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A STUDY ON PIPE BENDS 

An Analysis of the Smooth Pipe Bend with Flanged End Constraints 

Under Out-of-Plane Bending and the Development of Experimental 

Techniques in the Creep of Pipe Bends 

ABSTRACT 

In the design of piping systems the importance of the pipe bend is well 

established. Recent publications have been increasingly concerned with 

the effect of end constraints on the behaviour of smooth pipe bends. 

This has been aimed almost exclusively at in-plane bending, there being 

no serious attempts at the solution to out-of-plane bending. In PART 

(1) of this thesis a theoretical solution is presented for the out-of-plane 

bending of linear elastic curved pipes 'with rigid flanges. The analysis 

employs the theorem of minimum total potential energy with suitable 

kinematically admissable displacements in the form of fourier series. 

Integration and minimisation is performed numerically. Results are 

given for a wide range of practical bend geometries. A comparison with 

previous theoretical predictions highlights the inadequacy of these 

earlier solutions. The present results are shown to be in favourable 

agreement with results from tests conducted by the author and more 

recent results using a different solution procedure. 

Work in the creep of pipe bends necessitates a substantial amount of 

experimental work and expertise. Most publications dealing with the 

creep of pipe bends under bending loads fail to present much informa-
" 

tion on this aspect. 
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In PART (2) of this thesis a general description is given of an experi

mental creep programme on pipe bends. The measurement of strain 

at elevated temperature was accomplished using the CERL-PLANER 

capacitance strain gauge. It is shown that the application of this gauge 

to pipe bends requires particular techniques if meaningful results are 

to be obtained. The results of development work arising from other 

problems encountered during the test programme are also presented. 

These include the measurement of displacement and distortion at elevated 

temperature and the provision of an efficient and novel heating system. 

Kenneth Rae 
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NOTATION 

-
A, (A) with subscripts, displacement coefficient (non-dimensionalised) 

Al, CAl) with subscripts, displacement coefficient (non-dimensionalised) 

A2, (A2) with subscripts, displacement coefficient (non-dimensionalised) 

B, (B) 

c, (e) 

c 

c 

D, (D) 

D 

D 

E 

F 

H 

H 

I 

JT 

K 

K 

M 

M 

MT 

N 

N 

NT 

with subscripts, displacement coefficient (non-dimensionalised) 

with subscripts, displacement coefficient (non-dimensionalised) 

Et 
( 1-v2 ) 

centreline displacement subscript 

with subscripts, displacement coefficient (non-dimensionalised) 

distortion displacement subscript 

Young's Modulus 

capacitance gauge factor 

shear moment stress resultant 

with subscript, rigid section centreline displacement 

second moment of area, I = 1Tr 3t 

total number of terms in rigid displacement series 

with subscripts, curvature 

flexibility factor 

applied bending moment 

with subscript, moment stress resultant 

total number of terms in circumferential distortion displacement 
series 

with subscript force stress resultant 

with subscript, nu'mber of integration poults 

total number of terms in meridional distortion displacement 
series 



R 

R' 

R 

R 

S 

T 

T 

U 

U 

v, (V) 

W 

z 

8. 

radius of pipe bend centreline 

R + rsin~ 

with subscript t principal radius of shell curvature 

rigid section displacement subscript 

shear force resultant 

with subscript, rigid section centreline displacement 

strain energy 

with subscript t rigid section centreline displacement 

total potential energy (non-dimensionalised) 

shear strain (curvilinear co-ordinate system) 

(1 + !: sin~) 
R 

j rigid section displacement coefficient subscript 

m distortion displacement coefficient subscript 

n distortion displacement coefficient subscript 

p internal pressure 

q with subscript, shell surface loading 

r mid-surface radius of pipe cross-section 

t pipe wall thickness 

u circumferential displacement 

v tangential displacement 

w radial displacement 

z through thickness co-ordinate 



a 

o 

e 

\I 

(J 

-(J 

" 
(J 

9. 

subtended bend angle 

with subscript, shell surface rotation 

shear strain 

rotation between ends of bend 

nominal rotation, MR a 
EI 

. 
kronecker delta J = 1, j = k 

'\.=O,j=k 

with subscript, strain (strain factor) 

angle along bend measured from one end, circumferential 
co-ordinate 

subscript, circumferential direction 

. f t Rt plpe ac or, 2 
r 

poissons ratio 

with subscript, stress 

with subscript, stress factor 

with subscript, peak stress factor 

meridional angle measured around cross-section from midway 
between intrados and extrados 

subscript, meridional direction 

Ii' ej f = 1, j - even 

'\. = 0, j - odd 

Ii' • f = 0, j - odd 
0) 

l = 1, i-even 

$ ~ 
Ert 
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GENERAL INTRODUCTION 

The trend toward higher operating temperatures and pressures 

in the power and petro-chemical industries has increased significantly 

the problems associated with the design and safety assessment of pipe

work components. The increased complexity in design arising from 

these severe environments has lead in recent years to an increased 

activity in the experimental and theoretical study of one particular com

ponent of the pipe work system - the smooth pipe bend. 

In a structural sense the pipe bend is perhaps the most important 

pipeline component. Its behaviour has attracted the interest of many 

authors over the last seventy years. It is now well established that . 

the flexibility of smooth pipe bends can be orders of magnitude higher 

than an equivalent length of straight pipe with the same cross-section 

geometry when both are subjected to the same external bending moment. 

Thus conventional simple beam theory ~an seriously ov~r-estimate the 

stiffness. of. the pipe bend. The additional flexibility is associated with 
. . 

the ability of the cross-section to "ovalise" or flatten when a bending 
.. 

moment is applied to it. In piping analysis the fundamental problem 

is to design a system with sufficient flexibility to contend with thermal 
.. . 

expansion loading on the pipeline itself and on the vessels to which 
. .. 

it is connected. Clearly the incorporation of pipe bends in the. system 

satisfies these needs. However, the additional flexibility introduced 

by the pipe bends is at the expense of high stress concentrations 

produced around the cross-section which can be several orders· of . 

magnitude greater than the stresses produced in adjacent straight pipes. 

Theoretical analyses usually consider the smooth bend as a sector 

of a toroidal shell under a pure bending: moment. The majority. of the 
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work on bends has been based on "strain" or "complementary" energy 

concepts although several solutions exist which" make use of the more 

traditional approach of solving the governing thin shell equations. 

Until recently, most of the analytical work was concerned with what, 

in a shell theory sense, might be termed "axi-symmetric" solutions 

where cross-sectional deformations and stresses were assumed to be ' 

uniform along the length and independent of the subtended angle of 

the bend. This type of solution treats the problem as an isolated smooth 

bend with no terminal connections. When the bend is part of a piping 

system the natural cross-sectional deformations are constrained by the 

connections between it and the other components, violating the axi

symmetric assumption. 

In recent years, several solutions have been developed which 

solve the problem of smooth bends with various end terminations. 

However, the bulk of this work and that of earlier authors has been' 

aimed almost exclusively at in-plane bending. The loading condition 

of out-of-plane bending. which in certain instances can be the predom

inant loading, has received little attention. In the axi-symmetric solution 

the derivation is based essentially on the assumptions employed in in

plane bending. The out-of-plane bending of a smooth pipe bend poses 

a complex problem. This is particularly so when the effect of end con

straints are considered, where the axi-symmetric solution can lead to 

a gross over-estimate in flexibility and stress levels. There is in fact 

no readily available solution dealing with this particular problem. 

The primary objective of this thesis is to formulate a theoretical 

solution for the flexibility and stress characteristics of smooth circular 

pipe bends with rigid flange's under out-of-plane bending. This is 

presented in PART (1) of the present thesis. 
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Whilst conducting this theoretical work the author was also 

employed on a research contract to investigate the inelastic (creep) 

behaviour of pipe bends at elevated temperature. This work, funded 

by the United Kingdom Atomic Energy Authority, covered an extensive 

experimental programme of creep testing on a range of pipe bend 

geometries under essentially bending loads. From this work, problems 

encountered in the field of strain and displacement measurement at 

elevated temperature led to the development of new experimental 

techniques. Few details are presented in the literature relating to 

problems encountered in the experimental field, although there abounds 

numerous comparisons with theory and experiment. This may be a con

sequence of the high cost of such tests ensuring commercial confidence. 

As such, problems encount~red by other workers in the field do not come 

to light. lriPART (2) of this thesis an attempt is made to remedy this 

situation by presenting some of the problems and their corresponding 

solutions. 

A historical review of ~elevant publications is presented in 

CHAPTER '(1). Only work which was considered important or of some 

interest has been included. The majority of previous investigators 

confi~ed their activities to a linear-elastic examination of circular smooth 

bends under in-plane bending and neglected end effects. All the avail

able publications known to the author dealing with end constraints have 

been included. Work on some other important features, such as non

circular cross-sections, creep, etc, are included for comparitive purposes. 

PART (1) of the thesis begins at CHAPTER (2) with some 

preliminary theoretical formulations. Thin shell theory is discussed 
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and equations for a smooth bend derived. The theorem of minimum 

potential energy and the application of the Rayleigh-Ritz method are 

discussed. 

CHAPTER (3) presents a theoretical solution to the problem of 

a smooth bend with flanged ends under out-of-plane bending. General 

displacements in the form of fourier series are derived which satisfy 

internal and external compatibility for the problem. The results are 

discussed and compared to other published analytical solutions. A com

prehensive set of results for flexibilities and stresses for a wide range 

of bend geometries are then given. 

CHAPTER (4) compares the theory of CHAPTER (3) with 

published analytical solutions and results from experiments detailed 

herein. 

PART (2) of this thesis begins with a general description of an 

experimental creep programme in CHAPTER (5). Following a descrip

tion of the test equipment, details are presented of the experimental 

techniques developed during the course of the work. 

CHAPTER (6) examines in ,more detail the experimental techniques 
I 

discussed in CHAPTER (5). Typical results from a number of tests 

performed on pipe bends at room temperature and elevated temperature 

are given. 

CHAPTER (7) draws general conclusions from the work presented 

in PART (1) and PART (2). 
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CHAPTER 1 

Smooth Pipe Bends: A Historical Review 
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ABSTRACT 

This chapter deals with the historical development of the theoretical 

and experimental investigations associated with smooth pipe bends 

subjected to various forms of loading. Publications dealing with and 

without end constraints are reviewed separately. Finally, the exist

ing design procedures are examined. 
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1.1 Introduction 

Piping systems usually include a number of components and may 

be subjected to a variety of mechanical and thermal loadings. During 

the last decade technological advances in the nuclear power industry 

have demanded a more stringent and critical appraisal of design proced

ures. From this has emerged an exceedingly diverse pattern of loading 

conditions considering not only the static, but the dynamic state also. 

This diversity in loading extends to aspects such as seismic loading 

and aircraft impact. Under hostile environments, such as elevated tem

peratures, inelastic behaviour such as plasticity or creep can be intro

duced in component parts of the system. In the more conventional piping 

system, however, the design criteria are not so exacting, in that the 

extreme or ultimate loading cases are not so complicated or severe. 

The interest in this text shall be focused on one particular com

ponent of the piping system - the smooth pipe bend. In considering 

this component the applied loadings will be simplified to cover the 

following three important cases: 

1. in-plane. bending 

2. out-of-plane bending 

3. internal pressure. 

An illustration of these loadings 
is shown in Figure (1.1). 

In general, piping systems are employed to connect together 

vessels which may be a considerable distance apart. As the vessels 

are normally positionally fixed with respect to each other the general 

approach in design is to ensure that the pipe line is sufficiently flexible 

to absorb any expansions without imposing excessive loads on the anchor 
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points or the pipe line itself. This flexibility can be introduced for 

example by incorporating bellows expansion units in the line. These, 

however, lead to a limited fatigue life due to the high stresses produced 

in the convolutions at even moderate loads. An alternative and more 

common method of introducing additional flexibility has been to introduce 

pipe bends, usually smooth curved bends but occasionally mitre or 

lobster back bends, in the system. They are introduced because bends 

are inherently more flexible than straight pipes when subject to bending 

loads. The increase in flexibility is, however, at the expense of high 

stresses produced around the cross-section of the bend. This character

istic coupled with inelastic effects due to loading gives some insight 

into the complexity of behaviour that can occur. An illustration of these 

components is shown_in Figure (1.2). The mitre bend, although not 

so common as smooth bends has particular uses when an economic or 

convenience factor takes priority. 

In the design of a piping system it is normally assumed that the 

bend cross-sections are circular and that the wall thickness is the same 

throughout. However, manufacturing processes are such that the attain

ment of a prismatic, circular cross-section is rarely achieved. The 

most common method of manufacture involves forcing a section of straight 

pipe around a specially shaped die or former. This process normally 

results in some ovalisation or distortion of the bend cross-sections and 

non-uniform thinning of the pipe walls. The quality of the bends can 

be improved by forging or, depending on the size_ of the bend, a welded 

fabrication using folded plate with a circumferential (longitudinal) seam 

weld. -Both these methods, however, tend to be more expensive. As 

a result, in most situations a certain amount of imperfection is considered 

acceptable and in some cases can even be helpful. 
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An extensive volume of work associated with the aforementioned 

considerations has been written. In the following sections of this 

chapter the more important and relevant publications will be reviewed. 

Although the review is aimed primarily at the smooth pipe bend, other 

aspects which have contributed to the development of their study, such 

as mitre bends, will also be given a brief mention. 

Throughout the present work reference will be made to the bend 

"flexibility factor". It is felt appropriate at this early stage to define 

this term as a number of definitions exist in the liteTature, particularly 

for the case of out-of-plane bending. For both in-plane an'd out-of

plane bending the flexibility factor is usually defined as follows: 

K = (the end rotation of the bend under a given load) 
(the end rotation of a similar length of straight 

pipe under the same load) 

The "end rotation of the bend" is the change (y) in the sub tended angle 
r 

( a) of the bend when the load is applied. Fo~ the case of out-of-plane 

bending a more detailed definition and a discussion of the effects of 

the pure out-of-plane moment and associated torsional moment will be 

given in CHAPTER (3).. 

So far, this refers to the normal flexibility in connection with 

a smooth bend when it is considered alone. When the bend is connected 

to two straight pipes a further definition is required. In this case any 

change in the flexibility of the straights local to the bend will be referred 

to the bend. Thus only one flexibility factor will be necessary for the 

determination of the behaviour of a system of a bend with straight pipes. 

It is convenient to consider an "assembly" made up of a bend with short 

straight pipes attached to the ends. The "flexibility factor" for this 
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situation, again for the loading conditions of in-plane and out-of-plane 

bending will be defined as: 

K = 
(the overall end rotation of the assembly under a given load -

the end rotation of both straight sections loaded alone) 
(the end rotation of a straight pipe of the same length 

as the bend, under the same load) 

Here the "overall end rotation of the assembly" is the relative rotation 

between the loaded ends of the straight pipes. The bend length referred 

to is the length of the arc of the mean radius of the bend equal to (Ra) 

where R is the mean radius and a is the subtended angle of the bend. 

In the case of out-of-plane bending the numerator in this definition of 

flexibility factor will naturally include the torsional effects, although 

this will depend on the bend angle. Note that, a 180 0 bend will have a 

pure (out-of-plane) moment along the straight sections, whereas a 90 0 

bend will have a pure (out-of-plane) moment on one straight section 

and a pure torsional moment on the other. The straight pipe in this 
I 

straight-bend-straight configuration will be referred to in the present 

work as a "tangent pipe". 

It is important to recognise that the denominator in both definitions 

of flexibility factor refers to the nominal rotation (y ) of a straight pipe 
o 

and not that of a curved pipe as is sometimes employed. 

Reference will also be made to a "stress" and "strain concentration 

factor" (S. c . F .) which unless otherwise stated will be defined as: 

SCF = (the elastic stress/strain in a bend under a given load) 
(the maximum elastic stress/strain in a similar straight 

pipe under the same load) 
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In describing the co-ordinate system of the pipe bend the follow

ing terminology will be adopted: 

1. the "circumferential" direction defined by the angle e 
is assigned along the length of the bend; 

2. the "meridional" direction defined by the angle 0 is 

assigned around the bend cross-section. 

When quoting and discussing or presenting the work of other 

authors every attempt will be made to use the notation of the present 

thesis and not that of the original publications, although similar notation 

to that of the many previous authors on the subject of pipe bends is 

used. 



22. 

1.2 Smooth Pipe Bend Without End Effects 

1.2. 1 Linear Elastic Analysis 

In 1911, KARMAN [1] developed the first theoretical solution for 

smooth curved pipes under in-plane bending. He demonstrated con

clusively that curved tubes were inherently more flexible than a solid 

curved bar or equivalent length of straight pipe. A year, earlier, 

BANTLIN [2] had arrived at a similar conclusion from experimental work 

conducted on thin wall bent pipes. Bantlin found that the pipes were 

about five times as flexible as would be expected from the common theory 

of beam bending. Bantlin attributed this increase in flexibility to 

wrinkles and irregularities at the inside (intrados) of the bend which 

had arisen during the manufacturing process. He suggested that the 

wrinkles behaved in a "spring like" fashion. Karman on the other hand 

was able to associate the increase in flexibility with the initially circular 

cross-section tending to ovalise or distort when the bending moment 

was applied (Fig. (1. 3». In doing so he assumed the tangential ~isplace

ment of the cross-section could be expressed by the following series: 

v = I An sin ( 2n0), n = I, 2 , 3 •••.... 
n=1 

He formulated the strain energy expression using equation (1. 1) and 

(1.1) 

b.y minimising the strain energy was able to determine values for the 

coefficients in the displacement series. In formulating the solution 

Karman did not use equations derived from thin shell theory but instead 

obtained his own strain-displacement relationships from the geometry of 

the bend. Taking one term in the displacement series of equation (1.1) 

Karman was able to obtain what is usually referred to as the "Karman 

first approximation" for the flexibility factor. 
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10 + 12A2 
= . . . 

1 + 12;\,2 

By taking two terms in the displacement series he obtained a 

second approximation: 

K2 = 105 + 4136A2 + 4800;\," 
3 + 536;\,2 + 4800;\," 

(1.2) 

(1.3) 

Karman also gave numerical results for a third approximation (K 3 ) 

for values of ;\, he thought were necessary. 

The term ;\, is herein referred to as the pipe factor. It is also 

sometimes referred to as the "pipe bend parameter" or "bend charac-

teristic", and is given by: 

;\, = Rt 
r2 (1.4) 

Kar~an 's analysis gives results which depend uniquely on this 

pipe factor ;\,. It will be shown later. however, that when end effects 

are introduced then more than one parameter is required to define the 

solution. The flexibility factors given by Karman are shown in Figure 

( 1. 4) • They confirm his assertion that the first approximation is valid 

for ;\, >0.5, the second approximation for A >0. 1 and below A = 0.1 a third 

approximation is necessary. 

The importance of Karman's contribution to the study of pipe 
. 

bends cannot be over-emphasised. It was to form the basis of virtually 

all subsequent work and although restricted to in-plane bending it was 

also later to provide the basis for extending the analysis to out-of-plane 

bending. In essence. Karman analysed a differential length of pipe using 

the Ritz method. Because of the lack of the digital computer he could 
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only consider in the analysis the hoop or meridional direction of the 

pipe bend. It is interesting to note that even with today's advanced 

computer technology his theory and assumptions are still being applied. 

In fact solutions developed for the axisymmetric problem by contemporary 

authors rarely differ from that of Karman's by more than a single figure 

percentage. It is therefore worth examining the assumptions he made 

in some detail. His: major assumptions, stated or implied, were as follows: 

1. All cross-sections of the bend were assumed to 

deform by the same amount. 

2. The mid-surface meridional strain (~&) was assumed to 

be zero. 

. 3. The circumferential strain (~e) was assumed to be 

constant through the thickness, and hence the circum

ferential curvature <Ka) was neglected. 

4. R»r. This permitted the "pipe bore term" (R +r) to 

be approximated to R. 

5. r»t. This implies that the solution is only applicable 

to thin shells. 

6. Stresses normal to the shell mid-surface were neglected. 

7. Shear strains were neglected. 

Assumptions (1) and (7) were because ofaxisymmetry and pure bending. 

Assumption (2), sometimes referred to as the "Karman assumption", 

allows the deformation of the cross-section to be 'expressed in terms 

of one displacement component. Assumption (4) limits the solution to 

long radius bends. Assumptions (5) and (6) are simply two of the basic 

assumption of thin shell theory. 
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In the same year, 1911, MARBEC [3] attempted to solve the 

identical problem by assuming that the initially circular cross-section 

deformed into an ellipse. The expression he obtained for the flexibility 

factor was: 

(7.5) 

Although his assumptions regarding the strain-displacement relationships 

were identical to Karman's, there are serious discrepancies between 

the Kl values calculated from equations (1.2) and (1.5). Curiously, 

although this formula has been quoted by many authors over the years, 

it was not untirnearly 60 years later that SPENCE [4] corrected Marbec's 

work. Marbec failed to distinguish between the meridional angle of the 

initially circular cross-section and the angle used to denote the equation 

of his ellipse. The corrected flexibility factor is given by: 

K 1 = 2 + 3A2 

1 + 3A2 
(7.6) 

Flexibility values calculated from equation (1. 6) are considerably lower 

than those of K~rm~n's first approximation (1.2) as shown in Figure (1.4). 

This arises from the additional constraints imposed upon the solution 

in prescribing an elliptical deformation of the cross-section. They are, 

however. consistent with a lower bound. strain energy analysis, but 

even the corrected results are of little practical value. 

LORENZ [5] in 1912 published a solution based on a complementary 

energy approach in which he specified stresses instead of displacements. 

His first approximation for the flexibility factor was: 

. . . (1.7) 
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Lorenz compared his and Karman's work with the experiments of Bantlin 

and concluded that his results were more accurate. However, later 

work disproved this. Lorenz's main limitation arose from his choice of 

stress distribution. He assumed with the first approximation that the 

circumferential stress across the section was linear whereas Karman's 

analysis demonstrated that it was not. 

In 1923, TIMOSHENKO [6] investigated the case of a curved tube 

having a rectangular cross-section and subject to in-plane bending. 

U sing similar assumptions to those of Karman, he was able to determine 

a flexibility factor in terms of the bend geometry. The formulation for 

a rectangular section is rather complicated but for a square section 

of side b, thickness t and radius of cur.vature R, his flexibility factor 

can be expressed as: 

= 3.232 + 49.1Bx2 
1.232 + 49.1BX2 

where A = Rt 
b 2 

{1.8J 

The paper did not receive much attention in the subsequent literature. 

probably because it is of little practical value. 

HOVGAARD [7] in 1926 published the first of his many contribu-

tions to the already increasing literature on pipe bends. He attempted 

to produce an independent solution for in-plane bending of circular 

smooth bends by specifying a series for the "vertical" displacement 

component. This displacement he defined in the paper as the movement 

of the cross-section towards the centre of curvature and parallel to 

the plane of the bend. His resulting expression was identical to that 

of Karman as might be expected. He was the first to point out the 
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existence of a direct meridional stress factor (a~D) and gave its peak 

value as: 

a = 2r (1 + 6>..2) 
rJD R 1 + 12>..2 

. . . (1.9) 

Two years later, HOVGAARD [8] pointed out that if strict allegiance 

was to be paid to Karman's assumptions then his expression for flexibility 

factors should be multiplied by a factor (1- 'J 2). Karman avoided this 

factor by treating the pipe as a ring and thus omitting poisson's ratio 

in his energy expression. Although the factor (1- 'J 2) is close to unity, 

(0.91 for 'J = 0.3) it should nevertheless be included for consistency 

with a lower bound analysis. 

WAHL [9] investigated piping systems and derived expressions 

for end moments and reactions. He was probably the first to investigate 

the effect of internal pressure, and eroneously concluded that it had 

little effect on the flexibility. 

JENKS [10] in 1929 extended the results of Karman to the Nth 

approximation. i.e.: using N terms in the displacement series. His 

generalised flexibility factor was given by: 

= 10 + 12>..2 - j 
1 + 12>..2 - j 

where j is given as a function of >... 

. . . (1. 10) 

Jenks, like Karman. omitted the (1 - 'J 2) term from his analysis. He 

also provided data for the determination of stresses for values of >.. down 

to 0.05. 

In the mid-thirties. HOVGAARD [11.12] continued his work on 

systems by extending his analysis to three dimensions. This involved 
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. consideration of out-of-plane loading. He suggested that as far as 

deformation out-of-plane was concerned, a pipe bend could be treated 

by the normal beam theory except for secondary effects of rotation in 

the plane of the bend due to the out-of-plane loading. By analysing 

several configurations he suggested that secondary effects of this nature 

could usually be neglected. There is in fact a primary effect of out

of-plane loading which was analysed properly later. 

At around this time a steadily expanding literature on the analysis 

of piping systems arose, beginning with the simpler cases and extending 

to complicated three dimensional multi-branch systems. MARKL [13] 

gives over a hundred references to such works. 

At about the same time THULOUP [14,15,16] published,the first 

successful investigation of the combined loading effects of in-plane bending 

and internal pressure. His method was similar to that of Karman, except 

that he specified the radial rather than the tangential component of dis-

. placement. U sing one term in his solution, he obtained the following 

flexibility factor: 

= 10 + 12A 2 + 48$ 
1 + 12)..2 + 48$ 

where $ = E!. ( !! ) 2 
Et t 

(1.11) 

This equation reduces to Karman's first approximation for zero internal 

pressure. 

In 1936, TUEDA [17] attempted to present a general solution to 

the pipe bend problem. His analysis could accommodate arbitrary initial 

pipe profiles and removed the assumption of R » r. The method was 

mathematically complex involving the use of a power series. In the 
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presentation, however, he restricted the analysis to circular cross-

sections. 

In 1943, KARL [18] published two analyses which were basically 

the same as those of Karman and Lorenz using strain energy and com-

plementary energy respectively. For the strain energy analysis, he 

provided the following expression for a "third approximation" flexibility 

factor: 

K 3 = 252 + 73912A2 + 2446176A4 + 28822400A6 

3 + 3280A2 + 329376 A4 + 2822400 AS 
(7.72) 

In the complementary analysis, Karl used up to four terms on his stress 

resultant series. With one term, the solution was identical to that of 

Lorenz. The flexibility factor with four terms was: 

= 1+..!. _ [261+ 152304A4+ 11289600)'s] 
4 2 [360A2 + 229792A4+2125863A6 + 180633600A8 ] •• ' (7.13) 

Karl was aware that the strain energy and complementary energy methods 

should give lower and upper bounds respectively, on the flexibility 

factor. However, for certain values of A the lower !bound factor (1. 12) 

gives higher results than the upper bound (1.13). Although he seemed 

to appreciate that it had something to do with the (1 - \I 2) term, for 

some reason he included it in the upper bound analysis. The correct 

bound is obtained if the term is included in the strain energy solution. 

Karl also demonstrated that the inclusion of (!.) in the complementary 
R 

solution only marginally effected the results. His converged flexibility 

factors are included in Figure (1. 4). 

Although some attention has been given to the problem of out

of-plane bending by Hovgaard et 01. t it was not until 1943 that VIGNESS 
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[19] published the first solution of this case. His analysis is exactly 

similar to Karman's analysis. For the tangential displacement of the 

cross-section he assumed an expression of the form: 

v = l Ancos(2n0), n=1,2,3 (1.14) 

This displacement form is of the same form as for in-plane bending but 

simply removed by 45° (Fig. (1. 5». From the analysis, Vigness obtained 

a first approximation flexibility factor identical to Karman's (1 ~ 2). The 

maximum meridional bending stress was also identical but its position 

was moved by 45°. Out-of-plane bending, however, introduces a new 

problem not displayed by in-plane bending. The out-of-plane moment 

does not remain constant along the length of the bend. Further, for 

a bend angle (excluding a= 180°) the applied and reaction loads are 

different to maintain external equilibrium. For example, an out-of-p1ane 

moment becomes a pure torsion at a position 90° further along the bend. 

It will be shown that this simple type of analysis does in fact give reason

able comparison with experimental values at a particular section. The 

distribution, however. is not applicable along the full length of the bend. 

In 1945, BESKIN [20], apparently unaware of the work of Lorenz 

and Karl, performed an analysis for in-plane bending starting from 

equilibrium considerations and an assumed series for the circumferential 

stress. He considered more terms in the series than Lorenz or Karl 

and was able to show how many terms were necessary for a converged 

solution for a specified accuracy. Beskin also repeated the analysis 

for out-of-p1ane bending and showed that identical formulae are obtained 

for flexibility factors. 
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BARTHELEMY [21,22] generalised Karman's theory for in~plane 

bending and Thuloup's method for combined bending and pressure. 

The effects of initial ovality were also considered in [22]. DE LEIRIS 

and BARTHELEMY [23] presented experimental evidence in support 

of [21] and [22], and later presented further work [24] which included 

the influence of thickness variations in the analysis. The authors were 

obviously well aware of the various effects and their importance, including 

the radius ratio, initial ovality, variable thickness and internal pressure, 

but although the work was comprehensive few results were presented. 

HUBER [25] presented a solution to the problem of a smooth bend 

having an initially elliptical cross-section under in-plane bending. He 

derived a first a~proximation flexibility factor in terms of pipe parameters 

and elliptical functions which were evaluated in a separate publication 

[26]. For a circular cross-section his result reduces to: 

K = 5.404 + 12A,2 
1 0.5798+ 12A,2 

(1.15) 

This result is not the same as Karman's first approximation, although 

it is not significantly different. 

The advent of the Second World War resulted in significant advances 

in all fields of engineering. In the study of pipe bends this was depicted 

by the work of REISSNER [27], who in 1949 generalised the equations 

of rotationally symmetric thin shells and reduced these to the governing 

differential equations of a toriodal shell, under in-plane bending. These 

formed the basis of CLARK and REISSNER'S [28] solution for smooth 

curved tubes, under in-plane bending, using shell theory as distinct 

from energy methods. Trigonometric and asymptotic solutions were 

obtained from the equations. From the latter, the following expression 

was obtained for the flexibility factor: 



K = 1.65 -r-
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The maximum meridional stress was given as: 

- _ 1.892 
afJ= + A~ 

(1. 16) 

. . . (1. 17) 

Clark and Reissner suggested a limit of applicability as A <0.3, although 

it can be used with reasonable accuracy up to A = 1.0. They also obtained 

formulae for elliptical cross-section tubes. 

In 1952, GROSS [29] and FORD [30] published the results of an 

extensive theoretical and experimental investigation of pipe bends. They 

considered the loading cases of in-plane bending and internal pressure 

and a combination of both. The case of out-of-plane bending was not 

examined. Their experiments were aimed principally at confirming the 

applicability of the existing theories for short radius bends t with A values 

as low as 0.049. This low value of A was achieved using a "lobster 

back" or mitre bend. They confirmed the need for the use of sufficient 

terms in the series solution at low values of A. The radius ratio (!! ) r 

was shown to have little effect on the flexibility factor. By using strain 

gauges on the inside and outside of the bend, they showed the existence 

of a small but significant meridional direct stress (a ~D) and derived its 

value from equilibrium as: 

r J~ a~D = -- COS0 aeDd0 
R ~ 

. . . (1.18) 

where OeD is the direct circumferential stress. This was added to the 

meridional bending stress obtained from Karman's analysis and gave 

the maximum stress for a bend on the inside surface. This modification 

has become known as the "Gross Correction Factor". From their experi-
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ments conducted on bends with combined bending and internal pressure 

they demonstrated that pressure causes a reduction in flexibility factor. 

Their work attracted a considerable amount of useful discussion and 

although omitting the case of out-of-plane bending, the author found 

both papers extremely comprehensive and clear. This was particularly 

so in regard to the experimental work, an aspect of the published liter-

ature not commonly encountered. 

During the years 1956 and 1957, three important papers appeared 

dealing with combined bending and pressure. 

KAFKA and DUNN [31] included the effect of pressure in a strain 

energy analysis by adding the work done by the pressure on the cross

section. The extra term was of a second order but nevertheless proved 

to be significant. The results of some experiments were also given show

ing reasonable agreement with their theory. 

CRANDALL and DAHL [32] modified the shell approach of Clark 

and Reissner [28) to include the effect of internal pressure. As before, 

they obtained asymptotic and series solutions. The series solution gave 

similar results to those of Thuloup and to Kafk~ and Dunn. The asymptotic 

solution predicted lower flexibilities than the series solution. especially 

for higher pressures, but appeared to compare better with experimental 

results. 

RODABAUGH and GEORGE [33) generalised the method given 

by Kafka and Dunn in [31], using a general displacement series for in 

and out-of-plane bending. For the radial displacement they assumed the 

following expressions: 

for out-of-plane bending: 

for in-plane bending: 

w = EAnsin(2nfh), n=1,2, 3 •.• 
n 

w = EA cos(2nfh), n=1,2,3 ••• 
n n . . . (1.19) 
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For the case of zero pressure they defined the following number of terms 

necessary in the series to give an accuracy of 10%: 

A n 

> 0.5 1 == 
0.4 - 0.16 2 

0.12 - 0.08 3 

0.06 - 0.04 4 

With internal pressure they found the series to converge somewhat faster 

than indicated by the above values. They also gave graphical results 

in the form of a nomograph and presented experimental work to justify 

their analysis. The flexibility factors for both in-plane and out-of

plane bending were shown to be the same. 

TURNER and FORD [34] in 1957 attempted an analysis for in-plane 

bending with as few assumptions as possible. Using a "strength of 

materials" approach they examined the effect of each assumption by 

including and removing the relevant terms in (!:) and (!.). They con-
R r 

cluded that although stress distributions could be seriously in error t the 

flexibility factors and maximum stresses were unlikely to be in error 

by more than 5 to 10%. 

FINDLAY and SPENCE [35] reported an experimental investigation 

conducted on a 6 ft 6 in. diameter t 90 0 smooth bend with a radius ratio 

(R) = 2.94 and a A value of 0.107. under in-plane bending. The stress 
r 

distribution at the centre of the bend showed good agreement with the 

theories of Karman. Clark and Reissner and Turner and Ford. Their 

experimental flexibility factor was given as 12.8 which compares reason-

ably well with the following theoretical values: 
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Karman 1st Approx. 

Karman 2nd Approx. 

K~rman 3rd Approx. 

Clark and Reissner 

Turner and Ford 

8.93 

15.64 

16.15 

15.40 

15.50 

One interesting comment made by the writers in this paper concerns 

a criticism made of the vagueness regarding how flexibilities are measured 

and how there is surprisingly good agreement given in the literature 

beween experimental and theoretical values. 

In 1966, JONES and KITCHING [36] conducted experiments on 

a 90 0 single mitre bend under various loading conditions including that 

of out-of-plane bending. The work was aimed principally. at confirming 

existing design procedures. Using the KELLOG [37] formula they demon

strated that the flexibility factor for out-of-plane bending was signifi

cantly over-estimated, and presented a modification to this formula. 

Smooth pipe bends are considered as a special case of mitred bends, 

and although the latter presents a more complex problem, it is evident 

that the same conclusion for out-of-plane bending applies also to the 

smooth pipe bend. Although this fact appears to have been hitherto 

neglected in the literature. it was appreciated by several previous authors. 

The main reason for the continuing use of an identical analytical approach 

to in-plane and out-of-plane bending is considered by this author to be 

due essentially to the complex nature of the out-of-plane problem. 

However, it does ensure simplification and conservatism in design and 

by what can be none other than "good fortune" the axisymmetric solution 

provides a reasonable approximation to the stress distribution, be it at 

one section, for both loading conditions. 
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JONES [38] reviewed the literature on smooth and mitred bends 

although the part relevant to smooth bends was very brief. In [39] 

he presented a generalisation of Karman's original work. The assump-

tion pf R »r was removed and the radial displacement series was taken 

as: 

,w =I:Ancos(na), n=2,3,4 
n 

where a = 0-90 0 

(1.20) 

Up to nine terms in the series were used and the earlier conclusions 

regarding the unimportance of the R »r assumption confirmed. Further 

discussion was also given on convergence and the relative insignificance 

of the odd displacement series terms, particularly for larger (!!) ratios. r 

In 1967, SMITH [40] repeated for out-of-plane bending what Turner 

and Ford [34] had done for in-plane bending, again using a "strength 

of materials" type analysis. The approach and the assumptions correspond 

throughout. Smith considered that pure out-of-plane bending could 

occur at only one section, so that the solution was obtained for a very 

short arc length. The assumptions of R > > r was not used as was the 

assumption i «r. His flexibility factors together with those of Turner 

and Ford for in-plane bending are reproduced in Figure (1. 6). In 

presenting his flexib.ility factors, Smith plotted KA against A. This shows 

a clear dependence on the radius ratio (!!). However, if K is plotted 
r 

against A the dependence on (g) is not so apparent, and the results r . 

for in-plane and out-of-plane bending become virtually identical. 

Using the assumptions of Karman,' Smith was able to define a simplified 

flexibility factor as: 

. . . (t.21) 



37. 

CHENG and THAILER [41] investigated in-plane bending using 

Clark and Reissner's method of analysis but included the (~) term in 

their solution. They further refined their analysis in a subsequent 

paper [42]. Both papers concluded that the inclusion of (~) had little 

consequence. 

In 1970, 'Spence [4] examined the bounding characteristics of 

flexibility factors obtained from minimum total potential (or strain energy 

methods) and complementary energy. methods. Spence, to some extent, 

resolved.1ibe dilemma concerning the (l-v 2) term, stating that a true 

lower bound is only achieved from a strain energy type analysis if this 

term is retained in the flexibility factor. This paper also included the 

correction to Marbec's work mentioned earlier. 

In 1971, BOND and KITCHING [43] presented a theoretical analysis 

associated with out-of-plane bending of multi-mitre bends. U sing a 

straineneJ.!gyanalysis developed earlier by KITCHING' [44J-' for in-plane 

bending, they 'were able' to' .obtain reasonably accurate predictions 

for the stresses and flexibility of a multi-mitred bend of low A value. 

FINDLAY and SPENCE [45] published theoretical solutions for 

elliptical pipe bends under in-plane and out-of-plane bending. The 

results from their strain energy based method, demonstrate that ellipt

icity has a greater influence on out-of-plane bending. In [46], they 

extended their solution to bends of elliptic cross-section with thickness 

variations, and concluded that normally accepted values of thinning 

have virtually no effect on flexibility. 

In 1972, DODGE and MOORE [47] presented a generalisation of 

Rodabaugh and George's method [33] for in-plane bending, out-of

plane bending and internal pressure. They also included the Gross 
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correction factor in the meridional peak stresses. A computer program 

for detailed analysis of pipe bends, based on the work in [47] was given 

in [48]. This program "ELBOW" was used to obtain the comprehensive 

set of results given in [47]. Typical results, for zero internal pressure 

and A values of 0.10 and 0.25 are shown in Figure (1. 7) for in-plane 

and out-of-plane bending. This interesting type of stress distribution 

around the cross-section of such a common place simple . looking component 

was in fact one of the main attractions which drew this author to the 

study of pipe bends. 

In the same year, BLOMFIELD and TURNER [49] publishec:l a 

further contribution on the same topic. From the theory of thin shells 

they derived a solution for the in-plane and out-of-plane bending of 

pipe bends. Included in this solution was a correction for the coupling 

effect of internal pressure. Their theoretical results showed good 

comparison with the work of Rodabaugh and George [33], Turner and 

Ford [34] and Gross and Ford [30]. The results presented, however, 

were limited to in-plane bending and a combination of this and internal 

pressure. 

KITCHING and BOND [50] examined the out-of-circularity effects 

in a pipe bend when subjected to in-plane bending and internal pressure. 

Under internal pressure the out-of-circularity was found to produce 

a non-linear elastic behaviour. 

In 1973, ROBERT and DUFORET [51] presented an analysis for 

the smooth pipe bend subjected to in-plane and out-of-plane bending. 

Based on thin shell theory, their analysis considered axisymmetry for 

the case of in-plane bending. For out-of-plane bending they produced 

a mathematical model based on "beam theory" in the circumferential 
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direction and "shell theory" in the meridional direction. Although the 

authors give a clear description of their tensorial shell theory the paper 

lacks detailed results. The writer found this disappointing in view 

of the fact that the authors in their opening paragraph state that there 

is a lack of theoretical results for the case of out-of-plane bending. 

The results that are presented are shown to give reasonable comparison 

with the experimental work of SMITH and FORD [52]. 

SEAMAN and WAN [53] presented a solution, similar to that of 

Clark and Reissner [28], for the lateral bending and twisting of thin

walled curved tubes. Using shell theory, trigonometric and asymptotic 

solutions were obtained. In an asymptotic solution for lateral bending 
2 

with (!:) «1, the flexibility factor was shown to be the same as that 
R 

developed in [28], i.e.: 

K = 1.65 
A 

Seaman and Wan also investigated the case, of a tube with a circum

ferential slit. Their results showed that the overall torsional flexibility 

was increased by an order of magnitude whereas the flexural flexibility 

was not changed by more than 50%. 

THOMPSON [54] attempted an "exact" solution to the problem 

of a smooth curved pipe under in-plane bending. His method involved 

a matrix solution of the thin shell equations with prescribed displacement 

series. The work was intended as a prelude to an investigation of the 

influence of end constraints. 

More recently, ARA V [55] investigated the effect of local corruga

tions in a smooth pipe bend subjected to in-plane bending. From experi

ments he was able to develop a simple theoretical model which gave 
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reasonable comparison with the measured stresses local to the corruga

tions. Tests on such bends had been made as early as 1932 by COPE 

and WERT [56] and in fact over 20 years earlier was the basis of 

Bantlin's [2] explanation for the increased flexibility. 
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1.2.2 Considerations Other Than Linear Elasticity 

1.2.2. 1 Elastic plastic behaviour 

In 1966, MARCAL and PILGRIM [57] developed a computer program 

based on a stiffness method for the analysis of elastic-plastic shells 

of revolution with axisymmetric loading. A year later in 1967, MARCAL 

[58] extended the computer program to deal with the case of a smooth 

pipe bend under in-plane bending. He gave the relationship between 

the applied bending moment and the elastic-plastic strains up to a maxi

mum value of 6%. Collapse moments were also given which compared 

favourably with the experimental results given by Gross and Ford [30]. 

BOLT and GREENSTREET [59], in 1971, presented an experi

mental investigation on the plastic collapse loads of pipe bends under . 
~oth in-plane and out-of-plane bending, with and without internal 

pressure. They made no attempt to compare their results with theoret

ical computations. 

In 1973, VRILLON, ROCHE and BAYLAC [60] conducted experi-

mental work on a 90 0 bend of elliptical cross-section subjected to internal 

pressure. The bend was essentially a single mitred bend. Under this 

loading they considered the collapse load, bursting load and shakedown. 

Using finite element analysis they obtained good agreement between 

the experimental and calculated values of collapse load. 

SPENCE and FINDLAY [61] cal~ulated theoretical limit moments 

for in-plane bending of smooth circular pipe bends. In their analysis 

they adopted two methods. In the first method they used MARCAL and 

TURNER's [62] approach of utilising a linear elastic analysis as a means 

of estimating the limit load. For the elastic analysis the asymptotic 

solution of Clark and Reissner [28] was used. The results obtained from 
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this method were compared with an approximate limit moment derived 

from a creep analysis [63] using a Norton power law. The ratio of the 

limit moment to first yield mL is found from: 

= maximum meridional stress (n=l) 
maximum meridional stress (n=co) 

where n = index in creep law 

A year later, CALLADINE [64] obtained limit moments by working 

directly from a Mises yield surface with the same elastic solution used 

by Spence and Findlay. Calladine's results are surprisingly high for 

a lower bound when compared with the boun,ds given by Spence and 

Findlay in [61]. 

MELLOW and GRIFFIN [65] presented further results for in-plane 

bending collapse loads using the finite element program MARC [66]. 

VRILL~N, MONTFORT and BEFRE [67] conducted experimental 

work on 1800 pipe bends subjected to in-plane bending. Collapse loads 

compared well with their finite element analysis. In the opening mode 

the collapse load was I found to be higher than in the closing mode. They 

attributed this difference to the "out of roundness" of the cross-sections. 

The term "out of roundness" here refers to the resultant distortion 

of the cross-section following loading, and not an initial out-of-roundness. 

The distorted shape for opening and closing modes in in-plane bending 

is shown in Figure (1. 8). When large displacements are encountered 

it is clear that the increased stiffness in the opening mode is the result 

of an increase in the depth of the cross-section. 

In 1977, SPENCE and FINDLAY [68] extended their work to bends 

with non-circular sections. Their results showed that initial ovality 
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introduced by modern manufacturing processes should have little effect 

on the value of the limit load. 

SOBEL and NEWMAN [69] conducted experiments on a 900 pipe 

bend subject to in-plane bending. Using the "MARC 17" element [108] 

they obtained good agreement with experimental values of collapse 

moment. 

MOORE [70] examined the plastic limit moment of a smooth pipe 

bend under in-plane bendil1-g. Using a lower bound solution he obtained 

reasonable agreement with experiment. One interesting aspect of this 

work was the technique employed in manufacturing the pipe bends to 

provide acceptable geometrical tolerances. 

In 1981, PROST and AMZALLAG [71] conducted a series of tests 

on a variety of bend angles subjected to in-plane, out-of-plane bending 

and internal pressure. For 90 0 bends the load deflection curves indicated 

the out-of-plane bending case to lie midway between that of in-plane 

bending opening and closing. Internal pressure or a decrease in bend 

angle was found to increase the plastic collapse moment. 

BRASCHEL, RICHTER, ZElTNER and RICHTER [72] examined 

the load carrying capacity of pipe bends with attached straight sections 

of pipes. They used a simplified analysis to determine the limit moment 

under in-plane bending. From a non-linear analysis using their NISA 

computer program [73] they obtained good comparison. This was further 

verified by their experimental results. 

PROST, TAUPIN and DELIDAIS [74] examined the plastic behaviour 

of pipe bends under in-plane, out-of-plane bending and pressure. 

SOBEL [75] utilised the SOUTHWELL [76] method for predicting 

plastic buckling loads for pipe bends. 
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During the last ten years a number of "elements" for the plastic 

analysis of pipe bends have been developed and implemented in finite 

element computer programs. A few of these are listed in [77 to 82]. 

The major problem, however. is the high cost and time involved in 

obtaining a solution, which in turn has restricted published data to 

a few examples. 

1.2.2.2 Fracture and fatigue 

Fatigue tests on pipe bends were performed as early- as 1935 by 

DENNISON [83]. Later, during the 1940's and 50's further experimental 

stUdies were carried nut by ROSSHEIM and MARKL [84], MARKL [85,86] 

and LANE [87]. 

The work by Markl reported in [85] is worthy of mention since 

it contains the results from over 400 fatigue tests on piping components. 

including pipe bends. 
r, 
I 

In 1969, BLOMFIELD and JACKSON [88] uised an elastic plastic 

computer program with the relevant material property data to predict 

the low-cycle fatigue lifes of cupro-nickle pipe bends. Blomfield pres

ented further results in [89]. 

UDOGUCHI and ASADA [90] published an investigation on the 

low-cycle fatigue strength of piping components. They conducted tests 

on branch pipe connections and pipe bends under in-plane bending. 

Their work was aimed principally at investigating more reliable design 

procedures for piping components under cyclic loading with practical 

applications to the nuclear industry. In a supplement to this paper 

they also presented results from fatigue tests conducted on a 90 0 mitre 

bend. A similar series of tests was reported by ANDO, YAGAWA et al. 

[91] • 
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The low cycle fatigue of some nuclear piping components was exam

ined by HEALD and KISS [92]. They presented the results of fatigue 

tests conducted on 26 components including elbows t tees and girth butt 

welds. 

JAMES [93] employed fracture mechanic techniques to estimate 

crack extension in piping elbows. 

DOYEN and MARINI [94] published the results of fatigue tests 

conducted on pipe bends. Their investigation was primarily concerned 

with defects in the seam welds at the intrados and extrados of bends 

made in halves. 

7.2.2.3 Inelastic and creep behaviour 

In 1957 t KACHANOV [95] investigated the effect of creep on pipe 

bends under in-plane bending. Using a complementary energy method 

with a creep power law t Kachanov derived upper bound t second approxi

mation t flexibility factors. 

SPENCE and MACKENZIE [96] considered the same problem using 

strain energy and developed lower bound t first a"pproximation t flexibility 

factors. The secondary creep law used in their analysis was that 

postulated by NORTON [97] given by: 

. 
where € is the strain rate and Band n are material constants. The 

,. 

index "n" is often referred to as the creep index. The flexibility factors 

obtained from both methods were shown to be dependent on the creep 

index and the pipe factor. In 1969 t SPENCE [98] extended his earlier 

work to include up to five terms in his displacement series. A subsequent 
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paper [99] presented an upper bound analysis. The flexibility factors 

from the upper and lower bound analyses of Spence are shown in Figure 

(1. 9). They clearly demonstrate that creep flexibilities can be consider

ably higher than those of an elastic analysis. In his doctoral thesis, 

SPENCE [100] details his previous work together with improvements 

to the upper and lower bound analyses. Stress distributions, maximum 

stress factors and reference stresses are all presented in some detail. 

