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Abstract

The subject of this thesis includes the design of new partitioning methods for

the approximation of a function f on a domain Ω ⊂ Rd, d ≥ 2, by piecewise

linear functions, and the derivation of errors estimations in Lp-norm and W 1
p -

seminorm. In the two-dimensional setting, we develop a construction of a se-

quence of anisotropic triangulations, where the approximation provided by the

piecewise linear interpolant for a given f ∈ C2(Ω) with a positive definite Hes-

sian, is asymptotically optimal in Lp-norm and in the same time optimal in W 1
p -

seminorm with respect to the number of degrees of freedom. As a preparation for

this result, we review various local error bounds for the interpolation by linear

polynomials on a triangle, and derive a number of new estimates of this type.

In addition, for functions of d ≥ 2 variables, we propose a new approximation

method, where several overlaying partitions of Ω are designed such that the sum

of piecewise constant or piecewise linear polynomials over these partitions pro-

vides a better approximation order than the one obtainable by using a single

partition.
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Chapter 1

Introduction

We are interested in the approximation of a function f ∈ C2(Ω) by using piecewise

polynomials on a fixed bounded domain Ω ⊂ Rd, d ≥ 2. The approximant

f̄ is a piecewise polynomial with respect to a partition ∆ of the domain. As

changing a partition means changing also the approximant, it is only natural to

look for a partition where the approximant matches closely the target function.

To achieve this, the domain needs to be appropriately divided into cells where

local approximations are performed. We leave aside the uniform method where

all cells of the partition have fixed shapes. Instead, we use adaptive methods

where the domain is partitioned by using some properties of the function.

To begin with, we first investigate the two-dimensional case d = 2 (a cell is

then a triangle) where the target function has a strictly positive definite Hessian

on Ω, and the approximant is required to be continuous. Obviously, we shall need

local error analysis in order to obtain a global error estimation. Various local

estimations are available from [1, 9, 13, 22, 23] (see Section 2.2). In Chapter 2,

we review these standard estimates and the concept of an optimal triangle [2,

3, 29, 32] based on an intermediate quadratic polynomial approximation of a

given function. We derive a number of new local error bounds, in particular with

respect to the Sobolev seminorm | · |W 1
p
, making preparations for the design of

triangulations and estimates of Chapter 3.

Our partitioning method in Chapter 3 is inspired from [2, 3, 29, 30] in that

the domain Ω is covered by two classes of triangles, the regular and irregular

2



triangles. Regular triangles are designed by using the spectrum of the Hessian

Hf at some pre-selected points of Ω, and the area covered by the irregular triangles

is negligible. Our first aim consists in developing a triangulation ∆N of at most

N triangles which allows us to estimate both the Lp-norm and W 1
p -seminorm

of the approximation error. Such a triangulation requires a much more delicate

procedure than the ones in [2, 3, 29] where only Lp-norm bounds have been

obtained. The problem of designing optimal triangulation for the derivatives has

been addressed in [30]. In contrast to [30], our triangulation is not only optimal in

W 1
p -seminorm but also asymptotically optimal in Lp-norm which makes it more

difficult to achieve and requires a new approach. Our triangulation differs in the

following respects:

i. all regular triangles are isosceles;

ii. irregular triangles are obtained by drawing diagonals of a certain region

obtained from connecting vertices from a regular region to a neighboring

one;

iii. local W 1
p -seminorm error on all triangles is independent of their maximum

angles.

The approximant f̄ is the continuous piecewise linear polynomial which interpo-

lates f at the vertices of each triangle. With 1 ≤ p < ∞, our estimation for

‖f − f̄‖Lp(Ω) is optimal in the sense that it cannot be improved on the so-called

admissible triangulations, see (1.12), thereby achieving the same asymptotic esti-

mation as in [2, 3, 29]. However, in addition to this estimation, careful checking

of maximum interior angles enables us to estimate the W 1
p -seminorm |f− f̄ |W 1

p (Ω),

see (1.13), which is one of the key results of this thesis.

In addition, in Chapter 4 for any d ≥ 2, we consider discontinuous piecewise

linear approximants. Extending the work in [16], we approximate the target

function f by using a finite number of overlaying partitions (∆k)1≤k≤n. This

is a completely new method. Each partition is anisotropic and is obtained by

splitting Ω using either fixed or non-fixed directions, the latter being related to

3



the properties of the function. Each partition ∆k contributes to the design of the

approximant f̄ which is a sum of piecewise polynomials. The set of overlaying

partitions is denoted by P, with |P| denoting the number of cells in all partitions.

Thus, the total number of degrees of freedom of the sum of piecewise linear is

N = (d+ 1)|P|. Although the approximant is generally discontinuous, there are

two main advantages from using these methods:

a. the improvement of the approximation orders in both Lp-norm and W 1
p -

seminorm;

b. the simplicity of splitting partitions compared to designing a single anisotropic

partition suitable for interpolation by a continuous piecewise linear func-

tion.

The gain in b is self-explanatory, whereas the one in a can be explained by an

example: In the case of approximation by sums of piecewise linear polynomials,

the approximation order O(N−6/(2d+1)) is attained in the Lp-norm estimation,

improving to O(N−6/5) the approximation order O(N−1) (d = 2) for continuous

piecewise linear approximation on a single triangulation with number of degrees

of freedom N . In addition, we attain the order O(N−3/(2d+1)) in the W 1
p -seminorm

estimation, which, for d = 2 gives O(N−3/5) comparing to O(N−1/2) achieved on

a single triangulation.

The main results in the thesis are divided into three chapters. The second

chapter on local linear estimations in R2 addresses the analysis of error estima-

tions on triangles. This chapter is essential in order to understand what kind of

estimations are needed after the triangulation in Chapter 3 is constructed. The

third chapter discusses the construction of anisotropic triangulations, and also

provides the asymptotic estimations in both Lp-norm and W 1
p -seminorm. The

fourth chapter is devoted to the approximation of functions by using sums of

piecewise polynomials. The general overview of these chapters is elaborated in

the sections below.
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1.1 Local linear estimations

Recall in the first setting that we consider a triangulation in two-dimensions, and

the local approximation consists in interpolating the function at the triangles’

vertices. Given a triangle T , the approximant ITf is a linear polynomial whose

coefficients are determined by simple linear systems. To estimate the errors in

Lp-norm and W 1
p -seminorm, one can use standard estimations such as the one

found in [13],

|f − ITf |W k
p (T ) ≤ C

h2
T

ρkT
|f |W 2

p (T ), k = 0, 1, (1.1)

where C is an absolute constant, hT is the diameter of T , and ρT is the radius

of the largest inscribed circle in T . Except in (1.1), we shall henceforth use the

notation ρT for the smallest height of a triangle T . As we shall see in Section 2.2,

alternative estimations can be used when the so-called aspect ratio hT

ρT
is high.

For instance, many triangles in the triangulation constructed in Chapter 3 may

have large aspect ratios which makes the above estimation unusable for k = 1.

We first start with considerable studies of the local approximation of a ho-

mogeneous quadratic polynomials π. The idea consists in using a homogeneous

quadratic polynomial as an intermediate term (see (1.2) below) in order to ap-

proximate a given function. For a given triangle T , we use the measure of non-

degeneracy ρπ(T ) introduced in [31], and obtain local error estimations for the

derivatives, in the longest edge and in the smallest height directions. Considering

a triangle T , the polynomial π is chosen to be the homogeneous quadratic poly-

nomial πz ∈ H2 whose coefficients are the entries of the Hessian matrix Hf(z) of

f ∈ C2(Ω) at the point z, for some z belonging to a neighborhood of T . Assume

that f behaves like πz in the neighborhood of z. Then, instead of using the right

hand side Ch2
T |f |W 2

p (T ) of (1.1) (k = 0) we use the triangular inequality,

‖f − ITf‖Lp(T ) ≤ ‖(f − πz) − IT (f − πz)‖Lp(T ) + ‖πz − ITπz‖Lp(T ), (1.2)

5



and estimate separately the two terms on the right hand side of (1.2). Such a

method is known as the quadratic model [18, 17, 19, 33], justified by the simple

reason that the function behaves locally as a quadratic polynomial given by its

Taylor expansion. First, if the point z belongs to T , we show that

‖(f − πz) − IT (f − πz)‖Lp(T ) ≤ 6h2
T |T | 1

p max
|z′−z′′|≤hT

‖πz′ − πz′′‖, (1.3)

where ‖π‖ denotes the maximum (in absolute value) of the coefficients of π ∈ H2.

For the second term, we introduce the shape function [29] defined by

Kp(π) := inf
|T |=1

‖π − ITπ‖Lp(T ), π ∈ H2. (1.4)

An explicit expression for the shape function can be obtained (see Section 2.4).

A triangle T satisfying (1.4) is called an optimal triangle for π. The shape func-

tion plays a crucial role in the design of the so-called regular triangles described

in Section 3.2.2. Briefly speaking, a regular triangle T is a scaled and shifted

version of some optimal triangle for πt for some t ∈ Ω. Any other triangle of

the triangulation is called an irregular triangle. A regular triangle is a triangle

which is stretched in the directions of the eigenvalues of Hf(t), with stretching

constants proportional to powers of the condition number of Hf (t). For such a

triangle, given z ∈ T , the estimations in (1.3) and (1.4) ensure the existence of a

constant Ct,z,T (see Proposition 2.5.4) so that

‖f − ITf‖Lp(T ) ≤
(
Kp(πz) + Ct,z,T

)
|T |1+ 1

p , (1.5)

and Ct,z,T → 0 as |z− t| → 0 and hT → 0. For the irregular triangles T , a coarse

Lp-norm error bound in terms of hT is sufficient for our purposes.

We estimate also the W 1
p -seminorm of the error. In the literature, some con-

ditions have to be met by the triangle in order to estimate the derivatives of the

error, namely either the minimum angle condition which is referred to as the

Zlámal’s condition [13] or the maximum angle condition [1, 4, 23, 24], and they

often appear in the error bounds. Note that the minimum angle condition implies

6



the maximum angle condition [8], and is not applicable to anisotropic triangles.

In [1], it is shown that for f ∈ W 2
p (T ),

|f − ITf |Lp(T ) .hT |DσhT
f |W 1

p (T ) + ρT |DσρT
f |W 1

p (T ), (1.6)

with constant depending on the maximum interior angle γ(T ), and where σhT

and σρT
are unit vectors associated with the triangle T , both being described in

Figure 2.3. We are interested in the case of positive definite Hessian Hf where

Kp(πz) is attained at some isosceles triangle (see Chapter 3) with maximum angle

satisfying γ(T ) < π
2
.

The estimation in (1.6) provides the first step in estimating the derivatives

of the error (see Proposition 2.5.7) on regular triangles which are designed to be

isosceles in Chapter 3. We cannot do the same for irregular triangles T having an

arbitrary shape with no control of their maximum interior angle γ(T ). Note also

that we cannot use (1.1) for k = 1 since it may cause an overestimation if the

aspect ratio hT

ρT
is unbounded, for example when T is strongly anisotropic. One

of the two methods discussed in Section 2.6 consists in using an invertible affine

map ϕ with its condition number cond(ϕ) bounded and such that the maximum

interior angle γ(ϕ−1(T )) is well-distant from the flat angle. In this case, we show

(see Lemma 2.6.1) that

|f − ITf |W 1
p (T ) . cond(ϕ)2hT |f |W 2

p (T ), (1.7)

where cond(ϕ) denotes the condition number of the invertible matrix associated

with ϕ. The above result is an alternative to (1.6), allowing us to estimate the

derivatives of the approximation error on irregular regions. More reviews on

local estimations can be found in [1, 24]. The second method consists in using

the quadratic polynomial πz for some z ∈ T . If the triangle T has its measure

ρπz(T ) bounded, then (see Proposition 2.6.2)

|f − ITf |W 1
p (T ) ≤ C

(
hT
ρT
ω(hT ) + ρπz(T )

√
| detπz|

)
hT |T | 1

p , (1.8)
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where ω is the modulus of continuity of the function z 7→ πz (see (2.75)). By

an example, we show that the above estimation can be useful instead of ensuring

that γ(T ) is bounded.

1.2 Triangulation and asymptotic estimates

The function f is approximated on a square domain Ω which we triangulate

according to the properties of f , namely by using the eigenvalues and eigenvectors

of the Hessian Hf at some pre-selected points. We assume that f ∈ C2(Ω) with

positive definite Hessian Hf . There are two principal goals for Chapter 3, the

first one is the construction of an optimal triangulation where the interior angles

of the triangles or their certain images are controlled, and the second one the

derivation of asymptotic error in Lp-norm and W 1
p -seminorm by using the results

in Chapter 2.

Given a triangulation ∆N of Ω consisting of at most N triangles, the approx-

imant fN for f is given by

fN =
∑

T∈∆N

ℓTχT , ℓT ∈ Π2, (1.9)

where Π2 denotes the space of linear polynomials, whereas χT is the characteristic

function on the triangle T . Each linear polynomial ℓT = ITf interpolates f at

the vertices of the triangle T ∈ ∆N . The global error is obtained by combining

the errors on each triangle,

‖f − fN‖Lp :=
( ∑

T∈∆N

‖f − ITf‖pLp(T )

) 1
p

. (1.10)

With f − fN viewed as a distribution, we define its Sobolev seminorm by

|f − fN |W 1
p (Ω) :=

( ∑

T∈∆N

|f − ITf |pW 1
p (T )

) 1
p

. (1.11)

It is crucial that Ω is carefully partitioned in order to obtain accurate estima-
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tions in Lp-norm (1.10) and in W 1
p -seminorm (1.11). The domain Ω is initially

divided into m2 sub-squares Si, i = 1, . . . , m2 of side length r > 0. As shown in

Section 3.2.2 and Section 3.2.3, the construction of ∆N is characterized by two

main steps, the establishment of regular regions and the triangulation of irregu-

lar regions. Regular regions are obtained by grouping triangles that fit into the

initially prescribed sub-squares Si, i = 1, . . . , m2, whereas irregular regions are

the left over subspaces of Ω. Similar work can be found in [2, 3, 29] and [30].

The main novelty of our method is a new approach to partitioning the irregular

regions. For each i = 1, . . . , m2, the regular region Ri is defined by two systems

of parallel segments Li and L̄i with directional vectors ei and ēi derived from the

eigenvectors of the Hessian of f at the center of Si. With the specific maneuvers

described in Section 3.2.3, each segment ℓ0 belonging to Li ∪ L̄i is extended into

the neighboring regular regions of Ri, the extension being done in a direction of

either ei or ēi. The procedure of segment extensions creates the irregular and

boundary regions which are polygons of at most six edges. The polygons are then

divided into at most four triangles by drawing diagonals which are described in

Section 3.2.4. Various interesting properties of the resulting triangulation are

given in Section 3.3.

For the approximation of f by using ∆N , with the Hessian Hf being positive

definite, we show in Theorem 3.4.8 of Section 3.4.6 that the resulting Lp-norm

and W 1
p -seminorm of the approximation error satisfy the asymptotic estimates

(1.12) and (1.13) below, with 1
q

:= 1 + 1
p
,

lim sup
N→∞

N‖f − fN‖Lp(Ω) ≤
( ∫

Ω
Kp(πz)

qdz
) 1

q

, (1.12)

lim sup
N→∞

N
1
2 |f − fN |W 1

p (Ω) ≤ Cp|f |
1
2

W 2
p (Ω)

( ∫

Ω
Kp(πz)

qdz
) 1

2q

, (1.13)

where Cp is a constant depending on p only. The estimation (1.12) is optimal

in the sense that it cannot be improved amongst all admissible1 triangulations

as in [2, 3, 29]. However, at the same time fN satisfies (1.13), which cannot be

1∆N is admissible if supT ∈∆N
diam(T ) ≤ CN−1/2, with C independent of N .
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guaranteed on the partitions suggested in [2, 3, 29] because the Delaunay trian-

gulations of the irregular regions employed in these papers may contain triangles

of arbitrary shapes leading to uncontrolled errors in W 1
p -seminorm estimations.

By a different method, a W 1
p -seminorm error bound is obtained in [30] where the

triangulation is designed to be asymptotically optimal for the derivatives but not

for the function, and no error bound for ‖f − fN‖Lp(Ω) is given.

1.3 Sums of piecewise polynomials

For the multi-dimensional setting, a partition ∆ of the square domain Ω ⊂ Rd,

d ≥ 2, consists of convex sub-domains called cells. To approximate a function

f ∈ C(Ω) in Chapter 4, we use several anisotropic partitions instead of one,

though the resulting approximant f̄ is discontinuous. The design of the partitions

in P may or may not depend on the properties of the function.

Consider a function f ∈ C(Ω). Given a system P = {∆(1), . . . ,∆(n)} of several

overlaying partitions of Ω, where each cell of a partition is convex, we consider

the space of sums of piecewise polynomials

Sk(P) =
{ n∑

ν=1

∑

ω∈∆(ν)

qν,ωχω : qν,ω ∈ Πd
k

}
, (1.14)

where Πd
k, k ≥ 1, denotes the space of polynomials of total degree < k in d

variables, and where χω denotes the characteristic function of the cell ω. A

function in Sk(P) is the sum of n piecewise polynomials respectively belonging

to Πd
k. The corresponding best approximation error is measured in Lp-norm

Ek(f,P)p := inf
s∈Sk(P)

‖f − s‖Lp(Ω), 1 ≤ p ≤ ∞.

The cardinality |P| =
n∑

ν=1

|∆(ν)| is the sum of the cardinalities of each partition.
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The best approximation error on a cell ω ∈ ∆ is defined by

Ek(f,∆)p := inf
s∈Sk(∆)

‖f − s‖Lp(Ω). 1 ≤ p ≤ ∞. (1.15)

As the most used inequality in Chapter 4 for our local analysis on ω (see Sec-

tion 4.1), the Bramble-Hilbert lemma for convex domains (see [21]) states that

there is a polynomial q ∈ Πd
k, k ≥ 0, such that

|f − q|W r
p (ω) ≤ ρd,k diamk−r(ω)|f |W k

p (ω), r = 0, . . . , k, (1.16)

where ρd,k denotes a constant depending only on d and k.

Extending the work in [16] on approximations by constants, we design several

partitions of Ω to achieve the estimation below for f ∈ W 2
p (Ω),

E1(f,P)p ≤ Cd|P|−2/(d+1)(|f |W 1
p (Ω) + |f |W 2

p (Ω)), (1.17)

where Cd is a constant depending only on d, improving the saturation order

Ek(f,∆)p = O(|∆|−k/d) which is obtainable on an isotropic single partition. Our

extension to approximation by sums of linear polynomials yields that, for f ∈
W 3
p (Ω), there is a function s ∈ S2(P) so that

‖f − s‖Lp(Ω) ≤ C1|P|−6/(2d+1)(|f |W 2
p (Ω) + |f |W 3

p (Ω)), (1.18)

|f − s|W 1
p (Ω) ≤ C2|P|−3/(2d+1)(|f |W 2

p (Ω) + |f |W 3
p (Ω)), (1.19)

where C1, C2 are absolute constants.

1.4 Various notations

Given a triangle T , its diameter and smallest height are denoted by hT and ρT .

They are called the length scales of T . While confusion does not occur, we simply

use h and ρ. The area of T is denoted by |T |. The triangle T is termed isotropic

11



if there exists a constant C such that h
ρ

≤ C. The ratio h
ρ

is called the aspect

ratio of T . otherwise it is termed anisotropic. In general, an isotropic triangle is

a triangle whose edges are all comparable in length, or a triangle whose interior

angles are not too small nor too large. Anisotropic triangles on the other hand

are characterized by long diameters and small heights, presenting one or two very

small interior angles.

A triangulation ∆ of a bounded domain Ω ⊂ R2 is a partition of Ω into

triangles where the intersection of any two of them is either an empty set, a

common vertex or a common edge. It satisfies the maximum angle condition (see

[1]) if there exists an angle γ∗ < π such that γ(T ) ≤ γ∗ for any triangle T ∈ ∆,

with γ(T ) denoting the maximum interior angle of T . It satisfies the minimum

angle condition if there is an angle α∗ > 0 such that α(T ) ≥ α∗ for any triangle

T ∈ ∆, with α(T ) denoting the minimum interior angle of T . We say that ∆

is isotropic if all of its triangles are isotropic, i.e. satisfy the minimum angle

condition, otherwise it is an anisotropic triangulation, i.e. if ∆ presents some

triangles which are anisotropic.

Given a matrix A, we denote by φA the associated linear map. We say that

φA is invertible if A is a non-degenerate matrix. The singular values of φA are

those of A, and its condition number is defined by

cond(φA) := cond(A).

A partition ∆ of Ω is a set of cells ω ⊂ Ω possessing the two properties:

i. For every ω, ω′ ∈ ∆, |ω ∩ ω′| = 0 if ω 6= ω′;

iii.
∑
ω∈∆ |ω| = |Ω|,

where |ω| denotes the Lebesgue measure (d-dimensional volume) of ω (for d = 2,

the partition is a triangulation). A partition is said to be convex if each cell

ω is a convex domain. With a slight abuse of notation, we denote by |D| the

cardinality of a finite set D, so that |∆| stands for the number of cells ω in ∆.
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The approximant f̄ is the piecewise polynomial given by

f̄ =
∑

ω∈∆

fωχω, (1.20)

where fω is a polynomial which approximates f on the cell ω, and χω the char-

acteristic function of ω, with χω(x) = 1 if x ∈ ω and 0 otherwise.

Given two numbers a, b ∈ R, the notation a . b is used if there exists a

constant C independent of a, b such that a ≤ Cb. The notation a ∼ b is used

when there are two constants C1 and C2 such that C1b ≤ a ≤ C2b.

We denote by Dxf , Dyf the partial derivatives of f , and by Dσf the derivative

of f in the direction of a unit vector σ. We also use double indices for the second

order partial derivatives: D2
xx := D2

x, D
2
xy := DxDy, D

2
σσ := D2

σ, D2
στ := DσDτ ,

etc., where both σ and τ are unit vectors.

Given two real sequences (x1, . . . , xn), (y1, . . . , yn), n ∈ N, the Hölder inequal-

ity states that, for p, q ∈ [1,∞) such that 1
p

+ 1
q

= 1, we have

n∑

k=1

|xkyk| ≤
( n∑

k=1

|xk|p
) 1

p
( n∑

k=1

|yk|q
) 1

q

. (1.21)

The Euclidean norm of ∇f on a bounded convex domain ω is defined by

‖∇‖Lp(ω) :=
∣∣∣∣
∣∣∣∣
( d∑

k=1

∣∣∣∣
∂f

∂xk

∣∣∣∣
2) 1

2
∣∣∣∣
∣∣∣∣
Lp(ω)

. (1.22)

It has been shown in [16] that, for any 1 ≤ p ≤ ∞,

‖∇f‖Lp(ω) ≤ |f |W 1
p (ω) ≤ dmax{ 1

2
,1− 1

p
}‖∇f‖Lp(ω). (1.23)
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Chapter 2

Local linear approximations

In this chapter, we analyze local interpolation errors on triangles in both Lp-norm

and W 1
p -seminorm. Apart from the standard estimations found in the literature,

which we discuss hereafter, we also provide estimations based on the minimization

of errors on unit triangles. The results in this chapter are the principal sources of

estimations for Chapter 3 where we approximate a given function f ∈ C2(Ω) on

a constructed triangulation ∆N of Ω. Indeed, it is necessary to bound the error

on each triangle T ∈ ∆N by investigating their properties.

We start by studying the local estimations for homogeneous quadratic poly-

nomial approximations which we use as intermediate steps in order to estimate

the local error when approximating the function f . Such a method can be found

in [2, 3, 29] where the function is assumed to behave locally as a quadratic poly-

nomial. A general review of local estimations is provided below, however as we

shall see later, standard estimates are difficult to apply especially in the case of

W 1
p -seminorm estimations where the aspect ratio hT

ρT
may be unbounded, or when

the maximum interior angle γ(T ) is nearly the flat angle. We thus need some

other approaches in order to estimate the derivatives of the approximation error.

In Section 2.1 we provide a general review of homogeneous quadratic polyno-

mials and local approximations on triangles. Similarly, in Section 2.2 we review

standard local estimations from the literature. In Section 2.3 we study the local

approximations of quadratic polynomials by using a reference triangle. In par-

ticular, in Section 2.3.3, we obtain new results on the bounds for the directional
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derivatives of the local errors. Following the argument in [29], we introduce in

Section 2.4 the concept of optimal triangles and discuss in Section 2.5 various

local estimations on nearly optimal triangles designed according to the behavior

of the Hessian Hf at some specific points. In Section 2.6 we present two methods

in order to estimate the derivatives of the error on non-optimal triangles.

2.1 Preliminaries and notations

In this section, we present the basic yet important steps in order to obtain the

estimations of this and next chapters. We use [x y]t to denote a column vector

where the superscript t denotes the transpose operator. We denote by [v1 v2] a

matrix whose column-vectors are v1 and v2.

2.1.1 On homogeneous quadratic polynomials

We will often denote by π a homogeneous quadratic polynomial π(x, y) = ax2 +

2bxy + cy2, with a, b, c ∈ R, which can be represented by the symmetric matrix

Qπ :=
[
a b

b c

]
for which (2.1) below holds, for all x, y ∈ R,

π(x, y) = [x y]Qπ [x y]t = [x y]Uπ

[
λ1 0

0 λ2

]
U t
π[x y]t. (2.1)

The right hand side of (2.1) can be viewed as the Schur decomposition of Qπ,

with λ1, λ2 being the eigenvalues and Uπ denoting the orthonormal matrix whose

columns are the unit eigenvectors v1,v2 of Qπ corresponding to λ1, λ2, respec-

tively. When π is convex, both eigenvalues λ1, λ2 of Qπ are positive, whereas

when π is concave λ1, λ2 are negative. Note that (2.1) remains true when switch-

ing the positions of λ1 and λ2 and accordingly the positions of v1 and v2 since,
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by writing Uπ = [v1 v2] =
[
α β

γ δ

]
where α, β, γ, δ ∈ R, we have

[v1 v2]
[
λ1 0

0 λ2

]
[v1 v2]

t =



λ1α

2 + λ2β
2 λ1αγ + λ2βδ

λ1αγ + λ2βδ λ1γ
2 + λ2δ

2


 = [v2 v1]

[
λ2 0

0 λ1

]
[v2 v1]t.

Moreover, v1 and v2 are orthogonal to each other, v1 can be replaced by −v1

and v2 by −v2. Hence, without loss of generality, we assume that

|λ1| ≤ |λ2| and Uπ = Rµ :=
[
cosµ − sin µ

sin µ cosµ

]
, (2.2)

that is, Uπ is the rotation matrix Rµ with angle µ = µ(π) which is the smallest

possible angle of counterclockwise rotation that transforms the coordinate unit

vectors [1 0]t and [0 1]t into v1,v2, respectively. Note that µ is then the smallest

between the non-negative angle from [1 0]t to v1 and that from [1 0]t to −v1,

as shown in Figure 2.1, and necessarily µ ∈ [0, π). For example, µ = 0 for the

polynomial π0(x, y) = x2 + y2.

µ

µ
µ+ π

µ+ π

−v1

−v1

−v2

−v2

v1

v1

v2

v2

xx

yy

Figure 2.1: Positions of the eigenvectors of Qπ and choice of µ.

2.1.2 Norms on the space H2

The determinant and condition number of π ∈ H2 are defined by det π :=

detQπ = λ1λ2 and cond π := condQπ = |λ2/λ1|, with λ1, λ2 as described in the

previous section. We say that π is degenerate if det π = 0, and non-degenerate
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otherwise. The function π 7→ ‖π‖2 := ‖Qπ‖2 = |λ2| is a norm over the linear space

H2 of homogeneous quadratic polynomials since it is induced by the Euclidean

vector norm ‖ · ‖2. Also, writing π(x, y) = ax2 + 2bxy + cy2,

‖π‖ = max{|a|, |2b|, |c|} (2.3)

is an easily proved norm on H2. Simple computations show that the eigenval-

ues of Qπ are exactly
a+c±

√
(a−c)2+4b2

2
. If a, c have the same sign, then clearly

max{|a|, |2b|, |c|} ≤ max{|a + c −
√

(a− c)2 + 4b2|, |a + c +
√

(a− c)2 + 4b2|}
whereas if they have different signs, then max{|a|, |2b|, |c|} ≤

√
(a− c)2 + 4b2

holds. Thus

1

2
‖π‖ ≤ ‖Qπ‖2 ≤ 3

2
‖π‖, (2.4)

holds, where the second inequality is obtained as follows: The constant in the

equivalence is obtained by maximizing g(a, 2b, c) :=
|a+c±

√
(a−c)2+4b2|
2

for |a|, |2b|, |c| ≤
1. Clearly g is an increasing function of each of its variables, hence the maximum

is attained when a = c = 1 and 2b = 1, with maximum 3
2
. The inequality below

is also easily proved for any triangle T containing the origin,

‖π‖Lp(T ) ≤ 3h2
T |T | 1

p ‖π‖. (2.5)

Given a fixed triangle T and e = (xe, ye) an edge of T , we denote π(e) :=

π(xe, ye). Then the function

π 7→ ‖π‖T := |T | 1
p max{|π(e)| : e edge of T}, (2.6)

is also a norm over the space of quadratic polynomials: To see this, we verify the

axioms of a norm. For any α ∈ R and any quadratic polynomials π, π′, we have

the following.

a. ‖π‖T ≥ 0 and ‖π‖T = 0 if and only if π ≡ 0: it is clear that ‖π‖T ≥ 0 and

if π ≡ 0, then ‖π‖T = 0. If π(e) = 0 for any edge e of T , then π vanishes
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at three distinct points. Since π is quadratic, necessarily π ≡ 0;

b. it is easy to see that

‖απ‖T = |α||T | 1
p max{|π(e)| : e edge of T} = |α|‖π‖T ;

c. we have that

‖π + π′‖T = |T | 1
p max{|(π + π′)(e)| : e edge of T}

≤ |T | 1
p max{|π(e)| + |π′(e)| : e edge of T}

≤ |T | 1
p

(
max{|π(e)| : e edge of T} + max{|π′(e)| : e edge of T}

)

= ‖π‖T + ‖π′‖T .

We have the result below.

Lemma 2.1.1 ([31, Proposition 2.1]). There exist absolute constants c1 and c2

such that, for any homogeneous quadratic polynomial π and a triangle T ,

c1‖π‖T ≤ ‖π‖Lp(T ) ≤ c2‖π‖T , (2.7)

where ‖ · ‖T is defined in (2.6) and c1, c2 are absolute constants.

2.1.3 Reference triangle

Henceforth, the triangles that we consider are always non-degenerate, i.e non-

empty and with a non-zero area. Given a triangle T , its edges are oriented in a

counterclockwise direction. We denote by σhT
the unit vector on the longest edge

of T and σρT
the corresponding inner normal, they are as shown in Figure 2.3.

Let us fix the triangle T̂ to have the vertices (0, 0), (1, 0), (1
2
, 1) as shown on

the left of Figure 2.2. We shall refer T̂ as to the reference triangle, its area is 1
2

and its length scales are given by ĥ =
√

1 + 1
4

=
√

5
2

and ρ̂ = 2 |T̂ |
ĥ

= 2
√

5
5

. For any
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arbitrary triangle T there exists an invertible affine map ψ such that

T = ψ(T̂ ), ψ(x̂) := M x̂ + t, x̂ ∈ T̂ , (2.8)

where M is a non-singular matrix and t a translation vector. Let the vectors

σ̂ = [1 0]t, τ̂ = [ 1
2

− δ
h

1]t be fixed, with δ ∈ [0, h] depending only on T as shown

on the right of Figure 2.2. We can decompose M by means of

M = RθBT , BT :=
[
h δ − h

2

0 ρ

]
, (2.9)

where Rθ is a counterclockwise rotation matrix with angle θ ∈ [0, 2π) as shown

in Figure 2.3. Then BT σ̂ = [h 0]t and BT τ̂ = [0 ρ]t. Observe that BT (T̂ ), as

shown on the right of Figure 2.2, is obtained by rotating T in such a way that

the longest edge becomes parallel to the x-axis, then shifting the rotated triangle

to the first quadrant of the plane such that one of its vertices coincides with the

origin. Necessarily, the longest edge of the resulting triangle lies on the x-axis.

Moreover, since |Mσ̂| = |Rθ[h 0]t| = h and |M τ̂ | = |Rθ[0 ρ]
t| = ρ, it holds that

Mσ̂

|Mσ̂| =
Rθ[h 0]t

h
= σh and

M τ̂

|M τ̂ | =
Rθ[0 ρ]

t

ρ
= σρ. (2.10)

yy

xx0 0

1

11
2

T̂

δ h

ρ
BT (T̂ )

Figure 2.2: The triangle T̂ and its image BT (T̂ ).

Remark 2.1.1. In Figure 2.2, the triangle T̂ can be represented by the vectors

[1 0]t and [ 1
2

1]t whose images under BT may represent the triangle BT (T̂ ), with

BT [1 0]t = [h 0]t and BT [ 1
2

1]t = [δ ρ]t,
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justifying the choice of BT in (2.9).

σρ

σρ

σρ

σρ

σh

σh

σh

σh

x

x

x

x

θ

θ

θ

θ

Figure 2.3: Several possible positions of the triangle T , the unit vector σh and
σρ, and the angle of rotation θ in (2.9).

Remark 2.1.2. In Figure 2.3 the edges of T are counterclockwise oriented, and

from the definitions of σρ and σh on page 18, we see that σρ is obtained from

σh by a counterclockwise rotation of angle π
2
.

2.1.4 Local approximations on triangles

We shall now start estimating the local approximation error on a given triangle

T . Let IT denote the linear polynomial interpolation operator on T so that

IT : f ∈ C(T ) 7→ ITf := IT (f) ∈ C(T ),

where (ITf)(v) = f(v) for any vertex v of T . Given an invertible affine map ψ,

the vertices of the triangle ψ(T ) are the images of the vertices of T . This means

that, for any vertex v of T , v′ = ψ(v) is a vertex of ψ(T ), and therefore IT and ψ

are commutative in the following sense,

(Iψ(T )f) ◦ ψ(v) = (Iψ(T )f)(v′) = f(v′) = f ◦ ψ(v) = IT (f ◦ ψ)(v). (2.11)
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It follows that (Iψ(T )f)◦ψ and IT (f ◦ψ) coincide at three vertices of T , and since

both are linear polynomials, they are necessarily the same function, that is,

IT (f ◦ ψ)(z) = (Iψ(T )f) ◦ ψ(z), z ∈ R. (2.12)

Considering a homogeneous quadratic polynomial π, the norm ‖ITπ‖L∞(T ) is at-

tained at one of the vertices of the triangle T since ITπ defines a plane. Recalling

that ITπ interpolates π at the vertices of T , clearly

‖ITπ‖L∞(T ) ≤ ‖π‖L∞(T ),

which shows that the norm of the operator IT is one independently of T . We

thus obtain

‖ITπ‖Lp(T ) ≤ |T | 1
p ‖ITπ‖L∞(T ) ≤ |T | 1

p ‖π‖L∞(T ). (2.13)

We denote by eT (f) the Lp-norm of the error on T , with 1 ≤ p ≤ ∞,

eT (f) := ‖f − ITf‖Lp(T ). (2.14)

The result below is inspired from some proof of the results in [29]. However,

thanks to (2.5) we are able to provide a more detailed expression of the terms in

the right hand side of (2.15).

Lemma 2.1.2. There exists a constant C depending only on p such that, for any

homogeneous quadratic polynomials π, π′ ∈ H2 and any triangle T possessing a

vertex at the origin,

|eT (π) − eT (π′)| ≤ Ch2
T |T | 1

p ‖π − π′‖, (2.15)

where the norm ‖ · ‖ is defined in (2.3).

Proof. With the triangle T fixed, it is easy to prove that the function π 7→
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eT (π) defines a norm on H2. It is only a seminorm on the space of all quadratic

polynomials. Hence, by considering the fixed reference triangle T̂ on the left of

Figure 2.2, the existence of a constant C depending only on p is guaranteed by

the equivalence of the norms ‖ · ‖Lp(T̂ ) and eT̂ on H2, that is,

eT̂ (π) ≤ C‖π‖Lp(T̂ ), π ∈ H2. (2.16)

We show that the constant C above remains absolute for the triangle T : Consider

the affine map ψ for which T = ψ(T̂ ) holds, where ψ is given in (2.8). By simple

change of variables, clearly

eT (π) =
( ∫

T̂
| detM ||π ◦ ψ(z) − (ITπ) ◦ ψ(z)|p dz

) 1
p

= | detM | 1
p eT̂ (π ◦ ψ),

where M is the invertible matrix occurring in (2.8), with |T | = | detM ||T̂ | =

1
2
| detM |. Since T has a vertex at the origin, the map ψ is designed so that its

translation vector is null, t = 0: With the vertices of T being (0, 0), (x1, y1), (x2, y2) ∈
R2, ψ is the linear map associated with the matrix M that maps (0, 0) to itself,

(1, 0) to (x1, y1) and (1
2
, 1) to (x2, y2), more precisely M =

[
x1 x2 − x1/2

y1 y2 − y1/2

]
. The

fact that π is a homogeneous quadratic polynomial and ψ a linear map proves

that π ◦ ψ ∈ H2. We deduce from (2.16) that eT̂ (π ◦ ψ) ≤ C‖π ◦ ψ‖Lp(T̂ ). Thus

eT (π) ≤ C(2|T |) 1
p ‖π ◦ ψ‖Lp(T̂ ) = C‖π‖Lp(T ), (2.17)

with C being the absolute constant in (2.16). For any homogeneous quadratic

polynomial π′ ∈ H2, we use the triangular inequality to obtain

eT (π) = ‖(π′ − ITπ
′) + (π − π′) − IT (π − π′)‖Lp(T )

≤ eT (π′) + eT (π − π′),

which, together with (2.17), yields

|eT (π) − eT (π′)| ≤ eT (π − π′) ≤ C‖π − π′‖Lp(T ),
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proving that eT is Lipschitz. Combining the above result with (2.5) yields the

desired result.

The estimation in the above lemma will be used at a later stage in Chapter 3

when estimating the error bounds on the so-called regular triangles.

2.2 Standard estimations

In this section, standard estimations are provided which are of great use for the

rest of this thesis, namely in Section 2.5-2.6, as well as in Section 3.4 of Chapter 3.

Let T̂ be the reference triangle shown on the left of Figure 2.2, and T be an

arbitrary triangle such that T = ψ(T̂ ), where ψ is the invertible affine map as in

(2.8). Recall that h and ρ are respectively the diameter and smallest height of

the triangle T .

Lemma 2.2.1 ([13, Theorem 3.1.5]). There exists a constant C such that, for

all functions v ∈ W 2
p (T ), the error v − ITv satisfies

|v − ITv|Wm
p (T ) ≤ C

h2

ρm
|v|W 2

p (T ), m = 0, 1. (2.18)

For m = 0, the error bound Ch2|v|W 2
p (T ) on the right hand side of (2.18) is

commonly used when approximating v on either isotropic or anisotropic triangles.

In the simple case where v is a quadratic polynomial of the form v(x, y) = ax2 +

by2, with a, b ∈ R, the fact that

|v|W 2
p (T ) =

( ∫

T

(
|D2

xxv(z)|p + 2|D2
xyv(z)|p + |D2

yyv(z)|p
)
dz

) 1
p

= 2|T | 1
p (|a|p + |b|p) 1

p

≤ 2|T | 1
p (|a| + |b|),

implies that the error satisfies ‖v − ITv‖Lp(T ) ≤ Ch2
T |T | 1

p (|a| + |b|). For m = 1,

the error bound C h2

ρ
|v|W 2

p (T ) on the right hand side of (2.18) may be coarse when
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the aspect ratio h
ρ

is not controlled. In (2.20) below, an alternative (sharper)

bound is given subject to the condition that the interior angles of T are far from

π. The constant in the estimation depends on the maximum interior angle γ(T ),

though the dependency of that constant to γ(T ) is unknown.

Lemma 2.2.2 ([1, Theorem 5.5]). For all functions v ∈ W 2
p (T ),

‖v − ITv‖Lp(T ) .h
2‖D2

σhσh
v‖Lp(T ) + hρ‖D2

σhσρ
v‖Lp(T ) + ρ2‖D2

σρσρ
v‖Lp(T ),

(2.19)

|v − ITv|W 1
p (T ) .h|Dσh

v|W 1
p (T ) + ρ|Dσρv|W 1

p (T ), (2.20)

with the constant in the inequalities depending only on γ(T ), and where σh and

σρ are defined on page 18.

Note that in the above estimations, the constants do not depend on p since

p = q in the settings of [1].

As we have already mentioned in the introduction (see (1.6)), the right hand

side of (2.19) is a better estimation compared to (2.18) for m = 0, however the

latter can remain advantageous since the dependency on γ(T ) of the constants

in Lemma 2.2.2 is unknown. The estimation in (2.20) is widely used in order to

estimate the derivatives of the error on a strongly anisotropic triangle, that is,

when h
ρ

is large. It can be re-written as follow,

|v − ITv|W 1
p (T ) .h‖D2

σhσh
v‖Lp(T ) + h‖D2

σρσh
v‖Lp(T ) + ρ‖Dσρσρ

v‖Lp(T ). (2.21)

For p = 2, an improvement of (2.18) is provided in Lemma 2.2.3 below where

the estimation is independent of the maximum interior angle of the triangle.

Let M denote the matrix occurring in the map ψ in (2.8) for which T = ψ(T̂ ).

We can write the matrix M into its polar form

M = BU, B = [r1 r2]
[
ν1 0

0 ν2

]
[r1 r2]t, (2.22)

24



where U is orthonormal and B a symmetric positive definite matrix whose eigen-

values and eigenvectors are respectively ν1 ≥ ν2 ≥ 0 and r1, r2.

The result below is proved in [23] (see also [10] for a similar method) for p = 2.

Lemma 2.2.3 ([23, Proposition 2.1]). There is a constant C such that, for all

functions v ∈ W 2
2 (T ), the estimations

‖v − ITv‖L2(T ) ≤C
(
ν4

1

(
|rt1|Nv|r1|

)2
+ ν4

2

(
|rt2|Nv|r2|

)2
+ 2ν2

1ν
2
2

(
|rt1|Nv|r2|

)2
) 1

2

,

|v − ITv|W 1
2 (T ) ≤Cν2

(
ν4

1

ν4
2

(
|rt1|Nv|r1|

)2
+

(
|rt2|Nv|r2|

)2
+ 2

ν2
1

ν2
2

(
|rt1|Nv|r2|

)2
) 1

2

,

hold, where νi and |ri| =
∣∣∣[ri1 ri2]t

∣∣∣ =
[
|ri1| |ri2|

]t
, i = 1, 2, are defined as in (2.22)

and Nv =




‖D2
xxv‖L2(T ) ‖D2

xyv‖L2(T )

‖D2
xyv‖L2(T ) ‖D2

yyv‖L2(T )


.

To compare the results of Lemma 2.2.2 and Lemma 2.2.3, we provide esti-

mations involving the eigenvalues and eigenvectors of the matrix B occurring in

(2.22). The estimations in Lemma 2.2.3, however, are not invariant with respect

to the coordinate system which means that we obtain different formulas when

replacing ri by Rϑri, i = 1, 2, with Rϑ being a counterclockwise rotation of angle

ϑ.

The eigenvalues ν1 and ν2 can be expressed by using the diameter h and

smallest height ρ of T . Consider the singular value decomposition BT = U0SV
t

0

of the matrixBT occurring in (2.9), where U0 and V0 are orthonormal matrices and

S a diagonal matrix. The column vectors of U0 are the normalized eigenvectors

of the matrix BTB
t
T given by

BTB
t
T =


h δ − h/2

0 ρ





 h 0

δ − h/2 ρ


 =


h

2 + (δ − h/2)2 ρ(δ − h/2)

ρ(δ − h/2) ρ2


 ,

whose characteristic polynomial P (Λ) in the variable Λ satisfies

P (Λ) =(h2 + (δ − h/2)2 − Λ)(ρ2 − Λ) − ρ2(δ − h/2)2,

=Λ2 − (h2 + ρ2 + (δ − h/2)2)Λ + ρ2h2. (2.23)
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With ∆ = (h2 + ρ2 + µ2
h)

2 − 4ρ2h2 ≤ 13h4 where µh = δ − h/2, the eigenvalues

Λ1,Λ2 are the solutions to P (Λ) = 0, with

Λ1 =
h2 + ρ2 + µ2

h +
√

∆

2
, (2.24)

Λ2 =
h2 + ρ2 + µ2

h −
√

∆

2
. (2.25)

Then, the singular values of B are exactly given by ν1 =
√

Λ1, ν2 =
√

Λ2, whereas

the corresponding eigenvectors v1 = [x1 y1]
t and v2 = [x2 y2]

t satisfy


h

2 + µ2
h − Λi ρµh

ρµh ρ2 − Λi


 [xi yi]

t = 0, i = 1, 2,

or, equivalently, (h2 + µ2
h − Λi)xi + ρµhyi = 0. After choosing x1 = x2 = 1,

y1 = −h2 + µ2
h − Λ1

ρµh
x1 =

ρ2 − h2 − µ2
h +

√
∆

2ρµh
,

y2 = −h2 + µ2
h − Λ2

ρµh
x2 =

ρ2 − h2 − µ2
h −

√
∆

2ρµh
.

In the case where the triangle T is isosceles such that its largest interior angle

is formed by its two edges of the same length, we have δ = h/2 which leads to

simpler expressions for the values of ν1, ν2 and their corresponding eigenvectors

v1,v2. Indeed, we have ν1 = h, ν2 = ρ but also BT =
[
h 0

0 ρ

]
. Thus from (2.9),

we have

M =
(
RθBTR

t
θ

)
Rθ =

(
Rθ

[
h 0

0 ρ

]
Rt
θ

)
Rθ, (2.26)

for some angle θ. Since the polar decomposition is unique, by identifying the ma-

trices in (2.26) with those in (2.22), we find that [r1 r2] = Rθ =


cos θ − sin θ

sin θ cos θ


.

We thus obtain the following expressions:

|rt1|Nv|r1| = [| cos θ| | sin θ|]Nv


| cos θ|

| sin θ|




=| cos θ|2‖D2
xxv‖L2(T ) + 2| sin θ cos θ|‖D2

xyv‖L2(T ) + | sin θ|2‖D2
yyv‖L2(T );
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|rt2|Nv|r2| = [sin θ| | cos θ|]Nv


| sin θ|
| cos θ|




=| sin θ|2‖D2
xxv‖L2(T ) + 2| sin θ cos θ|‖D2

xyv‖L2(T ) + | cos θ|2‖D2
yyv‖L2(T );

|rt1|Nv|r2| =[| cos θ| | sin θ|]Nv


| sin θ|

| cos θ|




=| sin θ cos θ|
(
‖D2

xxv‖L2(T ) + ‖D2
yyv‖L2(T )

)
+ ‖D2

xyv‖L2(T ).

Substituting the expressions of |rt1|Nv|r1|, |rt2|Nv|r2| and |rt1|Nv|r2| into the first

estimation in Lemma 2.2.3, we find that

‖v − ITv‖L2(T ) ≤ C
(
ν2

1 |rt1|Nv|r1| + ν2
2 |rt2|Nv|r2| + 2ν1ν2|rt1|Nv|r2|

)

=C
((
h2| cos θ|2 + ρ2| sin θ|2 + 2hρ| sin θ cos θ|

)
‖D2

xxv‖L2(T )

+ 2
(
(h2 + ρ2)| sin θ cos θ| + ρh

)
‖D2

xyv‖L2(T )

+
(
h2| sin θ|2 + ρ2| cos θ|2 + 2hρ| sin θ cos θ|

)
‖D2

yyv‖L2(T )

)

=C
((
h| cos θ| + ρ| sin θ|

)2‖D2
xxv‖L2(T )

+ 2
(
h| cos θ| + ρ| sin θ|

)(
h| sin θ| + ρ| cos θ|

)
‖D2

xyv‖L2(T )

+
(
h| sin θ| + ρ| cos θ|

)2‖D2
yyv‖L2(T )

)
. (2.27)

In a similar way, the second estimation in Lemma 2.2.3 reads

|v − ITv|W 1
2 (T ) ≤ Cν2

(
ν2

1

ν2
2

|rt1|Nv|r1| + |rt2|Nv|r2| + 2
ν1

ν2
|rt1|Nv|r2|

)

=Cρ
((

h2

ρ2
| cos θ|2 + | sin θ|2 + 2

h

ρ
| sin θ cos θ|

)
‖D2

xxv‖L2(T )

+ 2
((h2

ρ2
+ 1

)
+
h

ρ

)
‖D2

xyv‖L2(T )

+
(
h2

ρ2
| sin θ|2 + | cos θ|2 + 2

h

ρ
| sin θ cos θ|

)
‖D2

yyv‖L2(T )

)

27



=
C

ρ

((
h| cos θ| + ρ| sin θ|

)2‖D2
xxv‖L2(T )

+ 2
(
h| cos θ| + ρ| sin θ|

)(
h| sin θ| + ρ| cos θ|

)
‖D2

xyv‖L2(T )

+
(
h| sin θ| + ρ| cos θ|

)2‖D2
yyv‖L2(T )

)
. (2.28)

We then have the following result for isosceles triangles.

Corollary 2.2.4. For any isosceles triangles T whose maximum interior an-

gle γ(T ) is the angle between the two edges of equal length, the estimations

in Lemma 2.2.3 read, there exists a constant C such that, for all functions

v ∈ W 2
p (T ),

‖v − ITv‖L2(T )

≤ C
(
β2

1,T‖(cos θ)2D2
σhσh

v + 2 cos θ sin θD2
σhσρ

v + (sin θ)2D2
σρσρ

v‖L2(T )

+ 2β1,Tβ2,T‖ sin θ cos θ(D2
σhσh

v −D2
σρσρ

v) + (cos 2θ)D2
σhσρ

v‖L2(T )

+ β2
2,T‖(sin θ)2D2

σhσh
v − 2 cos θ sin θD2

σhσρ
v + (cos θ)2D2

σρσρ
v‖L2(T )

)
; (2.29)

|v − ITv|W 1
2 (T )

≤ C

ρ

(
β2

1,T‖(cos θ)2D2
σhσh

v + 2 cos θ sin θD2
σhσρ

v + (sin θ)2D2
σρσρ

v‖L2(T )

+ 2β1,Tβ2,T‖ sin θ cos θ(D2
σhσh

v −D2
σρσρ

v) + (cos 2θ)D2
σhσρ

v‖L2(T )

+ β2
2,T‖(sin θ)2D2

σhσh
v − 2 cos θ sin θD2

σhσρ
v + (cos θ)2D2

σρσρ
v‖L2(T )

)
, (2.30)

where β1,T := h| cos θ| +ρ| sin θ|, β2,T := h| sin θ| +ρ| cos θ|, with θ being the angle

of rotation of Rθ in (2.26).

