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Abstract 

A nuclear power station contains some of the most extreme environments and operating 

conditions seen by metallic components. In order to ensure the continued safe operation of 

these plant components rigorous structural integrity assessments are performed. Part of 

this structural assessment involves demonstrating that the component in question will not 

fail by ratcheting. 

In the UK the R5 procedure forms the cornerstone of these integrity assessments. The R5 

rules for shakedown, whilst easily implemented, can give an overly pessimistic estimate of 

the shakedown status. This means that a computationally expensive nonlinear finite 

element analysis must be conducted. The Linear Matching Method (LMM) is one of the 

recently developed Direct Methods for shakedown analysis. This upper bound method has 

the ability to give more accurate shakedown limits than the simplified R5 route and with 

less computational expense than nonlinear finite element analysis.  

This thesis details the steps taken to take the LMM from being a research based method 

into a tool which can be used for regular integrity analyses within EDF. Firstly a conservative 

lower bound to the shakedown limit is derived and added to the LMM. The theoretical 

development and numerical implementation of this calculation is detailed. Convergence 

improvements are also investigated to improve the numerical difficulties often suffered by 

lower bound shakedown calculations. The LMM is implemented in Abaqus through user 

subroutines. To make the LMM suitable for regular use a user interface has been created 

via a plug-in for Abaqus. This plug-in automatically configures the model for the analysis, 

meaning that the user now has access to LMM analyses without having to carry out the 

code changes which were required with the research version of the method.  

The resulting analysis tool has been delivered to EDF so their engineers can now access 

accurate shakedown analyses through a convenient user-interface. 
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1 Technical, Economic and Political Background 

1.1 Introduction 

A nuclear power station is a large and complex feat of engineering. It contains a large 

number of safety critical systems and components operating simultaneously for extended 

periods of time in a harsh environment. The safe operation of these components and 

systems must be ensured so that the plant can continue to safely generate electricity, and 

part of the process to do this involves ensuring the structural integrity of the plant. 

Furthermore, much of the existing UK nuclear power generation is now reaching the end of 

its design life and the current uncertainties in the timescales for replacement generation 

capacity means that there is an incentive to keep these plants operating. Structural 

integrity analyses play an important role in these life extension safety cases, and there is a 

need for accurate yet conservative analysis techniques. 

A great number of components in nuclear power stations are subjected to cyclic loading, 

often at elevated temperatures. This combination introduces a number of possible failure 

mechanisms for metallic components including creep rupture and fatigue. The R5 

procedure [1], which is used to perform some of the structural integrity calculations, must 

account for all these relevant failure mechanisms. 

Ratcheting, where plastic strain accumulates with each cycle of loading until failure occurs, 

is one such failure mechanism [2]. The past two decades has seen a substantial increase in 

research into methods which calculate safe loading limits so that ratcheting does not occur, 

i.e. a shakedown analysis. These shakedown methods are able to accurately determine the 

safe loading conditions, and so would be a valuable addition to the R5 procedure. The 

development of one such method, namely the Linear Matching Method, and its 

implementation as a tool for use by EDF engineers is the focus of this research. 

This introductory chapter outlines the background to this research by: 

 Summarising the state of the current nuclear fleet and the position of nuclear new 

build. 

 Describing the manner in which structural integrity assessments contribute to the 

continued operation of the current nuclear fleet. 
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 Outlining how current research in the field of shakedown analysis can be used to 

improve these structural integrity assessments. 

 Clarifying the specific objectives of this project to allow wider adoption of this 

current research in EDF for their structural calculations. 

1.2 The UK Nuclear Industry 

Electricity through nuclear power has been commercially generated in the UK since 1956 

when Calder Hall power station was first connected to the grid [3][4]. At this time all 

electricity generation was operated by the public owned utility the Central Electricity 

Generation Board (CEGB). During the 1950's and 60's a further 9 nuclear power stations 

were built, all of which were of the Magnox reactor design [3].  

A more efficient reactor design, the Advanced Gas-Cooled Reactor (AGR) was introduced in 

the UK which is able to generate 2 to 3 times more electricity than the Magnox design [4]. 

Construction of this type of power station began in the late 1960's, with the final AGR 

connected to the grid in 1988. A single Pressure Water Reactor (PWR) was also built at 

Sizewell, which was connected to the grid in 1995 [5]. After these AGR and PWR reactors no 

more nuclear plants have been built. All but one of the Magnox plants have reached the 

end of their operational life and the remaining Magnox station at Wylfa is due to begin 

decommissioning in 2014 [6]. This will leave the 7 AGR and 1 PWR, all owned and operated 

by EDF Energy, as the remaining nuclear fleet in the UK. Table 1.1 gives details of the 

current operational nuclear stations in the UK.  

At the turn of the century the government was initially indecisive on the topic of whether 

to invest in new nuclear power stations. The energy white paper published in 2003 [7] 

outlined that the existing nuclear fleet would be kept until the end of its life, at which point 

it would be decommissioned without being replaced. The reliance would instead be on 

renewable sources and combined heat and power (CHP). The reasons cited for this were 

that nuclear power was economically unattractive and that uncertainty existed about long 

term plans for nuclear waste. 

This position changed in 2007, when the government published an energy white paper - 

Meeting the Energy Challenge [8]. This gave the preliminary view that nuclear power could 

have a role to play in the future energy mix of the UK and announced a public consultation 

on the matter. In January 2008 the findings of the consultation were released and based on 
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this the government decided that nuclear should play a part in the UK energy mix [9]. The 

reasons for this change in opinion included energy security, the desire to have a diverse 

energy mix and that nuclear power is the only low carbon baseload generation proven on a 

commercial scale. The government took action to facilitate private investment in nuclear 

plants including, for example, the creation of the Office for Nuclear Regulation [10] and 

identifying several sites which could accommodate new reactors. 

Table 1.1 - Operational UK Nuclear Power Stations 

Station Type Operator 

Net 

Capacity 

(MW) 

Start of 

Generation 

Estimated 

Decommissioning 

Date 

Wylfa Magnox Magnox Ltd 473 1971 2014 

Hunterston B AGR EDF 890 (1190)* 1976 2023 

Hinkley Point B AGR EDF 880 (1220)* 1976 2023 

Hartlepool AGR EDF 1180 1983 2019 

Heysham 1 AGR EDF 1155 1983 2019 

Dungeness B AGR EDF 1040 1983 2018 

Heysham 2 AGR EDF 1220 1988 2023 

Torness AGR EDF 1185 1988 2023 

Sizewell B PWR EDF 1198 1995 2035 

*Hinkley Point B and Hunterston B have been restricted to around 70% load because of boiler 

temperature restrictions.  

The Office for Nuclear Regulation (ONR) was formed from several existing nuclear related 

government departments and subsequently created the Generic Design Assessment (GDA) 

process for any new reactor designs [11]. This process, which can take up to 4 years, 

ensures that the general design of a plant is safe and is a mandatory first step for any new 
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nuclear station in the UK. Once complete, a reactor design can be built at multiple locations 

and only needs to obtain site specific consents and approvals.  

Currently two consortia plan to build new nuclear stations. EDF plan to build two European 

Pressurised Reactors (EPR) at Hinkley Point with a combined generating capacity of 3260 

MW and a further two at Sizewell [12]. The EPR reactor has passed the GDA (and to date is 

the only reactor design to do so) [13]. Hitachi also plans to build new nuclear plants, in the 

form of Advanced Boiling Water Reactors, but only began the Generic Design Assessment 

for this design in April 2013 [14][15].  

Even when a reactor design has passed the GDA process, it is not clear how long it will take 

to construct and commission a new power station. The EPR reactor is currently under 

construction in several countries, all of which, barring the Chinese, have reported delays to 

the schedule [16][17]. The Advanced Boiling Water Reactors currently in operation 

worldwide took between 4 and 5 years to build and commission [18][19], but must still 

complete the GDA process. There is an incentive, then, to keep the existing fleet in 

operation for as long as is safe to do so. Based on the existing decommissioning dates, it is 

entirely possible that several of the existing fleet will reach the end of their life before any 

new plants are in operation, leading to a deficit in electricity generation. Therefore EDF are 

actively pursuing life extension of their plants.  

1.3 Safe Electricity Generation from Nuclear Power 

The principles of electricity generation from nuclear power are relatively simple, and a 

simplified schematic of a nuclear power station is shown in Figure 1.1. 

The basic principle is that the heat generated by the fission chain reaction is used to create 

high pressure steam which is in turn used to drive turbines and a generator. In this way a 

nuclear station is very similar to conventional power stations, the fundamental difference 

being the manner in which the heat is created. 

The reactor core contains the fissile fuel (typically enriched uranium) in long channels. The 

UK Advanced Gas-cooled Reactor (AGR) design uses a graphite core and alongside the fuel, 

has parallel channels for control rods [4]. These control rods are made from materials such 

as boron which are highly neutron absorbent. The degree to which the control rods are 

removed from the core determines the number of free neutrons available to continue the 

chain reaction.  
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Figure 1.1 - Schematic of a Nuclear Power Station 

The fission chain reaction generates substantial levels of heat, which is used to increase the 

temperature of the coolant. In the British AGR design carbon dioxide is used as the core 

coolant, and as it passes over the fuel in the core channels it reaches temperatures of over 

600 degrees Celsius. The carbon dioxide then passes into a heat exchanger, also known as a 

steam generator because the thermal energy of the CO2 is used to convert water into high 

pressure steam. Once it has passed through the steam generator, the cooler CO2 is then 

pumped back into the core. This coolant loop is known as the primary circuit. 

The secondary circuit uses the high pressure steam from the steam generator to drive the 

turbine and generator to generate electricity. In this respect the nuclear power station is 

similar to conventional power generation. 

This description of a nuclear power station is heavily simplified. In reality a nuclear power 

station is hugely complex with many inter-dependent systems simultaneously in operation. 

Figure 1.2 shows a schematic of the new European Pressurised Reactor (EPR) which is due 

to be built by EDF at their Hinkley Point and Sizewell sites [12]. In this diagram the scale and 

complexity of a nuclear station becomes apparent, and this diagram does not include a 

great number of the auxiliary and safety systems which are vital to the plant operation. 

Overall a nuclear power station contains numerous valves, pressure vessels, heat 

exchangers and kilometres of piping with countless intersections, bends, welds, flanged 
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joints and supports. The structural integrity of all of these components and systems must 

be ensured if the plant is to be operated safely. 

 

Figure 1.2 - 3D Model of the EPR Reactor 

Ensuring the structural integrity of the vast number of components is a difficult engineering 

challenge, not least because of the environments they operate in. Such conditions result in 

high pressures, bending moments, high temperatures and potentially large temperature 

gradients. As mentioned, the CO2 coolant operates in excess of 600 degrees, which is well 

into the creep range for the stainless steels typically used for these components [20]. 

During operation there will be variation in these operating conditions alongside some 

larger, less frequent, events such as shutdowns and start-ups. The cyclic nature of the 

loading introduces fatigue as a potential failure mechanism, especially when a nuclear 

power station has a nominal design life of 40 years [3]. EDF must prove that each nuclear 

station is safe to operate in order to retain the nuclear license for the site. The generation 

and maintenance of structural integrity safety cases for all components contributes to the 

safety case for the site as a whole. The component safety cases are generated by rigorous 

inspections combined with structural integrity calculations by EDF engineers.  

