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ABSTRACT

The subject of this thesis includes the design of new partitioning methods for
the approximation of a function f on a domain Q C R? d > 2, by piecewise
linear functions, and the derivation of errors estimations in L,-norm and Wz}—
seminorm. In the two-dimensional setting, we develop a construction of a se-
quence of anisotropic triangulations, where the approximation provided by the
piecewise linear interpolant for a given f € C?*() with a positive definite Hes-
sian, is asymptotically optimal in L,-norm and in the same time optimal in Wz}—
seminorm with respect to the number of degrees of freedom. As a preparation for
this result, we review various local error bounds for the interpolation by linear
polynomials on a triangle, and derive a number of new estimates of this type.
In addition, for functions of d > 2 variables, we propose a new approximation
method, where several overlaying partitions of €2 are designed such that the sum
of piecewise constant or piecewise linear polynomials over these partitions pro-
vides a better approximation order than the one obtainable by using a single

partition.
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CHAPTER 1

INTRODUCTION

We are interested in the approximation of a function f € C?(Q) by using piecewise
polynomials on a fixed bounded domain Q C RY d > 2. The approximant
f is a piecewise polynomial with respect to a partition A of the domain. As
changing a partition means changing also the approximant, it is only natural to
look for a partition where the approximant matches closely the target function.
To achieve this, the domain needs to be appropriately divided into cells where
local approximations are performed. We leave aside the uniform method where

all cells of the partition have fixed shapes. Instead, we use adaptive methods

where the domain is partitioned by using some properties of the function.

To begin with, we first investigate the two-dimensional case d = 2 (a cell is
then a triangle) where the target function has a strictly positive definite Hessian
on €2, and the approximant is required to be continuous. Obviously, we shall need
local error analysis in order to obtain a global error estimation. Various local
estimations are available from [1, 9, 13, 22, 23] (see Section 2.2). In Chapter 2,
we review these standard estimates and the concept of an optimal triangle [2,
3, 29, 32] based on an intermediate quadratic polynomial approximation of a
given function. We derive a number of new local error bounds, in particular with
respect to the Sobolev seminorm | - |Wp1, making preparations for the design of

triangulations and estimates of Chapter 3.

Our partitioning method in Chapter 3 is inspired from [2, 3, 29, 30] in that

the domain €2 is covered by two classes of triangles, the regular and irreqular



triangles. Regular triangles are designed by using the spectrum of the Hessian
H at some pre-selected points of €2, and the area covered by the irregular triangles
is negligible. Our first aim consists in developing a triangulation Ay of at most
N triangles which allows us to estimate both the L,-norm and Wl}—seminorm
of the approximation error. Such a triangulation requires a much more delicate
procedure than the ones in [2, 3, 29] where only L,-norm bounds have been
obtained. The problem of designing optimal triangulation for the derivatives has
been addressed in [30]. In contrast to [30], our triangulation is not only optimal in
Wpl-seminorm but also asymptotically optimal in L,-norm which makes it more
difficult to achieve and requires a new approach. Our triangulation differs in the

following respects:

1. all regular triangles are isosceles;

1. irregular triangles are obtained by drawing diagonals of a certain region
obtained from connecting vertices from a regular region to a neighboring

one;

111. local Wpl—seminorm error on all triangles is independent of their maximum

angles.

The approximant f is the continuous piecewise linear polynomial which interpo-
lates f at the vertices of each triangle. With 1 < p < oo, our estimation for
If = fllz,@ is optimal in the sense that it cannot be improved on the so-called
admissible triangulations, see (1.12), thereby achieving the same asymptotic esti-
mation as in [2, 3, 29]. However, in addition to this estimation, careful checking
of maximum interior angles enables us to estimate the Wpl-seminorm If—f |WZ}(Q),

see (1.13), which is one of the key results of this thesis.

In addition, in Chapter 4 for any d > 2, we consider discontinuous piecewise
linear approximants. Extending the work in [16], we approximate the target
function f by using a finite number of overlaying partitions (Ag)i<k<,. This
is a completely new method. FEach partition is anisotropic and is obtained by

splitting ) using either fized or non-fized directions, the latter being related to



the properties of the function. Each partition Ay contributes to the design of the
approximant f which is a sum of piecewise polynomials. The set of overlaying
partitions is denoted by P, with |P| denoting the number of cells in all partitions.
Thus, the total number of degrees of freedom of the sum of piecewise linear is
N = (d+ 1)|P|. Although the approximant is generally discontinuous, there are

two main advantages from using these methods:

a. the improvement of the approximation orders in both L,-norm and Wpl-

seminorm;

b. the simplicity of splitting partitions compared to designing a single anisotropic
partition suitable for interpolation by a continuous piecewise linear func-

tion.

The gain in b is self-explanatory, whereas the one in a can be explained by an
example: In the case of approximation by sums of piecewise linear polynomials,
the approximation order O(N~%(4D) is attained in the L,-norm estimation,
improving to O(N~%°) the approximation order O(N~!) (d = 2) for continuous
piecewise linear approximation on a single triangulation with number of degrees
of freedom N. In addition, we attain the order O(N %41} in the Wpl—seminorm
estimation, which, for d = 2 gives O(N~%/°) comparing to O(N~'/?) achieved on

a single triangulation.

The main results in the thesis are divided into three chapters. The second
chapter on local linear estimations in R? addresses the analysis of error estima-
tions on triangles. This chapter is essential in order to understand what kind of
estimations are needed after the triangulation in Chapter 3 is constructed. The
third chapter discusses the construction of anisotropic triangulations, and also
provides the asymptotic estimations in both L,-norm and Wpl-seminorm. The
fourth chapter is devoted to the approximation of functions by using sums of
piecewise polynomials. The general overview of these chapters is elaborated in

the sections below.



1.1 Local linear estimations

Recall in the first setting that we consider a triangulation in two-dimensions, and
the local approximation consists in interpolating the function at the triangles’
vertices. Given a triangle T', the approximant I f is a linear polynomial whose
coefficients are determined by simple linear systems. To estimate the errors in
L,-norm and Wpl—seminorm, one can use standard estimations such as the one

found in [13],

h2
|f = Ir flwea) < Cp—ﬂf\wg(T), k=01, (1.1)
T

where C' is an absolute constant, hp is the diameter of T', and pr is the radius
of the largest inscribed circle in 7. Except in (1.1), we shall henceforth use the
notation pp for the smallest height of a triangle 7. As we shall see in Section 2.2,
alternative estimations can be used when the so-called aspect ratio }p‘—; is high.
For instance, many triangles in the triangulation constructed in Chapter 3 may

have large aspect ratios which makes the above estimation unusable for £ = 1.

We first start with considerable studies of the local approximation of a ho-
mogeneous quadratic polynomials 7. The idea consists in using a homogeneous
quadratic polynomial as an intermediate term (see (1.2) below) in order to ap-
proximate a given function. For a given triangle T, we use the measure of non-
degeneracy p.(7T') introduced in [31], and obtain local error estimations for the
derivatives, in the longest edge and in the smallest height directions. Considering
a triangle 7', the polynomial 7 is chosen to be the homogeneous quadratic poly-
nomial 7, € Hy whose coeflicients are the entries of the Hessian matrix H(z) of
[ € C*(9Q) at the point z, for some z belonging to a neighborhood of T'. Assume
that f behaves like 7, in the neighborhood of z. Then, instead of using the right
hand side ChZ|flwz(r) of (1.1) (k = 0) we use the triangular inequality,

If = Irfllo ) < (f —72) = Io(f — 7)oy + |72 — Trme| ), (1.2)



and estimate separately the two terms on the right hand side of (1.2). Such a
method is known as the quadratic model [18, 17, 19, 33], justified by the simple
reason that the function behaves locally as a quadratic polynomial given by its

Taylor expansion. First, if the point z belongs to T', we show that

I(f =m2) = Ir(f = w)lle,er) < 6hT|TIP max ||lmr —monll, (1.3)

|1 =2 |<hg

where ||7|| denotes the maximum (in absolute value) of the coefficients of 7 € Hj.

For the second term, we introduce the shape function [29] defined by

Kp<ﬂ') = inf ”7T - [Tﬂ-”Lp(T); T E HQ. (14)

T|=1

An explicit expression for the shape function can be obtained (see Section 2.4).
A triangle T satisfying (1.4) is called an optimal triangle for 7. The shape func-
tion plays a crucial role in the design of the so-called regular triangles described
in Section 3.2.2. Briefly speaking, a regular triangle 7" is a scaled and shifted
version of some optimal triangle for m; for some ¢t € €). Any other triangle of
the triangulation is called an irregular triangle. A regular triangle is a triangle
which is stretched in the directions of the eigenvalues of Hy(t), with stretching
constants proportional to powers of the condition number of Hy(t). For such a
triangle, given z € T, the estimations in (1.3) and (1.4) ensure the existence of a

constant C . r (see Proposition 2.5.4) so that

If = ISl < (Kom) + Coair ) ITI, (15)

and Cy,r — 0 as |z —t| — 0 and hy — 0. For the irregular triangles 7', a coarse

L,-norm error bound in terms of hy is sufficient for our purposes.

We estimate also the Wpl—seminorm of the error. In the literature, some con-
ditions have to be met by the triangle in order to estimate the derivatives of the
error, namely either the minimum angle condition which is referred to as the
Zldmal’s condition [13] or the mazimum angle condition [1, 4, 23, 24|, and they

often appear in the error bounds. Note that the minimum angle condition implies



the maximum angle condition [8], and is not applicable to anisotropic triangles.

In [1], it is shown that for f € WX(T),

\f = Irfle,) Shr|Dey, flwiay + pr| Do, flwi), (1.6)

with constant depending on the maximum interior angle v(7"), and where o,
and o, are unit vectors associated with the triangle 7', both being described in
Figure 2.3. We are interested in the case of positive definite Hessian Hy where
K, (r,) is attained at some isosceles triangle (see Chapter 3) with maximum angle

satisfying (1) < 5.

The estimation in (1.6) provides the first step in estimating the derivatives
of the error (see Proposition 2.5.7) on regular triangles which are designed to be
isosceles in Chapter 3. We cannot do the same for irregular triangles 7" having an
arbitrary shape with no control of their maximum interior angle v(7"). Note also
that we cannot use (1.1) for k£ = 1 since it may cause an overestimation if the
aspect ratio Z—; is unbounded, for example when 7' is strongly anisotropic. One
of the two methods discussed in Section 2.6 consists in using an invertible affine
map ¢ with its condition number cond(y) bounded and such that the maximum
interior angle (¢~ (7)) is well-distant from the flat angle. In this case, we show

(see Lemma 2.6.1) that

|f = Inflwyar) S cond(@)*hr| flwa), (1.7)

where cond(y) denotes the condition number of the invertible matrix associated
with ¢. The above result is an alternative to (1.6), allowing us to estimate the
derivatives of the approximation error on irregular regions. More reviews on
local estimations can be found in [1, 24]. The second method consists in using
the quadratic polynomial 7, for some z € T'. If the triangle 7" has its measure

pr.(T) bounded, then (see Proposition 2.6.2)

h 1
£ = Inflwgeay < C(ZEwthn) + pr (D) Jdetm )T, (18)



where w is the modulus of continuity of the function z — 7, (see (2.75)). By

an example, we show that the above estimation can be useful instead of ensuring

that v(7") is bounded.

1.2 Triangulation and asymptotic estimates

The function f is approximated on a square domain {2 which we triangulate
according to the properties of f, namely by using the eigenvalues and eigenvectors
of the Hessian H; at some pre-selected points. We assume that f € C?*(Q) with
positive definite Hessian Hy. There are two principal goals for Chapter 3, the
first one is the construction of an optimal triangulation where the interior angles
of the triangles or their certain images are controlled, and the second one the
derivation of asymptotic error in L,-norm and Wz}—seminorm by using the results

in Chapter 2.

Given a triangulation Ay of {2 consisting of at most N triangles, the approx-

imant fy for f is given by

v = > lrxr, Iy €11y, (1.9)

TeEAN

where II5 denotes the space of linear polynomials, whereas x is the characteristic
function on the triangle T. FEach linear polynomial {7 = I f interpolates f at
the vertices of the triangle T € Ax. The global error is obtained by combining

the errors on each triangle,

-

17 = ey = (3 1 = Infl) (110

TEAN

With f — fy viewed as a distribution, we define its Sobolev seminorm by

1f = Fnlwi) :=< 5 |f—ITf|’;V5(T)>E. (1.11)

TEAN

It is crucial that €2 is carefully partitioned in order to obtain accurate estima-



tions in Ly-norm (1.10) and in W, -seminorm (1.11). The domain €2 is initially
divided into m? sub-squares S;, i = 1,...,m? of side length » > 0. As shown in
Section 3.2.2 and Section 3.2.3, the construction of Ay is characterized by two
main steps, the establishment of regular regions and the triangulation of irregu-
lar regions. Regular regions are obtained by grouping triangles that fit into the
initially prescribed sub-squares S;, i = 1,...,m?, whereas irregular regions are

the left over subspaces of Q. Similar work can be found in [2, 3, 29] and [30].

The main novelty of our method is a new approach to partitioning the irregular
regions. For each i = 1,...,m?, the regular region R; is defined by two systems
of parallel segments £; and £; with directional vectors e; and e; derived from the
eigenvectors of the Hessian of f at the center of S;. With the specific maneuvers
described in Section 3.2.3, each segment £, belonging to £; U £; is extended into
the neighboring regular regions of R;, the extension being done in a direction of
either e; or e;. The procedure of segment extensions creates the irreqular and
boundary regions which are polygons of at most six edges. The polygons are then
divided into at most four triangles by drawing diagonals which are described in
Section 3.2.4. Various interesting properties of the resulting triangulation are

given in Section 3.3.

For the approximation of f by using Ay, with the Hessian H being positive
definite, we show in Theorem 3.4.8 of Section 3.4.6 that the resulting L,-norm
and Wl}—seminorm of the approximation error satisfy the asymptotic estimates

(1.12) and (1.13) below, with ¢ := 1+,

limsup N|f — fllz,@ < (/ Kp(wz)qdz)q, (1.12)
N—o0 Q
1
1 1 2q
timsup NS = flwyion < Colf g ([ Kolmo)dz) ™, (1.13)
—00

where C), is a constant depending on p only. The estimation (1.12) is optimal
in the sense that it cannot be improved amongst all admissible! triangulations

as in [2, 3, 29]. However, at the same time fy satisfies (1.13), which cannot be

YA N is admissible if Suppea , diam(T) < CN~-1/2 with C independent of N.



guaranteed on the partitions suggested in [2, 3, 29] because the Delaunay trian-
gulations of the irregular regions employed in these papers may contain triangles
of arbitrary shapes leading to uncontrolled errors in Wpl—seminorm estimations.
By a different method, a Wl}—seminorm error bound is obtained in [30] where the
triangulation is designed to be asymptotically optimal for the derivatives but not

for the function, and no error bound for || f — fn||z,() is given.

1.3 Sums of piecewise polynomials

For the multi-dimensional setting, a partition A of the square domain  C RY,
d > 2, consists of convex sub-domains called cells. To approximate a function
f € C() in Chapter 4, we use several anisotropic partitions instead of one,
though the resulting approximant f is discontinuous. The design of the partitions

in P may or may not depend on the properties of the function.

Consider a function f € C(Q). Given asystem P = {AM ... A} of several
overlaying partitions of 2, where each cell of a partition is convex, we consider

the space of sums of piecewise polynomials

Sk(P) = {Z Y X e € Hi}, (1.14)

v=1ueAW)
where 114, k > 1, denotes the space of polynomials of total degree < k in d
variables, and where Yy, denotes the characteristic function of the cell w. A
function in Si(P) is the sum of n piecewise polynomials respectively belonging

to II¢. The corresponding best approximation error is measured in L,-norm

Ey(f,P)p = seisrifp) 1f = sz, I <p<oc

The cardinality [P| = >~ |A®] is the sum of the cardinalities of each partition.

v=1

10



The best approximation error on a cell w € A is defined by

Eu(f,A), = Seg;fA) 1f = sllz,@)- 1 <p<oo. (1.15)

As the most used inequality in Chapter 4 for our local analysis on w (see Sec-
tion 4.1), the Bramble-Hilbert lemma for convex domains (see [21]) states that

there is a polynomial ¢ € T1¢, k > 0, such that

|lf — q|W£(w) < Pd.k diamk_r(w)|f|wg(w), r=0,...,k, (1.16)

where pq denotes a constant depending only on d and k.

Extending the work in [16] on approximations by constants, we design several

partitions of Q to achieve the estimation below for f € W>(€),

E\(f,P)y < Cal PV (| flwy) + [ lwze): (1.17)

where Cj is a constant depending only on d, improving the saturation order
Ei(f,A), = O(|A|7%/4) which is obtainable on an isotropic single partition. Our
extension to approximation by sums of linear polynomials yields that, for f €

W2(Q), there is a function s € S3(P) so that

1f = sllL,@ < CLUPI™CHD(| flwa) + [ flwse)s (1.18)

= S|WZ}(Q) < CQ|IP|73/(2d+1)(|f‘W3(Q) + ‘f|W§’(Q))7 (1.19)

where (4, Cy are absolute constants.

1.4 Various notations

Given a triangle 7', its diameter and smallest height are denoted by hy and pr.
They are called the length scales of T. While confusion does not occur, we simply

use h and p. The area of T' is denoted by |T’|. The triangle T is termed isotropic

11



if there exists a constant C such that % < (C. The ratio % is called the aspect
ratio of T'. otherwise it is termed anisotropic. In general, an isotropic triangle is
a triangle whose edges are all comparable in length, or a triangle whose interior
angles are not too small nor too large. Anisotropic triangles on the other hand
are characterized by long diameters and small heights, presenting one or two very

small interior angles.

A triangulation A of a bounded domain Q C R? is a partition of € into
triangles where the intersection of any two of them is either an empty set, a
common vertex or a common edge. It satisfies the mazimum angle condition (see
[1]) if there exists an angle 7, < 7 such that v(T') < ~, for any triangle T' € A,
with 7(7") denoting the maximum interior angle of T'. It satisfies the minimum
angle condition if there is an angle o, > 0 such that «(7") > a, for any triangle
T € A, with a(7T) denoting the minimum interior angle of 7. We say that A
is isotropic if all of its triangles are isotropic, i.e. satisfy the minimum angle
condition, otherwise it is an anisotropic triangulation, i.e. if A presents some

triangles which are anisotropic.

Given a matrix A, we denote by ¢4 the associated linear map. We say that
¢4 is invertible if A is a non-degenerate matrix. The singular values of ¢4 are

those of A, and its condition number is defined by

cond(¢4) := cond(A).

A partition A of Q is a set of cells w C §2 possessing the two properties:

i. For every w,w’ € A, [wNw'| =0 if w # '
1ii. ZUJGA ‘W| = |Q|7

where |w| denotes the Lebesgue measure (d-dimensional volume) of w (for d = 2,
the partition is a triangulation). A partition is said to be convez if each cell
w is a convex domain. With a slight abuse of notation, we denote by |D| the

cardinality of a finite set D, so that |A| stands for the number of cells w in A.
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The approximant f is the piecewise polynomial given by

F =2 fuoXe (1.20)

wEA

where f,, is a polynomial which approximates f on the cell w, and x,, the char-

acteristic function of w, with x,(xz) = 1 if € w and 0 otherwise.

Given two numbers a,b € R, the notation a < b is used if there exists a
constant C' independent of a,b such that a < Cb. The notation a ~ b is used

when there are two constants C'; and Cy such that C1b < a < Csyb.

We denote by D, f, D, f the partial derivatives of f, and by D, f the derivative
of f in the direction of a unit vector . We also use double indices for the second
order partial derivatives: D2, := D7, D7 = D,D,, D}, = D}, D := D,D.,

etc., where both o and 7 are unit vectors.

Given two real sequences (z1,...,2,), (y1,...,Yn), n € N, the Holder inequal-

ity states that, for p,q € [1,00) such that % + % =1, we have
n n 1 n 1
P q
> foel < (X Jo)" (X Il (1.21)
k=1 k=1 k=1

The Euclidean norm of V f on a bounded convex domain w is defined by

d 1
af 1%\ 2
IV = H( —— ) : (1.22)
( ) ];1 axk Lp(w)
It has been shown in [16] that, for any 1 < p < oo,
IVl < flwiw) < A"V ) ). (1.23)
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CHAPTER 2

LOCAL LINEAR APPROXIMATIONS

In this chapter, we analyze local interpolation errors on triangles in both L,-norm
and Wz}—seminorm. Apart from the standard estimations found in the literature,
which we discuss hereafter, we also provide estimations based on the minimization
of errors on unit triangles. The results in this chapter are the principal sources of
estimations for Chapter 3 where we approximate a given function f € C*(2) on
a constructed triangulation Ay of €. Indeed, it is necessary to bound the error

on each triangle T' € Ay by investigating their properties.

We start by studying the local estimations for homogeneous quadratic poly-
nomial approximations which we use as intermediate steps in order to estimate
the local error when approximating the function f. Such a method can be found
in [2, 3, 29] where the function is assumed to behave locally as a quadratic poly-
nomial. A general review of local estimations is provided below, however as we
shall see later, standard estimates are difficult to apply especially in the case of
Wpl-seminorm estimations where the aspect ratio Z—; may be unbounded, or when
the maximum interior angle v(7) is nearly the flat angle. We thus need some

other approaches in order to estimate the derivatives of the approximation error.

In Section 2.1 we provide a general review of homogeneous quadratic polyno-
mials and local approximations on triangles. Similarly, in Section 2.2 we review
standard local estimations from the literature. In Section 2.3 we study the local
approximations of quadratic polynomials by using a reference triangle. In par-

ticular, in Section 2.3.3, we obtain new results on the bounds for the directional
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derivatives of the local errors. Following the argument in [29], we introduce in
Section 2.4 the concept of optimal triangles and discuss in Section 2.5 various
local estimations on nearly optimal triangles designed according to the behavior
of the Hessian Hy at some specific points. In Section 2.6 we present two methods

in order to estimate the derivatives of the error on non-optimal triangles.

2.1 Preliminaries and notations

In this section, we present the basic yet important steps in order to obtain the
estimations of this and next chapters. We use [z y]* to denote a column vector
where the superscript ¢ denotes the transpose operator. We denote by [v; vs] a

matrix whose column-vectors are vy and vs.

2.1.1 On homogeneous quadratic polynomials

We will often denote by 7 a homogeneous quadratic polynomial 7(z,y) = ax® +

2bxy + cy?, with a,b,c € R, which can be represented by the symmetric matrix

Q, = Z b} for which (2.1) below holds, for all z,y € R,
C
_ t__ )‘1 0 t t
(2,y) = 2 Y] Qr oyl =2 ylUx| N Urlz y]'. (2.1)

The right hand side of (2.1) can be viewed as the Schur decomposition of @,
with A1, Ay being the eigenvalues and U, denoting the orthonormal matrix whose
columns are the unit eigenvectors vy, vy of (), corresponding to Aj, A9, respec-
tively. When 7 is convex, both eigenvalues Ai, A\ of (), are positive, whereas
when 7 is concave Aj, Ay are negative. Note that (2.1) remains true when switch-

ing the positions of A\; and Ay and accordingly the positions of v and v, since,
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«

ﬁ where o, 3,7,6 € R, we have
y

by writing U, = [vy vo| = [

(V1 Vo [ ][VQ vih.

A 0 Aa? +Xap% May 4+ N6 Ay
][V1V2t: =V2V1][
0 A Aoy 4+ X80 Aiy? A+ Apd? 0 A

Moreover, v; and vy are orthogonal to each other, v; can be replaced by —v;

and vy by —vs. Hence, without loss of generality, we assume that

cosp  —sinp

M| < |Xo| and U, =R, := (2.2)

sin p cosp )’
that is, U, is the rotation matrix R, with angle p = p(7) which is the smallest
possible angle of counterclockwise rotation that transforms the coordinate unit
vectors [1 0] and [0 1]* into vy, va, respectively. Note that p is then the smallest
between the non-negative angle from [1 0]" to v; and that from [1 0]" to —vy,
as shown in Figure 2.1, and necessarily p € [0,7). For example, pn = 0 for the

polynomial my(z,y) = 2% + y*.

A A
Yy Yy
Vo vy
Vi —Vo
W+ H /,*7
K \\' '
\ o (e
3 . aj‘) % l')
P A
—Vi ’¢" * Vo *
e % *
A Y A Y
A A
‘*—Vg ‘*—Vl

Figure 2.1: Positions of the eigenvectors of ) and choice of p.

2.1.2 Norms on the space H

The determinant and condition number of 7 € H, are defined by detn :=
det Qr = M A2 and cond 7 := cond @, = |A2/A1], with Aj, A2 as described in the

previous section. We say that 7 is degenerate if det m = 0, and non-degenerate
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otherwise. The function 7 +— ||7||2 := ||@=||2 = |A2] is @ norm over the linear space
Hy of homogeneous quadratic polynomials since it is induced by the Euclidean

vector norm || - ||2. Also, writing 7(z,y) = ax?® + 2bzy + cy?,
[I7]| = max{[al, |20], [[} (2.3)

is an easily proved norm on H,. Simple computations show that the eigenval-

a+cty/(a—c)2+4b2

ues of (), are exactly 5 . If a,c have the same sign, then clearly

max{|al,|20|, |c|} < max{|a + ¢ — /(a —c)?+4b?|,|a + ¢ + \/(a — ¢)? + 4b%|}

whereas if they have different signs, then max{|al, |20, |c|} < y/(a — ¢)? + 4b?
holds. Thus

1 3
Sl < 11Qxllz < 5l (2.4)

holds, where the second inequality is obtained as follows: The constant in the

equivalence is obtained by maximizing g(a, 2b, ¢) := latety ((;_C)QHI)QI for |al, |2b], || <

1. Clearly g is an increasing function of each of its variables, hence the maximum
is attained when a = ¢ = 1 and 2b = 1, with maximum % The inequality below

is also easily proved for any triangle 7" containing the origin,

I17llz,(ry < 3hZ|T|7||7]). (2.5)

Given a fixed triangle T" and e = (e, ye) an edge of T, we denote 7(e) :=

(%o, Yo). Then the function
1
7w ||7||r = |T|» max{|n(e)| : e edge of T}, (2.6)

is also a norm over the space of quadratic polynomials: To see this, we verify the
axioms of a norm. For any o € R and any quadratic polynomials 7, 7', we have

the following.

a. ||7]|z > 0 and ||7||z = 0 if and only if 7 = 0: it is clear that |||z > 0 and

if 7 =0, then ||7||r = 0. If 7(e) = 0 for any edge e of T, then 7 vanishes
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at three distinct points. Since 7 is quadratic, necessarily © = 0;

b. it is easy to see that

1
lom||z = [o[T]7 max{|r(e)| : e edge of T} = |af||m]|z;

c. we have that

|7+ 7'||r = |T|% max{|(m + 7')(e)| : e edge of T'}
< |T|» max{|x(e)| + |7'(e)| : e edge of T}
< \T|%(max{\7r(e)\ : e edge of T} + max{|7’(e)| : e edge of T})

= lI7llz + lI7'llz.

We have the result below.

Lemma 2.1.1 ([31, Proposition 2.1]). There exist absolute constants ¢; and cs

such that, for any homogeneous quadratic polynomial m and a triangle T,
allnllr < 7l @) < collnlr, (2.7)

where || - |7 is defined in (2.6) and ¢y, co are absolute constants.

2.1.3 Reference triangle

Henceforth, the triangles that we consider are always non-degenerate, i.e non-
empty and with a non-zero area. Given a triangle 7', its edges are oriented in a
counterclockwise direction. We denote by o, the unit vector on the longest edge
of T"and o, the corresponding inner normal, they are as shown in Figure 2.3.
Let us fix the triangle 7 to have the vertices (0,0), (1,0), (3,1) as shown on
1

the left of Figure 2.2. We shall refer T as to the reference triangle, its area is ;

and its length scales are given by h=/1+ i = é and p = 2% = 25ﬁ For any
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arbitrary triangle 7' there exists an invertible affine map v such that

A

T=y(T), Y(E&) :=Mx+t, xeT, (2.8)

where M is a non-singular matrix and t a translation vector. Let the vectors
6 =[10]", #=[1—2 1] be fixed, with & € [0, k] depending only on 7" as shown

on the right of Figure 2.2. We can decompose M by means of

(2.9)

_h
Mzmm,m:ﬁ g |

0 p

where Ry is a counterclockwise rotation matrix with angle 6 € [0,27) as shown
in Figure 2.3. Then Bré = [h 0]' and Br# = [0 p]'. Observe that Bp(T), as
shown on the right of Figure 2.2, is obtained by rotating 7" in such a way that
the longest edge becomes parallel to the z-axis, then shifting the rotated triangle
to the first quadrant of the plane such that one of its vertices coincides with the
origin. Necessarily, the longest edge of the resulting triangle lies on the z-axis.

Moreover, since |Mé&| = |Rglh 0]'| = h and |MF| = |Ry[0 p]*| = p, it holds that

Mé&  Rylh O] M# R0 ]!
[M&| R VZ L, (2.10)
A A
Yy Yy
1k----
AN By(T)
. 28 - ?
0 % 1 x) 0 ) h x)

Figure 2.2: The triangle 7" and its image BT(T).

Remark 2.1.1. In Figure 2.2, the triangle 7' can be represented by the vectors

[1 0] and [ 1]* whose images under By may represent the triangle Br(T), with
Br[1 0] =[h 0" and Byl 1]' =8 ],
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justifying the choice of By in (2.9).

Figure 2.3: Several possible positions of the triangle 7', the unit vector o} and
o,, and the angle of rotation ¢ in (2.9).

Remark 2.1.2. In Figure 2.3 the edges of T" are counterclockwise oriented, and
from the definitions of o, and o, on page 18, we see that o, is obtained from
o, by a counterclockwise rotation of angle 7.

2.1.4 Local approximations on triangles

We shall now start estimating the local approximation error on a given triangle

T. Let Iy denote the linear polynomial interpolation operator on 7" so that

Ir: f c C(T) — ]Tf = IT(f) S C(T),

where (I7f)(v) = f(v) for any vertex v of T. Given an invertible affine map 1,
the vertices of the triangle )(7T') are the images of the vertices of 7. This means
that, for any vertex v of T', v = 1(v) is a vertex of ¢(T"), and therefore I and

are commutative in the following sense,

(L) f) o ¥(v) = Ly ))(V') = f(0) = fo(v) = Ir(fot)(v).  (211)
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It follows that (I f) o1 and Ip(f o)) coincide at three vertices of T, and since

both are linear polynomials, they are necessarily the same function, that is,

Ir(fov)(2) = Uy f) od(2), z€R. (2.12)

Considering a homogeneous quadratic polynomial 7, the norm | Ir7||. (7) is at-
tained at one of the vertices of the triangle 7" since I7m defines a plane. Recalling

that I interpolates 7 at the vertices of T, clearly

7 || ooty < 17l ooy

which shows that the norm of the operator I is one independently of 7. We

thus obtain

1 1
ol zyry < TP\ 7| sy < TP ey (2.13)

We denote by er(f) the L,-norm of the error on 7', with 1 < p < oo,

er(f) = If = IrfllL,)- (2.14)

The result below is inspired from some proof of the results in [29]. However,
thanks to (2.5) we are able to provide a more detailed expression of the terms in

the right hand side of (2.15).

Lemma 2.1.2. There exists a constant C' depending only on p such that, for any
homogeneous quadratic polynomials 7w, 7" € Hy and any triangle T possessing a

vertex at the origin,

lex(r) — ex(r')| < CREITv ||z — 7] (2.15)
where the norm || - || is defined in (2.3).
Proof. With the triangle T fixed, it is easy to prove that the function m —
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er(m) defines a norm on Hy. It is only a seminorm on the space of all quadratic
polynomials. Hence, by considering the fixed reference triangle T on the left of
Figure 2.2, the existence of a constant C' depending only on p is guaranteed by

the equivalence of the norms || - ||, 7 and e; on Hp, that is,
ep(m) < Cllnllp, ), ™€ Ha. (2.16)

We show that the constant C' above remains absolute for the triangle 7": Consider
the affine map ¢ for which 7' = (T') holds, where 1 is given in (2.8). By simple

change of variables, clearly

-

er(m) = </;ﬁ|det M| o () — (Ipm) o¢(z)|pdz)5 — [ det M{ben(r o),

where M is the invertible matrix occurring in (2.8), with |T| = |det M||T| =
%| det M|. Since T has a vertex at the origin, the map v is designed so that its
translation vector is null, t = 0: With the vertices of T being (0, 0), (21, y1), (2, y2) €

R?, 1) is the linear map associated with the matrix M that maps (0,0) to itself,
r1 T — ZL‘1/2

Y1 Y2 — /2
fact that 7 is a homogeneous quadratic polynomial and ) a linear map proves

that m o ¢ € Hy. We deduce from (2.16) that ez (m o) < C|[m o ¢f[; . Thus

(1,0) to (z1,41) and (3, 1) to (x2,y2), more precisely M = [ } The

er(m) < CE[T)r|molly, g = Climllz,m, (2.17)

with C' being the absolute constant in (2.16). For any homogeneous quadratic

polynomial 7" € Hj, we use the triangular inequality to obtain

er(m) = |[(7" — Irn') + (7 — ') — Ip(7 — 7') |, (1)

< ep(r') +er(m —7'),
which, together with (2.17), yields

ler(m) — er(n')] < er(r — ') < Cllr = 7|, ),
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proving that er is Lipschitz. Combining the above result with (2.5) yields the
desired result. Ol

The estimation in the above lemma will be used at a later stage in Chapter 3

when estimating the error bounds on the so-called regular triangles.

2.2 Standard estimations

In this section, standard estimations are provided which are of great use for the

rest of this thesis, namely in Section 2.5-2.6, as well as in Section 3.4 of Chapter 3.

Let 7' be the reference triangle shown on the left of Figure 2.2, and T be an
arbitrary triangle such that T = w(T), where 1) is the invertible affine map as in
(2.8). Recall that h and p are respectively the diameter and smallest height of
the triangle T

Lemma 2.2.1 ([13, Theorem 3.1.5]). There exists a constant C' such that, for

all functions v € W2(T), the error v — Irv satisfies

h2
v — Irv|wmr) < Cp_m|v|W3(T)’ m=0,1. (2.18)

For m = 0, the error bound Ch2|v|W3(T) on the right hand side of (2.18) is
commonly used when approximating v on either isotropic or anisotropic triangles.
In the simple case where v is a quadratic polynomial of the form v(z,y) = ax® +

by?, with a,b € R, the fact that

-

olwser = (/T (ID2,0(2)7 + 21D, 0 ()P + |D§yv(z)|p)dz)p

=2[T|»(la” + [b[")

B =

1
< 2|T[(la] + [b]),

implies that the error satisfies ||[v — I7v||., 1) < C’h?p|T|%(|a| + |b]). For m =1,

the error bound C %‘U|W3(T) on the right hand side of (2.18) may be coarse when
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the aspect ratio % is not controlled. In (2.20) below, an alternative (sharper)
bound is given subject to the condition that the interior angles of T" are far from
7. The constant in the estimation depends on the maximum interior angle ~(7),

though the dependency of that constant to v(7") is unknown.

Lemma 2.2.2 ([1, Theorem 5.5]). For all functions v € W}(T),

[ = Lol L,y SPIID, 6,0y + holl D, o vl L,y + p°11D5 5 vl Ly,
(2.19)

v = Irvlwyry ShIDo,vlwyr) + plDe,vlwy @), (2.20)

with the constant in the inequalities depending only on ~(T), and where o}, and

o, are defined on page 18.

Note that in the above estimations, the constants do not depend on p since

p = ¢ in the settings of [1].

As we have already mentioned in the introduction (see (1.6)), the right hand
side of (2.19) is a better estimation compared to (2.18) for m = 0, however the
latter can remain advantageous since the dependency on +(7") of the constants
in Lemma 2.2.2 is unknown. The estimation in (2.20) is widely used in order to
estimate the derivatives of the error on a strongly anisotropic triangle, that is,

when % is large. It can be re-written as follow,
v = Irvlwyr) ShIDG, o, vl L) + RIDS 5,0l L,) + 2l Doy, v,y (2:21)

For p = 2, an improvement of (2.18) is provided in Lemma 2.2.3 below where

the estimation is independent of the maximum interior angle of the triangle.

Let M denote the matrix occurring in the map v in (2.8) for which T = (7).

We can write the matrix M into its polar form

M =BU, B=I[rr) [’g f] [r1 1)l (2.22)
2
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where U is orthonormal and B a symmetric positive definite matrix whose eigen-

values and eigenvectors are respectively 14 > 5 > 0 and rq, rs.
The result below is proved in [23] (see also [10] for a similar method) for p = 2.

Lemma 2.2.3 ([23, Proposition 2.1]). There is a constant C' such that, for all

functions v € WZ(T), the estimations

1
2 2 2\ 2
o = trolla <C(vf (IrtNolnal) + v (Nl mal)” + 20202 (17Nl ) )

vt 2 2 2 2\ 3
o= Irvluyry <Cva( T (19N ) 4+ (4 Nelra)” + 275 (18 ral) )

t
hold, where v; and |r;| = ‘[ril T’ig]t‘ = “'rﬂ\ |7’Z-2|} , 1= 1,2, are defined as in (2.22)
d N {HD;%Q;UHM(T) ||D:%yv||L2(T)]
1D2, 0l Loy 1050 o)

To compare the results of Lemma 2.2.2 and Lemma 2.2.3, we provide esti-
mations involving the eigenvalues and eigenvectors of the matrix B occurring in
(2.22). The estimations in Lemma 2.2.3, however, are not invariant with respect
to the coordinate system which means that we obtain different formulas when
replacing r; by Ryr;, i = 1,2, with Ry being a counterclockwise rotation of angle

.

