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Abstract

Networked Control Systems (NCS) and Wireless Networked Control Systems (WNCS)

are control systems where controllers, sensors and final elements of control are con-

nected to a mutual communication network. The inclusion of the network introduces

delays and dropouts, which greatly influence the stability and robustness of the con-

troller. While there is wealth in theoretical contributions to NCS, it is still imperative to

study more applications and investigate the effects of networks in a real-time operation.

There are also open problems that require further study of the impact of disturbances,

constraints and strong interactions in complex NCS.

This thesis is concerned with the design of control strategies for WNCS mainly fo-

cused on Model-Based Predictive Control (MBPC), Proportional Integral Derivative

(PID) and decentralised schemes with the aim of creating control laws suitable for

compensating time-varying delays and dropouts. These strategies rely on optimisation

problems which incorporate robustness and performance restrictions to compute the

optimum controller. The performance and robustness of the controllers are evaluated

through extensive experiments in a network simulator. A new adaptive Internal Model

Control (IMC) controller has been developed to adapt to the network requirements and

compute the IMC model parameters online. A new robust PID for NCS under ran-

dom delays has been created by solving a new constrained optimisation problem that

included constraints of maximum sensitivity to guarantee robustness. A novel optimal

immune PID is developed to improve the performance of NCS under time-varying delays

and dropouts. Simulation results show that the controller offers greater flexibility and

improves the performance and robustness with respect to the other methods studied.

Four more controllers have been tested and extensive tests have indicated stability for

a limited percentage of process model variations and dropouts.

Predictive PID controllers, with similar properties to MBPC, are developed to com-

pensate dropouts in WNCS. A quadratic programming problem optimises a new MBPC

cost function to find the optimal PID gains. The approach successfully maximises the

performance by changing the controller gains at every sampling time and allowing maxi-

mum variations of system parameters and dropouts. Also, a new constrained predictive

PID controller is presented to deal with input saturation. Simulation results show the

superiority of the design in comparison with the control schemes studied earlier.

Furthermore, a decentralised wireless networked model predictive control design for

complex industrial systems has been developed. Also, the method has been applied to

wind farm control. The proposed decentralised control offers an effective and innovative

solution to improve the performance of large industrial applications.



Acknowledgements

This work has been supported by the University of Costa Rica, the Ministry of Science,

Technology and Telecommunications of Costa Rica (MICCIT) and National Council

for Scientific and Technological Research of Costa Rica (CONICIT).

I would like to thank the guidance of my supervisor Dr Reza Katebi and his constant

support. I am very grateful for this opportunity and for enlightening me in the correct

direction for my research work at each stage.

iii



Contents

Declaration of Authorship i

Acknowledgements iii

Contents iii

List of Figures ix

List of Tables xi

Abbreviations xii

Symbols xiv

1 Introduction 1

1.1 Networked Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Predictive PID control . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Decentralised networked model predictive control . . . . . . . . . 3

1.2 Motivation of the research . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Chapter 2: Networked Control Systems: An overview . . . . . . 6

1.4.2 Chapter 3: PID design methods for NCS . . . . . . . . . . . . . 6

1.4.3 Chapter 4: Wireless networked predictive PID control design for
packet dropouts . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.4 Chapter 5: Decentralised wireless networked model predictive
control design for complex industrial systems . . . . . . . . . . . 7

1.4.5 Chapter 6: Decentralised wireless networked model predictive
control design for wind turbines . . . . . . . . . . . . . . . . . . . 8

1.5 Contribution of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

iv



Contents v

2 Networked Control Systems: An overview 12

2.1 Overview and definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Characteristics of Networked Control System . . . . . . . . . . . . . . . 13

2.2.1 QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 NCS structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Network control systems model . . . . . . . . . . . . . . . . . . . 14

2.3 Network constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Limited capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Network delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Data packet dropouts . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.4 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Wireless networked control systems . . . . . . . . . . . . . . . . . . . . . 20

2.5 Approaches for NCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 PID control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.2 Predictive control . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.3 State feedback controller . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.1 Teleoperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.2 Automotive local area networks . . . . . . . . . . . . . . . . . . . 29

2.6.3 Networked and distributed wind farm control . . . . . . . . . . . 30

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 PID design methods for NCS 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Smith predictor controller design for NCS . . . . . . . . . . . . . . . . . 34

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1.1 The PI controller tuning . . . . . . . . . . . . . . . . . 36

3.2.2 The Smith predictor control algorithm . . . . . . . . . . . . . . . 37

3.2.3 Numerical example 1 . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.3.1 Effect of time delay variation . . . . . . . . . . . . . . . 39

3.2.3.2 Effect of time constant variation . . . . . . . . . . . . . 40

3.2.3.3 Effect of gain variation . . . . . . . . . . . . . . . . . . 41

3.2.4 Numerical example 2 . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Adaptive IMC for NCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 The design of the adaptive IMC . . . . . . . . . . . . . . . . . . 47

3.3.3 The adaptive IMC algorithm . . . . . . . . . . . . . . . . . . . . 49

3.3.4 Numerical example 1 . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.4.1 Numerical example 2 . . . . . . . . . . . . . . . . . . . 52

3.4 A design of robust PID controller using gain/phase margin . . . . . . . 53

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.2 The robust PID control algorithm . . . . . . . . . . . . . . . . . 57



Contents vi

3.4.3 Numerical example 1 . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 A design of an optimal PID controller for NCS with time-varying delays 61

3.5.1 The PID controller . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.2 The time-varying delay . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.3 The optimisation problem . . . . . . . . . . . . . . . . . . . . . . 63

3.5.4 The optimal PID control algorithm . . . . . . . . . . . . . . . . . 64

3.5.5 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 A design of an optimal robust PID controller using the maximum sensitivity 66

3.6.1 Constrained optimisation . . . . . . . . . . . . . . . . . . . . . . 66

3.6.2 The optimal robust PID control algorithm . . . . . . . . . . . . . 68

3.6.3 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 A design of a jitter-aware PID for NCS with time-varying delays . . . . 70

3.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7.2 Jitter margin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7.3 Tuning rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.7.4 The jitter-aware PID control algorithm . . . . . . . . . . . . . . 72

3.7.5 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.8 A design of an optimal immune PID controller for NCS . . . . . . . . . 74

3.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.8.2 The optimal immune PID control algorithm . . . . . . . . . . . . 76

3.8.3 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.9 Comparison of existing methods . . . . . . . . . . . . . . . . . . . . . . 78

3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Wireless networked predictive PID control design for packet dropouts 84

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.1 Preliminaries: Network modelling . . . . . . . . . . . . . . . . . . 86

4.1.2 Network constraints . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Model based predictive control with PID structure . . . . . . . . . . . . 87

4.2.1 MBPC formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.2 Predictive PID structure . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.3 Dropouts from sensor to controller compensation . . . . . . . . . 91

4.2.3.1 Estimation algorithm . . . . . . . . . . . . . . . . . . . 91

4.2.4 Predictive PID control algorithm . . . . . . . . . . . . . . . . . . 93

4.2.5 Numerical example 1 . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Networked predictive control for consecutive dropouts . . . . . . . . . . 95

4.3.1 Networked control algorithm . . . . . . . . . . . . . . . . . . . . 97

4.3.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Parallel predictive PID approach . . . . . . . . . . . . . . . . . . . . . . 99

4.4.1 Parallel PID control algorithm . . . . . . . . . . . . . . . . . . . 101

4.4.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5 Predictive control for dropouts with augmented state-space model . . . 104



Contents vii

4.5.1 Recursive matrices for augmented state-space model . . . . . . . 105

4.5.2 Predictive PID structure . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.3 Predictive PID control with augmented state-space algorithm . . 106

4.5.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.7 Constrained Predictive PID control for packet dropouts in WNCS . . . 110

4.7.1 Constrained predictive PID implementation . . . . . . . . . . . . 111

4.7.2 The MBPC reduced criterion . . . . . . . . . . . . . . . . . . . . 111

4.7.3 The design of the Predictive PID controller . . . . . . . . . . . . 112

4.7.4 The PID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.7.5 The predictive PID controller . . . . . . . . . . . . . . . . . . . . 113

4.7.6 Constraints for the control input and control input increment . . 114

4.7.7 Dropouts from controller to actuator compensation . . . . . . . . 115

4.7.8 Dropouts from sensor to controller compensation . . . . . . . . . 116

4.7.9 Constrained predictive PID control algorithm . . . . . . . . . . . 118

4.7.10 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.7.11 Numerical example 1: Second order process . . . . . . . . . . . . 119

4.7.12 Numerical example 2: Non-minimum phase process . . . . . . . . 121

4.7.13 Robustness results . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.7.14 Study of stability for variations of percentage of dropouts . . . . 124

4.7.15 Study of stability for variations of the gain . . . . . . . . . . . . 125

4.7.16 Study of stability for variations of the poles . . . . . . . . . . . . 126

4.7.17 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5 Decentralised wireless networked model predictive control design for
complex industrial systems 130

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.1.1 Centralised, decentralised and distributed systems . . . . . . . . 132

5.2 Decentralised networked model-based predictive control . . . . . . . . . 134

5.2.1 Decentralised estimation for dropouts . . . . . . . . . . . . . . . 136

5.2.1.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2.1.2 Measurement update . . . . . . . . . . . . . . . . . . . 137

5.2.2 Decentralised MBPC . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2.3 Quadratic programming (QP) problem . . . . . . . . . . . . . . . 140

5.2.4 Constraints handling . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.2.5 DWNMPC algorithm . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.3.1 Study of stability and robustness . . . . . . . . . . . . . . . . . . 146

5.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



Contents viii

6 Decentralised wireless networked model predictive control design for
wind farm 154

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2 Wind turbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.3 Wind farm control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.4 Dynamics and model description . . . . . . . . . . . . . . . . . . . . . . 159

6.5 Control problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.5.1 Torque control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.5.2 DMPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.6 Control objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.7 Control design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.7.1 Decentralised estimation for dropouts . . . . . . . . . . . . . . . 167

6.7.1.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.7.1.2 Measurement update . . . . . . . . . . . . . . . . . . . 168

6.7.2 Prediction equations . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.7.3 Optimisation problem . . . . . . . . . . . . . . . . . . . . . . . . 169

6.8 Wind farm control algorithm . . . . . . . . . . . . . . . . . . . . . . . . 170

6.9 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.10 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.11 Robustness analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.12 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.13 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7 Conclusions and future work 181

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Bibliography 187

A TrueTime simulator 198

A.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

A.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

B Recursive least squares algorithm 204

C State-space matrices for DWNMPC method 206

D State-space matrices for wind turbine 208



List of Figures

2.1 Typical NCS structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Smith predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Network time delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Maximum sensitivity for time delay variation . . . . . . . . . . . . . . . 39

3.4 Maximum sensitivity for time constant variation . . . . . . . . . . . . . 41

3.5 Maximum sensitivity for gain variation . . . . . . . . . . . . . . . . . . . 42

3.6 Network node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.7 System outputs for Smith predictor . . . . . . . . . . . . . . . . . . . . . 45

3.8 Time instants of data dropouts Ploss = 30% . . . . . . . . . . . . . . . . 46

3.9 Networked IMC structure . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.10 System outputs for loss probability = 0.3, interference 47 % . . . . . . . 50

3.11 Evolution of the model parameters θ . . . . . . . . . . . . . . . . . . . . 51

3.12 System outputs for adaptive IMC . . . . . . . . . . . . . . . . . . . . . . 53

3.13 Closed-loop of the NCS . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.14 Control system with gain-phase margin tester . . . . . . . . . . . . . . . 56

3.15 Kp − Ki plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.16 System outputs for robust PID . . . . . . . . . . . . . . . . . . . . . . . 61

3.17 Kp − Ki plane for different values of time delay . . . . . . . . . . . . . 62

3.18 Systems outputs for optimal PID . . . . . . . . . . . . . . . . . . . . . . 66

3.19 System outputs for optimal robust PID . . . . . . . . . . . . . . . . . . 69

3.20 System outputs for jitter-aware PID . . . . . . . . . . . . . . . . . . . . 73

3.21 System outputs for optimal immune PID . . . . . . . . . . . . . . . . . . 78

3.22 Process outputs of all methods . . . . . . . . . . . . . . . . . . . . . . . 81

4.1 Diagram of predictive controllers structure . . . . . . . . . . . . . . . . . 86

4.2 System outputs for MBPC and predictive PID, λ = 0.1 . . . . . . . . . 95

4.3 Time instants of data dropouts for predictive PID . . . . . . . . . . . . 96

4.4 System outputs of networked control, λ = 10 . . . . . . . . . . . . . . . 99

4.5 Time instants of data dropouts for networked control . . . . . . . . . . . 100

4.6 System outputs of MBPC and parallel predictive PID, λ = 10 . . . . . 103

4.7 Time instants of data dropouts . . . . . . . . . . . . . . . . . . . . . . . 104

4.8 System outputs of augmented model for MBPC and PID, λ = 0.1 . . . . 108

4.9 Time instants of data dropouts . . . . . . . . . . . . . . . . . . . . . . . 109

ix



List of Figures x

4.10 Step responses comparison, λ = 10 . . . . . . . . . . . . . . . . . . . . . 110

4.11 Diagram of constrained predictive PID controller structure . . . . . . . 111

4.12 System outputs and control inputs for constrained predictive PID . . . 120

4.13 Comparison between real process and estimation for constrained predic-
tive PID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.14 System outputs for predictive PID and MBPC . . . . . . . . . . . . . . 122

4.15 Time instant of data dropouts . . . . . . . . . . . . . . . . . . . . . . . . 123

4.16 KF estimation for constrained predictive PID . . . . . . . . . . . . . . . 124

4.17 Comparison of step responses with dropouts variations . . . . . . . . . . 125

4.18 Comparison of step responses with gain process model variations . . . . 126

4.19 Comparison of step responses with pole 1 process model variations . . . 127

5.1 Centralised control scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2 Decentralised control scheme . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3 Distributed control scheme . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4 Structure of DWNMPC control system . . . . . . . . . . . . . . . . . . . 138

5.5 Process outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.6 Control inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.7 Time instant of dropouts and innovation error for y1 . . . . . . . . . . . 148

5.8 Time instant of dropouts and innovation error for y2 . . . . . . . . . . . 149

5.9 Time instant of dropouts and innovation error for y3 . . . . . . . . . . . 150

5.10 IAE index versus β for different values of N . . . . . . . . . . . . . . . . 151

6.1 Wind turbine system (Njiri and Söffker, 2016) . . . . . . . . . . . . . . . 156

6.2 Control diagram of the wind farm (Hur and Leithead, 2016) . . . . . . . 157

6.3 Model of power unit dynamics . . . . . . . . . . . . . . . . . . . . . . . 160

6.4 Control diagram using the wind turbine model (Hur and Leithead, 2017) 161

6.5 Torque versus velocity (Bianchi, Battista and Mantz, 2007) . . . . . . . 162

6.6 Effective wind speed at a mean wind speed of 10 m/s . . . . . . . . . . . 173

6.7 Generator speeds y1, y2 (rad/s) . . . . . . . . . . . . . . . . . . . . . . . 174

6.8 Generator torques u1, u2 (Nm) . . . . . . . . . . . . . . . . . . . . . . . 175

6.9 Rescaled plot of Figure 6.7 . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.10 Wind turbine 1 response for adjusted power . . . . . . . . . . . . . . . . 177

6.11 Wind turbine 2 response for adjusted power . . . . . . . . . . . . . . . . 178

6.12 Open-loop, closed-loop and sensitivity frequency responses . . . . . . . . 179

A.1 Network node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

A.2 Motor DC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A.3 TrueTime schedule plot . . . . . . . . . . . . . . . . . . . . . . . . . . . 203



List of Tables

2.1 References with respect to network delays . . . . . . . . . . . . . . . . . 27

2.2 References with respect to network delays and dropouts . . . . . . . . . 27

3.1 Measurement of robustness for delay variation . . . . . . . . . . . . . . . 40

3.2 Time constant variation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Gain variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Optimal parameters, performance and network delays . . . . . . . . . . 52

3.5 ITAE values for variations of time delay . . . . . . . . . . . . . . . . . . 59

3.6 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 Consecutive dropouts length . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Summary of controllers performance . . . . . . . . . . . . . . . . . . . . 108

4.3 IAE values for step responses . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1 Performance indexes for different scenarios of percentage of dropouts . . 146

6.1 Performance indexes for different scenarios of percentage of dropouts . . 175

xi



Abbreviations

BACnet Building Automation and Control network

CAN Control Area Network

CSMA/CA Carrier Sense Multiple Access Collision Avoidance

DMPC Decentralised Model Predictive Control

DNCS Decentralised Networked Control Systems

DNMPC Decentralised Networked Model Predictive Control

DWNCS Decentralised Wireless Networked Control Systems

GM Gain Margin

GPC Generalised Predictive Control

IAE Integral Absolute Error

IMC Internal Model Control

ITAE Integral Time Absolute Error

KF Kalman Filter

LFC Load Frequency Control

LMI Linear Matrix Inequality

LQG Linear–Quadratic–Gaussian control

LTI Linear Time Invariant

MAC Media Access Control

MBPC Model Based Predictive Control

MIMO Multiple-Input Multiple-Output

NCS Networked Control Systems

NPC Networked Predictive Control

xii



Abbreviations xiii

NWFC Network Wind Farm Controller

PAC Power Adjusting Controller

PID Proportional Integral Derivative

PM Phase Margin

PPID Predictive Proportional Integral Derivative

PROFIBUS Process Field Bus

QoS Quality of Service

RHPZ Right Half Plane Zeros

SISO Simple-Input Simple-Output

SQP Sequencial Quadratic Programming

TWFC Turbine Wind Farm Controller

WLAN Wireless Local Area Network

WNCS Wireless Networked Control Systems

ZOH Zero Order Hold



Symbols

d Process dead time s

dpca Dropouts from controller to actuator

dpsc Dropouts from sensor to controller

e(k) Error signal

J Cost function

Jd Regulatory performance index

Jr Servo performance index

Kd Derivative gain

Ki Integral gain

Kp Proportional gain

N Prediction horizon

Nu Control horizon

Ploss Percentage of dropouts

r(k) Reference

Si Subsystem i

Te Generator torque Nm

Ts Sampling time s

u(k) Control input

ud(k) Control input with delays

y(k) Process output

yd(k) Process output with delays

xiv



Symbols xv

∆ Difference operator

γ Maximum number consecutive dropouts

ωg Generator angular speed rad/s

λ Control weight

τc Controller computation time s

τca Network delay from controller to actuator s

τsc Network delay from sensor to controller s

ξ(k) Zero mean white noise



To my family.

xvi



Chapter 1

Introduction

1.1 Networked Control Systems

Networked Control Systems (NCS) and Wireless Networked Control Systems (WNCS)

are control systems where controllers, sensors and final elements of control are con-

nected to a common communication network. NCS applications are increasing as a

result of stronger industrial and academic interests in the potential benefits that these

systems can offer: for instance, the use of a shared communication network reduces

costs. Moreover, NCS are scalable and flexible as they allow adding more devices as

needed to perform the system functions. Likewise, NCS make equipment maintenance

easy. Most significantly, through the network, multiple control loops can be managed;

consequently, multiple goals can be achieved simultaneously. These are some of the reas-

ons why NCS are gaining an important role in automation systems, large-scale systems

and remote control applications, for example, power systems, robotics, transportation

networks, space exploration, manufacturing processes and many others.

However, the main issue that arises with the inclusion of network communication in the

control system is the limited capacity of the shared channel that causes degradation of

NCS control performance and can lead to instability. In particular, the network may

introduce large communication delays and loss of information, which greatly influences

the stability and robustness of the control system. An introduction to the network

constraints is covered by Bemporad and Barcelli (2010) and Heemels, Teel, Wouw and

Nesic (2010) that address the nature of the problems and the effects.

1
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WNCS offer many attractive advantages, but also their limited capacity leads to cons-

traints, which become more significant in the stability of the closed-loop system. For

instance, the limited energy in the wireless nodes leads to non-periodic measurements

(Tiberi, Araujo and Johansson, 2012).

In recent years, the control engineering community has developed a full range of control

schemes to cope with the network constraints. For example, Proportional Integral De-

rivative (PID) control, optimal control, adaptive control, robust control, fuzzy control,

H∞ control, model predictive control, event-based and event-triggered control, and so

forth. Each of these methodologies shows a wide range of application because they

differ in the network modelling techniques, the type of constraints that are addressed

and the network that is used. Recent analytical reviews covering these aspects and

providing a framework for comparison are given by Zhang et al. (2017), Guo et al.

(2014), Wang et al. (2011) and Zhang, Gao and Kaynak (2013).

1.1.1 Predictive PID control

Compensating for time-varying delays and dropouts in NCS is a complex problem

requiring controllers with high levels of performance and robustness to ensure the relia-

bility of the control system. The predictive control scheme is considerably effective

since it can actively compensate for consecutive packet dropouts (Sun et al., 2014a).

Moreover, the method has proven to be robust to perturbations and leads to efficient

controllers used in many industrial applications (Camacho and Bordons, 2007). The

literature shows that PID is the most successful form of control and has received the

most attention in the history of process control. Recent contributions of PID control in

NCS have been discussed by Dasgupta et al. (2015), Tran et al. (2013), Okano, Ohtani

and Nagashima (2008), Zhang, Shi and Mehr (2011) and Ungan (2010). Motivated by

the optimality of the predictive control solution and the simplicity and flexible char-

acteristics of the PID control, these controllers with predictive capabilities have been

proposed in the literature. For instance, Miklovičová and Mrosko (2012) demonstrated

the effectiveness of a control strategy to compensate dropouts based on Generalised

Predictive Control (GPC) with a PID control structure.
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1.1.2 Decentralised networked model predictive control

A Decentralised Networked Model Predictive Control (DNMPC) is a conventional

DMPC that uses a communication network. DMPC began to gain industrial and

academic importance in recent years. For example, the industrial inclusion of MPC

to Distributed Control Systems (DCS) reported by Qin and Badgwell (2003) is an

important advance in this field. In DNMPC the inclusion of the network implies con-

sideration of control over non-ideal channels. Therefore, performance degradation and

stability problems are added to the problems of the decentralised scheme. DNMPC can

implement cooperative strategies where the controllers, also called agents, share their

control actions among the other agents to improve the performance (Vaccarini, Longhi

and Katebi, 2009). In some approaches, information exchange may include predictions

of the control signal, states and outputs.

However, according to the nature of the systems, the DNMPC deals with delays, drop-

outs, disturbances, constrained systems, strong interactions, among other issues. A

recent survey by Ge, Yang and Han (2017) defined the many challenges in Distributed

Networked Control Systems (DNCS). For example, to guarantee the stability of large-

scale NCS is still an area that requires further attention. The potential of DNMPC

to deal with these issues had been highlighted (see Tuan et al. (2015) and references

therein). A special interest is in the study of the reduction of information exchange in

WNCS where power is a significant constraint in the design.

1.2 Motivation of the research

Despite the extensive growth and benefits of the NCS, there are enormous issues that

attempt to degrade the reliability of these systems. Two important concerns arise with

the use of the network in the control system including delays and loss of information

due to the limited capacity of the channel. These problems greatly influence the system

performance and they may lead to unstable conditions.

Many of the control approaches that have been developed for NCS require high levels

of computation that result in very complex algorithms that make the implementation

a hard or unsuitable task for real control systems. In some cases, the achievements of

these methods are still very conservative and unable to cope with high and consecutive
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occurrence of dropouts and long and random time delays. Moreover, as the complexity

of the process increases the performance degrades. The research for simple and flexible

algorithms that can effectively compensate NCS under long network delays and a high

percentage of loss of information or dropouts is still an open problem.

Among the control approaches, the PID controller is the one that poses the widest

applicability in industry. Moreover, the feasibility for systems under time-varying delays

has been well demonstrated. However, only a scarce quantity of PID methods for NCS

have been proposed with simple structures. Even less is the number of approaches that

offer tuning rules for NCS and the stability is guaranteed for a limit value of time delay

and a restricted number of process models.

Good results have been found where the benefits of PID controllers are combined with

other control structures such as a Smith predictor. For instance, approximations of

the varying-time and random behaviour of the delays have been made to increase the

accuracy of the model. These solutions attempt to study the stability conditions for

the NCS and how to increase the maximum acceptable values of dropouts and time

delays.

MBPC is another method greatly accepted in industrial applications and well known for

its good performance in many complex control systems with model uncertainty. This

methodology can compensate time-varying delays and dropouts within a limit range of

uncertainty. However, the higher requirements of performance and robustness demand

the development of accurate models for the random and varying-time nature of the

delays and further examinations of the effects on the stability of the system.

The formulation of predictive PID controllers promises a viable solution where the

flexibility and simplicity of the PID structure and the predictor capabilities allow to

examine the stability, performance and robustness of the closed-loop under severe net-

work conditions. Moreover, it represents a good opportunity to increase the reliability

in the NCS and a challenge for the trade-off between effectiveness and simplicity. Also,

since the PID controller has been widely used in industrial applications, it will be eco-

nomically attractive to implement the predictive approach in existing PID control loops

and adapt them to network communication.
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While there is a large volume of theoretical work that has been carried out in DNCS,

there are still challenging problems for control theory that need attention. The dis-

tributed estimation algorithm requires further extension, where network induced cons-

traints such as delays and dropouts are included in the analysis (Han, Peng and Fei,

2016). Moreover, a unified study of the effect of input and output constraints and

disturbance in the state estimation for systems with strong interactions has not been

done. This is the motivation to develop simple control structures that can handle

time-varying delays, consecutive dropouts, disturbance compensation and constraints.

1.3 Aims and objectives

The aim of this work is to design simple control methods for NCS and WNCS that can

compensate for constraints of the network such as time-varying delays and dropouts.

For this, the following objectives are targeted:

• To review and produce a comparison of the robustness and performance of the

PID methodologies for time-varying delays and dropouts in NCS. To design new

PID controllers using robust and optimisation techniques, Smith predictor and

Internal Model Control (IMC).

• To design Model-based predictive controllers with a PID control structure to

compensate for the dropouts in WNCS. To add a Kalman filter and a dropouts

detector to the control scheme as an estimation algorithm to compensate for the

dropouts from sensor to controller.

• To extended the prediction control techniques to the development of constrained

Predictive PID (PPID) controllers that achieve stability in WNCS, where the

communication is subject to dropouts in both communication routes: sensor to

control and control to actuator transmission. To include constraint handling to

stop input saturation.

• To test the control system using a network simulator. To provide several scenarios

to demonstrate each algorithm and its effectiveness.

• To extend the predictive approach to DNMPC and test the result in an industrial

context (wind farm control). To study a cooperative exchange of information to
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achieve a global performance objective in systems with interactions. To develop a

decentralised estimation algorithm to maintain information of the sensor packets.

1.4 Outline of the Thesis

This section explains the structure of the thesis and the contribution of each chapter.

1.4.1 Chapter 2: Networked Control Systems: An overview

This chapter involves an extensive literature review of developing areas related to net-

worked control. It covers the key topics in NCS and the benefits and drawbacks of the

implementation. The chapter clearly defines the problems of the network that still re-

quire more research and points out some possible research directions. The main focus is

to create a framework where NCS approaches are divided according to the type of con-

trol and constraints that they compensate. The structure of the chapter is as follows:

Section 2.1 explores the definition and overview of NCS. Characteristics, structures and

modelling of NCS are described in Section 2.2. Section 2.3 explains the network induced

constraints. The specific case of WNCS is studied in Section 2.4. Finally, a review,

analysis and categorisation of the proposed control strategies of NCS are presented in

Section 2.5. Applications of NCS are covered in Section 2.6.

1.4.2 Chapter 3: PID design methods for NCS

This chapter presents significant developments in NCS based on PID, IMC and Smith

Predictor algorithms. The main purpose of this chapter is to study the performance

and robustness offered by these methods when handling systems subject to time-varying

delays and dropouts. For this, the proposed methods have to achieve the design require-

ments, such as margins of robustness, performance criteria and stability conditions. The

performance of the controllers is evaluated and extensive simulations of these methods

are presented. The structure of the chapter is as follows: Section 3.2 presents the design

of the Smith predictor controller. Section 3.3 reports a new adaptive IMC for NCS.

Section 3.4 proposes a robust compensation scheme for uncertain time delays acting

on NCS. The design of an optimal PID controller for NCS with time-varying delays

is presented in Section 3.5. Section 3.6 includes the design of an optimal robust PID
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controller using the maximum sensitivity. A design of a jitter-aware PID is shown in

Section 3.7. A new approach is proposed in Section 3.8, where an optimal immune PID

controller has been applied to an NCS subject to dropouts and time-varying delays. Fi-

nally, Section 3.9 outlines a comparison of performance among the different techniques.

1.4.3 Chapter 4: Wireless networked predictive PID control design

for packet dropouts

In this chapter, five new control strategies based on MBPC with PID control structure

have been studied to compensate dropouts. The chapter focuses on the receding control

theory combined with a Kalman filter to achieve a control system and an estimation

algorithm that successfully resolved two main problems in the WNCS: missing sensor

packets and control actions. The proposed strategies are divided into the following sec-

tions: The problem formulation of MBPC and PID is proposed in Section 4.1. Section

4.2 presents MBPC strategy for dropouts in WNCS. Networked predictive control for

consecutive dropouts is developed in Section 4.3. In Section 4.4, a parallel predictive

PID approach is illustrated. Predictive control for dropouts with an augmented state-

space model is shown in Section 4.5. In Section 4.6, the control performances of the

four methodologies are compared. Section 4.7 presents a new constrained predictive

PID controller to achieve stability in WNCS and shows through several experiments

the performance and robustness of the controller. Finally, in Section 4.8, a summary is

presented.

1.4.4 Chapter 5: Decentralised wireless networked model predictive

control design for complex industrial systems

In this chapter, the inclusion of the network communication and the compensation of its

constraints in DMPC are studied. Section 5.1 presents a framework of comparison of the

different DMPC approaches for NCS and discusses the optimality of the solutions. It

also shows the many points that need further attention. Section 5.2 presents a descrip-

tion of structures NCS and characteristics. In Section 5.3 a constrained decentralised

networked predictive control is developed with a coordination strategy. A decentralised

Kalman filter solution is added to the control scheme to compensate dropouts. The

effectiveness of the proposed method under disturbances, strong interactions and the

reduction of information exchange is studied in Section 5.4.
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1.4.5 Chapter 6: Decentralised wireless networked model predictive

control design for wind turbines

In this chapter, the design of Chapter 5 is extended to the application of wind farm

control, where the DNMPC algorithm has been exploited to manipulate the power

of a wind farm of several interconnected wind turbines. Firstly, the description of

the wind turbine system is presented in Section 6.2. Then, a description of the wind

farm control methodology and the network communication is presented. In Section

6.4, the dynamics and model of the wind turbine are discussed. Next, Section 6.5

explains the control problem and methodologies employed to control it. Decentralised

and distributed control is also incorporated in the section. The multiple objectives and

specifications to meet by the proposed control system are introduced in Section 6.6.

The steps of the control design are explained in next section. Simulations results of the

wind turbine control and the configuration of the network are detailed in Section 6.8.

Finally, discussions and conclusions are presented.

1.5 Contribution of the thesis

1. The study, design and implementation of simple controllers to compensate for

time-varying delays and dropouts in NCS are presented in Chapters 3 and 4. The

topic is gaining an important role in academic and industrial applications and the

contribution of this thesis offers a suitable, innovative and interesting solution for

both fields.

2. A unified framework for comparison of the different approaches in NCS and a

discussion of the contribution of them to the challenging problem of network cons-

traints are presented in Chapter 2. The classification is based on the modelling

approach and the network issues that were selected in the proposed solutions.

Moreover, a dedicated literature review for the areas of MBPC and DMPC is

presented in Chapter 4 and 5, respectively. The main contribution is the exami-

nation of the available strategies for network constraints in NCS and their achieve-

ment in the compensation of dropouts and time delays. It also highlighted the

future research directions in this area.

3. The design and application of seven control methods for dropouts and time-

varying delays in NCS are presented in Chapter 3. A conference paper has been
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presented from the work herein. The systems have been analysed for different

models of random and time-varying delays. Also, the solutions are suitable to

compensate for different scenarios of dropouts. The analyses of the robustness,

performance and stability of all methods have also been performed. The most

relevant feature of all these strategies is that it adheres to a consistent rule of

controller simplicity and flexibility. PID, Smith predictors and IMC approaches

are the offered solutions. Since PID control provides the most extended popular-

ity in process control, it will be very convenient to adapt the existing loops to

network communication and apply the proposed controllers.

4. The key role of wireless communications in the optimisation of control systems has

been stated by the research community. Despite the increasing contribution on

dropouts compensation, none has reported a simple and flexible control strategy

that investigates the robustness of WNCS with dropouts and control constraints.

This thesis solidly contributes with the proposal of four new control methods

to compensate for dropouts and fill this gap. These methods include MBPC

algorithms, PID control and detection/compensation of consecutive dropouts of

measurements and control actions, which have been presented in Chapter 4. The

work has also been presented in a conference paper as detailed in Section 1.6. The

contribution focused on the design of a robust predictive controller to the varia-

tions of the dropouts and the process parameters and disturbances. Moreover, the

reported contributions guarantee the application of the control signal according

to the actual limitations of the controller.

5. It can be pointed out that in the NCS approaches the loss of information is

generally assumed only in one way. The constraints in the controller input are

not taken into account in the control systems. In comparison, a new constrained

predictive PID controller for WNCS presented in Chapter 4 has the advantage of

addressing both communication ways and dealing with constrained systems. It

compensates for higher occurrences of dropouts and the stability with robustness

to disturbance and system gain and pole variations have been proved. A journal

paper has been submitted from this work.

