
A FPGA Based Low-cost High Speed

QRD-RLS Array Processing

A DISSERTATION SUBMITTED TO

THE CENTRE FOR INTELLIGENT DYNAMIC COMMUNICATIONS,

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING,

AND THE COMMITTEE FOR POSTGRADUATE STUDIES

OF THE UNIVERSITY OF STRATHCLYDE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

By

Qiang Gao

May 2012

i

The copyright of this thesis belongs to the author under the terms of the United Kingdom

Copyright Acts as qualified by University of Strathclyde Regulation 3.51. Due

acknowledgement must always be made of the use of any material contained in, or derived

from, this thesis.

Copyright 2012

ii

Declaration

I declare that this thesis is the result of my original research. It has been composed by

myself and has not been previously submitted for examination which has led to the

award of a degree

Qiang Gao

iii

Abstract

Over the last 30 years, Digital Signal Processing algorithm implementation has been

driven by the continued progress and availability of high speed FPGA/ASIC circuit

technology. The classic method of CORDIC (Coordinate Rotation DIgital Computer)

arithmetic has been widely implemented as part of the computational requirements of

the well known QR decomposition - Recursive Least Squares (RLS) algorithm.

This thesis presents a novel FPGA implementation of a complex arithmetic valued

QR decomposition which can function in adaptive filter applications and implement

the adaptive filter weight extraction without using the traditional back-substitution

method. In order to operate Givens rotation on a complex valued system, Double Angle

Complex Rotation (DACR) is adopted to simplify the computational requirement of

the classic Complex Givens Rotation (CGR). A new modified ‘processor-like’

architecture of a DACR based QR-RLS is presented. It features a single arithmetic

Processing Element (PE) that has been extensively pipelined and efficiently shared for

the implementation of the Givens transform associated with the QR algorithm.

Annihilation-Reordering look-ahead Transformation (ART) was used to pipeline

and hence speed up the real valued QR-RLS adaptive signal processing array without

changing the filter’s convergence behavior. This thesis extends the ART technique to

cope with a complex valued QR-RLS computation array, results in a novel Complex

valued Annihilation-Reordering look-ahead Transformation (C-ART). The complex

Givens rotation implemented in CORDIC arithmetic is suitable for the cut-set

pipelining thus increasing the throughput.

iv

Acknowledgements

I will take this oppotunity to thank my supervisor Professor Robert. W. Stewart for

all the help throughout the years studying for my Ph.D. and for guiding and supporting

me in my research work, and also for giving me the valuable insights into both the

academia and industry.

A special thanks goes to Dr Louise Crockett. With her help, I had the oppotunity to

experience many latest FPGA hardware and EDA design tools. We also had many

fruitful collaborations on the development of several interesting industrial trainings in

FPGA design.

Special thanks also goes to my colleague and good friend Ousman Sadiq for all the

discussions over the years concerning adaptive DSP theory, beamforming and some

more “crazy” ideas. I am also grateful to Andrew Kenyon and Rahul Summan, together

with Ousman, thanks for all the funny discussions during our weekly lunch session.

I would like to express my appreciation to my colleagues and friends at DSP

enabled Communications (DSPeC) group in University of Strathclyde with whom I

have had many interesting and fruitful discussions, and who have also made my time

at the department more enjoyable: Dr Faisal Darbari, Dr Konstantinos Mammasis, Ke

He, Yousif Awad, Ross Elliot, Martin Enderwitz, Michael Hanson, Colin McGuire and

Philipp Karagiannakis - thanks to each of you, it is a pleasure having you around.

Since my research work was spun off in Steepest Ascent Ltd., I made a detour into

industry. The knowledge learned from taking a research project into a commercial

product gave me many valuable experiences. I would like to give my thanks to the

colleagues in Steepest Ascent whom we participated together in the R&D work: Dr

Garrey Rice, Jamie Bowman, Dr Neil MacEwen, John O'Sullivan, Gregour Bolton,

Adnan Ghauri etc. Thanks for the fantastic work we did together.

Also I want to show my gratitude to the Xilinx University Program (XUP) for

financially supporting my research in design and implementation of DSP systems on

v

the high performance devices from this world leading FPGA vendor.

Finally I would like to thank my family. My parents have been a great source of help

and inspiration over the years. My father, who used to be an industrial automation

engineer and currently expends his business in telecommunication industry, sparked

my interest in electronics particular in the telecommunication applications. I would

also like to express my appreciation to my wife Jingyu for her love, encouragment and

support. The last few years have been incredibly remarkable thanks to her. We have

develped ourselves as the explorers in many corners of the world and always had a new

dream destination to discover alongside each other.

vi

Symbols and Acronyms

Symbols

Input signal of adaptive filter

Output signal of adaptive filter

Desired signal of adaptive filter

Weights of adaptive filter

Number of weights

Real part of a complex number

Imaginary part of a complex number

Computational complexity

Forgetting factor

Unitary matrix obtained through QR decomposition

Upper triangular matrix obtained through QR

decomposition

 component of CORDIC arithmetic

 component of CORDIC arithmetic

 component of CORDIC arithmetic

Decision factor of CORDIC arithmetic

Scaling factor of CORDIC arithmetic

CORDIC iteration number

Givens rotation

Cosine

Sine

Scaling factor compensation of CORDIC (i.e.)

1st angle of DACR

x()

y()

d()

w()

N w()

Re()

Im()

O[]

λ

Q

R

xi x

yi y

zi z

di

Ki

n

G

c

s

S Kn
1–

φ

vii

Acronyms

2nd angle of DACR

1 cycle delay

Clock rate

Delay caused by scaling compensation

Delay caused by single MAC unit

CORDIC Approximation-Scaling-Compensation

Correction of CORDIC Approximation-Scaling-

Compensation

Look-ahead factor

DSP Digital Signal Processing

SoC System on Chip

GPU Graphics Processing Unit

ASIC Application Specific Integrated Circuit

FPGA Field Programmable Gate Array

GPP General Purpose Processor

VLIW Very Long Instruction Word

SIMD Single Instruction Multiple Data

CUDA Compute Unified Device Architecture

OpenCL Open Compute Layer

NRE Non Recurring Engineering

IOB I/O Block

CLB Configurable Logic Block

LUT Look Up Table

FF Flip Flop

MAC Multiplication and ACcumulation

LMS Least Mean Squares

θ

D

fc

f

m

S1

S2

M

viii

RLS Recursive Least Squares

IIR Infinite Impulse Response

FIR Finite Impulse Response

SFG Signal Flow Graph

BC Boundary Cell

IC Internal Cell

DC Downdating Cell

EC Extraction Cell

PE Processing Element

IQRD-RLS Inverse QRD-RLS

CORDIC COordinate Rotation DIgital Computer

OQE Overall Quantisation Error

SGR Squared Givens Rotation

CSD Canonical Signed Digit

MAG Minimised Adder Graph

RSG Reduced Slice Graph

BS Barrel Shifter

AR Angle Recording

MSR-

CORDIC

Mixed Scaling Rotation CORDIC

AE Approximation Error

RE Rounding Error

CGR Complex Givens Rotation

DACR Double Angle Complex Rotation

ART Annihilation-Reordering look-ahead Transformation

MVDR Minimum Variance Distortionless Response

VLSI Very Large Scale Integration

ix

C-ART Complex valued Annihilation-Reordering look-ahead

Transformation

x

Table of Contents

 - Declaration . ii

 - Abstract . iii

 - Acknowledgements . iv

 - Symbols and Acronyms . vi

 - Table of Contents . x

 - List of Figures . xiv

1 - Introduction . 1

1.1 Adaptive Digital Signal Processing . 1

1.2 Adaptive DSP on Field Programmable Gate Arrays 1

1.3 Contributions . 2

1.4 Thesis Structure . 4

2 - Hardware Platforms for DSP Implementation . 6

2.1 Introduction . 6

2.2 DSP Microprocessors . 7

2.3 Graphics Processing Unit (GPU) . 7

2.4 Dedicated ASIC and FPGA Solutions . 8

2.5 FPGA Technology for DSP . 9

2.5.1 Generic FPGA Architecture . 10

2.5.2 DSP Functionality . 11

2.6 Conclusion . 15

3 - Recursive Least Squares (RLS) using QR Method 17

3.1 Introduction . 17

3.2 Adaptive Equalisation . 18

3.3 The RLS algorithm. 19

xi

3.4 QR Decomposition . 24

3.5 Standard QR-RLS Algorithm. 25

3.6 Standard QR-RLS Systolic Array . 30

3.7 Extended QR-RLS Systolic Array . 32

3.8 Efficient QR-RLS. 35

3.8.1 Linear Array Like QR-RLS Architecture 35

3.8.2 Processor-Like QR-RLS Architecture 40

3.9 Fast QR-RLS Algorithms. 40

3.9.1 QR-RLS Lattice . 40

3.9.2 Algorithmic Engineering Applied to the QR-RLS 41

3.9.3 Multichannel QR-RLS . 41

3.10 Look-ahead Transformation . 42

3.10.1 Annihilation-Reordering Look-ahead Transformation (ART) 43

3.11 Conclusion . 50

4 - Coordinate Rotation Digital Computer in QR-RLS 52

4.1 Introduction . 52

4.2 CORDIC. 53

4.3 Squared Givens Rotation (SGR) . 55

4.4 CORDIC based QR-RLS Processing Elements 56

4.4.1 CORDIC Scale Compensation . 57

4.4.2 Throughput of CORDIC in a Recursive Loop 58

4.4.3 DSP48 based Serial CORDIC . 63

4.5 Other Existing High Speed CORDIC Solutions. 66

4.5.1 Low Latency CORDIC Algorithms and Architectures 66

4.5.2 Assessing the Overall Quantisation Error 67

4.6 Conclusion . 69

5 - Pipeline-Interleaving Coarse Angle CORDIC . 71

5.1 Introduction . 71

5.2 Coarse Angle Rotation Mode CORDIC. 71

xii

5.3 OQE Analysis of Coarse Angle Rotation CORDIC. 74

5.4 Pipeline-Interleaving CORDIC . 75

5.5 Mapping Procedure of QR-RLS Systolic Array. 76

5.6 Comparision with the Classic CORDICs . 80

5.7 Conclusion . 84

6 - Complex Valued Processor-Like QR-RLS Architecture 86

6.1 Introduction . 86

6.2 Complex Valued QR-RLS Systolic Array For Weight Extraction 86

6.3 Complex Valued QR-RLS Processing Elements 88

6.4 Quadrant-Correction-Free DACR . 93

6.5 Mapping Procedure of QR-RLS Systolic Array. 95

6.5.1 Pipelined Interleaving . 96

6.5.2 ‘Single PE + MAC’ Architecture . 98

6.6 Adaptive Equalisation Verification . 101

6.7 Performance . 107

6.8 CORDIC Approximate-Scaling-Compensation 110

6.9 Conclusion . 115

7 - Annihilation-Reordering Look-ahead Technique for Complex Givens Rota-

tion based QR-RLS Filter . 117

7.1 Introduction . 117

7.2 ART Complex valued QR-RLS . 118

7.2.1 Pipeline C-ART QR-RLS PEs Through Retiming 122

7.3 Simulation Verification . 123

7.3.1 Adaptive Equalization . 124

7.3.2 Generalized Sidelobe Canceller (GSC) beamforming 125

7.4 Fine-grain Level Mapping . 129

7.5 Conclusion . 132

8 - Conclusions & Future Work . 133

xiii

8.1 Conclusions . 133

8.2 Future Work . 135

1- References . 136

1- Associated Publications . 141

xiv

List of Figures

Figure 2.1 Basic FPGA Architecture .. 10
Figure 2.2 Diagram of half Virtex 4 Slice [11] ... 11
Figure 2.3 Cascade of multiplexers... 13
Figure 2.4 Xilinx Shift Register - SRL16 .. 14
Figure 2.5 DSP48 for MAC operation ()................. 15
Figure 2.6 DSP48 for MAC operation () 16
Figure 3.1 RLS adaptive filter [15] ... 18
Figure 3.2 QR Decomposition .. 24
Figure 3.3 QR Decomposition - Least Squares... 25
Figure 3.4 Recursive QR Decomposition (1).. 26
Figure 3.5 Recursive QR Decomposition (2).. 26
Figure 3.6 Series of Givens rotations (1) .. 27
Figure 3.7 Series of Givens rotations (2) .. 28
Figure 3.8 Standard systolic array of real valued QR-RLS 31
Figure 3.9 Standard QR-RLS with back-substitution array 32
Figure 3.10 Systolic array of QR-RLS with downdating...................................... 34
Figure 3.11 Triangularization array transformation (1) .. 37
Figure 3.12 Triangularization array transformation (2) .. 38
Figure 3.13 Triangularization array transformation.. 39
Figure 3.14 (a) Direct look-ahead QR update procedure; (b) Sequential transform over
one time step; (c) Direct look-ahead transform over two time steps 45
Figure 3.15 (a)Annihilation-reordering look-ahead QR update procedure; (b) sequen-
tial transform; (c) ART .. 45
Figure 3.16 Retiming technique for ART ... 46
Figure 3.17 Multiply-add Look-ahead transformation.. 47
Figure 3.18 Annihilation-reordering Look-ahead transformation 47
Figure 3.19 ART updated QR-RLS () .. 48
Figure 3.20 ART updated QR-RLS () .. 49
Figure 3.21 ART updated QR-RLS () .. 49
Figure 4.1 (a) Unpipelined parallel CORDIC (b) Fine grain level of a single
CORDIC microrotaion... 55
Figure 4.2 Signal transfer between the real valued BC, IC and DC 56
Figure 4.3 CSD coding based constant multiplier .. 57
Figure 4.4 RSG algorithm based constant multiplier.. 58
Figure 4.5 Pipelined parallel CORDIC ... 59
Figure 4.6 Pipelined CORDIC based real valued QR PE 59
Figure 4.7 Serial CORDIC based real valued QR PE... 60
Figure 4.8 (a) Unpipelined barrel shifter; (b) Pipelined barrel shifter 61
Figure 4.9 (a) Dual-BS serial CORDIC; (b) Single-BS serial CORDIC 62

nA 18 nB 18 nC 48≤;≤;≤
18 n< A 36 nB 18 nC 48≤;≤;≤

M 2=
M 3=
M 4=

xv

Figure 4.10 K-fold loop rolled CORDIC .. 63
Figure 4.11 Using DSP48 in Serial CORDIC ()..................... 64
Figure 4.12 Using DSP48 in Serial CORDIC () 65
Figure 4.13 Approximation Error vs Rounding Error... 69
Figure 5.2 Signal transfer between the real valued BC and IC/DC 72
Figure 5.1 CORDIC iteration in boundary and internal/downdating cells 73
Figure 5.3 Selection of iteration number under specific effective fractional bits 74
Figure 5.4 Channel Interleaving.. 75
Figure 5.5 QR-RLS array transformation ... 77
Figure 5.6 Error and weights extraction (MAC) array transformation 78
Figure 5.7 Scalability of the ‘Single PE + MAC’ QR-RLS................................ 79
Figure 5.8 Scheduling of the QR-RLS pipeline-interleaving.............................. 80
Figure 5.9 (a) ‘Single PE’ part of real valued QR-RLS; (b) ‘Single MAC’ part of real
valued QR-RLS.. 81
Figure 5.10 Signal transfer between the BC and IC/DC in ref [24]...................... 82
Figure 5.11 QR-RLS architecture of reference design [24] 84
Figure 6.1 Systolic array of complex valued extended QR-RLS........................ 87
Figure 6.2 Signal Flow of CGR Based BC ... 90
Figure 6.3 Signal Flow of CGR Based IC... 90
Figure 6.4 Signal Flow of TACR Based BC... 92
Figure 6.5 Signal Flow of TACR Based IC .. 92
Figure 6.6 Signal Flow of Simplified DACR Based BC 93
Figure 6.7 Signal Flow of Simplified DACR Based IC...................................... 93
Figure 6.8 CORDIC Quadrant-Correction-Free Scheme.................................... 94
Figure 6.9 Pipeline-interleaving coarse angle CORDIC based DACR............... 95
Figure 6.10 Error & weights extraction array transformation............................... 96
Figure 6.11 Triangularization array transformation (a) rhomboid array (b) linear array
(c) single PE... 97
Figure 6.12 Double PE Architecture for QR-RLS .. 99
Figure 6.13 Double CORDICs based QRD-RLS triangularization 101
Figure 6.14 Adaptive equalization for computer experiment 102
Figure 6.15 Learning curves of the floating vs 23-bit filxed point QR-RLS........ 104
Figure 6.16 Learning curves of the floating vs 21-bit filxed point QR-RLS........ 105
Figure 6.17 Learning curves of the floating vs 19-bit filxed point QR-RLS........ 106
Figure 6.18 Learning curves of the floating vs 17-bit filxed point QR-RLS........ 107
Figure 6.19 (a) Scaling Compensation; (b) Approximate-Scaling-Compensation 112
Figure 6.20 CORDIC Approximate-Scaling-Compensation QR-RLS 113
Figure 6.21 Double Approximate-Scaling-Compensation CORDICs based QRD-RLS
triangularization ... 114
Figure 7.1 (a) Sequential transformed BC; (b) C-ART updated BC................... 118
Figure 7.2 (a) Sequential transformed IC/DC; (b) C-ART updated IC/BC 118
Figure 7.3 C-ART updated QR-RLS () .. 120
Figure 7.4 C-ART updated QR-RLS () cont’d ... 121

x, y width n' 18-bit≤
18-bit x, y width n' 36-bit≤()<

M 2=
M 2=

xvi

Figure 7.5 C-ART updated QR-RLS () .. 122
Figure 7.6 C-ART updated QR-RLS () .. 122
Figure 7.7 Retiming the processing elements of C-ART updated QR-RLS ()
123
Figure 7.8 Comparision between the learning curves of the sequential and C-ART
updated QR-RLS algorithms ... 124
Figure 7.9 Comparision between the learning curves of the sequential and C-ART
updated QR-RLS algorithms (zoomed in) ... 125
Figure 7.10 GSC beamforming for computer experiment 126
Figure 7.11 Spatial response of the sequential updated QR-RLS based MVDR beam-
former ... 128
Figure 7.12 Mapping of sequential updated BC and IC/DC................................. 129
Figure 7.13 Mapping of C-ART updated BC.. 130
Figure 7.14 Mapping of C-ART updated IC/DC .. 131

M 3=
M 4=

M 2=

xvii

List of Tables

Table 3.1RLS [15] ... 23
Table 3.2QRD-RLS ... 29
Table 3.3Extended QRD-RLS ... 33
Table 5.1Synthesis results for 3 types of CORDIC based QR Givens 83
Table 6.1Quadrant-Correction-Free Scheme... 94
Table 6.2Channel Impulse Response... 102
Table 6.3Coefficients of the Fixed Point QR-RLS based Equalizer 103
Table 6.4Synthesis results for CORDIC QR Givens (Size) 108
Table 6.5Resource utilization of the QR-RLS for the various wordlengths......... 108
Table 6.6Execution Time of The QR-RLS for Matrix Sizes................................. 109
Table 6.7Cost and Speed Performances of the QR Decomposition RLS Implementa-
tions .. 109
Table 6.8 values under different configurations ... 113
Table 6.9Synthesis results for CORDIC QR Givens (Size) 114
Table 6.10Execution time of the single PE QR-RLS .. 115
Table 6.11Execution Time Of The QR-RLS for Matrix Sizes 115
Table 7.1Synthesis results of a sequential and C-ART updated unrolled IC (=2) 130
Table 7.2Synthesis results of a sequential and C-ART updated rolled IC (=2) 132

4 4×

S2
4 4×

CHAPTER 1 - Introduction 1

Chapter 1

Introduction

1.1 Adaptive Digital Signal Processing

In recent decades, the field of Digital Signal Processing (DSP) has developed

rapidly due to the increased availability of technology for the implementation of

adaptive DSP algorithms for the next generation wireless communications, like the

Least Mean Squares (LMS), Recursive Least Squares (RLS) and QR Decomposition

(QRD) - RLS algorithm etc. In contrast to the ‘fixed coefficients’ FIR filter which is

designed for applications where the required coefficients do not change over time,

many real-world signal processing systems like the communication, radar and sonar

require the ‘optimal’ coefficients, which adjust over time and depend on the input

signal in order to minimize the error function. This error function, also known as the

cost function, is a distance measurement between the desired and output signals of the

filter. The adaptive filtering algorithms is to converge a optimum solution which is

usually given by a reduction on the error distance.

These adaptive DSP algorithms have been applied to an extensive number of

problems including adaptive beamforming, channel equalization, precoding, channel

estimation as well as many others. The bandwidth and speed requirements of the

communication systems have been increased over the years, hence the high speed DSP

algorithm implementation should be provided to cope with these requirements.

1.2 Adaptive DSP on Field Programmable Gate Arrays

The Field Programmable Gate Array (FPGA) has become an important hardware

implementation platform for the next generation wireless communication systems, due

CHAPTER 1 - Introduction 2

to the advantage of implementing the DSP systems on the parallel hardware structures,

in place of the traditional throughput limited DSP microprocessors. Also FPGAs have

more reconfigurable flexibility and can provide the benefits of full custom ASIC while

avoiding the initial cost, time delay and risks. Although the FPGA device size

increases, there is still a requirement to design the area efficient hardware systems to

reduce the cost and power consumption.

DSP systems contain an abundance of mathematical operations from simple

addition, substraction and multiplication to further complex linear algebra arithmetic

which are all highly suitable for the parallel implementation on FPGAs. The adaptive

DSP filtering is one of the highest profile DSP systems and the focus of this research

is the area and throughput efficent implementation of the QR Decomposition -

Recursive Least Squares (QRD-RLS) filtering.

1.3 Contributions

This thesis investigates a range of methdologies to efficiently implement the QRD-

RLS algorithm on FPGAs. The main contributions of this research are summarized as

follows:

The Pipeline-Interleaving Coarse Angle CORDIC for QR-RLS Array Processing

The classic method of CORDIC (COordinate Rotation Digital Computer)

arithmetic has been widely implemented as part of the computational requirements of

QR-RLS algorithm, which plays an important role in the physical layer of wireless

communications, such as the adaptive equalization and beamforming etc. The

CORDIC based QR-RLS systolic array is analysed in terms of the hardware cost and

throughput performance. Despite the fully pipelined CORDIC inside the QR updating

loop results in a shortened critical path, it cannot increase the throughput.

However, it is still possible to increase the throughput of the QR recursive loop by

CHAPTER 1 - Introduction 3

pipelining the CORDIC. This involves the pipeline-interleaving scheme where the

same pipelined feedback loop is shared with the several seperated data channels.

A novel coarse angle CORDIC is presented to implement both the real and complex

valued pipeline-interleaving QR-RLS architectures. The CORDIC architecture

features an easily pipelinable single Processing Element (PE) and a Multiply and

ACcumulation (MAC) unit (names ‘single PE + MAC’ architecture in this thesis), and

can be used to implement both the Givens generations and Givens rotations associated

with the QR update. The implementaton result on a Xilinx Virtex 4 FPGA suggests that

the pipeline-interleaving architecture not only produces a high throughput, but also

results in a more regular and lower cost structure than the existing benchmarks using

the back-substitution.

CORDIC Approximate-Scaling-Compensation Architecture for QR-RLS

Many communication applications require complex valued DSP arithemetic. In

order to operate the complex Givens rotation in the QR-RLS filtering, Double Angle

Complex Rotation (DACR) is used to simplify the computational requirement of the

conventional Complex Givens Rotation (CGR). An optimised CORDIC ‘Quadrant-

Correction-Free’ mapping scheme is developed to further simplify the quandrant

mapping and correction procedures required by the DACR implementation.

The DACR is then employed in the pipeline-interleaved QR-RLS architecture for

achieving the low cost complex valued QR-RLS implementation and the high

throughput. The throughput could be further improved by a proposed CORDIC

Approximate-Scaling-Compensation algorithm.

An analytical comparison is made between a ‘Single PE + MAC’ QR-RLS

processors with the standard CORDIC scaling compensation, and a design employing

the Approximate-Scaling-Compensation scheme. The FPGA implementation result

demonstrates that the CORDIC Approximate-Scaling-Compensation structure results

in a better throughput performance.

CHAPTER 1 - Introduction 4

Complex valued Annihilation-Reordering look-ahead Transformation (C-ART)
QR-RLS Architecture

Besides the acceleration of QR recursive loop by pipeline-interleaving scheme,

another method - the look-ahead transformation - is also investigated in this research

to pipeline the recursive feedback loop without interleaving the multiple data channels.

Previously the Annihilation-Reordering look-ahead Transformation (ART) was

presented to successfully speed up the real valued QR-RLS systolic array without

degrading the filter convergence behavior. Similar to the traditional mult-add look-

ahead, annihilation-reordering look-ahead transforms a sequential recursive algorithm

to an equivalent concurrent one by creating the additional parallelism in the algorithm.

However, many communication applications require the complex valued DSP

arithmetic and the aformentioned DACR is employed to optimisely realize the

complex Givens rotation. Hence this thesis extends the ART to cope with the complex

valued QR-RLS array results in a novel Complex valued Annihilation-Reordering

Look-ahead Transformation (C-ART).

The C-ART is successfully applied to increase the throughput of the complex

Givens rotation based QRD-RLS systolic array. Computer verifications in the adaptive

equalization and beamforming environments prove that the new technology can

achieve the same ensemble-average learning curve and beam pattern with those of the

classic sequential updated QR-RLS algorithm. Finally, the methodology of fine-grain

level mapping is presented, and the FPGA implementation of a single processing

element confirms the improved throughput property of the C-ART structure.

1.4 Thesis Structure

The background information on the existing hardware platforms for implementing

the complex DSP algorithms are discussed in Chapter 2. FPGA platform is

investigated in more depth. The FPGA embedded blocks which closely tie to the DSP

performance of this research, including the DSP48 macro, fast carry chain and shift

CHAPTER 1 - Introduction 5

register (SRL16), are demonstrated. These DSP-enabled components provide the

design convenience and performance enhancement for the work in this thesis.

Chapter 3 discusses the main features of QR-RLS, including the algorithm which

is derived from the conventional Recursive Least Squares (RLS) filtering, and its

corresponding systolic array for hardware implementation. The classic back-

substitution scheme for the serial extraction of weights is briefly reviewed. The

extended QR-RLS algorithm/architecture is derived for the parallel extraction of

weights, and in the last part of this chapter, the mapping strategies are discussed for

optimisely targetting the QR-RLS systolic array on FPGAs.

In Chapter 4, the CORDIC arithmetic which is used for realizing the Givens

rotation in QR-RLS systolic array is presented. The ‘speed-area’ analysis is carried to

three well known CORDIC architectures. Related works on the CORDIC speed-up

solution are briefly reviewed.

Chapter 5 concerns the optimised mapping methodology of QR-RLS array, and

considers how the architecture with the low resource usage can be mitigated in a speed

optimised manner. This chapter includes the development of a pipeline-interleaving

coarse angle CORDIC, and the comparison of cost, speed and numerical performance

between it and the conventional CORDICs.

The emphasis moves towards to the complex valued QR-RLS in Chapter 6, where

the impact of employing the pipeline-interleaving scheme to complex valued QR-RLS

array is evaluated. A novel acceleration scheme - ‘Scaling-Partial-Compensation’ is

presented to further increase the throughput of the QR recursive loop.

In Chapter 7, a novel Complex valued Annihilation-Reordering Look-ahead

Transformation (C-ART) is developed to further increase the throughput of the

complex Givens rotation based QRD-RLS systolic array. The methodology of fine-

grain level mapping of the resulted QR-RLS array is presented to mitigate this speed

enhanced scheme in an area-efficient achitecture.

Finally, the thesis is concluded in Chapter 8, and suggestions for the future work

are presented.

CHAPTER 2 - Hardware Platforms for DSP Implementation 6

Chapter 2

Hardware Platforms for DSP Implementation

2.1 Introduction

The technology used for DSP implementation is very closely linked with the

developments in the semiconductor technology. The decrease in transistor size has

been the major driving force in creating and developing a new market for DSP

technologies, particularly mobile communication and digital video industry. The

improved silicon technology has not only offered a lower cost platform of

implementation, but also allowed the DSP systems to achieve higher throughputs and

lower power consumption.