The eigenvalues vy and 5 can be expressed by using the diameter h and
smallest height p of T. Consider the singular value decomposition By = UpSV{
of the matrix By occurring in (2.9), where Uy and 1} are orthonormal matrices and
S a diagonal matrix. The column vectors of Uy are the normalized eigenvectors

of the matrix BrBY% given by

hos—h2) [ h o]
0 P d—h/2 p B

whose characteristic polynomial P(A) in the variable A satisfies

W2+ (5 —h/2)?  p(6— h/2)

BrBh = ,
p(0 — h/2) p

P(A) =(h* + (6 = h/2)* = M) (p* — A) — p*(8 — h/2)*,
=A? — (h* + p* + (6 — h/2)*)A + p*R*. (2.23)
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With A = (h? + p? + p3)? — 4p?h? < 13h* where 1, = 6 — h/2, the eigenvalues
Ay, Ay are the solutions to P(A) = 0, with

R+ VA

A - , (2.24)
2 2 > /A
A, =P +2”h va (2.25)

Then, the singular values of B are exactly given by vy = /A1, v = y/As, whereas

the corresponding eigenvectors vy = [z1 y1]" and vy = |29 )" satisfy

W+ =N ppn

[z ] =0, i=1,2,
Pith p* = A

or, equivalently, (h? + pu? — Ay)z; + ppny; = 0. After choosing x; = zo = 1,

R4 =N =R -+ VA

N = 4a|
PIh, 2ppun

o — G Sad PP — i = VA
Plin 2ppun

In the case where the triangle 7' is isosceles such that its largest interior angle
is formed by its two edges of the same length, we have 6 = h/2 which leads to

simpler expressions for the values of 1,5 and their corresponding eigenvectors

h O} Thus from (2.9),

v1,Vo. Indeed, we have vy = h, 15 = p but also Br = [
p

we have

h 0

M = (RyBrRj) Ry = (Rg [0 ,

]R@)Rg, (2.26)

for some angle . Since the polar decomposition is unique, by identifying the ma-
cosf) —sin 9]

trices in (2.26) with those in (2.22), we find that [r; rs] = Ry =
sinf  cos®

We thus obtain the following expressions:

. B ' | cos 0|
v} | Ny|r1]| = [| cos @] |sin 6| N,
| sin 6|

=| cos 0| D7, vl Loy + 2| sin 6 cos 0| DZyvl| oqry + [ sin 0| Dy vl yr;
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. ' | sin 6|
|r5| Ny|re| = [sind| | cos 8| N,
| cos 0]

=| sin 0| D3yl Loy + 2| sin 0 cos 0|[| D3y vl| y(ry + | cos 0| Dyl cr);

. B . | sin 0]
v} | NVy|ra| =[| cosd| |sin || N,

| cos 0|

=[sin 0 cos 0] ([ D20l Lacry + 1D3,0 ]| Lacry ) + 1 D20 oy

Substituting the expressions of |r}|N,|r1|, |rh|N,y|r2| and |r}|N,|rs| into the first

estimation in Lemma 2.2.3, we find that

o = Frollay < C (VAR N e + vl Nolea] + 2viosct Vol
:C’((h2| cos 0] + p*|sin 0| + 2hp| sin 0 cos 0|) |1 D2, ]| o7y

+ 2<(h2 + p*)|sin @ cos 0| + ,Oh) ||D926yv||L2(T)
+ (h2| sin 0| + p?| cos 0|* + 2hp| sin 0 cos 0|) ||D§yv||L2(T))

2
:C((h| cos ] + p|sin6]) | D20 o
+ 2<h| cos | + p|sin 9|) (h| sin 0| + p| cos 9|) ||Diyv||L2(T)

2
+ (1] sin6] + p| cos 6]) ||D§yv||L2(T)). (2.27)

In a similar way, the second estimation in Lemma 2.2.3 reads

1/2 1%
[0 = Trvhyry < Cva( et [N ru e N fraf + 222 |V, o
2
h2 2 : 2 h : 2
:C’p((—2| cos | 4 | sin 0|* + 2—| sin 0 cos 9|) | D320 2o ()
p p
h? h
+2((% +1) + 2 )12l

h? h
+ <—2| sin 0| + | cos 0)? 4 2—| sin 6 cos 9|) ||D§yv||L2(T)>
p p
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2

C
:;((h|c059| + p| sin 6| 2V acm)

) Ip
+ 2<h| cosf| + p| sin 0|) (h| sin 6| + p| cos 0|) 1DZ, 0| L)
2

+ (hsin 6] + p| cos])|| D2 v||L2(T)). (2.28)

We then have the following result for isosceles triangles.

Corollary 2.2.4. For any isosceles triangles T whose mazimum interior an-
gle ~v(T) s the angle between the two edges of equal length, the estimations
in Lemma 2.2.3 read, there exists a constant C such that, for all functions

veWHT),

|v = I || Loy

oKhop (Sll’l 9) U”L2

<C (61 rll(cos 0)*DZ v+ 2cosfsin D

+ 281 1B sinecose( D} ,.v— D2 , v)+ (cos 20)D(2,hapv||L2(T)

OhOh

+ BzTH(sm 0)>D oo, U — 2cos fsin 9D3hapv + (cos 9)2D<27,,a,,UHL2(T))§ (2.29)

v — [TU|W21(T)

OhOp

C
< — <B%T||(cos 0)>D? _ v+ 2cosfsin HDCZ,W + (sin6)’D2 . vl o1
1% ’ pOp

+ 281 7Bor|| sin @ cos (D2 v — D?,pa v) + (cos 29)D‘27 o || Ly ()

hOh
+ B3 7| (sin0)°DZ. , v —2cosfsin 6Dy &,V + (cos0) ’p? avaLQ(T)), (2.30)
where By := h|cosb|+ p|sin |, Bor := h|sin 6|+ p| cosb|, with 6 being the angle
of rotation of Ry in (2.26).

Proof. Since Dyv = cos 0D, v + sinD,,v and Dyv = —sin 0Dy, v + cos 0D, v,
with 6 being the angle of rotation of Ry in (2.26), we easily prove that

D3 = (cos0)?DZ , v+ 2cosfsin0D;

TROp

v+ (sin6)*D2 _ v,

aap

D2 v =sinfcosO(D? v — DCQ, -,U) + (cos 20) D>

oo TRop

D2 v = (sin@)*D% _ v —2cos@sinfdD?> _ v+ (cos)>D?

OROph Op0p a'pa'p
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The result is proved by combining the above with (2.27) and (2.28). O

As discussed in [23, Section 2.1], while using the estimation (2.30), the ratio

actual error

estimated error’

can be bounded in such a way that the maximum angle condition on 7' is not
required. As a result, (2.30) may suffer from an over-estimation as compared to
(2.20). In particular, given an isosceles triangle 7" whose maximum interior angle
is formed by its two edges of the same length, and such that its longest edge is
chosen to be on the z-axis, that is ¢ = 0, we have 51 = h and [y = p. Hence

from (2.30),

C
o= Ervhw < (R103,0,0lar) + 280D, 0, 0l10r) + 9% D, st )

(2.31)

which, unless using an additional assumption such as
I1D3, 0,0l ) = D350l a0y = 0,

is an over-estimation as compared to (2.20), for p = 2, due to the additional
factor % of || Dj.,v||L,(ry. Note that for isosceles triangles 7" whose interior angle
~(T) is defined by its two edges which have the same length, the tangent of ~(7)
is comparable to the aspect ratio %, more precisely, tan(y(7")/2) = %. Since
Lemma 2.2.2 does not specify how the constants depend on v(7'), the estimation
(2.31) provides a stronger result on isosceles triangles of the type described in the

Corollary above, as compared to (2.20).

2.3 Approximation of quadratic polynomials

We present here local error bounds when approximating a quadratic polynomial

7 on a given triangle T'. The interpolation operator I; being linear, the function
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error m — Ipm is identically null if 7 is a linear polynomial. We therefore assume
that m does not possess any linear part, that is, 7 € Hj is a homogeneous quadratic

polynomial of the form
m(x,y) = ax® + 2bxy + cy®, where a,b,c € R,
which can also be written in a matrix formulation as follows, in the form of (2.1),

o pte 232

OB

with Aj, Ay and U, being as described in (2.1) and (2.2).

2.3.1 Estimations on the reference triangle

Let 7' be the reference triangle on the left of Figure 2.2, and consider the invertible
affine map 1 defined in (2.8) for which T' = ¢(T"). The results in Lemma 2.3.1

below are useful for the proof of Proposition 2.3.5.

Lemma 2.3.1. Consider the quadratic polynomial 7 = wov. Given a unit vector

o, consider o = % where M is the invertible matriz occurring in (2.8). Then,
17,y = [det M7 {7l ), (2.33)
_1
|l 7y = [M&|| det M| 75 | Dore| 1), (2.34)
. _1
|1De (7 = L70) ||, 2y = [M&[[ det M|™7[| Do (m — Lrm)|| 1, () (2.35)

Proof. By using the differentiation rule for composite functions, for x,y € R,

Dy(m o) (2,y) = Dathr(,y) - (Dam) 0 () + Datha(2,y) - (Dym) 0 (2, y),
Dy(mo)(z,y) = Dy (2,y) - (Dam) 0 (2, y) + Dytha(, y) - (Dym) 0 4p(x, y),

where ¥(x,y) = [ (x,y) Ya(x, y)]".

Given a unit vector &, = [zo yo*, we show that the derivatives De (7o) and
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(DMgoﬂ') o) are related as shown in (2.37) below. First observe that for z,y € R,
De,(moy) (2, y) = woDa(m 0 ) (2, y) + yo Dy (7 0 ) (2, y)

=0 (Dutr(2,y) - (Do) 0 $(,y) + Daths(,y) - (Dyr) 0 (2, y))

+ 3o (Dytr (2, ) - (Do) 0 (x,y) + Dyt () - (Dyr) 0 9(x, y))
:(xODaﬂ/}I (SL’, y) + yODywl (377 y)) (D:vﬂ-) o w(xu y)

+ (SL’OD;B%(SL” Yy) + yoDytha(z, y))(DyW) o Y(z,y). (2.36)
Next, with M being the invertible matrix in (2.8) which we write M = au alQ]
Qo1 A22

for some a;;, 7,5 = 1,2 satisfying aj1as0 — as1a12 # 0, clearly
Mz yl' = [anz + any  anx + axny|’ =: [Mi(x,y) Ma(z,y)]".
With the expressions of M; and M, satisfying

[2oDyt1 (@, y)+yo Dyt (z,y) o Dutba(,y) + yoDytba(z,y)]*
= [anxo + a12yo a1 + a22y0]t

= [Mi(20, yo) Ma(o,0)]",
we deduce from (2.36) that

De, (0 9)(x,y) = (Mi(wo, yo) (D) + Ma(0,y9) (Dy) ) © (a, y)
= (Due,m) o (. y). (2.37)

We shall now prove (2.33). Writing z = (%) where 2 € T, we have

#(3) = mo(2) = 1(2), (2.38)
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and since dz = | det M|dZ, by a change of variables, clearly
1
A )P -1 » P Wi
sy = ([, 1raz)” = derdai 4 ( [ pn(eipaz)” = faet a1

In order to prove (2.34), we first combine (2.37) and (2.38) to obtain the

equalities
D&ﬁ'(,%) = Dg,(ﬂ' 9] ’(/})(2) = (DM&T(') e} @Z)(f) = DM&W(Z) = |M6'|DU7T(Z)

By using again a simple change of variables, we find that

Dol = ( [ 1Ds#Paz)" = (Mol det b1 [ 1Dyn(e)paz)”
P T

_1
= |Mé&||det M|" 7| Dor| 1,

The proof of (2.35) goes as follows: By using (2.12), with z = ¢ (2) where

A

2 €T, it holds that

[;7(2) = Ip(m 0 )(2) = (Lyiym) 0 () = Irm(2)
and therefore (7 — I+7)(2) = (7 — Irm)(z). We then deduce from (2.34) that

| det M\% . ~
| Do (7 — Ir7)|| 1, () = WHD&(W — I+l 1, 1)

and the result is proved. O

2.3.2 Measure of non-degeneracy

The alignment and shape of a triangle are important characteristics in order to
obtain a sharper error estimation. This is commonly known especially in the
case where the target function presents singularities and fast changing behavior
at some points. In this section, given a homogeneous quadratic polynomial 7, we

shall characterize a triangle T" by its measure of non-degeneracy p,(T') [31] (see
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also [14]) defined as follows,

po(T) = axd[m(e)] : e edge of T}
O T Al

Observe that in the numerator of (2.39), the difference of vertices is used rather

™ € Ho. (2.39)

than the vertices. Also, if eq, e; and es are counterclockwise oriented edge-vectors
of T such that e; + e; + e3 = 0, then their images under m do not necessarily
form a triangle since 7(e;) + m(ey) + m(e3) might not be zero. It is easy to see
that p, is invariant under translation and scaling of 7" by a constant. It can also

be generalized into a wider space of functions.

In the example below, we explain the relation between the measure p,(7") and

the aspect ratio of the triangle.

Example 2.3.1. Let mo(z,y) := 22 +y* and m(z,y) = ? — y2. Since det 7o = 1
and my(e) = |e|* for any edge e of T', we obtain
_diam(T)* h*  2h

p7TO<T> - |T| - ? - ?7

which is twice the aspect ratio of 7. As a result, the minimum value of p,,(T) is
attained when 7" is an equilateral triangle for which p = ?h and p.,(T) = % =
4T\/3. For any triangle T', it is discussed in [31] that the minimum value for p,, (T')
is attained when 7' is a half of a square whose edges are parallel to the - and

y- axes of the Cartesian coordinate system. Observe that, since |m(e)| < |mo(e)]

for any vector e, the inequality

max{pr (T), py (T)} < % (2.40)

holds for any triangle 7.

Other characterization of triangles can be found in [31]. In particular, the
measure of non-degeneracy helps in characterizing the triangles that may present

big local errors, they are then bisected into two.
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Given a linear map ¢ and a homogeneous quadratic polynomial = € Hy, the
polynomial 7 o ¢ belongs to Hy and pr.4 is well defined. This is not the case if ¢
was an affine map because in general 7o ¢ ¢ Hy. However, if ¢ is an affine map
of the form v = ¢ + ¢, where ¢ is a translation with vector t € R?, then for any

triangle T', by invariance of p, by translation, we have

p=(P(T)) = pr((T)).

The right hand side is equal to the measure pr.,(1"), as proved in the result below

which shows the commutativity of p, and the linear map ¢.

Lemma 2.3.2. For any invertible linear map ¢,

pros(T') = px(&(T)). (2.41)

Proof. Assume that ¢ is a linear map of the form ¢(z,y) = (ax+ Py, yr+dy) with
a, B,7,0 € R satisfying ad — vy # 0. The homogeneous quadratic polynomial

o ¢ is expressed as follows:

o d(z,y) = alax + By)® + 2b(ax + By)(yx + dy) + c(yx + dy)”

= Az* +2Bxy + Cy?,

where A = aa?+2bay+cy?, B = aaB+b(ad+B7)+cdy and C = a2 +2035+ch>.

t A B
Since Q. = [Z b], we immediately verify that [a ? } Qx [a ? = [B C}
¢ v Y

(Qrop from which it follows that

det(m o ¢) = AC — B? = (det 7)(det ¢)*.

The following equalities then hold,

~ max{|m o p(e)| : e edge of T'} _ max{|m(¢(e))| : e edge of T'}

Pro(T) =
’ IT/|det 7 0 ¢ 71/ det ]| det ¢]2

_ max{|m(e)| : e edge of ¢(T)} — o (6(T)),

|o(T)] /| det 7|

34



thereby proving the result. O

Given a non-degenerate homogeneous quadratic polynomial 7, consider the

invertible linear map ¢, : [z y]' — [X Y]’ defined by

‘)‘1‘7% 0 t_ t
0 ‘)\2‘%] [z y]" = [X Y], (2.42)

br(2,y) = | det w|7U,

where A1, Ay are the eigenvalues of @, as defined in (2.2), with [A;| < |A3]. Define

also the quadratic polynomial w, by

a2, y) =2 + e.9%, 7,y ER, (2.43)

where e, := sign(det7). By using (2.32), we can express the homogeneous
quadratic polynomial 7 o ¢, in terms of the determinant det7 and w,(z,y),

for all (z,y) € R?
—XYUAl Noeix yre
FO¢F(x7y)_ [ ] ™ O )\2 7'('[ ]

L M2 0 [Al 0} Mz 0 .
= | det
jaeciilend [ M7 L[ (M e

=

ign(A;) 0
el {agn(l } ,
| det7|z[z ]| s@ﬂ&)hm
= sign(A;)| det 7T|%LTJ7T(£U, Y). (2.44)
The result below is obtained by applying Lemma 2.3.2 to ¢,.

Corollary 2.3.3. Let ¢, and w, be defined as in (2.42) and in (2.43). Then

el0) = pan 6700 = ([N Jorn). @)

Proof. The result is easily proved by using (2.41), (2.44) and the easily proved
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equalities below, for any « # 0,

_ max{|al[r(e)|: e edge of T}

/)mr(T) =
| T]\/|c|?| det ]

Indeed, writing T = ¢-!(T) and choosing o = sign(\;)| det 7|2, from (2.41) and

p=(T).

(2.44), the following equalities hold

pr(0x(T)) = proo. (T) = paw, (T) = P, (T) = pe, (671(T)).

M/t 0

UL O
0 Ao/ Ai|1] T

The result is obtained by noticing that ¢! =
With o, defined in (2.43), we deduce from (2.40) that, for any triangle 7',

_ 2h
pe (T) < 2L (2.46)
PT
Therefore, pg_(T) is bounded as long as T is isotropic. Combining this with
(2.45), with T = ¢,(T), the measure of non-degeneracy

- 2hy
px(T) = po, (T) < 22T, (2.47)
Pr
is bounded whenever ¢_'(T) = T is isotropic. In [31], it is shown that the

minimum value of p.(7) is attained on triangles which are isotropic with respect

to the induced metric | - |, defined by |v|, := /|7 (v)].

2.3.3 Error bounds for directional derivatives

Consider again a homogeneous quadratic polynomial 7. Our goal is to derive
alternative estimations to the estimations in [1] and [13] in the case where the
measure of non-degeneracy p,(7T') is bounded. We estimate the derivatives of
the approximation error obtained by interpolating homogeneous quadratic poly-
nomials. With 7" being a fixed triangle, the interpolant Iy reproduces linear

polynomials and thus we can consider only homogeneous quadratic polynomials.
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Let us first recall the Markov-type inequality below.

Lemma 2.3.4 ([28, Theorem 2.32]). Let 7 be a polynomial of total degree n > 0.
Given any non-negative integers v,n such that v +n < n, it holds that, for any

triangle T,

v C,
1D Dyl L, r) < 7] (1) (2.48)

prEn

with C,, being a constant depending only on n.

Note that on the reference triangle T shown in Figure 2.2, the factor C =

Cn
ﬁu+n

in (2.48) remains an absolute constant for quadratic polynomials since the

smallest height p of T is constant.

We now prove the following result.

Proposition 2.3.5. There exist absolute constants Cy and Cy such that, given

any triangle T and any non-degenerate polynomial m € Hy, the estimations

1
(i) |7 = Irm||p, ) < Cipr(T)|T'|7 hpy/| det |;
(i) |1 Dg, (7 = Ir7)|[1,r) < Copx(T)|T|7 py/| det f;

(ii) | D, (7 = Lrm)| L, (1) < Copx(T)|T[¥hy/| det x],

hold, where oy, and o, denote the unit vectors defined on page 18, and where p,

is the measure of non-degeneracy defined in (2.39).

Proof. Let T be the reference triangle in Figure 2.2. Given a triangle 7', consider
the function 1 in (2.8) for which 7' = v (T"), and let # := wo1). Note that, except

when using the correspondence (2.38), the variable of 7 remains z = (x,y).

(i): By using (2.48), there exists an absolute constant C; such that

-

n n . . P A A
|7T|W5(T) - <||Di$ﬂ-||ip(j") + ||D325yﬂ-||]£p(jﬂ) + ||D§yﬂ-||]£p(jﬂ)> < Cl||7T||Lp(T)>
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which, together with (2.18) for m = 0, yields
7 = Ll < Colithuaey < (CaCoIF - (2.49)

where C5 is an absolute constant.

We now estimate the error |7 — Ipw|| as follows. By (2.7), there exists an

absolute constant ¢, such that

1
||7T||LP(T) < c||7l|r = co|T|» max{|m(e)| : e edge of T'}

1
= cop(T)|T|" 5 /| det 7], (2.50)

where p, is defined as in (2.39). Combining the above inequality with (2.33) and

(2.49), we can estimate || — Ip7|[z, (1) as follows:

1. . AA L
Im = Il ) = | det MIP (|7 — L7l oy < (C1Co)l det M7 [|7]] 7

= (C1Co)[I7ll 1y 1) < (e2CrCo)pa(D)|T] 74/ | det 7],

which, since |T| = %Q, proves (i) with Cy = 29,

(ii) and (iii): Given a unit vector &, combining (2.48) with (2.49) and (2.33)
yields

D6 (7 — 137)[| 7y < Crllf = L[ o

IN

(CECN A1, )
= (C}Co)| det M| 77|l 1,,r).
Combining this with (2.35) and (2.50), with o0 = 22 we find that

|M&|?

| Do (7 — Ir)||,cr) < (CTC)|M6&| |7l 1, m)

Ao A 1
< (e2C2C0)|M& | o (T)|T |7 /| det . (2.51)
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By virtue of (2.10), we have

Me M+
= d = Rl 2.52
N V7 I P Ve (2:52)
where & = [1 0] and 7 = [% — % 1r. Note that 7 is not a unit vector, however

the second equality in (2.52) still holds if 7 is replaced by a7, o # 0. Hence, by

using the unit vector 7 = == we have o, = 2Z.. Noting that [Mé| = h and
7 P M7

|M7| = |7~ 'p, applying (2.51) for both & = o), and o = o, respectively, we

obtain

2C! 1 1
Tpr(T)lT\HP | det 7| = Cop(T)|T|7 py/| det 7],

206 ||F 1 1
| Do, (7 = Ir7) || 1,7) < ypﬂ(TﬂﬂHp | det | = Cop, (T)|T|? hy/| det 7],

| Do, (7 — Ipm)|| 1) <

thereby proving (i) and (iii) with C, = CC2Cy||#]]. O

In the above result, clearly p.(7") needs to be bounded. The proof uses the
reference triangle 7' and the affine map v for which T' = ¢(T") holds, as well as

simple change of variables in the computations of the L,-norms.

The presence of the measure of non-degeneracy p,(7') in the estimations (i)-
(iii) is a novel feature. The example below demonstrates the effectiveness of these
error bounds on a triangle which has an interior angle approaching 7 but has its

measure of non-degeneracy bounded.

Example 2.3.2. Consider the quadratic polynomial 7 (z,y) = az®+by? such that
la] < |b| (the case where |a| > |b| is obtained by the change of axes). Let T be
an isosceles triangle with vertices at (0,0), (h1,0) and (3h1, he) Where hq, hy > 0.
In the case where hy is small and h; large, the triangle 7" is strongly anisotropic
with a big interior angle. The eigenvalues of @), are exactly Ay = a and \y = b,
with associated eigenvectors [1 0]* and [0 1]*. Observe that T is aligned in the

direction orthogonal to the eigenvector corresponding to the largest eigenvalue.
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The determinant of m and the linear map ¢, as defined in (2.42) are given by

b i 0
detm=ab and ¢,=|'"
0 |2
b
The image T = ¢-'(T') has the coordinates (0, 0), ( 7 "ha, O) and ( i Z%, b Zhg).
1 1
By choosing hy = ‘2 " and hy = [¢|*, we deduce from (2.47) and (2.39) that
_ 1+1 5
pr(T) = po, (T) = — = 2
2

by virtue of the fact that |T| = b2 = 1.

Noting that hp ~ hy and pr ~ ho, we deduce from Proposition 2.3.5 that

(i) |Im — Il ) < 24| TP heprlabl < C|T|7|abl?;
.. 1 1 1 3 1
(i) 1Dy, (7 — Lrm)l|ycry < 22 |T |7 prlablz < Cy|T|7|al’ [b]3;

1 1 10138
(iif) || D, (7 = Irm) 1,0y < *S2{T |7 helabl? < C3|T)7|al b4,
where C] and €Y, are absolute constants.

The above example shows that, although a triangle may present an interior
angle near to 7, we can still obtain sharp estimations if the triangle is aligned
(by this we mean the longest edge) in the direction orthogonal to the eigenvector

corresponding to the largest eigenvalue.

2.4 Optimal triangles

In this section, we study triangles which minimize the L,-norm of the error 7—Ipm
for a given homogeneous quadratic polynomials 7 € Hy. Given two triangles
T, T" having the same area, clearly one of the errors ey (7), er(7) may be smaller
than the other. Assume that both triangles contain the origin. We show that

translating the triangles will not change the error (also proved in [2, 29]). Given
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a constant a € R? 7(x + a) = 7(x) + {(x + a) for some linear polynomial /.
Recalling that the linear interpolation is exact for linear polynomials, for any

triangle T', we have

|7 — Iryam||L,r4a) = [|7(- +a) = (Irgam)(- + )|z, 1)
= [|7(-+a) = Ir(7(- +a)) |,

= ”W - [TWHLP(Ty

by virtue of (2.12).

To obtain a deeper study of the approximation error on a triangle, following

[29], we define the shape function K, as follows: for any = € Hp,

K,(m) = |}I\1£1 er(m), (2.53)
0eT

with er defined in (2.14). The functional K, can be extended to a wider space of
functions, however, we shall only restrict to homogeneous quadratic polynomials
where its expression is known. Indeed, it is shown in [29] that K,(7) = 0 if 7 is

degenerate, whereas, if 7 is non-degenerate,

K,(m) = /| det 7| K}, (wx), (2.54)

where w, is defined in (2.43).

Following [29], a tempered shape function K, ;, with L > 0, is defined in
order to bound the diameter of the triangle for which (2.53) is attained: for any

homogeneous quadratic polynomial 7, define
Kp,L(’Tl’) = inf 6T<7T)7 (255)

TeTy,

where T}, is the set of triangles of unit area, containing the origin and of diameter
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less than or equal to L, that is,
T,:={T:|T|=1,0€T, hy < L}.

We refer to [29] for details of the properties between K, and K, .

Given a homogeneous quadratic polynomial 7, we define the set A, () of all
triangles T of unit area, having a vertex at the origin and such that the infimum
in (2.53) is attained. A triangle T' € A,(7) is called an optimal triangle for 7. In
Sections 2.4.1, 2.4.2, 2.4.3 we discuss the properties of the triangles in A, (7). In

particular, the case where det 7 < 0 with p < oo remains an open question.

The following result follows from Lemma 2.1.2.

Lemma 2.4.1. There is a constant C' such that, for any w, 7" € Hy such that
Ay(m) # 0 and Ay(7') # 0, we have

| Kp(7) = Kyp(n')] < Chi|w — o], (2.56)
with some Ty € Ap(m) U Ay('), and where the norm || - || is defined in (2.3).

Proof. From (2.53) and (2.15), there is a constant C' such that K,(7) < ep(n’) +
ChZ% || — 7’| holds for any triangle T of unit area and having a vertex at the

origin. In particular, for a Ty € A, (7'),

Ky(m) < Ky(n') + Ch |lm — 7).

In a similar way, we easily prove that

Ky(n') < Ky(m) + Chy |lm — 7|

holds whenever Ty € A, (7). The result directly follows. O

Before we start discussing optimal triangles for the canonic quadratic polyno-

mials 7y (z,y) = 2> + y? and 7 (z,y) = 2% — y? defined in Example 2.3.1, we first
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present the following result about invariance property.

Lemma 2.4.2 ([32, Theorem 7]). Given a homogeneous quadratic polynomial
m € Hy and an affine map p(x) = Ax + b for which A is Q-orthogonal, i.e
A'Q A = Q, the equality

||7T — ]T7T||Lp(T) = ||7T — IT’T‘-HLP(T’), (257)

holds for any triangle T, with T" = (T).

2.4.1 For 22 + ¢?

The result below shows that equilateral triangles of unit area are optimal for
mo(z, y) = a? + ¢
Lemma 2.4.3 ([3]). A triangle T' belongs to Ay(mo) if and only if it is an equi-

lateral triangle of unit area.

Sketch of proof. We provide here a sketch of proof for triangles of arbitrary area.

For p < oo, the value of K,(m) is equal to

|70 — Irmo|| ()
|T|1+%

C’;L = i%f , (2.58)
which, by virtue of (2.11), is easily proved to be invariant under scaling, transla-
tion and rotation of the triangle 7. Given a non-equilateral triangle 7', the proof

consists in finding a triangle 7' for which

'm0 — Irmo||n, () - |70 — [TWOHLP(T).
7| IT| %

(2.59)

By virtue of the invariance by scaling, translation and rotation, we can assume
T to have the vertices (—1,0), (a,b), (1,0) where @ € R and b > 0. Then direct
computations show that the isosceles triangle T with vertices (—1,0), (0,b), (1,0)
satisfies (2.59). This means that for a = 0 the triangles 7" and 7" are identical. If
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b # /3 in which case T is an equilateral triangle, we use a rotation and a similar

argument as before to find a triangle 7" such that

|70 — IT7T0||Lp(T) - |0 — ]T'7T0||LP(T/)
7|+ 7]+

This means that in order for 7" to yield K, (), it must be symmetric with respect

to each of its bisectors. In other words, equilateral.

A similar argument applies for p = oo, with K (m) equal to

1m0 — IrTollLw(ry 4
f

7] - 3V3B

Jr .
CL = in (2.60)
Given an arbitrary triangle T, the set of points z for which (7g — Irm)(2) = 0
is the circle Cr with center m and radius R defined as follows: Let C% be the
circumscribed circle and denote by m? its center. If m® is contained in T, then
Cr = C. Otherwise Cr is the circle centered at the mid-point of the longest edge

of T and with radius %T Observe that the center of Cr is always contained in 7.

It is proved that (see [32]) on a segment [z1, 2], the maximum error between
7o and a linear polynomial ¢ such that m(z1) — €(21) = mo(22) — €(22) = 0 is
attained at the mid-point of [z, z5]. Using this to any segment contained in 7T,
clearly ||mo — Irmo||r.. () is attained at the center m of Cr. It follows that, for

any triangle 7' contained in Cr and such that m € T,

1m0 — Irmo| Loy = lIm0 — Lol oo ()

that is, the errors on 7' and T are the same. However, the area of both triangle

are not the same, and if |T'| > |T|, then

|70 — IT7TO||LOO(T) |0 — IT'WOHLOO(T)
T - T

Only equilateral triangles with vertices on Cy have the largest area in Cr, and

thus (2.60) can only be attained on equilateral triangles. O
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The general multivariate case (d > 2) is given in [32] with a very similar proof.
Observe that the placement of the vertices of an optimal triangle for 7y is not
important as long as it is an equilateral triangle of unit area. By this reason,
we are able to present Algorithm 3.1 in Section 3.2.2 which provides an isosceles
optimal triangle for a homogeneous quadratic polynomial © whose determinant

is positive.

2.4.2 For 2?2 — 4

Obtaining an optimal triangle for 7 (z,y) = 2® — 3 is not as straightforward as

for my. Up to date, optimal triangles for m; are known only for p = oco.

When p = oo

For the study of optimal triangles for a m € Hy whose determinant is negative,
only the case p = oo is discussed in [2], the generalization for p < oo is still an

open question. We present below the case where the quadratic polynomial is 7.

Given two numbers a, b > 0 such that W?%ab = 1, the triangle T, ; is defined

by the vertices given by

(0,0), %(coa + b, coa — b), %(a + cob,a — cob), (2.61)

3—5
2

where ¢y = . In Figure 2.4, we plot a few triangles 7, for different values
+1 0

0 +1
matrices which represent symmetry with respect to the z- and or y-axis.

of a and b. We define as well the set Z, = {{

]} whose elements are

Lemma 2.4.4 ([3, Lemma 9]). A triangle T belongs to A (m1) if and only if
T = omyTup, a,b > 0, where ¢y ts the linear map associated with a matriz

MO S I().

Sketch of proof. We provide here a sketch of proof for triangles of arbitrary area,

and for any quadratic polynomial m with negative determinant. Let A\, <
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Figure 2.4: Family of optimal triangles for 7, with p = oo, whose vertices are
given by (2.61).

0 < Amax denote the eigenvalues of 7. Denoting by (£1,&2) a unit eigenvector
associated with Ay, the unit vector (&2, —&;) is an eigenvector corresponding to

)\min .

Considering the linear change of variables,
t
Fy(z,y) = [a2 + &y &z — &y,

Ga(z,y) = [\/x\maxﬂc - \/I/\mmly V Amax + /[ Amin] r,

we obtain the function 7 given by

F(x,y) =m0 Fi 't o Gyt (z,y) = xy. (2.62)

The interpolation error for © does not change under the above transformation.
However, |G5(T')| = 24/|AmaxAmin||T|- Moreover, it has been proved in [3, Lemma 6]

that ||# — I77| 1 (1) is attained on the boundary of 7.

Given a triangle T', consider the rectangle of minimal area containing 7', whose
sides are parallel to the coordinate axes, with side lengths a and b. By translation,
we can assume that 7" has a vertex at the origin. The complement of T" with

respect to the rectangle is formed by three right triangles T}, T5, T3 with respective
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area S, 59, 53. Observe that each side of T' is the longest side of one of the three

right triangles. Also, the interpolation error on each side of T is equal to %|T,|

llm=Trmll Lo (1)

where T; has the same edge as T'. Hence, the problem of minimizing 7]

is equivalent to finding triangles which solve the minimization problem

maX{Sl, SQ, 53}
Q(CLZ) - (Sl + SQ + 53))

— min. (2.63)

Since the triangle is contained in the rectangle, and two of its vertices on the
sides of the rectangle, we can assume that 7" has vertices (0, 0), (z,b), (a,y). Then

(2.63) reads

1 { b ay  (a—z)(b—y)

= — min. 2.64
e ab—xy ab—xy’  ab—xy } — (2:64)

2

It is proved that for any triangle 7" with vertices (0,0), (x,b), (a,y) where x €
(0,a) and y € (0,b), we have

1 { bx ay (a—x)(b— y)} 1
— max , , > .
2 ab—xy ab— xy ab — xy 2v/5
Also, with ¢y = 3’T\/5, studying each of the cases

1.z > coa,y = cob;
2. x < cpa,y < cob;

3. x> coa,y < cob or x < cpa,y > cob,
shows that (2.64) is attained on triangles T with vertices given by

(0,0), (coa, b), (a, cob), (2.65)

3—/5
2

where cq = . Finally, the triangles which minimize || — Ir7||. (1) are given

by T = (Fy ' o G31)(T), or symmetric to it with respect to any coordinate axis,

and only for such triangles.
Now, we take 7(z,y) = mi(z,y) = 2% — y*>. We have A\paxy = 1, Apin = —1
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and the eigenvalues of Q,, with (£1,&) = (1,0) being the eigenvector associated
1 1

with Apax. Clearly Fy'o Gy (z,y) = 1 [1 J [z y]*. The images of the vertices

(0,0), (coa,b) and (a,cob) under Fy ' o G5! are the vertices (2.61) of T, whose

area is given by

(coa+b)/2 (a+cob)/2 0

1 3v5 -5

Tsl = 5 |det | (coa —)/2 (a—cob)/2 0 :fT“b'
1 1 1

Since an optimal triangle must have a unit area, we require that @ab =1 0O

Observe from Figure 2.4 that the vertices of an optimal triangle for m; are
either given by (2.61) or given by the symmetry of it with respect to the z- and
or y-axis of these vertices. Since |71 — Ir7||p, 1) < |T|% |7 — Irm|| L (1) for any

triangle 7', we immediately deduce from the definition of K, in (2.53) that

Ky(m) < Koo(m), p€[l,00]. (2.66)

More discussions (similar to above) on the optimal triangles for m(x,y) =
22 — y? can be found in [32], however by using the representation 7/ (z,y) = zy.
We also refer to [32] for the homogeneous quadratic polynomial m(z,y) = 2% and
for more than two variables homogeneous quadratic polynomials. However, the

case m (x,y) = % — y* with p < oo still remains to be investigated.

When p < c©

In this section, we shall discuss a method for obtaining an optimal triangle for
m; by using Lemma 2.4.2. In particular, we study the existence of an optimal

triangle which is isotropic which still remains an open question.

Let us begin by investigating the families of optimal triangles for the quadratic

polynomials 7wy and 71 defined in Example 2.3.1. Given a matrix A = {a Z], we

C
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have that

A'QrA=Q, = AA=1

— d*+cf=1,ab+cd=0, > +d* =1 (2.67)

The set of matrices which satisfy (2.67) is the set of all 2 x 2 orthogonal matrices

which is given by

Ao = {[iol £1] LS1 iol]}U{Eifz _czisnee] e [O’Qﬂ}' (2.68)

The set A in (2.68) is the union of two sets: On the left is the set of matrices that
represent symmetry with respect to the x-, y-axis and symmetry with respect to
the lines x+y = 0 and x—y = 0, whereas on the right is the set of counterclockwise

rotation matrices.

In a similar way, we have that

a cHl 01Ta b}_[l O}
b dllo —=1lle d 0 -1

= a*—c=1,ab—ecd=0, b* —d* = —1. (2.69)

A'QrA=Q,

The set of matrices which satisfy (2.69) is given by

+1 0 0 =+£1 cosh@  sinhf
= 0 eR;. 2.70
- H 0 il]’ [il 0 ”U{[sinhe Coshﬁ] } (2:70)
The set A, in (2.70) is the union of two sets: On the left is the set of matrices that
represent symmetry with respect to the x- and y-axis and symmetry with respect

to the lines z+y = 0 and x —y = 0 (clearly (2.57) also holds for A'Q,A = —Q,),

and on the right is the set of matrices with hyperbolic entries.

Suppose that T; is an optimal triangle for 7, and let e; = [z; vi]*, e; = [z; y;]'

be two of its edge-vectors such that its maximum interior angle satisfies v(7}) =
€;e;. Considering a matrix Sy = im0 C?She , with # € R, we shall study
coshf  sinh6

the positions of the images Spe; and Spe; by introducing the functions X (6) =
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acosh 0+bsinh @ = (a+tyb) coshf and Y (6) = asinh §+bcosh 6 = (aty+0b) cosh
where a,b € R and ty = tanh§ € (—1,1).

Obviously, the curve defined by X (6) and Y (0) is hyperbolic by virtue of the
easily provable equality X (0)? — Y (0)? = a® — V. Since

Y(Q) o atg + b

X(G) n a+ tgb’
we observe that for § — oo we have ty — 1 and limy_, % = 1. In a similar
way, we show that limg ., % = —1 and thus the lines y = z and y = —x are

asymptotic to the hyperbolic curve. In Figure 2.5 we illustrate the hyperbolic

curves obtained from the cases 1-2 which we discuss below.

.0 > —¢

Figure 2.5: Hyperbolic curves defined by X (#) and Y (#) for Case 1 and Case 2.

Case 1: a,b > 0 such that a > b. In the case where a > b, clearly X(0) is
always positive. Also, since Dy X (0) = asinh 6 + bcosh 6, the derivative of X ()

changes sign when ty = —3, whereas Y'(0) is always increasing.