6. An exhaustive review of DNCS is presented in Chapter 5 and showed the many

points that need more attention. In this area, the contributions of this thesis are

twofold. First, an innovative DNMPC solution has been introduced to provide

effective compensation for dropouts and delays in a wireless environment. A
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decentralised estimation algorithm that considers dropouts in the analysis has

been added to the control scheme. Second, the performance of decentralised

control is improved through the implementation of a coordination strategy. The

effects of disturbances, strong interactions, management of constraints and the

reduction of information exchange have been investigated. An abstract from this

work has been submitted for journal publication.

7. The DNMPC algorithm has been exploited to manipulate the power of the wind

farm of several interconnected wind turbines. This work is presented in Chapter

6. A journal paper containing the work of this chapter has been submitted.

The control strategy could meet the multiple objectives of regulating electrical

power, generator speed and torque. The application provided results within the

desired requirements of power fluctuations and frequency response. The proposed

controller provides good performance while compensating for high percentages of

dropouts and acceptable robustness.

8. Most importantly, the developed algorithms were tested in a Wireless Local Area

Network (WLAN) simulator and exhaustive tests demonstrated the effectiveness

of the proposed solutions.

1.6 Publications

The following publications have been presented:

• Vasquez, M. C., & Katebi, R. (2016). Comparison of PID methods for networked

control systems. In 2016 UKACC International Conference on Control, UKACC

Control 2016, Belfast, Northern Ireland, pp. 1-6.

• Chacón, M., & Katebi, R. (2017). New Predictive PID Controllers for packet

dropouts in Wireless Networked Control Systems. In 15th International Confer-

ence on Industrial Informatics, INDIN 2017, Emden, Germany. Presented as a

conference paper.

• Chacón, M., & Katebi, R. (2017). A new constrained predictive PID control for

packet dropouts in Wireless Networked Control Systems. Submitted for Journal

publication. IET.
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tive control design for wind turbines. Abstract submitted for Journal publication.
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Chapter 2

Networked Control Systems: An

overview

2.1 Overview and definition

NCS and WNCS are defined as a set of components connected to a network commu-

nication (wired or wireless) that manipulate the behaviour of a process, device or ma-

chine to achieve a desired performance.

The networks considered in control systems are Building Automation and Control Net-

work (BACnet), Fieldbus (Field Bus), PROFIBUS (Process Field Bus), Ethernet, Con-

trol Area Network (CAN), Round Robin, Switched Ethernet, Internet among others.

Some network protocols for Wireless are IEEE 802.11b/g (WLAN) and IEEE 802.15.4

(ZigBee).

NCS have been successfully introduced into simple and complex industrial control sys-

tems because of several benefits they offer, such as low cost, simplified installation and

low maintenance and increase in plant supervision.

However, the inclusion of the network implies the consideration of control over non-

perfect communication channels. According to the nature of the NCS, the design

task deals with signal sampling, asynchronism in the communication, scheduling, single

and multi-packet transmission, quantization, disorder of packet arrival, among others.

These will be further discussed in Section 2.4.

12
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In recent years, the control engineering community has developed a full range of control

schemes to cope with these problems. The following sections are intended to review

such control strategies for NCS to examine the improvement they offer. Finally, it will

evaluate the validity of each solution.

2.2 Characteristics of Networked Control System

2.2.1 QoS

To provide good Quality of Service (QoS) to end users, problems such as congestion and

network induced delays and dropouts must be controlled in network communications.

The QoS must comply with the transmission of information on time and accurately.

However, control engineers generally do not consider the design for a desired QoS

directly. Instead, they deal indirectly with it by solving the problem of the percentage

of dropouts. They ensure stability and measure NCS performance using traditional

cost criteria.

Bjorkbom (2010) provides a study of the relationship between control performance and

QoS which is one of the few approaches in this area.

2.2.2 NCS structures

A typical structure of NCS is shown in Figure 2.1. The closed-loop includes the actuator

and the sensor devices, which have been defined in the block diagram. The controller

signal is u, y stands for process output, e is the error and r is the reference signal.

K(z) is the controller and the controlled plant is Gp(z). An NCS whose sensor and

control information is transported over a wired/wireless network is considered. This

scheme captures the time delays in the control input and output. Network induced

delays can be represented as sensor to controller and controller to actuator delay: τsc

and τca, respectively. Similarly, the dropouts from the sensor to controller and from

the controller to actuator are represented as dpsc and dpca, respectively.
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Network

K(z)

w(k)

τca,dpca Actuator Gp(z)

v(k)

Sensorτsc, dpsc

r(k) e(k) u(k) + + y(k)

−

Figure 2.1: Typical NCS structure

2.2.3 Network control systems model

Modelling networked control systems can be done by considering the following Linear

Time-Invariant (LTI) system S:

x(k + 1) = Ax(k) + Bu(k) + w(k)

y(k) = Cx(k) + v(k)
(2.1)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the vector of control actions, y(k) ∈
Rny is the measurement vector, w(k), v(k) are the process and measurement noise

sequences, respectively. A discrete-time setting is assumed and the current time is

labelled as k ∈ N.

In uniform sampling, the control system is checked every sampling time Ts. A hybrid

representation can be done by combining the continuous characteristic of the system

with event or time driven actuators and controllers.

To analyse the communication delay, it can be transformed into an input delay system,

assuming a linear control law:

x(k + 1) = Ax(k) + Bu(k) + w(k)

y(k) = Cx(k) + v(k)

u(k) = Kx
(
k − τ(k)

)
k ∈ [kTs+ τk, (k + 1)Ts+ τk+1]

(2.2)

where K is the state-feedback controller gain and τ(k) is the network delay that satisfies:

τ(k) ∈ [τmin, τmax] (2.3)
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where

τmin := min
k
{τ(k)}, τmax := max

k
{(k + 1)Ts− kTs+ τ(k + 1)} (2.4)

Dropouts can be viewed as a delay greater than the maximum bound. Therefore, for a

maximum number of consecutive dropouts m, (2.4) is given as follows:

τmin := min
k
{τ(k)}, τmax := max

k
{(k + 1 +m)Ts− kTs+ τ(k + 1 +m)} (2.5)

In the following sections, the modelling for dropouts and delays using stochastic or

deterministic approaches is studied.

2.3 Network constraints

The inclusion of a communication network into the structure of feedback control sys-

tems presents a new challenge in the modelling, analysis and design of NCS. There are

intrinsic and inevitable network phenomena that the control system has to cope with

to improve the performance of the NCS. The most important communication problems

caused by sharing the network by multiple nodes can be divided into variable trans-

mission intervals, variable delays and dropouts (Heemels et al., 2010). The time delay

occurs during transmission, that is when sending data from the sender to the receiver.

Often, the network is congested and the information does not arrive on time. There-

fore, communication in the NCS is ineffective. Moreover, packet dropout is a serious

problem for the quality of service provided. In what follows, the consideration of these

challenges is extended.

2.3.1 Limited capacity

The network is a communication channel with a limited capacity to carry information,

that is, the channel can take a limited amount of data per time. Due to this limitation,

the data cannot be sent and received correctly all the time. As a result, the reliability

of the NCS is reduced.

A digital network is considered where the information unit is called a packet. Each

packet contains the data that is required to transmit. The data are packaged in one bit

or hundreds of bits according to the frame or protocol that the network is modelled. The
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theoretical capacity of the channel can be found in Shannon’s theory. This indicates

that the amount of data that can be transmitted reliably through a channel is limited.

In fact, the closed-loop stability of the system depends on the packet rate that can be

sent through this network.

Industrial buses known as PROFIBUS, CAN and Fieldbus are examples of networks

with limited bandwidth. For the former, 1 Mbit/s is the standard value and can be

improved up to 12 Mbits/s using PROFIBUS-DP (Decentralised Peripherals) at the

expense of raising the cost (Xia et al., 2005). Despite this, these are the standardi-

sed control communication networks that support the requirement of a real-time and

deterministic characteristic required by the control system.

Ethernet is another well-used network for monitoring high and low levels of control

in industrial applications. It has gained an important role and replaced the use of

buses during the recent years (Decotignie, 2005). The main benefit of this network has

been the increase in data rate, which generally allows up to 1000 Mbits/s for Gigabit

Ethernet. However, the drawback of this is its nondeterministic behaviour. Some

approaches in switching technology have been made to turn it into a deterministic

process (Moyne and Tilbury, 2007).

In the case of wireless networks, the limited capacity can be a tighter restriction. For

example, ZigBee allows until 250 Kbits/s and Wifi offers up to 600 Mbits/s (protocol

802.11n).

2.3.2 Network delay

It is known that a delay in a control loop typically affects the performance and stability

of the control system. In the worst case scenarios due to the presence of time delays, all

system stability is threatened. Furthermore, as quoted by Wang and Liu (2008), this

situation is not tolerable for applications in which time is critical, such as a process of

extinguishing fires, underwater operations and automatic driving on the road.

A communication delay consists of two main parts: the access delay and propagation

or transport delay (Mazumder, 2011). The first refers to the time the data waits at

the sending points to transmit. The second, responds to the time required to send

the data through the medium and will depend on the distance and the speed of the
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signal. The access delay, τaccess, and the propagation delay are generally referred to as

network-induced delays.

The nature of the network-induced delay depends on the hardware and software of

the network: network characteristics, such as the protocol that controls transmission,

network load, topologies, the number of nodes, route schemes and scheduling policies

on the network and nodes.

There are some categories for time delays. A possible division is between constant and

time-varying delay. Constant delay, τc is less common because it can only be used with

deterministic protocols with high precision programming times (Ungan, 2010). In this

case, the longest delay is used for the value of the time delay τ(t) = τc.

The stochastic delay can be represented using random models. These are modelled by

discrete probability functions using distributed variables with a designed variance. For

example, Bai, Fu and Su (2011) used a Poisson process to model the delay in wireless

networks.

Other examples for the random delay and the correlated delay are given by Ungan

(2010) as follows:

τ1(t) = x1, X1 ∼ N(µ, σ)

τ2(t) =

∫ t

0
e−qαx2(t− α) dα,X2 ∼ U(amin, amax)

(2.6)

where x1 is a Gaussian random variable with mean µ and variance σ2, x2 is a uniformly

distributed random variable on [amin, amax], and q is a filtering coefficient.

A Markov chain is presented by Qiu et al. (2015) to model the delays with the benefit

of capturing the dependency within the delays. They used finite-state discrete-time

homogeneous Markov chains.

The work of finding the conditions that guarantee the stability of the system subject

to random delays is very complex. Although many proposals have been made in this

regard, a criterion that can be applied as a standard has not yet been established.
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2.3.3 Data packet dropouts

Another challenging problem in the NCS is the loss of information, commonly referred

to as data packet dropouts or dropouts. A simple definition is given by Wang and Liu

(2008) who pointed out that the network protocols have a limit time designed for the

data to be transmitted, and in the case that this maximum interval is exceeded, the

data is discarded. Therefore, packets never reach the receiver and this event becomes

a loss of information that is considered as a serious situation because it degrades the

reliability of the NCS.

Dropouts are a consequence of errors during transmission, noise, or congestion that lead

to buffer overflows. According to the most widely used network protocols, during data

transmission, routers are used to guide information over links with limited bandwidth.

If the data reaches the router when it is temporarily overloaded, they are sent to a

temporary storage area. However, when this storage capacity is exceeded, the link is

congested and data are lost. Some other considerations are likely to be found in the

literature. For example, dropouts may also occur when long transmission delays are

presented. In this situation, the receiver chooses to discard packets arriving outside of

the time, which is considered a dropout (Mazumder, 2011).

The occurrence of dropouts during transmission from the sensor to the controller and

from the controller to the actuator results in an open-loop system that degrades the

reliability of the NCS.

Dropouts can be modelled using a stochastic or deterministic approach. The first

mostly uses the Bernoulli process. For example, Sinopoli et al. (2004) showed a critical

value of the dropout percentage to ensure system stability. However, in these analyses,

the critical value is found by using the lower and upper limits of the percentage (Li

et al., 2015). Wenlong, Bae and Tomizuka (2015) represented the dropouts for both

controller actuator and sensor to controller using Bernoulli variables. These variables

are expressed as follows:

dpca(k) =

{
1, with probability of λ

0, with probability of 1− λ
(2.7)
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dpsc(k) =

{
1, with probability of ρ

0, with probability of 1− ρ
(2.8)

where λ and ρ are the probabilities of unsuccessful transmission in the controller to

actuator and sensor to controller, respectively. Thus, a dropout from the controller to

the actuator is defined as dpca = 1 and a sensor to controller dropout as dpsc = 1.

However, this is an ideal abstraction to represent this problem since the temporal and

variable nature of the events generally causes correlations between them that affect the

arrival of the packets. Therefore, another modelling process is suggested to address the

presence of packet correlations. For example, Ungan (2010) approximated dropouts

using a Markov chain model that has two states to represent the transmission of binary

data. A state illustrates the case that packets arrive successfully. The second state is

in the case of failure. The probability of failure is q and the probability of recovery is

p. Further examples are studied by Zhang, Gao and Kaynak (2014) and Park, Marco,

Soldati, Fischione and Johansson (2009).

In the deterministic approach, the analysis is based on established bounded values to

the dropouts. For example, Wang and Liu (2008) pointed to the fact that there is a

limiting number of dropouts that can be tolerated to ensure system stability. Therefore,

this research and many other similar approaches performed an analysis where a sta-

bility condition parameter η, represents the maximum number of dropouts. Moreover,

further analysis emphasised the severity of not only dropouts but also the impact of the

successive dropouts to the NCS stability. Therefore, it is required to know the maxi-

mum number of consecutive dropouts that can guarantee the system stability. Some

recent examples are explained by Sun et al. (2014a) and Li et al. (2014).

2.3.4 Quantization

Despite the great interest in solving the stability problems introduced by dropouts and

delays in the network, some authors argue that there are other concerns that can not

be ignored. For example, Rasool, Huang and Nguang 2011 argues that the design of

any controller must deal with the fact that in real communication networks packets are

sent through the medium with finite precision. Also, the size of the packets is limited

according to the conditions in the network.
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Each control system requires the data to be converted into digital information to be

sent to the network. The accuracy of the information that results after this conversion

depends on the precision that is used. As a result of poor precision, the uncertainty

of the system may increase. Therefore, this restriction plays an important role in

performance, since the stability of the NCS can be put at risk for the effect of data

quantification. An ordinary thought might be to increase the number of bits that can

be sent in packets to reduce system uncertainty. However, increasing the length of the

packet will cause more congestion in the network, since it means that more information

must be transmitted.

Two types of quantification are described in the literature: static and dynamic. Static

quantification is the simple way to overcome this problem using schemes that do not

change over time. Two types of quantifiers can be found for static quantification,

uniform and logarithmic. These are representations of fixed-point and floating-point

numbers, respectively.

There is an increase in the interest of dynamic quantifiers. They use an optimum

approximation of the signals at the control input and output according to the dynamics

of the plant. Such examples are given by Lu, Xu and Tian (2012) for a discrete dynamic

quantizer and Sawada and Shin (2012) for a continuous one.

2.4 Wireless networked control systems

Mobile communication technologies have shown an impressive growth since their first

application over forty years ago. Following this tendency, it can be guaranteed that

WNCS are going to be required to manipulate an increasing number of mobile systems.

Moreover, these systems are present in all sectors of daily life, from personal, residential,

commercial to industrial applications.

Some benefits of WNCS that make them desirable for many applications are cited be-

low. Firstly, and one of the most important for process automation is the reduction

of operation and wiring costs in long-distance control systems. Moreover, they offer

flexibility, easy installation, maintenance and facilitate the reconstruction. Regard-

ing safety, mobile systems are being used to protect human operators from dangerous

scenarios such as those with the risk of explosions or high temperatures. For example,
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mobile robots are used in the design of mines and extra-spatial explorations and wireless

controllers are implemented to send them the commands over the network.

However, the application of wireless communication in the industry is almost limited

to monitoring (Hassan, Ibrahim, Bingi, Chung and Saad, 2017). For instance, the use

of wireless technologies in Wireless Sensor Networks (WSNs) is the most important ap-

plication in this field. An attempt to use wireless measurements in control applications

has been made by Blevins, Nixon and Wojsznis (2014).

As it was mentioned earlier in this chapter, wireless communications bring outstanding

advantages but also their limited capacity leads to significant technical barriers that

limit the application of wireless technologies in process control.

Unlike wired communications that have at their disposal all the bandwidth of the

medium to transmit information, wireless communications must deal with the fact that

the electromagnetic spectrum is unique and must be shared with all wireless services.

Moreover, as rapidly as the mobile devices increase, the concern that radio spectrum is

limited puts a special attention to this issue.

Also, the problems that appear with the inclusion of the network become more signi-

ficant in the wireless communications due to its constraints, such as limited energy and

computing power, channel fading, time-varying capacity, transmission delays, packet

losses and out-of-sequence data (Du and Du, 2009). Moreover, those constraints are

closely related, for example, non-periodic measurements are made to conserve the limi-

ted energy in the wireless nodes (Tiberi, Araujo and Johansson, 2012).

One of the first works that addressed the complexity and intricate estimation of these

problems was proposed by Wong and Brockett (1999). They illustrated a closed-loop

system where a channel is introduced to communicate between the process and the

controller. Moreover, the finite communication bandwidth imposed a delay on the

transmission of the information that leads to a more complicated estimation of the pro-

cess. To overcome the bandwidth constraints several approaches have been proposed.

In the following section some of the most relevant are discussed.
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2.5 Approaches for NCS

In this section, the main methodologies suggested in the literature to cope with ty-

pical network-induced constraints and packet losses are discussed. The methodologies

suggested in the literature are presented in different categories according to the con-

trol method that is implemented. The section ends with a table that summarises, the

constraints and the most relevant control approaches to address them.

2.5.1 PID control

While numerous approaches have been reviewed such as fuzzy, predictive, H∞, event-

based and event-triggered control, the PID has received the most attention in the history

of process control. However, only a small number of PID methods for NCS have been

proposed with simple structures. Even less is the numbers of approaches that offer

tuning rules for NCS and the stability is guaranteed for a limit value of time delay and

a restricted number of process models.

Relevant work has been proposed where the PID tuning problem for time-varying delay

systems has been approached using multi-objective optimisation to develop rules that

maximise the jitter margin, i.e. the maximum value of any additional time-varying

delay in the control system. See for instance, the approaches of Eriksson and Johansson

(2007b) and Eriksson and Oksanen (2007). Constraints can also be added to guarantee

desired gain and phase margins as presented by Eriksson and Koivo (2005). This

approach was tested by Pohjola, Eriksson and Koivo (2006) in a network simulator and

showed satisfactory performance for a simple process model.

There are some networked PID control methods to compensate for delays and dropouts.

For instance, Dasgupta et al. (2015) addressed the closed-loop stability of a NCS under

time-varying delays and dropouts with a discrete PID controller. Similarly, Tran et al.

(2013) focus on robustness to develop a normalised PID controller. Moreover, Okano,

Ohtani and Nagashima (2008) examined the performance of PID control under drop-

outs. Zhang, Shi and Mehr (2011) designed a digital PID controller via the robust static

output feedback. These approaches offered stable solutions and the main advantage of

extending NCS to practical industrial control. Ungan (2010) combined a PID controller

with a time-varying Kalman filter and tested using IEEE 802.15.4 wireless equipment.

Two main problems were found, firstly, the control system presented a bad performance
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when consecutive dropouts occurred, since they occur in a recurrent way and the esti-

mation algorithm has not enough time to predict. Secondly, for higher periods of loss

of communication the model was not accurate enough leading to a permanent error in

the output. More applications of wireless technology in monitoring are cited by Has-

san, Ibrahim, Bingi, Chung and Saad (2017) and Blevins, Nixon and Wojsznis (2014).

Moreover, one industrial control application of PID in WNCS is developed by Abdul-

lah, Ibrahim, Hassan and Chung (2016). The results showed compensation of network

constraints while noise was acting in the system. These approaches demonstrated the

potential of less complex and easy to implement solutions.

As introduced in Chapter 1, predictive PID control can offer suitable performance in

NCS. Very few studies have been focused on predictive control algorithms with PID

structures that can effectively compensate dropouts. For instance, Miklovičová and

Mrosko (2012) addressed the compensation of control dropouts using GPC and pole

placement structure to design a PID controller. Tan et al. (2002) combined the optimal

tracking control of the GPC and the PID structure. Hassan et al. (2016) presented

a predictive WNCS to compensate variable delays and disturbance, where a Smith

predictor is combined with PID control. A similar solution is postulated by Wu, Wu and

Zhao (2016) to compensate random delays and dropouts. Friman and Nikunen (2013)

offered a PID controller with a simple estimator. The results showed a permanent error

as a consequence of the trial and error mechanism used to select the design parameter

of the estimator.

The design of WNCS results in a trade-off between reducing the number of communi-

cations and maintaining the performance. Blevins, Nixon and Zielinski (2013) showed

an industrial application using wireless communication in a closed-loop control. They

developed and tested a PID implementation that reduces the power consumption by

a reduction of the number of communications of wireless transmitters (WirelessHart

protocol) at the same time they manage to maintain a similar performance to a wired

control system. Moreover, they showed the adequate performance to cope with the loss

of communication.
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2.5.2 Predictive control

Among the large number of methods available, the Networked Predictive Control

scheme (NPC) is considerably effective, since it can actively compensate for the trans-

mission delays and consecutive packet dropouts (Sun, Wu, Liu and Wang, 2014b).

Recent publications in this area provide theoretical developments and simulation res-

ults.

The first idea to exploit the predictive control in NCS can be referred to Bemporad

(1998) and its design of a predictive control in communication channels with unlimited

delays. They improved a predictive controller to overcome with the long arbitrary

temporal delays.

Pin and Parisini (2011) designed a nonlinear NPC with a network delay compensation

for a network User Datagram Protocol (UDP). Their results indicated a significant

contribution, however, some assumptions that can not be guaranteed in a practical

implementation such as synchronisation of all nodes and accessibility to all measure-

ments. Du and Du (2009) proposed a Smith predictor combined with a Cerebellar

Model Articulation Controller (CMAC) and PID control for WNCS. The proposal hid

the predictor models of the network delays into real network data transmission pro-

cesses. Based on IEEE 802.11b/g (WLAN), simulation results showed the validity of

this control scheme. The predictor is combined with a non-linear PID control by Du,

Du and Lei (2009b) and with a PI control by Du, Du and Lei (2009a).

Sun, Chen and Dou (2014) presented a predictive control scheme for time-varying delay.

They obtained a stability condition using a Lyapunov switched function approach and

tested on a servo control system. Finally, they demonstrated the stability of the sys-

tem with some illustrative examples. Liu, Chen and Zhu (2014) proposed a robust

NPC for systems with time-varying delays. Pang (2017) provided another contribution

for networked non-linear systems that combined the effect of dropouts and random

delays. Franzè, Tedesco and Famularo (2015) addressed the stabilisation of constrained

systems under dropouts. Model predictive tracking control for dropouts and process

uncertainties is provided by Lu, Xu and Zhang (2016).

Experimental results for NCS are cited by Onat et al. (2011) who implemented a predic-

tive control scheme to guarantee the stability of the control system under random delays
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and dropouts. The results using Ethernet and IEEE 802-11 wireless showed the effecti-

veness of this approach regarding control performance. Ulusoy, Gurbuz and Onat

(2011) offered a strategy that combined the design of Media Access Control (MAC)

parameters and dropouts and delays of the wireless network.

Tang and Silva (2006) presented an adaptive predictive controller which showed a reaso-

nable performance for an experimental test using UDP and Transmission Control Pro-

tocol (TCP). However, for higher delays the performance declined and a proposed gain

scheduling is proposed as a future improvement.

Other examples are given by Liu et al. (2007) who built a state observer to develop

solutions that guarantee system stability for a constant and random network delay, both

limited to a maximum value. Real examples have been presented using a DC motor

implementation and communication UDP. The main drawback is that, it is difficult to

manage changes and then controls due to the effect of large system matrix. Du et al.

(2014) followed this approach to formulate a sufficient condition stability for network

predictive control systems.

An important issue with NPC is the controller sensitivity to errors in the delay model.

Since NCS are subject to time-varying random delays, it is recommended to include a

robustness analysis where the effect of variations in the model parameters is studied.

2.5.3 State feedback controller

A typical solution found in the literature is the formulation of the NCS as a sampled-

data system. For this, consider the linear state-space system representation in Equation

(2.2). A feedback digital control algorithm is developed for the NCS by a Linear Matrix

Inequality (LMI) approach that guarantees stability for a bounded maximum delay.

When control action is not updated during the sample time, it is just a special case

of longer delay than one sampling period and might consider as packet dropout. The

principal benefit of this approach is that this digital system simulated the effects of the

delay and dropouts in the network. (Hu, Bai, Shi and Wu, 2007).

In Montestruque and Antsaklis (2003) a stability analysis for NCS has been proposed

where a state feedback controller considers time delay. Although this approach can

only be used to view the systems in the sensor to controller delay case and does not

consider dropouts, it has been used as a reference in some publications.
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Yue, Han and Peng (2004) developed a NCS model which considers time delay and

dropouts. The analysis is carried out for a continuous-time domain. In this approach,

the restriction of N number as the maximum value that can be tolerated for the drop-

outs is assumed and stability criteria are found using Lyapunov theory and by solving

a set of LMI. Some illustrative examples were performed and they showed the effecti-

veness of the design. The drawback of this approach is that it uses a simplistic model,

which is generally poor for representing the stochastic behaviour of the NCS.

The problem of energy consumption has been considered by Zhang, Gao and Kaynak

(2014) who designed a WNCS focusing on the reduction of energy consumption for an

IEEE 802.15.4 network using Carrier Sense Multiple Access with Collision Avoidance

algorithm (CSMA/CA). They studied the Media Access Control (MAC) parameters and

the sampling time, dropouts and random delay of the network and derived a stability

condition that reduces the energy consumption. They found the stability conditions

and solved a constrained optimisation problem where the optimal solution changes the

sampling time and tuning parameters (maximum backoff limit and maximum retry

limit) according to the network conditions.

Two tables summarise the typical control approaches presented in the literature review

to compensate network constraints. Tables 2.1 and 2.2 list the references addressing the

constraints for SISO systems. Note that, Case 1 refers to State Feedback Control, Case

2: Fuzzy control, Case 3: PID control, Case 4: Predictive control, Case 5: Wireless

and Case 6: H∞ control.
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2.6 Applications

There is a wide application area for NCS. They have been successfully applied in

remote control and large-scale systems such as smart power grids, sensor networks,

network traffic control, water networks, automatic and intelligent building manage-

ment systems, unmanned aerial vehicles (UAVs), advanced aircraft, industrial automa-

tion, signal processing, remote surgery systems and manufacturing processes. Other

applications are space exploration, land exploration, factory automation, remote dia-

gnostics/troubleshooting, hazardous environments, experimental facilities, domestic ro-

bot navigation and automotive (Wang and Liu, 2008).

To organise the study of NCS applications, five main areas of application have been es-

tablished by Murray et al. (2003), including aerospace and transportation, information

and networking, robotics and intelligent machines, biology and medicine, and materials

and processing.

The use of NCS in some of these areas will be described below with a few examples.

2.6.1 Teleoperation

Teleoperation was the first application of NCS to be popular and showed that the

introduction of networks in the control system is a convenient configuration for its

applications. According to Zhang, Gao and Kaynak (2013) remote control or teleoper-

ations can cover the execution of tasks from long distance positions, for example, space

explorations.

The teleoperation control configuration consists of a master and slave telemanipulation

in which the dynamics of the controllers and a communication channel interact with

human and environmental factors (Arcara and Melchiorri, 2002). The teleoperation

includes the communication channel characterised by a delay time.

This application can be very useful when using a large network like Internet. Internet-

based teleoperation was used in telerobotics, remote manufacturing, telesurgery and

education.

The importance of this application is highlighted: “Teleoperation research began with

concern for safety and convenience in hazardous environments, such as space projects
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and nuclear power plant and was only possible after NCS development” (Gupta and

Chow, 2010a, p.2527). The use of robots for these tasks is a common example, for

instance, Tipsuwan and Chow (2004) developed an IP controller for mobile robot path-

tracking teleoperation. Also, Bemporad (1998) showed this application for the control

of a servomechanism.

2.6.2 Automotive local area networks

The vehicle industry is an example of the use of NCS. Many devices need to be moni-

tored in a vehicle such as an engine, active suspensions, Anti-lock Braking System

(ABS), Acceleration Slip Regulation system (ASR), cruise control, infotainment and

body electronics. The maximum configuration for the vehicle contains about 40 elec-

tronic control units. The use of NCS reduces the number of cables and networks used

to connect sensors, actuators and controllers. In addition, it increases the reliability

and productivity of the system (Johansson et al., 2005).

Manufacturers use automotive Local Area Network (LAN) technology to implement

control algorithms. Each LAN has a specific purpose and protocol. The application

of NCS began in 1983 with the introduction of serial buses in the control architecture.

In the 1990s the CAN protocol was internationally standardised for real-time control.

Other higher layer protocols such as DeviceNet and CANopen were also created. A

low speed CAN network is used to control the air conditioner, door locks and meters.

For the power train, including the engine, transmission and steering, a faster and more

reliable network would be required (Bemporad and Barcelli, 2010). For instance, CAN

with a communication speed of 500 kbps connects the motor and brake control. Car

manufacturers base their control architecture on CAN, including Mercedes-Benz, BMW,

Fiat, Renault, SAAB, Volkswagen, and Volvo.

Control architectures are increasingly being implemented in distributed computing sys-

tems and require many functionalities and coordination of many subsystems. At the

same time, the control specifications for quality, safety and profitability should be

meeting. For example, distributed architectures in marine applications include an auto-

pilot based on a closed feedback control-loop over the network that shares information

of rudder, GPS, pitch, roll and title, engine throttle, among others. Another application

is the attitude and orbit control system for spacecraft, where control objectives must be

meeting despite the hazardous environment. In automobiles, dynamic stability control
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is introduced to assist the driver using relevant sensor data. The automatic control

intervenes by applying breaks when necessary to increase the safety.

2.6.3 Networked and distributed wind farm control

The configuration of wind turbines that are part of a large-scale wind farms has become

a leading source of clean and green energy. Wind turbines have gained considerable

interest and investment. Therefore, their control is a major concern in power generation.

Large-scale networked energy systems are divided into smaller subsystems, usually

monitored by a distributed control framework. Control of the wind farm is challen-

ging due to the natural variation in wind and the coupling between the turbines due

to the wake effects. The fast and precise control of the power generated by the wind

contributes to the efficient operation of the wind farm. Robustness is also a major

concern because the stochastic nature of the wind and therefore must be evaluated in

the control design.

The wind farm control uses the signals with the state of each turbine to distribute

the requested power from the farm. The adjust of power is manipulated using classic

integral control. Then, the power references are sent to the local controllers in the

wind turbines. The control signal of the local turbine and neighbouring turbines are

transmitted through the network connection.

The cooperation between the turbines adds flexibility by allowing the individual turbine

to adjust its power and reduce the load. There are distributed control schemes in which

wind speed measurements of upstream turbines are transmitted to their nearest wind

neighbours to improve performance.

There are also network architectures with supervisory control for optimal management

and operation of power systems where wind turbines are included. For instance, MBPC

scheme has been successfully introduced to optimise wind power references while mini-

mising a cost function. The control objective is to manipulate the operating points

of the wind turbine to generate enough energy to satisfy the load demand; while the

maximum rates of increase of the power generated are constrained (Christofides, Liu

and Peña, 2011).
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Distributed MPC algorithm is also used for Load Frequency Control (LFC). Distributed

model of an interconnected power system composed of several power areas including

wind farms have been found effective to measure the effect ot the wind farm in an

integrated generation system.

2.7 Summary

NCS are gaining an important role in academic and industrial applications since they

reduce costs, simplify installation and maintenance and increase the supervision and

control capabilities for the whole system. However, the inclusion of non-ideal chan-

nels in the closed-loop leads to challenging problems such as time-varying delays and

consecutive dropouts, which greatly influence the stability and robustness of the control

system.

Network-induced delays can be represented using random models. These are modelled

by discrete probability functions using distributed variables with a designed variance.

For example, Poisson process and Markov chain are proposed. The feasibility of the

NCS to handle dropouts in the literature primarily rely on delayed measurements,

Bernoulli process or Markov chains to model the data flow in the network. This research

and many other similar approaches performed an analysis where dropouts and network-

induced delays are assumed to be variable but bounded. Moreover, the severity of not

only dropouts but also the impact of the successive dropouts to the NCS stability are

also emphasized. Therefore, it is required to know the maximum number of consecutive

dropouts that can guarantee the system stability.

While there is a large number of theoretical papers that have been done in NCS, there

are still challenging problems for control theory that needs attention. Moreover, a single

method to compensate all the problems introduced by the network and guarantee the

reliability complex NCS has not been achieved yet.

Only a small number of PID methods for NCS have been proposed with simple struc-

tures. Even less is the numbers of approaches that offer tuning rules for NCS and the

stability is guaranteed for a limit value of time delay and a restricted number of pro-

cess models. Good results have been found where the benefits of PID controllers are

combined with other control structures such as the Smith predictor. These solutions
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attempt to study the stability conditions for the NCS and how to increase the maximum

acceptable values of dropouts and time delays.

The feasibility of MBPC to handle time-varying delays and dropouts has been proved.

However to cope with the network constraints the complexity of the controller increases.

To address the easy to implement and less complex algorithms a few studies have

been focused on predictive control algorithms with PID structures that can effectively

compensate time-varying delays and dropouts.