A number of technologies have emerged, these range from the microcontroller

which operates on the moderate sampling rate, to the embedded system-on-chip (SoC)

microprocessor that targets high performance DSP applications. This processor style

architecture has been exploited in various forms including the single to multi-core

dedicated DSP microprocessors where the hardware has been included to allow

specific DSP functionality to be realized efficiently [1], Graphics Processing Units

(GPUs) [2], and also the variety of parallel machines [3] that have been developed for

the specific application domains.

When discussing a DSP implementation, ultilised hardware resources and the

interconnection between the digital logics play a major part in the performance (area,

speed and power consumption). Comparing with the programmable processors which

has a fixed type of architecture, Application-Specific Integrated Circuits (ASICs) and

Field Programmable Gate Arrays (FPGAs) both provide the designers with the

maximum freedom to create the hardware which can best match the requirements of

algorithms [4]. Hence it is interesting to compare the above platform technologies for

CHAPTER 2 - Hardware Platforms for DSP Implementation 7

DSP implementation.

2.2 DSP Microprocessors

The sequential nature of the conventional general-purpose processors (GPPs)

architecture, such as Von Neumann architecture [3], makes it unsuitable for the

efficient implementation of computationally complex DSP systems, either because it

cannot achieve the desired sampling rate, or it meets the speed requirement but

consumes too much power. A large number of the transistors on chip are not involved

in this sequential computation process, thus they consume unnecessary power.

This spurs the motivation to look at other types of processor architectures to

perform DSP. Although fundamentally related, the DSP processors are based on the

Harvard architecture [3] are significantly different with GPPs. In contrast with the Von

Neumann architecture which uses one memory for both the code and data, the Harvard

architecture seperates the data memory and the program memory, allowing the

program to be loaded into the processor independently from the data. A number of

modifications have been made since the early DSP microprocessors, including

pipelining, increased number of data buses, and Very Long Instruction Word (VLIW)

[3]. VLIW increases the wordlength of internal bus and allows a number of operations

performed by each instruction in parallel. Last but not least, some DSP processors also

offer fixed point processing units along with the traditional floating point ones, to

provide the throughput improved solution for many DSP systems which do not require

the full precision arithmetic [3].

2.3 Graphics Processing Unit (GPU)

Graphics Processing Units (GPUs) [2] are massive parallel Single Instruction

Multiple Data (SIMD) [3] - like processors. The current high end GPUs is capable to

offer 500 GFLOP/s peak performance in single precision. As commodity accelerators

CHAPTER 2 - Hardware Platforms for DSP Implementation 8

for 3D graphics, GPUs offer tremendous computational performance at relatively low

costs. GPUs are favourable in applications with high inherent parallelism and

requirement of coarse-grain synchronisation between processors.

Simultaneously, GPU execution models have grown in flexibility in response to the

needs of graphics programmers thereby enabling a wide range of computing tasks.

GPU vendors have consequently developed graphics-unrelated programming models

such as NVIDIA's Compute Unified Device Architecture (CUDA) [2] and Open

Compute Layer (OpenCL) [5] to perform the general purpose computing on GPUs.

The CUDA architecture includes several new components which are designed strictly

for GPU computing and aimed to alleviate many of the limitations that prevented

previous graphics processor from being useful for general purpose computing [2].

OpenCL is a framework for writing programme that execute across heterogeneous

platforms including CPUs, GPUs etc [5].

The large register files and high-performance scratchpad memories on GPU are

well-suited to be utilized as accelerators to speedup the algorithms with very high

arithmetic intensity, like the matrix factorisation algorithms including Cholesky, LU,

and QR decomposition [6][7][8]. Accelerating these matrix factorization algorithms is

to partition a large matrix into blocks. Massively parallel tasks like matrix

multiplication and inversion etc are performed on GPUs and other serial tasks such as

triangular solver are executed on CPUs.

2.4 Dedicated ASIC and FPGA Solutions

Embedded processor technologies are in the form of pre-defined architectures. The

major attraction of dedicated ASIC offerings (which largely apply to FPGA

realizations) is that the architecture can be developed to allow the level of parallelism

to be created to specifically match the performance requirements of algorithms [4].

When considering the programmability argument, ASIC solutions do not include

additional hardware to provide programmability as additional levels of

CHAPTER 2 - Hardware Platforms for DSP Implementation 9

programmability cause difficulty in test and verification. Non-Recurring Engineering

(NRE) costs of producing a number of ASIC prototypes is very high, particularly for

using the latest transistor technology.

Field Programmable Gate Array (FPGA) is a reprogrammable integrated circuit

which allows the fast prototyping and high design flexibility. FPGA solutions avoid

the high NRE cost by giving the user a logical hardware that can be programmed. The

reconfiguration property of FPGA allows an already implemented design to be

configured if the mistakes have been made in the design process, or replaced with a

completely different one. Like ASICs, FPGAs require the design of a suitable circuit

architecture to best ultilise the underlying hardware.

Although the different technologies for implementing DSP systems have been

presented and compared, the reality is that the modern DSP systems are collections of

the previously mentioned platforms. Many companies are now offering heterogeneous

DSP boards comprising embedded microprocessors, ASIC and FPGAs, giving the

suitability of different platforms to different computational requirements. In this

research, to create the highly efficient DSP designs, FPGA is chosen to implement the

computational complex DSP systems in the most efficient manner. The following part

of this chapter will focus on the FPGA technology for DSP implementation.

2.5 FPGA Technology for DSP

Today’s high-complexity FPGA devices are capable of housing an entire DSP

system, with the cooperation of the embedded CPU such as PowerPC [9] and

MicroBlaze [10] etc. The basics of current FPGAs will be demonstrated in this chapter

as well as the features that target directly to the adaptive DSP systems in this PhD

work. FPGAs are provided by a range of vendors, including Xilinx, Altera, Actel and

Lattice. The digital logic blocks provided on fabric are different between the vendors.

The logic blocks share many similarities, although might be different in size. The

targeted implementation platform in this research is the Xilinx Viretx 4 FPGA.

CHAPTER 2 - Hardware Platforms for DSP Implementation 10

2.5.1 Generic FPGA Architecture

The basic FPGA architecture follows the structure in Figure 2.1. The device is made

up of the block memories, I/O Blocks (IOBs), digital logic blocks and programmable

interconnections, the routing is omitted here for clarity. Programmable interconnects

join the small user defined logic functions to form a large sequential and combinational

digital design. Its reconfigurable flexibility suggests that the FPGA can be used to

perform the DSP tasks in a range of communication applications, for example, a FPGA

could be the basis for a system that performs one of several physical layer DSP

functions.

The FPGA is usually a fully SRAM based device. As shown in Figure 2.1, the basic

logic block in Xilinx terminology is called the Configurable Logic Block (CLB). A

logic
block

I/O

I/O I/O I/O I/O

I/O

I/O

I/O

I/O

I/O I/O I/O

logic
block

logic
block

logic
block

logic
block

logic
block

logic
block

logic
block

logic
block

logic
block

logic
block

logic
block

logic
block

logic
block

logic
block

logic
block

logic
block

logic
block

logic
block

logic
block

Figure: 2.1: Basic FPGA Architecture

I/O

I/O

I/O

I/O

interconnects

CHAPTER 2 - Hardware Platforms for DSP Implementation 11

single CLB on Xilinx Virtex-4 FPGA is composed of 4 Slices which is a Xilinx-

specific term representing the smallest unit of FPGA logic area. The slices can be

interconnected within the CLBs and the CLBs are linked together via the switch matrix

box. The fine-grained level of half Slice is shown in Figure 2.2. Each Slice contains a

carry chain, two 4-input lookup tables (LUTs), two flip-flops (FFs), two 2-input

multiplexers (MUXes) names MUXF5 and MUXFX, and dedicated routing.

2.5.2 DSP Functionality

With the recent trend for high speed FPGA implementation of DSP algorithms,

many FPGA manufarcturers include the dedicated DSP components on their chips to

Figure: 2.2: Diagram of half Virtex 4 Slice [11]

LUT
Fast
Carry
Chain

FF

CHAPTER 2 - Hardware Platforms for DSP Implementation 12

bring the design convenience and performance enhancement. These dedicated DSP

features include the following:

• LUTs for Memory:

The general form of a LUT is a Static Random-Access Memory (SRAM) within the

FPGA fabric, as shown in Figure 2.2. The LUTs are flexible to be used in several

different ways, such as the dual port RAM, ROM and shift registers [11]. The LUT will

be used in Chapter 5.6.

• Fast Carry Chain for Addition:

Addition is a very common operation in DSP. The full adders can be built on the

look-up tables. The most general adder is the carry ripple adder [12]. However, the

long carry ripple can harm the maximum clock rate of the adder, especially for the

addition with the large wordlength. Hence it is necessary to include the fast carry

chains into FPGAs to allow the carry bit propagating between each full adder as fast

as possible. The presence of the fast carry logic in modern FPGA families, as shown

in Figure 2.2, removes the need to develop the hardware intensive carry look-ahead

schemes [12] by FPGA users. This feature will be discussed in Section 4.2.

• Flip-Flops for Pipelining:

In a digital circuit, the maximum propagation delay between two subsequent

registers, which are formed by on-slice Flip-Flops (FFs), is known as ‘critical path’

[12]. The critical path decides the maximum clock rate the design can run at. After one

clock edge occurs, the following edge cannot be allowed to occur until the signal with

the longest delay has reached the destination Flip-Flop. The critical path includes:

routing lines, LUTs, Multiplexers (MUXes) and carry-chains etc. For instance, the

design with a cascade of MUXes in Figure 2.3 (a) has the critical path including the

CHAPTER 2 - Hardware Platforms for DSP Implementation 13

propagation delays of all MUXes. After adding the pipeline registers to shorten the

critical path, the new critical path is shown in Figure 2.3 (b). Similarly, the critical path

in Figure 2.3 (c) is the total delays of all the MUXes and digital logic, the

corresponding pipelined version is shown in Figure 2.3 (d).

To increase the clock rate of design, the critical path must be shortened. This feature

will be discussed in Chapter 4.4.2 and Chapter 5.4. Closely related to the pipelining is

the concept of retiming. Retiming a Signal Flow Graph (SFG) entails rearranging the

registers/FFs to reduce the critical path. This feature will be covered in Chapter 7.2.

sel sel sel

critical path (unpipelined)

Figure: 2.3: Cascade of multiplexers

sel sel

critical path (unpipelined)

logic

: pipeline register

(a)

(c)

sel sel sel

critical path (pipelined)

(b)

sel sel

logic (d)

critical path (pipelined)

CHAPTER 2 - Hardware Platforms for DSP Implementation 14

• Shift-Registers for Delay Chain:

In discrete-time systems, the time delay is specified by an integer number of

samples. On FPGAs, the delay lines are commonly implemented using FFs. However,

FPGA also contains a special feature that allows each LUT to be configured as a 16-

bit shift-register (known as SRL16) [13]. This technique will be used in Section 5.5 and

Section 6.5. In Figure 2.4, if a delay line of less than 16 samples is required, the LUT

input lines can be used as a 4-bit select address of SRL16 to specify the required length

of delay, which is shown as SRL16 A. Seperated SRL16s can also be cascaded together

to form a delay of over 16 samples, as the output data of SRL16 B. Connecting the

output of SRL16 to an adjacent FF entails an additional one sample delay.

• DSP48 for Multiply-ACcumulation:

Multiplication and ACcumulation (MAC) is one of the most common operations in

DSP design. The largest volume FPGA existing today offers several hundred

dedicated DSP48 slices to optimise the MAC function [14]. A fully pipelined DSP48

Figure: 2.4: Xilinx Shift Register - SRL16

Flip-Flop

Flip-Flop

D Q

D Q

SRL16

SRL16

Data

Address

Data

Address

Shift In

Shift Out

cycles delay

CLK

CLK

CLK

CLK

n1

n1 1+() cycles delay

cycles delayn2

n2 1+()cycles delay

n1 16≤()

n1 16>()

A

A

B

B

CHAPTER 2 - Hardware Platforms for DSP Implementation 15

can be clocked at up to 500MHz [14]. Figure 2.5 shows the diagram of DSP48 slice on

Xilinx Virtex 4 FPGA, with one bit multiplier and one 48 bits post adder. In

Figure 2.5, when the bit-width of operand C is less than or equal to 48, the width

and of operand A and B are both 18-bit or less, the MAC operation (A B ± C) can

be executed by a single DSP48 slice.

When , and , the multiplication operation A B

requires two bit multipliers, namely two DSP48 slices, as shown in Figure 2.6.

It is necessary to split wordlength into two parts, as and 17 bits. Both the

most-significant and least-significant parts of operand A are multiplied by operand B.

The resultant two partial products need to sum together, with the 17 bits right shift on

the least-significant one.

This research involves the DSP48 slices in two places. The first one is using

DSP48s to build a rolled CORDIC unit, this will be demonstrated in Section 4.4.3. The

second application uses DSP48s for QR-RLS extraction cell (EC) which requires the

Multiply-ACcumulation (MAC) operations. This point will be discussed in Section 5.5

and Section 6.5.

2.6 Conclusion

This chapter has highlighted a variety of different technologies used for

18 18×

nA

nB ×

18 n< A 36≤ nB 18≤ nC 48≤ ×

18 18×

nA nA 17–

18

18
48 48

A

B

Sign extended from 36 bits to 48 bits

P

Figure: 2.5: DSP48 for MAC operation ()nA 18 nB 18 nC 48≤;≤;≤

C

CHAPTER 2 - Hardware Platforms for DSP Implementation 16

implementing DSP systems. FPGA’s parallel architecture and programmability are the

dual factors that makes it very attractive for the implementation of many complex DSP

systems. Some key DSP-enabled components, which are embedded on FPGA, are also

illustrated in this chapter.

18

18

18

18

48

48

48

48

A[n1-1:17]

A[16:0]

B

right shift by 17 bits

P
nA

Figure: 2.6: DSP48 for MAC operation ()18 n< A 36 nB 18 nC 48≤;≤;≤

C

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 17

Chapter 3

Recursive Least Squares (RLS) using QR Method

3.1 Introduction

The Least Mean Squares (LMS) adaptive filtering algorithm [15][16] has been

widely used for more than 40 years. It is well known that the LMS is an approximation

to the least squares solution for adaptive filtering. The LMS algorithm has been one of

the most commonly used adaptive algorithms due to its minimal structure, stable

performance and relatively low computational requirements. Such advantages have

made it the algorithm of choice for applications such as echo control and wireline

channel equalisation such as the DSL modems [17], because for the wireline

equalisation there is enough time to train the adaptive filter, LMS can track the slowly

varying channels.

However for wireless applications including equalisation, multi-antenna

beamformers, MIMO systems and so on, the time available for training the system is

very small, the channel is time varying and a tracking of the system is required. The

faster the channel changes (i.e. a user driving a car), the shorter time avaiable for

training, consequently the training is required more frequently [18].

QR decomposition [15] [18] [19] is an important operation in linear algebra and can

be used as a method for matrix inversion or solving a set of simultaneous equations

using lower wordlength arithmetic than other methods. The computational complexity

of Recursive Least Squares (RLS) adaptive algorithm can be simplified by employing

the QR decomposition, this results in a new algorithm names QR-RLS [15] [18] [20].

The QR-RLS algorithm is well known to be more numerically robust than the

conventional RLS algorithm as it operates directly on the incoming data matrix rather

than forming the inverse of the input data correlation matrix [15] [18].

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 18

3.2 Adaptive Equalisation

In many communication applications, such as a wireless transceiver, the customers

demand that mobile communications support high data rates with great levels of

mobility, the characteristics of the radio channel are constantly changing and need to

be equalised quickly. To cope with this scenario, adaptive equalisers are used in the

receiver to adapt to the changes in the channel with very fast convergence. An equaliser

is basically a digital filter with an adaptive algorithm (LMS, RLS, QR-RLS etc) as

shown in Figure 3.1. The digital filter can be either Finite Impluse Response (FIR) or

Infinite Impluse Response (IIR), although FIR adaptive equalisers are more common

due to the fact that they do not suffer from instability issues that can occur in systems

with feedback such as the IIR [15].

The adaptive algorithm tries to alter the weights in the filter so that the power of

error signal is minimised. When this occurs, the output signal has matched

the desired signal in a least squares sense, and the channel has been equalised. The

success of the filter in minimising the power of will depend on the nature of input

w k() w k 1–() e k()m k()+=

R 1– k() 1
λ
--- R 1– k 1–() m k()mT k()

λ xT k()k k()+
----------------------------------–=

Figure: 3.1: RLS adaptive filter [15]

D D D D

m k() R 1– k 1–()x k() λ xT k()k k()+()
1–

=

x k()
d k()

+
–

y k() e k()
w0 k() w1 k() wN 2– k() wN 1– k()

e k() y k()

d k()

e k()

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 19

signals, the length of the adaptive filter and the adaptive algorithm used. The Recursive

Least Squares (RLS) technique is able to adapt fast enough (5 or faster [15]) and

with a smaller equalisation error relative to the LMS. However, RLS algorithm is more

difficult to be efficiently implemented on hardware, due to its high computational

complexity of order Multiply-ACcummulate (MAC)s and one divide per

iteration [15].

3.3 The RLS algorithm

The adaptive algorithm in Figure 3.1 tries to predict a desired signal, . At the time

instance, k, The output signal is defined as:

(3.1)

where is the filter order and and are vectors composed of the input-signal

samples and the filter coefficients, respectively

In case of the complex valued implementations, the output signal is

represented as , where the superscript denotes the Hermitian operator.

The Recursive Least Squares (RLS) algorithm [15] is based on the least squares

solution which minimises the total sum of squared errors . The Euclidean norm of

the weighted estimation error vector corresponds to the deterministic cost function,

, which is given by:

(3.2)

10 ×

O N2[]

y
y k()

y k() wix k i–()

i 0=

N 1–

∑ wTx k()= =

N x k() w

x k() x k() x k 1–() … x k N– 1+()[]T=

wT w0 w1 … wN 1–[]=

y k()
wHx k() H

e k()

ε k()

ε k() e k() 2 λk i– e i()
2

i 0=

k

∑ λke2 0() λk 1– e2 1() λk 2– e2 2() … λe2 k()+ + + += = =

eT k()= e k()

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 20

where is the forgetting factor. The parameter emphasizes the most

recent error samples (where) in the composition of the deterministic cost function

, giving to this function the ability of modeling non-stationary processes. Without

a forgetting factor, the algorithm would attempt to minimise the least squares error of

all the previous samples. is the system error at time instance and is defined by

(3.3)

The sum of square errors can then be written as:

(3.4)

where

By using prewindowing on the input data, the input data matrix is defined by

(3.5)

The minimum value of Eq. 3.4 is obtained by finding where the gradient vector is

zero:

There is one minimum point on the surface of quadratic function. The gradient

0 λ 1<< λk i–

i k≈

ε k()

e k() k

e k()

λk 2⁄ e 0()

λ k 1–() 2⁄ e 1()

λ k 2–() 2⁄ e 2()
:

λe k 1–()

λ1 2⁄ e k()

λk 2⁄ d 0()

λ k 1–() 2⁄ d 1()

λ k 2–() 2⁄ d 2()
:

λd k 1–()

λ1 2⁄ d k()

λk 2⁄ y 0()

λ k 1–() 2⁄ y 1()

λ k 2–() 2⁄ y 2()
:

λy k 1–()

λ1 2⁄ y k()

– d k() y k()–= = =

ε k() e k() 2= eT k()e k()()=

d k() X k()w–[]T d k() X k()w–[]=

dT k()d k()= wTXT k()X k()w 2dT k()X k()w–+

d k() d k() λ1 2⁄ d k 1–() … λk 2⁄ d 0()[]
T

=

X k()

X k()

xT k()

λ1 2⁄ x
T

k 1–()
…

λk 2⁄ x
T

0()

=

ε k()w∇ 0=

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 21

vector is therefore:

(3.6)

and therefore:

(3.7)

The least squares solution, denoted as and can be formed from the above

equation:

(3.8)

1where and are the autocorrelation and cross-correlation matrix between the

reference signal and the input signal, respectively, and are defined as

(3.9)

(3.10)

In order to obtain the equation for the conventional RLS algorithm, the

autocorrelation matrix and cross-correlation vector defined in Eq. 3.9 and 3.10, are

rewritten as

(3.11)

(3.12)

Substituting Eq. 3.11 and Eq. 3.12 into Eq. 3.8 yields:

1. Here represents an autocorrelation matrix, rather than the upper triangular matrix obtained through
the QR decomposition which appears in the remaining parts of this thesis.

ε k()w∇ 2XT k() d k() X k()w–[]– 2XT k()d k()– 2XT k()X k()+ w= =

2XT k() d k() X k()w–[]– 0=

XT k()X k()w⇒ XT k()d k()=

w k()

w k() XT k()X k()[] 1– XT k()d k() R 1– k()p k()= =

R p

R R

R k() λk i– x i()xT i k+()

i 0=

k

∑ XT k()X k()= =

p k() λk i– d i()x i k+()

i 0=

k

∑ XT k()d k()= =

R k() x k()xT k() λR k 1–()+=

p k() x k()d k() λp k 1–()+=

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 22

(3.13)

and then

(3.14)

Solving is not easy as it requires matrix inversion, which is demanding in

terms of the computation it requires (the inversion of requires around

MACs, where is the number of weights). As grows larger, inversion of matrix

 becomes more difficult. In Eq. 3.14, the computational burden for determining

the inverse matrix can be reduced significantly by employing the matrix

inversion lemma [19]:

(3.15)

which can transfer into that

(3.16)

For convenience of notation, consider the following auxiliary vectors:

(3.17)

(3.18)

which in conjunction to Eq. 3.16 yields that

(3.19)

By substituting Eq. 3.19 into Eq. 3.16, resulting

w k() R 1– k() x k()d k() λp k 1–()+[]=

R 1– k() x k()d k() λR k 1–()w k 1–()+[]=
R 1– k() x k()d k() λR k 1–()w k 1–()+[=

x+ k()xT k()w k 1–() x k()xT k()w k 1–()]–
R 1– k() x k() d k() xT k()w k 1–()–[] R k()w k 1–()+{ }=
R 1– k() x k()e k() R k()w k 1–()+{ }=

w k() w k 1–() e k()R 1– k()x k()+=

R 1– k()

R k() O N3[]

N N

R k()

R 1– k()

A BCD+[] 1– A 1– A 1– B DA 1– B C 1–+[]
1–
DA 1––=

R 1– k() 1
λ
--- R 1– k 1–() R 1– k 1–()x k()xT k()R 1– k 1–()

λ xT k()R 1– k 1–()x k()+
---–=

m k() R 1– k()x k()=

k k() R 1– k 1–()x k()=

m k() k k()
λ xT k()k k()+
----------------------------------=

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 23

(3.20)

and the conventional RLS algorithm, in its complex valued version, can be

implemented as indicated in Table 3.1:

Although the use of matrix inversion lemma in Eq. 3.15 can significantly reduce the

required computational complexity, however this inversion would must be calculated

for every new sample of and . Hence, the matrix inversion lemma is still not

a realistic option for hardware implementation. In addition to the complexity of matrix

inversion, forming the product doubles the wordlength. However, there is

an approach known as QR Decomposition (QRD), which reduces the computational

complexity of the least squares equation. The fundamental theory of QR

decomposition is reviewed in the following section.

R 1– k() 1
λ
--- R 1– k 1–() R 1– k()x k()xT k()R 1– k 1–()–[]=

1
λ
--- R 1– k 1–() m k()kT k()–[]=

Table 3.1: RLS [15]

Initialize 0 λ 1<«

For each k

k k() R 1– k 1–()x k()=

m k() k k()
λ xT k()k k()+
----------------------------------=

R 1– k() 1
λ
--- R 1– k 1–() m k()mH k()

λ xH k()k k()+
----------------------------------–=

w k() w k 1–() e∗ k()m k()+=

e k(){ d k() wH k 1–()x k();–=

}

x k() d k()

XT k()X k()

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 24

3.4 QR Decomposition

The QR decomposition is an extemely useful technique in least squares signal

processing systems. A matrix can be decomposed into an upper triangular

matrix, and orthogonal matrix ().

(3.21)

As shown in Figure 3.2, is a N-by-N upper triangular matrix and 0 is an (k-

N)-by-N null matrix. There are three methods commonly used to factor the maxtrix :

Gram-Schmidt projections, Householder reflections, and a sequence of unitary

transformations like the Givens rotations [18]. Gram-Schmidt and Householder

reflections are good choices for the software implementation. The main advantage of

unitary transformations is that one can employ vector rotations well preserving the

total power of the operands [19], thus controlling the dynamic range of all variables

which makes the algorithm well suited for fixed-point arithmetic. Givens rotation is

more suitable and economical when the new data is added to the least squares problem

and to take advantage of the previously transformed data.

Using QR decomposition to solve the least squares equation in Eq. 3.8 gives:

X k()

R k() Q k() QT k()Q k() = Q k()QT k() Ik 1+=

X k() Q k() R k()
0

=

x x x x
x x x x
x x x x
x x x x
x x x x
x x x x

q q q q q q
q q q q q q
q q q q q q
q q q q q q
q q q q q q
q q q q q q

r r r r
0 r r r
0 0 r r
0 0 0 r
0 0 0 0
0 0 0 0

⋅=

k+1

k+1 N

k+1

N

k+1

Figure: 3.2: QR Decomposition

Q k() R k()X k()

R k()
X

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 25

(3.22)

The result of QR decomposition still requires the matrix to be inverted before

can be found, as shown in Figure 3.3. This process for extracting the optimal weights

is known as back-substitution. However, it is still possible to solve without inverting

any matrices, this point will be discussed in Chapter 3.6.

3.5 Standard QR-RLS Algorithm

The aformentioned QR decomposition only illustrates how the weights are

calculated initially. In a real time system, the weights are computed for every new

and . However, rather than update the and matrices and repeat the

process illustrated in Eq. 3.22, a recursive technique can be used to reduce the

computational requirement, as shown in Figure 3.4. Here, an additional row of new

data is added to the upper triangular matrix . Hence, the original matrix’s

dimension grows from to .

Therefore, by using Given’s rotations in Figure 3.5, the matrix can be

w k() XT k()X k()[] 1– XT k()d k() XT k()X k()w k() XT k()d k()=⇒=
Q k()R k()()T Q k()R k()()[]w k() Q k()R k()()Td k()=

RT k()QT k()Q k()R k()[]w k() RT k()QT k()d k()=
RT k()R k()w k() RT k()QT k()d k()=

R k()w k() QT k()d k() d' k()= =

r r r r
0 r r r
0 0 r r
0 0 0 r
0 0 0 0
0 0 0 0

w
w
w
w

⋅

q q q q q q
q q q q q q
q q q q q q
q q q q q q
q q q q q q

d
d
d
d
d
d

d'
d'
d'
d'
d'
d'

=⋅=

N

k+1
N

Figure: 3.3: QR Decomposition - Least Squares

d k() d' k()QT k()w k()R k()

R w

w

x k()

d k() X k() d k()

x

R k()

k 1+() N× k 2+() N×

R̃ k()

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 26

converted to the a new matrix , where all the elements below the main

diagonal of matrix are zeros,.

The orthogonal matrix can be formed by a series of Givens rotations

on matrix to produce a new upper triangular matrix . The series of

Givens rotations is achieved in a row-wise fashion in Figure 3.6. Thus the matrix

 can be expressed as

x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x

1 0 0 0 0 0 0
0 q q q q q q
0 q q q q q q
0 q q q q q q
0 q q q q q q
0 q q q q q q
0 q q q q q q

x x x x
r r r r
0 r r r
0 0 r r
0 0 0 r
0 0 0 0
0 0 0 0

⋅=

k+2k+2

k+2N N

k+2

Figure: 3.4: Recursive QR Decomposition (1)

X k 1+() xT k 1+()
X k()

1 0T

0 Q k()
xT k 1+()

R k()
Q̃ k()R̃ k()= = =

N
and xT k 1+() x x … x[]=

X k 1+() Q̃ k() R̃ k()

R k 1+()

k+2

k+2

N

k+2
q q q q q 0 0
q q q q q 0 0
q q q q q 0 0
q q q q q 0 0
q q q q q 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

x x x x
r r r r
0 r r r
0 0 r r
0 0 0 r
0 0 0 0
0 0 0 0

⋅

r' r' r' r'
0 r' r' r'
0 0 r' r'
0 0 0 r'
0 0 0 0
0 0 0 0
0 0 0 0

=

k+2

N

Figure: 3.5: Recursive QR Decomposition (2)

QT k() R k 1+()R̃ k()

QT k() G k()

R̃ k() R k 1+()

QT k()

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 27

(3.23)

Each Givens rotation is defined as the following matrix:

(3.24)

where 0, 1, 2 and represent cosine and sine function

respectively, as illustrated in Figure 3.7.

