) in order to ensure the best 

results. The authors also compare their results to a set of ground truth data in 

consultation with an astronomer and demonstrate that their technique performs 

extremely well for this particular application. 

 

In [11], Harvey et al. use rank order filters in place of traditional erosions and 

dilations in order to make the greyscale HMT more robust in the presence of noise. 

The authors apply their extended HMT to the problem of ship detection in satellite 

imagery, where they aim to improve upon the techniques which are currently used 

for this purpose. The authors point out that existing techniques for ship detection rely 

on the fact that ships are often brighter than their surrounding background in the 

image. As a result, these techniques exploit local contrast properties which make 

them sensitive to variations in intensity. As a result a high number of false alarms are 

raised when using these existing routines.  

 

In [11], the authors justify the use of the greyscale HMT for template matching by 

pointing out that it is insensitive to overall greyscale variations of the sought 
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templates in the image data. They also state that rank order filters are generally faster 

to compute than linear correlation techniques. As with most recent papers on the 

HMT, the authors first present the binary HMT before pointing out that a number of 

greyscale HMTs have been presented in the literature. Harvey et al. choose to build 

upon the BHMT, and hence they explain this in detail before discussing their 

proposed extension.  

 

The authors explain that the BHMT involves evaluating the distance between the two 

probes, where the distance metric that is returned at each point, is allocated to the 

corresponding pixels of the output image. Harvey et al. explain that the output image 

must therefore be thresholded such that only the points of interest are marked in the 

output image, and they state that in [5] Barat et al. choose this threshold to be the 

difference between the values in the centre points of their two greyscale probes. As 

an alternative, and what would appear to be a more robust approach, Harvey et al. 

propose that the output is thresholded at a number of levels, and that the detection 

rate, and a false alarm rate, is recorded after each threshold is applied. Using this 

approach allows a Receiver-Operator Characteristic (ROC) curve, [53], to be 

generated in order to evaluate the performance of the threshold that is used. This 

allows the optimal threshold to be determined for any application, and hence the 

most accurate results may be obtained. 

 

The authors then extend the BHMT by replacing the erosion and dilation with rank 

order operators. They point out that applying rank order filters relaxes the strict 

fitting criteria of the standard transform that is imposed by using erosions and 

dilations, as this allows some tolerance in the fitting of the SEs in the image. The 

authors also state that the value of the rank parameter affects the robustness of the 

transform, and that relaxing the strictness of the transform in this way, may lead to an 

increase in the number of false alarms. This point is addressed in their experimental 

results section, where the authors use ROC curves to evaluate the affect that varying 

the rank parameter has on the extended transform and they compare their rank HMT 

with the standard BHMT. 
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The authors use a set of satellite images to test their method. The data set contains a 

total of 40 ships that they wish to detect, as well as a number of features, including 

different ships, which are not of interest. The authors partition this set of images into 

a training set and a validation set. Each set contains 20 of the 40 ships that they wish 

to detect. From the training set, the 20 ships of interest are manually selected from 

the image and are used to generate the so called “hit template” and “miss template”. 

These terms are synonymous to respectively the foreground and background 

SEs/probes that have been discussed so far in this thesis.  

 

Having selected 20 example ships to use as templates, the authors use a technique, 

similar to the one presented by Doh et al. in [39] for designing binary SEs, to 

generate the templates that are to be used for their rank HMT. That is, the “hit 

template” is computed by registering all 20 of the manually selected targets (from the 

training data) and computing the point-wise minimum. The “miss template” is 

computed, by a similar process, except that the point-wise maximum is computed for 

all points of the 20 targets. These templates are then used to compute the rank HMT 

that is proposed in [11]. The SEs are actually applied to the image, by the rank HMT, 

at 64 different angles in order that the orientation of the ship, as it appears in the 

image, does not cause ships to be missed. When all 64 images have been computed, 

the final output image that is to be thresholded is calculated by computing the point-

wise minimum of all pixels, in each of the 64 images. This ensures that the value for 

the best fitting template pair is used in the final detection process - thresholding.  

 

The authors evaluate the effect that the rank parameter has on the output of the 

extended HMT that is presented in [11] using ROC curves. In the first instance, the 

rank parameter is set to 1 such that the standard BHMT is implemented. Then, the 

authors apply their extended HMT, a number of times, and each time they increase 

the rank parameter in order to reduce the strictness of the transform. Each resultant 

image is thresholded at a number of levels and the detection rate and the number of 

false alarms are computed for each output when varying the rank and applying the 

transform. This information is used to generate ROC curves for both the training data 

and the test data for each rank that has been used. Using the ROC curves allows the 
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best threshold to be selected for the optimal rank parameter after having applied the 

transform a number of times while varying the rank. The results obtained when 

applying this rank HMT to the training data are better than the results when applying 

the same to the test data, however, this is to be expected since the templates are 

essentially matching/locating themselves in the training data. However, it is clear in 

both cases, that increasing the rank parameter to reduce the strictness of the 

transform does improve the performance of the HMT to a point. A direct comparison 

of the proposed method and the standard BHMT is given in the ROC curves as the 

BHMT is implemented when the rank parameter is 1.  

 

The authors conclude by pointing out that they have demonstrated that using rank 

order operations in place of erosions and dilations can significantly improve the 

performance of the HMT when applied to the ship detection problem. This is clear by 

interpreting the ROC plots that are provided in the paper. The authors also point out 

that they have performed a rather exhaustive search in an attempt to find the optimal 

rank parameter that should be used. Indeed this is true, they have applied their 

extended HMT a number of times while varying the rank parameter, and then they 

only assess the performance of each rank value, after the results have been obtained. 

This means that to find the optimal rank parameter, the entire transform must be 

computed multiple times for a large number of different rank values. Then, the best 

performing rank value is found (after applying a large number of thresholds and 

generating ROC curves), before every result, except the optimal one, is discarded. 

This is rather time consuming and wasteful of resources.  

 

Ideally the rank parameter should be determined prior to executing the transform. In 

this way the parameter can be optimised and the transform need only run once. While 

it is recognised that ROC curves provide a good measure for validating performance, 

more efficient methods should be investigated for optimising this rank parameter. 

Harvey et al. concede this last point in [11]. Also, determining the rank parameter 

using the method proposed in [11] requires that training data, and reliable ground 

truth data, is available. Although a data set can normally be split up in order to allow 

the use of some images for training, accurate ground truth data cannot always be 
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obtained. Also, as the number of features in the training data increases, the 

computation and quantification of ground truth data becomes an onerous task.  

Finally, Harvey et al. point out that the algorithm is computationally expensive, and 

that fast algorithms for computing the output of this type of transform would be 

beneficial.      

3.1.3.4 Summary of Extensions of the HMT 

 

Each of the aforementioned methods and extensions aim to improve the performance 

of the HMT such that it is more robust for object recognition and feature extraction 

in noisy images. All of the methods that have been discussed provide valid solutions 

using a wide variety of extensions and techniques. Rank order operations feature 

heavily in this work, however, there appears to be a conceptual gap in that most of 

the authors often fail to provide a robust and general method by which it is possible 

to select the appropriate rank or threshold parameter. In fact, the only authors who 

appear to give any real attention to robustly setting this parameter are Harvey et al. in 

[11]. However, in their paper, published in 2010, the authors of [11] point out that 

their approach is extremely exhaustive, and that optimal methods for setting this 

parameter should be investigated.   

 

This thesis presents a novel Percentage Occupancy Hit-or-Miss transform which 

allows partial fitting of SEs in a similar fashion to the partial fitting allowed by rank 

order filters. The difference here however, is that a robust and efficient design tool is 

provided for accurately determining the rank, or percentage of the filter that must be 

occupied, for accurate detection of features of interest. In addition, the design tool 

may be used to robustly determine the optimum parameters for the many methods, 

developed by other authors, which have been described so far. 
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3.2 Efficient Techniques for Computing the Output of 
Morphological Operators and Rank Order Filters 

 

Over the last forty years, there has been significant interest in developing efficient 

methods for computing the output of morphological operators, and more generally, 

the output of rank order filters (the relationship between morphological operators and 

rank order filters was explained in Chapter 2, Section 2.5). Due to the computational 

complexity of using a direct implementation to compute the output of the generalised 

HMT that is presented in this thesis, a number of techniques for reducing the 

execution time of this transform have been investigated. It is explained in Chapter 6 

that the extended transform presented in Chapter 4 of this thesis can in fact be 

implemented using rank order filters and, as such, an efficient method for computing 

this class of filter has been developed. It is shown in Chapter 6, that this fast 

algorithm provides a significant reduction in the time taken to compute the output of 

the extended HMT (Chapter 4) when compared with a direct implementation.  

 

It is required therefore, that a short overview of existing techniques that can be used 

to compute the output of various morphological operators, and other specific rank 

order filters, is provided here. The intention of this summary of the relevant literature 

is to place the contribution of Chapter 6 in context with the state of the art techniques 

for optimising the efficiency of morphological operators, and other rank order filters.  

In Chapter 6, two of the methods ([54] and [55])  that are discussed here in brief will 

be described in much greater detail. Following a detailed explanation of these 

techniques, it is then shown in Chapter 6, how these methods may be combined in 

such a way that it is possible to compute the output of any arbitrarily shaped rank 

order filter in minimal time.  

 

3.2.1 Structuring Element Decomposition and Efficient 
Techniques for Computing Erosions and Dilations with 
Linear SEs   

 

Computing the output of an erosion or dilation by a direct implementation can be 

computationally intensive and time consuming. One way to increase the efficiency of 
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computing these operators, as described in [12], is to decompose the SE into a set of 

smaller linear segments which can be applied successively to the image in order to 

determine the result. It is more efficient to compute the morphological transform in 

this way than by performing it a single pass of the image using the larger SE. In fact, 

it is stated in [12], that whenever a SE can be decomposed, this method should be 

considered for improved efficiency.  

 

An efficient method for computing morphological operators using linear SEs was 

presented by Van Herk [56] in July of 1992. Less than one year later, in May of 

1993, the same method was published independently by Gil and Werman [57]. As a 

result, the method is sometimes referred to as the van Herk/Gil Werman algorithm 

(vHGW). Line segment SEs may be used to erode or dilate an image if they are 

suited to a particular application, or, more likely, when they are obtained by SE 

decomposition. If the vHGW method is used to implement erosion or dilation, and it 

is coupled with the SE decomposition method, then significant gains in speed can be 

achieved. In the following discussion, only the implementation of dilation will be 

discussed, however, erosion can easily be described by replacing references to 

computation of the maximum with that of computation of the minimum.  

 

The execution time of the vHGW described in [56] and [57] is independent of the 

length of the SE, and it requires no more than three comparisons to compute the 

dilation for a pixel in any given image. Each 1D line of the image is divided into 

segments, where the length of each segment is determined by the length of the SE. 

Then, two temporary buffers are filled (one in the forward direction and one in the 

backward direction) by recursively computing the maximum values in each segment. 

When this is completed, the buffers contain the only possible maximum values for 

any pixel in this 1D line when it is coincident with the origin of the SE. The output 

for any pixel may then be computed by correctly indexing these buffers and 

calculating the maximum of the two values (one from each buffer) that correspond to 

the pixel in question. This method was later extended by Breen and Soille in [58], 

and by Soille et al. in [59], for use with line segments at arbitrary angles. A further 
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extension to the vHGW was introduced in [60] where the efficiency of this algorithm 

was further improved by Gil and Kimmel.     

 

3.2.2 Moving Histogram Approach 

 

An alternative approach to efficiently computing the output of morphological 

operators, which has the added benefit that it is compatible with other rank filters, is 

to use the moving histogram technique. This technique is based on the work of  [54] 

and  [61] for efficient computation of 2D median filters which were first applied to 

image data by Tukey in [62], [63]. Taking the method proposed by Huang et. al [54] 

as an example, the moving histogram technique can be described. This idea (as with 

other moving histogram techniques) exploits the fact that as a sliding window 

traverses the image, only a small number of pixels that coincide with the window 

actually change as it moves from one pixel to the next. Instead of resorting all of the 

values in order to compute the next median, it is possible to deal with only those 

pixels that change as the window moves from one position to its neighbour. Dealing 

with fewer pixels directly leads to an increase in speed, and this is further enhanced 

by using a histogram to store the frequency of the intensity of the pixels that coincide 

with the window.  

 

Since the values in the histogram are sorted, it is easy to locate the value of the 

median from the pixels coinciding with the window at each point in the image. Each 

time the window moves from a pixel to its neighbour, the histogram is updated by 

removing from the histogram the pixels that leave the window, and adding to it, the 

pixels that enter during translation. Further, in the method proposed by Huang et al., 

the search for the new median does not restart each time the window is translated. 

Instead, it is identified from the position of the previous median by keeping a count 

of the pixels in the window whose value is less than the previous median. The value 

of the count is used to decide how far and in which direction the histogram should be 

searched.  
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The technique proposed by Huang et al. [54] was extended for computing the output 

of more general rank filters by Chaudhuri in [64]. While these methods ([54], [61] 

and [64]) are useful, and prove to be extremely efficient, the major drawback is that 

they only provide solutions when using square and rectangular windows to filter the 

image data. When considering morphological operators, and a number of other 

filters, the use of arbitrarily shaped windows is essential in particular applications. 

As a result, the methods presented in [54], [61] and [64] are restrictive as only square 

and rectangular windows can be used. 

 

The moving histogram technique was extended by Van Droogenbroeck and Talbot in 

[55] to make it possible to efficiently compute the output of erosions and dilations 

within any arbitrarily shaped windows. The authors achieve the extension by 

introducing the concept of critical points – these are the points that must be used to 

update the histogram as the arbitrarily shaped SE is translated by a single pixel. The 

authors show by example how these points can be found. They also introduce an 

alternative scanning technique which further optimises the routine, and they gain 

additional reductions in computation time by consulting the histogram much less 

frequently than for the method proposed by Huang et al. [54]. The authors of [55] 

achieve this by maintaining a record of the minimum (erosion)/maximum (dilation) 

value in the window and continually updating this value as new pixels enter it. The 

histogram is then only searched when the bin corresponding to the current 

minimum/maximum becomes zero. This final optimisation technique, which allows 

less frequent consultation of the histogram, can only be applied when computing 

max/min filters.  

 

Van Droogenbroeck and Talbot compare their efficient implementation to three 

others in [55], and show that while their method outperforms two of the competing 

techniques, that a linear decomposition technique (See Section 3.2.1), using a square 

window, is slightly faster than their proposed method when using the same SE. 

However, the difference in execution times is marginal, and while the linear 

decomposition is slightly faster when using square SEs, the proposed method has the 
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significant advantage that it can be used to compute morphological operations within 

any arbitrarily shaped window.  

 

In [55], Van Droogenbroeck and Talbot state that their method can be extended for 

computing the output of any rank, however, they only describe an algorithm that can 

be used to compute the specific case of minimum and maximum filters (erosions and 

dilations). The extension to more general ranks is more complicated, and more costly 

than the authors of [55] imply, since it requires that the histogram is consulted for 

every translation of the window in the image. Further, a count must be kept (similar 

to the one used by Huang et al.[54]) in order to correctly direct the search for 

computing the next output. Although the authors refer to the possibility of computing 

any rank by extending their method, the exact steps that must be taken to implement 

this are not provided. 

 

In [65], Breare and Lehmann exploit the properties of the sliding window for 

improved efficiency when computing: morphological transforms; rank order filters; 

and other local linear statistics within arbitrary windows. Only the morphological 

operators and more general rank order filters fall within the scope of this thesis, and 

as such, discussion of the other techniques which are presented in [65] is omitted. 

The authors in [65] describe the Van Droogenbroeck and Talbot method [55] for 

computing erosions and dilations within arbitrary windows. They then state that they 

have implemented general rank filters, including the median filter, by using the 

techniques proposed in [55], and they point out that this method was first proposed in 

[54]. However, the authors do not provide specific details of the algorithm they use 

in [65]. Instead, they simply state that this has been done. 

 

Breare and Lehmann also propose that although rank filters are not separable, there is 

an advantage in estimating the output of these filters using what they refer to as “line 

versions” of the kernels (windows). They point out that this was initially proposed in 

[66] and explain that due to the significant gains in speed that can be achieved by 

taking this approach of decomposing the window, it is worth testing in the case that a 

median filter is used to remove noise. While this appears sensible for the case of 
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noise removal, the technique of approximating the window, and hence the output of 

the filter, cannot be used to speed up the rank filters presented in this thesis. The 

reason is, that the transform which is presented in this work aims to detect features of 

interest based on their morphological properties. As a result, the shape of the window 

and the value of each rank in that window, are critical for computing the output of 

the proposed transform.    

 

In the experimental results section of [65], the authors provide timings for the 

specific case of computing the output of a median filter using what they refer to as 

Huang‟s median filter. The shape of the window that is used for median filtering is 

not specified in the paper. However, the authors go on to compare the efficiency of 

this algorithm to: a direct implementation of the median filter; an implementation of 

their separable direct algorithm for computing the median; and an implementation 

which they call a separable Huang algorithm. Since it was explained that the 

separable filters are not compatible with the techniques that are proposed in this 

work, it would appear from this publication [65], that the only comparable technique 

to the optimised arbitrarily shaped rank order filtering algorithm would be a direct 

implementation of the algorithm itself. This point is strengthened by the fact that 

when the authors compute the timings for other specific rank filters such as the 

minimum and maximum filter (erosion and dilation), a number of fast 

implementations including the vHGW algorithm, and what are referred to only as 

separable algorithms are also compared to the moving histogram technique. As with 

the median filter experiments, the shape of the SE that is used to erode and dilate the 

image is not specified in [65].   

 

The authors of [67] and [68] also make reference to the methods presented in [55]. 

These authors, [67] and [68], exploit the properties of the sliding window to improve 

the efficiency of their algorithms by only updating the points that change as the 

window is translated across the image. The applications in these papers are geared 

more toward the computation of local linear statistics within the moving window. As 

a result, further discussion of these methods is beyond the scope of this thesis. 
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A number of researchers, including Van Droogenbroeck and Talbot, state that the 

method presented in [55] can be extended and used to compute the output of any 

general rank order filter within arbitrarily shaped windows. However, it appears that 

no paper or other publication actually describes or documents exactly how this may 

be done. Even in [65], where the authors state that this extension has been made, no 

explanation of exactly how this extension can be implemented is given. Further, no 

results which support this claim are provided. The authors of [65] provide timing 

results for the specific case of computing the output of the max, min and median 

filter without mentioning the shape of the window that has been used. In fact, to the 

author‟s knowledge, there is no paper which uses this method and presents timings 

for computing the output of rank filers for arbitrary ranks. 

 

In [69], Perreault et al. present a method which can be used to perform median 

filtering in constant time. That is, for a given image, the time taken to compute the 

filter output is not affected by the size of window that is used. The idea is similar to 

the method proposed by Huang et al., and the authors begin by describing the 

method proposed in [54].  Interestingly, Perreault et al. point out in their introduction 

that when using the moving histogram approach, it is possible to compute the output 

of any rank order filter (not just the median) by simply “changing the stopping 

value”. However, no examples of computing ranks other than the median are 

provided, and no technique for computing more general ranks within arbitrarily 

shaped windows is described. Instead, the authors describe their method for efficient 

computation of the median filter defined by square windows, before showing that 

octagonal windows (approximating a disk) can also be used with their routine. 

    

Before explaining their routine for square kernels, Perreault et al. point out an 

inefficiency which exists in Huang‟s method. That is, no information about the 

image pixels is retained between rows. The authors of [69] exploit this redundancy in 

order to realise their constant time median filter. Instead of using what they refer to 

as a kernel histogram, i.e. a single histogram which contains the intensity of each 

image pixel which coincides with the window, Perreault et al. store an entire row of 

column histograms. The height of each column histogram is determined by the height 
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of the kernel. Since histograms are distributive, it is possible to obtain the kernel 

histogram at any point in the image by computing the sum of the appropriate column 

histograms.  

 

To compute the output of the median filter at any given image pixel, the kernel 

histogram is computed by adding together the appropriate column histograms and 

locating the median value. Computing the output at the next pixel is achieved in two 

steps. First, the column histogram immediately to the right of the window is updated. 

This is achieved by removing the topmost pixel from the appropriate column 

histogram and adding to it the intensity of the pixel which is directly below its 

current position. The new kernel histogram may then be computed by subtracting the 

leftmost column histogram from the kernel histogram and adding the updated column 

histogram (computed as described above) located one pixel to the right of the current 

window position. The new median may then be calculated, and this process 

continues until the entire image is processed. For each translation of the window, 

only two pixels are processed (regardless of the window size): the topmost pixel in 

the column histogram is removed; and the pixel which is directly below its current 

position is added.  

 

The authors point out that when processing the first row, every point in each column 

histogram needs to be computed from the image. This means that the complexity of 

processing the first row is equivalent to the complexity of Huang‟s method. 

However, the authors point out that this additional complexity is negligible since it is 

only required on the first row of any image. The authors also provide a number of 

suggestions which can be used to minimise the constant execution time when 

implementing their proposed routine, and they demonstrate that their method is 

significantly faster than the one proposed in [54]- particularly when the window size 

is large. Perreault et al. also provide some suggestions for applying their method to 

higher precision data and to data of higher dimensions.  

 

The authors also present a method for implementing a constant time median filter 

using an octagonal kernel (which is used to approximate a disk). This is realised by 
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retaining five histograms (one for each side of the octagon) for each translation of the 

window as opposed to the single column histogram which was required for square 

windows. While this approach seems sensible, the authors point out that they would 

expect the execution time for octagonal filters to be around 5 times slower than for a 

square window. Clearly, extending this method for use with arbitrarily shaped 

windows is not trivial, and in some cases it could require an unrealistically large 

number of histograms to be maintained and updated for each translation of the 

window. Dependent on the shape of the window, this may lead to very slow 

execution times when compared to alternative techniques.    