1.3.1 Shakedown and the R5 Procedure 

R5 [1] is a structural integrity assessment procedure developed for use in the UK nuclear 

industry, and is now used more widely by other industries concerned with high 

temperature structural integrity. First developed in 1990, R5 is now in its third issue and 

provides the backbone of structural integrity assessments in EDF used to create the safety 
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cases for plant components. The procedure has been developed to assess metallic 

structures containing defects (such as cracks) which operate at high temperatures, meaning 

the effects of creep are introduced to its behaviour.  

The R5 procedure uses a simplified approach based on linear elastic analysis with 

accompanying techniques to incorporate the nonlinearity of plasticity and creep [2][21]. 

This makes the procedure less restrictive than the rule based approach of many design 

codes and assessment procedures, but less computationally expensive than full nonlinear 

analysis using Finite Element Analysis (FEA). If the simplified techniques in R5 are not 

sufficient to substantiate the component then advice is also given for full nonlinear analysis. 

R5 is used to assess a component based on a number of potential mechanisms including 

gross plastic collapse, creep rupture and crack growth. 

A key part of the R5 procedure is to demonstrate that a component is not ratcheting. 

Ratcheting (or incremental plastic collapse) is where plastic strains accumulate with each 

cycle of loading. Continued cycling causes these plastic strains to grow unbounded until the 

structure fails through gross plastic deformation. Showing a component does not ratchet is 

achieved by demonstrating that it is either within strict shakedown or global shakedown. 

Strict shakedown is the structural phenomenon where a component is initially loaded 

beyond the elastic limit (thus causing permanent plastic strains in the structure) but 

responds in an entirely elastic manner after the first few loading cycles. Global shakedown 

is where there are plastic strains in each load cycle, but these are entirely reversed so that 

no accumulation of plastic strain occurs from one cycle to the next. Demonstration of 

shakedown is one of the first calculations in the R5 procedure and is used in subsequent 

steps (for example the shakedown reference stress used in the creep assessment stages). If 

shakedown cannot be demonstrated using the simplified approaches then R5 cannot be 

used any further for the assessment. Instead a more computationally expensive and time 

consuming route using nonlinear FEA must be used. 

1.4 Drivers for Project Creation 

From a financial point of view, if EDF are able to keep their existing nuclear power stations 

running for longer than their original design life, then more income will be generated from 

a plant which would otherwise be shutdown and decommissioned. Aside from financial 

concerns, there is a growing political pressure resulting from the possibility of existing plant 

closures before replacement generation has been constructed and commissioned. The long 
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lead times of a nuclear power station mean that the new generation capacity may not be 

ready before the existing AGR's reach their published decommissioning dates.  

Life extensions of 5 years have already been achieved for Heysham 1 and Hartlepool 

stations [22] and 7 years for Hinkley Point B and Hunterston B [23] (these are included in 

the respective decommissioning years in Table 1.1). In addition to these extensions, EDF 

have announced that they expect to extend the life of all AGR plants by a further 5 to 7 

years, and extend the life of the Sizewell PWR station by 20 years [24]. To substantiate an 

extension to the operational life of a plant, a rigorous safety case must be assembled which 

demonstrates the ability of the plant to continue safely operating beyond the original 

design life.  Structural integrity assessments using the R5 procedure are heavily involved in 

this safety case. 

Aside from the issue of life extension, a significant level of work is conducted to 

demonstrate that the plants are safe to continue operating between planned shutdowns 

and outages. Structural assessments are performed on components which are inspected 

during these shutdowns, contributing either to the safety cases to justify continued 

operation or to highlight components to be replaced. Once again the procedures in R5 are 

used to conduct these assessments. 

The importance of R5 within EDF means that there is a lot of investment to improve its 

procedures and keep it up to date with the most recent advances in structural integrity 

research. The R5 research program investigates many topics, including advances in the 

analysis of cracks [25], effects of welds [26]  and probabilistic methods of structural analysis 

[27]. Part of this research program concerns the development of methods to better predict 

the shakedown status of components. At times the shakedown methods in the R5 

procedure can prove overly pessimistic in the prediction of the shakedown limit, meaning 

that the component is not shown to be within shakedown according to the R5 criteria. 

When this happens it is necessary to use nonlinear FEA which, in shakedown assessments, 

can produce ambiguous results and involve large computing times. 

An improvement to this situation can be found in the form of the so called "Direct 

Methods" for shakedown assessment. These methods are able to give more accurate 

predictions of shakedown than are currently given in the simplified routes of R5 and can do 

so with clearer results and less computational expense than full nonlinear FEA. Therefore 
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including one of these Direct Methods as an option in R5 would be beneficial in cases 

where shakedown is difficult to determine conventionally.  

1.5 The Linear Matching Method 

The Linear Matching Method (LMM) is a Direct Method for shakedown assessment and has 

been a part of the R5 research program for a number of years [28][29]. The LMM is an 

upper bound procedure initially developed from the Elastic Compensation Method [30], 

and has the ability to give accurate upper bounds to the shakedown limits. The LMM has 

seen significant theoretical and numerical development over the years making it among the 

most successful of the Direct Methods available today.  

The premise of the LMM is that a nonlinear material response, such as metal plasticity, can 

be mimicked by a series of linear analyses where the modulus is changed throughout the 

structure. This is demonstrated pictorially in Figure 1.3. 

 

Figure 1.3 - LMM Modulus Adjustment and Stress Redistribution 

The process begins with a linear elastic analysis for the applied loads. The modulus at each 

point in the structure is then modified so that the stress matches the yield stress (Figure 

1.3a). The next elastic analysis uses these modified modulus values and the stress begins to 

redistribute in the structure (Figure 1.3b). The modulus is then modified again and the 

process repeats, allowing the stresses to redistribute similarly to an elastic-plastic material. 
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The LMM is implemented in Abaqus commercial finite element software [31] through use 

of user subroutines. Through this implementation it has been successfully applied to many 

practical engineering structures, including some examples of EDF plant components 

[32][33]. This has proven the capabilities of the method as a practical engineering analysis 

tool, with the potential for regular use within EDF for their routine structural assessments. 

1.6 Project Aims and Objectives 

The LMM has the potential to be a useful tool for EDF engineers if proof of shakedown is 

problematic by other means. However, there are some barriers to wider adoption of the 

method. 

The first of these is that the LMM is fundamentally an upper bound procedure. This means 

that the shakedown limits generated will be greater than or equal to the exact limit. Whilst 

the convergence of the LMM has been shown to be robust and stable, an upper bound 

solution is nonetheless a non-conservative solution by nature. The nuclear industry favours 

conservative lower bounds to shakedown and so if the LMM is to be user regularly within 

EDF then lower bound solutions must also be available. 

The second issue, which is faced by all the Direct Methods, is that they all require some 

level of programming ability in order to use them. The LMM is implemented in Abaqus 

through user-subroutines and historically requires several changes to the code to run an 

analysis. This presents opportunities for errors when users who are inexperienced with 

coding, or the LMM itself, use the subroutines. Tipping [34] alleviated this problem to an 

extent by rationalising earlier versions of the LMM subroutines so that the code changes 

required per analysis were minimised. The LMM job was instead set up through the use of a 

text file containing information about the load cycle and convergence criteria. This, whilst 

an improvement on the original LMM implementation, can be further improved upon if a 

user interface is created to automatically set up the analysis, making it easier and quicker 

for the user to run a LMM analysis. 

With these points in mind, this project has three major objectives: 

1. Add conservative lower bounds to the LMM calculations. These lower bounds 

should run concurrently with the upper bound so that the user is given both lower 

and upper bounds to the shakedown limit. 
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2. Provide validations of the shakedown limits predicted by the LMM. This is 

somewhat linked to objective 1 in that any new development to a numerical 

procedure must be validated to ensure the results are as expected. This validation 

requirement also extends to the upper bound, so that EDF can have confidence in 

the shakedown limits predicted by the LMM as a whole. 

3. Provide a user interface to the LMM to eliminate the manual code changes 

required to perform a LMM analysis. 

Chapter 2 of this thesis gives an overview of shakedown in structures. This includes the 

structural response itself and how this is used at present in pressure vessel design and 

assessment. The current research in shakedown is also discussed. Chapter 3 examines the 

LMM strict shakedown procedure theoretically and gives some theoretical and numerical 

validation examples. 

Chapter 4 discusses the LMM global shakedown method. A lower bound to this limit is 

derived and implemented, and investigations into convergence are performed. The aim of 

chapter 5 is to provide validation of the global shakedown method through analytical and 

numerical comparisons. 

Chapter 6 details the creation of a user interface to the LMM through an Abaqus plug-in. 

Details are given about the structure of the plug-in and the re-structuring of the 

subroutines to allow automated use. Chapter 7 demonstrates the use of this LMM tool to 

analyse a plant example from EDF. 

A summary of the findings and outputs from this project, and a discussion of areas for 

future work, are given in chapter 8. 
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2 Shakedown in Structural Engineering 

2.1 Introduction 

Shakedown is a structural phenomenon seen in elastic-plastic materials which are loaded 

cyclically. It occurs if loads cause the elastic limit of the material to be exceeded, and is very 

often exploited as a means of allowing a structure to carry more load than would be 

allowed if the component were restricted to stresses below yield. This is particularly true 

for pressure vessels, where the basic concepts of shakedown are commonplace in the 

codes used in their design and assessment. 

The subject of shakedown in metallic structures is not a new one. Some of the theoretical 

solutions and theorems have existed for half a century or more. Shakedown solutions, 

however, are difficult to achieve analytically and so development of the field was slow until 

the more widespread adoption of numerical analysis tools such as Finite Element Analysis 

(FEA). 

FEA itself does not hold the complete solution when shakedown calculations are involved 

because it can be difficult to determine when steady state cyclic behaviour has been 

achieved. This has led to the development of many "Direct Methods", which are usually 

based within FEA and are so called because of their ability to remove ambiguity from the 

numerical calculations. Other advantages of these Direct Methods includes improved 

solution times over the conventional FEA approach. Included among these methods is the 

Linear Matching Method, and collectively these methods represent the main focus in 

shakedown research today. 

This chapter will explore the subject of shakedown from concepts and theorems through to 

their implementation in the Direct Methods. Some of the current challenges in shakedown 

research will be highlighted in the context of the goals of this project, which allows these 

ideas to be expanded upon in subsequent chapters. 

2.2 The Shakedown Phenomenon 

The focus of the majority of shakedown research has been on metallic materials, i.e. 

materials which show an elastic-plastic response, have large levels of ductility (relative to 

brittle materials such as ceramics) and for which the von-Mises yield condition is applicable. 

However research into other materials and geotechnical problems [35] also exists. Metallic 
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materials are the primary concern of the nuclear industry and so form the focus of this 

work. 

In structural mechanics the limit load of a structure is a commonly used calculation to 

characterise fitness for service. The limit load gives the maximum allowable monotonically 

applied load that the structure can bear before a plastic hinge forms, at which point no 

further increase in load can be sustained by the structure. When a component is loaded 

cyclically however, failure can be seen at load levels which are lower than the limit load. 

Depending on the magnitude and nature of the cyclic loading, several different structural 

responses may be seen. 

 

Figure 2.1 - Structural Responses to Cyclic Loading 

If the applied loads are small enough then the whole component will remain within the 

elastic limit during the entire load cycle, as shown in Figure 2.1a. Increasing the magnitude 

of the loading beyond the elastic limit will cause plastic strains to form in parts of the 

structure and one of three steady state responses will be observed. 