Proof. Since Dxv = cos θDσh
v + sin θDσρv and Dyv = − sin θDσh

v + cos θDσρv,

with θ being the angle of rotation of Rθ in (2.26), we easily prove that

D2
xxv = (cos θ)2D2

σhσh
v + 2 cos θ sin θD2

σhσρ
v + (sin θ)2D2

σρσρ
v,

D2
xyv = sin θ cos θ(D2

σhσh
v −D2

σρσρ
v) + (cos 2θ)D2

σhσρ
v,

D2
yyv = (sin θ)2D2

σhσh
v − 2 cos θ sin θD2

σhσρ
v + (cos θ)2D2

σρσρ
v.
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The result is proved by combining the above with (2.27) and (2.28).

As discussed in [23, Section 2.1], while using the estimation (2.30), the ratio

actual error

estimated error
,

can be bounded in such a way that the maximum angle condition on T is not

required. As a result, (2.30) may suffer from an over-estimation as compared to

(2.20). In particular, given an isosceles triangle T whose maximum interior angle

is formed by its two edges of the same length, and such that its longest edge is

chosen to be on the x-axis, that is θ = 0, we have β1,T = h and β2,T = ρ. Hence

from (2.30),

|v − ITv|W 1
2 (T ) ≤ C

ρ

(
h2‖D2

σhσh
v‖L2(T ) + 2hρ‖D2

σhσρ
v‖L2(T ) + ρ2‖D2

σρσρ
v‖L2(T )

)
,

(2.31)

which, unless using an additional assumption such as

‖D2
σhσh

v‖L2(T ) = ‖D2
xxv‖L2(T ) = 0,

is an over-estimation as compared to (2.20), for p = 2, due to the additional

factor h
ρ

of ‖D2
hhv‖L2(T ). Note that for isosceles triangles T whose interior angle

γ(T ) is defined by its two edges which have the same length, the tangent of γ(T )

is comparable to the aspect ratio h
ρ
, more precisely, tan(γ(T )/2) = h

2ρ
. Since

Lemma 2.2.2 does not specify how the constants depend on γ(T ), the estimation

(2.31) provides a stronger result on isosceles triangles of the type described in the

Corollary above, as compared to (2.20).

2.3 Approximation of quadratic polynomials

We present here local error bounds when approximating a quadratic polynomial

π on a given triangle T . The interpolation operator IT being linear, the function
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error π − ITπ is identically null if π is a linear polynomial. We therefore assume

that π does not possess any linear part, that is, π ∈ H2 is a homogeneous quadratic

polynomial of the form

π(x, y) = ax2 + 2bxy + cy2, where a, b, c ∈ R,

which can also be written in a matrix formulation as follows, in the form of (2.1),

π(x, y) = [x y]Uπ

[
λ1 0

0 λ2

]
U t
π[x y]t, (2.32)

with λ1, λ2 and Uπ being as described in (2.1) and (2.2).

2.3.1 Estimations on the reference triangle

Let T̂ be the reference triangle on the left of Figure 2.2, and consider the invertible

affine map ψ defined in (2.8) for which T = ψ(T̂ ). The results in Lemma 2.3.1

below are useful for the proof of Proposition 2.3.5.

Lemma 2.3.1. Consider the quadratic polynomial π̂ = π◦ψ. Given a unit vector

σ̂, consider σ = M σ̂
|M σ̂| where M is the invertible matrix occurring in (2.8). Then,

‖π̂‖Lp(T̂ ) = | detM |− 1
p ‖π‖Lp(T ), (2.33)

‖Dσ̂π̂‖Lp(T̂ ) = |Mσ̂|| detM |− 1
p ‖Dσπ‖Lp(T ), (2.34)

‖Dσ̂(π̂ − IT̂ π̂)‖Lp(T̂ ) = |Mσ̂|| detM |− 1
p ‖Dσ(π − ITπ)‖Lp(T ). (2.35)

Proof. By using the differentiation rule for composite functions, for x, y ∈ R,

Dx(π ◦ ψ)(x, y) = Dxψ1(x, y) · (Dxπ) ◦ ψ(x, y) +Dxψ2(x, y) · (Dyπ) ◦ ψ(x, y),

Dy(π ◦ ψ)(x, y) = Dyψ1(x, y) · (Dxπ) ◦ ψ(x, y) +Dyψ2(x, y) · (Dyπ) ◦ ψ(x, y),

where ψ(x, y) = [ψ1(x, y) ψ2(x, y)]t.

Given a unit vector ξ0 = [x0 y0]
t, we show that the derivatives Dξ0

(π ◦ψ) and
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(
DMξ0

π
)

◦ψ are related as shown in (2.37) below. First observe that for x, y ∈ R,

Dξ0
(π◦ψ)(x, y) = x0Dx(π ◦ ψ)(x, y) + y0Dy(π ◦ ψ)(x, y)

=x0

(
Dxψ1(x, y) · (Dxπ) ◦ ψ(x, y) +Dxψ2(x, y) · (Dyπ) ◦ ψ(x, y)

)

+ y0

(
Dyψ1(x, y) · (Dxπ) ◦ ψ(x, y) +Dyψ2(x, y) · (Dyπ) ◦ ψ(x, y)

)

=
(
x0Dxψ1(x, y) + y0Dyψ1(x, y)

)
(Dxπ) ◦ ψ(x, y)

+
(
x0Dxψ2(x, y) + y0Dyψ2(x, y)

)
(Dyπ) ◦ ψ(x, y). (2.36)

Next, with M being the invertible matrix in (2.8) which we write M =
[
a11 a12

a21 a22

]

for some aij , i, j = 1, 2 satisfying a11a22 − a21a12 6= 0, clearly

M [x y]t = [a11x+ a12y a21x+ a22y]t =: [M1(x, y) M2(x, y)]t.

With the expressions of M1 and M2 satisfying

[x0Dxψ1(x, y)+y0Dyψ1(x, y) x0Dxψ2(x, y) + y0Dyψ2(x, y)]t

= [a11x0 + a12y0 a21x0 + a22y0]
t

= [M1(x0, y0) M2(x0, y0)]
t,

we deduce from (2.36) that

Dξ0
(π ◦ ψ)(x, y) =

(
M1(x0, y0)(Dxπ) +M2(x0, y0)(Dyπ)

)
◦ ψ(x, y)

= (DMξ0
π) ◦ ψ(x, y). (2.37)

We shall now prove (2.33). Writing z = ψ(ẑ) where ẑ ∈ T̂ , we have

π̂(ẑ) = π ◦ ψ(ẑ) = π(z), (2.38)
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and since dz = | detM |dẑ, by a change of variables, clearly

‖π̂‖Lp(T̂ ) =
( ∫

T̂
|π̂(ẑ)|pdẑ

) 1
p

= | detM |− 1
p

( ∫

T
|π(z)|pdz

) 1
p

= | detM |− 1
p ‖π‖Lp(T ).

In order to prove (2.34), we first combine (2.37) and (2.38) to obtain the

equalities

Dσ̂π̂(ẑ) = Dσ̂(π ◦ ψ)(ẑ) = (DM σ̂π) ◦ ψ(ẑ) = DM σ̂π(z) = |Mσ̂|Dσπ(z).

By using again a simple change of variables, we find that

‖Dσ̂π̂‖Lp(T̂ ) =
( ∫

T̂
|Dσ̂π̂(ẑ)|pdẑ

) 1
p

= |Mσ̂|| detM |− 1
p

( ∫

T
|Dσπ(z)|pdz

) 1
p

= |Mσ̂|| detM |− 1
p ‖Dσπ‖Lp(T ).

The proof of (2.35) goes as follows: By using (2.12), with z = ψ(ẑ) where

ẑ ∈ T̂ , it holds that

IT̂ π̂(ẑ) = IT̂ (π ◦ ψ)(ẑ) = (Iψ(T̂ )π) ◦ ψ(ẑ) = ITπ(z)

and therefore (π̂ − IT̂ π̂)(ẑ) = (π − ITπ)(z). We then deduce from (2.34) that

‖Dσ(π − ITπ)‖Lp(T ) =
| detM | 1

p

|Mσ̂| ‖Dσ̂(π̂ − IT̂ π̂)‖Lp(T̂ ),

and the result is proved.

2.3.2 Measure of non-degeneracy

The alignment and shape of a triangle are important characteristics in order to

obtain a sharper error estimation. This is commonly known especially in the

case where the target function presents singularities and fast changing behavior

at some points. In this section, given a homogeneous quadratic polynomial π, we

shall characterize a triangle T by its measure of non-degeneracy ρπ(T ) [31] (see
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also [14]) defined as follows,

ρπ(T ) :=
max{|π(e)| : e edge of T}

|T |
√

| detπ|
, π ∈ H2. (2.39)

Observe that in the numerator of (2.39), the difference of vertices is used rather

than the vertices. Also, if e1, e2 and e3 are counterclockwise oriented edge-vectors

of T such that e1 + e2 + e3 = 0, then their images under π do not necessarily

form a triangle since π(e1) + π(e2) + π(e3) might not be zero. It is easy to see

that ρπ is invariant under translation and scaling of T by a constant. It can also

be generalized into a wider space of functions.

In the example below, we explain the relation between the measure ρπ(T ) and

the aspect ratio of the triangle.

Example 2.3.1. Let π0(x, y) := x2 + y2 and π1(x, y) = x2 − y2. Since det π0 = 1

and π0(e) = |e|2 for any edge e of T , we obtain

ρπ0(T ) =
diam(T )2

|T | =
h2

hρ
2

=
2h

ρ
,

which is twice the aspect ratio of T . As a result, the minimum value of ρπ0(T ) is

attained when T is an equilateral triangle for which ρ =
√

3
2
h and ρπ0(T ) = 4√

3
=

4
√

3
3

. For any triangle T , it is discussed in [31] that the minimum value for ρπ1(T )

is attained when T is a half of a square whose edges are parallel to the x- and

y- axes of the Cartesian coordinate system. Observe that, since |π1(e)| ≤ |π0(e)|
for any vector e, the inequality

max{ρπ0(T ), ρπ1(T )} ≤ 2h

ρ
, (2.40)

holds for any triangle T .

Other characterization of triangles can be found in [31]. In particular, the

measure of non-degeneracy helps in characterizing the triangles that may present

big local errors, they are then bisected into two.

33



Given a linear map φ and a homogeneous quadratic polynomial π ∈ H2, the

polynomial π ◦ φ belongs to H2 and ρπ◦φ is well defined. This is not the case if φ

was an affine map because in general π ◦ ψ /∈ H2. However, if ψ is an affine map

of the form ψ = φ+φt where φt is a translation with vector t ∈ R2, then for any

triangle T , by invariance of ρπ by translation, we have

ρπ(ψ(T )) = ρπ(φ(T )).

The right hand side is equal to the measure ρπ◦φ(T ), as proved in the result below

which shows the commutativity of ρπ and the linear map φ.

Lemma 2.3.2. For any invertible linear map φ,

ρπ◦φ(T ) = ρπ(φ(T )). (2.41)

Proof. Assume that φ is a linear map of the form φ(x, y) = (αx+βy, γx+δy) with

α, β, γ, δ ∈ R satisfying αδ − βγ 6= 0. The homogeneous quadratic polynomial

π ◦ φ is expressed as follows:

π ◦ φ(x, y) = a(αx+ βy)2 + 2b(αx+ βy)(γx+ δy) + c(γx+ δy)2

= Ax2 + 2Bxy + Cy2,

where A = aα2+2bαγ+cγ2, B = aαβ+b(αδ+βγ)+cδγ and C = aβ2+2bβδ+cδ2.

Since Qπ =
[
a b

b c

]
, we immediately verify that

[
α β

γ δ

]t
Qπ

[
α β

γ δ

]
=

[
A B

B C

]
=

Qπ◦φ from which it follows that

det(π ◦ φ) = AC − B2 = (det π)(detφ)2.

The following equalities then hold,

ρπ◦φ(T ) =
max{|π ◦ φ(e)| : e edge of T}

|T |
√

| det π ◦ φ|
=

max{|π(φ(e))| : e edge of T}
|T |

√
| detπ|| detφ|2

=
max{|π(e)| : e edge of φ(T )}

|φ(T )|
√

| detπ|
= ρπ(φ(T )),
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thereby proving the result.

Given a non-degenerate homogeneous quadratic polynomial π, consider the

invertible linear map φπ : [x y]t 7→ [X Y ]t defined by

φπ(x, y) := | detπ| 1
4Uπ


|λ1|−

1
2 0

0 |λ2|−
1
2


 [x y]t = [X Y ]t, (2.42)

where λ1, λ2 are the eigenvalues of Qπ as defined in (2.2), with |λ1| ≤ |λ2|. Define

also the quadratic polynomial ̟π by

̟π(x, y) := x2 + επy
2, x, y ∈ R, (2.43)

where επ := sign(det π). By using (2.32), we can express the homogeneous

quadratic polynomial π ◦ φπ in terms of the determinant det π and ̟π(x, y),

for all (x, y) ∈ R2,

π◦φπ(x, y) = [X Y ]Uπ

[
λ1 0

0 λ2

]
U t
π[X Y ]t

= | detπ| 1
2 [x y]

[
|λ1|−

1
2 0

0 |λ2|−
1
2

] [
λ1 0

0 λ2

] [
|λ1|−

1
2 0

0 |λ2|−
1
2

]
[x y]t

= | detπ| 1
2 [x y]

[
sign(λ1) 0

0 sign(λ2)

]
[x y]t

= sign(λ1)| detπ| 1
2̟π(x, y). (2.44)

The result below is obtained by applying Lemma 2.3.2 to φπ.

Corollary 2.3.3. Let φπ and ̟π be defined as in (2.42) and in (2.43). Then

ρπ(T ) = ρ̟π(φ−1
π (T )) = ρ̟π

([|λ1/λ2|
1
4 0

0 |λ2/λ1|
1
4

]
U t
π(T )

)
. (2.45)

Proof. The result is easily proved by using (2.41), (2.44) and the easily proved
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equalities below, for any α 6= 0,

ραπ(T ) =
max{|α||π(e)| : e edge of T}

|T |
√

|α|2| det π|
= ρπ(T ).

Indeed, writing T̄ = φ−1
π (T ) and choosing α = sign(λ1)| detπ| 1

2 , from (2.41) and

(2.44), the following equalities hold

ρπ(φπ(T̄ )) = ρπ◦φπ (T̄ ) = ρα̟π(T̄ ) = ρ̟π(T̄ ) = ρ̟π(φ−1
π (T )).

The result is obtained by noticing that φ−1
π =

[|λ1/λ2|
1
4 0

0 |λ2/λ1|
1
4

]
U t
π.

With ̟π defined in (2.43), we deduce from (2.40) that, for any triangle T̄ ,

ρ̟π(T̄ ) ≤ 2hT̄
ρT̄

. (2.46)

Therefore, ρ̟π(T̄ ) is bounded as long as T̄ is isotropic. Combining this with

(2.45), with T = φπ(T̄ ), the measure of non-degeneracy

ρπ(T ) = ρ̟π(T̄ ) ≤ 2hT̄
ρT̄

, (2.47)

is bounded whenever φ−1
π (T ) = T̄ is isotropic. In [31], it is shown that the

minimum value of ρπ(T ) is attained on triangles which are isotropic with respect

to the induced metric | · |π defined by |v|π :=
√

|π(v)|.

2.3.3 Error bounds for directional derivatives

Consider again a homogeneous quadratic polynomial π. Our goal is to derive

alternative estimations to the estimations in [1] and [13] in the case where the

measure of non-degeneracy ρπ(T ) is bounded. We estimate the derivatives of

the approximation error obtained by interpolating homogeneous quadratic poly-

nomials. With T being a fixed triangle, the interpolant IT reproduces linear

polynomials and thus we can consider only homogeneous quadratic polynomials.
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Let us first recall the Markov-type inequality below.

Lemma 2.3.4 ([28, Theorem 2.32]). Let π be a polynomial of total degree n ≥ 0.

Given any non-negative integers ν, η such that ν + η ≤ n, it holds that, for any

triangle T ,

‖Dν
xD

η
yπ‖Lp(T ) ≤ Cn

ρν+η
‖π‖Lp(T ), (2.48)

with Cn being a constant depending only on n.

Note that on the reference triangle T̂ shown in Figure 2.2, the factor Ĉ =

Cn

ρ̂ν+η in (2.48) remains an absolute constant for quadratic polynomials since the

smallest height ρ̂ of T̂ is constant.

We now prove the following result.

Proposition 2.3.5. There exist absolute constants C1 and C2 such that, given

any triangle T and any non-degenerate polynomial π ∈ H2, the estimations

(i) ‖π − ITπ‖Lp(T ) ≤ C1ρπ(T )|T | 1
phρ

√
| detπ|;

(ii) ‖Dσh
(π − ITπ)‖Lp(T ) ≤ C2ρπ(T )|T | 1

pρ
√

| detπ|;

(iii) ‖Dσρ(π − ITπ)‖Lp(T ) ≤ C2ρπ(T )|T | 1
ph

√
| det π|,

hold, where σh and σρ denote the unit vectors defined on page 18, and where ρπ

is the measure of non-degeneracy defined in (2.39).

Proof. Let T̂ be the reference triangle in Figure 2.2. Given a triangle T , consider

the function ψ in (2.8) for which T = ψ(T̂ ), and let π̂ := π ◦ψ. Note that, except

when using the correspondence (2.38), the variable of π̂ remains z = (x, y).

(i): By using (2.48), there exists an absolute constant Ĉ1 such that

|π̂|W 2
p (T̂ ) =

(
‖D2

xxπ̂‖p
Lp(T̂ )

+ ‖D2
xyπ̂‖p

Lp(T̂ )
+ ‖D2

yyπ̂‖p
Lp(T̂ )

) 1
p ≤ Ĉ1‖π̂‖Lp(T̂ ),
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which, together with (2.18) for m = 0, yields

‖π̂ − IT̂ π̂‖Lp(T̂ ) ≤ Ĉ2|π̂|W 2
p (T̂ ) ≤ (Ĉ1Ĉ2)‖π̂‖Lp(T̂ ), (2.49)

where Ĉ2 is an absolute constant.

We now estimate the error ‖π − ITπ‖ as follows. By (2.7), there exists an

absolute constant c2 such that

‖π‖Lp(T ) ≤ c2‖π‖T = c2|T | 1
p max{|π(e)| : e edge of T}

= c2ρπ(T )|T |1+ 1
p

√
| detπ|, (2.50)

where ρπ is defined as in (2.39). Combining the above inequality with (2.33) and

(2.49), we can estimate ‖π − ITπ‖Lp(T ) as follows:

‖π − ITπ‖Lp(T ) = | detM | 1
p ‖π̂ − IT̂ π̂‖Lp(T̂ ) ≤ (Ĉ1Ĉ2)| detM | 1

p ‖π̂‖Lp(T̂ )

= (Ĉ1Ĉ2)‖π‖Lp(T ) ≤ (c2Ĉ1Ĉ2)ρπ(T )|T |1+ 1
p

√
| detπ|,

which, since |T | = hρ
2

, proves (i) with C1 = c2Ĉ1Ĉ2

2
.

(ii) and (iii): Given a unit vector σ̂, combining (2.48) with (2.49) and (2.33)

yields

‖Dσ̂(π̂ − IT̂ π̂)‖Lp(T̂ ) ≤ Ĉ1‖π̂ − IT̂ π̂‖Lp(T̂ )

≤ (Ĉ2
1 Ĉ2)‖π̂‖Lp(T̂ )

= (Ĉ2
1 Ĉ2)| detM |− 1

p ‖π‖Lp(T ).

Combining this with (2.35) and (2.50), with σ = M σ̂
|M σ̂| , we find that

‖Dσ(π − ITπ)‖Lp(T ) ≤ (Ĉ2
1 Ĉ2)|Mσ̂|−1‖π‖Lp(T )

≤ (c2Ĉ
2
1 Ĉ2)|Mσ̂|−1ρπ(T )|T |1+ 1

p

√
| detπ|. (2.51)
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By virtue of (2.10), we have

σh =
Mσ̂

|Mσ̂| and σρ =
M τ̂

|M τ̂ | , (2.52)

where σ̂ = [1 0]t and τ̂ =
[

1
2

− δ
h

1
]t

. Note that τ̂ is not a unit vector, however

the second equality in (2.52) still holds if τ̂ is replaced by ατ̂ , α 6= 0. Hence, by

using the unit vector τ̄ = τ̂
‖τ̂ ‖ we have σρ = M τ̄

|M τ̄ | . Noting that |Mσ̂| = h and

|M τ̄ | = ‖τ̂‖−1ρ, applying (2.51) for both σ = σh and σ = σρ, respectively, we

obtain

‖Dσh
(π − ITπ)‖Lp(T ) ≤ 2C2

h
ρπ(T )|T |1+ 1

p

√
| detπ| = C2ρπ(T )|T | 1

pρ
√

| detπ|,

‖Dσρ(π − ITπ)‖Lp(T ) ≤ 2C2‖τ̂‖
ρ

ρπ(T )|T |1+ 1
p

√
| detπ| = C2ρπ(T )|T | 1

ph
√

| detπ|,

thereby proving (ii) and (iii) with C2 = CĈ2
1 Ĉ2‖τ̂‖.

In the above result, clearly ρπ(T ) needs to be bounded. The proof uses the

reference triangle T̂ and the affine map ψ for which T = ψ(T̂ ) holds, as well as

simple change of variables in the computations of the Lp-norms.

The presence of the measure of non-degeneracy ρπ(T ) in the estimations (i)-

(iii) is a novel feature. The example below demonstrates the effectiveness of these

error bounds on a triangle which has an interior angle approaching π but has its

measure of non-degeneracy bounded.

Example 2.3.2. Consider the quadratic polynomial π(x, y) = ax2+by2 such that

|a| ≤ |b| (the case where |a| ≥ |b| is obtained by the change of axes). Let T be

an isosceles triangle with vertices at (0, 0), (h1, 0) and (1
2
h1, h2) where h1, h2 > 0.

In the case where h2 is small and h1 large, the triangle T is strongly anisotropic

with a big interior angle. The eigenvalues of Qπ are exactly λ1 = a and λ2 = b,

with associated eigenvectors [1 0]t and [0 1]t. Observe that T is aligned in the

direction orthogonal to the eigenvector corresponding to the largest eigenvalue.
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The determinant of π and the linear map φπ as defined in (2.42) are given by

det π = ab and φπ =




∣∣∣ b
a

∣∣∣
1
4 0

0
∣∣∣a
b

∣∣∣
1
4


 .

The image T̄ = φ−1
π (T ) has the coordinates (0, 0),

(∣∣∣a
b

∣∣∣
1
4h1, 0

)
and

(∣∣∣a
b

∣∣∣
1
4 h1

2
,
∣∣∣ b
a

∣∣∣
1
4h2

)
.

By choosing h1 =
∣∣∣ b
a

∣∣∣
1
4 and h2 =

∣∣∣a
b

∣∣∣
1
4 , we deduce from (2.47) and (2.39) that

ρπ(T ) = ρ̟π(T̄ ) =
1 + 1

4
1
2

=
5

2
,

by virtue of the fact that |T | = h1h2

2
= 1

2
.

Noting that hT ∼ h1 and ρT ∼ h2, we deduce from Proposition 2.3.5 that

(i) ‖π − ITπ‖Lp(T ) ≤ 5C1

2
|T | 1

phTρT |ab| 1
2 ≤ C ′

1|T | 1
p |ab| 1

2 ;

(ii) ‖DσhT
(π − ITπ)‖Lp(T ) ≤ 5C2

2
|T | 1

pρT |ab| 1
2 ≤ C ′

2|T | 1
p |a| 3

4 |b| 1
4 ;

(iii) ‖DσρT
(π − ITπ)‖Lp(T ) ≤ 5C2

2
|T | 1

phT |ab| 1
2 ≤ C ′

2|T | 1
p |a| 1

4 |b| 3
4 ,

where C ′
1 and C ′

2 are absolute constants.

The above example shows that, although a triangle may present an interior

angle near to π, we can still obtain sharp estimations if the triangle is aligned

(by this we mean the longest edge) in the direction orthogonal to the eigenvector

corresponding to the largest eigenvalue.

2.4 Optimal triangles

In this section, we study triangles which minimize the Lp-norm of the error π−ITπ
for a given homogeneous quadratic polynomials π ∈ H2. Given two triangles

T, T ′ having the same area, clearly one of the errors eT (π), eT ′(π) may be smaller

than the other. Assume that both triangles contain the origin. We show that

translating the triangles will not change the error (also proved in [2, 29]). Given
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a constant a ∈ R2, π(x + a) = π(x) + ℓ(x + a) for some linear polynomial ℓ.

Recalling that the linear interpolation is exact for linear polynomials, for any

triangle T , we have

‖π − IT+aπ‖Lp(T+a) = ‖π(· + a) − (IT+aπ)(· + a)‖Lp(T )

= ‖π(· + a) − IT (π(· + a))‖Lp(T )

= ‖π − ITπ‖Lp(T ),

by virtue of (2.12).

To obtain a deeper study of the approximation error on a triangle, following

[29], we define the shape function Kp as follows: for any π ∈ H2,

Kp(π) := inf
|T |=1
0∈T

eT (π), (2.53)

with eT defined in (2.14). The functional Kp can be extended to a wider space of

functions, however, we shall only restrict to homogeneous quadratic polynomials

where its expression is known. Indeed, it is shown in [29] that Kp(π) = 0 if π is

degenerate, whereas, if π is non-degenerate,

Kp(π) =
√

| det π|Kp(̟π), (2.54)

where ̟π is defined in (2.43).

Following [29], a tempered shape function Kp,L, with L > 0, is defined in

order to bound the diameter of the triangle for which (2.53) is attained: for any

homogeneous quadratic polynomial π, define

Kp,L(π) = inf
T∈TL

eT (π), (2.55)

where TL is the set of triangles of unit area, containing the origin and of diameter
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less than or equal to L, that is,

TL := {T : |T | = 1, 0 ∈ T, hT ≤ L}.

We refer to [29] for details of the properties between Kp and Kp,L.

Given a homogeneous quadratic polynomial π, we define the set ∆p(π) of all

triangles T of unit area, having a vertex at the origin and such that the infimum

in (2.53) is attained. A triangle T ∈ ∆p(π) is called an optimal triangle for π. In

Sections 2.4.1, 2.4.2, 2.4.3 we discuss the properties of the triangles in ∆p(π). In

particular, the case where det π < 0 with p < ∞ remains an open question.

The following result follows from Lemma 2.1.2.

Lemma 2.4.1. There is a constant C such that, for any π, π′ ∈ H2 such that

∆p(π) 6= ∅ and ∆p(π
′) 6= ∅, we have

|Kp(π) −Kp(π
′)| ≤ Ch2

T0
‖π − π′‖, (2.56)

with some T0 ∈ ∆p(π) ∪ ∆p(π
′), and where the norm ‖ · ‖ is defined in (2.3).

Proof. From (2.53) and (2.15), there is a constant C such that Kp(π) ≤ eT (π′) +

Ch2
T‖π − π′‖ holds for any triangle T of unit area and having a vertex at the

origin. In particular, for a T0 ∈ ∆p(π
′),

Kp(π) ≤ Kp(π
′) + Ch2

T0
‖π − π′‖.

In a similar way, we easily prove that

Kp(π
′) ≤ Kp(π) + Ch2

T0
‖π − π′‖,

holds whenever T0 ∈ ∆p(π). The result directly follows.

Before we start discussing optimal triangles for the canonic quadratic polyno-

mials π0(x, y) = x2 + y2 and π1(x, y) = x2 − y2 defined in Example 2.3.1, we first
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present the following result about invariance property.

Lemma 2.4.2 ([32, Theorem 7]). Given a homogeneous quadratic polynomial

π ∈ H2 and an affine map ψ(x) = Ax + b for which A is Qπ-orthogonal, i.e

AtQπA = Qπ, the equality

‖π − ITπ‖Lp(T ) = ‖π − IT ′π‖Lp(T ′), (2.57)

holds for any triangle T , with T ′ = ψ(T ).

2.4.1 For x2 + y2

The result below shows that equilateral triangles of unit area are optimal for

π0(x, y) = x2 + y2.

Lemma 2.4.3 ([3]). A triangle T belongs to ∆p(π0) if and only if it is an equi-

lateral triangle of unit area.

Sketch of proof. We provide here a sketch of proof for triangles of arbitrary area.

For p < ∞, the value of Kp(π0) is equal to

C+
p = inf

T

‖π0 − ITπ0‖Lp(T )

|T |1+ 1
p

, (2.58)

which, by virtue of (2.11), is easily proved to be invariant under scaling, transla-

tion and rotation of the triangle T . Given a non-equilateral triangle T , the proof

consists in finding a triangle T̄ for which

‖π0 − ITπ0‖Lp(T )

|T |1+ 1
p

>
‖π0 − IT̄π0‖Lp(T̄ )

|T̄ |1+ 1
p

. (2.59)

By virtue of the invariance by scaling, translation and rotation, we can assume

T to have the vertices (−1, 0), (a, b), (1, 0) where a ∈ R and b > 0. Then direct

computations show that the isosceles triangle T̄ with vertices (−1, 0), (0, b), (1, 0)

satisfies (2.59). This means that for a = 0 the triangles T and T̄ are identical. If
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b 6=
√

3 in which case T is an equilateral triangle, we use a rotation and a similar

argument as before to find a triangle T̄ ′ such that

‖π0 − ITπ0‖Lp(T )

|T |1+ 1
p

>
‖π0 − IT̄ ′π0‖Lp(T̄ ′)

|T̄ ′|1+ 1
p

.

This means that in order for T to yield Kp(π0), it must be symmetric with respect

to each of its bisectors. In other words, equilateral.

A similar argument applies for p = ∞, with K∞(π0) equal to

C+
∞ = inf

T

‖π0 − ITπ0‖L∞(T )

|T | =
4

3
√

3
. (2.60)

Given an arbitrary triangle T , the set of points z for which (π0 − ITπ0)(z) = 0

is the circle CT with center m and radius R defined as follows: Let C0
T be the

circumscribed circle and denote by m0 its center. If m0 is contained in T , then

CT = C0
T . Otherwise CT is the circle centered at the mid-point of the longest edge

of T and with radius hT

2
. Observe that the center of CT is always contained in T .

It is proved that (see [32]) on a segment [z1, z2], the maximum error between

π0 and a linear polynomial ℓ such that π0(z1) − ℓ(z1) = π0(z2) − ℓ(z2) = 0 is

attained at the mid-point of [z1, z2]. Using this to any segment contained in T ,

clearly ‖π0 − ITπ0‖L∞(T ) is attained at the center m of CT . It follows that, for

any triangle T̄ contained in CT and such that m ∈ T̄ ,

‖π0 − ITπ0‖L∞(T ) = ‖π0 − IT̄π0‖L∞(T̄ ),

that is, the errors on T̄ and T are the same. However, the area of both triangle

are not the same, and if |T̄ | ≥ |T |, then

‖π0 − ITπ0‖L∞(T )

|T | ≥
‖π0 − IT̄π0‖L∞(T̄ )

|T̄ | .

Only equilateral triangles with vertices on CT have the largest area in CT , and

thus (2.60) can only be attained on equilateral triangles.
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The general multivariate case (d ≥ 2) is given in [32] with a very similar proof.

Observe that the placement of the vertices of an optimal triangle for π0 is not

important as long as it is an equilateral triangle of unit area. By this reason,

we are able to present Algorithm 3.1 in Section 3.2.2 which provides an isosceles

optimal triangle for a homogeneous quadratic polynomial π whose determinant

is positive.

2.4.2 For x2 − y2

Obtaining an optimal triangle for π1(x, y) = x2 − y2 is not as straightforward as

for π0. Up to date, optimal triangles for π1 are known only for p = ∞.

When p = ∞

For the study of optimal triangles for a π ∈ H2 whose determinant is negative,

only the case p = ∞ is discussed in [2], the generalization for p < ∞ is still an

open question. We present below the case where the quadratic polynomial is π1.

Given two numbers a, b > 0 such that 3
√

5−5
4

ab = 1, the triangle Ta,b is defined

by the vertices given by

(0, 0),
1

2

(
c0a+ b, c0a− b

)
,

1

2

(
a+ c0b, a − c0b

)
, (2.61)

where c0 = 3−
√

5
2

. In Figure 2.4, we plot a few triangles Ta,b for different values

of a and b. We define as well the set I0 =
{[±1 0

0 ±1

]}
whose elements are

matrices which represent symmetry with respect to the x- and or y-axis.

Lemma 2.4.4 ([3, Lemma 9]). A triangle T belongs to ∆∞(π1) if and only if

T = φM0Ta,b, a, b > 0, where φM0 is the linear map associated with a matrix

M0 ∈ I0.

Sketch of proof. We provide here a sketch of proof for triangles of arbitrary area,

and for any quadratic polynomial π with negative determinant. Let λmin <
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Figure 2.4: Family of optimal triangles for π1, with p = ∞, whose vertices are
given by (2.61).

0 < λmax denote the eigenvalues of π. Denoting by (ξ1, ξ2) a unit eigenvector

associated with λmax, the unit vector (ξ2,−ξ1) is an eigenvector corresponding to

λmin.

Considering the linear change of variables,

F1(x, y) :=
[
ξ1x+ ξ2y ξ2x− ξ1y

]t
,

G2(x, y) :=
[√
λmaxx−

√
|λmin|y

√
λmaxx+

√
|λmin|y

]t
,

we obtain the function π̃ given by

π̃(x, y) := π ◦ F−1
1 ◦G−1

2 (x, y) = xy. (2.62)

The interpolation error for π does not change under the above transformation.

However, |G2(T )| = 2
√

|λmaxλmin||T |. Moreover, it has been proved in [3, Lemma 6]

that ‖π̃ − IT π̃‖L∞(T ) is attained on the boundary of T .

Given a triangle T , consider the rectangle of minimal area containing T , whose

sides are parallel to the coordinate axes, with side lengths a and b. By translation,

we can assume that T has a vertex at the origin. The complement of T with

respect to the rectangle is formed by three right triangles T1, T2, T3 with respective
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area S1, S2, S3. Observe that each side of T is the longest side of one of the three

right triangles. Also, the interpolation error on each side of T is equal to 1
2
|Ti|

where Ti has the same edge as T . Hence, the problem of minimizing
‖π−ITπ‖L∞(T )

|T |

is equivalent to finding triangles which solve the minimization problem

max{S1, S2, S3}
2(ab− (S1 + S2 + S3))

→ min . (2.63)

Since the triangle is contained in the rectangle, and two of its vertices on the

sides of the rectangle, we can assume that T has vertices (0, 0), (x, b), (a, y). Then

(2.63) reads

1

2
max

{
bx

ab− xy
,

ay

ab− xy
,
(a− x)(b− y)

ab− xy

}
→ min . (2.64)

It is proved that for any triangle T with vertices (0, 0), (x, b), (a, y) where x ∈
(0, a) and y ∈ (0, b), we have

1

2
max

{
bx

ab− xy
,

ay

ab− xy
,
(a− x)(b− y)

ab− xy

}
≥ 1

2
√

5
.

Also, with c0 = 3−
√

5
2

, studying each of the cases

1. x ≥ c0a, y ≥ c0b;

2. x ≤ c0a, y ≤ c0b;

3. x ≥ c0a, y ≤ c0b or x ≤ c0a, y ≥ c0b,

shows that (2.64) is attained on triangles T̄ with vertices given by

(0, 0),
(
c0a, b

)
,

(
a, c0b

)
, (2.65)

where c0 = 3−
√

5
2

. Finally, the triangles which minimize ‖π− ITπ‖L∞(T ) are given

by T = (F−1
1 ◦ G−1

2 )(T̄ ), or symmetric to it with respect to any coordinate axis,

and only for such triangles.

Now, we take π(x, y) = π1(x, y) = x2 − y2. We have λmax = 1, λmin = −1
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and the eigenvalues of Qπ1, with (ξ1, ξ2) = (1, 0) being the eigenvector associated

with λmax. Clearly F−1
1 ◦G−1

2 (x, y) = 1
2

[
1 1

1 −1

]
[x y]t. The images of the vertices

(0, 0), (c0a, b) and (a, c0b) under F−1
1 ◦ G−1

2 are the vertices (2.61) of Ta,b whose

area is given by

|Ta,b| =
1

2

∣∣∣∣∣∣∣∣
det




(c0a+ b)/2 (a+ c0b)/2 0

(c0a− b)/2 (a− c0b)/2 0

1 1 1




∣∣∣∣∣∣∣∣
=

3
√

5 − 5

4
ab.

Since an optimal triangle must have a unit area, we require that 3
√

5−5
4

ab = 1.

Observe from Figure 2.4 that the vertices of an optimal triangle for π1 are

either given by (2.61) or given by the symmetry of it with respect to the x- and

or y-axis of these vertices. Since ‖π1 − ITπ‖Lp(T ) ≤ |T | 1
p ‖π − ITπ‖L∞(T ) for any

triangle T , we immediately deduce from the definition of Kp in (2.53) that

Kp(π1) ≤ K∞(π1), p ∈ [1,∞]. (2.66)

More discussions (similar to above) on the optimal triangles for π1(x, y) =

x2 − y2 can be found in [32], however by using the representation π′
1(x, y) = xy.

We also refer to [32] for the homogeneous quadratic polynomial π2(x, y) = x2 and

for more than two variables homogeneous quadratic polynomials. However, the

case π1(x, y) = x2 − y2 with p < ∞ still remains to be investigated.

When p < ∞

In this section, we shall discuss a method for obtaining an optimal triangle for

π1 by using Lemma 2.4.2. In particular, we study the existence of an optimal

triangle which is isotropic which still remains an open question.

Let us begin by investigating the families of optimal triangles for the quadratic

polynomials π0 and π1 defined in Example 2.3.1. Given a matrix A =
[
a b

c d

]
, we
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have that

AtQπ0A = Qπ0 ⇐⇒ AtA = I

⇐⇒ a2 + c2 = 1, ab+ cd = 0, b2 + d2 = 1. (2.67)

The set of matrices which satisfy (2.67) is the set of all 2 × 2 orthogonal matrices

which is given by

A0 :=

{[±1 0

0 ±1

]
,
[

0 ±1

±1 0

]} ⋃ {[
cos θ − sin θ

sin θ cos θ

]
: θ ∈ [0, 2π]

}
. (2.68)

The set A0 in (2.68) is the union of two sets: On the left is the set of matrices that

represent symmetry with respect to the x-, y-axis and symmetry with respect to

the lines x+y = 0 and x−y = 0, whereas on the right is the set of counterclockwise

rotation matrices.

In a similar way, we have that

AtQπ1A = Qπ1 ⇐⇒
[
a c

b d

][
1 0

0 −1

][
a b

c d

]
=

[
1 0

0 −1

]

⇐⇒ a2 − c2 = 1, ab− cd = 0, b2 − d2 = −1. (2.69)

The set of matrices which satisfy (2.69) is given by

A1 :=

{[±1 0

0 ±1

]
,
[

0 ±1

±1 0

]} ⋃ {[
cosh θ sinh θ

sinh θ cosh θ

]
: θ ∈ R

}
. (2.70)

The set A1 in (2.70) is the union of two sets: On the left is the set of matrices that

represent symmetry with respect to the x- and y-axis and symmetry with respect

to the lines x+y = 0 and x−y = 0 (clearly (2.57) also holds for AtQπA = −Qπ),

and on the right is the set of matrices with hyperbolic entries.

Suppose that T1 is an optimal triangle for π1, and let ei = [xi yi]
t, ej = [xj yj]

t

be two of its edge-vectors such that its maximum interior angle satisfies γ(T1) =

êiej . Considering a matrix Sθ =
[

sinh θ cosh θ

cosh θ sinh θ

]
, with θ ∈ R, we shall study

the positions of the images Sθei and Sθej by introducing the functions X(θ) =
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a cosh θ+b sinh θ = (a+tθb) cosh θ and Y (θ) = a sinh θ+b cosh θ = (atθ+b) cosh θ

where a, b ∈ R and tθ = tanh θ ∈ (−1, 1).

Obviously, the curve defined by X(θ) and Y (θ) is hyperbolic by virtue of the

easily provable equality X(θ)2 − Y (θ)2 = a2 − b2. Since

Y (θ)

X(θ)
=
atθ + b

a + tθb
,

we observe that for θ → ∞ we have tθ → 1 and limθ→∞
Y (θ)
X(θ)

= 1. In a similar

way, we show that limθ→−∞
Y (θ)
X(θ)

= −1 and thus the lines y = x and y = −x are

asymptotic to the hyperbolic curve. In Figure 2.5 we illustrate the hyperbolic

curves obtained from the cases 1-2 which we discuss below.

θ → −∞

θ → −∞

θ → ∞

a

b tθ = 0

tθ = − b
a

Case 1

Case 2

Figure 2.5: Hyperbolic curves defined by X(θ) and Y (θ) for Case 1 and Case 2.

Case 1: a, b ≥ 0 such that a ≥ b. In the case where a ≥ b, clearly X(θ) is

always positive. Also, since DθX(θ) = a sinh θ + b cosh θ, the derivative of X(θ)

changes sign when tθ = − b
a
, whereas Y (θ) is always increasing.

Case 2: a, b ≥ 0 such that a ≤ b. In a similar way as in the above case, for

a ≤ b, it is easy to show that X(θ) is always increasing whereas the derivative of

Y (θ) changes sign when tθ = −a
b
.
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θ → −∞

θ → −∞

θ → ∞

a

btθ = 0

tθ = − b
a

Case 3

Case 4

Figure 2.6: Hyperbolic curves defined by X(θ) and Y (θ) for Case 3 and Case 4.

Case 3: a ≤ 0, b ≥ 0 such that b ≤ −a. In this case, Y (θ) is always

increasing whereas the derivative of X(θ) changes sign when tθ = − b
a
.

Case 4: a ≤ 0, b ≥ 0 such that −a ≤ b. It is easy to see that X(θ) is always

decreasing whereas the derivative of Y (θ) changes sign when tθ = −a
b
. Cases 3-4

are illustrated in Figure 2.6.

θ → −∞

θ → −∞

θ → ∞

a

btθ = 0

tθ = − b
a

Case 5

Case 6

Figure 2.7: Hyperbolic curves defined by X(θ) and Y (θ) for Case 5 and Case 6.
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Case 5: a, b ≤ 0 such that −b ≤ −a. This case is obtained from Case 1 by

taking its symmetry with respect to the origin.

Case 6: a, b ≤ 0 such that −a ≤ −b. This case is obtained from Case 2

by taking its symmetry with respect to the origin. Cases 5-6 are illustrated in

Figure 2.7.

Case 7: a ≥ 0, b ≤ 0 such that −b ≤ a. This case is obtained from Case 3

by taking its symmetry with respect to the origin.

Case 8: a ≥ 0, b ≤ 0 such that a ≤ −b. This case is obtained from Case 4

by taking its symmetry with respect to the origin. Cases 7-8 are illustrated in

Figure 2.8.

θ → −∞

θ → −∞

θ → ∞

a

b
tθ = 0

tθ = − b
a

Case 7

Case 8

Figure 2.8: Hyperbolic curves defined by X(θ) and Y (θ) for Case 7 and Case 8.

Observe that ‖π1 −ITπ1‖Lp(T ) is invariant under a linear transform φM0 where

M0 ∈ I0. Thus, we can assume that xi, yi ≥ 0. There are four different cases for

xj , yj.

a If xj , yj ≥ 0, then T1 is an acute triangle;
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b If xj ≤ 0 and yj ≥ 0, then it is easy to show that the angle ̂Sθei Sθej → π
2

as θ → ∞, thus a nearly-acute optimal triangle can be obtained. This is

shown in Figure 2.9 by combining Cases 1-4;

c If xj ≥ 0 and yj ≤ 0, then as in b, ̂Sθei Sθej → π
2

as θ → ∞, and a nearly-

acute optimal triangle can be obtained. This is shown in Figure 2.10 by

combining Cases 1-2 and Cases 7-8;

d If xj , yj ≤ 0, then

i If |xi| ≥ |yi| and |yj| ≥ |xi|, by letting θ → −∞ the angle ̂Sθei Sθej

decreases and a nearly-acute optimal triangle can be obtained. This

is also the case if |yi| ≥ |xi| and |xj | ≥ |xi|;

ii Otherwise, i.e if |xi| ≥ |yi| and |xj | ≥ |yj|, or |xi| ≤ |yi| and |xj | ≤ |yj|,
then it may be impossible to decrease the angle ̂Sθei Sθej. This case is

the reason why designing a nearly-acute optimal triangle remains an

open question. We illustrate this in Figure 2.11.

θ → −∞
θ → −∞

θ → ∞θ → ∞

xi

yi

Figure 2.9: Obtaining nearly-acute optimal triangle for π1, case b.

In brief, part ii of case d shows that characterizing optimal triangles for π1 may

be difficult since they could essentially take arbitrary shape, and the existence of

an isotropic optimal triangle is not guaranteed.
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θ → −∞

θ → −∞
θ → ∞

θ → ∞

xi

yi

Figure 2.10: Obtaining nearly-acute optimal triangle for π1, case c.

θ → −∞

θ → −∞
θ → ∞

θ → ∞

xi

yi

Figure 2.11: In blue for i of case d: obtaining nearly-acute optimal triangle for

π1; and in green for ii of case d: the angle ̂Sθei Sθej approaching π if θ → ±∞.

2.4.3 For general quadratic polynomials

We show in Lemma 2.4.5 below that to obtain an optimal triangle for a quadratic

polynomial π, it is sufficient to know an optimal triangle for ̟π. In addition,

the length scales of an optimal triangle can be estimated by using the condition

number of Qπ.

The result below is partially extracted from the proof of [29, Proposition 2.2],
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here we present a more elaborated construction of an optimal triangle.

Lemma 2.4.5. Given a quadratic polynomial π ∈ H2, define φπ and ̟π respec-

tively by (2.42) and (2.43). For any optimal triangle T0 ∈ ∆p(̟π), its image

φπ(T0) under φπ is an optimal triangle for π. Moreover,

c1

∣∣∣∣
λ2

λ1

∣∣∣∣
1
4 ≤ hφπ(T0) ≤ c2

∣∣∣∣
λ2

λ1

∣∣∣∣
1
4

and c′
1

∣∣∣∣
λ1

λ2

∣∣∣∣
1
4 ≤ ρφπ(T0) ≤ c′

2

∣∣∣∣
λ1

λ2

∣∣∣∣
1
4

(2.71)

hold, with c1, c2 and c′
1, c

′
2 being constants depending only on the triangle T0, and

λ1, λ2 the eigenvalues of Qπ as described in (2.32) and (2.2).

Proof. By using (2.44), we have

̟π = sign(λ1)| detπ|− 1
2π ◦ φπ.

Since the determinant of φπ is equal to one, the image T̄ = φπ(T0) of a triangle

T0 of unit area is also of unit area. Next, since sign(λ1)| detπ|− 1
2 is a constant,

by using the linearity of IT and its property in (2.12), we find that

eT0(̟π) = eT0

(
sign(λ1)| detπ|− 1

2π ◦ φπ
)

= | detπ|− 1
2eT0(π ◦ φπ)

= | detπ|− 1
2 ‖π ◦ φπ − IT0(π ◦ φπ)‖Lp(T0) = | detπ|− 1

2 ‖(π − IT̄π) ◦ φπ‖Lp(T0)

= | detπ|− 1
2 ‖π − IT̄π‖Lp(T̄ ),

from which we immediately see that

inf
|T |=1

eT (̟π) = | det π|− 1
2 inf

|T̄ |=1
eT̄ (π),

thereby proving that for any optimal triangle T0 for ̟π, its image T̄ = φπ(T0) is

an optimal triangle for π.

Given an edge-vector e0 = [x0 y0]
t of an optimal triangle T0 ∈ ∆p(̟π), we
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have

|φπ(e0)| =

√√√√
∣∣∣∣
λ2

λ1

∣∣∣∣
1
2

x2
0 +

∣∣∣∣
λ1

λ2

∣∣∣∣
1
2

y2
0 ≤

∣∣∣∣
λ2

λ1

∣∣∣∣
1
4
√
x2

0 + y2
0 ≤

∣∣∣∣
λ2

λ1

∣∣∣∣
1
4

h0,

where h0 is the diameter of T0, thereby proving that hφπ(T0) ≤ c2

∣∣∣∣λ2

λ1

∣∣∣∣
1
4

, with

c2 = h0. Choosing an edge e0 such that |x0| 6= 0, we obtain

∣∣∣∣
λ2

λ1

∣∣∣∣
1
4 |x0| ≤ |φπ(e0)| ≤ hφπ(T0).

Since |x0| ≥ ρ0 always holds for an appropriate edge e0, we prove that c1

∣∣∣∣λ2

λ1

∣∣∣∣
1
4 ≤

hφπ(T ), with c1 = ρ0. The rest of the proof follows easily by noticing that, for an

optimal triangle T0 whose area is one, we have ρφπ(T0) = 2/hφπ(T0).

Observing from the definition of ̟π in (2.42), an optimal triangle for π is

related to the eigenvalues and eigenvectors of Qπ. The same features are found

in the constructions in [2, 3, 27].

For any non-degenerate homogeneous polynomial π, define the set Aπ by

Aπ :=





A0, if det π > 0;

A1, otherwise.
(2.72)

where A0 and A1 are defined in (2.68) and (2.70). Since Q̟π =
[ 1 0

0 επ

]
where

επ = sign(det π), we deduce from (2.67) and (2.69) that, for any matrix A ∈ Aπ,

AtQ̟πA =





AtQπ0A, with A ∈ A0, if det π > 0,

AtQπ1A, with A ∈ A1, otherwise,

= Q̟π , (2.73)

that is, A is Q̟π -orthogonal.
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Corollary 2.4.6. Given a quadratic polynomial π, let ̟π be defined as in (2.43)

and φπ as in (2.42). For any optimal triangle T0 ∈ ∆p(̟π) and any linear map

φA, with A ∈ Aπ, the triangle (φπ ◦ φA)(T0) is optimal for π.