  

3.2.3 Look Up Table Methods 

 

In 2008, Urbach and Wilkinson, [70], introduced an extremely efficient technique 

which allows erosions and dilations to be computed within arbitrarily shaped 

windows in such a way that it always outperforms the method proposed in [55]. In 

fact, the authors state in the abstract of [70], that their method outperforms the 

method proposed by Van Droogenbroeck and Talbot, by a factor which ranges 

between 3.5 and 35.1. The variation in the improvement can be attributed to a 

number of factors including the type of image that is processed and the SE that is 

used.  

 

The method proposed in [70] is actually an improvement of an earlier algorithm 

which was described in [71]. The technique uses a decomposition of the SE (which 

can be applied to any arbitrarily shaped SE) and a look-up table (LUT) to efficiently 

compute erosions and dilations. In [70], the method that is described requires that the 

SE is first decomposed into a series of linear chords (see [70]) in a fashion similar to 

the one used in [72]. These chords are essentially a set of 1D, horizontal SEs, which 

can be found for any arbitrarily shaped SE by reading lines/runs of connected pixels 

starting from the top of the SE and scanning from left to right until the bottom of the 

SE is reached. It is shown in [70], that computing the output of an erosion (dilation 

can be achieved by swapping minimum for maximum) for any image pixel using the 
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entire SE can be achieved by computing the minimum value within each of the 

chords before computing the minimum of all of these results.  

 

When the chords for the SE have been determined, the full LUT is generated for the 

first row in the image, and the erosion/dilation of this row may be calculated. The 

output of the morphological operator is then calculated one row at a time, such that 

the LUT is computed only for the number of lines that are actually required to 

compute the full erosion/dilation for the current row. To compute the output value of 

an entire row of pixels, the values in the LUT are quickly located by a novel indexing 

technique, and the minimum value of the appropriate points in the LUT is computed 

to find the result of the erosion at each pixel. When an entire row has been processed, 

the LUT is updated recursively requiring minimal computation and the process 

continues until the entire image has been processed.     

 

Urbach and Wilkinson present an impressive set of results when they compare the 

efficiency of their algorithm with what they claim is the only comparable method for 

computing erosions and dilations within arbitrarily shaped windows. This method is 

of course the Van Droogenbroeck and Talbot algorithm, as described in [55]. The 

routines are compared using a number of differently shaped SEs and image types, 

and the Urbach and Wilkinson method is shown to always outperform the one 

proposed by Van Droogenbroeck and Talbot.  

 

The authors of [70] also compare their implementation with a number of efficient 

techniques for computing the output of morphological operators when specific SEs 

are used. For example, the authors discuss a technique presented by Soille et al. [59] 

and [73], which can be used for the efficient computation of morphological 

operations using polygonal approximations to disk SEs. It is shown in [70] that the 

method presented there outperforms the one proposed by Soille et al. even when the 

disk SE is approaching a 100 pixel diameter. Beyond this 100 pixel diameter, the 

algorithm proposed by Soille et al., [59] and [73], outperforms the Urbach and 

Wilkinson method [70]. However, the performance of the method reported in [70] 

remains particularly impressive when the authors point out that their technique 
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accurately computes the output of the transform using the exact digital disk SE. On 

the contrary, the method proposed by Soille et al. uses an approximation to the disk 

SE, and it can therefore be assumed, that this technique [59] and [73] is less accurate 

than the Urbach and Wilkinson method [70].  

 

The only method which is truly able to outperform the one proposed in [70] is a 

method proposed by Gil and Kimmel, [60]. This routine is an improvement of the 

vHGW algorithm that was proposed in [56] and [57], and Urbach and Wilkinson, 

[70], credit this as being the fastest known method for computing the output of linear 

horizontal SEs. Although the improved vHGW algorithm presented in [60] is capable 

of outperforming the Urbach and Wilkinson method, this only occurs when the 

horizontal and vertical SEs are greater than a particular length. From the paper [70], 

these lengths are respectively, 31 pixels and 63 pixels. However, unlike the Urbach 

and Wilkinson method, the algorithm proposed in [60] is limited in that it cannot be 

used to compute the output morphological operations using arbitrarily shaped SEs. 

3.2.4 Further Reading 

 

There are a large number of efficient methods for computing morphological 

operators which have not been discussed here. Since the moving histogram method is 

the one that is used in this thesis, extensive coverage of alternative, unrelated 

methods, is beyond the scope of this thesis. Soille provides an excellent review of 

some efficient techniques in [12]. In [70], the authors point out that an overview of 

efficient algorithms for computing morphological operators using linear SEs and 

decompositions of SEs can be found in [74]. The interested reader is also referred to 

[55], [70], [75], [76], [72], [77], [60] for further reading in the area of fast and 

efficient morphological erosions and dilations. 
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3.2.5 Summary of Efficient Algorithms 

 

The review presented in Section 3.2 indicates that the fastest known method for 

calculating morphological operations, using arbitrary SEs, is the one presented in 

[70]. However, the authors of [70] state explicitly that their method cannot be 

extended to allow the computation of more general rank order filters. As a result, the 

method proposed in [55] is taken to be the optimal routine that can be generalised for 

this purpose and hence it is used to implement an efficient algorithm for computing 

the output of the transform that is proposed in this thesis.  

 

In Chapter 6, the techniques described in [54] and [55] are extended and combined to 

make it possible to compute any rank within any arbitrarily shaped window. 

Although the extension is straightforward, to the author‟s knowledge, this is the first 

time that both routines ([54] and [55]) are thoroughly described, by example, in a 

single publication. Further, although a number of authors point out that this 

generalisation can be realised [55], [65], and [68], Chapter 6 of this thesis (to the 

author‟s knowledge) will provide the first description of the full algorithm for 

computing arbitrary ranks within arbitrary windows. The algorithm is actually a 

synthesis of the two methods that are proposed in [54] and [55] and it is not a direct 

extension of one or the other. A thorough description of the techniques that have 

been presented here regarding the methods presented in [54] and [55], and the 

extensions that are made and documented in this thesis, are provided in Chapter 6.     

 

Finally, it is worth mentioning at this stage, that it is thought - given the extent to 

which it is capable of outperforming the method proposed in [55] - that there may be 

a way to extend the method described in [70] such that it is possible to use this to 

compute the output of more general rank filters. If this were achieved, it is believed 

that this would become the fastest known algorithm for computing the output of 

arbitrarily shaped rank order filters. This idea is discussed briefly in Chapter 7, where 

it is indicated that further work will include investigating this possibility. 
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3.3 Discussion 

 

This chapter has presented an extensive review of the literature that is related to the 

techniques which are presented in the next three chapters of this thesis. The first 

section of this chapter dealt with the HMT and began by discussing the binary HMT 

before explaining that a number of researchers have extended this independently. A 

large number of techniques which aim to extend the standard HMT in some way or 

other were then discussed and it was shown that rank order filters play a large role in 

extending the HMT for improved performance in noisy data. However, it has also 

been identified that robust techniques for determining suitable values for the rank 

parameter that is introduced are often not provided. Even in cases where values are 

provided for these parameters, they appear to be determined subjectively by 

experimentation, and hence no robust method for setting these is provided. In one 

case, [11], the authors use an exhaustive and time consuming technique relying on 

ROC curves to determine the affect that the value of the rank parameter has on their 

rank HMT. The authors themselves concede that better techniques are required. 

 

In Section 3.2 of this chapter, a number of techniques for improving the efficiency of 

computing the output of morphological filters and other rank order filters were 

discussed. It was shown that there is a need for efficient computation of the output of 

such filters, and that although a number of techniques have been described, they each 

have their own merits and demerits. Some methods can only be used to compute the 

output of specific rank filters such as the minimum, maximum or median filter, while 

others can compute all of the ranks, but are restricted to specific window shapes i.e. 

square/rectangular. A number of authors have described techniques which can be 

adapted to allow the output of any arbitrarily shaped rank order filter to be computed 

efficiently using the moving histogram approach. However, it has been identified that 

the specific steps that must be taken to realise this algorithm are not actually 

documented anywhere in the literature. Currently, successful implementation of this 

algorithm is non-trivial and requires locating and understanding a number of 

publications before realising the link that exists between these methods and 

extending these appropriately. 
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Each of these points is addressed in the remainder of this thesis. In the following 

chapter, the Percentage Occupancy Hit-or-Miss transform will be introduced which 

allows relaxed fitting of the SEs in a fashion similar to rank order filters.  
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4 The Percentage Occupancy Hit-or-Miss Transform 
 

The previous chapter reviewed the work carried out by other researchers in extending 

the original binary HMT, as defined by Serra, such that it is capable of reliably 

processing: binary data; greyscale data; and noise corrupted or otherwise distorted 

data of this nature. The background theory that is required to build upon the existing 

definitions of the HMT to make it more robust in the presence of noise in both 

binary, and greyscale images, has been set out in Chapter 2.  

 

This chapter begins by recalling the definition of the binary HMT as detailed in 

Chapter 2 before providing definitions of the greyscale HMTs that have been 

proposed by various researchers working in this area, as discussed in the previous 

chapter. A novel, conceptual definition of the HMT in terms of SE occupancy is then 

presented, and this is used to explain the inability of the HMT to function in the 

presence of noise. Finally, this conceptual description of the greyscale HMT is used 

to explain how this transform may be extended to function effectively on noisy data, 

and its usefulness is demonstrated by example.  

 

As was shown in Chapter 3, one of the major gaps in the literature is the lack of 

analytically robust methods for setting various parameters when relaxing the 

conditions of the HMT such that it can cope with noisy data. This chapter sets out a 

novel extension of the HMT for reliable functionality in noise, and it is shown here 

how parameters may be determined empirically. A new design tool for estimating 

parameters for this extension of the greyscale HMT, and for alternative greyscale 

HMTs, will be developed in Chapter 5. For the most part, a discussion of this new 

design tool will be deferred until the next chapter.  
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4.1  The Hit-or-Miss-Transform 

 

As was explained in Chapter 2, the HMT of a binary image X is the intersection of an 

erosion of X and an erosion of the complement of X by a complementary pair of SEs 

BFG and BBG respectively. That is, 

                                                        

( )BHMT X   (X Ө BFG ) ( cX Ө BBG) (4.1) 

 

where    |
x

B b x b B    and 
FG BGB B  .  

 

Since the HMT is not an increasing transform, its extension for processing greyscale 

images is not a trivial task. For this reason (as was explained in Chapter 2), a number 

of greyscale HMTs have been defined by various researchers. These greyscale 

HMTs, which were discussed briefly in Chapter 3, will now be defined and 

compared in order to demonstrate their similarities. Defining these greyscale HMTs 

at this stage also facilitates the introduction of the conceptual greyscale HMT which 

will be presented in Section 4.2 and places this contribution in context.  

 

The first greyscale HMT that will be discussed in more detail is defined by Ronse in 

[27], (denoted RHMT in [8]) which, using notation that is consistent with the 

notation laid out in Chapter 2 and following [24] may be written as,                                  

                 

    
        *

,

  
.

-                
FG BG

FG FG BG

B B

I B x I B x I B x
RHMT I x

    
 



if

otherwise
 

(4.2) 

 

where  * *:  and ( )BG BG BGB E T B b B b  , i.e. the dual of BBG.   

   

 

 

 

                                

Ө Ө 
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In [12] and [28], Soille defines an unconstrained HMT using flat SEs, which x E  , 

returns the number of cross sections of a greyscale image, I, where  FG x
B  fits the 

cross section,  tCS I , and  BG x
B simultaneously fits the complement of this cross 

section,  tCS I ,  

             

             ,
  , .

FG BG
FG t BG tB B x x

UHMT I x card t B CS I B CS I    (4.3) 

 

In [24], the authors extend the UHMT as written in Equation (4.3), to allow greyscale 

SEs, such that, 

                                         

           *

,
max ,0 .

FG BG
FG BGB B

UHMT I x I B x I B x    (4.4) 

 

By comparing Equation (4.2) and Equation (4.4), the similarity between the RHMT 

and the UHMT is clear. Both of these extensions mark features in a greyscale image 

when the result of the foreground erosion is greater than that of dilating the image by 

the dual of the background SE. The output of the RHMT is an image containing the 

result of foreground erosions when this condition is satisfied. In contrast, Soille‟s 

UHMT produces a greylevel image where the intensity of each pixel indicates the 

number of cross sections where both SEs fit the image i.e. the difference between the 

foreground and background erosions.   

 

In [8], the similarity between Soille‟s and Barrat‟s greyscale HMT defined in [5] is 

shown, where Barrat et al.‟s HMT (denoted BHMT in [8]) is written, 

                                        

          *

,
.

FG BG
BG FGB B

BHMT I x I B x I B x    (4.5) 

 

Clearly, this greyscale HMT closely resembles that of Soille‟s given in [24]. The two 

differ however in that Soille‟s HMT returns the difference between the foreground 

operation and the background operation where Barrat et al. return the difference 

between the background operation and the foreground operation. In Soille‟s HMT, 

the higher the output value, the better the fit of the SEs. The opposite is true for the 

Ө 

Ө 
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BHMT, and the equivalence of these two operators is shown in [8] as, 

                                  

          , ,
min ,0

FG BG FG BGB B B B
UHMT I x BHMT I x   

(4.6) 

 

Khosravi and Schafer, in [26], present their greyscale HMT which requires only one 

SE, BFG, as,  

                                    

           .
FG

FG FGB
KHMT I x I B x I B x     (4.7) 

 

This definition is discussed in [8], where it is shown that the KHMT is in fact 

equivalent to the BHMT as shown in Equation (4.8) and Equation (4.9). 

                                                

         *

[ ] ,
FGB FG FGKHMT I x I B x I B x    (4.8) 

                    
    ,

.
FG FGB B

BHMT I x   (4.9) 

 

Each of the proposed methods can be used to extract the features of a greyscale scale 

image which match the geometry of both BFG and BBG. However, all of these 

techniques fail in the presence of noise unless further modifications, like those 

described in Chapter 3, are made. All of these techniques are discussed further in [8] 

and a thorough review of the greyscale HMTs proposed by Ronse and Soille is given 

in [24]. In this thesis, the definition of the greyscale HMT given by Soille in [12],  

[28] is extended since it is closest to the conceptual description of the operation of 

the HMT presented in this work.  

 

4.2  A New Conceptual View of the Hit-or-Miss-Transform 

 

Interpreting a greyscale image as a topographic surface allows the HMT to be 

considered as a translation of two SEs in this 3D image space searching for places 

where they simultaneously fit the image to detect objects. In the various definitions 

of the greyscale HMTs given in Section 4.1, the SEs are translated in the 2D space, 

Ө Ө 

Ө 
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and standard morphological operations are used to probe the image where these 

operators interact with the greylevel at each pixel as shown in the greyscale 

definitions of erosion and dilation, as explained in Section 2.2.2 and Section 2.2.3 of 

this thesis.   

 

In the 3D space, the SEs must still be translated to all points x E in the 2D space, 

however, the translation of SEs in the vertical direction may also be considered. 

From an implementation perspective the SE may first be translated by a vector x such 

that the origin of the SE is coincident with an image pixel x, x E  . Then, at each 

point x E , the concept of a vertical translation of the SE may be implemented by 

interrogating in some way, (dependent on the operation) the image pixels that are 

coincident with the elements of the SE, t T  .  

 

The greyscale erosion of the image foreground can be described conceptually as a 

process of translating BFG to a point x E  and raising the SE to the highest level t 

for which it is entirely beneath or fully (i.e. 100%) occupied by the signal. By this 

interpretation, the erosion of an image at any point x E is equivalent to calculating 

the maximum level, t, for which the foreground SE, BFG, is 100% occupied in the 

image. For the foreground erosion, BFG is 100% occupied, if the intensity of all 

image pixels that are coincident with the elements of BFG is greater than or equal to t. 

Let lFG(x) denote the maximum level, t, for which the SE is 100% occupied when its 

origin is at any point x E , 

                                                  

   max , ( ) .
FG FG

FG FG FG FG
b B

l x t b B I x b t


      (4.10) 

 

By definition, the HMT uses a foreground erosion to match patterns from below the 

topographic surface and a background erosion to match patterns from above. The 

background erosion can be described by a similar process of translating BBG to a 

point x E  and lowering the SE to the lowest level t for which it is entirely above or 

fully occupied in the image. The background erosion at a point x E  is therefore 

defined as the minimum level, t, for which the background SE, BBG, is 100% 

occupied in the image. For the background erosion, the SE is 100% occupied at some 
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x E  if the intensity of all the image pixels that are coincident with the elements of 

BBG is strictly less than t. Let lBG(x) denote the minimum level, t, for which the 

background SE is 100% occupied when its origin is centred at a point x E . 

                                    

   min , ( )
BG BG

BG BG BG BG
b B

l x t b B I x b t


      (4.11) 

 

This description of the HMT resembles the one given by Soille in [12] where he 

states that the UHMT is equivalent to the number of intersections of the intervals    

[0, tFG] and [tBG, tmax]. Soille defines that tFG is the highest level where BFG fits the 

foreground, tBG, is the lowest level at which BBG fits the background, and tmax, is the 

highest intensity in the image as determined by the bitdepth. In the definition of the 

HMT that is introduced in this work, lFG and lBG are equivalent to tFG and tBG, 

however, the HMT introduced in this thesis differs significantly in that it may be 

calculated in a single pass of the image with erosion and dilation implemented 

simultaneously using a composite SE. Further, an occupancy calculation is 

performed to ensure that the SEs are simultaneously 100% occupied in the image 

instead of using traditional morphological operations. In Equation (4.4)(4.4), the 

definition of the UHMT states that for a point to be marked by this greyscale HMT, 

the result of I eroded by 
FGB  must be greater than or equal to that of I dilated by

*

BGB . 

By analogy, the proposed HMT will mark an object as a “hit”, iff       FG BGl x l x . 

The greyscale HMT that is presented in this thesis may now be written in terms of 

lFG(x) and lBG(x), x E  , 

                                       

   
   2 -1     if 

.
0    otherwise

n

FG BG

B

l x l x
HMT I x

 
   


 
(4.12) 

 

The concept of this HMT is consistent with the greyscale HMTs defined by Ronse 

and Soille, however, in this new definition, the result is a binary marker containing 

the location of any objects that have been detected. This concept and process is 

illustrated in Figure 4.1.  
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( ) ( )FG BGl x l x

( ) ( )FG BGl x l x

( ) ( )FG BGl x l x

(a) (b)

Too Narrow Too Wide 

 

Figure 4.1 Greyscale HMT operating on a topographic surface. (a) A synthetic greyscale image. 

(b) Topographic representation of (a) with the HMT detecting the middle feature when 

   FG BGl x l x  which satisfies the condition in (4.12) that    FG BGl x l x  (ticks represent 

objects that are detected and crosses denote points that have not been marked). 

 

By considering the HMT in terms of SE occupancy, the traditional implementation of 

the HMT (which requires two erosions) may be simplified by combining BFG and 

BBG into a unified, composite, SE (B, shown in Figure 4.2(a)). This composite SE, B, 

is then translated to each point x in the image. A point x E is marked in the result if 

there exists a level, t T , which for all of the elements  FG FG x
b B ,  FGt I b , 

while simultaneously, for all of the elements  BG BG x
b B ,  BGt I b , i.e.  

 

   

   2 -1     if  ,  |   and |  

0          otherwise

B

n

FG FG FG BG BG BG

HMT I x

t T b B t I x b b B t I x b

  

             



. 

(4.13) 

 

This technique is illustrated in Figure 4.2 where a combined, composite SE is shown 

in Figure 4.2 (a) and an example of this SE discriminating between similar objects is 

shown in Figure 4.2 (b).  
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       Fully Occupied
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B

B





(b)

 Fully Occupied

 Fully Occupied

FG

BG

B

B





BBG

(a)

BFG

 

Figure 4.2 The HMT implemented using a composite SE. (a) The composite SE where elements 

of BFG are shown in red and elements of BBG shown in blue. (b) The SE searching for places 

where it is fully occupied in the image. 

 

The definition of the greyscale HMT presented in this thesis allows this operator to 

be calculated in one pass of the image instead of the common two pass method 

followed by an intersection, summation or comparison of the two resultant images. 

As a result, the transform is simpler and more intuitive than the standard method. 

 

4.3  The Hit-or-Miss-Transform in Noise 

A “hit”, i.e. an object which is detected and marked by the HMT, is one which 

satisfies the conditions outlined in Section 4.2. This strict definition of the HMT 

requires that the composite SE must be 100% occupied in both the foreground and 

background of the image for successful detection of an image feature. Often, when 

features are distorted by noise, or if image features contain a large amount of internal 

texture, it is not possible for B to be 100% occupied, even if its underlying geometry 

matches that of the feature. This causes the HMT to miss objects that should be 

detected as illustrated in Figure 4.3. 
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BBG

(a) (b) (c)

BFG

 

Figure 4.3 Operation of the HMT in noise (a) Composite SE that can be used to detect a circle 

(b) 100% occupied composite SE detecting the object of interest (c) Composite SE cannot be 

100% occupied due to noise.  

 

Figure 4.3(a) shows a composite SE which can be used to detect circular objects, 

provided that they lie within the boundary as defined by the disks, using the standard 

HMT. In the example, BFG is a solid disk and BBG is a surrounding solid ring. The 

black line in Figure 4.3 (b) represents a noise free shape which is to be detected using 

the SE shown in Figure 4.3 (a). In this case, the elements of B corresponding to BFG 

are 100% occupied by the shape and the elements corresponding to BBG are 

simultaneously 100% occupied by its background at all levels t, until t is greater than 

the intensity of the shape. This feature and any feature that has not been corrupted by 

noise and whose dimensions are greater than BFG and less than that of BBG will be 

detected by the HMT when using this SE.  