Some of the work developed in [100] was subsequently presented in 

[ 101] and [63]. Work on the creep of pipe bends with elliptical cross

section contained in [100] was expanded in [102], [103] and [104]. 

Further work by Spence on creep in short radius bends was presented 

in [105]. These public~tions gave factors for stresses and flexibilities 

for a range of geometries suitable for· design. 

In 1973, WORKMAN and RODABAUGH [106] examined the effect 

of creep on a piping system operating at high temperature with partic

I ular interest focused on pipe bends. They reviewed the earlier work 

of Kachanov and Spence but failed to notice Kachanov's typographical 

error in stating the pipe factor as 1Jff, and failed to appreciate the 
r 

reason for the inclusion of the (1-v 2 ) term in Spence's lower bound 

analysis. In the discussion to [106], Spence pointed out these errors 

and further errors in their work. Workman and Rodabaugh published 

another paper [107] a year later. 

Between 1973 and 1975 several attempts at a finite element solution 

to the creep problem were published [77, 108, 109]. However, results 

are only available for a few typical geometries which were of particular 

interest to the respective authors. 
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In 1975, BOYLE [110] presented a dissertation on rational creep 

mechanics with further work on pipe bends. He approached the problem 

using a numerical solution to the non-linear thin shell equations developed 

in [110]. Boyle compared the non-linear elastic solution of pressurised 

curved tubes with the earlier work which included only non-linear terms 

involving the pressure. His results suggest that the linear analysis 

could be in error for high ratios of bending moment to' pressure [111]. 

Boyle also performed a redistribution analysis to examine transient creep 

in pipe bends. An important conclusion from his work was' that the 

steady state results of Spence were verified. 

In 1976, BOYLE and SPENCE [112] developed an analysis for out

of -plane bending of a curved pipe in creep. A solution was achieved 

by minimising the total potential energy rate. To account for the effect 

of a bending and torsional moment their results were presented in terms 

of an "energy factor" as opposed to a flexibility factor. Boyle and Spence 

published two further papers in 1977, the first [113] on the redistribution 

analysis contained in [110] and the second [114] on the creep analysis 

of piping systems. 

GRIFFITH and RODABAUGH [115] published results of creep 

tests conducted on 4 inch, schedule 10, pipe assemblies. 

IMAZU et al. [116] reported the results of tests conducted on 

12 inch, schedule 20, type 304 stainless steel pipe assemblies. Their 

comparison between the experimental results and the finite element 

solution was disappointing. The authors attributed the difference to 

the choice of the material constitutive equation and the influence of 

the tangent pipe end constraints. 
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In 1979, IMAZU and NAKUMURA [117] developed two simplified 

creep buckling analyses of pipe bends under in-plane "bending. The 

two methods gave comparable results and showed some correlation with 

experiments. The simpler of them was based on Spence's results for 

elliptical bends by updating the flattening of the cross-section as creep 

proceeded. 

WATANABE and OHTSUBO [118] examined the creep behaviour 

of pipe bends under in-plane bending using a simplified version of their 

finite ring element. Their results confirmed the earlier work of Spence 

and Kachanov for elastic stationary creep. 

In recent years, an attempt has been made to establish an inter

national library of benchmark solutions to the creep problem to provide 

a standard against which computer programs could be verified [119, 120] • 

BOYLE and SPENCE [121] presented a state-of-the-art review 

of inelastic analysis method for piping systems ~ A detailed discussion 

is given of the various simplified approaches to the problem [see also 

122,123,124,125]. They also compared the results of inelastic computer 

programs against available benchmark data. More recently in an attempt 

to supplement the simplified methods given in [121] a series of tests 

has been conducted by this author on a variety of stainless steel, type 

316, pipe bends. This work and the work of other foreign establish

ments will be discussed more fully in PART (2) of this thesis. 
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1.3 Smooth Pipe Bends with End Effects 

This section will be concerned principally with publications which 

contribute information to the study of smooth curved pipes with end 

constraints. Although the main text of this work is aimed at out-of

plane bending the omission of in-plane bending would severely limit 

the number of relevant publications. More importantly, it would do 

little justice to the development of the problem. As such, both types 

of loading will be considered with the emphasis being placed later-on-

out-of-plane bending. 

Two types of end constraint are generally encountered: 

(i) flanges 

(ii) tangent pipes 

These constraints are illustrated in Figure (1.10). 

In the subsequent analysis combinations of these two types of end con

straint will also be considered. Depending on their capacity to resist 

distortion the flanges themselves can be considered as "thick" or "thin". 

Although specific boundary conditions apply to each flange type the 

actual specification of a thick or thin flange in practice is not so clear. 

This is an important aspect to bear in mind when examining the work 

of other authors. 

As early as 1945, SYMONDS and VIGNESS in the discussion to 

Beskin's paper [20] presented some experimental evidence which demon

strated the importance of end effects. For a pipe bend subjected to 

in-plane bending with a pipe factor A = 0.043 and radius ratio ~) = 3, 
I 

they gave the following flexibility factors: 
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flexibility 
bend angle type of constraint factor K 

1800 long tangent pipes 37 

90 0 tangent pipes 32 

90 0 one flange and one 18 
tangent pipe 

900 two flanges 8 

The flexibility factor from a theory without end effects, like that 
-

given in equation (1. 16) would be 38.4. The most severe form of con-

straint was clearly flanges which substantially reduces the flexibility. 

Tangent pipes had some influence particularly at smaller bend angles. 

In the case of out-of-plane bending they found the flexibility factor 

to be dependent on how the loading is applied and also which deflection 

is measured. 

In 1951, PARDUE and VIGNESS [126] published the results of 

an extensive investigation into the effect of end constraints on short 

radius bends confirming their earlier conclusions. A more comprehensive 

report was published two years later [127]. Unfortunately, the author 

has been unable to access this paper. Pardue and Vigness investigated 

bends with subtended angles of 1800 , 90 0 • 45 0 , with two tangent pipes, 

one tangent pipe plus one flange and two flanges. A variety of loading 

conditions was examined including that of out-of-plane bending. Several 

of their conclusions are worth stating at this stage. They concluded 

that flexibility factors and stresses for bends where end constraints 

are important depend on the pipe factor ( A), bend angle (a), radius 

ratio (~) and the type of loading. Under out-of-plane loading, experi-
r 

mental flexibility factors and stress factors for a 90 0 bend under various 

end constraints were presented. The results for flexibility factor are 
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shown in Figure (1.11) and show clearly the stiffening effect of the 

flanges. The flexibility factors presented in [126] were based on average 

values * and were derived from a flexibility factor where the nominal 

rotation (Yo) referred to a curved pipe as opposed to a straight pipe 

as defined earlier in this chapter. The relationship between this flexi-

bility factor and that defined herein for a bend angle of 90 0 and 1800 

can be written as: 

K = 1 [KpV + (1+\1)] 

where K = flexibility factor defined herein 

KpV = flexibility factor defined in [126] (1.22) 

The reduced flexibility factors defined by equation (1. 22), assuming 

poisson's ratio (\» = 0.3 are also shown in Figure (1.11) for the case 

of the flanged bend. These experimental flexibility factors for a flanged 

bend would appear to be the only reported results for this loading case. 

Gross.and Ford. [30] in their experimental study determined 

the variation of the distortion along the bends with flanged tangents. 

The flattening was shown to progressively decrease away from the centre 

section of the bend and along the tangent pipe. In the communication 

to [30], Pardue and Vigness published further stress and flexibility 

factors for flanged bends. They also pointed out that for in-plane bend

ing the maximum meridional stress factor (04)) shifted from midway between 

the intrados and extrados, towards the intrados as the bend length 

decreased and the end constraints became more rigid. Thus further 

discrepancies were shown to exist between the axisymmetric theories 

and experiment. 

*Pardue and Vigness in fact conducted a large number of tests under 
various loadings and in an attempt to condense the results average 
values based on similar loadings were presented. 
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In 1955, VISSAT and DEL BUONO [128] reported tests on twelve 

180 0 short radius bends with both flanged and tangent pipe terminations. 

The loading was limited to in-plane bending and only a small difference 

was observed between the results of different end effects. In their 

discussion to this paper they speculate that this small difference may 

have been due to the relatively thicker walled specimens used. There 

is, however, some doubt to be expressed in the effectiveness of their 

flange ring producing the flanged condition on the bend. 

In 1966, Firidlay an-d-- Spence 135], pointed out, that since the 

change in diameter showed a significant variation along the bend then 

the flexibility would probably vary in the same manner. This has im

plications for experimental flexibility factors since they will be an 

average of the flexibility along the bend and possibly along the tangent 

pipes. A year later in 1967, Smith and Ford [52'] suggested an ' 

empirical formula for the variation of the flexibility factor for 90 0 bends. 

KALNINS [129,130,131] developed a numerical method for the 

analysis of thin shells. The technique involved multi segment integra

tion and finite difference solution of the thin shell equations. In [131] 

Kalnins compares his results with the experimental results of a 90 0 bend 

with tangent pipes taken from JACOBS and SUROSKY [132]. For both 

in-plane and out-of-plane bending the comparison is good. One main 

advantage in this method is that it allows end effects to be included 

anywhere in the system. However, the cost of running the computer 

program has prevented it from being run for a comprehensive set of 

parameters. 

In 1970, THAILER and CHEN G [133] published a theoretical 

solution for a 1800 bend with flanged ends under in-plane bending. 
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They selected results from the experiments of Pardue and Vigness which 

gave rough agreement with their theory.. In their analysis Thailer 

and Cheng neglected the shear strain term in their 'expression for the 

total potential energy. Further, they ignored the boundary condition 

of zero slope at the flange. The significance of this will become apparent 

later; however, it can be interpreted that their solution is applicable 

only to "thin" flanges and not "thick" flanges. This and other anomalies 

were later highlighted by THOMSON [134]. 

NATARAJAN and BLOMFIELD [135,136,137] reported a significant 

contribution to the subject of pipe bends with end constrBints, and 

was perhaps the earliest publication on the use of the finite element 

method dealing with this problem. They provided flexibility factors 

and stresses for a variety of end constraints a~d a relatively wide set 

of geometrical parameters. ·An unfortunate limitation of this work and 

of some other finite element solutions is their inability to contend with 

a bend with two flanges, the problem being the specification of the 

necessary boundary conditions for the loaded flange. 

In 1973, IMAMASA and URAGAMI [138] published an experimental 

study of pipe bends with end effects. They examined the loading condi

tions of in-plane, out-of-plane loading and internal pressure. Using 

a finite element program [139] they obtained relatively good comparison 

with their experimental results. In their experiments on a 90 0 bend 

with one tangent and one flange the highest stresses under in-plane 

bending occurred adjacent to the flange and not at the position of maxi

mum ovalisation nearer the centre of the bend. Interestingly, the same 

result was obtained by Natarajan and Blomfield mentioned earlier. 

However, they considered this as a singularity in their solution and 

placed no significance on it. 
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In the same year, FINDLAY [140] published a dissertation on 

the effect of end constraints on pipe bends. Most of his work concerned 

flanged bends under in-plane loading. Findlay developed a total potential 

energy based theory similar to that of Thailer and Cheng with specified 

displacements satisfying the boundary conditions of a rigid flange. He 

compared his results with experiments conducted by himself and others 

and concluded that· his solution was satisfactory. Later, however, 

Thomson [134J waS" able to detect a fatal flaw in Findlay's computer 

solutions which together with other anomalies shed some doubt on 

Findlay's work. The work was also published by FINDLAY and SPENCE 

in [141,142,143]. 

In 1974, AKSEL'RAD and KVASNIKOV [144] developed a "semi

moment" theory for curvilinear bar-shells and as an example dealt with 

the problem of flanged bends. They give a first approximation formula 

for the flexibility factor but no stress results. Aksel'rad later published 

a similar contribution [145] but this time his ,name was translated as 

AXELRAD. 

WRIGHT, RODABAUGH and THAILER [146] performed a finite 

element analysis on a tapered bend with one flange and one tangent 

pipe using the MARC program. They also used the program of Kalnins 

[131] but found that the total moment acting on each cross-section varied 

significantly along the bend. They also discovered that the stress at 

the centre of the bend continued to increase with increasing tangent 

pipe length to values well above that predicted by theories without end 

effects. This casts some doubt on the earlier work of Kalnins. 

SOBEL [147] suggested guidelines for the use of the MARC finite 

element program on pipe bends with end effects. Detailed results are 

given for a single elbow with two short tangent pipes. 
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RODABAUGH, MOORE and ISKANDER [148] obtained some results 

for bends with connected tangent pipes using the EPACA finite element 

program [149]. 

KANO, IWATA, ASAKURA and TAKEDA [150] compared the results 

for the ANSYS [151], ASKA [152] and MARC [66] finite element programs 

for pipe bends with tangent pipes subjected to in-plane and out-of-plane 

bending. Overall the stress comparisons were poor. For both in-plane 

and out-of-plane bending they obtained stress discontinuities at the 

junction of the bend and the tangent pipe. They concluded that it is 

necessary to use higher order elements for an accurate analysis. 

OHTSUBO and WATANABE [153,154] developed a finite element 

model in the form of a ring. The ring element used trigonometric series 

in the meridional direction and Hermitian polynoinfals-.in the circumferential 

direction. Smooth pipe bends with tangent pipes were assembled as 

in the multi-mitre bend by connecting several elements together. They 

presented some results for 90 0 bends with tangents and for bends with 

varying thickness, but without end effects. 

In 1978, WHAT HAM [155] published a theoretical analysis of 

flanged pipe bends under in-plane ben:ding. He used NOVOZHILOV's 

[156] four parameter method to solve the governing differential equations 

of the thin shell. In 1979, WHAT HAM and THOMPSON [157] extended 

their work to bends under in-plane bending with flanged tangents of 

any length. 

In 1979, BROUARD, TREMBLAIS and VRILLON [158] conducted 

tests on 1800 and 90 0 bends with tangent pipes and flanges. The bends 

were loaded into the plastic regime with large displacements. Under 

in-plane bending the effect of flanges 'was· found to be most severe on 

the smaller 90 0 bends. 
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KANO et al. [159] examined three elbow-pipe assemblies under 

various loadings using the FINAS finite element system [160]. 

TAKEDA et al. (161) and BATHE and ALMEIDA [162) proposed 

two further finite elements for pipe bends with end effects. 

KWEE [163] analysed a bend with varying pipe radii using the 

ASKA finite element program [152]. 

In 1980, Thomson [134] published a dissertation on the effect 

of end constraints on smooth pipe bends subjected to in-plane bending. 

He considered bothLthe flanged and tangent pipe termination, the latter 

being of any length. Thomson's analysis, which is the basis of the 

writer's work, is based on a strain energy approach using a version of 

the thin shell equations of Novozhilov [156] into which suitable displace-

ment functions are sUbstituted for both the "rigid" and "distortion" 

displacement components. His solution incorporates an elegant matrix 

technique whereby the minimisation and integration is performed. 

Thomson's results for flexibility factor are lower than those of Axelrad 

and Whatham, around 10%, which is consistent with his lower bound 

energy solution. In comparing his work with that of Findlay and Thailer 

and Cheng, Thomson was able to show that both solutions contained 

assumptions which his analysis had shown to be invalid. In particular, 

he highlighted the dependence on the radius ratio (!!o). The work was 
r 

also published by THOMSON and SPENCE [164]. 

In 1981, NATARAJAN and MIRZA [165) presented a finite element 

with specific application to out-of-plane bending. The end constraints 

of two tangents and one flange plus a tangent pipe were examined. They 

concluded that accurate values of flexibility factor were only important 

when the length of the tangent pipes was small. 
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THOMAS [166] investigated 900 bends' terminated by tangent pipes. 

Using the STAGSC finite difference program [167] the effect of decreas

ing the length of one tangent pipe was examined under the loading 

conditions of in-plane and out-of-plane bending. 

WHATHAM [168,169,170,171] presented further work dealing with 

flanged end constraints subjected to a variety of loading conditions 

including that of internal pressure and out-of-plane bending. This 

work together with his earlier work was incorporated in a series of 

computer programs [172,173,174]. Whatham appears to be the only' 

author who has published work on the case of out-of-plane bending 

on flanged bends. Although Whatham considers a fairly comprehensive 

set of loading conditions the end constraint of tangent pipes is examined 

under in-plane bending only. Whatham's work will be discussed in more 

detail later. His results and those of other 'researchers are shown in 

Figure (1.12). Whatham's results 'for out-of-plane bending are presented 
I 
i 

in the form given 'by equation (1. 22) • 

.. 
ORY and WILCZEK [175] presented a solution for in-plane bending 

using the semi-membrane theory in a transfer matrix method [176]. 

Their results are compared with the experimental results of Gross and 

Ford [30] and show good agree men t • Further developments of the 

method propose the loading conditions of internal pressure and out-of-

plane bending. 

THOMSON and SPENCE [177] extended their work on in-plane 

bending of flanged pipe bends to include the effect of internal pressure. 

A solution to this combined loading case, using finite element methods 
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was also published by NATARAJAN and MIRAZ [178]. The few results 

presented, however, were of poor quality. Further, they failed to state 

the value of pressure applicable to the results. 

In a paper by MILLARD and RICARD [179] the loading condition 

of in-plane bending is examined using the computer program TEDEL 

[ 180]. A review of the current situation of the work on end effects 

is also presented in this paper. This is reproduced in Table (1.1). 

Table (1.1c) shows that the analytical problem of out-of-plane bending 

on flanged bends has not been addressed. The authors, however, have 

failed to include the later work of Whatham. 

In summary, it may be said that although the literature abounds 

with solutions on in-plane bending for a variety of end constraint con

ditions it is only in recent years that the problem of out-of-plane bend

ing has been seriously considered. Even here, as typified by the work 

of Whatham, the problem still remains secondary to that of in-plane bend

ing. The solutions based on finite element analysis, which comprise 

the bulk of the work, are limited in the type of end conditions considered, 

neglecting the problem of the flanged bend. In the author's view, there 

are two main reasons for the omission of this solution. Firstly, it would 

appear that significant difficulties are encountered in formulating the 

boundary conditions at the loaded end, although it is unlikely that this 

problem will remain unresolved for long. Secondly, and perhaps more 

importantly, the development of most finite element programs dealing 

specifically with pipe bends is associated with the nuclear industry where 

such end constraints do not usually occur. 



TAB LE (1. 1A) : Experimental work [17 9] • 

Authors Ref. Bend angle flanges 

SYMONDS 
189 90° I PARDUE 

PARDUE 
190 45°, 90°, 180° I VIGNESS 

IMAMASA 
138 90° 

URAGAMI 40°, 50°, 60°, 900 I 

FINDLAY 
141 45°, 90°, 1000 I SPENCE 

BROUARD 
90° I TREMOLAIS 158 

VRILLON 180° I 

BROUARD 
90° MILLARD 191 

TOMASSIAN 180° 

End effects 

straight reversed 
parts elbows 

I 

I 

I 
I 

I 
I 

I 
I 

in 
plane 

I 

I 

I 
I 

I 

I 
I 

I 
I 

Loads 

out-of-
plane 

I 

I 
I 

I 

pressure 

I 
I 

c.n 
co 



TABLE (1. IB) : Computational work [179). 

Authors Ref. Bend angle flanges 

KANa et al. 150 90° 

SOBEL 147 90° 

NATARAJAN 90° 
., 

BLOMFIELD 137 30°. 90°, 180° 
90° 

WRIGHT 
50° with variable RODABAUGH 137 

THAILER thickness 

RODABAUGH 
ISKANDER 148 45°, 90°, 180° 
MOORE 

OHTSUBO 154 90° WATANABE 

NATARAJAN 
165 from 100 to 900 

MIRZA 900 ., 

End effects 

straight reversed 
parts elbows 

., 

., 

., ., ., 
., 

., 

., 

., ., 

in-
plane 

bending 

., 

., 

., ., ., 

., 

., 

., 

Loads 

out-of-
plane 

bending pressure 

., 
, 

., 

., 

., ., 
-- -~ 

en 
o 



TABLE (1.1C): Analytical work [179]. 

End effects 

straight reversed 
Authors Ref. Bend angle flanges parts elbows 

THAILER 
133 1800 I CHENG 

FINDLAY 
142 Any I SPENCE 

THOMSON 
164 _ Any I I SPENCE 

WHATHAM 157 90 0 , 1800 I I THOMPSON 

MILLARD 
192 Any I I ROCHE 

-~ -- -~-

in-
plane 

I 

I 

V 

I 

I 

Loads 

out-of-
plane 

--

pressure 

I 

0) 
...... 
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1. 4 Current Design Codes 

The two most commonly employed British design codes are 

BS.806 [181] and BS.3351 [182] for land boilers and petro-chemical 

plant respectively. BS. 806 was re-written in 1975 and includes a 

relatively extensive section on the flexibility and stressing of smooth 

pipe bends. A graphical presentation was used for the various stress 

and flexibility factors, the latter including a small variation with radius . 

ratio. The stress factors were also slightly different for in-plane and 

out-of-plane bending. Correction factors were given for bends with 

one or two flanges within (4r) of the bend-tangent junctions. Although 

these were given on a graph, they can be found from the following formulae: 

.!. One flan ge, correction factor = A 6 

Two flanges, correction factor = At (1.22) 

No other form of end constraint was considered. 

BS.3351 suggests the following flexibility and stress factors for 

bends without end effects: 

K = 1.65 
A 

and 
... 
a = 0.9 

7f 
(1.23) 

This flexibility factor is the same as that given by Clark and Reissner 

[28] in equation (1.16). The stress factor Is similar to the Clark and 

Reissner asymptotic formula for the peak circumferential stress factor, 

which is virtually half the peak meridional stress factor given in equation 

(1.17). The reason for the use of the circumferential rather than the 

meridional stress factor is due to a peculiar continuing argument as 

to which is most likely to cause failure. B S. 806 gives graphs of both 

stress factors and requires that the maximum stress range for combined 
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loading must satisfy certain limits. Pardue and Vigness [126] suggested 

that the circumferential stress factors, being constant through the wall 

thickness, were the most important design stresses but in the discussion 

which followed [126], Gross and Ford suggested that an equivalent 

(combination of meridional and circumferential factors) stress factor 

should be used as indicated by Hovgaard [11], and Markl further sug-

gested that failure was due to either meridional or circumferential factor, 

whichever was the greater. Markl's suggestion was based on the results 

of fatigue tests given in [85]. B8.3351 also uses the correction factors 

given by equation (1.22) for bends with flanges. 

Perhaps the most detailed British design data for smooth bends 

is that of the "Engineering 8ciences Data Unit" (E. 8. D. U .) [183]. This 

provides graphs for flexibility, meridional stress and equivalent stress 

factors, for bends with connected tangent pipes under in-plane bending. 

The results are based on the work of N atarajan and Blomfield [136] using 

finite element analysis. The effect of flanged end constraints under 

in-plane bending is given by E. 8.D. U. in [184]. The results given here 

for flexibility factors and stress factors are based on the work of 

Thomson [134]. E .8. D. U. is the only current code which considers 

the tangent pipe as an end constraint. However t the loading conditions 

are limited to in-plane bending and do not consider the case of out-of-

plane bending. 

Numerous American standards are available [185,186,187,188] 

which give the same stress and flexibility factors as B8.3351. They 

als~ incorporate the flange corrections given by equation (1. 22), i. e. 

for a bend with two flanges: 

K - 1.65 - --:-r 
t..3 

. . . {7.24} 
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and • 0.9 = 0)T (1.25) 

It is believed that these flange corrections are largely based on the 

work of Pardue and Vigness [126]. 

To summarise the current design codes, in the context of end con-

straints, it is noted that for in-plane bending all of the codes, excepting 

E.S.D.U., suggest the correction factors given by equation (1.22). 

In the case of out-of-plane bending there is little guidance excepting 

that associated with the in-plane bending conditions. 
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ABSTRACT 

This chapter deals with establishing the basic theoretical relation

ships which are required in the subsequent analysis. 

Equations for a general shell in curvilinear orthogonal co-ordinates 

are described and an explanation is given of the choice of equations 

to be used herein. These are then converted to equations for a smooth 

pipe bend. 

The theorem of minimum total potential energy is outlined and its 

application using the Rayleigh-Ritz method discussed. 
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2. 1 Pipes as Thin Shells 

2. 1. 1 Introduction 

81. 

Shell theory attempts to model a thin three-dimensional structure 

as a two-dimensional surface. This is done to simplify the problem since 

solutions to three-dimensional problem in elasticity are extremely complex. 

Using shell theory, the smooth pipe bend can be modelled as part 

of a toroidal shell. Interestingly, this approach in the study of pipe 

bends is only of relatively recent origin as can be seen from CHAPTER ( 1) • 

In [140], however, Findlay was able to show that for the case of the 

smooth circular pipe bend under in-plane bending, the strain equations 

developed from thin shell theory eventually reduce to those originally 

developed by Karman [1] from the geometry of the bend. 

In the construction of thin shell theory as with the simpler theory 

of beam bending for example, it is worth remembering the three basic 

sets of equations which form the basis of all such analytical work. These 

are as follows: 

(i) Equations of equilibrium 

(ii) Kinematic relations, i. e. strain-displacement equations 

(iii) Constitutive equations 

Being aware of these three fundamental equations allows even the most 

complicated theory of shells to be more readily understood. 

The method of solution to the problem of the smooth pipe bend 

applied herein will use the principle of minimum total potential energy. 

This technique, however, only requires the strain-displacement and 

constitutive equations together with the strain energy equation. 
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2. 1.2 Thin shell theory assumptions 

The basic equations governing the behaviour of thin elastic shells 

were derived originally by LOVE [193]. These were later modified by 

REISSNER [194] to form what is often referred to as the "classical" 

first approximation of shell theory. In formulating the compatibility 

and equilibrium equations. Love, and those after him, made several 

simplifying assumptions which can be summarised as follows: 

1. The shell is considered to be thin. No rigid criterion is applied 

regarding the relative magnitudes of the mean radii of curvature 

and thickness of the cross-section but it is normally desirable to 

maintain the ratio of the mean radius to thickness as being more 

than 10. 

2. Deflections are small. This assumption infers that the change in 

shape bet'ween the unloaded and loaded conditions is negligible, 
, 

thereby allowing: all derivations to be performed on the initial un-

loaded shape. 

3. Stresses normal to the shell surface are negligible. This assump

tion states that the normal or radial stress is small relative to the 

stresses in the plane of the shell and also allows the use of the 

two-dimensional constitutive relations. 

4. Normals to the mid-surface before deformation remain normal after 

deformation with no change in length. This is analogous to the 

Euler hypothesis of "plane sections remain plane" in beam theory, 

and is sometimes referred to as the "hairbrush hypothesis". It 

should be emphasised that the "plane sections" referred to are 
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through the thickness of the shell surface and not through the 

cross-section as in beam theory. This assumption also implies 

that all the strain components, including shears, normal to the 

surface of the shell are negligible. 

The theoretical work discussed herein is based on the equations 

corresponding to the first order linear theory of shells. Other higher 

order theories have been derived which remove some of the above assump

tions [195,196], but it has been established by many previous authors 

that the first order approximations give results which are adequate for 

most engineering applications. 
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2. 1.3 General thin shell theory 

Since the publication of Love's original work a number of modifica

tions have been presented by several authors in an attempt to improve 

his equations. In doing so, however, many of them retained a further 

deficiency in the relations between the forces and the displacements. 

Eventually, most of the inconsistencies inherent in Love's equations 

were removed and a set of equations, derived independently by several 

authors, became "established". These equations can be found in the \'

texts of Novozhilov [156] and KRAUSS [197]. 

SANDERS [198] pointed out a further inconsistency in the 

"established" equations. He showed that they do not give zero strains 

for all rigid body displacements, except for spherical shells, flat plates 

or symmetrically loaded shells of revolution. The inconsistency occurred 

in the shear curvature term which makes its significance for most problems 

relatively small. Sanders was able to remove this inconsistency using a 

method based on the principle of virtual work. 

A similar set of equations was derived by KOlTER [199] giving 

zero strain for rigid body displacements. Koiter concluded that the 

shear curvature inconsistency would only produce errors of the same 

order as those of the basic assumptions of thin shell theory. 

Using a more physically intuitive approach, FLUGGE [200] derived 

a set of equations for particular classes of shells. In fact, it was through 

this text that this author was introduced to the theory of shells. How

ever, a more recent text by DYM [201] was found to be more useful 

as an introduction to the various shell theories in existence. The equa

tions derived by FlUgge are different to most other works. Further, 

Fliigge does not separate the bending and direct strains making comparison 
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with other theories difficult. Dym in [201] compares FlUgge's equations 

for a cylinder with that of Sanders and concludes that FlUgge's equations 

will differ in regions of rapid deformation change. Thompson [54] in 

his work· on pipe bends compared Fliigge's shell theory and that of 

Novozhilov. For a particular range of pipe bend parameters he found 

the flexibility factors for in-plane bending, calculated from both theories, 

agreed to within 3%. 

GOLDENVEIZER [202] derived a similar set of equations as 

Novozhilov but with a different shear curvature expression. By man

ipulation of the three basic equations given in section (2.1.1) he was 

able to obtain the three differential equations, in terms of the shell 

displacements t that govern shell behaviour. 

DONNELL [303], MUSHTARI [204] and VLASOV [205] derived 

an approximate set of equations which have become internationally known 

as the Donnell-Mushtari-Vlasov equations. Using only the radial dis

placement in the curvature strain terms these equations resulted in 

a relatively simple set of governing differential equations. Thomson 

[134] used these equations with the "classical" pipe bend problem. He 

found the flexibility of a typical bend with a pipe factor " of 0.5 is under

estimated by 25.5%. 

A set of equations particularly applicable to the pipe bend problem 

was derived by Axelrad [145]. These equations are suitable for a class 

of shells which sustain membrane or slowly varying deformation in one 

direction and an intensive variation in the orthogonal direction t i. e • 

semi-membrane theory. 

In the choice of equations to be used for this particular. analysis 

recourse was made to the methods employed by previous workers in 
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the field of pipe bends with end constraints. In the study of in-plane 

bending, Findlay [140] used the equations of Sanders. Thomson [134] 

and Whatham [168-171) used the equations of Novozhilov. As the 

analysis herein, considering out-of-plane bending, is based essentially 

on a development of Thomson's work, the version of the equations of 

Novozhilov used by Thomson were chosen. This introduces a certain 

degree of continuity in the work. Further, these equations are simpler 

than those of Sanders used by Findlay. The equations differ from the 

"established" equations in the shear curvature and equilibrium equations. 

The equations, as do those of Sanders, give zero strain for all rigid 

body displacements. 

In orthogonal curvilinear coordinates the strain-displacement 

relations for a general shell are given by: 

tl 
1 aUl + ...!!L oA l• of !!. = 
Al. a al Al&' a a2 Rl 

€2 
1 ~ + 2!..L.!& + !!. = 
A2 o a2 A1A2 a a l R2 

Kl 
1 0131 + J!L- oAl = -
Al a al A1A2 cra:2 

K2 
1 ~+ .1..L!& = 
A2 a a.~ A1A2 a al 

Wl 
1 !!!z. _ ..!!.L a Al = 
Al a al A1A2 o a 2 

W2 
1 ~-1!L!& = 
A2 a a2 A1A2 a al 

. I 



= .! .lh. _ ..1..L a Al 
A1 a a 1 A1A2 a a2 

= 1 i!l. _ -1.L aA2 
A2 a a2 A1A2 a a1 

Ul 1 aw where a 1 = - - - -
, R1 A1 a a1 
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a 1 and a 2 are the rotations of the mid-surface normal. 

€ 1 and e: 2 are the mid-surface strains. 

K1 and K2 are the curvatures. The subscripts of "1" and "2" refer 

to the directions of 1 and 2. 

The mid-surface shear strain W is found from: 

W = W1 + W2 

For the shear curvature l' Novozhilov gives two definitions: 

= ... + ~ = 1'* '1 
R1 

(2. 1) 

(2.2) 

(2.3) 

(2.4) 

Using the form of shear curvature given by equation (2.3) allows the 

shear stress resultants N12 , N21 , M 12 , M21 to be found directly from: 

N 12 = N 21 = Et w 
2( 1+v) 

Et 3 
M12 = M21 = l' 

24( l+v) 

This is the definition used in the "established" equations, which is 

(2. S) 

variationally consistent but does not produce zero strains for a rigid 

body motion [201]. 
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The form of shear curvature given by equation (2.4) results in a set 

of variationally consistent equations which also satisfy the conditions 

of zero strain for all rigid body displacements. However t in using '[ * t 

the shear stress resultants cannot be obtained simply by knowing W 

and '[ *. This will only be a problem if these resultants are required 

explicitly. In m~ny situations t including the one to be considered herein t 

they are not. They can, however, be found approximately using the 

following equations: 

N12 = Et [w +~'[*J 
2( 1 +v) _ 6R

2
' 

N21 = Et [w+~'[*J 
2( 1 +v) 6R1 

M12 M21 = Et 3 
'[* = {2.6} 

12( 1+v) 

The error in these equations is of the same order as the original assump

tions of thin shell theory. 

Since the shear stress resultants are not required explicitly the form 

of the shear curvature given by equation (2.4) will be used. 

The corresponding constitutive relations for a constant shell thickness 

and a linear isotropic material are: 

N = C[e:l+Ve:2] Ml = D[Kl+V K2] 

N2 = C[e:2+ v e:d M2 = D [K 2 + vKd 

S 1 H [1-v]D1'* = - [l-v]CW = 2 

where C 
Et and D 

Et 3 
(2.7) = = 

[1-v 2 ] 12[ 1- v2 ] 
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The stress variables Sand H in equation (2.7) are defined as follows: 

1 
H = 2" [M12 + M21] 

The equations of equilibrium are: 

(2.9) 
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The necessary boundary conditions for the solution of these equations 

are, at constant 01 , specify: 

or Ul 

or U2 

or w 

or 61 

and at constant 02 specify: 

or U2 

or U1 

or w 

or 62 

(2. TO) 

In the analysis of thin shells the ratio of t I R. can be neglected with 
1 

respect to unity. Employing this assumption, the strain energy equa-

tion consistent with the above equations, for a constant shell thickness, 

linear isotropic material is: 

u = ~ ff [(e1+e2)2 - 2(1-v)(e1e2-iW2)] A1A2 do1d ci.2 

+ ~ H [(K1 +K2)2 - 2(1-v)(K1 K2 -T*2)] A1A2 d01 do 2 

. . . (2. 11) 
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2.2 The Toroidal Shell or Smooth Pipe Bend 

The general thin shell equations described in section (2.1. 3) 

require to be converted to the specific case of a toroidal shell for the 

analysis of the smooth pipe bend. 

The geometry of the smooth pipe bend is shown in Figure (2. 1) • 

From the theory of surfaces [206,207] the first fundamental form 

of the mid-surface of a shell element in curvilinear coordinate is: 

The corresponding equation for an element in the new (Cii,e) coordinate 

system shown in Figure (2. 1) is: 

(dS)2 = r2 (dCii)2 + (R'-)2(de)2 R' = R +rsinCii 

The principal radius of curvature in the curvilinear system are 

Rl and R2• In the new (eli,e) coordinate system these become rand 

R1/sineli . 

The curvilinear displacements w. Ul and U2 become w, v and u 

in the (eli, e) system. 

Conversion of the curvilinear system to the (eli, e) system therefore 

requires: 

al = eli , Al =r , Rl = r 

a2 = e , A2 = R' , R2 = R'/sinCii 

w =w Ul =v U2 =u (2. 12) 
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The governing equations for the smooth pipe bend are thus 

obtained by substituting equations (2.12) into equations (2.1) and (2.6) 

to (2.11). From this the strain-displacement equations can be written 

as: 

t4 = .!(av + w) 
rai" 

E:e = .!. (;~ + VCOS0 + wsin0) 
R" 

1 av R' au) 
Y60 = - (- - UCOS0 + -

~ a e r ai 

K0 = 1 av a2w 
F2 (aa- - W-) 

- 1 au. + av a 2W r [ a . ] 
Ke·j - rR' (ai Sln0 as - aea 0 + R' COS0 a: - usin0 ) 

where R' = R + r sin0 (2. 13) 

In equation (2.13) the notation of Wand '[* has been changed to y 90 
I 

and Ke0 respectively. 

The constitutive relations are: 

M0 = D [K0 +vKe] 

1 
S = 2[ 1 - v ]CYe0 

Et where C = (l-v 2) 

H = [1 - v ]DKe 0 

and Et 3 
D = ~---::-:' 

12( 1-v2 ) 
. . . (2. 14) 
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The equilibrium equations are: 

a(R'S) aNe + S ,l. + rsin0 .!Ma + 2sin0 a(R' H) + 2Hcos0=-~-rlt·aA 
a(l +r aa rcosw R' ae Rt a(l -~ 

-R' N,l. _ rsin0Na +! a2(R'M0) + 2 a H _ a(MecoS0) + 
w r a(l2 a aaib a(l 

!: a
2
MI- + 2rcos0 aH = -rR' q 

R' aa R' ae n 
. . . 

For constant shell thickness the strain energy expression is: 

The boundary conditions necessary for a solution are as follows: 

at a constant 0, specify: 

N0 

S 2H.,l. 
+ -Slnw 

R"· 

2 aH l-WM - - + - - Mercos0 r aa r a 

or v 

or u 

or w 

(2.15) 

(2. 16) 
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at constant e, specify: 

or u 

or v 

2 a(R'H) +! aMe 
rR' aa R'· ae or w 

(2. 17) 

The slope of the mid-surface normals S0 and Sa given in equation (2.17) 

are defined as follows: 

S =! (v - ~) o raID 

1 aw 
Sa = R'- (usin0 - as) (2. 18) 
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2.3 Total Potential Energy 

2.3. 1 Principle of minimum total potential energy 

as: 

where 

The principle of minimum total potential energy can be expressed 

f U(E *)dV - f PeS *ds > .... JU(E)dV

V 

J PeSds 
S(P) 

(2.19) 

V S(P) 

f U( E*)dV 

V 

J PeS *ds 
S(P) 

J U( E)dV 

V 

f PeSds 

S(P) 

is the total strain energy of a compatible strain 

field E*. 

is the potential energy of the applied forces where 

es * is the associated compatible displacement of the 

load. S(P) denotes integration over the surface 

where the loads are applied. 

is the "exact" strain energy of the true strain field, 

E. 

is the potential energy of the applied forces where 

es is the associated true displacement. 

In the form presented, the theorem states that the total energy 

associated with an arbitrarily assumed compatible strain and displace

ment field is always greater than or equal to the energy associated with 

the corresponding true strain and displacement field. This is true only 

if the assumed strains and displacements satisfy compatibility. Thus the 

total energy is only a minimum at the true state. 
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In this "displacement prescribed" type of solution where the 

selected compatibility component (0 *) is identical to the exact displace-

ment (0), then it follows from equation (2.19) that: 

f U( e:*)dV ~ f U( e:)dV (2.20) 

V V 

The equality sign only holds when the strain and displacement choices 

are exact. 

If a system is subjected to a single load then, from the principle 

of conservation of energy. the strain energy will be equal to the work 

done by the external load increasing uniformly from zero. If the load 

is increased to a value P, where the displacement is equal to the pre

scribed displacement, then this can be written as: 

f U( e:*)dV = iP*o 

V 

I • 
The true state IS: 

f U( e:)dV = ipo 

V 

Equations (2.21) and (2.22) can be combined using equation (2.20) 

to give: 

p* > P . . . -

(2.21 ) 

(2.22) 

(2.23) 

Hence the calculated load (p*) from an approximate solution is always 

greater than the exact load (P). The flexibility is inversely proportional 

- to the applied load. Therefore. from equation (2.23), the flexibility 

of the system must be underestimated. 
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2.3.2 Rayleigh-Ritz method 

Energy methods make use of the theorem of minimum total potential 

energy by prescribing displacements as a series of terms each of which 

is made up of a function multiplied by a coefficient. The values of the 

coefficients, and hence the true displacements, are obtained by finding 

the combination of the coefficients which give the minimum of the total 

potential energy function. 

In the RITZ [208] method, of all the displacements that satisfy 

the boundary conditions, those making the total potential energy V of 

the system a minimum are the s<?ught deflections pertinent to the ~table 

equilibrium conditions. The displacements are represented in the form 

of a series: 

w(x,y) = clfl (x,y) + c 2 f 2 (x,y) + c3 f3(x,y) + •••• cnfn(x,y) 

n 
= I c.f.(x,y). 

i=l 1 1 

The displacements, w(x ,y), comprise continuous functions that satisfy 

individually at least the geometrical or essential boundary conditions 

and are capable of representing the deflected shape. Satisfaction of 

the natural boundary* conditions is not required although in doing so 

* The boundary conditions discussed here of "essential" and "natural" 
can be considered more as restraints imposed upon the system as opposed 
to boundary conditions in the true mathematical sense. The significance 
of these boundary conditions can best be seen by considering the follow
ing simple example of a cantilever beam of length L, loaded at its free 
end by a bending moment M and a shear force F. 

~~==lFltx For this problem the essential 
boundary conditions are: 

at x=o y=o and ~ =0 , dx A L f 

The natural boundary conditions are def'med by the edge forces: 

at x = L , Mz = M and the shear force v = F • 
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this will improve the accuracy of the displacement. In determining the 

c. coefficients the total potential energy V is expressed as a function 
1 

of the displacements and hence of the coefficients. The solution to the 

problem is then found by minimising the total potential energy expression: 

av = 0 
oW 

therefore ~~ 1 = av 
Clcz = av = ClC3 

- av = 0 
- ClC

n 

This minimisation procedure yields n simultaneous algebraic equations 

in the undetermined coefficients Cl, CZ, C3, ••••• c , from which the 
n 

unknown parameters ci can be calculated. It should be noted that during 

the partial differentiation all the coefficients, except the specific c
i 

under consideration, are taken constant. 

The advantages of the Ritz method lie in the relative ease with 

which complex boundary conditions can be handled. It is a powerful 

tool yielding high accuracy in displacements, provided that suitable 

shape functions are employed. It is of interest to note that in the first 

theoretical investigation of' pipe bends Karman [1] "urges engineers 

to become familiar with the Ritz method, because the method is simple 

and ideal to develop approximate solutions to complex practical problems". 

RAYLEIGH [209], in his work on vibrations, developed an energy 

method which involved determination of the kinetic and potential energies 

of the system using assumed displacement functions which satisfy the 

essential boundary conditions and approximates the actual modes of 

vibration. In the expression for displacement, Rayleigh used only one 

parameter. RITZ [210] extended Rayleigh's method by including more 

than one parameter in the displacement series. As a consequence of 
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this the two methods are often referred to in the literature as the 

Rayleigh-Ritz method. 

In practise, a finite number of terms in the displacement series 

is usually sufficient as higher order terms rapidly become negligible. 

Only the "exact" displacements give the true minimum of the total poten

tial energy, and therefore corresponds to true equilibrium. Each 

parameter in the displacement series contributes to the final equilibrium 

state and hence by truncating the series after a finite number of terms _ 

gives partial equilibrium. 

A number of other variational methods such as those of GALERKIN 

[211] and VLASOV [212] exist in the literature. In the analysis to be 

presented herein the method referred to here as the Rayleigh-Ritz method 

will be adopted. 

In the study of energy methods the author found the texts of 

LANGHAAR [213] and SZILARD [214] of particular use. 

As a closure to this chapter, it is important to recognise that 

in the analysis of pipe bends, the use of the Rayleigh-Ritz method will 

result in an underestimation of the flexibility factor. Thus a "lower 

bound" is obtained on the value of flexibility. This is because the inexact 

shape assumed by truncating the series can be considered to be the 

exact shape for a case in which additional constraints have been applied 

to force the body to take the assumed shape. and constraints of any 

kind reduce deflections, that is increase apparent stiffness and thus 

reduce flexibility. This is not always true for more complex loadings as 

the deflections and stresses away from the point of application of the 
I 

load are not bounded. Such lower bounds on flexibility will be useful 

in the study of pipe bends. Convergence of the series solution can be 
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examined since the addition of further terms in the series will increase 

the bend flexibility. Terms can be added until the change in flexibility 

factor is less than some arbitrary quantity. 
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CHAPTER 3 

Theoretical Analysis of Flanged Bend 
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ABSTRACT 

A theoretical solution to the problem of a smooth pipe bend with flanged 

end constraints under out-of-plane bending is presented. 

U sing the theorem of minimum total potential energy, general ~isplace

ments in the form of fourler series are employed which satisfy internal 

and external compatibility. 

A numerical solution is then presented which uses the complete strains 

evaluated from the strain-displacement equations. 

Finally, flexibility and stress concentration factors are given for a wide 

range of bend geometries. 
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3.1 Introduction 

The study of out-of-plane bending of smooth pipe bends has 

received little attention in the literature, the emphasis in general being 

placed on the case of in-plane bending. This is due pa~tly to the com

plexity of the problem and the fact that this type of loading, if treated 

generally in a fashion similar to in-plane bending, results in a con

servative design. The effect of end constraints such as those defined 

here of thick rigid flanges, has been given even less attention. Apart 

from the work of Whatham, the author has been unable to discover any 

other theoretical work dealing specifically with these types of end con

straints under out-of-plane bending. Numerous finite element packages, 

as discussed earlier, ~ave at least in principle the capability of treating 

this problem. Usually they have been applied to the condition of tangent 

pipe end constraints or a combination of this and flanged end constraints. 

During the early stages of the work this created something of 

a dilemma in that there was no basis for comparison. Some guidance, 

however, became available during the course of experimental work. 

In out-of-plane bending these experiments indicated that the flexibility 

factor would be less by a factor varying from 1 to } compared to in

plane bending. Later, from the results of Thomson's [134] study of 

in-plane bending, using the same form of end constraints, an upper 

bound value on the flexibility factor could be defined. This difference 

in flexibility factor was to some extent confirmed later by the work of 

Whatham. 

Mid-way through the study the author was introduced to the 

work of Whatham [155,157]. His results had been used by Thomson 

in his study of in-plane bending with flanged, and later, tangent end 
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constraints. Later in a series of similar papers, Whatham [168-171] 

extended his study to cover a variety of end loading conditions including 

t1:1at of out-of-plane bending. Whatham appears to make no assumptions 

other than those of thin. shell theory and appears to treat the flanges 

as infinitely stiff. However, in [171] he states clearly the boundary 

conditions of a thick flange as zero displacement and slope for the radial 

distortion component: 

• • • (3. 1) 

The importance of these conditions will become apparent later; they 

can, however, be derived from the boundary ~onditions given by equa-

tions (2.17) and (2.18) in CHAPTER (2). 

Whatham's method of solution involves the use of Novozhilov's 

[156] technique using three arbitary functions which have the same 

form as the mid-surface displacements. Fourier series are used to solve 
! 
i 
I 

the equations for the simple case of a bend without end effects. These 

displacements in the present notation take the general form: 

w = 1 an sin(n6) 
n=1 

v = t bncos(n6) 
n=O 

u = l. Cn sin(n 6) 
n=1 

where 6 = 0 + 90 0 

• • • (3. 2) 

The flanged bend problem is then solved by superimposing on the results 

obtained without end effects, a set of displacements which returns the 

ends of the bend back from their distorted shape to the initial circular 

conditions. To account for the decaying flange effect these displacements 

include an exponential term and take the form: 
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w = L e-nsC. 2: an·sin(nS) 
j=1 1n=1 1 

v = 2: e-nSC. 2: bn·cos(nS) 
j=1 1n=0 J 

u =) e- n S Cj I CnjSin(nS) 
1=1 n=l 

• {3.3} 

In Whatham's method the solution of the flanged pipe bend is 

treated as an eigen"ialue problem from which the unknown function 

coefficients are obtained. Although the concept of a particular integral 

and complementary function for the no end effect and end effect solutions 

was relatively clear, this author found the numerical complexity of the 

method difficult to understand. Further, there was a distinct lack of 

results presented in all of Whatham's papers, again the emphasis being 

on in-plane bending. 