The exploitation of the significant advantages of wireless communications to decrease

costs in control systems has been so far very limited due to its constraints, such as

non-periodic sampling limited bandwidth and energy in the wireless nodes. Thus, it

is necessary to further extend WNCS applications and investigate the effects of wire-

less networks on the real-world operation. In particular, there is a need to explore

simpler solutions in WNCS not only for power limitation, consecutive dropouts and

time-varying delays but also for disturbances, constrained systems, variations of the

model parameters, among others.



Chapter 3

PID design methods for NCS

This chapter presents significant developments in NCS based on PID, IMC and Smith

predictor algorithms. The formulation of PID controllers provides a good opportunity

to increase the reliability in the NCS and a challenge for the trade-off between effecti-

veness and simplicity. Also, since the PID controller has been widely used in industrial

applications, it will be economically attractive to implement the proposed approaches

in existing PID control loops and adapt them to network communication.

The performance and robustness offered by these control design methods in hand-

ling the challenging control problem encountered with systems subject to time-varying

delays and dropouts are presented. The design requirements such as margins of ro-

bustness, performance criteria and stability conditions are introduced as well. A com-

parison of performance of the different techniques is presented in Section 3.9 using

Matlab/Simulink-based TrueTime network simulator.

3.1 Introduction

It is harder to design NCS to meet performance objectives than stand alone process

control systems. This is down to two important reasons. Firstly, it has to consider sys-

tem dynamics and disturbances. Secondly, constraints of the network such as dropouts

and long delays limit the performance of the control system.

The compensation of time-varying delays in NCS is a complex problem that requires

controllers with high levels of performance and robustness to ensure reliability in the

33
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control system. The need for a simple and flexible algorithm that fulfils these require-

ments has given birth to different methods of controlling NCS. In this work, novel

methods of designing PID controllers for NCS are presented.

The first method is a Smith predictor combined with a PI controller that includes the

network delays in both communication directions. Moreover, a stability analysis of

the NCS through the measurement of the gain margin, phase margin and maximum

sensitivity is offered. The second method is an adaptive IMC controller that has been

created to adapt to the network requirements and to compute the parameters of the IMC

model online. The third method is a robust PID controller that has been implemented

for NCS where the network delay has been studied as an uncertain delay in the model.

The controller parameters that ensure a desired margin of stability are found using gain

and phase margin restrictions. Moreover, a study of performance and robustness of the

NCS is presented. The fourth method is an optimal PID controller designed for NCS

where the network delays have been modelled as Gamma function. An optimisation

problem is proposed using the delay model and the PID gains are found by minimising

a cost function. The optimal solution is tested in the network simulator showing the

effectiveness of the proposed method. The fifth method applies exiting tuning rules of

a PID controller that compensates time-varying delay. Moreover, the design has been

tested to analyse the applicability in a NCS subject to the network delay. An optimal

robust PID controller for NCS under random delays is the sixth method, developed by

solving a new constrained optimisation problem that included constraints of maximum

sensitivity to guarantee robustness. The seventh method presents a modified PI control

with an immune feedback algorithm. In this work, the controller has been optimised

for a NCS under time-varying delays and dropouts. The tests in the simulator show

the effectiveness of the proposed algorithm.

3.2 Smith predictor controller design for NCS

This section addresses the compensation of time delay acting in NCS. To achieve this,

a modified Smith predictor combined with a PI controller is examined. An exten-

ded stability analysis through the measurement of the gain margin, phase margin and

maximum sensitivity has been conducted to prove the validity of this approach.
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3.2.1 Introduction

The Smith predictor is a recognised algorithm for time delay compensation. The most

important characteristic of this controller is that the design and performance will de-

pend on the information of the process model and the time delay (O.J.M, 1958). In this

analysis, a modified Smith predictor structure proposed by Du, Du and Lei (2009a) is

considered. The controller’s block diagram is depicted in Figure 3.1.

C(s) τca Gp(s) e
−τp s

u(t)

Gpm(s) Gpm(s)e−τpms

τsc

r(t) e(t)

−

−

y(t)

−

Network

Figure 3.1: Smith predictor

C(s) is the controller, that can be designed, as the process were delay free, Gpm(s) is

the prediction model of the controlled plant Gp(s) and τpm is the prediction value of

the process time delay τp.

The closed-loop transfer function of this system is given by:

y(s)
r(s) =

C(s) e−τca s Gp(s) e−τp s

1+C(s)Gpm(s)+C(s) e−τca s [Gp(s) e−τp s−Gpm(s) e−τpm s] e−τsc s
(3.1)

According to (3.1) if the prediction model matches accurately the dynamics of the

process model, the delays of the network can be effectively eliminated from the charac-

teristic equation. However, for a real process subject to disturbances and variations of

its parameters, the accuracy of the prediction model is not entirely guaranteed. Fur-

thermore, an analysis of this situation and effects on the performance of the controller

is presented in Section 3.2.3.
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3.2.1.1 The PI controller tuning

For a good performance and robustness in the control design, a standard PI controller

in the inner loop of the Smith predictor structure is tuned using the AMIGO rules from

Åström and Hägglund (2004). The AMIGO rules have been derived for a first-order

system with time delay and a maximum sensitivity, Ms = 1.4 as a measurement of

robustness.

The sensitivity transfer function is implemented as follows:

S(s) =
1

1 +Gol(s)
(3.2)

where Gol(s) = C(s)Gpm(s) + C(s) e−τca s [Gp(s) e
−τp s −Gpm(s) e−τpm s] e−τsc s.

By calculating the maximum sensitivity, Ms, it is possible to examine the robustness of

the closed-loop control system to the variation of the model parameters. The maximum

sensitivity is given by:

Ms = maxω|S(jω)| = maxω

∣∣∣∣∣ 1

1 +Gol(jω)

∣∣∣∣∣ (3.3)

The robustness is guaranteed if there is at least a maximum sensitivity of Ms = 1.4

(Alfaro, Vilanova and Arrieta, 2010).

The standard structure of the PI controller is as follows:

C(s) = Kc

(
1 +

1

s Ti

)
(3.4)

where Kc is the controller gain and Ti is the integral time. The following tuning rules

are used in the design:

Kc =
1

Kp

(
0.2 + 0.45

T

L

)
, Ti =

0.4L+ 0.8T

L+ 0.1T
L (3.5)

where Kp, T and L are the process gain, time constant and dead time, respectively.

The equivalent time-discrete controller has been found using the Euler backwards appro-

ximation and an appropriate sampling time. The time-discrete equation is given by:

u(k) = Kp e(k) + i(k − 1) +Ki Ts e(k) (3.6)
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where i(k − 1) is the integral action computed at time k = 1.

3.2.2 The Smith predictor control algorithm

The Smith predictor control algorithm is implemented using the following procedure.

Step 1: Initialisation

(a) Set up the model parameters of the process and substitute them in Gpm(s).

(b) Implement the controller, sensor/actuator and network nodes from the

Truetime simulator. Follow the Smith predictor configuration in Figure 3.1.

(c) Select the network configuration and the percentage of dropouts.

(d) Set an interfering node to increase the time delays.

Step 2: Off-line calculation.

(a) Tune the PI gains using the AMIGO tuning rules.

(b) Implement the PI control law using (3.6).

Step 3: On-line calculation

(a) Compute the control signal and apply to the process.

Step 4: Fine-tuning

(a) Check the closed-loop performance and fine-tune Ts and the PID gains

if necessary.

3.2.3 Numerical example 1

Consider the first-order process described by:

Gp(s) =
10 e−5 s

15 s+ 1
(3.7)

The robustness of the control system subject to changes in the process model has been

studied by varying the three parameters of the process model: time delay, the time
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constant and gain. Then, an analysis of stability using the gain margin, phase margin

and maximum sensitivity of the system is performed for each parameter variation.

To examine the sensitivity of the closed-loop to variation in the parameters, the sensi-

tivity transfer function in (3.2) is implemented. To simulate the effect of the network

delays, Gaussian distributed random delays are implemented with a variance σ2 = 0.1.

The mean is selected µ = 1 for τsc and µ = 0.5 for τca. Figure 3.2 displays the time

delays from controller to actuator and from sensor to actuator.

Figure 3.2: Network time delays

From the simulation, the maximum time delay from controller to actuator is τca,max =

1.51 s. The minimum value is τca,min = 0.01 s. The maximum time delay from sensor

to controller is τsc,max = 2.01 s. The minimum value is τca,min = 0.09 s.

The network delays in Figure 3.1 are implemented using Padé approximations of the

maximum and minimum values found.
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Based on this parameters, several experiments where the parameters of the prediction

model: time delay τpm, the time constant τ1pm and gain Kpm are varied up to 50%.

The results of this experiments are shown in the next subsections.

3.2.3.1 Effect of time delay variation

A study of the variation of the prediction value τpm has been made for an interval of

2.5 s < τpm < 7.5 s taking 16 points between them. The results of the Ms are shown

in Figure 3.3. The solid line represents the results using the minimum values of the

network time delays τca and τsc. The dashed line shows the results using the maximum

values.

Figure 3.3: Maximum sensitivity for time delay variation

It can be seen that higher and lower values of the model time delay increase the maxi-

mum sensitivity. As expected, the maximum sensitivity decreases when the mismatch

between the nominal process delay and the process delay prediction is small, this is

near to the real value τ = 5 s. However, the maximum value is below Ms = 1.4 which

guarantees the robustness of the system.
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The phase and gain margins are calculated as a function of the network delay and the

results are shown in Table 3.1. The table presents two cases depending which network

delay is employed: Columns two and three display the margins using the maximum

network delay and columns four and five depict the results using the minimum network

delay.

Table 3.1: Measurement of robustness for delay variation

τpm
(s)

τmax
GM (dB)

τmax
PM(◦)

τmin
GM (dB)

τmin
PM(◦)

2.5 17.07 66.53 24.95 65.57

3.93 22.66 75.32 22.63 74.77

5.00 Inf. 81.18 Inf 81.18

6.07 22.84 85.90 22.41 86.84

7.50 16.59 88.50 15.31 91.88

The results demonstrate the robustness of the method. Further simulations using mini-

mum and maximum network delays show that the phase margin decreases rapidly when

the time delay is greater than 7.5 s. Therefore, the proposed method is robust for a

limited interval of time delay variations.

3.2.3.2 Effect of time constant variation

In this section, the sensitivity of the system is studied for variations in the time constant

of the prediction model, τ1pm. The results for the variation of Ms versus the time

constant are shown in the Figure 3.4. As a result of the increase and decrease of the

value of the time constant prediction, the maximum sensitivity increases and decreases

proportionally. In the case of a match between the nominal process time constant and

the process time constant prediction, i.e., near to the real value τ = 15 s the Ms = 1.

The values of Ms are smaller than the previous case. Therefore, the system is more

robust to the variation of the time constant.

The phase and gain margins are calculated in function of the network delay and the

results are shown in Table 3.2.

According to Table 3.2, good stability margins are achieved with both cases of maximum

and minimum network time delay. In particular, the gain margins are infinity which

means the system has a good relative stability.
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Figure 3.4: Maximum sensitivity for time constant variation

Table 3.2: Time constant variation

τ1m
(s)

τmax
GM (dB)

τmax
PM(◦)

τmin
GM (dB)

τmin
PM(◦)

7.50 Inf. 102.31 Inf. 96.44
11.79 Inf. 89.88 Inf. 87.68
15.00 Inf. 81.18 Inf 81.18
18.21 Inf. 74.56 Inf. 76.11
22.50 Inf. 68.15 Inf. 71.14

Further simulations show that for a value greater than 31 s, the phase margin decreases

rapidly, for both minimum and maximum network delay. However, the gain margin

is still good with values greater than 10 dB. Thus, the method is robust for a limited

interval of time constant variations.

3.2.3.3 Effect of gain variation

A study of the variation of the prediction value Kpm has been performed for a interval

of 5 < Kpm < 15 taking 16 points between them. The results for the variation of Ms

versus gain are shown in Figure 3.5. It can be seen that lower values of the gain increase
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Figure 3.5: Maximum sensitivity for gain variation

the maximum sensitivity rapidly. In contrast with the previous studies, for higher values

of the parameter, Ms presents a small increment. Indeed, the maximum sensitivity

occurs for Kpm = 5 i.e., the 50 % less of the nominal value Kp = 15. Therefore,

increasing the gain has the minor effect on the sensitivity of the system.

The phase and gain margins are calculated in function of the network time delay, and

the results are shown in Table 3.3. The system presented a good relative stability for

Table 3.3: Gain variation

Kpm

(s)
τmax

GM (dB)
τmax
PM(◦)

τmin
GM (dB)

τmin
PM(◦)

5.00 38.32 60.78 42.99 65.17
7.86 Inf. 72.59 Inf. 74.38
10.00 Inf. 81.18 Inf 81.18
11.43 Inf. 86.80 Inf. 85.68
15.00 Inf. 100.29 Inf. 96.87

variations in the prediction value of the gain. Even for greater values, for instance,

Kpm = 30 this characteristic remains.
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3.2.4 Numerical example 2

Consider the following first order plus dead time (FOPDT) process. A system with

faster response with respect to the numerical example one has been selected to test the

effectiveness of the control system using the TrueTime simulator.

Gp(s) =
1

2 s+ 1
e−2 s (3.8)

A NCS has been created using the TrueTime simulator (Cervin et al., 2003). True-

time is a simulation toolbox based on MATLAB/Simulink which allows to test the

real-time control system design and provide a detailed analysis of the effects of the

communication network. Simulink blocks are used to model the NCS including simple

models of communication networks, sensors, controllers and actuators. The network

block is event driven and executes when messages enter or leave the network. The

messages contain the measurement or control signals, the length of the message and

optional real-time attributes such as a priority or a deadline. In the network block, it

is possible to specify the network parameters such as transmission rate, the medium

access control protocol, the number of network nodes, the probability of loss, among

others. More details are explained in Appendix A.

Three blocks of the Truetime library are used to implement the NCS. The blocks are

described using S-Functions of Matlab. First, a network node has been configured for

Ethernet protocol with a transmission rate of 80000 bit/s and a frame size of 80 bits.

The dropouts have been set to zero. The second node is configured as the discrete

controller. The third node is the sensor/actuator that will send and receive the process

output and the controller input. The block diagram that illustrates the Truetime nodes

configuration is depicted in Figure 3.6. These nodes are connected to common Simulink

blocks representing the plant and the process model following the configuration in

Figure 3.1.

The equivalent time-discrete controller has been found using the Euler backwards appro-

ximation and a sampling time Ts = 0.01 s. The controller execution time is set 2

ms. The PI parameters are found using the AMIGO tuning rules as Kc = 0.65 and

Ti = 2.18 s. For the Smith predictor, the model parameters are chosen equal to those of

the process. Finally, to test the system subject to disturbances, a step disturbance sig-

nal which amplitude is 0.4, is introduced at t = 35 s. Figure 3.7 shows the closed-loop

response without delays. The solid line depicts that the output can reach the desired
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Figure 3.6: The TrueTime nodes

value in a few seconds. Moreover, it responds quickly to the disturbance demonstrating

a good prediction of the output. The performance of the design has been measured

with the Integral of Time-weighted Absolute Error (ITAE) criterion. The values are

Jr = 20.52 for the servo control and Jd = 82.98 for the regulatory control.

Next, the delays and dropouts have been set in TrueTime simulator. To increase the

effect of the time delay, an interfering node sending disturbing traffic over the network

is implemented with an occupation of the 47% of the network bandwidth. The dropouts

have been set up through a percentage of dropouts Ploss = 30%. Figure 3.8 displays the

time instants of dropouts from sensor to controller dpsc(k) (top) and from controller to

actuator dpca(k) (bottom). A variable dp(k) ε [0, 1] indicates if the packet containing

the feedback signal y(k) is received (dpsc(k) = 0) or if it is dropped (dpsc(k) = 1).

Similarly, dropouts from the controller to the actuator are represented as (dpca(k) = 1)

and (dpca(k) = 0) if there is no dropouts. From the simulation, the mean values for

time delay from controller to actuator and from sensor to controller are τca = 0.5 s

τsc = 1 s, respectively.

The dashed lines in Figure 3.7 represent the scenario with delays. Although the process

has a larger rise time, no overshoot and zero steady error are observed. On the other

hand, it can be seen that the controller returned the system smoothly to the setpoint
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Figure 3.7: System outputs for Smith predictor

after the application of the disturbance. ITAE criterion returned a value of Jr = 41.4 for

the servo control and Jd = 104.66 for the regulatory control. This value is bigger than

the previous scenario (Jr = 20.52 and Jd = 82.98) which demonstrates the adverse

effect of the delay in the NCS. More performance and robustness measurements are

displayed in Table 3.6.

3.3 Adaptive IMC for NCS

In this section, an adaptive IMC algorithm is created to address the challenge of com-

pensation of time delay and dropouts in NCS. A recursive least squares estimator is

implemented to estimate the discrete process model online and adapt it during every

sampling period. A filter is used for the design of the IMC controller.
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Figure 3.8: Time instants of data dropouts Ploss = 30%

3.3.1 Introduction

Model-based controllers are proposed to compensate for the network constraints in the

literature. IMC is a well known model-based controller and the implementation of

an adaptive algorithm in the IMC structure can effectively control the process under

delays and disturbances. The adaptive internal model control IMC is implemented

using a Least Squares Estimation (LSE) to identity the parameters of the model and

adapt to the network constraints.

In Figure 3.9 the network delays have been added to the typical IMC structure. The pro-

cess transfer function is G(s), Gm(s) is the internal model of the process and C(s) is the

function of the controller. The model can be represented as Gm(s) = Gm+(s) Gm−(s)

where Gm− is the invertible part of the process model and Gm+ is the non-invertible

part. The networks delay τsc and τca are chosen to be random, time-varying and un-

certain. Their maximum and minimum values are selected from the experiments using
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Figure 3.9: Networked IMC structure

the TrueTime simulator.

The scheme exhibits the closed-loop system including the LSE algorithm block which

will compute online the model parameters and update them in the transfers function

of the controller and the internal model of the process.

The closed-loop transfer function for this system is:

y(s)

r(s)
=

C(s)e−τcasG(s)

1 + C(s)e−τcas[G(s)−Gm(s)]e−τscs
(3.9)

The design of the controller is performed by the cancellation of the invertible part of

the process model and the addition of a filter. Thus, the transfer function C(s) is:

C(s) = Gm−(s)F (s) (3.10)

The typical transfer function of the filter is:

F (s) = 1/(λ s+ 1)n (3.11)

where λ is the time constant of the filter and it is used to tune the closed-loop response.

The value of n is chosen to obtain an appropriate transfer function.

3.3.2 The design of the adaptive IMC

According to (3.9), if G(s) = Gm(s) the closed-loop transfer function becomes:

y(s)/r(s) = F (s)e−τcasGm+(s) (3.12)
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In this case, the major challenge is to design the filter to find the robust and less sensitive

response. However, in a realistic case with a non-perfect model, G(s) 6= Gm(s), the

closed-loop transfer function becomes:

y(s)

r(s)
=

G−1
m−(s)F (s)e−τcasG(s)

1 +G−1
m−(s) F (s)e−τcas[G(s)−Gm(s)]e−τscs

(3.13)

Equation (3.13) shows that the stability of the system decreases due to variations of

process parameters. Thus, the IMC structure is improved with the combination of an

adaptive algorithm. The essential part of the adaptive system is the online identification

of the process parameters, which allows to update the process model and the controller

every sampling time.

The least squares criterion is used to find a simple model, that describes the physical

process. Since the system is constantly changing and because the interest is to conduct

a real-time identification, a method of estimating the parameters recursively is needed.

Therefore, the least squares criterion is combined with a regression model structure to

identify the linear systems.

A recursive least squares estimation for discrete systems is studied here. A second-order

model is given by the equation:

y(k) = a0 u(k) + a1 u(k − 1)− b1 y(k − 1)− b2 y(k − 2) (3.14)

where a0, a1, b0, b1 are the model coefficients, y(k) is the present value, y(k − n) and

u(k−n) are the output and input values at the k−n sampling instant. These represent

the regression values, denote by φ. The unknown parameters are found by computing

the vector of parameters θ = [a0, a1, b0, b1].

The implementation minimises the sum of the squares of the differences between ob-

served and calculated values and it is weighted by multiplying it by a constant. The

recursive algorithm computes the error every sampling time and updates the vector of

parameters. This identification algorithm is implemented in a S-function in Matlab as

explained in Appendix B.

Finally, the estimated parameters are sent to a discrete filter block that represents the

model process in the IMC structure. The parameters are also sent to the controller to

compute the output signal.
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3.3.3 The adaptive IMC algorithm

The adaptive IMC algorithm is implemented using the following procedure.

Step 1: Initialisation

(a) Set up the order and model parameters of the process.

(b) Set the initial value of θ, Ts and forgetting factor for the LSE.

(c) Construct the filter and select λ.

(d) Implement the controller, sensor/actuator and network nodes from the

Truetime simulator. Follow the IMC configuration in Figure 3.9.

(e) Follow steps c to d from the control algorithm in 3.2.2.

Step 2: Off-line calculation.

(a) Implement the controller law using the model parameters and the filter.

Step 3: On-line calculation

(a) LSE computes and updates the process model and the controller.

Step 4: Fine-tuning

(a) Check the closed-loop performance and fine-tune Ts and λ if necessary.

3.3.4 Numerical example 1

The following first-order process has been selected to test the effectiveness of the control

system:

Gp(s) =
1 e−0.02 s

0.01 s+ 1
(3.15)

The model of the controlled process is identified online by using the recursive least

squares algorithm. These parameters are represented in a time-discrete filter defined

as follows:

Gpm(z) =
a0z
−1 + a1z

−2

1 + b1z−1 + b2z−2
(3.16)
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A second-order model is selected to improve the accuracy of the approximation. The

model is updated every sampling time. The sampling time is investigated and optimised

for the open-loop system and the lowest Integral of Absolute Error (IAE) criterion is

found using Ts = 0.04 s. A forgetting factor of 0.998 is chosen to make the system less

sensitive to the noise. A discrete filter is implemented as follows:

F (z) =
(1− λ)2z−2

1− 2λz−1 + λ2z−2
(3.17)

The filter time constant is selected through several simulations and the optimal value

of λ is found to be 0.39.

The TrueTime network has been configured for Ethernet protocol as explained in Sec-

tion 3.2. The minimum frame size has been selected as 40 bits, to increase the delays.

The percentage of dropouts is Ploss = 30%. The input is chosen to be a square signal

with frequency 0.2 Hz. A step disturbance of magnitude 0.4 is introduced at t = 9 s.

The results of the experiments are shown a continuation. The evolution of the model

Figure 3.10: System outputs for loss probability = 0.3, interference 47 %
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parameters is depicted in Figure 3.11. The final value at which the parameters converge

at the end of the simulation is indicated in Table 3.4. It can be seen that the second

parameter of the denominator b2 tends to zero, indicating that a first order model can

be used for the design.

Figure 3.11: Evolution of the model parameters θ

The effect of this delay is significant in Figure 3.10. However, the simulation shows

the controller is able to adapt the system response and compensate the random and

variable delays and dropouts in the network.

It can be seen that the response is fast enough and the new adaptive IMC provides a

good setpoint tracking. The responses to the positive and negative changes are almost

symmetrical as expected for the linear plant. For the case of the regulatory control,

the system presents a good disturbance rejection. Further experiments show that the

conditions to guarantee the stability of the systems are a percentage of dropouts of 60%

and interference bandwidth 60 %. The results of the optimal parameters of the model,

the IAE criteria and network delays for this scenario and the previous one are listed



Chapter 3. PID design methods for NCS 52

in Table 3.4. The performance criterion shows that the effect of the new settings is

very aggressive. The maximum network delay is 1.86 s. Increasing the values of delays

and the percentage of dropouts cause the delay of the controller output and the output

system to mismatch the setpoint. At the end of the simulation, the process does not

recover from the disturbance. The IAE cost is 5.82, approximately seven times bigger

than the value found in the previous network conditions. Thus, the adaptive IMC has a

Table 3.4: Optimal parameters, performance and network delays

Values Loss probability = 0.3, Interference BW
47.5 %

Loss probability = 0.6, Interference BW
60 %

θ [0.94,−0.82,−0.86, 0.03] [1, 0.00087, 0.0016, 4.03x10−6]
IAE 0.79 5.82

Maximum delay 0.24 s 1.86 s

good performance and robustness against the variant and random delay for conservative

values of dropouts and time delays. The results conclude that the systems is stable for

loss of probability < 0.6 and interference bandwidth < 60 %.

3.3.4.1 Numerical example 2

The process example used in (3.8) is considered here. The forgetting factor is set as

0.98, Ts = 0.5 s and a desired closed-loop time constant as λ = 0.96. The initial

point is θ = [1.011,−0.77,−0.773, 0.0001]. The response of the system is depicted in

Figure 3.12. There is a large rising time as a result of the large value of λ. The

ITAE values are Jr = 48.6 and Jd = 131.4. The model parameters are found as

θ = [1, 4x10−4, −21x10−4, −3.2x10−5]. In addition, network delays and dropouts

have been configured in the same way as described in previous section and the results

for the adaptive IMC controller are shown in Figure 3.12. The model parameters are

found as θ = [1, 5x10−4, 2x10−3, −2.3x10−5]. The ITAE criterion returned the cost

of Jr = 70.6 and Jd = 162.8.

According to the simulation, the proposed method can tolerate the percentage of drop-

outs without becoming unstable. However, the response is very slow and it has a poor

recovery after the application of the disturbance. The sluggish in the output is expected

since the time constant value of the filter is high. Although some simulations are per-

formed using smaller values the system became unstable, therefore, the slow response

is preferred.
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Figure 3.12: System outputs for adaptive IMC

In comparison with the Smith predictor, the performance of the adaptive IMC has

a longer rising time and slower recovery from the disturbance. The adaptive IMC

response is slower due to the computation time required by the online algorithm.

3.4 A design of robust PID controller using gain/phase

margin

The time delay in the control system decreases the phase and gain margin of the closed-

loop system. In this section, a new robust PID controller is presented to compensate

the time delay in NCS. The delay in the NCS includes the computation delay in each

component, the waiting delay and the transmission delays τsc and τca. The controller

and actuator are event-driven, which leads to the time-varying delay in NCS. Therefore,

the controller has been designed to compensate for a system subject to an uncertain

delay and follows specifications of gain and phase margins.
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The characteristic equation of the system is modified by adding a gain-phase margin

tester function. A set of stability equations is defined to find the desired gain margin

and phase margin boundaries that are represented in a parameter plane. Then, the

PID parameters that guarantee the stability and the desired margins are obtained from

the admissible region in that plane.

3.4.1 Introduction

The robustness analysis of control systems using the phase and gain margins is a

very well known design approach. Frequency domain analysis with Bode, Nichols and

Nyquist are familiar and straightforward techniques to study these margins. However,

they are not suitable for analysis where various parameters have to be adjusted.

The parameter plane method gives a locus representation using the controller para-

meters where a final enclosed area by the stability boundaries can be found. Moreover,

it can be extended to find information about the gain and phase margin of the system.

A robust PID has been derived in Huang and Wang (2001) for non-minimum phase pro-

cess with uncertain time delay. Pansari, Timande and Chandrakar (2012) exploited this

approach for NCS. Here, the parameter plane method is implemented to find the set of

PID parameters that achieve the desired compromise in NCS. A study of the uncertain

delay and the compromise between performance and robustness is investigated.

The NCS control closed-loop system is shown in the Figure 3.13 where, Gp(s) is the

process transfer function, C(s) is the controller and the transmission delays are τsc and

τca.

C(s) τca Gp(s)

τsc

ur e y

-

Figure 3.13: Closed-loop of the NCS

The controller has the PID parallel structure:

C(s) = Kp +
Ki

s
+Kds (3.18)
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where Kp, Ki, Kd are the proportional, integral and derivative gains, respectively. The

open-loop transfer function is:

G(s) = C(s)Gp(s) =
N(s)

D(s)
e−Ts (3.19)

where N(s), D(s) stands for the numerator and denominator, both polynomials func-

tion of s. T is the time delay of the NCS and includes the computation delay in each

component, the waiting delay, the transmission delays τsc and τca and the dead time of

the process. By letting s = jω, yields:

G(jω) =
N(jω)

D(jω)
e−Tjω (3.20)

However, the real and imaginary parts can be found as follows:

G(jω) = Re[G(jω)] + jIm[G(jω)] (3.21)

In terms of magnitude |G(jω)| and phase φ, this is equivalent to:

G(jω) = |G(jω)| ejφ (3.22)

where

|G(jω)| =
√
Re[G(jω)]2 + Im[G(jω)]2 (3.23)

φ = arctan

{
Im[G(jω)]

Re[G(jω)]

}
(3.24)

Substituting (3.22) in (3.20) leads to:

D(jω)− 1

|G(jω)| ejφ
N(jω) = 0 (3.25)

Define: A = 1
|G(jω)| and θ = φ+ Tω+ 180◦. If A = 1 means that θ is the phase margin

of the system and θ = 0 results in A becoming the gain margin. Therefore, the gain

and phase margin can be determined using the characteristic equation of the system

with a gain-phase margin tester. The representation is depicted in Figure 3.14.

The characteristic equation for the system of Figure 3.14 is given by:

F (jω) = D(jω) +Ae−jθN(jω) = 0 (3.26)
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Ae−j θ G(s)
r e y

-

Figure 3.14: Control system with gain-phase margin tester

According to Figure 3.13 the open-loop transfer function is G(jω)Gc(jω). By noting

that Ae−jθ = A cos θ − jA sin θ = X − jY , the characteristic equation can be written

as:

F (jω) = D(jω) + (X − jY )N(jω) = 0

F (jω) = Fr(X,Y, ω) + jFi(X,Y, ω) = 0
(3.27)

where

Fr(X,Y, ω) = 0

Fi(X,Y, ω) = 0
(3.28)

The previous equations are called the stability equations. If X and Y are considered

as parameters, the following can be estimated:

Fr(X,Y, ω) = XB1 + Y C1 +D1 = 0

Fi(X,Y, ω) = XB2 + Y C2 +D2 = 0
(3.29)

where B1, C1, D1, B2, C2 and D2 are functions of ω. By solving (3.29) for X and Y , it

can be found that:

X =
C1D2 − C2D1

B1C2 −B2C1

Y =
D1B2 −D2B1

B1C2 −B2C1

(3.30)

By varying ω, a locus representing the common roots of (3.30) can be plotted in a

X − Y plane. The stability boundaries of the system can be found as well by defining

the Jacobian as:

J = B1C2 −B2C1 (3.31)

When J < 0, the right of the state boundary, facing against the increasing direction of

ω gives the stable parameter area. Moreover, letting A be constant and θ = 0, the locus



Chapter 3. PID design methods for NCS 57

is a boundary of constant gain margin. Similarly, if A = 1 and θ = 0 is constant, the

locus represents the boundary of constant phase margin. The two stability equations

are a function of the set of process and controller parameters. Since the process model

is assumed to be known, by letting Kd constant, a Kp −Ki plane can be plotted. The

resulting area contains the feasible controller parameters that guarantee stability and

the desired margins of the system.

3.4.2 The robust PID control algorithm

The robust PID control algorithm is implemented using the following procedure.

Step 1: Initialisation

(a) Set up the model parameters of the process.

(b) Implement the controller, sensor/actuator and network nodes from the

Truetime simulator. Follow the NCS configuration in Figure 3.13.

(c) Follow steps c to d from the control algorithm in 3.2.2.

(d) Find from the simulation the controller computation time and

the mean values of the network delays τsc and τca.

Step 2: Off-line calculation.

(a) Compute the stability equations and construct the parameter plane.

(b) Select the PID gains that guarantee the desired stability margins and

implement the PID control law.

Step 3: On-line calculation

(a) Compute the control input and apply to the process.

Step 4: Fine-tuning

(a) Check the closed-loop performance and robustness and fine-tune the

gains if necessary.
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3.4.3 Numerical example 1

Consider the process in (3.8):

Gp(s) =
1 e−T s

2 s+ 1
(3.32)

where T = 2+τ , τ stands for the uncertain delay of the network and 2 s is the dead time

of the process. The network delay is consider as τ = τsc + τc + τca. τc is the controller

computation time that has been set as 2 ms. The mean values of the transmission

delays are found from the simulation in Truetime as τca = 0.5 s and τsc = 1 s. The

computation time of the sensor and actuator are almost negligible compared to the

transmission delays and therefore omitted here. The waiting delay is also excluded

since it is usually compensated by the appropriate network protocols.

Substituting the previous equation and (3.18) in (3.27) the resulting characteristic equa-

tion is:

F (s) = 1 +Ae−jθ
(
Kp +

Ki

s
+Kds

)(
1 e−Ts

2 s+ 1

)
= 0 (3.33)

Letting s = jω:

F (jω) = 1 +Ae−jθ
(
Kp +

Ki

jω
+Kdjω

)(
1 e−Ljω

2 jω + 1

)
= 0

(3.34)

Note that Ae−jθ = A[cos(θ) − jsin(θ)]. By working with the trigonometric identities,

two stability equations are found:

Fr(jω) = KpB1 +KiC1 +D1 = 0

Fi(jω) = KpB2 +KiC2 +D2 = 0
(3.35)

where:

B1 = −Acos(θ1)ω (3.36)

C1 = Asin(θ1) (3.37)

D1 = −w −Asin(θ1)Kdω
2 (3.38)

B2 = Asin(θ1)ω (3.39)

C2 = Acos(θ1) (3.40)
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D2 = −2ω2 −Acos(θ1)Kdω
2 (3.41)

By resorting 3.30 and letting Kd to be constant the controller parameters are defined

by:

Kp =
C1D2 − C2D1

B1C2 −B2C1

Ki =
D1B2 −D2B1

B1C2 −B2C1

(3.42)

Using (3.42) and performing the following procedure the locus is plotted and shown in

Figure 3.15. Initially, T is set 2 s and Kd is fixed as 0.1. The first boundary J < 0 is

found by setting A = 1 and θ = 0◦. The stability region has been marked in the figure.