Case 2: a,b > 0 such that a < b. In a similar way as in the above case, for
a < b, it is easy to show that X (0) is always increasing whereas the derivative of

Y () changes sign when ty = —1.
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Figure 2.6: Hyperbolic curves defined by X (#) and Y (#) for Case 3 and Case 4.

Case 3: a <0, b > 0 such that b < —a. In this case, Y (0) is always

increasing whereas the derivative of X (#) changes sign when ¢, = —g.

Case 4: ¢ <0, b> 0 such that —a <0b. It is easy to see that X () is always
decreasing whereas the derivative of Y'(#) changes sign when ty = —§. Cases 3-4

are illustrated in Figure 2.6.

0 — —o0 A

Figure 2.7: Hyperbolic curves defined by X (#) and Y (#) for Case 5 and Case 6.
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Case 5: a,b < 0 such that —b < —a. This case is obtained from Case 1 by

taking its symmetry with respect to the origin.

Case 6: a,b < 0 such that —a < —b. This case is obtained from Case 2
by taking its symmetry with respect to the origin. Cases 5-6 are illustrated in

Figure 2.7.

Case 7: a >0, b <0 such that —b <a. This case is obtained from Case 3

by taking its symmetry with respect to the origin.

Case 8: a >0, b<0 such that a < —b. This case is obtained from Case 4
by taking its symmetry with respect to the origin. Cases 7-8 are illustrated in

Figure 2.8.

0 — —o0

Figure 2.8: Hyperbolic curves defined by X (#) and Y (#) for Case 7 and Case 8.

Observe that ||m — Iz, (r) is invariant under a linear transform ¢z, where

My € Zy. Thus, we can assume that xz;,1y; > 0. There are four different cases for

{L‘j,yj.

a If zj,y; > 0, then T} is an acute triangle;
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b If z; <0 and y; > 0, then it is easy to show that the angle S@ej — 3
as § — oo, thus a nearly-acute optimal triangle can be obtained. This is

shown in Figure 2.9 by combining Cases 1-4;

c Ifz; >0 and y; <0, then as in b, S@ej — 5 as 0 — oo, and a nearly-
acute optimal triangle can be obtained. This is shown in Figure 2.10 by

combining Cases 1-2 and Cases 7-8;
d If zj,y; <0, then

i If |2;] > |y;| and |y;| > |x;], by letting # — —oo the angle S(ES\gej
decreases and a nearly-acute optimal triangle can be obtained. This

is also the case if |y;| > |z;| and |z;| > |2;];

it Otherwise, i.e if |z;| > |y;| and |z;| > |y;|, or |z;] < |yi| and |z;| < |yl
then it may be impossible to decrease the angle S@ej. This case is
the reason why designing a nearly-acute optimal triangle remains an

open question. We illustrate this in Figure 2.11.

0 — —o0

Figure 2.9: Obtaining nearly-acute optimal triangle for 7, case b.

In brief, part 7 of case d shows that characterizing optimal triangles for m; may
be difficult since they could essentially take arbitrary shape, and the existence of

an isotropic optimal triangle is not guaranteed.
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Figure 2.11: In blue for 7 of case d: obtaining nearly-acute optimal triangle for
m1; and in green for 7 of case d: the angle Spe; Sge; approaching 7 if § — Foo.

2.4.3 For general quadratic polynomials

We show in Lemma 2.4.5 below that to obtain an optimal triangle for a quadratic
polynomial 7, it is sufficient to know an optimal triangle for w,. In addition,
the length scales of an optimal triangle can be estimated by using the condition

number of Q).

The result below is partially extracted from the proof of [29, Proposition 2.2],
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here we present a more elaborated construction of an optimal triangle.

Lemma 2.4.5. Given a quadratic polynomial m € Hy, define ¢, and w, respec-
tively by (2.42) and (2.43). For any optimal triangle Ty € A,(w,), its image

O (To) under ¢ is an optimal triangle for m. Moreover,

)\‘1 ﬁz

)\2 i 114 < < ,
— C
)\2 = p¢7r(TO) — =2 )\

/
— and ¢
A !

1
)\2 1
C1|—

< hor() < €2 (2.71)

hold, with c1,cy and ¢, ¢, being constants depending only on the triangle Ty, and

A1, Ao the eigenvalues of Qr as described in (2.32) and (2.2).

Proof. By using (2.44), we have
w, = sign(A;)|det 7T|_%7T o ¢y

Since the determinant of ¢, is equal to one, the image T' = ¢.(T}) of a triangle
Ty of unit area is also of unit area. Next, since sign(A;)|det 7|72 is a constant,

by using the linearity of I and its property in (2.12), we find that

er,(wr) = er, (sign(A1)| det W\’%W o qbﬂ) = | det 7T|’%eTO (7m0 ¢r)
1 1
= [detm|"2|[m 0 ¢ — Iy (7 0 O )1y (z0) = [ det w| 72| (m = I57) © brl 1, ()

1
= |det 7|2 |m — Ipm|| 1,7y,
from which we immediately see that

inf er(w,) = |det 7T|_% inf ez (),
IT|=1 |T|=1

thereby proving that for any optimal triangle T} for w,, its image T = ¢.(Tp) is

an optimal triangle for 7.

Given an edge-vector ey = [zg yo|" of an optimal triangle Ty € A,(w,), we
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have

Az, Mz Ao [i It
()] = ||| B3+ |—| 2 <|=| Jrd+ g < || ho,
|9 (€0)] $)\1 0TI, yo_)\l 0 yo_)\l 0
where hg is the diameter of Tp, thereby proving that hy 7y < ¢ i—j 4, with
¢y = hg. Choosing an edge eq such that |zq| # 0, we obtain
pE:
2ol < [6n (o)l <
Since |xg| > po always holds for an appropriate edge ey, we prove that ¢; i—f

hg.,.cry, with ¢; = pg. The rest of the proof follows easily by noticing that, for an

optimal triangle 7 whose area is one, we have py_(1) = 2/hg.(1)- O

Observing from the definition of w, in (2.42), an optimal triangle for 7 is
related to the eigenvalues and eigenvectors of ),. The same features are found

in the constructions in [2, 3, 27].

For any non-degenerate homogeneous polynomial 7, define the set A, by

Ap, if det 7 > 0;
A= (2.72)

A1, otherwise.

10
} where

where Ay and A; are defined in (2.68) and (2.70). Since Q, = [0 .
e = sign(det ), we deduce from (2.67) and (2.69) that, for any matrix A € A,,

t A'Q, A, with A € Ay, if detw > 0,
A'Qp, A=
A'Q, A, with A € A;, otherwise,

= Qo (2.73)

that is, A is @, -orthogonal.
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Corollary 2.4.6. Given a quadratic polynomial 7, let w, be defined as in (2.43)
and ¢ as in (2.42). For any optimal triangle Ty € A,(w,) and any linear map
Ga, with A € Ay, the triangle (¢, o ¢4)(Th) is optimal for m.

Proof. Since any matrix A € A, is Q) -orthogonal, Lemma 2.4.2 yields that

| — Iy @r| L, (1) = |©r — Iy@nl|L, (1)

where T = ATy = ¢pa(1p). Since w, € A,(w,), we have that ¢p4(Tp) € Ay(wy).
We deduce from Lemma 2.4.5 that ¢, (gb (T 0)) is an optimal triangle for 7. [

2.5 Approximation on nearly optimal triangles

In this section, we present estimations in L,-norm and Wpl—seminorm for the ap-
proximation error of a function on nearly optimal triangles. Our method for local
approximation is similar to the one from [29], we use the Hessian of the function
to perform a spectral analysis, so that the eigenvectors specify the stretching di-

rections, the eigenvalues dictate the aspect ratio, of the nearly-optimal triangles.

Given a point z € Q and a function f € C?(2), where € is a domain in R?,
we define the quadratic polynomial 7, by

1 1
ma(wy) = S DRS()a + D2 oy + S DL (P wy e, (274)

and the corresponding modulus of continuity of the function z — 7, by

w(r):= sup ||, —m|, r>0. (2.75)
z—2||<r
”z,z’enﬁ

The non-decreasing function w(r) is of great use in Section 3.2 for the triangu-
lation of §2. Also, it will appear in Section 3.4 for the study of asymptotic error
estimates. Observe that the matrix Q.. (defined in (2.1)) associated with 7, is

equal to 2H(z), with Hy denoting the Hessian matrix of f.

27



We say that a triangle T' C €0 is nearly-optimal if it is an optimal triangle
for the quadratic polynomial 7,, with some 2z € €) close to the barycenter by of
T. Recall that the error does not change by translation of the triangle. Thus
we can design and use nearly-optimal triangles in the neighborhood of the origin.
Except in the case of estimating the derivatives of the approximation errors on

nearly-optimal triangles, we shall not use classical estimations.

2.5.1 L,-norm error bounds

Considering a fixed triangle 7', let er be defined as in (2.14). For any point

z € R?, a simple triangular inequality shows that

1f = Irfllo,y = I(f = 7) = Io(f — 7)) + 172 — Irma|| )
S €T(f — 7Tz) -+ €T(7TZ). (276)

The first term on the right hand side of (2.76) can be estimated by us-
ing Lemma 2.5.2 below, whereas the second term can be estimated by using

Lemma 2.5.3. Both of these results have some similarities with the results in

[2, 29).

Lemma 2.5.1. Let ¢, denote the linear polynomial in the Taylor expansion of

feC*Q) at a point z € T. With 7, defined as in (2.74), we have

1f = (ps + 7wy < hpw(her).

Proof. Let zy,z1 € T be fixed and consider the function g(t) = f(zo +t(z1 — 20)).
Since f € C2(T), it is clear that g € C2([0,1]). Denoting by g™, m = 0, 1, the

m-th derivative of g, the integral form of the Taylor expansion at 0 is given by

9(6) = 9(0) + g0 O}t + 5 [ 9P )0 - 5)ds, 2.17)
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where, by writing 2o = (20, ¥0), 21 = (21,¥1) and z; = 29 + s(z1 — 20), s € [0, 1],

g (s) =(x1 — 20) Do f (25) + (y1 — y0) Dy f (2:), (2.78)
gP(s) =(x1 — 20)> D2, f(2:) + 2(x1 — o) (y1 — yo) D2y f (25)
+ (1 — y0)* D2, f (25). (2.79)

Noting that ¢, (z1,51) = f(20) + (#1 — 20) Do f (20) + (11 — y0) Dy f(20) = gV (0)
and that f(z1) = ¢g(1), we deduce from (2.77) that

f1) = pualer) = [ 4P ()1 = s)ds. (280)

With z, = (z4,ys), define the function ¢, (z,y) = 7, (r — x5,y — ys). We use
(2.79) to deduce that

Fe1) = () = g (20) =2 [ (el = 20) = 0y 2)) (1 = 9)ds
= | 1 (7er(1 = 20) = a1 = 20) ) (1 = )ds. (281)

Observe that for any m € Hy and any z = (z,y) € Q, clearly |7 (2)| < ||7||(|z|* +
lzy| + |y|?) < ||I7]||z|>. Thus, since |21 — 2| < diam(T), for all s € [0, 1],
2

72 (21 = 20) — o (21 = 20)| < |72, — s []21 — 20]* < w(diam(T)) diam(7')*.

Noticing that (2.81) holds for any z; € T, and also that 2 [} (1 — s)ds = 1, we
deduce that || f — ¢, — Vs || Loy < w(diam(T)) diam(T)>. O

The proof of Lemma 2.5.2 below is inspired from the proofs of results in [29].

Lemma 2.5.2. For any f € C?(Q) and any triangle T C €,
er(f—m,) < 2h2w(h)\T|i, zeT.

Proof. Let ¢, be the linear polynomial in the Taylor expansion of f at z, z € T,
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it satisfies v, = Irp,. We thereby have that

er(f—m.) =|(f =7 —¢.) = In(f — 72 — )|l 1)
<|f =7 — @)l + Hr(f — 72 — @)L,
1
LT || f — 7 — @l L)

<2|T|7 h2w(h),
by virtue of Lemma 2.5.1 and (2.13). O

In Lemma 2.5.2, the difference f — 7, is bounded by a factor times w(hy)
which may be very small if f behaves like 7, in the neighborhood of z. We shall
come back to this in Chapter 3.

We are now interested in the approximation error er(m,) with the condition
that T is an scaled and translated version of an optimal triangle for m; for some
t € Q. Generally T is not optimal for m;, however if z and t are close to one
another, we can bound er(7,) by using the result below which is also inspired

from the proof of [29, Proposition 3.2].

Lemma 2.5.3. Givent € Q, let T = 1Ty + t; where Ty € A,(m), with ¢; a

non-zero scaling factor and t1 a translation vector. Then, for any z € €,
1
er(m.) < (Ky(r.) + Chiw(|z — 1)) T, (2.82)
where the shape function K, is defined in (2.53) and C an absolute constant.

Proof. Note that T is of unit area. By using Lemma 2.1.2 and Lemma 2.4.1,

there is a constant C' such that

en, () < ex,(m) + Chy|Im. — m|| = Kp(m) + Chi, [Im. —

< Kp(m.) + 2Ch3, |m. — m|| < Kp(m.) + 2Chj,w(]z — t]). (2.83)

Note also that |T| = |e;Ty| = ¢2. Writing t; = [x; y1]%, the change of variable
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x,y) = (c1x + 21, c1y + 1) has its Jacobian equal to ¢ = |T'|, hence
1

1

P 1
er(m.) = (/T o'l (w,y) — fToﬂz(x,y)\plT\dxdy) = en ()| |7,
0

which, together with (2.83), yields (2.82). O

Remark 2.5.1. Choosing z =t in (2.82) and using (2.54), and with w, defined

as in (2.43), we obtain

1 1 1
er(m.) < Ky(w,)|T)""7/| det .| = §Kp(wﬂz)|T|Php\/ | det 7| (2.84)

In the above estimation, the triangle T" = ¢; Ty + t; is a scaled and translated ver-
sion of an optimal triangle 7y € A,(7,). On such a triangle, a similar estimation

to (2.84) is given by part (i) of Proposition 2.3.5,

er(m.) < Chpa(T)|T|7 hpy/| det .|, (2.85)

where p,_ (T') is a constant since the measure p,_, which is defined in (2.39), is
invariant under translation and scaling by a constant of the triangle so that, by

using (2.45),

pr(T) = P, (¢;j(01T0 + tl)) = P, (@;1 (Cﬂbnz (T) + tl))

= pey (T + 071 (1)) = pe (D),

where Ty = ¢, (T), with T € A,(w,.). Observe that, if det 7, > 0 for all 2, then

pewr. (T) is a constant since T is equilateral.

Coming back now to estimating the error on a nearly-optimal triangle, we

have the following result. A similar estimation to (2.86) can be found in [29].

Proposition 2.5.4. Given t € €, let T = Iy + t1 where ¢; is a non-zero

constant, t1 a translation vector and Ty € Ay(m). Then, for any z € T,

If = I fleym < (Kplm) + Cho(ma{]z = . he}) ) ITI3, (286)
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with the function w defined in (2.75), and C' an absolute constant.

Proof. By using (2.76), together with Lemmas 2.5.3 and 2.5.2,
1 1
IF = ISl < (Ko(m.) + Chaalz — D) [TV + 20 ew(h)| T,

holds. Since ¢; = |T|2 and hy = cihy,, we find that h3 = |T|h3,. Inserting this

into the above inequality yields

1 1
1f = Irfllyr) < (Bp(m) + Cleo(lz — )T + 20 w(h) ]

< (Kp<ﬂ'z) + (C + 2)h%0w(max{\z — 1, hT})) \T|1+%,
which proves (2.86). O

The result in Proposition 2.5.4 is important in Section 3.4.1 in order to obtain
the asymptotic L,-norm of the error resulting from the approximation of f €

C?*(€) on an anisotropic triangulation A, of 2.

2.5.2 Sobolev seminorm error bounds

Many areas in numerical analysis require the study of derivatives for a given
approximation problem. In this view, we are interested in estimating the Wz}—
seminorm of the error resulting from the approximation of a function on a given
triangle. The results here are essential for Chapter 3 in order to derive the

asymptotic estimation in W, -seminorm.

First we impose no restriction on a given triangle 7. Recall that h, p are the
diameter and smallest height of 7', and the unit vectors o, 0, are defined on

page 18. The following lemma is a consequence of Lemma 2.2.2.

Lemma 2.5.5. Consider a function f € W2(T) and a pair (o, T) of orthonormal

vectors. With n € [0,2x] denoting the angle between o and o,

\f=Irflwyr) S (h+P| Sin77|)|Daf|W,}(T) + (P+ hi Siﬂ77|)|Drf|W,}(T)a (2.87)
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with constant depending only on the mazximum interior angle v(T) of T.

Proof. From the definition of directional derivatives, we have that
D, f=costhD,f +sin0,D,f, Dy, f=—sin0,D,f+ costhD,f,

with 6; € [0,27] being the angle between the z-axis and o). Observe that the
derivatives in z- and y- directions can be expressed in terms of the derivatives in

the directions of a given pair of orthonormal vectors (o, 7),
D,f =cos0yDyf —sinthD.f, D,f =sinthDyf + costrD,f,
where 0, € [0, 27] is the angle between the z-axis and o. It follows that

Dy, f=cos(0y —02) Dy f —sin(6y — 02) D, f
Da'pf = Sil’l(@l — ‘92)Da-f + COS(91 — ‘92)D7-f

With 7 denoting the angle between o and o, simple triangular inequalities yield

| Do, flwpr) < | Do flwicry + | sinn||Dr flwir),

| Do, flwacry < |sinn|| Do flwicr) + | Dr flwp )

Substituting the above expressions into (2.20) yields

|f = It flwir) f,h(\Daf\W,}(T) + | Sin77||DTf\W,}(T))
+ p(| sl [ Do flwy ) + [Dr flavycr))

=(h+ plsinn|)| Do flwsery + (p + Bl sinn] ) Dr flwsr),
thereby proving the result. Ol

Our first objective is to express the terms [ Dy f|w1(r) and | D+ flwi(r) in (2.87)
by using the eigenvalues of a quadratic polynomial = whose Hessian is sufficiently

close to the Hessian of f on a triangle T'. To this end, we provide below some

63



relations between the derivatives in o, 7 directions and the derivatives in z- and

y- directions, the latter being the axes of the standard Cartesian system.

Lemma 2.5.6. Given a counterclockwise rotation matriz Ry of angle 0, denote

its columns vectors by o, T. The following equalities of functions hold,

Da:a:(f © RG) = (DO'O'f) o R97
Dyy(f o Rg) = (Drrf) o Ry,
Dyy(f o Rp) = (Dor ) © Ro.

Proof. Using the differentiation rule for composite functions and using the nota-

tions x = cos fx — sin fy and y = sin 0z + cos Oy where =,y € R, we have

Dy (f o Ro)(x,y) =Duf(2,y) = cos 0(Dy f)(,y) +sin6(Dy f)(, y)

=(D, f)(cos 0z — sin Oy, sin Oz + cos Oy),

by virtue of the fact that D, f = cos 0D, f +sin0D, f. A repeated process of the

above equality yields

Do (Dx(f 0 Rg)) = Da((Dof) 0 Ry) = (Do(Dof)) © Ry

The same argument is applied to prove the rest of the result. O

Let us now impose a condition on the target function f € C?*() which we
shall use in Chapter 3. Let (o, 7) be any pair of orthonormal vectors, z, € €2 and
B(zp,d) the ball centered at z, and with radius d > 0. Suppose that there exists

a small number v > 0 such that, for any z < B(z, d),
| D5 f(20) — D f(2)| < v, (2.88)

holds, with i,j € {o, 7}. The above condition implies that the second derivatives
of f do not significantly change in the neighborhood of z (also assumed in [2,

3, 29]), allowing us to view f locally as the homogeneous quadratic polynomial
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T = T, In the result below, we derive estimations involving the eigenvalues of

Q-

Proposition 2.5.7. Consider a function f € C*(T) where T C B(zg,d) for some
20 € Q and d > 0, and assume that (2.88) holds for a sufficiently small number

v > 0. Then, with 7 := m,,, we have

|7 —m.|| <v, forall z€T, (2.89)

where || - || is the norm on Hy defined in (2.3). With A\, Ay such that |\1]| < |Ag]

being the eigenvalues of the matriz Q, defined in (2.2), we have

1
=T flwya S (20l + plal + 80 ) T (2.90)
1
If, moreover, & ~ i—; * | then

|f = Inflwyery S (/] det x| + 8v)h|T]>. (2.91)
The constants in both (2.90) and (2.91) depend only on v(T).

Proof. The result in (2.89) is straightforward. Consider a pair (o, 7) of orthonor-
mal vectors. Given a point z € T, (2.88) implies that |Dff(2) — Diz(z)| < v
so that | D f(2)| < |Djm(z)| + v for all i,j € {o, 7}. With 5 € [0,27] denoting
the angle between o and o, and since from (1.22) VDo f||1,(ry < |Do flwi(r),
Lemma 2.5.5 yields

1 = Inflwy S (ot plsimn( [ (ID2, £GP + D2, £(2)F) dz)"
+ o+ nlsina( [ (ID2 £GP + D2, £()F) dz)”
S+ plsingl) ([ (102,71 + v + (D2, r()] +v)?) dz)”

+ (o hlsina) ([ (D22 +0)? + (1D2a(2)] +v)?) )"
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Observe that, with A\, Ay and U, being as in (2.1) and (2.2), for any z,y € R,

A0
™o Uﬂ(x7 y) - [‘T y] { 01 )\2] [‘T y]t = )\LT2 + )\292>

which, together with Lemma 2.5.6, yields

D3, (w0 Un)(,y) = (Dggm) 0 Ux(w, y) = Ar,
2
Dyy(ﬂ- o UF)($7y) = (Dz‘rﬂ-) © Uﬂ(xvy) = )‘27

2 (2 _
ny(’ﬂ' ° UW)(xv y) _ (Da"rﬂ-) o U7T<x7 y) = 0.
By considering the triangle Ty = U_-(T), we have |Ty| = |T'| and

1 = Irflwyery S (et plsinal) ([ ((1(D2m) 0 Uno)] +)°

+ (D7) 0 Uan(2)] + V)2)§d2> " 4 (p+ h|sinn))

P

</T (((D37m) 0 Ur(2)] +v)* + (I(D2,7) 0 Un(2)] + V)Q)%dz)

—|To|7 <(h +pl sinnl) (M| +2)* + 1/2)% + (o + hlsinn]) (Ao +v)? + 1/2)%>

<IT (b + plsinal) Dl + (p+ hlsingl) el + 20k + p) (1+ [sing]) ),

with constant depending only on «(7'). Since the above result holds for any pair

(o, T), we can choose (o, T) = (0,,0},) so that n = 0. Hence (2.90).

By factorizing h in (2.90), we obtain

1
1 = Irflwyery S (2] + Fal + 8 ) T

ML 1
< (2|m2|% + 0|2 +8u>h\T|5
2

< ((2 O A|E + 8u)h\T|%,

which proves the result in (2.91). O
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1
A|2

5| is satisfied by triangles obtained by Lemma 2.4.5 by

The condition % ~

using optimal or nearly-optimal triangles. This condition is also satisfied for the

4

Q
1

triangle considered in Example 2.3.2, with h; = h = and p = hy = /\2

We obtain the following results for nearly-optimal triangles.

Corollary 2.5.8. Under the conditions of Proposition 2.5.7, suppose that T =
1Ty + t1 is a scaled and translated version of an optimal triangle Ty € A, (),

where ¢ 18 a non-zero constant and ty a translation vector. Then,
1
|f = Inflwyry S (/] det x| + 8v)R|T]7. (2.92)

If, moreover, v < /| det x|, then

1 = Irflwyr) < | detal Q1317135 (2.93)
The constants in both (2.92) and (2.93) depend only on v(T).

Proof. Since h = ¢1hr, and p = ¢1pg,, we deduce from (2.71) that

ﬁ%
Ao

P Py

—_ = —

h hy,

Y

where A\, Ay are the eigenvalues of the matrix @),. Using Proposition 2.5.7, we

deduce from (2.91) that

|f = I flwyr) (\/|det7r|+8u)h|T\p

with constant depending only on (7).

In the case where v < /| det |, the fact that | det w| = |A\;A2| and

1 h 1,1
h|T\5:\/_(;) |25 ER (2.94)
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shows that

X

1
1 1 1.1 1 1 1.1
|f =1z flwpr) S Y Mol 2[T|2 7% = | det w|1]| QI3 T2 77,

thereby proving the result in (2.93). O

The condition in (2.88) characterizes the partition into sub-squares of a square

domain ) in Section 3.2.2.

The estimations in Corollary 2.5.8 use a nearly-optimal triangle 7" whose di-

1
Ao |4

1

ameter is h ~ where i, Ay are the eigenvalues of 7. In the case where f is

actually a homogeneous quadratic polynomial, as such f = 7, due to the equiva-
lence in (2.94) and the fact that v = 0, it is sufficient to use (2.92) to obtain the

estimation
1 3,1
I = Irmlwiry S Il 3T (2.95)

On the other hand, for a nearly-optimal triangle 7" whose measure of non-degeneracy

pr(T) is bounded by a constant, we deduce from Proposition 2.3.5 that
7 = Irmlwyry < OO + )3/ det wl[T]% < '] [2a3[T17,

for some constants C' and C”, thereby achieving a similar estimation as in (2.95).

2.6 Approximation on non-optimal triangles.

In general, there is no method as to know whether a given triangle 7" is nearly-
optimal for some 7, or not. The L,-norm estimations do not suffer from this

since we use (2.18) for m = 0 to obtain

If = Irfll,) < CR?[flwz, @), (2.96)
where C' is an absolute constant.
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Our goal in this section is to provide Wz}—seminorm estimations for the ap-
proximation error on triangles which are not nearly-optimal. The results in this
section are of great use in Section 3.4.4 in order to estimate the Wpl-seminorm of

the errors on the so-called interface triangles.

2.6.1 Using invertible affine maps

Instead of ensuring that the maximum interior angle v(7') of a triangle 7' is far
from the flat angle, suppose that there exists a linear map ¢ such that cond(y) is
bounded and v(¢~1(T)) is far from the flat angle. It is necessary to assume that
the condition number is bounded since otherwise such linear map always exists.

We have the following result.

Lemma 2.6.1. Given a triangle T', let ¢ be an invertible affine map. Then, for

any function f € C*(T), we have

|f = Ir flwyery < cond(9)?h flwzr), (2.97)

with constant depending only on the mazximum angle 7<g0*1(T)).

Proof. Let the matrix associated with ¢ be written as M = U B 2

and V' are rotation matrices, and |a|, |b| the singular values of M. Since rotation

] V't where U

does not change the interior angles of a triangle, we can assume without loss of
generality that V' = I. Consider the change of variables (z,y) = ¢(z,y). Since

U is a rotation matrix of some angle 6,

a 0
0 b

cos —sinf

ol7.9) = | Zgl + [ ) = [e@ ) ea@p)], (298)

sinf cosf

where ¢1(Z,y) = acosfz — bsinfy + t; and o(Z,y) = asinz + bcos Oy + t,
with t = [t; t5]' € R? is the translation vector associated with ¢. We define the
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function f := f — Iy f which satisfies

[un

P

Fwgery S ([ (1DeF @ ) +1D, fla,) ) dady

P

= ([ 1abl(1(D20) 0 @ D) +1(Dyf) o ol p) ) daas) s (2:99)

where T = ¢~ 1(T). Using the differentiation rules for the composite function

A

f oy, whose variables are z,y, we have
Di:(f o @)(fa?j) = (sz) o (p([i‘,’g) racost + (Dyf) © @(:f,@) ' a’Sinea
Dy(fop)(@.§) =—(Duf)ow(@y) bsing + (D,f) o w(z,5) - beos,

or, equivalently,

A A

(D$f>090('f7g> :Df<f090><'f7g> 'bCOSG_Dﬂ(fO¢)<j7g) -asin@,

(Dyf)ow(a?,gj) :Df<f090><'f7g> bS1n9+D§(fO¢)<j7g) ~acost.

Recalling that f = f — I f, substituting the above expressions into (2.99) yields

[un

P

17 = Il S [ bl (1Do(F 0 0)(@,5) P8 +1Dy(f 0 (2.5 a?) " didy )

1, A
S max{lal, |b[}ab[7 | f o lw.z)- (2.100)

Since f o = (fop) — I+(f o ¢), we can estimate |f o ‘P|W;(T) by using (2.20)

with (0,7) := (04, 0,.), and obtain from (2.100) that,

|f = I flwyry S max{]al, [b]}ab]?|(f o @) = I7(f o @)lwy(p)
1
S max{lal, [bHabl? (el D2, (f @)l cr

+ hTHD?ﬁ(f © <P)||LP(T) + pTHDng(f ° S0)||L,,(T))> (2.101)

with constant depending on (7). The norms || D2, (fo)l|r iy, [1Dz:(fo)llr, )
and [[D2.(f o )|z, need to be evaluated. First, we express Ds(f o @) and
Dz(f o) as linear combinations of Dz(f o ¢) and Dy(f o ¢), that is, there is an
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angle 6 such that

Ds(f o) = Dz(fop)-cosd+ Dy(fop)-sind,

D:(fop)=—Dz(foy)-sind+ Dy(fop)-cosb.
Recalling from (2.98) that ¢ = (1, 2), we find that

_ W(Dm 0 p(Z,7) + W@J ) o (7. 7)

=acosO(D,f)op(z,y)+asinb(D,f) o p(z,y),

8 1 777 = 8 2 7’7 T 1
= 288D (D, ) o gl + AP (D, o o(a.)
= —bsin (D, f) 0 (%, 5) + beos O(Dy f) o p(z, §)-

Dy(f o ¢)(z,9)

With Ay, = acosfcosf — bsinfsiné, A5 = asinfcosd + bcosfsinf and also

Ay = —(acostinéJr bsin@cosﬁ_), Agy = —asinfsinf + bcos f cos b,

D5(f o) =An(D.f)op+ Aa(Dyf) o,
Dz(fop) = An(Dyf) o p+ Axn(Dyf) o p.

It immediately follows that

DZ,(f 0 ¢) =Ds(An(D.f) 0 9+ A1a(Dyf) 0 ¢)
=An (AH(Dsz) °®+ A12(D33yf) ° @)
+ Ao (An(Diyf) @+ A12(D§yf) © 90)

=A% (D2, f) 0 0+ 2411 A1n(D3, f) o o+ AL(Dy f) o, (2.102)
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D2,(f 0 ¢) =Ds(Ann(Dof) 0 o + Ana(Dyf) o ¢)
=An(An(DLf) o0+ An(D2 ) o)
+ s (A(D2,£) 0+ A(D3 ) o o)
=A11Ap1 (D2, f) 0 ¢ + (An1 A1z + A1 An) (D2, f) 0
+ A An(D2,f) o o, (2.103)

D2(f o) =Dz (A (Dxf) 0 ¢ + Ann(Dyf) 0 )
=Ay <A21(Dixf) o+ A22(D92;yf) o @)
+ Ag (A21<D§yf) oY+ A22(D§yf> ° 90)

=A3(D2,f) 0 0+ 24 Ass (D2 f) 0 o+ A3y (D2 f)op.  (2.104)
Since max{|A11|, |A12], |A21|, |A2|} < 2max{|al, |b]}, we easily prove that

max{ D2,(f © 1,29, 1D2:(F © D20 1D3(f © 0, }
<16 max{|al, |b|}?
max {[(D2,.£) © @l ry D2, ) © @l iy, N(DZ 1) 0 sy
— 16 max{fal [}2lab| 5 max { | D2.S 1,0 102, ey co0. 103,y

1
<16 max{|al, [b|}*[ab| v flwz).-
The estimation in (2.101) now reads

|f = Ir flwpry S max{|al, [} hz| flwzer).-

We are now left to estimate hy. By virtue of the fact that translation vec-

tors do not change the edge-vectors of a triangle, for any edge-vector e of T,

1
(/)a 1(/]b]U_1(e)- We deduce that [[p~t(e)]| <

we observe that p~!(e) = i
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by TAX {‘7}”, ﬁ}”e” Hence

— Irflwim S hr|flwar)-
=T lwyn = min{|al, [b|} |ab| vl flwgr)

Combining this with the above estimation yields the result in (2.97). O

In the case where the interior angles of T" are far from =, the map ¢ is the

identity function so that a = b =1 and thus

\f = Irflwaery S Bl flwzcr),

which is obtainable from (2.20).

In the example below, we show what happens when we use the map ¢ given

by (2.8).

Example 2.6.1. Let 7" be a fixed triangle. Given a triangle T, there always
exists an affine map ¢ such that p(7y) = T'. Choosing T} as the reference triangle
T in Figure 2.2, the affine map ¢ is given by (2.8). For the associated matrix M
given in (2.9), its singular values are given by /A1, v/Ay in (2.24) and (2.25), they
satisfy v/A; ~ h and /Ay ~ p where h is the diameter of T and p its smallest
height. Since T is fixed, the constant depending on its maximum interior angle

as shown in (2.97) becomes an absolute constant. Thus

A h3
\f = Irflwyr) < CA—;h|f\wg(T) < C/?\ﬂwg(n, (2.105)

where C' and C’ are absolute constants. This is weaker than the standard esti-

mation in (2.18).

2.6.2 Using quadratic polynomials

Given a triangle T C © and a function f € C?*(T), our aim is to estimate the
Wpl—seminorm of the error f — Iy f by using homogeneous quadratic polynomials

as shown in (2.106) below, instead of ensuring that the maximum angle ~(7)
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is far from the angle w. The methods presented here can be applied when the
Hessian of f does not vary much on T (e.g. if f satisfies (2.88)), that is, the

Hessian Hy can be represented by a homogeneous quadratic polynomial in Hs.

Given a homogeneous quadratic polynomial 7 € Hs,
f=Irf=(f-n)=Ir(f —7) + 7 — IrT. (2.106)

By using (2.18), there is a constant C' such that

h2
(f = m) = Fr(f = mhwgery < O1f = whwzeo) (2.107)

with A and p being the length scales of T'. Since we assume that 7" is an arbitrary

triangle which is not nearly-optimal, the ratio % can be unbounded.

We now use Proposition 2.3.5 to obtain that

|7 — Irmlwiry < Copx(T)A|T|7 /| det 7], (2.108)

for some constant C5, where the measure of non-degeneracy p, is defined in
(2.39). For convenience, we denote by C' the maximum between C' and Cs, so

that combining (2.107) and (2.108) yields

h 1
£ = Infhwyen < C(21F = whwz ) + o(T) | detn] i

h 1
_ c(; ma | — ] + pr(T) \dem\)hmz (2.109)

with ||| denoting the maximum coefficient of 7. The result below is obtained

by choosing m = 7, for some point z € T

Proposition 2.6.2. Let z € T be any point of a triangle T. Given a function
f € C*(T), there is an absolute constant C' such that

h 1
\f = Irflwyr) < C(;W(h) + pr.(T)y/| det 7Tz|>h|T|”- (2.110)
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Proof. Noting that

= < "—2z|) < :
max || — 7. < wimax |2’ —z[) < w(h), (2.111)
the result in (2.110) follows from (2.109). O

Similar to the estimation | f —I7 fwi(r) < Ch—;\f|W3(T) obtainable from (2.18),
the ratio %w(h) in (2.110) can be problematic when the smallest height p is small.
However it does give O(h) estimates for moderately anisotropic triangles for which
hw(h) < Cip and pr (T) < Cy. For example when f € C3(T') the mean value

theorem for the second derivatives of f yields
HTrZ - TrZ/H S |Z - z/Hf|W§O(T)7 272/ eT.

This implies that for all 7 > 0, we have w(r) < r|f|ws ). Hence %w(h) <
h;| flws ) and O(h) estimate holds when h; is bounded which allows aspect
ho_ 1

i h o h 1
ratio up to o W

In the example below, we illustrate (2.110) in the setting of Example 2.3.2.

Example 2.6.2. Suppose that 7. (x,y) = ax?® + by? at a point z € A. We use
the same settings as in Example 2.3.2 but with 7 = 7,. In addition, suppose that
there is a constant Cy so that w(h) < CylA\| = Cpla| holds, with || # 0 being

the smallest (in absolute value) eigenvalues of @),.. Thus

b

L 1
~|"lal = |ab|2.
a

Sa(l) 5|

1
4
)

By using Proposition 2.6.2, with h ~ ‘2

1
77 < |alib)3 T,

1b
|f = I flwyr) < labl? o

the constant in the inequalities are absolute. For comparison, the estimation from
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(2.18) gives

h2

b2
\f = Irflwyr) < Cg\ﬂwgm S ‘5 N flwzery,s

which is unbounded as @ — 0. Moreover, the estimation in (2.87) cannot be
applied when a is very small and b large in which case the triangle T presents a

big interior angle, although the expected bound shows

1
D2 flws ey,

T 2 a
| Dz flwpry + ’g

b
\f = Irflwir) S ‘—
P a

with constant depending on the maximum interior angle of T'.
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CHAPTER 3

ASYMPTOTICALLY OPTIMAL
INTERPOLATION BY PIECEWISE

LINEAR POLYNOMIALS

In this chapter, the target function f is approximated on a square domain €2 C
R? which we triangulate according to the properties of f, that is, by using the
eigenvalues and eigenvectors of the Hessian H; at some pre-selected points. We

assume that f € C%(Q) is strictly convex (or concave) on (.

It is known that the approximation order in L,-norm (p € [1, 00]) of a piece-
wise linear approximation on a triangulation Ay cannot be better than O(N 1)
(see [16]), where N is the bound on the number of triangles. This order can easily
be achieved (by using the estimation (2.18)), for instance, on uniform triangula-

tions where the diameter hy := maxpea, hp satisfies h3 ~ N1

If = fnll,@ < ONTYHylln, @), (3.1)

where fy is the approximant of f by using Ay, and where || Hy|[z, @) = |f|W3(Q).
The improvement of the estimation with respect to the L,-norm on the right

hand side of (3.1) has been addressed by many papers. For instance, in [12], the

7



estimation below is achieved for f € C?(Q),

1f = Il < CN@|| {det Hyl| 1, 0, (3.2)

where Q C R?, d > 2, and C is independent of f, with % = %—l—%, and H; denoting
a magjorizing Hessian matrix for f which is the same as the Hessian matrix H if
f is a strictly convex function. In the case where d = 2 and f is a strictly convex

function, clearly, (3.2) improves on (3.1) by virtue of

[\/det Hell L, < [ly/det Hyllz, @) < [Hfllz,),

where % =1+ %. However, the expression of the constant C' in (3.2) is generally
unknown. For d = 2, several papers considered the question of designing triangu-
lations where the error of interpolation has the best possible asymptotic constant
in the sense of limsup. For strictly convex functions, the smallest possible con-
stant and its exact expression has been found in [3]: Amongst all triangulations

Ay of at most N triangles, it is proved that

. . Cy
ngﬂooN(glg If = fN||Lp(Q)) =~ lydet Hllr,) (3.3)

where C}f is the value of the L,-norm best approximation of the polynomial
mo(x,y) = x® + y* over all equilateral triangles of unit area. The case p = oo is
treated in [2] where slight changes occur on the right hand side of (3.3). Namely,

q becomes 1 and C}f becomes a constant equivalent to 14-o(1) as N — oo.