From his flexibility matrix, Whatham's definition of flexibility 

factor is identical to Thomson's for; in-plane bending: 

y = YoK • • • (3.4) 

where y = actual end rotation 

Yo = nominal end rotation = M~ a 
En-r t 

In the case of out-of-plane bending Whatham includes the effect of 

torsion in his definition of flexibility factor. For example, for a bend 

angle of 90 0 Whatham's definition is: 

Y = MR [K + (1 +v) ] 
4Er3 t 

The corresponding definition applied in this text is: 

y = MR K 
2Er3 t 

.• • • {3. 5} 

• • • {3. 6} 
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The difference in equations (3.5) and (3.6) arises essentially 

from the definition of the nominal rotation (y ). In Whatham's definition 
. 0 

(3.5) the varying torsional and out-of-plane bending moment is accounted 

for in the evaluation of the nominal rotation (y ). This is the correct o 

form for a curved beam as would be obtained from simple energy methods. 

The flexibility factor K is however applied to the bending component 

only, the factor in torsion being taken as unity. The definition of flexi-

bility factor K given by equation (3.6) neglects the change and variation 

of loading along the bend and is the same as that given by equation 

(3.4) for in-plane bending. It corresponds to the definition given in 

CHAPTER (1) where the nominal rotation is defined for a straight pipe 

and not a curved pipe as used by Whatham. 

The actual definition adopted for flexbility factor, be it for in

plane or out-of-plane bending is in fact unimportant. All that is required 

is that it be clearly stated; Naturally it is of some benefit for comparison 

purposes if a general form is sought. In out-of-plane bending the two 

most common definitions found in the literature are those defined by 

equations (3.5) and (3.6). It will be seen later, however, that the 

form adopted herein (3.6), which excludes the torsion component, has 

two distinct advantages. Firstly, it provides a numerical value of flexi

bility factor which is considerably less than the in-plane bending case. 

This is consistent with experiment where the pipe bend is found to be 

stiffer under out-of-plane bending as compared with in-plane bending. 

Secondly, the form adopted by equation (3.6) is simpler and more direct 

to incorporate in the final total potential energy expression for the bend. 

In out-of-plane bending, for any bend angle, Whatham's definition 

for flexibility factor and that used herein are related simply by: 
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K =} [K
W 

+ (1+\)] [a- ~~in(2a)] •• 

where K = flexibility factor defined by equation (3.6) 

. KW= Whatham's flexibility factor • • • (3. 7) 

Whatham's results for out-of-plane bending, taken from [170] 

are shown in Figure (3.1) using the present definition and Whatham's 

definition for flexibility factor. These results were limited to radius 

ratios (!.) of 2 and 3, A values extending from 0.02 to 0.3 and bend 
l' 

angle (a) of 90 0 and 1800
• Using a value of poisson's ratio (\) = 0.3, 

Whatham's definition for flexibility factor gives values which are 35% 

higher than the present definition for these two bend angles. In Figure 

(3.2) a comparison is given of Whatham's results for in and out-of-plane 

bending for a bend angle of 1800
• For in-plane bending Whatham's results 

appear as a straight line on the log-log graph. This is in contrast with 

Thomson's results, which although slightly lower, do present a well 

defined curve. 

For the case of out-of-plane bending Whatham presents no experi

mental results. 

Prior to a visit by Whatham early in 1983, the author received 

* a computer tape copy of the solutions described in his later papers • 

From the associated computer manuals [172-174] it became evident that 

his solution did not address directly the out-of-plane bending of a flanged 

bend. Where applicable Whatham introduces a reference bending moment 

which he defined by the product of the particular loading and a fictitious 

*This program package originated from an IBM 370/195 computer. In 
the search for a compatible machine with direct access, an IBM 3081 
at Cambridge University was found to be the most suitable. Unfortunately, 
after much effort the package was found to be too big to implement. 
This arose from the author's limited access to the system and the cor
respondingly small allocation of space. 



111. 

moment arm. Although initially this writer found the method rather 

confusing, it does allow the solution to cope with direct loadings and 

pure bending moments. Further, it was clear that the end constraints 

of tangents was applicable to in-plane bending only. 

3. 1. 1 Progress of the work 

In the study of out-of-plane bending the author's work began 

with an investigation of the degree of approximation which could be 

applied successfully to the problem. In doing so, the form of the 

solution was to be dictated by two main criteria. Firstly, it should 

retain a sufficient degree of realism in the type of simplifications used, 

and, secondly, be capable of hand computation. This latter require

ment was intended to allow hand integration of the strain energy function 

and remove as much as possible the dependence on computers and their 

associated numerical problems. These two conflicting criteria represent 

the age old problem in analysis whereby some form of compromise is 

eventually sought. It should be borne in mind, however, that by virtue 

of the approximations employed this naturally leads to a further set 

of restrictions being placed upon the solution over and above those 

already dictated by thin shell theory. The main simplifications employed 

in the analysis were as follows: 

1. bend radius » mid-surface cross-section radius, i.e. R»r; 

2. shear strain y 94> :: 0; 

3. meridional direct strain e: ~ ::: 0; 

4. the curvatures Ke and K 94>::: 0; 

5. symmetrical distortion of the bend cross-section. 
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U sing a variety of combinations of the above simplifications a number 

of analyses were carried out. The first simplification removes the cumber

some term (1 + ~ sinfh). In fact the presence of this term makes hand 

integration virtually impossible, particularly when the term appears in 

the denominator. With R » r the analysis is then limited to "long radius" 

bends. The remaining approximations essentially govern the size of the 

solution. The second assumption of zero shear strain (y e Ijl) and also zero 

shear curvature (K e~) in the fourth assuID.ption both conflict with the first 

main criteria. This results from the presence of the torsional moment 

which is expected to dictate a dominance in the shear terms. It was found 

later that the neglect of the two shear terms Y
eljl 

and K 84> had significant 

effects upon the solution. The last simplification (5) states that the bend 

cross-section distorts into a shape which is symmetrical about the planes 

through the bend section of 0 = +45 0
• This is the normal assumption 

used in the no end effect theory. Initially, this was considered to be 

a gross simplification as such symmetry in distortion does not coincide 

with any of the main axes of the pipe bend. It was shown later, however, 

to be quite an acceptable approximation. Interestingly, the use of a 

full fourier series containing all the odd and even sine and cosine terms 

defining no particular symmetry in distortion can alter significantly the 

order of magnitude of the problem. As a typical example using 5 terms 

in each of the displacement series, the number of unknowns assuming 

symmetry in distortion is 95. By assuming 'no symmetry in distortion 

the number of unknowns almost doubles to 175. 

From all the initial work done the author was unable to achieve much 

degree of success. Th~ series convergence was exceedingly poor 

and equilibrium in terms of the stress and strain concentration 
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factors (S.C.F.) were not well satisfied. The work, however, was 

not lost. In being divorced from a computer, except for inversion 

of the coefficient matrix, the author found much of the actual computa

tion, although in many instances exceedingly laborious, unusually 

effective in highlighting the problems associated with formulation of 

the solution. Moreover, the mere possibility of the existence of a single 

simplified solution was considered sufficient justification for the work. 

The work was continued by a more complex solution containing 

only the approximations inherent in thin shell theory. This solution 

was implemented on an ICL 2980 main-frame computer, using complete 

fourier series for the distortion displacements. The method used in 

the program of constructing the minimisation and integration procedure 

was developed 'by the author. Unfortunately, it proved to be ineffective 

in running within the maximum allocation of 7200 seconds CPU time. 

Further modifications to the program did little to enhance the running 

time and the method was finally abandoned. Despite all attempts, this 

restriction in program running time was to prove the main stumbling 

block throughout the study. 

A similar analysis was then performed using Thomson's method ~ 

This method uses only the values of the complete total potential energy 

function with the minimisation being performed using a matrix technique. 

This is in contrast with the previous method where the displacement 

coefficients of each strain component' in the strain energy function 

were integrated separately. Here the radial distortion component of 

displacement was taken in two forms: 
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weeD) = r Ansin(neD) + Bncos(neD) 
n=l 

weeD) = r An sin(neD) 
n=l 

n=1,2,3, •••• co 

n=1,2,3, •••• 00 

• . . (3.8) 

• • • (3. 9) 

For a limited number of terms the author was able to establish 

clearly the importance of the even sine terms and the odd cosine terms 

in equation (3.8) and the even sine terms in equation (3.9), the remain

ing terms in equations (3.8) and (3.9) being of no significance. Being 

able to adopt this symmetry in distortion, as mentioned earlier, resulted 

in a significant reduction in the size of the problem. However, it is 

worthwhile pointing out at this stage that this symmetry could not be 

employed to advantage in integration of the strain energy function. 

The reasons for this shall become apparent later. The main cause is ; 

the difference in symmetry displayed by the distortion displacements 

and rigid section displacements. This method using symmetry in the 

distortion displacements was then extended to examine various forms 

of circumferential series together with different types of non-dimen

sionalisation of the displacement coefficients. 

The problem of excessive program running time persisted, however, 

with solutions using 5 terms in each displacement series taking upwards 

of 1500 sec. CPU time. (On this particular computer, programs running 

in excess of 1000 sec. CPU time were considered "big". This is not 

a criticism of the actual computer, the levels of use being dictated 

mainly by the management system.) Generally, it was found that con

vergence was faster for a bend angle a of 900 compared to bend angle 

a of 1800 , for a particular A value and (~ ) ratio. In fact, for a bend 
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angle a ~ 900 the solution appeared satisfactory. This method actually 

represents a general solution in that it considers any bend angle. A 

solution using the circumferential symmetry displayed by a bend angle 

a of 1800 had been examined earlier without success. In order to 

reduce the program running time. which was greatest on a bend angle 

a of 1800 due to the increased number of integration points. a further 

look was taken at this type of solution. The problem of poor conver

gence. however. found earlier was not resolved. The need for this 

solution. by reducing the integration on the flanged bend was expected 

to be even more important with the end condition of tangent pipes. 

Further. it would be useful in confirming the general solution for this 

particular bend angle. As shown in Figure (3.3) a bend angle a of 

1800 exhibits a plane of symmetry through the bend centre. This con

dition of symmetry arises from the equilibrium conditions peculiar to . 

this bend geometry. It is in fact similar to two 900 bends placed back 

to back. In the case of in-plane bending. Thomson's results show 

that for a particular range of pipe bend parameters the flexibility factor 

for a bend angle a of 1800 is approximately twice that for a 90 0 bend. 

In the case of out-of-plane bending. due to the symmetry in loading 

this approximation is expected to be even more valid although there 

will still be a limit on the applicability. The analysis of a 900 bend 

requires the boundary conditions on distortion displacement of a thick 

flange at each end. In a 1800 bend this particular boundary condition 

cannot be applied at the centre of the bend. Here the boundary con

dition of a "thin flange" is required where the value of zero slope on 

the radial component of distortion is no longer enforced. This, together 

with other boundary conditions peculiar to this configuration, will still, 
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however, ensure that for out-of-plane bending the flexibility factor 

for a 1800 bend, will as in the case of in-plane bending, be only 

approximately twice that of a 900 bend. 

At around this time the service on the ICL 2980 computer began 

to deteriorate. Failures of the system began to appear more frequently 

arising from a combination of communication system failures and "crashes" 

on the computer itself. Added to this, the system was being over

subscribed resulting in a general slowing down and increase in turn 

around time. All this did little but aggravate the situation. 

In a further approach to reduce the program running time, 

attention was focused on the methods of integration. All the work 

up to now had used a STANDARD SIMPSONS jrd RULE [215,216,217] 

adapted to integrate in two directions. The first modification made 

was storage of the integrals already evaluated. An illustration of the 

method is shown in Figure (3.4). In Figure (3.5) it is clearly seen 

that as the number of terms in the displacement series increases the 

amount of additional computation can reduce dramatically. A comparison 

made using this method is shown in Figure (3.6). Unfortunately, the 

approach was found to be totally dependent on the computer reliability 

and was eventually abandoned. A less dynamic method evaluating all 

the necessary integrals prior to running the program was also examined. 

Here, however, the filestore allocation was exceeded. 

The next step was the examination of different methods of integra

tion. For this a GAUSSIAN QUADRATURE method [218,219,220] was 

employed together with a combination of this and the Standard Simpson's 

rule. In Simpson's rule increasing the number of integration points 

leads theoretically to an increased accuracy. This could be accomplished 

simply by the changing of two variables in the input data defining the 
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number of points in each integration direction. Using Gaussian 

Quadrature the change in the number of integration points, whose 

position along each co-ordinate could not be defined a priori, was more 

awkward. Here the method required the re-definition of a group of 

weighting functions and coefficients which in Simpson's rule were 

automatically evaluated. Most standard texts on numerical integration 

methods define Gaussian Quadrature to require generally half the 

number of integration points compared with Simpson's rule, for a given 

accuracy. To account for the more rapidly varying displacement around 

the bend cross-section a combination of Gaussian Quadrature integrat;" 

ing in the meridional direction and Simpson's rule in the circumferential 

direction was then tried. For a bend angle a of 180°, however, the 

critical direction was found to be along the circumferential co-ordinate 

( e). Further, it was discovered in all three methods that increasing 

the number of integration points did not as expected lead to an improved 

accuracy. In fact significant variations were found, with the flexibility 

factor reducing as the number of integration points increased. Also 

under particular conditions the flexibility factor diverged. Using 

Simpson's rule, for example, this instability occurred when the number 

of integration points in the circumferential direction (N e) equalled the 

number of terms in the circumferential series (m). The phenomena 

of requiring fewer integration points than would be normally expected 

is encountered in finite element analysis. This unusual characteristic 

termed "reduced integration", i.e. the use of fewer integration points, 

is discussed by ZIENKIEWICZ [221] and other writers in the field of 

numerical methods in finite elements. The reasons for this behaviour, 

however, are not entirely clear. Bathle and Almeida [162] in their 
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formulation of a pipe bend element on the finite element package 

ADINAP mention that in using low-order beam and plate elements the 

element can sometimes display too stiff a behaviour. The use of reduced 

integration can drastically improve some analysis although they do 

mention that spurious results may occur so that it ,is often difficult to 

assess the reliability of the solution. A typical example of reduced . 

integration is given by TAKEDA and ISHA [222]. Using simple beam 

elements to model a cantilever beam they show that reduced integration 

can dramatically improve convergence. However, as shown in Figure 

(3.7) this requires the non-reduced solution as a check on convergence. 

Without such a check the results are meaningless. A convergence check 

on the pipe bend solution would require program running time in excess 

of the maximum permitted and although some time was s'pent on this 

approach it was eventually abandoned. 

The work had now reached a stage where in terms of program 

running time all but a bend angle a of 1800 could be analysed satisfac

torily. The circumferential symmetry displayed by this bend angle 

was examined again. This time a solution appeared successful. The 

problem of previous analyses in incorrectly defining the displacement 

symmetries being annoyingly all too apparent. The convergence rate, 

however, was improved only slightly and the results did not compare 

well with those of the general solution. Accordingly, this solution 

type was abandoned and the work continued with the general form 

of solution applicable to any bend angle. 

It was not envisaged possible to complete the work using the 

existing computer system, although updated to an ICL 2988. By good 

fortune the author was able to access another system, namely a VAX 

750, giving improved running time in the sense that many of the 



119. 

limiting parameters were removed. The remainder of the work was 

completed using this system. 

In order to clarify the presentation, this chapter will deal primar

ily with a description of the general solution, although reference will 

be made to other solutions incorporating varying degrees of approxima

tion. The method presented will use the theorem of minimum total 

potential energy incorporating Thomson's matrix solution. In integra

tion the emphasis will be placed on Simpson's rule as this proved to 

be the most consistent and easiest to apply. 
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3.2 Displacements 

3.2. 1 Displacement formulation 

In formulating the displacements the method used by Thomson 

[134] will be adopted. This method is similar to that used by a number 

of authors such as Axelrad [145] and DEN HARTOG [223] in their 

analysis of in-plane bending. The latter does not consider the effect 

of end constraints; however, the principle of combining the displace

ment forms of distortion in cross-section and stretching of the outer 

fibres in bending are the same. 

In Thomson's method the displacement field, comprising a set 

of suitable kinematically admissable displacement functions, is con

sidered in two parts. The first set of displacements are termed "rigid 

section displacements" (wR ' vR' u R) which are associated with the 

displacement of the circular tube cross-se~tion with no change in their 

configuration. These displacements are akin to the simple bending 

mode defined by Axelrad. The second set of displacements are terrrted 

"distortion displacements" (wD ' vD ' uD) which are associated with 

distortion of the cross-section. The total displacements (w, v, u) 

are then found by adding the two sets of displacements. 

One of the main advantages in decomposing the displacements in 

this fashion is that the boundary conditions on the displacement func

tions can be applied more easily. Further, it leads to a better under

standing of the complex loading condition of a bending and torsional 

moment both varying along the length of the bend. 

The strains forming the strain energy function are then evaluated 

by substituting the total displacements into the strain-displacement 

relations given by equation (2.13). 
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3.2.2 Rigid section displacements 

The rigid section displacements are defined as the displacements 

of the circular tube cross-section with the cross-section remaining 

circular. This requirement does not preclude the rotation of a cross-

section about its own axis as will be the case due to the out-of-plane 

moment changing to a torsional moment. The displacements, however, 

must satisfy the boundary conditions 'and at the same time provide 

a variation with respect to the circumferential co-ordinate (e). 

Consider a smooth pipe bend of circular cross-section under 

the action of an out-of-plane bending moment M, with a circumferential 

mean radius of curvature R, a meridional radius of curvature rand 

an overall bend angle a. The bend is terminated by thick rigid flanges 

at both ends and under fully fixed conditions at 6=0 0 • 

The rigid section displacements of the bend will be derived from 

the displacements of the bend centre-line. A general illustration of 

these displacements is shown in Figure (3.8). U
c

( 6) is the circumferen

tial tangential displacement of the centre-line, Hc(6) is the displacement 

of the centre-line in a direction normal to it and y (6) is the rotation . c 

of the bend centre-line associated with the out-of-plane moment M. 

Another displacement remains - the rotation of the bend centre-

line about its own axis due to the varying torsional moment. The applied 

moment M, unlike the case of in-plane bending, does not remain constant 

along the length of the bend. Here the applied moment M changes 

from a pure out-of-plane moment at e= a to a pure torsional moment at 

e = (a- 90 0 ). The torsional moment produces a constant value of rotation 

of the cross-section at a particular value of 6. This displacement as 

a rigid section displacement is accounted for by introducing an additional 

displacement T c ( 6) in the tangential displacement v R· 
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The corresponding shell displacements wR ' vR and u R at a 

point on the circular cross-section are then given by: 

wR = -Hc(a)cos0 

v R = Hc (a ) sin0 - T c ( a) 

u R = y c(a) rcos0 - uc(a) ••• (3.10) 

The above equations (3.10) represent in a most general sense the rigid 

section displacements of the pipe bend compatible with the applied out

of-plane bending moment. Furthermore, by virtue of their derivation 

the boundary conditions are automatically satisfied on all but one of 

the displacements, namely Tc( e). 

A further set of rigid section displacements will be considered. 

Here a form of coupling will be assumed between the displacements 

Hc(a) and Yc(a). This coupling will take the form: 

y = 
c Rae ..• (3.11) 

Equation (3.11) defines the simple mathematical relation between the 

displacement and slope at a point. Introducing this form of coupling 

reduces the number of rigid section displace men t coefficients. This, 

however, has little effect on the overall size of the solution which is 

governed mainly by the product coefficients in the distortion displace

ments. Using this coupling the shell displacements wR ' vR and uR can 

be written as: 
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= aHc(6) !:.COS0-U (6) 
as R c .•• (3.12) 

The form of the displacements given by equations (3.10) requires four 

independent series to describe the displacements. whereas in equations 

(3.12) only three independent series are required. A comparison of 

both forms of displacements showed that the latter type, incorporating 

coupling, gave better convergence. Further, the circumferential dis-

placement U c (e) was shown in both cases to be insignificant. This 

displacement describes the extension of the bend centre-line. From 

the reduced flexibility displayed by out-of-plane bending compared 

with in-plane bending it is to be expected that this displacement in turn 

will also be small. 

Accordingly, the rigid section shell displacements will be taken. 

with the following form: 

= !:. 
R 

.•• (3.13) 

If equations (3.13) are substituted into the strain displacement equations 

of Novozhilov as given earlier by equations (2.13) the mid-surface 

shear strain y e~ and shear curvature K e~ are not zero. This is contrary 

to Thomson's solution for in-plane bending where both strains are zero. 

Equations (3.13) contain a torsional component in the displacement v R 
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which gives rise to a displacement not displayed by in-plane bending. 

They do not constitute true rigid body motion in the manner defined 

by shell theory and it is important to recognise this fact. A more 

appropriate definition would perhaps have qeen that of "primary dis

placements" as used by Findlay '[ 140]. Here t however t the term 

distortion displacements would be replaced by "secondary displacements" t 

an alternative which was not considered suitable in describing these 

displacements. A more appropriate terminology has been adopted in 

the finite element approach. Here the equivalent terms for rigid section 

and distortion are replaced by beam modes and ovalisation respectively. 

The requirement now is to define suitable expressions for each of the 

displacements defined in equation (3.13) t which will approximate to 

the true displacements. Using the Rayleigh Ritz method the displacement 

functions are required to satisfy the essential boundary conditions only. 

As described in CHAPTER (2) satisfaction of the natural boundary 

conditions is not deemed as a specific requirement. However, satisfac-

tion of both sets of boundary conditions will naturally improve the 

accuracy of the solution. 

The displacement functions will be specified as trigonometric 

series in the circumferential coordinate 6. The use of polynomials and 

a combination of polynomials and trigonometric series was examined. 

Both these cases, however, resulted in numerical instabilities, and 

as such the trigonometric series were adopted. 

Using the coupled form of the rigid-section shell displacements t 

as given by equation (3.13), the displacement series for Hc(e) and 

T (e) are as follows: c 

I 
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(i) For the displacement Hc(S) the boundary conditions are: 

H (0) = c 

these conditions can be satisfied using an even series: 

H (e) = Ao + ~ A.cos(i2
1TS ) 

c j=l) Cl 

H (0) = 0 = Au + ~ A. 
c j=l 1 

substituting in (3.14) gives: 

H (S) = ~ A).[COS(J;!) - 1] 
c j=l Cl 

= - ~ A. 
j=l ) 

using the identity sin 2a = ~ (1- cos2e) gives: 

1 d Hc( 6) 
and hence y c = R d e 

(ii) For the displacement Tc(S ) the boundary conditions are: 

· •• (3.14) 

• . • (3. 1 S) 

• .• (3.16) 

these conditions are satisfied using an odd series of the form: 

T
c

(6) = ~ B.sin(j1T6) 
j=l) a 

• • • (3. 17) 

By sUbstitution of equations (3.15), (3.16) and (3.17) into 

equation (3.13), the rigid section shell displacements can be written 

as: 
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= L 2A" cos 0 sin 2 (ire) 
j=l J a 

L -2A" sin 0 sin2 (J
4
"1Te) - Bl" sin (j1Te) 

j=l) a a 
= 

for j = 1, 2 , 3 .... CD ..• (3.18) 

3.2.3 Distortion displacements 

The distortion displacements are the displacements associated 

with the distortion of the circular tube cross-section. Thomson, in 

his description of these displacements, refrains from using the term 

"ovalisation", preferring instead the term distortion as the resultant 

shape is not always strictly oval. Much use is made in the literature 

of both terms. However, the terminology defined by Thomson will 

be adhered to here. 

The flanges terminating the bend are assumed to be "thick" and 

rigid. As such, deformation of the cross-section and rotation of the 

normal to the shell mid-surface at the flange are assumed to be zero 

relative to the flange. However, cross-sections removed from the flange 

will experience varying degrees of distortion depending on their distance 

from the flange. Having the distortion displacement (wn ' vn ' un) 

varying in two orthogonal directions naturally leads to the displacement 

being split to form the components of displacement corresponding to 

each direction. The first component describes the distortion of the 
I 

meridian (w(ep), v( ep), u(ep» giving the general distortion of the cross-

section. The second component (w( e), v( e), u( e» describes the 

variation of this distortion with respect to the circumferential co-ordinate e. 
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The distortion displacements are then formed by the product of the 

meridional and circumferential component. 

3.2.3. 1 Radial distortion displacement 

The expected form of the distortion is most easily sought from 

the radial distortion displacement wn . It characterises the distortion 

shape of the cross-section and accordingly will be considered first. 

The meridional component (w(ep» describing the deformation 

of the meridian has been defined by most authors to take the general 

form: 

weep) = I An sin (2n0) 
n=l n=1,2,3,4, •.•• co ••• (3.19) 

This is the form adopted by Vigness [19] in the first study of out

of-plane bending without end effects. Later, the form of equation (3.19) 

was extended by Pardue and Vigness [126] to include the odd cosine 

terms: 

weep) = I An cos (n0) + I An sin(n0) 
n=3,5 n=2,4 n=2 3 4 , , , ····co ••• (3.20) 

Both these forms of weep) given by equations (3.19) and (3.20) result 

in a distortion shape symmetrical about the plane passing through 

o = 45° and 0 = 225 0
, and are based essentially on an intuitive guess 

at the form of the expected distortion pattern. 

For the analysis to be presented here w(ep) will be assumed to 

be symmetrical about the plane of the bend passing through 0 = +450 

and 0 = +225 0 • The complete fourier series describing th~ deformation 

and satisfying the symmetry condition is similar to that given by equation 

(3.20): 
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w(~) = I An cos(n0) + I An sin(n0) 
n=1,3 n=2,4 

n=1,2,3,4 •••. co ••. (3.21) 

The n=l term is already present in the rigid section displacement 

wR and will not be included in the final form of w(ep)*. Therefore, the 

meridional component of displacement w(~) will be used with form given 

by equation (3.20): 

weep) = I An cos(n0) + I An sin(n0) 
n=3,5 n=2 4 - , n=2, 3,4 •••• co ••• (3.20) 

The circumferential component of distortion w(a) will be considered next. 

The displacement wee) must satisfy the boundary conditions of: 

ate=O and a=a, w(a) =aw(a) =0 a a 

These are the boundary conditions of a "thick flange" at a = 0 and 

a = a. The condition of zero slope arises from the boundary conditions 

given by equation (2.18): 

1 ( '.1. aWl 6a = R' usmlO - ae 

The distortion component of the slope 6 a is zero at the flange as is 

the distortion component of u. 

In this displacement there is no requirement for symmetry with 

respect to the circumferential coordinate a. Accordingly, the form 

of both an odd and an even fourier series will be examined. 

* In neglecting the n=l term the numerical stability of the solution was 
improved. This term was also excluded in V(0) and U(0). 
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(i) Using an odd fourier series the general form is: 

wee) = L Am sin(mne) 
m=l 

m=1,2,3, •••• 00 (3.22) 

applying a half-range expansion [224) over the interval 0 < e 
== 

ia gives: 

w(e) = L A sin(mrre) 
m=l m a 

m=1,2,3, •••• 00 ... (3.23) 

this form satisfies the boundary conditions of w(e) at e = 0 and e = a; 

at e',=-o: 

aw(e) = 0 = L A (!!!2!.) 
a a m=1 m a 

substituting in (3.23) gives: 

• Al = - L rnA , 
m=2 m 

m=2,3,4, ••.• 00 

wee) = L Am [sin (IDrrEl) - msin (".a ) ] 
m~ a a 

m =2,3,4, ••.• 00 

t e- aw(e) = 0 = \ A (m".) [cos(m".) - cos(".»), a -a, ae l. m ... 
m=2 "" 

m =2,3,4, •..• co 

... (3.24) 

this condition is satisfied using the odd terms only: m=3, 5,7, ••• 00 

hence 'we- can write (3.24) 'as; 

wee) = L A [sin (m".~ - msin (".e ) ) 
m=3,5 m a a 

m=3,5, 7, •• • -00 . (3. 2S) 

this equation satisfies all the essential boundary conditions; to 

account for the even terms consider a w(e) evaluated from (3.24) a e 

at e = a: 
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d w(e) = 0 = 1: A (m1T) [+ 1 + 1] + 1: A (m1T) [- 1 + 1] 
d e m=2 , 4 m Cl m=3 , 5 m Cl 

m =4, 6, 8, •••• co 

substituting in (3.24) gives: 

wee) = 1: Am [sin(mrre) - ~sin(21Te)] + 1: A [sin(m1T9)-msin(~)] 
m=4,6 Cl':; Cl m=3,5 m Cl Cl 

on rearranging: 

w(e) = 1: A1
m

[sin( 2(m+1) ~) - (m+l)sin( 21T9)] 
m=l Cl 

+A2 [sine (2m+l) 1T9) - (2m+1)sin(1Te)] 
m Cl Cl 

m=1,2,3, •••• co ••• (3.26) 

(ii) Using an even fourier series the general form is: 

wee) = Ao + 1: Amcos(mne) 
m=l 

m=1,2,3, •••• co (3.27) 

applying a half range expansion [224] over the interval 0 ~ e 

< Cl gives: 
= 

\ m1T6 wee) = Ao + I.. A cos(-) 
m=l m Cl 

at e = 0, w(e) = 0 = Ao + 1: Am 
m=l 

substituting in (3.28) gives: 

\ m1T6 wee) = I.. A [cos(-) - 1], 
1

m Cl 
m= 

m=1,2,3, •••• 00 

:.Ao=-IA ,m=1,2,3, 
m=l m 

• • • (3. 28) 

•••• 00 

m=1,2,3, •••• 00 ••• (3.29) 
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\ 1 
and using the identity sin2e = !(1-cos2S) gives: 

at e=Cl, w(e) =o=-2IA sin2(~1T), 
m=1 m 

m=1,2,3, •••• 00 

m=1,2,3, •••• ex) 

this condition is satisfied using the even terms, m=2,4,6, 

hence we have: 

w(e) = -2 L Am sin2 (2:e) 
m=2,4 

m=2,4,6, •••• 00 

.•. (3. 3D} 

•••• 00 

•.• (3.31) 

the form given by (3.31) also satisfies the zero slope conditions 

at e = 0 and e = Cl • 

To account for the odd terms consider the form of w(e) given by 

(3.29): 

at 8=0., w(e) = 0 = I Am[cos(m1T) - 1] :. Al = -I A , 
m=l m=3,5 m 

m =3 , 5 , 7, •••• 00 

substituting in (3.29) gives: 

w(e) = L Am [cos(m1T6) -1] + L A [cos(m1T6) _cos(1Te»), 
m=2,4 a. m=3,5 m a. a. 

m=2,3,4, •••• 00 

and using the following identities: sin 213 = i(1-Cos213) and 

COSeD-COSS = -2sin(<p;e) sin (~) 

this gives: 

\ m1Te \ A . «m+l)1T6) . «m-l)1T8)] 
w(e) = -2[ L Am sin2(~o. ) + L m sm 2a sm 2Ci'" 

m=2,4 '::;0. m=3,5 . 

m=2,3,4, •••• 00 
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and on rearranging gives: 

wee) = -2 I Al sin2(m1Te) + A2 sin«m+l)!!)sin(!!!!!!) 
1 m a m a a m= 

m=1,2,3, •••• co • .. {3.32} 

The choice of coefficients is, purely arbitrary in the displacement 

functions and the use of similar coefficients in equations (3.26) and 

(3.32) does not infer equality, i.e.: 

A1m in equation (3.26) ~ A1m in equation (3.32) 

From the derivation of both the odd and even fourier series for w(e), 

given by equations (3.26) and (3.32), it can be seen that not all the 

terms in each series are'required to satisfy the essential boundary 

conditions. For example, in the odd fourier series (3.26) the boundary 

conditions are also satisfied using only the odd terms: 

wee) = I A2 [sin «2m+l)1Te) - (2m+1)sin(!!) ] 
m=1 m a a 

m=1,2,3, •••• co · •• (3.33) 

Whereas in the even fourier series (3.32) the boundary conditions are 

also satisfied using only the even terms of the series: 

m=1,2,3, .•.. 00 · .• (3.34) 

The form given by equation (3.34) represents the simplest form and 

in fact can be obtained by inspection. However, in the analysis of 

a bend angle a of 1800 this form (3.34) was unable to provide the 

required circumferential symmetry. This was accomplished by including 

the odd terms of the series. 
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A similar result was found using the odd fourier series given by 

equations (3.31) and (3.32). 

In choosing an appropriate series for this important displace-

ment a com prison was made between the full odd and even fourier series. 

As both series gave nearly identical results, the slightly simpler form 

of the even fourier series (3.32) was chosen. 

The radial distortion displacement wn is found from the product 

of the displacement components w(4)) and w(e). The form of wn will 

be simplified using an abbreviated form on the separated odd and even 

terms in w(4)). This is accomplished using the following function: 

if k is even if k is even 
and 'l' ok = 

if k is odd if k is odd 

The distortion displacement wn can now be written as: 

wn = L L ['l' onCOs(n0) + 'l' enSin(n0)] 
m=l n=2 

..• (3.35) 

[- 2[A1mnsin 2 (
mrra6) + A2 sine (m+1)1r6) sin (mne)] ] 

mn a a 

m=1,2,3, 

n=2,3,4, 

••• ·00 

• • • ·00 . . . (3.36) 
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3.2.3.2 Meridional tangential distortion displacement 

The meridional tangential distortion displacement v D is generally 

derived from, or used to derive, the radial distortion displacement 

w
D

• This constitutes the assumption of an inextensible meridian which 

in shell theory is equivalent to saying that the meridional direct strain 

E:<jl is zero, i.e.: 

1 (av + w) = 0 E:A. = - -
'f r a <jl 

av 
hence w =-n 
or v = - f wdcb + C 

(3.37) 

(3.38) 

Having already defined the form of wD ' substitution of equation (3.20) 

into equation (3.38) gives: 

veep) = ~ -k An sin(ncb) + ~ ~ An cos(ncb) 
n=1,3 n=2,4 

n=l,2,3, •••• 00 .•• (3.39) 

The displacement w( cp) has been defined as having symmetry through 

the plane cb = 45 0 and cb = 2250
• Hence the constant of integration C 

in (3.38) disappears. 

For the main analysis the assumption of E:cp = 0 will not be used. 

The effect of including this assumption was, however, examined and 

found to be significant. Adopting the general form given by (3.39) 

the displacement v(<j» will be taken as: 

v(<j» = ~ Bn sin(ncb) + ~ Bn cos(ncb) 
n=l,3 n=2,4 

n=l,2,3,4, ••• ·00 • • • (3.40) 
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The n=l term is already included in the rigid section displace-

ment vR and will not be included in the final form of v(~~. Therefore 

the displacement v(~) will be taken as: 

v(~) = L Bnsin(n0) + L Bncos(n<Jj) 
n=3,5 n=2,4 

n=2,3,4, ••• ·00 • . • (3. 41) 

The variation of the meridional tangential distortion displacement v(e) 

in the circumferential direction will now be examined. 

The boundary conditions for v(e) are: 

at e = 0 and e = C£, v(e) = 0 

these conditions can be satisfied using an odd fourier series: 

v(e) = L Bmsin(mn9), 
m=l 

m=1,2,3, •••• co • • • (3. 42) 

a half-range expansion [224] taken over the interval 0 < e < c£ satisfies 
= = 

the boundary conditions giving: 

~ . m'lTe . vee) = l.. Bmsm(-) , 
m=l c£ 

m=1,2,3, •... co · • . (3.43) 

Using the function 'i' defined in equation (3.35) the meridional tangential 

distortion displacement vn can be written as: 

v = L L ['i' onSin(n0) + 'i' enCOs(n0)] B sin(mrr9) 
n 1 n=2 mn c£ m= 

m=1,2,3, 

n =2.3.4, 

••• ·00 

• .. (3.44) 
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3.2.3.3 Circumferential tangential distortion displacement 

The importance of the circumferential tangential distortion 

displacement un in the study of pipe bends with end effec;:ts is not 

entirely clear. Furthermore, under the complex loading of out-of

plane bending it is difficult to imagine what effect it has on a purely 

intuitive basis. What can be said however, is that it is expected to 

play a less significant role under out-of-plane bending compared with 

in-plane bending due to the reduced flexibility in the out-of-plane 

mode. 

For the meridional displacement component u(cp) the distortion 

will be assumed to be symmetrical about the plane of the bend passing 

through rI> = 45° and rI> = 2250. The complete fourier series describing 

the deformation and satisfying the symmetry condition is given by: 

uCp) = L Cncos(nrl» + L Cnsin(nrl» 
n=1,3 . n=2,4 

n=1,2,3,4, .•.. co ••• (3.45) 

The n=l term is already present in the rigid section displacement u
R 

and will not be included in the final form of u(cp). Therefore,' the final 

form of the meridional component u(cp) is given by: 

u(cp) = L Cncos(nrl» + L Cnsin(nrl». 
n=3,5 n=2,4 

n=2,3,4, •••• co ..• (3.46) 

The variation of the circumferential tangential distortion displacement 

u(a) in the circumferential direction will now be examined. 

The boundary conditions for u(a) are: 

at e = 0 and e = a , u(e) :: 0 



137. 

these conditions are satisfied using an odd fourier series of the form: 

u(e) = l Cmsin(mne) , 
m=l 

m=1,2,3, .... 00 • •• {3.lI7} 

the boundary conditions are satisfied by taking a half-range expan-
/ 

sion [224] over the interval 0 ~ e ~ a to give: 

u(e) = l C sin (miT6) , 
m=1 m a 

m=l,2,3, .••• 00 • •• {3.lIB} 

Forming the product of the meridional u(<jl) and circumferential compon

ent u(e), the circumferential tangential distortion displacement un is: 

m=l,2,3, 

n =2,3,4, 
• ••• co 

• ••• 00 

The definition of the function 'if is given in equation (3.35). 

3.2.3. II Distortion displacement summary 

= l l [If' onCOs(n0) + 'if enSin(n0)] 
m=l n=2 

• •• {3.lI9} 

[Al sin2(m1T9) + A2 sin«m+lhre) sin (m1T9) ] 
mn a mn a a 

m=1,2,3, 

n =2 ,3, 4, 

where A1mn = -2Almn and A2mn = -2A2mn • 

• ••• 00 • •• {3.S0} 
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3.2.4 Total displacements 

The total displacements are found by adding the distortion and 

rigid section displacements: 

W = wn + wR 

v = vn + vR 

u = un + uR 

Using equations (3.18) and (3.50) the total displacements can be 

written as: 

W = L L ['¥ on cos (n0) + 'I' en sin (n0)] [A 1 sin 2 ( mrre) + 
m=l n=2 mn a 

A2 sin«m+1)n9)sin(mrre)] + L 2A.cos0Sin2()4·n9) 
mn a a j=l] a 

v = L L ['I' onSin(n0) + '¥ cos(n0)] B sin(mrre) 
m=l n=l en mn a 

+ L -2A.sin0Sin2(~ne) - B.sin(i7r8 ) 
j=l] a] a 

u = L L ['I' onCOs(n0) + 'I' enSin(n0)] C sin(mrre) 
m=l n=2 mn a 

~ LA). R (tn ) cOS0Sin(hn9 ) 
J=1 a a 

m=1,2,3, .•.• MT 

n=2,3,4, .•.. (NT+1) 

j =1,2,3, .... JT ... (3.51) 

The previously infinite summations have been replaced here by finite 

sums. MT, NT and JT are the total numbers of terms in the m, nand 

j series, respectively. 
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3.3 Strains 

The strains are obtained by substituting the total displacements 

given by equations (3.51) into the strain-displacement equations (2.13). 

This gives the strains as follows: 

e: '" =! [i: i: [[ 'i' cos(n0) + 'i' sin(n0)] [A1 sin2 (mrr6) + 
'I' r m Ii on en mn a 

A2 . «m+1)1T6) . (mrr6)] sm -sm-mn a. a. 

+ [n'i'onCOs(n0) - n'i' sin(mi)] B Sin(mrr6)]] en mn a 

1 [t [ j1T 2 r j 1T6 J'1T6 J-~<I> = R' _ f' _ -COS0 [A j (20.) It cos( 20.) + Bjsin( a-)] + 

i: L [['i'onCOS(n0) +'i'ensin(n0)] [sin0 [AI sin2(m1T6) + 
mn _ mn a 

A2 sine (m+1)1T6) sin(m1T6)] + C (~) cos(mrr6)] _ 
mn a. . a mn a a 

"f6</> = ft' [f [ Aj(i2
1T
0.) it sin (i;!) - Bj (ia

1T 
) cos (j:6) ] + 

L i: [[ 'i'onSin(n0) + 'i' enCOs(n0)] B . (!!!!..) cos (m1T6) + 
m n mn a. a. 

[-'i' [COs0cos(n0) + ~ R' sin(n0)] +'i'en[-cos0sin(n0) + on r 

n ~' cos(nch)] ] CmnsinCrr:6) ]] 
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A2 . «m+l)'lTS) • (m'ITa] + Sln - sm -~) 
mn a a 

[
RI I I -cosf6[[-n'1' onsin (nf6) + n'1' cos(nf6)] [AI sin2 (ffi'lTe) + 

m n r en mn a 

. (m+l) 'ITS • m'ITS . 
A2 sm( -)sm(-)] + ['1' sm(nf6) + '1' cos(nf6)] mn a a on en 

Bmnsin(ma~] .- f'1'oncos(nf6) + '1' sin(nf6)] [2Al (m'IT) 2 cos( 2ffi'1T~ + 
en mn a a 

A2 (!...) 2 [_ (m2 + (m+l) 2) sin «m+l) '!T6) sin (~) + 
mn a a a 

2m(m+l)COS«m+l)~ )COS(m:e)] ] ] ] 

K 1 [\[A(i'IT)r. i'!T6 in i'ITS S~ = (rRL) t i 2a Ii sm (2a) - Bj(a-) cos (a-)] + 

I I [['1' onsin(nf6) + '1' encos(nf6)] B (m'IT) cos (mnS) + 
m n mn a a 

[!:Ri.COSf6 ['1'on cos(nf6) +'1' sin(nf6)] - [-n'1' sin(nf6) + 
en on 

n'1' ncos(nf6)]] [AIm (m'IT) sin (2mrre) + A2 (.!..) [ 
e na a mna 

(m+l)cos( (m+l) 1T9)sin(m1TS) + m sine (m+l)1T9) cos (ffi'lTS)] ] + 
a a a a 

[ [-n'1' onsin(n0) + n'1' enCOs(n0)] - H' cosf6 ['1' on cos(n0) + 

'1' ensin(n0)] ] Cmnsin0sin (m;e) ] ] • • • (3. 52) 
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where R' = R + rsinClS 

Z = (1 + ii sinClS) 

JT 
I = I = 1,2,3, .... JT 
j j=1 

MT 
I = I m = 1,2,3, .... MT 
m m=1 

NT 
I = I n = 2,3,4, •••• (NT + 1) 
n n=2 
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3.4 Numerical Solution 

3.4. 1 Introduction 

In the solution to the problem of the flanged pipe bend under 

out-of-plane bending, using the theorem of minimum total potential 

energy, there are three main activities to be performed. These are 

as follows: 

(i) Integration of the total potential energy (T.P.E.) 

function. 

(ii) Minimisation of the T.P.E. function leading to a set 

of simultaneous equations involving all the unknown 

displacement coefficients. 

(iii) Determination of the unknown displacement coef-, 

ficients leading to evaluation of the total displace

ments, strains and stresses. 

The simpler solutions, examined initially, allowed the first two 

functions of integration and minimisation of the T .P.E. to be performed 

by hand. The evaluation of the unknown coefficients was then done 

using a simple matrix inversion procedure. 

However, the solution to be presented here given by the displace

ment series (3.51) and strain equations (3.52) is of a more complex 

form. The displacement series (3.51) developed involved the use of 

only the assumptions inherent in thin shell theory and included all 

the necessary fourier terms in their series. They also satisfy all of the 

essential boundary conditions for a smooth pipe bend with flanged end 

constraints. The strains given by equations (3.52) were derived from 

the displacements and satisfy the requirements of internal and external 

compatibility. If these strains are substituted into the expression for 
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the strain energy given by equation (2.16) from which the T.P.E. 

can be determined, then integration of the expression by hand is 

virtually impossible. The solution then requires the use of numerical 

techniques. 

3. 4. 2 Numerical solution methods 

The numerical minimum of the T.P.E. function is normally 

obtained in one of two basic ways. 

The simplest method is to numerically integrate the whole T.P.E. 

function and then use a standard method of direct numerical minimisa

tion. There are a variety of ways of performing direct minimisation. 

These are illustrated by the work of NELDER and MEAD [225] and 

HOOKE and JEEVES [226]. The majority of them use some method of 

searching which is based on evaluation of the complete T. P • E. function. 

The main advantage of this method is that it only requires the values 

of the T. P.E. function, for coefficient values that the minimisation 

routine provides, which is straightforward to program on a computer. 

This was the procedure used by Spence [100] in his analysis of creep 

in pipe bends without end effects. However, the procedure of having 

to numerically integrate the T.P.E. function in two dimensions and 

then minimise with respect to a large number of variables is time con

suming. In fact in the solution to be presented here for out-of-plane 

bending 156 variables will be used. The time required is also indeter

minate as the minimisation technique uses as many function evaluations 

as it needs rather than a fixed number to find the minimum. Spence 

only required a one dimensional integration and rarely needed to use 

more than 5 variables in his problem. Thomson [134] in his study of 
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in-plane bending of pipe bends with end constraints attempted to use 

this method. However, he found that the number of variables was 

limited to about 50 before the computer time and reliability limit of 2 

hours was reached. The computer was an ICL 2980, the same machine 

used initially by this author. Due to the restrictions placed upon the 

solution this method was therefore not used here. In fact, this method 

is only capable of dealing with at most one third of the required un

knowns. Some idea of the limit this places on the solution to out-of

plane bending can be gained by examining the maximum size of the 

displacement series (3.51). Here, the limit of 50 unknown variables 

is reached when m=n=3 for distortion displacements, and j=7 for rigid 

section displacements. Further, Thomson was able to adopt symmetry 

in integration in both the meridional and circumferential directions, 

thereby reducing considerably ~he time involved in integration. . In the 

problem of out-of-plane bending this symmetry in integration could not 

be applied. 

An alternative method of finding the minimum numerically involves 

differentiating with respect to each of the required displacement coef-. 

ficients before performing the integrations. This then produces a 

set of simultaneous equations which can be solved. This method was 

used by SYMONDS [227], Jones T3'9] and Thailer and Cheng L1331 

in their analyses of the pipe bend problem. The difficulty in this method 

is that all of the terms in the solution matrix have to be numerically 

integrated separately. Although general expressions can be derived 

for many of the terms in the matrix there is still a large amount of 

hand manipulation involved in obtaining a solution. This can be avoided 

by evaluating the integrals prior to performing the solution. As 
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mentioned earlier t however t this was of little use due to user restric

tions on the computer. The method has advantages over the previous 

method at least for a linear problem. The time required for a solution 

would be much smaller and determinate. This method t and variations 

on it t were attempted" They were abandoned t however t because of 

the size of the current problem and the difficulties encountered. 

In the final solution to be presented here t the method developed 

by Thomson will be used. This method has the advantages of using 

only the values of the complete T. P • E. function and minimisation using 

a matrix technique as opposed to a direct searching method. 

3.4.3 Minimisation procedure 

The total potential energy expression for linear elasticity is 

represented by a quadratic function of the displacement coefficients. 

This means that when the T. P .E. function is differentiated with respect 

to the coefficients t the resulting equations are linear functions of the 

displacement coefficients. Since the displacement coefficients are not 

functions of the bend co-ordinates (e t cf> ) t integration can be performed 

without numerical values being assigned to the coefficients. 

The above principles are the basis of the minimisation procedure 

developed by Thomson. The description of this method t in what follows t 

is the same as that given by Thomson. Although this description is 

felt to be somewhat inadequate by this author in conveying the elegance 

and power of the method t he has been unable to improve upon it. A 

better understanding is in fact gained by reading through the computer 

programme given in APPENDIX (1). 
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The method is explained by considering the following quadratic 

expression: 

... (3.53) 

where a l t a 2 t a;, a It, as and a 6 are functions of ~ and can be con-

sidered analogous to the trigonometric sine and cosine terms in the 

displacement series (3.51). If V is an expression for the total potential 

energy then the minimum of V can be found by differentiating with 

respect to the unknown coefficients Xl and x 2 : 

.•. (3.54) 

These are two simultaneous equations in two unknowns t Xl and x
2 

• 

This can be set up as a matrix equation: 

or [A][x] = [B] ••• {3.ss} 

where [A] is a matrix of constants, [x] is a vector of the unknowns 

and [B] is a vector of constants. 