The same Givens rotations also needs to be applied to the vector containing the new

 values. Eq. 3.22 can therefore be transferred to:

(3.25)

where

As the previous discussion in Chapter 3.4, it is possible to use back-substitution to

find without carrying out matrix inversion. In Eq. 3.22, it can be seen that is

applied to both the and the matrices. Starting with , the weights can be

calculated by Eq. 3.26. Theoretically this process is easy, however, it is

computationally expensive as it requires division, multiplication and addition.

QT k() GN 1– k()GN 2– k()…G1 k()G0 k()=

r Element to zero

Values which are changed by the Givens Rotationr

Figure: 3.6: Series of Givens rotations (1)

x x x x
r r r r
0 r r r
0 0 r r
0 0 0 r
0 0 0 0
0 0 0 0

r r r r
0 r r r
0 r r r
0 0 r r
0 0 0 r
0 0 0 0
0 0 0 0

r r r r
0 r r r
0 0 r r
0 0 r r
0 0 0 r
0 0 0 0
0 0 0 0

r r r r
0 r r r
0 0 r r
0 0 0 r
0 0 0 r
0 0 0 0
0 0 0 0

r r r r
0 r r r
0 0 r r
0 0 0 r
0 0 0 0
0 0 0 0
0 0 0 0

G0 G1 G2 G3

N 1+() N 1+()×

Gi

Ii

ci si

si– ci

I N i–() I N i– 2–()

=

…

…

… …

i = N 1– ci s1

d

G3 k()G2 k()G1 k()G0 k()X k()w k() R k()w k() G= 3G2G1G0d k() d' k()==

G3 k()G2 k()G1 k()G0 k() QT k()=

w QT

X d wN 1–

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 28

c1
x1

x1
2 λr1

2+
------------------------=

s1
r1

x1
2 λr1

2+
------------------------=

rg x1
2 λr1

2+=

Figure: 3.7: Series of Givens rotations (2)

c2 s2 0 0 0 0 0
s2– c2 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

x1 x x x
r1 r r r
0 r r r
0 0 r r
0 0 0 r
0 0 0 0
0 0 0 0

rg r r r
0 rh r r
0 r r r
0 0 r r
0 0 0 r
0 0 0 0
0 0 0 0

=k+2

c2
rh

rh
2 λr2

2+
-----------------------=

s2
r2

rh
2 λr2

2+
-----------------------=

rj rh
2 λr2

2+=

1 0 0 0 0 0 0
0 c2 s2 0 0 0 0
0 s2– c2 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

rg r r r
0 rh r r
0 r2 r r
0 0 r r
0 0 0 r
0 0 0 0
0 0 0 0

rg r r r
0 rj r̃ r̃
0 0 r̃ r̃
0 0 r r
0 0 0 r
0 0 0 0
0 0 0 0

=k+2

c3
rm

rm
2 λr3

2+
------------------------=

s3
r3

rm
2 λr3

2+
------------------------=

rn rm
2 λr3

2+=

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 c3 s3 0 0 0
0 0 s3– c3 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

rg r r r
0 rj r̃ r̃
0 0 rm r̃
0 0 r3 r
0 0 0 r
0 0 0 0
0 0 0 0

rg r r r
0 rj r̃ r̃
0 0 rn r̂
0 0 0 r̂
0 0 0 r
0 0 0 0
0 0 0 0

=k+2

c4
rp

rp
2 λr4

2+
-----------------------=

s4
r4

rp
2 λr4

2+
-----------------------=

rq rp
2 λr4

2+=

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 c4 s4 0 0
0 0 0 s4– c4 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

rg r r r
0 rj r̃ r̃
0 0 rn r̂
0 0 0 rp

0 0 0 r4

0 0 0 0
0 0 0 0

rg r r r
0 rj r̃ r̃
0 0 rn r̂
0 0 0 rq

0 0 0 0
0 0 0 0
0 0 0 0

=k+2

G0

G1

G2

G3

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 29

(3.26)

The equations of the complex valued conventional QR-RLS algorithm is

summarised in Table 3.2, where the QR triangularization has no influence on the

performance of the conventional RLS algorithm in Table 3.1.

The matrix in Table 3.2 is the orthogonal rotation matrix, which triangularises

the left hand side matrix of Eq. 3.26, is the forgetting factor (set to a value slightly

r00 r01 … r0 N 1–()

0 r11 … r1 N 1–()

0 0 … r N 1–() N 1–()

w0

w1

w N 1–()

d0

d1

d N 1–()

=

R k() w k() d' k()

w0
d0 r02w2– r01w1–

r00
--=w1

d1 r12w2–
r11

------------------------,=wN 1–
dN 1–

r N 1–() N 1–()
----------------------------,= ……

Table 3.2: QRD-RLS

For each k

0
R k()

Q k() xT k()

λ1 2⁄ R k 1–()
=

γ k() Πi 0=
N θi k()cos=

Obtaining Q k() and{ updating R k();

}

Obtaining γ k();

ξ k()
p k()

Q k() d k()

λ1 2⁄ p k 1–()
=

Obtaining ξ k() and updating d k();

e k() ξ∗ k()γ k()=
Obtaining e k();

e k() d k()= wH k()x k()–

Q k()

λ

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 30

less than 1), and is the posteriori least-square residual, is an upper

triangular matrix, and the element vector is the input data vector.

, is the number of weights in the adaptive filter

which finds the weight vector to minimise the

least square error , where , 1 represents

the desired signal.

3.6 Standard QR-RLS Systolic Array

Figure 3.8 shows the Signal Flow Graph (SFG) representation of the real valued

QR-RLS systolic array for an weight FIR filter [16] [20]. This array uses the

Givens rotation [21] to convert the input data into an upper triangular matrix . Each

 stored and updated inside of the array is one element of this upper triangular matrix,

where the subscript ij represents the location of the element in matrix. The

definitions of the boundary cell (BC) and internal cell (IC) of QR-RLS array are also

described in Figure 3.8. Sine function and cosine term are used to calculate

the Givens rotation within a boundary cell. The least square error can be found

from the single final multiplier. The non-recursive column of PEs highlighted by the

dashed frame generates the likelihood vector , which is the product of all the [22].

Note that this operation is normally undertaken in the BCs [16] [23] [24]. However by

attaching the right most column of ICs, it becomes possible to construct the BC and IC

with very similar architectures, which can be exploited with the efficient folding of

both types of cell onto a single processing element (to be discussed in Section 5.5).

In many implementations [23] [24] the final coefficient weight vector is derived

from the outputs of the QR decomposition algorithm using the aformentioned back-

substitution. As shown in Figure 3.9, to implement a systolic structure for back-

substitution, one approach is to append a linear array to the upper triangular QR-RLS

array. Adaption is halted and the and values are clocked out from the triangular

1. Here represents the desired signal, rather than the CORDIC decision factor in Section 4.

ξ k() R k() N N×

N x k()

x k() x0 k() x1 k() … xN 1– k()[]= N

wT k() w0 k() w1 k() … wN 1– k()[]=

e k() d k() y k()–= y k() wT k()x k()= d k()

d k() di

N 3=

R

rij

R

s() c()

e k()

γ ci

r p

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 31

array [23] [24].

However, the process of back-substitution implies division operations, and these are

susceptible to divide-by-zero errors, so the procedure of back-substitution is a process

that is not numerically stable or robust and hence may result in overflow or underflow

unless performed with high precision fixed point, or indeed floating point [25].

e(k)

(c) Internal Cell (Givens Rotation)
xic k()

si k()

ci k()ci k()

si k()

xout k()

rij

(b) Boundary Cell (Givens Generation)
xbc k()

ci k()

si k()
rij

Figure: 3.8: Standard systolic array of real valued QR-RLS

ci k()

si k()

ci k()

si k()
γi

if xbc k() 0 then,=
ci k() 1 si k(); 0= =
else
ci k() rij k() rij

2 k() xbc
2 k()+()

1 2⁄–
=

si k() xbc k() rij
2 k() xbc

2 k()+()
1 2⁄–

=
rij k 1+() λ1 2⁄ rij

2 k() xbc
2 k()+()

1 2⁄
=

rij k() si k()xic k() λ1 2⁄ ci k()Rij k()+=
xout k() ci k()xic k() λ1 2⁄ si k()rij k()–=

γi γi 1– ci k()=

x0 k() x1 k() xN 1– k() d k()

r00 r01 r0 N 1–()

r11 r1 N 1–()

r N 1–() N 1–()

p0

p1

pN 1–

γ0

γ1

γN 1–

R matrix p matrix

1

(d)

(a)

: Multiplier

γi 1–

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 32

Another issue with the regular implementation of the QR array is that it is not easily

interfaced to the back-substitution array, which is a linear array that requires the and

 values to be first “shifted” out from the QR array [24]. Therefore, although the QR

decomposition is elegantly implemented on FPGA compatible data-flow triangular

arrays, if the weights are required, then the back-substitution is not compatible for an

FPGA dataflow array. One method of managing this risk is to offload the task to an

embedded processor, using an embedded processor to execute a series of division

operation. However compared to a data flow architecture, the latency incurred by this

approach is likely to be significant [23].

In the next section, the alternative extended (also called downdating) QR-RLS

algorithm is derived for weight extraction. It could mitigate the need for the back-

substitution by adding a second lower triangular downdating array such that the final

adaptive filter weights can then be extracted by a single multiplication and subtraction

operation.

3.7 Extended QR-RLS Systolic Array

The extended QR-RLS, also known as QR-RLS with downdating, is derived for

r

p

Figure: 3.9: Standard QR-RLS with back-substitution array

w0
p0 r02w2– r01w1–

r00
--=

w1
p1 r12w2–

r11
-----------------------=

w1

wN 1–

D

D

D

D

D D

x0 k() x1 k() xN 1– k()d k() 1

e k()

r00 r01 r0 N 1–()

r11 r1 N 1–()

r N 1–() N 1–()

p0

p1

pN 1–

γ0

γ1

γN 1–

p0

p1

pN 1–

r00

r11 r1 N 1–()

r01
r0 N 1–()

r N 1–() N 1–()
wN 1–

pN 1–

r N 1–() N 1–()
------------------------=

D : one cycle delay

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 33

parallel weight extraction. This can be implemented in the form of a COordinate

Rotation DIgital Computer (CORDIC) based double triangular array [26]. Presented in

Table 3.3, the extended QR-RLS algorithm has computational complexity of

MACs per sample.

The SFG of this QR-RLS array with downdating is shown in Figure 3.10. The

triangular section on the left of dashed line, consists of the same BCs and ICs as Figure

3.8. The lower triangular (downdating) section (on the right hand side of dashed line)

rotates the matrix stored in the cells and an externally applied vector of zeros.

Obviously, both the ICs in Figure 3.8 and the Downdating Cell (DC) in Figure 3.10

execute nearly the same operation. The only difference is that the forgetting factor in

O N2()

Table 3.3: Extended QRD-RLS

For each k

0
R k()

Q k() xT k()

λ1 2⁄ R k 1–()
=

γ k() Πi 0=
N θi k()cos=

Obtaining Q k() and{ updating R k();

}

Obtaining γ k();

ξ k()
p k()

Q k() d k()

λ1 2⁄ p k 1–()
=

Obtaining ξ k() and updating d k();

e k() ξ∗ k()γ k()=
Obtaining e k();

b k()

R H– k()
Q k() 0

λ1 2⁄ R H– k 1–()
=

Obtaining b k() and updating R H– k() in downdating;

w k() w k 1–() b k()ξ∗ k()–=
Updating the coefficient vector;

R 1–

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 34

each DC is equal to . Hence the DC could also be mapped together with the IC

and BC. In Figure 3.10, the bottom row of Extraction Cells (EC), is employed to extract

the weights by the Multiply-ACcumulate (MAC) operation [26] [27].

Although the method of downdating for weight extraction requires more arithmetic

computation than back-substitution, the downdating calculation can efficiently share

the architecture of the main QR calculation. In Figure 3.10 the lower triangular

(downdating) section on the right hand side denotes the matrix stored in the DC

cells and an externally applied input of zeros. Both the ICs and DCs execute nearly

the same operation. The only difference is that the forgetting factor in each DC is equal

to . Hence the DC could also be mapped together with the IC and BC, and include

λ 1 2⁄–

w k()

e(k)
(b) Downdating Cell (c) Weight Extraction Cell

Figure: 3.10: Systolic array of QR-RLS with downdating

xout k() ci k()xic k() λ 1 2⁄– si k()ρij k()–=
ρij k() si k()xic k() λ 1 2⁄– ci k()ρij k()+=

wj k() wj k 1–() ξ k()bj k()–=

ρ00

x0 k() x1 k() xN 1– k() d k() 1 0

0

0ρ10 ρ11

ρ20 ρ21 ρ22

w0 k() w1 k() w2 k()

ρij

xdc k()

xout k()

ci k()

si k()

ci k()

si k()

bj k()

R 1– matrix

ξ k() ξ k()

wj k()

(a)

R H–

λ 1– 2⁄

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 35

simple multiplexing/scheduling as appropriate between and . This mapping

and folding strategy is described in Chapter 6.5.

The extended QR-RLS architecture provides the parallel extraction of filter

coefficients, however the introduction of lower triangular downdating array doubles

the number of PEs. An alternative approach, which allows the parallel calculation of

the weight vector without the back-substitution, but has the same number of PEs

compared to the standard QR-RLS array, is known as the Inverse QR-RLS (IQRD-

RLS) algorithm [29] [30]. IQRD-RLS algorithm bases on the update of the inverse

Cholesky factor. Different from the extended QR-RLS algorithm, rather than updating

the matrix during every QR decomposition iteration, the IQRD-RLS update the

product of matrix and input vector . After generating the new matrix , the matrix

 must be loaded out to multiply with the input array for the next iteration [29].

Similar with the back-substitution, this procedure of ‘shifting’ out matrix leads to

the high latency. Also it is almost impossible to map the systolic array to a cost efficient

linear or processor-like architecture in Section 3.8.

3.8 Efficient QR-RLS

For a typical application, the cost is too large to directly map the QR-RLS systolic

array in Figure 3.10 to FPGA, particularly when the array size further increases.

Therefore, a challenge in this research is the efficient mapping of QR-RLS systolic

array. Two most widely used mapping strategies, the linear array wise and processor

wise, are demonstrated as follows:

3.8.1 Linear Array Like QR-RLS Architecture

Figure 3.11 introduces one mapped transformation for QR-RLS. By mapping all the

rows of PEs in Figure 3.11 (a) together, the original parallelogram architecture is

mapped to a linearly interconnected array of PEs, the resulted linear QR array is shown

λ1 2⁄ λ 1– 2⁄

R

R x R

R x

R

N

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 36

in Figure 3.11 (b). Each of these ‘internal’ PE requires only the nearest neighbour

interconnect, making it highly scalable and suitable for high-speed FPGA

implementation. This kind of linear array reduces the required number of Processing

Elements (PE) considerably.

Figure 3.12 is the second alternative improved architecture for QR-RLS. The upper

triangular QR array could be assumed as a rectangular array. But the signal output-

input relation between each row should be set as stated in Figure 3.12 (a). The folding

technique could be applied as described in Figure 3.12 (b), i.e. still produce a linear

array to execute QR-RLS filtering.

There is another mapping scheme which can transfer both the architectures in

Figure 3.11 (a) and Figure 3.12 (a) into a linear column-like array [28], as shown in

Figure 3.13 (b).

Compared with the conventional double triangulars array, the sizes of the above 3

types of linear architecture are significantly reduced. However, the linear architecture

still utilizes large hardware when the QR-RLS systolic array’s size increases.

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 37

ξ k() b0 k() bN 1– k()γ k()

(a)

(b)

(c)

Figure: 3.11: Triangularization array transformation (1)

mapping direction

: multiplexer

x0 k() x1 k() xN 1– k() d k() 1 0

ξ k() γ k() b0 k() bN 2– k() bN 1– k()

x0 k() x1 k() xN 1– k() d k() 1 0

0

0

ξ k() γ k() b0 k() bN 2– k()bN 1– k()

x0 k() xN 1– k()d k() 1 0

: combination of and

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 38

1 0x0 k() xN 1– k()d k()

ξ k() b0 k() bN 1– k()γ k()

1 0x0 k() x1 k() xN 1– k() d k()

ξ k() b0 k()bN 2– k() bN 1– k() γ k()

(a)

(b)

(c)

Figure: 3.12: Triangularization array transformation (2)

1 0

0

0

x0 k() x1 k() xN 1– k() d k()

ξ k() b0 k()bN 2– k() bN 1– k() γ k()

0 0

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 39

Figure: 3.13: Triangularization array

(a)

(b)

(c)

1 0

0

0

x0 k() x1 k() xN 1– k() d k()

ξ k() b0 k() bN 2– k() bN 1– k()γ k()

1 0x0 k() xN 1– k() d k()

ξ k() b0 k() bN 1– k()γ k()

1 0x0 k() xN 1– k()d k()

ξ k() b0 k() bN 1– k()γ k()

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 40

3.8.2 Processor-Like QR-RLS Architecture

Compared to the linear QR-RLS array, the processor-like architecture in Figure

3.10 (c) only consists of a single Givens rotation unit regardless of the size of systolic

array. The data flow in the single processing element architecture mimics that of the

original triangular array architcture. Since only one processing element is used, no

parallel computing is possible. In Figure 3.11 (c). This folding technique combines the

PEs in Figure 3.11 (b) to a single PE, which is the same with Figure 3.12 (c) and Figure

3.13 (c). Despite the linear array in Figure 3.11 (b), Figure 3.12 (b) and Figure 3.13 (b)

are different, the resulted processor-like single PEs are exactly the same.

The single PE QR-RLS array is easier to scale if the larger QR matrix is processed.

As shown in Figure 3.11 (b), Figure 3.12 (b) and Figure 3.13 (b), QR matrix size

scaling leads to increase/decrease the number of PEs on the linear array. Comparing

with the linear array-like QR-RLS in Section 3.8.1, the processor-like QR-RLS can

further save the hardware area. Hence, it is necessary to develop a composed CORDIC

which can be featured as BCs, ICs and DCs. This point will be discussed in Chapter

5.2.

3.9 Fast QR-RLS Algorithms

The extended QR-RLS architecture provides the computational complexity of

 MACs per sample, , where is the order of the adaptive filter. A variety of

computation-efficient Fast QR-RLS algorithms have been presented during the last

decade, which can reduce the computational complexity to , have been

presented in the last decades [18]. Such these ‘fast’ QR-RLS algorithms are classified

into the following types:

3.9.1 QR-RLS Lattice

The complexity of both the standard and extended QR-RLS filtering algorithms is

O N2() N

O N[]

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 41

given by . In the case of a large number of filter coefficients, , the

computational complexity required for both algorithms will be intense. The Fast QR-

RLS algorithms [18] [31] [32], which have the computational complexity of ,

employ the well-known lattice architecture as this inherits the pipelinable properties of

the classic least-squares lattice (LSL) algorithm [33] [34]. They do not, however, allow

a straightforward and parallel computation of the weight vector, so an additional back-

substitution procedure has to be used.

3.9.2 Algorithmic Engineering Applied to the QR-RLS

The use of algorithmic engineering, which was introduced by McWhirter [35], to

design systolic array of QR-RLS adaptive filters is also an important research topic.

Different from the Fast QR-RLS algorithm in Section 3.9.1 which targets the algorithm

to the low complexity lattice architecture, the algorithmic engineering solution still use

the systolic array architecture for efficiently prototyping parallel algorithms and

architectures [36].

Reference [37] extended the work in [35] by applying the algorithmic engineering

to transform the extended QR-RLS algorithm to an equivalent algorithm with a lower

computational complexity, however the resultant algorithm is hard to implement or

map to a cost-saving archiecture,

3.9.3 Multichannel QR-RLS

It is often possible to directly apply the standard single-channel algorithms to deal

with the multichannel problem. In order to obtain a computationally efficient solution,

the multichannel QR-RLS algorithms can be considered as extensions of the basic

single-channel QR-RLS algorithms to the case of a multichannel input vector, where

it can be assumed that each channel has a time-shift structure.

In [38] [39] and [40], QR multichannel RLS lattice algorithm have been addressed,

for the case of unequal length input channel filters can be applied to obtain the exact

O N2[] N

O N[]

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 42

LS solutions with a reduced computational complexity. However compared to the

stardard and the extended systolic array QR-RLS, either the single or multi-channel

Fast QR-RLS lattice/systolic array filter is mathematically more complicated to

implement. Though the pipelining registers are allowed to be inserted between the

neighborhood lattice/systolic array stages, the throughputs of Fast QR-RLS adaptive

filters are still limited by their inherent recursive update operations, i.e., they can not

be pipelined at fine-grain level [41].

3.10 Look-ahead Transformation

The throughputs of all the Fast QR-RLS adaptive filters are still limited by the

inherent recursive update operations, namely they can not be pipelined at fine-grain

level [41]. To increase the throughput of adaptive filters, look-ahead transformations

[41] can be applied as an alternative solution to achieve more fine-grain pipelining by

retiming. In recent years, various Look-ahead technologies have been used in the

architecture and VLSI implementation of the communication physical layer design to

improve the clocking speed of adaptive DSP algorithms.

In [42], a pipelined architecture of soft-threshold-based multilayer decision

feedback equalizer (STM-DFE) was presented, using the relax Look-ahead

transformed delayed least mean-squared (DLMS) algorithm. Reference [43] presents

an ASIC implementation of the relax look-ahead updated DLMS based joint automatic

gain control (AGC)-equalization for a wireline transceiver. The classic Look-ahead

technique has been successfully implemented on an FPGA for a standard LMS detector

for the multiple input multiple output (MIMO) communication system [44]. Also an

ASIC implementation of the look-ahead updated precoder was recently proposed in

[45]. This paper aims to investigate an implementation of the Look-ahead technique

for the QR-RLS algorithm, due to its faster convergence behavior than LMS. The

aformentioned relaxed look-ahead technique based adaptive filtering, which was

proposed in [46], maintains the functionality of the conventional algorithm rather than

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 43

the input-output behaviour, hence certain approximations must be made in this

algorithm which lead to slower convergence rate. In [47], an alternative Annihilation-

Reordering look-ahead Transformation (ART) was selected to achieve fine-grain

pipelining in real valued QRD-RLS adaptive filters and its application on adaptive

MVDR beamforming has been addressed in [48]. Similar to the traditional mult-add

Look-ahead, annihilation-reordering Look-ahead transforms a sequential recursive

algorithm to an equivalent concurrent one by creating additional parallelism in the

algorithm. The advantage of this technique is that it can transform an orthogonal

sequential recursive DSP algorithm to an equivalent orthogonal concurrent one by

creating additional concurrency in the algorithm [47]. The resulting transformed

algorithm can then be pipelined, which is attractive for VLSI implementations.

However, most modern communication applications require complex valued DSP

arithmetic for any equalization or beamforming algorithms, and ART proposed in [47]

is only a real valued filter. Hence this chapter extends the ART to cope with the

complex Givens rotation based QR-RLS systolic array which is clearly more difficult

to implement and has higher computational complexity than the real valued system.

This chapter presents a novel framework of Complex valued Annihilation-Reordering

Look-ahead Transformation (C-ART) that is able to increase the throughput/sample-

rate of QR-RLS based applications.

3.10.1Annihilation-Reordering Look-ahead Transformation (ART)

In this section, from both the block processing and the iteration point of view, the

annihilation-reordering Look-ahead transformation, which was presented in [47] for

real Givens rotation-based QR-RLS filtering algorithms, is reviewed.

Regarding the iteration point of view, the basic Givens rotation of the QR recursion

is given in Eq. 3.27:

(3.27)r k()
0

c s
s– c

r k 1–()
x k()

=

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 44

Assuming a 2-time speed up is desired for the QR update in Figure 3.14 (a). A

sequence of Givens rotations, whose products form the orthogonal transformation

matrix to annihilate the block input data matrix , is now determined.

Consider the block update form of this QR update procedure, firstly the traditional

sequential update operation is used. The input data is annihilated row-by-row, and

the diagonal elements are involved in each update. A direct Look-ahead

transformation by iterating Eq. 3.27 two times is represented by Eq. 3.28.

(3.28)

The corresponding SFG is also shown in Figure 3.14 (c). It can be seen that the

number of Givens rotations inside the feedback loop increases linearly with the number

of delay elements in the loop. Therefore, there is no overall improvement in either the

sample or clock speed, as the critical path is doubled.

Q k() x k()

x

r

r k()
0
0

c1 0 s1

0 1 0
s1– 0 c1

c2 s2 0
s2– c2 0
0 0 1

r k 2–()
x k 1–()

x k()

=

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 45

 The annihilation-reordering look-ahead technique [47] is illustrated in Figure 3.15

(a). Here a sequence of Givens rotations is chosen to firstly annihilate the block data

 and , and then update to (i.e. the diagonal elements

are updated only at the last step). This leads to the following 2-level annihilation-

reordering look-ahead transformation for QR-RLS adaptive filters, this can be

mathemetically represented by Eq. 3.29). It can been seen in Figure 3.15 (b) that

without increasing the complexity in the loop, the number of delay elements in the

D 2D

G
G

G

r k()

r k 1–()

x k()

r k 2–()

x k()

r k 1–()

r k()

r r r r
r r r k 2–()

r r
r

x x x x k 1–()
x x x x k()

r r r r
r r r k 1–()

r r
r

0 0 0 0 k 1–()
x x x x k()

r r r r
r r r k()

r r
r

0 0 0 0 k 1–()
0 0 0 0 k()

Figure: 3.14: (a) Direct look-ahead QR update procedure; (b) Sequential
transform over one time step; (c) Direct look-ahead transform over two time steps

(a)

(b) (c)

λ1 2⁄ λ

λ1 2⁄

D

r k()

r k 1–()

x k()

r k 2–()

x k()

D 2D

G
G

G

r r r r
r r r k 2–()

r r
r

x x x x k 1–()
x x x x k()

r r r r
r r r k 2–()

r r
r

x x x x k 1–()
0 0 0 0 k()

r r r r
r r r k()

r r
r

0 0 0 0 k 1–()
0 0 0 0 k()

Figure: 3.15: (a)Annihilation-reordering look-ahead QR update
procedure; (b) sequential transform; (c) ART

(a)

(b) (c)

λ1 2⁄

λ1 2⁄

λ

D

x k 1–() x k() R k 2–() R k() r

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 46

feedback loop is increased from one to two. These two delay elements can then be

redistributed around the loop using retiming techniques to achieve the fine-grain

pipelining by the 2-level, as shown in Figure 3.16. The single Givens rotation unit

outside the feedback loop is considered as a computation overhead resulting from the

look-ahead transformation, hence, it can also be cut-set pipelined by 2-level registers.

(3.29)

Relationship with Multiply-Add Look-ahead

The above transformantion is similar to the well known simple multiply-add Look-

ahead [47] procedure since both perform Look-ahead through iteration. Consider the

SFG of a first-order IIR digital filter in Figure 3.17 (a). After applying the multiply-

add Look-ahead transformation with pipelining level two, the resulting SFG is given

in Figure 3.17 (b). The filter sample rate can be increased by a factor of two after

redistributing (retiming) the two delay elements in the feedback loop (i.e. pipelined

multiplier and adder trees). The SFG in Figure 3.18 (a) can be redrawn as shown in

Figure 3.18 (b) (where the simple adders of Figure 3.17 are now the “G” Givens

rotations), which is essentially similar with Figure 3.17 (b).