 Strict shakedown, also known as elastic shakedown. The plastic strains are 

accumulated in the first few cycles along with the formation of a residual stress 

field due to the yielding. After these first cycles the residual stress causes the 

structure to respond to subsequent loading cycles in an entirely elastic manner, as 

shown in Figure 2.1b, therefore preventing any further plastic strains forming. 
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 Global Shakedown, also known as plastic shakedown or alternating plasticity. This is 

where the plastic straining does not stop after the first few cycles but instead is 

seen in every load cycle. In the steady state response there is equal plastic straining 

in the forward and reverse directions, as shown in Figure 2.1c. This means that the 

strains form a closed loop over the cycle and no net increase in plastic strain is seen 

from one cycle to the next. 

 Ratcheting. When ratcheting occurs there is a net accumulation of plastic strain 

with each load cycle which would eventually lead to failure of the structure by gross 

plastic collapse. This is shown in Figure 2.1d. 

It is worth noting that within a structure it is rare that only one of the steady state 

responses will be observed. Instead several responses may be seen depending on the 

applied loads and the severity and location of stress concentrations. It is common that the 

bulk of a structure will remain elastic at all times whilst stress concentrations will cause 

plasticity and one of the other three responses will develop. The shakedown status of the 

component is dictated by the most severe response seen in the entire structure. For 

example, if the entire component is entirely elastic but one small region around a stress 

raiser is ratcheting, then the whole component is said to be ratcheting.  

In structural assessments it is important to be able to assess which behaviour a component 

is exhibiting. An entirely elastic response and strict shakedown are allowable states for a 

component to be in. Indeed, strict shakedown is the most favourable state because the 

response of the component is entirely elastic despite the load levels being large enough to 

initially exceed the elastic limit in some locations. Global shakedown is usually allowed 

provided that a low cycle fatigue assessment is performed because of the presence of the 

reverse plasticity. In almost all cases ratcheting is not allowed. One of the first stages in any 

structural assessment is, therefore, to determine the shakedown status of the component. 

One of the most famous classifications of these responses came from Bree, who conducted 

a simplified analysis of a nuclear fuel casing [36]. The casing, which is cylindrical, is subject 

to a linear through wall temperature difference which is cyclic with time and a steady state 

axial tension. By assuming that the casing wall thickness is small relative to the radius and 

that the hoop stress is dominant compared to the axial stress, Bree was able to reduce the 

problem to a 1-dimensional analysis. Doing this allowed Bree to analytically calculate the 

levels of thermal and pressure loading which would result in the different responses of 



15 
 

Figure 2.1. This resulted in the now famous Bree interaction diagram, which is a common 

method of graphically displaying the responses to different loading levels. An example 

interaction diagram is shown in Figure 2.2. 

 

Figure 2.2 - Bree Interaction Diagram 

In Figure 2.2 the horizontal axis represents the steady state pressure stress and the vertical 

axis represents the cyclic thermal stress, both of which have been normalised against the 

yield stress. This interaction diagram clearly shows the relative levels of cyclic thermal and 

steady state pressure loading which will result in each behaviour.  

This study, despite being heavily simplified, still includes many important features of 

shakedown and highlights characteristics which are applicable to a large number of 

shakedown assessments: 

 The boundary between strict and global shakedown is exactly twice the yield 

stress. For a perfectly plastic material (and low levels of constant loading) the 

stress can cycle between compressive and tensile yield and still remain elastic.  

 When the level of cyclic loading becomes zero the strict shakedown limit coincides 

with the limit load. The limit load can be considered to be a special case of strict 

shakedown due to there being only one point in the load cycle. 

 As the level of cyclic loading increases the global shakedown limit becomes 

asymptotic to the vertical axis. This applies to situations where the cyclic load is 
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self equilibrating and cannot itself cause the limit state to be reached (classified as 

a secondary stress in the ASME code [37] and R5). An example of this is a through 

wall temperature difference, which is the case for the Bree analysis. In cases where 

the cyclic load is mechanical (which has the ability to cause limit in its own right) 

the global shakedown boundary is not asymptotic, but instead intercepts the 

vertical axis at the limit load. Examples of this are seen in the interaction diagrams 

of a pipe intersection in chapter 5.  

This analysis by Bree has been adopted by many design and assessment codes as the 

cornerstone of their shakedown analysis. For example, the Design by Analysis section of 

ASME VIII [37] uses these exact stress limits to prevent thermal stress ratcheting.  

2.3 The Shakedown Theorems 

The analytical examples, such as those of Bree, provide useful insights into the shakedown 

phenomenon and result in rules of thumb which can be applied more broadly to 

engineering calculations. These analytical examples, however, only exist for basic 

geometries and load conditions which limits their applicability somewhat. Despite this, the 

importance of calculating the shakedown status has led to the phenomenon being studied 

by many researchers with the aim of creating robust shakedown/non-shakedown criteria 

which are more generally applicable to any applied loading or geometry. The most widely 

used of these theorems are those of Melan [38] and Koiter [39] which give conditions for 

strict shakedown [40]. Such is the extent of these theorems within the field that all Direct 

Methods discussed in Section 2.6 are based on one of these two theorems.  

Melan's theorem states that:  

For a given cyclic load set the structure will shakedown if a constant self-

equilibrating residual stress field can be found such that the yield condition is 

not violated for any combination of cyclic elastic and residual stresses. 

Therefore if a residual field, which is in equilibrium when all external loads are removed, 

can be calculated which means that the yield condition is satisfied when the applied elastic 

stresses are added, then the structure will be in strict shakedown. Melan's theorem is often 

referred to as the Lower Bound shakedown theorem, because the predicted shakedown 

limits are always equal to or less than the exact strict shakedown limit.  
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Koiter's theorem states that: 

For a prescribed load set P(t) with a cyclic period t, if any kinematically 

admissible strain rate can be found during a time interval (0, t) such that the 

strain field is compatible with a displacement field u (which satisfies the applied 

displacement boundary conditions) and 

0 0

t t

V

Pu DdVdt   

where Ḋ                                                                       

                         , then shakedown has not occurred. 

Therefore Koiter's theorem requires the definition of a kinematically determinate mode of 

deformation for the component (i.e. compatible sets of displacement and strain 

increments) and performs an energy balance of internal and external work done. Koiter's 

theorem is often referred to as the upper bound theorem because it predicts shakedown 

limits which are equal to or greater than the exact strict shakedown limit.  

The broader applicability of these theorems in terms of geometry and loading mean that 

they have formed the foundation of modern shakedown analysis methods, as discussed in 

section 2.6. Melan's theorem in particular, being conservative by nature, is a popular choice 

for the Direct Methods and is also used as the basis of the shakedown criteria used in R5.  

2.4 The R5 High Temperature Assessment Procedure 

The R5 procedure [1] is a UK nuclear industry standard frequently used for high 

temperature structural integrity assessments of Advanced Gas-Cooled Reactor (AGR) 

components [2][21]. Together R5 and R6 (for the assessment of low temperature fracture) 

[41] provide the cornerstone of integrity assessment for the UK AGR fleet. Being a high 

temperature procedure, the R5 procedure considers the effects of creep, fatigue and the 

creep-fatigue interaction to determine the remaining operational life of the component in 

question. 

R5 is divided into five volumes: 

 Volume 1: Overview 

 Volume 2/3: Creep-fatigue crack initiation procedure for defect free structures 
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 Volume 4/5: Procedure for assessing defects under creep and creep-fatigue loading 

 Volume 6: Assessment procedure for dissimilar metal welds 

 Volume 7: Behaviour of similar welds: guidance for steady creep of ferritic  
       pipework. 

Broadly speaking the R5 procedure contains two stages. This first stage is an assessment of 

the time for a defect to occur in an initially defect free component, detailed in volume 2/3. 

The second stage is the assessment of the time for a given defect to grow to a critical size, 

detailed in volume 4/5. Volumes 6 and 7 are essentially specialised applications of volumes 

2/3 and 4/5 respectively. Overall, the procedure checks the component for, and may limit 

the operating life based on, the following: 

i. Excessive plastic deformation from a single application of a set of loads 

ii. Creep rupture 

iii. Ratcheting from cyclic loading 

iv. Creep deformation enhanced by cyclic loading 

v. Crack initiation in defect free material due to creep or creep-fatigue mechanisms 

vi. Crack growth due to creep and creep fatigue mechanisms.  

R5 uses a simplified approach based on elastic stress analysis and criteria associated with 

this such as reference stress methods. The procedures are laid out as a series of analysis 

options which are applicable to one or more of the above failure mechanisms. Where the 

initial, simple options are not sufficient then more advanced options are used which lead to 

less restrictive results. Should these options also prove to be insufficient then advice is 

given regarding full cyclic inelastic computation. This strategy strikes a compromise 

between the pessimism of elastic analysis and the complexity of cyclic inelastic analysis.  

Volume 2/3 is concerned with the first of the two assessment stages, the assessment of 

crack initiation in defect free components. The procedures it contains provide an estimate 

of the number of cycles to form a crack of a predefined size (i.e. does not provide an 

estimate of the number of cycles to failure). Elastic analyses are performed as a starting 

point for the volume 2/3 assessment. These stresses are categorised into primary and 

secondary in a similar manner to the ASME code [21]. Limits are placed on these stress 

categories to ensure that excessive plastic deformation will not occur before the 

component reaches steady state behaviour (mechanism i). Creep rupture (mechanism ii) is 
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assessed using reference stress techniques where the creep reference stress is dependent 

on the creep ductility of the material. 

Volume 2/3 includes several methods to guard against incremental plastic collapse 

(mechanism iii). If strict shakedown cannot be demonstrated then global shakedown is 

allowed provided that an elastic core remains to constrain the cyclic plasticity. Mechanism 

iv is the phenomenon whereby cyclic loading may repeatedly generate high stress levels in 

a component containing a creep dwell in the cycle. This significantly increases the creep 

strains per cycle and therefore can reduce the service life. The shakedown stress solutions 

are used to calculate a creep usage factor, ensuring that creep rupture does not occur due 

to this phenomenon.  

Crack initiation (mechanism v) is said to have occurred when a defect of size a0 or larger has 

formed. This is assessed by independently calculating the damage caused by creep and 

fatigue. The interaction of creep and fatigue is accounted for through use of an interaction 

diagram.  

The initiation of a crack of size a0 does not in itself represent the failure of the component 

but rather indicates the starting point of a defect growth assessment using volume 4/5 if 

required (mechanism vi) i.e. if no defect will form in the service life of the component then 

the assessment is complete and no further action is required. If however, volume 2/3 

predicts that a defect will initiate within the service time of the component then a volume 

4/5 assessment is required to determine the crack growth in the service life. In addition to 

being a sequential assessment to volume 2/3, volume 4/5 is also a stand-alone procedure 

for assessment of existing defects found through inspection and NDT. 

2.4.1 Shakedown Criteria in R5 

The first two stages in the volume 2/3 procedure involve defining the service cycles that the 

component will experience and performing the elastic analyses for these. Once complete, 

step 3 then demonstrates that the component will not suffer plastic collapse by placing 

limits on the different stress categories (i.e. primary and secondary). In addition to those 

relevant to plastic collapse, there is also a limit set on the stress range seen by the 

component, namely: 

   2 0.L B yP P Q      (for ferritic steels) (2.1) 
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   2 7.L B yP P Q      (for austenitic steels) (2.2) 

Where Δ(PL+PB+Q) is the total stress range seen at a given point in the structure and y
  is 

equal to the yield stress for most ferritic and austenitic steels (but may be modified 

depending on the creep properties of the steel). These limits are present to ensure that it is 

possible for the steady cyclic state to be within global shakedown. These stress limit criteria 

may be bypassed by performing an inelastic analysis to find the limit load, but it is relevant 

nonetheless that checks are present at the early stages of the procedure. 