The terms in the matrix [A] and vector [B] can be numerically 

integrated and the matrix equation solved for the required coefficients 

Xl and x 2 • This is the basis of the second numerical method described 

in section (3.4.2). The difficulties arise in the setting up of equation 

(3.54) and the separation and programming of equation (3.55). 
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The new method derives the terms of the matrix [A] and vector 

[B] directly from the complete T. P • E. function (3.53). To explain 

the method, the following definitions will be used. A coefficient will 

be termed "active" if it is given the value of +1, "passive" if it is given 

the value of 0 and "negative active" if it is given the value of -1, i.e.: 

x = +1 is active 

x = 0 is passive 

x = -1 is negative active. 

If all the coefficients are made passive and V is evaluated then 

the following is obtained: 

Xl and X2 passive ---~ • •• (3. 56} 

If each of the coefficients is made active in turn with the rest 

passive, then V becomes: 

Xl active ----+1 J [a l + a lt + a
6 

] dE; 

x 2 active I J[a2 + as + a 6 ] dE; • •• (3. 57} 

Similarily, if each coefficient is made negative active, with the 

rest passive, then: 

Xl negative active ---+, J [al - a
lt 

+ a
6

] dE; 

Xz negative active 1 J [az - as + a 6 ] dE; • •. (3. 58} 

Adding (3.57) and (3.58), and subtracting twice (3.56) gives: 

• •. (3.59) 

which are the diagonal terms in the solution matrix [A]. 
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Subtracting (3.57) from (3.58) and dividing the result by two gives: 

••• (3.60) 

which are the terms of the vector [B]. 

The off-diagonal terms of the matrix [A] are obtained by making 

a term active and then the value of V is found with one of the remaining 

terms made active with the rest passive, i. e. two different terms are 

made active for each evaluation: 

Xl and X2 active ---+1 f [al + a2 + a 3 + a lt + as + a 6 ] d~ •.• (3.61) 

The off-diagonal term is then found by subtracting (3.56) and half 

of (3.59) from (3.61) and adding (3.60) to give: 

• • • (3. 62) 

Thus, the complete matrix equation can be formulated from the 

total potential energy function. 

Generalising this to obtain a matrix of "N" equations is reason

ably straightforward. The only additional comment necessary is with 

regard to the position of the off-diagonal terms in the matrix. If the 

first active coefficient is xr and the second is Xc then the coefficient 

obtained should be positioned on row "r" and column "c". 

The total number of function evaluations required for a solution 

involving "N II coefficients is (N 2 + N + 1). This can be reduced by nearly 

half if use is made of the symmetry of the matrix obtained from the 

differentiation of the T.P.E. function. 
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The time involved in calculating the values of the T .P.E. can be 

reduced by just calculating the parts of the function which involve the 

active constants, where possible. This can represent a considerable 

saving in the running time of the computer program since most of the 

time is spent calculating the values of the function. 

3.4.4 Numerical integration 

The strain energy part of the total potential energy function 

has to be integrated in two dimensions, a and <p. There are many 

different ways of numerically integrating a function of this type, examples 

are given in the works of Gerald [216], FOX and MAYERS [228] and 

TIERNAY [229] (see also section 3.1). As mentioned earlier in section 

(3.1) two main methods were employed. These were Simpson's Rule 

and Gaussian Quadr~ture. Simpson's i rule was chosen as the most 

convenient method. 

Consider a double integral of the form: 

db 
~ = f ff(a,q,)dadq, 

c a 
••. (3.63) 

In calculus, a double integral is evaluated as an iterated integral, i. e. 

the inner integral is calculated first; then the outer integral. Similarly, 

a double numerical integral can be found by first applying Simpson's 

rule to the inner integral and then the outer integral. This gives the 

integral as: 

•.. (3.64) 
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where fjk are the values of the function f (6 ,~) at ej and ~ k' The 

intervals 6 = a to e = b and ~ = c to </l = d are subdivided into (J-1) 

and (K-l) intervals, respectively. e j and ~ k therefore correspond to: 

e. = a + jA 6 
J 

_ (b - a) 
where A e - (J _ 1) 

and 

and 

</l = c + kA ~ 

A</l = (d-c) 
(K -1) 

• • • (3. 65) 

Wj and W: in equation (3.64) are the weighting functions applied to 

each value of the function, fjk • For Simpson's rule in two-dimensions, 

these functions are given by: 

and 

where j = 2,3, •.•• , (J - 1) and k = 2,3, •••• , (K - 1) ... (3.66) 

The above equations allow a different number of integration points 

in each direction which is necessary in the pipe bend problem which 

has widely differing behaviour in the e and </l directions. 

3.4.5 Solution of matrix equation 

Many solution methods are available for linear equations, and 

where a small number only is involved the method chosen is immaterial. 

For large numbers, however, it is important to choose the most economical 

in computer time and storage, and that best suited to take advantage 

of any special properties the equations may possess. A typical matrix 

for the present problem has 130 rows which requires at least thirteen 

thousand storage locations in a computer for the [A] matrix. 
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The two classes of solution method available are termed direct 

and indirect methods. In the former a single set of operations is carried 

out on the equations and the results are obtained, while in the latter, 

solution is attempted by a series of successive approximations. MEYKR 

[230] examined all of the major matrix solution routines in the context 

of structural analysis. He states that no method exists which requires 

less arithmetic operations than Gaussian elimination. Most systems 

of linear equations arising from problems in linear elasticity are positive 

definite and well-posed in the mathematical sense. Further, the accuracy 
. . 

of the solution from the Gauss algorithm is usually sufficient. 

The Gaussian elimination method will be used herein. 

The standard Gauss algorithm, which dates as far back as 1826, 

is given in APPENDIX (2). This method can be adapted to use the 

symmetry of the matrix and thus reduce the solution time. It is in 

this form that the algorithm is presented in APPENDIX (2). On the 

computer, the matrix can be solved in its own storage, hence reducing 

storage requirements. The storage requirement can be further reduced 

by taking advantage of the banded nature [231] of the [A] matrix. 

The band width "b" of the symmetric matrix [A] is defined as the largest 

number of elements in any row from the diagonal to the extreme right-

hand non-zero element, inclusive. Matrices for which b is much less 

than the order N of the matrix are said to be banded. In this particular 

problem the matrix [A] was found to be well-populated, I.e. b approaches 

N. However, the author was still able to improve the storage require

ment and to some extent the efficiency of the program by storing the 

upper triangle of the [A] matrix in a vector form. The reduction in 

storage using a vector form is shown in Figure (3.9). The efficiency 
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of the program is improved by having only one location reference for 

elements in the vector form, whereas two are required for the array 

form. 

3.4.6 Total potential energy 

The total potential energy expression is: 

c 2~r 1 
.' V = 2' f [(e:<p+ e:e)2 - 2(1-v) (e:<Pe:e-ifY~<p)]rR'ded<P 

o 0 

+ ~ jf[(K +K )2 - 2(1-v) (K K --K2 )]rR'ded<p -My 
~ 0 0 <p e <p e e<p 

Et 
where C = (1- v l) , R' = R + rsin16 

. . . (3.67) 

y is the rotation between the ends of the bend which is found from the 

displacement equation (3.16): 

1 JT. . e 
y = - R L A. (l.!..) sin (~) 

j=1 ) 2CL 2 CL 

The strains and curvatures from equations (3.52) can be sub

stituted in equation (3.67) to give the complete total potential energy 

function. This needs to be non-dimensionalised so that the solution 

can be in terms of as few characterising parameters as possible. More-

over, it can also be used to simplify the function and improve the num-

erical condition of the matrix. The T.P.E. will be non-dimensional 

using: 

.•. (3.68) 



153. 

This form of non-dimensionalisation is the same as that used by Thomson. 

Here, however, the factor of 2.0 appears in the numerator of V due 

to the lack of symmetry in integration displayed by the loading condition 

of out-of-plane bending. 

Note that the (1- \)2) term, omitted by many of the earlier authors 

using a lower bound approach, has been included in the present work. 

This will mean that the end rotation will tend towards the value of (1- \)2) Y 
o 

and not y at high values of A( A> 2). A full discussion of the implications o 

of this was given by Spence [4]. A true lower bound is only achieved 

if it is included. 

The nominal rotation Yo' is the rotation of an equivalent length 
• 

(Ra) of straight pipe under the same load M, as found from simple bending 

theory: 

•.. (3.69) 

Using the non-dimensionalisation given by equation (3.68) the 

T • P • E. becomes: 

where in this case 
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on re-arranging this gives: 

v = i - 21Ta(1- \)2) L 
Yo 

where ~ = J r [(€~ + Ee) 2 - 2(1-\) )(E4> Ee - i~:~)] 
o 0 

and 

A2 - - 2 - - _ 
+ 12[(K~+K6) - 2(1-v)(K~~-~4»]Zded~ 

Z = (1 + n sin0) 

K = K (ra) 
6 6. Yo 

Rt A= r2 

The distortion coefficients will be non-dimensionalised using: 

A-1
mn 

= A1 .(~) 
mn ryo 

B = B .(~) mn mn rye is = C (~) mn mn· rYe 

•• (3. 71) 

..• (3.72) 

The sa~e form of non-dimensionalisation can be applied to the rigid 

section displacements A. and B.. An alternative form is: 
J J 

.- 1 
A. = A.- , 

J J RYe 
- 1 B. = B .• -

J J Ryo 
. • . (3. 73) 

No significant difference was found between the form given by equation 

(3.72) and (3.73). As equation (3.73) represents a more direct form, 

this type was chosen for the rigid section displacement coefficients. 
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The strains as given in equations (3.52) can be arranged using 

the non-dimensional forms given by equations (3. 71), (3. 72) and (3. 73) 

into a form suitable for computer application. These strains are given 

in Appendix (3). 

A computer program which incorporates all the techniques just 

explained is given in Appendix (1). This program is written in 

FORTRAN [232] and uses double precision throughout. Values of the 

characterising parameters, (l, R I r' A and \I are required for each run. 

A typical, fully converged, run, for a 90 0 bend takes around 25 minutes 

on the ICL 2980 computer. 

3.4. 7 Deformations 

By minimising the total potential energy- function in equation 

(3.71), using the procedure just outlined, numerical values are obtained 

for the A1mn , A2mn , Bmn , Cmn ' Aj and Bj coefficients for any p'artic

ular values of a, R/r , A and \1. 

It is then a relatively simple task to determine the mid-surface 

displacements, w, v and u at any circumferential (e ) and meridional 

( ~) position on the bend from equations (3. 51) . 

3. 4. 8 Flexibility factor 

From the definition of the flexibility factor given in the introduc-

tion to CHAPTER (l),ltfollows from equations (3.16) and (3.73) that 

the flexibility factor K is given by: 

JT. j'IT6 
K = - I A. (12'IT ) sin (ia) 

~1 1 a a 
•.. (3.74) 

where 6 = a 
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This factor K corresponds to the overall rotation between the flanged 

ends of the bend and is based on the nominal rotation defined by 

equation (3.69). The overall rotation y is that compatible with a pure 

out-of-plane bending moment. 

3.4.9 Stress concentration factors 

Once the displacement coefficients have been determined, it is 

then a relatively straightforward task to calculate the strairis using 

equations (3.52). From the stress/strain relationships for a linear 

elastic isotropic material given in equations (2.14) the stresses at any 

point on the bend can be found. 

The stresses are normally examined using stress concentration 

factors (S.C.F.). These have been defined generally in CHAPTER (1). 

They are written as: 

S.C.F. = stress / [¥E-]' •.. (3.75) 

where [Mr/I] is the maximum stress in an equivalent straight pipe under 

a bending moment, M, from simple bending theory. The use of S.C.F.'s 

is particularly useful, for example in the case of tangent pipes under 

a constant bending moment where the circumferential S.C.F. approaches 

unity. 

The strain S.C.F. 's are defined in a similar manner: 

S • C • F • = strain / [;] ••• (3.76) 

where [Mr/EI] is the maximum strain in an equivalent straight pipe 

under a bending moment, M. Note that this maximum strain can be 

written as: 
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• •• (3. 77) 

If the strains are found in their non-dimensional form as given by 

equations (3.71) the S. C . F . 's in stress can be written as: 

- 1 [(- -) _ A (-K K-) ] aa = (1- \) 2) E:a + \) E: cjl + 2' a + \) cjl ••• (3.78) 

where a cjl is the meridional stress S. C .F. and ae the circumferential 

stress S.C.F. The "+" and "_,, signs in the above equations, corres-

pond to the stresses at the outside and inside surfaces of the shell, 

respectively. 

The shear stress concentration factor Teq, can be found from 

a similar method as: 

••• (3.79) 

The above expression for shear stress, as explained in CHAPTER (2), 

is approximate. The degree of approximation is of the same order as 

the basic assumptions of thin shell theory and can be ignored. 
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3.5 Theoretical Results 

3.5. 1 Introduction 

In this section, a comprehensive set of results covering a wide 

range of the characterising parameters are presented along with a com

parison with theoretical results given by other authors. 

In CHAPTER (4), the theory will be compared with experimental 

results. 

The final solutiori adopted, as given by equations (3.51), was 

based on the results of a large number of solutions developed during 

the course of the study. The principal form of these solutions in terms 

of their displacement series and convergence characteristics are pres-

ented in APPENDIX (4) and (5). The results of these solutions will be 

referred to in the course of this section. 

3. 5. 2 Solution con vergence 

In the typical Karman type analysis, with no-end effects, the 

solution is characterised by one parameter - the pipe factor (A.). Here, 

however, convergence of the solution was found to vary with the bend 

parameters - A., bend angle (a) and radius ratio (!!...). The number 
r 

of displacement terms (MT, NT, JT) required for a bend angle of 45 0 

was found to be inadequate for a larger bend angle of 180 0 • This trend 

became more evident as the radius ratio increased and the A. value 

reduced. The behaviour can be explained by the fact that as the flexi

bility of the bend increases so also does the distortion of the cross

section. Hence, more terms will be necessary to describe the displace-

ment of the cross-section. The more flexible bend will be defined by 
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a large bend angle and radius ratio and low A value. Using such values 

for checking convergence of the solution should then allow the solution 

to be applicable to a large range of bend parameters and thus dispense 

with the inordinate task of examining convergence for a large number 

R of A, a and (r:) values. 

For this purpose the following parameters were chosen to check 

convergence: 

a = 1800 

A = 0.07 

(R) = 10.0 r 

In choosing a bend angle of 1800 a further aspect was introduced in 

convergence of the solution, namely - the symmetries displayed by 

this bend angle when subjected to an out-of-plane bending moment. 

In the study of in-plane bending, Thomson was able to adopt two planes 

of symmetry - a circumferential symmetry taken through the bend centre 
, 

and a meridional 'symmetry about 4> = +90 0 and ~ = -900 • By prescrib-

ing such symmetries in his displacements, Thomson was able to ensure 

symmetry in his results. This also led to a significant reduction in 

program running time due to the reduced integration limits. 

For out-of-plane bending the use of a circumferential symmetry 

through the bend centre was only possible for a bend angle of 1800
• 

However, as can be seen in APPENDIX (5), this particular solution 

gave poor convergence. Hence the general solution as given by equations 

(3.51) had to be examined to ensure that the necessary symmetries were 

present. 
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3.5.2. 1 Integration convergence 

The accuracy obtained using a large number of integration points 

has to be balanced against program running time. For in-plane bending 

Thomson used the values of Ne = 9 and N </> = 17. He was able to show 

that these values gave a difference of less than 1% for flexibility factor 

when compared against Ne = 15 and N</> = 25 with less than half the program 

* ' running time • From the two symmetries employed in his analysis, 

Thomson was able to use the following integration limits: 

- ~ ~ </> ~ ~ (for ex = 7T ) 

Under out-of-plane bending the integration limits are doubled: 

o ~ </> ~ 27T (for ex = 7T ) 

Hence it is to be expected that the number of integration points will 

increase significantly. The results using different methods of integra

tion with Ne = 17 and N </> = 33 tor the bend parameters of ex = 1800 , 

A," = 0.1, (~) = 10.0 and \I = 0.3 are sh~wn in Figure (3.10). These 

results show that the maximum program running time of 7200 CPU seconds 

was reached before the solution had begun to converge to within anywhere 

near the limits obtained by Thomson. 

In order to achieve a practical solution in terms of program running 

time the optimum number of integration points were chosen as: 

for ex = 1800 N = 13 and N = 33 
e </> 

for ex ~ 90 0 N = 9 and N = 33 
e </> 

* A reduction in program running time from 112 to 171 CPU seconds" 
for bend parameters of ci = 1800

, A = 0.05, (F) = 10 and \I = 0.3 usmg 
Simpson's rule. 



161. 

The large value of N ~ was maintained to cope with the more Irapidly 

varying displacements in this direction. For the bend parameters of 

a. = 1800 , A =0.05, (~) = 10.0 and \) = 0.3, the variation in Na is shown 

in Figure (3. 11) • From Figure (3. 11) it can be seen that' an increase 

in Ne did not as expected result in an increase in flexibility factor. 

It was also found that as the value of Ne approached MT, the solution 

became numerically unstable. These aspects are discussed earlier in 

section (3.1. 1) . 

For a. = 1800 using the displacement terms of NT = MT = JT = 6, 

the reduction in Ne from 17 to 13 resulted in only a small reduction 

in program running time - from 3000 to 2750 CPU seconds. Nevertheless 

it had the distinct effect of providing convergence in flexibility factor. 

This is clearly seen in the results of the solutions given in APPENDIX 

(4) and in section (3.5.2.2) where series convergence is considered. 

Although series and integration convergence of the solution are pre

sented separately, in practice they were conducted simultaneously due 

to the non-linear relationship displayed between Nand MT. a 

3.5.2.2 Series convergence 

Series convergence of the solution was performed using the 

parameters given earlier of: 

a. = 180 0 

A = 0.07 

Ne = 13 

(R) 
r = 10.0 
\) = 0.3 

N~ = 33 

The variation of flexibility with the displacement terms MT, NT and 

JT for this bend angle and a bend angle of 90 0 using Ne = 9, are shown 

in Figure (3.12). These values are also given in TABLE (3.1). As 

discovered in earlier solutions, convergence of the 900 bend was found 
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to be better than the 1800 bend. Further, the behaviour of the 90 0 

bend was more monotonic although it can be seen from Figure (3.12) 

that as MT approaches Ne the solution becomes unstable. This behav

iour was not so pronounced on the 1800 bend due to the larger value 

of Ne. 

For an increase in the displacement terms of NT = MT = JT = 6 to 

NT = MT = JT = 7, the flexibility factor increased by 3% for both bend 

angles. The corresponding difference in program running time for 

the 1800 bend was more than two-fold, increasing from 2750 to approxi

mately 6000 CPU seconds. 

For the 1800 ben~ the variation in meridional stress with MT, 

NT and JT is shown in Figure (3.13). Here the maximum difference 

with NT, MT and JT changing from 6 to 7 was 7.5%. 

In view of the high computation time these levels of accuracy 

were considered sufficient for a converged solution. Accordingly, the 

following values were adopted for the converged solution: 

NT =MT =JT =6 

Similar values of the displacement terms were used by Thomson in his 

converged solution: NT = MT = JT = 5. Thomson's solution required 

the evaluation of 105 coefficients. Here, 156 coefficients were required 

to be evaluated. Variations within MT. NT and JT were not actively 

pursued. However, variations around the converged values indicated 

no improvement in accuracy or computation time. 
:;" ' .... -... ' .... :~. ",,,,,,,,,,,,,~,,,~,~,,~,,-~,~~::;,,~.,,,~~''' •. 1>,',:''' )I-': .... ~; ~,~',: \'" 1.; ',.! 1'~:' <,~ "I' ":'~, • ".' ' ..... , ~ ," ~.;' " ~ .: 

The level of accuracy present~d'by this solution does however require further 
, , 

" •• "'\0 " 

I :w~rk',to ~~sure that the present results are close to the fully converged 

re'sults~' . ,,:'. 
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TABLE (3.1): Convergence of flexibility factors. 

Bend 
angle 1 

A = 0.07, (~) = 10, \I = 0.3, a = 90 0 and 1800 

Value of NT, MT, JT 

2 3 4 5 6 7 8 

1800 0.285 0.941 1.218 1.949 4.465 4.916 5.063 5.278 

900 0.650 1.203 2.051 2.318 2.433 2.479 2.546 3.503 
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3.5.2.3 Displacement coefficients 

Displacement coefficients for a bend angle of 1800 and 90 0 with 

A = 0.07, (R) = 10.0 and v = 0.3 are given in TABLE (3.2) and (3.3) 
r 

respectively. These illustrate several interesting features of the flanged 

pipe bend problem. 

The Karman solution for a pipe bend without end effects uses 

only the even fourier terms (n = 2,4.6. • •. ) in the series for wn • For 

both bend angles, TABLE (3.2) and (3.3) show that these are the 

significant ~erms but the odd terms (n = 3,5,7, ••• ) are not negligible. 

In the analysis of the 1800 bend the A2 coefficients are the most mn 

significant. These coefficients represent the odd terms (m = 1,3,5, ••• ) 

in the fourier series for the displacement wn (3.36). The even terms 

(m = 2,4,6, ••• ) of this series are represented by the A-I coefficients 
mn 

which are smaller by several orders of magnitude. The displacement 

wn is anti-symmetrical about the bend centre (see APPENDIX (5» 

which explains the importance of the odd A2mn coefficients. For the 

90 0 bend there is no symmetry in this displacement. Here, the coef

ficients A-1mn and A2mn are of a similar order. 

For the 1800 bend the even terms (m = 2,4,6, ••• ) in the B mn 

coefficients and the odd terms (m = 1,3,5, -••• ) in the C coefficients mn 

are larger by several orders of magnitude when compared to their cor-

responding odd and even terms, respectively. This trend is not 

reflected in the coefficients for the 90 0 bend. It is interesting to note 

that in the analysis of the 1800 bend neglecting the A1mn coefficients 

(m = 1,2,3, ... ), the odd Bmn coefficients (m = 1,3,5, ... ) and the 
/ 

even C coefficients (m = 2,4,6, ••• ) resulted in a significant reduction 
mn 

in flexibility and stress together with a loss in symmetry around the 

bend. 
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Convergence of the distortion series is easily seen from the table 

of coefficients. There is, however, a significant difference between 
-

the first and last terms of the A1mn , A2mn , Bmn and Cmn series. For 

example, in the A2mn series (TABLE (3.2», A211 = -9.70174 and 

A266 = 0.00281. These coefficients differ by a factor of over 3000. 

In the rigid section coefficients the large difference between 

the first and last term persists although to a lesser degree. However, 

- -
in the analysis of the 1800 bend the coefficients Al and As differ only 

by a factor of 3. Here, the convergence is poor when compared to 

-
the A. coefficients in the 90 0 bend. Convergence of the coefficients 

1 
was improved significantly as A increased and (R) and Cl reduced. 

r 

The numerical instability observed in the solution as MT approached 

N was characterised by an increase in the magnitude of the A. coef-e 1 
ficients. For the 90 0 bend, the first coefficient Al increased to 944.09 

when MT = 8. No significant difference was displayed by the distortion 

coefficients A1mn' A2mn' Bmn and Cmn • This increase in Aj increases 

significantly the large difference already displayed by the distortion 

coefficients leading to obvious numerical difficulties in inversion of the 

coefficient matrix. The use of different non-dimensionalisation of the 

coefficients did little to improve their problem (see APPENDIX (4». 
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TABLE (3.2): Displacement coefficients. 

j 1 

-

a = 1800 , A = 0.07, (!) = 10.0, \I = 0.3 

MT = NT = JT = 6 

Ne = 13, N<jl = 33 

2 3 4 5 6 

A. -0.942791 -1.596077 3.634720 -1.298545 0.402856 -0.363247 
) 

B. 0.246651 -0.128434 -0.000497 0.004221 0.000179 -0.000205 
) 

-
A1mn 

~m 1 2 3 4 5 6 

2 0.08261 -0.16229 0.04391 0.00907 0.00471 0.00194 

3 0.02117 -0.07459 0.03172 0.00869 0.00537 0.00234 

4 0.02026 -0.02642 0.00244 -0.00045 -0.00060 -0.00030 

5 0.00695 -0.02164 0.00863 0.00228 0.00138 0.00060 

6 0.00389 -0.00402 -0.00019 -0.00029 . -0.00025 -0.00012 

7 0.00114 -0.00318 0.00119 0.00030 0.00018 0.00008 

-
A2mn 

~m 1 2 3 4 5 6 

2 -9.70174 0.00622 -0.01100 -0.17690 -0.25532 0.07261 

3 -2.17737 0.84292 0.22148 0.12760 0.04702 0.05482 

4 -2.29661 -0.24354 0.01554 -0.05207 -0.07989 0.02542 

5 -0.67289 0.23091 0.06864 0.03706 0.01136 0.01778 

6 -0.44108 -0.06865 0.00184 -0.01216 -0.01733 0.00489 

7 -0.11058 0.02974 0.01050 0.00510 0.00109 0.00281 
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TABLE (3.2) cant. 

-
Bmn 

~m 1 2 3 4 5 6 

2 0.00117 6.75344 0.07653 -1.80889 -0.05638 -0.23798 

3 -0.00087 -0.56769 -0.01776 0.60368 0.02185 0.00185 

4 0.00001 0.86223 0.00803 -0.16046 -0.00321 -0.05852 

5 -0.00016 -0.10876 -0.00324 0.10577 0.00366 0.00259 

6 -0.00001 0.11551 0.00097 -0.01740 -0.00023 -0.00881 

7 -0.00002 -0.01370 -0.00035 0.01116 0.00037 0.00062 

Cmn 

~ 1 2 3 4 5 6 

2 0.25739 0.00429 -0.71437 -0.01600 0.04149 0.00623 

3 0.01488 0.00056 -0.08684 -0.00361 0.04798 0.00199 

4 0.01623 0.00024 -0.03896 -0.00050 -0.00694 0.00005 

5 0.00223 0.00007 -0.01059 -0.00038 0.00422 0.00019 

6 0.00137 0.00002 -0.00286 -0.00001 -0.00106 -0.00001 

7 0.00028 0.00001 -0.00102 -0.00003 0.00020 0.00001 
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TABLE (3.3): Displacement coefficients. 
R 

a = 90°, A = 0.07, (r-) = 10.0, v = 0.3 

MT = NT ,= JT = 6 

N = 9, N = 33 e 41 

1 2 3 4 5 6 

-0.706506 -0.782449 0.830049 -0.331317 0.143456 -0.043563 
0-

B
j 

0.070649 -0.012023 -0.001030 -0.000605 0.000154 -0.000670 

A1mn 

~ 1 2 3 4 5 6 

2 2.23076 -0.13798 -0.09125 0.01251 0.09917 -0.00459 

3 0.77634 -0.47212 -0.05444 -0.02579 0.02830 -0.07951 

4 0.35246 0.24484 -0.06747 -0.00498 0.00259 0.04982 

5 0.19712 -0.04609 -0.04744 -0.01684 -0.00488 -0.00970 

6 0.05657 0.04956 -0.00545 0.00208 0.00264 0.01120 

7 0.02770 -0.00197 -0.00736 -0.00245 -0.00102 -0.00041 

A2mn 

~m 1 2 3 4 5 6 

2 -1.25171 0.00732 -0.05630 0.01183 -0.09291 0.01431 

3 -0.85421 0.25773 0.02484 0.03689 -0.02938 0.01019 

4 0.04124 -0.21987 -0.01028 0.00387 -0.04493 -0.01697 

5 -0.16070 -0.02574 0.01269 0.01667 -0.02238 -0.00622 

6 0.01672 -0.03555 -0.00476 -0.00150 -0.00718 -0.00265 

7 -0.01934 -0.00792 0.00190 0.00262 -0.00402 -0.00132 



169. 

TABLE (3.3) cent. 

Bmn 

~m 1 2 3 4 5 6 

2 -1.81072 0.90469 0.44438 -0.18859 0.01359 -0.03435 

3 0.16372 -0.28814 -0.27730 0.19011 0.05714 0.00076 

4 -0.22772 0.05914 -0.03113 0.06404 0.05129 -0.02750 

5 0.03228 -0.04917 -0.03248 0.00742 -0.00768 0.01136 

6 -0.02996 0.00514 -0.00641 0.00803 0.00516 -0.00213 

7 0.00393 -0.00507 -0.00265 -0.00002 -0.00123 ·0.00150 

Cmn 

~ 1 2 3 4 5 6 

2 0.07684 0.21397 -0.16871 -0.03964 -0.00575 0.00242 

3 0.01477 0.04127 -0.05890 -0.04597 0.02077 0.00131 

4 0.00361 0.00627 0.00441 0.01572 -0.01596 -0.00320 

5 0.00205 0.00407 -0.00350 -0.00048 -0.00315 -0.00190 

6 0.00011 0.00014 0.00060 0.00129 -0.00095 0.00022 

7 0.00016 0.00031 -0.00016 0.00010 -0.00039 -0.00017 
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3. 5. 3 Flexibility factors 

Flexibility factors for flanged bends under out-of-plane bending 

are given in Figures (3.14)' (3.15) and (3.16) for 180°, 90° and 45° 

bends, respectively. In each figure the variation with radius ratio 

(R) is shown for the range of values 2, 3, 5 and 10. The results were 
r 

obtained using NT = MT = JT = 6 with N e = 9 and N ~ = 33. For the bend 

angle of 1800 the number of integration points in the circumferential 

* direction (Ns) was increased to 13. In all cases, poissons ratio (v ) 

was taken as 0.3. 

The results show clearly that flanged bends of smaller sub tended 

angles and shorter radius have the lowest flexibility. As the pipe 

factor ( A) reduces the flexibility increases. However, unlike the Karman 

converged solution, the present results are not straight lines on a log

log graph. This means that simple formulae cannot be derived easily 

covering a wide range of parameters. 

The typical variation with bend angle for A = 0.1 is shown in 

Figure (3.17). This demonstrates how the flexibility reduces with 

bend angle. It can also be seen that flanged bends with a subtended 

angle of less than 45° behave almost like an equivalent straight pipe. 

The variation with radius ratio (~) is also shown in Figure (3.17). 

Here the fall in flexibility as the radius ratio (~) reduces is clearly 

illustrated. 

In Figure (3.18) and (3.19) a comparison is given with Whatham's 

flexibility factors using the present definition of flexibility factor. 

For a bend angle of 180 0 (Figure (3.18» What ham 's results are around 

* Unless otherwise stated, poissons ratio (v) = 0.3. 
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10% higher whereas for a bend angle of 90 0 (Figure (3.19» the dif

ference increases to around 20%. As explained in CHAPTER (2) t the 

present flexibility factors are lower bounds. Whatham's results [171] 

for an unflanged bend agree with solutions obtained from an upper 

bound analysis of the same problem. Therefore, it is to be expected 

that if Whatham's results for a flanged bend are valid then they will 

be greater than the present lower bounds. If the (1- v 2) term in the 

total potential energy of the present solution is neglected, in the way 

it was by many previous authors (see [4]), then the present flexibility 

factors will agree closer with Whatham's results. For the 180 0 and 

90 0 bend, Whatham presented his results for a A range (0.02 - 0.3) 

extending outwith the range of the present solution (A {. 0.07). Hence 

at A values less than 0.07 good comparison is not expected. 

If the scale of Figure (3.17) is altered as in Figure (3.20), a 

comparison with Thomson's results for in-plane bending shows that 

the effect of the radius ratio (R) is not so pronou'nced. Thomson's r , 

flexibility factors for in-plane bending are larger by a factor of approxi-

mately 3. For a value of A = 0.1 the flexibility from a typical no-end 

effect theory such as Elbow [48] is 17.3. Hence, it is clear that the 

use of a no-end effect theory particularly for the case of out-of-plane 

bending of flanged bends greatly overestimates the flexibility factor. 

3.5.1.1 Stress concentration factors 

For a pipe bend with end effects, the stress concentration factors 

(8.C.F.) vary in the meridional and circumferential directions and 

through the thickness. This makes it difficult to present a comprehen

sive stress distribution for all points on a bend. The problem is further 
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complicated by the maximum stresses not being at the same position 

for all bend geometries, making it necessary to examine more than a 

single bend section. Therefore only some typical stress distributions 

will be examined together with the peak stresses for a range of bend 

geometries. 

Due to the lack of available theoretical results, no attempt has 

been made to compare the present results with those of other authors. 

Whatham presented flexibility factors for a limited range of bend 

geometries but failed to present any stress results for out-of-plane 

bending. Comparisons that are made include the A. S • M. E. code for 

peak stress given by equation (1. 25) : 

3.5.4. 1 Meridional stress distribution 

The effect of the radius ratio (~) on the distribution of the meri

dional S.C.F. (a~) at the centre of the bend (6 = 45°) for ex = 90° and 

A = 0.2 is shown in Figure (3.21). As in the Karman analysis, the 

distribution shows four distinct peaks. For (R) = 10, the maximum 
r 

A 

meridional S.C.F. ~ o~) occurs on the outside surface, in the latter 

two quadrants at ~ = 214° and cf> = 326°. The Karman analysis for a 

bend with no end effects predicted the maximum meridional S. C • F. at 

around the same locations (approximately cf> = 204° and cf> = 336°) 

together with two other locations positioned diametrically opposite. 

The present solution removes the equality of the four stress peaks 

displayed by the Karman solution and introduces a difference in those 

appearing between cf> = 0° and 1800 and ~ = 180 0 and 3600 • The value 

of zero stress (and strain) at cf> = ,90 0 and cf> = 270° arises from 
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coincidence of the two symmetries prescribed for the rigid section and 

distortion displacements. As the radius ratio reduces (Figure (3.21» 

the position of the maximum meridional S. C • F. remains essentially 
... 

unaltered however the magnitude of a cp is reduced. 

The distribution of acp at the loaded flange (e = 90 0 ) for a bend 

angle of 90 0 is shown in Figure (3.22). As the radius ratio increases 

from (!) = 2 to (!) = 10 the stress at the flange increase slightly. 

At (R) = 2 the stresses at the fixed flange (e = 00 ) were comparable r 

with those at the loaded flange. Here, however, an increase in (R) 
r 

A 

resulted in a reduction of acp at the fixed flange. 

For a 90 0 bend the position of the maximum ~~ was found to 

lie away from the flanged ends at between e = 45 0 and e = 670 • For 

a 90 0 bend the fixed flange is· subjected to a pure torsional moment 

whereas at the loaded flange a pure out-of-plane bending moment exists. 

This will give rise to less distortion at the fixed flange· and explain 
A 

!the smaller value of a cp displayed at this section. 

The circumferential variation of gCP for a = 1800 and A = 0.1 at 

cp = 202.5 0 is shown in Figure (3.23). Here g ~ occurs at approximately 

e = 500 and e = 1300 from a symmetrical distribution about the bend 

centre (e = 90 0
). Some indication of the symmetry achieved in the 

circumferential direction for act> is also shown.in Figures (3.24) and 

(3.25) • Here, it can be seen that as the bend angle and radius ratio 
A 

increase the magnitude of a~ increases significantly and the magnitude 

of the four stress peaks g<P become similar. They are, however, less 

by a factor of 50% when compared to the Karman type solution [48]. 

For the 1800 bend the mid-section (e = 90 0
) is under a pure torsional 

moment. Around this section the value of a~. was negligible. 
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A 

As in the case of the 90 0 bend, the position of the maximum 0 ~ 

was found to lie away from the flanged ends at between 6 = 45 0 and 

67 0 and e = 1350 and 157°. 

3.5.4.2 Circumferential stress distribution 

Figure (3.26) illustrates the variation of the circumferential 

S. C.F. (oe) with radius ratio (~) around the bend mid-section (6 = 45°) 

for Cl = 90 0 and)" = O.~. For (~) = 10. the maximum circumferential 
... 

S.C.F. (oe) occurs at the outside surface at ~ = 214° and ~ = 326°. 
A 

These locations correspond with the position of a ~ (see Figure (3.21». 

Again the points of zero stress (and strain) can be identified at ~ = 90° 
R ~ 

and <p = 270 0
• As (r-) reduces the value of 06 decreases and moves 

out from the intrados toward the neutral axis of the section. 

A typical distribution around the loaded flange (6 = 90°) for 

a 90 0 bend is shown in Figure (3.27). For (R) = 2 the variation around 
r 

both the fixed flange (e = 00
) and the loaded flange (6 = 90 0 ) was similar. 

As (~) increased, the magnitude of ge around the loaded flange increased 

significantly when compared to the fixed flange or locations along the 

bend. However, as in the behaviour of &~ this increase in (~) reduced 
.. 

the magnitude of ae at the fixed flange. 

A typical variation of oe in the circumferential direction for 

Cl = 180°, ),,= 0.1 and (R) = 10 at <p = 202.5 0 is shown in Figure (3.28). 
r 

A further illustration of the symmetry achieved in the solution is shown 

in Figures (3.29) and (3.30). 
... 

The position of the maximum 06 was found to be dependent on 

R 
the bend geometry. For large values of (r-) and low )" values the 

... 
position of the maximum ae for a bend angle of 900 or less was found 
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to be at the loaded flange. In the case of a 180° bend these parameters 
,. 

caused ae to occur away from the flanges at a position of approximately 

e = 45 0 and e = 1350 along the bend. For all bend angles a small value 

of (!> resulted in comparable values of 5e at the flanges and along 
,. 

the bend. In some instances, however, the maximum value of a e 
A 

remained at the flanges. The changing position of ae from the outside 

surface to the inside surface further complicated matters. So that 

although a clear trena could be identified for the particular range of 

parameters of large (!) and small A, at values outwith this range no 

clear trend was evident. 

3.5.4.3 Shear stress distribution 

The distribution of shear S.C.F. (1e4») at e= 45° for a= 90° and 

A = 0.2 is shown in Figure (3.31). For (R) = 10 and (R) = 2 the peak 
r r 

shear S.C.F. (1eljl ) differ very little. - When compared to ~Ijl they are 

less by a factor of approximately 2. At the fixed flange (e = 0°) the 

distribution of 1eljlis similar (Figure (3.32». However, at the loaded 

flange (e = 90°) the distribution of 1eljl (Figure (3.33» changes to 

give positive and negative values around the section. Here the mag

nitude of ~e<p is greater than ~<p by a factor of approximately 2. 

For a bend angle of 180°, A = 0.1 and (~ ) = 10, the distribution 

of 1 e<p at the fixed and loaded flanges, at e = 45° and 135° and at the 

bend mid-section (e = 90°) is shown in Figures (3.34) to (3.36), respec

tively. Here the maximum ~eljl occurs at the flanges and is comparable 
,. 

with the magnitude of a <p • 

It is interesting to note that at sections where the torsional 

moment predominates the distribution of 1 e<p is essentially uniform 
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around the section whereas at locations where the out-of-plane bending 

moment predominates, such as at the loaded flange of a 90 0 bend and 

both flanges on a 1800 bend, the distribution of ~ e ~ becomes cyclic 

around the section. 

3.5.4.4 Maximum S. C.F. 

Maximum meridional S. C. F. 

... 
Maximum meridional 8.C.F. (a~ ) for bend angles of 1800 , 900 .-

and 450 are given in Figures (3.37) to (3.3.9). Each figure contains 

curves for (!) = 10, 5, 3 and 2. The values of ~~ occurred at between 

approximately e = 45 0 and 6 = 67 0
• For a bend angle of 180 0 these values 

appeared symmetric about the bend centre (e = 90 0 ). Note that for 
A 

(l = 450 the position of o~ occurred at approximately 6 = 300 • For 

(l = .180° at low values of (~) the magnitude of g~ decreases once A 

is less than approximately 0.2. As the bend angle reduced this behav

iour became more evident over a larger (R) and A range. For most 
r 

bend geometries the A.8.M.E. code for peak stress is lower than the 

present results. 

Maximum circumferential S. C. F. 

... 
The maximum circumferential 8.C.F. (a6 ) for a variety of loca-

tions around the bend are given in Figures (3.40) to (3.42) for bend 

angles of 1800 , 90° and 45°, respectively. Unlike the curves for flexi-
... ... 

bility factor and maximum meridional 8. C • F. (0 ~ ) the curves for a e 

cross each other. This change over in position arises from a change 
... 

in the meridional and circumferential position of the maximum ae. 
For (l = 90° the value of ;6 changed little with (~) at A values less than 
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0.2. For ex = 45° this was also the case although here at low values 

of (~) a reduction in A caused a reduction in ~e' Again, for most 

bend geometries the peak stress given by the A. S.M.E. code was found 
.. 

to underestimate ae· 
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3.6 General Comments on the Results 

The results presented in this section were based on a solution 

employing essentially only the assumptions of thin shell theory to solve 

the problem of a smooth pipe bend with rigid flanges under out-of

plane bending. The resulting flexibility factors are a lower bound 

on the stated problem. In practice, however, flanges are not completely 

rigid, making the bend flexibility slightly higher. Hence the present 

results should also be a lower bound on the "real" problem. Further 

comment regarding the rigidity of the flanges will be made in CHAPTER 

(4) where the present results for flexibility and stress are compared 

with experiment. The results clearly show that' for out-of-plane bend

ing the flexibility factor is greatly reduced when compared to Thomson's 

results for in-plane bending for the same problem. A typical comparison 

of the stress distributions for the present solution and that of Thomson's 

(Figure (3.43» also shows that in out-of-plane bending the peak 

stresses can be reduced by approximately half. Pure torsion of a thin 

walled cylinder results in a shear stress and a circumferential stress 

tending to shorten the length. In a curved tube with both bending 

and torsion varying along the length the behaviour is more complicated. 

However, the general trend of the stress distributions found by Thomson 
.. 

is also reflected in the present results. For both loading cases, 0<1> was .. 
found to lie along the bend whereas the position of ae was dependent 

on the bend geometry. This latter aspect has important implications 
,. 

in design as the maximum value of oe occurring along the bend does 

not necessarily represent the true maximum. 
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ABSTRACT 

Details are given of out-of-plane bending tests performed 

on a 90 0 and a 1800 flanged bend. 

The theory developed in CHAPTER (3) is compared against 

the experimental flexibility and stress factors obtained by 

present and past authors. 
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·4.1 Present Experiments 

4. 1. 1 Introduction 

This chapter presents the results of experiments conducted 

on flanged bends subjected to out-of-plane bending. The main purpose 

of the work was to confirm the theoretical general solution presented 

in CHAPTER (3). However, as a result of the lack of detailed experi-

mental results on flanged bends under out-of-plane bending, no serious 

attempt has been made to compare the present results with that of other 

work. Ideally, this necessitates a test program considering a comprehen

sive set of bend parameters and as this was not possible careful con-

sideration had to be given to the choice in bend configuration. 

In the manufacture of the bends, forged bends were chosen 

because of their small manufacturing tolerances for out-of-roundness 

and thickness variations. From practical considerations in testing 

the pipe diameters and bend radii had to be sufficiently large to allow 

attachment and accurate positioning of strain gauges in the meridional 

( 4» and circumferential ( e) directions. Further, to confirm converg

ence of the theoretical solution low pipe factors (A ) and different bend 

angles (a) were required. 

From these considerations, two carbon steel bends were selected: 

1. Bend No. 1 a = 90 0 A = 0.17 R = 1.89 
r 

Bend No. 2 a = 1800 
, A = 0.25 

R _ 
2. - - 2.84 r 
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'I. 1.2 Specimen details 

The two bend types chosen were supplied by MUNRO and MILLER 

[233] and manufactured in accordance with British Standard, BS 1640 

[234] and American Standard, ANSI B16.9 [235]. All welds were x-

rayed and both assemblies were stress relieved. 

Details of each bend are shown in Figure (4.1) and Figure (4.2). 

The use of a "taper" or "weld-neck" flange and the "slip-on" flange 

commonly used on straight pipes was based upon advice suggested 

by the manufacturer. Industrial practice tends to favour the taper 

flange for direct connection to pipe bends. The theoretical solution, 

however, relates more to the slip-on flange termination. As such, 

both types of termination were incorporated in each bend. 

The external pipe diameters between <j> = 00 and <j> = 1800 and 

between <j> = 90 0 and <j> = 270°, at the bend mid-section (6 = 900), 

were measured with a micrometer and found to be 6.625 in. and 6.617 

in. respectively for bend No.2. These are well within the permitted 

tolerance from the above codes of +0.094 in. and -0.0625 in. and give 

an ovality' of better than 0.998. 

Wall thicknesses were measured around a section at approximately 

6 = 130° (close to the slip-on flange) for bend No.2 and are given 

in the following table: 

<j> Thickness (in) <j> Thickness (in) 

0° 0.280 180° 0.285 

45° 0.285 225° 0.280 

90° 0.290 270° 0.280 

135° 0.285 3150 0.280 
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These are well within the limits of +0.0625 in. on wall thickness allowed 

by the codes. 

A similar dimensional survey was carried out on bend No.1, 

which was also found to be within the above variations. 

Accordingly, results presented herein will be based on the manu

facturer's nominal dimensions which are as follows: 

Outside R 
Bend pipe Bend Wall - ex 
No. diameter radius thickness r 

(in) (in) (in) 

1 6.625 6 0.28 1.89 900 0.17 

2 6.625 9 0.28 2.84 1800 0.25 

4. 1.3 Details of test rigs 

The test rigs were intended rprimarily for elevated temperature 

tests on tangent bend assemblies and are described more fully in 

CHAPTER (5). However, in the design of the test rigs consideration 

was also given to the testing of flanged bends so that both types could 

be easily accommodated. 

The general layout for bend No. 1 is shown in Figure (4.3). 

The bend was bolted to a 1 in. thick plate mounted on two channel 

sections secured to the floor. A 6 ft and 4 ft long straight pipe with 

flanged ends were bolted to the free end of the bend. The use of two 

straight sections was to allow the standard out-of-plane loading points 

to be adopted. Loading of the bend was achieved using turn-buckles 

and previously calibrated load cells attached to the straight pipe at 
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two points as shown in Figures (4.3) and (4.4). This configuration 

allowed the application of two equal and opposite forces resulting in 

a pure out-of-plane bending moment. 

For bend No.2 the general layout is shown in Figure (4.5). 

Here the bend was bolted to a substantial base incorporated in the test 

rig (Figure (4.6». The loading system was essentially the same as 

that used in bend No. 1 giving a pure out-of-plane bending moment. 

4. 1. 'I Strain gauging and instrumentation 

The measurement of surface strains, for both bends, was 

accomplished using electrical resistance strain gauges temperature 

compensated for mild steel. Details of the gauges were as follows: 

Type: SHOWA NII-FA5-120-16 

Gauge length: 5 mm 

Nominal resistance: 120 n 

Gauge factor: 2.10 

In order to obtain a reasonable experimental stress distr.ibution 

from bend No.1, a total of 86 strain gauges were employed. These 

were located in pairs on the outside surface of the bend, orientated 

along the principal bend axes, at the positions shown in Figure (4.7). 

For bend No.2, a total of 54 strain gauges were employed at 

the positions shown in Figure (4.8). 

The strain gauges were read at each load step using an ELCOMATIC 

data logger linked to an APPLE computer. The gauge readings obtained 

from the data logger in nl n x 10-:5 were stored in the computer for sub-

sequent use. CorreCt strain" values were obtained by dividing the 

gauge reading" by the gauge factor x 10 (to give II e:). 
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4. 1. 5 Evaluation of stresses 

The actual value of strain was computed from the slope of a best 

fit straight line. This was accomplished using the APPLE computer 

on the stored data. The method was not relied on completely and each 

set of gauge readings were checked visually using a graphics routine, 

removing spurious readings where required. The first point at zero 

load was frequently found to effect the slope of the best fit line and 

as there was no requirement for this line to pass through the origin 

this point was neglected. 

A typical example of the response of a pair of gauges from bend 

No. 1 is shown in Figure (4.9). 

The software employed on the APPLE computer used a regression 

analysis [216] whereby the linear equation between strain e: and moment 

M at lin" points is written as: 

e: = a + bM 

n 
where b = 1 [M.-Nt] [e:.- €] 

. 1 "1. 1 
1= 

n _ 2 

I£lVIcM] 
i=l 

n n 
a = [ I e:, - b I Mi ] 

i=l 1 i=l 

nM' - ~ 1 M = L-
'1n 1= 

n 

n e:' _ \' 1 
e: = L

'1n 1= 

(4. 1) 

• • • (4. 2) 

The strain at any load level is found from the product of M and b. 

The corresponding stresses for each gauge was obtained from 

the normal stress-strain relationships for a thin shell, e. g. : 
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• • • (4. 3) 

where Young's Modulus, E, was taken a 30.0 * 106 lbf/in 2 and poisson's 

ratio, \), as 0.3 [236]. The stress concentration factors (S. c . F • ) 

were then found from: 

S.C.F. = [~] • • • (4. 4) 

The out-of-plane bending moment, M, was taken as that at the loaded 

flange. For both bends this was defined as: 

M = P xL 

where P = applied load (Ibf) 

L = distance between applied loads = 43 in. • • • (4. 5) 

4. 1.6 Flexibility measurement 

The flexibility of the bends was determined by measuring the 

rotation between the flanged ends using dial gauges. 