Figure: 3.16: Retiming technique for ART

D2D

G
G

: 1 level register

λ λ

λ1 2⁄λ1 2⁄

D D
(a) (b)

G
G

r k()
0
0

c1 s1 0
s1– c1 0
0 0 1

1 0 0
0 c2 s2

0 s– 2 c2

r k 2–()
x k 1–()

x k()

=

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 47

ART Real Valued QR-RLS

Regarding Figure 3.14, the recursive operations inside all the PEs (BCs, ICs & DCs)

limit the throughput of the QR-RLS systolic array. To increase the sample rates, we

now apply the annihilation-reordering look-ahead technique [47] to derive the

concurrent real valued QRD-RLS algorithm for weight extraction. By block updating

with the block size , the real valued expression of original sequential updating Table

3.3 is transformed as follows

(3.30)

where is an -by- matrix (is the number of weights in the adaptive

Figure: 3.17: Multiply-add Look-ahead transformation

y k() ay k 1–() x k()+= y k() a2y k 2–() ax k 1–() x k()+ +=

a

x k() y k()

x k()

a a2

y k()

D D 2D

sequential transform classic look-ahead transform

(a) (b)

Figure: 3.18: Annihilation-reordering Look-ahead transformation

(a) (b)

D D 2D

G Gx k() r k()

x k()

r k()

λ1 2⁄

G

λ1 2⁄ λ

sequential transform ART

M

R k() p k() R 1– k()
0 ξ k() b k()

=

Q k() λM 2⁄ R k M–() λM 2⁄ p k M–() λ M 2⁄– R 1– k M–()

xM
T k 1–() dM k 1–() 0M

xM k() M N N

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 48

filter) defined as

and is an -by-1 vector defined as

In Eq. 3.30, denotes -by- null matrix.

G
G

G
G

G
G

G
G

Figure: 3.19: ART updated QR-RLS ()M 2=

0 0

0 0

1 0

e k()

0

ρ N 1–()0

ρ1 N 2–()ρ10

ρ00r00

r11

γ1

γ2

r N 1–() N 1–()

r0 N 1–()

pN 1–

γN 1–

r1 N 1–()
p1

p0

ρ N 1–() N 2–() ρ N 1–() N 1–()

r01

0 0

x1 k() x2 k() xN 1– k() d k()

W0 WN 2– WN 1–

BC IC DC

EC EC

BC IC DC

D D D D

2D 2D 2D

E
E

E

E

0
E

-1

2D

0

Ef

g i

h
h i f g×–=

where :

xM k() x k M– 1+() … x k 1–() x k(),, ,[]T=

dM k() M

dM k() d k M– 1+() … d k 1–() d k(),, ,[]T=

OM p× M N

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 49

Based on Figure 3.15, the order of the Givens rotations is chosen such that the input

 samples is preprocessed, and the block-data update has the same complexity as a

single-data update. Hence, a 2-level pipelining (block updating size) topology

for the CORDIC-based QRD-RLS filter is shown in Figure 3.19. As demonstrated in

[47], the internal structure of each PE is also shown in the bottom half of this diagram.

In comparison with the triangularisation part of the sequential updated QR-RLS

systolic array, the 2-level pipelining architecture doubled the number of Givens (i.e.

CORDIC) units which is linear with respect to the pipelining level. As shown in Figure

3.19, from an implementation point of view, for block updating by two, there are two

circular CORDICs required by all the Givens rotaion based BCs, ICs and DCs, and the

error calculator and each EC require two and three linear CORDIC units respectively.

When the block updating size increases to three, the amount of needed CORDICs are

G

G

G

G

G

G

G

G

0

G G G G

Figure: 3.20: ART updated QR-RLS ()M 3=

3D 3D 3D

G

G G G G

0

G

G

G

G

G

G

G

G

G

G

G

Figure: 3.21: ART updated QR-RLS ()M 4=

4D 4D 4D

x

M 2=

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 50

three, as shown in Figure 3.20. In Figure 3.21, if the look-ahead pipelining level further

rises to four, correspondingly four CORDICs are employed. Hence for a real value QR

decomposition updated by the block size , the systolic array requires CORDICs

in each PE (except the extraction cell which needs CORDICs). The complexity

(regarding the NO. of CORDIC units per sample time) of the double triangular part is

, where is the dimension of matrix , and is the size of block update.

Many communication applications require the complex valued DSP arithmetic,

hence it is necessary to extend ART to cope with complex valued QR-RLS array.

Section 7 will present a novel Complex valued Annihilation-Reordering Look-ahead

Transformation (C-ART).

3.11 Conclusion

The RLS algorithm is computationally intensive (order). The QR

decomposition can be applied to RLS algorithm to avoid the inversion of the input

signal’s correlation matrix. The QRD-RLS implemented with the orthogonal Givens

rotations is employed in this research. The advantages of this algorithm are its

numerical stability and its systolic array implementation. A major drawback of the

conventional QR-RLS algorithm is the back-substitution algorithm which is required

for sequentially computing the weight vector. This research employs a weights parallel

extraction approach known as the extended QR-RLS algorithm, which is implemented

through a double triangular array without the back-substitution procedure.

The cost is too large for mapping all the PEs of the QR-RLS systolic array directly

on FPGA, particularly with the increasing array size . Therefore, a crucial challenge

in design and hardware implementation of QR-RLS filtering is mapping this large

systolic array to one with the lower complexity. The Fast QR-RLS algorithms with

order numerical operations per output sample have been discussed. The approaches

to generate the Fast QR-RLS algorithm using lattice formulation and algorithmic

engineering are also illustrated. Despite in terms of the computational complexity, the

M M

M 1+

O MN2() N R M

O N2[]

N

N

CHAPTER 3 - Recursive Least Squares (RLS) using QR Method 51

reviewed Fast QR-RLS algorithms are efficient, it is hard to implement and map to a

cost-saving archiecture, moreover it can not be pipelined at the fine-grain level.

The throughputs of all the Fast QR-RLS adaptive filters are still limited by the

inherent recursive update operations. To increase the throughput of QR-RLS adaptive

filters, Annihilation-Reordering Look-ahead Transformation (ART) was proposed to

achieve more fine-grain pipelining by retiming, to improve the clocking speed of QR-

RLS implementation. However, ART was only proposed for the real valued QR-RLS

system.

CHAPTER 4 - Coordinate Rotation Digital Computer in QR-RLS 52

Chapter 4

Coordinate Rotation Digital Computer in QR-RLS

4.1 Introduction

Several methods have been proposed for the computation of QR decomposition.

Givens rotation [21] has the advantage over Householder transformation [49] etc that

it can be more parallelised and therefore more appropriate for the hardware

implementation. The hardware implementation of Givens rotation requires the core

operations of fixed point multiply-accummulate, square root and also divide.

Despite the QR triangularisation method has excellent numerical properties and is

hence the favoured method for fixed point implementation, according to Figure 3.7, the

direct arithmetic to calculate sine and cosine function in QR Boundary Cell (BC)

requires both the division and square root operation, the implementation complexity is

high.

One low complexity technique that performs the Givens generation and rotation is

the COordinate Rotation DIgital Computer (CORDIC) algorithm, which was first

developed by Volder [50] in the 1950s before Walther [51] extended the work in the

1970s. It is an iterative method which is used to calculate many trigonometric and

algebraic functions [50]. CORDIC performs a series of micro-rotations with an

architecture comprised almost entirely of shift-add operations, and hence results in an

efficient hardware design.

This chapter will analysis the throughput vs area performances of three CORDIC

architectures: pipelined parallel, non-pipelined parallel and serial structure. A special

senario using FPGA on-chip DSP48 slice in serial CORDIC will also be discussed.

The precision of CORDIC can be estimated by the ‘rule of thumb’ firstly presented

by Walther [51] [52]. This rule suggested the CORDIC arithmetic obtains about 1 bit

CHAPTER 4 - Coordinate Rotation Digital Computer in QR-RLS 53

of accuracy per iteration (iterations for -bit precision). Beyond Walther’s

original work, the assessment of Overall Quantisation Error (OQE) was presented by

Yu Hen Hu [53] in the 1980s to give the numerical accuracy achievable by -rotations

and -bits for some aribitary setting.

4.2 CORDIC

All the boundary, internal and downdating cell of the QR-RLS array can be

implemented with the CORDIC processors, which is suitable to execute Givens

rotation in fixed point. CORDIC is an iterative algorithm for calculating trigonometric

functions such as sine and cosine etc. It requires shifts and adds but needs no

multiplications, so it requires less hardware resource.

The generalised CORDIC equation of circular Givens rotation is shown in [50] [54]:

(4.1)

where the index denotes the iteration. Also, is known as the decision factor

and used to control the direction which the vector is rotated at each iteration and hence

takes the value of ±1 — If the vector is rotated in clockwise, equals to -1, otherwise,

. Circular rotation CORDIC has two modes: vectoring and rotation. The

vectoring mode CORDIC, represents the BCs in Figure 3.8 and Figure 3.10, generates

the magnitude of vector1 and the corresponding phase (also known as Given

generation), and the rotational mode performs the Givens rotation of the given angle

for the ICs and DCs. The decision factor under both modes are given as follows:

(4.2)

1. Here and represent a vector and CORDIC decision factor respectively, rather than the input
signal , output signal and desired signal of an adaptive filter.

b 1+ b

n

b

xi 1+ xi di 2 i– yi()–=

yi 1+ yi di 2 i– xi()+=
zi 1+ zi di– 2 i–()atan=

i ith di

di

di 1=

x y,() z

x y,() d
x k() y k() d k()

z

di

di sign xiyi()–=

di sign zi()=Rotation Mode :

Vectoring Mode :

CHAPTER 4 - Coordinate Rotation Digital Computer in QR-RLS 54

The decision factor with each rotation affects the accumulative angle that is

rotated. Arbitrary angles can be rotated in the range . The sum of all

angles obeying the law is 99.7 [50]. For angles outside this range, the

quadrant mapping can be used to convert the desired angle into one within the range,

and this mapping needs to be corrected by the quadrant correction at the output of

CORDIC.

According to [50], the resultant and values of CORDIC procedure are

always scaled by a factor . If the iteration number is known then the scaling factor

Kn can be precomputed and correct the final values of and by multiplying them

by 1/Kn. The scaling compensation employs binary shifts and adders to form a constant

multiplication, which could be realised by binary shift-add [55].

(4.3)

Figure 4.1 (a) shows the signal flow graph of the standard unpipelined parallel

CORDIC. The architecture of a single CORDIC iteration cell is shown in Figure 4.1

(b). Series of such butterfly-like cross-additions (with the fast carry chain mentioned

in Chapter 2.5.2) are employed to update the current estimate of the required function.

Note that the iterations number is a function of the desired numerical accuracy, the

‘rule of thumb’ presented by Walther [51] suggests that each the micro-rotation refines

the estimate by approximately 1-bit of precision. The critical path of the unpipelined

CORDIC is (n iteration cells + one scaling compensation cell + one quadrant mapping

+ one correction). The concept of critical path is the longest propagation delay of the

circuit. The sampling rate of this unpipelined CORDIC is one new input/output per

clock cycle. So the maximum clock rate should equal to the sampling rate. However

the setback is the large hardware area and long critical path highlighted in Figure 4.1

di

99.7 θ 99.7≤ ≤–

θitan 2 i–=

xi 1+ yi 1+

Ki n

xn yn

Kn 1 θicos()⁄

n
∏ 1 tan2θi+()

n
∏ 1 2 2i–()+()

n
∏= = =

Kn 1.6476 as n ∞→→

1 Kn⁄ 0.6073 as n ∞→→

n number of iterations=

i

CHAPTER 4 - Coordinate Rotation Digital Computer in QR-RLS 55

(a).

4.3 Squared Givens Rotation (SGR)

Another method of implementing Givens transform on hardware is the Squared

Givens Rotation (SGR) algorithm [56]. Here the Givens algorithm has been

manipulated to remove the need of square root operation, and leads to different

architectures that do not use CORDIC but require division operations. In contrast with

CORDIC, SGR requires dividers (hence always suggest floating point arithmetic [57]

[58]) and essentially operates on the correlation matrix rather than the data matrix, and

requires a longer fixed point wordlength compared to the standard Givens. As such

there is a difference between the numerical properties of SGR and CORDIC, this thesis

will not make a critical comparison between them.

xinyinzin

X
Y
Z

X
Y
Z

X
Y
Z

X
Y
Z

X
Y
Z

X
Y
Z

xoutyout
zout

x0
y0
z0

x1
y1
z1

x2
y2
z2

xn 2–
yn 2–
zn 2–

xn 1–
yn 1–
zn 1–

1/Kn

1/Kn

Critical Path = n iteration cells + 1 scaling compensation cell + 1 quandrant mapping & 1 correction

Quadrant

Mapping

Quadrant

Correction

CORDIC cell

xi

yi

zi

xi 1+

yi 1+

zi 1+Angle θi

i
Shift

i
Shift

Controldi

+/-

+/-

+/-

CORDIC cell

Figure: 4.1: (a) Unpipelined parallel CORDIC (b) Fine grain level of a single CORDIC microrotaion

(a)

(b)

CHAPTER 4 - Coordinate Rotation Digital Computer in QR-RLS 56

4.4 CORDIC based QR-RLS Processing Elements

According to Section 3.6, the QR-RLS boundary cells execute Givens generation

(namely generating the trigonometric functions), internal and downdating cells

operform Givens rotation with the received trigonometric functions from BCs. Both

Givens generation and rotation can be implemented on hardware by CORDIC

arithmetic. Each boundary cell of QR array requires the vectoring mode CORDIC, and

the internal and downdating cells require the rotation mode CORDICs. For the real

valued QR-RLS array, the boundary cell needs to convey the generated phase to the

internal cell, as illustrated in Figure 4.2. The dark vectors represent the input vectors

of both boundary and internal cells. After the real Givens generation, namely

CORDIC micro-rotations, the dark vector are rotated to the positions of the grey ones

and generate the phase information . The ICs and DCs receive the angle and rotate

by the same degree. The decision factor is chosen as a function of whether angle

x0
dcy0

dc

yn
dc

Rotation

D
CORDIC

x0
icy0

ic

yn
ic

Rotation

D
CORDIC

x0
bcy0

bc

yn
bc

Vectoring
CORDIC

D

Vectoring
CORDIC

z z

Figure: 4.2: Signal transfer between the real valued BC, IC and DC

x0
bc y0

bc,()

xn
bc yn

bc,()z z

x0
dc y0

dc,()

D : one cycle delay

Iteration number n=

xn
dc yn

dc,()

n

z z
d z

CHAPTER 4 - Coordinate Rotation Digital Computer in QR-RLS 57

is negative or positive.

4.4.1 CORDIC Scale Compensation

The CORDIC scaling factor can be efficiently compensated by appropriate

binary shifters and adders to form a constant multiplication. The binary shifts could be

hardwired with adders. Since the binary shift costs no hardware resource, the

corresponding ‘optimizing’ strategy is to reduce the complexity of constant multiplier

by minimizing the number of adders. Rather than the conventional binary

representation, the Canonical-Signed Digit (CSD) coding [12] is employed in [55] to

produce the constant multiplier. Considering the instance when CORDIC

iterations and 14 binary bits are chosen for the fractional part of multiplier output, the

constant coefficient is . A 3 level pipelined shift-add based CSD

multiplier is shown in Figure 4.3..

The Minimised Adder Graph (MAG) algorithm, specified by Dempster & Macleod

Kn

n 16=

1 k16⁄ 0.607238=

>> 14

<< 13

Figure: 4.3: CSD coding based constant multiplier

<< 11

<< 8

<< 2

<< 5

x

0.607238x

7936_

2016

3

2013

9949
+

_

_

_

3 Adder/Subtractor: output equals
block input X multiplied by 5

<< Shift signal left by p bits (multiply
signal by 2p

+/- Signal is substracted from other
entering adder/ subtractor

Crossing signals are pipelined

CHAPTER 4 - Coordinate Rotation Digital Computer in QR-RLS 58

[59], is a good choice for the constant multiplication graph generation. Better than

CSD, MAG can yield the minimum number of adders [59]. MAG generates all the

constant multiplication graphs for the supplied constant, and uses a series of iterative

searches to find the lowest cost generated graph — the least number of adders.

However, MAG is more suitable for the ASIC implementation rather than FPGAs,

because FPGAs have predefined architectures and the FPGA area is measured in slices

(for Xilinx). According to Chapter 2, compared with an ASIC design, each pipeline

stage results flip-flops and hence utilizes FPGA slices. So the multiplier block

synthesis algorithms for low FPGA area should minimise the consumption of slice

rather than that of adder.

Reduced Slice Graph (RSG) [60] synthesises the low FPGA cost multiplier block.

RSG combines the graph data generated by MAG as part of the multiplier block

synthesis process. Modification and extensions were made to original MAG algorithm

that enhance its functionality. Figure 4.4 shows a 3 level pipelined shift-add based RSG

multiplier, which saves one adder from the CSD representation.

4.4.2 Throughput of CORDIC in a Recursive Loop

The pipelined CORDIC design has pipeline registers inserted between micro-

rotations, to break the long critical path highlighted in Figure 4.1 (a). Figure 4.5 shows

the pipelined CORDIC structure. After the initial latency of the circuit has been

Figure: 4.4: RSG algorithm based constant multiplier

<< 2

<< 3

<< 3

<< 8
>> 14

x

0.607238x
5

35_

39_

9949_
+

CHAPTER 4 - Coordinate Rotation Digital Computer in QR-RLS 59

absorbed, the sampling rate is still one input/output per clock cycle.

According to Figure 4.2, each real valued QR-RLS PE requires one CORDIC unit

inside a recursive loop for RLS filtering. A pipelined CORDIC in Figure 4.6 will

change the input-output behaviour of the recursive loop unless the clock rate of

CORDIC is higher than the rate of input samples, as shown in Figure 4.6. The

calculated magnitude of vector , i.e. in Figure 4.6, needs to be fed back

as the next iteration’s inputs . Since the magnitude is always positive, So the

rotated angles for all the BCs, ICs and DCs are always in the 1st and 4th quadrant, and

the CORDIC quadrant mapping and correction operations are not needed inside the

real valued QR-RLS PEs. For a single input data channel, a sample will enter the

pipeline and clock through each stage with nothing following it until it has passed

through completely. This means that the majority of the logic is redundant for the

majority of the time. The pipeline will never fill up because a new sample must wait

on the result of the previous one before it can enter the pipeline. Hence the CORDIC

pipelining can not improve the throughput of design. Assuming there are micro-

rotations in the CORDIC operation, despite the introduction of pipeline registers

X
Y
Z

X
Y
Z

X
Y
Z

X
Y
Z

X
Y
Z

X
Y
Z

xinyin
zin

xoutyout
zout

1/Kn

1/Kn

registers

Critical Path = 1 iteration cell

CORDIC cell

Quandrant

Mapping

Quandrant

Correction

: Pipeline Register

Figure: 4.5: Pipelined parallel CORDIC

Figure: 4.6: Pipelined CORDIC based real valued QR PE

X
Y
Z

X
Y
Z

X
Y
Z

X
Y
Z

X
Y
Z

X
Y
Z

1/Kn

1/Kn

 registersCORDIC cell

xin

yin
zin

xout

yout
zout

: UpClocking : DownClocking

xin yin,() xout

xin xout

n

CHAPTER 4 - Coordinate Rotation Digital Computer in QR-RLS 60

reduces the critical path to its , where is the number of pipeline registers

for scaling compensation. The data rate should be new inputs/1 output per

 clock cycles.

An alternative architecture is the serial CORDIC in Figure 4.7. Similar to the

pipelined CORDIC, the serial CORDIC can generate 1 output value per micro-

rotations. So the sampling rate is new inputs/1 output every clock

cycles.

In the serial CORDIC design, bit shifting is achieved by the barrel shifter (BS). As

shown in Figure 4.8, each seperated bit of the ‘ ’ signal drives one 2-to-1 multiplexer.

For instance when = “01010”, i.e. decimal 10, the input and data follows the

path highlighted by the grey arrow.

The two Barrel Shifters (BS) are the most complex components of the serial

CORDIC in Figure 4.7. In [12], it is suggested that the two barrel shifters can be

1 n f+()⁄ f

n f+()

n f+()

n f+()

n f+() n f+()

D

D

D

X
Y
Z

X
Y
Z

xin

yinzin

xi

yi

zi

xi 1+

yi 1+

zi 1+
Angle θi

BS

Controldi

+/-

+/-

+/-

CORDIC cell

BS

Critical Path

1/Kn

1/Kn

 registers

youtzout

xout

Figure: 4.7: Serial CORDIC based real valued QR PE

i

i x y

CHAPTER 4 - Coordinate Rotation Digital Computer in QR-RLS 61

mapped to a single one, using two multiplexers and one adder/subtractor, as shown in

Figure 4.9 (b). Despite this method can further reduce the hardware usage of serial

CORDIC, but the throughput is reduced by the time-sharing scheme. According to

[12], for 13-bit implementation, the single BS based architecture only saves 15% cost,

with the 67% drop in the throughput. Hence, this architecture only features the designs

whose speed requirement is not critical.

Performing the -fold loop rolling on the unpipelined circuit in Figure 4.1 yields

the circuit with micro-rotations in Figure 4.10. This architecture performs the same

Givens operation in clock cycles. Although this partial rolled architecture

results in a simpler barrel shifter, it has a longer critical path through iteration cells

instead of one.

>>1 >>2 >>4 >>8 >>16

sel sel sel sel sel

Figure: 4.8: (a) Unpipelined barrel shifter; (b) Pipelined barrel shifter

critical path (non-pipelined)

i ″01010″=

xi or yi

shifted xi or yi()

′0′ ′1′ ′0′ ′1′ ′0′

>>1 >>2 >>4 >>8 >>16

sel sel sel sel sel

i ″01010″=

xi or yi

shifted xi or yi()

′0′ ′1′ ′0′ ′1′ ′0′

: pipeline register
critical path (pipelined)

(a)

(b)

k

k

n k⁄() f+

k

CHAPTER 4 - Coordinate Rotation Digital Computer in QR-RLS 62

The critical path of the serial CORDIC cell is highlighted by the grey line in Figure

4.7. In contrast to the general hardwired bit shifter in Figure 4.1 (b), the barrel shifter

will increase the critical path latency due to the cascade of LUT based multipliexers,

which was discussed in Chapter 2.5.2. To reduce the propagation delay of BS, the

barrel shifters also need to be pipelined. By employing the pipelined barrel shifter in

the serial CORDIC, its maximum clock rate reaches just slightly lower than that of the

pipelined design in Figure 4.6, due to the overhead of the additional pipeline registers.

The serial CORDIC based PEs with the pipelined barrel shifters can generate 1 output

value during clock cycles, where is the number of pipeline stages. So the

Figure: 4.9: (a) Dual-BS serial CORDIC; (b) Single-BS serial CORDIC

ziyixi

xi 1+ yi 1+ zi 1+

ziyixi

xi 1+ yi 1+⁄ zi 1+

MUX MUX

(a)

(b)

D D D

2D D D

Angle

+/-

BS

+/- +/-

BS di

di Angle

BS

+/- +/-

n s×() f+ s

CHAPTER 4 - Coordinate Rotation Digital Computer in QR-RLS 63

sampling rate should be new inputs/1 output per clock cycles.

4.4.3 DSP48 based Serial CORDIC

The long propagation delay of barrel shifter results in the low throughput of serial

CORDIC based QR-RLS PEs, an improved solution is to replace the single CORDIC

micro-rotation with the multiply-add function of the DSP48 slices, which was

addressed in Chapter 2.

According to Figure 2.5, when the iteration number and the and width

, the -bit barrel shift is replaced by one operation, where the

sequence is pre-stored in the FPGA on-chip Block RAM. In Figure 4.11, the

bit multiplier is enough to represent a 17-bit shifting . According to [51], this

indicates less than 17 CORDIC micro-rotations, due to CORDIC obtaining 1-bit

n s×() f+ n s×() f+

xi

yi

zi

xi 1+

yi 1+

zi 1+Angle θi

BS

Controldi

+/-

+/-

+/-

CORDIC cell

BS

Figure: 4.10: K-fold loop rolled CORDIC

critical path D

D

D

X
Y
Z

X
Y
Z

X
Y
Z

X
Y
Z

X
Y
Z

X
Y
Z

xin

yinzin

1/Kn

1/Kn

 registers

xout

youtzout

n 18< x y

n' 18 bits≤ i 2 i– × 2 i–

18 18×

2 17–

CHAPTER 4 - Coordinate Rotation Digital Computer in QR-RLS 64

precision per iteration. Then the input and in Figure 4.11 will add/subtract the

partial products from the multiplier 2 and 1. Hence in this case, the single CORDIC

cell costs 3 DSP48 Slices, and the critical path is the total propagation delays of one

multiplier, one adder and one scaling compensator which can also be implemented

using DSP48s.

When the iteration number and the and wordlengths are between 18 and

36 bits, two DSP48s execute the ‘bit-shift’ work by spliting and expanding or into

two 18-bit parts. As is the case shown in Figure 4.12, the single CORDIC iteration cell

contains 5 DSP48 Slices. When no pipeline registers are used in the DSP48s, the

x y

18

18 48
48

18

18
48 48

Figure: 4.11: Using DSP48 in Serial CORDIC ()x, y width n' 18-bit≤

: optional pipeline register

18

18
48 48

: critical path in non-pipelined manner

Angle

xin

yin

zin

1/Kn

 registers

1/Kn

xout

yout

zout

2 i–

2 i–

xi

yi

zi

xi 1+

yi 1+

zi 1+

n 18< x y

x y

CHAPTER 4 - Coordinate Rotation Digital Computer in QR-RLS 65

critical path should be the sum of the propagation delays of one multiplier, two adders

and one scaling compensator.

Similar to the serial CORDIC based QR PE in Figure 4.7, the sampling rate of

pipelined DSP48 based ones in Figure 4.11 and Figure 4.12 are still ‘CLK rate/

18

18 48
48

18

18

18

18

48

48

48

48

48

Figure: 4.12: Using DSP48 in Serial CORDIC ()18-bit x, y width n' 36-bit≤()<

18

18

18

18

48

48

48

48

48

xin

yin

1/Kn

 registers

xout

yout

zout
Angle

zin

2 i–

2 i–

1/Kn

zi zi 1+

yi 1+

xi 1+

: critical path in non-pipelined manner

xi 16:0[]

yi 16:0[]

xi n':17[]

yi n':17[]

: optional pipeline register

CHAPTER 4 - Coordinate Rotation Digital Computer in QR-RLS 66

’. But the full pipelined DSP48 slices can be driven at a fast 500 MHz clock

rate, so the DSP48 solution can improved the throughput of serial CORDIC.

FPGA synthesis results suggest that, for less than 25-bit wordlength, an unfolded

pipelined CORDIC based PE can be driven at 250MHz clock rate, with the sampling

rate ‘CLK rate/ ’. Despite the clock of pipelined DSP48 slices can go faster,

there are pipeline stages inside DSP48, as shown in Figure 4.11 and Figure 4.12.

The maximum sampling rate of DSP48 based PE is , which

is smaller than that of the pipelined parallel CORDIC — .

Hence both the DSP48 and LUT based serial CORDICs are not the proper solutions

for high throughput QR-RLS application.

4.5 Other Existing High Speed CORDIC Solutions

The throughput of CORDIC based QR-RLS PEs is limited by the scaling

compensation and the long critical path inside the recursive update loop, which can not

be directly pipelined to avoid the change of algorithm’s input-output behaviour. Many

previous researches focused on developing an improved CORDIC in two fields : first,

changing the CORDIC algorithm and architecture; second, based on the standard

CORDIC arithmetic, but improving the Overall Quantisation Error (OQE) assessment

method to produce the desired numerical performance with the minimum number of

microrotations [58]. Both topics are demonstrated as follows:

4.5.1 Low Latency CORDIC Algorithms and Architectures

To reduce the inherent latency, [61] proposes a scaling free CORDIC algorithm.

Compared with the traditional CORDIC, the scaling free version produces the lower

latency at the expense of the double cost for each iteration cell. Another algorithm

discussed in [62] and [63] applies the Taylor Series expansion into the CORDIC,

consequently reduces the number of iterations, meanwhile avoids the scaling

n s× f+()

n f+()

s 2>

500MHz CLK n s f+×()⁄

250MHz CLK n f+()⁄

CHAPTER 4 - Coordinate Rotation Digital Computer in QR-RLS 67

operation, but this algorithm leads the extreme large angle quantization error compared

with that of the conventional CORDIC, and this method is more suitable for the

rotation mode CORDIC.