Proof. Since any matrix A ∈ Aπ is Q̟π -orthogonal, Lemma 2.4.2 yields that

‖̟π − IT0̟π‖Lp(T0) = ‖̟π − IT ′
0
̟π‖Lp(T ′

0)

where T ′
0 = AT0 = φA(T0). Since ̟π ∈ ∆p(̟π), we have that φA(T0) ∈ ∆p(̟π).

We deduce from Lemma 2.4.5 that φπ
(
φA(T0)

)
is an optimal triangle for π.

2.5 Approximation on nearly optimal triangles

In this section, we present estimations in Lp-norm and W 1
p -seminorm for the ap-

proximation error of a function on nearly optimal triangles. Our method for local

approximation is similar to the one from [29], we use the Hessian of the function

to perform a spectral analysis, so that the eigenvectors specify the stretching di-

rections, the eigenvalues dictate the aspect ratio, of the nearly-optimal triangles.

Given a point z ∈ Ω and a function f ∈ C2(Ω), where Ω is a domain in R2,

we define the quadratic polynomial πz by

πz(x, y) :=
1

2
D2
xxf(z)x2 +D2

xyf(z)xy +
1

2
D2
yyf(z)y2, x, y ∈ Ω, (2.74)

and the corresponding modulus of continuity of the function z 7→ πz by

ω(r) := sup
‖z−z′‖≤r
z,z′∈Ω

‖πz − πz′‖, r ≥ 0. (2.75)

The non-decreasing function ω(r) is of great use in Section 3.2 for the triangu-

lation of Ω. Also, it will appear in Section 3.4 for the study of asymptotic error

estimates. Observe that the matrix Qπz (defined in (2.1)) associated with πz is

equal to 2Hf(z), with Hf denoting the Hessian matrix of f .
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We say that a triangle T ⊂ Ω is nearly-optimal if it is an optimal triangle

for the quadratic polynomial πz, with some z ∈ Ω close to the barycenter bT of

T . Recall that the error does not change by translation of the triangle. Thus

we can design and use nearly-optimal triangles in the neighborhood of the origin.

Except in the case of estimating the derivatives of the approximation errors on

nearly-optimal triangles, we shall not use classical estimations.

2.5.1 Lp-norm error bounds

Considering a fixed triangle T , let eT be defined as in (2.14). For any point

z ∈ R2, a simple triangular inequality shows that

‖f − IT f‖Lp(T ) = ‖(f − πz) − IT (f − πz)‖Lp(T ) + ‖πz − ITπz‖Lp(T )

≤ eT (f − πz) + eT (πz). (2.76)

The first term on the right hand side of (2.76) can be estimated by us-

ing Lemma 2.5.2 below, whereas the second term can be estimated by using

Lemma 2.5.3. Both of these results have some similarities with the results in

[2, 29].

Lemma 2.5.1. Let ϕz denote the linear polynomial in the Taylor expansion of

f ∈ C2(Ω) at a point z ∈ T . With πz defined as in (2.74), we have

‖f − (ϕz + πz)‖L∞(T ) ≤ h2
Tω(hT ).

Proof. Let z0, z1 ∈ T be fixed and consider the function g(t) = f(z0 + t(z1 − z0)).

Since f ∈ C2(T ), it is clear that g ∈ C2([0, 1]). Denoting by g(m), m = 0, 1, the

m-th derivative of g, the integral form of the Taylor expansion at 0 is given by

g(t) = g(0) + g(1)(0)t+
1

2

∫ t

0
g(2)(s)(t− s)ds, (2.77)
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where, by writing z0 = (x0, y0), z1 = (x1, y1) and zs = z0 + s(z1 − z0), s ∈ [0, 1],

g(1)(s) =(x1 − x0)Dxf(zs) + (y1 − y0)Dyf(zs), (2.78)

g(2)(s) =(x1 − x0)
2D2

xxf(zs) + 2(x1 − x0)(y1 − y0)D
2
xyf(zs)

+ (y1 − y0)
2D2

yyf(zs). (2.79)

Noting that ϕz0(x1, y1) = f(z0) + (x1 − x0)Dxf(z0) + (y1 − y0)Dyf(z0) = g(1)(0)

and that f(z1) = g(1), we deduce from (2.77) that

f(z1) − ϕz0(z1) =
∫ 1

0
g(2)(s)(1 − s)ds. (2.80)

With zs = (xs, ys), define the function ψzs(x, y) = πzs(x − xs, y − ys). We use

(2.79) to deduce that

f(z1) − ϕz0(z1) − ψz0(z1) =2
∫ 1

0

(
πzs(z1 − z0) − ψz0(z1)

)
(1 − s)ds

=2
∫ 1

0

(
πzs(z1 − z0) − πz0(z1 − z0)

)
(1 − s)ds. (2.81)

Observe that for any π ∈ H2 and any z = (x, y) ∈ Ω, clearly |π(z)| ≤ ‖π‖(|x|2 +

|xy| + |y|2) ≤ ‖π‖|z|2. Thus, since |z1 − z0| ≤ diam(T ), for all s ∈ [0, 1],

|πzs(z1 − z0) − πz0(z1 − z0)| ≤ ‖πzs − πz0‖|z1 − z0|2 ≤ ω(diam(T )) diam(T )2.

Noticing that (2.81) holds for any z1 ∈ T , and also that 2
∫ 1

0 (1 − s)ds = 1, we

deduce that ‖f − ϕz0 − ψz0‖L∞(T ) ≤ ω(diam(T )) diam(T )2.

The proof of Lemma 2.5.2 below is inspired from the proofs of results in [29].

Lemma 2.5.2. For any f ∈ C2(Ω) and any triangle T ⊂ Ω,

eT (f − πz) ≤ 2h2ω(h)|T | 1
p , z ∈ T.

Proof. Let ϕz be the linear polynomial in the Taylor expansion of f at z, z ∈ T ,
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it satisfies ϕz = ITϕz. We thereby have that

eT (f − πz) =‖(f − πz − ϕz) − IT (f − πz − ϕz)‖Lp(T )

≤‖f − πz − ϕz)‖Lp(T ) + ‖IT (f − πz − ϕz)‖Lp(T )

≤2|T | 1
p ‖f − πz − ϕz‖L∞(T )

≤2|T | 1
ph2ω(h),

by virtue of Lemma 2.5.1 and (2.13).

In Lemma 2.5.2, the difference f − πz is bounded by a factor times ω(hT )

which may be very small if f behaves like πz in the neighborhood of z. We shall

come back to this in Chapter 3.

We are now interested in the approximation error eT (πz) with the condition

that T is an scaled and translated version of an optimal triangle for πt for some

t ∈ Ω. Generally T is not optimal for πt, however if z and t are close to one

another, we can bound eT (πz) by using the result below which is also inspired

from the proof of [29, Proposition 3.2].

Lemma 2.5.3. Given t ∈ Ω, let T = c1T0 + t1 where T0 ∈ ∆p(πt), with c1 a

non-zero scaling factor and t1 a translation vector. Then, for any z ∈ Ω,

eT (πz) ≤
(
Kp(πz) + Ch2

T0
ω(|z − t|)

)
|T |1+ 1

p , (2.82)

where the shape function Kp is defined in (2.53) and C an absolute constant.

Proof. Note that T0 is of unit area. By using Lemma 2.1.2 and Lemma 2.4.1,

there is a constant C such that

eT0(πz) ≤ eT0(πt) + Ch2
T0

‖πz − πt‖ = Kp(πt) + Ch2
T0

‖πz − πt‖

≤ Kp(πz) + 2Ch2
T0

‖πz − πt‖ ≤ Kp(πz) + 2Ch2
T0
ω(|z − t|). (2.83)

Note also that |T | = |c1T0| = c2
1. Writing t1 = [x1 y1]

t, the change of variable
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φ(x, y) = (c1x+ x1, c1y + y1) has its Jacobian equal to c2
1 = |T |, hence

eT (πz) =
( ∫

T0

c2p
1 |πz(x, y) − IT0πz(x, y)|p|T |dxdy

) 1
p

= eT0(πz)|T |1+ 1
p ,

which, together with (2.83), yields (2.82).

Remark 2.5.1. Choosing z = t in (2.82) and using (2.54), and with ̟πz defined

as in (2.43), we obtain

eT (πz) ≤ Kp(̟πz)|T |1+ 1
p

√
| detπz| =

1

2
Kp(̟πz)|T | 1

phρ
√

| det πz|. (2.84)

In the above estimation, the triangle T = c1T0 +t1 is a scaled and translated ver-

sion of an optimal triangle T0 ∈ ∆p(πz). On such a triangle, a similar estimation

to (2.84) is given by part (i) of Proposition 2.3.5,

eT (πz) ≤ C1ρπz(T )|T | 1
phρ

√
| detπz|, (2.85)

where ρπz(T ) is a constant since the measure ρπz , which is defined in (2.39), is

invariant under translation and scaling by a constant of the triangle so that, by

using (2.45),

ρπz(T ) = ρ̟πz

(
φ−1
πz

(c1T0 + t1)
)

= ρ̟πz

(
φ−1
πz

(
c1φπz(T̄ ) + t1

))

= ρ̟πz

(
c1T̄ + φ−1

πz
(t1)

)
= ρ̟πz

(T̄ ),

where T0 = φπz(T̄ ), with T̄ ∈ ∆p(̟πz). Observe that, if det πz > 0 for all z, then

ρ̟πz
(T̄ ) is a constant since T̄ is equilateral.

Coming back now to estimating the error on a nearly-optimal triangle, we

have the following result. A similar estimation to (2.86) can be found in [29].

Proposition 2.5.4. Given t ∈ Ω, let T = c1T0 + t1 where c1 is a non-zero

constant, t1 a translation vector and T0 ∈ ∆p(πt). Then, for any z ∈ T ,

‖f − ITf‖Lp(T ) ≤
(
Kp(πz) + Ch2

T0
ω

(
max{|z − t|, hT}

))
|T |1+ 1

p , (2.86)
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with the function ω defined in (2.75), and C an absolute constant.

Proof. By using (2.76), together with Lemmas 2.5.3 and 2.5.2,

‖f − ITf‖Lp(T ) ≤
(
Kp(πz) + Ch2

T0
ω(|z − t|)

)
|T |1+ 1

p + 2h2
Tω(hT )|T | 1

p ,

holds. Since c1 = |T | 1
2 and hT = c1hT0 , we find that h2

T = |T |h2
T0

. Inserting this

into the above inequality yields

‖f − ITf‖Lp(T ) ≤
(
Kp(πz) + Ch2

T0
ω(|z − t|)

)
|T |1+ 1

p + 2h2
T0
ω(hT )|T |1+ 1

p

≤
(
Kp(πz) + (C + 2)h2

T0
ω

(
max{|z − t|, hT}

))
|T |1+ 1

p ,

which proves (2.86).

The result in Proposition 2.5.4 is important in Section 3.4.1 in order to obtain

the asymptotic Lp-norm of the error resulting from the approximation of f ∈
C2(Ω) on an anisotropic triangulation ∆s,r of Ω.

2.5.2 Sobolev seminorm error bounds

Many areas in numerical analysis require the study of derivatives for a given

approximation problem. In this view, we are interested in estimating the W 1
p -

seminorm of the error resulting from the approximation of a function on a given

triangle. The results here are essential for Chapter 3 in order to derive the

asymptotic estimation in W 1
p -seminorm.

First we impose no restriction on a given triangle T . Recall that h, ρ are the

diameter and smallest height of T , and the unit vectors σh,σρ are defined on

page 18. The following lemma is a consequence of Lemma 2.2.2.

Lemma 2.5.5. Consider a function f ∈ W 2
p (T ) and a pair (σ, τ ) of orthonormal

vectors. With η ∈ [0, 2π] denoting the angle between σ and σh,

|f − ITf |W 1
p (T ) .

(
h+ ρ| sin η|

)
|Dσf |W 1

p (T ) +
(
ρ+ h| sin η|

)
|Dτf |W 1

p (T ), (2.87)
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with constant depending only on the maximum interior angle γ(T ) of T .

Proof. From the definition of directional derivatives, we have that

Dσh
f = cos θ1Dxf + sin θ1Dyf, Dσρf = − sin θ1Dxf + cos θ1Dyf,

with θ1 ∈ [0, 2π] being the angle between the x-axis and σh. Observe that the

derivatives in x- and y- directions can be expressed in terms of the derivatives in

the directions of a given pair of orthonormal vectors (σ, τ ),

Dxf = cos θ2Dσf − sin θ2Dτf, Dyf = sin θ2Dσf + cos θ2Dτf,

where θ2 ∈ [0, 2π] is the angle between the x-axis and σ. It follows that

Dσh
f = cos(θ1 − θ2)Dσf − sin(θ1 − θ2)Dτf

Dσρf = sin(θ1 − θ2)Dσf + cos(θ1 − θ2)Dτf.

With η denoting the angle between σ and σh, simple triangular inequalities yield

|Dσh
f |W 1

p (T ) ≤ |Dσf |W 1
p (T ) + | sin η||Dτf |W 1

p (T ),

|Dσρf |W 1
p (T ) ≤ | sin η||Dσf |W 1

p (T ) + |Dτf |W 1
p (T ).

Substituting the above expressions into (2.20) yields

|f − IT f |W 1
p (T ) .h

(
|Dσf |W 1

p (T ) + | sin η||Dτf |W 1
p (T )

)

+ ρ
(
| sin η||Dσf |W 1

p (T ) + |Dτf |W 1
p (T )

)

=
(
h+ ρ| sin η|

)
|Dσf |W 1

p (T ) +
(
ρ+ h| sin η|

)
|Dτf |W 1

p (T ),

thereby proving the result.

Our first objective is to express the terms |Dσf |W 1
p (T ) and |Dτf |W 1

p (T ) in (2.87)

by using the eigenvalues of a quadratic polynomial π whose Hessian is sufficiently

close to the Hessian of f on a triangle T . To this end, we provide below some
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relations between the derivatives in σ, τ directions and the derivatives in x- and

y- directions, the latter being the axes of the standard Cartesian system.

Lemma 2.5.6. Given a counterclockwise rotation matrix Rθ of angle θ, denote

its columns vectors by σ, τ . The following equalities of functions hold,

Dxx(f ◦Rθ) = (Dσσf) ◦Rθ,

Dyy(f ◦Rθ) = (Dτ τf) ◦Rθ,

Dxy(f ◦Rθ) = (Dστf) ◦Rθ.

Proof. Using the differentiation rule for composite functions and using the nota-

tions x̄ = cos θx− sin θy and ȳ = sin θx+ cos θy where x, y ∈ R, we have

Dx(f ◦Rθ)(x, y) =Dxf(x̄, ȳ) = cos θ(Dxf)(x̄, ȳ) + sin θ(Dyf)(x̄, ȳ)

=(Dσf)(cos θx− sin θy, sin θx+ cos θy),

by virtue of the fact that Dσf = cos θDxf + sin θDyf . A repeated process of the

above equality yields

Dx(Dx(f ◦Rθ)) = Dx((Dσf) ◦Rθ) = (Dσ(Dσf)) ◦Rθ.

The same argument is applied to prove the rest of the result.

Let us now impose a condition on the target function f ∈ C2(Ω) which we

shall use in Chapter 3. Let (σ, τ ) be any pair of orthonormal vectors, z0 ∈ Ω and

B(z0, d) the ball centered at z0 and with radius d ≥ 0. Suppose that there exists

a small number ν > 0 such that, for any z ≤ B(z0, d),

|D2
ijf(z0) −D2

ijf(z)| ≤ ν, (2.88)

holds, with i, j ∈ {σ, τ}. The above condition implies that the second derivatives

of f do not significantly change in the neighborhood of z0 (also assumed in [2,

3, 29]), allowing us to view f locally as the homogeneous quadratic polynomial
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π = πz0 . In the result below, we derive estimations involving the eigenvalues of

Qπ.

Proposition 2.5.7. Consider a function f ∈ C2(T ) where T ⊂ B(z0, d) for some

z0 ∈ Ω and d > 0, and assume that (2.88) holds for a sufficiently small number

ν > 0. Then, with π := πz0, we have

‖π − πz‖ ≤ ν, for all z ∈ T, (2.89)

where ‖ · ‖ is the norm on H2 defined in (2.3). With λ1, λ2 such that |λ1| ≤ |λ2|
being the eigenvalues of the matrix Qπ defined in (2.2), we have

|f−ITf |W 1
p (T ) .

(
2h|λ1| + ρ|λ2| + 8νh

)
|T | 1

p . (2.90)

If, moreover, ρ
h

∼
∣∣∣λ1

λ2

∣∣∣
1
2 , then

|f − IT f |W 1
p (T ) .

(√
| det π| + 8ν

)
h|T | 1

p . (2.91)

The constants in both (2.90) and (2.91) depend only on γ(T ).

Proof. The result in (2.89) is straightforward. Consider a pair (σ, τ ) of orthonor-

mal vectors. Given a point z ∈ T , (2.88) implies that |D2
ijf(z) − D2

ijπ(z)| ≤ ν

so that |D2
ijf(z)| ≤ |D2

ijπ(z)| + ν for all i, j ∈ {σ, τ}. With η ∈ [0, 2π] denoting

the angle between σ and σh, and since from (1.22) ‖∇Dσf‖Lp(T ) ≤ |Dσf |W 1
p (T ),

Lemma 2.5.5 yields

|f − ITf |W 1
p (T ) . (h + ρ| sin η|)

( ∫

T

(
|D2

σσf(z)|2 + |D2
στf(z)|2

) p
2 dz

) 1
p

+ (ρ+ h| sin η|)
( ∫

T

(
|D2

στf(z)|2 + |D2
τ τf(z)|2

) p
2 dz

) 1
p

.(h+ ρ| sin η|)
( ∫

T

(
(|D2

σσπ(z)| + ν)2 + (|D2
στπ(z)| + ν)2

) p
2 dz

) 1
p

+ (ρ+ h| sin η|)
( ∫

T

(
(|D2

στπ(z)| + ν)2 + (|D2
τ τπ(z)| + ν)2

) p

2 dz
) 1

p

.
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Observe that, with λ1, λ2 and Uπ being as in (2.1) and (2.2), for any x, y ∈ R,

π ◦ Uπ(x, y) = [x y]
[
λ1 0

0 λ2

]
[x y]t = λ1x

2 + λ2y
2,

which, together with Lemma 2.5.6, yields

D2
xx(π ◦ Uπ)(x, y) = (D2

σσπ) ◦ Uπ(x, y) = λ1,

D2
yy(π ◦ Uπ)(x, y) = (D2

τ τπ) ◦ Uπ(x, y) = λ2,

D2
xy(π ◦ Uπ)(x, y) = (D2

στπ) ◦ Uπ(x, y) = 0.

By considering the triangle T0 = U−1
π (T ), we have |T0| = |T | and

|f − IT f |W 1
p (T ) . (h+ ρ| sin η|)

( ∫

T0

(
(|(D2

σσπ) ◦ Uπ(z)| + ν)2

+ (|(D2
στπ) ◦ Uπ(z)| + ν)2

) p
2 dz

) 1
p

+ (ρ+ h| sin η|)
( ∫

T0

(
(|(D2

στπ) ◦ Uπ(z)| + ν)2 + (|(D2
τ τπ) ◦ Uπ(z)| + ν)2

) p

2 dz
) 1

p

=|T0| 1
p

((
h+ ρ| sin η|

)(
(|λ1| + ν)2 + ν2

) 1
2 +

(
ρ+ h| sin η|

)(
(|λ2| + ν)2 + ν2

) 1
2

)

≤|T | 1
p

((
h+ ρ| sin η|

)
|λ1| +

(
ρ+ h| sin η|

)
|λ2| + 2ν(h+ ρ)

(
1 + | sin η|

))
,

with constant depending only on γ(T ). Since the above result holds for any pair

(σ, τ ), we can choose (σ, τ ) = (σρ,σh) so that η = 0. Hence (2.90).

By factorizing h in (2.90), we obtain

|f − ITf |W 1
p (T ) .

(
2|λ1| +

ρ

h
|λ2| + 8ν

)
h|T | 1

p

.

(
2|λ1λ2| 1

2 + C
∣∣∣
λ1

λ2

∣∣∣
1
2 |λ2| + 8ν

)
h|T | 1

p

.

(
(2 + C)|λ1λ2| 1

2 + 8ν
)
h|T | 1

p ,

which proves the result in (2.91).
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The condition ρ
h

∼
∣∣∣λ1

λ2

∣∣∣
1
2 is satisfied by triangles obtained by Lemma 2.4.5 by

using optimal or nearly-optimal triangles. This condition is also satisfied for the

triangle considered in Example 2.3.2, with h1 = h =
∣∣∣λ2

λ1

∣∣∣
1
4 and ρ = h2 =

∣∣∣λ1

λ2

∣∣∣
1
4 .

We obtain the following results for nearly-optimal triangles.

Corollary 2.5.8. Under the conditions of Proposition 2.5.7, suppose that T =

c1T0 + t1 is a scaled and translated version of an optimal triangle T0 ∈ ∆p(π),

where c1 is a non-zero constant and t1 a translation vector. Then,

|f − IT f |W 1
p (T ) .

(√
| det π| + 8ν

)
h|T | 1

p . (2.92)

If, moreover, ν ≤
√

| detπ|, then

|f − ITf |W 1
p (T ) . | det π| 1

4 ‖Qπ‖
1
2
2 |T | 1

2
+ 1

p . (2.93)

The constants in both (2.92) and (2.93) depend only on γ(T ).

Proof. Since h = c1hT0 and ρ = c1ρT0 , we deduce from (2.71) that

ρ

h
=
ρT0

hT0

∼
∣∣∣∣
λ1

λ2

∣∣∣∣
1
2

,

where λ1, λ2 are the eigenvalues of the matrix Qπ. Using Proposition 2.5.7, we

deduce from (2.91) that

|f − IT f |W 1
p (T ) .

(√
| det π| + 8ν

)
h|T | 1

p ,

with constant depending only on γ(T ).

In the case where ν ≤
√

| detπ|, the fact that | detπ| = |λ1λ2| and

h|T | 1
p =

√
2

(
h

ρ

) 1
2 |T | 1

2
+ 1

p ∼
∣∣∣∣
λ2

λ1

∣∣∣∣
1
4 |T | 1

2
+ 1

p (2.94)
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shows that

|f − ITf |W 1
p (T ) .

∣∣∣∣
λ2

λ1

∣∣∣∣
1
4 |λ1λ2|

1
2 |T | 1

2
+ 1

p = | detπ| 1
4 ‖Qπ‖

1
2
2 |T | 1

2
+ 1

p ,

thereby proving the result in (2.93).

The condition in (2.88) characterizes the partition into sub-squares of a square

domain Ω in Section 3.2.2.

The estimations in Corollary 2.5.8 use a nearly-optimal triangle T whose di-

ameter is h ∼
∣∣∣λ2

λ1

∣∣∣
1
4 where λ1, λ2 are the eigenvalues of π. In the case where f is

actually a homogeneous quadratic polynomial, as such f = π, due to the equiva-

lence in (2.94) and the fact that ν = 0, it is sufficient to use (2.92) to obtain the

estimation

|π − ITπ|W 1
p (T ) . |λ1|

1
4 |λ2|

3
4 |T | 1

p . (2.95)

On the other hand, for a nearly-optimal triangle T whose measure of non-degeneracy

ρπ(T ) is bounded by a constant, we deduce from Proposition 2.3.5 that

|π − ITπ|W 1
p (T ) ≤ C(hp + ρp)

1
p

√
| detπ||T | 1

p ≤ C ′|λ1|
1
4 |λ2|

3
4 |T | 1

p ,

for some constants C and C ′, thereby achieving a similar estimation as in (2.95).

2.6 Approximation on non-optimal triangles.

In general, there is no method as to know whether a given triangle T is nearly-

optimal for some πz or not. The Lp-norm estimations do not suffer from this

since we use (2.18) for m = 0 to obtain

‖f − ITf‖Lp(T ) ≤ Ch2|f |W 2
∞(T ), (2.96)

where C is an absolute constant.

68



Our goal in this section is to provide W 1
p -seminorm estimations for the ap-

proximation error on triangles which are not nearly-optimal. The results in this

section are of great use in Section 3.4.4 in order to estimate the W 1
p -seminorm of

the errors on the so-called interface triangles.

2.6.1 Using invertible affine maps

Instead of ensuring that the maximum interior angle γ(T ) of a triangle T is far

from the flat angle, suppose that there exists a linear map ϕ such that cond(ϕ) is

bounded and γ(ϕ−1(T )) is far from the flat angle. It is necessary to assume that

the condition number is bounded since otherwise such linear map always exists.

We have the following result.

Lemma 2.6.1. Given a triangle T , let ϕ be an invertible affine map. Then, for

any function f ∈ C2(T ), we have

|f − IT f |W 1
p (T ) . cond(ϕ)2h|f |W 2

p (T ), (2.97)

with constant depending only on the maximum angle γ
(
ϕ−1(T )

)
.

Proof. Let the matrix associated with φ be written as M = U
[
a 0

0 b

]
V t where U

and V are rotation matrices, and |a|, |b| the singular values of M . Since rotation

does not change the interior angles of a triangle, we can assume without loss of

generality that V = I. Consider the change of variables (x, y) = ϕ(x̄, ȳ). Since

U is a rotation matrix of some angle θ,

ϕ(x̄, ȳ) =
[
cos θ − sin θ

sin θ cos θ

][
a 0

0 b

]
[x̄ ȳ]t + [t1 t2]

t =
[
ϕ1(x̄, ȳ) ϕ2(x̄, ȳ)

]t
, (2.98)

where ϕ1(x̄, ȳ) = a cos θx̄ − b sin θȳ + t1 and ϕ2(x̄, ȳ) = a sin θx̄ + b cos θȳ + t2,

with t = [t1 t2]
t ∈ R2 is the translation vector associated with φ. We define the
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function f̂ := f − IT f which satisfies

|f̂ |W 1
p (T ) .

( ∫

T

(
|Dxf̂(x, y)|2 + |Dyf̂(x, y)|2

) p

2 dxdy
) 1

p

=
( ∫

T̄
|ab|

(
|(Dxf̂) ◦ ϕ(x̄, ȳ)|2 + |(Dyf̂) ◦ ϕ(x̄, ȳ)|2

) p
2 dx̄dȳ

) 1
p

, (2.99)

where T̄ = ϕ−1(T ). Using the differentiation rules for the composite function

f̂ ◦ ϕ, whose variables are x̄, ȳ, we have





Dx̄(f̂ ◦ ϕ)(x̄, ȳ) = (Dxf̂) ◦ ϕ(x̄, ȳ) · a cos θ + (Dyf̂) ◦ ϕ(x̄, ȳ) · a sin θ,

Dȳ(f̂ ◦ ϕ)(x̄, ȳ) = −(Dxf̂) ◦ ϕ(x̄, ȳ) · b sin θ + (Dyf̂) ◦ ϕ(x̄, ȳ) · b cos θ,

or, equivalently,





(Dxf̂) ◦ ϕ(x̄, ȳ) = Dx̄(f̂ ◦ ϕ)(x̄, ȳ) · b cos θ −Dȳ(f̂ ◦ ϕ)(x̄, ȳ) · a sin θ,

(Dyf̂) ◦ ϕ(x̄, ȳ) = Dx̄(f̂ ◦ ϕ)(x̄, ȳ) · b sin θ +Dȳ(f̂ ◦ ϕ)(x̄, ȳ) · a cos θ.

Recalling that f̂ = f − ITf , substituting the above expressions into (2.99) yields

|f − ITf |W 1
p (T ) .

( ∫

T̄
|ab|

(
|Dx̄(f̂ ◦ ϕ)(x̄, ȳ)|2b2 + |Dȳ(f̂ ◦ ϕ)(x̄, ȳ)|2a2

) p
2 dx̄dȳ

) 1
p

. max{|a|, |b|}|ab| 1
p |f̂ ◦ ϕ|W 1

p (T̄ ). (2.100)

Since f̂ ◦ ϕ = (f ◦ ϕ) − IT̄ (f ◦ ϕ), we can estimate |f̂ ◦ ϕ|W 1
p (T̄ ) by using (2.20)

with (σ̄, τ̄) := (σhT̄
, σρT̄

), and obtain from (2.100) that,

|f − IT f |W 1
p (T ) .max{|a|, |b|}|ab| 1

p |(f ◦ ϕ) − IT̄ (f ◦ ϕ)|W 1
p (T̄ )

.max{|a|, |b|}|ab| 1
p

(
hT̄‖D2

σ̄σ̄(f ◦ ϕ)‖Lp(T̄ )

+ hT̄‖D2
σ̄τ̄ (f ◦ ϕ)‖Lp(T̄ ) + ρT̄‖D2

τ̄ τ̄ (f ◦ ϕ)‖Lp(T̄ )

)
, (2.101)

with constant depending on γ(T̄ ). The norms ‖D2
σ̄σ̄(f◦ϕ)‖Lp(T̄ ), ‖D2

σ̄τ̄ (f◦ϕ)‖Lp(T̄ )

and ‖D2
τ̄ τ̄ (f ◦ ϕ)‖Lp(T̄ ) need to be evaluated. First, we express Dσ̄(f ◦ ϕ) and

Dτ̄ (f ◦ ϕ) as linear combinations of Dx̄(f ◦ ϕ) and Dȳ(f ◦ ϕ), that is, there is an
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angle θ̄ such that

Dσ̄(f ◦ ϕ) = Dx̄(f ◦ ϕ) · cos θ̄ + Dȳ(f ◦ ϕ) · sin θ̄,

Dτ̄ (f ◦ ϕ) = −Dx̄(f ◦ ϕ) · sin θ̄ +Dȳ(f ◦ ϕ) · cos θ̄.

Recalling from (2.98) that ϕ = (ϕ1, ϕ2), we find that

Dx̄(f ◦ ϕ)(x̄, ȳ) =
∂ϕ1(x̄, ȳ)

∂x̄
(Dxf) ◦ ϕ(x̄, ȳ) +

∂ϕ2(x̄, ȳ)

∂x̄
(Dyf) ◦ ϕ(x̄, ȳ)

= a cos θ(Dxf) ◦ ϕ(x̄, ȳ) + a sin θ(Dyf) ◦ ϕ(x̄, ȳ),

Dȳ(f ◦ ϕ)(x̄, ȳ) =
∂ϕ1(x̄, ȳ)

∂ȳ
(Dxf) ◦ ϕ(x̄, ȳ) +

∂ϕ2(x̄, ȳ)

∂ȳ
(Dyf) ◦ ϕ(x̄, ȳ)

= −b sin θ(Dxf) ◦ ϕ(x̄, ȳ) + b cos θ(Dyf) ◦ ϕ(x̄, ȳ).

With A11 = a cos θ cos θ̄ − b sin θ sin θ̄, A12 = a sin θ cos θ̄ + b cos θ sin θ̄ and also

A21 = −(a cos θ sin θ̄ + b sin θ cos θ̄), A22 = −a sin θ sin θ̄ + b cos θ cos θ̄,

Dσ̄(f ◦ ϕ) = A11(Dxf) ◦ ϕ+ A12(Dyf) ◦ ϕ,

Dτ̄ (f ◦ ϕ) = A21(Dxf) ◦ ϕ+ A22(Dyf) ◦ ϕ.

It immediately follows that

D2
σ̄σ̄(f ◦ ϕ) =Dσ̄

(
A11(Dxf) ◦ ϕ+ A12(Dyf) ◦ ϕ

)

=A11

(
A11(D2

xxf) ◦ ϕ+ A12(D2
xyf) ◦ ϕ

)

+ A12

(
A11(D2

xyf) ◦ ϕ+ A12(D2
yyf) ◦ ϕ

)

=A2
11(D2

xxf) ◦ ϕ+ 2A11A12(D2
xyf) ◦ ϕ+ A2

12(D2
yyf) ◦ ϕ, (2.102)
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D2
σ̄τ̄ (f ◦ ϕ) =Dσ̄

(
A21(Dxf) ◦ ϕ+ A22(Dyf) ◦ ϕ

)

=A21

(
A11(D2

xxf) ◦ ϕ + A12(D
2
xyf) ◦ ϕ

)

+ A22

(
A11(D

2
xyf) ◦ ϕ+ A12(D2

yyf) ◦ ϕ
)

=A11A21(D2
xxf) ◦ ϕ+ (A21A12 + A11A22)(D2

xyf) ◦ ϕ

+ A12A22(D2
yyf) ◦ ϕ, (2.103)

D2
τ̄ τ̄ (f ◦ ϕ) =Dτ̄

(
A21(Dxf) ◦ ϕ+ A22(Dyf) ◦ ϕ

)

=A21

(
A21(D2

xxf) ◦ ϕ+ A22(D2
xyf) ◦ ϕ

)

+ A22

(
A21(D2

xyf) ◦ ϕ+ A22(D2
yyf) ◦ ϕ

)

=A2
21(D2

xxf) ◦ ϕ+ 2A21A22(D2
xyf) ◦ ϕ+ A2

22(D2
yyf) ◦ ϕ. (2.104)

Since max{|A11|, |A12|, |A21|, |A22|} ≤ 2 max{|a|, |b|}, we easily prove that

max
{

‖D2
σ̄σ̄(f ◦ ϕ)‖Lp(T̄ ), ‖D2

σ̄τ̄ (f ◦ ϕ)‖Lp(T̄ ), ‖D2
τ̄ τ̄ (f ◦ ϕ)‖Lp(T̄ )

}

≤16 max{|a|, |b|}2

max
{

‖(D2
xxf) ◦ ϕ‖Lp(T̄ ), ‖(D2

xyf) ◦ ϕ‖Lp(T̄ ), ‖(D2
yyf) ◦ ϕ‖Lp(T̄ )

}

=16 max{|a|, |b|}2|ab|− 1
p max

{
‖D2

xxf‖Lp(T ), ‖D2
xyf‖Lp(T ), ‖D2

yyf‖Lp(T )

}

≤16 max{|a|, |b|}2|ab|− 1
p |f |W 2

p (T ).

The estimation in (2.101) now reads

|f − ITf |W 1
p (T ) . max{|a|, |b|}3hT̄ |f |W 2

p (T ).

We are now left to estimate hT̄ . By virtue of the fact that translation vec-

tors do not change the edge-vectors of a triangle, for any edge-vector e of T ,

we observe that ϕ−1(e) = 1
ab

[
1/a 0

0 1/b

]
U−1(e). We deduce that ‖ϕ−1(e)‖ ≤
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1
|ab| max

{
1

|a| ,
1
|b|

}
‖e‖. Hence

|f − ITf |W 1
p (T ) .

max{|a|, |b|}
min{|a|, |b|}

max{|a|, |b|}2

|ab| hT |f |W 2
p (T ).

Combining this with the above estimation yields the result in (2.97).

In the case where the interior angles of T are far from π, the map ϕ is the

identity function so that a = b = 1 and thus

|f − ITf |W 1
p (T ) . h|f |W 2

p (T ),

which is obtainable from (2.20).

In the example below, we show what happens when we use the map ϕ given

by (2.8).

Example 2.6.1. Let T be a fixed triangle. Given a triangle T0, there always

exists an affine map ϕ such that ϕ(T0) = T . Choosing T0 as the reference triangle

T̂ in Figure 2.2, the affine map ϕ is given by (2.8). For the associated matrix M

given in (2.9), its singular values are given by
√

Λ1,
√

Λ2 in (2.24) and (2.25), they

satisfy
√

Λ1 ∼ h and
√

Λ2 ∼ ρ where h is the diameter of T and ρ its smallest

height. Since T̂ is fixed, the constant depending on its maximum interior angle

as shown in (2.97) becomes an absolute constant. Thus

|f − ITf |W 1
p (T ) ≤ C

Λ1

Λ2

h|f |W 2
p (T ) ≤ C ′h

3

ρ2
|f |W 2

p (T ), (2.105)

where C and C ′ are absolute constants. This is weaker than the standard esti-

mation in (2.18).

2.6.2 Using quadratic polynomials

Given a triangle T ⊂ Ω and a function f ∈ C2(T ), our aim is to estimate the

W 1
p -seminorm of the error f − ITf by using homogeneous quadratic polynomials

as shown in (2.106) below, instead of ensuring that the maximum angle γ(T )
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is far from the angle π. The methods presented here can be applied when the

Hessian of f does not vary much on T (e.g. if f satisfies (2.88)), that is, the

Hessian Hf can be represented by a homogeneous quadratic polynomial in H2.

Given a homogeneous quadratic polynomial π ∈ H2,

f − ITf = (f − π) − IT (f − π) + π − ITπ. (2.106)

By using (2.18), there is a constant C such that

|(f − π) − IT (f − π)|W 1
p (T ) ≤ C

h2

ρ
|f − π|W 2

p (T ), (2.107)

with h and ρ being the length scales of T . Since we assume that T is an arbitrary

triangle which is not nearly-optimal, the ratio h
ρ

can be unbounded.

We now use Proposition 2.3.5 to obtain that

|π − ITπ|W 1
p (T ) ≤ C2ρπ(T )h|T | 1

p

√
| detπ|, (2.108)

for some constant C2, where the measure of non-degeneracy ρπ is defined in

(2.39). For convenience, we denote by C the maximum between C and C2, so

that combining (2.107) and (2.108) yields

|f − ITf |W 1
p (T ) ≤ C

(
h

ρ
|f − π|W 2

∞(T ) + ρπ(T )
√

| detπ|
)
h|T | 1

p

= C
(
h

ρ
max
z′∈T

‖πz′ − π‖ + ρπ(T )
√

| det π|
)
h|T | 1

p (2.109)

with ‖π‖ denoting the maximum coefficient of π. The result below is obtained

by choosing π = πz for some point z ∈ T .

Proposition 2.6.2. Let z ∈ T be any point of a triangle T . Given a function

f ∈ C2(T ), there is an absolute constant C such that

|f − ITf |W 1
p (T ) ≤ C

(
h

ρ
ω(h) + ρπz(T )

√
| det πz|

)
h|T | 1

p . (2.110)
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Proof. Noting that

max
z′∈T

‖πz′ − πz‖ ≤ ω(max
z′∈T

|z′ − z|) ≤ ω(h), (2.111)

the result in (2.110) follows from (2.109).

Similar to the estimation |f−ITf |W 1
p (T ) ≤ C h2

ρ
|f |W 2

p (T ) obtainable from (2.18),

the ratio h
ρ
ω(h) in (2.110) can be problematic when the smallest height ρ is small.

However it does give O(h) estimates for moderately anisotropic triangles for which

hω(h) ≤ C1ρ and ρπz(T ) ≤ C2. For example when f ∈ C3
p (T ) the mean value

theorem for the second derivatives of f yields

‖πz − πz′‖ ≤ |z − z′||f |W 3
∞(T ), z, z′ ∈ T.

This implies that for all r > 0, we have ω(r) ≤ r|f |W 3
∞(T ). Hence h

ρ
ω(h) ≤

h2

ρ
|f |W 3

∞(T ) and O(h) estimate holds when h2

ρ
is bounded which allows aspect

ratio up to h
ρ

∼ h
h2 = 1

h
.

In the example below, we illustrate (2.110) in the setting of Example 2.3.2.

Example 2.6.2. Suppose that πz(x, y) = ax2 + by2 at a point z ∈ A. We use

the same settings as in Example 2.3.2 but with π = πz. In addition, suppose that

there is a constant C0 so that ω(h) ≤ C0|λ1| = C0|a| holds, with |λ1| 6= 0 being

the smallest (in absolute value) eigenvalues of Qπz . Thus

h

ρ
ω(h) .

∣∣∣
b

a

∣∣∣
1
2 |a| = |ab| 1

2 .

By using Proposition 2.6.2, with h ∼
∣∣∣ b
a

∣∣∣
1
4 ,

|f − ITf |W 1
p (T ) . |ab| 1

2

∣∣∣
b

a

∣∣∣
1
4 |T | 1

p . |a| 1
4 |b| 3

4 |T | 1
p ,

the constant in the inequalities are absolute. For comparison, the estimation from

75



(2.18) gives

|f − ITf |W 1
p (T ) ≤ C

h2

ρ
|f |W 2

p (T ) .
∣∣∣
b

a

∣∣∣
3
4 |f |W 2

p (T ),

which is unbounded as a → 0. Moreover, the estimation in (2.87) cannot be

applied when a is very small and b large in which case the triangle T presents a

big interior angle, although the expected bound shows

|f − ITf |W 1
p (T ) .

∣∣∣
b

a

∣∣∣
1
4 |D2

xf |W 1
p (T ) +

∣∣∣
a

b

∣∣∣
1
4 |D2

yf |W 1
p (T ),

with constant depending on the maximum interior angle of T .
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Chapter 3

Asymptotically optimal

interpolation by piecewise

linear polynomials

In this chapter, the target function f is approximated on a square domain Ω ⊂
R2 which we triangulate according to the properties of f , that is, by using the

eigenvalues and eigenvectors of the Hessian Hf at some pre-selected points. We

assume that f ∈ C2(Ω) is strictly convex (or concave) on Ω.

It is known that the approximation order in Lp-norm (p ∈ [1,∞]) of a piece-

wise linear approximation on a triangulation ∆N cannot be better than O(N−1)

(see [16]), where N is the bound on the number of triangles. This order can easily

be achieved (by using the estimation (2.18)), for instance, on uniform triangula-

tions where the diameter hN := maxT∈∆N
hT satisfies h2

N ∼ N−1,

‖f − fN‖Lp(Ω) ≤ CN−1‖Hf‖Lp(Ω), (3.1)

where fN is the approximant of f by using ∆N , and where ‖Hf‖Lp(Ω) := |f |W 2
p (Ω).

The improvement of the estimation with respect to the Lp-norm on the right

hand side of (3.1) has been addressed by many papers. For instance, in [12], the
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estimation below is achieved for f ∈ C2(Ω),

‖f − fN‖Lp(Ω) ≤ CN− 2
d ‖ d

√
det Hf‖Lσ(Ω), (3.2)

where Ω ⊂ Rd, d ≥ 2, and C is independent of f , with 1
σ

= 2
d
+ 1
p
, and Hf denoting

a majorizing Hessian matrix for f which is the same as the Hessian matrix Hf if

f is a strictly convex function. In the case where d = 2 and f is a strictly convex

function, clearly, (3.2) improves on (3.1) by virtue of

‖
√

detHf‖Lq(Ω) ≤ ‖
√

detHf‖Lp(Ω) ≤ ‖Hf‖Lp(Ω),

where 1
q

= 1 + 1
p
. However, the expression of the constant C in (3.2) is generally

unknown. For d = 2, several papers considered the question of designing triangu-

lations where the error of interpolation has the best possible asymptotic constant

in the sense of lim sup. For strictly convex functions, the smallest possible con-

stant and its exact expression has been found in [3]: Amongst all triangulations

∆N of at most N triangles, it is proved that

lim
N→∞

N
(

inf
∆N

‖f − fN‖Lp(Ω)

)
=
C+
p

2
‖

√
detHf‖Lq(Ω), (3.3)

where C+
p is the value of the Lp-norm best approximation of the polynomial

π0(x, y) = x2 + y2 over all equilateral triangles of unit area. The case p = ∞ is

treated in [2] where slight changes occur on the right hand side of (3.3). Namely,

q becomes 1 and C+
p becomes a constant equivalent to 1 + o(1) as N → ∞.

The extension of (3.3), for the case where the approximant1 fm,N is a piecewise

polynomial of order m − 1, with m ≥ 2, and where the function f ∈ Cm(Ω) is

not necessarily convex, has been developed in [29] where the estimation is of the

form

lim sup
N→∞

N
m
2 ‖f − fm,N‖Lp(Ω) ≤

∣∣∣∣
∣∣∣∣Km,p

(dmf
m

)∣∣∣∣
∣∣∣∣
L̺(Ω)

, (3.4)

1 Interpolating the target function at specific points of the triangulation by using barycentric
coordinates.
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where 1
̺

= m
2

+ 1
p
, the notation dmf denotes the m-th derivative of f , and where

Km,p(π) is the value of the Lp-norm best approximation over all triangles of unit

area of a homogeneous polynomial π of degree m. Note that (3.4) is optimal in

the sense that its right hand side is a lower bound for a large class of admissible

triangulations. Note also that in the case m = 2, (3.4) coincides with (3.3).

Another extension, but with a different triangulation method (although still using

the patching strategy described in Section 3.1.1 below), is developed in [30] for

the W 1
p -seminorm of the error,

lim sup
N→∞

N
m−1

2 |f − fm,N |W 1
p (Ω) ≤

∣∣∣∣
∣∣∣∣Lm,p

(dmf
m

)∣∣∣∣
∣∣∣∣
Lτ (Ω)

, (3.5)

where 1
τ

= m−1
2

+ 1
p
, and where Lm,p(π) is the value of the W 1

p -seminorm best

approximation over all triangles of unit area of a homogeneous polynomial π of

degree m. It is proved that (3.5) cannot be further improved.

In [2, 3], it is discussed that the problem of approximating a convex func-

tion f ∈ C2(Ω) by piecewise linear polynomials is related to the problem of

approximating convex bodies in R3 by inscribed polytopes. That is, designing

a triangulation is equivalent to inscribing a polytope. We refer the reader to

[6, 7, 25] for more details on this problem.

In [14, 31], the triangulation method is based on the so-called greedy algorithm

which iteratively constructs a sequence of nested triangulations (∆N)N≥N0 from

a given triangulation ∆N0 . The general idea consists in obtaining triangulations

which equidistribute the local errors between triangles. A triangle is then bisected

if it gives a local error greater than a prescribed tolerance. This, however, results

in a non-conforming triangulation. Nevertheless, for strictly convex functions,

the estimation (3.2) is also achieved (with d = 2), where the constant C has no

exact expression.

We refer to [5] for a review of the rich literature on mesh generations and

optimal triangulations aimed at solving partial differential equations. In many

papers, the optimal triangulation is characterized by the metric induced by the
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Hessian [11, 12, 14, 31, 32]. The triangles of the triangulation are required to

have regular (or isotropic) shapes with respect to the metric used. The problem

of whether or not such a characterization can be applied to obtain asymptotically

optimal triangulations is still open.

It is also an open question whether both optimal estimates (3.4) and (3.5) can

be achieved simultaneously on the same sequence of triangulations. In this regard,

the purpose of this chapter is to design a sequence (∆N)N≥N0 of anisotropic

triangulations (see Section 3.2) on which the optimal result in (3.3) is achieved,

and such that an asymptotic error estimation in W 1
p -seminorm of optimal order

O(N−1/2) can be derived. For any strictly convex f ∈ C2(Ω), we obtain the

asymptotic estimations

lim sup
N→∞

N‖f − fN‖Lp(Ω) ≤
∣∣∣∣
∣∣∣∣Kp

(d2f

2

)∣∣∣∣
∣∣∣∣
Lq(Ω)

, (3.6)

lim sup
N→∞

N
1
2 |f − fN |W 1

p (Ω) ≤ Cp|f |
1
2

W 2
p (Ω)

∣∣∣∣
∣∣∣∣Kp

(d2f

2

)∣∣∣∣
∣∣∣∣

1
2

Lq(Ω)
, (3.7)

where 1 ≤ p < ∞, 1
q

= 1+ 1
p
, Cp is a constant depending on p, andKp = K2,p. The

asymptotic estimation in (3.6) is exactly the same as in (3.4) for m = 2. However,

the estimation in (3.7) is the first inW 1
p -seminorm estimation to be obtained when

using a sequence of triangulations which are designed to be optimal with respect

to the Lp-norm.

The triangulation method which we present can be divided into two main

tasks: The first task consists in obtaining the so-called regular regions, a similar

method as in [2, 3, 29, 30]. Obtaining regular regions consists in grouping triangles

that fit into initially prescribed sub-squares of Ω. In our approach, the triangles

contained in a regular region are designed to be isosceles and such that their

directions of alignments, which are the directions of the eigenvalues of Hf at the

centers of the subs-squares, are well-conditioned. The triangles obtained from

regular regions are slightly modified optimal triangles and thus local errors are

easy to estimate. The second task, which is much more difficult and more delicate,

consists in obtaining the so-called irregular polygons by extending the segments
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defining the regular regions (see Section 3.2.3). The triangles obtained from

irregular polygons can have various shapes, and we use the results in Section 2.6

to estimate the local errors. Various properties of our triangulation are provided

in Section 3.3.

The chapter is organized as follows. In Section 3.1, we review the patching

strategy and discuss the optimality of (3.3) and (3.4). In Section 3.2, we present

our construction method in order to produce a sequence of optimal triangula-

tions. It involves designing regular and irregular regions mentioned above. The

properties of the constructed triangulations are discussed in Section 3.3. They

include the estimation of the longest edge of an irregular triangle, the area cov-

ered by irregular regions, and the interior angles of the irregular regions after

the so-called back transformation. These properties are essential for the analyt-

ical proof of our asymptotic error estimations in Section 3.4, in both Lp-norm

and W 1
p -seminorm, as shown in (3.6) and (3.7). We conclude the chapter with a

numerical illustration in Section 3.5.

3.1 Background

Let Ω ⊂ R2 be a bounded domain. In order to obtain (3.6), the anisotropic

triangulation ∆N of Ω is constructed according to the properties of f . We present

here the principal ideas, as found in [2, 3] and [29] but using our settings, for the

construction of the anisotropic triangulation ∆N . For simplicity, the domain Ω

is assumed to be a square.

3.1.1 Triangulation by patching strategy

The domain Ω is divided into m2 sub-squares Si, i = 1, . . . , m2 of side length

r > 0. The parameter r is chosen small enough so that the second derivatives

of f do not significantly change on each Si (e.g. by using (2.88) with d =
√

2r).

On each sub-square Si, the function f is replaced by the quadratic polynomial
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Figure 3.1: Regular and irregular triangles obtained by patching strategy.

πbi
, where bi is the barycenter of Si. Recall that an optimal triangle for πbi

is a

triangle on which the infimum

inf
|T |=1

‖πbi
− ITπbi

‖Lp(T ), (3.8)

is attained. The local error analysis developed in Chapter 2 is applied.