On bend No. 1 this method employed two dial gauges bearing 

on an extended arm attached to the loaded flange as shown in Figure 

(4. 10) • For the loaded end, which is subject to a pure out-of-plane 

bending moment, the end rotation can (YL) be evaluated from: 

6d - 6d2 Y = tan -1 [1 ] radians 
L LL 

where Ad 1 = displacement recorded by dial gauge No. 1 

Ad 2 = displacement recorded by dial gauge No.2 

LL = fixed distance between dial gauges. • • • (4. 6) 
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The fixed end on bend No.1 is subject to pure torsion. Here the rota-

tion was measured using one dial gauge as shown in Figure (4.10). 

This rotation (YF) was determined from: 

YF = 6 d3 radians 
LF 

where 6d3 = displacement recorded by dial gauge No. 3 

LF = distan'ce from centre of bend section to point of 
measurement 

The overall rotation (y) of the bend was then found from: 

(4.,7) 

• • • (4. 8) 

The flexibility factor, K, was calculated from: 

y 
K = 

[MRCl] 
EI 

where M is that given by equation (4.5). 

. . . (4.9) 

The rotation between the ends of bend No. 2 was measured using 

a similar technique. Here, however, both ends of the bend are subjected 

to a pure out-of-plane bending moment so that the method given by 

equation (4.6) is applied at both ends of the bend. 

In the measurement of rotation on bend No. 1 the small rotation 

of the loaded end was comparable to that of the fixed end. As such 

some doubt exists about the accuracy of the flexibility factor although 

it is given later. 
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4. 1. 7 Results 

The stress and strain factors evaluated for bends No. 1 and 

No.2 are given in Tables (4.1) and (4.2) respectively. 

The experimental value of flexibility factor for both bends was 

determined as: 

Bend No.1, K = 0.33 

Bend No.2, K = 2.34 

These values are based on best fit straight lines for bends No. 1 and 

No. 2 as shown in Figure (4.11) and Figure (4.12) respectively. 

Detailed comparison of the results with the theory will be made in the 

following sections. 
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TABLE (4.1): Experimental results for bend No. 1. 

(*** = faulty gauge) 

Strain Meridional S. C ., F • Strain Circumferential S. C • F • 
gauge gauge - - - -. number €~ a~ number €e ae 

1 +0.01 -0.01 0 -0.01 +0.01 
3 +0.60 +0.06 2 -0.13 +0.62 
5 0.00 +0.09 4 +0.08 +0.03 

7 -0.12 -0.09 6 -0.05 -0.14 
9 +1.44 +0.19 8 -0.26 +1.15 

11 -0.05 +0.01 10 +0.02 -0.05 
13 +0.88 +0.37 12 -0.60 +0.77 
15 -0.65 -0.21 14 0:.00 +0.71 
17 +1. 39 -0.22 16 -0.62 +1.33 

19 -0.13 -0.37 18 -0.29 -0.24 
21 +0.49 +0.32 20 +0.14 +0.59 
23 +1. 22 +1. 27 22 +0.79 +1.60 

25 *** *** 24 *** *** 
27 +1. 25 -0.19 26 -0.55 +1.19 
29 +0.27 -0.81 28 -0.81 +0.03 

31 -0.36 -0.32 30 -0.19 -0.45 
33 -0.03 -0.18 32 -0.15 -0.09 
35 -0.08 +0.02 34 +0.04 -0.07 
37 +1.09 -0.07 36 -0.39 +1.08 
39 +1.03 0.00 38 -0.31 +1.03 
41 +0.63 +0.09 40 -0.11 +0.66 

43 +0.09 -0.15 42 -0.16 +0.04 
45 -0.84 -0.59 44 -0.28 -1.02 
47 +0.38 +0.20 46 +0.06 +0.44 

49 *** *** 48 +0.23 *** 
51 +0.09 +0.19 50 +0.14 +0.15 
53 -0.60 -0.45 52 -0.23 -0.74 

55 +0.05 -0.02 54 -0.03 +0.05 
57 -0.52 +0.04 56 +0.19 -0.51 
59 +0.05 -0.02 58 -0.03 +0.05 

61 -0.57 +0.27 60 +0.41 -0.49 
63 0.00 -0.07 62 -0.06 -0.02 
65 -0.73 +0.45 64 +0.63 -0.60 

67 +0.39 +0.27 66 +0.78 -0.59 
69 -0.76 +0.61 68 +0.78 -0.59 
71 -1. 38 -1. 55 70 -0.99 -1.85 

73 +0.04 -0.06 72 -0.06 +0.02 
75 *** *** 74 +0.85 *** 
77 +0.05 -0.03 76 -0.04 +0.04 

79 -1.19 +0.61 78 +0.91 -1.02 
81 +0.05 -0.04 80 -0.05 +0.04 
83 -1. 49 +0.39 82 +0.80 -1.38 
85 -1.38 +0.01 84 +0.42 -1.37 
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. TABLE (4.2): Experimental results for bend No.2. 

Strain Meridional S. C • F • 
Strain Circumferential S.C.F. 

gauge - - gauge - -number E:cp acp number Ee ae 

0 +0.14 +0.17 1 +0.05 +0.10 
2 +0.22 +0.23 3 -0.05 +0.02 
4 +0.29 +0.28 5 -0.11 -0.02 

6 0.00 -0.10 7 -0.31 -0.34 
8 -0.27 -0.36 9 -0.19 -0.31 

10 -0.27 -0.25 11 +0.15 +0.08 

12 +0.15 +0.25 13 +0.26 +0.34 
14 +0.28 +0.36 15 +0.14 +0.25 
16 +0.23 +0.28 17 +0.09 +0.18 

18 0.00 -0.02 19 -0.04 -0.04 
20 +0.50 +1.21 21 +2.44 +2.63 
22 +0.07 +0.07 23 -0.03 -0.01 

24 +0.11 +0.10 25 -0.06 -0.04 
26 -1.23 -0.85 27 +1.53 +1.28 
28 +0.08 +0.03 29 -0.18 -0.18 

30 -0.39 -0.43 31 0.00 -0.13 
32 +0.05 +0.12 33 +0.20 +0.24 
34 +0.13 +0.14 35 0.00 +0.04 

36 +0.57 +0.73 37 +0.31 +0.53 
38 +0.88 +0.51 39 -1.41 -1.26 

·40 -1. 57 -2.04 41 -0.92 -1.53 

42 +0.18 +0.22 43 +0.08 +0.15 
44 +1.64 +2.22 45 +1.24 +1.91 
46 -1. 33 -1.06 47 +1.20 +0.89 

48 -0.32 -0.56 49 -0.63 -0.80 
50 +0.06 +0.05 51 -0.05 -0.04 
52 +0.16 -0.27 53 -1.36 -1.44 



235. 

4.2· Comparison of Flexibility Factors from Theory and Experiment 

• > A comparison of the experimental flexibility factors for bend 

No'. 1 and No.2 with that of the present solution is given in Table 

(4.3). The experimental flexibility factor for bend No.1 (a = 90°) 

is much lower than the present theory. As explained earlier some doubt 

exists about its accuracy. For bend No.2 (a = 180°) the experimental 

value is around 30% higher than that predicted by the present theory. 

TABLE (4.3): Comparison of experimental and theoretical flexibility 
factors. 

Bend (R) K K 
No. a . Experiment Present theory r 

1 90° 0.17 1.89 0.33 1.38 

2 1800 0.25 2.84 2.34 1. 77 

Differences between the "real" flange and that employed in the math

ematical model of the bend can give rise to the experimental value being 

higher. It is difficult, however, to·estimate the degree of restraint 

provided by the flanges in the present experiments although the use 

of a taper flange is expected to result in some reduction in restraint 

with a consequent increase in flexibility. With this in mind, and also 

the fact that the present solution represents a lower bound, it is con

sidered that the comparison with theory and experiment for bend No.2 

is favourable. 

Although no valid experimental result is presented for bend No. 1 

(a = 90°) a comparison (Figure (4.13» with Whatham's theory, the 

present solution and the experimental results of Pardue and Vigness 
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. [126]:for a. = 90 0 and (R) = 3 show a similar trend tothat found here 
r 

for bend No.2. In [126] only the flexibility results for a flanged 90 0 

- ""'--

, 
bend were presented. The results of Pardue and Vigness are between 

20-30% higher than Whatham's theory, which in turn is around 20% higher 
, , 

than the present solution. The higher experimental results can be 

explained partly by the fact that the results of Pardue and Vigness 

were based on average values. In [134], however, Thomson expresses 
, " 

some doubt regarding the effectivness of their flanges which for certain 

geometries must have been little thicker than the bend wall. 
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4. 3 . Stress Distributions 

4. 3. '1 Bend No. 1 (a = 90 0
) 

The experimental meridional (a4» and circumferential (aa) 

. S.C.F. around the bend mid-section (e = 45 0 ) are shown in Figures 

(4.14) and (4.15) respectively. Both show good agreement with the 

present theory. A comparison of these results and that from a typical 

no-end effect theory [48] is shown in Figure (4.16). This clearly 

illustrates the over-estimation in stress levels predicted by the no-
... 

end effect theory which for a~ is greater than a factor of 3/. 

The distribution around the fixed (a = 0°) and the loaded end 

(e = 90°) is shown in Figures (4.17) and (4.18) respectively. In both 

cases the results show remarkable agreement with the present theory 

being apparently unaffected by the different .type of flange restraints 

at each end of the bend. 

4.3.2 Bend No.2 (a = 180°) 

The experimental meridional (cr'cp) ~nd circumferential (aa) 

S ~ C.F. around the bend section at a = 45° are shown in Figures (4.19) 

and (4.20) respectively. As in the case of bend No.1, both show 

good agreement with the present theory. Due to the larger A value 

these results show a better comparison (Figure (4.21» with that of 

a typical no-end effect theory [48] which is dependent totally on A. 

The distribution of a ~ and a a around the fixed end and the 

loaded end is shown in Figures (4.22) and (4.23) respectively. These 

results also show good agreement with the present theory. 
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PART 2 

EXPERIMENTAL WORK AT ELEVATED TEMPERATURE 

ON PIPE BENDS WITH TANGENT END CONSTRAINTS 



262. 

CHAPTER 5 

General Description of Experimental 

Creep Programme 
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, ) 

, , 

ABSTRACT 

'A, 'general description is given of an experimental creep programme 

conducted on a number of stainless steel pipe bend assemblies. 

Details of the test programme and the results of a mensuration exercise 

carried out on the pipe bend are presented. 

A 'description is then given of the test equipment covering the measure

ment of displacement and strain at room temperature and elevated tem-

pe;ature (570 0 C). 

Problems encountered in the experimental field are highlighted and 

,B. brief description is given of the development in experimental techniques. 
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5. 1: General Purpose and Background of the Test Programme 

S. 1.1 "Introduction 

This chapter presents a general description of the work under-

taken by this author on an extensive experimental creep programme 
. 

on pipe bends. The experimental work represents a continuation of 
" 

earlier work carried out at the University by SPENCE ana BOYLE [23:7} 
1 ,. 

and later in a pilot scheme by SPENCE, BOYLE and RAE [238] and 

is largely a consequence of the theoretical work of Spence and Boyle 

typified in [121] and more recently in [239] and [240]. 

The main interest in this text will be focussed on the establish-
c. . 

ment of testing facilities and the development and application of new 

and existing techniques in the measurement of strain and other related 
, > 

. aspects, at elevated temperature. 

During the pilot scheme [238], which employed seven stainless 

steel, type 316, schedule 10 and 40 pipe bend assemblies, only a few 
. \ ! 

creep fests were conducted. In this programme the emphasis was placed 

on the development and establishment of experimental techniques • 

. However, a large number of room temperature elastic tests were con-
, 

ducted on these assemblies. In these tests the loading conditions 

covered in-plane and out-of-plane bending, internal pressure and a 

combination of these three loadings. 

In the main creep programme, which utilised the techniques 

developed during the pilot scheme, a total of ten stainless steel, type 

316, schedule 10 and 40 pipe bend assemblies were used. In this test 

pro'gramme a variety of elevated temperature tests were performed. 

These; comprised forward creep tests under in-plane bending, out

of-plane bending and combined bending and creep relaxation tests 
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under in-plane bending. Elevated temperature plastic collapse tests 

were also performed on a number of the bend assemblies. This creep 

programme is still in progress and it is expected that all the pipe bend 

. assemblies will be tested at elevated temperature. 

: "As an integral and important part of both test programmes a 

series .of uni-axial tensile tests at elevated temperature was also 

initiated. The purpose of these tests is to provide data on the material 

properties at temperature. This in turn permits suitable constitutive 

equations to be employed in the analytical work. The importance of 

these tests cannot be over-emphasised as the use of improper parameters 

in the constitutive equation in even the most sophisticated of analytical 

methods can lead to spurious results and poor comparison with experi

ment. 

In both the pilot scheme and the main creep programme three 

bend angles of 1800
, 90 0 and 450 were used having A values of 0.11 

. and 0.25. The test ,temperature adopted was 5700 C. 

The experimental work was closely associated with the nuclear 

industry being funded by the United Kingdom Atomic Energy Authority 

(UKAEA) • 

s. 1. 2 . Purpose of the tests 

.. ' -'As mentioned briefly in CHAPTER (1), the public demand for 

increased safety and the inherent danger of failure of a component 

in a nuclear piping system has led to the need for a more detailed under-

. 'standing of the stress and resulting failure mechanisms in these com

ponents under load [241]. This is further complicated by the fact that 

these' components are operating at a temperature where material creep 

becomes a problem. 
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. : The analysis of the pipe work system associated with the heat 

transport system poses particular problems for the engineer over and 

. above those of thermal and fluid dynamics (see [242-247]). This is 

due not only to the geometrical complexity of the piping system but 

also to the unavoidable variation in material properties throughout. 

Apart from the general problem of creep, this desire for high 

structural integrity in the piping system has introduced a variety of 

further failure mechanisms and ultimate load criteria. Typical examples 

of this are the "pipe whip" problem, aircraft impact on a nuclear power 

installation and seismic loading effects (see [248-252]) • 

. ,The bend assemblies employed herein on the creep programme 

are in fact one-fifth scale models of the components used in the secondary 

sodium circuit of a typical Liquid Metal Fast Breeder Reactor (LMFBR). 

Pipe bends introduced in such systems for practical convenience 

. in the layout or specifically to absorb expansion in the system will 

obviously require particular attention due to the high stress concentra

tions set up in such components under load. Indeed, they play an 

important and critical role in the operation of the system representing 

in many instances a substantial proportion of the capital cost of the 

plant. 

The diversity in loading experienced by these components and 

the severe consequences of failure gives some indication of the complex

ities facing today's engineer in the design of a nuclear power installation 

piping system. The complexity and size of the problem naturally calls 

for considerable simplifying assumptions to be made. The results from 

such a simplified analysis require to be validated in some manner to 

ensure that the predicted behaviour of a single component, such as 
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the pipe bend case considered herein or a more sophisticated and 

. realistic combination, is representative of the actual behaviour of the 

comp,oIlent. This in essence is the purpose of the creep tests described 

herein ~.. The experimental work itself, however, also requires some 

form of validation, i. e. is the strain being measured accurately, is 

the. temperature distribution and loading representative of the actual 

s~tuation and furthermore, and perhaps more importantly, does the 

pip~. bend model under test correspond to the mathematical model employed 

in the simplified analysis • 

. ' .. Thus the object of the creep testing is seen to be essentially 

two-fold and can be summarised as follows: 

1. The techniques of creep testing were to be fully 

investigated and established. This task was 

accomplished during the pilot scheme. 

2. Preliminary information, based on sound experi

mental results was to be obtained to aid further 

the development of simplified analytical methods. 

This data would be sought from the main creep 

programme. 



269. 

5. 1.3 Current developments in theory and experiment 

, : " In the analysis of piping systems subject to plasticity and creep, 

two distinct approaches to the problem are currently being pursued. 

These 'are discussed more fully in the work of Boyle ';and', Spence' 

[121].' In the first method, the finite element method is employed with 

beam elements representing the straight sections of pipe and special 

"pipe bend elements" representing the elbows. This approach was 

pioneered in the Marc [i66I, general purpose finite element package. 

The pipe bend element employed was, however, the subject of m~ch 

criticism, for example, it did not account for the restraining effect of 

tangent pipes. Following this a number of improved elements were 

developed. These are employed in the Abaqus (108), system" in Adiria: 

[81] and Paula '8Z-[82]. ' 

" ',,~. The second approach attempts to extend the well-established 

linear elastic techniques which employ factors' on beam elements to account 

for the additional flexibility of the pipe bends. However, early attempts 

at general purpose computer codes using this approach are deficient 

in several respects. For example, PACE 2 [253] addresses only the 

two anchor problem and simple loading cases, PIRAX 2 (254) is based 

on an inadmissable assumption regarding decomposition of the loading 

effects. Nevertheless, in terms of cost this approach is attractive 

and is being pursued at an international level by the French with the 

TEDEL [255] program and by the Japanese with PISAC [256]. The 

m'etliod, however, is not yet at a stage where localised accumulation of 

strain can be accurately quantified. 

, " ~'As discussed earlier, these simplified forms of analysis require 

some form of validation. The accuracy of the analysis must be gauged 
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by verification and qualification against what has become termed "bench

mark" solutions, these being good experimental results on piping com-

, ponents under load at elevated temperature. However, owing to the 

high cost and inherent difficulties only a few tests have been conducted 

on pipe bends. The bulk of those that have been performed have been 

aimed principally at benchmark solutions. For example, the tests con-

ducted -by Griffith' and' Rodabaugh [115] were 'aimed at verifying 

the program Pirax 2. 

In an attempt to co-ordinate the efforts of the various countries 

involved in this work, several organisations have been set up such 

as' the International Working Group on Fast Reactors (lWGFR) and the 

Pressure Vessel Research Committee (PVRC), both based in the U. S • A. 

Working in collaboration with Commissarait a l'Energie Atomique Centre 

d.'Etudes NucMaires in France (CEA), Power Reactor and Nuclear Fuel 

Development Corporation in Japan (PNC), Central Electricity Generating 

Board in the U.K. (CEGB) and Battele Laboratries, U.S.A., these 

organisations have established a series of benchmark problems to be 

used in the development 'of suitable analytical procedures and techniques 

in the analysis of piping systems. 

'" ',,' In a recent IWGFR study compiled by Oak Ridge National Laboratory 

[257], three tests on in-plane bending were considered. Two of these 

tests [115] and [116] were conducted at elevated temperature on 90 0 

bends. In the third test, contributed by BROUARD, ROCHE and 

VRILLON, the room temperature elastic-plastic in-plane bending of 

a 1800 bend was examined. A similar task was performed by PVRC [124]. 
I 

In this study, the elastic-plastic-creep analysis of piping elbows was 

.. identified as one of four critical problems in the field of elevated tem

perature design. A report on this study is to be published shortly. 
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In a recent report by IMAZU, NAGATA and SATO [258] a large 

number of elevated temperature tests on piping components, completed 

and proposed, are presented. This work is part of an extensive re

search and development program currently being undertaken by PNC 

for'the requirements of the LMFBR. 

More recently in a paper by FORTMANN [259] a general descrip

tion'is given of the experimental set-up for proposed elevated temperature 

tests on a full size 90° bend. This work is part of a research programme 

b'ein'g undertaken by Internationale Atomreaktorbau (lNTERATOM) in 

West Germany. 
, ;,. ~ 

The introduction of nuclear power has clearly resulted in signif-
, " 

icant development in the theoretical and experiment field of piping 

systems. This increased activity in research is also expected to be 

reflected in the design of the more conventional, low temperature pipe

work systems. However, in the continuing development of an analysis 

procedure, Boyle and Spence [121] express a word of caution in the 

use of benchmark solutions. Benchmarks are considered as necessary 

but not sufficient to establish the validity of an analysis and care should 

be exercised in the comparison between different analysis, which from 

the theoretical standpoint could be totally different. 
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5.2 Details of Pipe Bend Assemblies 

, 5. 2. 1 General description 

In order to satisfy the interest of the fast reactor secondary 

sodium' circuit pipework, the bend geometries were required to lie within 

the range of diameter I thickness ratio of 40 to 80 and A values in the 

range 0.1 to 0.3. For this purpose two bend types of schedule 10 

(A = 0.11) and schedule 40 (A = 0.25) were chosen with bend angles 

. of 1800 ,"90 0 and 450
• 

, The pipe bend assemblies were made up of a 24 in. tangent 

(stra!ght) - a 6 in. nominal bore bend -,24 in. tangent, manufactured 

, from stainless steel type 316, each tangent being terminated by 1 in. 

thick carbon steel flanges. An illustration of the bend assemblies is 

shown in Figure (5. 1) • 

Based on nominal dimensions, the sectional properties of the 

two bend types of schedule 10 and schedule 40 were as follows: 

1. Schedule 10 

bend radius 

outside pipe section diameter 

wall thickness 

:'~n~minal pipe section radius 

second moment of area 

section modulus 
• I 

pipe factor 

radius ratio 

, .. , tangent length/r 
, , , 

R 

D 

t 

r 

I 

Z 

A 
R -r 

= 9 in. 

= 6.625 in. 

= 0.134'in. 

= 3.2455 in. 

= 14.39 in~ 

= 4.34 in~ 

= 0.11 

= 2.77 

= 7.39 
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2.. Schedule 40 

, .' . bend radius 

outside pipe section diameter 

, wall thickness 
~ •• ~ " ., / >' • 

. nominal pipe section radius 

second moment of area 

section modulus 

pipe factor 

radius ratio 

tangent length/r 

R = 9 in. 

n = 6.625 in. 

t = 0.28 in. 

r = 3.1725 in. 

I = 28.09 in. ~ 

Z = 8.48 in.3 

= 0.25 
R 

2.84 - = r 
= 7.56 

Details of the bend assemblies chosen for the pilot scheme and the main 

, creep programme were as follows: 

1. Pilot scheme 

Bend number 1 2 3 4 5 6 7 

Bend angle 1800 1800 900 900 1800 900 450 

. Schedule 40 40 40 40 ' 10 10 10 
, . 

, , 

, '. TABLE (5.1): 
» 

" 
2 •. Main creep programme 

, . 
,\ -.' ',-

Bend number 1 2 3 4 5 6 7 8 9 10 

"Bend angle 1800 1800 900 900 1800 1800 900 900 450 450 

, , ~ ; 

Schedule 40 40 40 40 10 10 10 10 10 10 

TABLE (5.2) : 
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Th~ bend assemblies were manufactured by Munro and Miller 

Fittings Ltd [233] from commercial straight and curved tubes using 

maximum curved segments of 90 0 • The quality control on fabrication 

and subsequent heat treatment were defined as fOllows: 

, 

1. 

2. 

3. 

4. 

5. 

All welding in accordance with A.S.M.E. Section 3. 

All external welds except fillet welds to be ground flush. 

Penetration of inside weld bead to be kept to a minimum. 

Fillet welds between flanges and pipe to be dye-penetrant· 

checked. 

Assembly to be heat treated to 10500 C for 20 mins then 

cooled in air and pickled prior to fitting of the flanges. 

,I. 6. 100% x-rayon all stainless steel butt welds. 

s. 2. 2 Mensuration of bend assemblies 

During the fabrication of the bend assemblies for the pilot scheme 

there was no special liaison between the manufacturer and the University. 

This arose from a lack of full-time staff employed on this particular 

research contract during the early stages. As a result of this, signif

icant distortion was observed on some of the bend assemblies. This 

was particularly evident around the butt welds and arose from the weld

ing and bad matching of the straight and curved components. 

In the main creep programme on which two full-time staff were 

employed, every effort was made to avoid this problem. This was 

accomplished in a bend matching exercise prior to fabrication of the 

assemblies. This operation, carried out at the manufacturer's, resulted 

in a significant improvement of the bend profile, particularly around 

the butt welds. Initially, it was intended that wall thickness and diameter 
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measurements taken by the manufacturer would be the basis of this 

matching exercise, but it was found to be more practical to physically 

match each bend component on the work bench. As a result of the 

good· fit obtained on the first 1800 bend assembly, using two 900 curved 

segments, it was decided to adopt this option as opposed to employing 

two 45 0 and one 90 0 curved segments. Although this option retained 

the central butt weld it was hoped that careful supervision of the final 

grinding would produce a minimal discontinuity and possible use of 

this section for instrumentation. Fuller details of this work are reported 

in [260]. 

Following the fabrication and delivery of these bend assemblies, 

a comprehensive mensuration exercise [261] was carried out. The 

main· measurements taken along the bend and the tangent included: 

1. ovality 

2. wall thickness 

3. outside diameter 

In the measurement of each bend assembly the work was divided into 
I 

two main stages: 

1. the marking off and measurement of ovality; 

. 2. the measurement of outside diameter and wall thickness. 

Using a surface table, the marking off operation was carried out by 

l~ying out each bend upon a template shape drawn on hardboard. This 

allowed a best fit to be obtained in terms of the bend angle and length 

together with section marks at ~ = 90 0 and ~ = 270 0 along the extrados 

and intrados, respectively. To establish the corresponding section 

marks at ~ = 0° and 4> = 1800
, the instrument used in measuring ovality 
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was employed (Figure (5.2». Scoring of the outside surface was 

prevented by painting each assembly with a white emulsion. Following 

this the outside diameter was measured using a 7 in. micrometer. Wall 

thickness measurements were taken using an ultrasonic instrument -

KRAUTKRAMER-BRANSON Model CL204. 

In order to achieve the correct orientation regarding dimensions 

and' also identification, each assembly was clearly marked on the out

side edge of one flange. 

Ovality measurements made were via the special instrument which 

is' - shown in Figure (5.2). These were taken around each bend at 

15°, intervals circumferentially and at 10° intervals meridionally. On the 

tangents this was done at 100 intervals meridionally and at the following 

circumferential sections: 

1. For a 180 0 assembly, at sections 2,4,18,20 (see Figure (5.3». 

2. For a 90 0 assembly, at sections 2,4,12,14 (see Figure (5.4». 

3. For a 45° assembly, at sections 2,4, 9,11 (see Figure (5.5». 

The measurement of wall thickness was taken at 150 intervals circum-

ferentially and 45° intervals meridionally. On the tangents this was 

done again at 450 intervals meridionally and on the same sections used 

in ovality. 

Outside diameters were measured at 15° intervals circumferentially 

and on the principal diamters of <I> = 0°/180° and <I> = 90° 1270°. The 

same procedure was carried out on the tangents at the same sections 

used in ovality measurements. The ovality measurements enabled a 

further 16 diameters to be derived at 100 intervals meridionally. 
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In order to cope with this vast amount of data, e.g. nearly 800 

readings for a 1800 bend assembly, the information was computerised 

• using a TEKTRONIX 4051. This allowed a graphical representation 
\ . . 

of theovality measurements and a clearer presentation of the results 
• 

overall. ,Typical results from a 1800 bend are given in APPENDIX (6) • 

. 'J.,. general indication of the dimension tolerances achieved is given 

in Table (5.3). To some extent these values represent a "worst case", 

bearing in mind that they are for the centre section of each bend, 

where for example in a 1800 assembly this section is represented by 

. a meridional butt weld . 

. ' Overall the circularity was good and appeared satisfactory, partic

ularly around the bend. This was due in part to the method of manu-

. facture using rolled plate and a circumferential weld to form the bend • 
. , 

In :wall thickness the variation was generally above the nominal. The 

worst cases as mentioned were invariable at the meridional butt welds 

where the actual measurement became le;ss certain. 



TABLE(5~3): Mid-bend dimensions. 
, 

,,' 

" -.' , " 

Bend number 

No. 1 - 1800 - Sch 40 
Section No. 11 

No. 2 - 1800 - Sch 40 
Section No. 11 

No. 3 - 900 - Sch 40 
Section No. 8 

No. 4 - 900 - Sch 40 
Section No. 8 

No. 5 - 1800 - Sch 10 
Section No. 11 

No. 6 - 1800 - Sch 10 
Section No. 11 

No. 7 - 900 - Sch 10 
Section No. 8 

No. 8 - 900 - Sch 10 
Section No. 8 

No. 9 - 450 - Sch 10 
Section No. 6 

No. 10 - 45° - Sch 10 
Section No. 6 

, . ~ 

" 

" 

** Outside diameter 
Ovality % difference of 

0 
'6 average & nominal 

1.08 +0.22 

2.27 -0.44 

0.99 +0.36 

0.84 +0.72 

3.72 -0.93 

2.52 -0.71 

1.34 +0.28 

-
0.90 +0.29 

2.90 +0.50 

2.80 +0.60 

** Ovality measured as: (Dmax - Dmin) x 100 

Dav 

, .' 
", 

Wall thiCknes's - .., I'\< Wall thickness '.' ., 
% difference of max & r'nin % difference of' max & min 

to average ' to nominal 
.. . 

Minimum Maximum Minimum Maximum 

-10.02 + 6.21 -6.32 +10.56 

-17.81 + 8.19 -7.21 +22.14 

+ 6.36 - 4.86 -6.43 + 4.78 

- 4.84 + 4.38 -5.28 + 3.89 

- 9.20 + 4.60 +3.06 +18.73 

-18.03 + 9.21 -7.01 +23.88 

- 8.80 +10.69 -2.61 +18.21 

- 8.48 + 8.41 -0.97 +17.31 

- 7.36 + 2.23 +2.31 +12.91 

- 5.71 + 2.38 +3.43 +12.31 

where Dmax = maximum outside diameter 
Dmin = minimum outside diameter 
Dav ::: average outside diameter based on 18 values 

t-:) 

~ 
00 



~ 5.3 Test Programme 

5. 3. 1 Pilot scheme 

279. 

In the pilot scheme it was initially envisaged that most of the 

seven pipe bend assemblies would be tested at temperature. However, 

due to difficulties encountered in the experimental work this was 

not possible. Several 'of the bend assemblies were employed in the 

development of experimental techniques during the course of which 

a large number of room temperature elastic tests were conducted. 

The main difficulties centred around the reliable measurement of strain 

at elevated temperature using the CERL-PLANER [262] capacitance 

strain gauge and the provision of a reasonable temperature distribu

tion around the bend, particularly in the meridional direction. As 

a result, the test programme was altered to one of research and 

development. 

5. 3.2 Main creep programme 

Apart from the theoretical considerations discussed earlier, 

,the preparation of this test programme was also influenced by many 

. practical considerations. The layout of the actual test facilities, 

for example, which dictated the number of bends that could be tested 

simultaneously, was in itself an important factor. A typical forward 

creep test could rate around 6 months and although this would 

indicate.. that a more than sufficient time was available for integration 

of the tests it should be borne in mind that the preparation time, 

prior to testing, could take upwards of 8 weeks. Considering only 

forward creep and creep relaxation test types, it can be seen from 

Table (5.4) that for the 10 bend geometries chosen there is a possible 
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TABLE (5.4): Possible and actual creep tests. 

Forward creep Creep relaxation 

In-plane Out-of-plane Combined In-plane Out-of-plane Combined Bend angle 
bending bending bending bending bending bending and schedule 

No. No. No. No. 

5 & 6 1800 - Sch 10 

1 2* 1800 - Sch 40 N 
00 
0 

7* 8* 90 0 - Sch 10 
. 

3 3 4 90 0 - Sch 40 

9* 10 450 - Sch 10 

* tests completed 
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. 30 test ,types. If the in-plane bending and the combined bending 

.. case is expanded to include the options of opening and closing, then 

the range of possibilities increases to 500. Naturally, all these 

options could not be exercised so that care was required in choosing 

the appropriate test types. 
~ . ' 

The proposed tests are shown in Table (5.4). Due to the 
, ~, ,< 

long period of preparation -required for one creep test, plastic col-
1 

lapse test were normally conducted at the end of the creep test. 

I.,· 
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5.4,' Test Equipment 

s. 4~ 1 . Test rigs - general description 

In the pilot scheme three simple test rigs were employed. Of 

these ~ two were capable of testing a 450 and 90 0 bend only (Figure 

( 5. 6» . They were made up simply of two channel sections bolted to , 
'" 

the floor and connected on top at one end by a 1 in. thick flat plate 
... : -, . ~, ~, 

on to which the bend was mounted. In-plane and out-of-plane loading 

was catered for but only forward creep tests could be perfo~med. The 

third test rig (Figure (5.7» was designed specifically for a. rgoo bend 

and although slightly more complex in construction it could only cope 

with in-plane bending on forward creep tests • 

. , The severe restrictions in loading types imposed by these test 

rigs' was to warrant considerable attention in the design of a new test 
... " .. 

rig. By being limited in space to at most three test rigs it was essential 

that a new design should be capable of dealing with more than one 

b£md angle. Further, the test types of forward creep and creep relaxa

tion in any loading direction should be incorporated as essential features. 

Two test rigs designed to meet these specific requirements were designed 

and' constructed. Both test rigs were designed in accordance· with 

BS 449 [263] using bolted connections wherever possible to ease con

str~ction. The general layout of the rig is given in Figure (5.8) showing 

the'various loading systems for a 1800 bend. The structure comprises 

essentially a portal frame which encloses the loading arm of the bend. 

As in the earlier designs the rig is secured by two channels bolted 

to: the floor. The provision for a 1800 bend is given by a substantial 

1·in~ .. thick support bracket (Figure (5.9» mounted on the channels. 

This also provides additional rigidity and guides for the creep relaxation 
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rods '.' Accommodation for a 900 or 4So bend is provided by a 1 in. 

thick flat plate mounted to the rear (Figure (S .10). 

'.' To retain the compliment of three test rigs one of the original 

designs as shown in Figure (S.6) was employed. 

> • " In the sections that follow, details of the equipment relate to 

those currently in use. Their development and application are dis-

cussed more fully in CHAPTER (6). 

5; 4.2 Test rigs - loading 

s. 4.2. 1 Forward creep - in and out-of-plane loading 

In-plane loading of the bend was accomplished simply by atto.chin9 

-,>' '\ a' cradle of dead weights at the end of the moment arm. This would ...... ~ .- .." 

> produce an in-plane closing mode. An opening mode was performed 

using 'made up lengths of steel wire running through a sy~tem of pulleys 

incorporating precision bearings. Here, again, dead weights could 
" , " , 

b'e applied on a cradle attached to the end of the wire. The application 
>. 

of'a pure in-plane bending moment, i.e. "shear force negated", was 

achieved by suitable arrangement via the pulley system giving two 

e/qual and opposite forces. 

Out-of-plane loading, in either direction, was achieved using 

a small portal frame mounted adjacent to the test rig (Figure (S. 11» • 

As the new test rigs were mounted side by side, three of these frames 

we~~ ~ all that was required to serve the needs of both rigs. Here the 

~ain types of loading was by dead weights or turnbuckle, the dead 

> weight load wire running over a precision bearing mounted on the out

of-plane portal. The option of shear force negated was available via 

di~;gonally placed attachments on the portals. 
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,In most instances. the loading was accomplished using dead 

. weights as this proved to be the easiest and most direct method. 

Needless to say, there was to hand an abundant supply of 50 lbf and 

22 ~ 4 lbf weights. Turnbuckles were used mainly in short term tests t 

such as the elastic room temperature tests. They were found partic

ularly helpful in tests of shear force negated where their high sensit

ivity proved useful in the application of two equal and opposite forces. 

Other forms of loading were available such as hydraulic rams and 

"TIRFORS". Tirfor is the trade name given to a mechanical rachet 

device which employs friction as its principal force J and is used ex

tensively in Civil Engineering Works •. However J both these forms of 

loading were found to be awkward to install and use . 

. . ,.', In the elevated temperature tests t every attempt was mde to 

use dead weight loadings. Each test performed used a single point 

loa~ing to represent the loadings of in-plane and out-of-plane bending. 

Earlier ~lastic room temperature tests had indicated no significant dif

ference between the case of a. point load and pure bending. Further J 

in each test J a counter-balance was employed to negate the bending 

moment at the loaded flange arising from the weight 'of the moment arm. 

A general illustration of the layout of an in-plane loading test 

is given in Figure (5.12) • 

. , ,Where applicable J measurement of the applied load was achieved 

using load cells designed with the appropriate end attachments to 

operate in the range of 0-2000 lbf (Figure (5.13». These were manu

factured from 1 in. diameter EN 8 steel bar, turned down and drilled 

through to give an adequate degree of sensitivity. In order to cope 

with the large number of possible loadings J a series of ten load cells 
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were manufactured and calibrated. These were suitably strain gauged 

in a half bridge configuration such that only axially applied load was . 

measured. Measurement of the load cells was accomplished using a 

BUDD strain recorder. 

s. 4. 2.2 Creep relaxation in and out-or-plane loading 
, ' . 

,! Under in-plane loading the restraint in displacement was effected 

by.a cross-head running down two threaded bars on each side of the 

loading arm (Figures (5.14) and (5.15». The cross-head bearing 

?!l the loading arm was at a small distance from the pipe flange and 

w.as cap,able of holding the bend down in a closing mqde or up in an 

openi~g mode. A "beam" type load cell (Figure (5.16» mounted on 

tlle, ~~oss-head with a ball-bearing contact on an extend~d part of the 

loading arm enabled the measurement of load reduction. This beam 
,;;, ' ~ , 

was manufactured from 1 in. diameter EN24T steel bar turned down 

wit~ flats on two opposite sides. The beam 'was strain gauged and 

calibrated, in bending giving a sensitivity similar to that of the load 

cells. In addition to this the two tension rods supporting the cross

head' were strain gauged and calibrated in tension to provide a back-up 

in the event of malfunction of the beam load cell • 

.. n In the case of out-of-plane loading the restraint was provided 

. ' ~ -

by a threaded bar, strain gauged and calibrated in tension, running 

horizontally through the loading arm and secured at the two main rear 

columns. 

All the load cells here including the beam type were measured 

using a BUDD strain recorder. 

Again a counter-balance weight was attached to the loading arm 

to negate its bending moment at the loaded flange. 
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" 5.4.3 Measurement of strain 

5. 4. 3~ '1 'Room temperature elastic tests 

> , ,,', "In the room temperature elastic tests electrical resistance strain 

gauges (ERSG) of 2 mm, 5 mm and strip gauges of 2 mm gauge length 

, were' employed, temperature compensated for stainless steel. Strain 

readings from the ERSG were recorded using an ELCOMATIC data logger 

linked to an APPLE computer (Figure (5.17». The gauges were wired 

to the internal quarter Wheastone bridge of the unit using the standard 

three wire technique, minimising the effect of changes in gauge lead 

resistance [264,265]. By the development of a specifiq interface card 

" and sUitable software, the strain readings were passed to the computer 

and sto~ed on diskette for subsequent use. The use of the Apple 

c'omputer did not allow a two-way interface, i.e. the data logger was 

, not controlled by the computer'. 
" 

Actual values of strain were obtained from the computer. via a 

best fit straight line program. 

S. '4. 3. 2 Elevated temperature tests 

In the elevated temperature tests, the measurement of strain 

was accomplished using the CERL-Planer capacitance strain gauge 

, (Figure (5. 18) ) . 

During the pilot scheme, a totally manual system of recording 

the strain was employed. The layout of this system, manufactured 

. ,by, Automatic Systems Laboratries (ASL) [266] is shown in Figure (5.19). 

For the main creep programme a more sophisticated system was intro

duced (Figure (5.20». This comprised an automatic ASL balancing 

capacitance bridge linked to an Apple computer using a specially 
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, . developed interface card allowing a two-way interface between the ASL 

equipment and the computer (Figure (5.21». Using the appropriate 

software the computer reads through each selected channel on the ASL 

balancing bridge, balancing in sequence. After acceptance on the 

. third balance on each channel the reading is converted to. strain using 

a 5-degree polynomial based on the manufacturer's standard 21 point 

calibration. The true strain is obtained by the product of this strain 

~nd a calibration factor F. This calibration factor arises from the 

inaccuracy in using the standard calibration to measure bending strains, 

and was the result of an intensive research programme carried out at 

, the University. This is discussed more fully in CHAPTER (6). 

The introduction of a computer linked measurement system helped 

sigItifi6aritly in the problem of data retrieval. It was also useful during 
• ; i" 

the initial loading of bends at temperature. Here the linearity or non-

, lin~arity could be checked at a glance using a graphics routine incor

. porated in the software. 

' .. 
5.4.4 Measurement of displacement 

5. 4'; 4. 1 Rotation 

As defined in CHAPTER (1), the flexibility factor of a pipe bend 

with connected tangents can be written as: 

·K 

., 

, where y = the overall rotation of the bend assembly as measured 

between both flanges 

y = the relevant rotation of both tangents 
T 

Yo = the nominal rotation • • . (5. 1) 
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For both in-plane and out-of-plane loading measurement of the 

overall rotation was accomplished using dial gauges measuring the 

displacement at two fixed points of an angle or box section bolted to 

both flanges (Figure (5.22». Using this method the overall rotation 

can be determined from: 

wh~re, d = difference in travel between two associated di al gauges 

R.:. = fixed distance between dial gauges 

For a 90 0 and a 45° bend under out-of-plane loading only one 

dial gauge at the fixed flange was required to measure the rotation 

RS;, at this point the primary displacement arises from torsion. This 

isd~scussed earlier in CHAPTER (4) on the out-of-plane loading on 

flanged bends • 

(s.2) 

. ~ ~';.. A summary of the flexibility factors for both the case of in -plane 

and out-of-plane loading, for bend angles of 1800 , 90 0 and 45 0 is given 

.. in APPENDIX (7). 

5. 4.4. 2 Distortion 

The method of measurement finally adopted for measurement of 

distortion of the cross-section involved the use of eight 3 in. lengths 

of . ~ in. square stainless steel type 316 welded to the surface of the 

,bend (Figure (5.23». These rods. pointing radially outwards, were 

spaced equidistantly around the bend cross-section, beginning at 

4> = 0, and were of sufficient length to be just visible above the insula

tion. The actual measurement of distortion was accomplished by measur

ing the displacement between two diametrically opposite rods 'using 
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a specially manufactured U-shaped steel bar incorporating a dial 

gauge (Figure (5.24». The dial gauge was eventually replaced by 

a ,displacement transducer which allowed the operation to be performed 

by one person. Measurement of distortion was performed normally 

at one section only, as close as possible to the bend centre. This 

particular method allowed the measurements to be taken at various 

locations along the bend and removed the problem of relative movement 

between the bend and the measuring system displayed by earlier methods. 

This is discussed in section (6.2.2). 

5. 4. 5 Heating system and control 

Heating of the bend assembly was accomplished by encasing both 

tangents and the bend section in a pre-fabricated copper sheath ~ in. 

thick. The sheath was manufactured by hand in two halves for each 

part to enable ease of attachment and removal. Three heating tapes 

(ITQ-250-ISOPAD [267]) providing the heat source were then wound 

along the length of the bend. A typical layout is shown in Figure (5.25). 

Temperature control was by a thermocouple activated zero crossing 

switch box (CSW/1000 ISOPAD), using a thermocouple from the central 

section of the bend. Measurement of the temperature variation w~s 

done using a number of thermocouples (CHROMEL ALUMEN DKIO) spot 

welded to the outside surface at various locations around the bend 

as shown in Figure (5.26). 

Insulation of the bend was provided by two layers of 8 Ibf/ft 3 

blanket (TRITON KAOWOOL [268]) on the exterior. The interior of 

the bend was left empty. Heat losses at the flanges were minimised 

. using a heat barrier gasket (TRITON KAOWOOL STRONG BOARD) and 

a 1 in. thick blank flange to prevent plugging of the gasket. 
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The use of the copper sheath in heating the bend removes the 

discrete form of heating produced by the heating tapes leading to an 

improved and more uniform temperature distribution. Its implementa-

tion was the result of development work carried out at the University 

- reported in [269]. 

- (" ~. ~~ 

'. ," 
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318. 

ABSTRACT 

The theory, and application of the capacitance strain gauge to the 

measurement of strain on pipe bends is discussed. From development 

work conducted on the CERL-Planer capacitance gauge experimental 

techniques are presented to ensure accurate results. 

The development of methods of displacement measurement for distor

tion and rotation are presented. 

Details are also presented on a novel and economic bend heating 

system designed to give a uniform temperature distribution around 

the bend. 

Finally, the experimental results from a number of tests performed 

on the pipe bends at room temperature and elevated temperature are 

given. 
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6.1 Application of the CERL-Planer Capacitance Strain Gauge 

6. 1. 1 Development of the capacitance strain gauge 

The variation of electrical resistance as a means of measuring 

strain was first developed by BRIDGMAN [270] in 1912. Since then 

the techniques in the use of the electrical resistance strain gauge 

(ERSG) have become well-established. Their general application is, 

however, limited to temperatures in the range lOoC to 200°C [271]. 

At temperatures above this range the invariant nature of the gauge 

characteristics can no longer be guaranteed. Attempts to increase 

the temperature range have been the subject of extensive research 

by several investigators, each with varying degrees of success [272-

275] • 

In the measurement of dynamic strains at temperatures around 

1000oC, the weldable ERSG-AILTECH [276], has achieved a limited 

degree of success. However, the unpredictable response of the ERSG 

under prolonged use makes them unsuitable for creep measurements. 

The main problem arises from the fact that it has not been possible 

to find a resistance alloy having basically stable and repeatable resist

ance-temperature characteristics. Further, the materials suitable for 

bonding the resistance wires to the test surface, whether directly or 

indirectly, have limited insulation capabilities at higher temperatures. 

This particular problem is eliminated in the weldable ERSG. 

In 1945, CARTER, SHANNON and FOR SHAW [277] proposed an 

alternative method of strain measurement using capacitance as opposed 

to electrical resistance. Two types of capacitance gauge were developed 

which they termed "varying-gap" and "varying-area pick ups". They 

suggested that these devices could have a useful application where 
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the temperature was beyond the limits of the ERSG. In fact, a con

sideration of the principle of capacitance devices shows that the fun

damental problems inherent in the use of the ERSG can be avoided. 

For a simple parallel plate capacitor: 

C a. akt 

where c = capacitance 

a = area of the plate 

k = dielectric constant 

t = distance between the plates . . . (6. 1) 

Thus the capacitance can be varied by changing the area a, or the· 

gap t. Further, in using air as the gap the dielectric constant is only 

marginally effected by changes in temperature. This means that 

capacitance devices can be made to depend only on geometrical features. 

Provided the capacitor terminals are isolated from earth, the electrical 

properties of the materials used are relatively unimportant, so that 

they can be chosen to meet the mechanical requirements. This provides 

a significant advantage over resistance wires. 

'However, progress in the development of the capacitance strain 

gauge was severely hindered by the inability to measure the small values 

of capacitance associated with such devices and it is only in recent 

years that such problems have been overcome. U sing what is termed 

the "three terminal method" it is now relatively easy to measure gauge 

capacitance of less than 1 pF with a sensitivity of the order of 10-4 pF 

and a resolution of similar order. A major problem in the measurement 

of capacitance was that the capacitance instabilities of the connecting 

cables, which were significant in terms of the gauge capacitance, could 
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not be isolated from the gauge signal. Some idea of the small values 

of capacitance being measured can be seen by considering a simple 

parallel square plate capacitor with a gap (in air) of 1 mm. To have 

a capacitance of 1. 0 F (1012 pF) the side of each plate must measure 

1.06 x 10'+ m (6.6 miles). Thus the "pico-farad" is an extremely small 

measure of capacitance. 

Where small movements are to be translated into changes of elec

trical capacitance it is usual for the variable to be the gap of the 

parallel plate capacitor. The sensitivity of such a change can be in

creased if the initial gap is small. If mechanical amplification can be 

introduced·, further increases in sensitivity result, with an additional 

increase in stability. Such a mechanical amplification can be devised 

by using two small arches made of thin m~tal strip. The arches are 

of equal span but differing heights, giving a gap between the two 

arches. Tangential capacitor plates are fixed to the crowns of the 

arches inside the gap. The ends of the gauge are welded to the sur

face under test and as the surface strains, th,e movement across the 

ends of the arches is converted into a larger movement, normal to the 

surface, across the capacitor plates. This is ,the principal of the CERL

Planer capacitance gauge (Figure (6.1» developed by NOLTINGK et 0/ 

[278,279]. The gauge was developed with particular application to 

the power generation industry being funded by the CEGB and G. V • 

Planer Ltd. It is designed to operate in air at a temperature of 650 0 C 

and is manufactured from a nimonic alloy in such a fashion that in its 

"free" unmounted form it has approximately equal range in two directions 

of at least + 0.5% strain. On attachment to the surface under test 

the gauge can be offset from this free position to give the full 1% strain 
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measuring capability in the chosen direction. As can be seen in' Figure 

(6.2) a horizontal displacement of the feet of the gauge results in a 

non-linear relation between capacitance and strain. This is the form 

of calibration normally supplied by the manufacturer. However, due 

to the dimensional tolerances employed in production each gauge will 

have a different capacitance-strain relation, hence each gauge must 

be calibrated prior to use. Changes in material, heat treatment and 

improvements in construction has led to two gauge types designated 

C 4 and C 5 for use on ferritic and austenitic materials, respectively. 