Steps 4 and 5 present simple checks to determine the significance of the creep loading and 

to ensure that creep rupture endurance is satisfactory. Once complete, the shakedown 

status of the component is explicitly checked in steps 6 and 7. 

Step 6 is a simple check for shakedown and also checks for insignificant cyclic loading. The 

shakedown check begins by assuming that the residual stress field is null and compares the 

linearised cyclic elastic stresses to a modified yield stress KSσY.  

  ˆ ,lin s yx t K  (2.3) 

The scalar factor, KS, is introduced as a measure of the ability of the material to form steady 

cyclic behaviour i.e. the extent of cyclic softening or hardening exhibited. Condition (2.3) is 

allowed to be violated (i.e. the elastic stresses can exceed the modified yield stress) 

provided that this occurs in less than 20% of the section thickness. This ensures that an 

elastic core is present in the remaining 80% to constrain the cyclic plastic strains. If this 

condition is satisfied then the more advanced shakedown check is not required and 

therefore step 7 can be omitted. 

Additionally in step 6, if equation (2.3) is satisfied for the entire structure (rather than just 

80% of the section), then checks for insignificant cyclic loading are performed. These checks 

include limits on the stress range (when the yield stress in the creep dwell is considered), 

the fatigue damage and the steady state stress during creep dwell. If these criteria can be 

satisfied then steps 8 to 14 inclusive can also be omitted. 

Inability to satisfy the shakedown conditions in step 6 then requires step 7 to be carried 

out. This more detailed shakedown assessment introduces the use of residual stress fields 

to allow Melan's theorem to be satisfied. Several options exist to generate these residual 
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stresses, and any number of attempts to find a constant residual stress may be made (and 

so an iterative process is likely). However if a residual stress, ρ, which is self-equilibrating 

and constant with time can be found so that the modified yield stress is satisfied over the 

entire component at all time points: 

    ˆ , s yx t x K   (2.4) 

then strict shakedown has occurred. If this is the case then the checks for insignificant cyclic 

loading from step 6 can be carried out. In addition, this condition may be relaxed and the 

stresses over 20% of any given cross section may exceed yield (i.e. the remaining 80% must 

satisfy equation (2.4)). This exception may only be granted if the criteria of equations (2.1) 

or (2.2) (whichever is applicable) is satisfied i.e. if a nonlinear analysis is needed to find the 

limit load then strict shakedown must be satisfied over the entire structure.  

All the criteria outlined above are based on Melan's lower bound theorem from section 2.3, 

which is used because it provides an inherent conservatism in the shakedown calculations 

when strict shakedown is achieved. The 80% rule, not present in Melan's theorem, is 

present so that limited regions of reverse plasticity can form and so allowing the 

component to operate in global shakedown. This 80% rule has been decided upon based on 

engineering judgement of simple cases such as the Bree cylinder and beams in bending 

rather than rigorous theoretical justification.  

The conservative nature of the shakedown rules in R5 mean that it is sometimes not 

possible to demonstrate shakedown using this route. If global shakedown cannot be 

demonstrated using either steps 6 or 7 then all subsequent steps in volume 2/3 to calculate 

the effects of creep and fatigue cannot be used, and a more detailed cyclic inelastic analysis 

must be used to determine the continued operation of the component. 

2.5 Finite Element Analysis for Shakedown Limit Calculation 

The use of inelastic FEA is becoming an increasingly common theme across the design and 

assessment codes for pressure vessels and piping, which are incorporating design by 

analysis techniques as a viable alternative to their design by rule procedures. Two prevalent 

methods used in these design or assessment by analysis options are cyclic inelastic FEA and 

the Abaqus Direct Cyclic Analysis (DCA) method [42]. 
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Inelastic FEA involves subjecting a model with elastic-plastic material properties to 

repeated cycles of loading. The plastic strains (if any) develop as a consequence of the loads 

and after the simulation of a number of load cycles the model will tend towards one of the 

cyclic states depicted in Figure 2.1. The use of inelastic FEA presents a large number of 

possibilities due to the vast number of material models available, the ability to include 

creep dwells in the cycle and the ability to include any number of applied loads and 

boundary conditions in any combination. This freedom also has disadvantages in terms of 

solution time and computational expense, especially for models with large numbers of 

finite elements and/or complex load cycles. In these situations the need to model the 

transient load cycle to obtain the non-linear material response can become very time 

consuming. Further disadvantages come when determining when the structure has actually 

reached its steady state response. The transient response, depicted in Figure 2.3, is present 

in any cyclic FEA model involving plasticity. In some cases this transient phase may be very 

small (in the Bree problem for example), but in complex models and load cycles the 

tendency is for this phase to last for increasing numbers of cycles, requiring that more 

cycles be solved. Additionally, the determination of the steady state response often 

requires a level of judgement from the engineer, usually by comparing strains or 

displacements at critical locations in consecutive cycles. In many situations the behaviour 

may be asymptotic to a shakedown response, but the final outcome is not entirely clear. 

DCA in Abaqus shares many similarities with cyclic inelastic FEA in that it retains the 

freedom associated with the finite element method in terms of load cycle generation and 

available material models. The computational expense of DCA is reduced somewhat by the 

fact that it solves directly for the stabilised cyclic state, negating the time spent in the 

transient phase of the response. DCA achieves this by assuming the displacement field of 

the component during the load cycle takes the form of a Fourier series function. This 

displacement function is solved for in an iterative manner where one iteration obtains the 

residuals associated with the current displacement function, and these are then used to 

update the function for the subsequent iteration. In situations where many load cycles are 

needed to obtain the steady state response in an inelastic FEA model then DCA provides a 

viable alternative. The accuracy of DCA is determined by the number of Fourier terms in the 

displacement function, the number of time points used to sample the load cycle to 

determine this function and the convergence tolerance used.  
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Figure 2.3 - Plastic Strain History at a Critical Location in Cyclic FEA Model 

DCA is a useful method in determining the shakedown status because it calculates the 

plastic strains at the stabilised response, so the analyst can determine if strict or global 

shakedown has occurred. To this end, DCA has been used as the basis of a global 

shakedown method [43], see section 2.6.2. In the situation of a ratcheting response DCA 

will not converge - the displacement grows each cycle and so the process cannot converge 

on a stable Fourier series. Even when a stable response is possible it has been shown that 

increasing levels of plasticity (as the loading moves further into the reverse plasticity region 

or closer to the ratchet boundary for example) requires a greater number of iterations to 

achieve convergence [43], and convergence in these regions can be slow [44].  

Overall the use of computer based methods (using FEA) offers useful advantages including 

the removal of stress classifications and the ability to include all relevant structural 

features. Despite this, the two prevalent methods described here have many disadvantages 

individually when used for shakedown analysis. Other drawbacks which are shared by both 

methods includes their inability to predict the proximity of the current load cycle to the 

strict or global shakedown limit. With these methods an iterative process must be used to 

find these limits manually. This has prompted the creation of so called Direct Methods for 

shakedown analysis, which are able to provide the proximity to these limits in a single 

calculation. 
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2.6 Direct Methods 

Despite the existence of the shakedown bounding theorems for well over 50 years, it was 

not until computing power and FEA techniques became established that these theorems 

could be used in any meaningful shakedown analysis method. The creation of these direct 

methods was prompted by the conflicting needs of a shakedown analysis of speed of 

solution and clarity of the shakedown status. The methods included in the design codes and 

in R5 offer a fast means of assessing shakedown by elastic analysis. However these 

methods are often overly conservative. Cyclic FEA offers less restrictive results but can 

involve lengthy computation times and ambiguous results. Direct methods have been 

created to offer a shakedown calculation which offers the flexibility of cyclic FEA but with 

improved solution times.  

Existing Direct Methods are generally divided into those for strict shakedown and those for 

global shakedown, and these are discussed in the following sections. 

2.6.1 Direct Methods for Limit Load and Strict Shakedown 

Mathematical programming techniques for limit and shakedown are among the most 

common methods in this field. Such techniques have been studied for several decades and 

pre-date the other Direct Methods for limit and shakedown.  

Mathematical programming techniques are based upon finite element discretisations of a 

model and are capable of finding both lower and upper bounds to the strict shakedown 

limit [45]. The basic principle is that these limits can be found for the finite element mesh 

by an optimisation algorithm which has constraints placed on it by the applied loads, 

boundary conditions and the criteria of the bounding theorem used. For example, to find 

the lower bound shakedown limit the optimisation problem must find a constant residual 

stress field which maximises the applied load levels whilst also keeping the stresses below 

the yield stress. The upper bound seeks to minimise the plastic dissipation energy whilst 

producing kinematically admissible strain fields. The proof of duality of the solutions means 

that both the lower and upper bounds can be solved concurrently, with the optimal 

solution being the optimal for both bounds [46]. 

Mathematical programming methods historically have always been difficult to implement 

robustly within a finite element framework. A great deal of specialised programming is 

required to implement the complex theoretical framework of the optimisation algorithms. 
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Therefore the application of this method was, until relatively recently, restricted to simple 

geometries and load cases. The LISA project (LImit and Shakedown Analysis) [47][48] was 

launched to combat this by producing a more robust implementation of the method in the 

PERMAS finite element code as well as investigate theoretical extensions. During and since 

the LISA project, several verification and demonstration examples have been produced by 

mathematical programming methods including limit loads of a torispherical head [49], 

shakedown of a pipe intersection [46][50] and shakedown of a mixing device [48]. The 

mixing device in particular represents the largest example analysed using this method, and 

demonstrates that realistic problems can be solved using the method. Mathematical 

programming methods offer an advantage over the other Direct Methods described in this 

chapter in that the kinematic hardening material model can be included [51] whereas the 

other Direct Methods have only used perfect plasticity to date. Despite this, and the efforts 

of the LISA project, the complexity in implementation of the method is significant in 

comparison to other methods described here which has hindered its uptake in industry. 

This has resulted in the creation of a number of new methods which are simpler both 

theoretically and in their implementation, making them more amenable to industrial use.  

One of the first methods in this category was the GLOSS r-node (Generalised LOcal Stress 

Strain) method of Seshadri [52]. This method is based on two elastic analyses which are 

used to determine the limit load of a structure. This method is based on the idea of dividing 

the structure into two, the "local" and "remainder", where the local portion experiences 

the largest inelastic effects. The inelastic effects in this local region are then approximated 

through modulus adjustment, and the size of the plastic zone due to stress redistribution is 

estimated based on some approximate plastic zone size calculations. This method was 

improved upon in [53] and gave reasonable approximations to limit loads when compared 

with inelastic FEA, but has not been extended to the calculation of shakedown limits. 