The boundaries for constant margins are also plotted. As depicted in the figure, the

point Kp = 0.59,Ki = 0.30 is selected to guarantee a phase margin at least of 30◦ and

a gain margin at least of 6 dB. The closed-loop system response to a step input can

be found in Figure 3.16. It can be seen that the system has a good performance and

good rejection to the disturbance. The margins are PM = 62.5◦ and GM = 12 dB.

Therefore, the relative stability of the system fulfils the specified criteria.

Furthermore, the value of T have been changed to T = 2.5 s, T = 3 s and T = 3.5 s.

This variation will cover the mean values of the network delay. The resultant inter-

section area is displayed in Figure 3.17. The shaded region represents the admissible

parameters for Kp − Ki that will guarantee at least a phase margin of 30◦ and a gain

margin of 6 dB. Based on this plot, a point of Kp = 0.45 and Ki = 0.24 is selected for

the design of the robust PID controller. The closed-loop performance and robustness

for each time delay have been assessed in Table 3.5. The results show that the system

Table 3.5: ITAE values for variations of time delay

Time delay Jr Jd GM (dB) PM (◦)

T = 2.0 s 14.25 48.46 12 62.5
T = 2.5 s 20.68 53.87 9.62 55.9
T = 3 s 32.56 61.09 7.74 49.2

T = 3.5 s 50.94 68.25 6.17 42.5

specifications have been fulfilled. Nevertheless, experiments using higher time delays

that are not presented in the table, such as 4 s, show that the minimum requirement

of gain margin could not be achieved.
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Figure 3.15: Kp − Ki plane

Finally, the control system is tested using the TrueTime simulator following the con-

figuration described in Section 3.2.4. The percentage of dropouts is set to 30%, the

interference bandwidth is 47 % and Ts = 0.01 s. Results are shown in Figure 3.16.

The system presented a sluggish response compared with the output without delays.

The measurements of the ITAE criterion are Jr = 21.74 and Jd = 95.36 showing an

increase respect the scenario without the network (Jr = 14.14 and Jd = 69.68). In

general terms, there is a good disturbance rejection and good setpoint tracking despite

the presence of time delays and dropouts. Moreover, the performance of the robust

PID is superior to the previous model-based controllers.
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Figure 3.16: System outputs for robust PID

3.5 A design of an optimal PID controller for NCS with

time-varying delays

The formulation of optimisation problems is a powerful technique in control design.

The effectiveness of its application for the tuning of PID controllers is well known.

In this section, an unconstrained optimisation problem is proposed and solved to find

the parameters of a new PID controller that minimises a performance index for a NCS

subject to random and time-varying delays.

The NCS for different scenarios has been simulated to demonstrate that under the

network conditions the optimal controller is robust and has a good performance.
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Figure 3.17: Kp − Ki plane for different values of time delay

3.5.1 The PID controller

Consider the PID controller with parallel structure:

u(t) = Kp e(t) +Ki

∫ t

0
e(τ) dτ +Kd

de(t)

dt
(3.43)

where Kp, Ki, Kd are the proportional, integral and derivative gains, respectively. u(t)

is the control signal and e(t) is the error signal. The equation is approximated to a

discrete-time PID by using a backwards approximation, a sampling time Ts and a filter

for the derivative part. The algorithm is given by:

u(k) = Kp e(k) + i(k − 1) +Ki Ts e(k) + Kd
Kd+KpNTs

d(k − 1)+
KpKdN

Kd+KpNTs
[y(k − 1)− y(k)]

(3.44)

where y(k) is the process signal, i(k) is the integral action, d(k) is the derivative action

and (k − 1) denotes the past value of the signal. N is the filtering constant and it is



Chapter 3. PID design methods for NCS 63

selected to be a fraction of the derivative time constant Td.

3.5.2 The time-varying delay

To simulate the effect of the time-varying delay, the delay distribution of the network

has been approximated by a Gamma distribution. The Gamma function Γ is defined

as follows:

Γ(k) =

∞∫
0

xk−1e−xdx, k ∈ (0,∞) (3.45)

where k is the shape parameter. The Gamma probability distribution function with

shape parameter k and scale parameter b is given by:

f(x) = b−k/Γ(k) xk−1e−x/b, x ∈ (0,∞) (3.46)

The parameters of the Gamma distribution are identified with properties of the network

by Pohjola, Eriksson and Koivo (2006). k is the number of hops between the first and

last node. The rate parameter is defined as 1/b = k/T , where T is the mean delay.

A S-function of Matlab has been created to generate the random delay with Gamma

probability distribution every sampling time.

3.5.3 The optimisation problem

A NCS with time delay from controller to actuator is implemented in Simulink. The

delay is represented using a variable time delay block. The S-function generates a

number with Gamma distribution and updates the value in the variable time delay

block each sampling time.

The tuning of the PID controller is obtained by solving an optimisation problem that

minimises a cost function J . The cost criterion is chosen to be the ITAE and is given

by:

JITAE =

∞∫
0

t |e(t)| dt =

∞∫
0

t|r(t)− y(t− τ(t))|dt (3.47)

where e(t) is the signal error, r(t) is the reference signal, y(t) is the system output and

τ(t) represents the random delay.
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The Optimisation Toolbox is used to assess the cost criterion and find the minimum

value. The function fminsearch is selected. The following line of code describes its

implementation:

x0 = [1.001 ,1.15 ,0.1];

options = optimset(‘MaxIter ’,5000,‘ MaxFunEvals ’ ,5000);

[xopt ,fval ,exitflag ,output ]= fminsearch(@funpidwdp2 ,x0,options );

Listing 3.1: fminsearch code function

The function called funcpidwdp2 returns the ITAE index. It defines the PID gains

as global variables and calls to the Simulink block where the NCS and the ITAE cost

function have been implemented according to (3.47).

x0 stands for the initial point given to the optimisation problem. Since a single iteration

requires more than one function evaluation, the maximum values have been stated in

the options of the fminsearch function. The limitation of the optimal tuning is that

it might take several iterations to find the local minimum. The maximum number

of iterations is limited to 5000. The maximum number of function evaluations per

iteration is 5000. The function and optimality tolerances are selected as 1 × 10−4. If

the measure between the current point and a possible minimum is less than optimality

tolerance, the solver iterations end.

3.5.4 The optimal PID control algorithm

The optimal PID control algorithm is implemented using the following procedure.

Step 1: Initialisation

(a) Set up the model parameters of the process.

(b) Implement the controller, sensor/actuator and network nodes from the

Truetime simulator.

(c) Follow steps c to d from the control algorithm in 3.2.2.

(d) Find from the simulation the mean value of the network delay τsc.

Step 2: Off-line calculation.
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(a) Solve the optimisation problem using the network delay model from

Section 3.5.2 and find the optimal PID gains.

(b) Update the PID gains in the simulator.

Step 3: On-line calculation

(a) Compute the control input and apply to the process.

Step 4: Fine-tuning

(a) Check the closed-loop performance and fine-tune the gains if necessary.

3.5.5 Numerical example

Consider the example given in (3.8). The optimisation problem is solved for k = 3 and

T = 0.135 s over a simulation of 35 s. The initial point is x0 = [1.001, 1.15, 0.1]. The

number of iterations is 1889. The optimal results for the process are: Kp = 0.4237, Ti =

1.5503 s and Td = 0.1106 s. After some tests the value of N = 10 is selected for a good

response.

The NCS is implemented using the TrueTime simulator and the network has been

configured as in Section 3.2.4. The percentage of dropouts is set to 30%, the interference

bandwidth is 47 % and a sampling time of Ts = 0.008 s. The simulation results are

depicted in Figure 3.18. The ITAE costs without delay are Jr = 14.23 and Jd = 72.3.

Another test is performed for the system subject to random delay with a Gamma

distribution. It is found that the performance is good for small variations of the time

delay. The network delay effect using the TrueTime simulator is much more severe

than the simulation with variable time with Gamma probability distribution. The

ITAE costs for the Gamma distributed delay are Jr = 17.7 and Jd = 50.96 and they

increased to Jr = 33.4 and Jd = 104 in the TrueTime simulation.

The tracking performance of the proposed design is better than the robust PID con-

troller. However, the robustness is not improved with the optimisation method. To

solve this, a constrained optimisation problem that includes robustness requirements is

offered in the section.
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Figure 3.18: Systems outputs for optimal PID

3.6 A design of an optimal robust PID controller using

the maximum sensitivity

A new constrained optimisation problem is proposed and solved to find an optimal

robust PID controller that guarantees the robustness of the system subject to time-

varying delays. The robustness is studied using the maximum sensitivity of the system.

3.6.1 Constrained optimisation

The work of Eriksson and Koivo (2005) proposes a tuning method for discrete-time PID

controllers where the gains are found by solving an optimisation problem that minimises

the cost criterion ITAE while the desired gain and phase margin are set as constraints

of the problem. A similar method is followed in this study, but the maximum sensitivity

value is used since the complexity of the computation is reduced significantly.
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Equation (3.2) defines the sensitivity of the system S and by limiting its maximum value

Ms, a good robustness of the system can be achieved. A reasonable range is Ms =

[1.4 − 2.0]. The lower the value of Ms, the better the robustness. The PID controller

is implemented using (3.44). The constrained optimisation problem is formulated as:

min f(x) =

∞∫
0

t|r(t)− y(t− τ(t), x)|dt

s.t. h(x) =

−x+ ε ≤ 0

Ms − 1.4− ε ≤ 0

x = [Kp Ki Kd]
T ∈ Rn

(3.48)

where τ(t) represents the random delays. The minimisation cost criterion is chosen

to be the ITAE. Considering constraints, firstly, the PID controller parameters have

to be positive. Secondly, the robustness is guaranteed if there is at least a maximum

sensitivity of Ms = 1.4. Defining a small positive value ε the inequality constraints are

arranged in the general formulation form.

A block diagram of the closed-loop system is implemented in Simulink following the

NCS structure in Figure 2.1. To simulate the effect of the network delays a Gaussian

distributed random delay with mean µ = 1 and variance σ2 = 0.1 is implemented at

the output of the controlled process. Every sampling time, the output of the system

subject to the random delay is measured and the optimisation algorithm evaluates and

minimises the cost function to find the parameters of the controller.

A Sequential Quadratic Programming (SQP) method is selected to solve the problem

and find the controller parameters. The Optimisation Toolbox of Matlab is used. In

particular, the function fmincon with the active-set algorithm is used to find the mini-

mum of the cost function subject to the system constraints.

The optimality tolerance is 1 × 10−6. If the measure between the current point and

the possible minimum is less than optimality tolerance, the solver iterations end. The

constraint tolerance is selected as 1 × 10−6. If the magnitude of any constraint is

more than the constraint tolerance the solver reports that the constraints are violated.

The maximum number of function evaluations and iterations is set to 200 and 400,

respectively.
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Once the optimal PID gains are found, the design is tested using the TrueTime simu-

lator.

3.6.2 The optimal robust PID control algorithm

The optimal robust PID control algorithm is implemented using the following proce-

dure.

Step 1: Initialisation

(a) Set up the model parameters of the process.

(b) Implement the controller, sensor/actuator and network nodes from the

Truetime simulator.

(c) Follow steps c to d from the control algorithm in 3.2.2.

(d) Select the Maximum sensibility Ms.

Step 2: Off-line calculation.

(a) Solve the constrained optimisation problem using the Gaussian distributed

network random delay and find the optimal PID gains.

(b) Update the PID gains in the simulator.

Step 3: On-line calculation

(a) Compute the control input and apply to the process.

Step 4: Fine-tuning

(a) Check the closed-loop performance and robustness and fine-tune

the gains if necessary.

3.6.3 Numerical example

For the process shown in (3.8), an optimal PI controller is studied for a random delay. N

is selected with a constant value 10. The optimisation problem is done for a simulation
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Figure 3.19: System outputs for optimal robust PID

of 35 s, the initial point is x0 = [0.1 0.5] and the number of iterations is 26. The

optimal results for a Ts = 0.03 s are: Ti = 3.72 and Kp = 0.32. Using these values the

TrueTime simulator tests are performed following the same configuration of the network

than previous examples. Figure 3.19 shows that the responses have an overshoot.

The ITAE costs are: Jr = 23.12 and Jd = 85.44 for the systems without delays and Jr =

23.63 and Jd = 129.3 with delays. The performances are affected for the inclusion of the

varying delays and loss of data. However, the optimal PI controller shows robustness to

the random delay and dropouts. Moreover, the robustness of the optimal robust PID

is superior to the robust PID controller designed in Section 3.4 using specifications of

phase and gain margins.
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3.7 A design of a jitter-aware PID for NCS with time-

varying delays

To address the adverse effect of time-varying delays in NCS, a robust PID controller

has been implemented for a first-order system. A method by Eriksson and Johansson

(2007a) has been used in this section where the AMIGO tuning rules are combined with

the maximum time delay that the system can tolerate. This last concept is known as the

jitter margin. A set of tuning equations gives the PID parameters that guarantee the

robustness of the system. Performance and robustness have been studied with several

experiments in the Truetime simulator to validate the effectiveness of the control system.

3.7.1 Introduction

A robust and jitter-aware PID controller for a time-varying delay problem is studied as

follows. Consider the following PID controller structure:

u(t) = Kp[b r(t)− yf (t)] +Ki

t∫
0

[r(τ)− yf (τ)] dτ +Kd

(
c
dr(t)

dt
−
dyf (t)

dt

)
(3.49)

where b and c are the setpoint weighting factors. yf (t) is the output after the measu-

rement filter, that is given by:

yf (s) = Gf (s)Y (s) =
1

(1 + sTf )n
Y (s) (3.50)

where Gf (s) is the filter transfer function, Tf is the filtering constant. The value of n

is chosen to obtain an appropriate transfer function.

3.7.2 Jitter margin

The variance of the time delay is studied under the concept of jitter margin. It is defined

as the maximum time-varying delay that can be increased in the system without causing

instability. Consider a linear time invariant system with process P (s) and controller

C(s). The control system is perturbed by an uncertain time-varying delay ∆(υ) in the
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feedback loop. The system is stable for any time-varying delay defined by:

∆(υ) = υ(t− δ(t)), 0 ≤ δ(t) ≤ δmax if (3.51)∣∣∣∣ P (jω)C(jω)

1 + P (jω)C(jω)

∣∣∣∣ < 1

δmax ω
, ∀ ω ∈ [0,∞[ (3.52)

where δmax ω is the maximum jitter margin.

3.7.3 Tuning rules

The PID parameters for the jitter-aware controller are presented by Eriksson and Jo-

hansson (2007a). The authors solved an optimisation problem where the robustness

using the maximum sensitivity and the jitter margin are maximised. The resultant

tuning rules for a FOPDT process were proposed as follows:

Kp =
1

K

(
0.4T − 0.04

L
+ 0.16

)

Ki =
1

100K

(
−0.11T 3 + 1.5T 2 − 1.5

L2
+

0.35T 2 + 4T + 50

L

)
Kd =

1

100K
(0.4T 2 + 11T )

(3.53)

where L is the dead time, K is the gain and T is the time constant of the process.

The controller gains will be set using these rules, and for Tf , b, c will use the AMIGO

rules.

The function to calculate the lowest jitter margin value in terms of the time delay τ is:

f(τ) = −12.3τ4 + 17.1τ3 − 5.5τ2 + 0.72 (3.54)

And the jitter margin is given by:

δmax = 0.71L[f(τ) + 1] (3.55)

The tuned controller is tested in a closed-loop system implemented in Simulink following

the NCS structure in Figure 2.1 with the modification that, the network delay has been
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modelled as a time delay at the output of the controlled process. To simulate the effect

of the network delays a distributed random signal with mean one and variance 0.1 have

been implemented. Then, the maximum jitter margin is found by computing (3.54)

and (3.55).

Once the PID tuning is done, the performance and robustness is studied with several

experiments in the Truetime simulator to validate the effectiveness of the design.

3.7.4 The jitter-aware PID control algorithm

The jitter-aware PID control algorithm is implemented using the following procedure.

Step 1: Initialisation

(a) Set up the model parameters of the process.

(b) Implement the controller, sensor/actuator and network nodes from the

Truetime simulator.

(c) Follow steps c to d from the control algorithm in 3.2.2.

Step 2: Off-line calculation.

(a) Select the PID gains and time filter constant using the tuning rules.

(b) Approximate the network delay and find the jitter margin.

(c) Implement the NCS and the PID control law.

Step 3: On-line calculation

(a) Compute the control input and apply to the process.

Step 4: Fine-tuning

(a) Check the jitter margin, closed-loop performance and robustness and

fine-tune the gains if necessary.
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Figure 3.20: System outputs for jitter-aware PID

3.7.5 Numerical example

Consider the first-order system given in (3.8). A time constant Tf = 0.2 s is used for the

filter, b = 0 and c = 0. Applying (3.53), the controller parameters are Kp = 0.54, Ki =

0.31 and Kd = 0.24.

The effect of the network random delay modelled with a distributed random signal with

mean one and variance 0.1 has been studied. The response presented a small oscillation

in the output and an increase of the overshoot. Using (3.54) and (3.55), the maximum

jitter margin is 2.43 s and the maximum delay that the system experienced is 2.21 s.

The ITAE values are Jr = 63.01 and Jd = 122.29.

Following, the design is tested in the simulator. The implementation of the system

using the TrueTime simulator follows the same configuration than previous tests. The

first experiment has been made for the process without time-varying delays. Figure

3.20 shows the good performance of the system with a small overshoot.
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The response for the time-varying delays shows that the controller output is lost during

the first seconds of the simulation and again at the 35th second when the disturbance is

present. That results in a slower and damped response. The ITAE criteria for the first

case are Jr = 24.13 andJd = 73.5 and for the second one are Jr = 35.93 andJd = 84.04,

which gives a better scenario compared to the results without the simulator.

The maximum sensibility value for the system with the additional varying delay is

Ms = 1.96, which is bigger than the goal of M = 1.4 given by the tuning rules, but

less than the limit Ms = 2. The reason for this is that for lag dominated processes

the AMIGO rules could give poor robustness in comparison with the delay-dominant

processes. Further tests where the time constant is T = 0.1 s showed that the maximum

sensitivity is M = 1.37.

3.8 A design of an optimal immune PID controller for

NCS

In this section, a new optimal immune PID controller is applied to a NCS subject

to dropouts and time-varying delays. The immune feedback law proposed by Yang,

Zhao, Zhou and Liu (2007) is used in this work. A constrained optimisation problem

is proposed to find the parameters of the immune PID controller and the effectiveness

and robustness of the design are demonstrated through several simulations.

3.8.1 Introduction

Immune systems have been applied in recent years to modern processes that present

complex characteristics such as long and time-varying delays (Peng et al., 2011). This

methodology shows a good robustness and adaptability when is combined with fuzzy

theory in applications of temperature control and electronic throttles as showed by Xue

and Yan (2010) and Chen and Chen (2009), respectively.

The immune control system is a physiological action that produces antibodies to combat

antigens. The primary components of this system are the recognition cells and the

killing cells. When the antigens arrive, recognition cells begin to multiply themselves

at the same time they activate the helper T cells (TH). Then, the helper T cells
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activate B cells, which secrete the antibodies. The Antigen-Presenting Cell (APC) can

also activate the suppressor T cells (TS), which can suppress the secretion of the helper

T cells and the B cells.

It can be generalised that the immune feedback algorithm is mainly based on the

feedback regulating principle of the T cell. The principle is defined by the number of

antigens or antigen concentration, ε(k), at the kth generation:

ε(k) = γε(k − 1)− ukill(k − d) (3.56)

where γ is the proliferative factor of external substance, ukill is the concentration of the

B cells and d is the postmortem interval or the delay time of immune response. The

concentration of the B cells can be expressed as:

ukill(k) = TH(k)− TS(k) (3.57)

where TS(k) is the effect of TS cells on the B cells and TH(k) is the output from TH

stimulated by the antigens:
TH(k) = K1ε(k) (3.58)

where K1 is the stimulating factor of TH. The action from restraining B cell using T

cell is given as:

TS(k) = K2f [∆ukill(k)])ε(k) (3.59)

where K2 is a suppression factor of TS cell and ∆ukill(k) = ukill(k−d)−ukill(k−d−1).

This is the concentration change of the B cells. Finally, f(·) is a non-linear function.

Then, a mathematical representation of the concentration of B cells is expressed as:

ukill = K1ε(k)−K2{f [∆ukill(k)]}ε(k) (3.60)

By selecting the amount of the antigens ε(k) as the control error e(k) and the total

stimulation received by B cells, ukill as the control input u(k), the immune feedback

law can be described as:

u(k) = k{(1− ηf [∆u(k)])}e(k) (3.61)

where k = K1 , η = K2/K1. Therefore, the immune PID control algorithm can be

described by (3.44), where the proportional gain is: Kpl = K(1− ηf [∆u(k)])Kp. The

parameter K is used to control the response speed. The parameter η is used to control
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the stabilisation effect. It will make the system to have better stability and smaller

overshoot or even no overshoot. This value is limited according to:

η ∈
{

0,
1

max(f [∆u(k)])

}
(3.62)

The function f(·) is the regulating effect related to the antibodies concentration. In

this work several functions have been tested for the NCS and for the best performance

it is selected as:

f [∆u(k)] = 1− 2/(e−a∆u(k) + ea∆u(k)), a > 0 (3.63)

where f [∆u(k)] ∈ [0, 1] and a is the factor of antibodies concentration. This parameter

changes the form of the function for instance, choosing larger values for a, the function

can be less smother.

To determine the values of η, a,K and the PID parameters, a constrained optimisation

problem has been proposed and solved using fmincon. The active-set algorithm is

selected to find the minimum value for the function J . The maximum number of

function evaluations and iterations is set to 3000 and 1000, respectively.

The cost function J has been selected as the ITAE criterion. Considering constraints,

firstly, the parameters have to be positive. Secondly, the value of η is restricted to the

interval [0, 10] according to (3.62) and (3.63).

The optimisation problem is solved for a system under time-varying delay. The delay

has been approximated by a Gaussian distributed random signal, with mean one and

variance 0.1. N = 10 and sampling time Ts = 0.015 s. Once the optimal values are

found, the NCS is implemented and tested in the Truetime simulator.

3.8.2 The optimal immune PID control algorithm

The optimal immune PID control algorithm is implemented using the following proce-

dure.

Step 1: Initialisation

(a) Set up the model parameters of the process.
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(b) Implement the controller, sensor/actuator and network nodes from the

Truetime simulator.

(c) Follow steps c to d from the control algorithm in 3.2.2.

Step 2: Off-line calculation.

(a) Approximate the network delay and solve the optimisation problem.

(b) Implement the NCS and the immune PID control law using the optimal

values.

Step 3: On-line calculation

(a) Compute the control input and apply to the process.

Step 4: Fine-tuning

(a) Check the closed-loop performance and fine-tune the gains if necessary.

3.8.3 Numerical example

Consider the first-order system with time delay process in (3.8). The network environ-

ment has been configured as explained in Section 3.2.4. The optimisation problem is

solved for a simulation of 35 s, an initial point x0 = [0.1; 0.1; 0.1; 0.1; 0.1; 0.1] and the

number of iterations is 491. The optimality and constraint tolerances are selected as

1× 10−6.

The optimal results are: Kp = 0.08, Ti = 0.41 s, Td = 0.97 s, a = 0.057, η = 3.18 and

K = 6.75. A test is performed where the time-varying delay has been approximated

by the Gaussian distributed random signal. The results show a quick response with a

small oscillation. Moreover, the recovery from the disturbance signal is quick as well.

The ITAE costs are Jr = 16.44 and Jd = 55.27.

Now, the system is tested using the TrueTime simulator. Figure 3.21 displays the

closed-loop response for the system when no time delays are presented. The simulation

shows that the control action of the optimal immune PID brings the system smoothly

to the setpoint with no overshoot. It rejects the disturbance applied at time t = 35 s.
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Figure 3.21: System outputs for optimal immune PID

The results of the experiment with time delays show a slower response compared with

the output without time delays. This is because the controller has to compensate the

lack of information. In general terms, there is a good disturbance rejection and good

enough setpoint tracking despite the presence of time delays and dropouts. Moreover,

the performance of the optimal immune PID is superior to all the previous controllers.

A comparison of the tests results with and without the network simulation shows that

the implementation of the delay with a Gaussian distributed random signal represents

a good approximation of the time-varying delays scenario.

3.9 Comparison of existing methods

Seven control methods for high percentages of dropouts and time-varying delays are

studied in this work. Figure 3.22 shows the comparison of these methods. Performance
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and robustness indices are summarised in Table 3.6. It shows performance evaluation

based on ITAE cost function values for servo (Jr) and regulatory control Jd. Rise time

(RT) and maximum overshoot (OS) are also given. The steady state errors are zero.

Considering robustness, the following indices are presented: the maximum sensitivity

Ms, gain and phase margin.
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The methodology of the optimal immune PID offers the best performance and also a

good robustness. Moreover, the difficulty of choosing the adequate values has been

overcome with an optimisation method.

The jitter-aware PID and the robust PID shows less robustness than the other robust

methods studied here. The restriction of a process with small dead time is a limitation

of the jitter-aware tuning rules. The limitation of the robust PID is that robustness of

the proposed tuning method is not sustained for long time-varying delays.

From the optimal controllers, the optimal PID has one of the best performances. It

is also robust even though it is optimally tuned only in the performance sense. The

optimal robust PI presented good margins of robustness and guaranteed Ms = 1.4.

From the model based controllers, the Smith predictor gave the best performance with

a faster rising time and a lower overshoot. It presents a good robustness too. Therefore,

there is a good prediction for slow changes in the network. Conversely, the adaptive

IMC presented the poorest performance. This is the result of a sluggish control signal

which does not yield good control action under the adverse network conditions. Online

computation of IMC parameters revealed that response could be too slow and the

optimisation methods can take several seconds to compute the required solution.

3.10 Summary

NCS are gaining importance in the enhancement of the control of simple and complex

industrial systems. However, the performance degradation with the introduction of

the network is still a concern to address before the systems can be reliable for process

control. The need for flexibility and stability in systems under time delays and dropouts

support the interest of PID control, Smith predictor and IMC control to operate in

NCS. These simple control algorithms offer the opportunity to deploy NCS in industrial

applications fully.

These strategies rely on optimisation problems that incorporate robustness and perfor-

mance restrictions to compute the optimum control signal every sampling time. Approxi-

mations of Gamma and Gaussian distributed functions defined with the network para-

meters have been used to model the random and time-varying delay. The simulations

indicate that the model is adequate for the controller design.
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Several tests using the Matlab/Simulink Trutime simulator showed that the assump-

tion of time-varying delays with maximum and minimum limits is accurate. Similarly,

assuming the percentage of dropouts is varying but bounded the critical value of the

percentage of dropouts that can guarantee the stability of the system can be found. It

requires incorporating an accurate model of the process and small delays and percen-

tages dropouts to execute the task timely. The long delays and consecutive dropouts

affect the stability of the control process adversely and cannot be overcome with fine-

tuning of the controller parameters.

Since the proposed designs are based on a simplified model of the plant, the closed-loop

system indicated stability for a limited percentage of variations of the model process

dynamics and percentage of dropouts. Simulations of stability, performance and robust-

ness analysis demonstrated the applicability for variations of the model parameters of

up to 50% and high percentages of dropouts of up to Ploss = 30%.



Chapter 4

Wireless networked predictive

PID control design for packet

dropouts

This chapter presents predictive PID control algorithms to compensate dropouts in

WNCS. The dropouts are an important issue in WNCS as mentioned in Chapter 2.

Five control strategies based on MBPC with PID control structure have been studied.

The problem of the occurrence of dropouts from sensor to controller is compensated

by combining the controllers with a Kalman Filter (KF). The measured output y is

switched to the Kalman estimation ŷ allowing the controller to have always information

of the process even in the presence of dropouts. In the last design the constraint

handling is presented to stop input saturation.

Notably, the proposed strategies are also applicable to compensate for dropouts from

controller to actuator. The method is applied to a second-order and a non-minimum

phase system with delays. The control system is implemented using the Matlab/Simulink-

based TrueTime network simulator. Performance and robustness analysis is investi-

gated and the results show the design is stable to higher occurrences of dropouts in

comparison with the control schemes of Chapter 3.

84
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4.1 Introduction

The compensation of dropouts to ensure reliability on the WNCS represents a challen-

ging problem to the traditional control methodologies. Among these methods, the

predictive control scheme is considerably effective since it can actively compensate for

consecutive packet dropouts (Sun et al., 2014a). Moreover, the method has been proved

to be robust to perturbations and leads to efficient controllers used in many industrial

applications (Camacho and Bordons, 2007). However, PID control has received the

most attention in the history of process control. The research of a simple and flexible

algorithm that can effectively compensate for dropouts in WNCS, is the motivation

to create new predictive control algorithms with PID structures. Moreover, it will be

economically beneficial to apply the predictive approaches to PID control loops and

adapt them to network communication.

For instance, Miklovičová and Mrosko (2012) addressed the compensation of dropouts

using GPC and pole placement structure to design a PID controller. The approach

of Tan et al. (2002) combined the optimal tracking control of the GPC and the PID

structure. Hassan et al. (2016) combined a Smith predictor with PI controller to com-

pensate variable delays and disturbance in WNCS. A similar solution is postulated by

Wu, Wu and Zhao (2016) to compensate random delays and dropouts.

Note that in the WNCS approaches loss of information is generally assumed only in

one direction. In comparison, the new predictive controllers have the advantage of

compensating both communication directions and dealing with a high incidence of

dropouts, which has not been addressed in the literature. Also, the new predictive

PID controllers provide a reliable solution to WNCS where stability with robustness to

disturbances is demonstrated.

The proposed control scheme is presented by the block diagram depicted in Figure 4.1.

The control signal is u , y stands for process output, e is the error and r is the reference

signal. C(z) is the controller and the controlled plant is Gp(z). A WNCS whose sensor

and control information is transported over a wireless network is considered. The

dropouts from sensor to controller and from controller to actuator are represented as

dpsc and dpca, respectively. A dropout detector has been configured in the Truetime

simulator to identify the occurrence of dropouts. The controller reads the information

from sensor every sampling time. In case the sensed output ys is not available, a
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Network

C(z) dpca? Actuator Gp(z)
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KF
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r e no
y

−

ŷ

ys yes

no
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Figure 4.1: Diagram of predictive controllers structure

switch function selects the Kalman estimation ŷ allowing the controller to always have

information of the process even in the presence of dropouts. The simulations results

show that the prediction is very aggressive to maintain the control performance. The

Kalman filter corrects its estimation and tracks the process output very quickly. This

is especially important during a switch between the estimation and the current process

to avoid abrupt changes.

4.1.1 Preliminaries: Network modelling

4.1.2 Network constraints

A Wireless Local Area Network (WLAN) is selected in this study. Due to collisions or

congestion in the channel, the system has to tolerate dropouts. As mentioned before in

Chapter 2, wireless communications bring outstanding advantages but also its limited

capacity leads to significant problems. Loss of information is one of the most critical

ones and the one is addressed in this chapter.

Dropouts can be modelled using a stochastic or a deterministic approach. The first

one, mostly employs independently and identically distributed Bernoulli process with

probability of dropout Ploss ∈ [0, 1]. For instance, Sun, Wu, Liu and Wang (2014b)

transformed the system with random delays and packet dropouts into a stochastic

process. Sinopoli, Schenato, Franceschetti, Poolla, Jordan and Sastry (2004) proposed

a Kalman estimation where the network was modelled using a stochastic process and

showed the existence of a critical value for the percentage of dropouts. However, Li, Shi,

Wang and Agarwal (2015) claimed that in these approaches, the critical value is found

using its lower and upper bounds. Therefore, in this thesis an optimal deterministic
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control methodology is proposed. Furthermore, to get deterministic stability results,

the total percentage of dropouts and delays are assumed to be bounded. Also, the

maximum number of dropouts that occur consecutively has been investigated γmax.

The approach has been presented involving different scenarios of the percentage of

dropouts. Simulation experiments show that these assumptions are practical. In NCS,

most transmissions are subject to random delay nonetheless, this problem has been

covered before in Chapter 3.

4.2 Model based predictive control with PID structure

4.2.1 MBPC formulation

This section defines the process model and the predictive algorithm for the MBPC

design. In the first part, the MBPC method is reviewed to interpret the modelling

and procedure to obtain the control law. If the reader wishes to learn more, they are

referred to text books, for example Camacho and Bordons (2007).

Consider the following MBPC quadratic cost function which seeks a set of optimal

control signals that minimises J :

J =

N∑
j=N1

[ŷ(k + j)− r(k + j)]
2

+

Nu∑
j=N1

λ[ ∆u(k + j − 1)]2 (4.1)

where N1 and N are positive scalars indicating the initial and final predictive horizons.

λ is a constant weight used to penalise the control effort. Nu is the control horizon. The

future reference trajectory is r(k+ j) and has been assumed to be known. The control

objective is to minimise the cost function to compute the future control signals that

guaranties that the future process output y(k+ j) follows the future reference r(k+ j).

Meantime it assures that the control signal is penalized as well.

The control law in MBPC is computed using a linear quadratic cost function. The

advantage of combining this with the linear process is that an optimisation problem

can be proposed and its solution is an optimal minimum. This guarantees a robust

design.
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It is considered that after an interval (horizon), the control signal does not change any

more until the next sampling instant:

∆u(k + j − 1) = 0 for Nu ≤ j ≤ N (4.2)

To optimise the performance, appropriate horizons and an accurate model are required.