 

In the case that an object of interest, its edges, or both are corrupted by noise, it is 

likely that the elements of B corresponding to BFG and BBG may never be 

simultaneously 100% occupied by the object. An example of this situation is 

illustrated in Figure 4.3(c) where both the foreground and background regions of the 

object shown in Figure 4.3(b) have been perturbed by noise. Since some of the 

foreground pixels within the object are at a level t that is lower than the level of its 

noisy background, there is no level t at which BFG and BBG can be simultaneously 

100% occupied.  As a result, the HMT will fail to recognise this feature as an object 

of interest. For the same reasons stated here, objects which have internal texture, 

such as biological cells, may also fail to be detected by the standard HMT.  
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4.4  A Percentage Occupancy Hit-or-Miss-Transform 

In the standard HMT the foreground structuring element, BFG, must fit entirely 

within the foreground of the object and the background SE, BBG, must fit entirely 

within the background surrounding the object. In other words, they must be 100% 

occupied by the foreground and background respectively. Any noise, even just one 

pixel, in either the foreground or background of the object can prevent an otherwise 

legitimate hit occurring.  

 

The idea behind the transform proposed in this thesis is to make the detection process 

of standard HMTs less sensitive to moderate amounts of noise (or texture) in the 

image. The idea proposed here is to relax the constraint that the SEs must be 100% 

occupied by allowing them to be only partially occupied and still record a “hit”. 

 Attempts at relaxing these strict constraints have been proposed in, [8], [11], [12], 

[20], [21], [25]. In this thesis a new concept of partial occupancy is introduced in the 

form of a Percentage Occupancy Hit-or-Miss Transform. The POHMT, which was 

first proposed in [78] and further developed in [25], allows a percentage of the SE to 

be “punctured” by noise or texture in a signal and still detect a “hit”.  

 

In this section, a method that can be used to calculate the extent to which BFG and 

BBG are occupied by a signal for all levels t T  when their origin is coincident with 

any point x E is presented. The POHMT is then defined using this approach, to 

allow objects to be detected in places where the SE is only partially occupied by the 

signal.   

4.4.1  Calculating the Occupancy of Structuring Elements 

 

It has been shown that a greyscale HMT can be implemented with a single, 

composite SE, which searches the image to identify places where its foreground and 

background elements are simultaneously 100% occupied. By designing a SE to 

match the geometry of an object in both the foreground and background and, instead 

of using traditional morphological operations, the extent to which the object occupies 

the SE when it is coincident with an image feature is measured, it is possible to relax 

the 100% occupancy requirement of the HMT. This can be done in order to reliably 
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detect this object in the presence of noise provided that the measured percentage 

occupancy is greater than or equal to some threshold, P. To facilitate this explanation 

and its comprehension, BFG and BBG are considered separately before it is shown that 

the two can be combined (as in Section 4.2 of this Chapter) into a single operator, 

capable of processing an image in one pass.  

 

The number of elements of BFG that are occupied by a signal in the foreground can 

be calculated by translating BFG to a point x in the image, and t T  , calculating 

the cardinality (Card) of the set,     
,

|FG FG FG FGx t
B b B I x b t    , of image pixels 

which are coincident with BFG and have intensity greater than or equal to t. For all 

t T , the foreground occupancy, 
,x tFGO , may be calculated using,  

                                                         

  
, ,

.
x tFG FG x t

O Card B  
(4.14) 

 

By an equivalent technique, it is possible to measure the extent to which a feature 

occupies the background SE, BBG, by calculating the background occupancy, 
,x tBGO , 

                                                                   

  
, ,

.
x tBG BG x t

O Card B  
(4.15) 

 

In this case BBG is translated to a point x E , and t T  , the background 

occupancy, 
,x tBGO , is calculated by finding the cardinality of the set, 

    
,

|BG BG BG BGx t
B b B I x b t    , i.e. the number of image pixels, coincident with 

BBG, that have intensity less than t.   

 

Using Equation (4.14) and Equation (4.15) produces two one dimensional arrays, 

,x tFGO and 
,x tBGO , of length 2

n
 which contain the number of elements that are occupied 

by the signal in BFG and BBG respectively at each level t when centred on 

some x E . The elements of both arrays can be easily converted to percentages to 

produce the percentage occupancy of BFG and BBG for all t T  when their origin is 
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coincident with a point x E . The percentage occupancy of the foreground and 

background SEs are denoted 
,x tFGPO and 

,x tBGPO  respectively where, t T  ,     

                                                                                  

 
,

,
100x t

x t

FG

FG

FG

O
PO

Card B
   

(4.16) 

and                                    
 

,

,
100.x t

x t

BG

BG

BG

O
PO

Card B
   

(4.17) 

 

 

Since the cardinality of BFG and BBG is generally known, 
,x tFGPO  and 

,x tBGPO  may be 

calculated directly, t T  , using, 

                                                                                 

  
 ,

|
100

x t

FG FG FG

FG

FG

Card b B I x b t
PO

Card B

   
  
  

 

(4.18) 

  
  

 ,

|
100

x t

BG BG BG

BG

BG

Card b B I x b t
PO

Card B

   
  
  

. 
(4.19) 

 

The advantage of working in a relative measure such as percentages is that when 

calculating the POHMT, being able to specify a minimum percentage of the SE that 

must be occupied for successful detection rather than the actual number of SE 

elements makes the transform more general.  

 

Consider the following example showing the way in which the 100% occupancy 

requirement of the HMT can be relaxed using the quantities 
,x tFGPO  and 

,x tBGPO . 

Figure 4.4(a) shows a noise free, synthetic, 8 bit greyscale image, containing a 

homogeneous circle on a uniform, dark background. By designing BFG such that it 

can be contained entirely within this circle and the elements of BBG to form a ring to 

encompass the disk, 
,x tFGPO  and 

,x tBGPO  may be calculated using Equation (4.18) 

and Equation (4.19). 
,x tFGPO  and 

,x tBGPO  have been plotted against intensity for the 

noise free feature in Figure 4.4(b) to illustrate how these quantities vary with t. By 
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observation of Figure 4.4(b), it is clear that BFG is 100% occupied until t = 150 i.e. 

until BFG is above the signal and BFG is 0% occupied for t >150.  It is also clear that 

BBG is 0% occupied until t = 50 i.e. it is completely below the background and is 

100% occupied for t > 50 when the SE is completely above the background level of 

the image.  
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Figure 4.4 Images and plots of 
,x tFGPO  and 

,x tBGPO against intensity (a) Synthetic image (b) Plot 

of 
,x tFGPO  and 

,x tBGPO  against intensity, t, for (a). (c) Noisy cell image (d) Plot of 
,x tFGPO  and 

,x tBGPO against intensity, t, for (c).  

 

The image shown in Figure 4.4(a) is not perturbed by noise and the feature of interest 

does not exhibit internal texture and hence the standard HMT, using the SEs 

described, could be used to detect this object. Although this is obvious by simply 

observing the image, this point is further exemplified in the plot of the quantities 

,x tFGPO  and 
,x tBGPO in Figure 4.4(b). By analysis of the plot, it is clear that there are a 

number of levels, t, 99 to be exact, for which the conditions in Equation (4.13) that 

there must exist some t for which both BFG and BBG are simultaneously 100% 

occupied are satisfied.  
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Calculating 
,x tFGPO  and 

,x tBGPO and plotting these quantities against intensity is 

demonstrated further using the image of a noisy cell shown in Figure 4.4(c). Again, 

,x tFGPO  and 
,x tBGPO  have been plotted against intensity, and this is shown in Figure 

4.4(d). Although it may not be obvious by visual inspection of this image, by 

examining Figure 4.4(d), it is clear that there is no level t for which 

, ,
100

x t x tFG BGPO PO   and hence the standard HMT will fail to detect this feature 

using the SEs described. It is in such cases where relaxing the 100% occupancy 

requirement of the HMT is of use. Allowing a transform to detect a feature if there 

exists some level t for which both BFG and BBG are occupied by some percentage 

100P   would allow this feature to be successfully detected despite moderate 

amounts of noise or texture that is present in the image. In the case of the noisy cell 

that is shown in Figure 4.4(c), it is clear by reference of the plot shown in Figure 

4.4(d) of occupancy versus intensity, that setting 100P   would allow this feature to 

be detected.   

 

It is possible for BFG and BBG to be combined to form a composite SE, B, as in 

Section 4.2. This allows the extent to which the elements of B corresponding to the 

foreground, 
FGb B , and background, BGb B , of an image to be calculated 

simultaneously for all t T , in a single pass of the image. The highest percentage of 

B, denoted POB(x) that is occupied by a signal for all t T , when its origin is 

coincident with a point x E  may be calculated by finding the maximum of the 

minimum, of all points plotted in Figure 4.4. This can be achieved by,  

                         

 
, ,

( ) max min ,  .
x t x tB FG BG

t T
PO x PO PO



 
 

 
(4.20) 

            

This concept is illustrated in Figure 4.5 where Figure 4.5(a) shows the original plot 

of the quantities 
,x tFGPO  and 

,x tBGPO when B is centred on the noisy cell shown in 

Figure 4.4(c). Figure 4.5(b) contains a plot of  
, ,

min ,  
x t x tFG BGPO PO  for these 

quantities and also points to the value that would be calculated using Equation (4.20) 

for these particular percentage occupancy measurements.    
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Figure 4.5 Illustration of calculation in Equation (4.20). (a) Plot of 
,x tFGPO  and 

,x tBGPO against 

intensity, t, when the SEs are centred on the noisy cell shown in Figure 4.4(c). (b) Plot showing 

the minimum of these quantities which is calculated in Equation (4.20) before taking the 

maximum point in this signal. 

 

In Equation (4.20) the quantities 
,x tFGPO  and 

,x tBGPO may be calculated x E   

using Equation (4.18) and Equation (4.19). POB(x), which is calculated using 

Equation (4.20) returns the highest simultaneous percentage occupancy of both SEs 

at some level t when the SEs are centred on some x E . The POHMT, which is 

introduced in the next section, uses POB to determine whether or not a pixel at 

position x E should be marked as a hit in the output of this transform. 

4.4.2  The POHMT 

 

The POHMT uses a composite SE to detect features in noisy images by allowing 

objects that occupy only a percentage, less than or equal to 100% of the SE, to be 

marked in the output of this transform. The POHMT can be calculated, x E  , 

using 

                                                                

 

2 -1  if ( )
( ) ( ) ,

0  otherwiseFG BG

n

B

B B B

PO x P
POHMT I x



 
    



 
(4.21) 

 

where POB is calculated using Equation (4.20) and P is the minimum percentage of 

the SE that must be occupied for successful detection of an image feature. The value 

of P can be set by trial and error. Alternatively, if the power and distribution of noise 
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that corrupts a signal is known, an accurate value for P may be calculated using noise 

models, as will be demonstrated later in this chapter. A third technique, which is 

proposed in Chapter 5, is to measure an appropriate value for P using a novel design 

tool known as a PO plot and a set of training images that is representative of the real 

data. In this section, the effectiveness of setting P for the POHMT, by a process of 

trial and error is investigated. This value is then fixed and the POHMT is used to 

detect features in the image shown in Figure 4.6(a) which contains four cancer cells. 

From this point forward it can be assumed that in cases where images in figures have 

foreground intensity lower than the level of the background, that the images have 

been inverted for convenience when printing. Also note that the marker images in 

Figure 4.6 have been dilated by a 5x5 square such that the markers are visible.   

 

By observation of Figure 4.6(a), it is clear that there are four cells in the image. Each 

cell has different characteristics in terms of shape, intensity and noise. To detect these 

cells using the POHMT, the geometry of B was set using prior knowledge of the 

shapes and sizes of the cells. The elements of B used to probe the foreground of the 

image were designed as a flat disk measuring 90 pixels in diameter such that it could 

fit inside that smallest cell in the image (bottom left cell in Figure 4.6(a)). 
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(a)

(e)

(g)(f)

(h)

(c)(b)

(d)

(i)
 

Figure 4.6 Example of POHMT operating on a noisy image where P is set by trial and error. (a) 

Original, noisy image. (b) Binary marker produced by the POHMT when P = 100 (c) Binary 

marker produced by the POHMT when P = 95 (d) Binary marker produced by the POHMT 

when P = 90 (e) Binary marker produced by the POHMT when P = 85 (f) Binary marker 

produced by the POHMT when P = 80 (g) Binary marker produced by the POHMT when P = 

75 (h) Binary marker produced by the POHMT when P = 70 (i) Result of performing 

reconstruction by dilation using (a) as mask and (h) as marker.  All images are 520 x 692 pixels. 
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The elements of B used to probe the background of the image formed a ring with an 

inner diameter of 110 pixels which was designed to encompass the largest cell 

(bottom right of Figure 4.6(a)). The POHMT was calculated x E   with P set 

initially to 100%. P was then decremented in steps of 5 until four distinct groups of 

marker pixels – one for each cell – were present in the marker image that was 

produced by the POHMT at some value of P. The binary marker images that were 

produced by the POHMT after running it using a lower and lower value for P are 

shown in Figure 4.6. 

 

Initially, when P=100, the POHMT detects no features in the image and resultantly 

produces an empty marker image as shown in Figure 4.6(b). When P = 95 the 

POHMT detects two of the cells in the image. When P = 90 the POHMT still only 

detects two of the cells in the image, however, the groups of marker pixels present in 

the image are larger than when P = 95. This is because more points in each cell 

occupy 90% of the SEs than 95%. When P = 80% the marker image produced by the 

POHMT contains three groups of marker pixel indicating that three of the four cells 

have been successfully detected when using this threshold. Finally, when P is set to 

70%, the POHMT produces the binary marker shown in Figure 4.6(h). This marker 

image contains four groups of marker pixels in the same locations as each of the four 

cells in Figure 4.6(a). By this process of trial and error it has been identified that 

setting P to 70% allows successful detection of all four cells in this image and this 

information could perhaps be used to set the threshold P for other images in the same 

data set that exhibit similar levels of noise and texture. However, this process is 

simple only because there are only a small number of objects that are to be detected 

in the image. In an image that contains more features, with different levels of noise, 

this search would be exhaustive and inefficient.  

 

Performing a reconstruction by dilation using the original image as the “mask” and 

the result of the POHMT as the “marker” produced the image shown in Figure 4.6(i). 

By reference of Figure 4.6(b) it is clear that unlike the POHMT, the standard HMT 

did not detect any of the cells as shown in Figure 4.6(b). It should be noted, that the 

POHMT is an extension of the HMT and hence the standard HMT can be 
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implemented as a special case of the POHMT.  Setting P to 100% in Equation (4.21) 

and calculating the POHMT of an image will detect the same features as any of the 

greyscale HMTs discussed in Section 4.1 of this Chapter.  

 

4.5  Setting an Appropriate Value for P Using Noise Models  

As was mentioned earlier in this chapter, it is possible to estimate an appropriate 

value for P using noise models if they are available. Of course noise models can be 

obtained by manually selecting and analysing appropriate regions of the foreground 

and background from an image where the selected regions are assumed to be 

homogeneous. Here, it is implied that these regions should be homogeneous from an 

image analysis perspective. In most cases, what is considered to be noise by an 

image processing expert is the result of some expected process. In the context of this 

thesis, noise is any attribute that distorts the signal such that it is difficult or 

impossible to detect a feature using the standard HMT.  

 

In this section, noise of increasing power is added to a synthetic image and this is 

used to illustrate the way that noise models can be used to estimate P. It is then 

demonstrated that by using selected regions of the image presented in Figure 4.6(a) 

to provide the noise models, it is possible to estimate the level of P that can be used 

such that the POHMT is able to detect all four cells in this image. This technique 

provides a robust alternative to the trial and error method that was used in the 

previous section to determine an appropriate level for P. 

 

Figure 4.7 shows a synthetic image which contains a circle centred on a flat 

background as well as a 1D profile of the greylevels in this image taken from the 

centre row. Further, the normalized histogram that has been plotted using data that 

has been manually selected from a region of the foreground and a region of the 

background is shown. The regions that have been selected are shown in the figure. 

 

There is no noise present in the image shown in Figure 4.7(a). This is confirmed in 

the profile plot shown in Figure 4.7(b) and in the histogram shown in Figure 4.7(c) 

which exhibits two distinct peaks. One peak in the normalized histogram is at 
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intensity 50 which represents the background and a second peak is at intensity 75 

which represents the homogeneous circle in the foreground. Note that the histograms 

of each region have been normalised separately such that the sum of pixels for each 

region equals 1. 
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Figure 4.7 Noise free synthetic image (500 x 500) with 1D profile from the centre row and 

normalised histograms of FG and BG regions. (a) Synthetic, noise free image with BG at level 50 

and a homogeneous disk at level 75. (b) 1D intensity profile plotted from the centre row of the 

image in (a). (c) Normalised histogram of manually selected regions of the FG (blue) and BG 

(red).  

 

The circle that is shown in Figure 4.7(a) could easily be detected by the standard 

HMT provided that the SEs are appropriately designed such that BFG is 100% 

occupied by the circle and BBG is 100% occupied in its background.  

 

If a small amount of noise is added to this image, it will still be possible to detect this 

feature without modifying the SEs or setting P to a value less than 100. Indeed P 

only ever needs to be lowered when the noise power is sufficiently large that it 

causes the intensity of at least one pixel of the foreground to fall below the level of 

just one pixel in the background. An example of adding a relatively small amount of 

noise to the image, that will not cause the standard HMT to fail, is shown in Figure 

4.8. It is clear by reference of Figure 4.8(b) that although the signal is distorted, 

every point in the circle is strictly above the noisy background. The line that has been 

drawn in Figure 4.8(b) indicates one of a number of levels where both SEs could be 

100% occupied by this image feature. This point is further exemplified in the 

normalized histogram of the foreground and background regions shown in Figure 

4.8(c) since the distribution of the foreground and background pixel intensities do not 

intersect each other on the x axis.  
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Figure 4.8 Synthetic image (500 x 500) corrupted by zero mean AWGN where, 2 10  , with 1D 

profile from centre row and normalised histograms of FG and BG regions. (a) Synthetic, noisy 

image with BG average intensity of 50 and a homogeneous disk of average intensity 75. (b) 1D 

intensity profile of (a). (c) Normalised histogram of manually selected FG (blue) and BG(red) 

regions.  

 

 

The information obtained from plotting the frequency of pixel intensity values in 

each region allows normalized histograms to be used as noise models. It is clear by 

reference of Figure 4.8(c) and Figure 4.9(c), (f), (i), (l), (o), that as noise power 

increases, the two distinct peaks that were presented in Figure 4.7(c) now resemble 

an almost Gaussian like distribution. As the noise power is increased, these two noise 

distributions move closer together on the x-axis. In cases where these two 

distributions overlap, the standard HMT would fail to detect a feature. The area of 

the overlap is shaded in purple in each of the aforementioned figures.  As the noise 

power increases, so does the area of overlap between these two distributions of 

foreground and background pixels. Using a technique which somewhat resembles 

Maximum Likelihood Estimation (MLE), [79], allows the extent of this overlap to be 

used to estimate an appropriate value for P.  

 

P may be estimated by first, manually selecting from the image, a region that is 

assumed to be homogeneous foreground, and a second region that is assumed to be 

homogeneous background.  Then, using the following, 

                                                                            

 
2 1

0

min ( ), ( )

100 100
2

n

FG BG

x

p x p x

P





 
 
   


, 

(4.22) 
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where  FGp x  is the probability of a pixel in the foreground region taking the 

intensity x, and  BGp x  is the probability that a pixel in the background will take on 

intensity x. These probabilities are available in the normalised histograms which 

have been generated using the data that has been cropped from the image data and 

used as noise models.  The quantity that is subtracted from 100 in Equation (4.22) is 

divided by two since the histogram of the foreground region and background region 

have been normalised separately. 

 

Using Equation (4.22) to estimate a suitable value for P for each of the noisy images 

shown in Figure 4.9(a), (d), (g), (j), and (m) gives the value denoted in the plots that 

are shown in Figure 4.9(c), (f), (i), (l), and (o) respectively.  
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Figure 4.9 The effect which adding noise of increasing power has on the image, its profile and 

the normalised histograms of FG and BG regions in the image. Left – right respectively show the 

noisy synthetic image (500 x 500), its 1D profile and normalized histograms of the FG and BG 

regions. Top to bottom, examples of images that have been corrupted by noise of increasing 

power. (a) – (c) 2 20, 98P   , (d) – (f) 2 40, 97P   , (g)-(i) 2 80, 91P   , (j) – (l) 
2 160, 83P   , (m) – (o) 2 320, 75P   .  

98P   

97P   

91P   

83P   

75P   
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Figure 4.10 Result of using the POHMT to detect the circle in the noise corrupted images when 

using the noise models to estimate P for increasing amounts of noise.  (a) One example of the 

output of the POHMT (500 x 500) for the case when the variance of the noise added to the image 

is 1000.  (b) The result of applying a reconstruction by dilation using the marker and the 

original noise image (500 x 500). (c) The value calculated for P for increasing amounts of noise. 

N.B. The value that is calculated using this method becomes unreliable as noise power gets 

larger than 1000.   

 

Setting P to the estimated values shown in Figure 4.9 and running the POHMT 

makes it possible to detect the noisy circle in each of the images. An example of the 

typical result of setting P to the values calculated using the noise models and 

executing the POHMT is shown in Figure 4.10(a). The result of applying a 

reconstruction by dilation using this marker and the original noisy image is shown in 

Figure 4.10(b). Figure 4.10(c) shows a plot of the values of P that have been 

calculated using Equation (4.22) when adding increasing amounts of noise to the 

synthetic image. As expected, the level of P that is estimated using the technique 

proposed in this section decreases as the power of the noise that is corrupting the 

image increases. It should be noted that when the noise power is greater than 

2 4016   (SNR = -30dB), this method becomes unreliable for setting P.  

 

It is now shown that it is possible to use the method proposed in this section to 

determine a suitable value for P when processing the cell image that was shown in 

Figure 4.6(a). Regions of the image foreground (cells) and regions of the background 

have been selected and used as noise models so that it is possible to estimate a value 

for P using Equation (4.22). The region selection is repeated for each cell in turn 

such that it is possible to obtain an estimate of P for all of the features that are 
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contained in the image. To save cross referencing, the image containing the four cells 

that are to be detected is shown in Figure 4.11(a).   