The Angle Recording (AR) technique [64] is a useful approach to speed up the

operation of CORDIC. Compared with the conventional CORDIC algorithm, AR

technique reduces the number of CORDIC iterations and the angle quantization error

significantly. However, this method is only suitable for the rotation mode CORDIC. In

[65] a novel On-Line Mixed-Scaling-Rotation (MSR) - CORDIC is investigated.

MSR-CORDIC executes the vectoring mode in Boundary Cell (BC) of QR-RLS

systolic array. Moreover, the MSR-CORDIC, presented in [66], is only able to conduct

the rotation mode in Internal Cell (IC). The iteration number of MSR-CORDIC can be

minimized to result in an extremely low latency and also be able to avoid the overhead

of scaling operation. However, the low latency of on-line MSR-CORDIC is achieved

at the expense of 18 adder/subtractors per iteration cell [65]. Although the increased

hardware cost can be parially compensated by the reduced iteration number, the

overall hardware utilization is still unacceptable for the low cost applications.

Furthermore the defference in BC and IC’s architecture [65] makes them difficult to

map together.

4.5.2 Assessing the Overall Quantisation Error

The investigation around the bit error is often used to find a CORDIC design that

gives the desired level of accuracy to maintain the algorithm integrity. By choosing the

desired accuracy and the number of fractional bits , the CORDIC arithmetic is

given a number of iterations [51]. The research on trading the CORDIC’s pipelining

latency against precision could be a vital approach to minimize the execution time of

CORDIC based system. In [51] [67], it is suggested that the CORDIC implementation

obtains -bit precision under iterations, with additional fractional bits are

added onto the and path. While this law is only derived from the round-off error

deff b

n

b b 1+ b2log

x y

CHAPTER 4 - Coordinate Rotation Digital Computer in QR-RLS 68

of fixed point system, without considering the angle quantisation error caused by

CORDIC iterative approximation [51].

(4.4)

An algorithm for estimating the Overall Quantisation Error (OQE) was developed

by Hu [53]. As described in Eq. 4.4 the OQE is made up of two distinct errors. The first

part is the Approximation Error (AE), , which is due to the quantised representation

of a CORDIC rotation angle by finite numbers of elementary angles. The second one

is the Rounding Error (RE), , which originates from the finite precision arithmetic.

In Eq. 4.4, represents the final quantised rotation angle, which is

approximated as . is the maximum value that the magnitude can take. The

research in Strathclyde university [68] has proved that Hu’s AE estimation results in

the underestimation of the number of effective fractional bits for small . So only the

large iteration number have to be employed, despite resulting the increase of CORDIC

execution time. To overcome such a drawback, reference [68] presents an improved

but vectoring mode only equation which is more accurate in predicting the

Approximation Error .

(4.5)

where .

To see the difference between the improved algorithm and the original version

proposed by Hu, both are plotted in Figure 4.13 for a series of , and . With

the increase of , AE also grows. And RE reduces with the increase of bit-width

of and path. Figure 4.13 shows that Hu’s AE estimation equation has a large error

which consequently causes the underestination of effective fractional bits .

AE causes the bit-width increase of and path. A proper iteration number need

to be chosen when the RE is absolutely dominant than the AE, i.e OQE is only

determined by the RE, otherwise the low iteration number will lead to the large

hardware cost. In Figure 4.13, when is set in the range 12 to 22, the assessed AE from

εa a1 n 1–() v 0()=OQE εa εr+=
deff OQE2log–=

εa

εr

a1 n 1–()

2 n– 1+ v 0()

n

εa

εa v 0() v 0() δcos–=

δ a1 n 1–() tan 1– 2 n– 1+()= =

n b v 0()

v 0() b

x y

deff

x y n

n

CHAPTER 4 - Coordinate Rotation Digital Computer in QR-RLS 69

Hu’s algorithm plays an important role in the OQE. In the same circumstance, the AE

estimated by the improved algorithm is too small to influence the . However, the

improved AE estimation algorithm in [68] is not compatible with the rotation mode

CORDIC, which is required in the internal/downdating cells of QR-RLS systolic array.

4.6 Conclusion

In this chapter, the Processing Elements (PEs) of QR-RLS systolic array are

realized by CORDICs rather than SGRs. Vectoring and rotation mode CORDICs can

be easily accomplished with only a few shift-and-add operations. The RSG reduces the

complexity of the CORDIC scaling compensation by the simple shift-add operations,

which ultilises the minimum amount of slices. To fulfill the essential speed

deff

Figure: 4.13: Approximation Error vs Rounding Error

AE in [53]
AE in [53]
AE in [53]

AE in [68]
AE in [68]
AE in [68]

RE in [53]
RE in [53]
RE in [53]

CHAPTER 4 - Coordinate Rotation Digital Computer in QR-RLS 70

requirement of the next generation wireless communication, designing the low latency

CORDIC based PEs becomes a vital challenge of this research.

This chapter has described the architectures of the three types of CORDICs :

unpipelined parallel, pipelined parallel and serial structures. The corresponding

‘speed-area’ performances of all three types of CORDICs have been analyzed.

Pipelined CORDIC results in the high clock rate, but the introduction of pipeline

latency in the QR recursive loop will harm the throughput. A special Xilinx DSP48

slice based serial CORDIC is also presented and compared with the architectures

basing on the LUTs. However, for the QR-RLS application, both the DSP48s and

LUTs based serial CORDICs result in the lower throughput than those of the parallel

CORDICs.

This chapter has also reviewed existing low latency CORDIC solutions, and of

particular interest two potential ‘speed up’ schemes: first method is changing the

CORDIC algorithms/architectures to reduce the iteration number or result in a novel

scaling-free architecture; second, the assessment of Overall Quantisation Error (OQE)

reduces the number of CORDIC microrotations. However, none of the existing low

latency CORDIC schemes are suitable for QR-RLS system.

CHAPTER 5 - Pipeline-Interleaving Coarse Angle CORDIC 71

Chapter 5

Pipeline-Interleaving Coarse Angle CORDIC

5.1 Introduction

The CORDIC arithmetic has been widely implemented as part of the computational

requirements of the well known QR-RLS algorithm. In this chapter, a new architecture

of CORDIC is presented, this new CORDIC is easily pipelinable and can be used to

implement both the Givens generations and Givens rotations associated with the QR

update. This new architecture improves the throughput of processor-like QR-RLS

architecture in Section 3.8.2.

5.2 Coarse Angle Rotation Mode CORDIC

According to the circuit implementation of conventional CORDIC arithmetic in Eq.

4.1, two subcircuits are required for the rotation of point (,) and a third to keep

track of the corresponding angle for an iterations CORDIC (where = 0, 1...

) [54]. As illustrated in Section 3, the vectoring mode CORDIC within the real

valued BC generates the angle , and the IC/DC uses rotation mode CORDIC to

perform a Givens rotation of the same angle . Since the and parts are always

necessary for the Givens generation and rotation, a new CORDIC/QR architecture is

presented next in which the angle accumulation of Eq. 4.1 can in fact be discarded.

The decision factor conveys the direction of angle rotation at each iteration (i.e.

1 or -1). In Figure 5.1, during the first micro-rotation of CORDIC, the input vector

 of the real valued BC is rotated by clockwise, and the generated is -

1. When is conveyed to the internal cell, the corresponding vector rotates angle

correspondingly. After three CORDIC iterations (and therefore three values are

xi yi

zi n i

n 1–

z

z x y

z

di

x0
bc y0

bc,() 45° d

d 45°

di

CHAPTER 5 - Pipeline-Interleaving Coarse Angle CORDIC 72

transfered from BC to IC), the total angle generated by BC is

, and for the IC, same angle is rotated. The angle derived in

the BC is the same with those in the ICs and DCs, hence the sequences are the same.

Therefore it is possible to perform Givens rotations of the same angle in different types

of PEs in a QR-RLS array without explicitly computing the angle, but rather convey

the direction of the various CORDIC coarse angle values.

The interconnection of the proposed coarse angle rotation CORDIC is illustrated in

Figure 5.2. The link between both modes CORDIC is the decision factor of each

iteration. The removal of the accumulator equation leads to a hardware resource

reduction and produces a more regular array, and also maintains the identical

numerical performance as the standard method, namely this hardware saving is

independent of wordlength and number of CORDIC iterations is exactly the same [69].

In contrast to Eq. 4.1, now the iteration cells in either BCs or ICs/DCs principally

requires two bit-shifters and two adder/subtractors to calculate the and , hence the

coarse angle rotation mode PEs can be easily mapped onto a single processor-like PE.

A further advantage of this coarse angle rotation mode CORDIC is that the PEs

including BCs, ICs and DCs can all be mapped onto a single processor-like PE. This

results in an area optimised architecture.

45° 26.6° 14° 57.6°=–+

di

d

d

z

x0
dcy0

dc

yn
dc

Rotation

D

x0
icy0

ic

yn
ic

Rotation

D

x0
bcy0

bc

yn
bc

Vectoring
CORDIC

D

d0

dn 1–

d1

Figure: 5.2: Signal transfer between the real valued BC and IC/DC

d0

dn 1–

d1

Vectoring
CORDIC CORDIC CORDIC

x y

CHAPTER 5 - Pipeline-Interleaving Coarse Angle CORDIC 73

Figure: 5.1: CORDIC iteration in boundary and internal/downdating cells

Boundary Cell (Vectoring Mode) Internal Cell (Rotation Mode)

1st iteration

2nd iteration

3rd iteration

x0
bc y0

bc,()

x1
bc y1

bc,()

x0
bc y0

bc,()

x1
bc y1

bc,()

x2
bc y2

bc,()

x0
bc y0

bc,()

x2
bc y2

bc,()

x3
bc y3

bc,()

x0
ic y0

ic,()

x1
ic y1

ic,()

x0
ic y0

ic,()
x1

ic y1
ic,()

x2
ic y2

ic,()

x0
ic y0

ic,()

x2
ic y2

ic,()

x3
ic y3

ic,()

x0
bc y0

bc,()

x3
bc y3

bc,()

x0
ic y0

ic,()
x3

ic y3
ic,()

d0 1=

d1 1=

d2 1–=

45°
45°

26.6°
26.6°

14°
14°

45° 26.6° 14° 57.6°=–+ 45° 26.6° 14° 57.6°=–+

CHAPTER 5 - Pipeline-Interleaving Coarse Angle CORDIC 74

5.3 OQE Analysis of Coarse Angle Rotation CORDIC

According to Section 5.2, the BCs, ICs and DCs can all work on the newly proposed

coarse angle rotation CORDIC mode. Hence the vectoring mode approximation error

(AE) discussed in Section 4.5.2 can also feature the coarse angle rotation CORDIC.

Figure 5.3 compares the output precisions estimated by Walther’s ‘rule of thumb’

[51], rounding error (RE) only and the OQE where the improved AE assessment in [68]

is also considered. The 3D representation reveals the number of iterations , the

fractional bit-width of the and path, and the minimum precision in terms of

effective fractional bits. The contour lines allow an exchange between and . It is

noticed that the RE only and OQE based meshes are overlapped when the value of

is set beyond their interface line. Hence by choosing value close to the interface line,

the lowest execution time of CORDIC can be achieved without hugely increasing .

Figure: 5.3: Selection of iteration number under specific effective fractional bits

RE in [53]
OQE in [68]

n

b x y deff

n b

n

n

b

CHAPTER 5 - Pipeline-Interleaving Coarse Angle CORDIC 75

Consider the case that 16 effective fractional bits are required for a vector magnitude

. In reference [68], the improved OQE assessment predicts only 9

iterations with 16 fractional bits. However, the ‘rule of thumb’ estimates 14 iterations

and 17 effective fractional bits are required. In this case, the modified OQE algorithm

offers a significant saving of 21 percentage of iterations required by the ‘rule of

thumb’.

5.4 Pipeline-Interleaving CORDIC

According to Section 4.4.2, for pipelining the CORDIC based PEs, one solution to

avoid changing the algorithm’s input-output behaviour is using upsampling and

downsampling technology on the input and output samples respectively. But this

method can not improve the throughput. The resulted sampling rate is new input/1

output per clock cycles.

An alternative approach is to share the same CORDIC unit with more than one data

channels, namely the pipeline-interleaving in Figure 5.4. When there are pipeline

stages inside the feedback loop, up to independent input channels can share this

hardware. As soon as the first sample enters the pipeline and clears the first pipeline

stage, the second channel’s samples can enter.

The pipeline-interleaving CORDIC in Figure 5.4 offers a low cost hardware

solution, which allows the work of several CORDICs to be done by a single one.

However, unless input channels exist to fill n pipeline stages then there will still

be some redundancy [41].

v 0() 5=

Figure: 5.4: Channel Interleaving

X

Y

X

Y

X
Y
Z

X
Y
Z

X

Y

X

Y

1/Kn

1/Kn

 registersCoarse Angle Rotation

X

Y

X

Y

0
2
3

n

0
2
3

n
CORDIC cell

n

n

n

n 1+

n 1+

CHAPTER 5 - Pipeline-Interleaving Coarse Angle CORDIC 76

5.5 Mapping Procedure of QR-RLS Systolic Array

The QR-RLS BC and IC/DC can be mapped onto a single PE architecture by

applying the pipeline-interleaving technique, as shown in Figure 5.5. According to

Section 3.8, to transfer the double triangular QR-RLS array to a processor-like

architecture, firstly, the extended QR-RLS structure in Figure 5.5 (a) needs to be

mapped to a linear array architecture in Figure 5.5 (b).

For the double triangular (fully parallel) array in Figure 5.5 (a), assume each PE is

unpipelined and operates on the same clock rate with the input signal and

and output signals , and . After all the rows are mapped to a single

one, as shown in Figure 5.5 (b), the resultant linear array still operates on the clock rate

, but the input and output signals (, , , and) have to be

downsampled to in order to facilitate a continuous flow of data in and out of the

QR-RLS array. Now comparing with the fully paralleled design in Figure 5.5 (a), the

latency of this architecture is clock cycles (clock rate =).

Then the next step is the space-time sharing of all the PEs of the linear array, by

pipeline-interleave all the PEs on the same row to a ‘process-like’ single PE. In Figure

5.5 (c), pipeline registers are introduced into the feedback loop. By applying the cut-

set retiming technique, the long critical path existing inside the CORDIC arithmetic is

reduced, the required clock rate of all the PEs in Figure 5.5 (c) increases to . The

latency of this resultant architecture has no change (clock cycles, but clock

rate). The data streams processed by the columns of cells is considered as

separate channels, and therefore the pipeline-interleaving scheme could be employed

here. This allows the row of cells to be mapped onto a single, channel-

interleaved CORDIC cell, as shown in Figure 5.5 (d).

fc x k() d k()

ξ k() γ k() b k() N

fc x k() d k() ξ k() γ k() b k()

fc N⁄

N fc

P

Pfc

NP Pfc

N 3+ N 3+

N 3+

CHAPTER 5 - Pipeline-Interleaving Coarse Angle CORDIC 77

Figure: 5.5: QR-RLS array transformation

1 0x0 k() x1 k() xN 1– k() d k()

ξ k() b0 k() bN 2– k()bN 1– k()γ k()

1 0

0

0

x0 k() x1 k() xN 1– k() d k()

ξ k() b0 k() bN 2– k()bN 1– k()γ k()

(a)

(b)

(c)

fc

fc

fc

fc N⁄

fc

fc N⁄

fc N⁄

Pfc

fc N⁄

1 0x0 k() x1 k() xN 1– k() d k()

ξ k() b0 k() bN 2– k()bN 1– k()γ k()

: combination of ,and

1 0x0 k()
xN 1– k()

d k()

ζ k() b1 k() bN 1– k()γ k()

fc N⁄

Pfc

fc N⁄

(d): pipeline registers

CHAPTER 5 - Pipeline-Interleaving Coarse Angle CORDIC 78

In contrast with the works in [24] and [70] which map the boundary and internal

cells as the discrete processing blocks, this research focuses on generalising the

architecture of the boundary and internal cells, such that they can be folded onto a

single processing element. All the Extraction Cells (EC) in Figure 5.6 (a) can also be

easily mapped to a single Multiply-ACcumulate (MAC) arithmetic component, as

shown in Figure 5.6 (b). This approach results in a ‘single PE + MAC’ QR-RLS

processor which is suitable for decomposition of a variable-size matrix.

The scalability of the resultant QR-RLS processor is shown in Figure 5.7. To

process a QR decomposition of a matrix, only the grey cells need to work, others

are considered redundant. If the matrix size increases to , the white cells are also

triggered to work. Whatever the size of QR decomposition changes, the hardware cost

of the ‘Single PE + MAC’ QR-RLS processor remains almost the same, if the

overheads of multiplexers and pipeline registers are not counted.

e k()

ξ k() b0 k() bN 2– k() bN 1– k()

w0 k()

wN 2– k()
wN 1– k()

×

b0 k()

ξ k()

bN 2– k()
bN 1– k()

e k()

×

Figure: 5.6: Error and weights extraction (MAC) array

w0 k() wN 2– k() wN 1– k()

γ k()

γ k()

(a)

(b)

: combination of and

4 4×

5 5×

CHAPTER 5 - Pipeline-Interleaving Coarse Angle CORDIC 79

Fi
gu

re
: 5

.7
: S

ca
la

bi
lit

y
of

 th
e

‘S
in

gl
e

PE
 +

 M
A

C
’ Q

R
-R

LS

CHAPTER 5 - Pipeline-Interleaving Coarse Angle CORDIC 80

This proposed pipeline-interleaving CORDIC reduces the pipeline latency of

conventional CORDIC for a target numerical accuracy [71]. As illustrated in Figure

5.8, after the initial latency of the circuit, the computation rate of the cell is one new

input/output per clock cycle. Hence, the architecture is suitable for achieving the high

speed performance, while avoiding using the additional hardware (Mult-Add units) for

the vector rotation.

5.6 Comparision with the Classic CORDICs

This section compares the implementation results of the pipeline-interleaving

coarse angle CORDIC (Coarse Cordic Givens) based real valued QR-RLS, as shown

CLK Cycle0 1 2 n n+1 n+2 n+3 n+4 n+5

O
p

r
a
t
i
o
n

e

Figure: 5.8: Scheduling of the QR-RLS pipeline-interleaving

: IC/DC’s output

Initial Delay

BC

IC

DC

CHAPTER 5 - Pipeline-Interleaving Coarse Angle CORDIC 81

in Figure 5.9, with the corresponding BCs and ICs constructed by a standard CORDIC

Givens [50] and standard CORDIC lookup [24]. 16 CORDIC iterations and 18-bit

wordlengths were chosen for this comparison. The FPGA resource utilisations listed in

Table 5.1 were generated using Xilinx ISE 10.1 to target a Xilinx Virtex-4 xc4vsx35-

10ff668 device, and shown that the proposed coarse angle rotation mode CORDIC

saves 32.5% hardware resources compared to the classic one in [50], for both the real

valued BCs and ICs. This saving is largely due to the omission of angle accumulation

of the CORDIC subcircuit and hence is independent of wordlength and number of

iterations (note the Xilinx FPGA’s on-chip memory (i.e. BlockRAM) used by the

standard CORDIC Givens is to compensate the CORDIC scaling factor ,

nevertheless, the proposed pipeline-interleaving single PE only uses the BlockRAM to

store the intermediate values in the feedback loop). Results in Table 5.1 also show that

the novel coarse angle rotation mode CORDIC based BC uses nearly the same amount

of resources as the IC, due to the similarity of their architectures. The relationship

Pipelined CORDIC

K 1–

K 1–

1 0x0 k()
xN 1– k()

d k()

ζ k() b1 k() bN 1– k()γ k()

Figure: 5.9: (a) ‘Single PE’ part of real valued QR-RLS; (b) ‘Single MAC’ part of real valued QR-RLS

N 3+()D

w0 k() wN 2– k() wN 1– k()

b0 k()ξ k() bN 1– k()

e k()

γ k()

+
-

N 3+()D

(a) (b)

z

Kn

CHAPTER 5 - Pipeline-Interleaving Coarse Angle CORDIC 82

between the matrix dimension and the maximum sampling rate of the real valued QR-

RLS processor is

(5.1)

An alternative architecture (Standard Cordic Lookup) in [24] is shown in Table 5.1.

This reference design requires the distributed boundary and internal cells. The internal

cell is implemented by the multiply-accumulate (MAC) functional units (DSP48 units

for Xilinx). The boundary cells in the QR-RLS array in Figure 5.10 use the standard

CORDIC architecture which involves the angle ‘ ’ calculation component. One

additional LookUp Table (LUT), implemented using a BlockRAM, converts each

generated ‘ ’ to its corresponding Sine and Cosine values. The ICs can perform the

Givens rotations using only multiply and add operations. Here the wordlength and

number of CORDIC iterations are still 18 bits and 16 respectively.

An architecture for real Given's rotations (based on that presented in [24] for

complex Givens rotation) was constructed and compared with the architecture

presented in this section. Its synthesised resource utilization is also shown in Table 5.1.

The hardware cost of the boundary cell based of this structure is larger (56%) than that

of our proposed boundary cell. This design also uses the Virtex-4's arithmetic elements

(DSP48 slices).

Hence to finish the processing of linear array in Figure 5.5 (b), the reference design

Max Sampling Rate Max CLK Rate Dimension 3+()×
CORDIC iterations 2+() Dimension×

--=

x0
bcy0

bc

yn
bc

yin
ic

xout
ic

yout
ic

iteration number n=

Figure: 5.10: Signal transfer between the BC and IC/DC in ref [24]

Sine

Cosine

Sine

CosineVectoring
CORDIC

D

Rotation
Mult-Add

D

z Rotation
Mult-Add

D

xn
bc

xin
ic yin

ic

xout
ic

yout
ic

xin
ic

z

z

CHAPTER 5 - Pipeline-Interleaving Coarse Angle CORDIC 83

needs cycles, in contrast to cycles required by this

work in Figure 5.5 (d). Hence based on the same clock rate, the total latency cycles

required by the QR-RLS in [24] for decomposing an by matrix is

(where cycles for processing a single

row { to } of the input matrix, and cycles for all

the rows of this matrix), as shown in Figure 5.11. Hence the latency of reference

design in [24] is larger than the clock cycles delay for the architecture shown in

Figure 5.5 (d).

Comparing the resource utilisation of the standard CORDIC lookup design with that

of the pipeline-interleaving CORDIC listed in Table 5.1, the cost of a single PE which

supports the functionality of real valued BCs, ICs and DCs is 10% less than the

utilisation of one BC only (i.e 578 slices verses 640). Another key point is that the

proposed pipeline-interleaving coarse angle CORDIC includes all of the computation

for weight extraction. This is not included in any of the other costs which require

additional back-substitution computations. Furthermore the architectures of BC and IC

in [24] are too different to be mapped together. Due to the high degree of scalability,

Type PE Slices FFs LUTs DSP48 BRAM
Standard

CORDIC Givens [50]
(extra BS stage required)

Boundary 606 770 1150 0 1
Internal 610 770 1147 0 1

Total 1216 1540 2297 0 2
Standard

CORDIC Lookup [24]
(extra BS stage required)

Boundary 640 780 1173 0 1
Internal 58 108 73 2 0

Total 698 888 1246 2 1
Coarse Angle
Cordic Givens

Boundary 409 611 789 0 1
Internal 408 610 789 0 1

Total 817 1221 1578 0 2
Pipeline-Interleaving

Coarse Angle CORDIC
Boundary
& Internal

MAC

578

156

795

126

995

84

0

2

1

0

Note : BS = Back Substitution

Table 5.1: Synthesis results for 3 types of CORDIC based QR Givens

NP' N P cycles for IC+()= NP

N N

N2 P cycles for IC+() N P cycles for IC+()

x0 k() xN 1– k() N2 P cycles for IC+()

N

N2P

CHAPTER 5 - Pipeline-Interleaving Coarse Angle CORDIC 84

this pipeline-interleaved single PE architecture has the advantage of reduced cost

compared to other existing techniques, especially for QR-RLS arrays of large size.

Static Timing Analysis (STA) undertaken using Xilinx ISE shows that the circuits

basing on our proposed architecture and [24] can be both clocked at 250 MHz.

5.7 Conclusion

This chapter proposed a novel structure which allows the same pipelined CORDIC

unit to be efficiently time-shared by all the BC, IC and DC. Since the and parts are

always necessary for the Givens rotation, a new CORDIC/QR architecture is presented

in which the angle accumulation of Eq. 4.1 can in fact be discarded. By comparing

coarse angle rotation mode CORDIC with two conventional types of CORDICs based

BCs and ICs, it was shown that the new CORDIC has the best speed-area performance,

and directly yields the adaptive weight values, without the need of back-substitution.

The improved OQE algorithm results in the low latency coarse angle rotatuion

CORDIC.

This chapter applied the pipeline-interleaving scheme to multiplex all the PEs of

QR-RLS systolic array together. By using the pipeline-interleaving CORDIC to

ξ k() b1 k() bN 1– k()γ k()

fc N⁄

P′fc

fc N⁄

1 0x0 k()
xN 1– k()

d k()

P’=P(for BC) + cycles for IC

Figure: 5.11: QR-RLS architecture of reference design [24]

x y

z

CHAPTER 5 - Pipeline-Interleaving Coarse Angle CORDIC 85

multiplex more than one data channels together, the pipelined architecture can be filled

up efficiently. This chapter presented a method to map the extended QR-RLS array

onto a ‘Single PE + MAC’ architecture. The pipeline-interleaving coarse angle

CORDIC offers a low cost time-multiplexed solution, which allows the processing

work of the BC and IC to be undertaken using the same hardware. The pipeline-

interleaving CORDIC based ‘Single PE + MAC’ QR-RLS processor combines the low

hardware consumption with the benefit of high speed and scalability.

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 86

Chapter 6

Complex Valued Processor-Like QR-RLS

Architecture

6.1 Introduction

In Chapter 5, the CORDIC arithmetic was implemented as part of the computational

requirements of the real Givens rotation based QR-RLS algorithm. However, in

modern digital communication systems, complex valued QR algorithm is widely used

and implemented for applications such as MIMO [71], fast equalization [72] and

beamforming [73]. Hence the Complex Givens Rotation (CGR) based PE is required

to accomplish the complex valued QR-RLS array.

This chapter reviews the complex valued QR-RLS downdating array, and thereafter

designs a CORDIC based complex valued QR-RLS processor, which features array

multi-data stream sharing, pipelining, and can be used for solving problems for QR

matrices of different dimensions. This chapter will also demonstrate how this

architecture can be efficiently implemented on an FPGA (or considered for ASIC

implementation), and run at suitable high sampling rates for high value DSP and

communications applications.

6.2 Complex Valued QR-RLS Systolic Array For Weight Extraction

According to Table 3.3, the complex valued extended QR-RLS recursive algorithm

is summarized as:

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 87

Figure: 6.1: Systolic array of complex valued extended QR-RLS

1 0

0

0

(e) Downdating Cell (DC) (f) Extraction Cell (EC)

x0 k() x1 k() xN 1– k() d k()

e k()

(c) Internal Cell (IC)(b) Boundary Cell (BC)

rij rij

w0

cθi k() rij k() rij k() 2 xbc k() 2+()
1 2⁄–

=

sθi k() xbc k() rij k() 2 xbc k() 2+()
1 2⁄–

=

rij k 1+() λ= 1 2⁄ rij k() 2 xbc k() 2+()
1 2⁄–

rij k() sθi k()e
jφixic k() λ1 2⁄ cθi k()rij k()+=

xoc k() cθi k()e
jφixic k() λ1 2⁄ sθi k()rij k()–=

ci k() 1 si k(); 0= =

xbc k()
cθi k() sθi k()

xic k()

zdc k()

xoc k()

zoc k()

ξ k() ξ k()
b k()

w k()

w k() w k 1–() ξ k()∗ b k()⋅–=

γ

q

γ qci k()=

(d)

φi k()
xbc k()()imag
xbc k()()real

--------------------------------atan=

φi k()
cθi k() sθi k()

φi k()
cθi k() sθi k()
φi k()

cθi k() sθi k()

φi k()

cθi k() sθi k()
φi k()

cθi k()sθi k()

φi k()

cθi k() sθi k()

φi k()

wN 2– wN 1–

ρij

ρij k() sθi k()e
jφizdc k() λ 1 2⁄– cθi k()ρij k()+=

zoc k() cθi k()e
jφizdc k() λ 1 2⁄– sθi k()ρij k()–=

if xbc k() 0 then,=

else

(a)

r00 r01 r0 N 1–()

r11 r1 N 1–()

r N 1–() N 1–()

p0

p1

pN 1–

γ0

γ1

γN 1–

ρ00

ρ10 ρ11

ρ20 ρ21 ρ22R

RH

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 88

(6.1)

Where represents the Hermitian transpose of matrix .