To find the prediction of process output ŷ(k+ j), a linear SISO plant is described using

the Controlled Auto Regressive and Integrated Moving–Average (CARIMA) model

(Clarke, Mohtadi and Tuffs, 1987):

A(q−1)y(k) = q−dB(q−1)u(k − 1) + C(q−1)ξ(k)/∆ (4.3)

where y(k) and u(k) are the process output and the control input, respectively. The

process delay is d. A, B and C are polynomials function of the backwards shift operator

q−1 such that:

A(q−1) = 1 + a1q
−1 + a2q

−2 + · · ·+ anaq
−na

B(q−1) = b0 + b1q
−1 + b2q

−2 + · · ·+ bnbq
−nb

C(q−1) = c0 + c1q
−1 + c2q

−2 + · · ·+ cncq
−nc

(4.4)

The model represents the uncertainty of random disturbances in the process. ξ(k) is a

zero mean white noise, and ∆ = 1−q−1 is a difference operator, indicating the difference

between the current time point and the previous time point. The proposed model is

more appropriate in industrial applications where disturbances are non-stationary. For

simplicity, C is chosen as one in the following analysis. Next, a Diophantine equation

is used to find the output predictions:

1 = Ej(q
−1)∆A(q−1) + q−jFj(q

−1) (4.5)

where Ej and Fj are polynomials. Multiplying (4.3) by ∆Ej(q
−1)qj gives:

∆A(q−1)Ej(q
−1)ŷ(k + j) = Ej(q

−1)B(q−1)∆u(k + j − d− 1) + Ej(q
−1)ξ(k + j)

(4.6)

The best estimation of the future disturbance is achieved by selecting ξ(t + k) = 0.

Substituting A(q−1)Ej(q
−1) from (4.5) in (4.6), it results:

[
1− q−jFj(q−1)

]
ŷ(k + j) = Ej(q

−1)B(q−1)∆u(k + j − d− 1) (4.7)
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Simplifying results in:

ŷ(k + j) = Fj(q
−1)y(k) + Ej(q

−1)B(q−1)∆u(k + j − d− 1) (4.8)

where
Ej(q

−1) = ed+j,0 + ed+j,1 q
−1 + · · ·+ ed+j,j−1 q

−(d+j−1)

Fj(q
−1) = fd+j,0 + fd+j,1 q

−1 + · · ·+ fd+j,na q
−na

Define Gj = Ej(q
−1)B(q−1). If the set of j ahead predictions is considered, (4.8) can

be written as:

y = F(q−1)y(k) + Gu + G′(q−1)∆u(k − 1) (4.9)

where
y = [ŷ(k + d+ 1) ŷ(k + d+ 2) · · · ŷ(k + d+N)]T

u = [∆u(k) ∆u(k + 1) · · · ∆u(k +Nu − 1)]T
(4.10)

F(q−1) =


Fd+1(q−1)

Fd+2(q−1)
...

Fd+N (q−1)

 , G =


g0 0 · · · 0

g1 g0 · · · 0
...

...
...

...

gN−1 gN−2 · · · g0



G′(q−1) =


(Gd+1(q−1)− g0)q

(Gd+2(q−1)− g0 − g1q−1)q2

...

(Gd+N (q−1)− g0 − · · · − gN−1 q−(N−1))qN



(4.11)

Notice that, matrix G contemplate future control predictions and G′ is the sub-matrix

extracted from G relate to the past control signals. Hence, the cost function J is

modified by replacing (4.9) in (4.1):

J = [F(q−1)y(k) + G′(q−1)∆u(k − 1) + Gu - r ]T

[F(q−1)y(k) + G′(q−1)∆u(k − 1) + Gu - r ] + λuTu
(4.12)

where r = [r(k+d+1) r(k+d+2) · · · r(k+d+N)]T . The minimum J is obtained

by computing the gradient ∂J/∂∆u(k) = 0. The future control sequence is given by:

∆u(k) = K(r− f ) (4.13)

where K = (GTG + λI)−1GT and f = G′(q−1)∆u(k − 1) − F(q−1)y(k). Note that

f contains the signals that depend on the present and past. According to the MBPC
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algorithm, only the first element of the set of future control signals is applied to the

system and computed again in the next sampling instant. Thus, one can rewrite (4.13)

as:

∆u(k) = KMBPC e(k) (4.14)

where KMBPC = [1 0 · · · 0]K, e(k) = r− f .

4.2.2 Predictive PID structure

The velocity form of the PID controller with sampling time Ts is considered:

∆u(k) = kp[e(k)− e(k − 1)] + ki Ts e(k) +
kd
Ts

[e(k)− 2e(k − 1) + e(k − 2)] (4.15)

The matrix representation is:

∆u(k) = KPID[r(k)− y(k)] = KPIDe(k) (4.16)

where

KPID = [kp ki kd]


0 −1 1

0 0 1

1 −2 1


y(k) = [y(k − 2) y(k − 1) y(k)]T

e(k) = [e(k − 2) e(k − 1) e(k)]T

r(k) = [r(k − 2) r(k − 1) r(k)]T

(4.17)

Since MBPC is optimal robust, the challenge is to find the PID gains such that the

control signal (4.16) is as close as possible to the MBPC signal (4.14). Thus, an optimi-

sation problem is proposed as:

min f(x) =

kf∑
k=0

|ediff (k, x)|

s.t. h(x) =


−kp + ε ≤ 0

−ki − ε ≤ 0

−kd − ε ≤ 0

x = [kp ki kd]
T ∈ Rn

(4.18)
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where ediff (k) = uMBPC(k) − uPID(k) is the error between the control signals, kf is

the final time of the simulation and ε is a small positive scalar. The minimisation cost

criterion is chosen to be the IAE. The cost function has been defined to compute the

optimal PID gains in such way that the error between the MBPC control signal and

the predictive PID is almost zero. The function simulannealbnd from the Optimiza-

tion Toolbox is selected to assess the cost function and find the minimum value. The

simulation time is kf = 5 s.

The function simulannealbnd is selected since it solves quickly the optimisation pro-

blem subject to the bounds of the PID gains. The following line of code describes its

implementation:

x0 = [ -4.3819 \; 0.4911 \; 4.2522];

lb = [0;0;0];

ub = [10;10;10];

% options = saoptimset(’TolFun ’,1e-6);

[xopt , fval] =simulannealbnd(@(x) fun(x),x0,lb,ub);

Listing 4.1: simulannealbnd code function

x0 stands for the initial point given to the optimisation problem. The upper and lower

bounds have been stated in the options of the function. fun computes the MBPC

and PID control laws and calculates the cost criterion J . The maximum number of

iterations is 200. The optimality tolerance is 1 × 10−6. If the measure between the

current point and the possible minimum is less than optimality tolerance, the solver

iterations end.

Once the optimal gains are found, the PID control signal can be implemented using

(4.16).

4.2.3 Dropouts from sensor to controller compensation

4.2.3.1 Estimation algorithm

In this section, the design of the Kalman filter is presented. It will have an important

role to improve the performance of the whole control system. The occurrence of drop-

outs during the transmission from the sensor to the controller results in an open-loop
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system which degrades the reliability of the WNCS. To solve this problem a Kalman

filter is proposed to estimate ŷ(k). An estimator algorithm is used according to:

x(k + 1) = Ax(k) +Bu(k) + v(k)

y(k) = Cx(k) + w(k)
(4.19)

where the process noise v(k) and measurement noise w(k) are independent Gaussian

white sequences with covariance Qf and Rf , respectively. The covariance is described

as follows:

E

{[
ω(k)

υ(k)

] [
ω(k) υ(k)

]}
=

[
Qf (k) S(k)

S(k)T Rf (k)

]
δ(k) (4.20)

where δ(k) is the Kronecker delta function. The cross covariance S(k) is assumed to

be zero for independent processes. E stands for the estimation. The matrices A,B and

C are calculated using the discrete transformation from process transfer function to

state-space representation. A Zero Order Hold (ZOH) is used. The sampling time is

selected according to the process. The control input u(k) is not used to compute the

output signal y(k) therefore, D = 0. The KF gives an estimation as follows:

x̂(k + 1) = Ax̂(k) +Bu(k) +Kf [y(k)− ŷ(k)]

ŷ(k) = Cx̂(k)
(4.21)

where ŷ(k) is the estimation of y(k) at time k. Kf represents the steady-state filter

gain that is calculated as:

Kf = PCTR−1
f (4.22)

where P is the covariance of estimation error that satisfies the steady state Riccati

Difference Equation ARE:

PAT +AP − PCTR−1
f CP +Qf = 0 (4.23)

By choosing appropriate values for Qf and Rf the filter gain is computed. In case

of dropouts, the predictive PID works with the estimation ŷ(k) allowing the control

system to have always the process information. The observer is implemented on the

controller side using the estimate space-state model of the process.

The estimation error covariance converges to a unique solution based upon the assump-

tions that the pair of matrices (A,C) is observable and (A,Q1/2) is stabilizable. For
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stability of the predictive control, the model is assumed to be stable and the closed-loop

system is assumed to be controllable and observable.

4.2.4 Predictive PID control algorithm

The predictive PID control algorithm can be implemented using the following proce-

dure.

Step 1: Initialisation

(a) Set up the discrete model of the process.

(b) Select the prediction horizons N,Nu and the future reference vector.

(c) Implement the controller, sensor/actuator and wireless network nodes

from the Truetime simulator.

(d) Add the dropout detector to the controller code.

(e) Select the network configuration and the percentage of dropouts.

(f) Set an interfering node to increase the time delays.

Step 2: Off-line calculation

(a) Compute the prediction matrices F(q−1),G and G′(q−1).

(b) Calculate the MBPC gain, K, using (4.14).

Step 3: On-line calculation

(a) Read the actual information from the process. In case of dropouts,

compute the process estimation using the KF.

(b) Compute the MBPC control law and solve the optimisation problem

in (4.18) to find the optimal PID gains.

(c) Apply the predictive PID control signal.

Step 4: Fine-tuning

(a) Check the closed-loop performance and fine-tune λ if necessary.
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4.2.5 Numerical example 1

To illustrate the results consider the following linear control system, set as the nominal

example in this chapter:

Gp(z) = (−0.0033z−1 + 0.017z−2)/(1− 1.07z−1 + 0.095z−2) (4.24)

The sampling time is Ts = 0.01 s. The proposed algorithm has been implemented and

tested using the TrueTime network simulator configured for wireless protocol 802.11b

(WLAN), with a data rate of 800000 bits/s. The minimum frame size has been selected

as 272 bits.

Next, the dropouts have been set up through a loss of probability of approximately

Ploss = 30% in the TrueTime network block parameters. Although different values of

the penalty in the control action can be selected, for a faster response of the closed-loop

λ = 0.1 is chosen. The prediction horizon has been chosen N = 30 and the control

horizon Nu = 1. The MBPC gain is KMBPC = [−26.25 25.78 − 2.26 − 0.29 − 0.41].

The optimisation problem in (4.18) has been solved using the function simulannealbnd.

The function parameters have been defined as follows. The initial point is selected as

x0 = [0.1 0.1 0.1], the lower limits as lb = [0 0 0] and the upper limits as ub = [20 20 20].

The function tolerance is 1 × 10−6. The number of iterations is 2572 and the number

of function evaluation per iteration is 2627. The optimal PID gains are: kp = 17.68,

ki = 19.99 and kd = 4.44. For the KF design the noise covariances are chosen as:

Qf = Rf = 1 × 10−8. The vector of Kalman gains converges in steady state to the

value: Kf = [0.31 0.32]T .

Figure 4.2 shows that the controller acts very fast and the process output reaches the

reference. It can be seen that the controller has not been constrained and there is

an aggressive behaviour to cope with the dropouts. By relaxing the weighting factor,

slower responses can be found nonetheless, the performance is deteriorated as a con-

sequence. The IAE criterion returned a value of J = 0.096 for both responses. Figure

4.2 shows that the KF provides an accurate estimate of the process output. Moreover,

the percentage and occurrence of dropouts during the simulation are depicted in Figure

4.3. The control system is stable for the entire drop of sensor and controller packets.

Further simulations where higher percentages of dropouts are applied show that the

stability is severely compromised. The percentages of dropouts could be increased up

to Ploss = 40% which is the threshold where the closed-loop appears to be stable. A
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Figure 4.2: System outputs for MBPC and predictive PID, λ = 0.1

new approach is introduced in Section 4.3 to offer a less conservative percentage of

dropouts.

4.3 Networked predictive control for consecutive drop-

outs

The present section addresses the occurrence of consecutive dropouts by combining the

receding control algorithm with PID control. In the previous implementation, only the

first element of the equation (4.14) is used at every sampling time. However, Nu − 1

predictive control signals can be calculated as stated in (4.10). It has been assumed

that Nu = N .

Taking advantage of this feature, all the control signals are calculated and saved at

each sampling instant. If packets from the sensor are dropped at present k, the control
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Figure 4.3: Time instants of data dropouts for predictive PID

system sends the estimation u(k+1)|k−1 stored from the previous sampling time k−1.

To achieve the proposed algorithm the control law in (4.13) is reformulated as:

∆u(k + j) = K(j+1)(r− f ) (4.25)

where N1 ≤ j ≤ Nu − 1. Therefore, the j prediction of the control signal ∆u(k + j)

is computed using the coefficients of j + 1 − th row of the matrix K. In the case of

consecutive dropouts, the maximum number of consecutive dropouts γmax is selected to

match N . Thus, the controller can determine the occurrence of consecutive dropouts

and apply the past predictions until either the condition is over or γmax has been

reached.

To obtain γmax the WNCS is implemented in the simulator and the number of conse-

cutive dropouts is measured for variations of the percentages of dropouts from 25% to

80%. The table 4.1 summarises the number of consecutive dropouts for percentages of
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dropouts from sensor to controller dpsc and from controller to actuator dpca. A network

load disturbance of 0.28, Ts = 0.01 and simulation time of 5 s is selected.

Table 4.1: Consecutive dropouts length

Ploss % dpsc dpca

25 11 16

30 5 8

40 6 11

50 9 26

60 11 33

70 14 28

73 14 35

75 13 61

80 20 62

The behaviour is found to be mostly random. A maximum value of γmax = 30 is

selected since it covered most of the number of consecutive dropouts.

Using (4.25) the MBPC control law is computed and then compared to the PID control

law using (4.18). The optimisation problem minimises the error between the two control

signals to find the optimal PID gains.

The function simulannealbnd from the Optimization Toolbox is selected to assess the

cost function and find the minimum value. The simulation time is kf = 5 s. The

parameters of the optimisation function simulannealbnd have been defined the same as

in the Section 4.2.5. Once the optimal gains are found, the PID control signal can be

implemented using (4.16).

4.3.1 Networked control algorithm

The networked control can be implemented using the following procedure.

Step 1: Initialisation

(a-f) Follow steps a to f from the predictive PID algorithm in Section 4.2.4.

(g) Set the index m = 0, as the number of consecutive dropouts.

Step 2: Off-line calculation

(a) Calculate the MBPC gain, K, using (4.25).
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(b) Follow step b from the predictive PID algorithm in Section 4.2.4.

Step 3: On-line calculation

(a) Read the actual information from the process. In case of dropouts, apply

the previous control prediction and increment the index m = m+ 1.

(b) Compute the MBPC control law and save all control predictions.

(c) Solve the optimisation problem in (4.18) to find the optimal PID gains.

(d) Apply the predictive PID control signal.

Step 4: Fine-tuning

(a) Check the closed-loop performance and fine-tune λ if necessary.

4.3.2 Simulation results

Consider the nominal example to test the effectiveness of the new predictive algorithm.

The same network conditions of the first experiment are applied. As stated before

N = Nu = 30 and λ = 10. The optimisation problem is solved after 1535 iterations

and 1569 function evaluations per iteration. The optimal steady state PID parameters

are: kp = 5, ki = 15 and kd = 0.1.

The output and control signal are shown in Figure 4.4 and the percentage and occu-

rrence of dropouts are depicted in Figure 4.5. A stable response is found. The IAE

criterion is J = 0.48 for both responses. From the bottom of Figure 4.4, one can see

the saved control input values are applied effectively to compensate the occurrence of

the consecutive dropouts. Moreover, although there is a switching control input, the

control signal is smooth.

Further validations report that the closed-loop response is stable for a maximum per-

centage of dropouts of 68%. This percentage is the threshold where the closed-loop

appears to be stable. This shows the robustness of the controller to compensate a high

incidence of dropouts.
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Figure 4.4: System outputs of networked control, λ = 10

Moreover, in comparison to the previous design, the networked controller for conse-

cutive dropouts can compensate higher percentages of dropouts and a higher conse-

cutive occurrence. This is because the controller can apply saved predictive control

actions in response to dropouts. However, in case the percentage of dropouts is small,

the MBPC with PID structure controller is faster than the networked controller and

therefore it will be preferable to apply the first one in that scenario.

4.4 Parallel predictive PID approach

In this section, the predictive PID controller from Katebi (2001) is combined with the

KF to compensate the dropouts in the WNCS. A parallel predictive PID controller

computes M control signal predictions using M parallel PID controllers (Johnson and

Moradi, 2005), each one acting on its respectively time k + i. Consider the discrete

parallel form of the PID controller given by (4.16) and K = KPID. The control signal
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Figure 4.5: Time instants of data dropouts for networked control

is the sum of the M PID control signals as follows:

∆u(k) = K
M∑
i=0

[r(k + i)− y(k + i)] = K
M∑
i=0

e(k + i) (4.26)

where
e(k + i) = [e(k + i− 2) e(k + i− 1) e(k + i)]T

r(k + i) = [r(k + i− 2) r(k + i− 1) r(k + i)]T = r,

y(k + i) = [y(k + i− 2) y(k + i− 1) y(k + i)]T

By following the procedure in Section 4.2.1 and assuming the setpoints and the future

control inputs are constant, one can find the error predictions for the ith PID controller

as:

e(k + i) = Fie0 + Gi∆u(k) + G′i∆u0 (4.27)
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where
e0(k) = [e(k) e(k − 1) . . . e(k − na)]T

∆u(k) = [∆u(k − 1) ∆u(k) . . . ∆u(k + i− 1)]T

∆u0 = [∆u(k) ∆u(k − 1) . . . ∆u(k − nb)]T

Fi =


fi1 fi2 . . . fi(na+1)

f(i−1)1 f(i−1)2 . . . f(i−1)(na+1)

f(i−2)1 f(i−2)2 . . . f(i−2)(na+1)



Gi =


gi−3 . . . g0 0 0

gi−2 gi−3 . . . g0 0

gi−1 gi−2 . . . g1 g0



G′i =


g′i1 g′i2 . . . g′inb

g′(i−1)1 g′(i−1)2 . . . g′(i−1)nb

g′(i−2)1 g′(i−2)2 . . . g′(i−2)nb



(4.28)

Substituting the error predictions in (4.26), leads to the following predictive PID control

law:

∆u(k) = (1−K α)−1K [βM e0(k) + γM ∆u0(k)] (4.29)

where

α = [g0 g0 g0], βM =
M∑
i=0

Fi, γM =
M∑
i=0

G′i (4.30)

The vector of PID gains K = KPID is found by solving the optimisation problem in

(4.18). The parallel PID control signal (4.29) is compared to the MBPC in (4.14). The

minimisation cost criterion is chosen to be the IAE. Thus, the optimal PID parameters

are calculated in such way that the error between the MBPC control signal and the

predictive PID is almost zero. Once the optimal gains are found, the parallel predictive

PID control signal can be implemented using (4.29). Note that, the gains depend on

the value of M . This value can be tuned to improve the performance of the controller.

4.4.1 Parallel PID control algorithm

The parallel PID can be implemented using the following procedure.

Step 1: Initialisation

(a-f) Follow steps a to f from the predictive PID algorithm in Section 4.2.4.
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Step 2: Off-line calculation

(a-b) Follow steps a to b from the predictive PID algorithm in Section 4.2.4.

(c) Compute the prediction matrices α, βM and γM .

Step 3: On-line calculation

(a) Read the actual information from the process. In case of dropouts,

compute the process estimation using the KF.

(b) Implement the MBPC and parallel predictive PID control laws.

(c) Solve the optimisation problem in (4.18) to find the optimal PID gains.

(d) Apply the predictive PID control signal.

Step 4: Fine-tuning

(a) Check the closed-loop performance and fine-tune M and λ if necessary.

4.4.2 Simulation results

Consider the nominal example given in (4.24). The MBPC prediction horizon is selected

as N = 30. The closed-loop response is tuned by selecting λ = 10. Further simulations

show that smaller values of λ lead to a larger overshoot and some small variations in

the response, which causes a higher cost. The vector of MBPC gains is: KMBPC =

[5.04 −5.21 0.46 0.06 0.06]. The optimisation problem is solved forM = 2 and Ploss = 0.

The initial point is selected as x0 = [4 − 4 0.4], the lower limits as lb = [0 0 0] and the

upper limits as ub = [10 10 10]. The function tolerance is 1 × 10−8. The number of

iterations and function evaluations are 2031 and 2077, respectively. The optimal vector

of PID gains is K = [1.21 − 1.19 0.07].

Note that, a greater value of M can be used to improve the results. However, increasing

the value of M increases the PID gains and that can be a concern for the stability.

Now the system is tested using a Ploss = 30%. For the KF design the noise covariances

are chosen as: Qf = Rf = 1 × 10−8. The vector of Kalman gains converges in steady

state to the value: Kf = [0.307 0.315]T . The system output, the KF estimation and
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control signal are shown in Figure 4.6. The plot shows that the filter estimation is very

close to the real output of the parallel predictive PID controller, allowing the control

system to have a good estimation of the process in case of dropouts. The percentage

and occurrence of dropouts are depicted in Figure 4.7.

Figure 4.6: System outputs of MBPC and parallel predictive PID, λ = 10

Although the process has a small overshoot, a fast rise time and zero steady error are

accomplished. The IAE cost are J = 0.15 and J = 0.35 for the PID and MBPC,

respectively. The formulation of the parallel predictive PID improves the performance

of the MBPC. The control system appears stable for a rate of dropouts of up to Ploss =

78%. The robustness of the control design for a fast closed-loop response and under the

condition of a high percentage of dropouts is superior to other methods studied before.
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Figure 4.7: Time instants of data dropouts

4.5 Predictive control for dropouts with augmented state-

space model

A new MBPC with an embedded integrator and PID structure is presented. The KF

is added to the control scheme to compensate dropouts. An augmented state-space

model is proposed to achieve tracking of the step reference (Wang, 2009). Consider the

following state-space system:

∆x(k + 1) = A∆x(k) + B∆u(k)

y(k + 1)− y(k) = CA∆x(k) + CB∆u(k)
(4.31)

where ∆x(k+1) = x(k+1)−x(k), ∆x(k) = x(k)−x(k−1) and ∆u(k) = u(k)−u(k−1).

The augmented model is built by connecting the output to the difference of the state

variables, which is necessary to obtain the integrating effect in the design. Thus, the
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new state vector is given as:

x(k) = [∆x(k)T y(k)]T (4.32)

Now, the augmented state-space system is defined as:[
∆x(k + 1)

y(k + 1)

]
=

[
A OT

CA 1

][
∆x(k)

y(k)

]
+

[
B

CB

]
∆u(k)

y(k) =
[
O 1

] [∆x(k)

y(k)

] (4.33)

where O = [0 0].

4.5.1 Recursive matrices for augmented state-space model

The prediction matrices are calculated using recursion (Rossiter, 2003, pp. 31-33).

Replacing one step-ahead prediction recursively, the N ahead predictions are given by:

x(k +N) = ANx(k) + AN−NuB∆u(k +Nu − 1)

y(k +N) = CANx(k) + · · ·+ CAN−NuB∆u(k +Nu − 1)
(4.34)

Then, the notation can be reduced as:

y = Px(k) + Hu (4.35)

where y and u have been defined in (4.10) for d = 0, P is the matrix that depends on

past values of x(k) and H depends on the predictions of the input ∆u(k).

4.5.2 Predictive PID structure

A new cost function J can be rewritten by replacing (4.35) in (4.1). The minimisation

of J results in the following optimal control law:

∆u(k) = K [r−Px(k)] (4.36)

where

K = (HTH + λI)−1HT (4.37)
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Moreover, ∆u(k) can be reformulated as:

∆u(k) = Ke(k) (4.38)

where e(k) = r - Px(k).

The PID gains can be found by solving the optimisation problem (4.18). The error

between the MBPC control law given by (4.38) and the PID one (4.16) is minimised.

The cost function has been defined to compute the optimal PID parameters in such

way that the error between the MBPC control signal and the predictive PID is almost

zero. The function simulannealbnd is selected since it solves quickly the optimisation

problem subject to the bounds of the PID gains. Once the optimal gains are found,

the PID control signal can be implemented using (4.16).

4.5.3 Predictive PID control with augmented state-space algorithm

The predictive PID control with augmented state-space can be implemented using the

following procedure.

Step 1: Initialisation

(a) Set up the discrete state-space model of the process and compute

the augmented state-space model.

(b-f) Follow steps b to f from the predictive PID algorithm in Section 4.2.4.

Step 2: Off-line calculation

(a) Compute the prediction matrices P and H.

(b) Calculate the MBPC gain, K, using (4.37).

Step 3: On-line calculation

(a) Read the actual information from the process. In case of dropouts,

compute the process estimation using the KF.

(b) Implement the MBPC and PID control laws.
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(c) Solve the optimisation problem in (4.18) to find the optimal PID gains.

(d) Apply the predictive PID control signal.

Step 4: Fine-tuning

(a) Check the closed-loop performance and fine-tune λ if necessary.

4.5.4 Simulation results

The augmented state-space model of the nominal example in (4.24) is calculated using

(4.33). The prediction horizon N = 20, control horizon Nu = 3 and λ = 0.1. For the

KF design the noise covariances are chosen as: Qf = Rf = 1 × 10−8. The vector of

Kalman gains converges in steady state to the value: Kf = [0.3071 0.315]T . The optimal

PID gains are computed using (4.18) and the parameters of the optimisation function

simulannealbnd have been defined the same as in the Section 4.2.5. The number of

iterations is 1801 and the number of function evaluations is 1841. The optimal PID

gains are: kp = 15.21, ki = 19.79 and kd = 16.80.

The predictive responses are shown in Figure 4.8 and the percentage and occurrence of

dropouts are depicted in Figure 4.9. The estimation of the real process is achieved with

the implementation of the KF. The IAE is J = 0.12 for the MBPC and the predictive

PID responses. Note the influence of the weighting value λ that has been selected as

0.1. The new controller gives lower tracking error with a smaller weighting factor. Some

tests varying the control horizon indicate that too long prediction could deteriorate the

performance and bigger overshoots are found. This is reasonable since the errors in the

prediction are bigger for long prediction horizon. The percentage of dropouts from the

sensor to controller and from the controller to actuator is 65%. Therefore, using lower

values of λ the method can effectively control the loss of information when the rate of

dropouts is very high, while a good performance is accomplished.

4.6 Comparison

Four new predictive control algorithms have been presented to compensate dropouts

in WNCS. Step responses of the four approaches are compared in Figure 4.10. The

performance has been assessed using the IAE criterion. The results are summarised
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Figure 4.8: System outputs of augmented model for MBPC and PID, λ = 0.1

in the Table 4.2. A percentage of dropouts Ploss = 30% and λ = 10 is selected. The

time instant of the dropouts is presented in Figure 4.3. According to the results, when

Table 4.2: Summary of controllers performance

Controller IAE

MBPC PID 0.23526

MBPC PID consecutive dropouts 0.31681

MBPC Parallel PID 0.15486

MBPC Augmented PID 0.10028

the dropout percentage is low, the predictive PID based on MBPC (dash-dotted line)

performs better than the networked controller for consecutive dropouts (dotted line).

However, further experiments demonstrate that the latter deals with the higher drop-

outs and a higher consecutive occurrence much better. This is because the controller

can apply saved predictive control actions in response to dropouts. In addition, the

time response can be manipulated using the MBPC tuning parameter λ.
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Figure 4.9: Time instants of data dropouts

Parallel predictive PID control (dashed line) gives better performance than MBPC

with PID structure for low and high percentages of dropouts. As explained before,

the predictive PID controller is designed in such a way that the control performance is

close to MBPC. In addition, the M value can be used to tune the response. For M = 2

and λ = 10 the WNCS is stable up to Ploss = 78%, which is superior to the previous

strategies.

The predictive PID control with an augmented state-space model produces a very

efficient controller with a great response, being the one that has the best performance.

The integral action has been included in the model and allows to have the minimum

performance index under the presence of the dropouts. The superiority of the proposed

approach has been indicated in comparison with the other methods using a very lossy

wireless network.
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Figure 4.10: Step responses comparison, λ = 10

4.7 Constrained Predictive PID control for packet drop-

outs in WNCS

In this section, a new constrained predictive PID controller with similar properties to

MBPC is developed to compensate dropouts in WNCS. A quadratic programming pro-

blem optimises a MBPC cost function to find the optimal PID gains at every sampling

time. The constraint handling is presented to stop input saturation. The problem of

the occurrence of dropouts from sensor to controller is compensated by combining the

controller with a Kalman filter. The measured output y(k) is replaced to the Kalman

estimation ŷ(k) allowing the controller to have always information on the process even

in the presence of dropouts. To compensate consecutive dropouts from controller to ac-

tuator, predictions of the control signal are calculated and saved in the actuator for the

next sampling instant. The method is applied to typical second order and non-minimum

phase systems with delays.
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4.7.1 Constrained predictive PID implementation

The proposed control scheme is presented by the block diagram depicted in Figure

4.11. The control signal is u, y stands for process output, e is the error and r is

the reference signal. The controlled plant is Gp(z). The proposed framework is for a

class of linear, discrete-time, constrained process. A WNCS whose sensor and control

information is transported over a wireless network is considered. The dropouts from

sensor to controller and from controller to actuator are represented as dpsc and dpca,

respectively. A quadratic programming problem optimises a MBPC criterion to find

the optimal PID gains at every sampling time. The constraint handling is presented to

stop input saturation.

Network

PID

K(k, e, u)
dpca? Actuator Gp(z)

u

Using A and B

solve Diophantine

equation

Calculate the

matrices F, G

Find the GPC criterion

J(G,F, uk−1, yk−1, r, a, b)

Find K with

quadratic pro-

graming ∇J

Filter
Use u(k)

predictions

Sensordpsc?

r e

yes

no
y

−

ŷ

ys yes

no

ys

Figure 4.11: Diagram of constrained predictive PID controller structure

The measured output ys is switched to the KF estimation ŷ allowing the controller to

have always information of the process even in the presence of dropouts. Predictions

of the control signal are calculated and applied accordingly to compensate consecutive

dropouts from controller to actuator.

4.7.2 The MBPC reduced criterion

Consider the MBPC cost function described by (4.1). By selecting the control horizon

Nu = 1, a GPC reduced criterion is presented as follows:

J =
∑Nph

j=N1

[ŷ(k + j)− r(k + j)]2 + λ[∆u(k)]2 (4.39)
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The design of the predictive PID controller requires that the control horizon is selected

as one since the PID control law only computes ∆u(k). Now, the procedure stated in

section 4.2.1 is used to find the prediction matrices. The output predictions found in

(4.9) can be rewritten as:

ŷ(k + j) = Fj(q
−1)y(k) +Gj(q

−1)∆u(k + j − d− 1) (4.40)

Applying the last result to (4.39) the cost function J is formulated as the following

quadratic problem:

J = (Gu + Fy − r)T(Gu + Fy − r) + λuTu (4.41)

where
r = [r(k + 1) r(k + 2) · · · r(k +N)]T

y = [ŷ(k + 1) ŷ(k + 2) · · · ŷ(k +N)]T

u = [∆u(k) ∆u(k + 1) · · · ∆u(k +Nu − 1)]T

F(q−1) =


Fd+1(q−1)

Fd+2(q−1)
...

Fd+N (q−1)

 , G =


g0 0 · · · 0

g1 g0 · · · 0
...

...
...

...

gN−1 gN−2 · · · g0



For simplicity of notation, it is assumed that d = 0 in the equations above. The

quadratic cost function is minimised by solving ∇J = 0. Note that the optimal input

solution ∆u(k + j − 1) = 0 for j > 1. The control horizon has been selected as one

because the PID law only computes ∆u(k).

4.7.3 The design of the Predictive PID controller

4.7.4 The PID

The velocity form of the PID controller in (4.16) is considered and the vector of gains

K is defined as:

K =

[
kp + ki Ts+

kd
Ts

− kp − 2
kd
Ts

kd
Ts

]T
= [k1 k2 k3]T (4.42)
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Then, the controller law is defined as follows:

∆u(k) = KTe(k) (4.43)

where e(k) is the vector of control errors:

e(k) = [e(k) e(k − 1) e(k − 2)]T (4.44)

The PID controller gains must be positive scalars: kp > 0, ki > 0, kd > 0. Therefore,

it is easy to see that the vector of gains K must fulfil the linear inequality constraints:

k1 + k2 + k3 > 0, k2 + 2k3 < 0, k3 ≥ 0 (4.45)

4.7.5 The predictive PID controller

The PID predictive controller is obtained by combining the MBPC and PID control

laws. The purpose of the design is to compute the PID gains in such a way that the

control signal is as close as possible to the MBPC signal. First, by simplifying (4.41)

yields:

J(K) = uT (GTG + λI)u + uT 2GT (F y - r ) (4.46)

Replacing ∆u from (4.43) leads to:

J(K) = [e(k)TK ]T(GTG + λI)e(k)TK + [e(k)TK ]T2GT(F y - r ) (4.47)

This is equivalent to:

J(K) = KT e(k) (GTG + λI)e(k)T K + KT 2e(k)GT(F y - r ) (4.48)

The new algorithm will be carried out by minimising the cost function respect to the

PID controller gains K :

∆ucons = min
K

J(K ,y) (4.49)
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where ∆ucons is the constrained optimal input at time instant k. It follows directly from

(4.48) that the PID gains can be found by solving the following quadratic program:

min
K

1

2
KT H K + fT K

s.t. a(k) K ≤ b(k)

(4.50)

where
H = 2(GTG + λI)e(k)e(k)T

f = 2GT (F y - r )e(k)
(4.51)

The constraints of (4.50) will guarantee the contributions of control input and rate

input are applied according to the controller limitations. a(k) depends on the past

values of the error and b(k) on the upper and lower limits on the control input and rate

input. The design is extended in the next section. The control law can be rewritten

from (4.43) as:

∆u(k) = K (k)e(k) (4.52)

The optimisation problem has been set using the command quadprog(H, f, a, b), where

H, f have been stated in Equation (4.51) and a, b are the constraint matrices of the

linear inequality. The interior-point-convex algorithm is used. The solver tries to find

the optimal point based on the Karush-Kuhn-Tucker (KKT) conditions, where the

gradient must be zero at the minimum and take constraints into account.