A method for calculation of limit loads was proposed by Marriott [54] which made use of 

elastic analyses with modified modulus values. Using this as a basis, along with aspects of 

the GLOSS r-node method, MacKenzie et al [30] were able to extend these limit load 

methods to enable calculation of the strict shakedown limit. The resulting method, named 

the Elastic Compensation Method (ECM), was able to provide lower and upper bounds to 

the limit load and the strict shakedown limit. 
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The ECM used a series of linear elastic analyses where the elastic modulus of each element 

is systematically modified according to 

 1
n

i i
i

E E 

 

(2.5) 

Where Ei refers to the current elastic modulus of the element, Ei+1 is the subsequent 

modulus, σi is the current effective stress and σn is a nominal reference value of stress, 

often chosen to be the yield stress. Iterative elastic analyses using this system to adjust the 

modulus within each element allows the stress in highly loaded elements to reduce and 

spread to elements with low stress.  

The ECM has been used to calculate the limit loads and strict shakedown limits of a number 

of components including simple beam and bar structures [55], axisymmetric shells including 

nozzles [56][57] and 3D pipe intersections [58][59]. In general the upper bound ECM 

formulations are able to give good estimates of the limit loads and shakedown limits whilst 

the lower bounds tend to give overly conservative results. This is demonstrated in Figure 

2.4, which shows the limit surface for a beam under combined bending and tension 

predicted by the ECM. 

 

Figure 2.4 - ECM Limit Load for a Beam in Bending and Tension 

Figure 2.4a shows that the refinement of the mesh through the thickness of the beam 

produces lower bounds which approach the exact limit, but with diminishing returns of 
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accuracy with increasing element density. The upper bounds, shown in Figure 2.4b, agree 

well with the exact solution. In [60] the behaviour of the lower bounds is attributed to the 

nature of the stress fields generated by the modulus adjustment procedure. The elemental 

basis of modulus adjustment can produce stress fields which are discontinuous through a 

section which, whilst approximating the continuous solution, are not able to generate lower 

bounds with the same accuracy as the upper bounds. 

The creators of the ECM also pioneered another strict shakedown method based on 

nonlinear superposition of stress [61][62]. The method to produce the strict shakedown 

limit based on proportional loading is as follows. The first stage of this method is to perform 

a limit load analysis for the loading in question. As the limit load analysis progresses, ever 

increasing levels of the loads are applied until the plasticity is such that equilibrium can no 

longer be satisfied and the limit load has been reached. The limit load analysis, by 

definition, ensures that the yield function is satisfied to maintain equilibrium at all loads up 

to the limit load. The stress field is stored at a number of time points up to the limit load. 

The second stage of the procedure then performs an elastic analysis for the same loads and 

the elastic stress at each of the points in the limit load analysis is found by proportionality. 

The shakedown limit is found by subtracting this elastic stress from the corresponding point 

in the limit load analysis, which gives the residual stress field. This residual stress field is 

checked against the yield condition, and if satisfied, then both loaded and unloaded ends of 

the cycle satisfy yield and this load level is within strict shakedown. Each stored time point 

up to the limit load is checked in this way, and the maximum load level which still gives a 

residual stress which satisfies yield is the lower bound strict shakedown load. This method 

is also able to take non-proportional loading into account [61]. In this case the elastic-

plastic analysis contains steady state and cyclic loading, and only the elastic stress for the 

cyclic loading is subtracted to find the stress at the unloaded state. 

Nonlinear Superposition was used and validated by application to several geometries 

including a plate with a central hole, nozzles in spherical shells [63] and thick walled 

cylinders with radial cross holes [64]. The method gave favourable results when compared 

to cyclic elastic-plastic FEA, and is able to predict more accurate shakedown limits than the 

ECM [61]. At present, however, this method is only formulated for two load extremes, but 

is nonetheless a useful method for determining strict shakedown limits and is still widely 

used today [65][66]. 
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The Linear Matching Method (LMM) began as an evolution of the Elastic Compensation 

Method of MacKenzie et al [30] to calculate the limit load and strict shakedown limit. The 

theoretical foundations for an upper bound method are given by Ponter and Carter [67][68] 

who investigated the implementation and convergence properties of such a method. 

Further theoretical development, a convergence proof and implementation within the 

commercial finite element software Abaqus [31] was provided by Ponter et al [69] and 

Ponter and Engelhardt [70]. Consolidation of these developments and extension to the 

calculation of 3D structures led to the Linear Matching Method strict shakedown procedure 

[71]. 

The premise of the LMM, similarly to the ECM, is that a nonlinear material response can be 

mimicked by an iterative procedure based entirely on linear solutions. During each iteration 

the modulus is varied within the volume of the structure so that the stress is matched to 

the yield stress. The next elastic solution in the iterative procedure uses this modified value 

of modulus, and the stresses redistribute in the same way as they would with an elastic-

plastic material. During each iteration the energies associated with plastic dissipation and 

external work done are calculated and used in the upper bound theorem to calculate a load 

multiplier, which is used to scale the applied loads in the subsequent increment. The 

combination of modulus adjustment and load scaling produces a series of upper bounds to 

the strict shakedown limit, which have been proven to monotonically converge to the least 

upper bound [69]. Relatively recently a lower bound calculation was added by Chen [28], 

meaning that the strict shakedown procedure is capable of providing a lower and upper 

bounds which are calculated in parallel.  

The LMM strict shakedown procedure has been successfully applied to many structures 

including a superheater tubeplate [28][72], welded pipes [73] and composite cylinders with 

radial cross holes [74]. 

2.6.2 Direct Methods for Global Shakedown 

The strict shakedown status is a very useful quantity to calculate. It is the most desirable 

steady state response to cyclic loading and it forms a central role in EDF's R5 procedure. 

Methods to calculate strict shakedown are therefore very desirable. R5 also allows 

components to operate in global shakedown, and so methods which extend beyond strict 

shakedown to calculate this limit are equally desirable, and a brief summary of the existing 

methods is given here. 
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As outlined in section 2.5, Direct Cyclic Analysis (DCA) has recently been implemented in 

Abaqus as an alternative means of determining the steady state response of a structure to 

cyclic loading. DCA determines the stabilised cyclic response directly by approximating the 

displacement of the component using a Fourier series function. An iterative procedure 

produces increasingly accurate estimates until the steady state is achieved. In a situation 

where a stabilised response does not exist (i.e. when ratcheting is occurring) then the 

solution fails to converge. 

Martin [43] has used DCA as the basis of a global shakedown method. The process uses 

repeated DCA calculations and uses the convergence/non-convergence of the solution as 

an indicator of the steady state response to that level of loading. A search function is 

employed (which in [43] is a bisection algorithm) which alters the levels of applied loading 

for subsequent analyses based on the convergence/non-convergence of the previous 

calculation. In this way the global shakedown limit is located using a "map" of results, as 

shown in Figure 2.5. The distinction between strict and global shakedown, whilst not given 

directly be this method, is determined by simply examining the plastic strains of the 

solutions. This method has been shown to successfully locate the global shakedown limit 

for complex components, namely a nozzle in a spherical shell subject to thermal transients 

and internal pressure. 

 

Figure 2.5 - Map of Results from DCA Analysis of the Bree Cylinder 
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One further method developed by Martin and Rice [75], named the Hybrid Method, is able 

to find the global shakedown limit in a more direct way. The load cycle is decomposed into 

cyclic and steady state loading (in a similar way to section 4.2.3) and a two stage calculation 

process is used.  

The cyclic loading is considered in the first stage using a DCA analysis to find the stabilised 

cyclic response. With the cyclic stress fields known, an intermediate step is carried out 

where a unit vector of the steady state loading is added to each extreme of the load cycle. 

This unit stress vector is then scaled to the yield surface for each time point to find the level 

of constant loading which could be applied at that time point (Figure 2.6a). The minimum 

value of additional constant stress given by this vector scaling is then taken as the effective 

yield stress for stage 2 (Figure 2.6b). This process is followed for all integration points in the 

finite element model, giving a modified yield stress over the entire volume. The second 

calculation stage then performs a limit load assessment for the steady state loading using 

these modified yield stress values. 

 

Figure 2.6 - Hybrid Method Stage 2 Yield Stress Calculation 

This method was able to give a good approximation to the global shakedown limit when 

compared to the DCA method in [75]. This method also had the advantage of 

computational savings because the global shakedown limit was determined directly rather 

than by an iterative process. 

Using the Hybrid Method as a basis, Jappy et al [76][77] were able to derive and implement 

a lower bound global shakedown method. This method also uses a two stage calculation 

process where the applied loading is split into its cyclic and steady state components. The 

second stage of this procedure also performs a limit load analysis with a modified yield 
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stress. The primary difference between the method derived by Jappy et al and the Hybrid 

Method is that this modified yield stress is updated during the solution procedure to take 

into account the stress redistribution which occurs during the limit load stage. Favourable 

results were found when compared with the Hybrid Method and the LMM upper bounds 

for examples such as a plate with a central hole and a pressurised 2-bar geometry.  

Reinhardt and Adibi-Asl have recently proposed a lower bound global shakedown method 

named the Non-Cyclic Method [78][79]. This method shares some similarities with the LMM 

global shakedown procedure in that the loading is decomposed into cyclic and constant 

parts, a two stage calculation process is used and an iterative elastic procedure with 

spatially varying modulus is used in their second stage. The foundation of the method is a 

tentative extension of Melan's theorem beyond strict shakedown, and begins by conducting 

a cyclic elastic-plastic finite element analysis for only the cyclic loads to find the cyclic stress 

history. Half the stress range from this analysis is brought forward to a second stage, which 

is a limit load analysis to find the remaining capacity of the structure to support the 

constant loading. The majority of the applications of this method in the literature are to 

relatively simple geometries such as the Bree cylinder and 3-bar problems [80][81]. 

The Linear Matching Method is somewhat unique among the direct methods in that it has 

the ability to calculate both strict and global shakedown limits. The foundation of the global 

shakedown procedure is the theoretical extension of Koiter's theorem beyond the strict 

shakedown limit, as provided by Ponter and Chen [82]. This was then implemented as a 

numerical technique for two extremes in the load cycle in Abaqus by Chen and Ponter [83] 

in a similar fashion to the strict shakedown method. Further development in [84] and [29] 

allowed the extension of this method to any number of load extremes in the cycle. 

The LMM global shakedown method in its current form requires the decomposition of the 

applied loads into cyclic and steady state components. This is a requirement of the 

theoretical extension to the upper bound strict shakedown theorem in [82]. Similarly to 

many of the other Direct Methods for global shakedown, the method then has two stages. 

The first assesses the steady state response to the cyclic loading along with the elastic, 

plastic and total strain ranges associated with this. A modulus adjustment scheme identical 

to that of the strict shakedown gives this stage a speedy assessment of the steady cycle. 

The second stage then finds the maximum additional steady state loading which will not 
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cause ratcheting. This second stage is essentially a LMM strict shakedown analysis where 

the applied stresses are augmented by the varying residual stress from stage 1. 

The LMM global shakedown method has been applied on several occasions to components 

including defective pipelines [85], cracked welded pipes [86], a nozzle in a spherical shell 

[87] and superheater tubeplates [32][33]. 

2.6.3 The Linear Matching Method for Use in Industry 

The driving force behind the creation of all of the above methods is so that industry can 

have a robust and accurate method of calculating shakedown loads for design and 

assessment purposes. This is evidenced by the fact that a large number of publications are 

dedicated to application of these methods to pressure vessel or pipe geometries. In fact 

several of the methods originate from within industry rather than academia. Examples of 

this are the DCA method of Martin (Rolls Royce), the Hybrid Method (Rolls Royce) and the 

Non-Cyclic Method (Atomic Energy of Canada). The DCA Method and the Hybrid method 

have been developed with the Rolls Royce Hierarchal Finite Element Framework (HFEF) in 

mind [88][89], so that they can be incorporated into their analysis procedures used to 

assess plant components.   