Figure 6.1 (a) illustrates the SFG of the QR-RLS array with downdating for a simple

 weight example. This array uses the Givens transform by first calculating the

rotation angles, via Givens Generation (GG) in the Boundary Cells (BCs) and Givens

Rotation (GR) in the Internal Cells (ICs) and Downdating Cells (DCs). This iteratively

converts the input data matrix formed by successive rows of the input data vector

, into an upper triangular matrix as shown recursively in Eq. 6.1. Each

value that is stored and updated inside of the array is one element of this upper

triangular matrix, where the subscript ij represents the location of the element in the

matrix. The definitions of the BCs, ICs, DCs and Extraction Cells (ECs) of QR-RLS

array are shown in Figure 6.1 (b), (c), (e) and (f) respectively. The and (or sine and

cosine) elements are used to express the values calculated within a boundary cell which

is performing the Givens generation. The column of processing cells (Figure 6.1 (d))

on the right hand side of the elements simply generates the product of the cosines

 and and hence the least squares error residual can be found

from the output of the final complex multiplier.

6.3 Complex Valued QR-RLS Processing Elements

In this section, the implementation of PEs of the complex valued QR-RLS will be

discussed following the work in [74]. The Givens generation/rotation technique is

widely applied for the QRD to reduce the input matrix to a triangular form by applying

successive rotations to matrix elements below the main diagonal of the input matrix.

The idea of complex Givens generation/rotation can be easily illustrated on the

following length 2 column vector:

Q k() λ1 2⁄ R k 1–() λ1 2⁄ p k 1–() λ 1 2⁄– R H– k 1–()

xT k() d k() 0
R k() p k() R H– k()

0 ξ k() b k()
=

RH R

N 3=

xH k() R rij

R

s c

ui

c1 k()c2 k()…cN k() e k()

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 89

(6.2)

where ; , represent the magnitudes and , are the corresponding

phases of and . The goal of Givens generation is to null the vector .

The Complex Givens Rotation (CGR) is described by two rotation angles ,

through the following matrix transformation [76]:

(6.3)

where angles , are chosen to zero the matrix element below the main diagonal,

and determined by:

(6.4)

Figure 6.2 and 6.3 graphically show the data flows of CGR based BCs and ICs

respectively. As demonstrated in Chapter 4, the Boundary (BC), Internal (IC) and

Downdating Cells (DC) which form the QR-RLS array are implementable via either

the vectoring or rotation modes of the classic CORDIC algorithm. As shown in Figure

6.2, each BC ultilises 3 vectoring mode CORDICs, 1 rotation mode CORDIC, together

with 1 adder. The implementation of each IC requires 6 CORDICs based on rotation

mode shown in Figure 6.3. Obviously, both architectures result in large costs and

systolic operation times. Since the architectures of Givens generation and Givens

rotation are very similar, letter ‘ ’ is used to represent both of them when appropriate.

An alternative approach to simplify the operation stated in Eq. 6.3 can be realized

through a unitary matrix transformation, and is described by the Three Angle Complex

r0 r1

x0 x1

r0 e
jθr0 r1 e

jθr1

x0 e
jθx0 x1 e

jθx1

=

j 1–= r x θr θx

r x x0

θ1 θ2

θ1cos e
jθ2 θ1sin

e–
j– θ2 θ1sin θ1cos

r0 e
jθr0 r1 e

jθr1

x0 e
jθx0 x1 e

jθx1

r0 e
jθr0 r1 e

jθr1

0 x1 e
jθx1

= r0 r1

0 x1

=

θ1 θ2

θ1 r0 x0⁄()atan=

θ2 θx0 θr0–=

θr0 θr0 r0() r0()real⁄imag()atan= =

θx0 x0() x0()real⁄imag()atan=

G

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 90

Rotation (TACR) equation in Eq. 6.5:

(6.5)

Note that the TACR matrix transformation introduces the real element on the

matrix diagonal. Application of the TACR approach for an square matrix will

lead to the appearance of real elements on the matrix diagonal. For Eq. 6.5, one further

transformation may be adopted by:

θx0

θr0

θ1
0

r0
2 x0

2+

θ2 θr0 θx0–=

Re r0()

Im r0()

Figure: 6.2: Signal Flow of CGR Based BC

(G_Rot)
G(G_Gen)

G
(G_Gen)

G

(G_Gen)
G

Re r0()

Im r0()

Re x0()

Im x0()

G_Gen : Givens generation
G_Rot : Givens rotation

r0

x0

θ– 2

θ– 2

Re r1e
j– θ2()

Im r1e
j– θ2() θ1

θ1

Re x1e
j– θ2()

Re x1()

×

Im x1()

×

θ– 1

θ– 1

Re r1()

Im r1()

×

×

:Not Used

Figure: 6.3: Signal Flow of CGR Based IC

(G_Rot)
G

(G_Rot)
G

(G_Rot)
G

(G_Rot)
G

(G_Rot)
G

(G_Rot)
G

Re r1()
Im r1()

Re x1()
Im x1()

Im x1e
j– θ2()

Re x1()

Im x1()

Re r1()

Im r1()

×

e
j– θr0 0

0 e
j– θx0

θ1cos e
jθ2 θ1sin

e–
j– θ2 θ1sin θ1cos

r0 e
jθr0 r1 e

jθr1

x0 e
jθx0 x1 e

jθx1

e
j– θr0 0

0 e
j– θx0

= r0 e
jθr0 r1 e

jθr1

0 x1 e
jθx1

r0 r1 e
j θr1 θr0–()

0 x1 e
j θx1 θx0–()

r0 r̃1

0 x̃1

==

r0

N N×

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 91

(6.6)

To obtain an upper trianglar matrix the presented unitary transformation requires

three angles , and which are defined by:

Hence the complex samples and are transformed to complex samples and

 according to:

(6.7)

Eq. 6.7 consists of a phase compensation term and a real valued Givens rotation. By

mapping this algorithm to the CORDIC implementation, a new CORDIC cell is

constructed for the complex Givens rotations. Figure 6.4 shows how the modified BC

determines the phases , and . This BC then applies these phases to the other

ICs in the same row of the QR-RLS systolic array.

The new proposed architecture of CORDIC rotation mode based IC is shown in

Figure 6.5. To perform the transformation described by Eq. 6.7, four CORDIC

operations are sufficient. While considering the QR-RLS systolic array described in

Figure 6.1, the in Figure 6.4 and and in Figure 6.5 all need to be

fed back as the next iteration’s inputs in Figure 6.4 and and in

Figure 6.5.

Hence for both the BC and IC, the upper-left CORDIC cells could be omitted, which

results in the architectures of Double Angle Complex Rotation (DACR) in Figure 6.6

and Figure 6.7. The DACR approach [74] [75] [76] is described by two rotation angles

 and , where equals to the phase information of the complex value , i.e.

e
j– θr0 0

0 e
j– θx0

θ1cos e
jθ2 θ1sin

e–
j– θ2 θ1sin θ1cos

θ1e
jθ3cos θ1sin e

jθ4

θ1sin e
jθ3– θ1cos e

jθ4

=

θ1 θ3 θ4

θ3 θr0–=
θ4 θx0–=

θ1 r0 x0⁄()atan=

r1 x1 r̃1

x̃1

r0 r̃1

0 x̃1

θ1e
jθ3cos θ1sin e

jθ4

θ1sin e
jθ3– θ1cos e

jθ4

= r0 r1

x0 x1

θ1cos θ1sin
θ1sin– θ1cos

e
j– θr0 0

0 e
j– θx0

r0 r1

x0 x1

=

θ1 θr0 θx0

r0 Re r̃1() Im r̃1()

Re r0() Re r1() Im r1()

φ θ φ θx0 x0

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 92

and . The DACR based Givens generation formula can be

summarized as Eq. 6.8 [74]. Figure 6.6 and 6.7 graphically show the data flows of

DACR based BC and IC.

The BC uses the double CORDICs architecture which involves the angle ‘ ’ and

‘ ’ calculation components. The IC/DC employs three CORDIC engines, to perform

a complex Givens transform with these angles as the inputs, where the block

represents one data sample delay. The DACR based formula can be summarized as

[75]:

θx0

θr0

θ1

r0
2 x0

2+ r0=

Figure: 6.4: Signal Flow of TACR Based BC

(G_Gen)
G

(G_Gen)
G

(G_Gen)
GRe r0()

Im r0()

Re x0()
Im x0()

r0

x0

θ– r0

θx0–

Re r1e
j– θr0()

Im r1e
j– θr0() θ– 1

θ– 1

Re x1e
j– θx0()

Re x̃1()

Im x̃1()
Im x1e

j– θx0()

Re r̃1()

Im r̃1()

Figure: 6.5: Signal Flow of TACR Based IC

(G_Rot)
G

(G_Rot)
G

(G_Rot)
G

(G_Rot)
G

Re r1()
Im r1()

Re x1()
Im x1()

φ θx0
x0()imag
x0()real

----------------------⎝ ⎠
⎛ ⎞atan= =

θ r0 x0⁄()atan=

φ

θ

D

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 93

(6.8)

6.4 Quadrant-Correction-Free DACR

The pipeline-interleaving coarse angle rotation CORDIC in Section 5 requires very

similar architecture between the BC and IC/DCs. Moreover, the implementations of

both the quadrant mapping and correction also introduce an increased hardware cost.

Hence it is important to investigate a low cost quadrant localisation methodology. The

algorithm in Table 6.1 is consequently developed to offer a Quadrant-Correction-Free

scheme [77], i.e only one simple quadrant mapping is included into the proposed

(G_Gen)

φ

θ

r0
2 x0

2+

Figure: 6.6: Signal Flow of Simplified DACR Based BC

(G_Gen)
G

G

Re x0()
Im x0() M C

M :Quadrant
Mapping

C :Quadrant
Correction

D
r0

x0

Figure: 6.7: Signal Flow of Simplified DACR Based IC

(G_Rot)

φ

θ

(G_Rot)
θ

Re x1e jφ–()

Im x1e jφ–()
(G_Rot)

G G

G

Re x1()
Im x1()

Re r̃1()

Im r̃1()

Re x̃1()

Im x̃1()
M C

D

D

r0 r̃1

0 x̃1

θcos θsin
θsin– θcos

1 0

0 e jφ–

r0 r1

x0 x1

θcos θsin ejφ

θsin– θcos ejφ

r0 r1

x0 x1

= =

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 94

CORDIC based DACR.

Referring to Figure 6.8, firstly the dark input vectors of BC and IC will be rotated

synchronously by (to the dash vector) as the quandrant mapping. Then the

CORDIC will take charge of the remaining rotation of angle in a clockwise

direction. The output vectors of BC and IC are shown as the light colored vectors.

Figure 6.9 shows the criteria of pipeline-interleaving coarse angle rotation CORDIC

Table 6.1: Quadrant-Correction-Free Scheme

if Re xbc() 0<

if Im xbc() 0≥

Re x'bc() Im xbc()=
Im x'bc() Re xbc()–=

else
Re x'bc() Im xbc()–=
Im x'bc() Re xbc()=

end

Re x'bc() Re xbc()=
Im x'bc() Im xbc()=

Re x'ic() Im xic()=and
and Im x'ic() Re xic()–=

and Re x'ic() Im xic()–=
and Im x'ic() Re xic()=

else

and Re x'ic() Re xic()=
and Im x'ic() Im xic()=

end

Re xbc() Im xbc(),()

Figure: 6.8: CORDIC Quadrant-Correction-Free Scheme

Im xbc() Re xbc()–,()

Re xic() Im xic(),()

Im xbc() Re xbc()–,()

θ

θ

Boundary Cell Internal Cell

xbc 0,()

Re x̃ic() Im x̃ic(),()

90°

θ

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 95

based DACR The grey arrow in Figure 6.9 represents the transfer of the sign of

 and between quadrant mapping part of BC and IC, this executes the

 vector rotation in Figure 6.8. The dark arrows represent the transfer of decision

factors and from BC to corresponding CORDICs in IC.

6.5 Mapping Procedure of QR-RLS Systolic Array

Similar to the pipelined interleaving mapping scheme of real valued QR-RLS array

in Figure 5.5 and Figure 5.6, the Extraction Cells (ECs) on the lower right in Figure 6.1

(a) can be easily mapped in a linear array to a time-shared single complex multiply-

accumulate (MAC) component. Figure 6.10 shows a single complex MAC operating

on the values of a linear EC array over consecutive cycles [77]. Note that this shared

unit has inputs selected from an to 1 multiplexer where the first time step

Re xbc() Im xbc()

90°

dφ dθ

Re x̃ic()

Im x̃ic()

Figure: 6.9: Pipeline-interleaving coarse angle CORDIC based DACR

M

M

dφ

dθ

sign Re xbc()()

sign Im xbc()()

Re xbc()
Im xbc()

Re xic()
Im xic()

D

D

D

(G_Gen)
G

(G_Rot)
G

(G_Rot)
G

(G_Rot)
G

(G_Gen)
G

N 1+

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 96

performs the single complex multiply to calculate and the next time steps (i.e.

 time steps in total) to calculate the weight values.

6.5.1 Pipelined Interleaving

For the PEs in Figure 6.6 and Figure 6.7 which are used to implement the main array

of Figure 6.1 (a), all 3 types of PE (BC, IC & DC) have two cascaded CORDIC stages

(the first denoted CORDIC1 and the second stage as CORDIC2 and CORDIC3) to

perform the complex Givens rotation. Hence the double triangular QR-RLS array with

downdating could be mapped onto a single PE by applying the pipeline-interleaving

technique presented in Chapter 5.2 [77]. The first step is multiplexing all the PEs on

each row of the array in Figure 6.11 (a) to a single cell, resulting in the linear array in

e k() N

N 1+

e k()

ξ k() b0 k() bN 2– k() bN 1– k()

Figure: 6.10: Error & weights extraction array

w0 k() wN 2– k() wN 1– k()

γ k()

Re w0()

Re wN 2–()
Re wN 1–()
Re e()

Im w0()

Im wN 2–()
Im wN 1–()

Im e()
Re b0()

Re ξ()

Re γ()

Re bN 2–()
Re bN 1–()

Im b0()

Im ξ()

Im γ()

Im bN 2–()
Im bN 1–()

: The combined PE of and

+

-

b k()

ξ k() D

w k()

real

imaginary

+

-

N 1+()D

N 1+()D

-

+

real

imaginary

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 97

Figure: 6.11: Triangularization array transformation (a)
rhomboid array (b) linear array (c) single PE

1 0

0

0

x0 k() x1 k() xN 1– k() d k()

ξ k() b0 k() bN 2– k() bN 1– k()γ k()

: The combinational PE of ,...... and ; S K 1–=

10x0 k()
xN 1– k()

d k()

ξ k() b0 k() bN 1– k()γ k()

x0
i N 2–+ xN 1+

i N 2–+x1
i N 2–+

x0
i xN 2–

i xN 1–
i xN 1+

i

10x0 k()
xN 1– k()

d k()

ξ k() b0 k() bN 1– k()γ k()

(a)

(b)

(c)

xN
i

x2
i N 2–+ x3

i N 2–+

S

S

S

S

S

S

Re x0
i()

Re xN 1+
i()

0

Im x0
i()

Im xN 1+
i()

0 Im x0
i 1+() Im xN 1+

i 1+()0

Re x0
i 1+() Re xN 1+

i 1+()0
CORDIC 1

CORDIC 3

CORDIC 2

(Pipelined)

0

Im xN 1–()

1

Im x0()

Im d()

0

Re xN 1–()

1

Re x0()

Re d()

Im b0()

Im ξ()
Im γ()

Im bN 1–()

S Re b0()

Re ξ()
Re γ()

Re bN 1–()

S

S

S

S

S

Re x0
i m+() Re x1

i m+() Re xN 1+
i m+()0

Im x0
i m+() Im x1

i m+() Im xN 1+
i m+()0

2N N 3+()D

CORDIC 2

CORDIC 3

CORDIC 1

2 N 3+()D

2 N 3+()D

2N N 3+()D

(Pipelined)

(Pipelined)

(Pipelined)

(Pipelined)

(Pipelined)

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 98

Figure 6.11 (b) to carry the work of triangularisation. Since each BC, IC (or DC) in

Figure 6.6 and Figure 6.7 requires one cycle delay unit in the feedback loop, to store

the intermediate value of each element of the updated matrix (or), a delay chain

is employed here to store all the delayed intermediate values. According to Section

2.5.2, this delay chain can be targetted onto the on-slice shift register SRL16 on Xilinx

FPGAs [13].

Then the next mapping procedure combines all the distributed PEs on the linear

array in Figure 6.11 (b) to a final single processor-like PE (also includes an

‘intermediate value’ stored memory) in Figure 6.11 (c). Inside this processor-like PE,

the effect outputs are only generated cycle by cycle from the end of 2nd CORDIC stage

(note here the ‘outputs’ refers to the { } output by each

distributed rolled PE on the linear array in Figure 6.11 (b), where).

6.5.2 ‘Single PE + MAC’ Architecture

Above mapping approach results in a double PE (triangularization and MAC) based

QR-RLS processor (as shown in Figure 6.12 (a)) which is suitable for a variable size

matrix decomposition (as is the case with the scalability of real valued QR-RLS

presented in Chapter 5.5, up to a maximum of matrices where the

number of CORDIC iterations), costing fewer PEs than the linear array presented

in [70], which requires one BC and several ICs. Note that the number of iterations of

the CORDIC are now linked with the matrix and the weight vector dimension, i.e.

for a iterations, the complex valued single PE array will process up to a

 matrix. This architecture has the same computational complexity as

the fully parallel one in Figure 6.1.

In order to facilitate a continuous flow of data into and out of the QRD-RLS core in

Figure 6.12 (b) (namely, assuming the size of QRD is , after seeding the first

input group { }, the QR-RLS can receive the new second input

group { } immediately), the clock rate used within the PEs

R R H–

0 Re x0
i k+()…Re xN 2+

i k+(),

k 0 N 2–,[]∈

n 2–() n 2–()×

n=

R

n 16=

14 14× O n2()

N N×

x0 0() x1 0()…xN 1– 0(),

x0 1() x1 1()…xN 1– 1(),

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 99

must be higher than the input sampling rate. It is possible to reduce or remove the

requirement for a higher clock rate by introducing multiple PEs. Considering the low

cost goal of this research, this architecture is implemented in the ‘upsampled’ structure,

hence it does not require the additional hardware resourses. As shown in Figure 6.12

(b), when the MAC PE is triggered to process (assuming this process takes clock

cycles), new group of { } will be able loaded to the

input port of the triangularization core. The QR-RLS core in Figure 6.12 is clocked at

 times the input clock rate (where is the number of weights, stands

for the total CORDIC iterations and is the number of clock cycle delays resulted by

pipelined CORDIC scaling compensation), namely times upsampling.

As a result, for an matrix

the number of clock cycles for processing the first row of inputs

m

x0 k() x1 k()…xN 1– k() d k() 1 0, ,,,

n f+() 2N× N n

f

n f+() 2N×

10 x0 k()x1 k()xN 1– k()d k() e k()w0 k()wN 2– k()wN 1– k()

Figure: 6.12: Double PE Architecture for QR-RLS

ξ k()b0 k()bN 2– k()bN 1– k() γ k()
(a)

(b)
10 x0 0()xN 1– 0()d 0()

CLK Cycle

e 0()w0 0()wN 1– 0()

e 1()w0 1()wN 1– 1()
10 x0 1()xN 1– 1()d 1()

2n 2f 1+ +() N× 2+ m

N N×

x0 k() x1 k() … xN 1– k()

x0 k 1+() x1 k 1+() … xN 1– k 1+()

x0 k N 1–+() x1 k N 1–+() … xN 1– k N 1–+()

…… …

N 3+

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 100

{ } is

Consequently, the QR decomposition of the whole matrix requires

 clock cycles.

The pipeline-interleaving based coarse angle CORDIC offers a low cost time-

multiplexed solution, which allows the processing work of the BC, IC and DC to be

undertaken using the same hardware. This method leads to significantly shorter

execution time for the single cycle operation of QR decomposition. The reference

design in [24] consists of a single boundary, internal and back-substitution cells. As

with the structure in Figure 5.11, the BC in [24] uses the double CORDIC architecture

which involves the angle ‘ ’ and ‘ ’ calculation components. Additional LUTs are

applied to convert each generated ‘ ’ and ‘ ’ to its corresponding Sine and Cosine

values. With these trigonometric functions as the inputs, the IC/DC can perform a

Givens rotation using only multiply-add functional units (DSP48 units for Xilinx

FPGAs). To process a group of inputs { }, this

work offers cycles, while reference

[24] needs + ‘cycles to process ICs’.

The ‘Single PE+MAC’ QR-RLS processor in Figure 6.12 is clocked at

 times the input clock rate, hence in toal clock cycles

required to complete updating one row of matrix , which results effective

outputs (as shown in Figure 6.11 (a)), hence the maximum sampling rates of this

section’s modified CORDIC based QR-RLS is computed in Eq. 6.9, where

represents the maximum clock rate.

(6.9)

As a result, the total execution time including the QR decomposition of an

matrix and the filter coefficients calculation is derived in Eq. 6.10, where represents

the number of pipelining levels inside the MAC element in Figure 6.12.

x0 k() x1 k()…xN 1– k() d k() 1 0, ,,,

n f+() 2N N 2+()+× 2n 2f 1+ +() N× 2+=

2n 2f 1+ +() N2× 2N+

φ θ

φ θ

N 3+ x0 k() x1 k()…xN 1– k() d k() 1 0, ,,,

2 n f+() N N 2+ +⋅ ⋅ 2n 2f 1+ +() N× 2+=

2n 2f 1+ +() N× 2+

n f+() 2N× n f+() 2N×

R N 3+

CLK

Max Sampling Rate CLK N×
2n 2f 1+ +() N× 2+

---=

N N×

m

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 101

(6.10)

The aforementioned three CORDICs based QR-RLS triangularization part in Figure

6.11 (c) can be further transfered to a two cell based architecture, by time-sharing the

 and CORDIC elements, as shown in Figure 6.13 [77].

6.6 Adaptive Equalisation Verification

To demonstrate and verify the correct numerical and algorithmic performance, this

section presents the simulation of adaptive equalisation using both the floating and

fixed point QR-RLS based on the architecture we proposed in Chapter 6.8. Figure 6.14

shows the block diagram of the simulation environment. The random signal applied to

the channel input consists of a Bernoulli sequence. The impulse response of the

channel is described by the product of raised cosine and complex Gaussian in Eq. 6.11

(the values of all taps are listed in Table 6.2).

Execution Time 2n 2f 1+ +() N2× 2N m+ +
CLK

---=

1st 2nd

S

0

Im xN 1–()

1

Im x0()
Im x1()

Im d()

0

Re xN 1–()

1

Re x0()
Re x1()

Re d()

Im b0()

Im ξ()
Im γ()

Im bN 2–()
Im bN 1–()

0

Re b0()

Re ξ()
Re γ()

Re bN 2–()
Re bN 1–()

0
S

S

S

D

2 N 3+()D

D

CORDIC 2

CORDIC 3

Figure: 6.13: Double CORDICs based QRD-RLS triangularization

2 N 3+()D

(Pipelined)

(Pipelined)

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 102

(6.11)

where the parameter controls the eigenvalue spread of the correlation matrix of

the tap inputs in the equalizer. and are both Gaussian with zero mean and

variance . The AWGN block also produces white Gaussian noise with zero

mean and . The equalizer is a QRD-RLS adaptive filter containing a

systolic array. In the following simulations, the tap-number of the equaliser is set to 11.

The convergence speed of QR-RLS algorithm depend on the initial value of the

matrix . Generally the initial is chosen as a scalar matrix. The smaller the size of

the matrix, the faster the convergence. To demonstrate the convergence property of the

algorithm, the initial value of the scalar matrix was chosen as 0.5.

The eigenvalue spread is set to . An approximation to the ensemble-

average learning curve of the adaptive equaliser is obtained by averaging the

instantaneous-squared-error curve over 30 independent iterations of the computer

hn

1
2
--- 1 2π

W
------ n 2–()⎝ ⎠
⎛ ⎞cos+ a n() b n()j+[]⋅ n, 1 2 3, ,=

0 otherwise,⎩
⎪
⎨
⎪
⎧

=

W

a n() b n()

σ2 1=

σ2 0.001=

AWGN

Channel

Delay

EqualizerRandom Signal
(+1 or -1)

Error

+_

Figure: 6.14: Adaptive equalization for computer experiment

+

Weight 0 1 2

Real 0.48748 -1.59373 -0.56016

Imaginary 0.51943 -0.71432 -0.63114

Table 6.2: Channel Impulse Response

R R

W 3.5=

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 103

simulation. From Figure 6.15 to Figure 6.18, each figure plots the ensemble-average

learning curves of both the floating and fixed point QR-RLS based adaptive equalizer.

The fixed point wordlength varies from signed 23-bit down to 17-bit, with 6-bit

representing the integer part to prevent overflow. As can be seen, the convergence rates

of the proposed fixed point QR-RLS are very close to the floating point references in

Figure 6.15, 6.16 and 6.17. However, the signed 17-bit or less wordlength is not

favoured in this scenario to produce the satisfied numerical stability. As can be seen in

Figure 6.18, the round-off noise reduces the accuracy of QR-RLS implementation, due

to its large growth with the increase of QRD iteration time. Table 6.3 also lists the

resulting filter coefficients of both the floating point and 19-bit fixed point QR-RLS

designs, both designs converge to a very similar solution with only fixed point round

off noise being the differences.

Floating point Fixed point

Weight Real Imaginary Real Imaginary

0 -0.0012 -0.00129 -0.00142 -0.00099

1 -0.00636 -0.00394 -0.00685 -0.00376

2 -0.02046 -0.00621 -0.02077 -0.00608

3 -0.05805 0.00118 -0.05844 0.00128

4 -0.1524 0.04827 -0.1528 0.04828

5 -0.3691 0.2531 -0.3696 0.2532

6 0.1833 -0.05087 0.183 -0.0509

7 -0.08088 -0.00404 -0.08116 -0.00411

8 0.03224 0.01298 0.03201 0.01287

9 -0.01074 -0.00999 -0.01102 -0.01012

10 0.00191 0.00362 0.00167 0.00350

Table 6.3: Coefficients of the Fixed Point QR-RLS based

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 104

Figure: 6.15: Learning curves of the floating vs 23-bit filxed point QR-RLS

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 105

Figure: 6.16: Learning curves of the floating vs 21-bit filxed point QR-RLS

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 106

Figure: 6.17: Learning curves of the floating vs 19-bit filxed point QR-RLS

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 107

6.7 Performance

Table 6.4 compares the FPGA ultilisation of the 16-iteration (i.e.) and 18-

bit wordlength DACR based ‘Single PE + MAC’ QR-RLS, with the work in [24]

Figure: 6.18: Learning curves of the floating vs 17-bit filxed point QR-RLS

n 16=

4 4×

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 108

which uses the classic back-substitution for weight extraction. Xilinx ISE 10.1 was

used to target a Virtex-4 xc4vsx35-10ff668 device. The total estimated power

consumption (using Xilinx Xpower utilities [78]) is 1064mW (the quiescent power is

459mW, and the dynamic power is 604mW). Table 6.5 shows the FPGA ultilisation of

the 16-iteration DACR based ‘Single PE + MAC’ QR-RLS processor for the various

wordlengths.