The first step consists in partitioning each sub-square Si, i = 1, . . . , m2 into

polygons by copying and aligning side by side into Si the scaled versions of an

optimal triangle for πbi
. The areas covered by the copies of the scaled optimal

triangle are called regular regions, and the remaining non-covered areas are called

the irregular regions. One of the principal goals is to ensure that the area cov-

ered by irregular regions is significantly smaller than the area covered by regular

regions.

Naturally, the shapes and directions of the triangles inside the regular regions

are chosen depending on the Hessian Hf of the function. The irregular regions are

then partitioned by some method. For instance, in [29] it is suggested to use the

Delaunay triangulation, (see Figure 3.1). The emerging irregular triangles can

have arbitrary shapes and this is one of the reasons that deriving W 1
p -seminorm

estimations are problematic: The diameters of the irregular triangles are easily

bounded and thus Lp-norm estimations of the error can be obtained, however

there is no guarantee for the aspect ratios of the irregular triangles to be bounded,

nor that their interior angles should be far from the flat angle.
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In [29], the study of Lp-norm asymptotic estimations does not depend on

the knowledge of the optimal triangles’ shapes, and it is only assumed that f ∈
C2(Ω). However, as shown in [3], when the Hessian Hf is positive definite (which

is also our case in Section 3.2), it is known that (3.8) is attained on triangles

that are stretched and aligned in the directions of the eigenvectors of the matrix

associated with πbi
, thereby allowing for more practical triangulation algorithms

to be performed. Such a favorable attribute is difficult to achieve in the case of

indefinite Hf since the shapes of triangles satisfying (3.8) are not fully known

(see Section 2.4.2).

3.1.2 Optimality

The optimality of (3.6) means that equality occurs when using a certain family

of triangulations (∆N )N≥N0. In [29], the right hand side of (3.6) is proved to be a

lower bound when using a family of triangulations (∆N )N≥N0, termed admissible,

satisfying the condition

sup
T∈∆N

h2
T ≤ CN−1, (3.9)

where C is a constant independent of N , and recalling that hT denotes the di-

ameter of the triangle T . Clearly the mesh size of a triangulation ∆N belonging

to such family goes to zero as N grows. The condition in (3.9) is piqued by the

estimation of the difference of errors, for each T ∈ ∆N ,

|eT (πz) − eT (f)| ≤ 2|T | 1
ph2

Tω(hT ), z ∈ T,

with ω defined in (2.75). The above estimation is the pillar to proving the lower

asymptotic estimation which is obtained by summing up the errors over all tri-

angles in the triangulation.

By a different method, the optimality of (3.6) is proved in [3] by using a family
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of triangulations (∆N)N≥N0 satisfying, for a given ε > 0,

∑

T∈IN (ε)∪JN (ε)

|T | < ε, (3.10)

where the subsets IN (ε) and JN(ε) of ∆N are defined by

IN (ε) :=
{
T : hT

ρT
≥ C+

p ε

16ω(hT )

√
| detπzT

|
}

and JN(ε) :=
{
T : hT ≥ ε

N
1
4

}
,

with C+
p = inf |T |=1 ‖π0 − ITπ0‖Lp(T ) where π0(x, y) = x2 + y2, and with zT being

a point on the longest edge of T . The condition in (3.10) shows that the area

covered by triangles whose aspect ratios or diameters are uncontrollable is small.

Note that (3.9) and (3.10) are not necessarily linked to one another. In the

example below, we show that a uniform triangulation can satisfy both of the

conditions (3.9) and (3.10).

Example 3.1.1. Consider a family of uniform triangulations (∆N)N≥2, where

each ∆N is described as follows: Divide Ω into m2 sub-squares of side length

r > 0, then divide each sub-square by its diagonal parallel to the vector [1 1]t.

Then the family of triangulations (∆N)N≥2 satisfies (3.9). Indeed, since |Ω| =
∑
T∈∆N

|T | = N r2

2
and for each triangle T ∈ ∆N we have hT =

√
2r, clearly

sup
T∈∆N

h2
T = 4|Ω|N−1.

The aspect ratio of each triangle T ∈ ∆N satisfies hT

ρT
= 2, thus given ε > 0

clearly hT

ρT
= 2 ≥ C+

p ε

16ω(hT )

√
| detπzT

| holds whenever ε satisfies

ε ≤ 32ω(hT )

C+
p

√
| det πzT

|
. (3.11)

The term ω(hT ) = ω(2
√

|Ω|N− 1
2 ) which depends on the Hessian Hf does not

necessarily have an explicit formula. In the case where f is a quadratic polynomial
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of the form f(x, y) = x2 + y2, det πz = 1 for all z ∈ Ω, and since for any z′ ∈ Ω,

‖πz − πz′‖ = max{|D2
xxf(z) −D2

xxf(z′)|, |D2
yyf(z) −D2

yyf(z′)|} = 0,

clearly ω(r) = 0 for all r and thus (3.11) can not hold for any ε > 0, that is,

IN(ε) = ∅.

On the other hand, the condition for a triangle T to be in JN (ε) is hT =

2
√

|Ω|N− 1
2 ≥ εN− 1

4 , that is, if ε satisfies,

ε ≤ 2
√

|Ω|N− 1
4 . (3.12)

Letting Nε = ⌈16|Ω|2
ε4 ⌉, for any N > Nε we have ε > 2

√
|Ω|N− 1

4 , so that (3.12)

does not hold, that is, JN (ε) = ∅ independently of the properties of Hf . If f is

the quadratic polynomial mentioned above, then (∆N)N≥2 clearly satisfies (3.10)

for any ε > 0.

It is well known that isotropic triangulations (including the uniform ones)

do not necessarily provide the sharpest asymptotic estimations. In this regard,

anisotropic triangulations find interest in our study and we shall now present our

triangulation method.

3.2 Triangulation of the domain

In this section, we present a novel technique of anisotropic triangulation. The

initial procedures are similar to those found in [2, 3, 29, 30] in order to obtain

regular regions. However, the triangles that form these regions will be isosceles.

Also, instead of using the patching strategy (see Section 3.1.1) that connects the

vertices of non-regular regions, the vertices of the regular regions will be connected

to other ones by extending the segments that define the regular regions.

The square domain Ω is divided intom2 auxiliary sub-squares Si, i = 1, . . . , m2,

of side length r > 0. For each i = 1, . . . , m2, we denote by bi the barycenter of
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the sub-square Si. As before, the parameter r is chosen small enough so that

the second derivatives of f do not significantly change on each sub-square. The

regular region contained in Si is described in Section 3.2.2 by using the shifts of

a scaled version of an optimal triangle Ti for πbi
. The characteristics of each Ti

are described in the sections below.

We denote by λ1,i, λ2,i the eigenvalues of the matrix Qπbi
, with i ∈ {1, . . . , m2},

described as in (2.1) and (2.2). We assume that there is a constant δf ∈ (0, 1)

such that, for all i ∈ {1, . . . , m2},

δf ≤ |λ1,i|. (3.13)

The above condition simply means that f is strictly convex. Such an assumption

can be found in [2, 3, 31], but not in [29, 30] where the results hold for any smooth

function f ∈ C2(Ω).

We also use the following assumption (same as in (2.88) with ν = ω(
√

2r)):

Given a pair of orthonormal vectors (σ, τ ), for any z ≤ B(bk,
√

2r), k = 1, . . . , m2,

|D2
ijf(bk) −D2

ijf(z)| ≤ ω(
√

2r), (3.14)

with i, j ∈ {σ, τ}, and where ω is defined in (2.75). Observe that the radius
√

2r of

the ball B(bk,
√

2r) is the maximum distance of two neighboring barycenters. By

choosing r to be small enough, we can ensure that the second derivatives of f are

still close to one another (or nearly constant) between neighboring barycenters.

The parameter r is chosen to be sufficiently small in such a way that

ω(
√

2r) ≤
( Kfδf

maxz∈Ω ‖Hf(z)‖2

)2

, (3.15)

where Cδf
= 33π + 2δ

−1/2
f and Kf =

(
105 3

2
C2
δf

|f |
1
2

W 2
∞(Ω)

)−1

. The presence of the

two constants will be justified later. We can relate the above condition to the

eigenvalues of Qπi
, i = 1, . . . , m2: For each i = 1, . . . , m2, we combine (3.13) with
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the fact that |λ2,i| ≤ maxz∈Ω ‖Hf(z)‖2 to deduce that

δf
maxz∈Ω ‖Hf(z)‖2

≤ min
i

∣∣∣
λ1,i

λ2,i

∣∣∣, (3.16)

and thus a consequence of (3.15) is that

ω(
√

2r) ≤ min
i∈{1,...,m2}

{
K2
f

∣∣∣
λ1,i

λ2,i

∣∣∣
2
}
. (3.17)

It is essential that r is chosen small enough as we shall see in Section 3.4 where

we derive asymptotic error estimations in Lp-norm and W 1
p -seminorm.

3.2.1 Conditioning angles of rotation

Recall from the previous chapter that we use homogeneous quadratic polynomials

as intermediate steps in order to estimate local errors. In fact, as we shall see

later, we shall instead use slightly perturbed homogeneous quadratic polynomials.

Given a non-degenerate polynomial π ∈ H2, the eigenvectors of Uπ = Rµ as

described in (2.2) provide the alignment directions of an optimal triangle T ∈
∆π. This is clear from Lemma 2.4.5 and the properties of the linear map φπ as

defined in (2.42). Unfortunately, these eigenvectors are ill-conditioned when the

eigenvalues of Qπ are close to one another (see [20, 35]). That is to say, for a

matrix Q̄π resulting from small perturbations in the coefficients of Qπ (or those

of π), the alignment directions of its eigenvalues can be abruptly altered from

those of Qπ.

In the example below, we illustrate the effect of close eigenvalues that causes

ill-conditioning to the corresponding eigenvectors:

Example 3.2.1. Consider the function f(x, y) = x2 + (1 + δx)y2, δ ≥ 0, whose

Hessian is given by Hf(x, y) =
[

2 2δy

2δy 2(1 + δx)

]
. For x0 ∈ R, the eigenvectors

of Hf(x0, 0) =
[
2 0

0 2(1 + δx0)

]
are exactly the unit vectors e1 = [1 0]t and

e2 = [0 1]t. These eigenvectors are fixed whenever y = 0. For y0 > 0, the
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Hessian given by Hf(0, y0) =
[

2 2δy0

2δy0 2

]
has eigenvalues λ1 = 2 − 2δy0 and

λ2 = 2 + 2δy0. For each i = 1, 2, the eigenvector vi = [xi yi]
t corresponding to λi

satisfies 2xi + 2δy0yi = λixi which yields, for any α 6= 0, [xi yi] =
[
α (λi−2)α

2δy0

]
. It

is easily shown that

v1 = [1 1]t and v2 = [−1 1]t.

If δ is small, we observe the abrupt change of eigenvectors in the neighborhood of

the point (0, 0), which shows the ill-conditioning of eigenvectors when eigenvalues

are close to one another.

Such big variations can cause an extensive disadvantage in the quality of the

triangulations constructed in Section 3.2 if the alignment directions of the optimal

triangles Ti, i = 1, . . . , m2 remain the same as those of the eigenvectors of Qπbi
.

To prevent this issue, we introduce adjustment angles for quadratic polynomials

whose eigenvalues are close to one another.

Consider a non-degenerate polynomial π ∈ H2 such that the difference of its

eigenvalues satisfy |λ2 − λ1| ≤ ε, for some small number ε > 0. Let v1,v2 denote

the eigenvectors associated with λ1, λ2, respectively. For any angle ϑ ∈ [0, 2π],

with Rµ−ϑ = Rµ ◦R−ϑ, the eigenvalues of the matrix

Q̄π = Rµ−ϑ

[
λ1 0

0 λ2

]
Rt
µ−ϑ, (3.18)

are exactly λ1 and λ2, with easily provable corresponding eigenvectors v̄1 = R−ϑv1

and v̄2 = R−ϑv2 due to the commutativity Rµ ◦ R−ϑ = R−ϑ ◦ Rµ from which it

holds that

Q̄πv̄i =
(
R−ϑUπ

[
λ1 0

0 λ2

]
U t
πRϑ

)
R−ϑvi = λiR−ϑvi = λiv̄i, i = 1, 2.

The adjustment angle ϑ defined in Proposition 3.2.4 is chosen such that the

angle µ − ϑ is well conditioned in the sense of (3.28), where µ = µ(π) ∈ [0, π)

is as described in (2.2) and in Figure 2.1. Recall that the optimal triangle for

88



π is obtained from an optimal triangle for ̟π by stretching and aligning it in

the directions of the eigenvectors of Qπ. The angle ϑ is used to adjust these

directions so that abrupt changes of alignments may not occur. In doing so,

the new alignment directions are well-conditioned and the error on the adjusted

triangles can be bounded as shown in part c. of Proposition 3.2.4.

Let Uπ = [v1 v2] where v1 = [cosµ sin µ]t and v2 = [− sinµ cosµ]t denote

the normalized eigenvectors associated with λ1 and λ2. Let π′ ∈ H2 be a quadratic

polynomial obtained by small perturbations of the coefficients of π. Denote by

v′
1,v

′
2 the eigenvectors corresponding to the eigenvalues λ′

1, λ
′
2 of π′.

The following result is found in [35, Corollary 5.5.6].

Lemma 3.2.1. For any eigenvalue λ′
i, i = 1, 2, of Qπ′, there is an eigenvalue λj

of Qπ, with j ∈ {1, 2}, such that

|λ′
i − λj | ≤ ‖Qπ′ −Qπ‖2. (3.19)

Lemma 3.2.1 shows that the eigenvalues of Qπ are always well-conditioned.

With µ′ denoting the angle of Uπ′, writing v′
1 = [cosµ′ sinµ′]t and v′

2 =

[− sin µ′ cosµ′]t, simple computations show that

‖vk − v′
k‖2 =

√
(cosµ− cosµ′)2 + (sinµ− sin µ′)2 =

√
2 − 2 cos |µ− µ′|

= 2 sin
( |µ− µ′|

2

)
, (3.20)

hold for each k = 1, 2. Thus, the 2-norm of the perturbation vector vk − v′
k de-

pends on the difference µ−µ′. Let w1,w2 denote two normalized left eigenvectors

of Qπ associated with λ1, λ2, that is, satisfying wt
iQπ = λiw

t
i, i = 1, 2, and define

si = wt
ivi.

Lemma 3.2.2 ([35]). For each i = 1, 2, define κi = |si|−1 as the condition number

associated with the eigenvalue λi. Then, for each k = 1, 2,

‖vk − v′
k‖2 ≤

( ∑

i6=k

κi
|λk − λi|

)
‖Qπ −Qπ′‖2 +O

(
‖Qπ −Qπ′‖2

2

)
. (3.21)
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The result in Lemma 3.2.2 shows that if Qπ has distinct eigenvalues, all

of which being always well-conditioned, then the eigenvectors of Qπ are well-

conditioned. Note that since Qπ is symmetric, we have wi = vi so that κi = 1,

i = 1, 2, and (3.21) takes the form

‖vk − vk′‖2 ≤ 1

|λ2 − λ1|
‖Qπ −Qπ′‖2 +O

(
‖Qπ −Qπ′‖2

2

)
. (3.22)

Our objective is to replace the angle of rotation µ of Qπ by the angle µ − ϑ,

with ϑ appropriately chosen in such a way that the triangle is still near optimal in

the sense of part c. of Proposition 3.2.4. Writing
[
λ1 0

0 λ2

]
= λ1I+

[
0 0

0 λ2 − λ1

]
,

the difference between the matrices Qπ and Q̄π can be expressed in terms of

matrices involving the difference λ2 − λ1,

Qπ − Q̄π =Uπ

(
λ1I +

[
0 0

0 λ2 − λ1

])
U t
π −Rµ−ϑ

(
λ1I +

[
0 0

0 λ2 − λ1

])
Rt
µ−ϑ

=Uπ

[
0 0

0 λ2 − λ1

]
U t
π − UπR−ϑ

[
0 0

0 λ2 − λ1

]
U t
π

− UπR−ϑ

[
0 0

0 λ2 − λ1

]
Rt

−ϑU
t
π + UπR−ϑ

[
0 0

0 λ2 − λ1

]
U t
π

=Uπ
(
I −R−ϑ

)[
0 0

0 λ2 − λ1

]
U t
π + UπR−ϑ

[
0 0

0 λ2 − λ1

](
I − Rt

−ϑ
)
U t
π.

Since
(
I −R−ϑ

)t
= I −Rt

−ϑ =
[
1 − cosϑ − sin ϑ

sinϑ 1 − cosϑ

]
, the 2-norm of Qπ − Q̄π is

bounded by using terms involving the difference λ2 − λ1 and ϑ, that is,

‖Qπ − Q̄π‖2 ≤
∣∣∣∣
∣∣∣∣
(
I − R−ϑ

)[
0 0

0 λ2 − λ1

]∣∣∣∣
∣∣∣∣
2

+

∣∣∣∣
∣∣∣∣
[
0 0

0 λ2 − λ1

](
I −Rt

−ϑ
)∣∣∣∣

∣∣∣∣
2

=

∣∣∣∣
∣∣∣∣
[
0 (λ2 − λ1) sin ϑ

0 (λ2 − λ1)(1 − cos ϑ)

]∣∣∣∣
∣∣∣∣
2

+

∣∣∣∣
∣∣∣∣
[

0 0

(λ2 − λ1) sin ϑ (λ2 − λ1)(1 − cosϑ)

]∣∣∣∣
∣∣∣∣
2
.

The two matrices on the right hand side are transpose to each other, their eigen-

values are exactly 0 and η = (λ2 − λ1)(1 − cosϑ), and we have

‖Qπ − Q̄π‖2 ≤ 2|η| = 4|λ2 − λ1| sin2(ϑ/2). (3.23)
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We are interested in the choice of the angle ϑ ∈ [0, 2π] when the difference

of eigenvalues |λ2 − λ1| is small. The difference of eigenvalues |λ2 − λ1| can

be expressed in terms of the coefficients of π, a useful tool to determine the

adjustment angle ϑ in (3.26).

Lemma 3.2.3. Given a quadratic polynomial π(x, y) = ax2 + 2bxy + cy2 such

that ac − b2 6= 0, denote by λ1, λ2 its eigenvalues, and by µ the angle of rotation

of the matrix Uπ defined in (2.2). Then

|λ2 − λ1| =
√

(c− a)2 + 4b2, and if b 6= 0, tanµ =
c− a− (λ2 − λ1)

2b
.

Proof. Let Qπ =
[
a b

b c

]
be the matrix associated with π. With v1 = [cosµ sin µ]t

and v2 = [− sin µ cosµ]t denoting the normalized eigenvectors associated with λ1

and λ2, from Qπvi = λivi, i = 1, 2, we deduce the following system of equations:

a cosµ+ b sin µ = λ1 cosµ and b cosµ+ c sin µ = λ1 sinµ, (3.24)

−a sin µ+ b cosµ = −λ2 sin µ and − b sin µ+ c cosµ = λ2 cosµ. (3.25)

We easily deduce that

(c− a) sin µ+ 2b cosµ = (λ1 − λ2) sin µ

(c− a) cosµ− 2b sin µ = (λ2 − λ1) cosµ.

By taking the squares and adding the two equations to one another, we deduce

that (λ2 − λ1)2 = (c− a)2 + 4b2. Note that if b = 0, the above equations yield

(
(c− a) + (λ2 − λ1)

)
sinµ = 0 and

(
(c− a) − (λ2 − λ1)

)
cosµ = 0,

which imply that |λ2 − λ1| = |c − a| as before, and µ = 0 if λ2 − λ1 = c − a,

whereas µ = π
2

if λ2 − λ1 = a − c. If b 6= 0, by dividing the left and right hand

sides by cosµ, the second equation implies that tanµ = (c−a)−(λ2−λ1)
2b

.

The following result shows how the adjustment angle ϑ (which is firstly in-
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troduced in (3.18) and for which (3.23) holds) is chosen in such a way that the

alignment directions defined by the column vectors of the matrix Rµ−ϑ occurring

in (3.18) are well-conditioned in the sense of (3.28).

Proposition 3.2.4. Let f ∈ C2(Ω) and z ∈ Ω be such that πz is non-degenerate.

Given ε > 0, we define the adjustment angle ϑ by

ϑ =





µ
(
ε

1
2 − |λ2 − λ1|

)

ε
1
2 + |λ2 − λ1|

, if |λ2 − λ1| ≤ ε
1
2 ,

0, otherwise,

(3.26)

with λ1, λ2 denoting the eigenvalues of πz and µ ∈ [0, π) being the angle of rotation

of Uπz . The following statements hold:

a. ϑ = µ if λ2 = λ1.

b. ‖Qπz − Q̄πz‖2 ≤ µ2ε
1
2 , where Q̄πz is defined in (3.18);

c. Given a triangle T containing the origin, defining T̄ := R−ϑ(T ), we have

‖πz − IT̄πz‖Lp(T̄ ) ≤ ‖πz − ITπz‖Lp(T ) + 9h2|T | 1
pµ2ε

1
2 , (3.27)

with h being the diameter of T .

d. Suppose that |λ2 − λ1| ≤ ε
1
2 . Then, for any z′ ∈ Ω such that det πz′ 6= 0,

|λ′
2 − λ′

1| ≤ ε
1
2 and ‖Qπz′ −Qπz‖2 ≤ ε, there exists a constant C1 such that

|∆(µ− ϑ)| = |(µ− ϑ) − (µ′ − ϑ′)| ≤ C1ε
1
2 +O(ε2), (3.28)

where λ′
1, λ

′
2 are the eigenvalues of πz′, with µ′ being the angle of rotation

of Uπz′ , ϑ
′ the corresponding adjustment angle, and where the constants in

(3.28) are absolute.

In the result (3.46) of Proposition 3.3.2, we show that (3.28) of part d. of

Proposition 3.2.4 holds without any assumptions on |λ2 − λ1| and |λ′
2 − λ′

1|.
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Proof of Proposition 3.2.4. The proof of a. is straightforward.

b. From the definition of ϑ, we have ϑ = 0 when |λ2 −λ1| ≥ ε
1
2 , whereas when

|λ2 − λ1| ≤ ε
1
2 , we find that

ϑ ≤
µ

(
ε

1
2 − |λ2 − λ1|

)

|λ2 − λ1|
≤ µε

1
2

|λ2 − λ1|
.

Since by definition the condition ϑ ≤ µ always holds, we have sin2(ϑ
2
) ≤ ϑ2

4
≤ ϑ

4
µ,

so that the above inequality and (3.23) yield

‖Qπ − Q̄π‖2 ≤ |λ2 − λ1|ϑµ ≤ µ2ε
1
2 .

c. For convenience of notation, let π := πz and consider the homogeneous

quadratic polynomial π̄ := π ◦ Rϑ. After first noticing from (2.12) that (IT̄ π̄) ◦
R−ϑ = (IR−ϑ(T )π̄) ◦R−ϑ = IT (π̄ ◦R−ϑ), we have

‖π̄ − IT̄ π̄‖p
Lp(T̄ )

=
∫

R−ϑ(T )

∣∣∣π̄(x, y) − IT̄ π̄(x, y)
∣∣∣
p
dxdy

=
∫

T

∣∣∣π̄ ◦R−ϑ(x, y) − (IT̄ π̄) ◦R−ϑ(x, y)
∣∣∣
p
dxdy

=
∫

T
|π(x, y) − ITπ(x, y)|pdxdy

= ‖π − ITπ‖pLp(T ).

We can now estimate the error on T̄ : By using (2.5) and (2.13), we have

‖π − IT̄π‖Lp(T̄ ) = ‖(π − π̄) − IT̄ (π − π̄) + (π̄ − IT̄ π̄)‖Lp(T̄ )

≤ ‖π − π̄‖Lp(T̄ ) + ‖IT̄ (π − π̄)‖Lp(T̄ ) + ‖π̄ − IT̄ π̄‖Lp(T̄ )

≤ 3h2
T̄ |T̄ | 1

p ‖π − π̄‖ + |T̄ | 1
p ‖π − π̄‖L∞(T̄ ) + ‖π̄ − IT̄ π̄‖Lp(T̄ )

≤ 6h2
T̄ |T̄ | 1

p ‖π − π̄‖ + ‖π − ITπ‖Lp(T ), (3.29)

by virtue of the fact that T̄ contains the origin so that

|T̄ | 1
p ‖π − π̄‖L∞(T̄ ) ≤ 3h2

T̄ |T̄ | 1
p ‖π − π̄‖.
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From the identities Rϑ[x y]t = Rt
−ϑ[x y]t and

(
Rϑ[x y]t

)t
= [x y]R−ϑ, we obtain

π̄(x, y) = π ◦Rϑ(x, y) = [x y]R−ϑUπ

[
λ1 0

0 λ2

]
U t
πR

t
−ϑ[x y]t

= [x y]Q̄π[x y]t,

from which we conclude that Qπ̄ = Q̄π, with Q̄π defined in (3.18). Moreover,

Qπ−π̄ = Qπ −Qπ̄ = Qπ − Q̄π so that ‖π − π̄‖2 = ‖Qπ − Q̄π‖2. Now, by using the

equivalence of norms in (2.4), we find that ‖π − π̄‖ ≤ 3
2
‖Qπ − Q̄π‖2. Combining

this with (3.29), together with the immediate fact from T̄ = R−ϑ(T ) that hT̄ = h

and |T̄ | = |T |, and the result in part b, we obtain

‖π − IT̄π‖Lp(T̄ ) ≤ 9h2|T | 1
p ‖Qπ − Q̄π‖2 + ‖π − ITπ‖Lp(T )

≤ 9h2|T | 1
pµ2ε

1
2 + ‖π − ITπ‖Lp(T ).

d. Suppose now that |λ2 − λ1| ≤ ε
1
2 . We have

µ− ϑ =
2µ|λ2 − λ1|
ε

1
2 + |λ2 − λ1|

. (3.30)

With µ̄ = 2µ|λ2 − λ1| and λ = |λ2 − λ1|, we see that µ − ϑ is given by the

function ℓ(µ̄, λ) =
µ̄

ε
1
2 + λ

. With µ′ denoting the angle of rotation of Uπz′ and

ϑ′ the corresponding adjustment angle, both of which depending on z′, the total

variation between z and z′ satisfies

|∆(µ− ϑ)| = |(µ− ϑ) − (µ′ − ϑ′)| ≤
∣∣∣∣
∂ℓ(µ̂, λ̂)

∂µ̄

∣∣∣∣|∆µ̄| +
∣∣∣∣
∂ℓ(µ̂, λ̂)

∂λ

∣∣∣∣|∆λ|, (3.31)

for some µ̂ between µ̄ and µ̄′, and some λ̂ between λ and λ′, where λ′ = |λ′
2 − λ′

1|
is the difference between the eigenvalues of πz′ . First, simple computations show

that, with µ̂ ≤ max{µ̄, µ̄′} ≤ 2ε
1
2 max{µ, µ′} ≤ 4πε

1
2 ,

∣∣∣∣
∂ℓ(µ̂, λ̂)

∂µ̄

∣∣∣∣ =

∣∣∣∣
1

ε
1
2 + λ̂

∣∣∣∣ ≤ ε− 1
2 and

∣∣∣∣
∂ℓ(µ̂, λ̂)

∂λ

∣∣∣∣ =

∣∣∣∣
−µ̂

(
ε

1
2 + λ̂

)2

∣∣∣∣ ≤ 4πε− 1
2 . (3.32)
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We continue by evaluating |∆µ̄| = 2|µλ− µ′λ′| and |∆λ| = |λ− λ′|. From (3.19)

there are i, j ∈ {1, 2} for which max{|λ′
1 − λi|, |λ′

2 − λj|} ≤ ‖Qπz′ −Qπz‖2 holds,

with i not necessarily different of j. By using simple triangular inequalities, we

find that

|∆λ| = ||λ2 − λ1| − |λ′
2 − λ′

1||

≤ ‖(λ2 − λ1) + (λ′
2 − λ′

1)|

= |(λ2 − λj) + (λi − λ1) + (λj − λ′
2) + (λ′

1 − λi)|

≤ 4‖Qπz′ −Qπz‖2. (3.33)

Next, let v′
1,v

′
2 denote the orthonormal eigenvectors associated with λ′

1, λ
′
2. Note

that λv1 is an eigenvector of Qπz associated with λ1. The eigenvectors λv1 and

λv2 are well-conditioned. To see this,

‖λv1 − λ′v′
1‖2 = ‖λ(v1 − v′

1) + (λ− λ′)v′
1‖2

≤ ‖λ(v1 − v′
1)‖2 + |λ− λ′|‖v′

1‖2, (3.34)

where ‖v′
1‖2 = 1. The inequality below is obtained by multiplying (3.22) with λ,

‖λ(v′
1 − v1)‖2 ≤ ‖Qπz′ −Qπz‖2 + λ ·O

(
‖Qπz′ −Qπz‖2

2

)
,

which, together with (3.33) and (3.34), yields

‖λv1 − λ′v′
1‖2 ≤ 5‖Qπz′ −Qπz‖2 + λ ·O

(
‖Qπz′ −Qπz‖2

2

)
. (3.35)

This shows that λv1 is well-conditioned. A similar approach is used to show

that λv2 is also well-conditioned. As a consequence, the angle λµ must be well-

conditioned: Since 2
π
x ≤ sin x for x ∈ [0, π

2
], we deduce from (3.20) that |µ−µ′| ≤

π
2
‖v1 − v′

1‖2 which together with (3.22) yields

λ|µ− µ′| ≤ π

2
‖Qπz −Qπz′ ‖2 +

π

2
λO

(
‖Qπz −Qπz′ ‖2

2

)
. (3.36)
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Since

1

2
|∆µ̄| = |λµ− λ′µ′| = |λµ− λµ′ + λµ′ − λ′µ′| ≤ λ|µ− µ′| + |λ− λ′|µ′,

we deduce from (3.33) and (3.36) that

1

2
|∆µ̄| ≤ (

π

2
+ 4µ′)‖Qπz′ −Qπz‖2 + πλ ·O

(
‖Qπz′ −Qπz‖2

2

)
. (3.37)

Combining all together (3.31), (3.32), (3.33) and (3.37), we obtain

|∆(µ− ϑ)| ≤
(
π + 8µ′ + 16π

)
ε− 1

2 ‖Qπz′ −Qπz‖2 + 2πλε− 1
2 ·O

(
‖Qπz′ −Qπz‖2

2

)

≤ C1ε
1
2 +O(ε2), (3.38)

by virtue of the facts that ‖Qπz′ − Qπz‖2 ≤ ε and λε− 1
2 ≤ 1. In the above

estimation, C1 satisfies C1 = 33π ≥ π + 8µ′ + 16π.

On a side note, part a. of Proposition 3.2.4 indicates that when the eigenvalues

of πz are equal, the angle of adjustment ϑ for an optimal triangle T ∈ ∆πz

is none other than the angle µ. Moreover, any pair of orthonormal vectors are

eigenvectors of πz, therefore a choice of particular directions need to be set, which

is discussed in Section 3.2.2 below. Also, the condition that ‖Qπz′ −Qπz‖2 ≤ ε in

the fourth statement of Proposition 3.2.4 is similar to the condition (2.88) with

ε = ν. Such a condition is the first to be taken into account when choosing the

parameter r (which is described in Section 3.1.1 and in the second paragraph of

Section 3.2) for the partition of the domain Ω as seen in Section 3.2.2 below.

3.2.2 Regular regions

After briefly presenting algorithms to obtain isosceles nearly-optimal triangles

for a given quadratic polynomial π, we shall discuss the initial steps to partition

the square domain Ω. We recall that the x- and y-axes represent the Cartesian

coordinate system.
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Step 1 of Algorithm 3.1 is justified by Lemma 2.4.3, whereas Step 2 is mo-

tivated by Lemma 2.4.5 and the adjustment of alignment directions in Proposi-

tion 3.2.4.

Algorithm 3.1: Near optimal isosceles triangles for det π > 0.

Input π ∈ H2 such that det π > 0, and let ε > 0 be given;

1. Let T0 be the equilateral triangle of unit area such that one of its vertices

coincides with the origin and the bisector passing through it lies on the

right half of the x-axis;

2. Obtain the isosceles triangle T = ϕπ(T0) where

ϕπ = R−ϑ ◦ φπ, (3.39)

where φπ is defined in (2.42) and ϑ is as in Proposition 3.2.4.

For p = ∞ and det π < 0, a similar algorithm can be presented since from

Lemma 2.4.4, we can design an isosceles optimal triangle T1 for π1(x, y) = x2 −y2

as follows: By using triangles whose vertices are given in (2.61) by

(0, 0),
1

2

(
c0a+ b, c0a− b

)
,

1

2

(
a+ c0b, a − c0b

)
,

where c0 = 3−
√

5
2

and a, b > 0 such that 3
√

5−5
4

ab = 1, we can choose a = b =

2(3
√

5 − 5)− 1
2 and obtain an isosceles triangle T1 whose coordinates are given by

(0, 0),
1

2
(1 + c0, c0 − 1)a,

1

2
(1 + c0, 1 − c0)a. (3.40)

Note that one vertex of T1 thus coincides with the origin, the bisector passing

through that vertex lies on the right half of the x-axis. Also, Step 2 of the

algorithm results from Lemma 2.4.5. Note that the adjustment of alignment di-

rections in Proposition 3.2.4. is not needed for det π < 0 since the eigenvalues are

of different sign and hence the corresponding eigenvectors are well-conditioned.
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Algorithm 3.2: Near optimal isosceles triangles for det π < 0 and

p = ∞.

Input π ∈ H2 such that det π < 0, and let ε > 0 be given;

1. Choose T1 ∈ ∆∞(π1) to have its vertices given by (3.40);

2. Obtain the isosceles triangle T = φπ(T1) where φπ is defined in (2.42).

Observe that the isosceles triangles obtained through Algorithm 3.1 and Al-

gorithm 3.2 always have their smallest interior angle defined by the two edges

having the same length.

Obtaining regular regions. We now present the initial steps for obtaining

regular regions. Assume that p < ∞. Let η be such that

1 +
1

8p(p+ 1)
< η < 1 +

1

2p
(3.41)

The following steps are set:

(i) For each k = 1, . . . , m2, obtain an isosceles near optimal triangle T by

applying Algorithm 3.1 to πk = πbk
where bk is the barycenter of the sub-

square Sk.
2 Obtain a scaled and shifted version of T

Tk := ΛkT + tk, (3.42)

where

Λk = sη
(
Kp(πk) + 2Ch2

πk
ω(r)

)− q

2 (3.43)

where 1
q

:= 1 + 1
p
, C is the constant occurring in (2.56), hπk

denotes the

diameter of the optimal triangle T , the modulus of continuity ω is defined in

2Here π1 = πb1
is has nothing to do with the quadratic polynomial x2 − y2 in Example 2.3.2

which has a negative determinant.
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eTk

ek

ēk

h0Λk

2

∣∣∣λ1,k

λ2,k

∣∣∣
1
4

ρ0Λk

∣∣∣λ2,k

λ1,k

∣∣∣
1
4

αk

Figure 3.2: Triangle Tk before alignments to the directions of eigenvectors of
πbk

and before translation into the sub-square Sk. Also, λ1,k, λ2,k denote the
eigenvectors of πbk

whereas αk is the initial angle which ek makes with the x-axis.

(2.75), and tk is a translation vector so that the barycenter of Tk coincides

with bk. The parameter s is chosen small enough so that Tk ⊂ Sk,

(ii) For each k = 1, . . . , m2, obtain the micro-parallelogram Pk := Pπk
formed

from Tk as follows: The edges of Tk being counterclockwise oriented as

shown in Figure 3.2, let ēk be the shortest edge-vector, eTk
the edge following

ēk with respect to the counterclockwise orientation, and ek the remaining

edge-vector. Note that ek is not perpendicular to ēk. Then Pk is formed

from Tk and its reflexion about the midpoint of eTk
, i.e it is defined by the

two edge-vectors ek and ēk;

(iii) For each k = 1, . . . , m2, define the polygon Rk ⊂ Sk as the union of all

parallelograms P ⊂ Rk obtained by aligning side by side the shifted versions

of Pk, such that for each vertex z of P the four points z± ek, z± ēk belong

to Sk. The reasons for the last condition are discussed in Section 3.2.4 for

the study of the interior angles of the so-called irregular polygons.

Although in step (iii) we ensure that the vertices z ± ek, z ± ēk belong to

the sub-square Sk (these are necessary requirements in Section 3.3), for practical

illustration in Figure 3.3 we only ensure that z ± 1
2
ek, z ± 1

2
ēk for any vertex

z ∈ P of a parallelogram P ∈ Rk. The remaining figures in this section will use

this setting.
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Figure 3.3: Partition into sub-squares and regular regions.

For each k = 1, . . . , m2, the polygon Rk is termed a regular region (see Fig-

ure 3.3), it can also be defined by two systems of parallel segments Lk and L̄k

whose directional vectors are ek and ēk: A segment ℓ of Lk (or L̄k) is a straight

line segment defined by the sides of a collection of parallelograms of Rk which are

aligned side by side in ek (or ēk) direction, such that the end-points are at the

boundary of Rk and ℓ cuts Rk in two regions unless ℓ is part of its boundary. A

vertex of Rk is a vertex of a parallelogram such that it is on the boundary of Rk.

The regular region Rk is directionally convex in the direction of e = ek, ēk,

in the sense described as follows: Rk can be cut in the direction of e, thereby

creating layers of blocks (Dk,n)n where each Dk,n is an union of parallelograms

aligned side by side in e direction. Moreover, since the square Sk is convex,

the region between non-consecutive parallelograms inside Dk,n is still inside Dk,n,

hence showing that Dk,n is convex.

Each regular region has a natural triangulation by drawing the shortest diago-

nals of its parallelograms, the triangles thus obtained are called regular triangles.

Observe that regular triangles are therefore near-optimal triangles, the study of

the local errors on such triangles is already given in Section 2.5.

Remark 3.2.1 (Removal of vertices in (iii)). For the extension of segments dis-
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cussed in Section 3.2.3 below, it is preferable to control the minimum distance

between the vertices of Ri and the sides of the sub-square Si, with i = 1, . . . , m2.

Therefore in (iii) we only include parallelograms whose vertices are at a certain

distance from the sides of Si. Without analytical proof, numerical implementa-

tions show that vertices which are too close to the sides of the sub-squares can

cause big angles in the final triangulation of Ω. Moreover, their removal allows

us to avoid unnecessary processes such as identification of vertices which are very

close to one another.

3.2.3 Extension of segments

Following the initial steps in the previous section, we proceed to split the remain-

ing non-covered space Ωirr := Ω\∪iRi by using either of the Settings 1, 2, 3, 4 or 5

given hereafter. The splitting is characterized by the extensions of the segments

in Li ∪ L̄i up to a neighboring regular region Rj or up to the boundary, and

thereby generating the so-called irregular polygons which have six edges at most.

Extensions follow directions parallel to either of ei or ēi, with i = 1, . . . , m2. Due

to similarity, we shall only present algorithms that extend the segments in Li,

and give additional details when ambiguity may occur.

For each k = 1, . . . , m2, since the segments in Lk are all parallel to ek, we can

order them in the direction of ēk, with ek and ēk as defined in (iii) of Section 3.2.2.

The first and last segments with respect to such order are called the end-segments

of Lk. The end-segments of L̄k are defined in a similar way. Observe that end-

segments are part of the boundary of the regular region.

We say that two squares Si, Sj, with i, j ∈ {1, . . . , m2} are neighbors if they

share a vertex or an edge. Two regular regions Ri, Rj are termed neighbors if the

squares that contain them are neighbors. Note that, apart from Si itself, there

are at most eight squares that are neighbors to Si. Some of them share edges or

corners with Si.

For each i = 1, . . . , m2, consider the set of parallel segments Li. A given
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segment ℓ0 ∈ Li is oriented according to the direction of the vector ei defined

in (iii) of Section 3.2.2. By using either of the directions ei or −ei and one of

the settings presented hereafter, the segment ℓ0 is extended up to a neighboring

region Rj or to the boundary. Once more, due to similarity, we shall only describe

extensions by using the direction ei. We denote by z0 the end-point of ℓ0 in the

direction of ei, and connect it to another point z1 of a neighboring region Rj , or

to the boundary. Note that the extended segments may overlap, for example by

extending from Ri to Rj in the direction of ei and from Rj to Ri in the direction

of −ej we may obtain the same extension twice.

ℓ0

ℓ1

z0 z1

z2

ℓ̄1

ℓ̄2

ℓline
0

ℓ̄line
1

ℓ̄line
2

ei

ℓ̄0

Figure 3.4: Connection to own square.

Setting 1: Extend ℓ0 ∈ Li into own square.

if the following conditions hold: For some ℓ̄1, ℓ̄2 ∈ L̄i;

1. The ray originating at z0 in the direction of ei intersects the straight

lines ℓ̄line
1 , ℓ̄line

2 containing ℓ̄1 and ℓ̄2 outside of Ri, see Figure 3.4. There is

no segment in L̄i between ℓ̄1 and ℓ̄0 that contains z0;

2. With z1 ∈ ℓ̄1 and z2 ∈ ℓ̄2 being the closest end-points to z0, [z1, z2] is part

of a single segment ℓ1 of Li;

3. There is no segment in Li between ℓ0 and ℓ1.

then

Connect the point z0 with z1.

The connection in Setting 1, as illustrated in Figure 3.4, is a cautious step in

order to avoid a possible very long extension of ℓ0 due to Setting 2, or crossing
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of regular regions by extended segments resulting from either of Setting 2 or 3.

If Setting 1 does not apply for z0, we apply Setting 2 where Sj is the neighbor

of Si which the extension ℓline
0 of ℓ0 in the direction of ei intersects first. If ℓline

0

passes through one of the corners of Si, we choose Sj to be any of the two squares

sharing that corner and an edge with Si. We denote hi = |ei| and di = |ēi|.

Setting 2-a: Extend ℓ0 ∈ Li up to Rj in ei direction.

if the line ℓline
0 extending ℓ0 intersects the regular region Rj .

Consider the first segment ℓ̄1 ∈ L̄j that ℓline
0 intersects in the direction of

ei. Denote by z1 ∈ ℓ̄1 the vertex of Rj which is the closest to the

intersection point ℓline
0 ∩ ℓ̄1 and which is not a re-entrant corner of Rj , see

Figure 3.6;

then

Connect z0 with the vertex z1.

Note that the existence of a segment in L̄i intersected by ℓline
0 is guaranteed by

the fact that the angle between ei and ej is small due to the assumption (3.17)

and in view of (3.45) and Proposition 3.3.2 with ε = 3
2
ω(

√
2r).

We use Setting 2-b below only if Setting 2-a does not apply, that is, the line

ℓline
0 does not intersect the regular region Rj .
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Setting 2-b: Extend ℓ0 ∈ Li up to Rj in ei direction, with

tolerance.

Initialize the set L̄∗
j to be empty, and compute dj = |ēj|, hi = |ei|;

foreach ℓ̄ ∈ L̄j do

i. Compute L = d(z0, z̄) which is the distance between z0 and

z̄ = ℓline
0 ∩ ℓ̄line, with ℓ̄line being the straight line extending ℓ̄;

ii. Add to L̄∗
j the segment ℓ̄∗ defined by extending ℓ̄ by segments of

the length
djL

8hi
at both ends (see Figure 3.5);

if (C1) and either of (C2)-(i), (C2)-(ii) below hold:

(C1) The straight line ℓline
0 extending ℓ0 does not intersect Rj but inter-

sects a segment in L̄∗
j ;

Consider the first segment ℓ̄∗
1 ∈ L̄∗

j that ℓline
0 intersects in the direc-

tion of ei. Denote by z1 ∈ ℓ̄∗
1 ∩ Rj the closest vertex of Rj to the

intersection point ℓline
0 ∩ ℓ̄∗

1, which is not a re-entrant corner of Rj ;

(C2) (i) z1 ∈ Rj does not belong to the interior of an end-segment in Lj;

(ii) The second sub-square which ℓline
0 intersects in ei direction is not a

neighbor sub-square to Ri.

then

Connect z0 with the vertex z1.

The enlarged segment ℓ̄∗ as described in ii. of Setting 2-b is an extension of

ℓ̄ into a longer segment characterized by the value
djL

8hi
= L

8hi
|ej | which we call

tolerance, as illustrated in Figure 3.6. Analogously, when extending a segment

ℓ0 ∈ L̄i up to Rj in the direction parallel to ēi, the tolerance is
hjL

8di
where L

remains the distance between z0 ∈ ℓ0 and the intersection point z∗ = ℓline
0 ∩ ℓ̄line,

with ℓ̄ ∈ Lj. In the second condition of Setting 2-a, the vertex z1 may be an

end-point of an end-segment of Lj.
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L

tolerance:
djL

8hi

z0

hi
dj

ei

Figure 3.5: Illustration of the tolerance
djL

8hi
.

ei

ℓ0

ℓ0

z0

z0

hi

hi

z1

z1

ℓ̄∗
1

ℓ̄1

dj

dj

z∗
z̄

z̄

Figure 3.6: Comparison of connections in ei direction: on top by using Setting 2-a,
with no connection to the re-entrant corner z∗. At the bottom by using Setting 2-
b, with tolerance

djL

8hi
(see also Figure 3.5).

Many properties of the final triangulation depend on the choice of the toler-

ance. Namely, in Section 3.2.4 the factor 1
8

in the tolerance will play a crucial

role.

If either of Setting 1, Setting 2-a or Setting 2-b applies to z0, then z0 is

termed a connected vertex, otherwise it is called a non-connected vertex of ℓ0

with direction ei, and we apply Setting 3. In Figure 3.7 we provide an illustration

of the configurations after applying Setting 1 and 2. For each regular region Ri,

i = 1, . . . , m2, we associate four sets of non-connected vertices V u
i , V

d
i and V̄ u

i , V̄
d
i

105

./ExtendDS.eps
./set2a.eps


�1 0 1�1

0

1

Figure 3.7: Connections after Setting 1 and Setting 2.

which we illustrate in Figure 3.8 and which are defined as follows.

• Let V u
i (resp. V d

i ) denote the set of non-connected vertices of all segments

in Li, all of them in the direction of ei (resp. −ei).

• Similarly, let V̄ u
i (resp. V̄ d

i ) denote the set of non-connected vertices of all

segments in L̄i, all of them in the direction of ēi (resp. −ēi).

The segments of Li which contain the non-connected vertices of V u
i are ordered

in the direction of ēi, and similarly, the segments of Lj which contain the non-

connected vertices of V d
j are ordered in the direction of ēj . Note that the four

sets are not necessarily disjoint to one another, however, one vertex may belong

to two sets at most. Only a vertex which belongs to just one parallelogram of Ri

may belong to two sets at once, see Figure 3.8.
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0

0

Figure 3.8: The sets of vertices at the bottom-left sub-square of Figure 3.7: V u
i

colored in blue; V d
i colored in red; V̄ u

i colored in green; And V̄ d
i colored in black.

Only a vertex which belongs to only one parallelogram can belong to two sets.

If neither Setting 1 nor Setting 2-a, 2-b applies to z0, then the extension of ℓ0

in the direction of ei either crosses the boundary of Ω at a point on the boundary

of Sj, or the second sub-square intersected by it is also a neighbor of Si sharing

with it a single vertex. Indeed, by making s small enough in (3.43) so that there

are enough segments in L̄j from the regular region Rj, there must be at least

one enlarged segment ℓ̄∗ that intersect the side of Sj. Hence, the failure of an

extension by Setting 2-b means that the second sub-square that the line ℓline
0

intersect must be a neighbor of Si sharing with it a single vertex.

Note that if z0 belongs to just one parallelogram of a regular region Ri, then it

is the originating point of extensions of exactly two segments ℓ0 ∈ Li and ℓ1 ∈ L̄i.

Let Sj denote the second sub-square intersected by the extension of ℓ0 in the

direction of ei. As mentioned before, Sj is necessarily a neighbor of Si and shares

one vertex with it, denoted by vij .
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Setting 3: Connection across.

Let Si and Sj be neighboring sub-squares sharing exactly one vertex vij ;

Compute dj = |ēj |;

Extend each segment ℓ∗
0 ∈ Li containing a vertex z∗

0 ∈ V u
i into Rj ,

which is done by using either Setting 2-a or Setting 2-b with direction ei,

with the tolerance djL

8hi
being replaced by dj

2
.

If z∗
0 remains unconnected to the regular region Rj , then apply the

extension in Setting 2-b by using only the condition (C1), with the

direction ei and the tolerance
djL

8hi
.

Note that the segments containing some vertices in ∈ V d
i ,∈ V̄ u

i and ∈ V̄ d
i are

also extended by using Setting 3 by using the directions −ei, ēi and −ēi. The

goal of Setting 3 is to make sure that there are no hanging vertices. It applies

to vertices which are non-connected (resulting from the failures of Setting 1-2).

Note that the vertex z∗
0 may belong to only one parallelogram, and it can thus

be a connected vertex with respect to one of the directions ēi or −ēi.

We show in Figure 3.9 an example of connections obtained by using Setting 3.

Observe, in particular, that the extensions by Setting 3 always connect two ver-

tices z0 and z1 from neighboring sub-squares, unless the line originating at z0

cross the boundary of Ω. This is where Setting 4 described below applies.

Setting 4: Connection to the boundary of Ω.

Suppose that Si has a side overlapping the boundary of Ω;

foreach ℓ0 ∈ Li do

if the end-point z0 ∈ ℓ0 belongs to any of the sets V u
i , V

d
i , V̄

u
i or V̄ d

i ;

then

Connect z0 ∈ ℓ0 with the intersection point ℓline
0 ∩E, where E is the

boundary of Ω.
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Figure 3.9: Connections across using Setting 3. The colored dots are the non-
connected vertices already shown in Figure 3.8.

Setting 4 is applied when the sub-square Si has one or two of its sides as a

part of the boundary of Ω, and where Setting 1, 2-a, 2-b and Setting 3 cannot be

applied.

Suppose now that all the segments in Li ∪ L̄i, for i = 1, . . . , m2, are extended

by using the Settings 1-4. In particular, by Setting 4, every end-segment is

extended from both of its end-point. This can create big area irregular regions

in the neighborhood of the corners that are near the end-points, more precisely,

at the corners of the domain Ω.

The following Setting 5 will partition the irregular regions in the neighborhood

of the four corners ck, k = 1, 2, 3, 4, of Ω. For each corner ck, consider the sub-

square Si with a vertex at ck. There is at most one end-segment ℓ0,k of Li ∪ L̄i

possessing the following properties (see left of Figure 3.10):

(1) one of the two end-points of ℓ0,k is the vertex of Ri which is the closest to

the corner ck;

(2) the straight line extending ℓ0,k does not intersect two opposite sides of Si.