The extension of (3.3), for the case where the approximant® f,, y is a piecewise
polynomial of order m — 1, with m > 2, and where the function f € C™(Q) is
not necessarily convex, has been developed in [29] where the estimation is of the
form

amf

hﬁfip N2 f = fonllr,@ < HKmvp< m )

(3.4)

Lo(®)

! Interpolating the target function at specific points of the triangulation by using barycentric
coordinates.
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where é =9+ %, the notation d™f denotes the m-th derivative of f, and where
K, p(m) is the value of the L,-norm best approximation over all triangles of unit
area of a homogeneous polynomial 7 of degree m. Note that (3.4) is optimal in
the sense that its right hand side is a lower bound for a large class of admissible
triangulations. Note also that in the case m = 2, (3.4) coincides with (3.3).
Another extension, but with a different triangulation method (although still using
the patching strategy described in Section 3.1.1 below), is developed in [30] for
the W, -seminorm of the error,
d"f
)

. m—1
h]?f;pN z|f = fnlwpe) < HLm,p(—m

: (3.5)
L ()

where © = ™51 4 > and where Ly, () is the value of the W) -seminorm best

approximation over all triangles of unit area of a homogeneous polynomial 7 of

degree m. It is proved that (3.5) cannot be further improved.

In [2, 3], it is discussed that the problem of approximating a convex func-
tion f € C?(Q) by piecewise linear polynomials is related to the problem of
approximating convex bodies in R3 by inscribed polytopes. That is, designing
a triangulation is equivalent to inscribing a polytope. We refer the reader to

[6, 7, 25] for more details on this problem.

In [14, 31], the triangulation method is based on the so-called greedy algorithm
which iteratively constructs a sequence of nested triangulations (Ay)y>n, from
a given triangulation Ay,. The general idea consists in obtaining triangulations
which equidistribute the local errors between triangles. A triangle is then bisected
if it gives a local error greater than a prescribed tolerance. This, however, results
in a non-conforming triangulation. Nevertheless, for strictly convex functions,
the estimation (3.2) is also achieved (with d = 2), where the constant C' has no

exact expression.

We refer to [5] for a review of the rich literature on mesh generations and
optimal triangulations aimed at solving partial differential equations. In many

papers, the optimal triangulation is characterized by the metric induced by the
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Hessian [11, 12, 14, 31, 32]. The triangles of the triangulation are required to
have regular (or isotropic) shapes with respect to the metric used. The problem
of whether or not such a characterization can be applied to obtain asymptotically

optimal triangulations is still open.

It is also an open question whether both optimal estimates (3.4) and (3.5) can
be achieved simultaneously on the same sequence of triangulations. In this regard,
the purpose of this chapter is to design a sequence (Ayx)n>n, of anisotropic
triangulations (see Section 3.2) on which the optimal result in (3.3) is achieved,
and such that an asymptotic error estimation in Wpl—seminorm of optimal order
O(N~/2) can be derived. For any strictly convex f € C?(Q), we obtain the

asymptotic estimations

. P2f
limsup N|| f = fwllz, @) < HKP(—Q ) , (3.6)
N—oo Lq(2)

) 1 1 ENIE

limsup N=|f = flwpe) < Colf Kz K”(T)HLQ(Q)’ (3.7)

where 1 < p < o0, % = 1—1—1—1), C, is a constant depending on p, and K,, = K5 ,. The
asymptotic estimation in (3.6) is exactly the same as in (3.4) for m = 2. However,
the estimation in (3.7) is the first in W -seminorm estimation to be obtained when
using a sequence of triangulations which are designed to be optimal with respect

to the L,-norm.

The triangulation method which we present can be divided into two main
tasks: The first task consists in obtaining the so-called reqular regions, a similar
method as in [2, 3, 29, 30]. Obtaining regular regions consists in grouping triangles
that fit into initially prescribed sub-squares of 2. In our approach, the triangles
contained in a regular region are designed to be isosceles and such that their
directions of alignments, which are the directions of the eigenvalues of H at the
centers of the subs-squares, are well-conditioned. The triangles obtained from
regular regions are slightly modified optimal triangles and thus local errors are
easy to estimate. The second task, which is much more difficult and more delicate,

consists in obtaining the so-called irreqular polygons by extending the segments
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defining the regular regions (see Section 3.2.3). The triangles obtained from
irregular polygons can have various shapes, and we use the results in Section 2.6
to estimate the local errors. Various properties of our triangulation are provided

in Section 3.3.

The chapter is organized as follows. In Section 3.1, we review the patching
strategy and discuss the optimality of (3.3) and (3.4). In Section 3.2, we present
our construction method in order to produce a sequence of optimal triangula-
tions. It involves designing regular and irregular regions mentioned above. The
properties of the constructed triangulations are discussed in Section 3.3. They
include the estimation of the longest edge of an irregular triangle, the area cov-
ered by irregular regions, and the interior angles of the irregular regions after
the so-called back transformation. These properties are essential for the analyt-
ical proof of our asymptotic error estimations in Section 3.4, in both L,-norm
and W -seminorm, as shown in (3.6) and (3.7). We conclude the chapter with a

numerical illustration in Section 3.5.

3.1 Background

Let Q C R? be a bounded domain. In order to obtain (3.6), the anisotropic
triangulation Ay of €2 is constructed according to the properties of f. We present
here the principal ideas, as found in [2, 3] and [29] but using our settings, for the
construction of the anisotropic triangulation Ay. For simplicity, the domain 2

is assumed to be a square.

3.1.1 Triangulation by patching strategy

The domain € is divided into m? sub-squares S;, i = 1,...,m? of side length
r > 0. The parameter r is chosen small enough so that the second derivatives
of f do not significantly change on each S; (e.g. by using (2.88) with d = /2r).
On each sub-square §;, the function f is replaced by the quadratic polynomial
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Figure 3.1: Regular and irregular triangles obtained by patching strategy.

T;, where b; is the barycenter of S;. Recall that an optimal triangle for 7, is a

triangle on which the infimum

‘}I'l:fl 76, — Irm, ||, 1), (3.8)

is attained. The local error analysis developed in Chapter 2 is applied.

The first step consists in partitioning each sub-square S;, i = 1,...,m? into
polygons by copying and aligning side by side into S; the scaled versions of an
optimal triangle for m,. The areas covered by the copies of the scaled optimal
triangle are called reqular regions, and the remaining non-covered areas are called
the irreqular regions. One of the principal goals is to ensure that the area cov-
ered by irregular regions is significantly smaller than the area covered by regular

regions.

Naturally, the shapes and directions of the triangles inside the regular regions
are chosen depending on the Hessian H of the function. The irregular regions are
then partitioned by some method. For instance, in [29] it is suggested to use the
Delaunay triangulation, (see Figure 3.1). The emerging irregular triangles can
have arbitrary shapes and this is one of the reasons that deriving Wpl—seminorm
estimations are problematic: The diameters of the irregular triangles are easily
bounded and thus L,-norm estimations of the error can be obtained, however
there is no guarantee for the aspect ratios of the irregular triangles to be bounded,

nor that their interior angles should be far from the flat angle.
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In [29], the study of L,-norm asymptotic estimations does not depend on
the knowledge of the optimal triangles’ shapes, and it is only assumed that f €
C?*(€2). However, as shown in [3], when the Hessian H; is positive definite (which
is also our case in Section 3.2), it is known that (3.8) is attained on triangles
that are stretched and aligned in the directions of the eigenvectors of the matrix
associated with m,, thereby allowing for more practical triangulation algorithms
to be performed. Such a favorable attribute is difficult to achieve in the case of
indefinite H; since the shapes of triangles satisfying (3.8) are not fully known
(see Section 2.4.2).

3.1.2 Optimality

The optimality of (3.6) means that equality occurs when using a certain family
of triangulations (Ax)n>n,- In [29], the right hand side of (3.6) is proved to be a
lower bound when using a family of triangulations (Ax)n>n,, termed admissible,

satisfying the condition

sup h%: < CN™!, (3.9)

TEAN

where C' is a constant independent of N, and recalling that hy denotes the di-
ameter of the triangle 7'. Clearly the mesh size of a triangulation Ay belonging
to such family goes to zero as N grows. The condition in (3.9) is piqued by the

estimation of the difference of errors, for each T' € Ay,
1.9
ler(m.) —er(f)| < 2|T|»hzw(hr), z €T,

with w defined in (2.75). The above estimation is the pillar to proving the lower
asymptotic estimation which is obtained by summing up the errors over all tri-

angles in the triangulation.

By a different method, the optimality of (3.6) is proved in [3] by using a family
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of triangulations (Ayx)n>n, satisfying, for a given € > 0,

S T<e (3.10)

Teln(e)UJn(e)

where the subsets Iy(¢) and Jy(e) of Ay are defined by

C+
In(e) = {T: % > ﬁ;ﬂ |det7TZT|} and Jy(g) := {T thy > ﬁ},
with CF = infip—y |m — Irmol| L, (1) where mo(z,y) = 2* + 3*, and with 27 being
a point on the longest edge of T. The condition in (3.10) shows that the area

covered by triangles whose aspect ratios or diameters are uncontrollable is small.

Note that (3.9) and (3.10) are not necessarily linked to one another. In the
example below, we show that a uniform triangulation can satisfy both of the

conditions (3.9) and (3.10).

Example 3.1.1. Consider a family of uniform triangulations (Ay)y>2, where
each Ay is described as follows: Divide € into m? sub-squares of side length
r > 0, then divide each sub-square by its diagonal parallel to the vector [1 1].
Then the family of triangulations (Ay)y>2 satisfies (3.9). Indeed, since |Q| =
Sreay T = % and for each triangle T' € Ay we have hy = v/2r, clearly

sup hi = 4|QN".

TEAN

The aspect ratio of each triangle T' € Ay satisfies % = 2, thus given ¢ > 0

+
clearly Z—; =2> 162?];) \/| det 7,..| holds whenever ¢ satisfies

e < _ S2w(hr) (3.11)
Cry/ldet ., |

The term w(hy) = w(2y/|QN~2) which depends on the Hessian H; does not

necessarily have an explicit formula. In the case where f is a quadratic polynomial
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of the form f(z,y) = 22 + y?, det 7, = 1 for all 2z € 2, and since for any 2’ € €,

I, — sl = max{| D;, f(2) — D5 f ()], 1Dy, f(2) — Dy, f()]} =0,

clearly w(r) = 0 for all r and thus (3.11) can not hold for any & > 0, that is,
IN(E) = @

On the other hand, the condition for a triangle 7" to be in Jy(¢) is hy =
2\/|QIN"% > N4, that is, if e satisfies,

e <2\/|QIN1. (3.12)

Letting N. = (161—?‘21, for any N > N. we have ¢ > 2,/|Q|N~%, so that (3.12)
does not hold, that is, Jy(¢) = () independently of the properties of Hy. If f is
the quadratic polynomial mentioned above, then (Ay)y>o clearly satisfies (3.10)

for any ¢ > 0.

It is well known that isotropic triangulations (including the uniform ones)
do not necessarily provide the sharpest asymptotic estimations. In this regard,
anisotropic triangulations find interest in our study and we shall now present our

triangulation method.

3.2 Triangulation of the domain

In this section, we present a novel technique of anisotropic triangulation. The
initial procedures are similar to those found in [2, 3, 29, 30] in order to obtain
regular regions. However, the triangles that form these regions will be isosceles.
Also, instead of using the patching strategy (see Section 3.1.1) that connects the
vertices of non-regular regions, the vertices of the regular regions will be connected

to other ones by extending the segments that define the regular regions.

2 2

The square domain €2 is divided into m? auxiliary sub-squares S;, 7 = 1,...,m?",

2

of side length r > 0. For each ¢ = 1,...,m*, we denote by b; the barycenter of
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the sub-square S;. As before, the parameter r is chosen small enough so that
the second derivatives of f do not significantly change on each sub-square. The
regular region contained in S; is described in Section 3.2.2 by using the shifts of
a scaled version of an optimal triangle T; for m,,. The characteristics of each 7;

are described in the sections below.

We denote by A1, A2 ; the eigenvalues of the matrix Qr, , with i € {1,...,m?},
described as in (2.1) and (2.2). We assume that there is a constant dy € (0, 1)
such that, for all i € {1,..., m?},

5 < |Awil. (3.13)

The above condition simply means that f is strictly convex. Such an assumption
can be found in [2, 3, 31], but not in [29, 30] where the results hold for any smooth
function f € C?%(Q).

We also use the following assumption (same as in (2.88) with v = w(y/2r)):

Given a pair of orthonormal vectors (o, 7), for any z < B(bg, vV2r), k = 1,...,m?,

| Dif(br) — D f(2)] < w(v2r), (3.14)

withi,j € {o, 7}, and where w is defined in (2.75). Observe that the radius v/2r of
the ball B(by, v/2r) is the maximum distance of two neighboring barycenters. By
choosing r to be small enough, we can ensure that the second derivatives of f are

still close to one another (or nearly constant) between neighboring barycenters.

The parameter r is chosen to be sufficiently small in such a way that

w(V2r) < < Koy (z)"2>2’ (3.15)

max,en ”Hf

1 -1
where Cs, = 337 + 25;1/2 and Ky = (105%C§f|f\§vg (Q)) . The presence of the
two constants will be justified later. We can relate the above condition to the

eigenvalues of Q,,,i=1,...,m? For each i =1,...,m? we combine (3.13) with
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the fact that |\y;| < max,cq || Hf(2)|2 to deduce that

5f )\12‘
< min |—|, 3.16
max.co |Hp(z)[la = ‘)\u 10
and thus a consequence of (3.15) is that
w(v2r) <  min {ICQ‘)\M 2}. (3.17)
T ae{l,...,m?} f )\2,2‘

It is essential that r is chosen small enough as we shall see in Section 3.4 where

we derive asymptotic error estimations in L,-norm and Wpl-seminorm.

3.2.1 Conditioning angles of rotation

Recall from the previous chapter that we use homogeneous quadratic polynomials
as intermediate steps in order to estimate local errors. In fact, as we shall see

later, we shall instead use slightly perturbed homogeneous quadratic polynomials.

Given a non-degenerate polynomial = € Hy, the eigenvectors of U, = R,, as
described in (2.2) provide the alignment directions of an optimal triangle 7' €
Ay. This is clear from Lemma 2.4.5 and the properties of the linear map ¢, as
defined in (2.42). Unfortunately, these eigenvectors are ill-conditioned when the
eigenvalues of @, are close to one another (see [20, 35]). That is to say, for a
matrix @, resulting from small perturbations in the coefficients of @, (or those

of ), the alignment directions of its eigenvalues can be abruptly altered from

those of Q).

In the example below, we illustrate the effect of close eigenvalues that causes

ill-conditioning to the corresponding eigenvectors:

Example 3.2.1. Consider the function f(z,y) = 2> + (1 + dx)y?, 6 > 0, whose
2 20y
20y 2(1+dx)

Hessian is given by Hy(z,y) = . For zy € R, the eigenvectors

2
of Hy(x,0) = 0 20 féxo)] are exactly the unit vectors e; = [1 0]" and
e; = [0 1]*. These eigenvectors are fixed whenever y = 0. For yo > 0, the
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2 26’3/0
25y0 2
Ao = 2+ 28yq. For each i = 1,2, the eigenvector v; = [z; y;]" corresponding to

Hessian given by H¢(0,y) = { ] has eigenvalues \; = 2 — 20y, and

satisfies 2x; + 20yoy; = \iz; which yields, for any o # 0, [2; y;] = {Oé 7(A§gy2())a}- It

is easily shown that
vi=[11]" and v, =[-1 1]".

If § is small, we observe the abrupt change of eigenvectors in the neighborhood of
the point (0, 0), which shows the ill-conditioning of eigenvectors when eigenvalues

are close to one another.

Such big variations can cause an extensive disadvantage in the quality of the
triangulations constructed in Section 3.2 if the alignment directions of the optimal

triangles T, i = 1,...,m?

remain the same as those of the eigenvectors of @, .
To prevent this issue, we introduce adjustment angles for quadratic polynomials

whose eigenvalues are close to one another.

Consider a non-degenerate polynomial m € Hy such that the difference of its
eigenvalues satisfy | Ao — A;| < g, for some small number € > 0. Let vy, vy denote
the eigenvectors associated with Aj, Ag, respectively. For any angle 9 € [0, 27],
with R, _y = R, o R_y, the eigenvalues of the matrix

= [)\1 0

Qn = Ryus| AQ]RZ’?’ (3.18)

are exactly A\; and Ay, with easily provable corresponding eigenvectors vi = R_yvy
and vy = R_yvy due to the commutativity R, o R_y = R_y o R, from which it

holds that

A0

0.9, — (RﬁUW{O . }Uﬁ]ﬁ) Royvi = MRogvi = \ivi, i —1,2.
2

The adjustment angle ¢ defined in Proposition 3.2.4 is chosen such that the
angle p — 0 is well conditioned in the sense of (3.28), where p = u(m) € [0, )
is as described in (2.2) and in Figure 2.1. Recall that the optimal triangle for
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7 is obtained from an optimal triangle for w, by stretching and aligning it in
the directions of the eigenvectors of (). The angle ¢ is used to adjust these
directions so that abrupt changes of alignments may not occur. In doing so,
the new alignment directions are well-conditioned and the error on the adjusted

triangles can be bounded as shown in part c. of Proposition 3.2.4.

Let U, = [vy vo| where vi = [cosp sin u' and v = [—sinpu cos u)' denote
the normalized eigenvectors associated with A\; and Ay. Let 7’ € H, be a quadratic
polynomial obtained by small perturbations of the coefficients of 7. Denote by

V), v} the eigenvectors corresponding to the eigenvalues A}, A\, of 7',
The following result is found in [35, Corollary 5.5.6].

Lemma 3.2.1. For any eigenvalue X, © = 1,2, of Q, there is an eigenvalue \;

of Qr, with j € {1,2}, such that

A= A < 1Qn = Q2. (3.19)

Lemma 3.2.1 shows that the eigenvalues of (), are always well-conditioned.
With ' denoting the angle of U, writing v| = [cosy/ sing/]" and v, =

[—siny’  cosp/]', simple computations show that

Vi — vill2 = \/(cosu—cos,u’)2 + (sinp — sin /)% = \/2 —2cos|pu — 1|

— 2 (12,

(3.20)

hold for each k = 1,2. Thus, the 2-norm of the perturbation vector v, — v/, de-
pends on the difference y— /. Let wy, wy denote two normalized left eigenvectors
of Q. associated with \j, \a, that is, satisfying w!Q, = \;w!, i = 1,2, and define

s; = whv,.

Lemma 3.2.2 ([35]). For eachi = 1,2, define k; = |s;|~* as the condition number

associated with the eigenvalue \;. Then, for each k = 1,2,

Ri

/
Vi — Vi |ls < ( S

> )IQ: - Qulla+ O(IQs - @ulf).  (321)
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The result in Lemma 3.2.2 shows that if ), has distinct eigenvalues, all
of which being always well-conditioned, then the eigenvectors of (), are well-
conditioned. Note that since ), is symmetric, we have w; = v; so that x; = 1,

i=1,2, and (3.21) takes the form

1

v = virlls € =—55lQn = Qe +0(1Q-— Qo 3).  (3:22)

Our objective is to replace the angle of rotation p of @), by the angle u — 9,

with ¥ appropriately chosen in such a way that the triangle is still near optimal in
0 0 0
BTN
)\J S (VY
the difference between the matrices @, and Q. can be expressed in terms of

A
the sense of part c. of Proposition 3.2.4. Writing [01

matrices involving the difference Ay — \q,

Q. — 0, :UW()\IIJr [0 0 DU;—RM(AIH [O 0 DRM

0 do—X 0 M-\
=Us B Ao E )\J Ur = Uiy [8 Ao E Al]Uff
~ Unlts [8 Ay E Al]Rt”U; + Unlig [8 Ao E )\J U
U (1-R_,) [8 N ! Al] U + U, Ry [8 N ! Al] (- R.,)UL.

1 — cos? —sind

Since (I — R_g)t =I—-R',= { ], the 2-norm of Q, — Q, is

sin ¢ 1 —cosd
bounded by using terms involving the difference Ay — A\ and ¥, that is,

1Qr — Qxll2 < H([ - R*ﬁ) {8 Ao E )\1]

:’ ’ {8 (Az(izg)?i)—sfoi 19)]

0 0
2+H[0 AQ—AI]([_RL?)

2 * H [()\2 — )(\]1) sind (Mg — )\1)?1 — cosﬁ‘)}

K
The two matrices on the right hand side are transpose to each other, their eigen-

values are exactly 0 and 7 = (Ay — A1)(1 — cos¥), and we have

1Qx — Qall2 < 2lnl = 4|2 — M| sin’(9/2). (3.23)
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We are interested in the choice of the angle ¥ € [0, 27] when the difference
of eigenvalues |As — Aq| is small. The difference of eigenvalues |[Ay — A{| can
be expressed in terms of the coefficients of 7, a useful tool to determine the

adjustment angle ¥ in (3.26).

Lemma 3.2.3. Given a quadratic polynomial w(x,y) = az® + 2bzy + cy® such
that ac — b* # 0, denote by \i, Ny its eigenvalues, and by p the angle of rotation
of the matriz U, defined in (2.2). Then

C—(l—()\g—)\l)
2b

Ao — A =/(c—a)?+4b?, and if b# 0, tanp =

b
Proof. Let Q, = [Z ] be the matrix associated with 7. With v; = [cos pu sin pu*
c

and vy = [—sin g cos u)* denoting the normalized eigenvectors associated with A\

and Ag, from Q,v; = \;v;, 1 = 1,2, we deduce the following system of equations:

acosp+bsinp = A\ cosp and bcosp + csinp = A sin (3.24)

—asinp+bcosp = —Agsinp and  — bsin g+ ccos = Ay cos p. (3.25)
We easily deduce that

(c—a)sinpu+ 2bcosp = (A — Ag)sin

(¢ —a)cosp —2bsin = (Mg — Ay) cos pu.

By taking the squares and adding the two equations to one another, we deduce

that (A — A\1)? = (¢ — a)? + 4b%. Note that if b = 0, the above equations yield
((c —a)+ (A — )\1)) sinpg =0 and ((c —a)— (A — )\1)) cos =0,

which imply that [A\y — A\1| = |¢ — a| as before, and pp = 0 if Ay — A\ = ¢ —q,
whereas = 7 if Ay = Ay = a —c. If b # 0, by dividing the left and right hand

sides by cos u, the second equation implies that tan u = W O

The following result shows how the adjustment angle ¥ (which is firstly in-
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troduced in (3.18) and for which (3.23) holds) is chosen in such a way that the
alignment directions defined by the column vectors of the matrix R,y occurring

in (3.18) are well-conditioned in the sense of (3.28).

Proposition 3.2.4. Let f € C*(Q) and z € Q be such that 7. is non-degenerate.
Given € > 0, we define the adjustment angle ¥ by

£ — Ao — A
”(; ‘2 1‘), if Do — | <3,
g=1 €7+ Na—\] (3.26)

0, otherwise,

with A1, As denoting the eigenvalues of w, and p € [0, ) being the angle of rotation
of Ur.. The following statements hold:

IS

b. |Qn. — Qr. |l < pi2e2, where Q. is defined in (3.18);

c. Given a triangle T containing the origin, defining T := R_y(T), we have
191
7. = Izm\ 7y < Nlme = Trma|n, ooy + 9R®|T|7 ez, (3.27)

with h being the diameter of T.
d. Suppose that [Ny — M| < 3. Then, for any 2 € Q such that det # 0,
X, = N,| < e2 and |Qx,, — Qx.|l2 < &, there exists a constant Cy such that

A(p—0)] = |[(n—0) — (W =) < Cre? + O(e?),  (3.28)

where N}, X, are the eigenvalues of 7., with ' being the angle of rotation

of Ur_,, V' the corresponding adjustment angle, and where the constants in

(3.28) are absolute.

In the result (3.46) of Proposition 3.3.2, we show that (3.28) of part d. of

Proposition 3.2.4 holds without any assumptions on [\ — A;| and |\;, — A
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Proof of Proposition 3.2.4. The proof of a. is straightforward.

b. From the definition of ¥, we have ¥ = 0 when [\y — A1 > z—:%, whereas when

Ay — Ai| < e2, we find that

u(e% — A2 — )\1\) _ [ie?

v < .
N A2 — A A2 = A
. el el . 9 92 9
Since by definition the condition ¢ < p always holds, we have sin*($) < % < %p,
so that the above inequality and (3.23) yield
~ 1
1Qr — Qxll2 < [A2 — Mi[9p < pPez.
c. For convenience of notation, let 7 := 7w, and consider the homogeneous

quadratic polynomial 7 := 7w o Ry. After first noticing from (2.12) that (/77) o
R_y = ([R,Ig(T)ﬁ'> oR_y = [T<77T o qug), we have

R T _ o P
I7 =5l = [, [FCe) = Tt )|y
= /T 7o Roy(w,y) — (I;7) o R_y(x, y)\pdxdy
= /T 7w (z,y) — Irm(z, y)[Pdady

= [|m — [Tﬂ‘il,m-

We can now estimate the error on T By using (2.5) and (2.13), we have

lm = L7l o) = (7 = @) = Ig(m = 7) + (7 = 177 || 1,7
<|lm=7le, ey + Mz(m = Tlle, ) + 17 = 17|z, 7
= _ =y, _ _ _
< 3hzlT|7|lm = 7| + | TP llm — 7l ooy + 17 = 1271, 0

— 1 B
< 6hL|T[v || — 7l + |7 = Irm | Ly, (3.29)
by virtue of the fact that 7' contains the origin so that

-1 _ -1 B
TVl = 7l ry < Bhz|TI7 |7 — 7.
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From the identities Ry[x y]" = R 4[z y]" and (Rg [z y]t)t = [x y]R_y, we obtain

A
Resy) = 7o Ro(e,y) = o gl RoaUs [ JULRE fo gl
2

0 A

= [z y]Qx[z o',
from which we conclude that Q= = Q,, with Q, defined in (3.18). Moreover,
Qrr = Qr — Qz = Qr — Qr so that |7 — 7||2 = [|Qr — Qx|l2. Now, by using the
equivalence of norms in (2.4), we find that |7 — 7|| < 2[|Qx — Qx|2. Combining
this with (3.29), together with the immediate fact from 7' = R_4(T) that hs = h
and |T| = |T|, and the result in part b, we obtain

l —
lm = Izl yzy < OR*IT 1P |Qn — Qullz + I — Irml| 1,y

< ORA|T|5 e + || — Ipm| 1, m.

d. Suppose now that [Ay — | < £3. We have

20Xy — Ay

= 3.30
€%+|)\2—)\1| ( )

With 1 = 2ulAs — A| and A = |y — Ay, we see that p — ¢ is given by the

function (i1, \) = — o . With p denoting the angle of rotation of U, and
€2 +
9 the corresponding adjustment angle, both of which depending on 2/, the total

variation between z and 2’ satisfies

DU )| [0 N)
A
oh ’| fl + ‘

A=) = (= 9) = (' = 9] < | 5

’\m\, (3.31)

for some i between i and i/, and some \ between A and X, where \' = [N — A
is the difference between the eigenvalues of 7.,. First, simple computations show
that, with g < max{ju, i’} < 23 max{u, p'} < Are,

<d4re7r. (3.32)

‘6%(/1, A ‘
op
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We continue by evaluating |Aju| = 2|uX — @/ N| and |AN = |A — X|. From (3.19)
there are i, j € {1, 2} for which max{|X] — i, |[A; — Aj[} < [|Qr., — Q. ||2 holds,
with ¢ not necessarily different of j. By using simple triangular inequalities, we

find that

[AN = [[A2 = M| = [A5 = A
< |2 = A1) + (A5 — A
= (A2 = Aj) + (N = A1) + (A = A9) + (AL = )
<A4[|Qx, — Qx.ll2- (3.33)

Next, let v/, vi, denote the orthonormal eigenvectors associated with A}, ;. Note
that A\vy is an eigenvector of @), associated with A\;. The eigenvectors Av; and

Avy are well-conditioned. To see this,

[Avi = AVil2 = [[A(vi = v)) + (A = N)vi 2

< AV = vi)lla + A = XlIvallz, (3.34)
where ||v]]|2 = 1. The inequality below is obtained by multiplying (3.22) with A,
INY, = V)2 < (1@, — Qrll2+ A O(1Qn, — Qn.3).
which, together with (3.33) and (3.34), yields
i =XVl <51Qn, = Qulla+ A O(IQr, — @n.l3). (335

This shows that Avy is well-conditioned. A similar approach is used to show
that A\vy is also well-conditioned. As a consequence, the angle Ay must be well-
conditioned: Since 2z < sinz for z € [0, 5], we deduce from (3.20) that [p—p/| <
51lvi — v |2 which together with (3.22) yields

, T T
A= ] < S11Qr. = Qe llz + 5A0(1Qr. — @ [I5). (3.36)
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Since

1.

I A= (A= M| = [ A= A"+ A" = Nl | < A= '+ A = Nl
we deduce from (3.33) and (3.36) that

1. _ T
|AA < (5 +4)|Qn ) = Ol +7A- O(HQ@ - Qmﬂg)- (3.37)
Combining all together (3.31), (3.32), (3.33) and (3.37), we obtain

A=) < (7 + 86 +167)e 2| Qn, — Q|2 + 2707 - O(||Qr., — Q. [3)
< Cie? +0(Y), (3.38)

1

by virtue of the facts that ||Qr, — Qx.[|2 < € and Ae™> < 1. In the above
estimation, C satisfies C = 337 > 7 + 84/ + 16m. O

On a side note, part a. of Proposition 3.2.4 indicates that when the eigenvalues
of 7, are equal, the angle of adjustment ¥ for an optimal triangle T" € A,
is none other than the angle p. Moreover, any pair of orthonormal vectors are
eigenvectors of 7., therefore a choice of particular directions need to be set, which
is discussed in Section 3.2.2 below. Also, the condition that ||Qr , — Q. |2 < e in
the fourth statement of Proposition 3.2.4 is similar to the condition (2.88) with
¢ = v. Such a condition is the first to be taken into account when choosing the
parameter r (which is described in Section 3.1.1 and in the second paragraph of

Section 3.2) for the partition of the domain €2 as seen in Section 3.2.2 below.

3.2.2 Regular regions

After briefly presenting algorithms to obtain isosceles nearly-optimal triangles
for a given quadratic polynomial 7, we shall discuss the initial steps to partition
the square domain ). We recall that the z- and y-axes represent the Cartesian

coordinate system.
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Step 1 of Algorithm 3.1 is justified by Lemma 2.4.3, whereas Step 2 is mo-
tivated by Lemma 2.4.5 and the adjustment of alignment directions in Proposi-

tion 3.2.4.

Algorithm 3.1: Near optimal isosceles triangles for det 7 > 0.

Input m € Hs such that det 7w > 0, and let £ > 0 be given;

1. Let T be the equilateral triangle of unit area such that one of its vertices
coincides with the origin and the bisector passing through it lies on the

right half of the z-axis;

2. Obtain the isosceles triangle T' = ¢, (Ty) where

¢r = R_y 0 r, (3.39)

where ¢, is defined in (2.42) and ¥ is as in Proposition 3.2.4.

For p = 0o and det 7w < 0, a similar algorithm can be presented since from
Lemma 2.4.4, we can design an isosceles optimal triangle T} for 7 (z,y) = 2* —y?

as follows: By using triangles whose vertices are given in (2.61) by

(0,0), %(coa + b, coa — b), %(a + cob,a — cob),

where ¢y = 3’2‘/5 and a,b > 0 such that @ab = 1, we can choose a = b =

2(3v/5 — 5)_% and obtain an isosceles triangle 77 whose coordinates are given by
1 1
(0,0), 5(1 + ¢o, co — 1)a, 5(1 + ¢, 1 — ¢p)a. (3.40)

Note that one vertex of 77 thus coincides with the origin, the bisector passing
through that vertex lies on the right half of the z-axis. Also, Step 2 of the
algorithm results from Lemma 2.4.5. Note that the adjustment of alignment di-
rections in Proposition 3.2.4. is not needed for det m < 0 since the eigenvalues are

of different sign and hence the corresponding eigenvectors are well-conditioned.
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Algorithm 3.2: Near optimal isosceles triangles for det 7 < 0 and
p = 0.

Input m € Hs such that det 7 < 0, and let £ > 0 be given;

1. Choose T} € A, (m) to have its vertices given by (3.40);

2. Obtain the isosceles triangle 7' = ¢, (7}) where ¢, is defined in (2.42).

Observe that the isosceles triangles obtained through Algorithm 3.1 and Al-
gorithm 3.2 always have their smallest interior angle defined by the two edges

having the same length.

Obtaining regular regions. We now present the initial steps for obtaining

regular regions. Assume that p < co. Let 1 be such that

1 1
14— <n<1l+ — (3.41)
8p(p+1) 2p
The following steps are set:
(i) For each k = 1,...,m? obtain an isosceles near optimal triangle 7' by

applying Algorithm 3.1 to m, = m,, where by, is the barycenter of the sub-

square Sj. 2 Obtain a scaled and shifted version of T’

Ty = AT + ty, (3.42)

where
Ak::§(K;Om)+2C%%gmﬂ)_% (3.43)
where % =1+ %, C' is the constant occurring in (2.56), h,, denotes the

diameter of the optimal triangle T', the modulus of continuity w is defined in

2Here 1 = mp, is has nothing to do with the quadratic polynomial 2 — y? in Example 2.3.2
which has a negative determinant.
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Figure 3.2: Triangle T} before alignments to the directions of eigenvectors of

7Tbk

and before translation into the sub-square Si. Also, A, A2y denote the

eigenvectors of m, whereas ay is the initial angle which e; makes with the x-axis.

(iii)

(2.75), and tj, is a translation vector so that the barycenter of T}, coincides

with bg. The parameter s is chosen small enough so that T), C S,

For each k = 1,...,m? obtain the micro-parallelogram Py := P,, formed
from T}, as follows: The edges of Ty being counterclockwise oriented as
shown in Figure 3.2, let ), be the shortest edge-vector, ey, the edge following
e, with respect to the counterclockwise orientation, and e; the remaining
edge-vector. Note that e, is not perpendicular to e;. Then Py is formed
from T}, and its reflexion about the midpoint of e, i.e it is defined by the

two edge-vectors e, and ey;

For each k = 1,...,m?, define the polygon R, C S, as the union of all
parallelograms P C Ry obtained by aligning side by side the shifted versions
of P, such that for each vertex z of P the four points z + ey, z + €, belong
to Si. The reasons for the last condition are discussed in Section 3.2.4 for

the study of the interior angles of the so-called irregular polygons.

Although in step (iii) we ensure that the vertices z + ey, z £ €; belong to

the sub-square S, (these are necessary requirements in Section 3.3), for practical

illustration in Figure 3.3 we only ensure that z + %ek, z+ %ék for any vertex

z € P of a parallelogram P € Rj. The remaining figures in this section will use

this setting.
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Figure 3.3: Partition into sub-squares and regular regions.

For each k =1,..., m?, the polygon Ry is termed a regular region (see Fig-
ure 3.3), it can also be defined by two systems of parallel segments L, and L,
whose directional vectors are e, and €: A segment ¢ of Ly, (or Ek) is a straight
line segment defined by the sides of a collection of parallelograms of Ry which are
aligned side by side in e, (or ;) direction, such that the end-points are at the
boundary of Ry and ¢ cuts Ry in two regions unless ¢ is part of its boundary. A

vertex of Ry is a vertex of a parallelogram such that it is on the boundary of Rj.

The regular region Ry is directionally conver in the direction of e = ey, €y,
in the sense described as follows: Ry can be cut in the direction of e, thereby
creating layers of blocks (Dy,), where each Dy, is an union of parallelograms
aligned side by side in e direction. Moreover, since the square S, is convex,
the region between non-consecutive parallelograms inside Dy, ,, is still inside Dy, ,,,

hence showing that Dy, is convex.

Each regular region has a natural triangulation by drawing the shortest diago-
nals of its parallelograms, the triangles thus obtained are called reqular triangles.
Observe that regular triangles are therefore near-optimal triangles, the study of

the local errors on such triangles is already given in Section 2.5.

Remark 3.2.1 (Removal of vertices in (iii)). For the extension of segments dis-
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cussed in Section 3.2.3 below, it is preferable to control the minimum distance
between the vertices of R; and the sides of the sub-square S;, with i = 1, ..., m?.
Therefore in (iii) we only include parallelograms whose vertices are at a certain
distance from the sides of 5;. Without analytical proof, numerical implementa-
tions show that vertices which are too close to the sides of the sub-squares can
cause big angles in the final triangulation of €2. Moreover, their removal allows

us to avoid unnecessary processes such as identification of vertices which are very

close to one another.

3.2.3 Extension of segments

Following the initial steps in the previous section, we proceed to split the remain-
ing non-covered space Q" := Q\ U; R; by using either of the Settings 1, 2, 3,4 or 5
given hereafter. The splitting is characterized by the extensions of the segments
in £, UL; up to a neighboring regular region R; or up to the boundary, and
thereby generating the so-called irreqular polygons which have six edges at most.
Extensions follow directions parallel to either of e; or €;, with i = 1,...,m?. Due
to similarity, we shall only present algorithms that extend the segments in L;,

and give additional details when ambiguity may occur.

For each k = 1,...,m?, since the segments in £, are all parallel to e;, we can
order them in the direction of e;, with e; and €, as defined in (iii) of Section 3.2.2.
The first and last segments with respect to such order are called the end-segments
of L. The end-segments of £, are defined in a similar way. Observe that end-

segments are part of the boundary of the regular region.

We say that two squares S;, S;, with i, € {1,...,m?} are neighbors if they
share a vertex or an edge. Two regular regions R;, R; are termed neighbors if the
squares that contain them are neighbors. Note that, apart from S; itself, there
are at most eight squares that are neighbors to S;. Some of them share edges or

corners with .S;.