Each gauge has a nominal gauge length of 19.0 mm although a smaller 

gauge length is currently being developed. 

Two other capacitance gauges have been developed, namely, 

the HUGHES gauge and the BOEING IHITEC (BH) gauge. Due in part 

to its restricted application the Hughes gauge is no longer available. 

Application of the BH gauge has also been restricted to some extent, 

as a result of the high cost. For completeness, a brief description 

of these gauges is given. 

The Hughes [280] capacitance gauge was developed to measure 

strains induced by aerodynamic forces and temperature changes over 

a relatively short period of time. The gauge comprised a rhombic frame 

(Figure (6.3» incorporating a multi-plate design of capacitance plates 

and was designed to operate for 30 mins at a temperature of llOOoC. 

The working range in strain at 9500 C was given as :;: 0.2%. 

The BH capacitance gauge was a joint development of the Boeing 

Company and the NASA Flight Research Centre [281]. The design 

of this gauge differs considerable from the Hughes and the CERL

Planer gauge. As the dimensions of the test surface change due to 
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strain the outer cylinder (Figure (6.4» moves axially with respect 

to the two inner cylinders, changing the differential capacitance. The 

working temperature is given as 800°C with a corresponding strain 

range of +2.0% with a gauge length of 25 mm. A reduced gauge length 

of 6 mm results in an increased strain range of + 8.0%. 

A further development in the capacitance gauge has appeared 

recently from work being conducted by INTERATOM [259], mentioned 

earlier in CHAPTER (5). Details of this development are not clear 

as the publication (in German) has only recently come to the author's 

attention. It would appear, however, that the gauge gives a working 

strain range of + 1.1% at a temperature of 650°C. 

Recent comparisons [282-284] of the capacitance and resistance 

gauge sugg~st that the capacitance strain gauge offers the most promise 

for the measurement of prolonged strain at elevated temperature. They 

are, however, expensive. For the CERL-Planer gauge, the cost of 

one gauge and two mineral insulated leads approaches £300.00. The 

cost of the BH gauge is not known. although it is believed to be around 

two to three times that of the CERL-Planer gauge. Resistance gauges, 

particularly encapsulated weldable ones [285], show promise though 

their erratic behaviour makes them suspect for creep measurements. 

It is of interest to note that this gauge type is being used extensively 

on the elevated temperature tests on pipework components by PNC 

[258]. However, it is likely that because of their convenience and 

economy, research will continue to develop techniques to make them 

more reliable. 
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6. 1.2 Measurement of strain in pipe bends 

The CERL-Planer capacitance gauge has been used extensively 

by CEGB in a variety of "in-situ" and laboratory applications at normal 

and elevated temperatures with apparent success. However, most of 

the published literature deals with their performance and drift charac

teristics C?ver prolonged periods, which for the most part have been 

shown to be satisfactory [286-289]. 

In the application to pipe bends it is evident from the previous 

chapters in PART (1) of this text that meridional bending strains will 

predominate when the pipe bend is subject to moment loadings. In 

[278] Noltingk et al. discussed the sensitivity of the gauge to bending 

strains and to account for this he suggested that the gauge be considered 

as 0.05 mm above the surface. Essentially, this was an attempt to 

increase the measured strain and was the result of two tests carried 

out on different beam sections. Apart from this work, the author has 

been unable to discover any other work dealing specifically with this 

application. 

During the pilot scheme it was found that, under room temperature 

elastic conditions, the measurement of these strains using the CERL

Planer gauge led consistently to an underestimation in strain of between 

20% to 30%*1. This level of inaccuracy, assuming it remains the same 

at elevated temperature, has been considered acceptable in the measure

ment of creep strain [290]. As this invariance with temperature could 

not be firmly established an attempt was made at improving the compari-

. f *2 d son. However, in domg so urther problems were encountered an 

*1 Based on tests conducted on schedule 40 bends. 
* 2 Tests conducted on schedule 10 bends showed that this comparison 

deteriorated even further to values around 70%. 
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as a result an inten·sive investigation into the behaviour of the gauge 

was begun. This work was considered in two parts. The first part, 

which was reported in [291] and is presented in APPENDIX (8), dealt 

with the behaviour and response of the gauge under room temperature 

elastic conditions. The second part, and perhaps the most difficult 

in terms of experimental work, was intended to examine the behaviour 

of the gauge at elevated temperature and in so doing establish the 

validity of the room temperature gauge calibration. Unfortunately, 

due to limitations in cost and time this work was not completed. How

ever, it is hoped that the work reported in [291] will act as a stimulus 

for other researchers in the field. 

From the room temperature study two main conclusions can be 

drawn: 

1. In mounting the gauge on curved surfaces in which 

the radius of curvature is less than a nominal value 

of 250 mm it is preferable to bend the feet of the 

gauge as opposed to the use of wedges in providing 

an adequate contact area. 

2. Gauge calibrations conducted under in-situ conditions 

were shown to be essential for accurate results. 

Bending the feet of the gauge is, of course, a delicate operation and 

a special jig was made for this purpose. There are of course limits 

to which the feet can be bent in order to retain operation of the gauge. 

These limits, however, were not explored. 

The matter of gauge calibration is of a more general application 

and should be included where possible as normal practice. Calibration 
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und~r in-situ conditions can in some instances limit the strain range. 

However. with judgement and commonsense it should be possible to 

produce a representative model of the actual conditions. 

The gauge calibration provided by the manufacturer, as 

mentioned earlier, is based on a horizontal displacement of the gauge 

feet. The calibration is performed on a flat-bed micrometer. With 

hindsight, it should have been obvious from the beginning that where 

bending strains predominate such a displacement is incapable of 

describing the overall movement. 
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16.2 Measurement of Displacement 

6. 2. 1 Rotation 

In the measurement of rotation a number of methods were examined: 

1. dial gauges 

2. rotating mirror 

3. inclinometer 

The method using dial gauges, as described in section (5.4.4.1), 

was the main method adopted throughout all the room temperature and 

elevat~d temperature tests. The main attraction being their ease and 

simplicity in use. Further, they can be adapted easily to cope with 

in-plane or out-of-plane loading. The replacement of the dial gauge 
" 

with a transducer, in particular a capacitance transducer, to link up 

with the capacitance gauge measuring system was considered. However, 

the high cost did not justify the replacement of a perfectly adequate 

although perhaps unsophisticated device. 

The rotating mirror was employed on a few room temperature 

elastic tests. The principle of this method is shown in Figure (6.5). 

For measurements of the overall rotation two sets of readings are required, 

i.e. at the loaded flange and at the fixed flange. The method was not 

considered suitable in the elevated temperature tests. 

Inclinometers as a means of measuring rotation are being used 

extensively in tests being conducted by CEA [292]. Their principle 

in operation is generally based on a change of inductance in a pendulous, 

oil-damped spring-mass system. As distinct from this type a strain 

gauge inclinometer has been developed at Imperial College, London. 

The particular application of this development is not known. Details 

of the instrument are given in [293]. 
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A review of the currently available types [294,295] indicated 

that the cost would be prohibitive. As a consequence of this the 

development of an in-house strain gauge inclinometer was begun. A 

prototype of this instrument is shown in Figure (6.6). The idea is 

based on a cantilever beam attached to the specimen at the fixed end 

and loaded at the free end by a small weight. Rotation of the fixed 

end is calibrated against the longitudinal strain developed in the beam. 

Using a hack-saw blade the cost is reduced to a fraction of the com

mercially available types. The principle in operation, however, limits 

the application to in-plane bending. 

6. 2.2 Distortion 

The distortion of the bend cross-section plays an important part 

in the overall displacement of the bend. In fact, in the typical Karman 

type analysis, without end effects, it can be· seen that representation 

of the distortion, be it by fourier series or a simple trigonometric 

function, constitutes the basis of the analysis. The experimental 

measurement of distortion can be considered as essentially a further 

means of verifying the analysis. 

In the room temperature elastic tests, this task is accomplished 

easily. Here, small steel ball-bearings. attached by a suitable adhesive 

to the bend surface, are positioned at diametrically opposite locations 

around the bend cross-section. Measurement of displacement across 

the ball-bearings is done using a micrometer. This is a well-e,stablished 

tecnique and although time consuming, can be extended easily to examine 

various cross-sections around the bend. 
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!. . For the elevated temperature tests, a number of methods were 

examined. In an attempt to cope with the continually changing and 

irreversible conditions displayed in such tests these methods were 

incoprorated as an integral part of the experimental set-up., 

During the course of the work two main methods were investigated. 

The first method (Figure (6.7» employed a "comparator ring" attached 

to the bend by a large bolt welded to the bend at the intrados. Four 

steel rods sliding through guides incorporated in the comparator ring 

and bearing on the bend surface were positioned at the four cardinal 

points around the bend section. Distortion of the cross-section was 

measured using dial gauges bearing on the opposite end of the ,rods. 

This method was significantly affected by relative movement 

between the ring and the bend. As distortion proceeded so also did 

rotation of the bend to the extent th~t the rods were no longer bearing 

on· the circumferential section initially located on. The errors incurred 

by this movement were further exaggerated by the curved geometry 

of the bend. 

In tests conducted at PNC [258] a similar method was adopted. 

Here, however, the relative movement was inhibited by a universal 

joint attachment of the steel rods to the bend. The uncertainties in 

the method and, moreover, the time involved in the manufacture of 

such joints, was not considered justified and a simpler method, dis

pensing with the comparator ring, was, sought. 

In the revised system, measurement of the displacements was 

achieved by tensioned lengths of steel wire attached to stainless steel 

lugs welded to the bend (Figure (6.8». Each wire, running normal 

to the bend surface and approximately 1 m in length was tensioned 
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. by means of additional springs incorporated in the dial gauge connection . 
. , 

A typical layout of the system incorporated in a forward creep test 

ona 90 0 bend under in-plane loading is shown in Figure (6.9). In 

this method, the problem of rigid body motion of the bend could be 

accommodated. Under in-plane loading the problem was particularly 

evident on the dial gauges marked No.1 and No.3 in Figure (6.9), 

their line of measurement coinciding with the plane of rotation of the 

bend. Distortion in this direction was evaluated from the difference 

in displacement recorded by these two dial gauges. The response of 

this system during an in-plane loading test [296] is shown in Figure 

(6.10) to Figure (6.12). During the room temperature elastic test 

(Figure (6.10» and the initial loading at temperature (Figure (6.11» 

the system operated satisfactorily giving approximate symmetry in dis

placements. However, during the creep period (Figure (6.12», the 

vertical displacements were much smaller than the horizontal displace-
, 

ments. This was found later tb be the result of dial gauge No. 1 

operating outwith its range. This problem was encountered often and 

it was not uncommon for the wire under tension to break in this plane. 

In order to have a system of measurement independent of the 

rotation of the bend and further be a practical set-up for out-of-plane 

loading it was decided to adopt a system similar to that used in the 

room temperature elastic tests mentioned earlier. Here, the ball bearing 

contacts were replaced by steel rods radiating outwards from the bend 

surface. This method is described more fully in section (5.4.4.2). 

The continual process of development in the measurement of distortion 

has meant that this system of measurement has been only recently intro

duced and as such no long-term results are available. 
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6.3 Heating System 

The basic heating system, which was similar to that used by 

Griffith and Rodabaugh [114] consisted essentially of electrical resist

ance heating elements wound around the bend and fixed in place by 

stainless steel bands (Figure (6.13». A ceramic blanket completely 

surrounding the installation provided the thermal insulation (Figure 

(6.14». 

This system was found to be deficient in two main aspects: 

1. By virtue of the discrete form of heating, the poor 

conductivity of the stainless steel and the geometry 

of the bend a differential of around ;aooe at 5700 e 

could ,exist between the intrados and extrados of the 

bend mid-section, the latter being the sink. 

2. In loading the bend, a moment arm is fixed to the 

bend. This is an efficient means of cooling the bend 

and hence a variation in temperature occurred along 

the bend. The base fixture of the bend would also 

act as a sink. 

In tests conducted by IMAZU et al. [116] the bend was enclosed 

in a purpose built furnace. Hot air circulated through the bend 

resulted in a maximum differential of + 5°e at 600 0 e around the bend 

section. Further work reported in [258] employed specially shaped 

internal heating elements and in another case sodium circulated through 

the bend. 

Purpose built systems to heat the bend were examined. However, 

the cost of such installations was found to be prohibitive. 
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In an attempt to minimise the deficiencies inherent in the heating 

system an investigation was begun into the ways and means by which 

. the existing system could be improved. 

The results of this work were reported in [269] and are pres

ented in APPENDIX (9). By encasing the bend in prefabricated sheets 

of copper the differential across the intrados and extrados was reduced 

to ;3°C at 570°C. The differential along the length of the bend was 

minimised using inSUlation gaskets between the flanges at the loaded 

and fixed ends of the bend. 
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6.4 Test Procedure 

6.4. 1 Introduction 

The experience gained during the development work and the 

tests conducted during the pilot scheme provided a sound breadth 

of knowledge on which the bulk of the main creep programme was based. 

Although development work continued throughout the main programme, 

the principal features remained unchanged and it became a relatively 

straightforward task in establishing a standard test procedure for 

each test. This consistency in approach was expected to be reflected 

in the quality and standard of the results. 

The elevated temperature test, be it forward creep or creep 

relaxation, can be considered to comprise three main stages. 

1. Room temperature calibration tests 

2. Heating up period 

3.' Creep period 

This section presents a brief description of each stage using 

the results of tests conducted by the author. reported in [296.297,298, 

299]. 

6.4.2 Room temperature elastic calibration tests 

Essentially these tests were performed to evaluate the capacitance 

gauge calibration factor F using electrical resistance strain gauges 

for comparison. As a secondary function the tests ensure that the 

measurement system as a whole is working properly. They also provide 

further experimental data on the restraining effect of tangent pipes 

under elastic conditions. 
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The calibration factor F is defined as: 

• • . (6. 2) 

where BE and Be are simply the slope of best fit straight lines for 

the electrical resistance and capacitance gauge, respectively. 

The first stage in calibration of the capacitance strain gauge 

is an examination of the strain distribution. Here, using electricaI'. 

resistance gauges of single and strip form (Figure (6.15», the points 

of maximum strain are determined around the desired section ~ For 

the case of in-plane loading [296] a comparison of these strains (Figure 

(6.16» with Thomson's [133] theory shows good agreement (Figure 

(6.17». 

For convenience the copper heating sheath is fitted following 

completion of this test. Thereafter, resistance gauges of comparable 

gauge length (20 mm) to the capacitance gauge were mounted at these 

points of maximum strain, and a test conducted. These gauges were 

then removed and replaced with capacitance gauges using location marks 

for accuracy in position and the assembly re-tested to the same level 

as before. 

Due to the high cost of the capacitance gauge only three are 

normally employed - two active gauges measuring strain in the meridional 

direction and one "dummy" gauge mounted on a load free plate measur-

ing the drift characteristics which is taken to be representative of 

the two active gauges. 

In mounting the capacitance gauge the main point~ in the technique 

developed were: 
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1. For gauges mounted in the meridional direction the 

feet are bent to accommodate the curvature of the 

bend section using the jig shown in Figure (6. 18) • 

2. To minimise the effect of gauge lead movement being 

transmitted to the gauge, a behaviour peculiar to pipe 

bends, all gauge leads were attached securely to the 

bend at apertures provided in the copper sheath. 

Each lead on the active gauges was bent--through 

90 0 prior to entering the gauge area, with the minimum 

of gauge lead exposed (Figure (6. 19) ) • The problem 

of gauge lead movement has not been reported by any 

other researchers. This, however, may be due to 

the fact that the few reported results of this gauge 

have dealt with large stiff structures [300]. The 

problem as shown in Figure (6.20) arises essentially 

from the inability of the nichrome leads to prevent 

movement of the gauge leads being transmitted to the 

gauge. 

3. From location marks given by the strain distribution, 

the gauge was positioned and one foot spot welded. 

4. Following attachment of the nichrome coiled leads the 

remaining foot was spot welded allowing if necessary 

for off-set to provide a large positive or negative 

strain capability. 
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5. Finally, to prevent the inclusion of dust the gauge 

is enclosed in a stainless steel cover, immediately 

following mounting. 

The results of a typical calibration test [296] are shown in Figure 

(6.21). From this, the calibration factor F defined by equation (6.2) 

can be determined for each gauge as 1. 30 and 1. 48. The true strain 

is thus obtained by the product of F and that determined from the 

manufacturer's standard calibration. This assumes, of course, that 

the standard calibration is valid at elevated temperature. 

6.4.3 Heating up period 

This stage of the test, although having the main function of , 

gradually increasing the temperature to the test state of 570°C, also 

serves as a further check on the instrumentation. In particular, the 

capacitance circuit needs checked because, it is not uncommon, for 

example, for a gauge lead exhibiting the nominal resistance, of 20MS1 

at room temperature to break down partially or totally at temperature 

[301]. In the measurement of displacement, however, the mechanisms 

employed in measuring the displacement themselves undergo a tem

perature change so that no great significance can be attached to their 

values. Suffice to say that on reaching temperature a degree of 

stability in behaviour should. be apparent. 

Results for the temperature variation throughout a whole test 

[299] are shown in Figure (6.22). Around the bend section (Figure, 

6.23» this resulted in an average temperature of 578°C with a maximum 

variation of +3°C. 
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6.4.4 Creep period 

In order to obtain a reasonable value of strain rate in the forward 

creep test, the initial loading was required to provide an optimum amount 

of plastic strain. This proved to be a skilled operation as too much 

plastic strain could easily lead to premature collapse whilst too little 

resulted in little or no measurable creep strain. The rate of load relaxa-

tion in the creep relaxation test was also effected in the same manner. 

Results taken from an in-plane forward creep test [296] conducted 

on a 90 0 bend are shown in Figure (6.24), (6.25) and (6.26). This 

test was run for a period of over 3800 hr and completed with plastic! 

collapse. An optimum level of plastic strain was obtained during the 

initial loading (Figure(6.24» resulting in a well-defined creep curve 

(Figure (6.25». The accumulated creep strain was around +1700 x 10-6 

which was comparable to that of the elastic-plastic loading strain. In 

this test the total strains (Figure (6.26» recorded of around +8000 

x 10-6 indicates clearly the need for off-set in mounting the capacitance 

gauge. During the loading stages the response of the capacitance 

gauge was found in most cases to be satisfactory. If difficulties were 

to be encountered then this was usually during the creep period. The 

failure of a heating tape or breakdown in gauge lead resistance were 

a common cause of complaint, although as can be seen from the creep 

curve in Figure (6.25) the system was able to recover. In the event 

of failure of one active capacitance gauge dismantling of the test 

was found to introduce further problems and the test was normally 

continued. 

In the creep relaxation tests the method of displacement restraint 

and measurement of load relaxation operated successfully. The results 
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of such a test [297] conducted in an in-plane mode are shown in Figures 

(6.27) and (6.28). 
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A theoretical analysis of the flanged bend problem under out

of-plane bending has been presented in PART (1) of this thesis. 

The analysis represents an optimum lower bound solution based on 

the results of earlier solutions obtained during the study. A comparison 

with these earlier results shows that the chosen solution gives the 

highest (and hence best) flexibility factor with the minimum level of 

computation. 

The results clearly demonstrate that the incorporation of rigid 

flanges on the ends of a bend can cause a significant reduction in its 

flexibility factor, the flexibility reducing with bend angle and radius 

ratio and increasing as the pipe factor reduces. The location and 

magnitude of the maximum stress on a flanged bend was shown to be 

dependent on the bend angle, radius ratio and pipe factor, but without 

any simple trend. The maximum stresses may occur along the bend 

or at the flange, on the inside or outside surface and may be in the 

direction of either of the principal axes. 

A comparison with the theoretical results of Whatham [1701 gave 

good general agreement, his flexibility factors being between 10% to 

20% higher. Although a variety of finite element results have been 

published for various combinations of end constraints, Whatham appears 

to be the only author who has published theoretical results on the out

of-pl~ne bending of flanged bends. A similar trend is evident in the 

experimental field and it is unfortunate that perhaps the most comprehen

sive set of experimental results conducted by Pardue and Vigness [126] 

dates back to 1952. Their results for flexibility and stress factors 

were shown to be higher than both the present theory and Whatham's 

results. Although Pardue and Vigness performed a comprehensive set 
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of experiments the actual details of their tests are not completely clear 

and as such have not been considered as valid comparison. Experi-

ments conducted by this author, however, were shown to compare 

favourably with the present theory. 

A comparison with the results of Thomson [134] for in-plane 

bending showed that the flexibility and stress factors are greatly 

reduced when the bend is subjected to an out-of-plane moment. It 

is expected that this trend will also prevail when tangent pipe end con-

straints are considered. However, due to the high level of computation 

time demanded by the solution this extension to the theory was not 

actively pursued although it was incorporated as an optional feature 

in the computer program. 

In the light of the current work it is evident that little attention 

has been paid to the problem of out-of-plane bending. The current 

design codes are seen to be inadequate and require some modification, 
. . 

par~icularly in regard to the end constraints of flanges. 

In PART (2) of this thesis a description of the work undertaken 

during an experimental creep programme on pipe bends has been 

presented. This programme of work was aimed primarily at obtaining 

long-term static creep strain measurements at elevated temperature 

( 570°C) on a variety of stainless steel pipe bend assemblies under 

bending loads. 

In presentation the emphasis has been placed upon the experi

mental techniques employed and the development of new techniques 

arising from problems encountered during the course of the work. 

As in all experimental studies, by virtue of the diverse nature of the 
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problems encountered, the work encroached into many other fields. 

The results of the work highlighted a number of features regarding 

the performance and operation of a variety of techniques and devices. 

These were seen to cover the three broad areas of: 

(a) measurement of strain at elevated temperature 

(b) measurement of displacement at elevated temperature 

(c) heating and control system. 

In the measurement of strain at elevated temperature the accuracy 

of the CERL-Planer capacitance strain gauge was shown to be depend

ent on a representative in-situ calibration. Calibrations not compatible 

with the in-situ conditions were shown to underestimate the strain 

by at least 20% to 30%. Other aspects such as the use of wedges for 

mounting of the gauge on curved s~rfaces, electrical interference bet

ween component parts of the gauge and insulation breakdown on the 

gauge leads, were shown to influence the response of the gauge by 

varying degrees. 

The CERL gauge has been in use, with apparent success, for 

a number of years in several laboratory establishments at home and 

abroad, and it is only in the course of this study that these problems 

have come to light. 

A number of methods of measurement of distortion of the cross

section and rotation of the bend assembly were examined during the 

course of the work. Each method incorporated dial gauges as the prime 

means of measuring displa~ement, and although other devices were 

examined the dial gauge was retained for its versatility and low cost. 
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In the provision of a heating system resulting in a more uniform 

temperature distribution a novel heating system was developed using 

a copper sheath enclosing the bend assembly. This was shown to 

provide an improved temperature distribution in both the meridional 

and circumferential direction at a significant saving to commercially 

available systems. 

From all the development work conducted during the study, the 

essential feature was seen to be the establishment of a testing procedure 

using proven techniques to give accurate and perhaps more importantly, 

results which could be considered as "sound experimental data" to aid 

in substantiating present and developing theories. 

pn··'J~e\.r ~f ~ ~~e·. ~~fP~~~~ie~k~~c~u~tE~~ed'dur~,~g· ~~~~~h,e~r~tic.:ar~~fk;··i r~!~', 
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PROG KDPI 
OUT-DF-PLANE SENDING 

401. 

PIPE BEND wITH FLANGeD CR TANGENT eND CONSTRAINTS 
NO RESTRICTION ON BEND ANGLE 
INTEGRATION DONE USING SIM?SONS ~ULE 
COUPLING ON RIGID DISPLACEMENTS 
CIRCUMFERENTIAL CENTRE-LINe aIG:O DISPLACEMENT Z:RO 
IMPLI£IT REAL*8 (A-H,O-Z) 
REAL*8 LAMOA,MU,MG1,MGl,MG3,LA 
REAL*8 KZ,KY,KX,KXY,LR1,LRl,LR3 
REAL*8 Al(lO,lO),Al(lO,10),A3(lO.lO),A4(lO,lO) 
REAL*8 Z(35),S1(35),C1(35),T1(35).T2(35),T3(35) 
REAL*8 SM1(10,35),SM2(lO,3S),SM3(10.35),SM4(10,35) 
REAL*8 SM5(10,35),SM6C10,35),SM7CIO.35) 
REAL*8 SC1(10,35),SC2(10,35),SC3(10,35),SC4(10,35) 
REAL*8 SCS(10,3S),SC6(lO,35),SC7C~n,35),SCa(lO,35) 
REAL*8 SR1(lO,35),SR2(10,35),SR3C10,35),SR4(10,3S) 
REAL*8 WY(35);WE(3S),WET(25),QLAC7),~RR(4).QAL(3) 
R~AL*8 B(SOOOO).D(42S),CE(42S),NA(425) 
INTEGER DUT,RP,CP,E,EN,Y 
CDMMJN/BLOCK 1/SM1,SM2,SM3,SM4,S~5,SM6,SM7 
COMMON/BLOCK 2/SC1,SC2,SC3,SC4,SC5,SC6,SC7,sce 
COMMON/BLOCK 3/SR1,SR2,SR3,SR4,Z,Sl,C1,Tl,T2,T3 
COMMON/SLOCK 4/WE,WET,WY,HE,HET,HT,NE,NET,NY,LR3 
COMMON/BLOCK S/JT1,MNT,NT,MT,JT,NTAN,MG2,RR,AL,LA 

READ IN DATA 

IN=5 
OUT=6 
READ(IN,*> JZl 
READ(IN,*> NT,MT,JT 
READCIN,#) LAMDA,ALPHA,RR,LRl 
REAO(IN,*> NE,NET,NY 
NTAN=1 
IFLAG=l 
IFLAG1=1 
DATA AND OTHER CONSTANTS 

JI1=1 FOR KI ONLY 
JZ1=2 FOR KI AND COEFFS ONLY 
JIl=3 FOR KI,COEFFS AND STRESSES ASO STRAINS 

KI=OUT-OF-PLANE SENDING FLEXIBILITY FACTOR REF~RRING TO THE 

.. :.- .:::: -::'~ 
..... - ..... --' 

BEND SECTION ONLY BASED ON A NJMI~AL VALUE EVALUATED FROM SIMPLE BENO:. 

NT=NUMSER OF TERMS IN DISTORTION ~ISPLACEMENT - MERIDIONAL 
MT=NUM9ER OF TERMS IN DISTORTION DISPLACEMENT - CIRCUMFERENTIAL 
JT=NUMBER OF TERMS IN RIGID SECTles ~ISPLACEMENT 

LAMDA=SENO RAOIUS~THICKNESS/(PIPE RAOIUS>**Z 
ALPHA=PI/BENO ANGLE 
RR=RAOIUS RATIO=6END RADIUS/PIPE RADIUS 
LR1=TANGENT LENGTH/PIPE RADIUS 
NE=NUMBER OF INTEGRATION POINTS os BEND - 'CIRCUMFERENTIAL 
NET=NUMBER OF INTEGRATION ON TANGENT - CIRCUHFERENTIAL 
NY=NUMBER OF INTEGRATION POINTS - ~ERIOIONAL 
MU=POISSON RATIO 

THE PIPE RADIUS IS THE RADIUS OF THE TUBE BORE + HALF THE 
THICKNESS OF THE TUBE SECTION 



· · · .. 

~OO 

... ~2S .. 

.... ... , ... 

402. 

SPeCIFYING lRl AS ZERO GIVeS A BEND WITH FLANG:D END caNST~AINTS 

A POSITIVE MOMENT IS A VECTOR "ITH DIRECTION FRO~ INTRAOOS TO EXTRAOO! 

JT1=JT*l 
MNT=MT*NT 
NO=JT1+MNT=4 
NOM1=NO-l 
NOMl=NO-Z 
Nl=NO+l 
NZ=N;J+2 
NA(1)=1 
NACZ)=Nl 
S=N2 

ADDRESS VECTOR 

DO 50 I=l,NOMl 
S=S+NO-CI-1) 
NA(I+l)=S 
IA=NACNO)+l 
PI=3.1415926536DO 
Al=AlPHA*PI 
MU=0.3 
lA=lAMDA*lAMDA/ll.O 
MG1=2.0*PI*AL*(1.0-MU*MU) 
MG2=2.0*(1.0-MU) 
MG3=1.0/Cl.0-MU*MU) 

INITIALISE VECTORS 

00 100 I=1,NO 
0(1)=0.0 
DE(I)=O.O 
DO 125 I=l,IA 
8(1)=0.0 

INTEGRATION DATA 

IFClRl.GT.O.O) NTAN=2' 
, LR2=RR/CZ.O*LR1+RR*AL) 

LR3=0.0 
IFCNTAN.EQ.Z) LR3=LR1/RR 
PA1=PI*LR2#O.5 
PA2=2.0*PAl 
PA3=4.0*PAl 
E1=O.O 
El=LR3 
E3=E2+AL 
E4=1.0/lRZ 
Y1=0.0 
Yl=l.O*PI 
HET=O.O 
IF{NTAN.EQ.l) NET=O 
IF(NTAN.EQ.2) HET=(E2-El)/(NET-l) 
HE=(E3-E'Z)/( NE-l) 
HY=CY2-Yl)/(NY-l) 
MTZ=JT 
IFCMT.GT.JT) MTZ=MT 
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BEND SECTION 
CIRCUMFERENTIAL FUNCTIONS 

, , ,-!, - ~ , 

00',110 E=I,NE 
, "EN=E+N::T 

EE=CE-l):;:HE+E2 

403. 

£FCIFLAGl.EQ.Z) GCTC III 
WE~E)=3.0+C-l.O)**E 
IFCE.EQ.1.0R.E.E~.NE) WECE)=1.0 
00 120 M=1,MTZ 

DISTORTION 

'S'CICM,·EN)=SIN(M*PA2*EE) -
_SC2(M,EN)=M*PA2*COSCM*PA2*==) 
SC3CM,EN)=-2.0*SCICM,EN>*=2 
SC4CM,EN)=-2.0.SIN'(M+l)*P~2*EE)*SCICM,EN) 
SC5CM,EN)=-~*PA3*SIN(M*PA3=E=) 
SC6(~,EN)=-PA3.CCM+1)*COS«~+1)*PA2*EE)*SCl(M,EN)+ 

IM*SINCCM+l)*PA2*EE)*COS(M*~~2*EE» 
SC7'M,EN)=-M*M*PA3*PA3*COS(~*PA3*E:) , 
SC8CMtEN)=-PA2*PA3*(-(M.M+(~+I)*CM+1»*SIN(CM+l)*PA2*Ef). 

lSCl(~,EN)+2*M*(~+1)*COS('M+l)*PA2*EE)*COS(M*PA2*EE» 

RIGID SECTION 

~~l(M,EN)=SCl(M,EN) 
SR2CM,EN)=SC2(M,EN) 
SR3CM,EN)=-M*PAl*SINCM*PAl=~E) 
SR4(M,EN)=-M*M*PA1*PA1*COS(~*PA1~EE) 

CONTINUE 
IFC~TAN.EQ.l) GOTO i39 

TANGENT PIPE 
CIRCUMFERENTIAL FUNCTIONS 

00 130 E=l,NET 
IFCIFLAG.EQ.2) GOTO 131 
EN=E 
EE=CE-l)*HET+El 
IFCIFLAGl.EQ.2) GOTO 132 
WETCf)=3.0+(-1.0)**E 
IFCE.EQ.l.OR.E.EQ.NET) WET(E)=i.o 
GOTO 132 
EN=E+NET+NE 
EE;Cc-l>*HET+E3 
00 133 M=l,MTI 

DISTORTION 
I 

SC1(M,EN)=SINCM*PA2*EE) 
SCZCM,EN)=M*PA2*CCSCM*PAZ*EE) 
SC3CMtEN)=-2.0*SCl(M,EN)*~2 
SC4CM,EN)=-2.0*SIN('M+l)*P~2~EE>*SCl'M,E~> 
SCSCM,EN)=-M*PA3#SINCH*PA3=EE) 
SC~CM,EN)=-PA3*C(M+l)*COS«~+I)*PA2*~E)*SC1(M,EN)+ 

1M*SIN(CM+l)*PA2#EE)*COS(M~~~2#EE» 
SC7CH,EN>=-M*M*PA3*PA3*COS'~~PA3*E=) 
SC8(M,EN>=-PA2*PA3*C-(M*M+(~+1)*(M+1»*SINC(~+1)*PA2*EE)* 

ISCICM,EN)+2*M*CM+l>*COSCCM+l)*PA2#EE)*COSCM*PAZ*EE» 
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RIGID SECTION 

'SR 1 CM, EN)=SCl (M, EN) 
5RZ(M, EN)=5CZ(M,E~) 
S R 3 C M" EN) =-M*PA1*S INCM*PA1*E E) 

404. 

5 R 4 C M, EN) =-M*M*PA1*PA1*COS O'*PA1*EE) 
CONTINUE 
IFCIFLAG.EQ.Z) GOTD 139 
IFLAG=Z 
GOTO 134 

MERIDIONAL FUNCTIONS 
. ~ " r· 

DO 140 Y=1, NY 
yy =( Y-1)*HY+Y1 
IFCIFLAG1.EC.Z) GOTe 153 
wY (Y )=3. 0+(-1. 0)**'( 
'IF,CY.E~.1~OR.Y.EQ.N,() WYCY)=l.O 
51 (Y)=SINCYY) 
C1 CY )=C05C'(Y) 
Z(Y)=1.0+51CY)/RR , 

,T1 cy)=C1(Y)*RR*ZCY) 
T2 (Y)=CICY)/CRR*Z(Y» 
T3 e Y )=C1 (Y):::(SI (Y )+RR) 
00 150 N=l,NT 
N1=N+1 
:tFCC-1)**N1.GT.0) GOTe 145 

000' FUNCTIONS 

SM1CN,Y)=COSCN1*Y'() 
SMZ(N,Y)=SINCN1*YY) 
SM3CN,Y)=Nl*SM1(N,Y) 
SM4CN,Y)=-N1*SM2CN,Y) 
SM5(N,Y)=N1*SM3(N,Y) 
S;'6(N,Y)=-CICY)*5MICN,Y)+RR*ZCY)*SM4(N,y) 
SM7(N,Y)=TZ(Y)*SM1(N,Y)-SM4(N.f) 
GOTO 150 

, '"?, 

',eVEN FUNCTIONS 

5M1(N,Y)=SINCN1*YY) 
'SMzeN,Y)=CDSCN1*YY) 
SH3(N,Y)=-N1*SMICN,y) 
SM4CN,Y)=N1*SMZ(N,Y) 
SMSCN,Y)=-N1*SM3(N,Y) 
SMo(N,Y)=-Cl'Y)*SM1'N,Y)+R~*Z(Y)*SM4CN,Y) 
SM7(N,Y)=T2CY)*SM1(N.Y)-5M4(~,y) 

tso ' " CONTINUE 
\\0 CONT INUE 

• • 
~ 

• , 
\ .. 

IFCIFlAG1.EC.2) GOTe 800 
'v 

RIGHT-HA~O VECTOR 
" 

, NP1=0 
00 160 J=l,JT 
NPl=t;.IP1+(NZ-J) 
5(NPl)=-MG1*J*PA1~SIN(J*PI/2.0) 

SUBROUTINE FUNCT MINIMISATION AND INTEGRATION 
MATRIX FORM EO IN.V:CTOR 

'00 ,170 RP=l,NO 

. - .. . -~ ... - .... ... -. 

-.... , ._, . - . 



D(~P)=1.Q 
· CALL FUNCT(NJ,D,F,RP,RP) 
·OE(RP)=F 
NP1=NACRP) -
3(NP1)=2.0*F 
o (RP)=O.O 

.00 lao RP=1,NOM1 
NP1=NACRP) 
tP.P~RP+l 
DC RP)=l'.O 
00 ;'190; CP=IRP,NO 

, O(CP)=1.0 
CAL L"- > FUN C T C NO, 0 , F , C P , R P ) 
a (NP1+CP-RP )=F-OECRP)-OE (CP) 
O(CP)=O.O 
O(RP)=O.O 

SOLVE MATRIX ..... " 

CALL SOLVE(NO,IA,B,O,NA) 

FL'EXI,B ILITY FACTOR 

· KZ=O.O 
00 zoo J=1,~T 

'ZFCNTAN.cQ.l) GOTO 201 
KZ=KZ-O(J)*J*PA1~SIN'J*PI/2.0) 
GOTa', 200 
KZ=KZ-OeJ)*J*PA1*SIN(J*PI/2.0) 
CO:~T,INUE 

r,!, < ..... '" ~ 

O]:STOR!ION CCEFFS 
~ 'A ',-

CO 220' M=1, MT 
00 '2Z')' N= 1, NT 
H P =:JT1+M+MT*CN-l) 

"A1CM,N)=O(MP) -
A2 eM, N)=DCMP+MNT) 
A:3 eM, N)=oeMP+MNT*2) 
A4 eM, N)=OCMP+MNT*3) 

... R!TE OU'j 
~,'<> J ,; :' 

.tR IT E( OUT, 1 000) 
WRITECuUT,1002) 
~RITE(aUT,1004) LAMDA,AL,RR,LRl 
~RITEeOUT,1006) NY,NE,NET 
wRITECCUT,lOOS) NO,IA,NT,MT,JT 
;lRITECOUT,1010) KZ 
IFC.JZ1.EC.1) GOTO 999 
WRITECOUT,1012) 

-,00 0,230 J=1, JT 
llo iliRITECuUT,1014) J,oeJ),OeJ+JT) 

"R ITE e OUT, 1016) 
oo~ 250 M=l,MT 

405. 

00 ". 250' N=l,NT l,o "'~.ITECOUT,1018) N.M,Al(M,N),A2(M,N),A3C~,N),A4(M N) 
· IFC.JZ 1 • EC • Z) GOTO 999 ' 
_RITEeOUT,10Z0) 

· STRESS AND STRAIN SCF 
:', ::',~ 

,Ny·33' . 

, -
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NE=13. " 
IFCALPHA.lT.l.O) NE=1 

· tiV=CYZ-Yl)/(NY-l) 
·HE=CE3-EZ)/CNE-l) 
NET=O -c

IFCNTAN.EQ.Z) N:T=NE 
HET=O.O 

406. 

IFCNTAN.EQ.Z) HET=(EZ-El)/(NET-1) 
IFLAG1=Z 
GOTO .801 
IFCNTAN.EQ.l) GOTO 260 

T ~ NGENT PIPE 

!~o 00: 270 E=1, NET 
EE=(E~1.0)/(NET-l.0) 
IF'IfLAG~E~.2) GOTO 280 
EN=E< .. 
~RITECOUT,l070) EE 

~ . GOTO 290 
~O EN=E+NET+NE 

iiRITECOUT,1071) EE. 
~iO WRITECOUT,1072) 

V1=O.0 
VZ=O~O . 
00 300.J=1,JT 
ZR2=SR2(J,~N) 
ZR4=SR4(J,EN) 
V1 =v 1+0( J>*ZR4*AL 
VZ~V2+C(J+JT)*ZRZ#RR~AL 

!30 CONTINUE 
00 - 310 Y=l,NY 
yy~(Y~1)#HY*180.0/PI 
SZ=Sl(Y) 

· CZ:: C1CY ) 
F1=0.0 
FZ=V1*CZ 
;=3=-V2 
F4=0.0. 
FS=Vl:¢:RR*CZ 
F6~-V2 -

· ;)0; 305 H=1,HT 
00- 305 N=1,NT" 
AM1=Al (H, N) 
AMZ=AZeM,N) 
EH~1=A3(M,N) 
CM1=A4CM,N) 
ZSl=SH1(N,y) 
ZS2=SH2(N,y) 
ZS3=SH3(N,Y) 
:IS4=SM4(~,y> 
ZS5=SHSCN,y) 
ZS6=SM6(N, Y) 
IS7=SM7(N,y> 

. LC1=SC1(".,EN) 
ZC2=SCZ(~' EN) 
.LC3~SC3(M,EN) 
ZC4=SC4( 101, EN) 
ZCS=SCS(M, EN) 
ZC6=SC6(M,EN) 

.lC1=SC7(M,EN) 
ZC8=SC8CM,EN) 
Fl=Fl+(ZSl*CAM1#ZC3+AM2*ZC4)+BM1*ZS3*ZC1) 



t .. 
\ 

t 

407. 

:F2=FZ+(CM1*ZSl*ZCZ) 
F3=~3+(SM1*ZSZ*ZCZ+CM1*ZS4*RR*ZC1) 
F4 =F4+" ZS5*(AM1*ZC3+ AM2*ZC4)+6Ml*ZS3*ZC1) 
F5=FS+C-ZS1#CAM1#ZC1+AMZ*ZC8» 
F6~F6+C~ZS4*CAM1*ZC5+AMZ*ZC6)+SM1*ZSZ*ZCZ) 
CONTI~UE 
EY=Fl*RR 
EX7 FZ 
EXY=F3 
K Y = LAMD A*F4.1Z. 0 
KX~LAMOA*F5.1(Z.0*RR*RR) 
~XY=LAMOA#F6.1CZ.O*RR) 
EXI=EX-KX 
EXQ=t:X+KX 
EYI=EY-KY 

, EYQ=EY+KY 
SXI=CEXI+MU*cYI)#MG3 
sxa=(EXO+MU*EYO)*MG3 

'.S YI=' EYI+MU*EXI)*MG3 
SYO=CEYO+MU*EXO>*MG3 
SXYI=CEXY/Z.O-KXY).I(l.O+MU) 
SXYO=<EXY/Z.0+KXY).IC1.O+MU) 
WRIT;(OUT,l080) YY,EXI,EXD,EYI,EYO,SXI,SXO,SYI,SYO,SXYI,SXYD, 
CONTINUE 
IF(IFLAG.EQ.2) GOTD 999 
IFl.AG=! 

SEND,SECTION 
'. _,. ;7-. 

~~O ' , 00' 320 E=l, NE 
EN=E+NET 

, ce=(E-1)#HE*180.0/PI 
wRIT:(QUT,1013) EE 
114RIT:(OUT,1012) 

'.'V1=0.0 
'12=0.0 
'13=0.0 
V4=0~0 
DO' 330 J=l,JT 

'ZR1=SR1(J,EN) 
ZR2=SRZCJ,EN) 

, ZR3=SR3eJ,EN) 
" ZR4=SR4(J,EN) 

Vl=Vl+OeJ)*ZR4*Al 
V2=V!+OeJ+JT)*ZR1#RR*Al 

.. V3=V3+0eJ )*ZR3*Al 
V4=V4+0eJ+JT)*ZR!*RR*AL 

~~O., CONTINUE 
". DO:,340 Y=1, NY 

yy=(Y-1)#HV*180.0/PI 
. SZ=S1CY) 

CZ=C1CY) 
. ZT1=Tl(Y) 

ZTZ=T2(Y) 
ZT3=Z(Y) 
ZT4=T3CY) 

'Fl=O.O 
F2=CZ*CVI-V2) 

'~ F3=~(V3+V4) 
F4~0.0 

.' FS=Vl:::ZT4-VZ*ZTl 
,F6=-CV3+V4) 
00'350 M=l,MT 

.. --- - -.
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00' 3 50 .N=l, NT 
'. AM1=Al(M,N) 
> AM2=A2(M,N) 

.8Ml=A3CM,N) 
CM1=A4(M,N) 
ZSl=SM1(N, Y) 
ZS2=SMZ(N, Y) 
ZS3=SM3(N,Y) 
Z!;!~=Sfo14(N,y> 
ZS5=SMS(N,Y) 
ZS6=SM6(N, Y) 

,ZS7=SM7(N, Y) 
ZC1=SC1(M,cN) 
ZC2=SC2(.'4,EN) 

, ZC3=SC3CM,EN) 
. ZC4=SC4(M,EN) 
ZCS=SCS(M,EN) 
ZC6=SC6(M, EN) 
ZC7=SC7(M,EN) 

408. 

ZC8=SC8CM,EN) 
Fl=Fl+(ZSl*(AM1*ZC3+AMZ*ZC4)+8Ml*ZS3*ZC1) 
FZ=FZ+(ZSl*CSZ*(AM1*ZC3+AMZ*ZC4)+CM1*ZC2)+SM1*CZ*ZS2*ZCl) 

. F3=F3+(BM1*ZSZ*ZCZ+CM.1*ZS6*ZC1> 
F4=F4+(ZSS*(AMl*ZC3+AMZ*ZC4)+BM1*ZS3*ZC1) 
F5=FS+(ZSl*(CM1*SZ*ZC2-AM1*ZC7-A~Z*ZC8)+ 

lZT1*(BM1*ZS2*ZCl-ZS4*CAM1*ZC3+AM2*ZC4») 
\" F6=F6~CZS7*(AM1*ZC5+AM2*ZC6-CM1*SZ*ZC1)+BM1*Z~2*ZC2) 
.. ~O . CONTINUE 

EY=Fl*KR 
EX=F2/ZT3 
EXY=F3/ZT3 

. ~ y =LAHDA*F4/ 2.0 
;: KX =LAHilA*FS/(2 .0*RR*RR*ZT3*ZT3) 

KXY=LAMOA*F6/CZ.O*RR*ZT3) 
EXI=cX':'KX 

, EXO=E'lC+KX 
EYI=EY-KY 
EyO=EY+KY 

~ SXI=(EXI+MU*EYI)*~r,3 
. SXO=(EXO+MU*EYO)*MG3 

, " S Y I=( E YI+MU*EX I)*MG.3 
, .. SyO=(EYO+MU*Extn*MG3 
, , SXYI=(EXY/Z.O-KXY)/(l.O+MU> 

\ . SXyO=CEXY/Z.O+KXY)/(l.O+MU> 
i\O WRITECOUT,1080) YY,EXI,EXD,EYI,EVO,SXI,SXO,SYI,SYO,SXYI,SXYO 
~O CONTINUE 

l /IFCIFLAG.EQ.Z) GOTO 360 
~OO FORMATC//////30X, 

11~***********************************************************'/ 
Z30X,·.·,58X.·.'/30X,'.·,15X,·ANALYSIS Of SMOOTH PIPE BEND', 

", . 315X, '*'/30X, '.',16X, 'UNDER OUT-Of-PLAN: BENDING·,16X,·#·/ 
430X,·*·,Z7X,·WITH',27X,·*'/30X,·*·,lZX, 

" SIFLANGEO OR TANGENT ENO CONSTRAINTS·,12X,·*·/30X,·.·,58X, 
." 6 1 .'/30X, 

71.*~*********************************************************. 
, 8////)-

ltoz FO~HAT(/11/30X, 
11.**~*****************************~.~************************' 
ZI/5 4X ,:OATA ON BENO'//30X, 
31****.**~*****************~**.********~*=********************') 

l~04 FO~MAT(1143X,'PIPE BEND FACTOR·LAMDA = ',F6.3/S5X, 
, , l'ScNO 'ANGLE = ",F6.3/53X,·RAOrUS RATIO = ·,F6.3/43X, 

Z I ( TAN G ::: NT / R A 0 IUS )_ RAT I 0 = I, f 6 • 3//2 S X , 



,409. 