The LMM has been adopted by EDF in the past for use alongside the R5 procedure. Their 

interest in the method began in the early stages of development from the Elastic 

Compensation Method, and has continued through development of the global shakedown 

method. The LMM was proven as a useful tool when the analysis of an AGR superheater 

tubeplate from EDF was undertaken [32][33] using both the strict and global shakedown 

methods. In [32] the LMM procedure was used to produce the strict and global shakedown 

limits and the plastic strain range, which agreed well with full elastic-plastic analysis. In [33], 

this analysis was taken further to calculate creep strain and follow up factors of this 

component. Once again the LMM produced results which compared favourably with full 

step by step FEA. Recent work by Chen and Ponter [84] Gorash and Chen [90][91] has 

advanced the creep capability of the LMM which has been used to successfully predict the 

creep fatigue life of experiments performed on welded cruciform specimens. This level of 

capability demonstrates the LMM's ability to be used alongside the R5 procedure, and has 

resulted in the choice of the LMM for use in this work to fulfil EDF's need for a shakedown 

analysis method. 



33 
 

The use of the LMM within EDF on a more routine basis became possible when the Abaqus 

subroutines were rationalised by Tipping [34] into a method for use by EDF engineers. Until 

this point the use of the LMM required moderate changes to the subroutines for each new 

analysis, and several different subroutines existed for different element types. Since this 

rationalisation of the subroutines, EDF and its partners has used the LMM for some 

assessments, for example [92], but use of the method is still relatively uncommon. The 

method created by Tipping, whilst much more user friendly than the original 

implementation, still requires some alteration of the subroutines for each analysis. EDF 

engineers instead prefer to use the familiar cyclic FEA and only use the LMM when the 

shakedown status is difficult to obtain. The lack of a lower bound to the LMM global 

shakedown procedure provides another reason for the limited use in routine assessments. 

This has prompted the objectives of this project to add a complementary lower bound to 

the LMM global shakedown procedure and to create a user interface. This will give the 

necessary conservatism for routine use and eliminate the need to manually perform any 

code changes, and will allow EDF engineers to use the LMM in the familiar Abaqus CAE 

interface. Validation is an important step when any new method is developed to build 

confidence in the results it produces. It is hoped that such validation, combined with a user 

interface, will encourage EDF engineers to make use of the LMM for their assessments.  

2.7 Summary 

The subject of shakedown and ratcheting is not new in structural integrity. The theorems 

which provide generally applicable shakedown/non-shakedown conditions have existed for 

many decades. The design and assessment codes have made use of shakedown for many 

years to increase the allowable working envelope of a structure whilst still preventing 

ratcheting. These design code implementations usually base their shakedown rules on 

analytical examples such as the Bree cylinder. R5 has taken this a stage further by providing 

a very literal interpretation of Melan's theorem, allowing the user to generate residual 

stress field estimates to demonstrate strict or global shakedown. 

These shakedown methods in the design codes can prove to be overly conservative, 

however. Increased computing power has allowed the use of cyclic inelastic FEA, but this 

alone is not always sufficient to determine the shakedown status of a component 

conclusively. This, combined with the fact that FEA cannot give the proximity to the 

shakedown limit, has prompted the creation of the Direct Methods which can calculate the 
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proximity to the shakedown limit directly and with improved solution times over standard 

FEA. 

EDF have identified that these Direct Methods are a useful tool for their structural 

assessments. The Linear Matching Method has been identified as the Direct Method most 

amenable for use within EDF and the R5 procedure. This is due to the fact that both strict 

and global shakedown limits can be calculated, and a historic compatibility of the LMM with 

R5 in terms of material properties and output data. The addition of a lower bound global 

shakedown calculation, verification of the method and the creation of a user interface will 

bring the LMM to a standard where it can be used regularly within EDF. 
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3 The LMM Strict Shakedown Procedure, Analyses and 
Verifications 

3.1 Introduction 

Countless situations arise in power plants and pressure vessel designs where components 

are exposed to a set of cyclic thermal and mechanical loads. Where this is the case then it is 

desirable for the component to operate in a state of strict shakedown i.e. the component 

responds elastically at all points in the load cycle after the development of some initial 

plastic strains. This represents the best performance in terms of fatigue life whilst still 

allowing plasticity in the structure.  

This chapter presents the Linear Matching Method strict shakedown procedure. A summary 

of the theoretical and numerical implementation is given which is followed by several 

validation cases. These validations compare the LMM to analytical and experimental limit 

loads and shakedown limits. Finally the LMM procedure is then applied to a pipe bend 

geometry as an industrially relevant demonstration case. 

3.2 The LMM Strict Shakedown Procedure 

3.2.1 The General Cyclic State for Strict Shakedown 

Consider a body of volume, V, and surface, S, which is subject to a cyclic history of loading 

with a cycle time 0 ≤ t ≤ Δt. This load history consists of mechanical loads, λP(x,t), and a 

temperature history, λθ(x,t), where λ is a positive scalar load parameter. The mechanical 

loads act on part of the surface, ST, and the temperature history acts within the entire 

volume. The remaining surface, SU, is constrained to have zero displacement rate (i.e. u  = 

0). This situation is shown pictorially in Figure 3.1. 

 

Figure 3.1 - Load and Boundary Condition Schematic 

The material in question is assumed to be elastic-perfectly plastic with yield stress σy and 

satisfy the von-Mises yield condition, 

λP(x,t)

λθ(x,t)

V
St St

SU SU
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     0ij ij yf     (3.1) 

where 
3

2
' '

( )ij ij ij  is the von-Mises effective stress and σ'
ij are the deviatoric 

stresses. The plastic strains are governed by the associated flow rule, 

 

 
'

ijP

ij

ij

df

d
  (3.2) 

where    is a plastic multiplier. The loading λP(xj,t) and λθ(xj,t) is assumed to vary within the 

cycle time, t, such that 0 ≤ Δt ≤ t. The scalar λ is applied so that a range of load histories 

may be considered. These loadings give rise to their corresponding elastic stresses which 

gives the applied stress history 

      ˆ ˆ ˆ, , ,
P

ij ij ijx t x t x t 
 

(3.3) 

Where  ˆ ,
P

ij x t  and  ˆ ,ij x t are the stresses corresponding to P(x,t) and θ(x,t) 

respectively. For any cyclic problem the continued application of these loads will result in 

the following stress fields within the component 

        ˆ, , ,
r

ij ij ij ijx t x t x x t  
 

(3.4) 

Where ij  is a constant (i.e. time independent) residual stress field and  ,
r

ij x t  is a 

varying residual stress which describes the changes which occur during the cycle. Residual 

stresses, by their nature, must be self equilibrating. For load cycles which are within the 

strict shakedown limit the varying residual stress field is zero, and therefore the cyclic stress 

history is fully described by the sum of the applied cyclic stresses and the time independent 

residual stress field 

      ˆ, ,ij ij ijx t x t x 
 

(3.5) 
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3.2.2 LMM Upper Bound Method 

3.2.2.1 The Upper Bound Theorem 

The upper bound method is expressed in terms of an incompressible and kinematically 

admissible strain rate history, 
c

ij , which does not need to be compatible, but is associated 

with a compatible strain increment 
c

ij  such that 

 

t

c c

ij ij

o

dt 
 

(3.6) 

And this strain increment is associated with the corresponding displacement increment 

 

1

2

cc
jc i

ij
j i

uu

x x

 
  

  
   

(3.7) 

Considering the cyclic loading history described above in section 3.2.1, the upper bound 

theorem is given by 

    
0 0

ˆ

t t

UB c c c

ij ij ij ij

V V

dtdV dtdV   
 

(3.8) 

where 
c

ij  is the stress at yield associated with 
c

ij , and ˆ
ij  is the elastic stress associated 

with the applied loading from equation (3.3). Combining this with the associated flow rule 

for a von-Mises yield criterion, equation (3.2), the upper bound can be re-written as 

 

 

 

0

0

ˆ

t

c

y ij

UB V

t

c

ij ij

V

dtdV

dtdV


 

 
 

(3.9) 

Where  2 3 ij ij
   is the effective strain rate.  

3.2.2.2 The Iterative Upper Bound Procedure 

The LMM upper bound method uses an iterative sequence of linear solutions where the 

shear modulus, μ, is varied at every point within the volume so that the stresses re-
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distribute in the same way as an elastic- plastic material, which in the case of the LMM is 

perfect plasticity.  

The iterative procedure begins with a linear elastic stress solution, which gives an effective 

stress and strain rate at each point of  k

ij and  respectively. The initial shear modulus 

at each point is μk. A subsequent value of shear modulus, μk+1 is evaluated such that the 

effective stress at the point is equal to the yield stress whilst keeping  at a constant value.  

Subsequent iterations define a new kinematically admissible history of plastic strain rate, 

f

ij : 

  1
ˆf UB f

ij i ij ij

     where 0f

kk   
(3.10) 

Where the superscripts i and f refer to initial and final values respectively, the "dash" refers 

to deviatoric components, and 
f

ij  is the constant residual stress. Here the upper bound 

i

UB  which is the upper bound multiplier corresponding to the strain rate of the 

previous iteration. Integrating equation (3.10) over the cycle produces a relation between 

f

ij
  and 

f

ij
 : 

  1f f in

ij ij ij
   

 

(3.11) 

Where 

  
 

0

1
ˆ

t

in UB

ij i ij t dt
t

 
   

  
    and   

 
0

1 1
t

dt
t

 
 

(3.12) 

The solution of this linear problem gives 
f

ij , which is substituted into equation (3.9) to give 

a new upper bound multiplier 
UB

f . Convergence proofs [69] have shown that  
UB UB

f i

, meaning that the continued iteration of this process produces a monotonically reducing 

upper bound multiplier which converges to the minimum upper bound (or in the case of 

numerical application the least upper bound associated with the finite element mesh). 
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3.2.2.3 Numerical Implementation of the Method 

The iterative procedure described above has been implemented in the Abaqus finite 

element software through use of user subroutines to carry out the LMM calculations.  

The Abaqus software is used widely throughout industry as a versatile tool for finite 

element analysis of components. The nuclear industry is no exception and Abaqus is used 

within EDF for integrity analyses of plant components. As well as containing a vast array of 

material models and analysis options, the Abaqus package also allows the user to program 

their own subroutines to create bespoke loading, boundary conditions, contact conditions 

and even custom elements. The LMM requires the ability to specify and alter the shear 

modulus at each integration point and also to control convergence using volume integrals 

of stresses and strain rates (equation (3.9)). Therefore the LMM is implemented in Abaqus 

using these subroutines, more specifically the UMAT subroutine, for creation of user 

defined material behaviour, and the URDFIL subroutine, for accessing and processing of 

results during solution. The UEXTERNALDB subroutine, for pre-processing of an analysis, is 

also extensively used but does not form part of the solution procedure. The function of the 

UEXTERNALDB routine is discussed in chapter 6. 

The UMAT subroutine allows the specification of any constitutive model, and so can be 

used when the existing library of material models within Abaqus does not capture the 

material behaviour. The routine is called twice or more times for every integration point at 

which the User-material option is specified (which is defined by the user via the Abaqus CAE 

interface). Within the UMAT routine the Jacobian matrix , [J], must be specified which 

relates the stress increment and the strain increment: 

  J



  

(3.13) 

Using the Jacobian and the incremental strains calculated by Abaqus the incremental 

stresses can be calculated, which are updated at the end of each increment to provide the 

total stress solution. The UMAT routine also allows the user to store any results in the 

Abaqus output database (.odb) file for the user to view as contour plots in post-processing.  