 

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

Pixel intensities in FG and BG regions

Intensity

F
re

q
u

e
c
n

y
(x

)

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

Pixel intensities in FG and BG regions

Intensity

F
re

q
u

e
c
n

y
(x

)

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

Pixel intensities in FG and BG regions

Intensity

F
re

q
u

e
c
n

y
(x

)

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

Pixel intensities in FG and BG regions

Intensity

F
re

q
u

e
c
n

y
(x

)

(b) (c)

(e)(d)

(a)

P=99

P=71

P=99

P=83

F
re

q
u

e
n
c
y
 (

x
)

F
re

q
u

e
n
c
y
 (

x
)

F
re

q
u

e
n
c
y
 (

x
)

F
re

q
u

e
n
c
y
 (

x
)

 

Figure 4.11 Using noise models obtained by manually selecting image regions and plotting their 

histograms to set P. (a) Noisy image containing 4 cells (520 x 692). (b) Noise models for the cell 

in the top left of (a) and the value of P calculated using Equation (4.22) and these noise models. 

(c) Noise models for the cell in the top right of (a) and the value of P calculated using Equation 

(4.22) and these noise models. (d) Noise models for the cell in the bottom left of (a) and the value 

of P calculated using Equation (4.22) and these noise models. (e) Noise models for the cell in the 

bottom right of (a) and the value of P calculated using Equation (4.22) and these noise models.  

 

Figure 4.11(b) - (e) show the noise models that have been obtained from the image 

and used to estimate P, where each estimate of P is displayed in the corresponding 

plot. The minimum value that has been calculated for P is 71 (Figure 4.11(d)), and 

this is calculated when using the noise models obtained by selecting a region inside 

the cell in the bottom left of the image and a region of the noisy background 

surrounding this cell. Setting 71P   and running the POHMT produces the marker 

image (dilated by a 5x5 square to improve visibility of the markers) that is shown in 

Figure 4.12 where a marker has been obtained for each cell that is present in the 

original image. 
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Figure 4.12 Marker image (dilated by 5x5 square) produced by POHMT when processing the 

image shown in Figure 4.11(a) and 71P  . The image dimensions are 520 x 692. 

 

 

It is interesting and noteworthy, that all of the values that have been calculated for P 

using the noise models, lie within the intervals of P that allowed successful detection 

of these cells in the previous section (See Figure 4.6 and the discussion that follows 

it). That is, for the two cells in the top right of the image, 95 100P  . The 

calculation of P from the noise models as shown in Figure 4.11(e) indicate that the 

cell in the bottom right of the image will be detected when 83P   i.e. 80 85P   

which corresponds to the interval in which a marker for this cell appeared when 

setting P by trial and error in the previous section. Finally, Figure 4.11(d) shows that 

the cell in the bottom left of the image will be detected when 71P  . This too 

correlates with the trial and error method where a marker for this cell appeared when 

70 75P  .   

 

For a real world application, these methods would be used on training data, and when 

a suitable number of examples had been used to estimate P, this estimate would be 

used to set this parameter of the POHMT. The algorithm can then be executed on a 

separate set of test data to detect this feature, or features that are similar to those seen 

in the training data.  

 

Although both the trial and error method for setting P and the technique using noise 

models have been validated here, they are not always applicable in practice. Setting 

P by trial and error becomes time consuming and onerous when the size of the 

training set or the number of different features increases. The noise models may also 
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be inaccurate since regions that are extracted/cropped from the image do not 

necessarily represent what is presented to the SE when it is coincident with a feature 

that is to be detected. In the next chapter, a novel design tool which uses training data 

in a similar fashion to the techniques discussed in this chapter, is introduced. This 

tool uses the structuring elements that are designed for feature detection in 

combination with the training data to estimate an appropriate value for P. The tool 

provides a number of advantages in addition to being more robust than the 

techniques suggested in this chapter for setting the parameter P.    

 

4.6  Summary 

 

In this chapter the standard HMT has been described and has been extended for 

accurately processing greyscale images. The extension that is presented here has 

been placed in the context of a number of existing greyscale HMTs which have been 

proposed in the literature.  

 

Issues that affect the HMT when operating on noisy data have been highlighted. It 

has been shown that these difficulties may be overcome by the novel Percentage 

Occupancy Hit-or-Miss Transform that is presented here. A novel method for 

calculating the occupancy of SEs as they traverse a greyscale image has been 

described. It has also been shown both mathematically, and by example, how these 

occupancy calculations can be used to implement the POHMT.  

 

Finally, two methods have been provided that can be used to set the single parameter 

P of the POHMT and the equivalences of the methods presented in this chapter have 

been demonstrated.  
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5 The PO plot  
 

The previous chapter introduced a generalisation of the standard Hit-or-Miss 

Transform in the form of a Percentage Occupancy Hit-or-Miss Transform. It was 

shown, that so long as an appropriate value for its only parameter P is chosen, the 

POHMT offers improved performance over the standard HMT when using templates 

to match features in noisy data. Two methods for reliably setting this parameter P 

were demonstrated in Chapter 4, and these methods proved to work effectively on 

the example image. However, the empirical method of setting P iteratively until a 

suitable value was found proved to be exhaustive.  Further, if the iteration step is too 

large, it is possible that this method could become unreliable as the complexity of the 

problem increases. Using noise models to estimate a suitable value for P is slightly 

more robust. However, despite the fact that these were demonstrated to work in the 

previous chapter, reliable noise models are not always readily available. Even in 

cases where noise models can be obtained by manual extraction of image regions, the 

regions that are used as models do not necessarily represent the noise that impacts on 

the SEs when attempting to match a sought feature.  

 

This chapter describes a novel design tool that makes use of the SEs in order to 

accurately determine a suitable value for P. The tool is called a Percentage 

Occupancy Plot (PO plot) and it shows the extent to which a complementary pair of 

SEs is occupied by a signal and its background when centred on a feature in a given 

image. The profile of the plot differs with various noise distributions and different 

noise powers. This plot can be used to accurately estimate a suitable value for P for 

the POHMT. It can also be used to compute similar parameters for other 

generalizations of the HMT such as Soille‟s UHMT [12] or the BHMT [5] proposed 

by Barrat et al. Further, the PO plot can also be used to allow the POHMT to operate 

as a discriminatory filter which allows the transform to selectively mark and discard 

features based on the extent to which the SEs are occupied.  

 

This chapter begins by describing how a PO plot can be generated and used to set 

parameters for the POHMT. It is then shown by example that the plot can be used to 

estimate similar parameters for other variations of the HMT that have been proposed.  
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Examples of how the PO plot can be used to make the POHMT operate in a 

discriminatory fashion are also provided. Each of the aforementioned 

uses/applications of the PO plot are exemplified in the final section of this chapter 

which provides experimental results that validate the theory.   

 

5.1 The PO Plot  

 

A PO plot can be generated using any complementary pair of SEs. To generate the 

plot, the SEs must be centred at some point x E that corresponds to a feature of 

interest. When the SEs have been centred on some feature of interest, it is then 

required to compute 
,x tFGPO  and 

,x tBGPO to obtain two, 1D arrays, of length 2n . 

These arrays contain the percentage of the foreground and background SEs that are 

occupied at each discrete greylevel t T . When these calculations have been made 

for some feature of interest in the image, a PO plot can be obtained by simply 

plotting the discrete points in 
,x tFGPO  and 

,x tBGPO against each other, t T  , and 

interpolating. An example of generating a PO plot, as described, is shown in Figure 

5.1.  

 

The images, and the corresponding plots of 
,x tFGPO  and 

,x tBGPO against intensity 

shown in Figure 5.1, are the same as those shown in Figure 4.4 of the previous 

chapter. They have been shown again here for consistency and to facilitate the 

understanding of exactly how the PO plot relates to the data that was computed in the 

previous chapter. 
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Figure 5.1 Images and their PO plot (a) Synthetic image (b) Plot of POFG and POBG against 

intensity for (a). (c) PO plot that is generated by plotting POFG and POBG against each other and 

interpolating. This PO plot indicates that the standard HMT will detect the noise free object. (d) 

Noisy cell image (e) Plot of POFG and POBG against intensity for (d). (f) PO plot indicating the 

HMT will not detect the cell. N.B. If the HMT will not be affected by noise ((a), (b) and (c)), the 

critical point (where curve intersects the diagonal in the PO plot) may be a set of points, the 

cardinality of which gives the number of times that the SEs fit the feature. 

 

As was stated in Chapter 4, the image shown in Figure 5.1(a) is not perturbed by 

noise and the feature of interest does not exhibit internal texture, and hence the 

standard HMT, using the SEs described, could be used to detect this object. This is 

reflected in the PO plot since it shows that there is at least one level, t, such that 

when BFG and BBG are centred at x E , BFG and BBG are simultaneously 100% 

occupied. This is indicated in the PO plot shown in Figure 5.1(c) by the line forming 

a right angle which intersects the point on the 45  diagonal where, 

 100FG BGPO PO  . However, if the image is corrupted by noise, the PO plot will 

not form the ideal right angle but will instead tend towards a curve. This is 

demonstrated using the image of a noisy cell shown in Figure 5.1(d). Again, POFG 

and POBG are plotted against intensity in Figure 5.1(e), and the corresponding PO 

plot, generated by plotting POFG vs. POBG and interpolating, is shown in Figure 

5.1(f). In this case, by examining Figure 5.1(e), it is clear that there is no level t for 

which POFG = POBG = 100% and hence the standard HMT will fail to detect this 
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feature using the SEs described. This is reflected in the PO plot shown in Figure 

5.1(f) since instead of forming the right angled profile shown for the noise free shape 

(Figure 5.1(c)), the PO plot tends towards a curve which crosses the 45   line where 

(POFG = POBG) < 100.  

 

It should be noted that the so called critical point on the PO profile (Figure 5.1(c) and 

Figure 5.1(f)) is the point where the curve crosses the 45   line. This point is 

equivalent to the point at which POFG and POBG intersect in Figure 5.1(b) and Figure 

5.1(e). The critical points and their equivalences in the plots are highlighted in Figure 

5.1. It should also be noted that if the profile in the PO plot takes on the form of a 

right angle, then the critical point may in fact correspond to a set of points. The 

cardinality of this set is equal to the number of levels t T  for which both SEs can 

be 100% occupied when centred at this point in the image. This concept is clear by 

reference of Figure 5.1(b). 

 

As the noise and texture increases, the distance between the curve and this ideal right 

angle increases. This property of the PO plot is demonstrated in Figure 5.2 where 

zero mean, Additive White Gaussian Noise (AWGN) of increasing power has been 

added to a synthetic image, similar to the one shown in Figure 5.1(a). It is clear by 

observation, that as the noise power increases to further corrupt the image, the profile 

tends more towards a curve and deviates further and further from the ideal right 

angle. More importantly, the value of the critical point (where the curve crosses the 

diagonal) decreases as noise power increases.   

 

The PO plot shown in Figure 5.2 can be used to set the minimum percentage 

occupancy requirement, P, such that the circle may be detected using the POHMT 

and these SEs, even in very noisy conditions.  
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Noise Power = 0  

Noise Power = 12.75  

Noise Power = 38.25  

Noise Power = 63.75   

Noise Power = 89.25  

Figure 5.2 The affect that noise has on the PO plot. (left) Images (500 x 500) corrupted by 

AWGN of zero mean and increasing power. (right) Corresponding PO plots for the object in 

each image with increasing noise power.   

 

Since there is only one object (the grey circle) in each image on the left of Figure 5.2, 

P can be set to the value of the critical point that is calculated for the feature in the 

noisiest image. That is, by reference of the PO plot in Figure 5.2, setting P to 75% 

guarantees that the grey circle will be detected by the POHMT in all five images. 

This is clear from the PO plot shown in Figure 5.2 which indicates that 75% is the 

lowest occupancy of the SE in all of the images. If there were other objects in the 

image, setting P so low may invoke erroneous hits in the images that are distorted by 

noise of lower power. Increasing P appropriately, in accordance with the critical 

points for each profile in the PO plot as noise power decreases, will reduce the 

likelihood of erroneous detection. 

  

An example of generating a PO plot, using it to set P, and the result of applying the 

POHMT to a noisy image is presented in Figure 5.3. For consistency, the example in 

Figure 5.3 uses the image of cancer cells that was used in the previous chapter to 

demonstrate the alternative methods for setting P.  
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Figure 5.3 Example of applying the POHMT when using a PO plot to set P. (a) Original, noisy 

image. (b) PO plot showing the PO profile for each cell using the same composite SE. (c) Binary 

marker produced by the POHMT when P = 71%. (d) Result of applying the POHMT and 

performing a reconstruction by dilation. All images are 520 x 690. 

 

By designing a complementary pair of SEs to best match the geometry of image 

features that are to be detected, the method described in the beginning of this section 

can be used to generate a PO plot for each object of interest in the image i.e. each of 

the four cells. The PO plot for each object can then be used to find a minimum value 

for P such that all features of interest will be detected in the image using the 

POHMT. This can be done by observation and manual interpretation of the PO plot, 

or alternatively, P can be determined automatically by calculating the critical points 

of each profile using Equation (4.20) and finding the minimum of these. 

 

The SEs that were used to generate the PO plot shown in Figure 5.3(b) are the same 

as those described in Section 4.6 of the previous chapter. That is, BFG is a solid disk 

measuring 90 pixels in diameter, and BBG is a ring with an inner diameter of 110 

pixels. The extent to which the cells occupied B was measured by centering B on 

each cell and in turn and using Equation (4.18) and Equation (4.19) to calculate 

POFG and POBG. The PO plot shown in Figure 5.3(b) was then generated where each 

profile in the PO plot corresponds to one cell in the image. 

 

By calculating the minimum critical point, it is clear that setting P to any value less 

than or equal to 71% is sufficient to ensure that all four cells will be detected by the 

POHMT using B. It is also clear by observation of the PO plot, that the critical point 

for the detection of each cell falls within the intervals that were found using both the 

iterative method and the noise model technique for setting P. These intervals were 
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discussed and defined previously in Section 4.7 of Chapter 4. 

 

Having generated a PO plot for the cells in the image and estimated an appropriate 

value for P, the POHMT was calculated x E   with P set to 71%. The POHMT 

produced a binary marker (dilated by a 5x5 square), as shown in Figure 5.3(c) which 

contains four groups of marker pixels in the same locations as each of the four cells 

in Figure 5.3(a). Performing a reconstruction by dilation using the original image 

(Figure 5.3(a)) as the “mask” and the result of the POHMT (Figure 5.3(c)) as the 

“marker” produced the image shown in Figure 5.3(d).  

 

Whilst this example has demonstrated the value of the POHMT for detecting features 

in varying amounts of noise, the PO plot was drawn from the data that was used to 

test the transform. In practice, the PO plot and the value of P would be estimated 

from a representative training set. Examples of this approach will be shown in 

Section 5.4. 

 

5.2 A Design Tool for Existing Greyscale HMTs in Noise 

 

In addition to the greyscale extensions of the HMT that have been presented by 

various researchers (as discussed in Chapters 3 and 4), numerous methods have been 

proposed which aim to generalize the HMT to make it more robust to noise. A few of 

these are discussed in detail here and a method which exploits the properties of the 

PO plot in order to set parameters for these methods is presented.  

 

In [8], the authors, in reference to greyscale HMTs in general, present a “Generic 

solution to improve noise robustness”. They state that the greyscale HMTs proposed 

by Ronse (RHMT) and Soille (UHMT) can be made more robust to noise if the 

distance between the two SEs, BFG and BBG, is increased. In [8], an example of how 

to modify this distance is given as, ' ' and FG FG BG BGB B l B B   , or, 

' ' and FG FG BG BGB B B B l   , where l denotes some constant greylevel t T . However, 

no formula or method is provided that can be used to calculate an appropriate value 

for l. 
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It is possible to use the PO plot to determine an appropriate value for this parameter, 

l, by forcing the PO plot to form the ideal right angle. By calculating a distance, d, 

from the PO arrays, and shifting the elements of either POFG or POBG, by this 

distance, the PO plot is forced to form a right angle despite any noise or texture in 

the image.  Provided that the critical point is less than 100 (i.e. the standard HMT 

will not work), the value d may be calculated as the difference between the lowest 

level, t, for which BBG is 100% occupied, and the highest level t, for which BFG is 

100% occupied. More formally,  

 
     

 

                 

 

The PO plot can then be forced to form a right angle by shifting the elements of 

either POFG or POBG by this distance d, to the right or left respectively, to obtain 

either PO’FG or PO’BG. By plotting PO’FG vs. POBG or POFG vs. PO’BG, the right 

angled plot is obtained which implies that by setting l = d, it is possible to accurately 

set the distance between the SEs to improve the noise robustness of the RHMT or the 

UHMT as suggested in [8]. That is, the level d that is calculated in order to force the 

plot to form the right angle, is equivalent to the minimum distance that must be fixed 

between BFG and BBG such that the feature of interest may be detected by either of 

these HMTs in the presence of noise. To demonstrate this technique, the synthetic 

image shown in Figure 5.4(a) has been used. This is a low contrast image that has 

been corrupted by zero mean, AWGN. 

   
, ,

min | 100 max | 100 .
x t x tBG FG

t T t T
d t PO t PO

 
     (5.1) 
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Figure 5.4 Setting the SE separation for Ronse’s and Soille’s HMTs. (a) Noisy synthetic image 

(500 x 500). (b) Histogram equalization of (a) for visualization of noise (500 x 500). (c) Intensity 

profile of image centre row, no noise (blue), noise corrupted signal (green).  (d) PO plot obtained 

before (green) and after (blue) shifting the elements of POFG by d as well as intermediate plots 

for increasing d. (e) PO Plots obtained before (green) and after (blue) setting the SE separation 

to d and calculating POFG and POBG.  

 

 

For the purpose of illustrating the effect that the noise has on this signal, the image 

after histogram equalization has been shown in Figure 5.4(b), and in Figure 5.4(c), a 

1D intensity profile taken from the centre row of the image before and after the noise 

has been added is plotted. By generating the PO plot for the case where the distance 

between the SEs is initially zero, Equation (5.1) can be used to calculate the distance 

d that should be set between the SEs to allow this feature to be detected. By shifting 

the elements of POFG to the right by d and plotting PO’FG vs. POBG, the result is the 

right angle as shown in Figure 5.4(d). To demonstrate the way in which the plot is 

forced to form the right angle, three additional curves are present in the PO plot in 

Figure 5.4(d). These curves have been generated purely for example by setting d to 

values that lie between zero and the critical distance of 20 greylevels that was 

calculated using Equation (5.1). 
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By reference of Figure 5.4(d), it is clear that as d increases, the plot gradually 

approaches the desired right angle before attaining this profile when d = 20. If the 

distance, d, between the SEs is sufficient to allow the HMTs defined by Ronse or 

Soille to detect the noisy feature, the PO plot that is generated after fixing this 

distance between the SEs and recalculating POFG and POBG, also forms the right 

angle. This case is shown in Figure 5.4(e) where the distance between the SEs was 

set to 20 greylevels before calculating POFG and POBG. 

 

The authors of [8] discuss the performance of the HMTs proposed by Barrat et al. 

(BHMT) and Khosravi and Schafer (KHMT) when images are corrupted by noise. 

They conclude that since these HMTs already evaluate a distance between the SEs, 

the problem of finding a suitable distance is transformed into a problem of 

thresholding the result of their HMTs. It is possible to use the PO plot using the 

technique demonstrated in Figure 5.4 to determine this threshold, where the threshold 

is equivalent to the distance d which was previously calculated using Equation (5.1).  

 

By performing the BHMT and the KHMT and thresholding the results at d=20, the 

disk in the centre of the image is successfully detected. However, a large number of 

erroneous detections appear in the result when using this technique. Thresholding the 

result of these HMTs at a level less than d does not allow successful detection of the 

circle in noise, however, the result still contains a high number of false positives. The 

same is true for the RHMT and the UHMT, where setting the distance between the 

SEs to be less than 20 greylevels results in erroneous “hits” while the feature of 

interest is not detected.  

 

In [8], it is stated that the RHMT and the UHMT may be modified in the same way 

as each other for improved noise robustness – by increasing the distance between the 

SEs. The authors also state that the BHMT and the KHMT may be modified in the 

same way as each other – by determining the same suitable threshold. For these 

reasons and to simplify the following explanation, only the UHMT and the BHMT 

are discussed in more detail.  
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Figure 5.5(a)(i) shows a low contrast, noise free, synthetic greyscale image, that has 

a feature in its centre. The feature is a peak that is slightly brighter than the 

background and exhibits a Gaussian intensity profile. Increasing amounts of noise 

have been added to the images labelled (i) in Figure 5.5(b) – (e) in order to reduce 

the SNR and make it more difficult for the UHMT, the BHMT and the POHMT to 

detect this feature. In Figure 5.5(a)(vi) – (e)(vi) is a PO plot that has been generated 

using the SEs that have been designed to match the feature in (i) for each synthetic 

image.  
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Figure 5.5 Example of using a PO plot to set parameters for the POHMT, the UHMT (Soille) 

and the BHMT (Barrat et. al) for improved performance in noise. (a) – (e) show a number of 

images (all 150 x 150) and plots when processing a synthetic image that contains a bright 

Gaussian profile where the SNR is gradually decreased. (a) SNR = dB; (b) SNR = 0dB; (c) 

SNR = -8dB; (d) SNR = -15dB; (e) SNR = -20dB. In each subfigure: (a) – (e), the image being 

processed is shown in (i), the result of the POHMT is shown in (ii), the result of the UHMT is 

shown in (iii) and the result of the BHMT is shown in (iv). A 1D intensity profile of the original 

image, I, (blue), 
FGI B (red),

BGI B (green) and 
FGI B d (purple) is shown in (v); and a PO 

plot is shown in (vi);  Note that the result of the UHMT is equivalent to the that of the BHMT 

and that the POHMT outperforms the two modified alternatives when the SNR drops to -15dB.   