Based on Eq. 6.10, Table 6.6 provides the timing information for several

configurations of the input data set under the triangularisation and MAC parts (back-

substitution part for [24]) of the QR-RLS processor presented in this thesis. This table

Type Part Slice FF LUT DSP48 BRAM
Standard

CORDIC Lookup [24]
Triangularization 1598 2549 2630 9 5

BS 1932 2862 3286 4 1
Total 3530 5411 5916 13 6

Pipeline-
Interleaving

DACR

Triangularization 1252 1953 1815 0 4
MAC 463 392 631 8 0
Total 1715 2345 2446 8 4

Table 6.4: Synthesis results for CORDIC QR Givens (Size)4 4×

Note : BS = back-substitution

Table 6.5: Resource utilization of the QR-RLS for the various wordlengths

Parts Bits Slices LUTs FFs DSP48s BRAMs

Triangular-
ization

20 1576 2473 2105 0 5
22 1744 2817 2284 0 5
24 2147 3275 2555 0 5
26 2319 3701 2778 0 5

MAC
20 502 476 732 8 0
22 546 476 732 8 0
24 558 512 776 8 0
26 578 554 820 8 0

QR-RLS
Total

20 2078 2949 2837 8 5
22 2290 3293 3016 8 5
24 2705 3787 3331 8 5
26 2897 4255 3598 8 5

4 4×

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 109

shows that the newly proposed architecture can significantly reduce the time for

weights extraction, and also save the hardware implementation cost.

The proposed QR-RLS design also compares favourably with a 9-element, 16-bit

reference design described in [23]. As shown in Table 6.7, the reference design,

running from a 150MHz clock, can sustain an update delay of 198.11 , whereas the

proposed design can sustain a latency of approximately 21.18 at the same clock rate.

This equates to an approximate ten-fold performance increase. The Altera design also

uses in excess of 2600 logic elements (approximately 1300 Xilinx slices [79]), and also

requires an additional embedded soft processor.

μs

μs

Type R Size Cycles for
Triangular’tn

Cycles for
BS/MAC

Total
Cycles

Time () for
250 MHz Clock

Ref [24]
5 x 5 2540 255 2795 11.18
7 x 7 5656 371 6027 24.11
9 x 9 10476 495 10971 43.88

Pipeline-
Interleaving

DACR

5 x 5 985 9 994 3.976
7 x 7 1925 9 1934 7.736
9 x 9 3177 9 3186 12.744

μs

Table 6.6: Execution Time Of The QR-RLS for Matrix Sizes

Type
Triangulariza-

tion cost
(Slice)

BS/MAC
cost

(Slice)

Total
cost

(Slice)

 Triangulariza-
tion delay

()

BS/MAC
delay
()

Total
delay
()

Ref [23] 2600 LEs
1300 Slices

N/A
(Nios)

1300+ 198.11 120 318.11

Pipeline-
Interleaving

DACR
967 443 1410 21.18 0.06 21.24

μs μs μs

≈

Table 6.7: Cost and Speed Performances of the QR Decomposition RLS Implementations9 9×

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 110

6.8 CORDIC Approximate-Scaling-Compensation

As mentioned in Section 4.5, the throughput of a fully pipelined CORDIC based

QR-RLS system is limited by the scaling compensation. Furthermore previous

research on Scaling Free CORDIC algorithm is not applicable to QR-RLS application.

In this section, a novel architecture is presented to approximately compensate the

scaling factor inside the QRD recursive loop without changing the CORDIC algorithm.

This results in fewer pipeline stages inside the loop, so the throughput of the QR-RLS

system can further improve.

According to Table 3.2 and Eq. 6.8, during the QR recursive operation, the new

and values are added respectively to the upper triangular matrix and the column

. The decompositon in Eq. 6.12 then converts the augmented matrix to a new

upper triangular matrix by using Given’s rotations to zero the elements below the main

diagonal. Eq. 6.12 can be further transformed to Eq. 6.13. According to Chapter 4.4.1,

each CORDIC output must be scaled by a constant to give a true

circular rotation. This constant scaling can be realised by Reduced Slice Graph (RSG)

with more than 1 pipeline stages (the number of pipeline stage depends on the precision

required), as shown in Figure 6.19 (a). In Figure 6.19 (b), this scaling is

circumvented by applying a approximate scaling. This can

be easily achieved by the combination of a 1-bit right shift and a 3-bit right shift, with

only 1 pipeline stage, and the number of pipeline stage is independent with the

precision.

x

d R

p R x[]

S K 1– 0.6072≈=

S

S1 0.5 0.125+ 0.625= =

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 111

(6.12)

(6.13)

θ1cos()jj 0 θ1e
jθ4sin()ji

0 1 0
0

θ1sin–()ij 0 0 θ1e
jθ4cos()ii

r00 r01 r0 N 1–() p0

0 r11 r1 N 1–() p1

0 0 r N 1–() N 1–() p N 1–()

x0 x1 x N 1–() d

r00 r01 r0 N 1–() p0

0 r11 r1 N 1–() p1

0 0 r N 1–() N 1–() p N 1–()

0 0 0 ξ

=

QT

θ1cos()jj 0 θ1e
jθ4sin()ji

0 1 0

θ1sin–

S S1⁄()2
-------------------⎝ ⎠
⎛ ⎞

ij

0
θ1e

jθ4cos

S S1⁄()2

⎝ ⎠
⎜ ⎟
⎛ ⎞

ii

r00 r01 r0 N 1–() p0

0
r11

S S1⁄()2
------------------- r1 N 1–()

S S1⁄()2
------------------- p1

S S1⁄()2

0 0
r N 1–() N 1–()

S S1⁄() 2N 2–()
------------------------------- p N 1–()

S S1⁄() 2N 2–()

x0 x1 x N 1–() d

r00 r01 r0 N 1–() p0

0
r11

S S1⁄()2
------------------- r1 N 1–()

S S1⁄()2
------------------- p1

S S1⁄()2

0 0
r N 1–() N 1–()

S S1⁄() 2N 2–()
------------------------------- p N 1–()

S S1⁄() 2N 2–()

0 0 0 ξ
S S1⁄()2N

=

S K 1– 0.6072≈=

QT

S1 0.625=

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 112

This new CORDIC can result in the modified matrix in Eq. 6.13. scales the

initial values of the and elements in and by an additional factor

 on each complex Givens updating iteration, namely on

the -th iteration. The initial values of all the need to be pre-computed and stored

in a memory. A final correction operation — scale by — is

required on the output of the channel-interleaving CORDIC, as described in Eq. 6.14

and Figure 6.20.

(6.14)

Since is always smaller than 1, this Approximate-Scaling-

Compensation scheme causes the bit growth of the QRD recursive loop, namely the

scaling corrects such a bit growth which might damage the numerical precision of the

design. Table 6.8 lists the values under different configurations. When QR

decomposing an matrix, the corresponding scaling equals to , i.e.

this correction requires approximately a 1-bit right shift, hence the numerical property

of the Approximate-Scaling-Compensation architecture can be maintained by

increasing 1-bit accuracy to the original wordlength of the recursive loop. When the

QT QT

r p R x[] p d[]

S 0.625⁄() 2– S 0.625⁄() 2N 2–()–

N r

S2 S 0.625⁄()2N=

<< 2

<< 3

<< 3

<< 8
>> 14

Figure: 6.19: (a) Scaling Compensation; (b) Approximate-Scaling-Compensation

x

0.607238x

>> 1

>> 3

x
0.625x

(a)

(b)

S

S1

5

35_

39_

9949_

0.625

+

+

ξ
S S1⁄()2N

---------------------- S2
ξ

S 0.625⁄()2N
------------------------------ S 0.625⁄()2N×=× ξ=

S2 0.6072 0.625⁄()2N=

S2

S2

11 11× S2 0.5303×

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 113

matrix size further increases to 40 by 40, only 5-bit extension (to represent)

is required by the original wordlength. Hence, the newly proposed Approximate-

Scaling-Compensation architecture does not require the much higher bit-width than

that of the standard CORDIC Scaling-Compensation QR-RLS, particularly for the

small matrice size.

Same with Figure 6.13, the three Approximate-Scaling-Compensation CORDICs

based triangularization in Figure 6.20 can also be further transfered to a two units based

architecture, as shown in Figure 6.21. Table 6.9 lists the FPGA ultilisation of the 16-

iteration (i.e.) and 18-bit wordlength ‘Approximate-Scaling-Compensation’

DACR based ‘Single PE + MAC’ QR-RLS.

0

Im xN 1–()

1

Im x0()

Im d()

0

Re xN 1–()

1

Re x0()

Re d()

Im b0()

Im ξ()
Im γ()

Im bN 1–()

S1 Re b0()

Re ξ()
Re γ()

Re bN 1–()

S1

S1

S1

S

S

2N N 3+()D

CORDIC 2

CORDIC 3

CORDIC 1 2N N 3+()D

S2

S2

Figure: 6.20: CORDIC Approximate-Scaling-Compensation QR-RLS

(Pipelined)

(Pipelined)

(Pipelined)

0.0996×

)

 valueS2

N 4= 0.7940
N 11= 0.5303
N 20= 0.3156
N 30= 0.1773
N 40= 0.0996

Table 6.8: values under different configurationsS2

n 16=

4 4×

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 114

Table 6.10 compares the execution time (for one iteration of QR decomposition) of

this section’s modified CORDIC based QR-RLS and the original ‘Scaling-

Compensation’ design in Chapter 6.5. represents the maximum clock rate, is

the number of weights, stands for the total CORDIC iterations and is the number

of clock cycle delays introduced by the CORDIC scaling operations (assuming both

the ‘Scaling-Compensation’ and ‘Approximate-Scaling-Compensation’ designs

request the same number of pipelining levels). Last but not least, the represents the

clock cycle delays introduced by the MAC part and the new ‘Approximate-Scaling-

Compensation’ architecture to accelerate the QR-RLS processor.

Based on Table 6.10, Table 6.11 lists the timing information for several

configurations of the input data set under the triangularisation and MAC parts of the

S1

0

Im xN 1–()

1

Im x0()
Im x1()

Im d()

0

Re xN 1–()

1

Re x0()
Re x1()

Re d()

Im b0()

Im ξ()
Im γ()

Im bN 2–()
Im bN 1–()

0

Re b0()

Re ξ()
Re γ()

Re bN 2–()
Re bN 1–()

0
S

S

S1

D

2 N 3+()D

D

CORDIC 2

CORDIC 3
S2

S2

Figure: 6.21: Double Approximate-Scaling-Compensation CORDICs based QRD-RLS triangularization

2 N 3+()D

(Pipelined)

(Pipelined)

Type Part Slice FF LUT DSP48 BRAM
Approximate-

Scaling-
Compensation

Triangularization 1285 2042 1846 0 4
MAC 463 392 631 8 0
Total 1748 2434 2477 8 4

Table 6.9: Synthesis results for CORDIC QR Givens (Size)4 4×

CLK N

n d

m

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 115

QR-RLS processor in this section. Comparing with the information in Table 6.6, the

newly proposed ‘Approximate-Scaling-Compensation’ scheme can further reduce the

execution time of QR-RLS processor.

6.9 Conclusion

This chapter has described the design and implementation of the complex valued

‘Single PE + MAC’ QRD-RLS processor. The pipeline-interleaving coarse angle

CORDIC based quadrant correction free DACR is employed to combine the low

hardware consumption with the benefit of scalability. The Scaling-Partial-

Compensation algorithm plays essentially the role of increasing the sampling rate of

our proposed QR-RLS processor.

The principal contribution of this chapter is applying a pipeline-interleaving scheme

to multiplex all the PEs of complex value QR-RLS systolic array together. The

pipeline-interleaving CORDIC based single PE QR-RLS downdating processor can be

Table 6.10: Execution time of the single PE QR-RLS

Design Execution time
Scaling-

Compensation
Approximate-

Scaling-
Compensation

2n 2d 1+ +() N2× 2N m+ +
CLK

--

2n 3+() N2× 2 d+() N× m+ +
CLK

Type R Size Cycles for
Triangularization

Cycles for
BS/MAC

Total
Cycles

Time () for
250 MHz Clock

Approximate-
Scaling-

Compensation

5 x 5 900 9 909 3.636
7 x 7 1750 9 1759 7.036
9 x 9 2880 9 2889 11.556

μs

Table 6.11: Execution Time Of The QR-RLS for Matrix Sizes

CHAPTER 6 - Complex Valued Processor-Like QR-RLS Architecture 116

created which combines low hardware consumption with the benefit of speed and

scalability. By comparing with the reference design in [23] [24] which implements the

IC/DCs by mult-add function units, it is shown that the new pipeline-interleaving

coarse angle CORDIC based complex value QR-RLS is a low cost implementation,

and directly yields the adaptive weight values without the need for explicit back-

substitution.

CHAPTER 7 - Annihilation-Reordering Look-ahead Technique for Complex

Givens Rotation based QR-RLS Filter

117

Chapter 7

Annihilation-Reordering Look-ahead Technique for

Complex Givens Rotation based QR-RLS Filter

7.1 Introduction

According to Section 3.10, in recent years, various Look-ahead technologies have

been used in the architecture and VLSI implementation of the communication physical

layer design to improve the clocking speed of adaptive DSP algorithms. To increase

the throughput of QR-RLS adaptive filters, Annihilation-Reordering look-ahead

Transformed (ART) [41] was proposed to achieve more fine-grain pipelining of real

valued QR-RLS implementation by retiming.

The novel approach proposed in this chapter pipelines a Complex value

Annihilation-Reordering look-ahead Transformed (C-ART) updated QRD-RLS array

at the fine-grained level. The architecture critical path can be reduced through retiming

transformation. Thereafter a folding transformation is used to reduce the number of the

pipelined CORDIC stages inside each processing element (PE).

The rest of this chapter is organized as follows. Chapter 3.10 briefly reviews the

existing adaptive DSP applications using the Look-ahead transformation. In Chapter

3.10.1, the real valued ART technique for speeding up the QR-RLS transformation is

reviewed. Chapter 7.2 proposes the architecture of C-ART updated QR-RLS. Chapter

7.3 presents the simulation of an adaptive equalization and beamforming system to

demonstrate that the new technology achieves the same ensemble-average learning

curve and beampattern with the classic sequential updated QR-RLS algorithm. Finally,

the methodology of fine-grain level mapping is presented in Chapter 7.4, and the

synthesis implementation results on Xilinx FPGA demonstrates that the proposed

structure results in a higher throughput.

CHAPTER 7 - Annihilation-Reordering Look-ahead Technique for Complex

Givens Rotation based QR-RLS Filter

118

7.2 ART Complex valued QR-RLS

The annihilation-reordering look-ahead transformation of DACR can be derived

from the real valued ART in Figure 3.18. After applying the ART transformation with

pipelining level 2 to the two Givens rotations based BC in Figure 7.1 (a) and the three

Givens rotations based IC/DC in Figure 7.2 (a), the resulting SFGs are given in Figure

7.1 (b) and Figure 7.2 (b) respectively. Similar to Figure 3.16 (b), the design sample

rate can also be increased by a factor of two after redistributing the two delay elements

in the feedback loop.

In contrast with the real valued annihilation-reordering look-ahead updated QR-

RLS in Eq. 3.30, Eq. 7.1 presents the ART update of the complex valued QRD-RLS

Figure: 7.1: (a) Sequential transformed BC; (b) C-ART updated BC

D D 2D

G G
rre k()

xre k()

rre k()

λ1 2⁄

G
λ1 2⁄ λ

xre k()

G
xim k()

G
xim k()

G

D

(a) (b)λ1 2⁄

Figure: 7.2: (a) Sequential transformed IC/DC; (b) C-ART updated IC/BC

D 2D

G G
rre k()

xre k()

rre k()
λ1 2⁄

G
λ1 2⁄ λ

xre k()

G
xim k()

Gxim k()

G

D

rim k()

λ1 2⁄

G

λ1 2⁄

G

2D

G
rim k()

λ

D

D

(a) (b)

CHAPTER 7 - Annihilation-Reordering Look-ahead Technique for Complex

Givens Rotation based QR-RLS Filter

119

algorithm with the block size , where the hermitian transpose “ ” is used in the

downdating matrix:

(7.1)

The architecture of the Complex value Annihilation-Reordering look-ahead

Transformed (C-ART) QRD-RLS systolic array (with demonstrated next) is

shown in Figure 7.3. The fine-grain levels of all PEs are also provided in Figure 7.4.

Note that the EC elements consist several arithmetic units labeled by ‘E’, this kind of

units can be implemented by the linear CORDIC arithmetic [47]. From an

implementation point of view, the number of ultilized CORDIC elements inside each

complex valued PE is still proportional to the pipelining level . When the pipelining

level equals , each complex Givens rotation based BC contains circular

CORDICs, circular CORDICs required by every IC/DC, and

 linear CORDICs are involved in the error calculator and each EC

seperately. The total complexity is around , which is double the complexity

of the real valued system in [47]. When the block updating size increases to three, the

amount of ultilised CORDICs in BC are six, and eight CORDICs required by every IC/

DC, as shown in Figure 7.5. Then in Figure 7.6, if the look-ahead pipelining level

further rises to four, correspondingly eight CORDICs are employed in each BC, and

ten CORDICs required by every IC/DC.

M H

Q k() λM 2⁄ R k M–() λM 2⁄ p k M–() λ M 2⁄– R H– k M–()

xM
T k 1–() dM k 1–() 0M

R k() p k() R H– k()
0 ξ k() b k()

=

M 2=

M

M 2M

2 M 1+()× 4 M×

4 M× 2+

O 2MN2()

CHAPTER 7 - Annihilation-Reordering Look-ahead Technique for Complex

Givens Rotation based QR-RLS Filter

120

x1 k() x2 k() xN 1– k() d k()

Re Im Re Im Re Im Re Im

Re Im Re Im Re Im Re Im
e k()

0
0

1010 0000

0000

0000

Figure: 7.3: C-ART updated QR-RLS ()M 2=

ρ N 1–()0

ρ1 N 2–()ρ10

ρ00r00 r01

r11

γ1

γ2

r N 1–() N 1–()

r0 N 1–()

pN 1–

γN 1–

r1 N 1–() p1

p0

ρ N 1–() N 2–()

ρ N 1–() N 1–()

W0 WN 2– WN 1–

D

BC IC DC

EC

D

D

D

D

D

D

D

EC

CHAPTER 7 - Annihilation-Reordering Look-ahead Technique for Complex

Givens Rotation based QR-RLS Filter

121

E

E

E

E

E

E

Figure: 7.4: C-ART updated QR-RLS () cont’dM 2=

E
E

E

E
E

E

E

E

E
E

E

E

: Negate

0
0

0
0

-1

-1

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

00

G G G G G G

2D

2D

2D

BC IC DC

2D 2D 2D 2D

EC

EC

CHAPTER 7 - Annihilation-Reordering Look-ahead Technique for Complex

Givens Rotation based QR-RLS Filter

122

7.2.1 Pipeline C-ART QR-RLS PEs Through Retiming

Retiming is an effective transformation technique used to change the location of

delay elements in a circuit without affecting the input/output characteristics of the

circuit [12] [16] [41]. Through retiming, the maximum clocking rate of a circuit is

increased by ensuring the critical path is minimised. Figure 7.7 shows how the

boundary and internal cells in Figure 7.4 are pipelined by retiming the extra delay

elements, highlighted as the additional cut-set registers in Figure 7.7, added at their

inputs (in general, an -level pipelined complex Givens rotation based PE can be

obtained by retiming the -level lumped delay elements at its inputs). After this

retiming, the propogation delays of critical paths in BC, IC and DC are reduced by 1/

G

G

G

G

G

G

G

G

G

G

G

G

G

G

00

G

G

G

GG G GG G G

G G G G G G

Figure: 7.5: C-ART updated QR-RLS ()M 3=

3D 3D 3D 3D 3D

Figure: 7.6: C-ART updated QR-RLS ()M 4=

G

G

G

G

G

G

G

G

G

G

G

G

G

G

00

G GG G GG G G

G

G

G G

GG

G

G

G

G

G

G

G

G

G

G

4D 4D 4D 4D 4D

M

2M

CHAPTER 7 - Annihilation-Reordering Look-ahead Technique for Complex

Givens Rotation based QR-RLS Filter

123

2 (in general), i.e the new proposed technology could speed up the QR-RLS

algorithm to work on 2 (in general) times of its original maximum clock/sampling

rate.

7.3 Simulation Verification

This part presents the simulation verification of both the adaptive equalization and

beamforming systems to prove that the new C-ART QR-RLS technology can achieve

the same ensemble-average learning curve and beampattern with the classic sequential

1 M⁄

M

G

G G

G

G

G

G

G

G

Figure: 7.7: Retiming the processing elements of C-ART
updated QR-RLS.()M 2=

: Additional 1 level Retiming

G

cut-set register

2D 2D 2D

D D D

G G G G

G G G

G G G

CHAPTER 7 - Annihilation-Reordering Look-ahead Technique for Complex

Givens Rotation based QR-RLS Filter

124

updated algorithm.

7.3.1 Adaptive Equalization

This section presents the simulation of adaptive equalization using both the

sequential and Look-ahead updating QR-RLS algorithms. The simulation system

settings are the same with those in Section 6.6. Figure 7.8 shows the real and imaginary

part of the learning curves of floating point based ‘classic’ QR-RLS algorithm with the

sequential update. For , an approximation to the ensemble-average learning

curve of the adaptive equalizer is obtained by averaging the instantaneous-squared-

error curve over 100 independent trials of the computer experiment. When we replace

the sequential QR update based equalizer with the proposed annihilation reordering

Look-ahead transformed array, the real and imaginary parts of the ensemble-average

0 50 100 150 200 250 300 350 400 450 500

1

2

3

x 10-3

Number of iteations

E
ns

em
bl

e-
av

er
ag

e
sq

ua
re

 e
rro

r
(re

al
 p

ar
t)

0 50 100 150 200 250 300 350 400 450 500

1

2

3

x 10-3

Number of iteations

E
ns

em
bl

e-
av

er
ag

e
sq

ua
re

 e
rro

r
(im

ag
in

ar
y

pa
rt)

C-ART Update
Sequential Update

C-ART Update
Sequential Update

Figure: 7.8: Comparision between the learning curves of the sequential and C-
ART updated QR-RLS algorithms

M 2=

W 3.5=

CHAPTER 7 - Annihilation-Reordering Look-ahead Technique for Complex

Givens Rotation based QR-RLS Filter

125

learning curve of the adaptive equalizer are shown in Figure 7.8. As can be seen in

Figure 7.9 which is the zoomed in version of Figure 7.8, the convergence rate of the

learning curves of the proposed C-ART updated QR-RLS are “exactly” the same with

that of the classic sequential updated one. Hence with simulation we verify that the

 C-ART is numerically identified to the standard complex QR algorithm.

7.3.2 Generalized Sidelobe Canceller (GSC) beamforming

Beamforming is a spatio-temporal technique used to enhance a target signal while

reducing the amount of noise and interference using an array of sensors. The linearly

constrained minimum variance (LCMV) beamformer is a specific type of adaptive

beamformer that uses the direction of arrival to differentiate between the target signal

and interference. It attempts to completely null out the interference by minimising the

M 2=

150 200 250 300 350

2

4

6

8

10
x 10-4

Number of iteations

E
ns

em
bl

e-
av

er
ag

e
sq

ua
re

 e
rro

r
(re

al
 p

ar
t)

150 200 250 300 350

2

4

6

8

10
x 10-4

Number of iteations

E
ns

em
bl

e-
av

er
ag

e
sq

ua
re

 e
rro

r
(im

ag
in

ar
y

pa
rt)

C-ART Update
Sequential Update

C-ART Update
Sequential Update

Figure: 7.9: Comparision between the learning curves of the sequential and C-
ART updated QR-RLS algorithms (zoomed in)

M 2=

CHAPTER 7 - Annihilation-Reordering Look-ahead Technique for Complex

Givens Rotation based QR-RLS Filter

126

power of the output signal while maintaining the integrity of the target signal. A

generalised sidelobe canceller (GSC) is a specific implementation of the LCMV which

uses a blocking matrix to create a set of signals that are free of the target signals and

thus are suitable for noise cancelling [80] [81].

The operation of the GSC is highlighted in Figure 7.10. Assuming the two spatially

separated sources emitting signals — the target and interference signal, respectively —

are in the narrowband form. Considering an -element antenna array with sensor

signals , . The input signal of the adaptive beamformer is [15]

(7.2)

For each element of the array, the input signal is

(7.3)

where is the amplitude of the target signal and is the amplitude of the

interfering signal. is uncorrelated additive Gaussian noise with zero mean and

unit variance. In this paper, the target-to-noise ratio (TNR) is held constant at 10dB;

the interference-to-noise rato (INR) is assumed as 20dB. Measured in radians, the

angles of target signal is , and is for the interference.

Based on , the array response is steered by forming linear combinations of the

beamformer outputs

e k()

QR-RLS

+_

Figure: 7.10: GSC beamforming for computer experiment

B

wq

Non-Adaptive

AdaptiveBlock Matrix

x k()

e k()
wa y k()

Beamformer
Output

Antenna
Data

u k()

d k()

N

xn k() n 0…N 1–=

x k() x0 k() x1 k() … xN 1– k()[]T=

xn k() A0 jnθ0() A1 jnθ1 jψ+() vn k()+exp+exp=

A0 A1

vn k()

θ0 0.2π–= θ1 0=

x k()

CHAPTER 7 - Annihilation-Reordering Look-ahead Technique for Complex

Givens Rotation based QR-RLS Filter

127

(7.4)

The LCMV problem for narrowband beamforming can be formulated as

, subject to

where contains the beamformer coefficients , is the

constraint matrix which specifies the spatio-temporal characteristics of the impinging

target signal, and specifies its gain response as it is passes through the beamformer.

The GSC decomposes the beamforming vector into a fixed vector

 which operates as a delay-sum beamformer but with a specified

frequency response, and a second branch containing a blocking matrix and a

coefficient vector ,

(7.5)

Using the definition of Eq. 7.5 in Eq. 7.4, we may express as

(7.6)

The fixed vector passes the signal of interest plus interference (represented by

 in Figure 7.10), while the blocking matrix output contains

interference components only. Therefore, the coefficient vector can be optimised,

using standard adaptive filters in a noise cancellation setup. In this thesis, we select

, this is the well known minimum-variance distortionless response (MVDR)

beamformer.

The spatial response, or beampattern, is defined by , where

(7.7)

is the steering vector. The electrical angle , measured in radians, is related to the

angle of incidence by (is selected in this chapter).

Figure 7.11 shows the adapted spatial response of the classic sequential updated

QR-RLS based MVDR beamformer after 200 snapshots (counts from 0 to 199).

e k() w∗n

n 0=

M 1–

∑ xn k()⋅ wHx k()= =

min e k() 2{ } Cw g=

w w0 w1 … wN 1–[] C

g

w

wq CH CCH()
1–
g=

B

wa

w wq BHwa–=

e k()

e k() d k() y k()– wq
Hx k() wa

HBx k()–= =

wq

d k() u k() Bx k()=

g 1=

10 wH n()s θ()
2

10log

s θ() 1 e jθ– e j2θ– … e j N 1–()θ–, , , ,[]
T

=

θ

φ θ π φsin= φ 0.2–()1–sin=

k

CHAPTER 7 - Annihilation-Reordering Look-ahead Technique for Complex

Givens Rotation based QR-RLS Filter

128

When we replace the sequential QR update based beamformer with the proposed

annihilation reordering look-ahead transformed array, the beampattern of the MVDR

beamformer is also plotted. the parameters of the QR-RLS here have the forgetting

factor and the initial value of equals the identity matrix. By comparing

both figures, the responses of two beamformers along the target angle are both

held at 0 dB, hence employing both QR-RLS algorithms in adaptive beamforming

produces the same spatial response.

λ 0.99= R

0.2π–

Figure: 7.11: Spatial response of the sequential updated QR-RLS based MVDR beamformer

CHAPTER 7 - Annihilation-Reordering Look-ahead Technique for Complex

Givens Rotation based QR-RLS Filter

129

7.4 Fine-grain Level Mapping

Basing on Section 7.2, retiming an -level pipelined complex Givens rotation

based PE can speed up the QR-RLS algorithm to work at times of its original

maximum clock/sampling rate. However, for an equalization or beamforming

application, the hardware ultilisation is too large to distributedly map all the BCs and

ICs of QR-RLS systolic array. By incorporating the pipeline-interleaving scheme [69]

and merging the BC in Figure 7.12 (a) and IC in Figure 7.12 (b), a 3-CORDIC structure

is created which has similar cost to a single IC. Similarly, a 6-CORDIC architecture is

resulted by pipeline-interleaving the C-ART updatecd BC in Figure 7.13 (a) and IC in

Figure 7.14 (a). Hence for comparison purposes, we only look at the internal cells.