3'FJR FLANGEO END CONSTRAINTS THE (TANGENT/RADIUS) RATIO IS ZERO' 
4////) 

1006 FORMATC////30X, , 
1'*~***~*****~************************************************' 
2//51X,'INTEGRATION DATA'//30X, 
3'~***********************************************************' 
4//3SX,'INTEGRATION DONE USING SIMPSONS RULE WITH NO'/S5X, 
S'SYMMETRY'//34X, 
6'N~M3ER OF ~OI~TS ~~ THE MERIDIONAL DIRECTION = ',!3/34X, 
7'CIRCUMFERENTIAL DIRECTION :-'/42X, 
8'N~HBER OF POINTS ALONG THE BEND = ·,I3/39X, 
9'NUMSER OF POINTS ALONG THE TANGENT = ',13////) 

looa ,FORMATC////30X, 
1'*****~******************************************************, 
2//S2X,'SOLUTION OATA'//30X, 
3'************************************************************' 
4//4SX ,'USING GAUSSIAN ELIMINATION'//4SX, 
S'TOTAl NUM3ER OF UNKNOWNS = ',I6/45X, 
6'VcCTOR OROER FROM MATRIX = ',I6//68X, 
1~NT"=' ',I6/68X,'MT = ',I6/68X,'JT = ',I6//43X, 
8'DOUBlE PRECISION USED THROUGHOUT'////////) 

l010 FORMATC////30X, 
l'~*~*********************************************************' 
2//4SX,'F~EXIBILITY FACTOR = ',F7.3//30X, 
3'#******************************************************~***-
4//31X,'THE FLEXISILITY FACTOR REFERS TO THE BENO SECTION ALONE' 
S/36X,'ANO IS BASED ON A NO~INAL ROTATION = MRAL/EI'/29X, 

~6'WHE~E :- M = APPLIED OUT-OF-PLANE BENDING MOMENT AT THE FLANGE' 
7/38X,-R ~ BEND RAOIUS'/37X,'AL = BEND ANGLE'/38X, 

·S'E = YOUNGS MODULUS'/38X,'I = SECCND MOMENT OF AREA-) 
\Q1Z FORMATC////////30X, 

1'#***********************************************************' 
Z//40X,'RIGID SECTION DISPLACEMENT COEFFICIENTS'//30X, 
3'***************~********************************************' 
4//30X,4NUMSER OF',13X,'AeJ) SERIES',7X,'SeJ) SERIES',7X/ 
S3ZX, 'TERMS'//) 

\~14 FO~MAT(33X,I3,13X,F12.6,6X,FIZ.6) i 

l~16· FORMATC//////3t1X, .. 
. 1'************************************************************' 

2//41X ,'DISTCRTION DISPLACEMENT COEFFICIENTS'//30X, , 
3'************************************************************' 
4/;lSX,'NUMSER OF TERMS',5X,'NUMBER OF TERMS',aX, 
S-AM1(M,N)',5X,'AM2CM,N)',5X,'SMICM.N)',5X,'CMICM,N)·/17X, 
6'MERIDIONAL',8X,'CIRCUMFERENTIAL',9X,'SERIES',7X,'SERIES',7X, 
1'SERIES·,1X, 'SERIES'//) 

~~13 FORMATCZOX,I3,17X,I3,lOX,Fll.5,2X,Fl1.5,2X,Fll.S,2X,Fl1.5) 
QZO FORMATC///////// 30X , 

1'~***********************************************************. 
:2//40X ,'STRESS AND STRAIN CONCENTRATION FACTORS'//30X, 
3'*****************************:******************************' 
4//31 X,'THE SCF IN STRESS AND STRAIN ~RE BASED ON NOMINAL VALUES' 

. '. S/36X,'EVALUATED FROM SIMPLE BENDING THEO~Y') 
\~10 FORMATC////' FIXED TANGENT'//' DISTANCE = ',F6.3//) 
!~11· FORMATC////' LOADED TANGENT'//' DISTANCE = ·,F6.3//) 
'~12 FORMAT(// 

,.' l1X,' STRAINS',44X,"STRESSES·//· MERID.',4X, 
2'CIRCU~FERENTIAL·,6X,·MERIOIONAL· 
3,10X,'CIRCUMFERENTIAL',6X,'MERIOIONAL',lOX,'SHEAR STRESSES'// 
41~'ANGLE·,3X,'INSIDE·,5X,·OUTSIDe·,3X,·INSIDE·,4X,·OUTSIOe·,4X, 
5 I INSIOc',5X,'OUTSIOE·,3X,·INSIDe',4X,·OUTSIOE',3X,·INSIDE', 

, 64X,·OUTSIDE·//) , 
~~13 FORHATC////' SEND S:CTION'//· THETA = ·,F6.2//) 

. ~80 FORHAT(lX,F7.Z,3X,10CF7.3,3X» 
~ 



t 
t 

loo 

~oo 

\20 

STOP 
ENiJ 

SUBROUTINE FUNCT{NO,O,F,CP.~?) 
IMPLICIT R=Al*a (A-H,O-Z) 
REAL*8 MG2,LA,LR1,LR3 

410. 

REAL*8 Al(lO,10),A2(10,lO),~3(10,lO),A4(10,10) 
REAL*8 Z(3S),TIC3S),T2C3S),T3(JS).Sl(3S),Cl(3S) 

- REAL*8 SM1(lO,35),SM2(10,JS),SM3(lQ,35),SM4(lO,3S) 
REAL*8 SMSCIO,35),SM6(10,35),SM7(10,3S) 
REAL*8 SC1(10,35),SC2(10,35),SC3(10,3S),SC4(10,3S) 
REAL*S SC5(10,35),SC6(10,35),SC7(10,35),SCa(10,35) 
REAL*8 SRICIO.35),SR2(10,35),SR3(10.3S).SR4CIO.35) 
REAL*S WY(3S),WE(3S),WET(25),O(42S) 
INTEGER RP,CP,E,El,Y 
COMMON/BLOCK 1/SM1,SM2,SM3.S~4,SMS.SM6,SM7 
COMMJN/BLOCK 2/SC1,SC2,SC3,SC4,SCS,SC6,SC7,SC8 
COMMON/BLOCK 3/SR1,SK2,SR3,S~4,Z,Sl,Cl,T1,T2,T3 
COMMON/BLOCK 4/WEtWETtWYtH=,~ET,Hy,NE,NET.NYtLR3 
COMMON/BLOCK 5/JT1,MNT.NT.~T.JT,NTAN,MG2,RR,AL,LA 
00 100 M=l,MT 
DO 100 N=l,NT 
MJ=JT1+M+MT*(N-1) 
AICM,N)=O(MJ) 
A2CM,N)=O(MJ+MNT) 
A3CM.N)=OCMJ+MST*2) 
A4CM,N)=O(MJ+MNT*3) 
F=O.O 
IFLAG=l 
IFCNTAN.EQ.1) GOTO 105 

TANGENT PIPE 

DO 110 E=::,NET 
E1=E 
IfCIFLAG.EQ.2) El=E+NET+NE 
,,11= 0.0 
V2=0.0 
J1=0 
00 120 K=l,2 
J=CP 
IFCK.EQ.Z) J=RP 
IF(J.GT.JT1) GOTO 120 
IfCJ.GT.JT) J=J-JT 
IFCJ.EQ.Jl) GOTD 120 
J1=J 
ZRZ=SR2(J,cl) 
ZR4=SR4(J,E1) 
V1=Vl+0(J)*ZR4*AL 
V2=V2+0(J+JT)*ZR2*RR*AL 
CONTINUE 
DO 110 Y=l,NY 
SZ=SlCY) 
CZ=Cl(Y) 
Fl=O.O 
F2=Vl*CZ 
F3=-V2 
F4=O.0 
F5=Vl#RR*CI 
F6=-V2 
MN1=O 
00 130 K=1,2 



. 
\ . , 

MN=C? 
IFCK~EO.2) MN=RP 
IFCMN.(E.JT1) GOTC 130 
'MN:MN-JT1 
IFCMN.GT.MNT) MN=MN-MNT 
IF(MN~GT.MNT) MN=MN-MNT 

'IFCMN.GT.MNT) MN=MN-MNT 
IFCMN.EC.MN1) GOTO 130 
!"iNl ;MtJ 
'N=CMN-l)/MT+l 
M=MN-MT* (N-l) 
AM1=Al(M,N) 
AM2=A2(M, ~D 
6Ml=A3 (101, N) 
CM1~A4CM,N) 
ZSl'=SMl(N,Y) 

, ZSZ=SM2(N,Y) 
'IS3=SM3(N, Y) 
ZS4=SM4(N,Y) 
ZS5=SMS(N, Y) 
ZS~=S~6(N,y) 
ZS7=SM7(N,Y) 
Z C 1= S C 1 ( M • E 1 ) 
ZC2=SC2(M, ~1) 
ZC3=SC3CM,El) 
ZC4=SC4( 1'4, El) 
ZCS=SCS(M,El) 
IC6=SC6(M,El) 

, ZC7=SC7(M,El) 
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zca=SC804,:1) 
Fl=F1+(ZSl*(AM1*ZC3+AM2*ZC4)+BMl~ZS3*ZC1) 
F2=F2+(CM1#ZSl*ZCl) 
F3=F3+(BMi*zS2*ZCl+CM1*ZS4~RR#ZC1) 
F4=F4+(ZSS*(AM1*ZC3+AMl*ZC4)+B~1~ZS3*ZCl) 
FS:F5+(-ZSl*CAM1*ZC7+AMZ*ZCS» 

. F6=F6+C-ZS4*(AMl*ZC5+AM2~Z(6)+B~1*ZS2*ZC2) 
CONTINUE 
F=F+CCFl*RR+Fl)*CF1*RR+F2)

IMG2*(Fl*F2*RR-F3~F3/4.0)+ 
2LA*CCF4+FS/(RR*RR»*CF4+FS/(RR*RR»
JMG2*CF4~F5-F6~F6)/CRR*RR»)*~Y(Y)=NET(E)*HY*HET/9.0 

IFCIFLAG.EQ.2) GOTO 105 
IFt.AG=l 
GOTO 300 

- _"!" ',,' 

" '. 

loS' . 00 210 E:l,NE 
, cl=E+NET 

Vl=O.O 
VZ~O~O 

. V3~O~0 
V4=O.0 
Jl=O~ 
00' 220 K=l, 2 
J=CP 
IF('<~ EQ.2) J=RP 

. IFCJ.GT.JTl) GOTO 220 
IFCJ~GT.JT) J=J-JT 
IFCJ~EC.Jl) GOTO 220. 
Jl=~,( . 
ZR1=SRl(J,El) 
1°:1;~R2(J,=1) 



~30 
'10 

'ZR3=SR3(J,::1) 
ZR4=SR4CJ.El) 
Vl=Vl+JCJ)*lR4*AL 
V2=VZ+O(J+JT)*ZR1*RR*AL. 
V3:V3+D(J)*lR3*AL 
V4~V4+DCJ+JT)*ZR2*RR*AL 
CONTINUE 
00'210 Y=1,NY 
$Z=51(Y) 
CZ=C1(Y) 
ZT1=TICY) 
ZTZ=TZCY) 
ZT3=ZCY) 
ZT4=T3ey) 
Fl=O.O 
FZ=CZ*eVI- V2) 
F3=-(V3+V4) 
F4=0.0 
F5=Vl*ZT4-VZ*ZTl 
F6=-CV3+V4) 
HN1=0 
DO 230 K=l,2 
MN=CP 
IFCK.EQ.2) MN=RP 
IF(MN.LE.JT1) GOTD 230 
1"N=M~-JT 1 
IF(HN.GT.MNT) MN=MN-~NT 
IFCMN.GT.MNT) MN=MN-MNT 
IF(MN.GT.M~T) MN=MN-MNT 
IF(MN.EC.MN1) GOTe 230 
MN1=MN 
N=(MN-l)/MT+l 
M=MN-MT*eN-l) 
AM1=AICM,N) 
AHZ=AzeM,N) -
aMl=A3(~,N) 
CM1=A4(M,N} 
ISl=SMICN,Y) 
ZSZ=SHZC~.Y) 
153=SM3CN,Y) 
ZS4=SM4(N,Y) 
ZS5=SM5(~,y) 
ZS6=SM6CN,Y) 
IS7=SH7(N,Y) 
ZC1=SCIC"',El) 
lCZ=SC2C~,El) 
ZC3=SC3(H,El) 
lC4=5C4(M,El) 
ZC5=SCSCM,El) 
lC6=SC6('~, =1) 
LC7=SC7(M,El) 
zca=SC8CM,El) 
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Fl=Fl+ClSl*CAM1*ZC3+AM2*ZC4)+BM1*ZS3*zel) 
FZ=FZ+(ZSl*CSZ*CAM1*ZC3+AM2*ZC4)+CM1*zeZ)+SM1*eZ*Z52*Zel) 
F3=F3+CBM1*zsz*zez+eMl*ZS6*zel) 
f4=F~+(ZSS*(AM1*ZC3+AMZ*ZC4)+BM1*ZS3*ZC1) 
FS=F5+(ZS1*CCM1*SZ*ZC2-AM1*ZC7-AMZ*ZCS)+ 
lZT1*(BM1*ZS2*ZCl-ZS4~CAM1*ZC3+AM2*ZC4») . 

F6=F6+CZS7*CAM1*ZC5+AM2*ZC6-CM1*SZ*ZC1)+SM1*ZS2*ZCZ) 
CONTINUE 
F=F+(CF1*RR+F2/ZT3)*eFl*RR+FZ/ZT3)*ZT3_ 
IMGZ*CF1*~2*RR-F3*F3/(4.0*ZT3»+ 
2L~~«F4+FS/(~R*RR*ZT3*ZT3»*(F4+F5/(RR*RR*ZT3*ZT3»*ZT3-
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3MG2*'F4*~5-F6~F6)/(RR*~R*ZT3»)*WY<Y}*WE(E)*HY*HE/9.0 

RETU~N 

ENu 
-SUSROUTINE SOLVE(N,IA.B,CE,NA) 
IMPLICIT REAL*a (A-H,O-Z) 
REAL*8 BCIA).CE(N),NA(N) 
NZ=N+2. 
Nl =N+l 

'NM1=N-l 
NM2=N-Z 
00 100 I=l,NMl 
NP1=NACI) 
NPZ=N-I 
NP3=N2-1 
P=BCNP1) 
00 100 J=l,NPZ 
NP4=NA(I+J) 
R=SCNPl+J)/P 
NPS=NP3-J 

'NP6=NPZ+I-NP5 
00 100 K=1.NP5 
1<1=K-1 
SCNP4+K1)=BCNP4+K1)-R*SCNPl+K+NP6) 

NP1=NA(N)+1 
aCNP1)=B(NP1)IBCNP1-l) 

&)0 2.00 M=l,NMl 
I=N-M 
IP1=I+l 
NP1=NACI D1) 
NP2=NA(I) 
T=SCNP1-l) 
00 300 J=IPl.N 
Ml=J-IP1+l 
MZ=NA(J) 
M3=M-M1+1 
T=T-~(MZ+M3)*B(NPZ+Ml) 
3C~P1-1)=T/BCNPZ) 

NS=O 
00 400 I=l,N 
NS=NS+NZ-I 
DECI}=a(NS) 
RETURN 
END 
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Gauss Algorithm 
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APPENDIX 2: Solution of Linear Simultaneous Equations - Gauss 

Algorithm 

Consider the system of equations: 

all Xl + a12 X2 + a13 Xs + · · · · alnXn = bl 

aUXl + a22 X2 + a2S X3 + a2nXn = b2 

anXl + an X2 + aS3 ~s + · · · · a3n XTl = b3 

" " " " 
" " " " 
an~ + ~X2 + ~SXs + · · · · . . ~n'h = In . . (2. lA) 

These can be written in matrix form as: 

all a12 alS " " " a ln Xl b l 

a 2l a22 a2S " " " a2n X2 b 2 

an an ass " " " asn Xs b 3 

= 
" " " 

" " " 
anl Bn2 ans " II. " ann Xn bn 

or [A] LxJ = LbJ • • • • • • (2. 2A) 

where [A] is the coefficient matrix, LxJ is the unknown solution 

vector and L b J is the known right hand side vector. To eliminate 

the unknown xi' it is necessary first to modify the coefficient matrix 

and right hand vector, by forward substitution, as follows: 
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aji aik 
ajk = ajk - j , k = i + 1, ......, n . . . . . . (2. 3A ) 

a" 11 

a" bi 
b. b. 

)1 
= -

) ) 
j = i + 1, ••••••• n • . • . . • (2. 4A ) 

a" 11 

for i = 1,2,3, ••.•• , n-1 

where a .. is the element in the ith row and jth column of the coef-
1) 

ficient matrix and b i is the ith element of the right hand side vector. 

. h th t" I d ~ th k When 1=n, ten equa Ion IS so ve .Lor e x un nown: n 

X = bn n 
• . . . . • (2. SA) 

The remaining unknowns, xi' are found by back sUbstitution using: 

1 x. =-[b.-
1 aU 1 

n 
I a .. x.] 

1) ) 
j=i+l 

i=n-1,n-2, ••••. , 1 • . (2. 6A) 

If the coefficient matrix is symmetric, i.e.: a .. = a .. , then only the 
1) Jl 

elements of the upper triangle need to be operated on during the 

forward sUbstitution using, instead of equation (2. 3A): 

k =j,j+1, ••.•• , n 

j = i+1,i+2, .•••• , n • • (2. 7A) 

This requires slightly more than half of the original operations. 
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APPENDIX (3) 

Strains for Computer Solution 
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. APPENDIX 3: Strains for Computer Solution 

The strains as given by equations (3.52) for the flanged bend 

problem, using the non-dimensionalisation given in equations (3.72) 

and (3.73) are as follows: 

~0 = [II [ZSl*[A1mn *ZC3 + A2mn *ZC4] + Bmn *ZS3*ZC1]] ~ 
mn 

- - -
£e = [II [ZSl*[S2i*(A1mn *ZC3 + A2mn *ZC4) + Cmn *ZC2] 

mn 

+ B *CZ*ZS2*ZC1] mn 

+ I [CZ*[A.*ZR4 - B.*ZR1 *!!] * all ~ 
• 1 ) r 
1 

y 80= [I I [Bmn *ZS2*ZC2 + Cmn *ZSS*ZC1] 
mn 

- ~ [A.*ZR3 + B.*ZR2*!! ] *a] ! t) ) r Z 

K..L = [I I [ZS5*(A1mn *ZC3 + A-2 *ZC4) + B *ZS3*ZC1]] 
IIJ mn mn mn 

Ke = [~ ~ [ZSl*[C *SZ*ZC2 - A1 *ZC7 - A2 *ZC8] L. L. mn mn mn 
mn 

+ ZT1*[B *ZS2*ZC1- ZS4*(A1 *ZC3 + A2 *ZC4)]] mn mn mn . 

+~ [A.*ZT3*ZR4 - B.*ZT1*ZR1*!!]*a] [Rrg]2 
. ) ) r 
] 

K ",= [~ I [ZS7*[A1 *ZC5 + A2 *zcs - C *SZ*ZC1] 
GIIJ ~ n mn mn mn 

+ B *ZS2*ZC2] - 1 (A.*ZR3 + B.*ZR2*!!]*a] (:,,) mn .) ) r nr. 
] 
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where: 

ZC1 = sin(m'l1'e) 
a 

ZC2 (m'l1') (m'l1'e) = -cos -a a 

ZC3 = -2.0*(ZC1)2 

ZC4 = -2. O*sin( (m+1) '11'8) *ZC 1 
a 

ZC5 = _( 2m'l1')sin(~) 
a a 

ZC6 = -( 2'11') *[ (m+1)cos( (m+1)~) *ZC 1 
a a 

+ m si~( (m+1)'I1'e )cos(m'l1'e)] 
a a 

ZC7 = _(2m'l1')2cos(2m'l1'e) 
a a 

ZC8 = -2(.!./[- (m2 + (m+1)2)sin«m+1)~)*ZC1 
a a 

+2m(m+1)cos( (m+1) ~)cos(m'l1'e)] 
a a 

ZR1 = sin(j'l1'e) 
a 

ZR2 = (i!..)cos(j'l1'6 ) 
a a 

ZR3 = _( i!.)sin( j '11'8 ) 
. 2a 2a 

ZR4 = _(j'l1')2COS(j'l1'8) 
2a 2a 

SZ = sin0 

CZ = COS0 

ZT1 = ~'COS0 
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ZT2 = n'cosch 

ZT3 = cosch(sinch +~) 

ZSl = '1' oncos(nch) + '1' ensin(nch) 

ZS2 = 'I' onsin(nch) + 'I' encos(nch) 

ZS3 = '1' onncos(nch) - 'l'enn sin(nch) 

ZS4 = - 'I' onn sin(nch) + 'I' enn cos(nch) 

ZS5 = '1' n 2cos(nch) + 'l' enn2sin(nch) on . 

ZS6 = '1' [-coschcos(nch) - n R' sin (nch)] on -r 

+ 'l' en [-coschsin(nch) + n!!o' cos(nch)] 
r 

ZS7 = '1' on [~, cos0cos(nch) + n sin(nch)] 

+ '1' en [n,1 cos0sin(nch) - n cos(n0)] 
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APPENDIX 4: Previous Solutions 

. This appendix presents a few of the earlier solutions carried out 

during the study. In the presentation of the solutions the displace

ments are given in the form of the --rigid section displacements and 

the distortion displacements. Each solution assumes the boundary 

conditions of a "thick flange" at 9=0 and 9=0., and is applicable to a 

bend angle ex in the range 0 i a. ~ 2 7T. 

In integration the limits employed were as follows: 

in the circumferential direction 0<9<0. = = 

in the meridional direction 0<0<27T 
== == 

Typical convergence curves for each solution are given in Figures 

( 4. lA) - (4. 4A). A comparison of the stress distributions is given 

in Figure (4.5A). 

All the solutions use double precision throughout unless otherwise 

stated, and were computed on a let 2980 computer. 
i, ~N~y"r~",,:, ~~~:,'~ ~ ~~::c :':'-:: '1-,.: ~ ... ,{'"-·,,,~·~-t;--'~" :.': 1=, " 

AII' the ~~lutions p:re~ented employ" the, strain 'equations given by (3.52) unless 
~> __ :~",,';~~r"": ,." t .. :~..".,,;., l' .-- .. - ' ,,, ~ '," ~ , :';' '> 

otherwise stated. 
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Solution Al 

Rigid section displacements 

JT 
2A.cos0sin 2 (j n6) wR = L 1 40. 

j=l 

JT 
-2A.sin0sin2 (ins) - B.sin(jn6) v R = L 1 4a. 1 a. 

j=l 

JT. . 
- j n6 u R = l. -X.!:. (l!..)cos0sin( l;e ) - e.sin( ) 

lR 20. a. 1 2 a. 
j=l 

where A. = (~)A. B. = (~)B. C. = (~)e. 
1 ry 0 1 1 ryo 1 1 ry 0 1 

Distortion displacements 

MT NT 
= l. l. - 2AmnSin(n0)sin 2 (m:e) 

m=l n=l 

MT NT 
= L l. BmnCOS(n0)Sin(m:s) 

m=l n=l 

MT NT 
= l. l. CmnSin(n0)Sin(m:e) 

m=l n=l 

where Bmn = (~)B ryo mn 

• • (4. lA) 

. . (4.2A) 
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Solution A2 

. Rigid section displacements 

JT . 
= I 2A.cosfhsin 2 ()'Ire) 

j=l 1 40. 

JT . . 
= I -2A.sinthsin 2 (J1TS) - B.sin(~) 

j=l] 40. 1 0. 

JT. . 
= I -A]. Ii ( L!!..) coschsin (J

2
1T e ) 

j=l 2a. 0. 

where Aj = (~)A. 
ryo ] 

Distortion· displacements 

MT NT 

- j1Te C.sin( ) 
] 20. 

C
J
• = (~)C. 

ryo 1 • • 

= I I -2['1' oncos(nch) + '1' sin(nch)] [A1 sin2 (mrrs) 
m=l n=l en mn 0. 

+ A2 sine (m+1)1Te)sin(m1T~] 
mn 0. 0. 

MT NT 
= I I ['1'onsin(nch) + '1'encos(nfh) ]Bmnsin(m:~ 

m=l n=l "" 

MT·NT 
= I I ['1' oncos(nch) + '1' ensin(nfh} ]CmnSin(m:s ) 

m=l n=l "" 

where A1 = (~)A1 , A2mn = (ryo.o}A2mn mn ryo mn 

(4. 3A) 

• • . (4. 4A) 
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Solution A3 

Rigid section displacements 

= J{ -A.a (j+1) coslli 
j=l ] 

JT _ ('+1) . 
= 1 A.a 1 sinlli - B.sin(~) 

j=l ] 1 CL 

JT . . 
= 1 A·It (j+1)S ]coslli - C.s l 

j=l ] ] 

where A. = (~)A. 
1 ryo 1 

Distortion displacements 

MT NT 

c]. = (~)C. 
ryo 1 

wn = 1 I -2['l'oncos(nlli) + '¥ sin(n0)] [A1 sin2(mrrs) 
m=l n=l en mn CL 

Bmn 

(4. SA) 

(4. 6A) 
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. Solution A4 

Rigid section displacements 

JT ('+1) 
wR = t -A.a 1 COS0 

j=l 1 

JT ('+1) 
B.sin(jn°s) vR = t A.s 1 sin0-

j=l 1 1 a 

JT . 
u R = l. A.!:.(j+1)slcOS0 

j=l lR 

where A. = (~)A. 
1 rY 0 J 

B. = (...!:......)B. 
J rYo J . . (1I.7A) 

Distortion displacements 

MT NT 
= l. l. ['1' cos(n0) + '1' sin(n0) ][A1 [sin(2(m+1)-rrs) 

m=ln=l on en mn a 

(2m+1)sin(!!.)] ] 
a 

MT NT 
vn = 1 t l. [- -nl'i'onSin(n0) +.!'i' cos(n0) ][A1 [sine 2(m+1)~) 

m=ln=l n en mn a 

- (m+l)sin(21Ts)] + A2 [sine (2m+1)-rrs) (2m+1)sin(1Ts)]] 
a mn . a a 

MT NT . _. (m1Ts) = l. l. £11' onCOs(n0) + '1' ensm(n0) ]Bmnsm a
m=ln=l 

where B = (~)B 
mn ryo mn 

. . (II. 8A) 

In this section the following displacement and strains were taken as 
zero: 

Uc(S) = 0 

F'.0 = Ks = Ks 0 = 0 
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Solution Bl 

.. Rigid section displacements 

JT R . 9 
= I 2A.- o.cos0sin2 (L!!...) 

j=l Jr 40. 

JT R . 6 
= I -2A.- o.sin0sin2(l.!....) 

j=l Jr 40. 
- R • 6 
B.- asin(~) 
Jr a. 

JT. . 
= L -A.( J

2
n ) a. cos0sin(J n6) 

j=l J a. 20. 
c. ~ a. sin(jn9) 

J r 20. 

where A. = (_l_)A. 
J Ryo J 

B. = (_l_)B. 
J RYo J 

C. = (-RY
l )c. 

J 0 J 
. . (4. 9A) 

Distortion displacements 

MTNT+l 
wn · = L L -2[ '1' onCOs(n0) + '1' ensin(n0) HAl sin2 (~n~ 

m=ln=2 mn a. 

+' A2 sine (m+l)1Te)sin(mn6)] 
mn a a 

MT NT+l 
= I I ['i'onSin(n0) + '1' enCOs(n0)]B sin(mne) 

m=ln=2 mn a. 

MTNT+l 
= I I ['1' onCOs(n0) + '1' sin(n0)]C sin(mn6 ) 

m=ln=2 en mn a. 

where a. 
= (r-)Al ,A2mn = Yo mn (~)A2 

ryo mn 

. . (4. IDA) 
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Solution B lA 

Rigid section displacements 

JT 
= ~ 

j=l 

- R j11'e 2A. - <l cos0sin2 ( ) 
] r 4<l 

JT _ R . e R . 
= ~ -2A.-<lsin0sin2(l!.-) - B. _<lsin(pre) 

j=l ] r 4<l] r <l 

JT. . 
= ~ -A.(] 11' ) <l cos0sin(J 11'e) 

j=l ] 2<l 2<l 

where (4. 11A) 

Distortion displacements 

MT NT+l 
wn = ~ ~ -2['¥ onCOs(n0) +'¥ ensin(n0)] [Al sin2 (m 11'e) 

m=l n=2 mn <l 

+ A2 sine (m+l) 11'e)sin(~)] 
mn <l <l 

MT NT+l 1 1 - e 
= ~ ~ -2[-n 'i' onsin(n0) + -n '¥enSin(n0)][Al sin2(m1T) 

m=l n=2 mn <l 

+ A2 sine (m+l.)11'e)sin(m11'e)] 
mn <l <l 

MT NT+l 
un = ~ ~ [If onCOs(n0) + '¥ sin(n0)]8 sin(~) 

m=l n=2 en mn <l 

where Al = (~)Al . 
mn rro mn 

A2 = (~)A2 
mn ryo mn 

This solution uses single precision throughout. The following displace
ment and strain were taken as zero: 
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Solution B2 

Rigid section displacements / 

JT _ R ·~e 
= L 2A. - a coschsin 2 (]-) 

j=l ]r 4a 

JT _ R . e 
= L -2A. - asinchsin 2 (!!....) 

j=l]r 4a 
- R jne B. - a sine ) Jr a 

JT .. . 
= I -X.(l.!.) a coschsin(] ~e) 

j=l J 2 a 2a 
- R j~6 C.- a sine ) 

) r 2a 

where - 1 - 1 A. = (~)A. , B. = (~)B. 
J n.Yo] ] n.Yo ] 

- 1 C. = (If.V':"") C . 
) Yo] 

. . (4. 13A) 

Distortion displacements 

MT NT+1 
= L L [1f oncos(nch) + 1f sin(nch) ][A1 [sin(2(m+1)!!) 

m=l n=2 en mn a 

- (m+l)sin(2 ~e)] + A2 [sin«2m+1)~) - (2m+1)sin(.!!!.) 11 
a mn CL a 

MT NT+l 
= I I [1fonsin(nch) + 1f encos(nch) ]Bmnsin(m;e ) 

m=l n=2 

MT NT+1 
= I L [1foncos(nch) + 1f sin(nch)]C sin(~) 

=2 en mn a m=i n-

Aimn 
CL 

A2mn (~ )A2mn where = (-)Ai = ryo mn 
0 

Bmn 
CL Cmn (~o)Cmn = (ryo )Bmn = . . (4. 1i1A) 

• 
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Solution B3 

Rigid section displacements 

JT 
= I 

j=l 

- j'll"S 2A.cos0sin2 (-) 
) 4a 

JT . S . 
= I -2A.sin0sin2(~) - B.sin(~) 
j=l) 4a ) a 

JT . . 
= L -A. R (l!...)cos0sin(J'll"6) 

j=l ) 2a 2a 
- j'll"6 C.sin( ) 

J 2a 

where A. = (~)A. 
) ryo) 

a B. = (-)B. 
) ryo) . . (4.7SA) 

Distortion displacements 

MT NT+l 
wn = I I -2['1' onCOs (n0) +'1' sin(n0) HAl sin2 (!!!.!!!.) 

m=l n=l en mn a 

+A2 sine (m+l)!!)sin(!!!.2!!.)] 
mn a a 

MT NT+l 
vn = I I ['1'onSin(n0) + '1' cos(n0)]B sin(m'll"s) 

m=l n=l en mn a 

MT NT+l 
Un = I I ['1' onCOs (n0) + '1' sin(n0)]6 sin(m 'll"s) 

m=l n=l en mn a 

where (~)A2 
ryo mn 

(4. 76A) 
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Solution B4 

Rigid section displacements 

JT . 
= t 2A.cos0sin2(J1T6) 

j=l J 4CL 

JT . 8 . 
= t -2AJ.sin0Sin2(~) - B.sin(J1T8) 

j=l 4CL J CL 

where A. = (~)A. 
J ryo J B. = (r CLy )B):', C)' = (~)C. 

) 0 ryo J . . (II. 77A} 

Distortion displacements 

MT NT+1 
wn = t t ['l' onCOs(n0) + 1f1 sin(n0) )[A1 [sine 2(m+l)~) 

m=l n=l en mn CL 

- (m+l)sin(2'ITe)] + A2 [sin«2m+1)1T6) - (2m+l)sin(1Te)]] 
a mn a a 

MT NT+1 
= t t ['l' onSin (n0) + 1f1 enCOs(n0) ]Bmnsin(m:e ) 

m=l n=l "" 

MT NT+l 
= t t [1f1 onCOs (n0) + 'l'ensin(n0)]C sin(~) 

m=l n=l mn a 

where A-1
mn 

= (~)A1 , A2mn = (~)A2 ryo mn ryo mn 

Bmn = (~)B Cmn 
a 

(II. 78A) = (ryo)Cmn . . ryo mn 
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Solution B5 

: Rigid section displacements 

V· 
R 

JT . e 
= I -A1·cos0sin( L!...) 

j=l 2a 

JT . e 
= I Al·sin0sin(~) 

j=l 2a 
- j 'lTe B.sin(-) 

1 a 

Jl - r .I.. j 'lTe - j 'lTe 
= l. C1·ncoswsm( 2'" ) - D.sin(-) 

j=l ~ 1 2a 

where A. = (--2-)A. , B. = (~)B. 
1 rYe 1 1 rYe 1 

c. = (~)C. 
1 rye 1 

D. = (~)D. 
1 rYe 1 

. . 

Distortion displacements 

+ A2 sine (m+l)'lTe)sin(m'ITe )] 
mn a a 

MT NT+l 
= I I ['1' onSin(n0) +'1' cos(n0)]B sin(~) 

1 =2 en mn a m= n-

MT NT+l 
= I I ['¥onCOs(n0) +'¥enSin(n0)]C sin(m'ITe) 

m=l n=2 mn a 

where A-Imn = (ra )Al 
Ye mn 

A2mn = ( a )A2 ryo mn 

Bmn 

(4. 19A) 

(4. 20A) 
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Solution B6 

,Rigid section displacements 

JT . e 
= ~ -A.cos0sin(~) 

j=l] 2 a 

JT . e . 
= ~ A].sin0sin(~) - B.sin(pre) 

j=l 2a] a 

JT - r . j iTe . e 
= ~ C]' Ii cos0sm( 2"') - i).sin(l2:....) 

j=l ~] 2a 

where A. = (~)A. 
] rye] 

a B. = (-)B. 
] rye] 

c. = (-<L)C. D. = (-iL)n. 
1 rye] ] rye] (4. 21A) 

Distortion displacement 

MT NT+l 
wn = I I ['¥ cos(n0) + '¥ sin(n0) HAl [sine 2(m+l)iTe) 

m=l n=2 on en mn a 

- (m+l)sin(2iTe)] + A2 [sin«2m+l)~) (2m+l)sin(!!.)]] 
a mn a a 

MT NT+l 
= ~ ~ ['l'onSin(n0) +'l' cos(n0)]B sin(~) 

m=l n=-2 en mn a 

MT NT+I 
= ~ ~ [ 'l' oncos (n0) + '¥ sin (n0) ] C sin (~) 

1 =2 en mn a 

where 

m= n-

a 
Almn = (-)AI rYe mn 

(4. 22A) 
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, Solutfon B 7 

Rigid section displacements 

JT R . e 
= I -A. -a coscbsin(~) 

j=l ) r 2a 

JT _ R . e R . 
= I A). - a sincbsin ( 1..!E..) - B. - a sin ( l!!.) 

j=l r 20) r "a 

JT . e R' 
= I sin(I.!-) [C).a coscb - :5. - a] 

j=l 2a ) r . 

where A. (R~o)Aj B. 1 = = (Ryo )B j ) 1 

C. 1 D. 1 = (Ryo )Cj , = (Ryo )D j (4. 23A) ] ) 

Distortion displacements 

MT NT+l 
= I I -2['1' onCOs(n0) + '1' sin(ncb) HAl sin 2 (!!!..!!) 

m=l n=2 en mn 0 

+ A2 sin( (m+l)1Te )sin(~)] 
ron a a 

MT NT+l 
= I I ['1' onsin(n0) + '1'encos(ncb)]B sin(m1Te) 

m=l n=2 mn 0 

MT NT+l 
= L I ['1' oncos(ncb) + '1'ensin(ncb)]C sin(m1Te) 

m=ln=2 mn 0 

where 
o 

Almn = (-)Al ryo mn 

Bmn = (~)B ryo mn 

= ( a )A2 
ryo mn 

C
mn 

- ( 0 )C 
ryo mn . . (4. 211A) 
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Solution BS 

Rigid section displacements 

JT _ R . 'Ire 
= ~ -A]. - acoschsin()-) 

j=l r 2a 

JT - R . e 
= ~ A'rasinchsin(~) 

j=l ) 2a 
- R j'lre B. -a sine ) 
)r a 

JT . 'Ire - - R 
= ~ sin(-] -)[C.a cosch - D. -a] 

j=l 2a] ] r 

where A. 
) 

_ 1 
- (~)A. 

Yo ) 
, B

j 
1 = (Ryo )B j 

C. 1 
D. 1 = (Ryo )C j = (~)D. (II. 2SA) ) ) Yo ) 

. . 

Distortion displacements 

MT NT+l 
= ~ ~ ['¥ onCos(nch) + '¥ sin(nch)][Al [sin(2(m+l)!!) 

=2 en mn . a m=l n-

- (m+l)Sin(2:~] + A2mn [Sin«2m+lh:) - (2m+l)sin('Ir:)]] 

MT NT+l 
= ~ ~ ['¥ onSin(nch) + '¥enCos(nch)]B sin(~) 

m=ln=2 mn a 

MT NT+l 
= ~ ~ ['¥onCos(nch) +'¥enSin(nch)]C sin(m'lre) 

m=l n=2 mn a 

where 

. . (II. 26A) 
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APPENDIX (5) 

Solution of a 1800 Bend Using 

Circumferential Symmetry Solution-C 1 
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APPENDIX 5: Solution of a 1800 Bend Using Circumferential 

Symmetry - Solution C 1 

The circumferential symmetry displayed by this bend arises from the 

equilibrium conditions peculiar to the geometry (Figure 5.1A). Using 

the rigid-section displacement form as in equation (3.10): 

= 

= 

Taking a plane of symmetry through the bend centre at e = 0, the 

displacement series for w R' v Rand uR are as follows: 

1. For y c (e) the boundary conditions are: 

2. 

at 6 = 0 , y cCe) = 0 

together with symmetry about the plane through e = O. 

These conditions are satisfied using an even fourier series of 

the form: 

1 0 

Yc(e) = - L Bosin2(J1T6) 
R j=l J CL 

For H (e) the boundary conditions are: c 

together with anti-symmetry about e = O. 

. . (5. 1A) 

These conditions are satisfied using an odd fourier series of 

the form: 

= L Aosin(j 1Te) 
j=l 1 CL 

. . (5. 2A) 
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',3. For T c (e) the boundary conditions are: 

at 6 = + i ' T c ( e) = 0 

together with symmetry about 6 = o. 

These conditions are satisfied using an even fourier series of 

the form: 

T (6) = 2 L CoCOS 2 (j1T6) - 2 L Cosin 2(j1Te) 
c 0-1 3 J a. 0=2 4 J a. J- , J- , 

(5. 3A) 

4. For U c ( 6) the boundary conditions are: 

at a = 0 , U c (6) = 0 

together with anti-symmetry about e = O. 

These conditions are satisfied using the following odd fourier 

series: 

(5. lIA) 

The meridional variation of the distortion displacements will use 

the form given by equations (3.20), (3.41) and (3.46). The varia

tion of these displacements in the circumferential direction is as 

follows: 

, " 
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1. For w(a) the boundary conditions are: 

at e = 0 , w( a) = 0 

at a = +.!. w ( a) = aw ( a) = 0 
2 ' a e 

together with anti-symmetry about a = O. 

These conditions are satisfied using the following odd fourier 

series: 

w(a) = I Al [sin(4m'lra) + 2msin(2'1ra)] + A2 [sin(2(2m+I)'lre) 
m=1 m a a m a 

(2m+l)sin(2'1re)] (5. SA) 
a 

2. For v(a) the boundary conditions are: 

at a = 0 and a = +! , v( a) = 0 
2 

together with anti-symmetry about e = 0 

These conditions are satisfied using the following odd series: 

v(a) = t B
m

Sin(2m'lre) 
m=1 a 

. . (5. 6A) 

3. For u(a) the boundary conditions are identical to v(a), hence: 

u(a) = t C sin(2m'lre) 
m=l m a 

. . (5. 7A) 

A summary of the displacements is as follows: 
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Rigid section displacements 

JT R . e 
= I -A.- CL cos0sin(~) 

j=1 ]r CL 

JT . e R . e 
= t B.CL cos0sin2 (L!.....) - fi.~in(~) 

j=1 ] CL J r CL 

where A. 1 B. 1 =-A. =-B. 
] RYe] ) RYe ) 

C. 
] 

= ....:..-...c. 
RYe] 

, Dj =-D. 
RYe) 

. • (5. 8A) 

Distortion displacements 

(2m+l)sin(!!!)] ] 
CL 

MT NT+1 
uD = I t ['1' onCOs(n0) + '¥enSin(n0)]CmnSin(2~1Te) 

m=1n=2 

where 

(5. 9A) 

A comparison of this solution and the final form of solution given in 

the main text is shown in Figure (5. 2A) and (5. 3A) • 
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,In integration the limits used were: 

in the circumferential direction o < e < +!. ........ 2 

in the meridional direction o < 0 < 21T 
=0 .... 

This solution used double precision throughout and was computed on 

a VAX 750 computer. 



447 • 

.i TORSIONAL 
f /MOMENT 

c:::!!:!:!:!:!~-. 9 tN 0°_._ c=!::!~ 
• • •• 
M M 

M M 

SECTION A SECTION B 

GENERAL LOADING AND DISTORTION 
180

0
SEND 

FIG.S·IA 



5 

I-

4 

f-

~ 

0::: 
0 3 I-
(J 

Lt 
>-
l-
:J 

f-

-co -·x 
UJ 
.-J 2 u. 

f-

a 

;,.1 

ex: 180
0 -- 1--' 

"," ""' ..... ! 
A = 0·07 / I 
.8.=10 

/ 
/ 

I r 
I , 

i , 
. GENERAL SOLUTION , 
I SIMPSONS RULE I ' 

Na=13:f'j =33 ~I 

/ ~ I 
I l/ 
I ~.'/ 
I .- \ / .... v 

l' 
/ 

PARTICULAR SOLUTION 
I SIMPSONS RULE . I 

/ N·9:N.33 I a «) 

!J 
/ J 

/ 
I 

I 

I 
I 

/ . 
/// .." 

V 

2 3 4 5 

NUMBER OF TERMS 

m=n=j 

6 7 8 

CONVERGENCE CHARACTERISTICS 

FIG.5·2A 

448. 



449. 

°0 

r- --v 1O 

1---10-- ("'I") -- / 
~ ( 1O 
~- .. ""-- °0 

II - '" o-
r- '"'\ ... SQ 0 0 II 

0 - c 
\ ~ 

II II II II 

'd ,.< 0:1"- E \ 
°0 I 

l"-
N 

t--_ .. 
............ 

~ -.."., 

- -- ° .J.~-- 0 ~~--~--~~~~--~-+--~--+--; ~ ---{ .' 
, .... -~ 

\.- \ r--__ \ 
/ ,--..J Z - ...... I-ffi ~ .. v I " 

z3 / 
UJO I 
l!:)Vl 

N o 
.::I~S 

MERIDIONAL STRESS AT 8=135° 

FIG.5·3A 



450. 

APPENDIX (6) 

Results from Mensuration Exercise 

on a 1800 Pipe Bend Assembly 
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APPENDIX 6: Results from Mensuration Exercise on a 1800 Pipe 

Bend Assembly 

, -The actual plots on cross-section were computed from the average of 

the outside diameters measured at (/) = 0 0 /180 0 and (/) = 90 0 /270 0 

using the dial gauge readings given in Table No. 6.1A. 

" .: ':The tangent dimensions were measured as: 

. 
Ll = 24.0 in 

, , 

Lz = 24.0 in 

L3 = 18.0 in 



SECTION NUMBER 452. 

2· 4 5 6 7 8 9 1 9 1 1 12 13 1 4 1 5 1 6 17 1 8 28 

8 243 243 243 243 243 243 243 243 243 243 243 243 243 243 243 243 243 
18 243 245 246 247 233 239 243 245 235 252 238 231 241 251 238 243 248 

·28 . 236 247 268 247 233 236 245 247 225 257 237 227 237 251 225 247 238 
38 ·234 248 269 248 238 229 246 243 238 252 234 214 231 244 238 246 232 
48 233 248 277 237 224 228 244 237 248 259 225 2132 229 233 249 247 229 
S8 231 248 296 233 228 219 248 236 263 247 216 188 212 224 256 247 223 
68 231 246 386 232 217 285 236 239 284 245 298 181 2135 228 2613 248 223 
78 238 243 3139 232 213 197 235 244 391 232 183 175 196 217 268 253 224 
88 238 239 317 2313 294 194 228 249 314 222 167 167 186 219 278 256 226 
98 229 235 323 225 198 196 226 252 315 229 163 161 174 2139 286 261 239 
188 . '228 238322 217 197 187239254319259 172 158 168 192 277271237 
tl0 228 225 317 298 298 188 234 259 328 261 184 156 168 189 267 279 245 
128": 226 229 391 298 198 177 238 246 299 261 198 159 165 167 251 289 251 
130 229 225 281 195 197 178 249 243 283 258 189 159 164 157 231 296 257 
148 214219264 195 199 183246247258255 189 163 163 152216392259 
150 . 288 283 248 198 283 199 253 253 243 253 188 179 164 159 293 386 258 
160 . 283 195 227 291 294 198 258 256 249 241 185 174 165 149 191 387 255 
170 198 188 215 198 293 291 269 252 238 229 188 173 164 143 189 385 259 
IS0 . ·193 184217 195294289279254243 226 174 172 168 142 176298 245 
198 : 198 181 226 195 189 199 256 252 255 238 157 145 146 144 183 292 249 
208 .. 193 183 243 284 192 196 251 255 269 236 155 141 145 144 291 286 236 
218 197 187 273 296 194 197 243 254 285 239 152 141 149 148 219 289 231 

. 228 282 195 299 219 195 197 237 253 395 236 156 142 146 158 221 275 227 
238 ·287 293 329 217 195 198 232 249 312 232 157 144 146 158 245 272 225 

: 248 215 215 321 215 195 299 226 259 316 239 152 149 149 161 259 271 226 
250 229 239 335 213 298 194 229 254 322 229 152 158 158 168 269 279 227 

·260 225 237 341218 198 196239254317232 158 153 165 189 272 266 228 
278 227 238 322 225 198 197 226 254 312 229 165 161 175 199 283 269 232 
2S8 228 239 324 239 29 I 291 225 253 396 232 176 162 182 292 289 252 235 
298 228 249318231292296223259316234 183 176 192214292245238 
388 228 239 314 237 293 211 225 259 316 249 183 189 199 223 296 238 239 
318 229 239 387 245 298 217 232 256 312 247 199 289 211 236 294 235 241 
320 229 238 296 259 214 221 239 256 396 248 199 296 215 249 292 235 244 
338 232 239 284 245 229 222 227 259 297 259 292 214 221 258 283 237 246 
348 237 249 267 242 225 222 227 249 276 246 213 225 227 253 267 249 249 
3S8 238 241 246 242 228 223 225 235 257 242 221 231 227 249 256 243 248 

TABLE N.o_._~.lA 

DIAL GAUGE READINGS ON CROSS-SECTIONS (in x 10-3 ) 

SPECIMEN No.2 - 1800 
- Sch 40 
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MERIDIONAL ANGLE (deg) 

0 45 90 135 180 225 270 315 

2 2868 2888 2864 2813 2764 2750 2789 2810 

.. - 4 2864 2967 2874 2821 2754 2826 2791 2803 

-s 2935 2872 2986 2868 2795 2879 2834 2845 

6 3124 3866 3172 3154 3135 3166 2838 3106 

7 3127 2975 2878 2964 3105 3153 2800 3104 

8 3090 2857 2837 2867 3091 3121 2812 3103 

9 3137 2982 2808 2965 3076 3176 2923 3149 

19 3156 3047 3853 3057 3145 3177 2957 3138 

1 I 3258 3377 3383 3420 3296 2598 2829 3126 

121 2945 2844 2884 2853 2947 2934 2718 2955 

13 2877 2758 2623 2714 2898 2911 2777 2946 

14 2782 2620 2682 2620 2853 2912 2735 2868 

15 2910 2775 2619 2769 2916 2933 2840 2962 

16 2945 2848 2877 2852 2943 2931 2755 2973 

17 3186 3187 3851 3224 3B50 2965 2655 2908 

18 2744 2795 2853 2878 2870 2858 2884 2735 

29 2758 2783 2833 2886 2892 2857 2888 2723 

TABLE No. 6.2A 

WALL THICKNESS MEASUREMENTS (in x 10-4 ) 

SPECI~1EN No.2 - 1800 
- Sch 40 
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9/188 98/278 

2 6.611 6.632 

4 6.682 6.642 

5 6.465 6.651 

• 6 6.674 6.683 

7 6.711 6.66 

8 6.721 6.663 

9 6.718 6.653 

18 6.681 6.692 

11 6.518 6.655 

12 6.669 6.664 

13 6.721 6.635 

14 6.732 6.643 

15 6.718 6.656 

16 6.671 6.679 

17 6.52 6.667 

18 6.632 6.617 

28 6.639 6.613 

TABLE N:q~_6.3A 

PRINCIPAL OUTSIDE DIAMETERS (in) 

SPECIMEN No.2 - 1800 _ Sch 40 
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455. 