The URDFIL is called once at the end of each increment and allows access to the results up 

to and including the most recent analysis increment. This routine also includes an option to 
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terminate the analysis, and so provides a convenient way of querying results and ending 

the analysis if the convergence criteria are met. 

The implementation of the LMM within Abaqus and the user subroutines begins by 

examining the time history of the applied loads  λP(xj,t) and temperatures λθ(xj,t) over the 

cycle. Rather than being a continuous function of time, the numerical implementation of 

the LMM instead discretises the cycle into a series of time points and assumes that the 

applied loading follows a series of straight line paths in load space. It follows that the 

applied elastic stresses then also follows a sequence of straight lines in stress space. If the 

yield surface is strictly convex then the consequence of this is that the only instances where 

plastic strains can develop are at the vertices of this stress history. Put simply, it is assumed 

that the extremes of the load cycle are the only times during the cycle where plastic strains 

develop, with the remainder of the cycle time spend within the yield surface. Therefore it is 

only these extremes of the load cycle which need to be considered when performing a 

LMM analysis. 

With this in mind, the load cycle divided into a series of time points, n=1,2...,N. The strain 

history then becomes the sum of the increments of plastic strain 

 
1

N
c n

ij ij

n


 

(3.14) 

The linear problem of finding a new kinematically admissible strain rate, 
f

ij  can be 

found by equation (3.11), where equations (3.12) are now: 

 
1

1
ˆ

N
in n

ij ijn
n

 
   

 
    where   

1

1 1
N

n
n

  and 

 
yn

ni

ij



 

(3.15) 

With these modifications into a numerical set of equations, the iterative procedure can 

then be implemented in Abaqus via the UMAT and URDFIL subroutines. This was first 

achieved by Engelhardt [93] and has since been the primary mode of implementing the 

LMM. 

To begin the iterative process, the generation of the elastic stress fields, ˆ n

ijexternal
 must be 

generated which correspond to each time point, n, in the discretised load cycle. These 
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elastic stresses are used as the initial input to the LMM iterative process, ˆ ˆn n

ij ijexternal
 . 

These elastic solutions must be solved for the same mesh and constraint boundary 

conditions as will be used for the LMM analysis. 

For a single iteration, k+1, the following process is used in the UMAT subroutine in the 

Abaqus analysis. First, the load multiplier is made equal to that calculated at the end of 

increment k, 
UB

k . This is used to scale the elastic stresses in the current increment. The 

shear modulus at each integration point is updated using the strain increment of the 

previous iteration which gives: 

 1

yn

k n

k

    where   n n

k ijk


 
(3.16) 

and  

 
1 1 1

1 1
N

n
k n k  


 

(3.17) 

Next the updated Jacobian can be calculated using the values of 1

n

k . For a 3-dimensional 

stress state the Jacobian is as follows: 

 
 

  
 

 

 
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1 0 0 0
1 1

1 0 0 0
1 1

1 0 0 0
1 1 1

1 21 1 2 0 0 0 0 0
2 1

1 2
0 0 0 0 0

2 1
1 2

0 0 0 0 0
2 1

k
J

E


 

 

  


 









 
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 
 
 
 
 
 
 
 
 
 
   

(3.18) 

Where the Poisson's ratio, ν, approaches 0.5 to satisfy plastic incompressibility. We define 

1

in

ijk
 as: 
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1 1

1
ˆ

N
in UB n

ij k k ijnk
n k
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 

 
  

 
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(3.19) 

Which, along with the Jacobian, allows the constant residual stress to be calculated: 

  
11 1 1

in

ij ij ijkk k k
J

  
 

 
(3.20) 

The strain rate associated with n vertices of the load history is 

    1 1
ˆn UB n

ij ij k ijk k
C

 
 

 
(3.21) 

Where  
1k

C


 is the compliance matrix derived using 1

n

k  in a similar way to the Jacobian. 

From this, the effective strain increment 1

n

k  which will be used in the modulus 

adjustment calculation (equation (3.16)) in the subsequent iteration. Furthermore, the 

quantities  

 1
1

N
n

y k
n



   and  

1

ˆ
N

n UB n

ij k ij

n


 

(3.22) 

are stored for each integration point in the structure. When these calculations have been 

completed for every integration point, the URDFIL routine is then called. Within the URDFIL 

routine the Abaqus results file is accessed where volume integrals of the two quantities in 

(3.22) are extracted, allowing the load multiplier to be calculated: 
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1

1
1
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(3.23) 

For the very first iteration of this process, i.e. k=1, the only difference to this process is that 

1 1 0.UB   and 1 1n

k E   where E is the elastic modulus of the material in question. 

Apart from these changes to λUB and equation (3.16), the process is unchanged in the first 

iteration.  
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3.2.3 Lower Bound Method 

The lower bound shakedown theorem demonstrates shakedown by finding a self 

equilibrating residual stress field which, when superimposed with the applied cyclic elastic 

stresses, satisfies the yield condition at all points in the load cycle: 

      0ˆ ,ij ijf x t x 
 

(3.24) 

Therefore, to obtain a lower bound to the LMM strict shakedown solution, a constant 

residual stress field must be found which satisfies equation (3.24) above for the applied 

elastic stresses from equation (3.4) 

      0ˆ ,ij ijf x t x 
 

(3.25) 

Where λ is a scalar load multiplier. In the LMM, perfect plasticity is used and so the yield 

condition is checked by simply comparing the von-Mises stress to the yield stress. 

Therefore if equation (3.25) above can satisfy the temperature dependent von-Mises yield 

condition at all points in the structure 

       ˆ ,ij ij yx t x T 
 

(3.26) 

where   2 3ij ij ij
  is the von-Mises effective stress and Ti is the temperature at 

that location in the structure, then Melan's theorem will be satisfied and the applied 

loading  ˆ ,ij x t  is a lower bound to the shakedown limit.  

During the upper bound iterative process, a new estimate of the constant residual stress 

field at each point in the structure,
1ijk

, is obtained by equation (3.20). This 

superimposed with the applied elastic stresses scaled by the current upper bound 

multiplier, ˆUB n

k ij , gives the total stress field at that point in the structure. Dividing the 

yield stress by this stress gives the factor by which this stress must be scaled in order to 

satisfy yield. Therefore the next estimate of the lower bound multiplier, 1

LB

k , given by 

multiplying this factor by the upper bound multiplier 
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(3.27) 

is the level by which this stress field must be scaled to satisfy the temperature dependent 

yield condition at that point in the structure and at the load instance. During each iteration 

of the upper bound calculation λLB can be calculated for each integration point and load 

instance. The lowest λLB value from all values calculated indicates the point where the 

stresses must be scaled back the most in order to satisfy Melan's theorem, and so this λLB is 

therefore the lower bound multiplier for the entire structure. 

Continued iteration of the upper bound procedure will generally produce increasingly 

accurate estimates of the constant residual stress field, which will in turn produce an 

improvement in the lower bound load multiplier. Monotonic increases in the lower bound 

are not always observed, however, due to inaccuracies in the stress solutions at individual 

integration points which can dictate the lower bound of an entire model. The best lower 

bound from all previous and current increments is therefore used. 

3.3 Validation of the LMM Strict Shakedown Procedure 

Any numerical procedure requires extensive validation to build confidence in its ability to 

predict the phenomenon in question. In order to do this for the LMM strict shakedown 

method three comparisons are given here. The first two, namely notched bar limit loads 

and the Bree Cylinder, validate the numerical solutions of the LMM against theoretically 

derived limits. The third case presents a comparison between the LMM and experimentally 

derived limit loads and shakedown limits. This allows the overall analysis tool and its 

implementation in FEA, including the assumptions and approximations inherent in this, to 

be tested in similar circumstances as will be seen when in use in EDF. 

3.3.1 Limit Loads of Notched Bars 

Calculation of the shakedown limit usually takes both cyclic and steady state loading into 

account. A special case of this is when the cyclic component of the loading reduces to zero, 

leaving only the steady state component. In this case the shakedown limit coincides with 

the limit load. This provides an opportunity to validate the LMM because theoretical limit 

loads have been derived for a large variety of geometries and can be used as a comparison. 

In addition, the limit load is a value which can be calculated readily using FEA packages.  
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The LMM is required to operate over a large range of continuum element types, namely 3D, 

plane strain, axisymmetric and plane stress elements. In order to verify the implementation 

of the code over all these element types, and due to the availability of theoretical solutions 

for each dimensionality, the limit loads of notched bars under axial tension is considered 

here. This geometry was considered by Tipping [34] after his initial consolidation of the 

LMM subroutines, and re-using this geometry allows the subsequent addition of lower 

bounds in [28] to be compared. The theoretical solutions of Miller [94] are presented 

alongside a LMM strict shakedown analysis and a standard limit analysis an Abaqus. The 

LMM and Abaqus limit analyses are performed using identical meshes. Figure 3.2 shows the 

geometry, FE mesh and material properties used in the analyses. For the 3D model the 

mesh shown is swept circumferentially. In the LMM analyses a convergence tolerance of 

1e-5 between consecutive upper bounds was used.  

 

Figure 3.2 - Geometry, Mesh and Material Properties of the Notched Bars 

An axial tension is applied through a pressure load on the top surface of the bar. The 

theoretical solutions presented here from [94] have been converted by Tipping [34] to give 

the limit load factor on the applied tensile pressure (which is equal to the yield stress). In 

these equations b is the bar width/diameter at the notch, w is the bar width/diameter 

remote from the notch and r is the notch radius. 

E = 200GPa
σy = 400MPa
ν = 0.3
Axial Tension Pressure = 400MPa

Axis of symmetry for
plane stress and plane
strain. Centre axis for 3D
and axisymmetric

Axis of symmetry for all
models

10mm

25mm

R5mm
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3.3.1.1 3D Notched Round Bar 

A circular bar with a circumferential notch under axial tension is analysed. The theoretical 

limit load multiplier is given by 

 

2
4

1 1
4

ln
b r b

w b r

      
        
        

(3.28) 

The limit load multipliers for all methods are given in Figure 3.3, which also compares the 

plastic strain contours from the LMM (Figure 3.3a) and Abaqus limit analyses (Figure 3.3b). 

 

Figure 3.3 - 3D Notched Bar Results Comparison 

3.3.1.2 Axisymmetric Notched Round Bar 

The 3D case considered in section 3.3.1.1 is analysed as an axisymmetric geometry. 

Therefore the theoretical limit load multiplier is given by equation (3.28). Figure 3.4 shows 

the predicted limit load multipliers along with the plastic strain contours predicted by the 

LMM (Figure 3.4a) and Abaqus limit analysis (Figure 3.4b). 

Method λ

Miller 0.3041

LMM Upper Bound 0.3456

LMM Lower Bound 0.3439

Abaqus Limit 0.3454

a) b)
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Figure 3.4 - Axisymmetric Notched Bar Results Comparison 

3.3.1.3 Plane Strain Double Notched Plate 

The theoretical limit load multiplier for a double edge notched flat plate under plane strain 

conditions is given by 

 
2

1 155 1 1
2

. ln
b r b

w b r

    
      

      

(3.29) 

Figure 3.5 shows the predicted limit load multipliers and compares the plastic strain 

contours predicted by the LMM (Figure 3.5a) and Abaqus limit analysis (Figure 3.5b). 