For each i = 1,...,m?, consider the set of parallel segments £;,. A given
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segment ¢, € L; is oriented according to the direction of the vector e; defined
in (iii) of Section 3.2.2. By using either of the directions e; or —e; and one of
the settings presented hereafter, the segment ¢, is extended up to a neighboring
region R; or to the boundary. Once more, due to similarity, we shall only describe
extensions by using the direction e;. We denote by 2, the end-point of ¢; in the
direction of e;, and connect it to another point z; of a neighboring region R;, or
to the boundary. Note that the extended segments may overlap, for example by
extending from R; to R; in the direction of e; and from R; to R; in the direction

of —e; we may obtain the same extension twice.

yline
62

Figure 3.4: Connection to own square.

Setting 1: Extend {, € £; into own square.

if the following conditions hold: For some 571, 0y € Ei;

1. The ray originating at zy in the direction of e; intersects the straight
lines /e, fine containing ¢, and £y outside of R;, see Figure 3.4. There is

no segment in £; between ¢, and /, that contains z;

2. With z; € ¢, and 2z, € (5 being the closest end-points to zo, [z1, 22| is part

of a single segment ¢; of L;;

3. There is no segment in £; between ¢y and /4.

then
| Connect the point 2y with 2.

The connection in Setting 1, as illustrated in Figure 3.4, is a cautious step in

order to avoid a possible very long extension of ¢y due to Setting 2, or crossing
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of regular regions by extended segments resulting from either of Setting 2 or 3.

If Setting 1 does not apply for zy, we apply Setting 2 where S; is the neighbor
of S; which the extension Egne of ly in the direction of e; intersects first. If Eloine
passes through one of the corners of S;, we choose S; to be any of the two squares

sharing that corner and an edge with S;. We denote h; = |e;| and d; = |e;].

Setting 2-a: Extend (), € £; up to R; in e; direction.

if the line /i"® extending £, intersects the regular region R;.

Consider the first segment ¢; € E_j that i intersects in the direction of
e;. Denote by z; € /1 the vertex of R; which is the closest to the
intersection point /1™ N ¢; and which is not a re-entrant corner of R;, see
Figure 3.6;

then
| Connect zy with the vertex z;.

Note that the existence of a segment in £; intersected by £ is guaranteed by
the fact that the angle between e; and e; is small due to the assumption (3.17)

and in view of (3.45) and Proposition 3.3.2 with £ = 3w(v/2r).

We use Setting 2-b below only if Setting 2-a does not apply, that is, the line

ime does not intersect the regular region R;.
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Setting 2-b: Extend {;, € £; up to R; in e; direction, with
tolerance.
Initialize the set L_’j to be empty, and compute d; = |e;|, h; = |e;];

foreach / € L_’j do

i. Compute L = d(zp, z) which is the distance between z, and

Z = ("o N (e ywith ('™ being the straight line extending /;

ii. Add to E;‘ the segment ¢* defined by extending ¢ by segments of
the length Zth at both ends (see Figure 3.5);

if (C1) and either of (C2)-(i), (C2)-(ii) below hold:

(C1) The straight line £i" extending ¢, does not intersect R; but inter-

sects a segment in L'j»;

Consider the first segment (% € E;‘ that £in® intersects in the direc-
tion of e;. Denote by z; € !7’{ N R; the closest vertex of R; to the

intersection point £i"® N ¢4, which is not a re-entrant corner of R;;

(C2) (i) =1 € R, does not belong to the interior of an end-segment in £;;

(i) The second sub-square which 3™ intersects in e; direction is not a
neighbor sub-square to R;.

then
| Connect zy with the vertex z;.

The enlarged segment ¢* as described in ii. of Setting 2-b is an extension of
¢ into a longer segment characterized by the value Céth = 8Lm|ej| which we call
tolerance, as illustrated in Figure 3.6. Analogously, when extending a segment
ly € L; up to R; in the direction parallel to e;, the tolerance is Ig% where L
remains the distance between z, € £y and the intersection point 2* = in¢ N fline,
with ¢ € L;. In the second condition of Setting 2-a, the vertex z; may be an

end-point of an end-segment of L£;.
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d.
tolerance: 2

Figure 3.5: lustration of the tolerance %.

€;
-_—
b 0 PPPPPPY. & 1 ‘XA
Z1 j'. d;
“'4
4---h-i---> \ZT \

Figure 3.6: Comparison of connections in e; direction: on top by using Setting 2-a,
with no connection to the re-entrant corner z*. At the bottom by using Setting 2-

b, with tolerance % (see also Figure 3.5).

Many properties of the final triangulation depend on the choice of the toler-

1

s in the tolerance will play a crucial

ance. Namely, in Section 3.2.4 the factor

role.

If either of Setting 1, Setting 2-a or Setting 2-b applies to zy, then z; is
termed a connected vertex, otherwise it is called a non-connected vertex of /g
with direction e;, and we apply Setting 3. In Figure 3.7 we provide an illustration
of the configurations after applying Setting 1 and 2. For each regular region R;,

i=1,...,m?% we associate four sets of non-connected vertices V;*, V.4 and V¥, V4
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Figure 3.7: Connections after Setting 1 and Setting 2.

which we illustrate in Figure 3.8 and which are defined as follows.

e Let VU (resp. V) denote the set of non-connected vertices of all segments

in £;, all of them in the direction of e; (resp. —e;).

e Similarly, let V" (resp. V1) denote the set of non-connected vertices of all

segments in £;, all of them in the direction of e; (resp. —e&;).

The segments of £; which contain the non-connected vertices of V;" are ordered
in the direction of e;, and similarly, the segments of £; which contain the non-
connected vertices of de are ordered in the direction of €;. Note that the four
sets are not necessarily disjoint to one another, however, one vertex may belong
to two sets at most. Only a vertex which belongs to just one parallelogram of R;

may belong to two sets at once, see Figure 3.8.
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0

Figure 3.8: The sets of vertices at the bottom-left sub-square of Figure 3.7: V"
colored in blue; V4 colored in red; V* colored in green; And V4 colored in black.
Only a vertex which belongs to only one parallelogram can belong to two sets.

If neither Setting 1 nor Setting 2-a, 2-b applies to zy, then the extension of ¢,
in the direction of e; either crosses the boundary of €2 at a point on the boundary
of S;, or the second sub-square intersected by it is also a neighbor of S; sharing
with it a single vertex. Indeed, by making s small enough in (3.43) so that there
are enough segments in /jj from the regular region R;, there must be at least
one enlarged segment ¢* that intersect the side of S;. Hence, the failure of an
extension by Setting 2-b means that the second sub-square that the line ¢in°

intersect must be a neighbor of S; sharing with it a single vertex.

Note that if zy belongs to just one parallelogram of a regular region R;, then it

is the originating point of extensions of exactly two segments ¢, € £; and ¢, € L,.

Let S; denote the second sub-square intersected by the extension of £, in the
direction of e;. As mentioned before, S; is necessarily a neighbor of S; and shares

one vertex with it, denoted by v;;.
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Setting 3: Connection across.
Let S; and S; be neighboring sub-squares sharing exactly one vertex v;;;

Compute d; = |e;|;

Extend each segment ¢ € £; containing a vertex z; € V" into R;,
which is done by using either Setting 2-a or Setting 2-b with direction e;,

with the tolerance ZLhLi being replaced by %.

If z; remains unconnected to the regular region R;, then apply the
extension in Setting 2-b by using only the condition (C1), with the

. . d;L
direction e; and the tolerance .
1

Note that the segments containing some vertices in € V4, € V" and € V¢ are
also extended by using Setting 3 by using the directions —e;, e; and —e;. The
goal of Setting 3 is to make sure that there are no hanging vertices. It applies
to vertices which are non-connected (resulting from the failures of Setting 1-2).
Note that the vertex z; may belong to only one parallelogram, and it can thus

be a connected vertex with respect to one of the directions e; or —e;.

We show in Figure 3.9 an example of connections obtained by using Setting 3.
Observe, in particular, that the extensions by Setting 3 always connect two ver-
tices zp and z; from neighboring sub-squares, unless the line originating at 2z

cross the boundary of €2. This is where Setting 4 described below applies.

Setting 4: Connection to the boundary of (2.

Suppose that S; has a side overlapping the boundary of €2;

foreach /, € L; do

if the end-point z € ¢y belongs to any of the sets V*, V.4, V" or V4,

then
\; Connect 2 € £y with the intersection point /i N E, where F is the

boundary of €.

108



A
N\

o
\

-

NN
-
\
N

.
»
%
-
\

Figure 3.9: Connections across using Setting 3. The colored dots are the non-
connected vertices already shown in Figure 3.8.

Setting 4 is applied when the sub-square S; has one or two of its sides as a
part of the boundary of 2, and where Setting 1, 2-a, 2-b and Setting 3 cannot be

applied.

Suppose now that all the segments in £; UL;, fori=1,..., m?, are extended
by using the Settings 1-4. In particular, by Setting 4, every end-segment is
extended from both of its end-point. This can create big area irregular regions
in the neighborhood of the corners that are near the end-points, more precisely,

at the corners of the domain €.

The following Setting 5 will partition the irregular regions in the neighborhood
of the four corners ¢, k = 1,2,3,4, of Q2. For each corner ¢, consider the sub-
square S; with a vertex at c;. There is at most one end-segment ¢y of £; U L,

possessing the following properties (see left of Figure 3.10):

(1) one of the two end-points of ¢y, is the vertex of R; which is the closest to

the corner c;

(2) the straight line extending ¢, does not intersect two opposite sides of .S;.

Note that such a segment does not necessarily exist. In the right hand side of
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(a) End-segments in the neighbor- (b) Vertices vy, vy belonging to two
hood of corners end-segments

Figure 3.10: (a) Splittings by using Setting 4-5. (b) No splitting from Setting 5

Figure 3.10, on the top left, the vertex v; belongs to two end-segments, yet none

of the two satisfies the above conditions.

If such an end-segment exists (see left of Figure 3.10), denote by 2y and 25
the intersection points of the line extending ¢, with the boundary of 2. Then

define the triangle Py by the points cx, 21k, 22.4-

The condition (2) is to avoid the following situation: In the case where the
sides of parallelograms are nearly parallel to the sides of the sub-square that
contains it, Py is the trapezoid defined by ¢, cxr, 21k, 22,1 (see right of Figure 3.10),
where ¢ is the corner of {2 which is the closest to one of 2y i, 22 . Note that such

a trapezoid may create undesirable and uncontrollable irregular regions.

We use Setting 5 below to partition Py, see Figure 3.10.
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Figure 3.11: Splittings after Setting 3-4 and 5.

Setting 5: In the neighbourhood of the corners of ().

Given a corner ¢, of €2, suppose there exists an end-segment / ;, satisfying
the properties (1), (2) above and let Py be the above defined triangle
associated with cy;

then

From ¢y, up to ¢, partition P, by using straight line segments paral-
lel to £y, and equidistant by d; if ¢ is parallel to e;, otherwise by A;.
Here d;, h; denote the lengths of the smallest and largest edge of the

parallelogram containing £ .

The above setting, together with Setting 1, 2-a, 2-b, 3 and 4, concludes the

partition of Q" into irregular polygons (see Figure 3.11).

By construction, irregular polygons are obtained from the intersections of

segments belonging to one of the three families of segments formed by:

- the four boundary edges of €2;
- the extended segments obtained from Settings 1-5 by using either of the

directions +e;, i = 1,...,m?;
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- the extended segments obtained from Settings 1-5 by using either of the

directions +e;, i = 1,...,m>.

Each irregular polygon has at most two edges from the same family. To prove

this, we shall define polygonal chains from the three families of segments described

above. A polygonal chain ( cutting a sub-square S; into two parts is a collection

of line segments generated by any segment ¢y € £; U L; as follows:

Case 1:

Case 2:

A segment obtained from Setting 5 (in the neighborhood of the corners of
1) is a polygonal chain which does not contain any part of a regular region.

It is a straight line segment whose end-points belong to the boundary of €2;

Otherwise, the extensions of ¢y by Settings 1-4 are only using its two end-
points 2, z;, and the directions e; and —e; (a similar construction is used
for a polygonal chain whose first segment belongs to £;, with directions of
extensions e; and —e;). There are three cases for which zj is connected to,
either to a vertex z; € R; (Setting 1), to a vertex z; € R; where R, is a
neighboring regular region (Settings 2-3), or to z; which is on the boundary
of Q (Setting 4). We then add the extended segment |z, 1] to the polygonal
chain ¢. In the case where z; € R;, there is a segment ¢, € £; which contains
z1: we then add [z1, 2]] to the polygonal chain ¢ where 2 is the end-point
of £, in the direction of e;. Originating from the point 2] we extend ¢ by
using one of the Settings 1-4 and keep repeating this procedure until one of
the extended segments intersects the boundary of the sub-square S;. We do
the same procedure of extension for the other end-point z{, of ¢y, and add

to ¢ the obtained segments.

The polygonal chains described above, see Figure 3.12, are divided into two

groups:

The group P; where a polygonal chain contains only two types of segments:
some part of segments of £; and some extended segments using the direc-

tions of e; and —e;;
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Figure 3.12: Examples of polygonal chains (in black) that have common segments.

- The group P; where a polygonal chain contains only two types of segments:
some part of segments of £; and some extended segments using the direc-

tions of e; and —e;;

A segment of a polygonal chain can be intersected by another one from a
different group. The properties below are also observed, they follow from the

results in Lemmas 3.3.4, 3.3.5 and 3.3.6 which are proved in Section 3.3.2:

(7) If two polygonal chains from the same group intersect at a point z, then z
is the end-point of a common segment of the two polygonal chains. That

segment is a part of a segment in £; U L; or part of an extended segment;

(77) Two polygonal chains from two different groups cannot have a common

segment, but they can intersect;

(7i1) Each vertex of a polygonal chain is the end-point of at least two segments

of some polygonal chains from different groups.

We have the result below.
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Figure 3.13: Interface polygons. In @) a hexagon which can only appear in the
neighborhood of a corner; in () a pentagon possessing two edges overlapping
the boundary; and in (¢) a pentagon obtained from intersections of segments
belonging to the above three families.

Lemma 3.2.5. Let r be sufficiently small so that (3.17) holds. Then, each irreg-
ular polygon P has at most two edges from the same family, it cannot have more
than siz edges, of which at most four lie in the interior of 2 and at most two on

its boundary.

Proof. Let P be an irregular polygon. Since the extension of any segment never
crosses into a non-neighboring sub-square, P is contained in the union S of at most
four sub-squares with a common vertex. The set S is divided into two subsets by
any polygonal chain ¢ obtained by extending (if necessary) a polygonal chain ¢y
from one sub-square up to the neighboring sub-square that intersects (yo: From
the above construction of a polygonal chain, there is an extended segment [zg, 2]
of o which intersects the boundary of S;. If z1 is on the boundary (i.e. obtained
from Setting 4), then we do not extend (. Otherwise, that is if z; € R;, we add to
Co the segment of £; having 2; as an end-point, and extend the other end-point
in the direction of e; by using the same method as for obtaining a polygonal
chain. The only case where the resulting polygonal chain may not divide the four
sub-squares is when its end-point still belong to the union of the sub-squares. In

this case, we apply a second time the extension of ¢, until it divides the set S.

Thus, we obtain two families P and P of polygonal chains in S. The partition

of S into regular parallelograms and irregular polygons is generated by the families
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P and P, where each cell of the partition is obtained by the intersection of a
stripe between a pair of consecutive chains of P with a stripe between a pair of
consecutive chains of P. In particular, at most two edges of P are formed by
the segments of P, and at most two edges by the segments of P. In addition, at
most two more edges can be obtained from the boundary of ) as illustrated in

Figure 3.13. U

3.2.4 Back transformation and triangulation

Given i € {1,...,m?}, consider the invertible affine map v;(z,y) := @;(z,y) + t,
where ¢; is defined in (3.39) and t;, is the position vector of b; which is the
barycenter of the sub-square S;. Observe that ¢); maps the equilateral triangle
described in Algorithm 3.1 to the near-optimal triangle with a vertex at b; (see

(i) of Section 3.2.2).

A back transformation of a polygon P is the polygon ;' (P) for some i €
{1,...,m?}. If P is a fixed polygon, we can choose i as the index of a sub-square

S; which is one of the closest sub-squares to the barycenter bp of P.

Triangulation of ). The domain €2 being partitioned into polygons of at most
six edges, the triangulation of 2 which we denote by A,,, is obtained as follows:
Triangles remain the same, whereas each quadrilateral which does not have a
vertex on the boundary of €2 is divided by drawing a diagonal crossing its largest
interior angle. For a quadrilateral P possessing a vertex on the boundary of (2,
we draw a diagonal ¢ such that ; *(¢) is a diagonal crossing the largest interior
angle of ¢; *(P), with i being the index of one of the closest sub-squares to the
barycenter of P. Similarly, a pentagon P possessing a vertex on the boundary is
divided by two diagonals whose images by ;' cross the largest interior angles
of ;7 *(P). A hexagon P is divided into four triangles by three diagonals whose
images by 1; ! cross the largest interior angle of ; '(P).

Triangles obtained by dividing the parallelograms of the regular regions are
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called regular triangles, the rest of the triangles are called irregular triangles. The

resulting triangulation of €2 is denoted by A, .

We can also consider the back transformation of a triangle 7. Given a fixed

index i € {1,...,m?}, consider the triangulation A; given by
Ay ={y;HT): T € A}, (3.44)

which is called a back transformation of Ay ,. Since R; is uniformly triangulated
and 1 an affine map, by virtue of Algorithm 3.1 and step (ii) of Section 3.2.2,
its image 1; '(R;) is uniformly triangulated with equilateral triangles which are
shifted versions of A;Ty, with Ay defined in (3.43), and Tj being the equilateral

triangle of unit area as described in Algorithm 3.1.

3.3 Properties of the triangulation

By construction, regular triangles are isosceles and their alignment directions are
as specified by Algorithm 3.1 of the previous section. We analyze the change
of these directions when segments are extended according to Settings 1-4. The
segments obtained from Setting 5 are left over since they are parallel to the
edges of some parallelograms. In particular, we discuss the properties of the
intersections of extended segments which produce irregular triangles. Note that
unlike regular triangles, irregular triangles may possess various shapes, this is
where the “back transformation” helps out to bound the Wpl—seminorm of the

interpolation error.

3.3.1 Conformity of alignment directions

Following the discussion in Section 3.2.1 about the sensitivity of eigenvectors,
given two neighbor squares R; and R;, where 4,5 € {1,...,m?}, we investigate
the angles formed from the associated systems of segments £;, £; and Ej,ﬁ_j.

Recall that they determine the alignment directions of the parallelograms in R;
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and R;, and we here study the conformity of these alignments in terms of the
difference of angles that they form and using their respective directional vectors

e;,€; and e;, e; which are as defined in (iii) of Section 3.2.2.

Recall that b; is the barycenter of the sub-square S;, with i € {1,...,m?}, and
m, € Hy the quadratic polynomial whose coefficients are the second derivatives of
f at the point b;. We denote by u; the angle of rotation of the matrix Ur, which
is as defined in (2.2). Then the smallest angle H_ij between e; and e; is exactly
the difference |p; — p;|. Taking into account the ill-conditioning of eigenvectors
discussed in Section 3.2.1, this difference can be large if the eigenvalues Ay ;, Ao ;

associated with 7, are close to one another. We assume that |A; ;| < |Aa,|.

Apart from the standard estimation (3.19) in Lemma 3.2.1, the difference of

eigenvalues |Ag; — A1 ;| can be estimated.

Lemma 3.3.1. Suppose that max{|\1; — Ao |, [Ao;i — A1 ;|} < e. If all the eigen-

values A1, Aa; and Ay j, Ao j are positive, then
max{[Az; — Avil, [A2; — A |} < 2e.

Proof. The fact that the distance between Ay ; and A;; is less than ¢, that the
distance between Ay ; and Ay ; is less than €, and that Ay ; is greater than A, ;, we
necessarily have that the distance between Ay; and A;; is strictly less than 2e.

Similar approach is used to prove that [Ay; — A ;| < 2e. O

Recall that @ is the matrix associated (defined in (2.1)) with a homogeneous

quadratic polynomial 7. By using (2.4) and (2.75), we obtain
3
1@n, = Qny ll2 < Sw(v2r), (3.45)

where w is defined in (2.75) and r is chosen to so that (3.17) holds.

The constant Cs, in (3.15) originates from the result below. Recall that, as in
Section 3.2.2, we assume that the Hessian Hy is positive definite. Also, in view

of (3.45), a natural choice for ¢ is that e = 3w(v/2r).
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Proposition 3.3.2. Let S; and S; be neighboring sub-squares. If HQﬂbi —Qﬂbj |2 <
e for a sufficiently small number € > 0, then the angle éij € [0,7) between €; and

e; satisfies

0;; < Cie? + O(£2), (3.46)
where Cy = 337 is a constant. Also, the angle 0;; between e; and e; satisfies

0, < Cs,e% + O(e?), (3.47)

where Cs, = 331 + 2(5;5 is a constant depending on &y, with d; being defined in
(3.13).

Proof. Let vi;,va,; be the unit eigenvectors corresponding to the eigenvalues
A1,is A2 of mp,. In view of Proposition 3.2.4, for a given small number ¢ > 0,
we shall distinguish the cases where |Ag; — Ay ;| < £2 and |Aai — Mgl > e2. By
this we can distinguish whether or not the optimal triangles for m,, and 7, need

the adjustment angles described in Proposition 3.2.4. We have three cases:

i If Aoy — Ayl > £2 and A2 — M| > 2. Since %:p <sinz for all z € [0, 7],

we deduce from (3.20) and (3.22) that

— T
0ij < 5 max{[|vi; — Vil [[Vai — vall2}
w1 2
S 58 2 ”Qﬂ'bi - Qﬂbj H2 =+ O(”Qﬂ'bi - Qﬂbj H2)
< 5+ 0()

i If [Ny — Ary] < £2 and Ao — Ayl < £3. We deduce from (3.28) of
Proposition 3.2.4 that él-j < Cier + O(g?), with C; = 337 according to
(3.39).

fii. If Aoy — Ay| < £3 and A2 — A1 | > £3. With 9, being the adjustment
203 | X2 i — A1

T and
£2+4|Ag,i— A1l

angle for an optimal triangle for m,, we have p; —9; =
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= 2l Nai — Avi| — p€7 — A — Aul
9ij:|(/~tz‘—"l9z‘)—ﬂj|: 1 ’ .
€2 4+ Ao — Al

1
o A =l 4 pd = pye)|
N €3 + A\

™

where A = [Xg; — A1 ;|. Observe that, since %x <sinz for all z € [0, §], we

deduce from (3.20) that |; — ;| < F{|vi —v;||2 which together with (3.22),

yields
s T )
Azi = Avillii = 5] < 5 11@m, = Qny NIz + 51220 = AralO([| @y, — @y, I2).
Also, by denoting A = |Ay; — Ay 4], it is clear that

1 1
i\ — g% | = |\ — pie® + A — psAl
1
< pi = g A+ pylez = Al

where, with X' := |[Ag; — A1 ;| > 2 and noting that (3.33) holds, clearly
lez — M| < [N — A| < 2e. We thus obtain

. < 2 +£30(e2) +

i — i\ + e - 8¢ + 2e20(c2) + 2me

5% o 5%

(8 +27)e 4+ £20(c?)
T

E£2

= (8+2m)et + 0",
thereby proving (3.46).

Let hg and py denote the diameter and smallest height of an equilateral triangle
of unit area. Then, e; makes with the z-axis the angle u; — ¥; — «;, where the
angle q; is the initial angle which e; makes with the z-axis before rotation to the

alignment direction p; — v;, see Figure 3.2, with

)/ (ol
Po M

ho | A
2 )\271'

i) _ho Ay

1
= — z, 3.48
2p0 )\2,i ( )

tan o; = (
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To estimate the angle 8;; between e; and e;, we shall only need to estimate

the difference of angle |a; — a;| since

Oij = (s — Vi — ai) — (5 — V5 — )|
< |[(pi = 0i) = (g = 95)| + oy — ail,

< 0y + oy — oy, (3.49)

with 6;; being estimated by (3.46). Observe that 0 < a; < T always holds. Since

r <tanz on [0, 7], clearly |a; — a;| < tan |o; — o;|. Hence, from the fact that

tan a; — tan o;
J

tan|o; — o] = <|tana; — tan oy,

1 + tan o tan oy

combined with (3.48), we deduce that |o; — o] satisfies

ho )‘l,j )‘1 N )\1] AL 2
oy — ] < 0 || A S
2po )\2,j )\22 21)0 )\2] )\2,1'
ho | A1iAas — AiAa 3
S _0 17_] 27 17 27] , (3.5(])
2p0 )\Q,i)\Q,j

which we shall estimate. We prove that [\ jAs; — Ao ;| < demax{|Aa;, A2 j|}
as follows. By Lemma 3.2.1, there exist k, k' € {1,2} such that max{|\;; —

Mejly [A2i — Ak j|} < e. We now have the following cases:

o If (k, k') = (1,1), then we easily prove that |Ay; — Ao;| < 3e: If Ay, is the
closest eigenvalue to Ag ;, then |Ay ; — Ao ;| < e < 3e. Otherwise, if Ay ; is the
closest eigenvalue to Ay ; so that [Ay; — A1;| < e, then a simple triangular

inequality shows that

A2 — Aol < Aoy — Ava| + (A — Ayl + [ Ay — Al < 3,

from which we deduce that

|)\1,j)\2,i - Al,i)\Q,j| < |)\2,z‘||)\1,j - )\1,i| + |)\1,i||)\2,j - >\27i|

< de max{| 2|, |A2,l};
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o If (k, k') = (2,2), using the same argument as above shows that [\ j—A; ;| <
3e: If Ay, is the closest eigenvalue to A, then |A; — Aj;| < ¢ < 3e.
Otherwise, if A, is the closest to A1 ; so that [\ ; — Ay;| < ¢, then a simple

triangular inequality shows that

A — A <A — Aol + (Ao — Aol + [ Aa — Ao < 3e,

and we have the following,

‘)\l,j)\2,i - )\l,i)\2,j‘ < |)\2,i||)\1,j - )\l,i‘ + ‘)\l,i||>\2,i - )\2,j|

< e max{| A2, [ A2}

o If (k, k') = (1,2), then we write

|)\1,j)\2,i - >\1,i>\2,j| = |)\1,j()\2,i - )\k’,j) + )\Q,j()\k,j - )\1,i)|

< 2e max{| e, [ A2 };

e The case (k,k') = (2,1) means that [A;; — Ag;| < € and [Ao; — Ay | <
e. Since all eigenvalues are positive, we deduce from Lemma 3.3.1 that

max{|Aa; — A1, [A2; — A1 |} < 2e. This implies that

A2 — Al < A2y — Al + [ A2 — A1l < 3e.

It follows that

AL A2 — Anidaj| < Al Az — Aol + [Agil| ALy — Ava| < demax{|Az, [Ao}

Combining all these cases, we prove that

|)‘1,j)‘2,i — Al,i)‘Z,j| S 4e max{|)\27i|, |)\27]‘|}. (351)
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Figure 3.14: Angles formed from the intersections of a segment to the vertical
and horizontal lines.

We easily deduce from (3.13) that

1
A1 A2 — A1idg 2 < 25% maX{|)\2,i|, |)\2,j|}5

<2573 3.52
A2,iA2 |)\27Z-)\27j|% = ( )

It follows from (3.50) that
hy —1
|0zj — Ozi| < _06f 255,
Po

which, together with (3.49) and the fact that % = % < 2, proves the estimation

(3.47) with the constant Cs, = 337 +20,> > Cy + -

no
)

-

5.7 0
Note that a straight line segment forms four angles with the vertical and
horizontal lines (see Figure 3.14). The angles belong to the following two sets

©;,0,, i = 1,...,m?, obtainable by replacing @ in Figure 3.14 by u; — ¥; and

i — i — vy
s s
©; = {u — Ui, 5 —pi + 0, = i+ 0, 5 tHi — Ui (3.53)
_ T m
O; = {p; — a; — Vs, §—Mi+0éi+19i, T — i + o + U, §+Mz‘—az‘—?9i}-

(3.54)

where yi; is the angle of rotation of ()r,, whereas 1J; is the corresponding angle

of adjustment. For any neighboring sub-square S, the angles may change by at
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most max{f;;, 0 }.
We formulate the following statement, obvious from Figure 3.2.

Lemma 3.3.3. For each i = 1,...,m?, the interior angles of a reqular triangle

T € R; are exactly 2c;; and [5; where o is defined by (3.48) and [3; by

1

tan 3; = .
tan q;

(3.55)

Consequently, the interior angles of any parallelogram obtained by using step (i)

or (iii.) of Section 3.2.2 are exactly 2c; + B; and B;.

3.3.2 Intersections of extended segments

In this section, we present the properties of extended segments obtained by Set-
tings 1-4. Recall that their intersections create polygons of at most five edges

which we call irregular polygons.

By virtue of Proposition 3.3.2, by making the parameter r small enough, the
segments in £, and £;, and in L; and Ej for neighboring regular regions R;, R;,
are “almost” parallel in the sense that the angle between them does not exceed

0, where
0* = max{0;;,0;; :i,j = 1,...,m*} (3.56)

with 6;; and él-j estimated in Proposition 3.3.2.
The result below is straightforward by construction.

Lemma 3.3.4. Let S;,S; be neighbors that share an edge. For any segment
lo € L; U L; extended by using Setting 1, and any ¢, € L; U L; extended into R;
by using either of Setting 2-a, 2-b or 3, the extended segments (£ and (5 can

only intersect at their end-points.

Proof. The result is clear since we do not allow connection to a re-entrant corner

(see Figure 3.15). O
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Figure 3.15: Extension of segments

Lemma 3.3.5. Let r be sufficiently small so that (3.17) holds. For any neighbor-
ing sub-squares S;, S; and any two segments by € L; (resp. {y € E_i) and l, € L;
(resp. {1 € L;), the associated evtended segments (5™ (5 can only intersect at

their end-points.

Proof. We shall prove the result by contradiction. Suppose that there are two
extended segments (5%, $** which intersect at a point which is not an end-point.
Clearly, neither of £§** (** can be obtained from Setting 1, 4 and 5. Indeed, this

is obvious for Setting 4 and 5, and for Setting 1 we have Lemma 3.3.4.

Denote by z the intersection of the lines /i, /ine. Without loss of generality,
assume that z € S;. Consider the triangle formed by the three points z, 2,z
(see Figure 3.16) where z; is the common end-point of ¢; and ¢, and z the
intersection point of /i"® with the segment of Ej containing z;. Denote by v, 3
the interior angles at z, z, respectively. Also, recall that d;, h; denote the lengths

of the shortest and longest edge of a parallelogram in R;.

Let us first estimate the angle . Recall that A; ;, A2 ; are the eigenvalues of the
matrix Q;, and that  is small enough so that (3.17) holds. Then, by combining
(3.45) and (3.17) with the results in Proposition 3.3.2 with ¢ = 2w(+/2r), we have

1 3 1
7 <0< Cspe? = C(;f[ﬁw(\/ﬁ'r’)]E + O(e?)
< 1 1 ; il,j ‘
105(%)505f|f‘5vgo(9) 27

(3.57)
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Figure 3.16: An intersection of two extended segments.

Since Setting 3 is based on Setting 2-a, 2-b, we only have three cases:

Case 1: both 5, ($" are obtained from Setting 2-a. Since {y € £; and ¢, € L;,

the directions of extension are two of e;, —e;,e; and —e;. We thus have

d;

otherwise the end-points of £5** would be z5 and z;. Note that z; must be on the

boundary of R;, thus by construction |z — 21| = h > h;. By using the sine rule

siny __ sinf
d ~— h

, we obtain

d.
siny > ﬁ sin 3. (3.59)
j

We now need some lower bound for the angle 8. Recall that given a parallelogram
P of a regular region, there is an angle £ < 9 < 7 such that the interior angles of
P are exactly ¥ and m — ). Then the angle g is bounded by ¥ — v and m — 9 + 7.
By virtue of (3.57) we have that v < Z. Hence

sin 3 > sin % (3.60)
1
Note that % = 2’17“0 ;—;L *, with pg, hg being the length scales of an equilateral
J »J

triangle of unit area, with hy = 2/3/4 and py = 3%/4. We deduce from (3.59) that

ho | A1
80 )\2,]'

1
2

s _ 1 ‘&
4/3 A2 j

: (3.61)

which also contradicts the estimation in (3.57).
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In the case where ¢, € £; and ¢; € /jj, the directions of extension are two of
e;,, —€;,€e; and —e;, and the values of d, h change: in (3.58) we have d > %, but
also that h < d;. Thus the lower bound in (3.59) becomes %sinﬂ > 1sinf.

Combining this with (3.60) yields

1
siny > 5 sin %, (3.62)

AL,
A2,

which also contradicts (3.57) because < 1.

Case 2: one of (5 ($** is obtained from Setting 2-a and the other from Set-
ting 2-b. Suppose that ¢y € £; and ¢, € L;. Since z € S, the same setting as
in Case 1 applies if £§** is obtained from Setting 2-a. If (5% is obtained from
Setting 2-b, then the value of d is greater than d;, making the lower bound in
(3.61) larger. In the case {y € £; and £, € L;, we also have the same setting as
above, and if £§* is obtained from Setting 2-b then d is greater than h;, which

makes the lower bound in (3.62) larger.

Case 3: both (5 (" are obtained from Setting 2-b. Suppose that ¢y € £; and
¢y € L;. The same setting as in Case 2 applies: the value of d is greater than d;,
making the lower bound in (3.61) larger. If £y € £; and ¢, € L;, then d is greater
than h;, which makes the lower bound in (3.62) larger. O

Lemma 3.3.6. An extended segment obtained by Setting 1 is necessarily a di-
agonal of a shifted version of a reqular parallelogram. Moreover, two extended

segments obtained by using Setting 1 cannot intersect.

Proof. The first statement is obvious by construction. We prove the second part
by contradiction. Let (55 = [zg, z1] and 5" be two extended segments obtained
from Setting 1 such that both connect the vertices of the same regular region R;,
for some i € {1,...,m?}. Supposing that they intersect, by construction, either

they are identical or they share an end-point.

Suppose that the first case is possible. Then one of the segments ¢y, {1 must
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Figure 3.17: Impossible configurations of extended segments of Setting 1.

belong to £; and the other to £;,. But then, once again by construction, the
intersection point z of £i"® with /"¢ must be a vertex of R; (see left of Figure 3.17),

and therefore should belong to both ¢y and /1, thus a contradiction.

Suppose that the second case is possible, that is, (§* and (§** share an end-
point. Then necessarily both £y, ¢; must belong to either £; or £; (see right of
Figure 3.17). However, by the second condition in Setting 1, one of the segments
ly, {1 cannot be extended by Setting 1, thus again a contradiction. Hence, there

is no intersection of extended segments from Setting 1. U

3.3.3 Interior angles of triangles

Let i € {1,...,m?} be fixed and consider a neighboring sub-square S; to S;. Then
(. 1(Rj) is uniformly triangulated, with triangles not necessarily equilateral but

still isotropic. We show this below.

Let R; be a neighboring regular region to R; and consider a triangle 7" € R;.
Then, there is a vector t’ such that 7" = Ajp;(1p) + t" where A; is as defined in
(3.43). Since a translation does not change the shape of triangles, the triangle

Y1 (T") has the same shape as ¢; '(T"), see Figure 3.18, which is given by

1 1
. 2 o Ml o
@; o (Njpy)(To) = | o3 | B0~ ! x| (To)
0 2i |4 0 A 2ni|*
A1y T A2,

— Dfl 1) Rélj o) (A]DJ)(TO>7

(2

1
Aoila | A1

where D; = diag ( o o
0;j = (pj — ;) — (u; — ;) which is estimated in (3.46).

)

1
4) with A1, A2; being the eigenvalues of @).,, and
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Figure 3.18: Back transformation of a regular triangle from a neighboring regular
region.

Recall the edge-vectors e;, €; of T; which are described in step (iii) of Sec-
tion 3.2.2. In Figure 3.18, the vectors e; and e; are as defined in step (iii) of
Section 3.2.2, the angle «; has its tangent given in (3.48), and A, is defined as in
(3.42) . Recall also that hg = 2/37 denotes the diameter of an equilateral triangle

of unit area.

We have the following result.

Lemma 3.3.7. Let r be sufficiently small so that (3.17) holds. The diameter of

;N (T") is less than (1 + 104(13)%)(1 + &)holj, with A; as defined in (3.43), and

where

1
i (363)
with & = 3w(V2r) such that ||Qx, — Qx,|l2 < & and &; satisfying (3.13).

Proof. The two edge vectors e} and €] of the triangle Ry o (A;D;)(Ty) are re-
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spectively given by (3.64) and (3.72) below. The first edge-vector is given by

) _ 1t
e =Ry _(,—0)€ = [\e]\ cos(a; — 0;) , —|e;| sin(a; — %)] : (3.64)

where its image by D; ' can be easily computed,

4

AL
D;e; = eyl |5

_ 1 ¢
cos(a; — 0;5) —‘f *sin(a; — Gl-j)} .
K

The length of the above vector is estimated as follows: From the fact that sin ¢
1
1

1
hoj | A1 C_ pohy [ Aey |7 .
2|ej3| ﬁ and cos o = ‘ej‘] )\Lj we easily get
cos(a; — 0;;) = cos o cos éij + sin o sin éij
_ pol\j Aoy o5 + oA hol\j Ay i
- ] z]a
lej] T A 2lej| 1 Aa;
whereas,
sin(a; — H_ij) = sin a; cos éij — cos o sin éij
hQA ’)\17] o pQA ’)\2,.] ne
2‘e]| Az, lej] ' A v
We now deduce that
AL Ao ho A Ayh)?
D; 1e* = Kpo cos 0 ; 22 —i— sin 6;; _— 4)
| =A 7 Ao AL 2 7 Ao Aaj
ho )\2z)\1]i = A2 Ao ld 213
+( =15 — posin 0| ———= )}
)\2,]} TN A
Midoih  h2 MiAgh
:A{Qcosﬁ L2212 4 D0 g2 g, | S 2 |2
Po POV R e Ao
h a7 A2 2 A2,j |3
+ Ycos? | L1 )P 4 pEsin? ;| 2L 2L
4 J )\171 )\2, 0 ! )\l,i )\1
Auih e B\]?
+ 2cos By sin e,jQAQ - ’)\u ﬂ , (3.65)
. hopo
since

= 1. Recall that & is defined in (3.13) and that ¢ = 2w(v/2r), with
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|Qr, — Qx,ll2 < e. We also deduce from (2.4) the inequalities
3 3
mac{ Aol oyl < S mas (il [ll} < 21w o

Hence, from (3.52) (see proof of Proposition 3.3.2) we also have

)\1,j )\1,1'

101 %
L V07 f1Rs - (3.66)
7] 7Z

We also deduce from (3.51) that

_ Paghes = Midayl?
|)‘1z>‘1j|2

)\271‘ )\Q,j

)\171‘ )\173’

Taking the square root, from (3.67) it immediately follows that

Ao i3 A1 s A 2% 11 -1 1
2T ‘ﬁ— T <6716, 7| f Iz o
Al T AgiA Aj o A
11)\2]‘% . 101 —1 1
—" < 1—|—£W1th£:6454(5f2‘f|§v2(m. The
1, o
Ag,i
estimation ’ )\1 ] )\2 < 1+&is proved in a similar way.