90 

D=6.625in (Nominal) 

l=0.28tn (Nominal) 

270 

OVALITY 

SPECIMEN No.2-180deg-Sch40 

SECTION No.2 

AVERAGE OU1SIDE DIAME1ER (In) = 6.6190 
Hax=6.6315 Min=6.6045 

AVERAGE WALL lHICKNESS (in) = 0.28t7 
Hax=0.2BB Mln=0.275 

o 



456. 

90 

D=6.625in <Nominal) 

~=0.28in <Nominal) 

270 

OVALITY 

SPECIMEN No.2-180deg-Sch40 

SECTION No.4 

AVERAGE OU1SIDE DIAME1ER < in) = 6.'6223 
Hax=6.648 Mln=6.598 

AVERAGE UALL lHICKNESS <in) = 0.2838 
Hax=0.2967 Mln=0.2754 

o 



180 

451. 

90 

D=6.625in (Nominal) 

l=0.28in (Nominal) 

278 

OVALITY 

SPECIMEN No.2-180deg-Sch40 

SECTION No.5 

AVERAGE OU1SIDE DIAME1ER (in) = 6.5758' 
Hax=6.6635 Min=6.46SS 

AVERAGE YALL lHICKNESS (in) = 8.2867 
Hax=0.293S Min=0.2795 



458. 

90 

• 

D=6.625in <Nominal) 

~=0.28In (Nominal) 

270 

OVALITY 

SPECIMEN No.2-t80deg-Sch40 

SECTION No.6 

AVERAGE OU1SIDE DIAME1ER (in) = 6.6793 
Hax=6.6905 Mln=6.6715 

AVERAGE ~ALL lHICKNESS (in) = 0.3095 
Hax=0.3172 Min=0.2838 
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90 

0=6.625In <Nominal) 

l=0.28In (Nominal) 

270 

OVALITY 

SPECIMEN No.2-t80deg-Sch40 

SECTION No.7 

AVERAGE OU1SIDE DIAME1ER (in) = 6.6794 
Hax=6.7tt Mln=6.66 

AVERAGE UALL 1HICKNESS (in) = 0.3013 
Hax=0.3153 Mln=0.28 



180 

46Q. 

90 

D=6.62Sin (Nominal) 

l=0.28in (Nominal) 

270 

OVALITY 

SPECIMEN No.2-t80deg-Sch40 

SECTION No.8 

AVERAGE OU1SlDE DIAME1ER (in) = 6.6789 
Hax=6.72tS Min=6.6SSS 

AVERAGE YALL 1HICKNESS (in) = 0.2972 
Hax=0.3t2t Hln=0.2812 

o 



180 

461. 

90 

0=6.625In (Nominal) 

~=0.2Bln <Nominal) 

270 

OVALITY 

SPECIMEN No.2-t80deg-Sch40 

SECTION No.9 

AVERAGE OUTS1DE D1AME1ER (in) = 6.6785 
Hax=6.716 Mln=6.655 

AVERAGE WALL lH1CKNESS (In) = 0.3027 
Hax=0.3t76 Mln=0.2BBB 

o 



180 

462. 

90 

D=6.625in (Nominal) 

l=0.28in (Nominal) 

270 

OVALITY 

SPECIMEN No.2-180deg-Sch40 

SECTION No. 10 

AVERAGE QUiSIDE DIAMEiER (in) = 6.6825 
Hax=6.692 Min=6.67 

AVERAGE UALL lHICKNESS (in) = 0.3091 
Hax=0.3177 Mln=0.2957 

o 



180 

463. 

90 

D=6.625in (Nominal) 

~=e.28in (Nominal) 

270 

OVALITY 

SPECIMEN No.2-t80deg-Sch40 

SECTION No. t t 

AVERAGE OU1SIDE DIAME1ER (in) = 6.5956 
Max=6.666 Mln=6.516 

AVERAGE YALL lHICKNESS (in) = 0.3161 
Mox=0.342 Min=0.2S98 



180 

464. 

90 

D=6.625in (Nominal) 

~=0.28in (Nominal) 

270 

OVALITY 

SPECIMEN No.2-t80deg-Sch40 

SECTION No. 12 

AVERAGE OU1SlDE DIAME1ER (In) = 6.6901 
Hax=6.7t25 Min=6.6565 

AVERAGE ~ALL 1HICKNESS (in) = 0.2885 
Hax=0.2955 Mln=0.27tB 

o 



180 

465. 

90 

D=6.625in (Nominal) 

!=0.28in (Nominal) 

270 

OVALITY 

SPECIMEN No.2-t80deg-Sch40 

SECTION No. 13 

AVERAGE OU1SIDE DIAME1ER (In) = 6.6793 
Hax=6.7225 Mln=6.6305 

AVERAGE WALL lHICKNESS (in) = 0.2812 
Hax=0.2946 Min=0.2623 

o 



1S0 

466. 

90 

D=6.625in (Nominal) 

1=0.28in <Nominal) 

270 

OVALITY 

SPECIMEN No.2-180deg-Sch40 

SECTION No. 14 

AVERAGE OU1SIDE DIAME1ER <in) = 6.6747 
Hax=6.734 Min=6.639 

AVERAGE WALL lHICKNESS <in) = 0.2749 
Hax=0.29t2 Min=0.2602 

• 

o 



180 

467. 

90 

D=6.625in (Nominal) 

l=0.28in (Nominal) 

278 

OVALITY 

SPECIMEN No.2-t80deg-Sch40 

SECTION No. t 5 

AVERAGE OU1SIDE DIAME1ER <in) = 6.6785 
Max=6.718 Min=6.656 

AVERAGE ~ALL 1HICKNESS (in) = 0.2841 
Max=8.2962 Min=0.2619 

8 



180 

468. 

90 

0=6.625in (Nominal) . 

~=0.2Bin (Nominal) 

270 

OVALITY 

SPECIMEN No.2-t80deg-Sch40 

SECTION No. 16 

AVERAGE OU1SIDE DIAME1ER <in) = 6.6757 
Hax=6.691 Mln=6.664 

AVERAGE WALL lHlCKNESS <in) = 0.2891 
Hax=0.2973 Min=0.2755 

e 



180 

469. 

90 

D=6.625In (Nominal) 

~=0.28In <Nominal) 

27B 

OVALITY 

SPECIMEN No.2-t80deg-Sch40 

SECTION No. I 7 
I 

AVERAGE OU1SIDE DIAME1ER <In) = 6.5960 
Hax=6.6685 Min=6.5185 

AVERAGE ~ALL THICKNESS (In) = B.3028 
Hax=B.3224 Min=B.2655 

a 



··180 

470. 

90 

0=6.625in (Nominal) 

t=0.28In (Nominal) 

270 

OVALITY 

SPECIMEN No.2-180deg~Sch40 

SECTION No. 18 

AVERAGE OU1SIDE DIAME1ER <in) = 6.6236 
Hax=6.6415 Mln=6.6125 

AVERAGE WALL lHICKNESS <in) = 0.2817 
Hax=0.2878 Mln=0.2735 



180 

471. 

90 

D=6.625in (Nominal) 

~=0.2Bin (Nominal) 

270 

, OVALITY 

SPECIMEN No.2-t80deg-Sch40 
, 

SECTION No.20 

AVERAGE QU1S1DE DIAME1ER (in) = 6.6275 
Hax=6.655 Min=6.599 

AVERAGE WALL 1HICKNESS (in) = 8.2817 
Hax=0.2892 Min=0.2723 
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APPENDIX (7) 

Evaluation of Flexibility Factors for 

Pipe Bends with Connected Tangents 
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APPENDIX 7: Evaluation of Flexibility Factors for Pipe Bends 

with Connected Tangents 

This appendix presents the rotation terms involved in the determina

tion of the flexibility factor for pipe bends with connected tangents. 

The flexibility factor for both in and out-of-plane loading is defined 

generally as: 

K = Y -YT' 
Yo 

where Y = the overall rotation of the bend assembly 
determined from experiment; 

YT = the relevant rotation of both tangents; 

Yo = the nominal rotation (7. 7) 

The terms evaluated here are the nominal rotation Yo and the tangent 

rotation Y T' The tangent rotation is further defined as: 

Y T = YTF + YTL 

where YTF = relevant rotation of the fixed tangent; 

YTL = relevant rotation of the loaded tangent. 

The nominal rotation is defined as: 

= MRa 
Yo EI • • 

(7.2) 

(7.3) 

The moment arm used in defining M for both loading cases Is shown 

in Figure (7 .1A). 
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The terms of Y ot. YTF and YTL for the loading cases of. in-plane 

and out-of-plane are given in Tables 7 .1A - 7. 4A. These terms are 

evaluated for the bend angles of 1800 • 90 0 and 45 0 • 

The notation of dimensions and loading is that shown in Figure (7. 1A) • 

TABLE 7.1A: 

Bend 
angle 

1800 

90 0 

In-plane loading - nominal rotations. 

WR!!' [L + L + R] 
EI A T 

WR1T [LA + LT + Rsin(!...)] 
2EI 4 

~ [L + LTCOS(!.4) + R[cos(!.) - cos(!.)]] 
4EI A 8 4 

where LA = length of moment arm 

LT = length qf tangent 
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TABLE 7. 2A: In-plane loading - tangent rotations. 

Bend 
YTF angle 

1800 
WLT +!L ] -[LA 
EI 2 T 

90 0 
WLT 
BI[LA + LT + R] 

450 
WLT ~ ~ -[LA + LTcos(-) + R[ 1-cos(-)]] 
EI 4 4 

where LA = length of moment arm 

LT = length of tangent 

YTL 

WLT 
+!L ] -[L 

EI A 2 T 

WLT 
+!L ] -[L 

EI A 2 T 

WLT 1 1T 
ru[LA + '2LTcos(i)] 

TABLE 7. 3A: Out-of-plane loading - nominal rotations. 

Bend 
angle 

1800 

90 0 

where 

WRn [L + L
T

] 
EI A 

WRn [L + L
T

] 
2EI A 

WR~ [L + LTCOS(!.4)] 
4EI A 

LA = length of moment arm 

LT = length of tangent 
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TABLE 7. 4A: Out-of-plane loading - tangent rotations. 

Bend 
YTF angle 

WLT 1 
1800 -[LA + -LTl 

EI 2 

90 0 
WLT 

+ LT + R] -[LA 
GJ 

45 0 
WLT ~ ~ 
GJ'"""[LA + LTCOS(4") + R[l-cos(i)]] 

where LA = length of moment arm 

LT = length of tangent 

YTL 

WLT 
+!L 1 -[LA 

EI 2 T 

WLT 1 -[L + iLT] EI A 

WLT i 1 ~ 
-[LA +-LTcos(-)l 
EI 2 4 



, 
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APPENDIX (8) 

Room Temperature Elastic Behaviour of the 

CERL-Planer Capacitance Strain Gauge 
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1. Summary 

The CERL-PLANER capacitance strain gauge is u'sed extensively on 

a variety of applications normally at elevated temperatures in the 

range of 500 to 600 oC. Most of the published literature relates to 

the behaviour and long term stability at these temperatures. 

This report deals primarily with the behaviour and performance of 

the type C5 capacitance gauge under room temperature elastic condi

tions with particular regard to their application to pipe bends of 

6 inches nominal bore. 

In mounting the gauge on the surface of the pipe methods using 

wedges and bending the feet are examined. It is shown that the 

latter method of bending the feet is to be preferred. When mounted 

on wedges the gauge can prove to be inaccurate on all but machined 

sections of known dimensions, being dependent on the relatively geo

metry of the wedges. 

Gauge calibration compatible with the in-situ condition is shown to 

be essential for accurate results. In the measurement of bending 

strain, for example, the actual strain can be underestimated by 

between 20 to 30% when the standard calibration is used. 
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3. Introduction 

This report presents the results of the first stage of a two part 

programme being carried out at the university on the CERL-PLANER 

capacitance strain' gauge (type C 5). The work forms a subsidiary 

part of a main research programme on the inelastic behaviour of pipe

work components [1] *1 where capacitance gauges will be used extens

ively in the measurement of strain at elevated temperature (570 0 C) on 

a variety of stainless steel type 316 pipe bend specimens. 

For the first ,part of this work, which forms the basis of this 

report, attention is focused primarily on the measurement of bending 

strains und'er room temperature elastic conditions. This is a consequence 

of the various forms of loading on the bend specimens where bending 

strains predominate. The second part of the work concerning the exper

ience at elevated temperature will be treated independently and presented 

in a separate document. 

The need for this work arose from the results of a series of room 

temperature tests carried out on a 90 0 Sch .10 bend specimen where 

with the capacitance gauges mounted on wedges, differences of up 

to -80%*2 were recorded between the capacitance gauge and similarly 

located electrical resistance gauges. This particular bend specimen 

(No.7 - 90 0 - Sch.10) was the first to be tested with wedges. Prior 

to this on the pilot scheme [2] the capacitance gauges were mounted 

with the feet bent to accommodate the curvature of the section ( 6 inches 

N . B .) giving comparisons of around - 20%. 

*1 Reference number see section 7. 

*2 For comparison with electrical resistance gauges the sign convention 
adopted is as follows: 

% diff = [1 - strain (resistance> 1 x 100 
strain (capacitance)J 
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In an attempt to improve upon this figure it was decided to adopt 

the method of wedge mounting following essentially along the same lines 

as HEATHER, BROWNE and DER [3]. It should be mentioned, however, 

that bending the feet of the gauge presents a delicate and precarious 

operation and further is totally against the manufacturers recommenda

tions. The method of wedge mounting naturally introduced further 

problems such as the actual manufacture of the wedges and the develop

ment of new techniques in mounting the gauge. Following satisfactory 

tests on a proving ring, the method was applied to the pipe bend speci

men. Here, however, the poor comparison cast some doubt on the 

method and accordingly a series of tests were initiated to examine the 

problem. Primarily, these consisted of further tests on the proving 

ring followed by a series of tests using a four point loading beam. 

A theoretical analysis of the gauge displacement behaviour was also 

carried out. 

The high cost of the capacitance gauge together with damage due 

to repeated use has naturally . limited the scope of the work. However, 

the results from the test programme, due in part to the choice of tests, 

appear to have been sufficient to SUbstantiate the findings. Other 

aspects concerning the behaviour and use of the gauge which arose 

during the course of the tests are also discussed. 
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4. Development of Wedge Mounting 

4.1 General 

The capacitance strain gauge has been designed specifically for 

application to flat surfaces or those with large radii of curvature. The 

application here to pipe bends of 6 inches NB necessitates either bending 

the feet of the gauge to accommodate the increase in curvature or 

alternatively reducing the curvature artificially by means of wedges 

mounted on the surface (Fig. 1). 

Mounting of the gauge using wedges is a fairly straight forward 

operation although as we shall see it does require the development 

of additional techniques. The principle employed requires two wedge

shaped blocks of the parent material contoured to meet the surface 

curvature. These are attached (spot welded) to the surface at virtually 

the same height as the surface along thin edges normal to the gauge 

axis (Fig. 2). The gauge is then mounted in the usual way on the flat 

surfaces provided by the wedges. This permits surface movements 

to be transferred directly to the gauge via the wedges. Change in the 

gauge length is then accounted for by a simple factor K defined as: 

K = capacitance gauge length (unstrained) 
distance between wedge attachments. 

The use of wedges has been reported by HEATHER, BROWNE 

and DER [3] with apparent success using the type C4 gauge. Employ

ing much larger wedges on pressurised machined tube sections of 34 mm 

(1. 34 inches) outside diameter comparisons of capacitance and resistance 

gauge strains are given as 305. J.,le: and 281. J.,le: respec~ively (ie + 8%). 

This incidentally appears to be the only reported in situ calibration with 
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resistance gauges. Further comparison was made with a capacitance 

gauge mounted directly on a tube section of 140.4 mm (5.53 inches) 

outside diameter. The comparison here. however. was made with the 

wedge mounted counterpart. Experience here shows that direct mount

ing made on a 6 inch NB bend (outside diameter = 6.625 inches 8 168 

mm) causes the capacitance plates to come in contact as a result of 

rotation of the feet and require a substantial preset tensile strain 

to separate the capacitance plates. As we shall see. application of 

the gauge in this manner can introduce sUbstantial errors, particularly 

so when the standard displacement calibration is used. 

4.2 Manufacture of Wedges 

In applying this method to the pipe bend specimen the first problem 

encountered was the actual manufacture of th~ wedges. Based on the 

nominal outside diameter of 6.625 inches (168 mm) the wedge geometry 

necessary to provide a flat surface for gauge mounting requires a 

virtually flat wedge with the curvature on the inside hardly visible 

(Fig. 3). Naturally the overall dimensions of the wedge require an 

object which is not too small in terms of ease of handling but at the 

same time not too large, bearing in mind the space restrictions on the 

bend layout. With the help of Fig. 4 an overall size of 7 x 4 x 0.97 mm 

thick (0.27 x 0.16 x 0.04 inches) with a wedge angle of at most 8° was 

chosen as the optimum (Fig. 5). These dimensions correspond to a 

16 mm (0.63 inches) gap between the wedges. 

The method of manufacture adopted (Fig. 6) used a strip cut 

from a specimen length of Sch 40 SS pipe clamped via a backing strip 

to an angle piece, the latter allowing rotation of the whole assembly to 
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achieve the correct wedge angle. This machined strip was then cut 

up into the required widths using an AGIE CUT spark eroder giving 

around a dozen wedges per strip. Later versions dispensed with the 

fine edge on the wedge by increasing the thickness here to around 

0.002 inches (0.05 mm). Wedges with the inside surface machined flat 

were also manufactured and although they appeared virtually indisting

uishable from the others they did not appear to fit as neatly on the 

proving ring. 

4.3 Initial Tests on Proving Ring 

4.3.1 General 

In order to grasp the necessary techniques and further establish 

the performance of the method it was decided prudent to conduct a 

series of tests on a proving ring before embarking on application to 

the bend. Here the technique of spot welding the leading edge of the 

wedges was established with the wedges sufficiently far apart to ensure 

complete support for the feet of the gauge. Measurement of the gap 

was accomplished using small calipers measuring from the centre line 

of the spot welds. 

The proving ring employed (Fig. 7) was cut from a specimen length 

of Sch 40 SS pipe machined to ensure circularity of section. In tension 

loading the ring was hung from one of the main test frames and dead 

weights applied to a cradle attached to the ring, in compression the 

dead weights were simply sat on the ring support. For comparison 

with capacitance strain the ring was equipped with two 20 mm (0.79 

inches) resistance gauges (SHOWA F - 20). These were read through 
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. a "BUDD" strain recorder. The capacitance gauge was read through 

the 1050 ASL unit via an APPLE computer. 

Values of strain in these tests and all subsequent tests was computed 

from the slope of a best fit straight line evaluated via in-house computing. 

In all a total of eight tests. No lR to No 8R were conducted on three 

capacitance gauges on the proving ring. The manufacturer's calibration 

(which is based on a flat bed linear displacement) for these gauges is 

shown in Fig. 8. This calibration was applied using a best fit 5 - degree 

polynomial for both these tests and all subsequent tests using 21 data 

points. 

4. 3. 2 Results 

The results of each test are shown in Fig. 9 to Fig. 11. A summary 

of these results is given in Table No. 1. In Fig. 9 and 10, "corrected" 

strain includes the factor K for gauge length. In test No. 1R and 2R 

small toolmakers clamps bearing on l" diameter ball bearings were used 

to clamp the gauge, on all other tests the gauge was spot welded. In 

test No. 4R and onwards compression of the ring necessitated removal 

of the assembly from the main loading frame resulting in a possibly poor 

earth connection. This was rectified in Test No. 6R using an additional 

earth from the gauge leads to the ring (Fig. 12) • 

. Use of the partition between the leads along the gauge axis (Fig. 

13) and a top cover did little but change the zero capacitance without 

any significant change to the absolute value of strain. 



TABLE No.1: Initial tests on proving ring. 

Test Gauge Strain Capacitance 
No. No. direction unstrained (pf) 

lR C5-3750 neg 0.7560 

2R C5-3750 neg 0.7427 

3R C5-3751 neg 1.0079 

4R C5-3751 pos 1.0071 

5R C5-3752 pos 1.1966 

6R C5-3752 pos 1.1996 

7R C5-3752 pos 1.1946 

8R C5-3752 pos 1.1880. 

* % Diff = 
[

1 - Strain ERSG ] x 100 
K x strain C.G 

Comparison 
with ERSG* Condition 

- 4% No partition. No cover 
Gauge clamped to wedges. 

- 4% Same as test No. lR. 

-10.5% No partition. No cover 
Gauge welded to wedges. 

-15% Same as test No. 3R. 
os::. 

-13% No partition. No cover 00 
00 

Gauge welded to wedges 
. 

- 7% Additional Earth. 

- 8% Partition along gauge axis. 

- 7% Partition and cover. 
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4.4 Application to Bend Specimen 

4.4.1 General 

As a result of the reasonably satisfactory performance on the 
, . 

proving ring it was decided to proceed with the method for mounting 
. 
on the bend specimen. This particular specimen (No.7 - 90 0 - Sch 10) 
, 
was designated for an elevated temperature (570 0 C) forward creep test 

. in an in-plane bending closing mode. Details of the temperature part 

of this test will be omitted here, the attention being focused on the 

preliminary room temperature work. This part of the test can be sub

divided into two parts. Firstly, there was a detailed elastic strain 

distribution test to determine the points of maximum strain (meridional 

direction) around the bend mid-section followed by an elastic calibration 

of the capacitance gauges using resistance gauges of comparable length. 

The bend was equipped for the elevated temperature test with 

three active capacitance gauges and one dummy gauge to measure the 
i . 

drift characteristics at temperature. Our interest here shall be concerned 

with the two meridional gauges No. 1 and No.3. The general set up of 

the gauges is shown in Fig. 14 showing clearly the limitations in space 

arising from the copper heating sheath [4]. Here we can also see the 

small ceramic posts. used to isolate the gauges from gauge lead movement. 

This latter problem would appear to be peculiar to pipe bends where 

with the mineral insulated gauge leads attached to the bend surface 

the inherent flexibility of the bend can cause the gauge leads to move 

relativ~ to the gauge with the movement being transmitted to the gauge 

via the nichrome coils. It has been difficult to completely assess the 

extent of this on active 'gauges as it was first observed on dummy gauges 

which of course should not respond to loading outwith temperature 
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effects. Clearly visible in Fig. 14 are partitions, employed along the 

gauge axis and between adjacent gauges. This was recommended to 

the writer as good practice at an earlier stage when an attempt was 

being made to improve on the 20% difference between bent feet capacit

ance gauges and the resistance gauges. However, from tests on the 

proving ring the partitions appear to have litt1~ effect. 

4.4.2 Results 

4.4.2. 1 Strain Distribution 

The strain distribution test using a series of resistance gauges 

(Fig. 15) gave symmetrical values and position of maximum meridional 

strain as shown in Fig. 16. In passing, it is noted that they compared 

well with THOMSON's theory [5] which accounts for the restraining 

. effect of tangent pipes. 

I 
4.4.2.2 Capacitance Gauge Calibration 

Calibration of the capacitance gauges l?cated at the points of maxi

mum meridional strain was attempted using 20 mm resistance gauges 

(SHOWA F - 20). In the first test the capacitance gauges give raw 

comparisons of -60% and -80% for gauges No 1 and No 3 respectively 

(Fig. 17). Introducing the correction (see footnote to Table 1, page 488) 

for gauge length of (about) 1. 2 reduced these values to -32% and -50%. 

These comparisons were in complete contrast to those obtained earlier 

on the proving ring where results of around -10% were achieved. 

The stress-strain system on the proving ring although not exactly 

identical with that of the bend was considered sufficiently similar for 

comparison purposes, bending strains predominating in both cases. 
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'Also the techniques employed in mounting the wedges and the gauges 

were identical on both systems. To ensure that this was so the bend 

was removed from the test rig to the bench to facilitate the wedge and 

gauge attachment. Thereafter, routine checks on instrumentation, 

ASL-APPLE interface and software were carried out. All such checks 

showed the equipment was operating satisfactorily. That all these 

aspects were satisfied left no clear explanation as to the poor comparison 

with the results of the proving ring. 'Being faced with this apparently 

unexplained behaviour was frustrating and in an attempt to improve 

the comparisons it was decided to "experiment" with the gauge layout 

on the bend. The alternative option of complete dismantling the set 

up and reassembling with new wedges and gauges was not considered. 

In fact these experiments led to an extensive number of tests extending 

to a period of over 6 months during which numerous modifications were 

made to the layout. Some of the main changes made were as follows: 

removal of top covers and partitions between gauges and along 

the gauge axis; 

replacement of gauges and gauge leads; 

spot welding gauge directly to the bend through the wedges; 

varying the gap between the wedges; 

removal of the ceramic posts. 

These main changes and other numerous secondary modifications 

appeared to have little effect on the absolute value of strain. Accordingly 

when it was realised that no further improvement could be achieved the ' 
, 

bend was heated up for the elevated temperature (570°C) stage of the 

test. It was then found that when the temperature exceeded around 4000C 
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the gauges refused to balance on the A.S.L. equipment. This was 

eventually discovered to be due to a breakdown in resistance of the 

ceramic terminal posts at temperature and was the reason for their 

removal on the final test. The symptoms. were not present at room 

temperature which made diagnosis difficult and it took three heating 

up periods before this fault was discovered. No particular pattern 

emerged from all the tests conducted and it is felt that the cycling in 

temperature did little more than introduce a further complication. The 

final test adopted for calibration showed some improvement however t 

the comparison being reduced to between -30% and -50%. In this test 

(Fig. 18) all partitions had been removed together with the ceramic 

posts. Gauge No 3 had been replaced twice and was now mounted with 

the feet. bent, also gauge No 1 was spot welded through the wedge 

to the bend. Thus gauge length corrections were not required in these 

cases. 
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5. Further Tests on Gauges 

5.1 General 

As a result of the extremely poor comparison obtained on the bend 

. specimen using wedgeSt a more detailed series of tests were begun. 

These comprised the following: 

(a) Further tests on the proving ring 

(b) Tests on a four point loading beam 

(c) Tensile tests. 

This work was further supplemented by some analytical work into the 

deformation of the gauge. 

5.2 Further Tests on Proving Ring 

5 • 2 • 1 General 

To confirm the initial tests on the proving ring, a further three 

tests (No. 9R to llR) were carried out using two capacitance gauges. 

Test No. 9R and lOR were essentially a repeat of the earlier tests 

on the same wedges as before. In test No. UR the wedges were removed, 

gauge feet bent and the gauge mounted directly on the ring. Here, 

as opposed to bending the feet by hand, a small jig was used to prevent 

gross deformation of the arches. 

5. 2. 2 Results 

The results of a typical test (No. llR) are given in Fig. 19. A 

comparison of the results is given below in Table No. 2 which shows 

favourable agreement with the initial tests. 



TABLE 2: Further tests on proving ring. 

Test Gauge Strain Capacitance Comparison 
No. No. direction unstrained (pf) with ERSG Condition 

9R C5-3752 neg 1.1941 -10%* No partition along gauge 
axis, no cover, additional 
earth. Gauge spot welded. 

lOR C5-3752 neg 1.1958 -11%* Repeat of Test No. 9R. 

llR C5-3731 pos 1.2415 - 6% No partition, no cover, w:>o 
additional earth, feet of co 

w:>o 
gauge bent and clamped . 
to ring. 

*Corrected for Gauge Length 



495. 

5.3 Tests on Four Point Loading Beam 

5.3.1 General 

Here a series of fifteen tests (No. 1B to 15B) were conducted on 

a total of seven capacitance gauges. The experimental set up employed 

the normal four point loading beam (Fig. 20) giving pure bending along 

the centre section .. .' Comparison with capacitance strain was made 

using a 20 mm resistance gauge (SHOWA F - 20) mounted on the beam 

adjacent to the capacitance gauge. The capacitance gauge was clamped 

to the beam using small clamps bearing on 1/16" diameter ball bearings 

(Fig. 21). 

5.3.2 Results 

The results of a typical test (No. 1B) are shown in Fig. 22. 

A summary of the results is given in Table 3. 

In most cases the comparison varied betweeen -20 to -30%. However t 

the elevation of one foot had a marked effect indicating a sensitive res

ponse to relative wedge geometry. Throughout all these tests top covers 

and partitions were not used. Consequently t care was required when 

moving in the vicinity of the rig to minimise the change in dielectric. 

Initially, tests were conducted on the beam by displacing the 

beam at both ends and at one end to check the beam characteristics. 

As expected this did not alter the test results and one end displacement 

was used thereafter. 



TABLE 3: Results of four point loading beam. 

Test Gauge Strain Capacitance Comparison 
No. No. direction unstrained (pf) with ERSG Condition 

1B C5-3746 pos 0.7795 -22% Displacement at both ends. 

2B C5-3746 pos 0.7785 -23% Displacement at R/H end. 

3B C5-3746 pos 0.7785 -22% Repeat ofo Test No. 2B. 

4B C5-3746 neg 0.7900 -25% Displacement at both ends. 

5B C5-3746 neg 0.7899 -24% Displacement at R/H end. 

6B C5-3746 pos 0.6873 -10.5% Displacement at R/H end 0.01 in (0.25 mm) shim 
under R/H fooL 

"" 7B C5-3746 0.7243 -11% Displacement at R/H end 0.01 in (0.25 mm) shim to 
neg m 

under R/H fooL 
. 

8B C5-3747 pos 0.8496 -12% Displacement at R/H end. 

9B C5-3747 pos 0.6924 + 3% Displacement at R/H end 0.015 in (0.4 mm) shim 
under R/H foot. 

lOB C5-3747 pos 0.9876 - 1% Displacement at R/H end 0.015 in (0.4 mm) shim 
under L/H foot. 

llB C5-3730 pos 0.8867 -11% Displacement at R/H end. 

12B C5-3737 pos 0.6819 -17.5% Displacement at R/H end. 

13B C5-3749 pos 0.8498 -24% Displacement at R/H end. 

14B C5-3735 pos 0.7121 -28% Displacement at R/H. . 
15B C5-3731 pos 0.7396 -29% Displacement at R/H. 
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5.4 Tensile Tests 

5.4. 1 General 

Two forms of tensile test were carried out. In the first group 

the capacitance gauge was mounted on the beam section employed 

previously in the four point loading beam set up. In the second, a 

manufacturers calibration rig borrow~d from BNL"C,.wasused (Type 

TRIOO/9082/l/75). A total of six tests (No. IT to 6T) were carried 

out using five capacitance gauges. Prior to mounting on the calibration 

rig three of the gauges were dimensioned using a shadow graph. 

5.4.2 Results 

The results of the tensile tests (No. IT to 3T) are shown in Fig. 

23 to 25. A comparison of these results is shown below in Table 4. 

The initial non-linearity followed by both the capacitance and resistance 

gauge was due mainly to initial curvature of the beam and means that 

the tests are not entirely satisfactory. Also the small number of tests 

conducted does not justify any firm conclusion to be drawn. 

Use of the calibration rig required some skill in operation and 

this is perhaps reflected in the results (Fig. 26 to 28). It is interest

ing to note here that of the gauges examined the nominal value of O. 7pF 

did not always correspond to zero strain. It will also be apparent that 

the experimental points do not coincide with the manufacturers. This 

results from the use of the actual unstrained gauge length as opposed 

to the nominal. However, it would appear to have little significance 

on the calibration. 

In measurement, the gauge lengths differed little from the nominul 

value (Fig. 29). However, arch spans and heights were lower than 

* Berkeley Nuclear Laboratories - C .E.G.B. 



TABLE 4: Tensile tests. 

Test Gauge Strain Capacitance Comparison 
No. No. direction unstrained (pf) with ERSG Condition 

T1 C5-3746 pos 0.7691 -13% No partition, no cover. 
Additional Earth, Gauge 
clamped. 

T2 C5-3746 pos 0.7691 - 5% Repeat of Test No. T 1. 
~ 

T3 C5-3730 pos 0.8933 +10% Same conditions as Test co 
00 

No. Tl · 
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nominal values together with variations in capacitance gap. Measure

ment of the capacitance gap was an average value, as in all the three 

gauges examined the plates were not quite parallel. 

5.5 Analytical Work 

5.5.1 General 

The analytical work presented here was intended initially to serve 

as an explanation to the behaviour observed during the experiments. 

As we shall see it was possible to confirm only particular trends to 

a limited degree. 

The work began with a purely geometrical analysis of the gauge 

similar to that employed by NOLTINGK [6]. This was followed by a 

flexibility analysis [7] considering bending effects only. Both these 

approaches, although able to model the symmetric linear displacements 

reasonably well,. were difficult to use in the case of unsymmetrical 

deformation. For this type of displacement pattern a method proposed 

by CHENG and HOFF [8] using the differential equations derived from 

shell theory was adopted. This solution in matrix form is given in 

the ·appendix. 

5.5.2 Results 

The CHENG and HOFF type of analysis gave reasonable comparison 

with a typical gauge calibration (Fig. 30). Here the theoretical curve 

was based on the nominal dimensions of the gauge as given by the 

manufacturer. Us~ng this analysis a variety of permutations in pre

scribed displacement were examined. Firstly, presetting of the gauge 

in horizontal displacement, as expected appeared to make little difference 
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;, to the calibration (Fig. 31). Preset of the gauge in vertical displace

ment altered the capacitance range but has no effect on the resulting 

strain J although the actual experiments did show a difference. How

ever J when an arbitary incremental rotation of the feet together with 

a horizontal displacement J Simulating a bending strain, was applied, 

there was a rotation of the calibration curve (Fig. 32). In effect this 

means the original calibration is incorrect for this case. 

The effect was further magnified by introducing an initial rota-

tion to one foot of the gauge. 

The analysis of course J is based on small displacements. At 

around "+ 2000 Il € in horizontal displacement movement of the bottom 

arch exceeds the thickness of the arch (0.1 mm '=' 0.004 in). The 

analysis further assumes an initially symmetrical gauge formed of arcs 

of a circle with the capacitance plates parallel and horizontal. Only 

a slight deviation ,from these requirements in the actual gauge would 

make it difficult to predict the behaviour. This was evident on the 

three capacitance gauges measured. where in each case the plates were 

not parallel. 

5 . 5. 3 Miscellaneous 

In this section a theoretical comparison is made on the results 

from the proving ring and the four point loading beam. The comparison 

is intended simply as a check on the resistance gauges and is by no 

means exhaustive. 
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Four Point Loading Beam 

Using MACAULAY'S method [7] gives a longitudinal strain along the 

central section of the bend as: 

+6ty ! f = e:'b 2[a2 
- ~J 

a 

L 
where t = beam thickness (in) 

y = end displacement (in) 

k = (a3 - (a+b)3 + b 3) 

b a I 

Using the dimensions given in Fig. 20 and a symmetrical end displace

ment of 10 mm "';" 0.394 in results in a longitudinal strain of +646 IJ t • 

Comparing this with the result of Test No. 1B where the slope B = 

+61. 876, gives a longitudinal strain of +618. 76 ~H:, i.e. a, difference of 
! 

4%. 
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Proving Ring 

. From TIMOSHENKO [9] the meridional strain €rh can be approximated 

:; Mot ] 
21 

where Mo = bending moment Obf. in) 

= PR [1 -!.] 
2 _ II 

P = applied load Obf) 

R = nominal radius (in) 

t = wall thickness (in) 

I = second moment of area (in'+) 

A = cross-sectional area (in 2 ) 

E = Young Modulus (lbf/in2 ) = 28.2 x 10 6 

p 

U sing the dimensions given in Fig. 7 and a load P = 500N -='" 112.4 Ibf 

results in a meridional strain of -159 IJ€. Comparing this with Test 

No. IR (Fig. ~) where the slope = -0.302 gives a strain of -163 IJe:, 

i. e. a difference of 3%. 
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6. Conclusions 

The main conclusion to be drawn from this work is that the ad

ditional work involved in the use of wedges does not merit their use. 

On all but machined sections the method of wedges would appear to 

be unsatisfactory (at best comparisons of around -10%). However, 

on commercial pipe bends the tolerances on dimension affect the gauge 

mounting. No attempt was made to determine the actual geometry of 

the gauge layout on the bend, although mensuration of the bend s·peci

mens [10] indicated "good" circularity of section. Poor comparison 

on the pipe bend would appear to be the result of a relative difference 

in wedge geometry in either elevation, rotation, or both resulting from 

the fact that the wedges rest on an imperfect surface over the area 

of contact. Although this has not been firmly established, the experi

mental and analytical work does show varying degrees of sensitivity 

to small variations. Bending of the feet of the gauge, however, presents 

a much simpler and more straightforward operation giving improved 

and, perhaps more importantly, reasonably predictable results. There 

will of course be practical limits to this method but they have not been 

explored. 

Above all, however, it is considered essential that in the use 

of the capacitance gauge comparison be made with resistance gauges 

in situ. This practice has always been used although it has not been 

common place to date in other establishments. This was confirmed 

during a recent tour of laboratories using the gauge. Unfortunately, 

the in situ type calibration can usually only cover a limited strain range. 

Thus the manufacturers calibration or some similar full range calibration 

has to be used in conjunction with the in situ work. On the general 
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matter of gauge calibration there would appear to be widespread use 

in'this country and abroad of calibrations which are not strictly com

patible with the in situ state. The manufacturers linear displacement 

rig, for example, is suitable for horizontal linear displacement only 

and was not designed to cope with other forms of displacement. It is 

worth pointing out, however, that the manufacturer's handbook on 

gauge installation does suggest other forms of calibration. The advan

tages of a ready-made and compact rig are perhaps its main source 

of attraction. The sensitivity to bending strains using such a calibra-

tion is discussed by NOTLINGK [6]. To account for bending he sug

gested that the gauge be considered as 0.05 mm (0.002 in) above the 

surface. Essentially this is an attempt to increase the strain and is 

the result of two tests carried out on different beam sections. It has 

been shown, however, that the capacitance gauge when mounted sym

metrically will always underestimate the bending strain. This has been 

confirmed by the work carried out here giving values of between i20 

to -30%. Introducing the unsymmetrical displacement as on the four 

point loading beam can further alter this comparison by more than 50%. 

That this sensitivity was not evident from the analytical work is some 

indication of the initial unsymmetrical form of the gauge. 

It should perhaps have been obvious that the use of wedges would 

introduce inponderables in the strain magnitude. If the spot weld 

location for the gauge is on top of the wedge it means that the effective 

strain seen by the gauge is amplified in some way by the distance above 

the surface. This will have least effect for membrane type strain (such 
,# 

as the tests by HEATHER. BROWNE and DER where wedges were first 

used on machined surfaces). It will be most severe for bending type 
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strain. Unfortunately, the bending situation is not easily assessed 

because the movement transmitted to the gauge feet is transferred 

via the edge weld attachment on the wedge and could depend on the 

rotational stiffness of that weld as well as the surface topography under 

the wedge, etc. Welding the wedge completely down as has been 

practised seems undesirable too, since the gauge length has become 

indeterminate. Even if these effects could be quantified it would be 

necessary to be able to separate membrane and bending effects before 

a satisfactory assessment could be made. 

-
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8. Appendix 
, , 

. Matrix formulation of CHENG and HOFF analysis. 
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1. Summary 

This report presents the results of a series of elevated temperature 

, ,distribution tests carried out on Specimen No.4 - 900 
- Sch 40. 

Previous work at elevated temperature [1] * has shown that around 

, the bend,there can exist a differential of approximately 30 0 e between 

the extrados and the intrados of the bend. In an attempt at reducing 

this differential, development work has led to supplementing the low 

conductivity of the stainless steel by the use of a 1/8 in thick layer 

of copper. Here the bend is totally enclosed in a fabricated copper 

sheath resulting in a stable differential of ±3oe at 5700 e around the 

bend mid-section. 

With the prospect of increasing the test temperature to GOOoe, tests 

carried out in excess of Qoooe indicate the system should be satis-

factory. 

*Reference number, see Section G. 
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3. 1 Introduction 

The need for this work arose following the completion of an 

elevated temperature forward creep test on Specimen No. 3 - 900 -

Sch 40 [2]. As a check essentially on the performance of the heating 

system, the number of thermocouples employed on this test was increased 

to 12. This highlighted quite clearly that a differential of around 300 C 

existed between the extrados and the intrados of the bend. the latter 

-. being the source. The problem is inherent in the shape of the bend 

and to a lesser degree the method of heating which in turn reUes on 

the conductivity of the stainless steel. Earlier elevated temperature 

tests on Specimen No. 1 - 1800 
- Sch 40 [3] and No. 2 - 1800 - Sch 40 

[ 4] employed only 4 thermocouples positioned on the neutral axis so 

that although the large differential still existed it was not recorded. 

A commercially available heating system was identified [5] requir

ing little modification to the test rigs. However. the cost was prohib

itive at around £5000 per bend. Further. the installation of a completely 

new system, heating the bend internally as opposed to externally would 

be expected to have some teething problems t although such a system 

would not be expected to hamper conditions in regard to capacitance 

strain gauges. However, it was decided more expedient to examine 

firstly methods of improving the existing system (Fig. 1). 

The main objective was to remove the discrete form of heating 

produced by the heating tapes, and secondly. improve the conductivlty 

of the stainless steel to give a more uniform temperature distribution 

across the section. Attaching a more conductive layer of metal to the 

bend surface satisfies both needs. For this purpose copper was chosen. 

baving a thermal conductivity of approximately 20 times [6] that of 

----
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stainless steel and being relatively easy to form •. In order to minimise 

any stiffening effect induced by this copper sheath and at the same 

time enhance the conductivity, a thickness of 1/8 in was chosen. This 

reduced the conductivity comparison to approximately 9 and as we shall 

see in Section 4 was a fortuitous choice. 
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3.2 General Description 

The development work comprised essentially two tests. i.e. one 

. without and one with the copper sheath, using the 45 0 /90 0 test rig 

as shown in Fig. 1. Both tests were conducted at 5700 C extending 

to 500 hr and 1000 hr respectively. To determine the validity and 

r·ange of the system the temperature was increased to 600 0 C and greater 

. during the latter test. 

The first test carried out on Specimen No. 4 was essentially a 

. : repeat of the elevated temperatur~ test on Specimen No.3 with the 

internal packing of insulation removed. The position of the 24 thermo

couples employed on this test is shown in Fig. 2. 

The second test incorporated a 1/8 in thick copper layer enclosing 

the bend. This copper- layer or sheath was fabricated by hand in six 

parts, being split in the circumferential (longitudinal) direction for 

ease of fitting and removal (Fig. 3). Stainless steel bands around 

the copper ensured a tight fit to the bend. The number of thermo

couples used on this test was increased to 27. Prior to commencing 

the test a check was made to determine the stiffening effect. if any. 

induced by the copper sheath. With the copper at room temperature 

this was considered a "worse case" for comparison. The effect was 

examined using an in-plane bending closing mode test. 

On both tests a loading arm was attached to the free end of tho 
, 

specimen to simulate actual test conditions. 

The thermocouples used throughout were chromel-alumen-D10K 

21 S.W.G. (0.8 mm dial with an insulation of vitreous silica fibro brnld. 

In the first test the thermocouples were mounted using boads and hold 

on to the bend surface using stainless steel tabs. In the second tost. 
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for convenience, the ends were flattened and spot welded to the bend 

',surface. Although this practi,ce would appear to be frowned upon (for 

obscure reasons), tests carried out on this type and those formed with 

, a bead showed no significant difference. 

·3.3 Heating System 

Heating of the bend on both tests was accomplished using three 

'.1. T.Q. - 250 Isopad heating tapes wound around the bend·. For the 

purpose of distribution t this allowed the, specimen to be subdivided 

, into three zones with each zone powered and controlled independently. 

Temperature control was by a thermocouple actuated zero crossing 

switch box (Isopad C. S. W ./1000) using a thermocouple from the central 

section of the bend. Insulation of the bend was provided by two layers 

of 8 lb f I cuft blanket on the exterior ~ , 

*In the case where copper was used the tapes were wound around the 
outside surface of the copper. ' ., 
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·4. Results 

The results of the first test are shown in Fig. 4. The average 

" . temperatures taken between 191 hr and 287 hr are given in Table 1. 

These values give an average temperature around the bend section 

: of 577. SoC with a maximum differential of 32 ~ 4°C. 

The dramatic drop in temperature as recorded by thermocouples 

No. 23 and No. 24 was due to failure of ~he bottom heating tape. 

Following this discovery the test was discontinued. 

The results of the second test using the copper are shown In 

Fig. 5. As a result of the high temperature and consequently high 

heat loss being experienced at the free flange the test was shut down 

at around 300 hr. Gaskets formed of hard packed insulati9n (lin thk) 

were inserted at both the free and fixed ends. Further modifications 

included at this time were the addition of thermocouple No. 27 at the 

base plate and replacement of a faulty thermocouple No. 10 with No.10A. 

, As a result of the flange inSUlation the loading beam temperature was 

reduced by approximately 65%. The average temperatures measured 

between 492 hr and 709 hr are given in Table 2. These average values 

result in an average temperature around the bend of 569.4°C with 0. 

maximum differential of 5. 8°C. 

A comparison of the two tests is given in Fig. 6. Ulustrating clearly 

the vast improvement using the copper sheath. This trend is reflected 

on thermocouples positioned on the neutral axis and along the tangent 

pipes. 

Stiffening of the bend ~ue to the copper sheath was examined 

under an in-plane bending closing mode test. Rotation of tho loading 

beam was measured using dial gauges (Fig. 7) •. The decrease in rota

tion was negligible (0.005°). 

" " 
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Results from the latter part of the second test are given in 

,Table 2. Here the maximum differential around the bend section in

~,reased slightly to 7. 4°C from an overl).ll average of 625. 2°C. The 

." system, however, was working at full capacity ~o maintain this tem

p~rature. A reduction to 600°C would give some. margin for adjustment 

. and possible reduction in differential. , 
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S. . Discussion 

This development work has led to a fairly simple and effective 
~ ': 

heating system retaining the original set up. 

The maximum differential of 5. 8°C compares well with other more 

sophisticated methods. For example. work.,by GRIFFITH and 

,RODABAUGH [7] and IMAZU [8] quote temperature differentials of 

" 'SoC and 15°C respectively, although full details are not available • 

. Further, the additional cost of about £400 per bend for purchase and 

, . ,.fabrication compares ex~ellently with £5000 for the commercial system. 

However, on removal of the copper sheaths significant scaling 

on both,the inside and outside surface was observed. This may limit 

their useful life but is unlikely to be important compared with the dura

, tion of the test programme. A specimen is presently being prepared 

for an elevated temperature forward creep test using this system. 

At present, the fabrication of further 'copper sheaths is under 

way. 



552.: 

! 

. TABLE 1: Average temperatures 191 hr·- 287 hr. 

Thermocouple " Temperature 
No. ":' "~ " (OC) . 

1 508.6 

2 559.2 
3 561.8 
4 577.6 
5 573.2 

6 581.0 

7 570.8' 

8 ,~ 564.4 

9 576.8 

10 587.0 

11 594.2 
12 573.8 

13 55l.4 

14 , .. 567.6 

15 582.6 

16 578.4 
17 571.0 
18 553.0 

19 56l. 2 

20 580.4 
21 579.8 
22 574.0 

23 526.0 

24 535.8 
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TABLE 2: Average temperatures 492 hr,- 709 hr, 805 hr - 974 hr. 

< ~ I. 
~ , j' 

Thermocouple \ Temperature' (OC) 
No. 492 hr - 709 hr 805 hr - 974 hr 

1 525.5 574.0 

2 566.37 619.4 

3 558.12! 612.0 
' ~ : 

4 565:62 618.2 

5 ,569.0'. " 621.8 

6 567.12 621.6 

7 ' 568.0 622.4 

8 571.12 626.8 

9 569.62 624.8 

lOA 568.12, '. 622.8 

*10 560.0 616.0 
" "c ,,' 

11 573.0 
~ 

630.2 

12 567.75 624.4 

13 569.87 627.0 

14 570.0 ' ',',. 626.8 

15 569.25 625.4 

16 ,572.87 " , ; J, 630.6 

17 565.5 620.4 

18 570.25 626.0 

19 570.12 626.0 

20 568.0 623.2 

21 558.25 1
, 609.4 

22 561. 62 612.2 

23 557.62 609.0 

24 558.12 609.4 

25 505.12 549.8 

26 219.87 239.8 

27 134.25';' 144.4 

*Faulty thermocouple replaced by No. lOA 
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