It is important to stress that the vector of PID gains will change at every time instant k.

As a consequence, the proposed predictive PID is time-varying and it will be optimised

for a bounded percentage of dropouts.

The advantage of the predictive PID is that it improves the traditional PID performance

by equating its control signal with the (MBPC) control signal. Since the gains are

varying every sampling time, the performance of the PID controller is as good as the

MBPC controller. Moreover, the control signal along the input steps changes smoothly,

as demonstrated in Section 4.7.10.

4.7.6 Constraints for the control input and control input increment

Here the constraints to select the appropriate predictive PID gains to prevent input

saturation are formulated. To introduce the constraint handling, the predictive PID
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control subject to linear constraints for the input and input increment is solved:

−∆umin ≤ ∆u(k) ≤ ∆umax

− umin ≤ u(k) ≤ umax
(4.53)

Using (4.42) the predictive PID control law in equation (4.52) can be defined as:

∆u(k) = k1 e(k) + k2 e(k − 1) + k3 e(k − 2) (4.54)

By combining the previous result and ∆u(k) = u(k)− u(k − 1) in equation (4.54) the

constraints can be written as:

−∆umin ≤ k1 e(k) + k2 e(k − 1) + k3 e(k − 2) ≤ ∆umax

− umin − u(k − 1) ≤ k1 e(k) + k2 e(k − 1) + k3 e(k − 2)

≤ umax − u(k − 1)

(4.55)

The inequalities in (4.55) can be separated and a matrix arrangement is obtained.

Moreover, by combining equation (4.45) with the previous result the final constraint

matrix is found:

0 1 2

0 0 −1

−1 −1 −1

e(k) e(k − 1) e(k − 2)

−e(k) −e(k − 1) −e(k − 2)

e(k) e(k − 1) e(k − 2)

−e(k) −e(k − 1) −e(k − 2)




k1

k2

k3

≤



−ε
0

−ε
∆umax

−∆umin

umax − u(k − 1)

−umin + u(k − 1)


(4.56)

Note that, the constraints should be fulfilled for every ∆u(k)j , j = 1, . . . , N − 1. The

final constraint matrix in equation (4.56) has the form a(k)K ≤ b(k) previously defined

in the optimisation problem proposed in (4.50).

4.7.7 Dropouts from controller to actuator compensation

To compensate for dropouts the from controller to the actuator, the predictions of the

control signal are calculated. First, from (4.51) the matrix G1 is computed instead of
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G:

G1 = G(1 : N, j) (4.57)

where j stands for columns of matrix G and N1 ≤ j ≤ N . Therefore, the quadratic

program computes N predictions of the control signal ∆u(k) using the coefficients of

j−th column of matrix G. During a successful transmission from controller to actuator,

the controller inputs are saved in the actuator for the next sampling instant. At time

k, a dropouts detector at the actuator location indicates if the new control signal is

not received and applies the next prediction uj(k) to compensate the dropout. If there

are not saved predictions, the actuator arbitrarily applies the initial condition u0 = 0.

Note, that it has been assumed that some computational and buffering resources are

available at the actuator.

Notably, in the proposed algorithm the controller has no knowledge of the control

input that the actuator applies. However, this is not a limitation since it has been

demonstrated that acknowledgements from the actuator to the controller do not improve

the stability of the networked predictive control (see Gupta and Martins (2010) and

the references therein).

In the case of consecutive dropouts, the maximum number of consecutive dropouts

γmax is selected to match the prediction horizon N . Thus, the ‘smart” actuator can

determine the occurrence of consecutive dropouts and apply the past predictions until

either the condition is over or γmax has been reached. For this end, a consecutive

dropouts detector has been created. It consists of an index, m, that counts the number

of consecutive dropouts and it is reset every time the information is available. To

obtain γmax the WNCS is implemented in the simulator and the number of consecutive

dropouts is measured for variations of the percentages of dropouts from 25% to 80%.

A maximum value of γmax = 30 is selected since it covered most of the number of

consecutive dropouts.

4.7.8 Dropouts from sensor to controller compensation

The Kalman filter estimation proposed in 4.2.3 is extended to handle the delay in the

system using a smoothed estimation. As mentioned in Section 4.2, the delay has been

included in the predictive algorithm. Therefore, the estimation ŷ(k) should include the

delay as well. An estimation of x(k) can be obtained by smoothed estimates for lags
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up to d samples, that is:

x̂d(k) = E {x(k − d)|y(0), · · · , y(k − 1)} (4.58)

This is called a smoothed estimate. The accuracy increases when more measurements

are used to estimate the state. However, the greater the delay, the greater the com-

plexity of the estimator. A fixed-lag smoothing problem with a fixed delay d has been

implemented to address the delay in the system. It can be derived by augmenting the

state vector by the delayed versions of the state as follows:


x(k + 1)

x1(k + 1)
...

xd(k + 1)

 =



A 0 · · · 0

I 0 · · ·
...

0
. . .

. . . 0
...

. . .
. . . 0

0 · · · I 0





x(k)

x1(k)
...
...

xd(k)


+



I

0
...
...

0


υ(k) (4.59)

y(k) =
[
C 0 . . . 0

]


x(k)

x1(k)
...
...

xd(k)


+ ω(k) (4.60)

The filter for the composite state has the following form:


x̂(k + 1)

x̂1(k + 1)
...

x̂d(k + 1)

 =



A 0 · · · 0

I 0 · · ·
...

0
. . .

. . . 0
...

. . .
. . . 0

0 · · · I 0





x(k)

x1(k)
...
...

xd(k)


+



K(k)

K1(k)
...
...

Kd(k)


[y(k)− Cx̂(k)] (4.61)

where the gains [K(k), · · · ,Kd(k)] are obtained from the standard filter for the com-

posite state.

The examples in Section 4.7.10 help to illustrate the implementation of the proposed

scheme that joins the Kalman estimator with the previous predictive PID control.
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4.7.9 Constrained predictive PID control algorithm

The constrained predictive PID can be implemented using the following procedure.

Step 1: Initialisation

(a) Set up the model parameters of the process.

(b) Select the prediction horizon N and the future reference vector.

(c) Compute the prediction matrices F, G.

(d-g) Follow steps c to f from the predictive PID algorithm in Section 4.2.4.

(h) Set the index m = 0, as the number of consecutive dropouts.

Step 2: Off-line calculation.

(a) Implement the predictive PID control law and the KF.

(b) Compute the time-invariant part of the constraint matrices.

Step 3: On-line calculation

(a) Read the actual information from the process. In case of dropouts,

compute the process estimation using the KF.

(b) Compute the predictive PID control law and send all control predictions

to the actuator.

(c) The actuator applies the present value of the control signal to the process.

In case of dropouts, it applies the previous control prediction and increments

the index m = m+ 1.

Step 4: Fine-tuning

(a) Check the closed-loop performance and fine-tune Qf , Rf and λ if necessary.
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4.7.10 Simulation studies

4.7.11 Numerical example 1: Second order process

The performance of the predictive PID control is investigated using simulation studies.

The proposed algorithm has been implemented and tested using the TrueTime network

simulator configured for wireless protocol 802.11b (WLAN) as explained in Section

4.2.5. The results have been compared with the solutions obtained by the classical

MBPC with constraints.

Consider the following system with a sampling time Ts = 0.01 s:

Gp(z) =
0.003319(z + 0.5215)

(z − 0.9755)(z − 0.09748)
(4.62)

Although different values of the penalty in the control action can be selected, λ = 0.5

is chosen for a faster response of the closed-loop. As explained before, the prediction

horizon is N = 30 and the control horizon Nu = 1. Control input constraints have been

assumed as umax = 3, umin = −3 and the rate input ∆umax = 10. For the KF design

the noise covariances are chosen as: Qf = Rf = 1× 10−8. The vector of Kalman gains

converges in steady state to the value: Kf = [0.12 0.13]T .

The optimisation problem has been set using the command quadprog. Lower and upper

bounds of zero and ten, respectively have been selected to find positive and finite PID

gains. Note, that these values can be adjusted according to the application. The

maximum number of iterations is 200. The optimality tolerance is 1× 10−8. Similarly,

the tolerance on the constraint violation has been set as 1 × 10−8. The maximum

number of iterations is six.

The optimal vector of PID parameters K is found and compared to equation (4.42) to

find the optimal gains of the predictive PID every sampling time.

Figure 4.12 shows the system outputs and constrained controller inputs of the predictive

PID and MBPC for a sin wave reference signal (black dashed line). The reference

tracking is achieved (top) and the control signal (bottom) satisfies the constraints (red

dashed line). Moreover, the percentage and occurrence of dropouts for the simulation

are Ploss = 2% from sensor to controller and Ploss = 4% from controller to actuator. A

low percentage of dropouts is chosen to test the tracking response.
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Figure 4.12: System outputs and control inputs for constrained predictive PID

The predictive PID (dash-dotted line) shows almost the same behaviour as the MBPC

(dotted line). The performance of the controllers has been assessed using the Integral

of Absolute Error (IAE). The criterion returned a value of J = 1.8636 for the predictive

PID response which is better than the MBPC: J = 1.9293. Although minor oscillations

are found in the signals, the controller works within the requirements even with the

presence of dropouts.

Figure 4.13 compares the real output with the Kalman filter estimation. The plot shows

that the filter output has the same behaviour than the real process. The error is almost

negligible as a result of the small covariance noises applied in the design.
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Figure 4.13: Comparison between real process and estimation for constrained predic-
tive PID

4.7.12 Numerical example 2: Non-minimum phase process

Consider the following non-minimum phase process with dead time and sampling time

Ts = 1 s:

Gp(z) =
−0.26785 (z − 1.292) z−3

(z − 0.6065)(z − 0.006738)
(4.63)

The network parameters and the optimisation Toolbox are set as in Example 1. As

explained before, the prediction horizon is N = 30 and the control horizon Nu = 1.

The closed-loop stability is achieved by selecting λ = 25. Control input constraints

have been assumed as umax = 10, umin = −5 and the rate input ∆umax = 10. A step

disturbance of magnitude 1.1 is introduced at time t = 450 s to test the robustness

of the design. The maximum number of iterations is three. The results have been

compared with the solutions obtained by the classical MBPC with constraints.
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Figure 4.14: System outputs for predictive PID and MBPC

Figure 4.14 shows the system outputs and constrained controller inputs of predictive

PID and MBPC for step changes in reference signal (dashed line). The percentage and

occurrence of dropouts for the simulation are depicted in Figure 4.15. The predictive

PID shows almost the same behaviour than MBPC as it is expected. The reference

tracking and the disturbance rejection are achieved. Note that the input constraints

(dotted line) are satisfied. However, further tests shown this leads to a slower rising

time compared to the case without constraints.

Figure 4.16 shows that the KF estimation is close to the process output. Therefore,

when a dropout from sensor to controller occurs, the KF provides an accurate estimate

of the process output. The control system is stable and works within the requirements

for the entire drop of sensor and controller packets. Further tests show that the percen-

tages of dropouts could be increased up to Ploss = 84% which is the threshold where

the closed-loop appears to be stable.
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Figure 4.15: Time instant of data dropouts

The performance of predictive PID and MBPC responses for servo and regulatory

responses has been assessed using the IAE criterion. The results are summarised in the

Table 4.3.

Table 4.3: IAE values for step responses

Controller Jr Jd
Predictive PID 211.8 7.988

MBPC 205 7.989

The indexes values demonstrate that the predictive PID method performs as good as

the MBPC scheme.

4.7.13 Robustness results

Since the PID predictive controller is model based, the effects of model uncertainties

and dropouts on NCS’s stability require further examination. Therefore, the stability
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Figure 4.16: KF estimation for constrained predictive PID

of the method is investigated here studying the closed-loop responses for variations of

the process model parameters and the percentage of dropouts. The following second

order process is selected for this analysis:

Gp(z) =
0.06347z−1 + 0.04807z−2

1− 1.323z−1 + 0.4346z−2
(4.64)

The controller settings are the same than the previous example. A step of magnitude

one is selected. Control input constraints have been chosen as umax = 1, umin = 0 and

the rate input as ∆umax = 10.

4.7.14 Study of stability for variations of percentage of dropouts

The percentages of dropouts from sensor to controller and from controller to actuator

are varied to demonstrate the robustness of the design. The step responses for different

scenarios are shown in Figure 4.17. The dashed lines show that when the probability

of loss is increased from 0% to 65%, the responses are similar. Nevertheless, after 20 s,

the control input for a 65% of packet loss presents small oscillations. If the probability
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keeps increasing, the oscillations continue to grow until the output is unstable. The

dotted line shows the response to a higher percentage of dropouts and the performance

of control system has decreased considerably.

Further validations reveal that the closed-loop response is stable for a maximum proba-

bility of dropouts from sensor to controller of 84%, that means the system is still stable

when only 16% of process measurements are transmitted from sensor to controller.

Moreover, the control system can compensate at the same time for a percentage of

dropouts from controller to actuator of 13% which means that only 87% of the control

inputs are received by the process.

Figure 4.17: Comparison of step responses with dropouts variations

4.7.15 Study of stability for variations of the gain

Figure 4.18 shows that even with the constraints, the closed-loop system is stable if

the gain is increased and reduced to ±35% of the model process gain. Although the
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Figure 4.18: Comparison of step responses with gain process model variations

process presented a small oscillation and slower rising time, zero steady error and a

good tracking performance are accomplished when the process gain changes within the

given percentages.

4.7.16 Study of stability for variations of the poles

Figure 4.19 shows the closed-loop responses for variations in the open-loop non-dominant

pole called p1. Note that, the effect of varying the p2 is similar since the poles are closer

to each other. It is evident from the plot, that pole variations of ±35% are permitted

without making the closed-loop system unstable.
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Figure 4.19: Comparison of step responses with pole 1 process model variations

4.7.17 Discussion

The performance stability of the control scheme is satisfactory for the selected prediction

horizon. Further tests indicate that a larger N degrades the performance because the

errors in the prediction are bigger for long prediction horizon. The predictive PID

controller and MBPC show similar performances; in some cases, the predictive PID

controller performs better than the MBPC for higher percentages of dropouts.

The constraint handling produces a reduction of the performance, but satisfactory

results are still found. In most cases, a faster weight λ can improve the sluggish response

of the control signal. However, there are scenarios where the control strategy cannot

stabilise faster responses with high percentages of dropouts.

The sampling time of the WNCS should be carefully chosen. The selected values for the

previous validations can guarantee the stability of the implementation. A special at-

tention has to be considered for the interaction between sensor, actuator and controller
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nodes. The sampling times of the first ones must be smaller than the later one.

For the given example, the control performance of the PID controller degrades gracefully

when the percentage of dropouts is increased and it is found that Ploss = 84% is the

threshold where the closed-loop appears to be stable.

The new predictive PID controller offers a good performance to variations in the model

parameters. Also, this methodology can compensate systems subject to dropouts within

a large range of variations. The fact that the closed-loop system is robust to process

and dropouts variations obeys to the optimisation tool used to obtain the predictive

PID controller gains and the accurate estimation of the KF. The approach successfully

minimises the error by changing the controller gains at every sampling time and allowing

a maximum system parameters variation and percentage of dropouts.

Simulation results demonstrated that the switching action between the KF estimation

and the output of the process could have affected the performance, but the KF para-

meters were adjusted to provide an accurate estimation of the actual output of the

process. The Kalman filter corrects the error and tracks the output of the process very

quickly. In the next chapter, a KF with time-varying gain has been used to provide the

controller with the estimate of the output at each time instant.

4.8 Summary

In this chapter, predictive PID controllers were presented to compensate dropouts in

WNCS. In summary, the results demonstrated the effectiveness of the proposed predic-

tive controllers with PID structure for WNCS. The control system was implemented

using the TrueTime network simulator. The results showed that the five new approaches

successfully solved two major problems in the WNCS: missing sensor measurements and

controller actions.

The receding control theory has been combined with a Kalman filter to achieve a con-

trol system and an estimation algorithm that compensate for dropouts from sensor to

controller. The predictions of the control signal were calculated to compensate conse-

cutive dropouts from controller to actuator. The numerical studies demonstrated that

the proposed methods successfully deal with longer dropouts and higher consecutive

occurrence.
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The designs have been compared with MBPC using a non-minimum phase system with

delay. The performance analysis showed that the predictive PID method performs as

good as the MBPC scheme. Also, an analysis of the robustness of the system has

been studied for a very lossy wireless network and variations of the process model

parameters. The simulations scenarios illustrated that the control system meets the

stability requirements in the presence of disturbance, process uncertainties, constraints

and dropouts. Flexibility and stability supported the interest in predictive PID control.

In the next chapter, the predictive approach will be extended to the complex WNCS

with MIMO systems and decentralised control whose results can be tested in an indus-

trial application.



Chapter 5

Decentralised wireless networked

model predictive control design

for complex industrial systems

5.1 Introduction

The Decentralised Wireless Networked Model Predictive Control system (DWNMPC)

is a decentralised model predictive control that involves the exchange of information

across a wireless network. Decentralised structures are attractive and widely used solu-

tions for controlling large systems, where the centralised system decomposes into n sub-

systems each with its local controller; reducing computation time and communication

costs. There are decentralised applications in traffic control, load frequency control,

unmanned aerial vehicles, energy households control, water and sewer networks, wind

farms, wireless sensor/actuator networks and robotics.

The introduction of the network offers the possibility of decreased costs, simplified in-

stallation and maintenance and increases the supervision and control capabilities for

the whole system. However, the network may introduce large communication delays

and loss of information, which greatly influences the stability and robustness of the

decentralised control system. A recent survey by Ge, Yang and Han (2017) defined

the many points that require more attention in distributed NCS. Han, Peng and Fei

(2016) claimed that it is necessary to explore further distributed NCS applications and

130
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investigate the effects of networks in a real-time operation. Also, there are challenging

problems that require further studies, such as power limitation, disturbances, con-

strained systems, strong interactions, among others. These issues are the motivation to

develop control structures with flexible and robust characteristics that can handle the

wide range of these limitations.

The Decentralised Model Predictive Control (DMPC) began to gain industrial and

academic importance in recent years. For example, the industrial inclusion of MPC

to Distributed Control Systems (DCS) reported by Qin and Badgwell (2003) is an

important advance in this field. In the literature, few contributions can be found and

yet the potential of DMPC in control performance has been highlighted (see Tuan et al.

(2015) and references therein).

The effect of interactions between subsystems can be considered to improve the perfor-

mance of the DMPC. Cooperative strategies can be implemented where controllers, also

called agents, share their control actions among other agents. For example, Vaccarini,

Longhi and Katebi (2009) proposed an unconstrained networked DMPC with interac-

tion predictions for systems with strong interactions. The agents coordinate with each

other through the exchange of predictions of control input and state predictions.

It is important to note that DMPC has been addressed mainly for ideal communication

channels. However, the introduction of the network communication leads to long delays

and dropouts which affect the system performance. The reliability of DMPC for NCS

under network constraints is still under investigation. There is a small contribution

in this area that includes the work of Freirich and Fridman (2016) and Heemels et al.

(2013). They addressed the problem of network delays for large NCS with multiple local

networks operating independently and asynchronously. A model of the network that

incorporates varying transmission intervals and varying delays is presented. Borgers

and Heemels (2014) and Liu, Wang and Liu (2016) extended the analysis to multiple

subsystems and a maximum transmission interval is given for each network using the

small-gain theorem. Another effort has been made by Zhang, Bao and Xu (2013), who

presented an iterative algorithm for unconstrained networked MPC with one-step delay

communication using neighbourhood optimisation. Note that, the problem of dropouts

has not addressed yet.

The decentralised control of multiple cooperative vehicles under random delays and

dropouts was investigated by Izadi, Gordon and Zhang (2011). The concept of the
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tube MPC is also employed to limit the exchange of neighbour trajectories when large

delays occur. The work of Bemporad and Barcelli (2010) showed that dropouts could

be modelled using a Markov chain with m states. The experiments showed the detri-

ment of the performance as a result of the decentralised solution and the effect of the

dropouts. The stabilisation condition of a decentralised control system under drop-

outs using the eigenvalues of the system has been considered by Liu and Gupta (2012)

and Liu and Gupta (2017). Also, Alessio, Barcelli and Bemporad (2011) provided the

stability criteria of linear systems subject to input constraints and dropouts of maxi-

mum one sampling interval. They considered an intermittent lack of communication

of measurement data between agents. Note that, the inclusion of the dropouts in the

solution gives a complex computation problem and yet the input and output interaction

between the subsystems has not taken into account.

In this chapter, the insertion of the network communication and the compensation of

its constraints in DMPC are studied. The chapter is structured as follows. Section

5.1 presents a framework of comparison of the different DMPC approaches for NCS

and discusses the optimality of the solutions. It also shows the many points that need

more attention. Section 5.2 offers a description of structures NCS and characteristics.

Then, a new constrained decentralised networked predictive control is developed with

a coordination strategy and presented in Section 5.3. The approach is novel to include

the effect of the interactions in the subsystems to increase the control performance while

using a reduced exchange rate of information. A decentralised KF solution is added

to the control scheme to compensate dropouts when the control loop is closed with a

wireless network. The effectiveness of the proposed method under disturbances, strong

interactions and the reduction of information exchange is demonstrated with several

simulation studies in Section 5.4.

5.1.1 Centralised, decentralised and distributed systems

In the literature, there are three main control structures of NCS: centralised, decen-

tralised and distributed. Figures 5.1, 5.2, and 5.3 illustrate the three control schemes.

In the first, a single controller manages all the control actions in the system, which may

be unsuitable for large scale systems due to the spatial distribution of the components

and the heavy computational load involved. The second scheme divides the system into
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Figure 5.1: Centralised control scheme

Figure 5.2: Decentralised control scheme

Figure 5.3: Distributed control scheme

n subsystems each with its local controller. The lack of communication between agents

can lead to suboptimal performance compared to the centralised solution.

Decentralised or fully decentralised systems are classified according to the intensity

of interaction between subsystems. In the first option, the interaction is modelled

and combined with the subsystem model to construct a composite model. For the

latter option, the interaction is considered weak and omitted in the controller design.

However, it can be treated as disturbances.
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The third structure is similar to the decentralised one, with the main difference being

that in the distributed solution a process of negotiation between agents is carried out

via the exchange of possible control inputs and the acceptance of a solution where the

optimum performance is achieved.

5.2 Decentralised networked model-based predictive con-

trol

In the proposed DWNMPC solution, the information that includes predictions of the

control input and state is transferred through multiple sensors/actuators connected

via a wireless network, which is shared by other control systems. In the presence of

dropouts, an estimator for each subsystem is necessary to supply the information.

A decentralised estimation algorithm based on KF was introduced to estimate the

states locally in a two-level coordination strategy for GPC by Katebi and Johnson

(1997). Also, Roshany-Yamchi et al. (2013) applied a KF based distributed predictive

control to large scale multi-rate systems in power networks to compensate for the loss

of information.

A decentralised estimation using a decentralised KF is presented to provide an estimate

of the states that allows to always have information of the process even in the presence

of dropouts. A KF, based on the state-space model, is available for each subsystem.

Consider the state-space model S:

x(k + 1) = Ax(k) + B∆u(k) + w(k)

y(k) = Cx(k) + v(k)
(5.1)

where x(k) ∈ Rnx is the state vector, ∆u(k) ∈ Rnu is the vector of control increments,

y(k) ∈ Rny is the measurement vector, w(k), v(k) are the process and measurement

noise sequences, respectively; with covariances Qf and Rf , respectively. Matrix D

is assumed to be zero. Without loss of generality, suppose that the whole system

S is composed of n linear, discrete-time subsystems Si = 1, · · · , n. The subsystems

can be divided based on the dynamical interactions existing in the model of S. Each

subsystem interacts with others by inputs, outputs and states. Then, the state-space
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representation of Si can be expressed as:

xi(k + 1) = Aiixi(k) + Bii∆ui(k) + wi(k) +
n∑

j=1;j 6=i
Aijxj(k) +

n∑
j=1;j 6=i

Bij∆uj(k)

yi(k) = Ciixi(k) + vi(k) +

n∑
j=1;j 6=i

Cijxj(k)

(5.2)

where xi(k) ∈ Rnxi is the state vector, ∆ui(t) ∈ Rnui is the vector of control actions and

yi(k) ∈ Rnyi is the measurement vector. Matrices Aii, Bii and Cii are sub-matrices of

the original A, B and C matrices, respectively, describing a possible approximation of

the evolution of the states of the subsystem i. The process and measurement noise

sequences vectors are wi(k), vi(k) of dimension nxi × 1 and nyi × 1 respectively,

which have been assumed Gaussian, uncorrelated, white, with mean (x̄0i; 0; 0) and cova-

riance (P0i; Qfi; Rfi), respectively. It is assumed that the pair (Aii;Ci) is observable,

(Aii; Qfi
1/2) is stabilizable and Rfi > 0.

Note that (5.2) is equivalent to:

xi(k + 1) = Aiixi(k) + Bii∆ui(k) + wi(k) + Sxi

yi(k) = Ciixi(k) + vi(k) + Syi
(5.3)

where state and output interaction vectors are given by:

Sxi =
n∑

j=1;j 6=i
Aijxj(k) +

n∑
j=1;j 6=i

Bij∆uj(k),

Syi =
n∑

j=1;j 6=i
Cijxj(k)

(5.4)

By the principle of separation, the estimator and the control algorithm are designed

separately. The proposed estimator is a decentralised KF, which will provide the esti-

mation of the state vectors x̂i(k) and x̂j(k).
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5.2.1 Decentralised estimation for dropouts

Consider the decentralised KF for subsystem i denote by:

x̂i(k + 1|k) = x̂i(k|k − 1) + γi(k) Kfi(k) [yi(k)−Ciix̂i(k|k − 1)]

ŷi(k) = Ciix̂i(k|k − 1)
(5.5)

where the index (k|k−1) refers to the information at sampling time k given observations

up to and including time k − 1. The KF gain for each local observer is denoted as Kfi

and the variable γi(k) is defined as follows:

γi(k) =

1 if yi(k) is received at time k

0 if yi(k) is not received
(5.6)

During the presence of dropouts, only the equations for estimation (prediction) of the

KF are computed. Once the information yi(k) is available the measurement (update)

equations are calculated.

5.2.1.1 Prediction

In the proposed decentralised KF, each local filter should estimate xi(k) such that the

state estimate error for subsystem i, i.e. ei(k) = xi(k) − x̂i(k) is minimised. The one

step-ahead prediction is expressed as follows:

x̂i(k + 1|k) = Aiix̂i(k|k − 1) + Bii∆ui(k) (5.7)

Define Pi(k|k − 1) as the covariance of the state estimation error:

Pi(k|k − 1) = E
[
ei(k|k − 1)eT

i (k|k − 1)
]

(5.8)

Then, the noise covariance matrices are: E
[
wi(k)wT

i (k)
]

= Qfi(k), E
[
vi(k)vT

i (k)
]

=

Rfi(k) respectively. E[·] denotes the expectation of the argument. Thus:

Pi(k|k − 1) = AiiPi(k − 1|k − 1)AT
ii + Qfi(k)T (5.9)

The equations (6.10) and (6.12) are forward projections of state and covariance for a

priori estimation. During the dropouts, there is not update of the information.
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5.2.1.2 Measurement update

Once the information is available, the prediction is combined with the current observa-

tion information. Consider the decentralised KF for subsystem i in (6.8). The modified

innovation covariance is:

Ωi(k) = CiiPi(k|k − 1)CT
ii + Rfi(k) (5.10)

Define the innovation or measurement residual for each subsystem i as:

Λi(k) = yi(k)−Ciix̂i(k|k − 1) (5.11)

Now, updating the estimation error covariance as:

ei(k + 1|k) = xi(k + 1|k)− x̂i(k + 1|k) (5.12)

Results in:

P (k+1|k) = E
[
ei(k + 1|k)eT

i (k + 1|k)
]

(5.13)

Substituting the state equation in (5.1) and the estimate state equation in (6.8) and

solving the estimation yields that:

Pi(k+1|k)= AiiPi(k|k−1)AT
ii−2Kfi(k)CiiPi(k|k−1)AT

ii

+ Kfi(k)Ωi(k)KT
fi(k)+Qfi(k)T

(5.14)

The minimum error covariance is obtained by calculating ∂Pi(k+1|k)/∂Kfi(k) = 0.

One can find that the following equation should be satisfied:

− 2 AiiPi(k|k − 1)CT
ii + 2Kfi(k)Ωi(k) = 0 (5.15)

Thus, the KF gain is:

Kfi(k) = Pi(k|k − 1)CT
iiΩ
−1
i (k) (5.16)

The algorithm is a function of γi(k), which is a binary random number of 0 or 1. As a

consequence, the proposed decentralised KF has a time-varying gain where the optimal

gain and the error covariance values are calculated at each time sampling. If necessary,

the KF parameters Rfi(k),Qfi(k) can be tuned to minimise the innovation error and

improve the estimation algorithm.
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5.2.2 Decentralised MBPC

The DWNMPC design is combined with the decentralised KF to compensate dropouts

in WNCS. Each subsystem is controlled by an agent that has a local MBPC and a

local KF. The MBPC algorithm computes the optimal control input to accomplish a

local performance objective. Meanwhile, the KF provides the estimation of the present

state, xi(k) to the MBPC. In Figure 5.4 a diagram indicates the main functional blocks

and the interactions of the DWNMPC control system.

To enhance the global performance of the decentralised solution in comparison to the

centralised one, interactions between the subsystems are taken into account in the

formulation. The interactions defined in (5.4) show that each subsystem can interact

with others by input, states and output. Moreover, predictions of the interactions can

be calculated using an estimated state trajectory and a control input trajectory of the

subsystems.

The estimated states are computed over the prediction horizon x̂i(k + l) for l =

0, 1, . . . , N − 1 and stacked in a vector called X̂i(k). Similarly, input trajectories are

computed over a control horizon and denoted Ûi.

Then, a coordination strategy is implemented where agents share the estimated traject-

ories between them. With the available information, each agent calculates its interaction

predictions and includes them in the optimisation problem to improve the performance

of the decentralised solution.

Figure 5.4: Structure of DWNMPC control system
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The states trajectories X̂i(k) and the input trajectories Ûi are exchanged between con-

trollers during a selected time interval. For this an exchange loop that runs every β

seconds has been implemented. A batch of data containing the trajectories is stored

during β seconds and sent to the other agents in the next cycle. Therefore, the predic-

tions of the interactions at time k are computed using the estimated input and state

trajectories at time k − β. Each agent waits the same time before taking the next

sampling batch. The reduced rate of exchange of information has a significant impact

in the resources utilisation, such as reducing the traffic in the wireless network and thus,

reducing the delays and dropouts and reducing the power consumption of the wireless

nodes.

Consider the state-space representation in (5.2). For each subsystem Si the current

states xi(k) and xj(k) are estimated using the proposed decentralised KF and repres-

ented as x̂i(k) and x̂j(k). Then, the estimated state trajectory is computed by replacing

one-step-ahead prediction in (5.2) recursively. The obtained output prediction can be

written in a compact form as:

Ŷi(k) = Fix̂i(k) + φii(k)∆U i(k) +
n∑
j=1
j 6=i

X̂j(k)φij(k)+

n∑
j=1
j 6=i

∆Uj(k)ϕij(k) +
n∑
j=1
j 6=i

X̂j(k)θij(k)

(5.17)

where
Ŷi(k) =

[
yT
i (k + 1) yT

i (k + 2) . . . yT
i (k +N)

]T
X̂j(k) =

[
x̂T
j (k) x̂T

j (k + 1) . . . x̂T
j (k +N − 1)

]T
∆Ui(k) =

[
∆uT

i (k) ∆uT
i (k + 1) . . . ∆uT

i (k +Nu − 1)
]T

∆Uj(k) =
[
∆uT

j (k) ∆uT
j (k + 1) . . . ∆uT

j (k +Nu − 1)
]T

Fi =
[
(CiiAii)

T
(
CiiA

2
ii

)T
. . .
(
CiiA

N
ii

)T]T

(5.18)

φii(k) =


CiiBii 0 . . . 0

CiiAiiBii
...

. . .
...

...
...

... 0

CiiA
N−1
ii Bii . . . . . . CiiA

N−Nu
ii Bii


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φij(k) =


CiiAij 0 . . . 0

CiiAiiAij
...

. . .
...

...
...

... 0

CiiA
N−1
ii Aij . . . . . . CiiA

N−Nu
ii Aij



ϕij(k) =


CiiBij 0 . . . 0

CiiAiiBij
...