φ

θ

Figure: 7.12: Mapping of sequential updated BC and IC/DC

φ

θ

θ

φ

xre k()
xim k()

xre k()

xim k()

xre k()

xim k()

x're k()

x'im k()

xre k()

xim k()

x'im k()

x're k()
θ

φ θ

θ

(a) (b)

(c)
(d)

C

C

C C

C

C
C

CC : CORDIC for Givens generation
and rotation

φxre k()

xim k()
θ

(c)

C

D D

D

D
D

D

: 1 level pipeline register

(Figure 6.6) (Figure 6.7)

M

M

CHAPTER 7 - Annihilation-Reordering Look-ahead Technique for Complex

Givens Rotation based QR-RLS Filter

130

Table 7.1 compares the FPGA synthesis results of the 15-iteration 18-bit precision

unrolled IC of the sequential updated QR-RLS in Figure 7.12 (b), with that of the C-

ART QR-RLS in Figure 7.14 (a). Xilinx ISE 10.1 is used to target a Virtex-4

xc4vsx35-10ff668 device. From the results in Table 7.1, it is clear that the C-ART

architecture can improve the throughput, and almost achieves the theoretical 2 times

speed.

As presented in Section 7.2, since the number of CORDIC elements required is

linearly proportional to the look-ahead transformation factor , the cost is often too

large to map the fully parallel BCs and ICs of QR-RLS systolic array on hardware, due

θ2

θ1

Figure: 7.13: Mapping of C-ART updated BC

φ1

φ2

φ1

xre k 1+()
xim k 1+()

xre k()
xim k()

xre k 1+()

xim k 1+()

xre k()
xim k()

θ2 θ1

φ2

C

C

C
C

C

C

D

D

D

(Figure 7.7)

Type Slice FF LUT Critical Path Max Clock Rate Max Sampling Rate
Sequential update 1249 148 2437 38.924ns 23.691MHz 23.691MHz

C-ART update 2862 613 5374 22.968ns 43.538MHz 43.538MHz

Table 7.1: Synthesis results of a sequential and C-ART updated unrolled IC (=2)M

M

CHAPTER 7 - Annihilation-Reordering Look-ahead Technique for Complex

Givens Rotation based QR-RLS Filter

131

to the large number of CORDIC processors. Hence, the folding transformation is

necessary to reduce the amount of the CORDICs inside each PE in Figure 7.7, by time-

sharing one CORDIC unit.

The aforementioned 2-CORDIC sequential updated BC in Figure 7.12 (a) can be

folded to a 1-CORDIC architecture in Figure 7.12 (c), the 3-CORDIC sequential

updated IC in Figure 7.12 (b), together with the newly presented C-ART PEs in Figure

7.7, can all be further mapped to a 2-CORDIC architecture, as shown in Figure 7.12

(d), Figure 7.13 (b) and Figure 7.14 (b). The system throughput of sequential updated

PEs has been reduced to its , and that of the C-ART updated PEs is down to .

However by using retiming transformation, it can be verified that the folded

architectures in Figure 7.13 (b) and Figure 7.14 (b) can be pipelined at 2 levels

Figure: 7.14: Mapping of C-ART updated IC/DC

θ2

θ1

θ1

θ2

φ2

xre k()

xim k()

φ1

xre k 1+()

xim k 1+()
x're k 1+()

x'im k 1+()

x're k()

x'im k()

xre k 1+()

xim k 1+()

xre k()

xim k()

x're k()

x'im k()

x're k 1+()

x'im k 1+()

φ1 θ2 θ1

φ2 θ2 θ1

C

C

C

C

C

C

C

C

D

D

D

D

(Figure 7.7)

1 2⁄ 1 3⁄

CHAPTER 7 - Annihilation-Reordering Look-ahead Technique for Complex

Givens Rotation based QR-RLS Filter

132

compared to the non-pipelined rolled architecture in Figure 7.12 (c) and (d), hence the

folded C-ART based PEs have 2/3 sampling rate of the unfoled ones, if the small

overhead of multiplexers, flip-flops etc in the folded architecture are reasonably

considered minimal. Namely, the folded C-ART updated PEs can still improve

the system throughput by

From the synthesis results listed in Table 7.2, the newly proposed architecture can

almost improve the throughput by , and maintain a low hardware cost.

7.5 Conclusion

In this chapter, a novel Complex valued Annihilation-Reordering Look-ahead

Transformation (C-ART) was successfully developed to increase the throughput/

sampling rate of the double angle complex rotation (DACR) based QRD-RLS systolic

array, without degrading the algorithm’s convergence behavior in contrast to the

relaxed annihilation-reordering Look-ahead in [46]. The DACR can be realized by the

CORDIC arithmetic and is suitable for cut-set pipelining to increase the throughput.

Computer verification in the adaptive equalization and beamforming environments

prove that the new technology could achieve the same ensemble-average learning

curve and beampattern with the classic sequential QR updated RLS algorithm. Finally,

the methodology of fine-grain level mapping is presented, and the FPGA

implementation of a single processing element (PE) confirms the higher throughput

property of the C-ART structure. And also demonstrates the insignificant change on its

hardware cost point of view. Compared to the classic sequential updated QR-RLS, this

architecture leads to almost twice the throughput with the Look-ahead factor of 2.

M 2=

2 3 1 2 1 6⁄=⁄–⁄

1 6⁄

Type Slice FF LUT Critical PathMax Clock RateMax Sampling Rate
Sequential update 919 123 1718 53.077ns 18.841MHz 9.42MHz

C-ART update 1000 252 1822 30.329ns 32.972MHz 10.99MHz

Table 7.2: Synthesis results of a sequential and C-ART updated rolled IC (=2)M

CHAPTER 8 - Conclusions & Future Work 133

Chapter 8

Conclusions & Future Work

8.1 Conclusions

The conclusions formed from the analysis and experimental results presented are

summarised below.

Both the unpipelined and pipelined barrel shifter based serial CORDIC

architectures can not result in the high throughput for QR-RLS implementations.

DSP48 based serial CORDIC does not produce the satisfactory speed either. The

introduction of pipeline registers into the recursive loop also limits the throughput of

QR-RLS array implementation due to the iteration bound increase.

By comparing the proposed coarse angle rotation mode CORDIC with two types of

conventional CORDICs, it is shown that the newly proposed CORDIC has the lowest

cost. One principal contribution of this research is applying a pipeline-interleaving

scheme to multiplex all the PEs of QR-RLS systolic array. By using the pipeline-

interleaving CORDIC to multiplex more than one data channels together, the pipelined

recursive loop can be filled up efficiently.

This thesis uses the pipeline-interleaving scheme to map the extended QR-RLS

array onto a ‘Single PE + MAC’ architecture. The resulted pipeline-interleaving

CORDIC based ‘processor-like’ QR-RLS combines the low hardware consumption

with the benefit of high speed and scalability. By comparing with other types of

CORDIC based BCs and ICs, the new ‘processor-like’ QR-RLS PE has the best speed-

area performance, and can directly produce the adaptive filtering weights, without the

need of back substitution.

The design and implementation of complex valued QRD-RLS processor on a

‘Single PE + MAC’ architecture has been discussed. Double Angle Complex Rotation

CHAPTER 8 - Conclusions & Future Work 134

(DACR) is used to replace the conventional Complex Givens Rotation (CGR) in the

QR PEs. New quadrant mapping/correction method has been developed. The proposed

novel Approximate-Scaling-Compensation algorithm plays essentially the role of

increasing the sampling rate of QR-RLS processor.

The novel Complex valued Annihilation-Reordering look-ahead Transformation

(C-ART) is successfully developed to increase the throughput/sampling rate of the

DACR based QRD-RLS systolic array, without degrading the algorithm’s

convergence behavior. The DACR could be realized by the CORDIC arithmetic and is

suitable for cut-set pipelining to increase the throughput. Computer verifications in the

adaptive equalization and beamforming environments prove that the new technology

could achieve the same ensemble-average learning curve and beampattern with the

classic sequential QR updated RLS algorithm.

CHAPTER 8 - Conclusions & Future Work 135

8.2 Future Work

Potential avenues for extending the research presented in this thesis are given next.

Future research will be directed toward the scheduling and mapping of the

distributed C-ART updated QR-RLS PEs in Chapter 7.4 onto a single processor-like

hardware configurations, by employing the pipeline-interleaving scheme presented in

Chapter 6. It will be interesting to see how different mapping strategies lead to different

hardware ultilizations and throughputs. Low power consumption Design methodology

will be challenging.

In Section 7.3, the flexibility and the scalability of the QRD-RLS core make it a

perfect solution for the multi-antenna communication systems. An efficient adaptive

MVDR beamforming technique will be investigated, and the system level floating and

fixed point simulations will be performed. The MVDR beamforming algorithm using

QR-RLS filtering will be finally implemented, analysed, and successfully tested on

Xilinx FPGAs.

CHAPTER 8 - References 136

References

[1] Berkeley Design Technology, “Choosing a DSP Processor”, 2000, http://www.bdti.com/MyBDTI/
pubs/choose_2000.pdf

[2] NVIDIA Corporation, “NVIDIA CUDA Compute Unified Device Architecture”, June 2008, http:/
/developer.download.nvidia.com/compute/cuda/2_0/docs/CudaReferenceManual_2.0.pdf

[3] Dake Liu, “Embedded DSP Processor Design, Application Specific Instruction Set Processors”,
Mogen Kaufmann, ISBN 9780123741233, June, 2008

[4] I. Kuon and J. Rose, "Measuring the Gap Between FPGAs and ASICs", IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD) , Vol. 26, No. 2, pp 203-215,
Feb. 2007

[5] Khronos OpenCL Working Group, “The OpenCL Specification”, August 2008, http://
www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf

[6] V. Volkov and J. Demmel, “LU, QR and Cholesky Factorizations using Vector Capabilities of
GPUs”, Tech. Report UCB/EECS-2008-49, EECS Department, University of California, Berkeley,
May 2008

[7] V. Volkov and J. Demmel, “Benchmarking GPUs to Tune Dense Linear Algebra”, ACM/IEEE
Conference on Supercomputing (SC08), Austin, TX, November 15-21, 2008

[8] S. Tomov, R. Nath, H. Ltaief and J. Dongarra, "Dense Linear Algebra Solvers for Multicore with
GPU Accelerators," IEEE International Parallel & Distributed Processing Symposium, Atlanta,
GA, January 15, 2010

[9] Xilinx Inc, “UG011 - PowerPC Processor Reference Guide”, Jan, 2007, http://www.xilinx.com/
support/documentation/user_guides/ug011.pdf

[10] Xilinx Inc, “UG081 - MicroBlaze Processor Reference Guide, Embedded Development Kit, EDK
10.1”, 2008, http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf

[11] Xilinx Inc, “UG070 - Virtex-4 FPGA User Guide”, December 2008, http://www.xilinx.com/
support/documentation/user_guides/ug070.pdf

[12] Uwe Meyer-Baese, Digital Signal Processing with Field Programmable Gate Arrays, Edition 3,
Springer,. 2007, ISBN 3540726128

[13] Xilinx Inc, “XAPP465 - Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 Devices”,
April 2003, http://www.xilinx.com/support/documentation/application_notes/xapp465.pdf

[14] Xilinx Inc, “UG073 - XtremeDSP for Virtex-4 FPGA”, May 2008, http://www.xilinx.com/support/
documentation/user_guides/ug073.pdf

[15] S Haykin. Adaptive Filter Theory. Prentice Hall, edition, 1991, ISBN 0133979857
[16] R Woods, J McAllister, Y Yi, G Lightbody, FPGA-based Implementation of Signal Processing

Systems, Wiley, 1999
[17] S. Haar, D. Daecke, R. Zukunft, and T. Magesacher, “Equalizer-Based Symbol-Rate Timing

Recovery for Digital Subscriber Line Systems”, Proc. Globecom 2002, Taipei, Taiwan, Nov. 2002
[18] J A. Apolinario JR., QRD-RLS Adaptive Filtering, Springer, edition, Feb 2009, ISBN

0387097333
[19] G H Golub, C F. Van Loan, Matrix Computations, Edition: 3, Johns Hopkins University Press,

3rd

1st

CHAPTER 8 - References 137

1996, ISBN 0801854148
[20] J G McWhirter, “Systolic Array for Recursive Least-squares Minimisation”, Electronics Letters,

vol. 19, Issue: 18, pp: 729-730, Sept 1. 1983
[21] W Givens, “Computation of Plane Unitary Rotations Transforming a General Matrix to Triangular

Form”, J. Soc. Indust. Appl. Math., vol. 6, No. 1, 1958
[22] L. Gao and K.K. Parhi, "Hierarchical Pipelining and Folding of QRD-RLS Adaptive Filters and Its

Application to Digital Beamforming," IEEE Trans. on Circuits and Systems Part-II: Analog and
Digital Signal Processing, vol. 47, no. 12, pp. 1503-1519, Dec 2000

[23] D. Boppana, K. Dhanoa and J. Kempa, “FPGA Based Embedded Processing Architecture for the
QRD-RLS Algorithm”, 12th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 330 - 331, April. 20-23, 2004, Napa, CA

[24] C Dick, F Harris, M Pajic and D Vuletic,“Real-Time QRD-Based Beamforming on an FPGA
Platform” Fortieth Asilomar Conference on Signals, Systems and Computers, pp. 1200 - 1204, Oct.
29 2006 - Nov. 1 2006

[25] G Lightbody, R Walke, R Woods and J McCanny, “Novel Mapping of a Linear QR Architecture”,
Proc. ICASSP, pp. 1933 - 1936, 1999

[26] B Yang, J F. Bohme, "Rotation-based RLS algorithm unified derivation, numerical properties, and
parallel implementation," IEEE Trans. on Signal Processing, vol. 40, no. 5, pp. 1151-1167, May
1992

[27] M Harteneck, R W Stewart, J G McWhirter, I K Proudler, “Algorithmic Engineering Applied to the
QR-RLS Adaptive Algorithm”, Proceedings of 4 th International Conference on Mathematics in
Signal Processing, 1996

[28] F. Edman and V. Owall, “A Scalable Pipelined Complex Valued Matrix Inversion Architecture”,
Proceedings of ICECS’05, Kobe, Japan, May 2005

[29] S T. Alexander and A L. Ghirnikar, “A method for recursive least squares adaptive filtering based
upon an inverse QR decomposition”, IEEE Trans. on Signal Processing. vol. 41 no. 1, pp. 20–30,
Jan 1993

[30] S J. Chern and C Y. Chang, “Adaptive Linearly Constrained Inverse QRD-RLS Beamforming
Algorithm for Moving Jammers Suppression”, IEEE Trans. on Antennas and Propagation, vol. 50,
no. 8, pp. 1138-1150, Aug 2002

[31] J. M. Cioffi, “The Fast Adaptive ROTOR’s RLS algorithm”, IEEE Trans. On Acoust, Speech, and
Signal Processing, vol. ASSP-38, no. 4, pp. 631-653, Apr. 1990

[32] J. A. Apolinario Jr., M. G. Siqueira and P. S. R. Diniz, “On fast QR algorithms based on backward
prediction errors: New results and comparisons”, First Balkan Conference on Signal Processing,
Communications, Circuits and Systems, Istanbul, Turkey, June 2000

[33] I. K. Proudler, “Computationlly efficient QR decomposition approach to least squares adaptive
filtering,” in Proc. Inst. Elect. Eng., vol. 183, pp. 341–353, 1983

[34] F. Ling, “Givens rotation based least squares lattice and related algori thms,” IEEE Trans. on Signal
Processing, vol. 39, no. 7, pp. 1541–1551, July 1991

[35] J. G. McWhirter, “Algorithmic Engineering in Adaptive Signal Processing”, IEE Proceedings F,
Radar and Signal Processing, vol. 139, no. 3, pp. 226-232, June 1992

[36] M. Moonen and I. K. Proudler, “Generating 'Fast QR' Algorithms Using Signal Flow Graph
Techniques”, Proc. 13th Asilomar Conf. on Signals, Systems and Computers,. Pacific Grove, CA,
USA, 3-6th November 1996

[37] M. Harteneck, R. W. Stewart, J. G. McWhirter and I. K. Proudler, “Algorithmic Engineering

CHAPTER 8 - References 138

Applied to the QR-RLS Adaptive Algorithm”, Proceedings of 4 th International Conference on
Mathematics in Signal Processing, 1996

[38] A. A. Rontogiannis and S. Theodoridis, “Multichannel Fast QRD-LS Adaptive Filtering: New
Technique and Algorithms”, IEEE Trans. Signal Process. vol: 46, no: 11, pp: 2862-2876, Nov 1998

[39] A. L. L. Ramos, J. A. Apolinário Jr., “A lattice version of the multichannel FQRD algorithm based
on a posteriori backward errors”, Proceedings of the 11th Internacional Conference on
Telecommunications, Lecture Notes in Computer Science, vol. 1, pp. 488-497, Fortaleza, Brazil,
2004

[40] M. Harteneck, J. G. McWhirter, I. K. Proudler and R. W. Stewart, “Algorithmically Engineered
Fast Multichannel Adaptive Filter Based QR-RLS”, IEE Proceedings — Vision, Image and Signal
Processing, vol. 146, no. 1, pp. 7-13, Feb. 1999

[41] K. K Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, Wiley-
Interscience, 1999

[42] C H. Lin and A Y. Wu, “Soft-Threshold-Based Multilayer Decision Feedback Equalizer (STM-
DFE) Algorithm and VLSI Architecture”, IEEE Trans. on Signal Processing, vol 53, No.8, pp.
3325 - 3336, Aug 2005

[43] J T. Lai, A Y. Wu and C H. Lee, “Joint AGC-Equalization Algorithm and VLSI Architecture for
Wirelined Transceiver Designs”, IEEE Trans. on VLSI Systems, vol 15, No. 2, pp: 236-240, Feb
2007

[44] W C. Kan and G E. Sobelman, "High Speed Look-ahead LMS Detector for MIMO Systems," Proc.
IEEE Workshop on Signal Processing Systems, pp. 56-60, 2007

[45] Y L. Chen and A Y. Wu, “Generalized Pipelined Tomlinson–Harashima Precoder Design
Methodology With Build-In Arbitrary Speed-Up Factors”, IEEE Trans. on Signal Processing, vol
58, No.4, pp. 2375-2382, Apr 2010

[46] L Gao, K K. Parhi and J Ma, “Relaxed Annihilation-Reordering Look-ahead QRD-RLS Adaptive
Filters”, Journal of VLSI Signal Processing, vol 35, No. 2, pp. 119-135, 2003

[47] J Ma, K K. Parhi and Ed F. Deprettere, “Annihilation-Reordering Look-ahead Pipelined CORDIC-
Based RLS Adaptive Filters and Their Application to Adaptive Beamforming”, IEEE Transactions
on Signal Processing, vol. 48, No. 8, Aug 2000

[48] J Ma, K K. Parhi and Ed F. Deprettere, “Pipelined CORDIC Based QRD-MVDR Adaptive
Beamforming”, Proc. ICASSP, pp. 3025–3028, Seattle, WA, May 1998

[49] A S. Householder, “Unitary Triangularization of a Nonsymmetric Matrix”, Journal of the ACM
(JACM), vol. 5, No.4, pp.339-342, Oct. 1958

[50] J E. Volder, “The CORDIC Trigonometric Computing Technique”, IRE Trans. Electronic
Computers, vol. 3, pp. 330-334, Sept. 1959

[51] J Walther, “A Unified Algorithm for Elementary Functions”, Joint Computer Conference
Proceedings, vol 38, pp. 379-385, Spring 1971

[52] J. Valls, M. Kuhlmann, and K K. Parhi, “Efficient mapping of CORDIC algorithms on FPGA”,
SiPS 2000: IEEE Workshop on Signal Processing Systems, pages 336–345, 2000

[53] H Y. Hu, “The Quantisation Effects of the CORDIC Algorithm”, IEEE Trans. Signal Process. 40,
1992

[54] R Andraka,“A survey of CORDIC algorithms for FPGA based computers”, Proceedings of the
1998 ACM/SIGDA sixth international symposium on Field Programmable Gate Arrays, pp. 191-
200, Feb. 22-24, 1998

[55] P. K. Meher, J Valls, T. B. Juang, K Sridharan and K Maharatna, “50 Years of CORDIC:

CHAPTER 8 - References 139

Algorithms, Architectures and Applications”, IEEE Trans on Circuits and Systems - I, volume 56,
issue 9, pp. 1893-1907, 2009

[56] R Dohler, “Squared Givens Rotation”, IMA Journal of Numerical Analysis, no. 11, pp. 1-5, 1991
[57] M. Karkooti, J R. Cavallaro and C. Dick, “FPGA Implementation of Matrix Inversion Using QRD-

RLS Algorithm”, 39th Asilomar Conference on Signals, Systems, and Computers, pp. 1625-1629,
Pacific Grove, CA, Oct. 28. 2005 - Nov. 1. 2005

[58] M. Renfors and Y. Neuvo, “The maximum sampling rate of digital filters under hardware speed
constraints,” IEEE Trans. on Circuits and Systems, vol. CAS-28, pp. 196–202, Mar. 1981

[59] A G. Dempster, M D. Macleod, “Constant Integer Multiplication Using Minimum Adders”, IEE
Proceedings on Circuits, Devices and Systems, vol.141, Iss.5, pp. 407-413, Oct 1994

[60] K N. Macpherson, R W. Stewart, “Low FPGA Area Multiplier Blocks for Full Parallel FIR Filters”,
Field-Programmable Technology (FPT), IEEE International Conference on Proceedings, pp. 247-
254, Brisbane, Australia, Dec 6-8. 2004

[61] J Ma, K K. Parhi, G J. Hekstra and Ed F. Deprettere, “Efficient Implementations of Pipelined
CORDIC Based IIR Digital Filters Using Fast Orthonormal -Rotations”, IEEE Trans. on Signal
Processing, vol. 48, No. 9, Sept 2000

[62] K. Maharatna, A Troya, S Banerjee and E Grass, “New Virtually Scaling Free Adaptive CORDIC
Rotator”, IEE Proceedings on Computers and Digital Techniques, vol. 151, Issue 6, pp. 448-456,
Nov 2004

[63] R Q. Zhang, J H. Han, A T. Erdogan and T Arslan, "Low Power CORDIC IP Core Implementation",
ICASSP, May 2006

[64] Y H. Hu, S. Naganathan, “An Angle Recoding Method for CORDIC Algorithm Implementation”,
IEEE Transactions on Computers, vol. 42, No. 1, Jan 1993

[65] T H. Yu, C L. Yu, K Y Jheng and A Y. Wu, “On-Line MSR-CORDIC VLSI Architecture with
Applications to Cost-Efficient Rotation-based Adaptive Filtering Systems,” Proc. IEEE Workshop
on Signal Processing Systems (SiPS-2006), Banff, Canada, pp. 426-431, Oct. 2006

[66] C H. Lin and A Y. Wu, "Mixed-scaling-rotation CORDIC (MSR-CORDIC) Algorithm and
Architecture for High-performance Vector Rotational DSP Applications," IEEE Trans. Circuits
and Systems I, vol 52, no. 11, pp. 2385-2396, Nov. 2005

[67] J. Valls, M. Kuhlmann, and K K. Parhi, “Efficient mapping of CORDIC algorithms on FPGA”,
SiPS 2000: IEEE Workshop on Signal Processing Systems, pages 336–345, 2000

[68] S W. Alexander, E. Pfann and R W. Stewart, “An Improved Algorithm For Assessing The Overall
Quantisation Error In FPGA Based CORDIC Systems Computing A Vector Magnitude”,
Microprocessors and Microsystems Special Issue on FPGA-based Reconfigurable Computing, Jan
2007

[69] Q. Gao, R.W. Stewart, “Coarse Angle Rotation Mode CORDIC Based Single Processing Element
QR-RLS Processor”, 17th European Signal Pricessing Conference (EUSIPCO), Glasgow, Scot-
land, Aug 24 - 28, 2009

[70] G Lightbody, R Woods and R Walke, “Design of a parameterizable Silicon intellectual property
core for QR-based RLS filtering”, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 11, Issue 4, pp. 659-678, Aug. 2003

[71] C Dick, M Trajkovic, S Denic, D Vuletic, R Rao, F Harris and K Amiri, “FPGA Implementation of
a Near-ML Sphere Detector for 802.16e Broadband Wirless Systems”, SDR'09 Technical
Conference and Product Exposition, San Jose, CA, Dec 2009

[72] K. Hooli, M. Juntti, M. J. Heikkila, P. Komulainen, M. Latvaho, and J. Lilleberg, “Chip-Level

CHAPTER 8 - References 140

Channel Equalization in WCDMA Downlink,” EURASIP Journal on Applied Signal Processing,
vol. 2002, no. 8, pp. 757–770, Aug. 2002

[73] L. Gao and K.K. Parhi, "Hierarchical Pipelining and Folding of QRD-RLS Adaptive Filters and Its
Application to Digital Beamforming," IEEE Trans. on Circuits and Systems Part-II: Analog and
Digital Signal Processing, vol. 47, no. 12, pp. 1503-1519, Dec 2000

[74] B Haller, J Gotze, J R Cavallaro, “Efficient implementation of rotation operations for high
performance QRD-RLS”, IEEE International Conference on Application-Specific Systems,
Architectures and Processors, pp. 162-174, 14-16 Jul 1997

[75] A Maltsev, V Pestretsov, R Maslennikov and A Khoryaev, “Triangular Systolic Array with
Reduced Latency for QR-decomposition of Complex Matrices”, IEEE International Symposium on
Circuits and Systems, pp. 4, 2006

[76] J. R. Cavallaro and A C. Elster, “A CORDIC Processor Array for the SVD of a Complex Matrix,”
Elsevier Science Publishers in SVD and Signal Processing II - Algorithms, Analysis and
Applications, pp. 227-239, Amsterdam, 1991

[77] Q. Gao and R. W. Stewart, “Improved Double Angle Complex Rotation QRD-RLS”, 19th ACM/
SIGDA international symposium on Field Programmable Gate Arrays (FPGA’11), pp: 79-82,
Monterey, CA, Feb 21-23, 2010

[78] Xilinx XPower Estimator User Guide, http://www.xilinx.com/support/documentation/user_guides/
ug440.pdf

[79] Altera Inc, “Comparing Altera APEX 20KE & Xilinx Virtex-E Logic Densities”, http://
www.altera.com/products/devices/apex/features/apxcompdensity.html

[80] K. M. Buckley and L. J. Griffith, “An Adaptive Generalized Sidelobe Canceller with Derivative
Constrains”, IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 311-319, March
1986

[81] L. J. Griffith and C. W. Jim, “An Alternative Approach to Linearly Constrained Adaptive
Beamforming”, IEEE Transactions on Antennas and Propagation, vol. 30, no. 1, pp. 27-34, Jan
1982

CHAPTER 8 - Associated Publications 141

Associated Publications

During the course of this PhD research, the following papers were produced :

Q. Gao and R. W. Stewart, "Coarse Angle Rotation Mode CORDIC based Single

Processing Element QR-RLS Processor", 17th EUSIPCO Conference, Glasgow, Aug

24 - 28, 2009

Q. Gao and R. W. Stewart, “Improved Double Angle Complex Rotation QRD-

RLS”, 19th ACM/SIGDA international symposium on Field Programmable Gate

Arrays (FPGA’11), pp: 79-82, Monterey, CA, Feb 21-23, 2010

Q. Gao and R. W. Stewart, “Annihilation-Reordering Look-Ahead Technique for

Complex Givens Rotation based QR-RLS Filter”, Submitted to IEEE Trans on Circuits

and Systems

Q. Gao and R. W. Stewart, “Pipeline-Interleaving CORDIC Complex Arithmetic

for FPGA based QR-RLS Array Processing”, Submitted to IEEE Trans on Computers