 

It is clear that as the SNR decreases, the profile in each of the PO plots shown in 

Figure 5.5(a)(vi) – (e)(vi) tends more towards a curve and that the critical point 

becomes lower. For the POHMT, this means that the parameter P should be reduced 

in accordance with the value of the critical point to improve its performance and 

allow successful detection of the feature despite the noise. For the UHMT to be 

capable of locating the feature in noise, the distance between the SEs should be 

increased [8]. It should be noted that increasing the distance between the SEs is 

equivalent to vertically translating the eroded image by adding a greylevel, equal to 

the distance between the SEs, to the result of FGI B . This method of fixing a 

distance between the SEs has been applied such that d, as computed using Equation 

(5.1), is added to the result of FGI B . The right angle profile that is shown in each 

PO plot (Figure 5.5(a)(vi) – (e)(vi)) is the result of plotting PO’FG vs. POBG where 

PO‟FG was obtained by shifting the elements of POFG to the right by the value of d 

which is calculated for each profile. For the BHMT, the threshold should be 

increased as the SNR decreases in order to improve its robustness to noise [8]. As has 

been explained, this threshold is equivalent to the distance which is allowed between 

the SEs for the UHMT and hence it too may be calculated using Equation (5.1).  
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Figure 5.5(a)(v) – (e)(v) shows a one dimensional cut (taken from the centre row) of 

the image labelled (i) in Figure 5.5(a) – (e) in blue. In addition to the profile of the 

image being processed, the plot labelled (v) in Figure 5.5(a) – (e) shows the intensity 

of the result of eroding this image by BFG, the result of dilating by BBG, and the result 

of eroding the image and adding d to the result (increasing the distance between the 

SEs). Labels (ii), (iii) and (iv) in Figure 5.5(a) – (e), show respectively, the result 

obtained by the POHMT, the UHMT and the BHMT when attempting to locate the 

feature in noise when using the PO plot to set their parameters.  

 

It is clear that as the SNR drops to -15dB (Figure 5.5(d)) the UHMT and the BHMT 

begin to mark places in the image incorrectly where the POHMT detects only the 

feature of interest. The reason for these erroneous detections is evident when 

observing the one dimensional cuts shown in Figure 5.5(d)(v). Take for example the 

UHMT which marks places in the image when the result of FGI B  (red profile) is 

greater than BGI B (green). The only time the standard transform is capable of 

detecting the sought feature is when the SNR  0, see Figure 5.5(a)(v) and Figure 

5.5(b)(v). In Figure 5.5(a) and Figure 5.5(b) the PO plot exhibits a right angle and 

hence the standard HMT is capable of detecting the feature, and d = 0. That is, the 

SEs are at the same level as each other, hence, FGI B  = FGI B d . For this reason 

the red profile is not visible in Figure 5.5(a) and Figure 5.5(b). When the SNR falls 

to -8dB (Figure 5.5(c)) it is clear that the traditional implementation of the UHMT 

will not detect the feature in the image since the result of FGI B  (red) is always 

lower than BGI B (green). However, increasing the distance between the SEs as 

suggested in [8] allows the UHMT to detect the feature. By observing Figure 

5.5(c)(v) it is clear that the result of FGI B d (purple profile) is greater than the 

result of BGI B  only when the SE is coincident with the feature in the centre of the 

image. This is a positive result which indicates that the method of increasing the 

distance between the SEs can help the UHMT to perform more accurately in noise. 

However, when the SNR falls as low as -15dB, the distance that must be allowed 

between the SEs is so large that the transform introduces a number of erroneous 

markers. By observing Figure 5.5(d)(v) the reason for this is obvious – the result of 

Ө 
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eroding the image by BFG is so noisy that it is not possible to offset this result without 

inevitably creating a large number of points for which 
FGI B d  (purple profile) is 

greater than BGI B  (green profile). When the SNR is as low as -20dB, it is evident 

that both the UHMT and the BHMT produce so many false positives that it is not 

practical to use either of these in such noisy conditions. This is clear by observation 

of the green and purple profiles shown in Figure 5.5(e)(v) where it is obvious that 

there exists a large number of points for which 
FGI B d > BGI B . Each of these 

points produces an erroneous positive result in the output of the UHMT. It should be 

noted that although it is possible to reduce, d, and that this will reduce the number of 

false positives, it will also mean that the feature of interest will likely not be marked 

in the output of the UHMT. The discussion here has focused on the modifications 

that have been made to the UHMT, however, the same applies to the BHMT as these 

transforms are equivalent [8]. The equivalence is clear as in all cases the results of 

the transforms (although implemented differently) always produce identical output 

images. For the BHMT, as the SNR falls, the result is so noisy that it becomes 

impossible to set a threshold that will detect only the feature of interest. To exemplify 

this point, Figure 5.6 shows a 1D intensity profile of the output of the BHMT when 

the SNR is 0dB, -8dB and -20dB. It is clear from Figure 5.6(c) that when the SNR is 

20 dB, it is impossible to accurately set a threshold that will allow only the feature 

of interest to be detected with no false positives.  

 

(b)(a) (c)  

Figure 5.6 1D profile of the result of BHMT and the calculated threshold, d, when operating on 

the images shown in Figure 5.5(b)(iii),  Figure 5.5(c)(iii) and Figure 5.5(e)(iii).  Each plot shows 

the result of applying the BHMT (blue) and the threshold level which was calculated using (5.1) 

when the SNR is (a) 0dB, (b) -8dB and (c) -20dB 
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It has been demonstrated using Figure 5.5 and Figure 5.6 that as the SNR falls below 

-15dB the modified UHMT and BHMT become unusable. The POHMT on the other 

hand is still capable of locating the feature of interest without any erroneous hits (see 

Figure 5.5(a)(ii) – (e)(ii)). These results indicate that the POHMT is better suited to 

making the HMT more robust in the presence of noise than the modifications 

suggested in [8]. However, the key point here is that until now, no one has provided a 

method that can be used to set the parameters that must be determined prior to 

executing any of the routines discussed here when the image data is very noisy. The 

PO plot that has been introduced in this work can be used to set these parameters. 

 

Perret et al. present their solution to overcome the difficulties faced by the HMT in 

the presence of noise in [8]. As was explained in Chapter 3, the authors introduce a 

Fuzzy Hit-or-Miss Transform which they use to detect features in very noisy 

astronomical images and provide an impressive set of results. Their technique 

involves generating a large set of SEs using a mathematical model that incorporates 

the characteristics of the features they aim to detect for various scale lengths, 

orientations and elongations. A measure of fitness (in a fashion similar to the 

POHMT) is obtained for all patterns in the set of SEs at each point in the image, and 

a record of the best fitting SE at each pixel is stored as well as a measure of how well 

this SE fits the image. This data is used to form a so called “Score map” which is 

thresholded at a particular level to produce a binary marker image from which 

detected features can be reconstructed.   

 

For the FHMT, the PO plot could be used to set the ideal distance between the SEs, 

or to provide an indication of a suitable threshold that can be used on the output of 

this transform. Additionally, the PO plot and a suitable set of training data could be 

used to set a minimum occupancy requirement for a single SE, or at least a small 

subset taken from the large set of SEs that are used currently. This would allow their 

algorithm to execute more quickly as it would no longer require the use of such a 

large number of SEs.   
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The PO plot could also be used to estimate the optimal rank parameter for the 

method presented by Harvey et al. in [11]. This would significantly reduce the time 

taken by their current approach which uses ROC curves to assess the effect of the 

rank parameter when applying their generalised HMT to detect ships in satellite 

imagery. The POHMT can in fact be used to estimate parameters for a large number 

of the modifications of the standard HMT which were discussed in Chapter 3. 

Examples of setting parameters for some of the routines that have been discussed in 

this section, using the PO plot, are provided in Section 5.4 of this chapter.  

5.3 A Discriminatory Filter 

 

Often, features that are to be detected in an image are not geometrically identical. If, 

therefore, it is required to extract from an image, a number of features which differ 

from each other in terms of shape and size, it is possible to design a number of 

composite SEs where each one is designed to match the geometry of each object that 

is sought in the image. It is then possible to perform a greyscale HMT using each of 

the composite SEs in turn before calculating the union of all the resulting binary 

images to obtain a single image that contains markers for each image feature that has 

been detected. That is of course assuming that the HMT will not fail to detect these 

features due to noise or texture in the image.   

 

As was illustrated in Figure 5.3, the POHMT allows multiple objects which are 

geometrically very different to be detected using just one composite SE in a single 

pass of the image. This can be achieved by exploiting the information contained 

within the PO plot in order to determine an appropriate level for P such that it is 

possible to ensure the detection of all the features in this image. The PO plot 

provides a further advantage in that P may be set in such a way that it is possible to 

discriminate between image features using just one composite SE. The simplest case 

of discriminating between features using the POHMT is to set the value of P high 

enough to eliminate objects which simultaneously occupy a maximum percentage of 

B that is always less than P. An example of selectively detecting cells in the image by 

varying P, using the information contained in the PO plot, is shown in Figure 5.7.  
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Clearly, by reference of Figure 5.7(a), setting the level of P to any value that lies 

between the critical points of the curves representing the cell in the bottom right and 

left of the image, the cell in the bottom left can be eliminated by the POHMT while 

the other three cells can be detected successfully. In Figure 5.7(c) only three of the 

four cells shown in  Figure 5.7(b) have been extracted by setting 75%P   in order 

to eliminate the cell in the bottom left of the image for which the maximum, 

simultaneous occupancy of the SE when coincident with this cell is 71%. By raising 

the level of P to 90% and then 96% in accordance with the PO plot shown in Figure 

5.7(a), respectively two cells are extracted (Figure 5.7(d)) and then only one cell is 

extracted (Figure 5.7(e)). Evidently, the PO plot is an extremely powerful design 

tool, as it provides information that allows objects to be detected selectively using 

one composite SE in a single pass of the image.  
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Figure 5.7 Example of POHMT operating as a discriminatory filter. (a) PO plot for the four cells 

in (b). (b) Noisy image containing four cells. (c) Three of the four cells detected by setting P = 

75%. (d) Two of the cells detected by setting P = 90%. (e) One of the cells detected by setting P = 

96%. All images are 520 x 692. 
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The case demonstrated in Figure 5.7 is a powerful yet simple one. It is obvious that 

increasing the level P, or in other words increasing the strictness of the transform, 

results in objects being discarded in the detection process. What is more interesting, 

is that by a similar technique to the one described above, it is possible to isolate any 

of the four cells in the image shown in Figure 5.7(b) and hence  any combination of 

the image features can be segmented using just one composite SE. In this case, the 

PO plot makes it possible to use one composite SE to discriminate between objects 

of interest in an image and objects which may have very similar geometrical 

properties in the spatial domain, like the two cells at the top of the image. Figure 5.8 

shows each of the cells being extracted on their own using the same composite SE 

and the POHMT.  

 

(b)(a) (c) (e)(d)
 

Figure 5.8 POHMT operating as a discriminatory filter (a) Image containing four cells of 

different shape and size. (b) Bottom left cell isolated. (c) Top right cell isolated. (d) Bottom right 

cell isolated. (e) Top left cell isolated. All images are 520 x 692. 

 

The results shown in Figure 5.8 can be achieved by a few simple steps which will 

now be explained. Consider the result shown in Figure 5.8(d) where the cell in the 

bottom right of the image shown in Figure 5.8(a) has been isolated.  To achieve this, 

the parameter, P, must be set low enough to detect the cell in the first place. By 

interpretation of the PO plot shown in Figure 5.7(a) it is clear that setting 75P   

allows this cell to be detected. However, setting 75P   results in the POHMT also 

detecting the two circular cells in the top of the image. In order to isolate the cell in 

the bottom right, the markers that have been produced for the two cells in the top of 

the image must be removed.  

 

The unwanted markers can be removed by exploiting some properties of the 

POHMT. The first of these is that as the value of P is reduced, the POHMT becomes 

less strict and allows more features to be detected. Further, while the POHMT is not 
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an increasing transform, and hence if, x E  ,    I x J x , the following expression 

does not always hold, 

 

 

 

 

the POHMT is in fact increasing in P with respect to the same image. This property 

is based on the threshold decomposition property of the POHMT where P is 

analogous to a threshold function [80]. This means that although the POHMT is not 

increasing in the traditional sense, the result of the POHMT is increasing with 

respect to P. The following relationship holds when the POHMT is applied to the 

same image I with different values of P, 

 

 

 

 

This means that when a feature has been detected at some level P, it will always be 

detected, for all values between 0 and this value of P. This is why setting 75P   

results in three markers in the output of the POHMT instead of just the cell that 

should be isolated. It is also true, by interpretation of Equation (5.3), that the size of 

the markers produced when P is high, remain the same size, or, get larger, as the 

value of this parameter is reduced. This means that the markers produced 

when 90P  , are a subset of the markers that are produced when 75P  . It is 

therefore possible to use bounding boxes in order to isolate the cell in the bottom 

right of the image which occupies 75% of the SEs. A bounding box can be defined as 

the smallest rectangular area that can contain any connected image region (See 

Figure 5.9(c)). In this case, the connected regions are the markers produced by the 

POHMT. 

       

When 75P  , the POHMT produces the marker image shown in Figure 5.9(a). A 

bounding box can be computed for each marker in the image produced by the 

POHMT when 75P   as illustrated in Figure 5.9(c). Each bounding box in Figure 

   , ,B P B PPOHMT I POHMT J , (5.2) 

 

   , , 1B P B PPOHMT I POHMT I , (5.3) 
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5.9(c) contains one marker for each of the three cells that have been detected. When 

90P  , the marker for the cell of interest is not contained in the output of the 

POHMT. The output does however still contain markers for the two cells that are not 

of interest - see Figure 5.9(b). The bounding boxes that were computed for the image 

containing markers for all three cells, shown in Figure 5.9(c), can now be used to 

locate any features that have disappeared as a result of increasing P. This makes it 

possible to isolate the cell (or any other feature of interest) by locating any empty 

bounding box. This is demonstrated in Figure 5.9(d), where the empty bounding box 

provides the location of the desired cell. The centre of this bounding box may be 

marked in an output image and this marker can then be reconstructed to provide the 

isolated cell of interest.     

  

(d)(c)

(b)(a)

 

 

Figure 5.9 Technique used to isolate a feature of interest (a) POHMT marker image when 

75P   (b) POHMT marker image when 90P  . (c) Bounding boxes obtained for the 

markers shown in (a) where 75P   and all of the bounding boxes contain a marker. (d) 

Marker obtained when 90P   with bounding boxes from (c) overlaid. The empty bounding box 

contains the location of the cell of interest which can be marked in the output image.   All images 

are 520 x 692. 
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5.4 Experimental Results 

 

Everything that has been discussed and explained by example in this chapter is now 

tested on real data. First, it is shown that the PO plot may be used to set P such that 

the POHMT can be used to detect a biological cell in a series of very noisy images. 

The PO plot is then used to determine a suitable distance that may be fixed between 

the SEs such that the UHMT [12] can detect the same biological cell in the same 

series of noisy images using the modification suggested in [8]. Next, the PO plot is 

used to set a threshold for the BHMT so that the modification of this transform, as 

proposed in [8], can also be used to detect this cell in the same noisy data. A 

comparison of the output of all three techniques is provided. The method of using the 

PO plot to set P for the POHMT is also performed on the same images as Perret et al. 

used in [8]. This test has been carried out to determine if the routine proposed in this 

thesis is capable of detecting the LSB galaxies as was achieved by the authors of [8]. 

Finally, an example of the discriminatory filter differentiating between dice showing 

different values between one and six is provided.  

 

5.4.1 The POHMT, the UHMT and the BHMT in Very Noisy Data 

 

An example of eight very noisy biological images (of an immune system cell) are 

shown in Figure 5.10 where three of the images (Figure 5.10(a)) have been selected 

and used as a training set in order that P can be determined and used to detect the 

features of interest in the test set (Figure 5.10(d)). There is a small group of pixels in 

each image in Figure 5.10 that represents the feature of interest, while the rest of the 

image contains noise and other features that are not of interest. The images are 

extremely noisy, and, by observation of the data, it is evident that the shape and 

orientation of the cell changes between the images.  
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Figure 5.10 The image set containing the cell of interest and some other features where the 

entire image is submersed in noise. Each of these false colour images are 512 x 512. (a) Training 

set to determine an appropriate value for P. (b) SEs used to locate cell of interest (c) PO plot 

obtained for the training set shown in (a). (d) The set of test images in which the feature is 

sought after P has been fixed using the PO plot for the training set.  

 

The first stage in the process is to generate a PO plot for each feature of interest in 

the training set in order to determine an appropriate level for P. Although the cell is 

not a constant shape and size in all images, B (shown in Figure 5.10(b)) was designed 

such that its elements corresponding to BFG will fit inside it in each image. Similarly, 

BBG was designed to encompass all of the features of interest in each image to 

guarantee that the cell can be detected in all possible orientations and variations of 

shape and size. By increasing the spatial distance between the SEs, as has been done 

here, it can be argued that the transform may produce erroneous hits. If a problem 
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occurs, this issue can be overcome by exploiting the discriminatory property of the 

POHMT shown in Section 5.3. Although automatic techniques are available for SE 

design, [11] and [39], a manual method has been used here to design the SEs. Square 

SEs have been used for processing simplicity in order to compare the performance of 

the POHMT, UHMT and BHMT, however any arbitrarily shaped SE may be used.  

 

The composite SE B, shown in Figure 5.10(b), was used to generate a PO plot for 

each image in the training set in order to obtain a suitable level for P, such that the 

feature could be detected in the test set using the POHMT, without picking up 

erroneous hits. The PO plot, generated for the training set, is shown in Figure 

5.10(c). Clearly, by reference of the PO plot, setting P=83% is sufficient to ensure 

that this feature may be detected using one composite SE for the entire test set. The 

POHMT was calculated for each image in the test set where the results of applying 

this transform and dilating (by a 5x5 square SE) the markers in its output, are shown 

in Figure 5.11. The test set of images are shown in Figure 5.11 such that it is easy to 

view the position of the marker with respect to the feature of interest in the original 

image. 

(b)

(a)

 

Figure 5.11 Result of applying the POHMT to each image (512 x 512) in the test set with P = 83. 

(a) Original images. (b) POHMT output for the image shown directly above it in (a).  

 

The results shown in Figure 5.11(b) demonstrate that the feature of interest is 

detected in every image of the test set, and that there are no false positives. In 
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Section 5.2, it was shown that the PO plot could be used to determine a suitable 

distance that could be fixed between the SEs for the UHMT or RHMT to operate 

more effectively in noisy images. Using the PO plot shown in Figure 5.10(c) and 

Equation (5.1), the distance d that was calculated for the training data was 81 

greylevels. This distance was fixed between the same SEs as those used by the 

POHMT to detect the noisy cell in the test set shown in Figure 5.10(b). The result of 

fixing a distance of 81 greylevels between the SEs and executing the UHMT on these 

images is shown in Figure 5.12(b). As in Figure 5.11, the original images have been 

provided here such that the location of the marker can be viewed with respect to the 

sought feature.  

 

(b)

(a)

 

Figure 5.12 Result of applying the UHMT to each image (512 x 512) in the test set. (a) Original 

images. (b) UHMT output for the image shown directly above it in (a). 

 

By reference of Figure 5.12, it is clear that although the feature of interest has been 

detected, there is also a large number of false positives in the result. In fact the 

number of false positives is so high that the UHMT, even with the suggested 

modifications where the parameters have been determined accurately using the PO 

plot and Equation (5.1), is rendered almost useless for processing images with this 

level of noise.  

 

The same value of d was used to set the threshold for the BHMT – this technique was 

explained in Section 5.2. It was also explained in Section 5.2 that the BHMT and the 
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UHMT are equivalent and that if the distance between the SEs for the UHMT is the 

same as the threshold used to compute the output of the BHMT, that the two results 

are identical. This is of course is the case here, and hence, like the UHMT with a 

distance of 81 greylevels fixed between the SEs, the BHMT thresholded at a level of 

81 produces a large number of false positives in addition to marking the feature of 

interest.  The result of thresholding the output of the BHMT at a level of 81 as 

calculated using Equation (5.1) is shown in Figure 5.13. Clearly, like the UHMT, this 

transform cannot be used to reliably detect the sought feature in these images as a 

result of the noise.  

 

(b)

(a)

 

Figure 5.13 Result of applying the BHMT to each image (512 x 512) in the test set and 

thresholding the output using a threshold of 81. (a) Original images. (b) BHMT output for the 

image shown directly above it in (a). 

 

It is clear that although the PO plot can be used to set parameters for the UHMT, the 

RHMT (in the same way as the UHMT), the BHMT, and the KHMT (in the same 

way as the BHMT), the POHMT outperforms all of these transforms when the 

images are as noisy as those being tested in Figure 5.10. Further, these alternative 

methods require unrealistically large values of d when images are as noisy as those 

used in this experiment.    
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5.4.2 The POHMT and the FHMT 

 

The POHMT has also been tested on the images used in [8] to compare its 

performance with the FHMT described by Perret et al. An example of the POHMT 

detecting two LSB galaxies in two different images has been shown in Figure 5.14. 

The contrast of the image shown in Figure 5.14(a) has been enhanced to make the 

LSB clearly visible. Although the POHMT is capable of detecting the LSB in the 

images, as demonstrated in Figure 5.14, it should be noted that the POHMT takes 

longer to compute the results than the optimised FHMT proposed in [8]. The 

execution time of the POHMT is discussed in the next chapter where a fast 

implementation (which outperforms the heuristic method proposed in [8]) for 

computing the transform is presented.   

 
 

(b)(a)

(d)(c)  

Figure 5.14 The POHMT detecting a LSB galaxy. (a) Original noisy image containing a LSB 

galaxy in the lower right quadrant of the image. (b) The output of the POHMT when processing 

the image in (a). (c) Original noisy image containing a LSB galaxy in the lower right quadrant of 

the image. (d) The output of the POHMT when processing the image in (c). All images are 512 x 

512. 
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5.4.3 The POHMT as a Discriminatory Filter 

 

The final experiment that is presented in this chapter exploits the information 

contained in a PO plot to make the POHMT operate as a discriminatory filter in order 

to selectively detect dice from an image. It should be noted that a synthetic example 

is used to demonstrate how the discriminatory filter may be used in practice to 

selectively recognise features in an image.   