. . .
...

...
...

... 0

CiiA
N−1
ii Bij . . . . . . CiiA

N−Nu
ii Bij


θij(k) =

[
Cij Cij · · · Cij

]T
It is assumed that the best estimation of the future process noise and measurement

noise is zero, i.e. wi(k + j) = 0 and vi(k + j) = 0, respectively.

Note that, X̂j(k) is the vector of estimated states over the prediction horizon of the

subsystem j and is provided by the state estimation of the agent j. This information

and the estimated input trajectory, ∆Uj(k), are exchanged between the agents during

a selected time interval.

5.2.3 Quadratic programming (QP) problem

The proposed DWNMPC is based on the following finite-time constrained local optimi-

sation problem that seeks a set of optimal control signals that minimises the following

quadratic cost function:

min
∆ui(k)

Ji =
N∑
j=1

‖yi(k + j|k)− ri(k + j|k)‖2Qi
+

Nu−1∑
j=0

‖∆ui(k + j|k)‖2Ri

subject to

ui,min ≤ ui(k + j) ≤ ui,max

∆ui,min ≤ ∆ui(k + j) ≤ ∆ui,max for j = 0, 1, 2, . . . , Nu

Cyiyi(k + j) ≤ dyi for j = 1, 2, . . . , N

(5.19)

where Ri ≥ 0, Qi ≥ 0 are the weighting matrices and the reference is denoted by ri.
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The linear discrete-time systems have control inputs constraints, which satisfy at each

sampling time desired maximum and minimum bounds. The input constraints will

guarantee the contributions of control input and rate input are applied according to

the controller limitations. The lower and upper bounds for the input ui(k) are denoted

by ui,min and ui,max, respectively. Similarly, the lower and upper bounds for the rate

input ∆ui(k) are denoted by ∆ui,min and ∆ui,max, respectively. The output constraints

matrices Cyi,dyi are defined in Section 5.2.4.

The problem in (5.19) is equivalent to a quadratic programming problem, which can

be solved using Matlab quadprog function. Consider the notation ‖y‖Q defines the

weighted Euclidean norm, i.e., ‖y‖2Q = yTQy. Then, expression J can be written as:

Ji = [Ŷi(k)−R0
i (k)]T Q̄i[Ŷi(k)−R0

i (k)] + ∆UT
i (k)R̄i∆Ui(k) (5.20)

where R0
i (k) = [rTi (k + 1) rTi (k + 2), . . . , rTi (k +N)]T is the future reference and Q̄i =

diag[Qi, . . . , Qi] and R̄i = diag[Ri, . . . , Ri] are the block-diagonal output and input

weight matrices, respectively.

The quadratic function can be expressed as:

Ji =
1

2
xT
i Hi xi + GT

i xi (5.21)

where
xi = ∆Ui(k)

Hi = 2[φT
ii(k)Q̄iφii(k) + R̄i]

Gi = 2φTii(k)Q̄i[Ẑi(k)−R0
i (k)]

(5.22)

where

Ẑi(k) = Fix̂i(k) + Γii(k) Ui(k − 1) +
n∑
j=1
j 6=i

X̂j(k)φij(k) +
n∑
j=1
j 6=i

∆Uj(k)ϕij(k)+

Γij(k) Uj(k − 1) +
n∑
j=1
j 6=i

X̂j(k)θij(k)

(5.23)
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with

Γii(k) =


CiiBii

CiiAiiBii

. . .

CiiA
N−1
ii Bii

 , Γij(k) =


CiiBij

CiiAiiBij

...

CiiA
N−1
ii Bij

 ,

Ui(k − 1) =
[
1 1 · · · 1

]T
ui(k − 1)

Note that the past value of the control signals ui and uj are included to provide integral

action in the design. Therefore, the quadratic programming (QP) is:

Ji = ∆UT
i (k)Hi∆Ui(k) + Gi∆Ui(k)

subject to C ci∆U i ≤ d ci
(5.24)

The problem is subject to output and input constraints as stated in (5.19). The design

of C ci and d ci is extended in the next section.

5.2.4 Constraints handling

For i ∈ {1, n}, consider the inequities for the input rate in (5.19):

−∆ui,min ≤ ∆ui(k + j) ≤ ∆ui,max, for j = 0, 1, 2, . . . , Nu (5.25)

Then, the inequality can be arranged as a matrix which has the compact form C∆ui∆Ui ≤
d∆i. Similarly, the inequities for the input are:

−ui,min ≤ ui(k + j) ≤ ui,max for j = 0, 1, 2, . . . , Nu (5.26)

If Ui =
[
uT
i (k) uT

i (k + 1) . . . uT
i (k +Nu − 1)

]T
then, the inequality can be arranged

as a matrix which has the compact form C uiU i ≤ dui.

Consider ∆ui(k) = ui(k)− ui(k − 1). Now, the future input increments are:

ui(k + i) = ui(k − 1) + ∆ui(k) + ∆ui(k + 1) + . . .+ ∆ui(k + i) (5.27)

If Li = [1 1 . . . 1]T and Ei is a lower triangular matrix of ones, the equations can be

expressed in compact form as: Ui = Ei∆Ui+Li ui(k−1). The final constraint matrix
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is found by combining the last three compact forms:[
C∆ui

C uiE i

]
∆Ui +

[
0

C uiLi

]
ui(k− 1) ≤

[
d∆ui

dui

]
(5.28)

Now, consider the constraints for the output as: yi,min ≤ yi(k + j) ≤ yi,max for j =

1, 2, . . . , N . One can find the compact as Cyiyi(k + j) ≤ dyi. Next, replacing the

output prediction in (5.17) results in:

CyiFix̂i(k) + Cyiφii(k)∆Ui(k) + Cyi

n∑
j=1
j 6=i

X̂j(k)φij(k) + Cyi

n∑
j=1
j 6=i

∆Uj(k)ϕij(k)+

Cyi

n∑
j=1
j 6=i

X̂j(k)θij(k) ≤ dyi

(5.29)

This is equivalent to:

CyiTi(k) + Cyiφii(k)∆Ui(k) ≤ dyi (5.30)

where

Ti(k) = CyiFix̂i(k) + Cyi

n∑
j=1
j 6=i

X̂j(k)φij(k) + Cyi

n∑
j=1
j 6=i

∆Uj(k)ϕij(k) + Cyi

n∑
j=1
j 6=i

X̂j(k)θij(k)

(5.31)

In terms of ∆Ui the constraint can be reformulated as:

Cyiφii(k)∆Ui(k) ≤ dyi −CyiTi(k) (5.32)

Finally, input and output constraints can be combined in: C ci ∆Ui ≤ dci with C ci

and d ci corresponding to the appropriate matrices. It can be seen that, this is the form

defined in the optimisation problem (5.24).

In case the system is not constrained, the solution is found as follows: ∆U i(k) =

K i[R
0
i (k)− Ẑi] where K i = H−1

i φii(k)T Q̄i.
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5.2.5 DWNMPC algorithm

The DWNMPC for each agent can be implemented using the following procedure.

Step 1: Initialisation

(a) Find the system model S and a possible representation of the subsystems

Si = 1, . . . , n based on the interactions.

(b) Select the prediction horizons N,Nu and the future reference vector.

Step 2: Off-line calculation

(a) Compute the time-invariant part of the constraint matrices.

Step 3: Control loop k Ts

(a) Read the actual information from the process.

(b) Compute the present state vector using the decentralised KF.

(c) Read the future state trajectories and control inputs from

other agents.

(d) Combine the local trajectories with those of the other agents and

calculate the predictions of the interactions.

(e) Solve the constrained optimisation problem and apply the first element

as the control input to the subsystem Si.

(f) Check the closed-loop performance and innovation errors and fine-tune

the weights and KF parameters if necessary.

Step 4: Data exchange loop β Ts

(a) Send the future state trajectories and the optimal control sequence

to other agents.
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5.3 Simulation results

The effectiveness of the DWNMPC solution has been tested using the following process:
y1(k)

y2(k)

y3(k)




2(z−1−0.492z−2)
(1−1.5z−1+0.7z−2)

0.0018 α(z−1+0.935z−2)
(1−0.25z−1)(1+0.3z−1)

0.0047 αz−1

(1−0.119z−1)

0.0126 αz−1

(1−0.368z−1)
3(z−1−0.668z−2)

(1−1.572z−1+0.670z−2)
0.0126 αz−1

(1−0.1z−1)

0.0126 αz−1

(1−0.368z−1)
0.0147 αz−1

(1−0.1z−1)
0.99z−1

(1−0.4z−1)



u1(k)

u2(k)

u3(k)

 (5.33)

The process has been transformed into a state-space representation using a sampling

time Ts = 0.7 s. The final state-space matrices can be found in Appendix C.

The parameter α = 0.1 has been selected to simulate the interaction. N = Nu = 3.

The weights have the following values: Ri = 1 and Qi = 100 for i = 1, 2, 3. The

constraints are set as ui,max = 0.8, ui,min = −1.2 and ∆ui = 50 for i = 1, 2, 3. The noise

covariances are chosen to ensure a satisfactory closed-loop performance and the values

are: Qf1 = 0.005, Rf1 = 2.3, Qf2 = 1× 10−8, Rf2 = 0.1 and Qf3 = 0.015, Rf3 = 2.

The time interval to exchange the state trajectory and input predictions between agents

is given by β = 10 s. Note, that exchanged information only affects the interaction

predictions Sxi, Syi.

The system responses and the KF estimations are shown in Figure 5.5. The control

inputs are depicted in Figure 5.6. The step responses of y1 and y2 present smaller

oscillations and overshoots meanwhile y3 shows the best performance. According to

the process in (5.33) the dominant eigenvalues are provided by the subsystems S1 and

S2 which cause their slower convergence in the simulation.

The occurrence of consecutive dropouts for the three responses are depicted in Figures

5.7, 5.8 and 5.9. The innovation errors for each response are depicted as well. During

intervals that the dropouts from sensor to controller occurred, the variance goes to zero.

A better accuracy can be found with lower noise covariances. The results assured that

the decentralised solution with dropouts, noise and interactions is effective. Also, the

input constraints are followed.
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Figure 5.5: Process outputs

5.3.1 Study of stability and robustness

More simulations are performed for different scenarios of the percentage of dropouts.

The results demonstrate that increasing the percentages from 1% to 90% slightly in-

creases the IAE value and the system appears to be stable. The percentages of dropouts

could be increased up to Ploss = 90% which is the threshold where the closed-loop ap-

pears to be stable. Table 5.1 lists the results of the IAE criteria for different scenarios

of dropouts.

Table 5.1: Performance indexes for different scenarios of percentage of dropouts

Ploss IAE Values

10 % 1.88

60 % 18.77

90 % 31.02

A study of the stability for variations of the gain of the model process used by the KF

has been performed. The gains of the three transfer functions in the main diagonal

of the model process in (5.33) are varied. The tests show that the closed-loop system

is stable if the gains are increased and reduced to ±30% of the real process gain. For

Ploss = 10%, the results of an increment and decrement of the gain return performance

indexes of J = 1.81 and J = 1.86.
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Figure 5.6: Control inputs

Moreover, further tests are performed where the stability for variations of the poles is

examined. The results exhibit that pole variations of ±5% are permitted in the transfer

functions of the main diagonal and the closed-loop system appears to be stable with

good tracking performance. For Ploss = 10%, the results of an increment and decrement

of the poles return performance indexes of J = 6 and J = 5.62, respectively. The effect

of variation in the poles of the model is more severe than the gain variation for the

control systems stability.

The stability test is extended to examine the effect of parameter variations on the

DWNMPC system. In this case, a small variation of the gain and poles of the model is

allowed to maintain stability with good tracking response. The gain of the model can be

varied up to ±2%. The performance indexes for an increment and decrement of the gain

are J = 3.56 and J = 3.83, respectively. Poles variations up to ±2% are the limit that

can guarantee the system stability with good tracking performance. The performance

indexes for an increment and decrement in the poles are J = 4.35 and J = 3.65,
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Figure 5.7: Time instant of dropouts and innovation error for y1

respectively. The decentralised MBPC design is more susceptible to variations in the

model parameters. The effect can be reduced by including an offset term in the output

predictions that can correct deviations between the output of the process model and

the actual process. This modification is examined in the next chapter.

5.3.2 Discussion

Several simulations are done where the performance is measured for different values

of prediction horizon N and the parameter β. Figure 5.10 shows that the correlation

between prediction horizon and the performance is almost negligible. It also demon-

strates that similar IAE values are found for any value of β. The reason is that the

exchange loop that runs every β seconds affects the prediction interactions, which will

be combined with the local estimation to compute the process predictions using (5.17).

Moreover, the DWNMPC uses the KF to obtain the best estimation of the process
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Figure 5.8: Time instant of dropouts and innovation error for y2

which allows to maintain an accurate estimate of the real process during the sampling

times that the systems do not exchange information.
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Figure 5.9: Time instant of dropouts and innovation error for y3
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Further tests where the IAE criterion is measured for different values of Qi and Ri

under various scenarios of percentages of dropouts show that the best performance is

found with a larger output weight relative to the input weight. Therefore, it is more

important to penalise the deviation from the reference than the control input.

The noise in the process and measurement noise have been added to each control system

according to (5.2) and the decentralised KF has been designed to handle these terms.

Moreover, the KF has to be tuned to compensate the dropouts. The simulations results

show that the prediction is very aggressive to maintain the system stability. This is

especially important during a switch between the prediction stage and the update stage

of the KF since abrupt changes can occur from the decentralised estimation and the

current process. Another tests where the IAE criterion is measured show that the

best performance is obtained with the smallest relation between Qfi/Rfi. Therefore,

a larger value of measurement noise was introduced to find the best estimation. The

innovation errors depicted in Figures 5.7, 5.8 and 5.9 show that the measurement noise

has more effect in the innovation error, reducing it will cause the error to tend to zero.

The state-space model has been constructed assuming there is an interaction between

the subsystems outputs. For this, output interaction vectors have been added and the

variable α has been changed from one to ten to simulate the effect of strong interactions.

The simulations show that the increment of α causes the detriment of the performance

which is measured using the IAE criterion (for α = 0.1: IAE = 54.17, α = 1: IAE =

54.56 and α = 10: IAE = 61.94). However, the response can be fine-tuned to reduce

the error using the weight parameters of the MBPC and the KF.

The decentralised KF in (6.8) can include the interactions in the states, input and the

output as defined in (5.4). In this work, the interactions are handle successfully using

the decentralised MBPC formulation.

5.4 Summary

An extensive literature review showed that only a few contributions in DMPC consider

the effect of the dropouts introduced by the network and their analysis does not take into

account system dynamics such as interactions, disturbance and noise. In this chapter,

an innovative DNMPC with a decentralised KF was presented to compensate dropouts

in WNCS. A unified study of the effect of input and output constraints and disturbance
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in the decentralised state estimation for subsystems with strong interactions was done.

A decentralised constrained optimisation problem was introduced and it provided the

optimum set of control inputs that met the constraints. Moreover, the problem included

output interactions between the subsystems. The effect of these was simulated by

manipulating the parameter α. The results demonstrated that increasing α allowed to

simulated strong interactions. As a result of strong interactions a permanent error in

the less dominant subsystem was found. However, this was eliminated by a fine-tuning

of the MPC weights.

A decentralised estimation algorithm that considers dropouts in the analysis was added

to the control scheme. A decentralised KF provided the DMPC quadratic problem

with the estimate of the present states in case of dropouts. An aggressive set of tuning

parameters Qfi, Rfi was selected to reduce the deviation between the estimation and

the real process. This led to a good performance of the system even in the presence of

dropouts.

The decentralised control performance was improved through the implementation of

a coordination strategy. The approach required an exchange of the state trajectory

and the input between each agent to accomplish a global performance objective. A

reduced exchange rate was proposed to decrease the traffic in the network and thus,

the occurrence of long delays, dropouts and the problem of power limitations in the

wireless nodes. It can be concluded that the decentralised strategy reduces the required

amount of communication while maintaining control performance.



Chapter 6

Decentralised wireless networked

model predictive control design

for wind farm

6.1 Introduction

Wind turbines have attracted a significant interest and investment in the search for

clean and green energy sources. This alternative energy contributes to the sustainable

objectives that most countries will have compromised to meet in the next years due

to environmental concerns and depletion of fossil fuels. In 2016, more than 54 GW of

renewable and clean wind energy was installed, in more than 90 countries, including

nine with more than 10,000 MW installed and 29 having exceeded the 1,000 MW mark.

The five-year forecast by the Global Wind Energy Council foresees almost 60 GW of

new wind power facilities by 2017, reaching an annual market of around 75 GW by

2021 (Council, 2016).

However, the total cost of the turbine life cycle has to be reduced to make wind power

more competitive compared to other energy sources. The challenge associated with

wind energy harvesting is the high cost of operation and maintenance, especially in

offshore wind turbines due to logistical difficulties in accessing production sites. By

employing appropriate control strategies, the cost of producing wind power can be

further reduced (Njiri and Söffker, 2016).

154
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Control of wind turbines is a major concern in energy production to ensure that the

maximum exploitation of the resource is made. Fast and accurate control of the power

generated by the wind contributes to the efficient operation of the wind turbine.

Following the same argument, the potential of decentralised control is applied to wind

farm control due to the interest of exploiting the maximum potential of the resources.

New decentralised and autonomous architectures have become the future and a real-

ity for some industry and manufacturing processes. The advent of the decentralised

solution affects power plants, vehicle industry, cyber physical systems, smart cities,

logistical systems, transportation, shipping and more others.

The main drawback in decentralised solutions is the difficulty of determining where

the control action is taking place. The fundamental solution to make the decentralised

control reliable is to show transparency of all actions in the process. To this end, in this

chapter a decentralised structure of the control system and an algorithm of exchange of

information and cooperation between all wind turbine controllers are developed. The

wind farm control proposed is a benchmark that can be used to investigate the effect

of network constraints on the operation of the wind farm.

6.2 Wind turbine

From the first vertical axis windmills found at the Persian-Afghan borders around 200

BC (Kaldellis and Zafirakis, 2011) to the first wind turbine built in 1887 by the pro-

fessor James Blyth from Anderson College, now University of Strathclyde in Glasgow,

Scotland (Poushpas, 2016); wind turbines have been brought into the front line of the

global power generation scene.

Wind turbines extract the aerodynamic power from the wind and convert it into electri-

city. Modern wind turbines for megawatts scale have three blades with horizontal-axis

configuration. Also, they are variable pitch blades and variable speed, which allows

improving the power take-off efficiency. They have several subsystems, such as aerody-

namics, drive train, tower, generator, pitch actuator, and the wind turbine controller.

As shown in Figure 6.1 the rotor is on top of the tower where the wind has more energy

and is less turbulent. The gearbox and the generator are inside a nacelle.
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Figure 6.1: Wind turbine system (Njiri and Söffker, 2016)

Modern wind turbines are controlled by the electromagnetic torque of the generator,

the pitch of the rotor blades and by the yaw of the nacelle. For research purposes, the

last two will be omitted from this chapter.

Wind turbines are known to be inherently difficult to control due to the stochastic

nature of the wind. Depending on the wind speed, the controller needs to adjust its

mode of operation to an ideal wind turbine strategy. A variable-speed variable-pitch

wind turbine has two operating regions. The partial load regime includes all wind

speeds between the cut in wind speed and the rated wind speed (wind speed at which

the system rated power is achieved). When the wind speed is above the rated wind

speed and below the cut out wind speed the turbine is operating in the full load regime

Soliman, Malik and Westwick, 2011.

Within these operation regions, four operating points are defined: Low wind speed

(mode one), intermediate (mode two), high but below rate (mode three) and above rate

(mode four). The first two operating points are linear and the last two are nonlinear.

In modes one and two, torque control is used to regulate the power output. Meanwhile,

in modes three and four pitch control is employed. Linear controllers can be designed

for mode three and four and switched according to the operating point resulting in a

full envelope nonlinear controller.
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6.3 Wind farm control

With wind turbines becoming bigger and more expensive, wind farm control plays a key

role in optimising energy capture. The control of wind farms optimises the functionality

of a series of wind turbines in the wind farm. The wind field is a nonlinear system

subject to perturbations due to the random nature of the wind (Spudic et al., 2010).

The centralised solution becomes very complex with the increasing number of wind

turbines operating. These control strategies provide a hierarchical control configuration

in which a central wind farm controller sends the reference signals to each local wind

turbine controller (Hansen, Sørensen, Iov and Blaabjerg, 2006).

Figure 6.2: Control diagram of the wind farm (Hur and Leithead, 2016)

The wind farm controller is composed by the Network Wind Farm Controller (NWFC)

and the Turbine Wind Farm Controller (TWFC) as depicted in Figure 6.2 (Hur and

Leithead, 2016). The NWFC receives the required wind farm power from the network

and the adjusted power output from the wind farm P and computes the required

adjusted power ∆P relative to the unadjusted power Pm. The TWFC reads the state

of the wind farm and the turbines therein to allocate adjustments of power ∆Pi for

i = 1, . . . , Nt where Nt is the number of turbines. The flags fi and the wind farm

status f̂i are values representing the operation mode of the wind turbines. Thus, TWFC

calculates ∆Pi using the following equation:

∆Pi =
∆P min(fi, f̂i)∑Nt
j=1 min(fj , f̂j)

(6.1)

The flags are set to values of 0, 1 or 3 depending the operating mode of the turbine, e.g.

if a turbine is operating in below rate fi = 3, if it is higher but below rate, fi = 1 and
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if it is operating in above rate, fi = 0, which means there is no power adjustment. The

wind farm status can be determined by the health, age and location of the turbines,

however, it has been assumed f̂i = 3 for all i.

The generated power is computed as follows:

Pg = Te ∗ ωg (6.2)

where Pg is the output power measured in watts (W), Te is generator torque measured

in Newton meters (Nm) and ωg generator angular speed measured in radians per second

(rad/s). The appropriate efficiency Eff can be defined according to the specification.

For the 5 MW exemplar wind turbine used in this work the value is 94.4%.

A Power Adjusting Controller (PAC) in the wind turbine adjusts the operation accord-

ing to the reference signal sent by the wind farm controller. The power output of the

wind turbines is adjusted using the torque demand and pitch demand signals.

Classical wind turbine control strategies use a set of two PI controllers to regulate the

generator speed. In partial load operation, the generator torque is manipulated by

the first PI controller so that the generator speed follows the reference. In the full

load regime, the generator torque is fixed at its rated value, while the pitch angle is

manipulated by the second PI controller to regulate the generator speed at its rated

value. Gain scheduling is used to switch the operation of the PI controllers according

to the variations in the aerodynamics. One of the main challenges in full load regime

is the presence of severe fluctuations in the turbine power caused by random changes

in the wind speed (Soliman, Malik and Westwick, 2011).

The network communication for monitoring and control system in wind farms is via

Ethernet or serial communication. An optional redundant structure is also possible

through a TCP/IP connection and redundant fibre optic. However, to the best know-

ledge of the author, network constraints such as loss of information have not been

explored in this context. An effort to take into account the effect of the communication

delay between the turbine wind farm controller and the wind turbines is reported by

Hur and Leithead (2016). The authors demonstrated that a large delay caused con-

siderable fluctuations in the wind farm power output. Delays and loss of information

in a control scenario of a wind farm were measured for different network technologies
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WLAN in Madsen et al., 2015. The effect of communication delay in hybrid power

systems is highlighted in Singh, Samuel and Kishor, 2015.

A coordination based decentralised solution is offered in this work where each wind

turbine controller shares its state to the other controllers and uses this information

and the required adjusted power from the network to allocate its local adjustments of

power.

6.4 Dynamics and model description

The model dynamics of variable speed wind turbines include the aerodynamics, the

drive train dynamics and the power generation unit dynamics (Leithead and Connor,

2000).

The aerodynamic torque Tf , depends nonlinearly on the effective wind speed (the aver-

age over the rotor speed) Uw, the rotor speed, Ω, the hub speed V and the pitch angle

of the rotor blades β. Linearising around a specific equilibrium point the aerodynamic

model is given by:

∆Tf = Kv∆Ω +Kβ∆β +Ku∆Uw (6.3)

where Kv = ∂Tf/∂V, Kβ = ∂Tf/∂β, Ku = ∂Tf/∂Uw and ∆ represents small variations

in the variables respect to the nominal values.

The drive train dynamics include the rotor, high-speed shaft, gearbox, the load-speed

shaft and mechanical load dynamics. The losses are represented as viscous damping of

the shaft. The model is as follows:[
V

ωg

]
=

[
A(s) B(s)

C(s) D(s)

][
Tf

Te

]
(6.4)

where A(s), B(s), C(s) and D(s) are functions of the low and high speed shaft stiffness,

the low-speed shaft external damping coefficient, the gearbox ratio and the rotor and

generator inertia. The power generation unit dynamics contain the generator and the

associated power electronics including the rectifier and the inverter required to connect

to the grid. The model is depicted in Figure 6.3. The rectifier angle is α and ω0, T0 and

α0 are constants. The appropriate transfer functions G1(s) and G2(s) are defined by

Leithead and Connor (2000) according to the electrical aspects of the power generation.
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Figure 6.3: Model of power unit dynamics

The coupling between the tower and the drive train introduces a pair of complex Right

Half Plane Zeros (RHPZ) into the model. The RHPZ impose constraints on the control

of the generator speed using pitch control in above rated speed (Poushpas, 2016). When

the mode of the rotor is coupled with the drive train mode and the tower mode, peaks

in the frequency response are generated. The frequency of the tower modes depends on

the turbine size. For the 5 MW model used in this work, the tower frequency is 1.76

rad/s.

Hur and Leithead (2017) combined the linearised aerodynamics, the drive-train dynam-

ics and the power generation unit dynamics to obtain the model for the variable speed

wind turbine and implemented in Matlab/Simulink. The parameters were chosen to

correspond to the physical parameters of a Supergen (Sustainable Power Generation

and Supply) 5 MW variable-speed pitch-regulated horizontal-axis wind turbine model,

whose rated wind speed is approximately 11.5 m/s.

Consider the model of the turbine in state-space form as follows:

∆x(k + 1) = A∆x(k) + Bu∆u(k) + Bd d

∆y(k) = C∆x(k)
(6.5)

where
∆y(k) = y(k)− yop(k)

∆u(k) = u(k)− uop(k)

∆x(k + 1) = x(k)− xop(k)

(6.6)
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uop(k),yop(k) and xop(k) are the output, input and state operating points. The manip-

ulated variable y is the generator speed. The generator torque controller is designed

for the model above by considering the wind velocity between the inputs, u(k), as a

disturbance d, and zero pitch angle. For the pitch controller, the input u(k) is the pitch

angle, the wind speed will be treated as a disturbance and the generator torque will

be set to a constant value (Hur and Leithead, 2017). Figure 6.4 illustrates the control

diagram using this model. Note that Dd is assumed to be zero.

Figure 6.4: Control diagram using the wind turbine model (Hur and Leithead, 2017)

For simplicity in the notation, the variables ∆x(k), ∆u(k) and ∆y(k) are called as

x(k), u(k) and y(k) respectively, in the following analysis.

6.5 Control problem

The control of wind turbines is a complex problem that involves the collaboration of

multiple disciplines including mechanical, aerodynamic and electrical engineering. The

size of the structures of the wind turbines is increasing and becoming more expens-

ive. To anticipate the cost increase, lighter components that can be more flexible are

exploited. However, these elements may be more susceptible to fatigue failures and

extreme loads arising from the chaotic nature of the wind. Therefore, optimisation of

the control system is necessary to avoid excessive loads and to reduce fatigue load cycle

(Aho et al., 2012).
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Various control schemes have appeared during the past decades. For instance, PID

control in turbine control and wind farm control is found, Linear–Quadratic–Gaussian

control (LQG), modern optimal control for LFC, fuzzy control, adaptive and variable

structure methods, robust approach, distributed /decentralised control approach and

optimisation control strategy to decrease wear off for unbalanced load (Poushpas, 2016).

6.5.1 Torque control

Torque control has been widely used for tracking the maximum energy intake in the low

wind speed operation. The generator torque is used as an estimation of the aerodynamic

torque. A large torque unbalance is necessary to accelerate or decelerate the turbine

because of its high inertia. This scheme relies on the intrinsically stable behaviour of

the turbine in the low wind speed region as shown in Figure 6.5.

Figure 6.5: Torque versus velocity (Bianchi, Battista and Mantz, 2007)

If the wind speed is initially V0 and the zero torque speed is Ωz0, the turbine is operating

at point E0 on the locus of maximum conversion efficiency, also called maximum power

or Cpmax locus. Now, suppose that wind speed increases suddenly from V0 to V1.

The rotational speed cannot change abruptly because of the inertia of the drive train.

Therefore, the generator keeps operating at the point E0, whereas the aerodynamic
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torque jumps to E+1 immediately after the wind speed step. As a consequence of this

positive torque unbalance, the rotor and generator accelerate. The generator variables

move from E0 to E1 along the Cpmax locus whereas the rotor variables evolve from E+1

to E1 along the aerodynamic torque characteristic. Steady-state operation is recovered

when both generator and rotor coincide at point E1. Thus, the new operating point of

the turbine is E1, which effectively belongs to the Cpmax locus.

If the wind speed falls from V0 to V2 leads to a negative net torque that decelerates

the turbine until the new operating point E2 is reached (Bianchi, Battista and Mantz,

2007).

6.5.2 DMPC

MPC has recently received significant attention for wind turbine control. The model

predictive control is chosen because it can incorporate in the optimisation problem

input and output constraints, time-varying process and predicted disturbance inputs

(Yang, Li and Seem, 2015).

Decentralised solution and analysis are the future of control of large systems. In Chapter

5 the advances and benefits of applying DMPC to a large and complex system were high-

lighted. It was demonstrated that decentralised control with a coordination strategy

improves the performance and stability while handling constraints and provides trans-

parency of the information of the subsystems and the control actions taken by the

controllers.

Large scale networked power systems are divided into smaller interacting generator sub-

systems. With the size and capacity of wind farms increasing in recent years, traditional

centralised MPC solutions are not optimal because of the heavy computational load and

limitations in exchanging information with large scale, geographically extensive control

areas.

Distributed control is particularly suitable for controlling these systems because decen-

tralised computation and constraints handling can be achieved. For instance, cooperation-

based MPC method is used in distributed LFC. Recently, Distributed MPC for the LFC

of a multiarea interconnected power system in the presence of variable speed wind tur-

bine had been studied by Yan, Zhang and Liu (2015). Liu, Zhang and Lee (2017)

proposed a Distributed MPC that shared measurements and prediction data between
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controllers that were employed to achieve their local objective. Moreover, generation

rate constraints, wind speed, pitch angle, and load input constraints had been con-

sidered. Also, Madjidian, Mårtensson and Rantzer (2011) proposed wind farm control

for load mitigation using CPC. A distributed feedforward control was considered where

the wind speed measurements from upwind turbines were shared between closest down-

wind neighbours.

In this work, the DWNMPC from Chapter 5 is applied to a wind farm of two turbines

in which the study of the effect of dropouts in the network communication is performed.

Two subsystems representing two wind turbines have been created with a decentralised

cooperative strategy that allocates power according to the wind experienced by the

turbines while maintaining the desired power production.

In a control system that responds quickly to the turbulent nature of the wind, the

cycle life of the actuators needs to be guaranteed, for this, a constrained optimisation

problem is proposed to keep the operation of the wind turbine within the input and

rate constraints.

In wind farm operation, the performance and loads of downstream turbines are heavily

influenced by the wake of the upstream turbines. This work offers a simplistic wind

field model and the consideration of the awakening effect of the wind turbines is not

take into account.

The potential benefits of the proposed solution for the networked power system are:

• The possibility to share measurements among other turbines allowing a decen-

tralised solution to have transparency of the information of control actions and

present states.

• Allow each turbine to adjust their power according to the wind farm status and

its status.

• Introduce wireless communication with compensated effect of network constraints

and improve the performance of the networked power system.
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6.6 Control objective

The wind turbine operates over a wide wind speed range and the control objectives

change over that range. Wind turbines have two operation requirements: at low speeds,

is to capture the maximum wind energy and in high wind speeds to maintain the rated

output power. Thus, the control problem is multiobjective. The objectives are:

• The principal objective is to manipulate the generator torque to guide the gene-

rator speed ωg from an initial state to the desired steady state and keep it there

regulated while rejecting the disturbance and respecting control and input cons-

traints. Generator speed is controlled by varying the generator torque demand in

low speeds.

• The second objective is to limit the effect of process model variations on the

control system performance. For this, the cost function of the DMPC in (5.20)

has been modified to include deviations between the process model and the real

process.

• The third objective is to improve the performance of the control system by

compensating the dropouts of the network communication. A decentralised KF

has been added to the control scheme to allow the system to always have inform-

ation of the sensor packets.

• The four objective is to fulfil the controller frequency response requirements.

High-frequency roll-off is required to reduce actuator activity, and a crossover

frequency around 0.6 to 2 rad/s is needed to minimise the standard deviation of

the power output. Also, a high gain margin is desirable.

In this work, the DWNMPC is proposed to meet the first two control objectives.

Moreover, the third objective has been achieved by enhancing the control systems with

an estimation algorithm. The results in the next section shows that the last objective

is partially reached since the results are within limits, but the robustness is not the

optimal. However, this can be improved in a next step design by adding a tower and

drive train damping to the control scheme.
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6.7 Control design

The wind farm controller uses a coordinated decentralised solution, where the controller

in each wind turbine exchanges their operation mode (flags) through the network. Using

this information and the adjusted power ∆P required from the wind farm, the controller

computes using (6.1) the adjusted power ∆Pi that the turbine can allocate. According

to the resulting ∆Pi, the local MPC controller adjusts the torque to control the speed

and meet the requirement of power.