2,7 \,i

2 A2i Aoy

b ?. By using (3.46) and (3.17), and

Next, we shall estimate p3(sin 0;;)

recalling that & = 3w(v/2r), we have

(sin 0;;)* <02 SQZ]C(;f[ (\/_r)]%
] Avj
T105(2)3C5, 1 13 0y 2

< 0,

and therefore, since C < Cs,, we deduce from (3.47) that

)\2 K )\2 2,5
>\1,z )\17]

1
2

', i A2 Mg
1 1 ) )
T105(2)3C5, |12 gy M1 A2

Asind,)’
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102
_ Lf)p%(l Lo (3.68)
105 f vz, (@)

IN

<1+£>2

by virtue of e = 3w (v/2r).

We observe that, since 67 € (0,1) (see (3.13)), clearly

1 07 Sy

C3,  (2+33m6;)2 ~ 4~

Also, since from (2.4) we have that 6; < 2| f|y2 (), we obtain = § 3 flwz ) <

|flwz - It is now easy to show from (3.15) that

w(v/2r)z - 1

< : 3.69
10°] flwz @) — 10%3 (3.69)
1
Next, from the fact that ‘— < 1, we deduce from (3.15) that
.= (1Ais (M2l
sm@l-j(‘a 2 _ " 2)‘ < ‘sm@@]\
< Czsf[ (\ﬂ“)] ’
1
< - T
10°(3)2Cos, f iz (0
1 (&3
By virtue of Cif 507 < 5 |f\W2 2 () S \f|W2 2 (), We obtain
~ : A2 1 1
sin eu<— i )‘ < _(14+62 (3.70)
’ ‘ A 105(3)2 ~ 10%(2)z

Now using (3.65), (3.68) and (3.69), together with (3.70) and the fact that
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p5 + 3 = h§, we deduce from (3.65) that

_h2 2 2|cosbi|\ 2
D._le*f < (14 A<2 29,“+—0+ 0 U)
|D; ]| <( £) i\ Po COS Ui A 108% 104(%)%

)2

2
- -
1055 " 104(3)?

< (T+8)hol;(1

=(1+901+ Jhol\;. (3.71)

1
03}
The second edge-vector of Ry o (A;D;)(Tp) is given by

é; = Rgz’j—(uj—ﬁj)éj = [—‘é]‘ COSs éij s ‘él]‘ sin éij]t, (372)

with its image by D; ' being

Aaji

AL

1
tcosb;;

)\ .
D;'e; = |ej] [ - ‘)\:Z
J

1 _ 1t
1 .
Sin 91]:| s

from which it follows that

1

1 97 5
2 .
sin «91-]») ,

1
2

AL ; J sin G + |22
1571651 = [l | 3] cos? B + 2 cos By sin By + | 224
)\2,1 )\171

A2
21 1% Hence

where [e;] = 22A; oy

=

1
2

AL A1
A2 Ao

Mg ph | Asiday

1,j
A2, ALi A1j

cos? 0;; +2cosb;;sinb;;

h
J 0
|D; )| < ?AJ(‘

1 — \ 2
2 .
sin? Gl-j) )

Using a similar approach as to obtain (3.71), we obtain

Loy

D76 < (1+6)(1+ 104(%)%) 5 (3.73)

The length of the third edge-vector of D; ' o Ry, (A;D;)(To) is estimated in a
similar way as in (3.71). Combining this with (3.71) and (3.73) yields the result.
U

The triangle D; ! o Ry, (A;D;)(Ty) is isotropic with its sides being compara-
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ble to those of A;T which is an equilateral triangle: From (3.43), with A; =
s(Kp(m;) + QChiiw(r))_g, let us estimate the quotient

A (Kp(ﬂi) + 2Ch2 w(r) ) %’ (3.74)

where h,, is the diameter of an optimal triangle for m; by using the construction
in Algorithm 3.1. First, from (2.54) we have K,(m;) = Kp(wo)|)\17,~)\27,~|% where
mo(z,y) = 2% + y*. Assuming without loss of generality that A, ; is the closest to
A1, of the eigenvalues of @), and also that A ; is the closest to Ay;, we deduce

from (3.19) that

|)\1,i)\2,i - Al,j)\Q,j| = |(>\1,i - Al,j)AZ,i + Al,j(AZ,i - )\27_])|
S QHQm - QTK']'HQ)\Q,Z'
S 3(4}(\/57"))\272‘, (375)

by virtue of (2.4) and and (3.45). It follows from (3.75) that

() — Kop(m3)| < 35 Ky (mo)w(V2r) 3 AZ,. (3.76)

On the other hand, by using (3.66) and (3.67), we obtain

2 :pg )\2,i % h_% ﬁ %
m' 0 )\l,i 4 )\2,i
YL h2 At
< 2<_7_72+§2)+_0<_,]2+€2>
=Fo ’Au 4 ‘Az,j

= hZ + hge?,

h _

by virtue of the fact that p§ + =

h%. Combining this with (3.76) yields

Kp(m;) + 2Ch2 w(r) < Ky(mj) + QChijw(T)

1 J S
+ 35Kp(wo)w(\/§r)i)\§7i + 20R2E3w(r).
Since £ = 3w(v/2r), clearly from (3.63) we have
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1
= 3w(\/§r)%5;1|f\§vgo(ﬂ). Thus the inequalities

3K, (ro)o (VI A, _ 33Ky (ro)e(var) AL,
o

Ky(mj) 4 2Ch2 w(r) K,,(m)m]w%
_ 35V (3 flhae
< 5,
< ¢

From the fact that h2 = %(2’ + p2 where p2 = /3 > ° = \/— we can easily prove
that for any A > 1, we have hf < = g1 7+ poA. Hence kg < hZ holds for any j.

Also, since h,; > 1, clearly

Kp(mj) +2Ch2 w(r) = 2ChZ w(r)  hZ2> — 77

after assuming that w(r) # 0. Obviously in the case w(r) = 0, we conclude that
Ky(m;) + 2Ch2 w(r) < (1+ 28%)(K,(m;) + 2Ch2 w(r)), (3.77)

and hence, from (3.74),

% < (14264, (3.78)

Note that the inverse inequality can be proved by using a similar argument. Since

= 3w(v/2r), we deduce from (3.63) and (3.17) that

l _1 1
= 32 (fr) 2|f|ffvgo(g)

1
< T
L He
10205 Cs,
1. 5
< 51077, (3.79)
by virtue of the fact that < % which can be easily proved. Hence, with
5 Cs,

= |ej| = hoA; and d; = |e l, combining (3.71) and (3.73) with (3.78) yields the
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1
1
104(3)2

inequalities below with & =

)

di < (L+ (14 &)hol; < (1+E)(1+ 2825 (1 + &)hols
< (T+ A+ V2) (14 &)hol; < (1+46)(1+ &)d;
<(1+8¢+6)d < (1 + 210—%)dg

< (1+4107%)d), (3.80)

since & is less than the upper bound of £ in (3.79). The inverse inequality, that

isd; < (1+ 10’%)d;, can be proved by using a similar argument.

Lemma 3.3.8. Let r be sufficiently small so that (3.17) holds. Suppose that S;, S;
are two neighboring sub-squares. Then the angle 07; (resp. 0; ) formed from the
segments in ;' (L;) and ;7 (L;) (resp. ;L) and ;7 (L;)) s bounded by
Clei, where e = 3w(v/2r) and C} a constant.

Proof. After a back transformation (see Figure 3.18), the directional vectors e

and e, respectively associated with ;" Y(L;) and ;! (L;) are given by

e = Az[pO — —]t, (381)

7 sin(a; — 0;)] (3.82)

In order to estimate the angle 0:

A A
We have that |e;| = L2 | 222
Cos )\1

%, we shall use the scalar product of e} and ej.

1
, and also

A;j = cos(aj — 6,;;) = cosa; cosb;; + sin o sin 6,5,

B;j :=sin(a; — 0;;) = sina; cos 0;; — cos a; sin 0.

We thus have

ot = Loy Pod; ’)\2] [)\u _@%B“]t
cos aj I Ay EARERD "
)\2 )\1@ )\2 )\21 t
= A 8] |1 ii '] B :| X
po J[AM il 0 TIN L
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The square of the scalar product of €] and e satifies

Ao A h Ao i Aot 2
* % o A2A2( 2,7 N 0 2,5 N\2i 4Bi')
(ezej) =Lo ‘)\1])\22 ‘)\lj)\li J
A2 Ails h2 Ao s N s 12
AZA3 (RS2 A2t poho|222[F A, By + 10|22 2 'B).
Polti po‘)\l,j Ao R 0‘)\ ‘)\1,]' AL “
(3.83)
We also have that
Ao i A Ao i A
lles)® = hapazaz (| 220 2z 4 |20 22 32) 3.84
(e lle51)* = ropbATAT (|2 5 4% + 1555 (3.84)
Hence, since hZ — pg = —4Q, we have
ef|les])? — (efer)?
sin26’;‘j =1 — cos 6’;‘]»:(| il ]|Z *(2@ J)
(le7[lej])
2A2 A2
pOAiAj <h0 )‘2] )\11 2 42 )\2] 2 )\2] )\22 2>
= A — poh Ai; B; B
(leplle;)2\ 4 Th ;5 Mg poftol X, 1P T POIN R
- P A <h0’)\2,j ALi |4 p ‘)\24 )\2,i %B >2
| Aij —po|lx—v | Dij ) -
~(leflle; | A Aol A At
Recall from (3.48) that tan o = 2p0 i;ﬂ Thus
A2j A2l = ho A1 Aeifi -
_4J i t . 0@" — | = Qi,'
po‘)\u i ana; cos 0y = - ‘)\QJ’ i cos 0;;

Hence we have

ZAZA2 h 1 ~ h ~
2 = Loty A(_O C— — 0+ —2C't - sin 0;;
sin” 0;; (et *|)2 cos” o 2 ( C’) cos ;; + 5 an o sin 6
+p \A“ ismé-~>2 (3.85)
P Al ) |
1
where C' = )‘2 i;: * <1+ ¢ with € defined in (3.63), and estimated in (3.79).

Without loss of generality, we assume that & < C (otherwise we use ¢’ = %),
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and thus

‘C__‘_‘ _1‘_‘ +€)? —1‘:252529“@

Now recall from Proposition 3.3.2 that sin él-j < 05f€ and that tano; <1

since — 2/3%, po = 37. This, coupled with (3.68), imply that
1
BAZA? poCRei(1+€)\2
|sin? 6], \_m( (26 +€) + 011 £)05 2 + 28 ( f)).
i11€;

1 1
10°C5 | flivz

Combining this with (3.63) yields

PEAZA2 (3R, L1 N\ 2
| sin® 05| < W (7\/5545,‘ *1f vz ) + hoCs,e + h00054)
< 66 5%
Aoy A |2 Aoy i |2
gy el
<Cle?, (3.86)
by virtue of (3.84), thereby proving the result. O

We are now ready to prove the following.

Proposition 3.3.9. Let r be sufficiently small so that (3.17) holds. For a fized
i € {1,...,m?}, consider the back transformation A; of the triangulation A,

defined in (3.44). Then:

. For any segment {y € L; extended according to Setting 1, the angle between

the segments ©; *(lo) and ;' ((§*) is either /6 or 7/3;

ii. For any segment by € L;UL; extended according to Setting 2-a, 2-b or 3 up
to a neighboring sub-square S; of S;, the angle between the segments o0 ()

and @; ' ((§™) is less than .

Proof. Denote by 6 the angle between the segments 1; *(£o) and ;' (£5). Given
a regular triangle 7" in R;, we denote by d, h. the lengths of the shortest and
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Figure 3.19: Connection according to Setting 1 for regular regions after a back
transformation.

largest edges of 1; }(T).

i. The back transformation of Ay, by using 1); transforms the regular triangles
contained in S; into equilateral triangles. Given a segment ¢, € L; and the
extended segment (§** obtained by using Setting 1, as shown in Figure 3.19, the
segment ;" (£5") is necessarily one of the diagonals of a parallelogram defined

by two equilateral triangles of 1; *(S;). Thus, the angle @ is either 7/6 or 7/3;

The proof of the second part is divided into two parts ii-a and ii-b (on page 147)

depending on which Setting is used to extend a given segment ;.

ii-a. Consider a segment ¢y € L; which is extended by using Setting 2-a
following the direction e;. Given the segment ¢, € E_j (described in Setting 2-a)
which intersects the line ¢i" let z, denote the common vertex of v;*(f) and
Y H(£5), and let z denote the intersection of the line extending 1; '(¢y) with
b (6).

We first recall that the angle 07; (resp. 9_;‘]) between the segments in ;' (£;)
and in ;' (L) (reps. ¥; '(L;) and ;' (L)) is estimated according to Lemma 3.3.8.
Also, after a back transformation the angles in a parallelogram of 1; *(R;) are

s *

Z and %’T These angles are perturbed by 6;; and é;kj for the parallelograms in
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v (6)

Figure 3.20: After a back transformation, the distance |z — z| is nearly equal to
d; +d..
j

¥; '(R;). The perturbed angles are denoted by 3;; and Bi;. More precisely,

/ * * * % a * * * N*
5.0 €{ (5 Ww?‘@w‘@j)’(gw %?‘W%)’
* * * * 7T * * * *
<3 0. +e,j, o — 0 > <§—9 e,j, oy + 0 >}
(3.87)

Our first task consists in estimating the minimum distance between z, and
z (see (3.93)). Let 2* denote the intersection of the line extending v; *(¢,) with
the common edge of 1; '(S;) and v; '(S;). Then by construction (see Step (iii)

of Section 3.2.2), we have |zg — z*| > d; = |e]].

Consider the intersection point 2’ of the common edge Ej; of v;*(S;) and

zp-‘l(Sj) with the line parallel to e} and passing through z, see Figure 3.20. By

2

considering the triangle formed by z, z* and 2/, denote by 1, v the interior angles

|z—z*| [z=2']
sin sin

at z*, 2/, respectively. By using the sine rule, we have which yields

sin 7y siny

~ sindg 7’

’

|z — 2% = |z — 2 (3.88)

sin 9

by virtue of the fact that by construction |z — 2| > d’;, where d} is the length
of the shortest edge of a parallelogram in 1), 1(Rj). The right hand side of the

above inequality is an increasing function of v € [0, 5]. Clearly v > 0, and v > ¥
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implies that |z —2*| > |z — 2|, which does not provide the minimum lower bound
possible for |z —2*|. We will show below that there is an angle ~q for which v > 7,

lead to the lower bound Yor |z — z*|.

Figure 3.21: Nearest that 2; can be to an edge of ¥; ' (S;)

In fact, |z — 2*| is longer than |z, — 27| where z; is a vertex of ¢; *(¢1) which is
nearer to F;; than z (there is always such a vertex since z belongs to a parallel-
ogram having an edge on ;' (f;)), and z; the intersection point of E;; with the
line parallel to e} and passing through z;. Clearly, d} is a lower bound for |2 —z}].
We are looking for the lowest value of v for which the minimum [z, — z{| = dj is
attained. Such a value is determined through the following settings, as illustrated
in Figure 3.21: The line parallel to €} and passing through 2 intersects the edge
E;j at a point 2z3. By construction we also have |2; — 23| > d}. For the triangle
formed by 21, 27, 25, the interior angle at z; is denoted I' and the one at z; which

we denote by [y is either 3;; or 3 (the one at 27 is obviously ).

Both lower bounds |21 — 27| = d} and [z, — 23| = d} (see Figure 3.21) are
attained if v = ' = np = %50 and if the distance of z; to the edge Ej; is
djsinyp. Indeed, by using the sine rule clearly ‘Zsli;;ﬁ = ‘Zsli;?‘ which yields

sin’

*
2 — 2| = .
& il sin 7y

Thus, if v < T' then % > 1 and [z — 27| > |21 — 23| = d}. Hence v = 7 is the

minimum angle that makes |2, — 27| as short as possible. Moreover, from (3.87)
~ 07407,

the largest angle that 3, can be is %” + 05; + 07;, which yields vy = & — 25
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Let us now come back to our previous setting with the points z, z* and 2’ (see

Figure 3.20). Since v > 7, we deduce from (3.88) that

. sin g
|z = 2| 2 ——7d;. (3.89)
From the fact that
5 g% — f*.
19:7r—7—9;‘j§7r—%_9;j:_”+ Y ij

6 2 7
we obtain
sin Yo _COS(@F]' +65) — \/gsm(é;} +05)
sin v/ _cos(éjj —0;;) — V/3sin(6}; — 0,)
~ 1—tan 6’_;3 tan 07, — V3 tan éjj —/3tan 03
" 1+ tan 6’_;3 tan 0, — V3 tan éjj + /3 tan 0;;
2 tan %(\/3 + tan %)
1-— \/gtan% + tan %(\/ng tan %)

-1 —

(3.90)

after expansions and simplifications of the cosines and sines. Observe that 6;; and
_ 6% 0% 0%,
0;; are small (Lemma 3.3.8) enough so that —v/3 tan - +tan - (v/3+tan %) < 1,

from which the above inequality reads

> 1= 0, (3.91)

*
07

where g;; = 4tan 7(\/5 + tan %) which can be very small too. We deduce from
(3.89) that

Now, observe that
|20 — 2| = |20 — 27| + |2 = 27| > d} + (1 — i) d;. (3.93)

The above estimation will be useful for each of the following two cases, whether
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Figure 3.22: Positions of the points z, 2y, 21, 21 when z is not near a corner and
Z2=I40"
z=7%+0;

or not z is near to a re-entrant corner.

* Let z; be the nearest vertex of 1, 1(61) such that z; is not a re-entrant
corner and such that [z—z| < d?;. Consider the triangle formed by 2z, z, 2;. Recall
that the segments in ;' (L;) and 1; '(L;) are almost parallel in the sense that
they make small angles (and similarly for the segments in ¢; '(£;) and ¥; *(L;)).
Thus the interior angle Z at z belongs to the set

{zig’#

2 =,
3 i ? + 9@]} (394)

Observe that 0 is the angle between [z, z] and [29, 21]. We have two cases.

0+

e Suppose that z = § £ 6;, as shown in Figure 3.22. Denoting by 2; the

orthogonal projection of z; onto the the segment [z, z], we have

tan9:|zl_21| B |z — 21| sinZ

|zo — 21| |20 — 2| — |z — 21| cos Z
a

- 5 sinz

Cdi4 (1 - 0i)d; — %COSE’

(3.95)

by virtue of (3.93). Since from (3.80) we have that d; = (1 4 §)d; for some
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0<6< 10%, after simplification by d’; we obtain
2

1
tanf < 2 = 1 < 1

by choosing p;; small enough (see (3.91)) so that 2(6 + 0;;) < é

ee Suppose that z = %’r +0;;, as shown in Figure 3.23. Then by denoting z;

the projection of z; onto the line extending the segment [z, z], we have

o |Zl—21| |Zl—21| |Z—Zl|
tanf = — < <
|20 — Z1| |z — 20| |z — 20|
d.
_J

3 1 T
< < < —.
_d§+(1—gij)d}_4—2(5+Qij)_ 7

(3.97)

++ Suppose now that z; is the nearest vertex of ;' (¢;) such that z; is not
a re-entrant corner but %/7' < |z — 2| < d,. Let z* denote the re-entrant corner
near to z and let Z be the middle point of z* and z; (see Figure 3.24). Consider
the point Z; obtained from the intersection of the segment [z1, Z5] with the line
parallel to e} and passing through z, where Z; € ;° 1(f/j) is the closest vertex to
z* such that the triangle defined by z1, 2%, Z is not included in ¥; '(R;). Clearly

the two triangles T', T formed by z1, 2, Z; and z;, 2*, 35 have the same shape. Thus
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Figure 3.24: Different points in the neighborhood of a re-entrant corner.

necessarily

|2—21| . |Z* —22|

2=z =2l

The numerator and denominator in the right hand side of the above equality are
equal to d; up to a perturbation by a small number (see (3.71) and (3.73)). Since
|2 — 21| = |Z*2;Zl‘, the above equality yields that

d,
12— 2| = (1+5’)§J, (3.98)

where |0| < 3¢ where € is given in (3.63).

The interior angle z* at z* of the triangle T' belongs to the set

{F£05+0 2% + 05 %05},

We again have two cases.

e Suppose that z* = TE05+ é;‘j (similar to Figure 3.22). Since the edge
lengths of T are approximately d}, the interior angle at Z; is also approximately
2. Thus, for the triangle T" the interior angle at z; is approximately Z. Consider

the triangle 7° formed by the points 2, 7, and 20 such that the point 2° belongs to
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the segment [Z), z1], the interior angle at Z is 6;; and such that |2 — 20| < |2 — 7.

By the sine rule, we have

el | 1} (3.99)

On the other hand, we have
12, — 2 cosZ + |2 — 20 = |2 — & (3.100)
From (3.99), we obtain |Z; — 2{| = 0% |5 — 29| which, together with (3.100) and

sin Z1

in view of (3.98), yields that |z — Z}| = ‘ngi‘ anz___ and thus
Cos U5 taneij—i—tan Z1

tan 6

tan 0;; + tan %

d’
5 - 2 21z - 21(1- )= 20—, (3.101)

where g}; = O(tan6;;). Recall from (3.98) that |Z — 2| is approximately equal to

%. Thus in a similar way that we obtain (3.93), we have that

|20 — 2| =20 — 2"| + |2 — 2| + |2 — 2]

d’.
>d; 4 (1 — oy)dj + (1 — Qﬁy);ﬂ
5 Y

=( d — 0ij 5 )d..

J

Denote by z; the projection of z; onto the segment [z, z]. Recalling that 6 is the

angle between [zg, 2] and [zg, 21|, we have that

tan g — |z1—%1\ _ |z — 21| sinZ .
|20 — 21| |20 — 2| — |z — 21| cos Z
where Z = £ £ éjj and |23 — 21| < d;. Hence we obtain
d’sinz
tanf < 1 7 ,
(5—06— 05— F)d; — djcosz
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with sin

)
IN
S
+
DO =
&z
=
)
*
&
=
o
Q
o
n
)
A
DO =
+
5
&z
=
>
*
=
=
c
»n

B V3 +6;,
4 =26 — 20,5 — df; — V305,

< tan g (3.102)

with 6’1’-} small enough (e.g. < 355) so that 28 + 205 + 0f; + \/géf] < i

ee Suppose that z* = %’T + 07 + éjj (similar to Figure 3.22). We use the
same notation as in the previous case. In order to bound tan 8, we shall estimate
the lowest possible value for |zg — z|. This is achieved with the following setting:
The point z coincides with the middle point Z and the segment [z, 2}] is shorter

than [Z, Z;] whose length is approximately %/1 (see (3.98)).

The difference here is that z; is the projection of z; onto the line extending

[20, z]. In this case we have

|Zl—21| |21—Z|

tan f = — < —.
|20 — 21| T |20 — Z1]

The numerator is clearly less than dj. For the denominator, using a similar

method as in the previous case yields that

tan 6;,
il ) (3.103)

~ ~0 ~ ~
Z—Zi| =2 1Z2—Z(1—
| il 2| 1|< tan 0;; + tan z;

Since z* = %’T + 05 + 5;‘]» and [2* — z1|,[2* — Za| have lengths approximately d,

the triangle T is nearly isosceles and we have Z; ~ . Thus

|20 — 2| =20 — 2| +|2" — 2] + |2 — 2]

d’.
Z%*Wl—&ﬂﬁ+41—dﬂ§,
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which, by using a similar argument as when proving (3.102), yields

1 N
tan 8 < 3 +97 sm?/iz ]
(3—6—0y— %) — (L +Lsindy)
B 1+ /365,
5— 3 —26— 20 — dj; — 05

<tan =~
an —.
=tany

(3.104)

The second part of the proof is given below (the first part starts on page 138).

ii-b. Suppose that ¢ is extended according to Setting 2-b. We adopt the same

notation as in the previous case, and illustrations are similar to those already

shown in Figures 3.22-3.23-3.24. We consider the triangle formed by 2, 21, z and

denote by Z the interior angle at z. The angle 0 is the angle between the segments

[20, 2] and [zg, z1]. We again have two cases.

e Suppose that z = £ + éj] Denote by z; the projection of z; onto the

segment [2g, z]. Then, we have

B |21 — z|sinZ

|20 — 21| |20 — 2| — |21 — 2| cos 2’

U

With L/ = |29 — z] and |z — z| < %Te’ we obtain
7

i~ ’
dj

s
T - S =)
G T8 —d T-80 7

by virtue of the fact that d; = (1 — 9)d;.

(3.105)

ee Suppose that z = %’T + éj] Let z; be the projection of z; onto the line

extending the segment [z, z]. Then

d. L'

Na—a| a2z a2 _SdL;
tanf =
lz0—Zz1| = |z20—2| T |ao—2| T L
<t T
=—— < tan —.
8—85 — 7
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A similar argument is used if £ is extended by using Setting 3. This concludes

our proof. Ol

In Proposition 3.3.9-(ii), the angle v* will be different if we change some

parameters in the algorithms in Section 3.2.2.

e The minimum distance between a vertex in a regular region to the edge of
the sub-square that contains it is obtained from step (iii) of Section 3.2.2.
Changing this distance results in different estimations of |zg — z| in (3.93)

of part ii-a;

1
8

in the tolerance “Z introduced in Setting 2-b also

e Changing the factor 3h,

results in a different tolerance, and thus (3.105) and (3.106) will change

accordingly;

e The parameter 7 should satisfy (3.17) so that d; = (1£0)d}, where [§| < 10%
2
allowing us to prove (3.96) and (3.97);

e The parameter s needs to be small enough so that in each sub-square the
area covered by irregular regions is sufficiently small (see (3.3.12) of Sec-
tion 3.4), and so that one of the connections in Setting 1-4 occurs. For
instance, s should be small enough so that at times the tolerance (on some
enlarged segment) is larger than twice the maximum distance between a
vertex of a regular region and the edge of the sub-square that contains it,

Lo > 2d} and for which

i.e there is L{ such that ST

16d; < L' < 17d,. (3.107)

The above inequalities say that the system of parallel segments ;' (/fj)
should have at least 16 segments. This can be easily achieved since d; =

ho/A;, where A; has the factor s”. Other conditions on s are imposed in

(3.112) in Section 3.4.

We now present the following result.
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Proposition 3.3.10. Let r be sufficiently small so that (3.17) holds, and let
T € Ag, be a triangle whose barycenter is inside a sub-square R;. Then, the
T 497

interior angles of ¥; ' (T) are at most T — & = 2.

Proof. We present several cases depending on how the triangle 7" is obtained.

o If T is a regular triangle of R;, then ; *(T}) is an equilateral triangle, its

interior angles are exactly %;

e Suppose that Ty was already a triangle before the triangulation performed
in Section 3.2.4, and that it has no vertex on the boundary of €). Then, it

necessarily has one edge obtained from Setting 1. We have two exclusive cases:

- the other two edges of Tj are part of the boundary of the regular region
R; (Py is then necessarily contained in S;). This implies that the interior

angles of ;! (T}) are necessarily less than the maximum interior angle of a

2r.

parallelogram obtained after back transformation, that is =F;

- the other two edges are obtained by the intersection of two extended seg-
ments. By taking into account the result iz of Proposition 3.3.9, and know-
ing that the angles in a parallelogram after back transformation are % and

2 which can be altered by at most 0* < Z (defined by (3.56)), the maxi-

mum interior angle of 7j is bounded by %’r +0"+4 < 220—1“, with v* < 7

from 77 of Proposition 3.3.9.

e Suppose that Ty was already a triangle before the triangulation performed
in Section 3.2.4 and that Tj has a vertex on the boundary of 2. Then, it necessar-
ily has an edge ¢ overlapping the boundary and the other two edges are obtained
by the intersections of two extended segments from Setting 4 or 5. Note that
after the back transformation by ; the interior angles of a regular parallelogram
in S; are T and 2. These angles are altered by at most 6 (defined by (3.56)) in
any neighboring sub-square. Thus the interior angle formed from the intersection

of the two extended segments is at most %’T + 07, with obviously 6 < Z. The

interior angles #, and 6, at the end-points of £ respectively belong to some sets ©,
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Figure 3.25: An example of big angle: 2, is connected to z; by using Setting 1,
and to 2o by using either Setting 2 or Setting 3.

and Oy (both defined in (3.53) and (3.54)) for some k, k' € {4,5}, with j being
the index of the neighboring sub-square S; which is the closest (apart from .S;)
to the barycenter of Ty. We observe that 6, necessarily belongs to one of the two
smallest angles in Oy, and similarly for §, it belongs to one of the two smallest

s

angles in ©;,. Thus both cannot be greater than 5

e Suppose now that T was contained in some irregular polygon F, before
the triangulation performed in Section 3.2.4. Suppose that F, has no intersection
with the boundary of €. Then F, is a quadrilateral whose edges are obtained
from the intersections of some extended segments from Setting 1-5. Recall the

angle v* < %, as described in 4i of Proposition 3.3.9. We have two cases:

- If none of the edges of F, are obtained by Setting 1: Recall from Lemma 3.3.5
that extended segments from the same type cannot intersect when using
Setting 2-a, 2-b and thus Setting 3. Obviously, there are no intersections
of extended segments of the same type when using Setting 4-5. Hence, the

maximum interior angle of ¢; *(P,) must be less than the maximum inte-

rior angle %’T of a parallelogram, altered by at most twice of v*. Indeed, at

the vertex where the interior angle is %’T, there are two extensions creating

. sk 27 21 _ 207‘(’
turning of segments, each by at most +*. Hence the bound =F + =& = &
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Figure 3.26: Interface regions in the neighborhood of the boundary of €.
for the interior angles of Py, and therefore of Tj;

- If one edge ¢ of F, is obtained by using Setting 1: Suppose that the max-
imum interior angle of 1; 1(Py) is at its vertex z, (see Figure 3.25). Then
necessarily 2y is a corner of ¥; '(R;). We deduce from Proposition 3.3.9
that the interior angle at zj is less than %’T +5+7° < %. This is also the

bound for the interior angles of Tj.

e Suppose that Tj was contained in some irregular polygon F, before the
triangulation performed in Section 3.2.4. Suppose that Fy intersects the boundary
of 2. In fact, we can apply the above analysis in the case where the intersection is
a point. Hence, we assume that P, possesses an edge ¢ overlapping the boundary
of 2. Suppose that the maximum interior angle of F, is at its vertex zy €
(see Figure 3.26) which is the common end-point of the two edges ¢ and ¢, of Fy,
where (4 is part of some extended segment obtained from Setting 4. Consider
the edge 1 = [29, 21] of Py sharing a vertex z; # zy with ¢y, and let T; be the
triangle formed by the end-points of ¢y and ¢; (see Figure 3.27). Denote by vy
the interior angle of that triangle at z5, and by 1J; the one at z;. Then either
V)~ § or vy ~ %’T in the sense that either [}, — | < 6" or [0; — %’r| < 0*, where
0* is defined in (3.56).

As in the proof of Proposition 3.3.9, let the side length of a parallelogram
in ¢; '(R;) be denoted by d,. We have the following cases (see Figure 3.26 and
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Figure 3.27: Interior angles of irregular regions.

Figure 3.27):

a. If ¢ is part of an extended segment from R;, then |[(1]| = |22 — 21| > 1d

which is the minimum length of a tolerance. In this case, since either v, ~ %

or ¥y ~ &, we have |(o| = |z — z| < d] and |23 — %| < d]. On one hand,

if ¥, is approximately %’T, we have
d’

tan g > L

1 U
e R S
8|ZQ—Z()‘ -8

> tan —.
30

On the other hand, if ¥J; is approximately %, then since |21 — 2| < dj,

tanty > ———— >

b. If ¢; is not part of an extended segment from R;, i.e part of an extended
segment from a neighboring regular region Rj, then [(1] = |z — 21| = d}
(see proof of Proposition 3.3.9 for the descriptions of d, d;) Also, we have

o] < 6v/2(1 + §)d;, with § as in (3.63). Moreover, since either ¥, ~ % or

Y ~ %’T, we have that |z, — 2| < 6v/2(1 +§)d§-. Thus, if ¥, is approximately
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2

=, we have

d'; 1 2
tandy > J > > £ Ztanl.
|20 — 20| — 6V2(1+&) — 18 50

Similarly, if ), is approximately %, then

d; 1 @ T

> > > tan —.
|21 —20] ~ 6v2(1+&) ~ 18 = 50

tan vy >

From the above analysis, we conclude that vy > 5. This implies that after
a back transformation, the maximum interior angles in any irregular polygon

decreases by at least . O

3.3.4 On the area covered by irregular triangles

We respectively denote by A8 and Al the sets of regular and irregular triangles

T
in Ag,.

Let hpy = suppeares hy denote the longest edge of a regular triangle. Given a
sub-square S;, with i € {1,...,m?}, there are four quarter-disks pM p® p¥ pW

of radius 4v/2h); and each centered at the four corners of S;, see Figure 3.28.

A quarter-disk DF is big enough to contain at least one parallelogram of the
regular region. Also, from a geometric viewpoint, the following properties are

observed:

(i) If DF has a side on the boundary of €2, then that side must possess the

end-point of an extended segment obtained from Setting 4;

(77) If the center of the quarter-disk is a corner of ) (two of its sides are on
the boundary of €2), then DF contains at least two extended segments from
Setting 4 connecting vertices of R; with the the boundary of . It cannot

contain an extended segment from Setting 2-3;

(iii) A half-disk formed by two quarter-disks DF, Df' must contain an extended

segment obtained from Setting 2-a.
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Figure 3.28: Quarter-disks of radius 4v/2hy;.

The first property is useful to ensure that for an extended segment intersecting
a quarter-disk, the part of the intersected segment that is inside the quarter-disk
has a length less than the diameter of the quarter-disk. The second property is a

consequence of the first, whereas the third is by construction.

We are able prove the following result.

Proposition 3.3.11. Let r be sufficiently small so that (3.17) holds. There is
an absolute constant C, such that for any irreqular triangle Ty € A", we have

8,17

hr, < Cysuppeares hr.

Proof. To prove the above result, we first investigate the length of the longest
edge that an irregular polygon P has. Note that an edge e of an irregular region
is either an edge of a parallelogram or part of an extended segment, with the

latter case detailed below.

Suppose that e is part of an extended segment (5 obtained from the extension
of £y € L; in the direction of e;, for some i € {1,...,m?} (a similar argument is

used if ¢y € L, is extended in the direction €;).

Setting 1: Obviously, if ¢5 is obtained from Setting 1 then its length is less than

V2hy;
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Setting 4: Suppose that (5 is obtained from Setting 4 and denote its end-points by
20, 2, with zg belonging to the regular region R;, and z to the boundary of
Q2. Recall the families of segments described after the steps of Setting 5 in
Section 3.2.3.

a. Suppose that (& does not intersect any quarter-disk: If /5 is cut
by segments from the other family of extended segments, then the
length of the left over cut segment is less than h,;. Otherwise, by

construction, the length of £5%* is less than 2h,;;
b. Suppose that (& intersects a quarter-disk:

- If zp, 2z belong to the quarter-disk, then |zy — z| is less than the
diameter of that quarter-disk which is also less than twice the
radius 8v/2hy;

- If 2y is in a quarter-disk and z not, then similarly to Case a the
length of g is less than 2h,y;

- If z is in a quarter-disk and zo not: Whether or not ¢§** is cut by
some extended segment(s) from the other family, the length of the
left over cut segment is less than the diameter of the quarter-disk.
That diameter is also less than twice the radius 8v2hy, of the

quarter-disk.

Setting 2-a: Suppose that ¢; is extended by using Setting 2-a and the direction e;. The
resulting extended segment connects a vertex zy of R; with a vertex z; of
R;. We shall first estimate the length of the segment [z, z] where z is the
intersection point of the line /1" with a segment ¢; € Zj, as described in
Setting 2-a. The lengths |zo— 21| and |z — z| are comparable (i.e. one is less
than n-times of the other, for some n € N) if the latter can be compared to

h; (or hj): The angle that £i™ makes with ¢; belongs to
{Bi £ 0ij, 7 — B; £ 055, Bi + 20 £ 05, ™ — B; — 205 + 035},

where (; and «; + 2q; are the interior angles of a parallelogram in R;,

155



21

Figure 3.29: The points 2/, 2" close to z.

described in (3.48) and (3.55), and both are less than 7. The length of
|20 — 2| is less or equal to the diameter of the triangles formed by zg, z, 2/
and 2, z, 2" where [2/, 2"] is the part of ¢; with length 2h; and midpoint z
(see Figure 3.29). Amongst the possible angles that /i makes with ¢;, the
angle Bi—éij (or equivalently 7m— Bi+§ij) creates the case for which one of the
lengths |zp — 2'|, |20 — 2| is the longest possible. The angles at z are 3; — 0,
and 7 — B; + 0y, both being less than 7. Hence max{|z — 2'|, |20 — 2"|} <
|20 — 2| + hj. Clearly |20 — 21| < max{|z — 2|, |20 — 2"|}, and thus the

lengths of |zg — 21| and |zp — 2| are comparable provided that the latter can

be compared to h;.

We now show that the length |zy — 2| is comparable to h;: Consider the
point of intersection z* of /i"® with the common edge E;; of S; and S;. By

using the argument for the case Setting 4 above, we have |z —2*| < 8v/2h;.

Let 2 be the intersection point of £;; with the line parallel to e; and passing
through z. By using the argument for the case Setting 4 above, we have
|z—2""| < 8v/2hys. The angle between the segments [z, 2] and [z, 2*] is 6;;.
In view of (3.17) 6;; is small enough so that the lengths |z —2"|, |z — 2*| are
comparable, (i.e. one is less than k-times of the other, for some k € N, say

k < 10) even if the parallelograms are strongly anisotropic and have sides
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Setting 2-b:

Setting 3:

Setting 5:

Figure 3.30: Extensions from Setting 4 near the boundary of €.

nearly parallel to the sides of the sub-square. Thus,

|2* — 2| < (824 k)hay, Kk <10. (3.108)

Similarly to the previous cases, denote by z the intersection point of the
line extending ¢, with a line extending a segment of Z]— as described in
Setting 2-b. We can apply the same argument as in the previous cases
(above for Setting-4 and 2-a). Denote by z* the intersection point of Ei;
with the segment [zp,z]. The length |2y — 2*| is bounded by 8v/2h); as
previously proved. Thus, although the point z does not belong to R; but
is at a distance of at most hy;, we can estimate |z* — z| by using a similar
argument as in the case Setting 2-a above, and obtain an estimation of the

form (3.108) with and additional term hy; on the right hand side.
This case relies on the results in Setting 2-a and 2-b.