 

Training data which consists of six images, each representing one face of a die, the 

corresponding PO plot, and the critical point that has been calculated for each image 

in the training set are shown in Figure 5.15.  
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Figure 5.15 Training data for discriminating between dice. (a) 6 training images: all possible 

faces of the die. (b) SE used to generate PO plot and to detect the dice in this section (c) PO plot 

generated by centring a complementary pair of SEs on each training image. (d) Value of P 

computed by finding all critical points of the PO plot in (c).  
 

As was discussed in Section 5.3 it is obvious that setting P to the value of the 

minimum critical point ( 76P  in the case shown in Figure 5.15) will result in all of 

the features of the training set being detected in the test set. This situation is shown in 
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Figure 5.16. It was also pointed out in Section 5.3 that it is easy, for example, to 

make the transform stricter in order to selectively detect only dice whose face is 

displaying a value of one in the image. This can be achieved by setting 95P   

before executing the POHMT on the image shown in Figure 5.16(a) (See Figure 

5.17(a)). Setting 91P   in accordance with the training data will allow all dice 

whose value is 1 or 2 to be detected in Figure 5.16(a). Continuing to lower P will 

allow all of the dice whose occupancy value is equal to or above the threshold P to 

be marked and those dice whose occupancy value is lower than the threshold P to be 

discarded. As was stated in Section 5.3, this is the trivial case of the POHMT 

operating as a discriminatory filter.   

 

(b)(a)  

Figure 5.16 Test image (609 x 529) and POHMT output with 76P  . (a) Test image containing 

36 dice where all faces of the die are present. (b) Result of applying the POHMT to detect all 

dice in the test image. 

 

Figure 5.17 shows the results of varying P and using the bounding box method that 

was described in Section 5.3 and demonstrated in Figure 5.9. In this case the PO plot 

has been exploited in order to isolate dice whose value is: one (Figure 5.17(a)), six 

(Figure 5.17(b)), three (Figure 5.17(c)), and two or five (Figure 5.17(d)). The 

combination of dice whose value is two or five was obtained by simply isolating the 

locations of dice displaying a value of two and the same for those displaying a value 

of five before computing the union of the two marker images to produce the result 

shown in Figure 5.17(d). It should be noted that while the POHMT is demonstrated 

to successfully discriminate between the specified features, the transform is in fact 

blind to the configuration and shape of the features in the image. That is, any feature, 

regardless of its shape, size, or appearance in the spatial domain, will be detected and 

marked by the POHMT if the feature occupies both SEs by some percentage which is 
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greater than or equal to P. This could lead to features being detected in error when 

taking this approach.   

 

(b)(a)

(c) (d)
 

Figure 5.17 Discriminatory POHMT selectively detecting dice whose value is (a) one, (b) six, (c) 

three (d) two or five. All images are 609 x 529. 

 

To test this method further, noise has been added to the image, the PO plot has been 

recalculated, and the dice displaying two in the image have been selectively detected. 

The noisy image and the result when selectively searching for dice whose value is 

two, is shown in Figure 5.18. 
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Figure 5.18 POHMT selectively detecting dice displaying two after noise has been added to the 

image. (a) PO plot that has been generated after noise has been added to the image. (b) Image 

(609 x x529) after zero mean AWGN has been added to the image. (c) Example of the POHMT 

successfully locating the dice that display a two in the noisy data (609 x 529). 
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The POHMT is still capable of selectively marking the features of interest despite the 

noise in the image. 

5.5 Summary 

 

In this Chapter, a novel design tool known as a PO plot has been introduced. The plot 

can be used to set the only parameter required by the POHMT and can be used by 

other researchers to set parameters for their own routines. Various examples of how 

this can be achieved have been presented, and the PO plot has been used to 

incorporate some suggested modifications by other researchers to make existing 

greyscale HMTs perform better in noise. When performing various HMTs and using 

the suggested modifications, it has been shown that image features can be detected in 

noise, but unlike the POHMT, there are also a large number of false positives in the 

result. This was demonstrated in Section 5.2 and verified in the experimental results 

in Section 5.4. 

 

In addition to the PO plot being used to set parameters for greyscale HMTs in noise, 

it has been shown that this tool provides some additional benefits. The discriminatory 

filter aspect of the POHMT, which is a direct result of analysing the PO plot, allows 

the differentiation of objects in the image that are to be detected and others which 

may appear visually similar in the spatial domain but that are not of interest. An 

example of how this technique could be applied in practice is given in Section 5.4.3. 

  

Section 5.4.2 demonstrated that the proposed approach achieves similar results to one 

of the most recent extensions of the HMT, the FHMT, presented by Perret et al.  [8]. 

This has been verified using the same images (Figure 5.14) that were used in  [8], 

however, the method presented here takes longer to execute than the optimised 

FHMT. The execution time of the POHMT is addressed in the next chapter where a 

fast algorithm that does not use heuristic techniques (unlike the method proposed in  

[8]) is shown to be extremely effective in making the POHMT execute in a fraction 

of the time taken by the optimised FHMT.  
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6 A Fast POHMT 
 

This chapter presents an algorithm that can be used to efficiently compute the output 

of the POHMT which was introduced in Chapter 4. This Chapter begins by 

describing the methods provided in  [54] and  [55] in order to demonstrate how the 

techniques presented there make it possible to efficiently compute the output of 

respectively: square and rectangular median filters; and arbitrarily shaped, maximum 

and minimum filters.   

 

The novel contribution of this Chapter lies in describing the steps that must be taken 

to generalise and combine these two methods to make it possible to quickly compute 

the output of any arbitrarily shaped rank order filter. The method that is used to 

achieve this is presented following the discussion of the existing techniques [54], 

[55]. Since the relationship between rank order filters and morphological operations 

has already been discussed (See Chapter 2, Section 2.5), only the relationship 

between rank filters and the POHMT is discussed here, and it is shown how P can be 

used to accurately set the rank parameter.  

 

The chapter concludes by providing a number of speed comparisons which 

demonstrate a number of properties of the proposed fast routine. First, the effect that 

the value of P has on the execution time of the routine is evaluated. The efficiency of 

the proposed method is then tested using a number of different SEs of increasing 

dimension to determine how the size and shape of the window affect the efficiency 

of the routine. It is also shown that the execution time of the proposed routine is data 

dependent. The efficiency of the fast rank filters which are described here are then 

compared with an optimised routine for computing output of this class of filter using 

arbitrary windows. The POHMT is then implemented using the fast rank order filters 

and a comparison of the execution time of the fast POHMT and a direct 

implementation of the POHMT is provided. Finally, the efficiency of the proposed 

routine is compared to the method presented by Perret et al., [8].  

 



 139 

6.1 A Fast 2D Median Filter 

 

In the late seventies, Huang et al. presented a “Fast Two Dimensional Median 

Filtering Algorithm”, [54], which allowed efficient computation of the median filter 

within square and rectangular windows. The authors exploit the fact that when 

calculating the output of the median filter using a sliding window, only a small 

number of the values that are considered in the calculation of the median actually 

change as the window moves from the current pixel to its neighbour. This means that 

instead of re-sorting every value in the window, only the pixels that exit the window, 

and the new pixels that enter it as it is translated from some pixel to its neighbour, 

need to be considered before calculating the new median. This leads to an increase in 

speed which is further enhanced by an efficient histogram technique that is used to 

sort the values that are coincident with the window and efficiently locate the median 

value. 

 

The method proposed in [54] calculates a histogram of the image pixels that are 

coincident with the sliding window as it scans the image. It is then possible to find 

the median of the values in this histogram in order to calculate the output of the 

median filter at each image pixel. However, instead of generating a new histogram 

for each translation of the window in the image, the histogram is simply updated by 

removing the values that exit the window and adding those values that enter it as it is 

translated from pixel, x , to its neighbour 1x .  Updating the histogram is achieved 

by decrementing the count in the bins that correspond to the values exiting the 

window, and incrementing the count in the bins corresponding to the values entering 

it. The median value is easily located using this technique since the pixels are already 

sorted in the histogram. All that is required is to accumulate the number of counts in 

each bin in the histogram until the count reaches the position of the median in this 

window. The intensity value at which this count is reached is the median value of the 

pixels that coincide with the window. The property of the sliding window that is 

exploited and the histogram technique for computing the output of the median filter 

at each point x  is exemplified in Figure 6.1 where a square, 3x3 window, has been 

used to filter the data. 
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Figure 6.1 Illustration of the histogram method used to calculate the median filter. (a) Arbitrary 

pixel values coincident with a 3x3 window before (red) and after translation (blue). Shaded area 

- pixels that do not change as window is translated. (b) Histogram of pixels in red window, 

median = 15. (c) Histogram of pixels that remain in the window after those leaving it have been 

subtracted. (d) Histogram with new values in blue window added, new median = 10. 

 

The techniques discussed so far provide a significant reduction in computation, and 

this is further enhanced by correctly directing the search that is performed to locate 

the value of the next median in the histogram when the current median has been 

calculated. This is achieved by keeping a count of the number of pixels in the 

histogram that have intensity lower than the median in the previous window. It is 

then possible to use this count to decide whether it is required to search up or down 

the histogram to find the new median. Let the count of pixels that have a grey level 

value less than the previous median be denoted c.  If c is greater than  
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2

Window Size
floor

 
 
 

, 

 

(6.1) 

 

 

values to the left (lower values within the histogram) of the current median should be 

interrogated in order to find the new median. If c is not greater than the value 

computed by Equation (6.1), then the new median may either: remain unchanged; or, 

if not, values to the right of the current median should be searched. For further 

understanding of this method, the interested reader is referred to [54] where Huang et 

al. provide a thorough description of their method using pseudo code.  

 

While this technique is extremely efficient, the method presented in [54] is limited to 

computing the output of a median filter within square or rectangular windows. 

 

6.2 Efficient Computation of Erosion and Dilation within 
Arbitrarily Shaped Windows 

 

In [55], the authors extend the method proposed in [54] such that it is possible to 

compute erosions (minimum) and dilations (maximum) using arbitrarily shaped 

windows. Like the median filter, erosions and dilations are a special case of the more 

general rank order filter. As a result, the histogram technique that was employed by 

Huang et al. is used by Van Droogenbroeck and Talbot in [55] in order to find the 

minimum/maximum value of the pixels that are coincident with the SE B at each 

point x in the image. Van Droogenbroeck and Talbot also exploit the properties of 

the sliding window in a fashion similar to Huang. Further, the authors point out in 

[55], that it is not always necessary to consult the histogram when searching for the 

maximum or minimum rank. In the case of erosion (resp. dilation) it is only required 

to search for a new minimum (resp. maximum) if a value entering the window during 

translation is lower (resp. higher) than the current minimum (resp. dilation), or if the 

count in the histogram bin corresponding to the current minimum (resp. maximum) 

reaches zero. For this reason, the authors keep a record of the minimum (resp. 

maximum) value which can be easily updated as the pixels enter the histogram 

following a translation of the window. A new minimum (resp. maximum) is only 
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computed if one of the previously mentioned situations occurs. An example of this 

process for locating the minimum value and maximum value is shown in Figure 6.2. 

Note that although the arbitrary pixel values look similar between Figure 6.1(a) and 

Figure 6.2(a), the value in the bottom right corner of the blue window is different. 
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Figure 6.2 Illustration of the histogram method used to calculate erosion/dilation. (a) Arbitrary 

pixel values coincident with a 3x3 window before (red) and after translation (blue). Shaded area 

- pixels that do not change as window is translated. (b) Histogram of pixels in red window, min = 

10 (erosion) and max = 20 (dilation). (c) Histogram of pixels that remain in the window after 

those leaving it have been subtracted. At this stage the minimum and maximum are unchanged 

since the count in their corresponding bin is not 0 (d) Histogram with new values in blue 

window added. A new minimum is instantly computed since a value lower than the previous 

minimum has entered the histogram,  new min = 5. No value higher than the previous maximum 

has entered the window hence it remains unchanged. 
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Although the authors of [55] have made it possible to efficiently compute max and 

min filters, the major contribution of [55] is that the moving histogram technique is 

extended in such a way that it is compatible with any arbitrarily shaped window i.e. it 

is no longer restricted to square and rectangular windows. This is of particular 

importance for morphological operations, where the shape of the structuring element 

(window) that is used to process an image is critical. Van Droogenbroeck and Talbot 

extend the method proposed in [54] to include the use of arbitrary windows by 

identifying a set of so called “critical points” of the SE/window. These critical points 

are used to update the histogram as the SE traverses the image. Take for example the 

square window used in Figure 6.1, the only pixels which need to be updated in the 

histogram when this SE is translated by one pixel to the right are those pixels which 

coincide with the points that are not included in the intersection (shown in grey 

region of window in Figure 6.1) of the window and its translation by one pixel to the 

right. These points are called the “critical points” in [55]. This concept, and the 

critical points of an arbitrarily shaped window (when translating the window to the 

right), are shown in Figure 6.3. The pixels leaving the left side of the window are 

denoted BL, and those entering from the right are denoted BR.  

 

LB
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These pixels remain in the 

window when it is translated 

1 pixel to the right

X

X
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Figure 6.3 Illustration of the critical points in the window. (Top) red window centred at initial 

position. (Bottom) Blue window – red window translated 1 pixel to the right. (Right) Critical 

points of the window (red = BL and blue = BR) when it is translated to the right by a single pixel 

and the points that remain in the window (green) following this translation. 
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When processing an image using a sliding window, the window traditionally scans 

the image in raster fashion, as shown in Figure 6.4(a), to compute the output value 

for each pixel. A further contribution in [55] is that the authors introduce an 

alternative scanning method that can be used to compute the filter output. The idea is 

to minimise the number of times - ideally to one - that the entire histogram of pixels 

that coincide with the window must be computed. If the traditional raster scan is 

used, then a new histogram must be calculated every time a new row is to be 

processed. To avoid this redundancy, Van Droogenbroeck and Talbot propose, that 

in the first instance, the entire histogram is computed for all pixels that coincide with 

the window. Then, the first row is scanned from left to right, the histogram is 

updated using the critical points calculated for the translation by one pixel to the 

right, and the output value is calculated for all pixels in this row. When the end of 

this row is reached, the window is translated down in the vertical direction by one 

pixel to the next row. The histogram is updated using the critical points that can be 

computed for the top and bottom of the window, the output is calculated, and the 

window is then translated along this second row from right to left. As the origin of 

SE is translated to each pixel in this row, the histogram is updated using the same 

critical points that were stored for the first row, and the output value is calculated for 

all pixels on this row. When the SE reaches the leftmost pixel in this row, it is 

translated down by one pixel to the next row, the histogram is updated using the 

critical points corresponding to the top and bottom of the SE, and the process 

continues until the entire image is processed. This scanning order is shown in Figure 

6.4(b). 
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(a) (b)
 

Figure 6.4 Example of scanning techniques used to process the image using a window. (a) 

Traditional raster scan requiring full computation of the histogram of pixels in the window for 

the first pixel in each row. (b) Alternative scanning method proposed in [55] to minimise the 

number of times the entire histogram must be computed. 

 

The method presented in [55] is extremely effective in allowing erosions and 

dilations to be computed in an efficient manner. So long as the required critical 

points can be identified for a SE, it is possible to use these to update the histogram. 

The method for finding the critical points in [55] is given in the form of an intuitive 

description that is similar to the one that has been provided in this section so far. In 

[55], the authors only demonstrate the usefulness of their extension for computing 

erosions and dilations. They mention, although they do not discuss in detail, the 

extensions and generalisations that can be made to their technique such that it is 

possible to compute the output of any arbitrarily shaped rank order filter. In the next 

section, a mathematical formulation that can be used to calculate the critical points of 

the SE is provided. Then, a thorough explanation of how the method proposed in 

[55] can be generalised such that the output of any rank filter can be computed within 

any arbitrarily shaped window is provided.   
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6.3 Efficient Computation of Any Rank Order Filter within 
Arbitrarily Shaped Windows 

 

The previous two sections have described the methods that have been presented by 

Huang et. al for the efficient computation of median filters, and by Van 

Droogenbroeck and Talbot for the efficient computation of erosions and dilations 

using arbitrarily shaped SEs. The median filter, and the erosion and dilation, are all 

special cases of the general rank order filter. In this section it is explained that the 

method presented in [55] for computing max and min filters within arbitrary 

windows can be coupled with a generalisation of the histogram search method used 

in [54] in order to allow the efficient computation of the output of any rank order 

filter within any arbitrarily shaped window. In addition to this, a mathematical 

description of the method that can be used to compute the critical points of any SE is 

provided. This was not given in [55] where the authors explained the method of 

identifying the critical points by example and discussed how they could be found 

using logical operations.  

 

Table 6.6.1 highlights exactly where the contribution of this chapter fits within the 

context of the existing techniques. 

 

Method Window Output 

Huang et al.                              [54] Square and Rectangular Median  

Van Droogenbroeck & Talbot  [55] Arbitrary Min and Max 

Murray & Marshall                [77] Arbitrary Any Rank 1 k m   

 

Table 6.6.1 Table highlighting where the various techniques discussed in this section relate to 

each other. 

 

Before explaining the method that is used to compute the output of any rank, k, of the 

pixels that coincide with the SE at each point in the image, a mathematical 

formulation that can be used to compute the critical points is provided. Based on the 

discussion in the previous section regarding critical points and the alternative 
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scanning method that can be used to minimise the number of times the entire 

histogram must be computed when processing the image data, it is clear that at least 

two sets of critical points are required in order that they may be used to update the 

histogram for all translations of the SE. When the SE is being translated to the right, 

the points 
LB  and 

RB  (See Figure 6.3) are used. When the SE is translated vertically 

downwards from row to row the critical points TB  (from the top of the SE) and BB  

(from the bottom of the SE) are used to update the histogram. By letting  ,i j  denote 

the origin of the SE, the sets of critical points
LB , 

RB , 
TB  and 

BB may be computed 

using the following, 

 

 ( , ) \ ( , ) ( 1, )LB B i j B i j B i j   

 

(6.2) 

 

                                   ( 1, ) \ ( , ) ( 1, )RB B i j B i j B i j    

 

(6.3) 

 

                                     ( , ) \ ( , ) ( , 1)TB B i j B i j B i j   

 

(6.4) 

 

                                   ( , 1) \ ( , ) ( , 1)BB B i j B i j B i j    

 

(6.5) 

 

 

where LB and RB denote respectively: the points in the SE where old pixels will leave 

the window; and the points where new pixels will enter it, as the SE is translated one 

pixel to the right. TB and BB denote respectively: the points in the SE where old pixels 

will leave the window; and the points where new pixels will enter it, as the SE is 

translated vertically downward by a single pixel. 

  

Given Equation (6.2) and (6.3), and Equation (6.4) and (6.5), it is possible to 

compute the critical points for any arbitrarily shaped window and store these in 

memory. For each translation of the arbitrary window to the right, the value of those 

pixels which coincide with the points LB  are removed from the histogram, and the 

values in the image that coincide with the points of RB  are added to it. When a row 
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has been processed, and hence the end of the row is reached, the SE is translated 

down to the next row. Following this translation, the value of those pixels which 

coincide with the points 
TB  are removed from the histogram, and the values in the 

image that coincide with the points of BB , are added to it. When the SE is then 

translated from right to left, the points coinciding with BR are removed from the 

histogram, and the points that coincide with BL are added to it. When the SE returns 

to the leftmost pixel in the row, the SE is translated downwards by a single pixel and 

the points coinciding with BT are removed from the histogram. Those points 

coinciding with BB are then added to the histogram, before the process starts over and 

is repeated until the output image is calculated. 

 

By combining and generalising the techniques demonstrated in Figure 6.1 and Figure 

6.3, it becomes possible to compute the output of any rank order filter within any 

arbitrarily shaped window. By using the method of computing the critical points of 

the window and using these to update the histogram, the histogram may then be 

searched for any rank, 1 k m  , using a technique similar to the one that was 

described for calculating the median filter as demonstrated in Figure 6.1 and 

discussed in Section 6.1. That is, by generating a histogram of the image pixels 

coincident with the window, and updating this histogram with the pixels that are 

coincident with the critical points as the window moves, it is possible to exploit the 

redundancy associated with re-sorting these values. Then, by keeping a count, c, of 

the number of points that have an intensity that is lower than the value of rank k-1 of 

the previous window, it is straightforward to compute the output of any rank order 

filter defined by any arbitrary window B. An example of this technique for 

computing the output of a rank order filter, , 7B k  , for a 9 point square window is 

shown in Figure 6.5. 
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Figure 6.5 Example of computing the output of a rank order filter where k = 7. 

 

6.4 Rank Order Filters and the POHMT 

 

It is shown here that the extension of the method proposed in [55] that was described 

in Section 6.3 may be used to implement a fast POHMT (introduced in Chapter 4). As 

it was defined in Chapter 4, the POHMT generalises the HMT by allowing partial 

fitting of a composite SE such that objects of interest can be detected in an image 

despite the presence of noise. Instead of using traditional erosions and dilations 

which require a perfect match between image features and the SEs, the POHMT 

considers the extent to which a composite SE, B, “fits” the image as it is raised 

through all grey levels, t T , when its origin is coincident with a point x E , 

x E  . A point x E is marked in the output of the POHMT if - when the origin of 

the SE is coincident with x E ,  P %, of the points 
FGB B are beneath or at the same 

level as the signal, while simultaneously, P % of the points in 
BGB B  are strictly 
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above the signal. If, when the origin of B is coincident with a point x E , there is at 

least one level t T  for which this condition is satisfied, the composite SE is said to 

be P % occupied in the image and this point is marked in the output of the transform. 