Note that such a segment does not necessarily exist. In the right hand side of
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ℓ0

(a) End-segments in the neighbor-
hood of corners

v1 v2

(b) Vertices v1, v2 belonging to two
end-segments

Figure 3.10: (a) Splittings by using Setting 4-5. (b) No splitting from Setting 5

Figure 3.10, on the top left, the vertex v1 belongs to two end-segments, yet none

of the two satisfies the above conditions.

If such an end-segment exists (see left of Figure 3.10), denote by z1,k and z2,k

the intersection points of the line extending ℓ0 with the boundary of Ω. Then

define the triangle Pk by the points ck, z1,k, z2,k.

The condition (2) is to avoid the following situation: In the case where the

sides of parallelograms are nearly parallel to the sides of the sub-square that

contains it, Pk is the trapezoid defined by ck, ck′, z1,k, z2,k (see right of Figure 3.10),

where ck′ is the corner of Ω which is the closest to one of z1,k, z2,k. Note that such

a trapezoid may create undesirable and uncontrollable irregular regions.

We use Setting 5 below to partition Pk, see Figure 3.10.
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Figure 3.11: Splittings after Setting 3-4 and 5.

Setting 5: In the neighbourhood of the corners of Ω.

Given a corner ck of Ω, suppose there exists an end-segment ℓ0,k satisfying

the properties (1), (2) above and let Pk be the above defined triangle

associated with ck;

then

From ℓ0,k up to ck, partition Pk by using straight line segments paral-

lel to ℓ0,k and equidistant by di if ℓ0 is parallel to ēi, otherwise by hi.

Here di, hi denote the lengths of the smallest and largest edge of the

parallelogram containing ℓ0,k.

The above setting, together with Setting 1, 2-a, 2-b, 3 and 4, concludes the

partition of Ωirr into irregular polygons (see Figure 3.11).

By construction, irregular polygons are obtained from the intersections of

segments belonging to one of the three families of segments formed by:

- the four boundary edges of Ω;

- the extended segments obtained from Settings 1-5 by using either of the

directions ±ei, i = 1, . . . , m2;
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- the extended segments obtained from Settings 1-5 by using either of the

directions ±ēi, i = 1, . . . , m2.

Each irregular polygon has at most two edges from the same family. To prove

this, we shall define polygonal chains from the three families of segments described

above. A polygonal chain ζ cutting a sub-square Si into two parts is a collection

of line segments generated by any segment ℓ0 ∈ Li ∪ L̄i as follows:

Case 1: A segment obtained from Setting 5 (in the neighborhood of the corners of

Ω) is a polygonal chain which does not contain any part of a regular region.

It is a straight line segment whose end-points belong to the boundary of Ω;

Case 2: Otherwise, the extensions of ℓ0 by Settings 1-4 are only using its two end-

points z0, z
′
0 and the directions ei and −ei (a similar construction is used

for a polygonal chain whose first segment belongs to L̄i, with directions of

extensions ēi and −ēi). There are three cases for which z0 is connected to,

either to a vertex z1 ∈ Ri (Setting 1), to a vertex z1 ∈ Rj where Rj is a

neighboring regular region (Settings 2-3), or to z1 which is on the boundary

of Ω (Setting 4). We then add the extended segment [z0, z1] to the polygonal

chain ζ . In the case where z1 ∈ Ri, there is a segment ℓ′
0 ∈ Li which contains

z1: we then add [z1, z
′
1] to the polygonal chain ζ where z′

1 is the end-point

of ℓ′
0 in the direction of ei. Originating from the point z′

1 we extend ℓ′
0 by

using one of the Settings 1-4 and keep repeating this procedure until one of

the extended segments intersects the boundary of the sub-square Si. We do

the same procedure of extension for the other end-point z′
0 of ℓ0, and add

to ζ the obtained segments.

The polygonal chains described above, see Figure 3.12, are divided into two

groups:

- The group Pi where a polygonal chain contains only two types of segments:

some part of segments of Li and some extended segments using the direc-

tions of ei and −ei;
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Figure 3.12: Examples of polygonal chains (in black) that have common segments.

- The group P̄i where a polygonal chain contains only two types of segments:

some part of segments of L̄i and some extended segments using the direc-

tions of ēi and −ēi;

A segment of a polygonal chain can be intersected by another one from a

different group. The properties below are also observed, they follow from the

results in Lemmas 3.3.4, 3.3.5 and 3.3.6 which are proved in Section 3.3.2:

(i) If two polygonal chains from the same group intersect at a point z, then z

is the end-point of a common segment of the two polygonal chains. That

segment is a part of a segment in Li ∪ L̄i or part of an extended segment;

(ii) Two polygonal chains from two different groups cannot have a common

segment, but they can intersect;

(iii) Each vertex of a polygonal chain is the end-point of at least two segments

of some polygonal chains from different groups.

We have the result below.
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ēj′

Figure 3.13: Interface polygons. In a© a hexagon which can only appear in the
neighborhood of a corner; in b© a pentagon possessing two edges overlapping
the boundary; and in c© a pentagon obtained from intersections of segments
belonging to the above three families.

Lemma 3.2.5. Let r be sufficiently small so that (3.17) holds. Then, each irreg-

ular polygon P has at most two edges from the same family, it cannot have more

than six edges, of which at most four lie in the interior of Ω and at most two on

its boundary.

Proof. Let P be an irregular polygon. Since the extension of any segment never

crosses into a non-neighboring sub-square, P is contained in the union S̃ of at most

four sub-squares with a common vertex. The set S̃ is divided into two subsets by

any polygonal chain ζ obtained by extending (if necessary) a polygonal chain ζ0

from one sub-square up to the neighboring sub-square that intersects ζ0: From

the above construction of a polygonal chain, there is an extended segment [z0, z1]

of ζ0 which intersects the boundary of Si. If z1 is on the boundary (i.e. obtained

from Setting 4), then we do not extend ζ0. Otherwise, that is if z1 ∈ Rj, we add to

ζ0 the segment of Lj having z1 as an end-point, and extend the other end-point

in the direction of ej by using the same method as for obtaining a polygonal

chain. The only case where the resulting polygonal chain may not divide the four

sub-squares is when its end-point still belong to the union of the sub-squares. In

this case, we apply a second time the extension of ζ0 until it divides the set S̃.

Thus, we obtain two families P and P̄ of polygonal chains in S̃. The partition

of S̃ into regular parallelograms and irregular polygons is generated by the families
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P and P̄ , where each cell of the partition is obtained by the intersection of a

stripe between a pair of consecutive chains of P with a stripe between a pair of

consecutive chains of P̄. In particular, at most two edges of P are formed by

the segments of P, and at most two edges by the segments of P̄ . In addition, at

most two more edges can be obtained from the boundary of Ω as illustrated in

Figure 3.13.

3.2.4 Back transformation and triangulation

Given i ∈ {1, . . . , m2}, consider the invertible affine map ψi(x, y) := ϕi(x, y) + tbi

where ϕi is defined in (3.39) and tbi
is the position vector of bi which is the

barycenter of the sub-square Si. Observe that ψi maps the equilateral triangle

described in Algorithm 3.1 to the near-optimal triangle with a vertex at bi (see

(i) of Section 3.2.2).

A back transformation of a polygon P is the polygon ψ−1
i (P ) for some i ∈

{1, . . . , m2}. If P is a fixed polygon, we can choose i as the index of a sub-square

Si which is one of the closest sub-squares to the barycenter bP of P .

Triangulation of Ω. The domain Ω being partitioned into polygons of at most

six edges, the triangulation of Ω which we denote by ∆s,r, is obtained as follows:

Triangles remain the same, whereas each quadrilateral which does not have a

vertex on the boundary of Ω is divided by drawing a diagonal crossing its largest

interior angle. For a quadrilateral P possessing a vertex on the boundary of Ω,

we draw a diagonal ℓ such that ψ−1
i (ℓ) is a diagonal crossing the largest interior

angle of ψ−1
i (P ), with i being the index of one of the closest sub-squares to the

barycenter of P . Similarly, a pentagon P possessing a vertex on the boundary is

divided by two diagonals whose images by ψ−1
i cross the largest interior angles

of ψ−1
i (P ). A hexagon P is divided into four triangles by three diagonals whose

images by ψ−1
i cross the largest interior angle of ψ−1

i (P ).

Triangles obtained by dividing the parallelograms of the regular regions are
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called regular triangles, the rest of the triangles are called irregular triangles. The

resulting triangulation of Ω is denoted by ∆s,r.

We can also consider the back transformation of a triangle T . Given a fixed

index i ∈ {1, . . . , m2}, consider the triangulation ∆i given by

∆i = {ψ−1
i (T ) : T ∈ ∆s,r}, (3.44)

which is called a back transformation of ∆s,r. Since Ri is uniformly triangulated

and ψ an affine map, by virtue of Algorithm 3.1 and step (ii) of Section 3.2.2,

its image ψ−1
i (Ri) is uniformly triangulated with equilateral triangles which are

shifted versions of ΛiT0, with Λk defined in (3.43), and T0 being the equilateral

triangle of unit area as described in Algorithm 3.1.

3.3 Properties of the triangulation

By construction, regular triangles are isosceles and their alignment directions are

as specified by Algorithm 3.1 of the previous section. We analyze the change

of these directions when segments are extended according to Settings 1-4. The

segments obtained from Setting 5 are left over since they are parallel to the

edges of some parallelograms. In particular, we discuss the properties of the

intersections of extended segments which produce irregular triangles. Note that

unlike regular triangles, irregular triangles may possess various shapes, this is

where the “back transformation” helps out to bound the W 1
p -seminorm of the

interpolation error.

3.3.1 Conformity of alignment directions

Following the discussion in Section 3.2.1 about the sensitivity of eigenvectors,

given two neighbor squares Ri and Rj , where i, j ∈ {1, . . . , m2}, we investigate

the angles formed from the associated systems of segments Li, L̄i and Lj, L̄j.

Recall that they determine the alignment directions of the parallelograms in Ri

116



and Rj , and we here study the conformity of these alignments in terms of the

difference of angles that they form and using their respective directional vectors

ei, ēi and ej , ēj which are as defined in (iii) of Section 3.2.2.

Recall that bi is the barycenter of the sub-square Si, with i ∈ {1, . . . , m2}, and

πbi
∈ H2 the quadratic polynomial whose coefficients are the second derivatives of

f at the point bi. We denote by µi the angle of rotation of the matrix Uπbi
which

is as defined in (2.2). Then the smallest angle θ̄ij between ēi and ēj is exactly

the difference |µi − µj |. Taking into account the ill-conditioning of eigenvectors

discussed in Section 3.2.1, this difference can be large if the eigenvalues λ1,i, λ2,i

associated with πbi
are close to one another. We assume that |λ1,i| ≤ |λ2,i|.

Apart from the standard estimation (3.19) in Lemma 3.2.1, the difference of

eigenvalues |λ2,i − λ1,i| can be estimated.

Lemma 3.3.1. Suppose that max{|λ1,i − λ2,j |, |λ2,i − λ1,j|} ≤ ε. If all the eigen-

values λ1,i, λ2,i and λ1,j, λ2,j are positive, then

max{|λ2,i − λ1,i|, |λ2,j − λ1,j|} < 2ε.

Proof. The fact that the distance between λ2,j and λ1,i is less than ε, that the

distance between λ2,i and λ1,j is less than ε, and that λ2,j is greater than λ1,j , we

necessarily have that the distance between λ2,i and λ1,i is strictly less than 2ε.

Similar approach is used to prove that |λ2,j − λ1,j| < 2ε.

Recall that Qπ is the matrix associated (defined in (2.1)) with a homogeneous

quadratic polynomial π. By using (2.4) and (2.75), we obtain

‖Qπbi
−Qπbj

‖2 ≤ 3

2
ω(

√
2r), (3.45)

where ω is defined in (2.75) and r is chosen to so that (3.17) holds.

The constant Cδf
in (3.15) originates from the result below. Recall that, as in

Section 3.2.2, we assume that the Hessian Hf is positive definite. Also, in view

of (3.45), a natural choice for ε is that ε = 3
2
ω(

√
2r).
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Proposition 3.3.2. Let Si and Sj be neighboring sub-squares. If ‖Qπbi
−Qπbj

‖2 ≤
ε for a sufficiently small number ε > 0, then the angle θ̄ij ∈ [0, π) between ēi and

ēj satisfies

θ̄ij ≤ C1ε
1
2 +O(ε2), (3.46)

where C1 = 33π is a constant. Also, the angle θij between ei and ej satisfies

θij ≤ Cδf
ε

1
2 +O(ε2), (3.47)

where Cδf
= 33π + 2δ

− 1
2

f is a constant depending on δf , with δf being defined in

(3.13).

Proof. Let v1,i,v2,i be the unit eigenvectors corresponding to the eigenvalues

λ1,i, λ2,i of πbi
. In view of Proposition 3.2.4, for a given small number ε > 0,

we shall distinguish the cases where |λ2,i − λ1,i| ≤ ε
1
2 and |λ2,i − λ1,i| ≥ ε

1
2 . By

this we can distinguish whether or not the optimal triangles for πbi
and πbj

need

the adjustment angles described in Proposition 3.2.4. We have three cases:

i. If |λ2,i − λ1,i| ≥ ε
1
2 and |λ2,j − λ1,j| ≥ ε

1
2 . Since 2

π
x ≤ sin x for all x ∈ [0, π

2
],

we deduce from (3.20) and (3.22) that

θ̄ij ≤ π

2
max{‖v1,i − v1,j‖2, ‖v2,i − v2,j‖2}

≤ π

2
ε− 1

2 ‖Qπbi
−Qπbj

‖2 +O(‖Qπbi
−Qπbj

‖2
2)

≤ π

2
ε

1
2 +O(ε2).

ii. If |λ2,i − λ1,i| ≤ ε
1
2 and |λ2,j − λ1,j| ≤ ε

1
2 . We deduce from (3.28) of

Proposition 3.2.4 that θ̄ij ≤ C1ε
1
2 + O(ε2), with C1 = 33π according to

(3.38).

iii. If |λ2,i − λ1,i| ≤ ε
1
2 and |λ2,j − λ1,j | ≥ ε

1
2 . With ϑi being the adjustment

angle for an optimal triangle for πbi
, we have µi − ϑi =

2µi|λ2,i−λ1,i|
ε

1
2 +|λ2,i−λ1,i|

and
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θ̄ij = |(µi − ϑi) − µj| =
∣∣∣∣
2µi|λ2,i − λ1,i| − µjε

1
2 − µj|λ2,i − λ1,i|

ε
1
2 + |λ2,i − λ1,i|

∣∣∣∣

≤ λ|µi − µj| + |µiλ− µjε
1
2 |

ε
1
2 + λ

where λ = |λ2,i − λ1,i|. Observe that, since 2
π
x ≤ sin x for all x ∈ [0, π

2
], we

deduce from (3.20) that |µi−µj | ≤ π
2
‖vi−vj‖2 which together with (3.22),

yields

|λ2,i − λ1,i||µi − µj| ≤ π

2
‖Qπbi

−Qπbj
‖2 +

π

2
|λ2,i − λ1,i|O(‖Qπbi

−Qπbj
‖2

2).

Also, by denoting λ = |λ2,i − λ1,i|, it is clear that

|µiλ− µjε
1
2 | = |µiλ − µjε

1
2 + µjλ− µjλ|

≤ |µi − µj|λ+ µj|ε
1
2 − λ|,

where, with λ′ := |λ2,j − λ1,j| ≥ ε
1
2 and noting that (3.33) holds, clearly

|ε 1
2 − λ| ≤ |λ′ − λ| ≤ 2ε. We thus obtain

θ̄ij ≤ 2ε+ ε
1
2O(ε2) + |µi − µj|λ+ µjε

ε
1
2

≤ 8ε+ 2ε
1
2O(ε2) + 2πε

ε
1
2

=
(8 + 2π)ε+ ε

1
2O(ε2)

ε
1
2

= (8 + 2π)ε
1
2 +O(ε2),

thereby proving (3.46).

Let h0 and ρ0 denote the diameter and smallest height of an equilateral triangle

of unit area. Then, ei makes with the x-axis the angle µi − ϑi − αi, where the

angle αi is the initial angle which ei makes with the x-axis before rotation to the

alignment direction µi − ϑi, see Figure 3.2, with

tanαi =
(
h0

2

∣∣∣
λ1,i

λ2,i

∣∣∣
1
4

)/(
ρ0

∣∣∣
λ2,i

λ1,i

∣∣∣
1
4

)
=

h0

2ρ0

∣∣∣
λ1,i

λ2,i

∣∣∣
1
2 . (3.48)
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To estimate the angle θij between ei and ej, we shall only need to estimate

the difference of angle |αj − αi| since

θij = |(µi − ϑi − αi) − (µj − ϑj − αj)|

≤ |(µi − ϑi) − (µj − ϑj)| + |αj − αi|,

≤ θ̄ij + |αj − αi|, (3.49)

with θ̄ij being estimated by (3.46). Observe that 0 < αi ≤ π
6

always holds. Since

x ≤ tan x on [0, π
2
], clearly |αj − αi| ≤ tan |αj − αi|. Hence, from the fact that

tan |αj − αi| =
| tanαj − tanαi|
1 + tanαj tanαi

≤ | tanαj − tanαi|,

combined with (3.48), we deduce that |αj − αi| satisfies

|αj − αi| ≤ h0

2ρ0

∣∣∣∣
∣∣∣
λ1,j

λ2,j

∣∣∣
1
2 −

∣∣∣
λ1,i

λ2,i

∣∣∣
1
2

∣∣∣∣ ≤ h0

2ρ0

∣∣∣∣
λ1,j

λ2,j

− λ1,i

λ2,i

∣∣∣∣
1
2

≤ h0

2ρ0

∣∣∣∣
λ1,jλ2,i − λ1,iλ2,j

λ2,iλ2,j

∣∣∣∣
1
2

, (3.50)

which we shall estimate. We prove that |λ1,jλ2,i − λ1,iλ2,j | ≤ 4εmax{|λ2,i, λ2,j|}
as follows. By Lemma 3.2.1, there exist k, k′ ∈ {1, 2} such that max{|λ1,i −
λk,j|, |λ2,i − λk′,j|} ≤ ε. We now have the following cases:

• If (k, k′) = (1, 1), then we easily prove that |λ2,j − λ2,i| ≤ 3ε: If λ2,i is the

closest eigenvalue to λ2,j, then |λ2,j−λ2,i| ≤ ε ≤ 3ε. Otherwise, if λ1,i is the

closest eigenvalue to λ2,j so that |λ2,j − λ1,i| ≤ ε, then a simple triangular

inequality shows that

|λ2,j − λ2,i| ≤ |λ2,j − λ1,i| + |λ1,i − λ1,j| + |λ1,j − λ2,i| ≤ 3ε,

from which we deduce that

|λ1,jλ2,i − λ1,iλ2,j| ≤ |λ2,i||λ1,j − λ1,i| + |λ1,i||λ2,j − λ2,i|

≤ 4εmax{|λ2,i|, |λ2,j|};
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• If (k, k′) = (2, 2), using the same argument as above shows that |λ1,j−λ1,i| ≤
3ε: If λ1,i is the closest eigenvalue to λ1,j, then |λ1,j − λ1,i| ≤ ε ≤ 3ε.

Otherwise, if λ2,i is the closest to λ1,j so that |λ1,j −λ2,i| ≤ ε, then a simple

triangular inequality shows that

|λ1,j − λ1,i| ≤ |λ1,j − λ2,i| + |λ2,i − λ2,j| + |λ2,j − λ2,i| ≤ 3ε,

and we have the following,

|λ1,jλ2,i − λ1,iλ2,j| ≤ |λ2,i||λ1,j − λ1,i| + |λ1,i||λ2,i − λ2,j |

≤ 4εmax{|λ2,i|, |λ2,j|};

• If (k, k′) = (1, 2), then we write

|λ1,jλ2,i − λ1,iλ2,j | = |λ1,j(λ2,i − λk′,j) + λ2,j(λk,j − λ1,i)|

≤ 2εmax{|λ2,i|, |λ2,j|};

• The case (k, k′) = (2, 1) means that |λ1,i − λ2,j| ≤ ε and |λ2,i − λ1,j| ≤
ε. Since all eigenvalues are positive, we deduce from Lemma 3.3.1 that

max{|λ2,i − λ1,i|, |λ2,j − λ1,j |} < 2ε. This implies that

|λ2,j − λ2,i| ≤ |λ2,j − λ1,i| + |λ2,i − λ1,i| ≤ 3ε.

It follows that

|λ1,jλ2,i − λ1,iλ2,j | ≤ |λ1,j||λ2,i − λ2,j | + |λ2,j||λ1,j − λ1,i| ≤ 4εmax{|λ2,i|, |λ2,j|}.

Combining all these cases, we prove that

|λ1,jλ2,i − λ1,iλ2,j| ≤ 4εmax{|λ2,i|, |λ2,j|}. (3.51)
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Figure 3.14: Angles formed from the intersections of a segment to the vertical
and horizontal lines.

We easily deduce from (3.13) that

∣∣∣∣
λ1,jλ2,i − λ1,iλ2,j

λ2,iλ2,j

∣∣∣∣
1
2 ≤ 2ε

1
2
max{|λ2,i|, |λ2,j|}

1
2

|λ2,iλ2,j |
1
2

≤ 2δ
− 1

2
f ε

1
2 . (3.52)

It follows from (3.50) that

|αj − αi| ≤ h0

ρ0
δ

− 1
2

f ε
1
2 ,

which, together with (3.49) and the fact that h0

ρ0
= 2√

3
≤ 2, proves the estimation

(3.47) with the constant Cδf
= 33π + 2δ

− 1
2

f ≥ C1 + h0

ρ0
δ

− 1
2

f .

Note that a straight line segment forms four angles with the vertical and

horizontal lines (see Figure 3.14). The angles belong to the following two sets

Θi, Θ̄i, i = 1, . . . , m2, obtainable by replacing θ in Figure 3.14 by µi − ϑi and

µi − αi − ϑi:

Θi := {µi − ϑi,
π

2
− µi + ϑi, π − µi + ϑi,

π

2
+ µi − ϑi}; (3.53)

Θ̄i := {µi − αi − ϑi,
π

2
− µi + αi + ϑi, π − µi + αi + ϑi,

π

2
+ µi − αi − ϑi}.

(3.54)

where µi is the angle of rotation of Qπi
, whereas ϑi is the corresponding angle

of adjustment. For any neighboring sub-square Sj , the angles may change by at
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most max{θij , θ̄ij}.

We formulate the following statement, obvious from Figure 3.2.

Lemma 3.3.3. For each i = 1, . . . , m2, the interior angles of a regular triangle

T ∈ Ri are exactly 2αi and βi where αi is defined by (3.48) and βi by

tan βi =
1

tanαi
. (3.55)

Consequently, the interior angles of any parallelogram obtained by using step (ii)

or (iii.) of Section 3.2.2 are exactly 2αi + βi and βi.

3.3.2 Intersections of extended segments

In this section, we present the properties of extended segments obtained by Set-

tings 1-4. Recall that their intersections create polygons of at most five edges

which we call irregular polygons.

By virtue of Proposition 3.3.2, by making the parameter r small enough, the

segments in Li and Lj, and in L̄i and L̄j for neighboring regular regions Ri, Rj,

are “almost” parallel in the sense that the angle between them does not exceed

θ, where

θ∗ = max{θij, θ̄ij : i, j = 1, . . . , m2} (3.56)

with θij and θ̄ij estimated in Proposition 3.3.2.

The result below is straightforward by construction.

Lemma 3.3.4. Let Si, Sj be neighbors that share an edge. For any segment

ℓ0 ∈ Li ∪ L̄i extended by using Setting 1, and any ℓ1 ∈ Lj ∪ L̄j extended into Ri

by using either of Setting 2-a, 2-b or 3, the extended segments ℓext

0 and ℓext

1 can

only intersect at their end-points.

Proof. The result is clear since we do not allow connection to a re-entrant corner

(see Figure 3.15).
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ēk
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ℓ0
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z∗

z

di

ei

Figure 3.15: Extension of segments

Lemma 3.3.5. Let r be sufficiently small so that (3.17) holds. For any neighbor-

ing sub-squares Si, Sj and any two segments ℓ0 ∈ Li (resp. ℓ0 ∈ L̄i) and ℓ1 ∈ Lj

(resp. ℓ1 ∈ L̄i), the associated extended segments ℓext

0 , ℓext

1 can only intersect at

their end-points.

Proof. We shall prove the result by contradiction. Suppose that there are two

extended segments ℓext
0 , ℓext

1 which intersect at a point which is not an end-point.

Clearly, neither of ℓext
0 , ℓext

1 can be obtained from Setting 1, 4 and 5. Indeed, this

is obvious for Setting 4 and 5, and for Setting 1 we have Lemma 3.3.4.

Denote by z the intersection of the lines ℓline
0 , ℓline

1 . Without loss of generality,

assume that z ∈ Sj. Consider the triangle formed by the three points z, z1, z̄

(see Figure 3.16) where z1 is the common end-point of ℓ1 and ℓext
1 , and z̄ the

intersection point of ℓline
0 with the segment of L̄j containing z1. Denote by γ, β

the interior angles at z, z̄, respectively. Also, recall that dj , hj denote the lengths

of the shortest and longest edge of a parallelogram in Rj .

Let us first estimate the angle γ. Recall that λ1,j , λ2,j are the eigenvalues of the

matrix Qπj
, and that r is small enough so that (3.17) holds. Then, by combining

(3.45) and (3.17) with the results in Proposition 3.3.2 with ε = 3
2
ω(

√
2r), we have

γ ≤ θ ≤ Cδf
ε

1
2 = Cδf

[
3

2
ω(

√
2r)]

1
2 +O(ε2)

≤ 1

105(3
2
)

1
2Cδf

|f |
1
2

W 2
∞(Ω)

∣∣∣
λ1,j

λ2,j

∣∣∣. (3.57)
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z0

zz
γ

β

z̄

z̄

ℓ0

ℓ1

h

d

Figure 3.16: An intersection of two extended segments.

Since Setting 3 is based on Setting 2-a, 2-b, we only have three cases:

Case 1: both ℓext
0 , ℓext

1 are obtained from Setting 2-a. Since ℓ0 ∈ Li and ℓ1 ∈ Lj,

the directions of extension are two of ei,−ei, ej and −ej . We thus have

|z1 − z̄| = d ≥ dj
2
, (3.58)

otherwise the end-points of ℓext
0 would be z0 and z1. Note that z1 must be on the

boundary of Rj , thus by construction |z − z1| = h ≥ hj. By using the sine rule

sinγ
d

= sinβ
h

, we obtain

sin γ ≥ dj
2hj

sin β. (3.59)

We now need some lower bound for the angle β. Recall that given a parallelogram

P of a regular region, there is an angle π
3

≤ ϑ ≤ π
2

such that the interior angles of

P are exactly ϑ and π−ϑ. Then the angle β is bounded by ϑ− γ and π− ϑ+ γ.

By virtue of (3.57) we have that γ < π
6
. Hence

sin β ≥ sin
π

6
. (3.60)

Note that dj

hj
= h0

2ρ0

∣∣∣λ1,j

λ2,j

∣∣∣
1
2 , with ρ0, h0 being the length scales of an equilateral

triangle of unit area, with h0 = 2/31/4 and ρ0 = 31/4. We deduce from (3.59) that

sin γ ≥ h0

8ρ0

∣∣∣
λ1,j

λ2,j

∣∣∣
1
2 =

1

4
√

3

∣∣∣
λ1,j

λ2,j

∣∣∣
1
2 , (3.61)

which also contradicts the estimation in (3.57).
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In the case where ℓ0 ∈ L̄i and ℓ1 ∈ L̄j, the directions of extension are two of

ēi,−ēi, ēj and −ēj , and the values of d, h change: in (3.58) we have d ≥ hj

2
, but

also that h ≤ dj. Thus the lower bound in (3.59) becomes hj

2dj
sin β ≥ 1

2
sin β.

Combining this with (3.60) yields

sin γ ≥ 1

2
sin

π

6
, (3.62)

which also contradicts (3.57) because
∣∣∣λ1,j

λ2,j

∣∣∣ ≤ 1.

Case 2: one of ℓext
0 , ℓext

1 is obtained from Setting 2-a and the other from Set-

ting 2-b. Suppose that ℓ0 ∈ Li and ℓ1 ∈ Lj. Since z ∈ Sj , the same setting as

in Case 1 applies if ℓext
0 is obtained from Setting 2-a. If ℓext

0 is obtained from

Setting 2-b, then the value of d is greater than dj, making the lower bound in

(3.61) larger. In the case ℓ0 ∈ L̄i and ℓ1 ∈ L̄j, we also have the same setting as

above, and if ℓext
0 is obtained from Setting 2-b then d is greater than hj , which

makes the lower bound in (3.62) larger.

Case 3: both ℓext
0 , ℓext

1 are obtained from Setting 2-b. Suppose that ℓ0 ∈ Li and

ℓ1 ∈ Lj. The same setting as in Case 2 applies: the value of d is greater than dj,

making the lower bound in (3.61) larger. If ℓ0 ∈ L̄i and ℓ1 ∈ L̄j , then d is greater

than hj, which makes the lower bound in (3.62) larger.

Lemma 3.3.6. An extended segment obtained by Setting 1 is necessarily a di-

agonal of a shifted version of a regular parallelogram. Moreover, two extended

segments obtained by using Setting 1 cannot intersect.

Proof. The first statement is obvious by construction. We prove the second part

by contradiction. Let ℓext
0 = [z0, z1] and ℓext

1 be two extended segments obtained

from Setting 1 such that both connect the vertices of the same regular region Ri,

for some i ∈ {1, . . . , m2}. Supposing that they intersect, by construction, either

they are identical or they share an end-point.

Suppose that the first case is possible. Then one of the segments ℓ0, ℓ1 must
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z̄ z0

z0

z1

z1

ℓ0

ℓ0 ℓ1

ℓ1

Figure 3.17: Impossible configurations of extended segments of Setting 1.

belong to Li and the other to L̄i. But then, once again by construction, the

intersection point z̄ of ℓline
0 with ℓline

1 must be a vertex of Ri (see left of Figure 3.17),

and therefore should belong to both ℓ0 and ℓ1, thus a contradiction.

Suppose that the second case is possible, that is, ℓext
0 and ℓext

1 share an end-

point. Then necessarily both ℓ0, ℓ1 must belong to either Li or L̄i (see right of

Figure 3.17). However, by the second condition in Setting 1, one of the segments

ℓ0, ℓ1 cannot be extended by Setting 1, thus again a contradiction. Hence, there

is no intersection of extended segments from Setting 1.

3.3.3 Interior angles of triangles

Let i ∈ {1, . . . , m2} be fixed and consider a neighboring sub-square Sj to Si. Then

ψ−1
i (Rj) is uniformly triangulated, with triangles not necessarily equilateral but

still isotropic. We show this below.

Let Rj be a neighboring regular region to Ri and consider a triangle T ′ ∈ Rj .

Then, there is a vector t′ such that T ′ = Λjϕj(T0) + t′ where Λj is as defined in

(3.43). Since a translation does not change the shape of triangles, the triangle

ψ−1
i (T ′) has the same shape as ϕ−1

i (T ′), see Figure 3.18, which is given by

ϕ−1
i ◦ (Λjϕj)(T0) =




∣∣∣λ1,i

λ2,i

∣∣∣
1
4 0

0
∣∣∣λ2,i

λ1,i

∣∣∣
1
4


R(µj −ϑj)−(µi−ϑi)



Λj

∣∣∣λ2,j

λ1,j

∣∣∣
1
4 0

0 Λj

∣∣∣λ1,j

λ2,j

∣∣∣
1
4


 (T0)

= D−1
i ◦Rθ̄ij

◦ (ΛjDj)(T0),

where Di = diag
(∣∣∣λ2,i

λ1,i

∣∣∣
1
4 ,

∣∣∣λ1,i

λ2,i

∣∣∣
1
4

)
with λ1,i, λ2,i being the eigenvalues of Qπi

, and

θ̄ij = (µj − ϑj) − (µi − ϑi) which is estimated in (3.46).
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T0

ρ0Λj |λ2,j

λ1,j
| 1

4

h0Λj

2
|λ1,j

λ2,j
| 1

4

ΛjDj(T0)

Rθ̄ij
◦ (ΛjDj)(T0) D−1

i ◦Rθ̄ij
◦ (ΛjDj)(T0)

R−(µj −ϑj)ēj

R−(µj −ϑj)ej

αj

θ̄ij

Rθ̄ij−(µj −ϑj)ej

Rθ̄ij−(µj −ϑj)ēj

Figure 3.18: Back transformation of a regular triangle from a neighboring regular
region.

Recall the edge-vectors ei, ēi of Ti which are described in step (iii) of Sec-

tion 3.2.2. In Figure 3.18, the vectors ej and ēj are as defined in step (iii) of

Section 3.2.2, the angle αi has its tangent given in (3.48), and Λj is defined as in

(3.42) . Recall also that h0 = 2/3
1
4 denotes the diameter of an equilateral triangle

of unit area.

We have the following result.

Lemma 3.3.7. Let r be sufficiently small so that (3.17) holds. The diameter of

ψ−1
i (T ′) is less than (1 + 1

104( 3
2

)
1
2
)(1 + ξ)h0Λj, with Λj as defined in (3.43), and

where

ξ = 6
1
4 ε

1
4 δ

− 1
2

f |f |
1
4

W 2
∞(Ω), (3.63)

with ε = 3
2
ω(

√
2r) such that ‖Qπi

−Qπj
‖2 ≤ ε and δf satisfying (3.13).

Proof. The two edge vectors e∗
j and ē∗

j of the triangle Rθ̄ij
◦ (ΛjDj)(T0) are re-
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spectively given by (3.64) and (3.72) below. The first edge-vector is given by

e∗
j = Rθ̄ij−(µj−ϑj)ej =

[
|ej | cos(αj − θ̄ij) , −|ej | sin(αj − θ̄ij)

]t
, (3.64)

where its image by D−1
i can be easily computed,

D−1
i e∗

j = |ej |
[∣∣∣
λ1,i

λ2,i

∣∣∣
1
4 cos(αj − θ̄ij) , −

∣∣∣
λ2,i

λ1,i

∣∣∣
1
4 sin(αj − θ̄ij)

]t
.

The length of the above vector is estimated as follows: From the fact that sinαj =

h0Λj

2|ej |

∣∣∣λ1,j

λ2,j

∣∣∣
1
4 and cosαj =

ρ0Λj

|ej |

∣∣∣λ2,j

λ1,j

∣∣∣
1
4 we easily get

cos(αj − θ̄ij) = cosαj cos θ̄ij + sinαj sin θ̄ij

=
ρ0Λj

|ej|
∣∣∣
λ2,j

λ1,j

∣∣∣
1
4 cos θ̄ij +

h0Λj

2|ej|
∣∣∣
λ1,j

λ2,j

∣∣∣
1
4 sin θ̄ij ,

whereas,

sin(αj − θ̄ij) = sinαj cos θ̄ij − cosαj sin θ̄ij

=
h0Λj

2|ej|
∣∣∣
λ1,j

λ2,j

∣∣∣
1
4 cos θ̄ij − ρ0Λj

|ej |
∣∣∣
λ2,j

λ1,j

∣∣∣
1
4 sin θ̄ij .

We now deduce that

|D−1
i e∗

j | =Λj

[(
ρ0 cos θ̄ij

∣∣∣
λ1,i

λ2,i

λ2,j

λ1,j

∣∣∣
1
4 +

h0

2
sin θ̄ij

∣∣∣
λ1,i

λ2,i

λ1,j

λ2,j

∣∣∣
1
4

)2

+
(
h0

2
cos θ̄ij

∣∣∣
λ2,i

λ1,i

λ1,j

λ2,j

∣∣∣
1
4 − ρ0 sin θ̄ij

∣∣∣
λ2,i

λ1,i

λ2,j

λ1,j

∣∣∣
1
4

)2] 1
2

=Λj

[
ρ2

0 cos2 θ̄ij
∣∣∣
λ1,i

λ2,i

λ2,j

λ1,j

∣∣∣
1
2 +

h2
0

4
sin2 θ̄ij

∣∣∣
λ1,i

λ2,i

λ1,j

λ2,j

∣∣∣
1
2

+
h2

0

4
cos2 θ̄ij

∣∣∣
λ2,i

λ1,i

λ1,j

λ2,j

∣∣∣
1
2 + ρ2

0 sin2 θ̄ij
∣∣∣
λ2,i

λ1,i

λ2,j

λ1,j

∣∣∣
1
2

+ 2 cos θ̄ij sin θ̄ij

(∣∣∣
λ1,i

λ2,i

∣∣∣
1
2 −

∣∣∣
λ2,i

λ1,i

∣∣∣
1
2

)] 1
2

, (3.65)

since
h0ρ0

2
= 1. Recall that δf is defined in (3.13) and that ε = 3

2
ω(

√
2r), with
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‖Qπi
−Qπj

‖2 ≤ ε. We also deduce from (2.4) the inequalities

max{|λ2,i|, |λ2,j|} ≤ 3

2
max{‖πi‖, ‖πj‖} ≤ 3

2
|f |W 2

∞(Ω).

Hence, from (3.52) (see proof of Proposition 3.3.2) we also have

∣∣∣∣
λ1,j

λ2,j

− λ1,i

λ2,i

∣∣∣∣
1
2 ≤ 2(

3

2
)

1
2 ε

1
2 δ−1
f |f |

1
2

W 2
∞(Ω). (3.66)

We also deduce from (3.51) that

∣∣∣∣
λ2,i

λ1,i

− λ2,j

λ1,j

∣∣∣∣
1
2

=
|λ1,jλ2,i − λ1,iλ2,j |

1
2

|λ1,iλ1,j |
1
2

≤ 2(
3

2
)

1
2 ε

1
2 δ−1
f |f |

1
2

W 2
∞(Ω). (3.67)

Taking the square root, from (3.67) it immediately follows that

∣∣∣
λ2,i

λ1,i

∣∣∣
1
4

∣∣∣∣
λ1,iλ2,j

λ2,iλ1,j
− 1

∣∣∣∣
1
4

=
∣∣∣
λ2,j

λ1,j
− λ2,i

λ1,i

∣∣∣
1
4 ≤ 6

1
4 ε

1
4 δ

− 1
2

f |f |
1
4

W 2
∞(Ω),

which yields the estimation
∣∣∣
λ1,i

λ2,i

λ2,j

λ1,j

∣∣∣
1
4 ≤ 1 + ξ with ξ = 6

1
4ε

1
4 δ

− 1
2

f |f |
1
4

W 2
∞(Ω). The

estimation
∣∣∣
λ1,j

λ2,j

λ2,i

λ1,i

∣∣∣
1
4 ≤ 1 + ξ is proved in a similar way.

Next, we shall estimate ρ2
0(sin θ̄ij)

2
∣∣∣λ2,i

λ1,i

λ2,j

λ1,j

∣∣∣
1
2 . By using (3.46) and (3.17), and

recalling that ε = 3
2
ω(

√
2r), we have

(sin θ̄ij)
2 ≤ θ̄2

ij ≤ θ̄ijCδf
[
3

2
ω(

√
2r)]

1
2

≤ θ̄ij
1

105(3
2
)

1
2Cδf

|f |
1
2

W 2
∞(Ω)

∣∣∣
λ1,j

λ2,j

∣∣∣,

and therefore, since C1 ≤ Cδf
, we deduce from (3.47) that

ρ2
0(sin θ̄ij)

2
∣∣∣
λ2,i

λ1,i

λ2,j

λ1,j

∣∣∣
1
2 ≤ θ̄ij

ρ2
0

105(3
2
)

1
2Cδf

|f |
1
2

W 2
∞(Ω)

∣∣∣
λ2,i

λ1,i

λ1,j

λ2,j

∣∣∣
1
2
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≤ ρ2
0ε

1
2

105(3
2
)

1
2 |f |

1
2

W 2
∞(Ω)

(1 + ξ)2

=
ω(

√
2r)

1
2

105|f |
1
2

W 2
∞(Ω)

ρ2
0(1 + ξ)2, (3.68)

by virtue of ε = 3
2
ω(

√
2r).

We observe that, since δf ∈ (0, 1) (see (3.13)), clearly

1

C2
δf

=
δ2
f

(2 + 33πδf)2
≤ δf

4
.

Also, since from (2.4) we have that δf ≤ 3
2
|f |W 2

∞(Ω), we obtain 1
C2

δf

≤ 3
8
|f |W 2

∞(Ω) ≤
|f |W 2

∞(Ω). It is now easy to show from (3.15) that

ω(
√

2r)
1
2

105|f |W 2
∞(Ω)

≤ 1

108 3
2

. (3.69)

Next, from the fact that
∣∣∣λ1,i

λ2,i

∣∣∣
1
2 ≤ 1, we deduce from (3.15) that

∣∣∣∣ sin θ̄ij

(∣∣∣
λ1,i

λ2,i

∣∣∣
1
2 −

∣∣∣
λ2,i

λ1,i

∣∣∣
1
2

)∣∣∣∣ ≤ | sin θ̄ij |
∣∣∣
λ2,i

λ1,i

∣∣∣
1
2

≤ Cδf
[
3

2
ω(

√
2r)]

1
2

∣∣∣
λ2,i

λ1,i

∣∣∣
1
2

≤ 1

105(3
2
)

1
2Cδf

|f |
1
2

W 2
∞(Ω)

.

By virtue of 1
Cδf

≤ 1
2
δ

1
2
f ≤ ( 3

2
)

1
2

2
|f |

1
2

W 2
∞(Ω) ≤ |f |

1
2

W 2
∞(Ω), we obtain

∣∣∣∣ sin θ̄ij

(∣∣∣
λ1,i

λ2,i

∣∣∣
1
2 −

∣∣∣
λ2,i

λ1,i

∣∣∣
1
2

)∣∣∣∣ ≤ 1

105(3
2
)

1
2

≤ 1

104(3
2
)

1
2

(1 + ξ)2. (3.70)

Now using (3.65), (3.68) and (3.69), together with (3.70) and the fact that
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ρ2
0 +

h2
0

4
= h2

0, we deduce from (3.65) that

|D−1
i e∗

j | ≤ (1 + ξ)Λj

(
ρ2

0 cos2 θ̄ij +
h2

0

4
+

ρ2
0

108 3
2

+
2| cos θ̄ij |
104(3

2
)

1
2

) 1
2

≤ (1 + ξ)h0Λj(1 +
1

108 3
2

+
2

104(3
2
)

1
2

)
1
2

= (1 + ξ)(1 +
1

104(3
2
)

1
2

)h0Λj . (3.71)

The second edge-vector of Rθ̄ij
◦ (ΛjDj)(T0) is given by

ē∗
j = Rθ̄ij−(µj−ϑj)ēj = [−|ēj | cos θ̄ij , |ēij | sin θ̄ij ]

t, (3.72)

with its image by D−1
i being

D−1
i ē∗

j = |ēj|
[

−
∣∣∣
λ1,i

λ2,i

∣∣∣
1
4 cos θ̄ij ,

∣∣∣
λ2,i

λ1,i

∣∣∣
1
4 sin θ̄ij

]t
,

from which it follows that

|D−1
i ē∗

j | = |ēj|
(∣∣∣
λ1,i

λ2,i

∣∣∣
1
2 cos2 θ̄ij + 2 cos θ̄ij sin θ̄ij +

∣∣∣
λ2,i

λ1,i

∣∣∣
1
2 sin2 θ̄ij

) 1
2

,

where |ēj| = h0

2
Λj

∣∣∣λ1,j

λ2,j

∣∣∣
1
4 . Hence

|D−1
i ē∗

j | ≤ h0

2
Λj

(∣∣∣
λ1,i

λ2,i

λ1,j

λ2,j

∣∣∣
1
2 cos2 θ̄ij + 2 cos θ̄ij sin θ̄ij

∣∣∣
λ1,j

λ2,j

∣∣∣
1
2 +

λ2,i

λ1,i

λ2,j

λ1,j

∣∣∣
1
2 sin2 θ̄ij

) 1
2

.

Using a similar approach as to obtain (3.71), we obtain

|D−1
i ē∗

j | ≤ (1 + ξ)(1 +
1

104(3
2
)

1
2

)
h0

2
Λj. (3.73)

The length of the third edge-vector of D−1
i ◦ Rθ̄ij

(ΛjDj)(T0) is estimated in a

similar way as in (3.71). Combining this with (3.71) and (3.73) yields the result.

The triangle D−1
i ◦ Rθ̄ij

(ΛjDj)(T0) is isotropic with its sides being compara-
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ble to those of ΛjT0 which is an equilateral triangle: From (3.43), with Λi =

sη(Kp(πi) + 2Ch2
πi
ω(r))− q

2 , let us estimate the quotient

Λj

Λi
=

(
Kp(πi) + 2Ch2

πi
ω(r)

Kp(πj) + 2Ch2
πj
ω(r)

) q
2

, (3.74)

where hπi
is the diameter of an optimal triangle for πi by using the construction

in Algorithm 3.1. First, from (2.54) we have Kp(πi) = Kp(π0)|λ1,iλ2,i|
1
2 where

π0(x, y) = x2 + y2. Assuming without loss of generality that λ1,j is the closest to

λ1,i of the eigenvalues of Qπj
, and also that λ2,j is the closest to λ2,i, we deduce

from (3.19) that

|λ1,iλ2,i − λ1,jλ2,j| = |(λ1,i − λ1,j)λ2,i + λ1,j(λ2,i − λ2,j)|

≤ 2‖Qπi
−Qπj

‖2λ2,i

≤ 3ω(
√

2r)λ2,i, (3.75)

by virtue of (2.4) and and (3.45). It follows from (3.75) that

|Kp(πi) −Kp(πj)| ≤ 3
1
2Kp(π0)ω(

√
2r)

1
2λ

1
2
2,i. (3.76)

On the other hand, by using (3.66) and (3.67), we obtain

h2
πi

= ρ2
0

∣∣∣
λ2,i

λ1,i

∣∣∣
1
2 +

h2
0

4

∣∣∣
λ1,i

λ2,i

∣∣∣
1
2

≤ ρ2
0

(∣∣∣
λ2,j

λ1,j

∣∣∣
1
2 + ξ2

)
+
h2

0

4

(∣∣∣
λ1,j

λ2,j

∣∣∣
1
2 + ξ2

)

= h2
πj

+ h2
0ξ

2,

by virtue of the fact that ρ2
0 +

h2
0

4
= h2

0. Combining this with (3.76) yields

Kp(πi) + 2Ch2
πi
ω(r) ≤ Kp(πj) + 2Ch2

πj
ω(r)

+ 3
1
2Kp(π0)ω(

√
2r)

1
2λ

1
2
2,i + 2Ch2

0ξ
2ω(r).

Since ε = 3
2
ω(

√
2r), clearly from (3.63) we have
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ξ2 = 3ω(
√

2r)
1
2 δ−1
f |f |

1
2

W 2
∞(Ω). Thus the inequalities

3
1
2Kp(π0)ω(

√
2r)

1
2λ

1
2
2,i

Kp(πj) + 2Ch2
πj
ω(r)

≤ 3
1
2Kp(π0)ω(

√
2r)

1
2λ

1
2
2,i

Kp(π0)|λ1,jλ2,j |
1
2

≤
3

1
2ω(

√
2r)

1
2

(
3
2

) 1
2 |f |

1
2

W 2
∞(Ω)

δf

≤ ξ2.

From the fact that h2
0 =

h2
0

4
+ ρ2

0 where ρ2
0 =

√
3 >

h2
0

4
= 1√

3
, we can easily prove

that for any A ≥ 1, we have h2
0 ≤ h2

0

4
1
A

+ ρ2
0A. Hence h2

0 ≤ h2
πj

holds for any j.

Also, since hπj
≥ 1, clearly

2Ch2
0ξ

2ω(r)

Kp(πj) + 2Ch2
πj
ω(r)

≤ 2Ch2
0ξ

2ω(r)

2Ch2
πj
ω(r)

=
h2

0

h2
πj

ξ2 ≤ ξ2,

after assuming that ω(r) 6= 0. Obviously in the case ω(r) = 0, we conclude that

Kp(πi) + 2Ch2
πi
ω(r) ≤ (1 + 2ξ2)

(
Kp(πj) + 2Ch2

πj
ω(r)

)
, (3.77)

and hence, from (3.74),

Λj

Λi

≤ (1 + 2ξ2)
q
2 . (3.78)

Note that the inverse inequality can be proved by using a similar argument. Since

ε = 3
2
ω(

√
2r), we deduce from (3.63) and (3.17) that

ξ = 3
1
2ω(

√
2r)

1
4 δ

− 1
2

f |f |
1
4

W 2
∞(Ω)

≤ 1

10
5
2 δ

1
2
f Cδf

≤ 1

2
10− 5

2 , (3.79)

by virtue of the fact that 1

δ
1
2
f
Cδf

≤ 1
2

which can be easily proved. Hence, with

d′
i = |ē∗

i | = h0Λi and d′
j = |ē∗

j |, combining (3.71) and (3.73) with (3.78) yields the
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inequalities below with ξ1 = 1

104( 3
2

)
1
2
,

d′
j ≤ (1 + ξ)(1 + ξ1)h0Λj ≤ (1 + ξ)(1 + 2ξ2)

q

2 (1 + ξ1)h0Λi

≤ (1 + ξ)(1 +
√

2ξ)(1 + ξ1)h0Λi ≤ (1 + 4ξ)(1 + ξ1)d
′
i

≤ (1 + 8ξ + ξ1)d
′
i ≤

(
1 +

9

2
10− 5

2

)
d′
i

≤ (1 + 10− 3
2 )d′

i, (3.80)

since ξ1 is less than the upper bound of ξ in (3.79). The inverse inequality, that

is d′
i ≤ (1 + 10− 3

2 )d′
j , can be proved by using a similar argument.

Lemma 3.3.8. Let r be sufficiently small so that (3.17) holds. Suppose that Si, Sj

are two neighboring sub-squares. Then the angle θ∗
ij (resp. θ̄∗

ij) formed from the

segments in ψ−1
i (Li) and ψ−1

i (Lj) (resp. ψ−1
i (L̄i) and ψ−1

i (L̄j)) is bounded by

C ′
1ε

1
4 , where ε = 3

2
ω(

√
2r) and C ′

1 a constant.