The length of any segments obtained from Setting 5 are less than the di-

ameter of a quarter-disk, also less than the diameter of a half-disk, i.e.

8v/2hy;.

Hence, the length of an edge of an irregular region is at most Chy; where C

is an absolute constant. This is the upper bound for the lengths of an irregular
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triangle obtained by intersections of extended segments. If the polygon P is
a quadrilateral, then its diameter is less than twice its longest edge, thus the
bound 2Ch,,. If the polygon is a pentagon, its diameter is less than three times
its longest edge, i.e. 3Ch,,, and if the polygon is an hexagon, its diameter is less
than four times the longest edge, i.e. 4C'h,;. Hence, the diameter of an irregular
triangle after the final splitting in Section 3.2.4 is less than the diameter of the
polygon that contains it originally, thus the bound 4Ch,,. O

In the result below, we estimate the space covered by irregular triangles in a

sub-square.

Proposition 3.3.12. Let r be sufficiently small so that (3.17) holds. For eachi €
{1,...,m?}, the square w; centered at b; and with side lengths r—8v/2 Suprears hr
does not intersect any irreqular triangle. Therefore, the area covered by irreqular

triangles satisfies

> |T| < 8rm® sup hr. (3.109)

TRty Teal?

Proof. Let T} € A‘SHT be an irregular region which intersects S;. It is clear that
a vertex v € 17 cannot be inside w;, otherwise all of the vertices v + e; and
v+ e; must be vertices of R;, which means that v is interior to the regular region
R;, thereby leading to a contradiction. Since irregular regions are obtained by
extensions of segments and their intersections, clearly the vertices of 17 are either

outside of wj;, or coincide with some of the vertices of R; which are also outside

of Wi .

In order to estimate the area covered by irregular regions in .S;, we simply
observe that such an area is less than the area formed from four rectangles of

sides lengths r and 2hy, with T" being a regular triangle of R;, that is,
4(7~ - th) — Srhy, (3.110)
with the factor 2 due to the removal of vertices as described in Section 3.2.2, and
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the factor 4 due to the four sides of S;. The proof is obtained by replacing hp

with suppeares, then summing up over all the m? sub-squares. Ol

3.4 Asymptotic error estimations in L, and W,

By using the triangulation Ay, constructed in Section 3.2, we present the error
bounds in L,-norm and Wpl-seminorm resulting from the approximation of f on
. We assume that 1 < p < co. The analysis is marked by the separation of the
errors on regular regions and irregular regions. Recall that regular triangles which
define the regular regions are isosceles (see Section 3.2.2), so that the estimations
on them are less tedious as compared to the estimations on irregular triangles

which may have arbitrary shapes.

3.4.1 L,-norm of the error on regular regions

From the construction of the triangulation in Section 3.2, a regular triangle 7' C

Ry, k € {1,...,m?}, is an isosceles triangle of the form
T = £A Ty + t, (3.111)

with Ty being the nearly-optimal triangle obtained by using Algorithm 3.1 with
I

T = Ty, where Ay = 5" (Kp(wk) + 2Ch72rkw('r’)) * with h,, denoting the diameter

of an optimal triangle for m;, = m, , and where t is a translation vector so that

T C Ry (see Step (i) and (iii) of Section 3.2.2), and where also 1+2ip > > 1+18;pq.

We now assume that s is sufficiently small so that, for all k = 1, ..., m?,

A _
s < | and ST < alf (3.112)
2,k

Note that QL > % holds since 0 < ¢ < 1.
D p

We prove Proposition 3.4.1 by using a similar argument as in [29].
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Proposition 3.4.1. Given k € {1,...,m?}, consider a regqular triangle T C Ry,
as given in (3.111). If r is sufficiently small so that K,(m,) > Cyw(r) holds for
all z €T, then

—q

hr < Cis and |T| < 52"(Kp(7rbk) + Chikw(r)) (3.113)

hold for some constant C4, with C' being the constant occurring in (3.116).

If, moreover, max,cr |z — bi| <1 and Cys < r hold, then

GT(f)p < 52p77/

[ ((KP@) Rz w(r) "+ Cp,(gfw(\/ér)%)pdz, (3.114)

where C, 5, is a constant depending only on oy and p.

Proof. First, assume that T is a regular triangle obtained without adjustment of

1
)\gyk 4
ALk

angle described in Proposition 3.2.4. Recall from Lemma 2.4.5 that hq, ~
q
By using simple inequalities, observe that (Kp(wbk) + 2Chfrkw(fr)) ? has as lower

bounds

q
4

A2k

1,k

g

28w(r)thd, ~w(r)? and K, (m, )2 ~ [A\ |t

Hence, from (3.111), there is a constant C) such that the diameter hr = Aghyg,
of T' satisfies

1
hT S S hTO ;
(Kp(m,) + 2Ch3 w(r))?
)\ 1_4a )\ 1
< (18" min {w(r)_% 2k |4 4, |)\17k)\27k|_% 2.k 4}
Ak ALk
Ao | T P
= (C1s"—=| min {w(r) 2, | A1kl 2} . (3.115)
ALk
1g - _
By using (3.112), the inequalities |22£] ¥ < s~ % and 5’7*1*%|)\17k|’% < 1 hold.

ALk
We then deduce from (3.115) that

hT < ClSW*%‘)\Lkr% = 018(8177171%4”)\17“7%) < 018.
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Recall from the proof of Lemma 2.4.1 that there is a constant C' such that
p(7m) = Ky(n') < Chigllm — '], (3.116)

whenever T' € A,(7'), with 7,7’ € H,. Let the point z € T be fixed. By using
(3.116), we have K,(m.) — Kp(m,) < Ch2 |7, — m, || < ChZ w(r) which yields
0 < Kp(m.) — ChZ w(r) < Ky(m,) for all z € T. The area |T| = AZ|To| = A7,
with

—q

7] = 521 (Ky(m,) +2Ch2, w(r)) " < s2(Ky(r.) + Ch2,w(r))

Using (3.27) of Proposition 3.2.4 for ¢ = 2w(v/2r), Proposition 2.5.4 with
c1 = A, and the fact that hy < Cis < r, we find that, for any z € T,

er(f) < (Kp(ﬂ'z) + Chikw(maxﬂz — hT})) |T|1+% + 9uzh%5%|T|%

< (Ky(m) + Ch2 w(r))|T|"% + 9uihie: T, (3.117)

by virtue of (3.113).

Note that, by using (3.115), we also have
hy < Cls”<5f |f\W§o(Q)>|>\1,k\ 2 <Cis"0p Pl )

by virtue of (3.13). Since the angle py, associated with m,, is less than 27, we have
1;

9pz < 36m°. Thus, denoting the constant Cp;, = 24m%(3)3 (C%5f2q|f\wfgq (Q)),

we deduce from (3.117) that

er(f) < 32”<Kp(7rz) + Chikw(r))l_q|T|% + Cp75f32”w(\/§r)%|T|%
< 520 ((Kp(wz) +OR2w(r) '+ Cp,gfw(\/ir)%) 7|3
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Since |T'| depends only on t, integrating over z € T yields

Tler(f)" = [ er(pyaz
< SZP"/T <<Kp(7rz) + ChfrkW('r’))l_q + Cpﬁfw(\/ﬁr)%)pw‘dz_

The result (3.114) is obtained by simplification by |T| in both sides. O

We denote by (e, the space covered by the union of all regular triangles, and

by A% the set of regular triangles in Ay,

S,r

Proposition 3.4.2. There are two constants Cpﬁf and C’(;f such that the errors

on reqular regions satisfy

> er(fy < [ ((Kylm) + Copeo(r)

Tenr

I\ P
! +Cp,5fw(\/§r)§) dz.  (3.118)

Proof. For any regular triangle T' € A8 the conditions in Proposition 3.4.1 for

ST

s and r so that Cys < r and max,cr |z —t| < r hold are satisfied by construction

of Ay, With b2 < h3o [ f]§2 ). we easily deduce from (3.114) that

> enlfy s [

; Q
TeAls res

, 1—q 1\P
<<Kp(7rz) + Cpﬁfw(r)) + Cpﬁfw(r)?) dz,
11
where Cs, = 2Chgd; | f|fy2 (- thereby proving (3.118). O

3.4.2 L,-norm on irregular regions

Denote by Alsm; the set of irregular triangles in A ,. Given an irregular triangle

T € A" we use Lemma 2.2.1 to obtain

ER

er(f) < ChQT‘f|W,?(T) = ChQT‘TmﬂWC%o(T)’
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where C' is an absolute constant. Thus,

2p
> er(f)F < Cp|f‘€v§o(ﬂ)( sup hT) ( > \T|). (3.119)
TeAT, TeA: TeAlr,

Proposition 3.4.3. The errors on irreqular regions satisfies

> er(f)f < s (8(0*01)2p+10p7’m2\f|%/2 (Q)). (3.120)

TeAlrn

Proof. From Proposition 3.3.11, together with Proposition 3.4.1, for any irregular
triangle T € A™ | we have hy < C,C}s. Hence from (3.109), the area covered by

s,

all irregular triangles satisfies

> |T| < 8C.Cirm?s. (3.121)

TeAlr

The result in (3.120) is obtained by combining the above inequality with (3.119),
together with the result in Proposition 3.3.11 and (3.113) of Proposition 3.4.1. O

3.4.3 Sobolev seminorm on regular regions

Given a regular triangle T' contained in a sub-square R;, i € {1,...,m?}, by using

the estimation (3.113) in Proposition 3.4.1, we have

q
2

I T|7 < 5"(K,(m) + 2Ch2 w(r))

< SnKp(TFO)_%| det 7Ti|_%,

by virtue of (2.54), where mo(x,y) = 2% + y>.

With 7 = 7, for any z € T we have |z — b;| < /27 and the condition (2.88)
is satisfied with v = w(y/2r). By virtue of the choice of r in (3.17), the inequality

dr < |)\171~)\27,~|% clearly holds for all i € {1,...,m?}, and we have

w(r) < min {1, |)\1,i)\2,i|%}- (3.122)
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Hence, by using (2.93) we find that
1 = I f oy S | det m [$ g FIT[HE S 5P/ det my |4 0olf, (3.123)
P

by virtue of the fact that p — pqg = q.

In order to estimate (3.123) independently of b;, we consider the function

g(z) :=|det Hf(z)|%||Hf(z)||2% and prove the following result.

Lemma 3.4.4. For any z,t € Q such that |z — t| < \/2r, there is a constant C,

depending only on p such that
l9(2) = g(1)] < Cpu(v2r)1.
Proof. Consider each of the terms in the right hand side of

9(2) — g(t) =[|Hy(2)[}5 (| det Hy(2)| % — | det Hy (t)]%)
+ | det Hy(8)| (| Hp(2) 1 — | Hs(8)]13). (3.124)

By virtue of (2.4), clearly ||Hf(z)||2% < (%)%Hﬂ'z| %|f|§V§o(Q)' Also, since

| det .| < [[H{(2)|2, we also have that | det H(t)] f182 - In a similar

3w(v/2r), we have

|| det Hy(2)] — | det Hy ()] < 2(5)*w(vV2r)| flwz o).

(see (3.75)).

Next, since |z — t| < v/2r, we obtain from (2.4) that
3
I )l = [ Hy(8)la] < S0(v2r). (3.125)

Considering the function £(z) = x on an interval [a,b] C R, by the mean value
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theorem, we have |((b) — ¢(a)| < |b — a|l'(c) for some ¢ € (a,b). Thus,

e If p > 2, by using the mean value theorem and (3.125), we have

1)1 = 1 OS] < 2 1H e = 1H O] 11
3.0 z
<§<2>2 (V20| iz

(3)% (v2r)%.

o It p < 2, (3.125) implies |||Hy(=) 15 — | ()13

It follows that

3.p z_ 2
SF(BIf1ER e + 1)w (vt

1H ()3 = [ Hp0))13] <

q
1, where

This concludes our proof.
1 .
Proposition 3.4.5. The W, -seminorm on reqular regions satisfies

S 1 = gy S 7 [ (1detm 1 H; ()5 + Cuo(VEn ) dz, - (3.126)

TeA

where C'p is a in Lemma 3.4.4.
Proof. By using Lemma 3.4.4 and (3.123), for any z € T', we have
1 = Irflfg, S S7ITIg(8) < sIT1(9(2) + G (V2D)1 )

< (T (| det m |1 Hy () + Co(vED)E).

By integrating over z € T and simplifying by |T'|, we obtain

1 = ISl S 57 [ (1detml 1S + Coo(vant)dz. (3127)
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Summing up over all regular triangles gives (3.126). ]

3.4.4 Sobolev seminorm on irregular regions

Let T be an irregular triangle and S;, with ¢ € {1,...,m?}, one of the closest
sub-squares to the barycenter by of T. Let ¢; be the invertible linear map as
described in Section 3.2.4. According to Corollary 3.3.10, the interior angles of
the triangle o; ' (T') are far from 7. We then apply Lemma 2.6.1 to obtain

Aaji
AL

|f - fo|Wp1(T) 5 COIld(<Pi)2hT|f|Wg(T) =

herl flwzer).- (3.128)

Proposition 3.4.6. The VVp1 -seminorm on irreqular regions satisfies

S~ Il S 57 (rm2|f|€[,§o(m). (3.129)
TeAl
Proof. As in the proof of (3.120), the diameter hr of an irregular triangle T is less
than < C,C4s, where C, is the constant in Proposition 3.3.11 and C the constant
in Proposition 3.4.1 so that (3.121) holds. Using (3.112) we have i“

and thus from (3.128), we have

_ 1 _ 1 1
\f = Irflwaary S 5% | flwaey < 52 [T | flwa

By virtue of (3.121), we find that

S 1 = ISty S H U lae( 21T S (P s )

TeAlr TeAlr

which proves the result. O

In the asymptotic estimations which we prove in Section 3.4.6, we show that
the errors on irregular triangles in both L,-norm and Wz}—seminorm are signifi-

cantly small compared to the errors on regular regions.
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3.4.5 Number of triangles

In the result below we estimate the number of triangles in A;,. We assume that

r is sufficiently small so that (3.15) holds.

Proposition 3.4.7. The number of triangles in A, satisfies

#(Aw) < 3—2"</ (Kp(ﬂ'z) + éng(\/?T)>qu + C’gfs>, (3.130)

reg

where C~'5f and C’gf are constants depending only on 0.

Proof. We shall first estimate the number of triangles inside of, or intersecting,
a sub-square S;. Let P; denote a regular parallelogram of R; and 7; a regular

triangle. Clearly, from (3.43),

2521

(Kp(m,) + 2002 w(r))"

P =2IT)| =

Denote by P! and P/ the longest and shortest side lengths of FP;, with

Aoilz | B3| [7\2

P.’L:Ai( 2| 22 ~0| 2L ) 3.131

CALL A ) 3130
A3

PP = holy| (3.132)
)\2,1'

The number of regular parallelograms in R; is denoted by N;(s). By virtue of
(2.71) and (2.4), there is a constant ¢, such that
N
max he, < 62<§>45f |f‘W§O(Q) = Cr. (3.133)

Observe from (3.116) that K, (m.) < K,(m,)+2Ch2 w(r) < Ky(m.)+4CChw(v/2r)
for any z € S;, where Cy is defined in (3.133). Thus

s2n s2n

IT| =A? = - > 7
(Kp(m,) +2Ch2.w(r)" — (Ky(rm.) + 4CChu(v/2r))
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The number of regular parallelograms in R; is then bounded by

< —s 28 (Kp(ﬂz) + 4CC]2cw(\/§'r’))q,
for any z € S;. By integrating over z € S;, the number of regular triangles 2N;(s)

in R; satisfies

2N;(s) <57 | (K,,(wz) +4cc;w(\/§r))qdz.

i

The total number of all regular triangles then satisfies

plam) <o [ (Kp(wz) + 4cc;w(\/§r))qdz. (3.134)

We shall now estimate the number of irregular polygons. Let s be sufficiently
small and fixed. Using the result in Proposition 3.3.11 and its proof, the length of
an extended segment from Setting 4 is less than C.hys, with hys = suppeares hy.
Now, from Proposition 3.4.1, we have h,; < Cis. Hence, the maximum length of

an extended segment (*** from Setting 4 is bounded by C;C,s.

Our next step is to extend the regular region R; to a bigger one that can cover
S;, instead of the procedure of segment extensions in Section 3.2.3. We define
a stripe of regular parallelograms as a collection of parallelograms in R; which
are glued by their shortest or longest edges. We then extend the stripe up to
the side(s) of S; by gluing more additional parallelograms. The number of the

additional parallelograms in the extended stripe satisfies

NI(s) = [ L ] (3.135)

where P! is the length of the shortest edge of P;, as given in (3.132).

Observe that the obtained extended regular region does not necessarily cover
S;: For instance, if the stripes parallel to P or P/ are parallel to the sides of S;,

then some spaces in the neighborhood of the corners of S; may not be covered.
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Hence, we shall construct a new kind of stripes, which we call additional stripes
which will cover the quarter-disks defined in Section 3.3.4. An additional stripe
is defined by two lines where both are parallel to either P! or P/, and from which
one can obtain a stripe of parallelograms (from the translates of P;) by gluing
the parallelograms by their shortest or longest edges. Note that we allow the

extended stripes and the additional ones to overlap.

Recall that each of the quarter-disks defined in Section 3.3.4 contains at least
one regular parallelogram. Recall also that the radius of each quarter disk is
4v/2hy;, and its diameter 8hy, is less than the maximum length of an extended
segment from Setting 4. Hence, the number of additional stripes in any direction
of e € {+e;, +-€;} isless than N/(s). Observe also that N/(s) is the minimum num-
ber of parallelograms that can be inserted inside each additional stripes so that
they cover the quarter-disk corresponding to them, where each parallelograms in

these additional stripes have a non-empty intersection with the quarter-disks.

Let NV be defined by

V2r

NV =7 = (3.136)
Let also Ni(z) be defined by
V2r
N® = 551 (3.137)

Clearly, Ni(z) < Nl-(l), and the maximum number of stripes that cover S; is less

than Ni(l).

For each stripe, there are two directions of extensions to the sides of S;, and
there are two kinds of stripes (parallel to P! or P/). The number of stripes in R;

is less than 2Ni(1). Hence, the total number of parallelograms from the extensions
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of stripes and from the additional stripes, is bounded by

NiT(s) = (2N{V)(2N](s)) + (4N](s))(N(s))
<8NV N!(s), (3.138)

7 K3

by virtue of N/(s) < N,

Observe now that, counting a pentagon or a hexagon obtained by the segment
extension procedure of Section 3.2.3 can be replaced by counting twice the par-
allelogram associated with it: A pentagon (resp. a hexagon) can be associated
with a translated version of a regular parallelogram which is cut by an edge (resp.
two edges) of the sub-square S;. Now, a pentagon or a hexagon is counted as one
polygon, but it will be divided into three or four triangles during the final trian-
gulation; whereas if we count twice the parallelogram associated with it, then we

would have four triangles since a parallelogram will be divided into two triangles.

We can associate a parallelogram of the extended and additional stripes to
each quadrilateral obtained by the segment extension procedure of Section 3.2.3,
since for sufficiently small 7, s the number of quadrilaterals having a non-empty
intersection with S; is less than the number of these parallelograms. Hence, the

number of irregular triangles inside of, or intersecting S;, is less than four times

NI (s), that is,
AN (5) < 32NV N (s). (3.139)

Let K = max.cq K, (m.)+4CCjw(v/2r). Then, from (3.132), there is an absolute
constant C’ such that

g

1 RS ¢ 5 R
FZPSS nC'h—0(§)|f‘45f .

Combining now (3.136) with (3.135), there exists a constant K, such that

AN["(s) < Ky, 82" (3.140)
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Summing up over all sub-squares, the total number of irregular triangles is less

than 31_2”m2K5f. Hence the result with C~'5f = 400? and (Z*gf = mQKgf. O

3.4.6 Asymptotic error estimations

We combine the results obtained in the previous sections. For the asymptotic

L,-norm, we use (3.118), (3.120) and (3.130) to obtain

(#80)I1f = L Sl < ([ (Kplm) + Coo(v2r))"d+ G, s)

</Q <(Kp(7rz) + C‘wa(r))l_q - Cp,éfw(\/iT)%)pdz - C'SQPH—?M) %,
(3.141)

where C' = 8(C, 01)2p+1Cp7’m2\f|p 3 (- Note that 2p + 1 — 2pn > 0 since 7 is
chosen so that 1 + =2 < p < 1 + =. In a similar way, for the Wl—semmorm of

the error, we Comblne (3.126), (3.129) and (3.130) to obtain

1

(#As,r)§|f — IAS’Tf|WI}(Q) < </Q (Kp(ﬂ-z) + C’afuJ(\/ﬁr))qu + CZ’;J,S) 2
(/ (\ det .|| H ()15 + épw<\/§r)%)dz + c;sp+%pn) " (3.142)
Q

where C| = rm2|f|€vgo(ﬂ). Note that p + % —pn > 0.

Observing that p(1 — g) = ¢ and taking the limit as r — 0, we obtain

lim (K (7,) +C'5f

r—0 /0

1—q 1\ P
lim [ ((Kp(ﬂz)Jngfw(T)) + Chs,w(V2r) 5) dz:/ﬂKp(ﬂz)qdz,
lim <|det7rz|%||Hf( 1 +cpw(fr)%)dz:/Q|demz|%||ﬂf(z)||§dz.

r—0 /0

Thus, by virtue of (3.141) and (3.142), given a number ¢ > 0 and a sufficiently
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small 7o > 0, for the triangulation A, := A, ,,, we have

limsup(#8,)f = s, ) <( [ (Kolm:) +¢)'dz)" (3.143)
wye S [, (ol +2)'az)”

(/Q|det7r2|%||Hf(z)||2§dz+5>E. (3.144)

lim sup(#As)% |f —Ia.f
s—0

Theorem 3.4.8. Let f € C*(Q) be convexr, and 1 < p < oo. There exists a
sequence of triangulations (Ayx)n>n,, with (#Ax) < N, where the asymptotic

estimations

1
limsup N||f = fwllL,©) g(/ (Kp(wz))qdz)“’ (3.145)
N—oo Q
1
lim sup N2 | f — 1 <(/ K, (m, qdz)2
msup |f = Inlwie) S Q( »(72))

([ 1detm 2 H )15 dz) " (3.146)
hold, with fyx := Ia, f being the approximant of f on €.

Proof. To prove the above result, we shall first show that the number of regular
triangles dominates the total number of triangles in the triangulation Ag. Then,
it will be sufficient to study the number of triangles in A{® and in AL, as shown

in (3.153), resulting from a small perturbation g = s — s > 0.

As already shown in Proposition 3.4.7, for s = sg, the number of irregular
triangles is o(sy”") as so — 0. For sy small enough, we claim that (#AI®)
dominates the number of irregular triangles. This is achieved if we derive a lower

bound of order sy for the number of regular triangles (FALE).

Recall that the number of regular parallelograms in R; is denoted by N;(so).
Given a parallelogram P; of R;, from Proposition 3.3.12 and Proposition 3.4.1,

the area N;(so)|P;| covered by regular triangles in \S; satisfies

NZ(80)|PZ| Z (T - 8\/§hM)2 Z (T - 8\/50180)2, (3147)
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where hyy := suppeares hr. Recall the fact that K,(m.) < Ky(m,) +2Ch2 w(r) <
K,(m,) + 4C’C'J2cw(\/§r), for any z € S;, where C} is defined in (3.133). After

integrating over z € S;,

1 q
2,7/ K, (m,)1dz < ‘ ‘ <57 i(Kp(ﬂz)JrélCC?w(r)) dz.

By using only the first inequality, we deduce from (3.147) that, for sg — 0,

2 _ 2 _
Ny(s0) > r? (r — 8v2C)s0) > (r 8\/_0130 K ()72
| ;| 72 27?2 s
> —552"/ K, (m.)%dz — o(sy™). (3.148)

Recall that the number of regular triangles is twice of N;(sg). Now, summing up

over all sub-squares implies that, for so — 0,
(#ATE) > 557 / K, (m.)%dz — o(sy™), (3.149)
Q

thereby proving our claim that regular triangles dominate (#A,,).

Next, we shall study the number of triangles due to a small perturbation of
s¢ (see (3.153) below). Let Ay = |Ri(so)|, A1 = |R;(s1)| be the respective areas

of the regular regions in R;(sg) and R;(s;). First, we claim that

A>£A 3.150
1_88 0- ( )

To prove this, we use the following observation: Suppose that a scaling of P; by

o leads to the current partition of S;. A scaling of 73 by s] = 30( ) is equivalent
to scaling P; by s(, then scaling it again by ¢t = ﬂ' This is equivalent to scaling
S; by % = % Clearly, the area A} of the regular region in %Si is greater than the
area Ay of the regular region in S;. The fact that tA] = A; proves our claim in

(3.150).

Denoting by ag = |P;(s0)|, a1 = |Pi(s1)| the areas of regular parallelograms in

Ri(s0), Ri(s1), respectively. Note that 2 = % Recalling that N;(sg) denote the
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exact number of regular parallelograms of R;, we have

A A
NO = Ni<80) = —0 and N1 = Ni<81) = —1 (3151)
ap 51
We have
N1 :No—i-N(](bC—'—C—l), (3152)
where
A1 — ﬂ140 n
b= = a and c= 8—9,.
0

Denoting A = |S;| the area of S;, observe that

h— 0 0 4 0 < .
T z

Note that A— Ay is the area covered by irregular triangles in S;, and it is negligible

compared to the area Ag of regular regions, so that b — 0 as sy — 0.

We also have, by setting gy = es( ™, where o > 0 and ¢ > 0,

€0 €50

c—1=— = —.
Sop—¢€o 1—esf

Clearly, c—1—0ase— 0or s — 0.

It follows that bc + ¢ —1 — 0 as ¢g — 0 and sy — 0, and we deduce from

(3.152) that N7 = Ny + o(NVg) which, by considering all regular regions, yields
(#ALE) < (HALE) + o (#AXF)), (3.153)

as gg — 0 and sog — 0.

Combining now the number of all triangles, we know that the total number of

regular triangle dominates the number of irregular ones. As already mentioned
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before, it is therefore sufficient to study the jump (3.153) from s{ to s7 = s — e.

This leads to the estimation below, for eg — 0,
(#04) < (#04) +o((#A,))- (3.154)

We now proceed to define the triangulation Ay for a given N > N,. For any
N > Ny, consider sy defined by

sy :=min{s” > 0: (#AS) < N}. (3.155)

Let N be large enough so that sy is sufficiently small. For any s7 = s}, —e < s},

e > 0, we have N < (#Ay). Therefore, for (#A;, ) — oo,
N < (#A,) < (#A,) + o (#A4)),
which implies that N — oo is equivalent to (#Ag, ) — oo. It follows that
N — (#A,,) =0o(N) and Nz — (#A,,)% = o(N?), (3.156)

as N — oo.

We use the extraction argument as in [29]: Since (3.143) and (3.144) hold, for

any n > 1 there exists a sub-sequence of triangulations (A?N)N>N such that
Z 1IN0

1

. 1\q q
limsup NI\ = Lz, Fleyo <( [ (Kolm) +)'az)"
i SF_ < / Lya 2

limsup Nz |f IA’QNf|WZ}(Q) Slys (Kp(ﬂz) + n) dz

N—oo

q L 1 %
(/ﬂ|det7rz|4||Hf(z)||22dz+ﬁ) .
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Define the triangulation Ay = A?](VN ) where

2 2
n(N) := max {n S N:N[f = Iap flliy@ < (/Q (Kp(ﬂz) + _)qdz> ;
N2[f = Iap flwpo) S (/Q (K (-
q 2 2
([ 1det maf#1Hy ()5 + )

Al ~—
+
|
N———
Q
(o
I\
N————
N

}. (3.157)

For N large enough, the set is non-empty and finite, making n(/N) well-defined.
Also, clearly n(N) increases with N so that n(N) — oo as N — co. Combining

this with (3.156) and the two above inequalities yields the results. O

Observe that, by using the Cauchy-Schwarz inequality for integrals,

L Vdetm A1 ()1 dz = Ky () *%/K ()21 (=) =

(/K T qdz) </ | H(2)] |sz)%
(g)zK (7o) %(/K ) dz) (‘f|w2(ﬂ)lv

since, by virtue of (2.4), [[Hy(2)||2 < 2max{D2, f(z),D2,f(2), D2, f(2)}. Then,

l\?l»Q

< Ky(m

we can also use the following asymptotic estimation which is only a bit coarser

than (3.146),

1

2p

3.1 IR q 3+
hmsupN |f = Inlwie (5)2Kp(7T0) QP\f|W5(Q)</Q<KP<7rz)) dz)

<G, |Iflwgon( [, (o(m))'as)" " (3159

1
since 3 + i 35, With €, = C(%)% »(m0) 2D where C' is an absolute constant.

As we already discussed in the introduction of this chapter (see also Sec-
tion 1.2), the estimation in (3.145) is optimal in the sense that it cannot be fur-
ther improved on certain triangulation, and that (3.158) is the first 1V, -seminorm
estimation derived from a triangulation which is optimal for the L,-norm estima-

tion.
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3.5 A numerical illustration

In this section, we present a simple comparison of our method to the uniform
method. The function f considered in (3.160) is convex on Q = (—1,1)?, its
anisotropic behavior is shown in Figure 3.31. In order to analyze the sharpness of
our error bounds and the quality of our mesh, the function f is designed so that

its Hessian matrix is near degenerate, with however well-separated eigenvalues.

An “anisotropic behavior* of a function is characterized by an “abrupt® vari-
ation of its graph at some points, some curves or some surfaces. In most cases,
it occurs when there are two directions such that, in one direction the change of
the derivative is maximal, whereas in the other one the derivative is minimal. In
order to catch this anisotropic behavior, it is cheaper to use anisotropic triangles

rather than numerous small triangles.

Note that in general, knowing the expressions of the Hessian whose deter-
minant is positive does not necessarily lead to the expression of a convex func-
tion. However, by using any invertible linear map ¢, one can produce another
convex function fy o ¢ from a given one fy. Indeed, supposing that ¢(x,y) =

(ax + Py, yx + dy), we have

D, fo(ox + By, v + 0y) = oDy folax + By, vz + dy) + D, folax + By, vz + dy)

D, folazx + By,yx + dy) = D, folax + By, yx + 0y) + 6Dy fo(ax + By, yx + 0y)

from which we deduce that

Dy folax + By, yx + 6y) = &* Dy, fo(az + By, vz + 6y) + 20Dy folaz + By, vz + y)
+ 72Dy folax + By, v + oy)

Dy, folaz + By, vz + 0y) = B? Dy foax + By, vz + 8y) + 286 Dyy folaz + By, vz + 6y)
+ 6% Dy, folax + By, vz + 6y)

Dyyfolaz + By, vx + 0y) = af Dy folaz + By, vr + 0y) + 70Dy, foax + By, v + dy)

+ (a0 4+ vB) Dyy fo(ax + By, yr + dy),
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or equivalently, the Hessian

o 7} l(Dmfo)

Hjyo = Lﬁ’ 5 (Do fo) oﬂ [O‘ B] . (3.159)

°¢
(Dayfo) oo (Dyyfo)oo] [v 6

This means that the sign of the determinant of Hy .4 is the same as the sign of

the determinant Hy,.

Convex functions with simple expressions can be easily found. Below we
construct a convex function which possesses an anisotropic behavior. Let fy be

the function defined by

By taking the second derivatives of fj, we can easily deduce that det Hy, (x,y) =

2
1(1 ey (22 | 1 ~ ideri
5 (200 800) (1600 + 200) > 0, and thus fj is always convex on €. By considering

the linear map ¢(z,y) = (¢ + y, — y), we obtain the function f = foo ¢

(z+y)? @+y)P’l-y) @@t+yl-y)  (@-y)?
fey) =00~ a0 20 T 1

(3.160)

We have that

vty (e+y)? (@Hyile-y) @ r-y

D:B ) = - T IAn )
19 =550 = 2800 1600 00 "2
D, f(ey) =28 ¢ (@+y)’ (@+y)Ple-y) y 22—y
v 200 4800 1600 100 2
thus the Hessian matrix of f is given by
11 altey 1, 1 oy’
2 7 200 400 2 T 200 800
Hf <x’ y> - 1 1 z2—y? 1 3 zy+1y2
—2 T 306 ~ w0 2 T 200 T 400

It is clear that Hj is convex on € by virtue of (3.159). By studying each of the

entries of Hy, we can easily show that for any r > 0, w(r) < 5= where w is

200
defined in (2.75).

First let € be divided into four sub-squares Si, ..., Sy of side length one and
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barycenters

11 11 1 1 1 1
b=(-535) b=(573) b=(-5-3) ad bi=(5—3)
The anisotropic behavior of f at one of the barycenters is shown as follows: We
have that D, f(b1) = —55 and D, f(b;) = 3%. We show that at by, the direction

in which the derivative is maximal (resp. minimal) is the eigenvector of H(b;)

corresponding to the largest (resp. smallest) eigenvalue. Since

9 _ 9

| 200 200
Hy(by) = 99 103 |’

200 200

its eigenvalues are 0.0099 and 1 with corresponding eigenvectors v; = [0.714 0.7]

and vy = [—0.7 0.714]". The derivatives in v; and vy directions satisfy
—-99 101
D by) =0.714 x —— ) — =Te — .161
v f(by) =0.7 ><200+07><200 Te — 05, (3.161)
—-99 101
D, f(by) =—0.7x — 714 x — = 0.707. 3.162

In the table below, we denote by N the number of triangles which we obtain
by triangulating Q = (—1,1)? by using the method described in Section 3.2.2
and Section 3.2.3, with tolerance ‘;}% To simplify the implementation, instead
of using the back transformation procedure discussed in Section 3.2.4, we use
the constraint Delaunay algorithm in order to triangulate the domain €2 after it
is partitioned into polygons of at most six edges. The resulting triangulation,
shown in Figure 3.31, does not significantly differ from the result expected by

our algorithm. To show that regular triangles produce small errors compared

to irregular triangles, triangles are colored according to their relative errors, i.e.
error

, where gray colors indicate high errors.
area

The overall error is denoted by £ = || f — fn|lr.) and is plotted in red in
Figure 3.33. In order to evaluate integrals on a given a triangle 7', we use a Gaus-
sian quadrature formula. Fix a right triangle 7 with vertices (0, 1), (1,0), (0,0).

Given a function g, using a Gaussian quadrature method from [34] shows that
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Figure 3.31: An anisotropic triangulation constructed by using our method, trian-

gles are colored according to the relative error <=, gray colored triangles indicate
high errors.

the integral of g on T can be approximated as follows,

25 11 9 ,11 13 31
fo@tr go(55) - 9(55) 1955 1o (Gg) B

and equality occurs for polynomials of degree < 3.

Suppose now that 7" is a non-degenerate triangle with vertices given by p; =
(21,91), p2 = (2, Y2), p3 = (23, y3). Then, denoting by a = 2y — x3, b = 21 — 3,

c =1y —ys and d = y; — y3, we clearly have

T =¢(Ty), ¢(z,y):= Mxy]' +t, (3.164)
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a

J and t = [z3y3]". Thus by a simple change of variables,
c

where M = {

1Py = [, W@Pdr= [ Foo@Pardr. 165

and we can apply (3.163) with g = (f o ¢)%.

The regular triangles cover %A,¢, of the area of 2, and they contribute %EfCg
to the overall squared error E?. Figure 3.33 shows that our slightly modified
method can provide sharper estimations compared to uniform methods. We de-
note by D the W}}—seminorm of the error, and by %R,., the percentage of the
error contributed by regular regions. The computation of the integral for the Wpl—
seminorm uses a similar method as for the Ly-norm (see (3.165)). In Figure 3.34

are shown the estimations for the derivatives.

(a) Uniform 1. (b) Uniform 2.

Figure 3.32: Uniform triangulations to approximate f.

The number of triangles using a uniform triangulation is denoted by Ny,;. We
denote by F; and FEs the Ly-norm of the errors which result from the approxima-
tion by using the uniform triangulations shown in Figure 3.32. In Figure 3.33,
they are respectively plotted in green and blue lines. Between the two uniform
triangulations 1 and 2, the latter is better adapted since the triangles are aligned

in a direction which makes a small angle with the eigenvector vy, recalling that
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the derivatives of f are minimal in v; direction. We also see this from the Wpl—

seminorm of the derivatives, D; and D, which are plotted in Figure 3.34.

The tables below summarizes the data, Lo-norms and Wpl-seminorms of the

errors, which enable us to plot Figure 3.33 and Figure 3.34.

Table 1

N B %EZ, %oAws | Nuw B2 2
440 LTie—5 028 18953 | 450 147e—5 2.40e—6
568 3.46e—6  1.24 2066 | 578 8.8%¢—6 1.46e—6
634 837e—7 428 2168 | 648 7.07e—6 1.16e—6
704 T7de—7 662 2799 | 722 5.69e—6 9.33e—7
826 2.54e — 7 14.49 31.67 882 3.8le—6 6.25e—7
032  1.35e—7 3478 4241 | 968 3.17e—6 5.19e—7
1004  1.35¢—7 4292 4917 |1058 2.65¢e—6 4.34e—7
1260  6.75¢ —8  46.80  47.63 | 1352 1.62¢—6  2.66e — 7
1440 6.11e — 8 64.58 52.59 1458 1.40e—6 2.29e—7
1868 3.66c —8  60.72  64.46 |1922 8.03e—7 1.32 —7
2142 2.79¢—8  68.10  64.35 2178 626e—7 1.02¢—7

Table 2

N D? %DZ%, | Nun D? D?