 

A direct implementation of the POHMT which processes the image in a single pass 

can be realised using Equations (4.18), (4.19), (4.20) and (4.21). The extent to which 

the SEs fit a feature in the image may be measured using Equation (4.18) and (4.19), 

and a point x E  is then marked in the output of the transform if t T   such that 

P% of BFG fits the feature while P% of BBG fits its background. Implementing the 

POHMT in this way is effective but time consuming. 

 

 A common technique that can be used to relax the strictness of morphological 

operators is to implement more general rank order filters in place of traditional 

erosions and dilations [12] and [25]. Therefore, an equivalent and more efficient 

implementation of the POHMT can be achieved using the fast rank order filters 

described in Section 6.3. Instead of calculating POFG and POBG using (4.18) and 

(4.19), and subsequently the output of the POHMT using Equation (4.21) x E   

and t T  , it is equivalent to implement this transform using, 

 

  
,100 ,

2 -1  if     ( ) ( ) ( ) ( )
( ) .

0       otherwise

FG P BG P

FG BG

n

B B

B B B

I x I x
POHMT x
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



         


 

(6.6) 

 

 

It is clear from Equation (6.6) that the POHMT may be calculated using rank order 

filters where the parameter P in (6) may be used to set the rank k for the filter. When 

implementing the POHMT in this way, the idea is to look for places in an image 

where the intensity in rank (100 – P) is greater for the elements of BFG than the 

intensity in rank P for the elements of BBG. The output of the POHMT contains 

marker pixels for all x E for which this condition is satisfied.  

 

An example of how this may be implemented is provided here for clarity. Say that it 

has been determined using the PO plot (See Chapter 5) for a particular image set, that 

P should equal 75% for successful detection of the features that are to be located in a 
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noisy image. The POHMT can be  implemented using rank order filters such that any 

image pixel that is coincident with the origin of B is marked in the output if the rank 

corresponding to (100 - 75)% of BFG is at an intensity level greater than the level 

contained in the rank corresponding to 75% in BBG. This is consistent with the 

definition of the POHMT as given in Equation (4.21). 

 

6.5 Experimental Results 

 

This section tests the performance of the fast algorithm that has been introduced in 

this chapter under a number of different conditions and against other methods.  

First, the effect that the position of the rank has on the execution time of the 

algorithm that was introduced in Section 6.3 is investigated. Then, a number of 

differently shaped SEs of increasing size are used to compute the output of a rank 

order filter. In this experiment, the rank k is set to the most computationally 

expensive rank, as determined by the aforementioned experiment. In this way, the 

extent to which the execution time varies with the number of points in a window can 

be determined for the worst case. It is also shown in this section that the content of 

the image data can affect the execution time of the routine. The routine is also 

compared with the execution time of an optimised Matlab function, ordfilt2(), (using 

Matlab 2011b, the most recent version of Matlab released on 01/09/2011) for 

computing the output of rank order filters. The fast POHMT is then compared with a 

direct implementation of the POHMT (no optimisation has been used in the direct 

implementation) to ensure that the proposed method is in fact more efficient.  Finally 

the execution time of the fast POHMT is measured when operating on the image data 

that was used by Perret in [8] to test the FHMT. It is shown that the proposed method 

is more efficient than the one that was presented there. However, in contrast, the 

method proposed in this thesis does not incorporate heuristic techniques in order to 

achieve reductions in computational complexity.  
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6.5.1 Varying the Rank Parameter in a Square Window 

 

In this section a 100 100  square window is used to determine the effect that the 

position of the sought rank has on the execution time of the routine. Although it is 

well known that the median is generally more expensive to compute than other ranks, 

this experiment has been carried out in order to quantify this for the proposed 

method. A natural, noise free image, shown in Figure 6.6, has been used for this 

purpose, where the image dimensions are1440 2160 .  

 

 

 

Figure 6.6 Natural scene used to measure the execution time of the proposed fast rank order 

filters. The image dimensions are 1440 x 2160. 

 

The output of the 100 100  window was calculated for ranks ranging from 1k   

(minimum filter) to 10000k   (maximum filter) in steps of 100. The execution time 

that was measured for the computation of each rank is shown in Figure 6.7. The 

points that correspond to ranks between those that were measured have been 

interpolated in the plot.  
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Figure 6.7 Execution time of the fast algorithm using a 100x100 square SE for all ranks between 

the minimum and maximum for this window. Computationally, the most expensive rank to 

calculate is the median.  

 

It is clear by reference of Figure 6.7, that as expected, the most expensive rank to 

compute using the proposed method is the median. In this case, computing the 

median takes 868ms longer to compute than the minimum. That is slightly more than 

a 50% increase in the time taken to compute the median when compared to that of 

computing the output of the minimum filter. One reason for this may be that the 

search for the median requires a more thorough search of the histogram when 

compared with the search that is required for locating the minimum or maximum 

value. That is, when searching for the maximum or minimum in a histogram, the 

search only requires that the first value (starting from the left or right) is found. This 

implies that the search for the maximum and minimum values is less exhaustive than 

the search for the median. It is also possible that the minimum/maximum changes 

less frequently than the value of the median. If this is the case, then the histogram is 

searched less frequently when computing the minimum or maximum. 

 

 



 154 

6.5.2 Execution Time using Different SEs 

 

In this section, the five differently shaped SEs shown in Figure 6.8 have been used to 

process the image that is shown in Figure 6.6. Each of the 5 SEs has been applied to 

the image at a number of different scales in order to determine how the size of the 

window, as well as its shape, affects the execution time of the routine. In this 

experiment, the median rank has been calculated for all SEs, at all points in the 

image, since it was established in the previous section (see Figure 6.7) that the 

median is the most expensive of all rank filters to compute, using the proposed 

technique. As a result, all of the timing plots in this section provide the worst case 

computation time for each of the SEs of increasing size. 

 

 

 

Figure 6.8 Pictorial representation of the 5 SEs that have been used to measure the execution 

time of the proposed method for computing the output of the median filter (most expensive rank 

to compute). (a) Disk SE, (b) Square SE, (c) Hollow square SE, (d) H shaped SE, (e) Sin shaped 

SE. 

 

Each of the five SEs were applied to the image data in turn. The width and height of 

each SE was increased from 5 pixels to 50 pixels in steps of 5. The execution time 

that was measured for each SE of increasing size is shown in a separate plot in 

Figure 6.9(a)-(e). Each of these individual plots have been combined for comparison 

in Figure 6.9(f).  
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Figure 6.9 Execution time of the fast algorithm operating on the natural image shown in Figure 

6.6. Each of the windows shown in Figure 6.8 have been used to compute the median at a 

number of increasing dimensions starting at 5 pixels wide and ending at 50 pixels wide. The 

execution time for the disk SE is shown in (a), the square SE in (b), the hollow square SE in (c), 

the H shaped SE in (d) and the Sin shaped SE in (e). (f) All plots combined for comparison.    
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It is clear by reference of the plots shown in Figure 6.9 that in all cases, the execution 

time of the algorithm increases linearly with the increasing dimensions of the SE. 

Further, by reference of Figure 6.9, it is apparent that the square and disk SEs 

compute the output in a similar time to each other, and that in all cases, these SEs 

take less time to compute the output than the others. The hollow square, the H shaped 

SE, and the sin shaped SE, all compute the output image in similar times to each 

other. The reason that these SEs take longer to compute the output than the disk and 

square SEs is related to the number of critical points that exist for the SE when 

compared to the total size of the window. In fact, it seems counter intuitive that the 

disk SE and square SE would be more efficient to compute rank outputs than the 

others as the number of points in these windows is significantly greater than that of 

say a pixel wide sinusoid or hollow square SE. However, the ratio of the points in the 

SE that are used as critical points for the square and disk SE, is significantly lower 

than the ratio of points in the other SEs that are critical points. This concept is 

exemplified in Figure 6.10 using a square SE and a hollow square SE. The ratio of 

critical points to the total number of points affects the computation time because this 

factor determines how many operations must be carried out to compute the output at 

each pixel. Further, this factor determines the extent of the histogram search that 

must be performed. 
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Figure 6.10 Ratio of critical points to the total window size for square and hollow square SE. 

Critical points are shown in dark grey and the other points in the window are shaded in light 

grey. 

 

Due to the nature of the algorithm, and given the fact that the histogram must be 

searched in order to compute the output value of the filter for each point in the 

image, it is reasonable to assume that the efficiency of the algorithm will be affected 

by the frequency with which the output value changes. That is, the more frequently 

the output value changes, the more often the histogram must be searched, and 

further, if this value changes significantly, the histogram search becomes more 

exhaustive. To test this, theory, Gaussian noise has been added to the natural image 

such that value of the output at each pixel will change more frequently. The noise 

corrupted image is shown in Figure 6.11. 
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Figure 6.11 Natural scene corrupted by Gaussian noise that was used to measure the execution 

time of the proposed fast rank order filters. The image dimensions are 1440 x 2160. 

 

The results of applying each of the SEs in turn to filter the noisy data, while 

increasing their dimensions as before, are shown in Figure 6.12. Further, in Figure 

6.12(a) – (e), the timings that were computed for each SE when filtering the natural 

image have been included (dashed line) for comparison. The plots shown in Figure 

6.9(f) and Figure 6.12(f) are provided to allow a comparison of the different SEs 

when applied to the same image data.  

 

By comparing each of the SEs in turn, it is clear that all of the SEs take longer to 

compute the median of pixels that coincide with the window as it is translated to each 

pixel in the noise corrupted image. It is also obvious by comparing Figure 6.9(a) – 

(e) and Figure 6.12(a) – (e) that the increase in execution time appears to be constant 

for all of the SEs. This is clear as no SE becomes more efficient when compared to 

the others regardless of the image content.  



 159 

0 10 20 30 40 50
0

1

2

3

4
Rank Filter Run Time for Increasing Window Size

SE width (pixels)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

 

 

Disk SE

Square SE

Hollow Square SE

H shaped SE

Sin SE

(a)

(d)(c)

(b)

(e) (f)

0 10 20 30 40 50
0

1

2

3

4
Rank Filter Run Time for Increasing Window Size

SE width (pixels)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

 

 

Natural Image

Natural Image plus Noise

0 10 20 30 40 50
0

1

2

3

4
Rank Filter Run Time for Increasing Window Size

SE width (pixels)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

 

 

Natural Image

Natural Image plus Noise

0 10 20 30 40 50
0

1

2

3

4
Rank Filter Run Time for Increasing Window Size

SE width (pixels)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

 

 

Natural Image

Natural Image plus Noise

0 10 20 30 40 50
0

1

2

3

4
Rank Filter Run Time for Increasing Window Size

SE width (pixels)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

 

 

Natural Image

Natural Image plus Noise

0 10 20 30 40 50
0

1

2

3

4
Rank Filter Run Time for Increasing Window Size

SE width (pixels)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

 

 

Natural Image

Natural Image plus Noise

 

Figure 6.12 Execution time of the fast algorithm operating on the noise corrupted image shown 

in Figure 6.11. The plots of the timing that was computed for the natural image have been 

included (dashed line) for comparison. Each of the windows shown in Figure 6.8 have been used 

to compute the median at a number of increasing dimensions starting at 5 pixels wide and 

ending at 50 pixels wide. The execution time for the disk SE is shown in (a), the square SE in (b), 

the hollow square SE in (c), the H shaped SE in (d) and the Sin shaped SE in (e). (f) All plots 

combined for comparison.    
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6.5.3 Comparing the Proposed Method with an Optimised Matlab 
Routine 

 

To the author‟s knowledge, as of December 2011, there exists no competing 

technique which is capable of efficiently computing the output of any arbitrarily 

shaped rank order filter in the same time as the proposed method. One reason for this 

claim is that no paper describing such a competing/similar method has been found. 

This point is supported by the fact that Urbach and Wilkinson [70] (see discussion in 

Chapter 3) compare their efficient method for computing erosions and dilations with 

the one proposed in [55]. The authors of [70] state explicitly that the method 

proposed in [55] is the only technique that is comparable to their routine. Since the 

method presented in [70] cannot be used to compute the output of general rank 

filters, and if it is true that the method in [70] is currently the fastest for computing 

the output of arbitrarily shaped minimum and maximum filters, then it is reasonable 

to assume that there is no comparable technique to the method that is proposed here. 

This point is further strengthened since in [65], Breare and Lehmann claim to have 

used the method proposed in [55] to implement general rank order filters where the 

authors compare the efficiency of this technique with a direct method for computing 

the output of a median filter. Although the authors also compare their method to an 

efficient technique which uses an approximation of the filter window to reduce the 

number of computations, it was explained in Chapter 3, Section 3.2.2, that this 

approach cannot be used here. Therefore, the only fair comparison that can be 

applied here is with a direct implementation of general rank filters within arbitrary 

windows. As such, there is no comparison that can be performed in order to 

determine the extent to which the algorithm proposed in this thesis improves upon 

existing techniques.  

 

For the aforementioned reasons, the technique detailed in Section 6.3 has been 

compared to the Matlab function, ordfilt2() [81], in order to provide some 

comparison of the proposed method with current techniques that are used to compute 

the output of arbitrarily shaped rank order filters in leading software packages for 

signal processing. Since Matlab functions tend to use state of the art algorithms to 

implement their functions, and given the fact that the help document of the ordfilt2() 
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function [81] references the method described in [54], it would appear that the 

method employed there should be implemented in the same fashion as the proposed 

method, at least for square and rectangular windows.  The SEs (see Figure 6.8) and 

the natural image (see Figure 6.6) that were used in the previous section to test the 

proposed fast rank order filter algorithm have been used here to compare the 

efficiency of the proposed routine when compared with that of ordfilt2. 
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Figure 6.13 Comparison of the proposed method with an optimised Matlab routine for a 

number of SEs of increasing dimensions. The execution time of the Matlab routine and the 

proposed method using (a) Disk SE, (b) Square SE, (c) Hollow Square SE, (d) H shaped SE, (e) 

Sin shaped SE.  
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The results presented in Figure 6.13 appear to confirm that the proposed method has 

not been used for computing the output of arbitrarily shaped filters in ordfilt2(). 

Consider the execution time of the proposed routine when compared to that of 

ordfilt2() when using the square window of increasing size (Figure 6.13(b)). For each 

of the SEs that have been used, there is a fractional difference between the execution 

time of these routines. The fact that the difference is so small would suggest that 

ordfilt2() uses the same techniques proposed in [54] to compute the output of rank 

order filters within square and rectangular windows. This assumption is backed up by 

the reference to [54] in the Matlab help file for the ordfilt2() function. This explains 

why the method presented here executes in the same time as the optimised Matlab 

function for each of the SEs in the set - both methods are implemented in the same 

way. This also validates the comparison of the proposed method with ordfilt2() for 

the remaining SEs. That is, since when using the square SEs the implementations 

appear to be the same, it can be assumed that there is no significant difference in 

execution time as a result of the tools that have been used to implement the 

techniques. This implies that any differences in execution time come as a result of 

one of the algorithms being more efficient than the other. 

 

When comparing the execution time of the proposed method and ordfilt2() using a 

disk SE of increasing size to filter the image, there is a significant difference (Figure 

6.13(a)). The execution time of ordfilt2() when using the disk SE increases 

exponentially with the increase in SE dimensions. However, the increase in the 

execution time of the proposed method, when using the same set of SEs, is linear. 

When the diameter of the disk SE is 50 pixels, the proposed method is around 20 

times faster than ordfilt2().  

 

The number of points in the square SE and the disk SE is similar at each dimension 

that is used. This provides further confirmation that such a significant difference in 

execution times, when using a disk SE, is in fact due to the method that has been 

used to compute the filter output at each image pixel. Since the proposed method and 

ordfilt2() computed the output images in similar times using square windows, the 

difference in computing time when using disk SEs cannot be attributed to the 
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difference in packages used for implementation. This implies that the proposed 

method is superior to the current sorting techniques that are used to compute the 

output of arbitrarily shaped windows.   

 

For the proposed method, only the critical points are considered in the computation 

of the output as the filter traverses the image. This leads to the linear increase in 

execution time with window size as is shown in Figure 6.13(a) – (e). It appears that 

ordfilt2() processes every pixel that coincides with the window as it traverses the 

image – except when square and rectangular windows are used. This explains why 

the time taken to compute the output of rank order filters using the disk SE increases 

exponentially. This theory is further confirmed by observation of the data shown in 

Figure 6.13(c), Figure 6.13(d) and Figure 6.13(e). For each of these SEs, the number 

of points in the window increases linearly with the width and height of the SE. This 

causes a linear increase in the execution time of ordfilt2(), however, this optimised 

Matlab function still takes longer to compute the output than the method that is 

proposed here. 

 

There is a significant difference in the execution time of the proposed method when 

compared with ordfilt2() as the dimensions of the hollow square SE and the H 

shaped SE are increased. The gain in speed that is achieved when using the proposed 

method is different for the two SEs that have been used to obtain the results shown in 

Figure 6.13(c) and Figure 6.13(d). In fact, the gain in speed is proportional to the 

number of pixels that need to be considered in the computation of each output pixel. 

Since ordfilt2() appears to be processing all of the pixels in the window to compute 

the output at each pixel, it can be expected that the proposed method will always be 

faster than ordfilt2() by a factor that is equivalent to the percentage of pixels that 

remain unchanged as the window is translated by one pixel. 

 

 Figure 6.13(c) shows the time taken by the proposed method and ordfilt2() to 

compute the output image when using the hollow square SE. It is clear by 

observation of the plots that the proposed method always outperforms ordfilt2(). For 

each of the SEs of increasing size that were used, the proposed method outperforms 
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ordfilt2() by a factor of 2. This comes as a result of the fact that the number of 

critical points of the hollow square SE represents roughly half of the pixels while the 

other half remain in the window following translation by a single pixel. Assuming 

ordfilt2() uses all of the points in the window to compute the output at each pixel it 

seems reasonable that the proposed method takes half of the time when compared to 

that function.    

 

Figure 6.13(d) shows that the time taken by the proposed method is less than that of 

ordfilt2() when using the H shaped SE. By reference of the plot shown in Figure 

6.13(d) it is evident that the proposed method always outperforms ordfilt2(). 

However, the gain in speed when using the H shaped SE is not as great as when 

using the disk or the hollow square SE. In fact, the proposed method outperforms 

ordfilt2() by a factor of around 1/3 when using the H shaped SE. Intuitively, this is 

the expected result, since translating the H shaped SE by a single pixel to the right 

results in around 2/3 of the pixels in the window changing at each translation. 

Assuming that ordfilt2() uses all of the points in the window to compute the output at 

each pixel it follows that the proposed method takes 2/3 of the time to compute the 

output for the H shaped SE when compared to that function. Indeed it would be more 

efficient to rotate the image, and the SE, in order to compute the output of the H 

shaped SE such that the number of points remaining in the window after translation 

is maximised.     

 

A comparison of the time taken for the proposed method and ordfilt2() to compute 

the output image when using the sin shaped SE is shown in Figure 6.13(e). This SE 

provides the lowest gain in speed when compared with ordfilt2(). The reason for this 

minimal gain in computation is that very few points in this SE overlap as it is 

translated by a single pixel to the right. In fact, if an ideal SE could be created for 

each increasing dimension of the sin shaped SE, then there would only ever be two 

overlapping points in the window as it is translated by one pixel to the right. As a 

result, the number of critical points for this SE is almost equal to the total number of 

pixels in the window itself.  When the window is small, there is no real gain in using 

the proposed method when compared to ordfilt2(). This fact is confirmed in the plot 
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shown in Figure 6.13(e), where the execution time for both methods is almost 

identical. However, when the width of the SE reaches 20 pixels, the gain in speed of 

the proposed method appears to increase. This gain becomes greater as the width of 

the SE increases. The increasing gain in speed comes as a result of the fact that it is 

not possible to create an ideal, single pixel wide sinusoid, on such a small grid. For 

example, the peak and trough of the sin wave are represented by a single pixel when 

the window is small, however, as the window size is increased, a number of pixels 

are used to represent this same peak and trough. This means that as the window size 

increases, the percentage of points in the window that become critical points is 

reduced. It is this slight reduction in the percentage of critical points that results in 

the gain in efficiency when computing the output of the sin shaped window using the 

proposed technique. That is, as the number of critical points reduces with respect to 

the total number of pixels in the window, the execution time of the routine is reduced 

when compared to ordfilt2(). 

 

 It is clear by reference of Figure 6.13 that the proposed method always outperforms 

Matlab‟s ordfilt2() function. When comparing the difference in execution times of 

these routines using a square SE of increasing size, the difference in execution time 

is marginal. This implies that Matlab have implemented ordfilt2() such that it 

exploits the property of the sliding window for square and rectangular windows. 

However, for all other SEs ordfilt2() appears to compute the filter output by 

performing some comparison of all the image pixels that coincide with each point in 

the window. The extent to which the proposed method outperforms ordfilt2() 

depends on the number of critical points in the window, however, even if there are no 

overlapping points in the window (e.g. a vertical line SE, ignoring the fact that it can 

be rotated) the proposed method is no more expensive to compute than the method 

used to implement ordfilt2. A number of SEs have been tested in this section, and to 

some extent, these SEs have been chosen to explore the limitations of this algorithm.  

 

To the author‟s knowledge, it is not common practise to compute rank order filters 

using H shaped or sin shaped SEs. It is much more common to use solid SEs such as 

the disk and square SE, in which case, a large number of points remain in the 
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window following a translation by a single pixel. In such cases the proposed method 

can be used to significantly reduce the computational requirements of these filters. 

6.5.4 A Fast POHMT 

 

In order to assess the extent to which the method proposed in this chapter can be 

used to increase the efficiency of the POHMT, the images shown in Figure 6.14 have 

been used. A direct implementation of the POHMT has been used to detect the cells 

in these noisy images, and the execution time of this routine has been measured and 

compared with that of the fast POHMT. The fast POHMT has been implemented as 

described in Section 6.4 using the fast rank filters that have been described in this 

chapter.  