Proof. After a back transformation (see Figure 3.18), the directional vectors e∗
i

and e∗
j , respectively associated with ψ−1

i (Li) and ψ−1
i (Lj) are given by

e∗
i = Λi[ρ0 − h0

2
]t, (3.81)

e∗
j = |ej|

[∣∣∣
λ1,i

λ2,i

∣∣∣
1
4 cos(αj − θ̄ij), −

∣∣∣
λ2,i

λ1,i

∣∣∣
1
4 sin(αj − θ̄ij)

]t
. (3.82)

In order to estimate the angle θ∗
ij , we shall use the scalar product of e∗

i and e∗
j .

We have that |ej| =
ρ0Λj

cosαj

∣∣∣λ2,j

λ1,j

∣∣∣
1
4 , and also

Aij := cos(αj − θ̄ij) = cosαj cos θ̄ij + sinαj sin θ̄ij ,

Bij := sin(αj − θ̄ij) = sinαj cos θ̄ij − cosαj sin θ̄ij .

We thus have

e∗
j =

ρ0Λj

cosαj

∣∣∣
λ2,j

λ1,j

∣∣∣
1
4

[∣∣∣
λ1,i

λ2,i

∣∣∣
1
4Aij , −

∣∣∣
λ2,i

λ1,i

∣∣∣
1
4Bij

]t

= ρ0Λj

[∣∣∣
λ2,j

λ1,j

λ1,i

λ2,i

∣∣∣
1
4Aij , −

∣∣∣
λ2,j

λ1,j

λ2,i

λ1,i

∣∣∣
1
4Bij

]t
.
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The square of the scalar product of e∗
i and e∗

j satifies

(e∗
ie

∗
j )

2 =ρ2
0Λ2

iΛ
2
j

(
ρ0

∣∣∣
λ2,j

λ1,j

λ1,i

λ2,i

∣∣∣
1
4Aij +

h0

2

∣∣∣
λ2,j

λ1,j

λ2,i

λ1,i

∣∣∣
1
4Bij

)2

=ρ2
0Λ2

iΛ
2
j

(
ρ2

0

∣∣∣
λ2,j

λ1,j

λ1,i

λ2,i

∣∣∣
1
2A2

ij + ρ0h0

∣∣∣
λ2,j

λ1,j

∣∣∣
1
2AijBij +

h2
0

4

∣∣∣
λ2,j

λ1,j

λ2,i

λ1,i

∣∣∣
1
2B2

ij

)
.

(3.83)

We also have that

(|e∗
i ||e∗

j |)2 = h2
0ρ

2
0Λ

2
iΛ

2
j

(∣∣∣
λ2,j

λ1,j

λ1,i

λ2,i

∣∣∣
1
2A2

ij +
∣∣∣
λ2,j

λ1,j

λ2,i

λ1,i

∣∣∣
1
2B2

ij

)
. (3.84)

Hence, since h2
0 − ρ2

0 =
h2

0

4
, we have

sin2 θ∗
ij =1 − cos2 θ∗

ij =
(|e∗

i ||e∗
j |)2 − (e∗

i e
∗
j )

2

(|e∗
i ||e∗

j |)2

=
ρ2

0Λ
2
iΛ

2
j

(|e∗
i ||e∗

j |)2

(
h2

0

4

∣∣∣
λ2,j

λ1,j

λ1,i

λ2,i

∣∣∣
1
2A2

ij − ρ0h0

∣∣∣
λ2,j

λ1,j

∣∣∣
1
2AijBij + ρ2

0

∣∣∣
λ2,j

λ1,j

λ2,i

λ1,i

∣∣∣
1
2B2

ij

)

=
ρ2

0Λ
2
iΛ

2
j

(|e∗
i ||e∗

j |)2

(
h0

2

∣∣∣
λ2,j

λ1,j

λ1,i

λ2,i

∣∣∣
1
4Aij − ρ0

∣∣∣
λ2,j

λ1,j

λ2,i

λ1,i

∣∣∣
1
4Bij

)2

.

Recall from (3.48) that tanαj = h0

2ρ0

∣∣∣λ1,j

λ2,j

∣∣∣
1
2 . Thus

ρ0

∣∣∣
λ2,j

λ1,j

λ2,i

λ1,i

∣∣∣
1
4 tanαj cos θ̄ij =

h0

2

∣∣∣
λ1,j

λ2,j

λ2,i

λ1,i

∣∣∣
1
4 cos θ̄ij .

Hence we have

sin2 θ∗
ij =

ρ2
0Λ2

iΛ
2
j

(|e∗
i ||e∗

j |)2
cos2 αj

(
h0

2

(
C − 1

C

)
cos θ̄ij +

h0

2
C tanαj sin θ̄ij

+ ρ0

∣∣∣
λ2,j

λ1,j

λ2,i

λ1,i

∣∣∣
1
4 sin θ̄ij

)2

, (3.85)

where C =
∣∣∣λ2,j

λ1,j

λ1,i

λ2,i

∣∣∣
1
4 ≤ 1 + ξ with ξ defined in (3.63), and estimated in (3.79).

Without loss of generality, we assume that 1
C

≤ C (otherwise we use C ′ = 1
C

),
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and thus

|C − 1

C
| =

∣∣∣
C2 − 1

C

∣∣∣ ≤
∣∣∣
(1 + ξ)2 − 1

C

∣∣∣ =
2ξ + ξ2

C
≤ 2ξ + ξ2.

Now recall from Proposition 3.3.2 that sin θ̄ij ≤ Cδf
ε, and that tanαj ≤ 1

since
∣∣∣λ1,j

λ2,j

∣∣∣ ≤ 1 and h0 = 2/3
1
4 , ρ0 = 3

1
4 . This, coupled with (3.68), imply that

| sin2 θ∗
ij | ≤ ρ2

0Λ2
iΛ

2
j

(|e∗
i ||e∗

j |)2

(
h0

2
(2ξ + ξ2) +

h0

2
(1 + ξ)Cδf

ε+
ρ0C

1
2
1 ε

1
4 (1 + ξ)

105C
1
2
δf

|f |
1
4

W 2
∞(Ω)

)2

.

Combining this with (3.63) yields

| sin2 θ∗
ij | ≤ ρ2

0Λ2
iΛ

2
j

(|e∗
i ||e∗

j |)2

(
3h0

2

√
2ε

1
4 δ

− 1
2

f |f |
1
4

W 2
∞(Ω) + h0Cδf

ε+ h0c0ε
1
4

)2

≤ c′
0∣∣∣λ2,j

λ1,j

λ1,i

λ2,i

∣∣∣
1
2A2

ij +
∣∣∣λ2,j

λ1,j

λ2,i

λ1,i

∣∣∣
1
2B2

ij

ε
1
2

≤C ′
1ε

1
2 , (3.86)

by virtue of (3.84), thereby proving the result.

We are now ready to prove the following.

Proposition 3.3.9. Let r be sufficiently small so that (3.17) holds. For a fixed

i ∈ {1, . . . , m2}, consider the back transformation ∆i of the triangulation ∆s,r

defined in (3.44). Then:

i. For any segment ℓ0 ∈ Li extended according to Setting 1, the angle between

the segments ϕ−1
i (ℓ0) and ϕ−1

i (ℓext

0 ) is either π/6 or π/3;

ii. For any segment ℓ0 ∈ Li ∪ L̄i extended according to Setting 2-a, 2-b or 3 up

to a neighboring sub-square Sj of Si, the angle between the segments ϕ−1
i (ℓ0)

and ϕ−1
i (ℓext

0 ) is less than π
7
.

Proof. Denote by θ the angle between the segments ψ−1
i (ℓ0) and ψ−1

i (ℓext
0 ). Given

a regular triangle T in Ri, we denote by d′
i, h

′
i the lengths of the shortest and
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ϕ−1
i (ℓ0)

ϕ−1
i (ℓext

0 )

π/3

π/6

Figure 3.19: Connection according to Setting 1 for regular regions after a back
transformation.

largest edges of ψ−1
i (T ).

i. The back transformation of ∆s,r by using ψi transforms the regular triangles

contained in Si into equilateral triangles. Given a segment ℓ0 ∈ Li and the

extended segment ℓext
0 obtained by using Setting 1, as shown in Figure 3.19, the

segment ψ−1
i (ℓext

0 ) is necessarily one of the diagonals of a parallelogram defined

by two equilateral triangles of ψ−1
i (Si). Thus, the angle θ is either π/6 or π/3;

The proof of the second part is divided into two parts ii-a and ii-b (on page 147)

depending on which Setting is used to extend a given segment ℓ0.

ii-a. Consider a segment ℓ0 ∈ Li which is extended by using Setting 2-a

following the direction ei. Given the segment ℓ̄1 ∈ L̄j (described in Setting 2-a)

which intersects the line ℓline
0 , let z0 denote the common vertex of ψ−1

i (ℓ0) and

ψ−1
i (ℓext

0 ), and let z denote the intersection of the line extending ψ−1
i (ℓ0) with

ψ−1
i (ℓ̄1).

We first recall that the angle θ∗
ij (resp. θ̄∗

ij) between the segments in ψ−1
i (Li)

and in ψ−1
i (Lj) (reps. ψ−1

i (L̄i) and ψ−1
i (L̄j)) is estimated according to Lemma 3.3.8.

Also, after a back transformation the angles in a parallelogram of ψ−1
i (Ri) are

π
3

and 2π
3

. These angles are perturbed by θ∗
ij and θ̄∗

ij for the parallelograms in
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z∗
z′

z0

d′
i

d′
j

ψ−1
i (ℓ0)

ψ−1
i (ℓ̄1)

z

e∗
i

e∗
j

Figure 3.20: After a back transformation, the distance |z0 − z| is nearly equal to
di + d′

j.

ψ−1
i (Rj). The perturbed angles are denoted by βij and β ′

ij. More precisely,

(βij , β
′
ij) ∈

{(
π

3
+ θ∗

ij + θ̄∗
ij ,

2π

3
− θ∗

ij − θ̄∗
ij

)
,
(
π

3
+ θ∗

ij − θ̄∗
ij ,

2π

3
− θ∗

ij + θ̄∗
ij

)
,

(
π

3
− θ∗

ij + θ̄∗
ij ,

2π

3
+ θ∗

ij − θ̄∗
ij

)
,
(
π

3
− θ∗

ij − θ̄∗
ij ,

2π

3
+ θ∗

ij + θ̄∗
ij

)}
.

(3.87)

Our first task consists in estimating the minimum distance between z0 and

z (see (3.93)). Let z∗ denote the intersection of the line extending ψ−1
i (ℓ0) with

the common edge of ψ−1
i (Si) and ψ−1

i (Sj). Then by construction (see Step (iii)

of Section 3.2.2), we have |z0 − z∗| ≥ d′
i = |ē∗

i |.

Consider the intersection point z′ of the common edge Eij of ψ−1
i (Si) and

ψ−1
i (Sj) with the line parallel to e∗

j and passing through z, see Figure 3.20. By

considering the triangle formed by z, z∗ and z′, denote by ϑ, γ the interior angles

at z∗, z′, respectively. By using the sine rule, we have |z−z∗|
sin γ

= |z−z′|
sinϑ

which yields

|z − z∗| =
sin γ

sin ϑ
|z − z′| ≥ sin γ

sin ϑ
d′
j, (3.88)

by virtue of the fact that by construction |z − z′| ≥ d′
j , where d′

j is the length

of the shortest edge of a parallelogram in ψ−1
i (Rj). The right hand side of the

above inequality is an increasing function of γ ∈ [0, π
2
]. Clearly γ ≥ 0, and γ > π

2
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implies that |z−z∗| ≥ |z−z′|, which does not provide the minimum lower bound

possible for |z−z∗|. We will show below that there is an angle γ0 for which γ ≥ γ0

lead to the lower bound for |z − z∗|.

γ

Γ
β0

z1

z∗
1

z∗
2

Figure 3.21: Nearest that z1 can be to an edge of ψ−1
i (Sj)

In fact, |z−z∗| is longer than |z1 −z∗
1 | where z1 is a vertex of ψ−1

i (ℓ1) which is

nearer to Eij than z (there is always such a vertex since z belongs to a parallel-

ogram having an edge on ψ−1
i (ℓ1)), and z∗

1 the intersection point of Eij with the

line parallel to e∗
j and passing through z1. Clearly, d′

j is a lower bound for |z1−z∗
1 |.

We are looking for the lowest value of γ for which the minimum |z1 − z∗
1 | = d′

j is

attained. Such a value is determined through the following settings, as illustrated

in Figure 3.21: The line parallel to ē∗
j and passing through z1 intersects the edge

Eij at a point z∗
2 . By construction we also have |z1 − z∗

2 | ≥ d′
j. For the triangle

formed by z1, z
∗
1 , z

∗
2 , the interior angle at z∗

2 is denoted Γ and the one at z1 which

we denote by β0 is either βij or β ′
ij (the one at z∗

1 is obviously γ).

Both lower bounds |z1 − z∗
1 | = d′

j and |z1 − z∗
2 | = d′

j (see Figure 3.21) are

attained if γ = Γ = γ0 := π−β0

2
and if the distance of z1 to the edge Eij is

d′
j sin γ0. Indeed, by using the sine rule clearly

|z1−z∗
1 |

sin Γ
=

|z1−z∗
2 |

sinγ
which yields

|z1 − z∗
1 | =

sin Γ

sin γ
.

Thus, if γ < Γ then sin Γ
sinγ

> 1 and |z1 − z∗
1 | > |z1 − z∗

2 | = d′
j. Hence γ = γ0 is the

minimum angle that makes |z1 − z∗
1 | as short as possible. Moreover, from (3.87)

the largest angle that β0 can be is 2π
3

+ θ∗
ij + θ̄∗

ij , which yields γ0 = π
6

− θ∗
ij+θ̄∗

ij

2
.
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Let us now come back to our previous setting with the points z, z∗ and z′ (see

Figure 3.20). Since γ ≥ γ0, we deduce from (3.88) that

|z − z∗| ≥ sin γ0

sinϑ
d′
j. (3.89)

From the fact that

ϑ = π − γ − θ∗
ij ≤ π − γ0 − θ∗

ij =
5π

6
+
θ̄∗
ij − θ∗

ij

2
,

we obtain

sin γ0

sin ϑ
=

cos(θ̄∗
ij + θ∗

ij) −
√

3 sin(θ̄∗
ij + θ∗

ij)

cos(θ̄∗
ij − θ∗

ij) −
√

3 sin(θ̄∗
ij − θ∗

ij)

=
1 − tan θ̄∗

ij tan θ∗
ij −

√
3 tan θ̄∗

ij −
√

3 tan θ∗
ij

1 + tan θ̄∗
ij tan θ∗

ij −
√

3 tan θ̄∗
ij +

√
3 tan θ∗

ij

=1 − 2 tan
θ∗

ij

2
(
√

3 + tan
θ̄∗

ij

2
)

1 −
√

3 tan
θ̄∗

ij

2
+ tan

θ∗
ij

2
(
√

3 + tan
θ̄∗

ij

2
)
, (3.90)

after expansions and simplifications of the cosines and sines. Observe that θ∗
ij and

θ̄∗
ij are small (Lemma 3.3.8) enough so that −

√
3 tan

θ̄∗
ij

2
+tan

θ∗
ij

2
(
√

3+tan
θ̄∗

ij

2
) ≤ 1

2
,

from which the above inequality reads

sin γ0

sinϑ
≥ 1 − ̺ij, (3.91)

where ̺ij = 4 tan
θ∗

ij

2
(
√

3 + tan
θ̄∗

ij

2
) which can be very small too. We deduce from

(3.89) that

|z − z∗| ≥ (1 − ̺ij)d
′
j . (3.92)

Now, observe that

|z0 − z| = |z0 − z∗| + |z − z∗| ≥ d′
i + (1 − ̺ij)d

′
j. (3.93)

The above estimation will be useful for each of the following two cases, whether
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z
z0

z1

z̄1

θ

Figure 3.22: Positions of the points z, z0, z1, z̄1 when z is not near a corner and
ẑ = π

3
± θ̄∗

ij

or not z is near to a re-entrant corner.

∗ Let z1 be the nearest vertex of ψ−1
i (ℓ1) such that z1 is not a re-entrant

corner and such that |z−z1| ≤ d′
j

2
. Consider the triangle formed by z0, z, z1. Recall

that the segments in ψ−1
i (Li) and ψ−1

i (Lj) are almost parallel in the sense that

they make small angles (and similarly for the segments in ψ−1
i (L̄i) and ψ−1

i (L̄j)).

Thus the interior angle ẑ at z belongs to the set

{
π

3
± θ̄∗

ij ,
2π

3
± θ̄∗

ij

}
. (3.94)

Observe that θ is the angle between [z0, z] and [z0, z1]. We have two cases.

• Suppose that ẑ = π
3

± θ̄∗
ij , as shown in Figure 3.22. Denoting by z̄1 the

orthogonal projection of z1 onto the the segment [z, z0], we have

tan θ =
|z1 − z̄1|
|z0 − z̄1| =

|z − z1| sin ẑ

|z0 − z| − |z − z1| cos ẑ

≤
d′

j

2
sin ẑ

d′
i + (1 − ̺ij)d′

j − d′
j

2
cos ẑ

, (3.95)

by virtue of (3.93). Since from (3.80) we have that d′
i = (1 ± δ)d′

j for some
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zz0

z1

z̄1

θ

Figure 3.23: Positions of the points z, z0, z1, z̄1 when z is not near a corner and
ẑ = 2π

3
± θ̄∗

ij

0 ≤ δ ≤ 1

10
3
2
, after simplification by d′

j we obtain

tan θ ≤
1
2

3
2

− δ − ̺ij
=

1

3 − 2(δ + ̺ij)
≤ 1

3 − 1
5

≤ tan
π

7
, (3.96)

by choosing ̺ij small enough (see (3.91)) so that 2(δ + ̺ij) ≤ 1
5
.

•• Suppose that ẑ = 2π
3

± θ̄∗
ij , as shown in Figure 3.23. Then by denoting z̄1

the projection of z1 onto the line extending the segment [z0, z], we have

tan θ =
|z1 − z̄1|
|z0 − z̄1| ≤ |z1 − z̄1|

|z − z0| ≤ |z − z1|
|z − z0|

≤
d′

j

2

d′
i + (1 − ̺ij)d′

j

≤ 1

4 − 2(δ + ̺ij)
≤ tan

π

7
. (3.97)

∗∗ Suppose now that z1 is the nearest vertex of ψ−1
i (ℓ1) such that z1 is not

a re-entrant corner but
d′

j

2
< |z − z1| ≤ d′

j. Let z∗ denote the re-entrant corner

near to z and let z̃ be the middle point of z∗ and z1 (see Figure 3.24). Consider

the point z̃1 obtained from the intersection of the segment [z1, z̃2] with the line

parallel to e∗
j and passing through z̃, where z̃2 ∈ ψ−1

i (L̄j) is the closest vertex to

z∗ such that the triangle defined by z1, z
∗, z̃2 is not included in ψ−1

i (Rj). Clearly

the two triangles T, T̃ formed by z1, z̃, z̃1 and z1, z
∗, z̃2 have the same shape. Thus
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z1z1

z̃1

z̃1

z̃2

z̃2

z̃

z̃

z∗

z̃0
1

θ∗
ij

Figure 3.24: Different points in the neighborhood of a re-entrant corner.

necessarily

|z̃ − z̃1|
|z̃ − z1| =

|z∗ − z̃2|
|z∗ − z1| .

The numerator and denominator in the right hand side of the above equality are

equal to d′
j up to a perturbation by a small number (see (3.71) and (3.73)). Since

|z̃ − z1| = |z∗−z1|
2

, the above equality yields that

|z̃ − z̃1| = (1 + δ′)
d′
j

2
, (3.98)

where |δ| ≤ 3ξ where ξ is given in (3.63).

The interior angle ẑ∗ at z∗ of the triangle T̃ belongs to the set

{π
3

± θ∗
ij ± θ̄∗

ij ,
2π

3
± θ∗

ij ± θ̄∗
ij

}
.

We again have two cases.

• Suppose that ẑ∗ = π
3

± θ∗
ij ± θ̄∗

ij (similar to Figure 3.22). Since the edge

lengths of T̃ are approximately d′
j, the interior angle at z̃2 is also approximately

π
3
. Thus, for the triangle T the interior angle at z̃1 is approximately π

3
. Consider

the triangle T̃ 0 formed by the points z̃, z̃1 and z̃0
1 such that the point z̃0 belongs to
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the segment [z̃1, z1], the interior angle at z̃ is θ∗
ij and such that |z̃− z̃0

1 | ≤ |z̃− z̃1|.
By the sine rule, we have

|z̃ − z̃0
1 |

sin ̂̃z1

=
|z̃1 − z̃0

1 |
sin θ∗

ij

. (3.99)

On the other hand, we have

|z̃1 − z̃0
1 | cos ̂̃z1 + |z̃ − z̃0

1 | = |z̃ − z̃1|. (3.100)

From (3.99), we obtain |z̃1 − z̃0
1 | =

sin θ∗
ij

sin ̂̃z1
|z̃− z̃0

1 | which, together with (3.100) and

in view of (3.98), yields that |z̃ − z̃0
1 | = |z̃−z̃1|

cos θ∗
ij

tan ̂̃z1

tan θ∗
ij

+tan ̂̃z1
, and thus

|z̃ − z̃0
1 | ≥|z̃ − z̃1|

(
1 − tan θ∗

ij

tan θ∗
ij + tan ̂̃z1

)
≥ d′

j

2
(1 − ̺′

ij), (3.101)

where ̺′
ij = O(tan θ∗

ij). Recall from (3.98) that |z̃− z̃1| is approximately equal to
d′

j

2
. Thus in a similar way that we obtain (3.93), we have that

|z0 − z̃| =|z0 − z∗| + |z∗ − z̃0
1 | + |z̃0

1 − z̃|

≥d′
i + (1 − ̺ij)d

′
j + (1 − ̺′

ij)
d′
j

2

=(
5

2
− δ − ̺ij − ̺′

ij

2
)d′
j.

Denote by z̄1 the projection of z1 onto the segment [z0, z]. Recalling that θ is the

angle between [z0, z] and [z0, z1], we have that

tan θ =
|z1 − z̄1|
|z0 − z̄1|

=
|z − z1| sin ẑ

|z0 − z| − |z − z1| cos ẑ
,

where ẑ = π
3

± θ̄∗
ij and |z1 − z̄1| ≤ d′

j. Hence we obtain

tan θ ≤ d′
j sin ẑ

(5
2

− δ − ̺ij − ̺′
ij

2
)d′
j − d′

j cos ẑ
,
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with sin ẑ ≤
√

3
2

+ 1
2

sin θ̄∗
ij and cos ẑ ≤ 1

2
+

√
3

2
sin θ̄∗

ij . Thus

tan θ ≤
√

3
2

+ 1
2

sin θ̄∗
ij

(5
2

− δ − ̺ij − ̺′
ij

2
) − (1

2
+

√
3

2
sin θ̄∗

ij)

=

√
3 + θ̄∗

ij

4 − 2δ − 2̺ij − ̺′
ij −

√
3θ̄∗

ij

≤ tan
π

7
, (3.102)

with θ̄∗
ij small enough (e.g. ≤ 1

100
) so that 2δ + 2̺ij + ̺′

ij +
√

3θ̄∗
ij ≤ 1

5
.

•• Suppose that ẑ∗ = 2π
3

± θ∗
ij ± θ̄∗

ij (similar to Figure 3.22). We use the

same notation as in the previous case. In order to bound tan θ, we shall estimate

the lowest possible value for |z0 − z|. This is achieved with the following setting:

The point z coincides with the middle point z̃ and the segment [z̃, z̃0
1 ] is shorter

than [z̃, z̃1] whose length is approximately
d′

j

2
(see (3.98)).

The difference here is that z̄1 is the projection of z1 onto the line extending

[z0, z]. In this case we have

tan θ =
|z1 − z̄1|
|z0 − z̄1| ≤ |z1 − z|

|z0 − z̄1| .

The numerator is clearly less than d′
j. For the denominator, using a similar

method as in the previous case yields that

|z̃ − z̃0
1 | ≥ |z̃ − z̃1|

(
1 − tan θ∗

ij

tan θ∗
ij + tan ẑ1

)
. (3.103)

Since ẑ∗ = 2π
3

± θ∗
ij ± θ̄∗

ij and |z∗ − z1|, |z∗ − z̃2| have lengths approximately d′
j,

the triangle T is nearly isosceles and we have ̂̃z1 ≈ π
6
. Thus

|z0 − z| =|z0 − z̄∗| + |z̄∗ − z̃0
1 | + |z̃0

1 − z̃|

≥d′
i + (1 − ̺ij)d

′
j + (1 − ̺′

ij)
d′
j

2
,

146



which, by using a similar argument as when proving (3.102), yields

tan θ ≤
1
2

+
√

3
2

sin θ̄∗
ij

(5
2

− δ − ̺ij − ̺′
ij

2
) − (

√
3

2
+ 1

2
sin θ̄∗

ij)

=
1 +

√
3θ̄∗

ij

5 −
√

3 − 2δ − 2̺ij − ̺′
ij − θ̄∗

ij

≤ tan
π

7
. (3.104)

The second part of the proof is given below (the first part starts on page 138).

ii-b. Suppose that ℓ0 is extended according to Setting 2-b. We adopt the same

notation as in the previous case, and illustrations are similar to those already

shown in Figures 3.22-3.23-3.24. We consider the triangle formed by z0, z1, z and

denote by ẑ the interior angle at z. The angle θ is the angle between the segments

[z0, z] and [z0, z1]. We again have two cases.

• Suppose that ẑ = π
3

± θ̄∗
ij . Denote by z̄1 the projection of z1 onto the

segment [z0, z]. Then, we have

tan θ =
|z1 − z̄1|
|z0 − z̄1|

=
|z1 − z| sin ẑ

|z0 − z| − |z1 − z| cos ẑ
.

With L′ = |z0 − z| and |z1 − z| ≤ d′
jL

′

8d′
i

, we obtain

tan θ ≤
d′

jL
′

8d′
i

L′ − d′
jL

′

8d′
i

=
d′
j

8d′
i − d′

j

=
1

7 − 8δ
≤ tan

π

7
, (3.105)

by virtue of the fact that d′
i = (1 − δ)d′

j.

•• Suppose that ẑ = 2π
3

± θ̄∗
ij . Let z̄1 be the projection of z1 onto the line

extending the segment [z0, z]. Then

tan θ =
|z1 − z̄1|
|z0 − z̄1| ≤ |z1 − z̄1|

|z0 − z| ≤ |z1 − z|
|z0 − z| ≤

d′
jL

′

8d′
i

L′

=
1

8 − 8δ
≤ tan

π

7
. (3.106)
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A similar argument is used if ℓ0 is extended by using Setting 3. This concludes

our proof.

In Proposition 3.3.9-(ii), the angle γ∗ will be different if we change some

parameters in the algorithms in Section 3.2.2.

• The minimum distance between a vertex in a regular region to the edge of

the sub-square that contains it is obtained from step (iii) of Section 3.2.2.

Changing this distance results in different estimations of |z0 − z| in (3.93)

of part ii-a;

• Changing the factor 1
8

in the tolerance
djL

8hi
introduced in Setting 2-b also

results in a different tolerance, and thus (3.105) and (3.106) will change

accordingly;

• The parameter r should satisfy (3.17) so that d′
i = (1±δ)d′

j, where |δ| < 1

10
3
2

allowing us to prove (3.96) and (3.97);

• The parameter s needs to be small enough so that in each sub-square the

area covered by irregular regions is sufficiently small (see (3.3.12) of Sec-

tion 3.4), and so that one of the connections in Setting 1-4 occurs. For

instance, s should be small enough so that at times the tolerance (on some

enlarged segment) is larger than twice the maximum distance between a

vertex of a regular region and the edge of the sub-square that contains it,

i.e there is L′
0 such that

d′
jL

′
0

8d′
i

≥ 2d′
j and for which

16d′
i ≤ L′ ≤ 17d′

i. (3.107)

The above inequalities say that the system of parallel segments ψ−1
i

(
L̄j

)

should have at least 16 segments. This can be easily achieved since d′
i =

h0Λi, where Λi has the factor sη. Other conditions on s are imposed in

(3.112) in Section 3.4.

We now present the following result.
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Proposition 3.3.10. Let r be sufficiently small so that (3.17) holds, and let

T ∈ ∆s,r be a triangle whose barycenter is inside a sub-square Ri. Then, the

interior angles of ψ−1
i (T ) are at most π − π

50
= 49π

50
.

Proof. We present several cases depending on how the triangle T is obtained.

• If T0 is a regular triangle of Ri, then ψ−1
i (T0) is an equilateral triangle, its

interior angles are exactly π
3
;

• Suppose that T0 was already a triangle before the triangulation performed

in Section 3.2.4, and that it has no vertex on the boundary of Ω. Then, it

necessarily has one edge obtained from Setting 1. We have two exclusive cases:

- the other two edges of T0 are part of the boundary of the regular region

Ri (P0 is then necessarily contained in Si). This implies that the interior

angles of ψ−1
i (T0) are necessarily less than the maximum interior angle of a

parallelogram obtained after back transformation, that is 2π
3

;

- the other two edges are obtained by the intersection of two extended seg-

ments. By taking into account the result ii of Proposition 3.3.9, and know-

ing that the angles in a parallelogram after back transformation are π
3

and

2π
3

which can be altered by at most θ∗ < π
7

(defined by (3.56)), the maxi-

mum interior angle of T0 is bounded by 2π
3

+ θ∗ + γ∗ < 20π
21

, with γ∗ ≤ π
7

from ii of Proposition 3.3.9.

• Suppose that T0 was already a triangle before the triangulation performed

in Section 3.2.4 and that T0 has a vertex on the boundary of Ω. Then, it necessar-

ily has an edge ℓ overlapping the boundary and the other two edges are obtained

by the intersections of two extended segments from Setting 4 or 5. Note that

after the back transformation by ψi the interior angles of a regular parallelogram

in Si are π
3

and 2π
3

. These angles are altered by at most θ∗ (defined by (3.56)) in

any neighboring sub-square. Thus the interior angle formed from the intersection

of the two extended segments is at most 2π
3

+ θ∗, with obviously θ∗ < π
7
. The

interior angles θ0 and θ̄0 at the end-points of ℓ respectively belong to some sets Θk

149



θ

z0

z1

z2

Figure 3.25: An example of big angle: z0 is connected to z1 by using Setting 1,
and to z2 by using either Setting 2 or Setting 3.

and Θ̄k′ (both defined in (3.53) and (3.54)) for some k, k′ ∈ {i, j}, with j being

the index of the neighboring sub-square Sj which is the closest (apart from Si)

to the barycenter of T0. We observe that θ0 necessarily belongs to one of the two

smallest angles in Θk, and similarly for θ̄0 it belongs to one of the two smallest

angles in Θ̄k′. Thus both cannot be greater than π
2
.

• Suppose now that T0 was contained in some irregular polygon P0 before

the triangulation performed in Section 3.2.4. Suppose that P0 has no intersection

with the boundary of Ω. Then P0 is a quadrilateral whose edges are obtained

from the intersections of some extended segments from Setting 1-5. Recall the

angle γ∗ ≤ π
7
, as described in ii of Proposition 3.3.9. We have two cases:

- If none of the edges of P0 are obtained by Setting 1: Recall from Lemma 3.3.5

that extended segments from the same type cannot intersect when using

Setting 2-a, 2-b and thus Setting 3. Obviously, there are no intersections

of extended segments of the same type when using Setting 4-5. Hence, the

maximum interior angle of ψ−1
i (P0) must be less than the maximum inte-

rior angle 2π
3

of a parallelogram, altered by at most twice of γ∗. Indeed, at

the vertex where the interior angle is 2π
3

, there are two extensions creating

turning of segments, each by at most γ∗. Hence the bound 2π
3

+ 2π
7

= 20π
21
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Figure 3.26: Interface regions in the neighborhood of the boundary of Ω.

for the interior angles of P0, and therefore of T0;

- If one edge ℓ of P0 is obtained by using Setting 1: Suppose that the max-

imum interior angle of ψ−1
i (P0) is at its vertex z0 (see Figure 3.25). Then

necessarily z0 is a corner of ψ−1
i (Ri). We deduce from Proposition 3.3.9

that the interior angle at z0 is less than 2π
3

+ π
6

+ γ∗ ≤ 41π
42

. This is also the

bound for the interior angles of T0.

• Suppose that T0 was contained in some irregular polygon P0 before the

triangulation performed in Section 3.2.4. Suppose that P0 intersects the boundary

of Ω. In fact, we can apply the above analysis in the case where the intersection is

a point. Hence, we assume that P0 possesses an edge ℓ overlapping the boundary

of Ω. Suppose that the maximum interior angle of P0 is at its vertex z0 ∈ ℓ0

(see Figure 3.26) which is the common end-point of the two edges ℓ and ℓ0 of P0,

where ℓ0 is part of some extended segment obtained from Setting 4. Consider

the edge ℓ1 = [z2, z1] of P0 sharing a vertex z1 6= z0 with ℓ0, and let T1 be the

triangle formed by the end-points of ℓ0 and ℓ1 (see Figure 3.27). Denote by ϑ0

the interior angle of that triangle at z0, and by ϑ1 the one at z1. Then either

ϑ1 ≈ π
3

or ϑ1 ≈ 2π
3

in the sense that either |ϑ1 − π
3
| ≤ θ∗ or |ϑ1 − 2π

3
| ≤ θ∗, where

θ∗ is defined in (3.56).

As in the proof of Proposition 3.3.9, let the side length of a parallelogram

in ψ−1
i (Ri) be denoted by d′

i. We have the following cases (see Figure 3.26 and
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z1

z1
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ℓ
ℓ

ℓ0

ℓ0

Figure 3.27: Interior angles of irregular regions.

Figure 3.27):

a. If ℓ1 is part of an extended segment from Ri, then |ℓ1| = |z2 − z1| ≥ 1
8
d′
i

which is the minimum length of a tolerance. In this case, since either ϑ1 ≈ π
3

or ϑ1 ≈ 2π
3

, we have |ℓ0| = |z1 − z0| ≤ d′
i and |z2 − z0| ≤ d′

i. On one hand,

if ϑ1 is approximately 2π
3

, we have

tanϑ0 ≥ d′
i

8|z2 − z0| ≥ 1

8
≥ tan

π

30
.

On the other hand, if ϑ1 is approximately π
3
, then since |z1 − z0| ≤ d′

i,

tanϑ0 ≥ 1

8|z1 − z0| ≥ 1

8
≥ tan

π

30
;

b. If ℓ1 is not part of an extended segment from Ri, i.e part of an extended

segment from a neighboring regular region Rj , then |ℓ1| = |z2 − z1| = d′
j

(see proof of Proposition 3.3.9 for the descriptions of d′
i, d

′
j). Also, we have

|ℓ0| ≤ 6
√

2(1 + ξ)d′
j, with ξ as in (3.63). Moreover, since either ϑ1 ≈ π

3
or

ϑ1 ≈ 2π
3

, we have that |z2 −z0| ≤ 6
√

2(1+ξ)d′
j. Thus, if ϑ1 is approximately
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2π
3

, we have

tanϑ0 ≥ d′
j

|z2 − z0| ≥ 1

6
√

2(1 + ξ)
≥

√
2

18
≥ tan

π

50
.

Similarly, if ϑ1 is approximately π
3
, then

tanϑ0 ≥ d′
j

|z1 − z0| ≥ 1

6
√

2(1 + ξ)
≥

√
2

18
≥ tan

π

50
.

From the above analysis, we conclude that ϑ0 ≥ π
50

. This implies that after

a back transformation, the maximum interior angles in any irregular polygon

decreases by at least π
50

.

3.3.4 On the area covered by irregular triangles

We respectively denote by ∆reg
s,r and ∆irr

s,r the sets of regular and irregular triangles

in ∆s,r.

Let hM := supT∈∆reg
s,r
hT denote the longest edge of a regular triangle. Given a

sub-square Si, with i ∈ {1, . . . , m2}, there are four quarter-disks D(1)
i ,D(2)

i ,D(3)
i ,D(4)

i

of radius 4
√

2hM and each centered at the four corners of Si, see Figure 3.28.

A quarter-disk Dk
i is big enough to contain at least one parallelogram of the

regular region. Also, from a geometric viewpoint, the following properties are

observed:

(i) If Dk
i has a side on the boundary of Ω, then that side must possess the

end-point of an extended segment obtained from Setting 4;

(ii) If the center of the quarter-disk is a corner of Ω (two of its sides are on

the boundary of Ω), then Dk
i contains at least two extended segments from

Setting 4 connecting vertices of Ri with the the boundary of Ω. It cannot

contain an extended segment from Setting 2-3;

(iii) A half-disk formed by two quarter-disks Dk
i ,Dk′

j must contain an extended

segment obtained from Setting 2-a.
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Figure 3.28: Quarter-disks of radius 4
√

2hM .

The first property is useful to ensure that for an extended segment intersecting

a quarter-disk, the part of the intersected segment that is inside the quarter-disk

has a length less than the diameter of the quarter-disk. The second property is a

consequence of the first, whereas the third is by construction.

We are able prove the following result.

Proposition 3.3.11. Let r be sufficiently small so that (3.17) holds. There is

an absolute constant C∗ such that for any irregular triangle T1 ∈ ∆irr

s,r, we have

hT1 ≤ C∗ supT∈∆reg
s,r
hT .

Proof. To prove the above result, we first investigate the length of the longest

edge that an irregular polygon P has. Note that an edge e of an irregular region

is either an edge of a parallelogram or part of an extended segment, with the

latter case detailed below.

Suppose that e is part of an extended segment ℓext
0 obtained from the extension

of ℓ0 ∈ Li in the direction of ei, for some i ∈ {1, . . . , m2} (a similar argument is

used if ℓ0 ∈ L̄i is extended in the direction ēi).

Setting 1: Obviously, if ℓext
0 is obtained from Setting 1 then its length is less than

√
2hM ;
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Setting 4: Suppose that ℓext
0 is obtained from Setting 4 and denote its end-points by

z0, z, with z0 belonging to the regular region Ri, and z to the boundary of

Ω. Recall the families of segments described after the steps of Setting 5 in

Section 3.2.3.

a. Suppose that ℓext
0 does not intersect any quarter-disk: If ℓext

0 is cut

by segments from the other family of extended segments, then the

length of the left over cut segment is less than hM . Otherwise, by

construction, the length of ℓext
0 is less than 2hM ;

b. Suppose that ℓext
0 intersects a quarter-disk:

- If z0, z belong to the quarter-disk, then |z0 − z| is less than the

diameter of that quarter-disk which is also less than twice the

radius 8
√

2hM ;

- If z0 is in a quarter-disk and z not, then similarly to Case a the

length of ℓext
0 is less than 2hM ;

- If z is in a quarter-disk and z0 not: Whether or not ℓext
0 is cut by

some extended segment(s) from the other family, the length of the

left over cut segment is less than the diameter of the quarter-disk.

That diameter is also less than twice the radius 8
√

2hM of the

quarter-disk.

Setting 2-a: Suppose that ℓ0 is extended by using Setting 2-a and the direction ei. The

resulting extended segment connects a vertex z0 of Ri with a vertex z1 of

Rj . We shall first estimate the length of the segment [z0, z] where z is the

intersection point of the line ℓline
0 with a segment ℓ1 ∈ L̄j, as described in

Setting 2-a. The lengths |z0 −z1| and |z0 −z| are comparable (i.e. one is less

than n-times of the other, for some n ∈ N) if the latter can be compared to

hi (or hj): The angle that ℓline
0 makes with ℓ1 belongs to

{βi ± θ̄ij , π − βi ± θ̄ij , βi + 2αi ± θ̄ij , π − βi − 2αi ± θ̄ij},

where βi and αi + 2αi are the interior angles of a parallelogram in Ri,
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z

z0

z′

z′′

z1

ℓ0

ℓ1

Figure 3.29: The points z′, z′′ close to z.

described in (3.48) and (3.55), and both are less than π
2
. The length of

|z0 − z| is less or equal to the diameter of the triangles formed by z0, z, z
′

and z0, z, z
′′ where [z′, z′′] is the part of ℓ1 with length 2hj and midpoint z

(see Figure 3.29). Amongst the possible angles that ℓline
0 makes with ℓ1, the

angle βi−θ̄ij (or equivalently π−βi+θ̄ij) creates the case for which one of the

lengths |z0 −z′|, |z0 −z′′| is the longest possible. The angles at z are βi− θ̄ij

and π − βi + θ̄ij , both being less than π. Hence max{|z0 − z′|, |z0 − z′′|} ≤
|z0 − z| + hj . Clearly |z0 − z1| ≤ max{|z0 − z′|, |z0 − z′′|}, and thus the

lengths of |z0 − z1| and |z0 − z| are comparable provided that the latter can

be compared to hi.

We now show that the length |z0 − z| is comparable to hi: Consider the

point of intersection z∗ of ℓline
0 with the common edge Eij of Si and Sj. By

using the argument for the case Setting 4 above, we have |z0−z∗| ≤ 8
√

2hM .

Let z′′′ be the intersection point of Eij with the line parallel to ej and passing

through z. By using the argument for the case Setting 4 above, we have

|z−z′′′| ≤ 8
√

2hM . The angle between the segments [z, z′′′] and [z, z∗] is θij .

In view of (3.17) θij is small enough so that the lengths |z−z′′′|, |z−z∗| are

comparable, (i.e. one is less than k-times of the other, for some k ∈ N, say

k ≤ 10) even if the parallelograms are strongly anisotropic and have sides
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Sj

Si

Figure 3.30: Extensions from Setting 4 near the boundary of Ω.

nearly parallel to the sides of the sub-square. Thus,

|z∗ − z| ≤ (8
√

2 + k)hM , k ≤ 10. (3.108)

Setting 2-b: Similarly to the previous cases, denote by z the intersection point of the

line extending ℓ0 with a line extending a segment of L̄j as described in

Setting 2-b. We can apply the same argument as in the previous cases

(above for Setting-4 and 2-a). Denote by z∗ the intersection point of Eij

with the segment [z0, z]. The length |z0 − z∗| is bounded by 8
√

2hM as

previously proved. Thus, although the point z does not belong to Rj but

is at a distance of at most hM , we can estimate |z∗ − z| by using a similar

argument as in the case Setting 2-a above, and obtain an estimation of the

form (3.108) with and additional term hM on the right hand side.

Setting 3: This case relies on the results in Setting 2-a and 2-b.

Setting 5: The length of any segments obtained from Setting 5 are less than the di-

ameter of a quarter-disk, also less than the diameter of a half-disk, i.e.

8
√

2hM .

Hence, the length of an edge of an irregular region is at most ChM where C

is an absolute constant. This is the upper bound for the lengths of an irregular
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triangle obtained by intersections of extended segments. If the polygon P is

a quadrilateral, then its diameter is less than twice its longest edge, thus the

bound 2ChM . If the polygon is a pentagon, its diameter is less than three times

its longest edge, i.e. 3ChM , and if the polygon is an hexagon, its diameter is less

than four times the longest edge, i.e. 4ChM . Hence, the diameter of an irregular

triangle after the final splitting in Section 3.2.4 is less than the diameter of the

polygon that contains it originally, thus the bound 4ChM .

In the result below, we estimate the space covered by irregular triangles in a

sub-square.

Proposition 3.3.12. Let r be sufficiently small so that (3.17) holds. For each i ∈
{1, . . . , m2}, the square ωi centered at bi and with side lengths r−8

√
2 supT∈∆reg

s,r
hT

does not intersect any irregular triangle. Therefore, the area covered by irregular

triangles satisfies

∑

T∈∆irr
s,r

|T | ≤ 8rm2 sup
T∈∆reg

s,r

hT . (3.109)

Proof. Let T1 ∈ ∆irr
s,r be an irregular region which intersects Si. It is clear that

a vertex v ∈ T1 cannot be inside ωi, otherwise all of the vertices v ± ei and

v± ēi must be vertices of Ri, which means that v is interior to the regular region

Ri, thereby leading to a contradiction. Since irregular regions are obtained by

extensions of segments and their intersections, clearly the vertices of T1 are either

outside of ωi, or coincide with some of the vertices of Ri which are also outside

of ωi.

In order to estimate the area covered by irregular regions in Si, we simply

observe that such an area is less than the area formed from four rectangles of

sides lengths r and 2hT , with T being a regular triangle of Ri, that is,

4
(
r · 2hT

)
= 8rhT , (3.110)

with the factor 2 due to the removal of vertices as described in Section 3.2.2, and
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the factor 4 due to the four sides of Si. The proof is obtained by replacing hT

with supT∈∆reg
s,r

, then summing up over all the m2 sub-squares.

3.4 Asymptotic error estimations in Lp and W 1
p

By using the triangulation ∆s,r constructed in Section 3.2, we present the error

bounds in Lp-norm and W 1
p -seminorm resulting from the approximation of f on

Ω. We assume that 1 ≤ p < ∞. The analysis is marked by the separation of the

errors on regular regions and irregular regions. Recall that regular triangles which

define the regular regions are isosceles (see Section 3.2.2), so that the estimations

on them are less tedious as compared to the estimations on irregular triangles

which may have arbitrary shapes.

3.4.1 Lp-norm of the error on regular regions

From the construction of the triangulation in Section 3.2, a regular triangle T ⊂
Rk, k ∈ {1, . . . , m2}, is an isosceles triangle of the form

T = ±ΛkT0 + t, (3.111)

with T0 being the nearly-optimal triangle obtained by using Algorithm 3.1 with

π = πk, where Λk = sη
(
Kp(πk) + 2Ch2

πk
ω(r)

)− q
2 with hπk

denoting the diameter

of an optimal triangle for πk = πbk
, and where t is a translation vector so that

T ⊂ Rk (see Step (i) and (iii) of Section 3.2.2), and where also 1+ 1
2p
> η > 1+ 1−q

8p
.

We now assume that s is sufficiently small so that, for all k = 1, . . . , m2,

s
1

2p ≤
∣∣∣
λ1,k

λ2,k

∣∣∣ and sη−1− 1−q
8p ≤ |λ1,k|

q

2 . (3.112)

Note that 1
2p

≥ 1−q
8p

holds since 0 < q ≤ 1.

We prove Proposition 3.4.1 by using a similar argument as in [29].
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Proposition 3.4.1. Given k ∈ {1, . . . , m2}, consider a regular triangle T ⊂ Rk

as given in (3.111). If r is sufficiently small so that Kp(πz) ≥ Cpω(r) holds for

all z ∈ T , then

hT ≤ C1s and |T | ≤ s2η
(
Kp(πbk

) + Ch2
πk
ω(r)

)−q
(3.113)

hold for some constant C1, with C being the constant occurring in (3.116).

If, moreover, maxz∈T |z − bk| ≤ r and C1s ≤ r hold, then

eT (f)p ≤ s2pη
∫

T

((
Kp(πz) + Ch2

πk
ω(r)

)1−q
+ Cp,δf

ω(
√

2r)
1
2

)p
dz, (3.114)

where Cp,δf
is a constant depending only on δf and p.

Proof. First, assume that T is a regular triangle obtained without adjustment of

angle described in Proposition 3.2.4. Recall from Lemma 2.4.5 that hT0 ∼
∣∣∣λ2,k

λ1,k

∣∣∣
1
4 .

By using simple inequalities, observe that
(
Kp(πbk

) + 2Ch2
πk
ω(r)

)q
2 has as lower

bounds

2
q
2ω(r)

q
2hqT0

∼ ω(r)
q
2

∣∣∣∣
λ2,k

λ1,k

∣∣∣∣
q
4

and Kp(πbk
)

q
2 ∼ |λ1λ2|

q
4 .

Hence, from (3.111), there is a constant C1 such that the diameter hT = ΛkhT0

of T satisfies

hT ≤ sηhT0(
Kp(πbk

) + 2Ch2
T0
ω(r)

)q
2

≤ C1s
η min

{
ω(r)− q

2

∣∣∣∣
λ2,k

λ1,k

∣∣∣∣
1
4

− q

4

, |λ1,kλ2,k|−
q

4

∣∣∣∣
λ2,k

λ1,k

∣∣∣∣
1
4

}

= C1s
η
∣∣∣∣
λ2,k

λ1,k

∣∣∣∣
1−q

4

min
{
ω(r)− q

2 , |λ1,k|−
q
2

}
. (3.115)

By using (3.112), the inequalities
∣∣∣λ2,k

λ1,k

∣∣∣
1−q

8p ≤ s− 1−q
8p and sη−1− 1−q

4 |λ1,k|−
q
2 ≤ 1 hold.

We then deduce from (3.115) that

hT ≤ C1s
η− 1−q

4 |λ1,k|−
q
2 = C1s

(
sη−1− 1−q

4 |λ1,k|−
q
2

)
≤ C1s.
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Recall from the proof of Lemma 2.4.1 that there is a constant C such that

Kp(π) −Kp(π
′) ≤ Ch2

T̄‖π − π′‖, (3.116)

whenever T̄ ∈ ∆p(π
′), with π, π′ ∈ H2. Let the point z ∈ T be fixed. By using

(3.116), we have Kp(πz) − Kp(πbk
) ≤ Ch2

πk
‖πz − πbk

‖ ≤ Ch2
πk
ω(r) which yields

0 ≤ Kp(πz) − Ch2
πk
ω(r) ≤ Kp(πbk

) for all z ∈ T . The area |T | = Λ2
k|T0| = Λ2

k,

with

|T | = s2η
(
Kp(πbk

) + 2Ch2
πk
ω(r)

)−q ≤ s2η
(
Kp(πz) + Ch2

πk
ω(r)

)−q
.

Using (3.27) of Proposition 3.2.4 for ε = 3
2
ω(

√
2r), Proposition 2.5.4 with

c1 = Λk, and the fact that hT ≤ C1s ≤ r, we find that, for any z ∈ T ,

eT (f) ≤
(
Kp(πz) + Ch2

πk
ω

(
max{|z − t|, hT}

))
|T |1+ 1

p + 9µ2
kh

2
T ε

1
2 |T | 1

p

≤
(
Kp(πz) + Ch2

πk
ω(r)

)
|T |1+ 1

p + 9µ2
kh

2
T ε

1
2 |T | 1

p , (3.117)

by virtue of (3.113).