440 397¢e—3  1.66 | 450 1.45e—2 2.9le—3
568  1.57e—3 412 | 578 1.13e—2 2.26e—3
634 784e—4 772 | 648 1.0le—2 2.02 —3
704 7.29e—4 1214 | 722 9.05¢e—3 1.8le—3
826 4.60e—4 1772 | 882 7.A40e—3 1.48¢—3
032  3.6de—4 2626 | 968 6.75¢—3  1.35¢—3
1004 3.23¢e—4 3050 | 1058 6.17e—3  1.24e—3
1260 1.99¢—4 36.88 |1352 483 —3 9.67c—4
1440 19le—4  46.96 |1458 4.48¢—3 8.97c—4
1868 1.49¢ —4  44.97 | 1922 3.40e—3 6.8le—4
2142 1.19¢e—4 4958 [2178 3.00e—3 6.0le—4
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Number of triangles vs. L, norms of errors

I Uniform1 -
Uniform 2 ------
Anisotropic —+—

L, norms of the approximation errors

-8 N N N N N 1
10
10°

Number of triangles N

Figure 3.33: Squares of the Lo-norms of the approximation error f — fx by using
our triangulation and the two uniform ones.

Number of triangles vs. Sobolev seminorm of errors

I Uniform 1 -
Uniform 2 ------
Anisotropic —+—

10° |

Sobolev seminorm of the approximation errors

104 | r

10°
Number of triangles N

Figure 3.34: Squares of the Wj-seminorms of the approximation error f — fy by
using our triangulation and the two uniform ones.
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CHAPTER 4

APPROXIMATION BY SUMS OF

PIECEWISE POLYNOMIALS

In this chapter, we present methods of approximation by using sums of piecewise
polynomials of degree 0 or 1 in d variables, extending the work in [16] on piecewise
constants (see also [15]). The errors are measured in L,-norm and W, -seminorm.
The basic idea consists in designing several overlaying partitions of the domain,
responsible for the approximation of different components of the target function’s
gradient or Hessian. A key property of the new approximation method is that
it achieves better approximation order in terms of the number N of degrees of

freedom comparing to standard methods on a single partition.

In the case of piecewise constants, with the errors measured in L,-norm, the
approximation order is O(N~%(+1) comparing to O(N~'/?) achievable on a sin-
gle isotropic partition. The order O(N~%(@*1) has been shown in [16] for a
single convex (anisotropic) partition. However, the construction of this partition
requires the estimations of the average gradients of the target function f, whereas

we use d overlapping partitions independent of f.

In the case of piecewise linear approximations, with the errors measured in L.-
norm, it is known [16] that the order O(N~2/?) cannot be improved on any single
convex partition. We provide two methods of overlaying partitions, one with
fewer partitions depending on f and another with partitions independent of f,

both with approximation order O(N~6/(4+1) for the function and O(N—3/(2d+1)

184



for the gradient, and the errors are measured in L,-norm and Wz}—seminorm.

Note that in contrast to Chapter 3, the approximant is not required to be
continuous which makes partitioning easier by eliminating the need for irregular

regions.

After providing in Section 4.1 the general concept of best approximation in
the multivariate setting, we discuss in Section 4.2 the approximation method by
using piecewise constants on a single partition. In Section 4.3, we present our
approximation method by using sums of piecewise constant polynomials. The
case for sums of piecewise linear polynomials is divided into two, in Section 4.4
and in Section 4.5, in the latter the directions of splitting in the partitions are

fixed.

4.1 Generalities and notation

We shall start by introducing the general concept of best approximation. Given
a bounded convex domain w of R?, there is a constant p; which depends only on

d such that, for any f € Wpl(w), we have the Poincaré inequality
1] = foll ) < padiam(w) [V |z, @), (4.1)
where f,, is the average of f on w, that is
fo=lel™ [ f(@)dr, (42)

with |w| being the Lebesgue measure (d-dimensional volume) of w, and recalling

from (1.22),

Jun

1951 = ([ (S 10-s0F) as)’ (43)

Let  be a bounded domain in R?, d > 2. Given a partition A of  and a
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function f : 2 — R, we are interested in estimating the error bounds resulting

from its approximation by piecewise polynomials in the space

J 1, ifzrew,
Sk(A) - { Z QuXw * qu € Hk}a Xw(x) = (44)

weA 0, otherwise,

where 11¢, k > 1, denotes the space of polynomials of total degree < k in d
variables!. For k = 1,2, S;(A) and S5(A) are respectively the spaces of piecewise
constant and piecewise linear polynomials on ). Note that these functions are

not necessarily continuous.

The best approximation error is measured in the L,-norm || - ||z, )
Ey(f,A), := inf — 1<p<o0. 4.5
WA= ol =slie,  1Spsos (45)

It is easy to check that,

(ZEk(f)ip(w))l/p if p < oo,

Ek(fa A>p — weA
maxXuea Ei(f)rew) if p= oo,

(4.6)

where Ei(f)r, @) denotes the error of the best polynomial approximation on w,
Ey(f)r,w) = qiefhfg 1f = dllz,w)-

Indeed, suppose that the infimum in (4.5) is attained at so = > ,ca ¢°Xw. Then

b =( [ 17 - soprar)’ = (X [ - s@par)

:(Z/\ — ) |pdx)l. (4.7)

wEA

The right hand side of (4.6), for p < oo, is clearly smaller or equal to the right
hand side of (4.7). Conversely, the latter is smaller or equal to the right hand

!This is different of the standard definition where the total degree is < k.
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side of (4.6) since Ex(f,A), is attained at so. The case p = oo is straightforward,
and thus the (4.6) holds.

The Bramble-Hilbert lemma on convex domains [21] is stated as follows: If
w is a bounded convex domain and its restriction on w belongs to the Sobolev

space sz“(w), then there is a polynomial ¢ € II¢ such that

|f = alwrw) < pak diamkfr(w)|f|wg(w)a r=0,...,k, (4.8)

where pqj denotes a positive constant depending only on d and k. In particular,

Ey(f)rpw) < pagk diam"(w) | flwkw):- (4.9)

Therefore, for any convex partition A of €2 and any f € WE(Q),

E(f,A)p < pax max diam® (w) | flwp(o)- (4.10)
Recall that |A| denotes the number of cells w in A. From the fact that

Q| = N;AIWI < |A| max diam(w)”,
we have max,ea diam(w) > C|A|~Y?, where C depends only on || and d. Hence,
in terms of |A[, the approximation order that can be obtained from (4.10) is not
better than
Eul(f, A), = O(|A] /%) (4.11)

This order is achieved for example for Q@ = (0,1)¢ on convex partitions A,,,
m = 1,2,..., defined by splitting the cube (0,1)¢ uniformly into |A,,| = m?

equal sub-cubes of edge length 1/m.

Although the saturation order in (4.11) cannot be improved on isotropic par-
titions, it is shown in Theorem 4.2.1 that it can be improved on anisotropic

partitions. For a system P = {AW .. AM} of several overlaying partitions of
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2, we consider the space of sums of piecewise polynomials

Sk(P) = {Xn: > GeXe: Gow € Hg}. (4.12)

v=1 weA(l/)

A function in Si(P) is the sum of n piecewise polynomials respectively belong-
ing to Sk (A(”)), v =1,...,n. The corresponding best approximation error is

measured with respect to the L,-norm

B(f.P)yi= b [If sl 1<p<oo.

We set [P| =" |AM)].

v=1

4.2 Piecewise constant approximation

In [15, Theorem 2] it is shown that in (4.11) for k£ = 1, assuming higher smooth-
ness of f does not help to improve the order E;(f, Ay)s = O(JAx|~Y?) if the
sequence of partitions (Ay) is isotropic, that is there is a constant ¢ > 0 such that
diam(w) < ep(w) for all w € Uy Ay, where p(w) is the maximum diameter of
d-dimensional balls contained in w. More precisely, if E1(f, Ax)oo = o(|An|7Y%),
N — oo, for a function f € C*(€2) and some isotropic sequence of partitions
(An)n>n, With ]%I_IPOO diam(Ay) = 0, then f is a constant. Thus, |A|7'/¢ is the

saturation order of the piecewise constant approximation on isotropic partitions.

By using anisotropic partitions of €2, in [16] it has been shown that the
approximation order of piecewise constants can be improved to Ei(f,A), =

O(|A|=#@+1D) on suitable anisotropic convex partitions obtained by a simple

algorithm if f € W} (Q).
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Figure 4.1: Example of a partition into N7 cubes, with a cell partitioned into Ns
slices, with m = 4.

Algorithm 4.1 ([16]): A partition A,, of Q.
Input m € N;
Assume that f € W}(Q) where Q = (0,1)%

1. Split ©Q into Ny = m? cubes wy, ..., wy, of edge length h = 1/m;

2. Split each w; into N slices w;j, j = 1,..., No, by equidistant hyperplanes

orthogonal to the average gradient
g = |wz~|_1/ Vf(x) de: (4.13)

3. Set the partition A, ={w;; :i=1,..., Ny, j=1,...,Na};

Then |A,,| = NNy and each w;; is a convex polyhedron with at most

2(d + 1) facets.

In Figure 4.1 we show an example of partition into Ny cubes for d = 2, where

a cell is partitioned into N slices according to Algorithm 4.1.
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Theorem 4.2.1 ([16]). Assume that f € W2(Q), Q = (0,1)%, for some 1 <p <
00. Foranym =1,2,..., generate the partition A,, by using Algorithm 4.1 with
Ny = m® and Ny = m. Then

El(fa Am)]o S Cd|Am|_2/(d+1)(|f|Wz}(Q) + |f|W3(Q))7 (414)
where Cy is a constant depending only on d.

According to [16, Theorem 2|, the saturation order of piecewise constant ap-
proximations on convex partitions is |A|7%/(@*V since for any f € C?() it cannot
be improved any further. It is also shown in [16, Theorem 3] that the saturation
order of piecewise linear approximations on convex partitions is |A|~2/, which
is the same as on isotropic partitions. The case d = 2 was proved by a different

method in [26] for sequences of partitions Ay of Q = (0,1)%.

4.3 Sums of piecewise constants on 2 C R?

In contrast to the method using a single partition, we shall use a new algorithm
which will involve a system of d convex polyhedral partitions independent of f,
that is, unlike in (4.13) where the splitting directions are fixed. On each partition,
an approximant of f can be determined (see (4.20) below). The error bounds are

obtained by using triangular inequalities and the Poincaré inequality (4.1).

In the algorithm below, we produce a system of overlaying partitions P where

the splitting directions are fixed.
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Figure 4.2: Partitions AW, A® obtained from Algorithm 4.2 for piecewise con-
stant approximation.

Algorithm 4.2: Overlaying partitions A®, v =1,...,d, of Q
Let Q = (0,1)? and let m € N.

1. Split Q into N; = m? cubes wy, ..., wy, of edge length h = 1/m, whose

edges are parallel to coordinate axes;

2. For each v =1,...,d, define A® by splitting each w; into N slices wi(;-'),

J=1,..., Ny, by equidistant hyperplanes parallel to the subspace z, = 0;
3. Set Py = (AW, AW}

Then |[A®)| = N; N, and each wij ) is a d-dimensional box with its v-th

dimension NLZ and all other dimensions h. We have |P,,,| = dN; Ns.

Partitions A, A® in the case d = 2 are illustrated in Figure 4.2.

The following result is proved.

Theorem 4.3.1. Assume that f € W2(2), Q = (0,1)%, for some 1 < p < oo.
Foranym = 1,2,..., generate the system of partitions P,, by using Algorithm 4.2
with Ny = m® and Ny = m. Then

Er(f, Pam)p < Cal P V(| flwa ) + [ Flwze), (4.15)

where Cy is a constant depending only on d.
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Proof. For each i = 1,..., Ny, let £; = ¢; + 24, ¢;,, denote a linear polynomial
given by

liy=a; (T, —T0,), G, = |wi|_1/ D, f(x)dx, v=1,...,d,

with (201, ...,20,) being the barycenter of w; and the constant ¢; defined by the
average of f on w;, i.e

=l [ f@)da.
Since [, £, (7) dx = 0, we have by Poincaré inequality,

d d
(=3 tiw) = €illon < padiam@)| V5 = X Vhiallz,o

v=1 v=1

- \/Epd</wi (é(D%f(:p) _ai7y)2>p/2 dx>1/p.

m

Poincaré inequality also implies

N1
”f_ Zeixwz' p
=1

?
IsY
7N
™M=
M=
SN
=y
&
B
§
E
-
E
=
==
5
\/
B =

dﬂd
< W|f|wg(9)- (4.16)

For fixed i, v, consider the sum of piecewise constant polynomials

Na
Siw = D UX, 0 (4.17)
=1 N
where g; is a constant, j = 1,..., Ny, which we shall make precise later. The v-th
side of wl-(j is the straight line segment [xj,xj + — ] on the z,-axis, and from a
direct computation
Na
||£z v — S V||Lp Wz) Zl /w(V) |a"i,V(xy - l‘(),y) - q]|p dl‘
j ij
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Moo
> / | @iy + ain (2] — 20,) — ;P da,

= a1
m*t = Jo

:( 1 )p |ai,,,|p

mNy/ mé(p+ 1)’
after choosing ¢; := aw,(:c? — Zp,). Observe that

‘i@\ /wz D,, f(z) daj‘p < /wl D, f(z)[” dz.

‘ai,u|p o
md - ‘wl‘

Define s as the sum of piecewise constant polynomials by

$=> (8 + ¢i)Xuwrs (4.18)

i=1

where s; = Zgzl siv, we find that

N Ny po\L
15 o= sl = (3 [ | S iute) = siuf))| de)
i=1 i=1"%i ly=1
Ny d 1
< (e 12/ i) = s @) d)
i=1 p=1"7%i
< / D,, pd:p>5
mNg<lel D, /()]
= m—Nz|f|w;(Q)- (4.19)

Since Ny = m and m™2 = ('PT;”)J_“, the bound (4.15) with Cy = d1+%(p§ +1)

is obtained by combining (4.16) and (4.19). O

Observe that the sub-cubes w;, i = 1,..., N; are fixed on each partition A®)
v =1,...,d, as described by step 1 of Algorithm 4.2. Hence the expression of

s in (4.17) is legitimate. In fact, s can be expressed by d piecewise polynomials

s =% f, where

fl/ = Z(Si,u + gcz)le (420)
i=1
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4.4 Sums of piecewise linears on ) C R?

In this section we approximate the function by using a sum of piecewise linear
polynomials. As in the previous method, we design several overlaying partitions

of €2 which are initially divided into sub-squares w;, i = 1,..., Ny.

Given a function f € Wg(w) where w C R? is a bounded convex domain,
recall that the average Hessian matrix of f over w is a d x d matrix whose entry

H,, at the v-th row and p-th column is given by

Hy = ol [ D2, f()da.

Algorithm 4.3: Overlaying partitions of 2
Assume f € W2(Q), Q= (0,1) and m € N.

1. Split © into N; = m? cubes wy, ..., wy, of edge length h = 1/m, whose

edges are parallel to coordinate axes;

2. For each i = 1,..., N7, compute the average Hessian matrix H; of f over
()

w;, and let ; 7, v =1,...,d, be the unit eigenvectors of H;;

3. For each v = 1,...,d, define A®) by splitting each w; into N, slices wi(jy),
j=1,..., Ny, by equidistant hyperplanes orthogonal to the eigenvector

o).

7 I

Set P = {AD . ADY where |[A®| = Ny N, and |[P,,| = dN; No.

Partitions AM, A® for Algorithm 4.3 in the case d = 2 are illustrated in
Figure 4.3. On the first figure the splitting directions are orthogonal to the
first eigenvectors, whereas in the second figure the directions of splittings are

orthogonal to the second eigenvectors.
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Figure 4.3: Partitions A®, A® obtained from Algorithm 4.3 for piecewise linear
approximation.

By using the above algorithm, we prove the following result.

Theorem 4.4.1. Let f € W2(Q), @ = (0,1)%, for some 1 < p < oo. For any
m = 1,2,..., generate the system of partitions P,, by using Algorithm 4.3 with

Ny =m? and Ny = [m%] Then there exists a sum of piecewise linear functions

Sm € S2(Pp) such that

1 = smllp < CalPl "D (| Flwzie) + | Flws@), (4.21)

|f = smlwie) < CQ|77m\73/(2d+1)(‘f|Wg(Q) + | flws@): (4.22)

where C1, Cy are constants depending only on d.

Proof. Denote by A the partition of €2 into Ny cubes wy, ..., wy, of edge length
h = 1/m. It follows from (4.8) that, for each i = 1,..., Ny, there exists a

quadratic polynomial ¢; such that

. d%/)ds

1 = Gill Ly < pas diam(w)?| flws,) < 5 1w, (4.23)
. dpa3

|f = Gilwion < pas diam(wi)?] flws ) < -~ | flws s (4.24)
) Vipas

I = tilwge < pasdiam(wi)|flwge) = — == flwgcn- (4.25)
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It is clear from (4.23) that

3
2

d
p <

Pd,3
3 | flws)- (4.26)

N1
”f - Z i Xw;
=1

With H; denoting the average Hessian matrix of f over w;, let §¢; be the

quadratic homogeneous polynomial whose coefficients are the entries of H;, i.e

Diywucﬁ = Jw;| ™ / Diuxuf(x) de, v,u=1,...,d.

By using the Poincaré inequality, together with (4.25), clearly

1D2,0 (@ =) | Lywry < NID2,0, (G = D)Lyt + 1070, (F = @) |y w0

< padiam(@) [V (D2, o, Dllzyy + pas diom(w)| flugey  (4:27)

From (4.8), there exists a linear polynomial /; such that

1(gi — @) — Cill £y < paz diam(w;)?|g; — Gil w2 (wr)» (4.28)

(¢ — Gi) — g@"Wz}(wi) < paz diam(w;)| ¢ — Gilw2(w:)- (4.29)

The Hessian matrix H; can be diagonalized into H; = A*DA where A is an
orthogonal matrix and D a diagonal matrix with entries A, ..., \q. With a slight
abuse of notation we also denote by A the linear mapping generated by the matrix
A. Considering the linear transform (X7,..., Xy)" = A(z1,...,24)", we use the
notation

G( X1, .., Xg) = M XE 4+ N X3

where

(G +0)o A =g+ 4,

with /; being a linear polynomial in the variables Xy,..., X;. Forv =1,....d,
each X, is a linear function of x4, ..., x4, and the eigenvector UZ(V) of H; is parallel

to the X, -axis.
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Given ¢, v and j, the set Awi(jy ) is contained between the hyperplanes X, = ¢;

)
and X, = ¢; + ;"NQ, where 1 < %,(”) < +/d is the width of the unit cube in the

direction of 0'2(”). We set 5, = Zévjl @jXA(w(V)), where Zj =a; X, — bj, a; = 2\, ¢;
ij

and b; = )\Vci. Then

K

)

(V) 3

S /OMN2 XXy +¢)% = a;(Xy + ¢) + b;[" dX,
_ V) 2p+1
A (VA () (onz)
 (2p+1)md N, m2N3
AP (Vd)EH?p 1 \?
< AP (V) ( 2> (4.30)
md Ny m?N3
by virtue of the fact that V/d is the diameter of the unit cube.
For each v = 1,...,d, let Dy, g denote the partial derivative of a function

g with respect to the variable X,. It is clear that Dy, (go A™')(Xy,..., Xy) =
(Dy,g) 0o A7 (X1, ..., Xy), with o, = O'Z(V) being the v-th column vector of A1
It follows that

Dg(qu,(g OA_1)<X17 s 7Xd> - (Dguo-ug> OA_1<X1, . 7Xd)-

For each i,v, since \, = D%y ¢:(X) and m™¢ = |Aw;|, we have

1

AP 1 . o
i = 35 Jo P (@ 0o A7) COPAX = 55 [ 1D, @+ D)@ da

With s; being the linear polynomial in the variables X, ..., X, defined by

d
Si=li+ Y 5.,
v=1
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we have (G; 4+ 0;) 0 A™1 — 5, = S4_ (A, X2 — 5,,,) where, from (4.30),

d d
120 XE = 5i)lnacon < 3 IMXT = Siullz,
v=1 =1
1
1 -~ p
< d p(zuxyxf Siwll (A(wm)
v=1
) d N 5 %
<d ML =5l o)
> I (AW

LT (S [ Dh @) (4

by virtue of the Holder inequality (1.21).

Now denote by a,, the entry of A~' at the p-th row and v-th column, with

la,,,| < 1. Using the definition of directional derivatives, clearly

d
Dy o (@ +0) = ajua,Ds, (G + 0).
Jk=1

We thus have the following inequalities,

d
[ D2 @i @) de <@t S [ D2, (4 B (@) de

Jik=1"%1
1 d 7 2 P
<@ S0 (1020, 8) = D flaon + 1wz
Jk=1

P
< Pt <,0d diam(wi)|f|wg(wi) + |f|W3(°’i))

< M% + 1) (1 gy + Bz (4.32)

by virtue of (4.1) and the Holder inequality. For each i = 1,..., Ny, denoting by

s; the linear polynomial in the variables z1, ..., x4, given by

Si:SioAa
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we have that [|G; + & — 8|1, = |G — 5ill 1, (aws). Hence (4.31) and (4.32) yield

||Zqz+f—sxw,||p (anzw il )
dJr_(\/_Pd
m

~ m2N?

+ 1) (Iflwpe) + [ Flwze). (4.33)

Consider the linear polynomial s given by

Ny
5= Z SiXuw; -
i=1

Pon] ) —6/(2d+1)

Since m™3 < (mNy)™? < (T , combining (4.26), (4.28) and (4.33)

yields

Ny
1f = sllp < ||f—zqz‘xwi||p

+HZ G — G —1L sz||p+||z Qz+€_5)sz||p

S Cl‘Pm‘fﬁ/(QdﬂLl (|f‘wg(ﬂ) —+ ‘f|Wg(Q))7

d—1
where C} = dza+ (d%pd,s +dpa2(pa+ pas) + +2 *_(Vdpqg+ 1)), and (4.21) holds.

For each i = 1,..., N7 we observe that
1-1 d
F=silwgon <373 ( X [ (1Daf = @)@l
y=1"7wi
1D (@ = &~ D)@P + 1Da @+ = @) o). (434)

Note also that A=! = A, so that the v-th row and p-th column of A are exactly
the p-th row and v-th a,,, column of A™'. Foreach v = 1,...,d, from the equality

Gi+0; = (§; + ¢;) o A, we deduce that

Do (i +0:) = Du, (G + £i) 0 A) = (Dr (G + 4)) 0 A=Y ayu(Dx, (G + i) 0 A,

p=1

where 7, denotes the v-th column vector of A. Similarly, D, s; = D, (s;0 A) =
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Zu 1, (Dx,5;) o A. Tt follows that

[ 102 (@4 8= s (@)l do < 12/ D, (@ + 6 = 5)(X) dX

d N2

—dplzz/ o [0 = Dl X
pn=1j5=1
qp—1 d N» \/E p+1
_mdlzz| (mN)

p=1j=1

P
=dT( d L) (@) de. (435
=7 () 5 [ 1P Gt P e (139

Combining (4.24) and (4.29), together with (4.35) and (4.32), we obtain

1f = sl s:ap—l(dp“) K 31’-1(”“) M

\/_Pd

+3p(m]2\[2)p( m ) (‘f|W3(“1 _'_‘fm/l?(wi))’

)

M)73/(2d+1)

where, since m™2 < (mN,)~! < ( b

|f . $|WI}(Q) < CQ|Pm|73/(2d+1)(|f|WS(Q) + |f|W5(Q)),

with Cy = d7rT (3dpd3 +3Vdpas + 3d™ (\/_pd + 1)), and (4.22) is proved. O

4.5 Sums of piecewise linears with fixed split-
ting directions

In the previous section, the splitting directions in step 3 of Algorithm 4.3 depend

on the eigenvectors of the average Hessian matrices of f. In this section, we

present another method where the splitting directions are independent of the

function.

The following result is needed in the proof of Theorem 4.5.2 below.

Lemma 4.5.1. Any homogeneous quadratic polynomial q can be represented as
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a linear combination of (d;ﬂ) quadratic ridge functions

q= Z a,x,, + Z Z by + )%, (4.36)

v=1 p=v+1
where
1 1
@ =5 Dyyw g — Z Do,y byp = émeq. (4.37)
u#v

Proof. 1t is clear that ¢ in (4.36) is a quadratic polynomial which is indeed a
combination of d 4+ (d — 1) + --- + 1 = (d;ﬂ) ridge functions. Since second
derivatives are linear operators, we just need to find the representation (4.36) for
all quadratic monomials. For ¢ = 22, we simply take a, = 1, and equate all other

coefficients to zero. Moreover, for v # u,

— 2 2 2
2v,7, = (v, +2,)° — 7, — T,

so that for ¢ = x,x,, we can use b,, = %, a, = a, = —% which satisfy
1 1 1
ay=a,==Dy2,q— =Y Dy, and by, = =Dy u.q.
PR Y PR

Note that if ¢ is of the form given in (4.36), then the formulas (4.37) follow

directly from the fact that, for any v,

D,,q=2a,x, + 2 byu,(z, + x,).
vEN

This concludes our proof. O

In the algorithm below, the initial partition in step 1 is the same as in Algo-

rithm 4.3, however the splitting directions are fixed.
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Figure 4.4: Partitions A, A® and A2 obtained from Algorithm 4.4.

/////
/

Algorithm 4.4: Partition of () with fixed directions
Assume [ € W2(Q), Q@ = (0,1)% and let m € N.

1. Split Q into N; = m? cubes wy, ..., wy, of edge length h = 1/m, whose

edges are parallel to coordinate axes;

2. For each v, u=1,...,d, define A® and A®® respectively by splitting

each w;, i =1,..., Ny, into Nj slices wi(j”) and wZ(J»V’“) 7=1,..., Ny, by

equidistant hyperplanes parallel to z, = 0 and z, 4+ 2, = 0, respectively.

Set P, = {AW AW =1 ... d p=v+1,...,d} where for
v € {1, d}, |AY] = |AWH| = NNy and [Py] = (51) N1 N,

Partitions AM, A® and A2 in the case d = 2 are illustrated in Figure 4.4.

We prove the following result.

Theorem 4.5.2. Let f € W2(Q), Q = (0,1)%, for some 1 < p < oo. For any
m = 1,2,..., generate the system of partitions P,, by using Algorithm 4.4 with
Ny = m? and Ny = Lm%J Then there is a sum of piecewise linear polynomials

Sm € Sa2(Pp) such that

1 = smllp < ChlPl "D (| Flwzie) + | Flws@), (4.38)

|f o Sm|WZ}(Q) < Cz|fpm|—3/(2d+1)(|f|wg(ﬂ) + |f|W1§(Q))’ (439)

where Cy, Cy are constants depending only on d.
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Proof. Denote by A the partition of €2 into Ny cubes wy,...,wn, of edge length
h =1/m. Foreachi =1,..., Ny, by (4.8) there is a quadratic polynomial ¢; such
that

d pds

| lwz (4.40)

= flws ) (4.41)
\/_Pd?,

||f - QiHLp(wi) < pd,3 diam(wi)3|f|wg(wi) =
d/?ds

|f _QZ|W1 (wi) < pdelam(wz) |f|W3 w,) >~

|f = @ilw2(w) < pasdiam(w;)] flwsw) < | flws(wo- (4.42)

By using (4.36) and the notation therein, let ¢; = qi(l) + ql@ where

d d d
=Y aa), and 7 =3 3 bz, + )
v=1

v=1 p=v+1

For fixed v = 1,...,d and j = 1,..., N, there exists ¢; such that the v-th side

of wi(j) is given by [¢;, ¢; + —] Considering the piecewise linear function

No d
= Z Z(2CL,,C]‘.TV - a,,c?)x )5
j=1v=1 i

d

we have that
1
”q@'() Lp(wl :/w Zal,xz — ZZ 2(1”6]33,, a,c )Xw(;)
=1 j=1lv=1 :

<dr- 12/

P

dx

p
)

Na
a,r’ — Z(Zaycjxy — al,c?)xw(y)
j=1 Y

by virtue of the Holder inequality. Recalling that for each fixed v the cube w; is
)

i » we use a linear change of variables to obtain

split into Ny slices w,

o = S0y <SS [ laoblos = csfrda

]11/1

+
/J o |ay[” ‘$V_CJ|2pdxv
Jj=lv= 1 m
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e [T ke P,

]11/1

b1 |a,|P 1 \2p
—d Z 2p+1md(mN2) . (4.43)

By (4.37) and (4.42), for each ¢ = 1,..., Ny, by adding and removing the terms
D? . fand Diuxﬂf, we get

f” 1 2 2 p
Z :ﬁ/w Z ‘fov%qi(x) - Z Dxumﬂi(ib’)‘ dx

fr=1 p#v

SR> (}Dim(qi ~ f)(a)+ D, f@)
+ ( 2 (@i — @)+ D2, f(a >)r’) do
iy

2)q; — o2 M)

) sy + 2771 F By (4.44)

and (4.43) implies

1 P (Vdpas
1o = 5y < (o) (LY gy + lhg ) (489
2

Considering the piecewise linear polynomial
N2

d d
Z Z <2b b xu+xu)_buubj)x (Vﬂ)a

j=lv=1p=v+1

2

we obtain.
d

d
||C]z(2) 2)||Lp(w1) / Z
Wil y=1 p=v+1
Ny d d
B5ops

j=lv=1p=v+1

by + )

p

(2buubs xy+xu)—bwbj)x v dz
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<3 Y [ [t o
v=1 p=v+1
Na

= > (2bubj (@ + ) — bub? )X, )

J=1

p

dax.

Recalling that for v # p the cube w; is split into Nj slices wz(; H ), we find that

2
I = s,y < PSS S Lo sl 2 = b

j=1v=1 p=rv+1

Givenv =1,...,dand p=v+1,...,d, there exists b; such that the v-th side of

" lies between the hyperplanes z, +x, = b; and x, +z, = b; + mi]?b Consider
the change of variable X =z, +z, and Y = z, — x, where b; < X < b; + miji
and the range of Y is at most % It follows that

b+
I — sy < 5SS 3 Bl (V2T e )
P 7 b

d—2
j=1lv= l,ul/Jrlm m J

V2|bulP 1 V2 \ 2t
<dF - ( ) . 4.46
leuzmzu;l ma=1 2p+1\mN, (4.46)
By (4.37) and (4.42), for each i = 1,..., Ny, we deduce that
v=1 lu,:l md v=1 “:1 wj 2 v
- d d 1 , L
< YN [ S Dan (0= DAt S B
v=1 /J,:l wi
1 \/_de 1
§§( ) ‘f|W3(wz §|f‘€vg(wi)- (4.47)

Combining (4.47) and (4.46) yields

_ 2 Vdpy,
1o = 51y < () ((Fo2) 1 gy + Py ) (449
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With s; = sgl) + 852), combining (4.45) and (4.48) gives

1w <227 -

—-191,(2) _ 2)
|qi—si ||prz + 27 |g; ||Lp(w1)

Wz) -

S(dp —l—d2p2)( 24N2) ((\/_Pd?,) P s+ ‘fm/g(wi))
<<mN2) <<\/_Pd3) 1) (|f‘€[/g(wi) + |f‘€vg(wi))- (4.49)

6/(2d+1)
The inequality max{m™3, (mNy)~?} < 4(d+1) ey |Pn| 70/ s easily

provable:

6/(2d+1
e Since |P,,| = (d;rl)mdNQ < (dgl)mc”%, we have that |Pm\T6+1 < (d'QH) e )mg;

e Clearly m < [m2]2 < (Ny+ 1)2 < 4N2. Thus m?® < 4m2N2 and hence

‘P |2d+1 < 4( )6/(2d+1) 2N22

Considering the piecewise polynomials s = >N s;xv,,. and ¢ = XM gixw,, we

now deduce from (4.40) and (4.49) that

17 = sl _(Z I -l (Z o= s )

_dip | A2
< d3|f|w 3(0) + "IN (\/_Pd3+1)(|f|wg(sz)+|f|W3(Q))
<Cy [P, [/ (|f|W5(Q) 4 |f|W3(Q))’ (4.50)

d
where C = 4<d;1)6/(2 v (d%pd,g + 6d? (\/gpdg, + 1)), thereby proving the result
(4.38).

For each i = 1,..., Ny, using the Holder inequality yields

1
= sl <2735 (1D = SO+ 106 o)
On one hand, a direct computation shows that, for each v =1,...,d,
PolayP s 1 N
1D2(a” = sy = 557 Go) (4.51)
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On the other hand, since for each k =1, ...,d,

d

D:cqu = rk(Z > byl 4+ xp) > Z%ku T+ T,),

v=1 pu=v+1 u#k

and

Ny d d
D, s = ZZZ(%WJ) Ty + 1) — byub?) = ZZ%M

J=1p#k

By using the Holder inequality, we deduce that

2
106 = sy < 73S 2l [, mxmu—m &a
Jj= luik

b;
<30 (2 [P x -y pax)
J= 1u¢k b
\/_ \/§ pt1
_ 1
=" zzwzbkmmdlw( )

J=1p#k MmNV,
3
_ dp-195+1 d ‘bkﬂ‘p( )p (4.52)
p+1 = md A\mNy/ '

by virtue of a change of variable X = z,+x,,Y = z,—x, where b; < X < bj+mij\2[2
and the range of Y not more that % From (4.51) and (4.52), together with (4.44)
and (4.47), we find that

2 \p/dP12F 422N/ dpgsp
» p
|Qi_3i Wi(wi) < (mNQ) ( p+1 )(( ) |f‘ wl)+‘f|wg(wi)).
(4.53)

3/(2d+1
It is easy to show that m™2 < (mNy)™t < 2(6“51) 8 )‘7) |=3/(2d+1); The

first inequality is obvious since Ny = |m2| < m. Also, since m? < [m?] <

Ny +1 < 2N, we have that ms < 2mN,. Combining this with the fact that

2/(2d+1 3/(2d+1
|Pm|ﬁ < (d;rl) [y )m yields |Pm|%+1 < 2<d;rl) /! )mNQ.

Now combining (4.41) and (4.53), together with the Holder inequality, we
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obtain

B =

N1
|f = slwya) S(Qpl ; (|f - Qi|€l/z}(wi) + |gi — Si‘gvz}(wi)))

§02|73m|—3/(2d+1) <|f|W§(Q) + |f|W3(Q))> (454)

where Cy = 4(‘”1

2 )3/(2d+1) (

d*pas + 32d(\/3pd73 + 1)), thereby proving (4.39). O

The choice of Ny in Theorem 4.5.2 is justified from the following argument:

1

In order to estimate (4.50), we want that INZ

<C # for some constant C, that
is m < CNZ. If Ny = |m* | for some k > 1, then m < (N + 1)¥ < 2NK. The

clearly obvious choice is k = 2.
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CHAPTER 5

CONCLUSION

The objective of this thesis was to develop new partitioning methods for the
approximation of a function f on a domain Q C R? d > 2, by piecewise linear
functions. By using our partitions, we estimate the approximation error in both
L,-norm and Wpl—seminorm. In the two-dimensional case, we design conforming
triangulations so that the approximant is continuous, whereas in the general

multidimensional case, we do not impose continuity on the approximant.

In the first part, we start by investigating local errors resulting from the inter-
polation of a quadratic polynomial by a linear polynomial on a reference triangle
T. We show that, if the measure of non-degeneracy of the triangle 7 on which
we approximate the quadratic polynomial is bounded, then we can estimate the
derivatives without the maximum angle condition necessarily met. We also dis-
cuss how an optimal triangle for a quadratic polynomial can be obtained. In the
case where the determinant of the quadratic polynomial is positive, the optimal
triangle is obtained by mapping an equilateral triangle by a linear map associated
with the spectrum of the matrix associated with the quadratic polynomial. We
provide a discussion on the characterization of optimal triangles for quadratic

polynomials with a negative determinant, which still remains an open problem.

We carry on by studying the local errors from the interpolation of a twice
differentiable function f on triangles. We use a quadratic polynomial associated
with the Hessian matrix Hy as intermediate approximation. With the help of the

shape function K, we are able to provide sharp error estimates when approximat-
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ing on nearly optimal triangles which are scaled and shifted versions of optimal
triangles. On a non-optimal triangle 7" where we have no knowledge of its interior
angles, it suffices to use a linear map ¢ whose conditional number is bounded,
and such that interior angles of the inverse image triangle ¢~'(T) are far from
the flat angle. If the measure of non-degeneracy of the triangle is bounded, then

another alternative is to use again an intermediate quadratic polynomial.

The second part of this dissertation is devoted to the construction of a se-
quence of anisotropic triangulations (Ay)y>n,, Where an Wz}—seminorm estima-
tion is derived while maintaining the optimality of the asymptotic L,-norm esti-
mation. Our construction method shares some basic features with the construc-
tions described in [2, 3, 29], namely using the Hessian H for the initial step where
we design the regular regions. The other step in our construction, on which lies
the originality of this work, consists in obtaining the irregular regions by extend-
ing the segments which define the regular regions. Each extension is described
by specific maneuvers in such a way that local error estimations in L,-norm and
Wpl-seminorm can be derived from the approximations on the irregular triangles

that are generated by the irregular regions.

In general, describing the shapes of the irregular triangles is problematic.
However, using a “back transformation”, we manage to show that the interior
angles of the back transformed triangles are far from the flat angle. We show that
these triangles cover only small parts of the domain €2, and that the error that
they contribute to is negligible, as compared to the error coming from the regular
triangles that are generated by the regular regions. We derive our asymptotic
estimations in L,-norm and Wl}—seminorm by combining the local errors on all

triangles.

In the third and final part, we use several overlaying partitions P = {Aq, ..., Az}
to approximate the target function. The splitting directions of the partitions are
either fixed, or related to the properties of the Hessian. Also, each partition con-
tributes to the design of the approximant which is discontinuous, and consists

of a sum of piecewise linear functions. By using the Poincaré inequality and the
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Bramble-Hilbert lemma for convex domains, our local error analysis addresses
the best approximation problem on each cell of the partitions. We obtain error
bounds in L,-norm and Wpl—seminorm, where our approximation orders improve
on the ones obtained when using a single partition. Namely, we achieve the
approximation order O(N~%241) for the L,-norm estimation, and the approx-
imation order O(N—3/(4+1) for the Wpl—seminorm estimation, with N being the

number of degrees of freedom.

Future work

We want to extend the results of Chapter 3 to functions which are not necessarily
convex, and also to investigate whether our triangulations can be used for p = oco.
More properties of our triangulations are still to be found, for instance checking
whether the triangles are regular (or quasi-uniform) with respect to certain met-

rics.

Another open question is to improve our Wpl-seminorm estimation to the
optimal result obtained in [30] and, moreover, construct triangulations where the
piecewise linear interpolant is asymptotically optimal in lim sup sense for both

L,-norm and Wpl—seminorm errors.

Finally, we want to extend our results on sums of piecewise polynomials to
higher order approximation. Also, we want to provide lower bounds in order to
show that the obtained approximation orders cannot be improved when using

any sums of piecewise polynomials on convex domains.
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