 

 

 

Figure 6.14 Images used to compare a direct implementation of the POHMT with a fast 

implementation using the fast rank order filters that have been described in this section. All 

images are 512 x 512. 

 

The images shown in Figure 6.14 are the same as those used in Chapter 5 for testing 

the PO plot. As such, the results of applying the direct implementation and the fast 

implementation are not shown here since they are identical to the results shown in 

Chapter 5. The original images have been shown here simply to save cross 

referencing.  

 

The dimensions of each of the images shown in Figure 6.14 are 512x512. Both 

routines have been implemented in Matlab, and these routines have been used to 

compute the output of the POHMT on a Dell Latitude Laptop with a 2.5Ghz, Core 2 

Duo processor, with 2GB of RAM. The SEs used are the same as those describe in 

the experimental results section of Chapter 5, and the value of P has been set to 83, 

as was determined using a PO plot there. The average processing time of the direct 
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implementation is around 9 minutes while the fast POHMT produced the output 

image in an average time of 320ms. Clearly, there is a significant gain in speed when 

using the fast rank filters described in this section to implement the POHMT, 

particularly when compared with a naive direct implementation using Equation 

(4.20).  

 

The POHMT, when implemented using rank order filters has also been used to detect 

the LSBs in the images that were used by Perret et al. to test their FHMT. Using their 

optimised FHMT, the authors in [8] state that their algorithm takes around 2 minutes 

to compute the output for the images shown in Figure 6.15. Again, these images are 

shown here to save cross referencing.  The rank filter implementation of the POHMT 

has been used to locate the LSB in each of the images shown in Figure 6.15 where 

the results have been shown in Figure 6.15(b) to highlight the location of the LSB in 

the original image.  

 

(b)

(a)

 

Figure 6.15 Noisy images containing LSB. (a) original images. (b) Result of applying the fast 

POHMT to locate the LSB and performing a reconstruction by dilation. All images are 512 x 

512. 

 

The POHMT, when implemented as described, computes the output in an average 

time of 15 seconds. This is a significant improvement on the time quoted for the 
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optimised FHMT in [8]. Further, some of the techniques used in [8] to optimise the 

FHMT are heuristic, and as a result, LSBs that are present may fail to be detected. 

 

It must be noted that the POHMT only uses one pair of SEs, while the FHMT 

presented in [8] uses a large set of SEs, in order to automate the process of LSB 

detection. Each of these SEs is applied to the image and a measure of fitness is 

calculated and used to generate a score map from which the output of the FHMT is 

calculated (See Chapter 2 or [8]). The description of the FHMT that is presented in 

[8] is extremely well suited to the author‟s application, and it assumes that prior 

information about the sought features is available in the form of a mathematical 

model. This model is then used to automatically generate a set of templates that 

represent the likely spatial appearance of the sought feature in any image.  

 

The POHMT on the other hand requires manual design of the SEs using prior 

information about the feature that is sought in the image. It tends to use one, or 

perhaps a small set of SEs, to locate features whose appearance is similar in all 

images. As a result, the two methods are not directly comparable in terms of 

execution times since the goal of each routine is very different. In cases where a 

mathematical model can be used to describe a feature whose geometry can differ 

significantly between images then method described in [8] is optimal, although it 

takes longer to compute. When the geometry of a sought pattern does not change 

significantly between images, the POHMT would be optimal as it executes in a 

fraction of the time proposed in [8] without using heuristic measures to increase 

efficiency. The comparison that has been performed here has been carried out in 

order to validate the efficiency of the fast POHMT and to demonstrate that it is 

capable of competing with current research in this area. 

6.5.5 Summary 

 

In this section an efficient method for computing the output of rank order filters 

within arbitrarily shaped windows has been presented. The algorithm is a 

combination of an extension of the efficient median filter presented by Huang et al. 

[54] and the method presented by Van Droogenbroeck and Talbot for computing 
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erosions and dilations within arbitrarily shaped windows [55]. The method that has 

been described in this thesis has been presented in the context of both of these 

methods, and the contribution of this work has been in highlighted in Table 6.6.1.  

 

It should be noted that although Van Droogenbroeck and Talbot state in their paper 

that their method can be extended to compute arbitrary rank at no extra cost, they do 

not provide any computational results to support this. Further, they do not take into 

account the fact that the histogram must be consulted at each translation of the SE 

when computing ranks other than the maximum/minimum. This means that extra 

computation is required to retain a count of the pixels that are lower than the sought 

rank, in order to direct the search when a new value is to be located. The extension to 

arbitrary ranks is therefore more complex than implied in [55]. This leads to 

additional computational costs that can be significant when computing the output of 

any arbitrary rank filter as was demonstrated in Figure 6.7. Further, a mathematical 

formulation, which was not provided in [55], has been given in this chapter for 

computing the critical points of any arbitrarily shaped window. Breare and Lehmann 

claim to have used the method proposed in [55] to implement efficient rank order 

filters. However, no description of the algorithm that has been used is provided in 

[65]. Then, in the experimental results section of [65], the authors only show timing 

data when computing the output of a median filter, and they do not refer to the shape 

of the window which is used to filter the image. 

 

The method that is described in this chapter has been rigorously tested, and the 

limitations of this algorithm have been explored. The proposed method has also been 

compared to an optimised Matlab function for computing the output of arbitrarily 

shaped rank order filters. It has been determined that when using square and 

rectangular windows, the Matlab routine and the proposed method execute in the 

same time as each other, and hence it can be assumed that Matlab have exploited the 

same properties of the sliding window that have been generalised in this work. 

However, when comparing the execution time of the other SEs, it is obvious that the 

proposed method always outperforms the optimised Matlab function. In some cases, 



 170 

this gain in computation is extremely significant (in some cases, linear as opposed to 

quadratic), particularly when large, solid SEs are used. 

 

Finally, it has been demonstrated that the POHMT can be implemented using rank 

order filters and the benefits of using the proposed method to implement the POHMT 

has been shown to significantly improve the execution time of the algorithm. The 

gain in efficiency is substantial when compared with that of a direct implementation 

of the routine. The fast POHMT has also been used to locate the LSB galaxies in the 

images used by Perret et al. to test their routine. It has been shown that the POHMT 

can detect these features in a fraction of the time taken by the FHMT as proposed in 

[8]. However, as was mentioned in Section 6.5.4, the POHMT and the FHMT both 

aim to solve two very different problems. While a direct comparison of the execution 

times for these methods does not indicate the superiority of either method, it has been 

included here to demonstrate that the POHMT is more than capable of competing 

with the state-of-the-art research in extending the Hit-or-Miss Transform for 

application to noisy images. 
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7 Conclusions and Further Work 
 

This study initially set out to extend the standard HMT in order to make it more 

robust for detecting features in the presence of noise. The work that has been 

presented in this thesis has clearly achieved this goal and more.  

 

Three major contributions have been presented in this body of work. The first of 

these is the extension of the HMT to the more general POHMT. The POHMT relaxes 

the strict constraints of the standard HMT by allowing features to be detected when 

only a percentage of the foreground and background probes are occupied. It is 

required that this percentage, P, is determined and set prior to applying the POHMT. 

Therefore, the PO plot, which is the second major contribution of this work, was 

developed as a design tool that can be used in order to accurately determine a 

suitable value for P. Further, it has been shown that the PO plot can be used to 

estimate similar parameters for a number of alternative HMTs that can be made more 

robust to noise by applying techniques similar to those used by the POHMT. Finally, 

due to the computational complexity of implementing the POHMT directly, a fast 

method for computing the transform was sought. Since the POHMT can be 

implemented using rank order filters, the solution was to generalise existing 

techniques for efficiently computing the output of this class of filter. As a result, the 

third contribution of this work lies in the description of an efficient method for 

computing the output of any rank order filter within an arbitrarily shaped window. 

Significant gains in speed have been demonstrated when implementing the POHMT 

using this technique. 

 

This chapter draws a number of conclusions about the work that has been presented. 

The chapter concludes by providing a number of suggestions for future work that 

may be carried out as a result of the findings in this thesis. 
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7.1 The POHMT 

 

Following the background notions that were presented in Chapter 2, and the literature 

review that was provided in Chapter 3, the discussion in Chapter 4 focused on 

extending the standard HMT to make it more robust in the presence of noise. At the 

outset, Chapter 4 discussed and defined a number of greyscale HMTs that have been 

presented by various researchers over the years. A new conceptual definition of the 

greyscale HMT was then introduced and placed in the context of these alternative 

greyscale HMTs. The conceptual definition of the HMT provided in Chapter 4 

considers the greyscale image as a topographic surface in which a complementary 

pair of SEs search for, and mark, locations where they are both 100% occupied by a 

feature and its surrounding background. This definition of the HMT is consistent 

with each of the other greyscale HMTs that were discussed in Chapter 4. Given that a 

number of greyscale HMTs already exist, it is necessary to point out that the 

additional definition that has been introduced in this thesis was provided in order to 

facilitate the explanation of the novel techniques that are proposed here.  

 

The extension of the HMT that was presented in Chapter 4 relaxes the strict 

conditions of the HMT by requiring that only a percentage of the SEs need be 

occupied in the image for a feature to be marked in the output. As such, the proposed 

extension of the HMT is known as a Percentage Occupancy Hit-or-Miss Transform. 

The POHMT allows partial fitting of the SEs by allowing features to be marked 

when the SEs used to probe the image are some percentage P% < 100% occupied by 

a signal and its background. Expressions that can be used to compute the percentage 

occupancy of the SEs when their origin is centred at any given point in an image 

have been provided in Section 4.4.1. A formal definition of the POHMT, which is 

expressed in terms of these percentage occupancy calculations, was then provided in 

Section 4.4.2. It was also pointed out that the POHMT is simply a generalisation of 

the standard HMT and, as such, the standard HMT can be implemented as a special 

case of this more general transform.  
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Having defined the POHMT, and established that this extension of the HMT has only 

one parameter, P, two methods for setting P were then presented and tested. The first 

of these was an empirical method which involved computing the POHMT with P set 

initially to 100% before iteratively lowering the value of P until all the features of 

interest were detected. While this technique was successful, it proved to be time 

consuming, and, in cases where the iteration step is too large, it is clear that the 

optimal value for P may not be found. 

 

The second technique used noise models (generated by cropping regions of the 

image data) to compute an appropriate value for P which proved slightly more robust 

than the empirical technique. The idea was to use probability distributions to estimate 

the percentage of foreground and background pixels that were likely to puncture the 

SEs when centred on the features of interest. This knowledge allowed the parameter 

P to be determined in less time than when using the empirical method. However, one 

drawback with this approach is that accurate noise models are not always readily 

available. Even when these can be cropped from the image, they are not always 

representative of the noise that is presented to the SE when it is centred on a feature 

of interest.  

 

In Chapter 4, both techniques for setting P were tested on the same data that was 

processed by the POHMT. While this was useful for explaining the technique, it is 

not practical for real world applications. In such cases, training data should be used 

to determine a suitable value for P when using these techniques. 
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7.2 The PO Plot 

 

Perhaps the most significant contribution of this thesis is the original design tool 

which was presented in Chapter 5. The tool, known as a PO plot, can be used to set 

the only parameter P of the POHMT, and even more interestingly, it can be used to 

set a number of similar parameters that make the alternative greyscale HMTs more 

robust to noise. 

 

As it was explained in Chapter 5, a PO plot may be generated using any 

complementary pair of SEs by centring these at some point in an image, measuring 

the extent to which the foreground SE and the background SE are occupied at this 

point, and then plotting these quantities against each other. It was demonstrated that 

the resultant profile, exhibited in the PO plot, varies with different noise distributions 

and changes significantly with increasing amounts of noise. This variation in the 

profile is what allows the PO plot to be used for estimating the parameter P. Chapter 

5 has explained, using a number of examples, how the PO plot can be generated.  

 

It was also explained in Chapter 5 how the point where the profile crosses the 45° 

diagonal, known as the critical point, may be computed (See Chapter 5). It was 

demonstrated that when there are insufficient amounts of noise present in an image to 

prevent the standard HMT from operating successfully, that the profile in the PO plot 

forms an ideal right angle. The right angled profile intersects the 45° diagonal at the 

point indicating 100% occupancy. In such cases, P may be set to 100 and the 

standard HMT can be used to detect the feature of interest. However, in cases where 

noise power is increased, the profile shown in the PO plot tends more towards a 

curve. As a result, the point where this profile intersects the 45° line deviates further 

and further from the 100% case of the right angled profile. This concept has been 

thoroughly discussed and clearly explained by example in Chapter 5. 

 

It was demonstrated in Chapter 5, that the PO plot could be generated using one 

complementary pair of SEs for a number of features in a noisy image, and that the 

minimum of these critical points could be calculated and used to set P. This concept 
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was tested further in the experimental results section of Chapter 5 where the PO plot 

proved to be a powerful tool for setting the only parameter of the POHMT.  

 

In addition to being capable of setting P, the PO plot provides a number of other 

advantages that have been thoroughly explained in Chapter 5. It was shown that this 

novel design tool can be used to set an appropriate distance between the SEs for the 

HMTs presented by Ronse [27] and Soille [12] in order to make them more robust in 

the presence of noise. Additionally, it was shown that the PO plot could be used to 

determine an appropriate threshold that can be used to increase the noise robustness 

of the HMTs presented by Khosravi and Schafer [26]  and Barrat et al.[5]. 

 

Another property of the PO plot that was described and demonstrated in Chapter 5 is 

that it can be interpreted in such a way that it is possible to make the POHMT 

operate as a discriminatory filter. This additional functionality allows the transform 

to selectively mark or discard image features based on the extent to which they 

occupy the SEs. Chapter 5 demonstrated that this information can be used to isolate 

features in a given image thus allowing any combination of image features to be 

selectively detected or discarded. 

 

All of the properties of the PO plot that were discussed in Chapter 5 were 

demonstrated in the experimental results Section of that chapter. The experimental 

results validated all of the theory that was presented in Chapter 5, and the major 

benefits of using the PO plot to set parameters for the POHMT and other HMTs were 

made clear. The PO plot was used to set parameters for the POHMT, and for a 

number of alternative greyscale HMTs, in order to compare their performance in 

noisy images. It was demonstrated that the POHMT could cope with larger amounts 

of noise than the competing techniques. It was also shown that using the PO plot to 

set P and using the POHMT provided similar results to those achieved by Perret et 

al. when processing the data that they used to test the FHMT. The only drawback, 

which was pointed out at the end of chapter 5, is that a direct implementation of the 

POHMT is computationally expensive. This hurdle was overcome in Chapter 6 

where a fast algorithm for computing the POHMT was introduced.   
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7.3 The Fast POHMT 

 

The experiments that were carried out to produce the results that concluded Chapter 

5 highlighted the fact that the POHMT was extremely inefficient when implemented 

directly. As a result, a fast algorithm was needed to make the POHMT useable in 

practice.  

 

By recognising that it is possible to compute the output of the POHMT using rank 

order filters, the search for a fast POHMT, became a search for an efficient method 

for computing the output of rank order filters within arbitrarily shaped windows. 

Two potentially applicable methods were found: one presented by Hung et al. [54] 

that is capable of computing the output of a median filter using square and 

rectangular windows; and a method presented by Van Droogenbroeck and Talbot 

[55] for computing maximum and minimum filters within arbitrarily shaped 

windows. Both authors exploit the property of the sliding window when computing 

the output of these rank order filters, and both authors use histograms to sort the 

pixels that coincide with the “critical points” of the sliding window.  

 

The novel contribution in this thesis lies in detailing the extension that can be made 

to the method proposed in [55] such that it can be used to compute the output of any 

rank order filter defined by any arbitrarily shaped window. It was shown that this can 

be easily achieved by combining a slight extension of the method presented in [54] 

such that instead of computing the median value, the value of any rank can be 

computed. In addition to this, mathematical formulations have been introduced in 

this thesis which can be used to calculate the set of critical points that are required 

for updating the histogram. Having described the extension of [55] and explained it 

by example in Chapter 6, the relationship between the POHMT and rank order filters 

was explained. Further, it was also explained how P can be used to set the rank 

parameter of the filters, and a description of this relationship was provided. 

 

Chapter 6 concluded by providing a number of speed comparisons that highlighted 

some properties of the proposed method. It was shown that efficiency of the 

proposed routine is dependent on the rank that is to be computed in the window. It 
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was also demonstrated that the shape and size of the window affected the execution 

time of the routine. Further, the effect that the ratio of the critical points when 

compared to the total number of points the window has on the algorithm was shown 

to be significant. It was also shown that the fast algorithm is in fact data dependent. 

 

It was pointed out in the experimental results section of this chapter, that to the 

author‟s knowledge when submitting this thesis, there was no method that could be 

compared to the method proposed in this thesis for efficiently computing the output 

of more general rank order filters. As a result, the proposed method was compared to 

an optimised Matlab function for computing the output of rank order filters in 2 

dimensional windows. Interestingly, the execution times for both routines when 

using square windows was the same. This indicated that ordfilt2() is implemented in 

the same way as the proposed method for filtering with square and rectangular 

windows. However, when other arbitrarily shaped SEs were used, the proposed 

method always outperformed the optimised Matlab function. The extent to which the 

proposed method was faster was shown to be related to the percentage of points in 

the window that become critical points during translation. It was explained that as the 

percentage of the SE which becomes critical points decreases the efficiency of the 

proposed fast algorithm increases.         

 

Finally, the fast POHMT, implemented using the proposed method for computing 

rank order filters, was shown to provide a significant gain in speed when compared 

with a direct implementation of this transform. It was also shown that the POHMT, 

when implemented using rank order filters, is capable of locating the LSB galaxies in 

the images that were used to test the FHMT which was presented in [8]. It was 

explained that this comparison was only used to prove that the POHMT was capable 

of competing with the most recent methods for making the standard HMT more 

robust to noise. However, it was also made clear that since both of these methods aim 

to achieve two completely different things, a comparison of efficiency is not a 

measure of superiority of one algorithm when compared to the other.  
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7.4 Further Work         

 

There are a number of areas that could be developed in order to build upon and 

extend the ideas and techniques that have been presented in this thesis. First, given 

that the profile in the PO plot changes with increasing amounts noise, and given that 

its shape changes for different noise distributions, it is thought that the PO plot could 

be used to estimate noise in image data. This could provide a number of advantages 

in cases when the robustness of an algorithm can be improved given accurate 

estimates of image noise. Further, if the power and distribution of noise that is 

corrupting a data set can be accurately quantified, it is more likely that this noise can 

be suppressed, or in some cases, removed from the image.  

 

It is thought that perhaps calculating the area under the curve, (analogous to 

techniques used to characterise ROC curves) may provide an insight into the power 

of noise that is corrupting the image. Alternatively, it may be possible to generate a 

large set of model curves for varying distributions of noise at a number of increasing 

powers. These model curves could be used as a benchmark for estimating noise 

where samples of interest could be compared to this model set. It has also been 

noticed that the profile of the curve in the PO plot is affected when there are different 

amounts of noise on the foreground and background regions of the image.  

 

Perhaps one advantage of using the PO plot to estimate noise could lie in the fact that 

it is capable of displaying information about foreground and background noise 

simultaneously. A second advantage may exist as a result of the fact that a single PO 

plot can be used to characterise a large number of features in a given image. A 

common technique for obtaining noise models and estimating noise is to select what 

is assumed to be a homogeneous region of an image. Noise estimates can then be 

obtained by plotting a histogram of the selected region and analysing it. If multiple 

regions of the image were selected for analysis, and their histograms were plotted on 

the same axis, a lot of information from each region could potentially be lost. Since 

the PO plot can display profiles of a large number of features simultaneously, then 

unlike the histogram method, information about the noise corrupting one feature and 

its background is retained in the PO plot.     
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A second avenue for further work lies in implementing an even faster algorithm than 

the one that was presented in Chapter 6 for computing the POHMT. In [70], Urbach 

and Wilkinson present an extremely efficient method for computing the output of 

erosions and dilations within arbitrarily shaped windows. Their method is compared 

to the one presented by Van Droogenbroeck and Talbot in [55], and it is shown that a 

significant gain in speed is achieved when using the method proposed in [70].  

 

Since the method proposed in [55] is a special case of the more general algorithm 

that is presented in Chapter 6 of this thesis, it is clear that the method proposed in 

[70] is more efficient than the method proposed here when the special case of 

minimum and maximum filters are used. However, the authors of [70] point out in 

their paper that is not possible to extend their method in order to compute the output 

of more general rank order filters. It is for this reason that the Van Droogenbroeck 

and Talbot method was extended in this thesis.  

 

However, due to the fact that the method proposed in  [70] is so efficient, preliminary 

findings suggest that there may be a way of extending it such that it can be used to 

compute the output of more general rank order filters. Further work will therefore 

investigate the possibility of computing the minimum value using the method 

proposed in [70], then by removing the minimum and rerunning the algorithm, the 

second rank will be found. Removing the value of the second rank and recalculating 

the minimum would result in the third rank being computed, and so on, until the 

median is reached. When computing ranks greater than the median, the algorithm 

should start by computing the dilation and the next maximum and so on until the 

sought rank is found. The execution time of this method would therefore become a 

function of the rank that is to be computed by the filter. The position of the rank that 

is desired, which will determine the number of times the routine must be reused, will 

determine whether it is more efficient than the one proposed in Chapter 6. 

 

The efficiency and usability of many morphological operators has been enhanced by 

implementing them in hardware. It would perhaps be interesting to implement the 

fast POHMT in hardware in order to determine whether or not the routine is capable 
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of detecting features in times that would allow it to be used in an online detection 

system where data needs to be processed in video rates. Currently, despite the fast 

algorithm proposed in Chapter 6, it is unlikely that the POHMT would be used to 

detect features when real time online processing is required.  

 

Finally, most applications of the POHMT have so far focused on the analysis of 

biological images. The standard HMT has been used in a large number of 

applications from optical character recognition to face detection to mention but a 

few. It would be interesting to investigate the improvement in the robustness that is 

offered in these application areas when using the fast POHMT and the PO plot that 

have been introduced in this thesis. 
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