Note that, by using (3.115), we also have

hT ≤ C1s
η
(
δ−1
f |f |

1−q
4

W 2
∞(Ω)

)
|λ1,k|−

q

2 ≤ C1s
ηδ

−1− q
2

f |f |
1−q

4

W 2
∞(Ω),

by virtue of (3.13). Since the angle µk associated with πbk
is less than 2π, we have

9µ2
k ≤ 36π2. Thus, denoting the constant Cp,δf

= 24π2(3
2
)

3
2

(
C2

1δ
−2−q
f |f |

1−q
2

W 2
∞(Ω)

)
,

we deduce from (3.117) that

eT (f) ≤ s2η
(
Kp(πz) + Ch2

πk
ω(r)

)1−q|T | 1
p + Cp,δf

s2ηω(
√

2r)
1
2 |T | 1

p

≤ s2η
((
Kp(πz) + Ch2

πk
ω(r)

)1−q
+ Cp,δf

ω(
√

2r)
1
2

)
|T | 1

p .
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Since |T | depends only on t, integrating over z ∈ T yields

|T |eT (f)p =
∫

T
eT (f)pdz

≤ s2pη
∫

T

((
Kp(πz) + Ch2

πk
ω(r)

)1−q
+ Cp,δf

ω(
√

2r)
1
2

)p
|T |dz.

The result (3.114) is obtained by simplification by |T | in both sides.

We denote by Ωreg the space covered by the union of all regular triangles, and

by ∆reg
s,r the set of regular triangles in ∆s,r.

Proposition 3.4.2. There are two constants Cp,δf
and Cδf

such that the errors

on regular regions satisfy

∑

T∈∆reg
s,r

eT (f)p ≤s2pη
∫

Ω

((
Kp(πz) + Cδf

ω(r)
)1−q

+ Cp,δf
ω(

√
2r)

1
2

)p
dz. (3.118)

Proof. For any regular triangle T ∈ ∆reg
s,r , the conditions in Proposition 3.4.1 for

s and r so that C1s ≤ r and maxz∈T |z− t| ≤ r hold are satisfied by construction

of ∆s,r. With h2
πk

≤ h2
0δ

− 1
2

f |f |
1
2

W 2
∞(Ω), we easily deduce from (3.114) that

∑

T∈∆reg
s,r

eT (f)p ≤s2pη
∫

Ωreg

((
Kp(πz) + C ′

p,δf
ω(r)

)1−q
+ Cp,δf

ω(r)
1
2

)p
dz,

where Cδf
= 2Ch2

0δ
− 1

2
f |f |

1
2

W 2
∞(Ω), thereby proving (3.118).

3.4.2 Lp-norm on irregular regions

Denote by ∆irr
s,r the set of irregular triangles in ∆s,r. Given an irregular triangle

T ∈ ∆irr
s,r, we use Lemma 2.2.1 to obtain

eT (f) ≤ Ch2
T |f |W 2

p (T ) ≤ Ch2
T |T | 1

p |f |W 2
∞(T ),
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where C is an absolute constant. Thus,

∑

T∈∆irr
s,r

eT (f)p ≤ Cp|f |pW 2
∞(Ω)

(
sup

T∈∆irr
s,r

hT

)2p( ∑

T∈∆irr
s,r

|T |
)
. (3.119)

Proposition 3.4.3. The errors on irregular regions satisfies

∑

T∈∆irr
s,r

eT (f)p ≤ s2p+1
(

8(C∗C1)
2p+1Cprm2|f |pW 2

∞(Ω)

)
. (3.120)

Proof. From Proposition 3.3.11, together with Proposition 3.4.1, for any irregular

triangle T ∈ ∆irr
s,r, we have hT ≤ C∗C1s. Hence from (3.109), the area covered by

all irregular triangles satisfies

∑

T∈∆irr
s,r

|T | ≤ 8C∗C1rm
2s. (3.121)

The result in (3.120) is obtained by combining the above inequality with (3.119),

together with the result in Proposition 3.3.11 and (3.113) of Proposition 3.4.1.

3.4.3 Sobolev seminorm on regular regions

Given a regular triangle T contained in a sub-square Ri, i ∈ {1, . . . , m2}, by using

the estimation (3.113) in Proposition 3.4.1, we have

|T | 1
2 ≤ sη

(
Kp(πi) + 2Ch2

πi
ω(r)

)− q
2

≤ sηKp(π0)
− q

2 | detπi|−
q

4 ,

by virtue of (2.54), where π0(x, y) = x2 + y2.

With π = πbi
, for any z ∈ T we have |z − bi| ≤

√
2r and the condition (2.88)

is satisfied with ν = ω(
√

2r). By virtue of the choice of r in (3.17), the inequality

δf ≤ |λ1,iλ2,i|
1
2 clearly holds for all i ∈ {1, . . . , m2}, and we have

ω(r) ≤ min
{
1, |λ1,iλ2,i|

1
2

}
. (3.122)
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Hence, by using (2.93) we find that

|f − ITf |pW 1
p (T ) . | detπbi

| p
4 |λ2,i|

p
2 |T |1+ p

2 . spη|T || detπbi
| q

4 |λ2,i|
p
2 , (3.123)

by virtue of the fact that p− pq = q.

In order to estimate (3.123) independently of bi, we consider the function

g(z) := | detHf (z)|
q

4 ‖Hf (z)‖
p
2
2 and prove the following result.

Lemma 3.4.4. For any z, t ∈ Ω such that |z − t| ≤
√

2r, there is a constant C̃p

depending only on p such that

|g(z) − g(t)| ≤ C̃pω(
√

2r)
q

4 .

Proof. Consider each of the terms in the right hand side of

g(z) − g(t) =‖Hf(z)‖
p
2
2 (| detHf(z)|

q

4 − | detHf(t)|
q

4 )

+ | detHf(t)|
q
4 (‖Hf(z)‖

p

2
2 − ‖Hf(t)‖

p

2
2 ). (3.124)

By virtue of (2.4), clearly ‖Hf(z)‖
p
2
2 ≤ (3

2
)

p

2 ‖πz‖
p

2 ≤ (3
2
)

p

2 |f |
p
2

W 2
∞(Ω). Also, since

| detπz| ≤ ‖Hf(z)‖2
2, we also have that | detHf (t)|

q
4 ≤ (3

2
)

q
2 |f |

q

2

W 2
∞(Ω). In a similar

way that (3.75) is proved, and taking into account (3.45) so that ‖Qπz −Qπt‖2 ≤
3
2
ω(

√
2r), we have

∣∣∣| detHf(z)| − | detHf (t)|
∣∣∣ ≤ 2(

3

2
)2ω(

√
2r)|f |W 2

∞(Ω).

Since q < 1, we have that || detHf(z)|
q
4 − | detHf (t)|

q
4 | ≤ 2

q
4 (3

2
)

q
2ω(r)

q
4 |f |

q
4

W 2
∞(Ω)

(see (3.75)).

Next, since |z − t| ≤
√

2r, we obtain from (2.4) that

∣∣∣‖Hf(z)‖2 − ‖Hf(t)‖2

∣∣∣ ≤ 3

2
ω(

√
2r). (3.125)

Considering the function ℓ(x) = x
p

2 on an interval [a, b] ⊂ R, by the mean value
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theorem, we have |ℓ(b) − ℓ(a)| ≤ |b− a|ℓ′(c) for some c ∈ (a, b). Thus,

• If p ≥ 2, by using the mean value theorem and (3.125), we have

∣∣∣‖Hf(z)‖
p
2
2 − ‖Hf(t)‖

p
2
2

∣∣∣ ≤ p

2

∣∣∣∣‖Hf(z)‖2 − ‖Hf(t)‖2

∣∣∣∣‖Hf(z)‖
p
2

−1
2

≤ p

2
(
3

2
)

p

2ω(
√

2r)|f |
p
2

−1

W 2
∞(Ω);

• If p ≤ 2, (3.125) implies
∣∣∣‖Hf(z)‖

p
2
2 − ‖Hf(t)‖

p
2
2

∣∣∣ ≤ (3
2
)

p

2ω(
√

2r)
p

2 .

It follows that

∣∣∣‖Hf(z)‖
p

2
2 − ‖Hf(t)‖

p

2
2

∣∣∣ ≤ (
3

2
)

p
2

(
p

2
|f |

p

2
−1

W 2
∞(Ω) + 1

)
ω(

√
2r)

p
2 .

We now deduce from (3.124) that |g(z) − g(t)| ≤ C̃pω(
√

2r)
q

4 , where

C̃p = 2
q
4 (

3

2
)

2p+q
4 |f |

p+q
2

W 2
∞(Ω) +

p

2
(
3

2
)

p+q
2 |f |

q
2

W 2
∞(Ω)

(
|f |

p
2

−1

W 2
∞(Ω) + 1

)
.

This concludes our proof.

Proposition 3.4.5. The W 1
p -seminorm on regular regions satisfies

∑

T∈∆reg
s,r

|f − ITf |pW 1
p (T ) . spη

∫

Ω

(
| det πz|

q
4 ‖Hf(z)‖

p

2
2 + C̃pω(

√
2r)

q
4

)
dz, (3.126)

where C̃p is a in Lemma 3.4.4.

Proof. By using Lemma 3.4.4 and (3.123), for any z ∈ T , we have

|f − ITf |pW 1
p (T ) . spη|T |g(bi) ≤ spη|T |

(
g(z) + C̃pω(

√
2r)

q
4

)

. spη|T |
(

| detπz|
q

4 ‖Hf(z)‖
p
2
2 + C̃pω(

√
2r)

q

4

)
.

By integrating over z ∈ T and simplifying by |T |, we obtain

|f − ITf |pW 1
p (T ) . spη

∫

T

(
| detπz|

q

4 ‖Hf(z)‖
p
2
2 + C̃pω(

√
2r)

q

4

)
dz. (3.127)
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Summing up over all regular triangles gives (3.126).

3.4.4 Sobolev seminorm on irregular regions

Let T be an irregular triangle and Si, with i ∈ {1, . . . , m2}, one of the closest

sub-squares to the barycenter bT of T . Let ϕi be the invertible linear map as

described in Section 3.2.4. According to Corollary 3.3.10, the interior angles of

the triangle ϕ−1
i (T ) are far from π. We then apply Lemma 2.6.1 to obtain

|f − ITf |W 1
p (T ) . cond(ϕi)

2hT |f |W 2
p (T ) =

∣∣∣
λ2,i

λ1,i

∣∣∣hT |f |W 2
p (T ). (3.128)

Proposition 3.4.6. The W 1
p -seminorm on irregular regions satisfies

∑

T∈∆irr
s,r

|f − ITf |pW 1
p (T ) . sp+ 1

2

(
rm2|f |pW 2

∞(Ω)

)
. (3.129)

Proof. As in the proof of (3.120), the diameter hT of an irregular triangle T is less

than ≤ C∗C1s, where C∗ is the constant in Proposition 3.3.11 and C1 the constant

in Proposition 3.4.1 so that (3.121) holds. Using (3.112) we have
∣∣∣λ2,i

λ1,i

∣∣∣ ≤ s− 1
2p ,

and thus from (3.128), we have

|f − IT f |W 1
p (T ) . s1− 1

2p |f |W 2
p (T ) ≤ s1− 1

2p |T | 1
p |f |W 2

∞(T ).

By virtue of (3.121), we find that

∑

T∈∆irr
s,r

|f − ITf |pW 1
p (T ) . sp− 1

2 |f |pW 2
∞(Ω)

( ∑

T∈∆irr
s,r

|T |
)
. sp+ 1

2

(
rm2|f |pW 2

∞(Ω)

)
,

which proves the result.

In the asymptotic estimations which we prove in Section 3.4.6, we show that

the errors on irregular triangles in both Lp-norm and W 1
p -seminorm are signifi-

cantly small compared to the errors on regular regions.
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3.4.5 Number of triangles

In the result below we estimate the number of triangles in ∆s,r. We assume that

r is sufficiently small so that (3.15) holds.

Proposition 3.4.7. The number of triangles in ∆s,r satisfies

#
(
∆s,r

)
≤ s−2η

( ∫

Ωreg

(
Kp(πz) + C̃δf

ω(
√

2r)
)q

dz + C̃ ′
δf
s
)
, (3.130)

where C̃δf
and C̃ ′

δf
are constants depending only on δf .

Proof. We shall first estimate the number of triangles inside of, or intersecting,

a sub-square Si. Let Pi denote a regular parallelogram of Ri and Ti a regular

triangle. Clearly, from (3.43),

|Pi| = 2|Ti| =
2s2η

(
Kp(πbi

) + 2Ch2
πi
ω(r)

)q .

Denote by P h
i and P ρ

i the longest and shortest side lengths of Pi, with

P h
i = Λi

(
ρ2

0

∣∣∣∣
λ2,i

λ1,i

∣∣∣∣
1
2

+
h2

0

4

∣∣∣∣
λ1,i

λ2,i

∣∣∣∣
1
2
) 1

2

, (3.131)

P ρ
i = h0Λi

∣∣∣∣
λ1,i

λ2,i

∣∣∣∣
1
4

. (3.132)

The number of regular parallelograms in Ri is denoted by Ni(s). By virtue of

(2.71) and (2.4), there is a constant c2 such that

max
z∈Ω

hπz ≤ c2(
3

2
)

1
4 δ

− 1
4

f |f |
1
4

W 2
∞(Ω) := Cf . (3.133)

Observe from (3.116) thatKp(πz) ≤ Kp(πbi
)+2Ch2

πi
ω(r) ≤ Kp(πz)+4CC2

fω(
√

2r)

for any z ∈ Si, where Cf is defined in (3.133). Thus

|T | = Λ2
i =

s2η

(
Kp(πbi

) + 2Ch2
πi
ω(r)

)q ≥ s2η

(
Kp(πz) + 4CC2

fω(
√

2r)
)q .
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The number of regular parallelograms in Ri is then bounded by

Ni(s) ≤ |Si|
|2Ti|

≤ 1

2
s−2η|Si|

(
Kp(πz) + 4CC2

fω(
√

2r)
)q
,

for any z ∈ Si. By integrating over z ∈ Si, the number of regular triangles 2Ni(s)

in Ri satisfies

2Ni(s) ≤ s−2η
∫

Si

(
Kp(πz) + 4CC2

fω(
√

2r)
)q

dz.

The total number of all regular triangles then satisfies

#
(
∆reg
s,r

)
≤ s−2η

∫

Ω

(
Kp(πz) + 4CC2

fω(
√

2r)
)q

dz. (3.134)

We shall now estimate the number of irregular polygons. Let s be sufficiently

small and fixed. Using the result in Proposition 3.3.11 and its proof, the length of

an extended segment from Setting 4 is less than C∗hM , with hM = supT∈∆reg
s
hT .

Now, from Proposition 3.4.1, we have hM ≤ C1s. Hence, the maximum length of

an extended segment ℓext from Setting 4 is bounded by C1C∗s.

Our next step is to extend the regular region Ri to a bigger one that can cover

Si, instead of the procedure of segment extensions in Section 3.2.3. We define

a stripe of regular parallelograms as a collection of parallelograms in Ri which

are glued by their shortest or longest edges. We then extend the stripe up to

the side(s) of Si by gluing more additional parallelograms. The number of the

additional parallelograms in the extended stripe satisfies

N ′
i(s) =

⌈
C1C∗s

P ρ
i

⌉
. (3.135)

where P ρ
i is the length of the shortest edge of Pi, as given in (3.132).

Observe that the obtained extended regular region does not necessarily cover

Si: For instance, if the stripes parallel to P h
i or P ρ

i are parallel to the sides of Si,

then some spaces in the neighborhood of the corners of Si may not be covered.
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Hence, we shall construct a new kind of stripes, which we call additional stripes

which will cover the quarter-disks defined in Section 3.3.4. An additional stripe

is defined by two lines where both are parallel to either P h
i or P ρ

i , and from which

one can obtain a stripe of parallelograms (from the translates of Pi) by gluing

the parallelograms by their shortest or longest edges. Note that we allow the

extended stripes and the additional ones to overlap.

Recall that each of the quarter-disks defined in Section 3.3.4 contains at least

one regular parallelogram. Recall also that the radius of each quarter disk is

4
√

2hM , and its diameter 8hM is less than the maximum length of an extended

segment from Setting 4. Hence, the number of additional stripes in any direction

of e ∈ {±ei,±ēi} is less thanN ′
i(s). Observe also thatN ′

i(s) is the minimum num-

ber of parallelograms that can be inserted inside each additional stripes so that

they cover the quarter-disk corresponding to them, where each parallelograms in

these additional stripes have a non-empty intersection with the quarter-disks.

Let N
(1)
i be defined by

N
(1)
i = ⌈

√
2r

P ρ
i

⌉. (3.136)

Let also N
(2)
i be defined by

N
(2)
i = ⌈

√
2r

P h
i

⌉. (3.137)

Clearly, N
(2)
i ≤ N

(1)
i , and the maximum number of stripes that cover Si is less

than N
(1)
i .

For each stripe, there are two directions of extensions to the sides of Si, and

there are two kinds of stripes (parallel to P h
i or P ρ

i ). The number of stripes in Ri

is less than 2N
(1)
i . Hence, the total number of parallelograms from the extensions
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of stripes and from the additional stripes, is bounded by

N irr
i (s) = (2N

(1)
i )(2N ′

i(s)) + (4N ′
i(s))(N

′
i(s))

≤ 8N
(1)
i N ′

i(s), (3.138)

by virtue of N ′
i(s) ≤ N

(1)
i .

Observe now that, counting a pentagon or a hexagon obtained by the segment

extension procedure of Section 3.2.3 can be replaced by counting twice the par-

allelogram associated with it: A pentagon (resp. a hexagon) can be associated

with a translated version of a regular parallelogram which is cut by an edge (resp.

two edges) of the sub-square Si. Now, a pentagon or a hexagon is counted as one

polygon, but it will be divided into three or four triangles during the final trian-

gulation; whereas if we count twice the parallelogram associated with it, then we

would have four triangles since a parallelogram will be divided into two triangles.

We can associate a parallelogram of the extended and additional stripes to

each quadrilateral obtained by the segment extension procedure of Section 3.2.3,

since for sufficiently small r, s the number of quadrilaterals having a non-empty

intersection with Si is less than the number of these parallelograms. Hence, the

number of irregular triangles inside of, or intersecting Si, is less than four times

N irr
i (s), that is,

4N irr
i (s) ≤ 32N

(1)
i N ′

i(s). (3.139)

Let Kf = maxz∈ΩKp(πz)+4CC2
fω(

√
2r). Then, from (3.132), there is an absolute

constant C ′ such that

1

P ρ
i

≤ s−ηC ′K
q
2
f

h0
(
3

2
)|f | 1

4 δ
− 1

4
f .

Combining now (3.136) with (3.135), there exists a constant Kδf
such that

4N irr
i (s) ≤ Kδf

s1−2η. (3.140)
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Summing up over all sub-squares, the total number of irregular triangles is less

than s1−2ηm2Kδf
. Hence the result with C̃δf

= 4CC2
f and C̃ ′

δf
= m2Kδf

.

3.4.6 Asymptotic error estimations

We combine the results obtained in the previous sections. For the asymptotic

Lp-norm, we use (3.118), (3.120) and (3.130) to obtain

(
#∆s,r

)
‖f − I∆s,rf‖Lp(Ω) ≤

( ∫

Ω

(
Kp(πz) + C̃δf

ω(
√

2r)
)q

dz + C̃ ′
δf
s
)

( ∫

Ω

((
Kp(πz) + Cδf

ω(r)
)1−q

+ Cp,δf
ω(

√
2r)

1
2

)p
dz + C ′s2p+1−2pη

) 1
p

,

(3.141)

where C ′ = 8(C∗C1)
2p+1Cprm2|f |pW 2

∞(Ω). Note that 2p + 1 − 2pη > 0 since η is

chosen so that 1 + 1−q
8p

< η < 1 + 1
2p

. In a similar way, for the W 1
p -seminorm of

the error, we combine (3.126), (3.129) and (3.130) to obtain

(
#∆s,r

) 1
2 |f − I∆s,rf |W 1

p (Ω) .

( ∫

Ω

(
Kp(πz) + C̃δf

ω(
√

2r)
)q

dz + C̃ ′
δf
s
) 1

2

( ∫

Ω

(
| detπz|

q
4 ‖Hf(z)‖

p
2
2 + C̃pω(

√
2r)

q
4

)
dz + C ′

1s
p+ 1

2
−pη

) 1
p

, (3.142)

where C ′
1 = rm2|f |pW 2

∞(Ω). Note that p+ 1
2

− pη > 0.

Observing that p(1 − q) = q and taking the limit as r → 0, we obtain

lim
r→0

∫

Ω

(
Kp(πz) + C̃δf

ω(
√

2r)
)q

dz =
∫

Ω
Kp(πz)

qdz,

lim
r→0

∫

Ω

((
Kp(πz) + Cδf

ω(r)
)1−q

+ Cp,δf
ω(

√
2r)

1
2

)p
dz =

∫

Ω
Kp(πz)

qdz,

lim
r→0

∫

Ω

(
| detπz|

q
4 ‖Hf(z)‖

p
2
2 + C̃pω(

√
2r)

q
4

)
dz =

∫

Ω
| detπz|

q
4 ‖Hf(z)‖

p
2
2 dz.

Thus, by virtue of (3.141) and (3.142), given a number ε > 0 and a sufficiently
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small r0 > 0, for the triangulation ∆s := ∆s,r0, we have

lim sup
s→0

(#∆s)‖f − I∆sf‖Lp(Ω) ≤
( ∫

Ω

(
Kp(πz) + ε

)q
dz

) 1
q

, (3.143)

lim sup
s→0

(#∆s)
1
2 |f − I∆sf |W 1

p (Ω) .

( ∫

Ω

(
Kp(πz) + ε

)q
dz

) 1
2

( ∫

Ω
| det πz|

q
4 ‖Hf(z)‖

p
2
2 dz + ε

) 1
p

. (3.144)

Theorem 3.4.8. Let f ∈ C2(Ω) be convex, and 1 ≤ p < ∞. There exists a

sequence of triangulations (∆N )N≥N0, with (#∆N ) ≤ N , where the asymptotic

estimations

lim sup
N→∞

N‖f − fN‖Lp(Ω) ≤
( ∫

Ω

(
Kp(πz)

)q
dz

) 1
q

, (3.145)

lim sup
N→∞

N
1
2 |f − fN |W 1

p (Ω) .

( ∫

Ω

(
Kp(πz)

)q
dz

) 1
2

( ∫

Ω
| detπz|

q
4 ‖Hf(z)‖

p
2
2 dz

) 1
p

, (3.146)

hold, with fN := I∆N
f being the approximant of f on Ω.

Proof. To prove the above result, we shall first show that the number of regular

triangles dominates the total number of triangles in the triangulation ∆s. Then,

it will be sufficient to study the number of triangles in ∆reg
s1

and in ∆reg
s0

, as shown

in (3.153), resulting from a small perturbation ε0 = sη0 − sη1 > 0.

As already shown in Proposition 3.4.7, for s = s0, the number of irregular

triangles is o(s−2η
0 ) as s0 → 0. For s0 small enough, we claim that (#∆reg

s0
)

dominates the number of irregular triangles. This is achieved if we derive a lower

bound of order s−2η
0 for the number of regular triangles (#∆reg

s0
).

Recall that the number of regular parallelograms in Ri is denoted by Ni(s0).

Given a parallelogram Pi of Ri, from Proposition 3.3.12 and Proposition 3.4.1,

the area Ni(s0)|Pi| covered by regular triangles in Si satisfies

Ni(s0)|Pi| ≥ (r − 8
√

2hM)2 ≥ (r − 8
√

2C1s0)2, (3.147)
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where hM := supT∈∆reg
s,r
hT . Recall the fact that Kp(πz) ≤ Kp(πbi

) + 2Ch2
πi
ω(r) ≤

Kp(πz) + 4CC2
fω(

√
2r), for any z ∈ Si, where Cf is defined in (3.133). After

integrating over z ∈ Si,

1

2s2η
0

∫

Si

Kp(πz)
qdz ≤ r2

|Pi|
≤ 1

2s2η
0

∫

Si

(
Kp(πz) + 4CC2

fω(r)
)q

dz.

By using only the first inequality, we deduce from (3.147) that, for s0 → 0,

Ni(s0) ≥ r2

|Pi|
(r − 8

√
2C1s0)

2

r2
≥ (r − 8

√
2C1s0)2

2r2s2η
0

∫

Si

Kp(πz)
qdz

≥ 1

2
s−2η

0

∫

Si

Kp(πz)
qdz − o(s−2η

0 ). (3.148)

Recall that the number of regular triangles is twice of Ni(s0). Now, summing up

over all sub-squares implies that, for s0 → 0,

(#∆reg
s0

) ≥ s−2η
0

∫

Ω
Kp(πz)

qdz − o(s−2η
0 ), (3.149)

thereby proving our claim that regular triangles dominate (#∆s0).

Next, we shall study the number of triangles due to a small perturbation of

sη0 (see (3.153) below). Let A0 = |Ri(s0)|, A1 = |Ri(s1)| be the respective areas

of the regular regions in Ri(s0) and Ri(s1). First, we claim that

A1 ≥ sη1
sη0
A0. (3.150)

To prove this, we use the following observation: Suppose that a scaling of Pi by

sη0 leads to the current partition of Si. A scaling of Pi by sη1 = sη0
(
sη

1

sη
0

)
is equivalent

to scaling Pi by sη0, then scaling it again by t =
sη

1

sη
0
. This is equivalent to scaling

Si by 1
t

=
sη

0

sη
1
. Clearly, the area A′

1 of the regular region in 1
t
Si is greater than the

area A0 of the regular region in Si. The fact that tA′
1 = A1 proves our claim in

(3.150).

Denoting by a0 = |Pi(s0)|, a1 = |Pi(s1)| the areas of regular parallelograms in

Ri(s0), Ri(s1), respectively. Note that a0

a1
=

s2η
0

s2η
1

. Recalling that Ni(s0) denote the
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exact number of regular parallelograms of Ri, we have

N0 := Ni(s0) =
A0

a0
and N1 := Ni(s1) =

A1

a1
. (3.151)

We have

N1 = N0 +N0(bc+ c − 1), (3.152)

where

b =
A1 − sη

1

sη
0
A0

sη
1

sη
0
A0

and c =
sη0
sη1
.

Denoting A = |Si| the area of Si, observe that

b =

(
sη

1

sη
0
A − sη

1

sη
0
A0

)
−

(
sη

1

sη
0
A− A1

)

sη
1

sη
0
A0

≤ A −A0

A0
.

Note that A−A0 is the area covered by irregular triangles in Si, and it is negligible

compared to the area A0 of regular regions, so that b → 0 as s0 → 0.

We also have, by setting ε0 = εsη+α
0 , where α > 0 and ε ≥ 0,

c− 1 =
ε0

sη0 − ε0

=
εsα0

1 − εsα0
.

Clearly, c− 1 → 0 as ε → 0 or s0 → 0.

It follows that bc + c − 1 → 0 as ε0 → 0 and s0 → 0, and we deduce from

(3.152) that N1 = N0 + o(N0) which, by considering all regular regions, yields

(#∆reg
s1

) ≤ (#∆reg
s0

) + o
(
(#∆reg

s0
)
)
, (3.153)

as ε0 → 0 and s0 → 0.

Combining now the number of all triangles, we know that the total number of

regular triangle dominates the number of irregular ones. As already mentioned
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before, it is therefore sufficient to study the jump (3.153) from sη0 to sη1 = sη0 − ε0.

This leads to the estimation below, for ε0 → 0,

(#∆s1) ≤ (#∆s0) + o
(
(#∆s0)

)
. (3.154)

We now proceed to define the triangulation ∆N for a given N ≥ N0. For any

N ≥ N0, consider sN defined by

sN := min{sη > 0 :
(
#∆s

)
≤ N}. (3.155)

Let N be large enough so that sN is sufficiently small. For any sη = sηN −ε < sηN ,

ε > 0, we have N < (#∆s). Therefore, for (#∆sN
) → ∞,

N < (#∆s) ≤ (#∆sN
) + o

(
(#∆sN

)
)
,

which implies that N → ∞ is equivalent to (#∆sN
) → ∞. It follows that

N − (#∆sN
) = o(N) and N

1
2 − (#∆sN

)
1
2 = o(N

1
2 ), (3.156)

as N → ∞.

We use the extraction argument as in [29]: Since (3.143) and (3.144) hold, for

any n ≥ 1 there exists a sub-sequence of triangulations
(
∆n
sN

)
N≥N0

such that

lim sup
N→∞

N‖f − I∆n
sN
f‖Lp(Ω) ≤

( ∫

Ω

(
Kp(πz) +

1

n

)q
dz

) 1
q

,

lim sup
N→∞

N
1
2 |f − I∆n

sN
f |W 1

p (Ω) .

( ∫

Ω

(
Kp(πz) +

1

n

)q
dz

) 1
2

( ∫

Ω
| detπz|

q
4 ‖Hf(z)‖

p

2
2 dz +

1

n

) 1
p

.
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Define the triangulation ∆N = ∆n(N)
sN

where

n(N) := max
{
n ≤ N : N‖f − I∆n

sN
f‖Lp(Ω) ≤

( ∫

Ω

(
Kp(πz) +

2

n

)q
dz

) 1
q

,

N
1
2 |f − I∆n

sN
f |W 1

p (Ω) .

( ∫

Ω

(
Kp(πz) +

2

n

)q
dz

) 1
2

( ∫

Ω
| detπz|

q
4 ‖Hf(z)‖

p

2
2 dz +

2

n

) 1
p
}
. (3.157)

For N large enough, the set is non-empty and finite, making n(N) well-defined.

Also, clearly n(N) increases with N so that n(N) → ∞ as N → ∞. Combining

this with (3.156) and the two above inequalities yields the results.

Observe that, by using the Cauchy-Schwarz inequality for integrals,

∫

Ω
| det πz|

q

4 ‖Hf(z)‖
p
2
2 dz = Kp(π0)

− q

2

∫

Ω
Kp(πz)

q

2 ‖Hf(z)‖
p
2
2 dz

≤ Kp(π0)− q

2

( ∫

Ω
Kp(πz)

qdz
) 1

2
( ∫

Ω
‖Hf(z)‖p2dz

) 1
2

≤ (
3

2
)

p
2Kp(π0)− q

2

( ∫

Ω
Kp(πz)

qdz
) 1

2
(

|f |pW 2
p (Ω)

) 1
2

,

since, by virtue of (2.4), ‖Hf(z)‖2 ≤ 3
2

max{D2
xxf(z), D2

xyf(z), D2
yyf(z)}. Then,

we can also use the following asymptotic estimation which is only a bit coarser

than (3.146),

lim sup
N→∞

N
1
2 |f − fN |W 1

p (Ω) .(
3

2
)

1
2Kp(π0)− q

2p |f |
1
2

W 2
p (Ω)

( ∫

Ω

(
Kp(πz)

)q
dz

) 1
2

+ 1
2p

≤Cp
[
|f |W 2

p (Ω)

( ∫

Ω

(
Kp(πz)

)q
dz

) 1
q
] 1

2

, (3.158)

since 1
2
+ 1

2p
= 1

2q
, with Cp = C(3

2
)

1
2Kp(π0)

− 1
2(p+1) where C is an absolute constant.

As we already discussed in the introduction of this chapter (see also Sec-

tion 1.2), the estimation in (3.145) is optimal in the sense that it cannot be fur-

ther improved on certain triangulation, and that (3.158) is the first W 1
p -seminorm

estimation derived from a triangulation which is optimal for the Lp-norm estima-

tion.
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3.5 A numerical illustration

In this section, we present a simple comparison of our method to the uniform

method. The function f considered in (3.160) is convex on Ω = (−1, 1)2, its

anisotropic behavior is shown in Figure 3.31. In order to analyze the sharpness of

our error bounds and the quality of our mesh, the function f is designed so that

its Hessian matrix is near degenerate, with however well-separated eigenvalues.

An “anisotropic behavior“ of a function is characterized by an “abrupt“ vari-

ation of its graph at some points, some curves or some surfaces. In most cases,

it occurs when there are two directions such that, in one direction the change of

the derivative is maximal, whereas in the other one the derivative is minimal. In

order to catch this anisotropic behavior, it is cheaper to use anisotropic triangles

rather than numerous small triangles.

Note that in general, knowing the expressions of the Hessian whose deter-

minant is positive does not necessarily lead to the expression of a convex func-

tion. However, by using any invertible linear map φ, one can produce another

convex function f0 ◦ φ from a given one f0. Indeed, supposing that φ(x, y) =

(αx+ βy, γx+ δy), we have

Dxf0(αx+ βy, γx+ δy) = αDxf0(αx+ βy, γx+ δy) + γDyf0(αx+ βy, γx+ δy)

Dyf0(αx+ βy, γx+ δy) = βDxf0(αx+ βy, γx+ δy) + δDyf0(αx+ βy, γx+ δy)

from which we deduce that

Dxxf0(αx+ βy, γx+ δy) = α2Dxxf0(αx+ βy, γx+ δy) + 2αγDxyf0(αx+ βy, γx+ δy)

+ γ2Dyyf0(αx+ βy, γx+ δy)

Dyyf0(αx+ βy, γx+ δy) = β2Dxxf0(αx+ βy, γx+ δy) + 2βδDxyf0(αx+ βy, γx+ δy)

+ δ2Dyyf0(αx+ βy, γx+ δy)

Dxyf0(αx+ βy, γx+ δy) = αβDxxf0(αx+ βy, γx+ δy) + γδDyyf0(αx+ βy, γx+ δy)

+ (αδ + γβ)Dxyf0(αx+ βy, γx+ δy),
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or equivalently, the Hessian

Hf0◦φ =

[
α γ

β δ

] [
(Dxxf0) ◦ φ (Dxyf0) ◦ φ
(Dxyf0) ◦ φ (Dyyf0) ◦ φ

] [
α β

γ δ

]
. (3.159)

This means that the sign of the determinant of Hf0◦φ is the same as the sign of

the determinant Hf0.

Convex functions with simple expressions can be easily found. Below we

construct a convex function which possesses an anisotropic behavior. Let f0 be

the function defined by

f0(x, y) =
x2

400
− x3y

4800
− xy

200
+
y2

4
.

By taking the second derivatives of f0, we can easily deduce that detHf0(x, y) =

1
2

(
1

200
− xy

800

)
−

(
x2

1600
+ 1

200

)2
> 0, and thus f0 is always convex on Ω. By considering

the linear map φ(x, y) = (x+ y, x− y), we obtain the function f = f0 ◦ φ

f(x, y) =
(x+ y)2

400
− (x+ y)3(x− y)

4800
− (x+ y)(x− y)

200
+

(x− y)2

4
. (3.160)

We have that

Dxf(x, y) =
x+ y

200
− (x+ y)3

4800
− (x+ y)2(x− y)

1600
− x

100
+
x− y

2
,

Dyf(x, y) =
x+ y

200
+

(x+ y)3

4800
− (x+ y)2(x− y)

1600
+

y

100
− x− y

2
,

thus the Hessian matrix of f is given by

Hf(x, y) =




1
2

− 1
200

− x2+xy
400

−1
2

+ 1
200

− x2−y2

800

−1
2

+ 1
200

− x2−y2

800
1
2

+ 3
200

+ xy+y2

400


 .

It is clear that Hf is convex on Ω by virtue of (3.159). By studying each of the

entries of Hf , we can easily show that for any r > 0, ω(r) ≤ 1
200

where ω is

defined in (2.75).

First let Ω be divided into four sub-squares S1, . . . , S4 of side length one and
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barycenters

b1 =
(

− 1

2
,
1

2

)
, b2 =

(1

2
,
1

2

)
, b3 =

(
− 1

2
,−1

2

)
and b4 =

(1

2
,−1

2

)
.

The anisotropic behavior of f at one of the barycenters is shown as follows: We

have that Dxf(b1) = − 99
200

and Dyf(b1) = 101
200

. We show that at b1, the direction

in which the derivative is maximal (resp. minimal) is the eigenvector of Hf(b1)

corresponding to the largest (resp. smallest) eigenvalue. Since

Hf(b1) =




99
200

− 99
200

− 99
200

103
200


 ,

its eigenvalues are 0.0099 and 1 with corresponding eigenvectors v1 = [0.714 0.7]t

and v2 = [−0.7 0.714]t. The derivatives in v1 and v2 directions satisfy

Dv1f(b1) =0.714 × −99

200
+ 0.7 × 101

200
= 7e− 05, (3.161)

Dv2f(b1) = − 0.7 × −99

200
+ 0.714 × 101

200
= 0.707. (3.162)

In the table below, we denote by N the number of triangles which we obtain

by triangulating Ω = (−1, 1)2 by using the method described in Section 3.2.2

and Section 3.2.3, with tolerance
djL

3hi
. To simplify the implementation, instead

of using the back transformation procedure discussed in Section 3.2.4, we use

the constraint Delaunay algorithm in order to triangulate the domain Ω after it

is partitioned into polygons of at most six edges. The resulting triangulation,

shown in Figure 3.31, does not significantly differ from the result expected by

our algorithm. To show that regular triangles produce small errors compared

to irregular triangles, triangles are colored according to their relative errors, i.e.
error

area
, where gray colors indicate high errors.

The overall error is denoted by E = ‖f − fN‖L2(Ω) and is plotted in red in

Figure 3.33. In order to evaluate integrals on a given a triangle T , we use a Gaus-

sian quadrature formula. Fix a right triangle T0 with vertices (0, 1), (1, 0), (0, 0).

Given a function g, using a Gaussian quadrature method from [34] shows that
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�1 0 1�1

0

1

Figure 3.31: An anisotropic triangulation constructed by using our method, trian-
gles are colored according to the relative error error

area
, gray colored triangles indicate

high errors.

the integral of g on T0 can be approximated as follows,

∫

T0

g(x) dx ≈ 25

96
g

(1

5
,
1

5

)
− 9

32
g

(1

3
,
1

3

)
+ g

(1

5
,
3

5

)
+ g

(3

5
,
1

5

)
, (3.163)

and equality occurs for polynomials of degree ≤ 3.

Suppose now that T is a non-degenerate triangle with vertices given by p1 =

(x1, y1), p2 = (x2, y2), p3 = (x3, y3). Then, denoting by a = x2 − x3, b = x1 − x3,

c = y2 − y3 and d = y1 − y3, we clearly have

T = φ(T0), φ(x, y) := M [x y]t + t, (3.164)
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where M =
[
a b

c d

]
and t = [x3 y3]

t. Thus by a simple change of variables,

‖f‖2
L2(T ) =

∫

φ(T0)
|f(x)|2 dx =

∫

T0

|f ◦ φ(x)|2|M | dx, (3.165)

and we can apply (3.163) with g = (f ◦ φ)2.

The regular triangles cover %Areg of the area of Ω, and they contribute %E2
reg

to the overall squared error E2. Figure 3.33 shows that our slightly modified

method can provide sharper estimations compared to uniform methods. We de-

note by D the W 1
p -seminorm of the error, and by %Rreg the percentage of the

error contributed by regular regions. The computation of the integral for the W 1
p -

seminorm uses a similar method as for the L2-norm (see (3.165)). In Figure 3.34

are shown the estimations for the derivatives.

(a) Uniform 1. (b) Uniform 2.

Figure 3.32: Uniform triangulations to approximate f .

The number of triangles using a uniform triangulation is denoted by Nuni. We

denote by E1 and E2 the L2-norm of the errors which result from the approxima-

tion by using the uniform triangulations shown in Figure 3.32. In Figure 3.33,

they are respectively plotted in green and blue lines. Between the two uniform

triangulations 1 and 2, the latter is better adapted since the triangles are aligned

in a direction which makes a small angle with the eigenvector v1, recalling that

181

./UniformTria.eps
./UniformTria2.eps


the derivatives of f are minimal in v1 direction. We also see this from the W 1
p -

seminorm of the derivatives, D1 and D2, which are plotted in Figure 3.34.

The tables below summarizes the data, L2-norms and W 1
p -seminorms of the

errors, which enable us to plot Figure 3.33 and Figure 3.34.

Table 1

N E2 %E2
reg %Areg Nuni E2

1 E2
2

440 1.74e− 5 0.28 18.953 450 1.47e− 5 2.40e− 6

568 3.46e− 6 1.24 20.66 578 8.88e− 6 1.46e− 6

634 8.37e− 7 4.28 21.68 648 7.07e− 6 1.16e− 6

704 7.74e− 7 6.62 27.99 722 5.69e− 6 9.33e− 7

826 2.54e− 7 14.49 31.67 882 3.81e− 6 6.25e− 7

932 1.35e− 7 34.78 42.41 968 3.17e− 6 5.19e− 7

1004 1.35e− 7 42.92 49.17 1058 2.65e− 6 4.34e− 7

1260 6.75e− 8 46.80 47.63 1352 1.62e− 6 2.66e− 7

1440 6.11e− 8 64.58 52.59 1458 1.40e− 6 2.29e− 7

1868 3.66e− 8 60.72 64.46 1922 8.03e− 7 1.32e− 7

2142 2.79e− 8 68.10 64.35 2178 6.26e− 7 1.02e− 7

Table 2

N D2 %D2
reg Nuni D2

1 D2
2

440 3.97e− 3 1.66 450 1.45e− 2 2.91e− 3

568 1.57e− 3 4.12 578 1.13e− 2 2.26e− 3

634 7.84e− 4 7.72 648 1.01e− 2 2.02e− 3

704 7.29e− 4 12.14 722 9.05e− 3 1.81e− 3

826 4.60e− 4 17.72 882 7.40e− 3 1.48e− 3

932 3.64e− 4 26.26 968 6.75e− 3 1.35e− 3

1004 3.23e− 4 30.50 1058 6.17e− 3 1.24e− 3

1260 1.99e− 4 36.88 1352 4.83e− 3 9.67e− 4

1440 1.91e− 4 46.96 1458 4.48e− 3 8.97e− 4

1868 1.49e− 4 44.97 1922 3.40e− 3 6.81e− 4

2142 1.19e− 4 49.58 2178 3.00e− 3 6.01e− 4
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Figure 3.33: Squares of the L2-norms of the approximation error f − fN by using
our triangulation and the two uniform ones.
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Figure 3.34: Squares of the W 1
2 -seminorms of the approximation error f − fN by

using our triangulation and the two uniform ones.
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Chapter 4

Approximation by sums of

piecewise polynomials

In this chapter, we present methods of approximation by using sums of piecewise

polynomials of degree 0 or 1 in d variables, extending the work in [16] on piecewise

constants (see also [15]). The errors are measured in Lp-norm and W 1
p -seminorm.

The basic idea consists in designing several overlaying partitions of the domain,

responsible for the approximation of different components of the target function’s

gradient or Hessian. A key property of the new approximation method is that

it achieves better approximation order in terms of the number N of degrees of

freedom comparing to standard methods on a single partition.

In the case of piecewise constants, with the errors measured in Lp-norm, the

approximation order is O(N−2/(d+1)) comparing to O(N−1/d) achievable on a sin-

gle isotropic partition. The order O(N−2/(d+1)) has been shown in [16] for a

single convex (anisotropic) partition. However, the construction of this partition

requires the estimations of the average gradients of the target function f , whereas

we use d overlapping partitions independent of f .

In the case of piecewise linear approximations, with the errors measured in L∞-

norm, it is known [16] that the order O(N−2/d) cannot be improved on any single

convex partition. We provide two methods of overlaying partitions, one with

fewer partitions depending on f and another with partitions independent of f ,

both with approximation order O(N−6/(2d+1)) for the function and O(N−3/(2d+1))
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for the gradient, and the errors are measured in Lp-norm and W 1
p -seminorm.

Note that in contrast to Chapter 3, the approximant is not required to be

continuous which makes partitioning easier by eliminating the need for irregular

regions.

After providing in Section 4.1 the general concept of best approximation in

the multivariate setting, we discuss in Section 4.2 the approximation method by

using piecewise constants on a single partition. In Section 4.3, we present our

approximation method by using sums of piecewise constant polynomials. The

case for sums of piecewise linear polynomials is divided into two, in Section 4.4

and in Section 4.5, in the latter the directions of splitting in the partitions are

fixed.

4.1 Generalities and notation

We shall start by introducing the general concept of best approximation. Given

a bounded convex domain ω of Rd, there is a constant ρd which depends only on

d such that, for any f ∈ W 1
p (ω), we have the Poincaré inequality

‖f − fω‖Lp(ω) ≤ ρd diam(ω)‖∇f‖Lp(ω), (4.1)

where fω is the average of f on ω, that is

fω = |ω|−1
∫

ω
f(x) dx, (4.2)

with |ω| being the Lebesgue measure (d-dimensional volume) of ω, and recalling

from (1.22),

‖∇f‖Lp(ω) =
( ∫

ω

( d∑

ν=1

|Dxνf(x)|2
) p

2

dx
) 1

p

. (4.3)

Let Ω be a bounded domain in Rd, d ≥ 2. Given a partition ∆ of Ω and a
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function f : Ω → R, we are interested in estimating the error bounds resulting

from its approximation by piecewise polynomials in the space

Sk(∆) =
{ ∑

ω∈∆

qωχω : qω ∈ Πd
k

}
, χω(x) :=





1, if x ∈ ω,

0, otherwise,

(4.4)

where Πd
k, k ≥ 1, denotes the space of polynomials of total degree < k in d

variables1. For k = 1, 2, S1(∆) and S2(∆) are respectively the spaces of piecewise

constant and piecewise linear polynomials on Ω. Note that these functions are

not necessarily continuous.

The best approximation error is measured in the Lp-norm ‖ · ‖Lp(Ω),

Ek(f,∆)p := inf
s∈Sk(∆)

‖f − s‖Lp(Ω), 1 ≤ p ≤ ∞. (4.5)

It is easy to check that,

Ek(f,∆)p =





( ∑

ω∈∆

Ek(f)pLp(ω)

)1/p

if p < ∞,

maxω∈∆ Ek(f)L∞(ω) if p = ∞,

(4.6)

where Ek(f)Lp(ω) denotes the error of the best polynomial approximation on ω,

Ek(f)Lp(ω) := inf
q∈Πd

k

‖f − q‖Lp(ω).

Indeed, suppose that the infimum in (4.5) is attained at s0 =
∑
ω∈∆ q

0
ωχω. Then

Ek(f,∆)p =
( ∫

Ω
|(f − s0)(x)|pdx

) 1
p

=
( ∑

ω∈∆

∫

ω
|(f − s0)(x)|pdx

) 1
p

=
( ∑

ω∈∆

∫

ω
|(f − q0

ω)(x)|pdx
) 1

p

. (4.7)

The right hand side of (4.6), for p < ∞, is clearly smaller or equal to the right

hand side of (4.7). Conversely, the latter is smaller or equal to the right hand

1This is different of the standard definition where the total degree is ≤ k.
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side of (4.6) since Ek(f,∆)p is attained at s0. The case p = ∞ is straightforward,

and thus the (4.6) holds.

The Bramble-Hilbert lemma on convex domains [21] is stated as follows: If

ω is a bounded convex domain and its restriction on ω belongs to the Sobolev

space W k
p (ω), then there is a polynomial q ∈ Πd

k such that

|f − q|W r
p (ω) ≤ ρd,k diamk−r(ω)|f |W k

p (ω), r = 0, . . . , k, (4.8)

where ρd,k denotes a positive constant depending only on d and k. In particular,

Ek(f)Lp(ω) ≤ ρd,k diamk(ω) |f |W k
p (ω). (4.9)

Therefore, for any convex partition ∆ of Ω and any f ∈ W k
p (Ω),

Ek(f,∆)p ≤ ρd,k max
ω∈∆

diamk(ω) |f |W k
p (Ω). (4.10)

Recall that |∆| denotes the number of cells ω in ∆. From the fact that

|Ω| =
∑

ω∈∆

|ω| ≤ |∆| max
ω∈∆

diam(ω)d,

we have maxω∈∆ diam(ω) ≥ C|∆|−1/d, where C depends only on |Ω| and d. Hence,

in terms of |∆|, the approximation order that can be obtained from (4.10) is not

better than

Ek(f,∆)p = O(|∆|−k/d). (4.11)

This order is achieved for example for Ω = (0, 1)d on convex partitions ∆m,

m = 1, 2, . . ., defined by splitting the cube (0, 1)d uniformly into |∆m| = md

equal sub-cubes of edge length 1/m.

Although the saturation order in (4.11) cannot be improved on isotropic par-

titions, it is shown in Theorem 4.2.1 that it can be improved on anisotropic

partitions. For a system P = {∆(1), . . . ,∆(n)} of several overlaying partitions of
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Ω, we consider the space of sums of piecewise polynomials

Sk(P) =
{ n∑

ν=1

∑

ω∈∆(ν)

qν,ωχω : qν,ω ∈ Πd
k

}
. (4.12)

A function in Sk(P) is the sum of n piecewise polynomials respectively belong-

ing to Sk
(
∆(ν)

)
, ν = 1, . . . , n. The corresponding best approximation error is

measured with respect to the Lp-norm

Ek(f,P)p := inf
s∈Sk(P)

‖f − s‖p, 1 ≤ p ≤ ∞.

We set |P| =
n∑

ν=1

|∆(ν)|.

4.2 Piecewise constant approximation

In [15, Theorem 2] it is shown that in (4.11) for k = 1, assuming higher smooth-

ness of f does not help to improve the order E1(f,∆N)∞ = O(|∆N |−1/d) if the

sequence of partitions (∆N ) is isotropic, that is there is a constant c > 0 such that

diam(ω) ≤ cρ(ω) for all ω ∈ ⋃
N ∆N , where ρ(ω) is the maximum diameter of

d-dimensional balls contained in ω. More precisely, if E1(f,∆N )∞ = o(|∆N |−1/d),

N → ∞, for a function f ∈ C1(Ω) and some isotropic sequence of partitions

(∆N)N≥N0 with lim
N→∞

diam(∆N) = 0, then f is a constant. Thus, |∆|−1/d is the

saturation order of the piecewise constant approximation on isotropic partitions.

By using anisotropic partitions of Ω, in [16] it has been shown that the

approximation order of piecewise constants can be improved to E1(f,∆)p =

O(|∆|−2/(d+1)) on suitable anisotropic convex partitions obtained by a simple

algorithm if f ∈ W 2
p (Ω).
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gi

Figure 4.1: Example of a partition into N1 cubes, with a cell partitioned into N2

slices, with m = 4.