The flags are exchanged during a selected time interval. For this an exchange loop that

runs every ρ seconds has been implemented.

The design of the torque control is based on the DWNMPC explained in 5.2.2. Two

modifications to the DWNMPC design have been necessary to control the wind turbine.

Firstly, the cost function of the DMPC in (5.20) has been modified to include deviations

between the process model and the real process, which are caused by the disturbances

and model uncertainty. Secondly, to avoid saturation of the controller the control

system works using the absolute value, i.e., ui(k).

The decentralised strategy considers that the whole system S represents the wind farm

which is composed of n wind turbines represented by linear, discrete-time subsystems

Si = 1, · · · , n. The state-space model of the turbine provided in (6.5) for a wind speed

of 10 m/s is used to model each subsystem Si and to design the local controller. The

operating points are chosen as uop(k) = 2.97× 104 Nm and yop(k) = 117 rad/s.

Then, the state-space representation of Si can be expressed as:

xi(k + 1) =Aiixi(k) + Biiui(k)

yi(k) = Ciixi(k)
(6.7)

where the matrices Aii,Bii and Cii can be found in the Appendix D.

For each subsystem Si the estimation of the current states x̂i(k) is computed using a

decentralised KF. The KF design is defined in the next section.
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6.7.1 Decentralised estimation for dropouts

Consider the decentralised KF for subsystem i denote by:

x̂i(k + 1|k) = x̂i(k|k − 1) + γi(k) Kfi(k) [yi(k)−Ciix̂i(k|k − 1)]

ŷi(k) = Ciix̂i(k|k − 1)
(6.8)

where the index (k|k−1) refers to the information at sampling time k given observations

up to and including time k − 1. The KF gain for each local observer is denoted as Kfi

and the variable γi(k) is defined as follows:

γi(k) =

1 if yi(k) is received at time k

0 if yi(k) is not received
(6.9)

During the presence of dropouts, only the equations for estimation (prediction) of the

KF are computed. Once the information yi(k) is available the measurement (update)

equations are calculated.

6.7.1.1 Prediction

In the proposed decentralised KF, each local filter should estimate xi(k) such that the

state estimate error for subsystem i, i.e. ei(k) = xi(k) − x̂i(k) is minimised. The one

step-ahead prediction is expressed as follows:

x̂i(k + 1|k) = Aiix̂i(k|k − 1) + Bii∆ui(k) (6.10)

Define Pi(k|k − 1) as the covariance of the state estimate error:

Pi(k|k − 1) = E
[
ei(k|k − 1)eT

i (k|k − 1)
]

(6.11)

Then, the noise covariance matrices are: E
[
wi(k)wT

i (k)
]

= Qfi(k), E
[
vi(k)vT

i (k)
]

=

Rfi(k) respectively. E[·] denotes the expectation of the argument. Thus:

Pi(k|k − 1) = AiiPi(k − 1|k − 1)AT
ii + Qfi(k)T (6.12)

The equations (6.10) and (6.12) are forward projections of state and covariance for a

priori estimation. During the dropouts, there is not update of the information.
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6.7.1.2 Measurement update

Once the information is available, the prediction is combined with the current observa-

tion information. Consider the decentralised KF for subsystem i in (6.8). The modified

innovation covariance is:

Ωi(k) = CiiPi(k|k − 1)CT
ii + Rfi(k) (6.13)

Define the innovation or measurement residual for each subsystem i as:

Λi(k) = yi(k)−Ciix̂i(k|k − 1) (6.14)

Now, updating the estimate error covariance as:

ei(k + 1|k) = xi(k + 1|k)− x̂i(k + 1|k) (6.15)

Results in:

P (k+1|k) = E
[
ei(k + 1|k)eT

i (k + 1|k)
]

(6.16)

Substituting the state equation in (5.1) and the estimate state equation in (6.8) and

solving the estimation yields that:

Pi(k+1|k)= AiiPi(k|k−1)AT
ii−2Kfi(k)CiiPi(k|k−1)AT

ii

+ Kfi(k)Ωi(k)KT
fi(k)+Qfi(k)T

(6.17)

The minimum error covariance is obtained by calculating ∂Pi(k+1|k)/∂Kfi(k) = 0.

One can find that the following equation should be satisfied:

− 2 AiiPi(k|k − 1)CT
ii + 2Kfi(k)Ωi(k) = 0 (6.18)

Thus, the KF gain is:

Kfi(k) = Pi(k|k − 1)CT
iiΩ
−1
i (k) (6.19)

The algorithm is a function of γi(k), which is a binary random number of 0 or 1. As a

consequence, the proposed decentralised KF has a time-varying gain where the optimal

gain and the error covariance values are calculated at each time sampling. If necessary,

the KF parameters Rfi(k),Qfi(k) can be tuned to minimise the innovation error and

improve the estimation algorithm.
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6.7.2 Prediction equations

The predictions of the output are estimated over the prediction horizon by replacing

one-step-ahead prediction in (6.7) recursively. To limit the effect of process model

variations on the system performance, an additional term dsi has been included in the

output predictions. The offset dsi = yi − ŷi corrects deviations between the process

model and the real process. Thus, the prediction equations are given by:

Ŷi(k) = Fix̂i(k) + φii(k)Ui(k) + Ldsi (6.20)

where
Ŷi(k) =

[
yT
i (k + 1) yT

i (k + 2) . . . yT
i (k +N)

]T
Ui(k) =

[
uT
i (k) uT

i (k + 1) . . . uT
i (k +Nu − 1)

]T
Fi =

[
(CiiAii)

T
(
CiiA

2
ii

)T
. . .
(
CiiA

N
ii

)T]T

L =
[
1 1 · · · 1

]T
N×1

(6.21)

φii(k) =


CiiBii 0 . . . 0

CiiAiiBii
...

. . .
...

...
...

... 0

CiiA
N−1
ii Bii . . . . . . CiiA

N−Nu
ii Bii



6.7.3 Optimisation problem

The quadratic cost function in (5.19) has been modified to use the absolute value of the

input instead of the incremental value, resulting in the following objective function:

min
ui(k)

Ji =
N∑
j=1

‖yi(k + j|k)− ri(k + j|k)‖2Qi
+

Nu−1∑
j=0

‖ui(k + j|k)‖2Ri

subject to

ui,min ≤ ui(k + j) ≤ ui,max

∆ui,min ≤ ∆ui(k + j) ≤ ∆ui,max for j = 0, 1, 2, . . . , Nu

(6.22)

The input constraints will guarantee the contributions of control input and rate input

are applied according to the turbine limitations.
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Following the procedure in Section 5.2.3, the control solution can be found by mini-

mising the following objective function:

Ji = [Ŷi(k)−R0
i (k)]T Q̄i[Ŷi(k)−R0

i (k)] + UT
i (k)R̄iUi(k) (6.23)

Note that R0
i , Q̄i, R̄i were previously defined in Section 5.2.3.

The quadratic function can be expressed as:

Ji =
1

2
xT
i Hi xi + GT

i xi (6.24)

where
xi = Ui(k)

Hi = 2[φT
ii(k)Q̄iφii(k) + R̄i]

Gi = 2φTii(k)Q̄i[Ẑi(k)−R0
i (k)]

(6.25)

with

Ẑi(k) = Fix̂i(k) + Ldsi (6.26)

Thus, the quadratic programming is given by:

Ji = UT
i (k)HiUi(k) + GiUi(k)

subject to C ciU i ≤ d ci
(6.27)

The problem is subject to input and rate input constraints that can be added as ex-

plained in Section 5.2.4.

6.8 Wind farm control algorithm

The wind farm control algorithm is implemented using the following steps.

Step 1: Initialisation

(a) Configure the network parameters and percentage of dropouts.

(b) Allocate the number of wind turbines as the number of subsystems

Si = 1, . . . , n.
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(c) Select the prediction horizons N = Nu.

(d) Add the wind speed model as a disturbance.

Step 2: Off-line calculation

(a) Compute the prediction matrices using the wind turbine

state-space model (6.7).

(b) Add the constraints according to the turbine specifications.

(c) Compute the time-invariant part of the constraint matrices.

Step 3: Control loop k Ts

(a) Read the generator velocity from the wind turbine.

(b) Compute the present state vector using the decentralised KF.

(c) Read the wind farm reference power from the network and wind turbine’s

status from other agents.

(d) Combine the local status with those of the other agents

and calculate the new local power reference using (6.1).

(e) Adjust the operation according to the reference signal.

(f) Compute the control signal by solving the constrained optimisation

problem in (6.22) and apply the generator torque to the wind turbine Si.

(g) Check performance and robustness responses and fine-tune the weight R

and KF parameters if necessary.

Step 4: Data exchange loop ρ Ts

(a) Send the wind turbine status to other agents.
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6.9 Simulation results

To demonstrate the effectiveness of the DWNMPC, a study of the effect of dropouts in

the network communication is proposed for a wind farm of two turbines. The stochastic

wind speed model proposed by Hur and Leithead (2016) has been used here. The wind

speed is depicted in Figure 6.6.

Two subsystems representing two wind turbines have been created in the Truetime

simulator using a sampling time Ts = 0.02 s. The linearised model of the wind turbine

is used to predict the future outputs of each subsystem.

The predictions horizon are N = Nu = 30. The weights have the following values:

Ri = 1 × 10−8 and Qi = 1 for i = 1, 2. The constraints are set as umax,i = 1 × 1013,

umin,i = 0 and ∆ui = 60 for i = 1, 2. The noise covariances are chosen as: Qfi =

2.3, Rfi = 1× 10−8 for i = 1, 2. The percentage of dropouts from sensors to controllers

is Ploss = 48% and from controllers to sensors is Ploss = 2%. The reference is set as

117 rad/s. The time interval to exchange the state trajectory and input predictions

between agents is given by ρ = 0.02 s. The generator speed, the KF estimation and

torque of the two turbines are shown in Figure 6.7 and Figure 6.8. When the turbines

are experiencing lower wind speed, for much of the time, generate less power. The

results are satisfactory as the fluctuations remains below 12%, which is often within

the controller design specification. It can be seen that the input constraints are also

satisfied.

The top subplot, which is the generator velocity of the first turbine, is rescaled at

around 20 s in Figure 6.9. The KF estimation is close to the process. Therefore,

when a dropout from sensor to controller occurs, the KF provides an accurate estimate

of the process output. The accuracy of the KF estimation requires precise modelling

of the wind turbine and the wind acting as a disturbance. Further tests show that

the generator velocity reference can be decreased to 80 rad/s and the control system

effectively moves the manipulated variable to the new point. However, in this case, the

minimum constraint input is activated in several periods.

When the operating points are 80 rad/s and 110 rad/s, a new test where the power

output of the turbine is increased 5% is studied. The torque is used to adjust the

velocity and the generated power according to (6.2).



Chapter 6. Decentralised wireless networked model predictive control design for wind
turbines 173

Figure 6.6: Effective wind speed at a mean wind speed of 10 m/s

To decide on the allocation of the adjusted power, each controller communicates its

flag status to the other controllers. Considering that information and its local flag

status, the controller computes the new reference using (6.1). In this case, the adjusted

power of the turbine one is ∆P1 = 3/4 ∆P , which is three times larger than the one

of turbine two. The reason is that the flag status of the first turbine is f1 = 3, which

indicates it is working below rate and therefore a bigger allocation of power can be

done. Meanwhile, the second turbine status is f1 = 1, which indicates it is operating

closer to the limit rate and therefore, less allocation of adjusted power can be made,

∆P2 = 1/4 ∆P . Simulation results for both wind turbines are shown in Figures 6.10

and 6.11. The RMS generator speeds are 79 rad/s and 107 rad/s for turbine one and

two respectively. Fluctuations are under 12% and the RMS power values are 1.6 MW

and 2.1 MW.

It is evident from the figures that the power is varying at the below rate speed. Due to

the random behaviour of the wind the system trajectory is stochastic and the control
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Figure 6.7: Generator speeds y1, y2 (rad/s)

becomes very challenging. Power reference tracking is possible in above rated operation,

where the available power is greater than the reference power. As explained earlier,

pitch control is applied to control the generator speed and therefore the power in above

rated speeds.

6.10 Performance analysis

Additional tests are performed where the IAE criterion is measured for various percen-

tages of dropouts. Table 6.1 lists the results of the IAE criteria and the innovation

errors for different dropouts scenarios. The results assured that the decentralised solu-

tion with dropouts and noise is effective.
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Figure 6.8: Generator torques u1, u2 (Nm)

Table 6.1: Performance indexes for different scenarios of percentage of dropouts

Values Ploss = 45 % Ploss = 80 %

IAE 8.59× 104 1.14× 105

Innovation error 2.43× 104 1.65× 105

6.11 Robustness analysis

The frequency responses of the open-loop, the sensibility and the complementary sensi-

tivity are investigated to analyse the stability and robustness of the design. The wind

controller requires a high-frequency roll-off to reduce actuator activity, and the gain

crossover frequency should be between 0.6 and 2 rad/s to minimise the standard devi-

ation of the power output (DJ and WE, 1996).
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Figure 6.9: Rescaled plot of Figure 6.7

The open-loop frequency response is computed using the standard unity feedback sys-

tem. The open-loop transfer function is given by:

Gol(s) = C(s)Gp(s) (6.28)

where C(s) and Gp(s) are the transfer functions of the controller and the turbine model,

respectively. The input and output are the torque and generator speed, respectively.

The sensitivity function has been defined in (3.2). The complementary sensitivity

function is defined as:

T (s) =
C(s)Gp(s)

1 + C(s)Gp(s)
(6.29)

where T (s) + S(s) = 1.

Figure 6.12 shows the frequency responses. From the dash-dotted line, the open-loop

is stable. Phase margin is around 77.2 deg and gain margin is 18.2 dB. The gain

crossover frequency is 0.64 rad/s within the specification range for an optimal control

action. The closed-loop frequency response has been investigated using the comple-

mentary sensitivity response (solid line). The desired unitary gain at low frequency is
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Figure 6.10: Wind turbine 1 response for adjusted power

achieved. However, a higher degree of roll-off is desirable to remove the noise or high-

frequency disturbances. The sensitivity plot (dashed line) shows that the low-frequency

disturbances will be attenuated by the system and there is no amplification of signals.

The peak above 0 dB in the open-loop response indicates the sensitivity to noise. The

KF has been tuned to decrease the peak as much as possible. Low Qf/Rf attenuates

high frequency and increases phase lag. Increasing the MPC weight R reduces the

DC gain of the system. However, it does not affect reducing the peak magnitude.

The prediction horizon N can also be used to manipulate the DC gain. The peak

corresponds to the drive train dynamics, and it is typically removed by applying a

drive train damper. However, the design of the required filter is the next step in the

wind control strategy that is not discussed in this work.
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Figure 6.11: Wind turbine 2 response for adjusted power

The lower figure 6.12 shows that there is a quick change in the phase of the system at

a frequency of approximately 1.73 rad/s, which corresponds to the tower mode (Stock,

2015). The next change at a frequency of 3 rad/s obeys to the drive train operation,

which introduces oscillations in the response. However as discussed before, the system

is stable, and the robustness can be improved adding filters to the control scheme that

compensate the tower and drive train effects.

6.12 Discussion

Figures 6.10 and 6.11 illustrated that using the proposed solution the rate constraints

are not activated during the wind farm operation for a reference of 117 rad/s. Therefore,
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Figure 6.12: Open-loop, closed-loop and sensitivity frequency responses

it is possible to keep the system variables within the safe operating limits and protect

the actuators from fatigue.

Since there is always a trade-off between performance and robustness, the controller has

a good performance but does not achieve the best robustness possible. The dynamics

of the mechanical aspect of the power generator introduce changes in the magnitude

and phase of the open-loop response at approximately 3 rad/s. Additionally, the peaks

above 0 dB can amplify noise in the system.

Simulation results have been considered for a configuration of two wind turbines due to

the high computational demand. However, the number of turbines can be increased. It

has been demonstrated that the WNCS compensates up to 80% of dropouts. Therefore,

additional dropouts cause for increasing the number of nodes sharing the network will

not be as significant and will be compensated by the proposed estimation algorithm.
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6.13 Summary

Simulations results demonstrated that the control strategy could meet the multiple

objectives of regulating generator speed and power using torque control. The applica-

tion of the DNMPC to a wind farm provided results within the desired requirements of

fluctuations less than 12% and frequency response. The proposed controller provided

good performance while compensating for high percentages of dropouts. Up to 80% of

information loss can be afforded and still ensure the stability of the control system.

The cost function of the DMPC has been modified to include the offset between the

output of the process model and the real process, which is caused by the disturbances

and model uncertainty. In addition, the design works using the absolute value to avoid

saturation of the control input.

KF parameters have been fine-tuned to improve the performance and robustness of the

proposed solution. However, due to oscillations of the mechanical dynamics of the power

generator unit, the robustness of the control systems was not optimal. The robustness

of traditional wind turbine control systems is enhanced by adding filters to perform

tower and drive train and damper compensation to the control scheme. To improve the

robustness of the proposed solution it was required a robust control formulation of the

MPC optimisation problem.

A torque control for low speeds has been investigated in this work. Another linear

control can be designed to operate at higher speeds, using active pitching to control the

generator speed and electrical power. In a next step of the control strategy, a switching

control can be developed to give a smooth transition from one controller to another

according to the wind speed resulting in a full envelope controller.



Chapter 7

Conclusions and future work

7.1 Conclusions

This thesis was concerned with the design of control strategies for WNCS with the

main focus on MBPC and PID control with the aim of creating control laws suitable for

compensating delays and dropouts. The main objective was to analyse the performance

that these algorithms can offer to the challenging problem of dropouts and time-varying

delays. This thesis includes two main parts. The first part is a comparative study of

existing control methodologies presented in Chapter 2. It defines the problems of the

network that still requires further research and points out some possible research dir-

ections. The second part is the control design using mainly predictive structures for

SISO and MIMO systems presented from Chapter 3-6. To this end, suitable models of

the network behaviour which included the dropouts and delays were presented. Several

simulations using the approximations under different scenarios of network constraints

were performed and compared with the results from a network simulator in Chapter 3.

It was found that the models are suitable for the controller design. PID, IMC and Smith

Predictor algorithms were developed to meet design requirements, such as margins of

robustness, performance criteria and stability conditions. Predictive PID controllers

with similar properties to MBPC methods were created in Chapters 4. Complex indus-

trial systems were addressed in Chapter 5 and 6. The control systems were designed

to adapt to the requirements of the network, the decentralised solution, reduced data

communication, constrained systems and to meet requirements of robustness, perfor-

mance and efficiency. All tests included disturbance and noise which were rejected

181
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by including the incremental variables in the process model of the MBPC. Also, by

performing state augmentation, the tracking performance could be improved. The esti-

mation algorithms based on KF dealt with the process and measurements noises. This

chapter summarises the main conclusions of this thesis and suggestions for future work.

NCS are gaining importance in improving the control of simple and complex industrial

systems. However, the performance degradation with the introduction of the network is

still a concern to address before the systems can be reliable for process control. The need

for flexibility and stability supports the interest of PID control, Smith predictor and

IMC control to operate on NCS. These simple control algorithms offer the opportunity

to fully deploy NCS in industrial applications.

These strategies rely on optimisation problems that incorporate robustness and perfor-

mance constraints to compute the optimum control signal at every sampling time. The

simulations using approximations of Gamma and Gaussian distributed functions to

model the random and time-varying delay showed satisfactory results for the design of

the controller. The comparison between the experiments using the approximations and

the ones using the Matlab/Simulink Trutime simulator showed that the assumption

of time-varying delays with maximum and minimum limits was accurate. Similarly,

assuming that the percentage of dropouts was variable, but limited the critical value of

the dropout percentage to ensure system stability can be found. However, it requires

incorporating an accurate model of the process and small delays and percentages drop-

outs to execute the task timely. Long delays and consecutive dropouts adversely affect

the stability of the control process and can be not overcome by fine-tuning of the con-

troller parameters. Also, only limited variations of the process model parameters are

allowed. The seven proposed methods showed adequate compensation of the network

constraints with good performance and robustness.

Despite the outstanding advantages of the investment, the monitoring and security as-

pects of the installation and maintenance of WNCS, the introduction and exploration

of wireless communication have not had a profound impact on process control. The

main contribution of the thesis was to prove that simple and flexible control strategies

using a simple model of the network behaviour were robust against dropouts and time-

varying delays in WNCS. The characteristics of wireless communication using limited

bandwidth networks based on standards such as 802.11b have been tested and demon-

strated the effectiveness of the reported strategies. It is believed that these results
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enable the possibility of further extension of wireless technologies in industrial applica-

tions.

The limitations of the simple PID controllers that were proposed in Chapter 3 have

been overcome with the inclusion of predictive capabilities to the PID and estimation

algorithms. The lack of information from the sensor to the controller can be solved

using KF. The receding horizon approach was exploited to compensate consecutive

dropouts from sensor to controller and from controller to actuator. Nu − 1 predic-

tive control signals were calculated and saved at each sampling instant. If sensor or

controller packets were dropped at present k, the control system uses the estimate of

the control signal stored from the previous sampling time k − 1. The methodology

requires a selection of the prediction horizon that coincides with the maximum number

of consecutive dropouts. The strategies using MBPC showed that the algorithm could

be successfully adapted to the networked environment and estimate high percentages

of the data loss. From the four reported predictive methodologies, the approach using

augmented state-space model produces a very efficient controller to ensure tracking

response for limited percentages.

The inclusion of input constraints showed that MBPC was powerful enough to find a

solution when time delays and dropouts occurred, if reliable process information was

available. This last part was covered by the implementation of a KF estimation that is

based on an accurate process model. The constraint handling produces a reduction of

the performance, but satisfactory results were still found. In most cases, a faster weight

λ can improve the sluggish response of the control signal. However, there are some cases

where the control strategy can not stabilise faster responses with high percentages of

dropouts. In DMPC the constrained problem with long prediction horizon increases

the computation time and the number of iterations to find the minimum due to the

complexity of the cost function, which will affect systems with faster dynamics.

Since the proposed design was based on a model of the plant, the closed-loop system

showed stability for a limited percentage of variations of the model process dynamics

and percentage of dropouts. Simulations of stability, performance and robustness ana-

lysis demonstrated the applicability of model uncertainty up to 35% and percentages

of dropouts up to Ploss = 80%.

DWNMPC design considered the division of the controlled process into n subsystems

each of which has appropriately integrated the network characteristics. The effect of the
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interactions presented a challenging problem when strong interactions were considered.

This has been successfully overcome by the computation of predictions of the interac-

tions and the inclusion of a coordination strategy that exchanges the state trajectory

and control input trajectory between the subsystems. The state and input trajectories

were used to compute the interactions predictions. A good closed-loop performance was

obtained through optimisation of the decentralised KF parameters and the fine-tuning

of the MBPC weights. Once this was done, the sampling time of the internal loop for

the exchange of information can be extended long enough and the prediction horizon

can be chosen small to reduce computation time. An analytical study demonstrated

performance was strictly related to the accuracy of the decentralised KF estimation.

The control strategy allowed to increase the performance, reduce the effect of interac-

tions and the fact that the exchange of data could be carried out by a greater sampling

time decreased the congestion in the network and the possibility of long delays and

dropouts. Moreover, wireless nodes energy can be saved through reduced data ex-

change.

A case of study of a wind farm was also considered. Two interconnected subsystems

representing two wind turbines have been created with a decentralised cooperative

strategy that allocates power according to the wind experienced by the turbines while

maintaining the desired power production. Each controller communicates its status

to the neighbouring controllers to assign the adjusted power required by the wind

farm. The cost function of the DMPC was modified to meet the requirements of low

fluctuations of the controlled process. The deviations between the process model and

the real process, which are caused by the disturbances and model uncertainty were

included. In this case, the accuracy of the KF estimation requires precise modelling

of the wind turbines and the wind acting as a disturbance. The proposed controller

provides good performance. However, due to oscillations of the mechanical dynamics

of the power generator unit, the robustness of the control systems was not optimal.

7.2 Future work

1. It has been demonstrated that the critical percentage of dropouts to ensure the

closed-loop stability can be found for linear NCS. However, an analysis of stability

criteria of the control systems for the basic model of the network communication
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could increase the impact of the reported methods. Moreover, stability results

can be employed to adjust the controller and tuning rules can be found.

2. It is necessary to explore further DWNCS applications and investigate the effects

of networks in a real-time operation. Energy is an important bedrock in the

application of wireless technology in process control. Thus, power constraint in

DMPC for WNCS needs further study. The problem in DMPC has been addressed

using distributed H∞ filter, investigation of inclusion of the dropouts and time-

varying delays is worthy of further study.

3. DWNMPC showed that good performance could be achieved by using a coordina-

tion strategy and the appropriate network communication. However, the optimi-

sation problem has been proposed to consider only the performance of the local

controller. To pursue global performance, a neighbourhood optimisation where a

cost function that takes into account the performance of the local and the agent

neighbouring can be developed.

4. An extension of the DWNMPC design to consider PID control structures will find

a good use in practice and special interest in the industrial area. Local controllers

can be replaced with Predictive PID controllers operating in each subsystem and

constraints handling can be provided as defined in Chapter 4.

5. Also, the DWNMPC in this work focuses on complex systems which work in

parallel. However, the algorithm can be redefined to consider large-scale systems

with serial structures. The method can be modified to produce the estimation

algorithm and control system in a hierarchical sequence that starts from the top

level to bottom level of the control structure.

6. The experiments in TrueTime simulator showed that all the control methods were

successful in compensating time delays and dropouts. It is believed that the design

can be extended to compensate other network constraints such as asynchronism

and time-varying transmission/sampling intervals. These phenomena are also

simulated by the TrueTime. In the decentralised control case, the KF estimation

algorithm can be modified for multi-rate systems using an approach similar to the

dropout compensation where multi-rate input and output signals are considered.

7. A case of study of torque control for low speeds in wind turbines has been investi-

gated in this work. In future work, pitch control can be investigated to control
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the power at higher speeds. Also, in a next step to design a full envelope con-

troller, a switching control can be developed to give a smooth transition from one

controller to another in accordance with the wind speed.
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Appendix A

TrueTime simulator

A.1 Description

Truetime is a networked control system simulation toolbox based on MATLAB/Sim-

ulink which allows to test the control system real-time design and provide a detailed

analysis of the effects of the communication network. TrueTime (version 2.0-beta-10.2)

has been developed by Cervin et al. (2003).

At the core of TrueTime is a kernel that enables controller tasks execution. Simulink

blocks are used to model the processes controlled by those tasks, including simple

models of communication networks, sensors, controllers and actuators. These blocks

are run by MATLAB S-functions written in C++. The execution of the task that these

blocks have to perform is defined by code functions that the user can write in C++ or

Matlab m-files. In particular, these tasks are periodic or not periodic activities such

as reading and writing controller tasks, communication and the triggering of events for

the controller functionality.

In the core, the task has an execution instruction that allows to simulate input/output

delays. These can be constant, random or time-dependent.

Four kinds of task scheduling algorithms are provided, such as fixed priority (prioFP),

rate monotonic (prioRM), deadline monotonic (prioDM) and earliest deadline first (pri-

oEDF).
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The TrueTime library consists of six blocks: TrueTime Kernel, TrueTime Network,

TrueTime Send, TrueTime Receive, TrueTime Battery, TrueTime Wireless Network

and TrueTime Ultrasound Network. A real-time networked control system can be built

by connecting these blocks with common blocks in Simulink.

The network block is event driven and executes when messages enter or leave the

network. The messages contain the measurement or control signals, the length of the

message and optional real-time attributes such as a priority or a deadline which can be

defined by the user.

In the network block, it is possible to specify the network parameters such as trans-

mission rate, the medium access control protocol, the number of network nodes, the

probability of loss, among others.

A suitable number of medium access protocols can be supported by this simulator,

i.e. CSMA/CD (e.g. Ethernet), CSMA/ AMP (e.g. CAN), Round Robin (e.g. Token

Bus), FDMA, TDMA (e.g. TTP), and Switched Ethernet (Cervin et al., 2003). Two

network protocols are supported for Wireless: IEEE 802.11b/g (WLAN) and IEEE

802.15.4 (ZigBee).

A.2 Example

To describe the implementation of a NCS, a simulation using the Truetime DC servo

motor process is described here. An Ethernet network protocol has been configured for

this example. The transfer function of the process is:

H(s) =
1000

s(s+ 1)
(A.1)

The block diagram that illustrates the implementation of the NCS is depicted in Figure

A.1. The sensor/actuator node are represented in a single block. It will send and receive

the process output and the controller input. An interfering node sending disturbing

traffic over the network is implemented. The percentage of occupation of the network

bandwidth can be selected to increase the time delays.
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Figure A.1: The TrueTime Network nodes

The controller node is configured as follows. A simple discrete PD controller is imple-

mented in a Matlab S-function by using the equations:

u(k) = P (k) +D(k) (A.2)

where P (k) = K[r(k)− y(k)]

D(k) = aD(k − 1) + b[(y(k − 1)− y(k)]

The proportional gain is K, the reference is r(k), the output is y(k), a and b are tuning

parameters. The TrueTime kernel calls to the S-function controller code.m which is the

code function where the user can change the execution time to simulate the effect of a

delay. The code presented below shows the instruction for an execution time of 0.5 ms.

function [exectime , data] = controller_code(seg , data)

switch seg

case 1

y = ttGetMsg; % Obtain sensor value

if isempty(y)

disp(’Error in controller: no message received !’);

y = 0.0;

end

r = ttAnalogIn (1); % Read reference value

P = data.K*(r-y);
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D = data.a*data.Dold + data.b*(data.yold -y);

data.u = P + D;

data.Dold = D;

data.yold = y;

exectime = 0.0005;

case 2

ttSendMsg (2, data.u, 80); % Send 80 bits to node 2 (actuator)

exectime = -1; % finished

end

Listing A.1: Truetime controller code function

For this example, the TrueTime Network node is configured for CSMA/CD (Ethernet),

with a data rate of 80000 bits/s. The minimum frame size has been selected as 80

bits. The time delays can be set through the executive time of the sensor, actuator and

controller tasks. Also by adding the interfering node or by reducing the frame size or

data rate. The dropouts have been set up zero.

The results are illustrated in Figure A.2. The simulation shows that the controller

behaved as expected. Some simulations with higher times, which are not presented

here, exhibit that the system became unstable as the delay was increased.

The schedule plot in Figure A.3 demonstrates the states of the network three nodes.

The states are represented by the following level: high=sending, medium=waiting,

low=idle. The schedule plot can be modified in the ttnetwork.cpp function to display

the time instant of the dropouts. In case of using the wireless network the function is

ttwnetwork.cpp.

The nodes must wait several milliseconds until they gain access to the network, leading

to various delays that affect the performance of the NCS. For instance, during the first

sampling time, the controller node is the last one to send its message and it waits

approximately 5 ms.
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Figure A.2: Systems outputs
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Figure A.3: The network schedule



Appendix B

Recursive least squares algorithm

A second-order model is given by the equation (Ljung, 1999, pp. 363-369):

y(k) = a0 u(k) + a1 u(k − 1)− b1 y(k − 1)− b2 y(k − 2) (B.1)

where a0, a1, b0, b1 are the model coefficients, y(k) is the present value, y(k − n) and

u(k−n) are the output and input values at the k−n sampling instant. These represent

the regression values, denote by φ. The unknown parameters are found by computing

the vector of parameters θ.

The implementation minimises the sum of the squares of the differences between ob-

served and calculated values and it is weighted by multiplying it by a constant. This

can be defined as:

θ = min

t∑
k=1

β(t, k) [y(k)− φT (k) θ]2 (B.2)

where

β(t, k) =
t∏

i=k+1

λ(i) (B.3)

where λ is the forgetting factor, a value between zero and one.

The recursive algorithm is implemented using the following new parameters estimation

equation:

θ = θ(t− 1) +
P (t− 1) φ(t)

λ+ φT (t) P (t− 1) φ(t)
[e(t)] (B.4)
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where e(t) is the estimation error given by:

e(t) = y(t)− φT (t) θ(t− 1) (B.5)

And the covariance matrix P (t) is computed as:

P (t) =
1

λ

[
P (t− 1) − P (t− 1) φ(t)φT (t) P (t− 1)

λ+ φT (t) P (t− 1) φ(t)

]
(B.6)



Appendix C

State-space matrices for

DWNMPC method

The effectiveness of the DWNMPC solution has been tested using the MIMO process

illustrated in (5.33). The model has been transformed into a state-space representation

using a sampling time Ts = 0.7 s. The final matrices are given as follows:
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A =



1.5 −0.7 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0.37 0 0 0 0 0 0 0 0 0

0 0 0 0.37 0 0 0 0 0 0 0 0

0 0 0 0 −0.05 0.3 0 0 0 0 0 0

0 0 0 0 0.25 0 0 0 0 0 0 0

0 0 0 0 0 0 1.57 −0.67 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0.1 0 0 0

0 0 0 0 0 0 1 0 0 0.12 0 0

0 0 0 0 0 0 0 0 0 0 0.1 0

0 0 0 0 0 0 0 0 0 0 0 0.4



B =



2 0 0

0 0 0

0.03 0 0

0.03 0 0

0 0.03 0

0 0 0

0 2 0

0 0 0

0 0.03 0

0 0 0.02

0 0 0.03

0 0 1



C =


1 −0.49 0 0 0.006 0.02 0 0 0 0.03 0 0

0 0 0.04 0 0 0 0 0 0 0 0.04 0

0 0 0 0.04 0 0 0 0 0 0 0 0.99



(C.1)



Appendix D

State-space matrices for wind

turbine

The matrices for the state-space representation of the wind turbine model studied in

Chapter 6 are:
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A
=
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