Algorithm 4.1 ([16]): A partition ∆m of Ω.

Input m ∈ N;

Assume that f ∈ W 1
1 (Ω) where Ω = (0, 1)d.

1. Split Ω into N1 = md cubes ω1, . . . , ωN1 of edge length h = 1/m;

2. Split each ωi into N2 slices ωij , j = 1, . . . , N2, by equidistant hyperplanes

orthogonal to the average gradient

gi := |ωi|−1
∫

ωi

∇f(x) dx; (4.13)

3. Set the partition ∆m = {ωij : i = 1, . . . , N1, j = 1, . . . , N2};

Then |∆m| = N1N2 and each ωij is a convex polyhedron with at most

2(d+ 1) facets.

In Figure 4.1 we show an example of partition into N1 cubes for d = 2, where

a cell is partitioned into N2 slices according to Algorithm 4.1.
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Theorem 4.2.1 ([16]). Assume that f ∈ W 2
p (Ω), Ω = (0, 1)d, for some 1 ≤ p ≤

∞. For any m = 1, 2, . . ., generate the partition ∆m by using Algorithm 4.1 with

N1 = md and N2 = m. Then

E1(f,∆m)p ≤ Cd|∆m|−2/(d+1)(|f |W 1
p (Ω) + |f |W 2

p (Ω)), (4.14)

where Cd is a constant depending only on d.

According to [16, Theorem 2], the saturation order of piecewise constant ap-

proximations on convex partitions is |∆|−2/(d+1), since for any f ∈ C2(Ω) it cannot

be improved any further. It is also shown in [16, Theorem 3] that the saturation

order of piecewise linear approximations on convex partitions is |∆|−2/d, which

is the same as on isotropic partitions. The case d = 2 was proved by a different

method in [26] for sequences of partitions ∆N of Ω = (0, 1)2.

4.3 Sums of piecewise constants on Ω ⊂ Rd

In contrast to the method using a single partition, we shall use a new algorithm

which will involve a system of d convex polyhedral partitions independent of f ,

that is, unlike in (4.13) where the splitting directions are fixed. On each partition,

an approximant of f can be determined (see (4.20) below). The error bounds are

obtained by using triangular inequalities and the Poincaré inequality (4.1).

In the algorithm below, we produce a system of overlaying partitions P where

the splitting directions are fixed.
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Figure 4.2: Partitions ∆(1),∆(2) obtained from Algorithm 4.2 for piecewise con-
stant approximation.

Algorithm 4.2: Overlaying partitions ∆(ν), ν = 1, . . . , d, of Ω

Let Ω = (0, 1)d and let m ∈ N.

1. Split Ω into N1 = md cubes ω1, . . . , ωN1 of edge length h = 1/m, whose

edges are parallel to coordinate axes;

2. For each ν = 1, . . . , d, define ∆(ν) by splitting each ωi into N2 slices ω
(ν)
ij ,

j = 1, . . . , N2, by equidistant hyperplanes parallel to the subspace xν = 0;

3. Set Pm = {∆(1), . . . ,∆(d)};

Then |∆(ν)| = N1N2 and each ω
(ν)
ij is a d-dimensional box with its ν-th

dimension h
N2

and all other dimensions h. We have |Pm| = dN1N2.

Partitions ∆(1),∆(2) in the case d = 2 are illustrated in Figure 4.2.

The following result is proved.

Theorem 4.3.1. Assume that f ∈ W 2
p (Ω), Ω = (0, 1)d, for some 1 ≤ p ≤ ∞.

For any m = 1, 2, . . ., generate the system of partitions Pm by using Algorithm 4.2

with N1 = md and N2 = m. Then

E1(f,Pm)p ≤ Cd|Pm|−2/(d+1)(|f |W 1
p (Ω) + |f |W 2

p (Ω)), (4.15)

where Cd is a constant depending only on d.
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Proof. For each i = 1, . . . , N1, let ℓi = ci +
∑d
ν=1 ℓi,ν denote a linear polynomial

given by

ℓi,ν = ai,ν(xν − x0,ν), ai,ν = |ωi|−1
∫

ωi

Dxνf(x) dx, ν = 1, . . . , d,

with (x0,1, . . . , x0,ν) being the barycenter of ωi and the constant ci defined by the

average of f on ωi, i.e

ci = |ωi|−1
∫

ωi

f(x) dx.

Since
∫
ωi
ℓi,ν(x) dx = 0, we have by Poincaré inequality,

‖
(
f −

d∑

ν=1

ℓi,ν

)
− ci‖Lp(ωi) ≤ ρd diam(ωi)‖∇f −

d∑

ν=1

∇ℓi,ν‖Lp(ωi)

≤
√
dρd
m

( ∫

ωi

( d∑

ν=1

(Dxνf(x) − ai,ν)
2
)p/2

dx
)1/p

.

Poincaré inequality also implies

‖f −
N1∑

i=1

ℓiχωi
‖p ≤

√
dρd
m

( N1∑

i=1

d∑

ν=1

∫

ωi

|Dxνf(x) − ai,ν |p dx
) 1

p

≤
√
dρd
m

( N1∑

i=1

d∑

ν=1

ρpd diam(ωi)
p‖∇(Dxνf)‖pLp(ωi)

) 1
p

≤ dρ2
d

m2
|f |W 2

p (Ω). (4.16)

For fixed i, ν, consider the sum of piecewise constant polynomials

si,ν =
N2∑

j=1

qjχω(ν)
ij

, (4.17)

where qj is a constant, j = 1, . . . , N2, which we shall make precise later. The ν-th

side of ω
(ν)
ij is the straight line segment [x0

j , x
0
j + 1

mN2
] on the xν-axis, and from a

direct computation

‖ℓi,ν − si,ν‖pLp(ωi) =
N2∑

j=1

∫

ω
(ν)
ij

|ai,ν(xν − x0,ν) − qj |p dx
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=
1

md−1

N2∑

j=1

∫ 1
mN2

0
|ai,νxν + ai,ν(x

0
j − x0,ν) − qj |p dxν

=
( 1

mN2

)p |ai,ν |p
md(p+ 1)

,

after choosing qj := ai,ν(x
0
j − x0,ν). Observe that

|ai,ν|p
md

= |ωi|
∣∣∣∣

1

|ωi|
∫

ωi

Dxνf(x) dx

∣∣∣∣
p

≤
∫

ωi

|Dxνf(x)|p dx.

Define s as the sum of piecewise constant polynomials by

s =
N1∑

i=1

(si + ci)χωi
, (4.18)

where si =
∑d
ν=1 si,ν, we find that

‖
N1∑

i=1

ℓiχωi
− s‖p =

( N1∑

i=1

∫

ωi

∣∣∣∣
d∑

ν=1

(ℓi,ν(x) − si,ν(x))

∣∣∣∣
p

dx
) 1

p

≤
( N1∑

i=1

dp−1
d∑

ν=1

∫

ωi

|ℓi,ν(x) − si,ν(x)|p dx
) 1

p

≤ d

mN2

( N1∑

i=1

d∑

ν=1

∫

ωi

|Dxνf(x)|p dx
) 1

p

=
d

mN2
|f |W 1

p (Ω). (4.19)

Since N2 = m and m−2 =
(

|Pm|
d

) −2
d+1 , the bound (4.15) with Cd = d1+ 2

d+1 (ρ2
d + 1)

is obtained by combining (4.16) and (4.19).

Observe that the sub-cubes ωi, i = 1, . . . , N1 are fixed on each partition ∆(ν),

ν = 1, . . . , d, as described by step 1 of Algorithm 4.2. Hence the expression of

s in (4.17) is legitimate. In fact, s can be expressed by d piecewise polynomials

s =
∑d
ν=1 fν where

fν =
N1∑

i=1

(si,ν +
1

d
ci)χωi

. (4.20)
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4.4 Sums of piecewise linears on Ω ⊂ Rd

In this section we approximate the function by using a sum of piecewise linear

polynomials. As in the previous method, we design several overlaying partitions

of Ω which are initially divided into sub-squares ωi, i = 1, . . . , N1.

Given a function f ∈ W 2
p (ω) where ω ⊂ Rd is a bounded convex domain,

recall that the average Hessian matrix of f over ω is a d× d matrix whose entry

Hνµ at the ν-th row and µ-th column is given by

Hνµ = |ω|−1
∫

ω
D2
xνxµ

f(x) dx.

Algorithm 4.3: Overlaying partitions of Ω

Assume f ∈ W 2
p (Ω), Ω = (0, 1)d and m ∈ N.

1. Split Ω into N1 = md cubes ω1, . . . , ωN1 of edge length h = 1/m, whose

edges are parallel to coordinate axes;

2. For each i = 1, . . . , N1, compute the average Hessian matrix Hi of f over

ωi, and let σ
(ν)
i , ν = 1, . . . , d, be the unit eigenvectors of Hi;

3. For each ν = 1, . . . , d, define ∆(ν) by splitting each ωi into N2 slices ω
(ν)
ij ,

j = 1, . . . , N2, by equidistant hyperplanes orthogonal to the eigenvector

σ
(ν)
i ;

Set Pm = {∆(1), . . . ,∆(d)}, where |∆(ν)| = N1N2 and |Pm| = dN1N2.

Partitions ∆(1),∆(2) for Algorithm 4.3 in the case d = 2 are illustrated in

Figure 4.3. On the first figure the splitting directions are orthogonal to the

first eigenvectors, whereas in the second figure the directions of splittings are

orthogonal to the second eigenvectors.
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Figure 4.3: Partitions ∆(1),∆(2) obtained from Algorithm 4.3 for piecewise linear
approximation.

By using the above algorithm, we prove the following result.

Theorem 4.4.1. Let f ∈ W 3
p (Ω), Ω = (0, 1)d, for some 1 ≤ p < ∞. For any

m = 1, 2, . . ., generate the system of partitions Pm by using Algorithm 4.3 with

N1 = md and N2 = ⌈m 1
2 ⌉. Then there exists a sum of piecewise linear functions

sm ∈ S2(Pm) such that

‖f − sm‖p ≤ C1|Pm|−6/(2d+1)(|f |W 2
p (Ω) + |f |W 3

p (Ω)), (4.21)

|f − sm|W 1
p (Ω) ≤ C2|Pm|−3/(2d+1)(|f |W 2

p (Ω) + |f |W 3
p (Ω)), (4.22)

where C1, C2 are constants depending only on d.

Proof. Denote by ∆ the partition of Ω into N1 cubes ω1, . . . , ωN1 of edge length

h = 1/m. It follows from (4.8) that, for each i = 1, . . . , N1, there exists a

quadratic polynomial qi such that

‖f − qi‖Lp(ωi) ≤ ρd,3 diam(ωi)
3|f |W 3

p (ωi) ≤ d
3
2ρd,3
m3

|f |W 3
p (ωi), (4.23)

|f − qi|W 1
p (ωi) ≤ ρd,3 diam(ωi)

2|f |W 3
p (ωi) ≤ dρd,3

m2
|f |W 3

p (ωi), (4.24)

|f − qi|W 2
p (ωi) ≤ ρd,3 diam(ωi)|f |W 3

p (ωi) ≤
√
dρd,3
m

|f |W 3
p (ωi). (4.25)
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It is clear from (4.23) that

‖f −
N1∑

i=1

qiχωi
‖p ≤ d

3
2ρd,3
m3

|f |W 3
p (Ω). (4.26)

With Hi denoting the average Hessian matrix of f over ωi, let q̃i be the

quadratic homogeneous polynomial whose coefficients are the entries of Hi, i.e

D2
xνxµ

q̃i = |ωi|−1
∫

ωi

D2
xνxµ

f(x) dx, ν, µ = 1, . . . , d.

By using the Poincaré inequality, together with (4.25), clearly

‖D2
xνxµ

(q̃i−qi)‖Lp(ωi) ≤ ‖D2
xνxµ

(q̃i − f)‖Lp(ωi) + ‖D2
xνxµ

(f − qi)‖Lp(ωi)

≤ ρd diam(ωi)‖∇(D2
xνxµ

f)‖Lp(ωi) + ρd,3 diam(ωi)|f |W 3
p (ωi). (4.27)

From (4.8), there exists a linear polynomial ℓ̃i such that

‖(qi − q̃i) − ℓ̃i‖Lp(ωi) ≤ ρd,2 diam(ωi)
2|qi − q̃i|W 2

p (ωi), (4.28)

|(qi − q̃i) − ℓ̃i|W 1
p (ωi) ≤ ρd,2 diam(ωi)|qi − q̃i|W 2

p (ωi). (4.29)

The Hessian matrix Hi can be diagonalized into Hi = AtDA where A is an

orthogonal matrix and D a diagonal matrix with entries λ1, . . . , λd. With a slight

abuse of notation we also denote by A the linear mapping generated by the matrix

A. Considering the linear transform (X1, . . . , Xd)
t = A(x1, . . . , xd)

t, we use the

notation

q̄i(X1, . . . , Xd) = λ1X
2
1 + · · · + λdX

2
d ,

where

(q̃i + ℓ̃i) ◦ A−1 = q̄i + ℓi,

with ℓi being a linear polynomial in the variables X1, . . . , Xd. For ν = 1, . . . , d,

each Xν is a linear function of x1, . . . , xd, and the eigenvector σ
(ν)
i of Hi is parallel

to the Xν-axis.
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Given i, ν and j, the set Aω
(ν)
ij is contained between the hyperplanes Xν = cj

and Xν = cj +
γ

(ν)
i

mN2
, where 1 ≤ γ

(ν)
i ≤

√
d is the width of the unit cube in the

direction of σ
(ν)
i . We set s̄i,ν =

∑N2
j=1 ℓ̄jχA(ω

(ν)
ij )

, where ℓ̄j = ajXν − bj , aj = 2λνcj

and bj = λνc
2
j . Then

‖λνX2
ν−s̄i,ν‖p

Lp(A(ω
(ν)
ij ))

=
∫

Aω
(ν)
ij

|λνX2
ν − ajXν + bj |p dX

≤ (
√
d)d−1

md−1

∫ γ
(ν)
i

mN2

0
|λν(Xν + cj)

2 − aj(Xν + cj) + bj |p dXν

=
|λν |p

(2p+ 1)md

(
√
d)d−1

(
γ

(ν)
i

)2p+1

N2

(
1

m2N2
2

)p

≤ |λν |p
md

(
√
d)d+2p

N2

(
1

m2N2
2

)p
(4.30)

by virtue of the fact that
√
d is the diameter of the unit cube.

For each ν = 1, . . . , d, let DXνg denote the partial derivative of a function

g with respect to the variable Xν . It is clear that DXν (g ◦ A−1)(X1, . . . , Xd) =

(Dσνg) ◦ A−1(X1, . . . , Xd), with σν = σ
(ν)
i being the ν-th column vector of A−1.

It follows that

D2
XµXν

(g ◦A−1)(X1, . . . , Xd) = (D2
σµσν

g) ◦ A−1(X1, . . . , Xd).

For each i, ν, since λν = 1
2
D2
XνXν

q̄i(X) and m−d = |Aωi|, we have

|λν |p
md

=
1

2p

∫

Aωi

|D2
XνXν

(
(q̃i + ℓ̃i) ◦ A−1

)
(X)|p dX =

1

2p

∫

ωi

|D2
σνσν

(q̃i + ℓ̃i)(x)|p dx.

With s̄i being the linear polynomial in the variables X1, . . . , Xd, defined by

s̄i = ℓi +
d∑

ν=1

s̄i,ν ,
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we have (q̃i + ℓ̃i) ◦ A−1 − s̄i =
∑d
ν=1(λνX

2
ν − s̄i,ν) where, from (4.30),

‖
d∑

ν=1

(λνX
2
ν − s̄i,ν)‖Lp(A(ωi)) ≤

d∑

ν=1

‖λνX2
ν − s̄i,ν‖Lp(A(ωi))

≤ d1− 1
p

( d∑

ν=1

‖λνX2
ν − s̄i,ν‖pLp(A(ωi))

) 1
p

≤ d1− 1
p

( d∑

ν=1

N2∑

j=1

‖λνX2
ν − s̄i,ν‖p

Lp(A(ω
(ν)
ij ))

) 1
p

≤ d1− 1
p (

√
d)2+ d

p

2m2N2
2

( d∑

ν=1

∫

ωi

|D2
σνσν

(q̃i + ℓ̃i)(x)|p dx
) 1

p

, (4.31)

by virtue of the Hölder inequality (1.21).

Now denote by aµ,ν the entry of A−1 at the µ-th row and ν-th column, with

|aµ,ν | ≤ 1. Using the definition of directional derivatives, clearly

D2
σνσν

(q̃i + ℓ̃i) =
d∑

j,k=1

aj,νak,νD
2
xkxj

(q̃i + ℓ̃i).

We thus have the following inequalities,

∫

ωi

|D2
σνσν

(q̃i+ℓ̃i)(x)|p dx ≤ dp−1
d∑

j,k=1

∫

ωi

|D2
xkxj

(q̃i + ℓ̃i)(x)|p dx

≤ dp−1
d∑

j,k=1

(
‖D2

xkxj
(q̃i + ℓ̃i) −D2

xkxj
f‖Lp(ωi) + |f |W 2

p (ωi)

)p

≤ dp+1
(
ρd diam(ωi)|f |W 3

p (ωi) + |f |W 2
p (ωi)

)p

≤ d2p
(√

dρd
m

+ 1
)p(|f |pW 3

p (ωi)
+ |f |pW 2

p (ωi)

)
, (4.32)

by virtue of (4.1) and the Hölder inequality. For each i = 1, . . . , N1, denoting by

si the linear polynomial in the variables x1, . . . , xd, given by

si = s̄i ◦ A,
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we have that ‖q̃i + ℓ̃i − si‖Lp(ωi) = ‖q̄i − s̄i‖Lp(Aωi). Hence (4.31) and (4.32) yield

‖
N1∑

i=1

(q̃i + ℓ̃i − si)χωi
‖p =

( N1∑

i=1

‖q̃i + ℓ̃i − si‖pLp(ωi)

) 1
p

≤ d4+ d−1
p

m2N2
2

(√
dρd
m

+ 1
)(

|f |W 3
p (Ω) + |f |W 2

p (Ω)

)
. (4.33)

Consider the linear polynomial s given by

s =
N1∑

i=1

siχωi
.

Since m−3 ≤ (mN2)
−2 ≤

(
|Pm|
d

)−6/(2d+1)
, combining (4.26), (4.28) and (4.33)

yields

‖f − s‖p ≤ ‖f −
N1∑

i=1

qiχωi
‖p

+ ‖
N1∑

i=1

(qi − q̃i − ℓ̃i)χωi
‖p + ‖

N1∑

i=1

(q̃i + ℓ̃i − si)χωi
‖p

≤ C1|Pm|−6/(2d+1)
(
|f |W 3

p (Ω) + |f |W 2
p (Ω)

)
,

where C1 = d
6

2d+1

(
d

3
2ρd,3 + dρd,2(ρd + ρd,3) + d

4+ d−1
p

2
(
√
dρd + 1)

)
, and (4.21) holds.

For each i = 1, . . . , N1 we observe that

|f−si|W 1
p (ωi) ≤ 31− 1

p

( d∑

ν=1

∫

ωi

(
|Dxν (f − qi)(x)|p

+ |Dxν (qi − q̃i − ℓ̃i)(x)|p + |Dxν (q̃i + ℓ̃i − si)(x)|p
)
dx

) 1
p

. (4.34)

Note also that A−1 = At, so that the ν-th row and µ-th column of A are exactly

the µ-th row and ν-th aν,µ column of A−1. For each ν = 1, . . . , d, from the equality

q̃i + ℓ̃i = (q̄i + ℓi) ◦ A, we deduce that

Dxν (q̃i + ℓ̃i) = Dxν ((q̄i + ℓi) ◦A) = (Dτ ν (q̄i + ℓi)) ◦A =
d∑

µ=1

aν,µ(DXµ(q̄i + ℓi)) ◦A,

where τ ν denotes the ν-th column vector of A. Similarly, Dxνsi = Dxν (s̄i ◦A) =
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∑d
µ=1 aµ,ν(DXµ s̄i) ◦ A. It follows that

∫

ωi

|Dxν (q̃i + ℓ̃i − si)(x)|p dx ≤ dp−1
d∑

µ=1

∫

Aωi

|DXµ(q̄i + ℓi − s̄i)(X)|p dX

= dp−1
d∑

µ=1

N2∑

j=1

∫

Aω
(µ)
ij

|2λµXµ − 2λµcj|p dX

≤ dp−1

md−1

d∑

µ=1

N2∑

j=1

|2λµ|p
1

p+ 1

( √
d

mN2

)p+1

= d
3p−1

2

( 1

mN2

)p d∑

µ=1

∫

ωi

|D2
σµσµ

(q̃i + ℓ̃i)(x)|p dx. (4.35)

Combining (4.24) and (4.29), together with (4.35) and (4.32), we obtain

|f − si|pW 1
p (ωi)

≤3p−1
(dρd,3
m2

)p|f |pW 3
p (ωi) + 3p−1

(√
dρd,2
m2

)p|f |pW 3
p (ωi)

+ 3p
(d

7p−1
2

mN2

)p(
√
dρd
m

+ 1
)p(|f |pW 3

p (ωi) + |f |pW 2
p (ωi)

)
,

where, since m−2 ≤ (mN2)−1 ≤
(

|Pm|
d

)−3/(2d+1)
,

|f − s|W 1
p (Ω) ≤ C2|Pm|−3/(2d+1)

(
|f |W 3

p (Ω) + |f |W 2
p (Ω)

)
,

with C2 = d
3

2d+1

(
3dρd,3 + 3

√
dρd,2 + 3d

7p−1
2 (

√
dρd + 1)

)
, and (4.22) is proved.

4.5 Sums of piecewise linears with fixed split-

ting directions

In the previous section, the splitting directions in step 3 of Algorithm 4.3 depend

on the eigenvectors of the average Hessian matrices of f . In this section, we

present another method where the splitting directions are independent of the

function.

The following result is needed in the proof of Theorem 4.5.2 below.

Lemma 4.5.1. Any homogeneous quadratic polynomial q can be represented as
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a linear combination of
(
d+1

2

)
quadratic ridge functions

q =
d∑

ν=1

aνx
2
ν +

d∑

ν=1

d∑

µ=ν+1

bνµ(xν + xµ)2, (4.36)

where

aν =
1

2
Dxνxνq − 1

2

∑

µ6=ν
Dxνxµq, bνµ =

1

2
Dxνxµq. (4.37)

Proof. It is clear that q in (4.36) is a quadratic polynomial which is indeed a

combination of d + (d − 1) + · · · + 1 =
(
d+1

2

)
ridge functions. Since second

derivatives are linear operators, we just need to find the representation (4.36) for

all quadratic monomials. For q = x2
ν , we simply take aν = 1, and equate all other

coefficients to zero. Moreover, for ν 6= µ,

2xνxµ = (xν + xµ)2 − x2
ν − x2

µ,

so that for q = xνxµ we can use bνµ = 1
2
, aν = aµ = −1

2
which satisfy

aν = aµ =
1

2
Dxνxµq − 1

2

∑

k 6=j
Dxkxj

and bνµ =
1

2
Dxνxµq.

Note that if q is of the form given in (4.36), then the formulas (4.37) follow

directly from the fact that, for any ν,

Dxνq = 2aνxν + 2
∑

ν 6=µ
bxνxµ(xν + xµ).

This concludes our proof.

In the algorithm below, the initial partition in step 1 is the same as in Algo-

rithm 4.3, however the splitting directions are fixed.
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Figure 4.4: Partitions ∆(1),∆(2) and ∆(1,2) obtained from Algorithm 4.4.

Algorithm 4.4: Partition of Ω with fixed directions

Assume f ∈ W 2
p (Ω), Ω = (0, 1)d and let m ∈ N.

1. Split Ω into N1 = md cubes ω1, . . . , ωN1 of edge length h = 1/m, whose

edges are parallel to coordinate axes;

2. For each ν, µ = 1, . . . , d, define ∆(ν) and ∆(ν,µ) respectively by splitting

each ωi, i = 1, . . . , N1, into N2 slices ω
(ν)
ij and ω

(ν,µ)
ij j = 1, . . . , N2, by

equidistant hyperplanes parallel to xν = 0 and xν + xµ = 0, respectively.

Set Pm = {∆(ν),∆(ν,µ), ν = 1, . . . , d, µ = ν + 1, . . . , d} where for

ν, µ ∈ {1, . . . , d}, |∆(ν)| = |∆(ν,µ)| = N1N2 and |Pm| =
(
d+1

2

)
N1N2.

Partitions ∆(1),∆(2) and ∆(1,2) in the case d = 2 are illustrated in Figure 4.4.

We prove the following result.

Theorem 4.5.2. Let f ∈ W 3
p (Ω), Ω = (0, 1)d, for some 1 ≤ p ≤ ∞. For any

m = 1, 2, . . ., generate the system of partitions Pm by using Algorithm 4.4 with

N1 = md and N2 = ⌊m 1
2 ⌋. Then there is a sum of piecewise linear polynomials

sm ∈ S2(Pm) such that

‖f − sm‖p ≤ C1|Pm|−6/(2d+1)(|f |W 2
p (Ω) + |f |W 3

p (Ω)), (4.38)

|f − sm|W 1
p (Ω) ≤ C2|Pm|−3/(2d+1)(|f |W 2

p (Ω) + |f |W 3
p (Ω)), (4.39)

where C1, C2 are constants depending only on d.
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Proof. Denote by ∆ the partition of Ω into N1 cubes ω1, . . . , ωN1 of edge length

h = 1/m. For each i = 1, . . . , N1, by (4.8) there is a quadratic polynomial qi such

that

‖f − qi‖Lp(ωi) ≤ ρd,3 diam(ωi)
3|f |W 3

p (ωi) ≤ d
3
2ρd,3
m3

|f |W 3
p (ωi), (4.40)

|f − qi|W 1
p (ωi) ≤ ρd,3 diam(ωi)

2|f |W 3
p (ωi) ≤ dρd,3

m2
|f |W 3

p (ωi), (4.41)

|f − qi|W 2
p (ωi) ≤ ρd,3 diam(ωi)|f |W 3

p (ωi) ≤
√
dρd,3
m

|f |W 3
p (ωi). (4.42)

By using (4.36) and the notation therein, let qi = q
(1)
i + q

(2)
i where

q
(1)
i =

d∑

ν=1

aνx
2
ν , and q

(2)
i =

d∑

ν=1

d∑

µ=ν+1

bνµ(xν + xµ)2.

For fixed ν = 1, . . . , d and j = 1, . . . , N2, there exists cj such that the ν-th side

of ω
(ν)
ij is given by [ci, ci + 1

mN2
]. Considering the piecewise linear function

s
(1)
i =

N2∑

j=1

d∑

ν=1

(2aνcjxν − aνc
2
j )χω(ν)

ij

,

we have that

‖q(1)
i − s

(1)
i ‖pLp(ωi) =

∫

ωi

∣∣∣∣
d∑

ν=1

aνx
2
ν −

N2∑

j=1

d∑

ν=1

(2aνcjxν − aνc
2
j)χω(ν)

ij

∣∣∣∣
p

dx

≤dp−1
d∑

ν=1

∫

ωi

∣∣∣∣aνx
2
ν −

N2∑

j=1

(2aνcjxν − aνc
2
j)χω(ν)

ij

∣∣∣∣
p

,

by virtue of the Hölder inequality. Recalling that for each fixed ν the cube ωi is

split into N2 slices ω
(ν)
ij , we use a linear change of variables to obtain

‖q(1)
i − s

(1)
i ‖pLp(ωi) ≤ dp−1

N2∑

j=1

d∑

ν=1

∫

ω
(ν)
ij

|aν |p|xν − cj |2pdx

= dp−1
N2∑

j=1

d∑

ν=1

1

md−1

∫ cj+ 1
mN2

cj

|aν |p|xν − cj |2pdxν
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= dp−1
N2∑

j=1

d∑

ν=1

1

md−1

∫ 1
mN2

0
|aν |p|xν |2pdxν

= dp−1
d∑

ν=1

|aν |p
(2p+ 1)md

( 1

mN2

)2p
. (4.43)

By (4.37) and (4.42), for each i = 1, . . . , N1, by adding and removing the terms

D2
xνxν

f and D2
xνxµ

f , we get

d∑

ν=1

|aν |p
md

=
1

2p

∫

ωi

d∑

ν=1

∣∣∣D2
xνxν

qi(x) −
∑

µ6=ν
D2
xνxµ

qi(x)
∣∣∣
p
dx

=
1

2p

∫

ωi

d∑

ν=1

(∣∣∣D2
xνxν

(qi − f)(x) +D2
xνxν

f(x)

+
∑

µ6=ν

(
D2
xνxµ

(qi − f)(x) +D2
xνxµ

f(x)
)∣∣∣
p
)
dx

≤4p−1

2p

(
2|qi − f |pW 2

p (ωi) + 2|f |pW 2
p (ω)

)

≤2p−1
(√

dρd,3
m

)p|f |pW 3
p (ωi)

+ 2p−1|f |pW 2
p (ωi)

, (4.44)

and (4.43) implies

‖q(1)
i − s

(1)
i ‖pLp(ωi) ≤

(
2d

m2N2
2

)p((√
dρd,3
m

)p
|f |pW 3

p (ωi) + |f |pW 2
p (ωi)

)
. (4.45)

Considering the piecewise linear polynomial

s
(2)
i =

N2∑

j=1

d∑

ν=1

d∑

µ=ν+1

(
2bνµbj(xν + xµ) − bνµb

2
j

)
χ
ω

(ν,µ)
ij

,

we obtain.

‖q(2)
i − s

(2)
i ‖pLp(ωi)

=
∫

ωi

∣∣∣∣
d∑

ν=1

d∑

µ=ν+1

bνµ(xν + xµ)2

−
N2∑

j=1

d∑

ν=1

d∑

µ=ν+1

(
2bνµbj(xν + xµ) − bνµb

2
j

)
χ
ω

(ν,µ)
ij

∣∣∣∣
p

dx
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≤d2p−2
d∑

ν=1

d∑

µ=ν+1

∫

ωi

∣∣∣∣bνµ(xν + xµ)2

−
N2∑

j=1

(
2bνµbj(xν + xµ) − bνµb

2
j

)
χ
ω

(ν,µ)
ij

∣∣∣∣
p

dx.

Recalling that for ν 6= µ the cube ωi is split into N2 slices ω
(ν,µ)
ij , we find that

‖q(2)
i − s

(2)
i ‖pLp(ωi) ≤ d2p−2

N2∑

j=1

d∑

ν=1

d∑

µ=ν+1

∫

ω
(ν,µ)
ij

|bνµ|p|xν + xµ − bj |2p dx.

Given ν = 1, . . . , d and µ = ν + 1, . . . , d, there exists bj such that the ν-th side of

ω
(ν,µ)
ij lies between the hyperplanes xν +xµ = bj and xν +xµ = bj +

√
2

mN2
. Consider

the change of variable X = xν + xµ and Y = xν − xµ where bj ≤ X ≤ bj +
√

2
mN2

and the range of Y is at most
√

2
m

. It follows that

‖q(2)
i − s

(2)
i ‖pLp(ωi) ≤ d2p−2

N2∑

j=1

d∑

ν=1

d∑

µ=ν+1

|bνµ|p
md−2

(√
2

m

∫ bj+
√

2
mN2

bj

|X − bj |2p dX
)

≤ d2p−2
N2∑

j=1

d∑

ν=1

d∑

µ=ν+1

√
2|bνµ|p
md−1

1

2p+ 1

( √
2

mN2

)2p+1

. (4.46)

By (4.37) and (4.42), for each i = 1, . . . , N1, we deduce that

d∑

ν=1

d∑

µ=1

|bνµ|p
md

=
d∑

ν=1

d∑

µ=1

∫

ωi

|1
2
Dxνxµqi(x)|pdx

≤2p−1
d∑

ν=1

d∑

µ=1

∫

ωi

∣∣∣
1

2
Dxνxµ(qi − f)

∣∣∣
p
dx+

1

2
|f |pW 2

p (ωi)

≤1

2

(√
dρd,3
m

)p
|f |pW 3

p (ωi) +
1

2
|f |pW 2

p (ωi)
. (4.47)

Combining (4.47) and (4.46) yields

‖q(2)
i − s

(2)
i ‖pLp(ωi) ≤ d2p−2

( 2

m2N2
2

)p((√
dρd,3
m

)p
|f |pW 3

p (ωi)
+ |f |pW 2

p (ωi)

)
. (4.48)
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With si = s
(1)
i + s

(2)
i , combining (4.45) and (4.48) gives

‖qi−si‖pLp(ωi) ≤ 2p−1‖q(1)
i − s

(1)
i ‖pLp(ωi)

+ 2p−1‖q(2)
i − s

(2)
i ‖pLp(ωi)

≤
(
dp + d2p−2

)(
4

m2N2
2

)p((√
dρd,3
m

)p|f |pW 3
p (ωi) + |f |pW 2

p (ωi)

)

≤
(

2d

mN2

)2p((√
dρd,3
m

)p
+ 1

)(
|f |pW 3

p (ωi)
+ |f |pW 2

p (ωi)

)
. (4.49)

The inequality max{m−3, (mN2)
−2} ≤ 4

(
d+1

2

)6/(2d+1)|Pm|−6/(2d+1) is easily

provable:

• Since |Pm| =
(
d+1

2

)
mdN2 ≤

(
d+1

2

)
md+ 1

2 , we have that |Pm| 6
2d+1 ≤

(
d+1

2

)6/(2d+1)
m3;

• Clearly m ≤ ⌈m 1
2 ⌉2 ≤ (N2 + 1)2 ≤ 4N2

2 . Thus m3 ≤ 4m2N2
2 and hence

|Pm| 6
2d+1 ≤ 4

(
d+1

2

)6/(2d+1)
m2N2

2 .

Considering the piecewise polynomials s =
∑N1
i=1 siχωi

and q =
∑N1
i=1 qiχωi

, we

now deduce from (4.40) and (4.49) that

‖f − s‖p ≤
( N1∑

i=1

‖f − qi‖pLp(ωi)

) 1
p

+
( N1∑

i=1

‖qi − si‖pLp(ωi)

) 1
p

≤d
3
2ρd,3
m3

|f |W 3
p (Ω) +

4d2 + 2d

m2N2
2

(√
dρd,3 + 1

)(
|f |W 3

p (Ω) + |f |W 2
p (Ω)

)

≤C1|Pm|−6/(2d+1)
(
|f |W 3

p (Ω) + |f |W 2
p (Ω)

)
, (4.50)

where C1 = 4
(
d+1

2

)6/(2d+1)(
d

3
2ρd,3 + 6d2

(√
dρd,3 + 1

))
, thereby proving the result

(4.38).

For each i = 1, . . . , N1, using the Hölder inequality yields

|qi − si|pW 1
p (ωi)

≤ 2p−1
d∑

ν=1

(
‖Dxν (q

(1)
i − s

(1)
i )‖pLp(ωi) + ‖Dxν (q

(2)
i − s

(2)
i )‖pLp(ωi)

)
.

On one hand, a direct computation shows that, for each ν = 1, . . . , d,

‖Dxν (q
(1)
i − s

(1)
i )‖pLp(ωi) =

2p

p+ 1

|aν |p
md

( 1

mN2

)p
. (4.51)
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On the other hand, since for each k = 1, . . . , d,

Dxk
q

(2)
i = Dxk

( d∑

ν=1

d∑

µ=ν+1

bνµ(xν + xµ)2
)

=
d∑

µ6=k
2bkµ(xk + xµ),

and

Dxk
s

(2)
i = Dxk

N2∑

j=1

d∑

ν=1

d∑

µ=1

(
2bνµbj(xν + xµ) − bνµb

2
j

)
=

N2∑

j=1

d∑

µ6=k
2bkµbj .

By using the Hölder inequality, we deduce that

‖Dxk
(q

(2)
i − s

(2)
i )‖pLp(ωi)

≤ dp−1
N2∑

j=1

d∑

µ6=k
|2bkµ|p

∫

ω
(k,µ)
ij

|xk + xµ − bj |p dx

≤ dp−1
N2∑

j=1

d∑

µ6=k
|2bkµ|p

( √
2

md−1

∫ bj+
√

2
mN2

bj

|X − bj |p dX
)

= dp−1
N2∑

j=1

d∑

µ6=k
|2bkµ|p

√
2

md−1

1

p+ 1

( √
2

mN2

)p+1

=
dp−12

3p

2
+1

p+ 1

d∑

µ6=k

|bkµ|p
md

( 1

mN2

)p
, (4.52)

by virtue of a change of variableX = xν+xµ, Y = xν−xµ where bj ≤ X ≤ bj+
√

2
mN2

and the range of Y not more that
√

2
m

. From (4.51) and (4.52), together with (4.44)

and (4.47), we find that

|qi − si|pW 1
p (ωi) ≤

( 2

mN2

)p(dp−12
3p
2 + 22p

p+ 1

)((√
dρd,3
m

)p|f |pW 3
p (ωi) + |f |pW 2

p (ωi)

)
.

(4.53)

It is easy to show that m−2 ≤ (mN2)−1 ≤ 2
(
d+1

2

)3/(2d+1)|Pm|−3/(2d+1): The

first inequality is obvious since N2 = ⌊m 1
2 ⌋ ≤ m. Also, since m

1
2 ≤ ⌈m 1

2 ⌉ ≤
N2 + 1 ≤ 2N2 we have that m

3
2 ≤ 2mN2. Combining this with the fact that

|Pm| 2
2d+1 ≤

(
d+1

2

)2/(2d+1)
m yields |Pm| 3

2d+1 ≤ 2
(
d+1

2

)3/(2d+1)
mN2.

Now combining (4.41) and (4.53), together with the Hölder inequality, we
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obtain

|f − s|W 1
p (Ω) ≤

(
2p−1

N1∑

i=1

(
|f − qi|pW 1

p (ωi) + |qi − si|pW 1
p (ωi)

)) 1
p

≤C2|Pm|−3/(2d+1)
(
|f |W 3

p (Ω) + |f |W 2
p (Ω)

)
, (4.54)

where C2 = 4
(
d+1

2

)3/(2d+1)(
d2ρd,3 + 32d

(√
dρd,3 + 1

))
, thereby proving (4.39).

The choice of N2 in Theorem 4.5.2 is justified from the following argument:

In order to estimate (4.50), we want that 1
m2N2

2
≤ C 1

m3 for some constant C, that

is m ≤ CN2
2 . If N2 = ⌊m 1

k ⌋ for some k ≥ 1, then m ≤ (N2 + 1)k ≤ 2kNk
2 . The

clearly obvious choice is k = 2.
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Chapter 5

Conclusion

The objective of this thesis was to develop new partitioning methods for the

approximation of a function f on a domain Ω ⊂ Rd, d ≥ 2, by piecewise linear

functions. By using our partitions, we estimate the approximation error in both

Lp-norm and W 1
p -seminorm. In the two-dimensional case, we design conforming

triangulations so that the approximant is continuous, whereas in the general

multidimensional case, we do not impose continuity on the approximant.

In the first part, we start by investigating local errors resulting from the inter-

polation of a quadratic polynomial by a linear polynomial on a reference triangle

T̂ . We show that, if the measure of non-degeneracy of the triangle T on which

we approximate the quadratic polynomial is bounded, then we can estimate the

derivatives without the maximum angle condition necessarily met. We also dis-

cuss how an optimal triangle for a quadratic polynomial can be obtained. In the

case where the determinant of the quadratic polynomial is positive, the optimal

triangle is obtained by mapping an equilateral triangle by a linear map associated

with the spectrum of the matrix associated with the quadratic polynomial. We

provide a discussion on the characterization of optimal triangles for quadratic

polynomials with a negative determinant, which still remains an open problem.

We carry on by studying the local errors from the interpolation of a twice

differentiable function f on triangles. We use a quadratic polynomial associated

with the Hessian matrix Hf as intermediate approximation. With the help of the

shape function Kp, we are able to provide sharp error estimates when approximat-
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ing on nearly optimal triangles which are scaled and shifted versions of optimal

triangles. On a non-optimal triangle T where we have no knowledge of its interior

angles, it suffices to use a linear map ϕ whose conditional number is bounded,

and such that interior angles of the inverse image triangle ϕ−1(T ) are far from

the flat angle. If the measure of non-degeneracy of the triangle is bounded, then

another alternative is to use again an intermediate quadratic polynomial.

The second part of this dissertation is devoted to the construction of a se-

quence of anisotropic triangulations (∆N )N≥N0, where an W 1
p -seminorm estima-

tion is derived while maintaining the optimality of the asymptotic Lp-norm esti-

mation. Our construction method shares some basic features with the construc-

tions described in [2, 3, 29], namely using the Hessian Hf for the initial step where

we design the regular regions. The other step in our construction, on which lies

the originality of this work, consists in obtaining the irregular regions by extend-

ing the segments which define the regular regions. Each extension is described

by specific maneuvers in such a way that local error estimations in Lp-norm and

W 1
p -seminorm can be derived from the approximations on the irregular triangles

that are generated by the irregular regions.

In general, describing the shapes of the irregular triangles is problematic.

However, using a “back transformation”, we manage to show that the interior

angles of the back transformed triangles are far from the flat angle. We show that

these triangles cover only small parts of the domain Ω, and that the error that

they contribute to is negligible, as compared to the error coming from the regular

triangles that are generated by the regular regions. We derive our asymptotic

estimations in Lp-norm and W 1
p -seminorm by combining the local errors on all

triangles.

In the third and final part, we use several overlaying partitions P = {∆1, . . . ,∆d}
to approximate the target function. The splitting directions of the partitions are

either fixed, or related to the properties of the Hessian. Also, each partition con-

tributes to the design of the approximant which is discontinuous, and consists

of a sum of piecewise linear functions. By using the Poincaré inequality and the
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Bramble-Hilbert lemma for convex domains, our local error analysis addresses

the best approximation problem on each cell of the partitions. We obtain error

bounds in Lp-norm and W 1
p -seminorm, where our approximation orders improve

on the ones obtained when using a single partition. Namely, we achieve the

approximation order O(N−6/(2d+1)) for the Lp-norm estimation, and the approx-

imation order O(N−3/(2d+1)) for the W 1
p -seminorm estimation, with N being the

number of degrees of freedom.

Future work

We want to extend the results of Chapter 3 to functions which are not necessarily

convex, and also to investigate whether our triangulations can be used for p = ∞.

More properties of our triangulations are still to be found, for instance checking

whether the triangles are regular (or quasi-uniform) with respect to certain met-

rics.

Another open question is to improve our W 1
p -seminorm estimation to the

optimal result obtained in [30] and, moreover, construct triangulations where the

piecewise linear interpolant is asymptotically optimal in lim sup sense for both

Lp-norm and W 1
p -seminorm errors.

Finally, we want to extend our results on sums of piecewise polynomials to

higher order approximation. Also, we want to provide lower bounds in order to

show that the obtained approximation orders cannot be improved when using

any sums of piecewise polynomials on convex domains.
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in the finite element method. SeMA Journal, 56:81–95, 2011. 7

212



[9] S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element

Methods, volume 15 of Texts in Applied Mathematics. Springer, 2008. 2

[10] W. Cao. On the error of linear interpolation and the orientation, aspect

ratio, and internal angles of a triangle. Siam J. Numer. Anal., 43(1):19–40,

2005. 25

[11] W. Cao. An interpolation error estimate on anisotropic meshes in Rn and

optimal metrics for mesh refinement. SIAM J. Numer. Anal., 45(6):2368–

2391, 2007. 80

[12] L. Chen, P. Sun, and J. Xu. Optimal anisotropic meshes for minimizing

interpolation errors in Lp-norm. Mathematics of Computation, 76(257):179–

204, 2007. 77, 80

[13] P.G. Ciarlet. The finite element method for elliptic problems. Classics in Ap-

plied Mathematics. Society for Industrial and Applied mathematics (SIAM),

Philadelphia, 2002. 2, 5, 6, 23, 36

[14] A. Cohen, N. Dyn, F.Hecht, and J.-M. Mirebeau. Adaptive multiresolution

analysis based on anisotropic triangulations. Mathematics of Computation,

81(278):789–810, 2012. 33, 79, 80

[15] O. Davydov. Algorithms and error bounds for multivariate piecewise constant

approximation, volume 3, pages 27–45. Springer-Verlag, 2011. in “Approxi-

mation Algorithms for Complex Systems,” by E. H. Georgoulis, A. Iske and

J. Levesley, Eds. 185, 189

[16] O. Davydov. Approximation by piecewise constants on convex partitions. J.

Approx. Theory, 164:346–352, 2012. 3, 11, 13, 77, 185, 189, 190, 191

[17] E.F. D’Azevedo. Optimal triangular mesh generation by coordinate trans-

formation. SIAM J. Sci. Statist. Comput., 6:755–786, 1991. 6

[18] E.F. D’Azevedo. On adaptive mesh generation in two-dimensions. In Pro-

ceedings, 8th International Meshing Roundtable, pages 109–117, 1999. South

Lake Tahoe, CA, U.S.A. 6

213



[19] E.F. D’Azevedo and R.B. Simpson. On optimal triangular meshes for mini-

mizing the gradient error. Numerische Mathematik, 59:321–348, 1991. 6

[20] A.S. Deif. Rigorous perturbation bounds for eigenvalues and eigenvectors of

a matrix. Journal of Computational and Applied Mathematics, 57:403–412,

1995. 87

[21] S. Dekel and D. Leviatan. The Bramble-Hilbert Lemma for convex domain.

Siam J. Math. Anal., 35:1203–1212, 2004. 11, 188

[22] A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements, volume

159 of Applied Mathematical Sciences. Springer, 2004. 2

[23] L. Formaggia and S. Perotto. New anisotropic a priori error estimates. Nu-

merische Mathematik, 89:641–667, 2001. 2, 6, 25, 29

[24] J.A. Gregory. Error bounds for linear interpolation on triangles. in Math-

ematics of Finite Elements and Applications II. Academic Press, London,

1976. 163-170. 6, 7

[25] P. Gruber. Volume approximation of convex bodies by inscribed polytopes.

Mathematische Annalen, 281(2):229–245, 1988. 79

[26] A.S. Kochurov. Approximation by piecewise constant functions on the

square. East J. Approx, (1):463–478, 1995. 191

[27] G. Kunert. Towards anisotropic mesh construction and error estimation in

the finite element method. Numerical methods for partial differential equa-

tions, 18:625–648, 2002. 56

[28] M.J. Lai and L.L. Schumaker. Spline Functions on triangulations. Encylo-

pedia of Mathematics. Cambridge University Press, New York, 2007. 37

[29] J.-M. Mirebeau. Optimal meshes for finite elements of arbitrary order. Con-

str. Approx., 32(2):339–383, 2010. 2, 3, 6, 9, 10, 14, 15, 21, 40, 41, 42, 54,

57, 58, 59, 60, 61, 64, 78, 80, 81, 82, 83, 85, 86, 160, 175, 211

214



[30] J.-M. Mirebeau. Optimally adapted meshes for finite elements of arbitrary

order and W 1,p norms. Numerische Mathematik, 120(12):271–305, 2012. 2,

3, 9, 10, 79, 80, 85, 86, 212

[31] J.-M. Mirebeau and A. Cohen. Greedy bisection generates optimally adapted

triangulations. Mathematics of Computation, 81(278):811–837, 2012. 5, 18,

32, 33, 36, 79, 80, 86

[32] H. Pottmann, R. Krasauskas, B. Hamann, K. Joy, and W. Seibold. On

piecewise linear approximation of quadratic functions. Geometry of Graphics,

4(1):31–53, 2000. 2, 43, 44, 45, 48, 80

[33] R.B. Simpson. Anisotropic mesh transformations and optimal error control.

Applied Numerical Mathematics, 14:183–198, 1994. 6

[34] A. H. Stroud and D. Secrest. Gaussian quadrature formulas. Englewood

Cliffs, Prentice-Hall, 1966. 180

[35] David S. Watkins. Fundamentals of matrix computations. John Wiley &

Sons, Inc., New York. 1991. 87, 89

215


	1 Introduction
	1.1 Local linear estimations
	1.2 Triangulation and asymptotic estimates
	1.3 Sums of piecewise polynomials
	1.4 Various notations

	2 Local linear approximations
	2.1 Preliminaries and notations
	2.1.1 On homogeneous quadratic polynomials
	2.1.2 Norms on the space H2
	2.1.3 Reference triangle
	2.1.4 Local approximations on triangles

	2.2 Standard estimations
	2.3 Approximation of quadratic polynomials
	2.3.1 Estimations on the reference triangle
	2.3.2 Measure of non-degeneracy
	2.3.3 Error bounds for directional derivatives

	2.4 Optimal triangles
	2.4.1 For x2+y2
	2.4.2 For x2-y2
	2.4.3 For general quadratic polynomials

	2.5 Approximation on nearly optimal triangles
	2.5.1 Lp-norm error bounds
	2.5.2 Sobolev seminorm error bounds

	2.6 Approximation on non-optimal triangles.
	2.6.1 Using invertible affine maps
	2.6.2 Using quadratic polynomials


	3 Asymptotically optimal interpolation by piecewise linear polynomials
	3.1 Background
	3.1.1 Triangulation by patching strategy
	3.1.2 Optimality

	3.2 Triangulation of the domain
	3.2.1 Conditioning angles of rotation
	3.2.2 Regular regions
	3.2.3 Extension of segments
	3.2.4 Back transformation and triangulation

	3.3 Properties of the triangulation
	3.3.1 Conformity of alignment directions
	3.3.2 Intersections of extended segments
	3.3.3 Interior angles of triangles
	3.3.4 On the area covered by irregular triangles

	3.4 Asymptotic error estimations in Lp and W1p
	3.4.1 Lp-norm of the error on regular regions
	3.4.2 Lp-norm on irregular regions
	3.4.3 Sobolev seminorm on regular regions
	3.4.4 Sobolev seminorm on irregular regions
	3.4.5 Number of triangles
	3.4.6 Asymptotic error estimations

	3.5 A numerical illustration

	4 Approximation by sums of piecewise polynomials
	4.1 Generalities and notation
	4.2 Piecewise constant approximation
	4.3 Sums of piecewise constants on Rd
	4.4 Sums of piecewise linears on Rd
	4.5 Sums of piecewise linears with fixed splitting directions

	5 Conclusion