 

Figure 3.5 - Plane Strain Notched Bar Results Comparison 

Method λ

Miller 0.3041

LMM Upper Bound 0.3456

LMM Lower Bound 0.3439

Abaqus Limit 0.3454

a) b)

Method λ

Miller 0.8006

LMM Upper Bound 0.8025

LMM Lower Bound 0.7985

Abaqus Limit 0.8028

a) b)
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3.3.1.4 Plane Stress Double Notched Plate 

The theoretical limit load multiplier for a double edge notched flat plate under plane stress 

conditions is given by 

  
0 226

1
2

.b b

w b r

 
  

   

(3.30) 

Figure 3.6 shows the predicted limit load multipliers and compares the plastic strain 

contours predicted by the LMM (Figure 3.6a) and Abaqus limit analysis (Figure 3.6b). 

 

Figure 3.6 - Plane Stress Notched Bar Results Comparison 

3.3.1.5 Notched Bar Summary 

In all cases the limit load multipliers predicted by both Abaqus limit analysis and the LMM 

strict shakedown method agree well with each other and also with the theoretical 

predictions of Miller. In addition, the contour plots of plastic strain show a good 

resemblance to one another. These factors combined give confidence in the ability of the 

LMM to predict the limit loads of structures for all dimensionalities considered. 

3.3.2 The Bree Cylinder 

As described in chapter 2, the Bree cylinder is a very well established solution in the field of 

shakedown and ratcheting and forms the basis of the shakedown sections of many design 

and assessment codes. The Bree cylinder also provides a rare opportunity to compare a 

numerical shakedown method to a theoretical solution.  

Method λ

Miller 0.5565

LMM Upper Bound 0.5583

LMM Lower Bound 0.5555

Abaqus Limit 0.5573

a) b)
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The Bree Cylinder is an analysis of a cylindrical nuclear fuel casing, where the casing is 

assumed to be thin in comparison to its radius. The cylinder is subject to an internal 

pressure and a through wall temperature distribution. The additional simplification of 

assuming that the hoop stress is dominant compared to the axial stress is made (in reality 

the hoop stress is twice the axial stress for a thin pressurised cylinder with closed ends). 

These simplifications allow the analysis to be reduced to a one-dimensional problem which 

can be solved analytically. The loads and load history are depicted in Figure 3.7. 

A steady state axial tension is applied which is representative of the hoop stress. A 

temperature difference between the inner and outer walls of the can, Δθ, causes a linear 

temperature distribution through the thickness. This temperature distribution is cyclic with 

time, resulting in two extremes in the load history. This idealised situation can be replicated 

for analysis with the LMM. The simplifications reduce the situation to a plane stress 

problem, and so this will be adopted for the LMM analysis.  

A comparison of the theoretical strict shakedown limit of Bree and that of the LMM is 

shown in Figure 3.7. The vertical axis represents the level of cyclic thermal stress and the 

horizontal axis represents the level of steady state axial stress. Both axes have been 

normalised against the yield stress.  

 

Figure 3.7 - Bree Cylinder Loading, Load History and Results 

The derivation of Bree has recently been extended by Bradford [95] to consider the axial 

tension also as a cyclic load. In this derivation the axial tension and thermal gradient are 

cycled in phase with each other, as shown in Figure 3.8. 
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The LMM strict shakedown is compared to the analytical solution produced by Bradford in 

Figure 3.8. In this figure both the horizontal axis represents the level of cyclic axial stress 

and the vertical axis represents the level of cyclic thermal stress. Both axes have been 

normalised against the yield stress. 

 

Figure 3.8 - Modified Bree Cylinder Loading, Load History and Results 

Examining Figure 3.7 and Figure 3.8 shows that the LMM lower and upper bounds agree 

well with both theoretical strict shakedown boundaries.  

3.3.3 Comparisons with Experimental Data 

The comparison of the LMM against theoretical solutions provides a valuable validation, 

particularly for verifying the implementation of the bounding theorems within the finite 

element method. The next stage in the validation process is to compare the LMM with 

experimental solutions. Doing this determines if the simplifications and approximations 

inherent in the method are reasonable when compared to the kind of situations 

encountered in structural integrity calculations of real components. 

3.3.3.1 Limit Load Comparisons 

The limit load tests used for comparison here are those performed by the Welding Research 

Council [96]. The limit loads of pipe intersections subject to internal pressure and in-plane 

bending were investigated, and two of these tests are used here. For continuity the naming 

convention used in [96] is also used here with Intersection A being subject to internal 

pressure and Intersection B1 being subject to an in-plane moment. 
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The intersections were manufactured from ASTM A-36 steel. A full anneal was performed 

before the final finishing cut to remove the residual stresses inherent in the plate and 

caused by machining. The material properties for each intersection were found by 

machining tensile testing specimens from the same billet as were used in its manufacture. 

These specimens were also fully annealed before testing. Figure 3.9 shows the dimensions 

and typical stress strain response of the steel. The yield stresses were determined using an 

average of six tests where no test deviated from the mean by more than 2%. The yield 

stresses for A and B1 from these tests are 198MPa and 167MPa respectively. 

 

Figure 3.9 - Pipe Intersection a) Geometry and b) Typical Material Stress-Strain Curve 

The internal pressure loading was applied to A by welding plates to the open ends of the 

pipes and then supplying pressurised fluid through one end. The moment loading was 

applied to the branch pipe of B1 using two hydraulic rams acting in opposite directions. 

These, in turn, were connected via pin joints to a loading arm attached to the free end of 

the branch pipe, shown schematically in Figure 3.10a. This arrangement applied a pure 

couple to the branch pipe. 

 

Figure 3.10 - Application of a Pure Moment 
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Using the information given in [96], the pipe intersections were modelled in Abaqus for 

assessment with the LMM. The dimensions of both intersections are reported with great 

accuracy, which allowed an exact geometry to be created and meshed in Abaqus CAE using 

symmetry where appropriate. Model A was modelled using a one-quarter model due to the 

uniform loading. Model B1 used one-half symmetry due to the symmetry of the applied 

moment loading along the axis of the main pipe (shown in Figure 3.11).  

 

Figure 3.11 - FEA Models A and B1 

A perfectly plastic material model was used for both limit pressure and limit moment 

analyses using the yield stresses quoted. Looking at Figure 3.9b it can be seen that for the 

range of strains shown in the tensile and compressive tests that a perfectly plastic material, 

despite being a very simple model, is a reasonable approximation to this material response. 

The loading and boundary conditions were chosen to most accurately represent the 

conditions of each test. In model A internal pressure loading was applied to all internal 

surfaces, and due to the closure of the ends in the tests, the closed end condition was 

applied by applying the equivalent axial tension to the free ends of the pipes. Free radial 

expansion of the pipes was allowed, as per the tests, and the free ends of the pipes were 

constrained to remain in-plane during longitudinal expansion. In model B1, the ends of the 

main pipe were fully fixed. The bending moment was applied to the intersecting pipe using 

the DLOAD subroutine, which allowed a pure couple to be applied in the form of a linear 

pressure distribution across the free end, as shown in Figure 3.10b. 

Table 3.1 shows the limit loads predicted by the LMM and the experiments. The limit load 

predicted by an Abaqus limit analysis, using the same mesh as the LMM analysis, is also 

Model A Model B1
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included as an additional comparison. In [96] three values of the experimental limit load are 

calculated using different interpretations of the load-deflection and load-strain data. For 

conservatism the lowest of the three values is quoted in Table 3.1. 

Table 3.1 - Limit Load Comparison 

  LMM   

Test 
Abaqus 

Limit 
Upper 
Bound 

Lower 
Bound 

Experiment  

A 7.19 7.191 7.122 8.0 (MPa) 

B1 2970.0 2968.05 2939.29 3184.0 (Nm) 

 

It is thought that the limit loads predicted by the LMM and Abaqus limit analysis show a 

reasonable agreement with each other and show a conservative result compared to the 

experimental limit loads. 

3.3.3.2 Shakedown Limit Comparisons 

The shakedown tests used for comparison are those performed by the C.E.G.B. [97] for 

oblique nozzles in spherical shells under internal pressure, and two of these tests are used 

here. Once again, for continuity, the naming convention used in [97] is adopted here 

namely Nozzles 5 and 6. 

The dimensions of the two vessels are shown in Figure 3.12. The boiler plate (shell material) 

and forged bar (nozzle material) were selected in [97] to have closely matched material 

properties, which are shown in Table 3.2. 

 

Figure 3.12 - Geometry of Nozzles 5 and 6 
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The tests were performed to find the shakedown pressure of these nozzles. Many strain 

gauges were attached to the nozzles prior to testing and these strain readings were used to 

determine the shakedown status of the vessel. 

Table 3.2 - Material Properties 

Material 
Yield Stress 

(MPa) 

Ultimate 
Tensile 

Strength (MPa) 

Nozzle 265.18 492.67 

Shell 273.36 484.95 

 

Beginning at ambient pressure, the vessel was pressurised to the current test pressure and 

then back to ambient conditions. The initial pressure cycle began at ambient, pressurised to 

400psi and then returned to ambient. If shakedown was observed with this level of 

pressure cycling, then the maximum pressure in the cycle was increased by 50psi and the 

cycling was repeated. In these tests shakedown was said to occur when identical strains 

were recorded in three consecutive cycles. If this shakedown criterion was not met within 8 

pressure cycles, it was concluded that the vessel would not attain shakedown. 

The nozzles were modelled in Abaqus CAE where the dimensions of the welds (not fully 

documented in the published results) were estimated based on likely leg lengths for the 

thickness of the shell and nozzle. The symmetry of both nozzles was used by creating half 

models with the appropriate symmetry boundary condition. The full spherical shell was 

reduced to a small section through the use of a spherical coordinate system and boundary 

conditions at the edge which permitted radial expansion but fixed motion in the theta and 

phi dimensions. The FEA models are shown in Figure 3.13. 

A perfectly plastic material model was adopted for the analysis using the yield stresses 

given in Table 3.2. The ultimate tensile strength quoted shows that the material work 

hardens, but the absence of any further data prevents the use of hardening material 

models. Welded regions and heat affected zones very often have a higher yield stress than 

the surrounding parent material, but in this situation no information regarding this was 

provided. Therefore the material properties of the weld were assumed to be the same as 

those for the nozzle material which, being the lower of the two yield stresses, introduces a 

small conservatism into the analysis.  
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Figure 3.13 - FEA Models of Nozzles 5 and 6 

An internal pressure was applied to all inner surfaces of the model. This pressure was 

established within a load cycle in the LMM analysis so that it would cycle from zero to a 

maximum pressure and then to zero once again. This load cycle is scaled by the LMM to 

find the shakedown limit, which in turn results in the shakedown pressure for the nozzle.  

Table 3.3 shows a comparison of the shakedown limit pressures found by experiment and 

through LMM calculation. The experimental lower bound corresponds to the highest level 

of cyclic pressure where shakedown was achieved. The experimental upper bound 

corresponds to the first cyclic pressure level where shakedown was not achieved. The 

shakedown pressures predicted by the LMM show reasonable agreement with the 

experiments whilst retaining a level of conservatism. This conservatism is thought to arise 

from the perfectly plastic material used. The work hardening of the material, demonstrated 

by the Ultimate Tensile Strength values in Table 3.2, would result in a higher shakedown 

limit. 

Table 3.3 - Comparison of Shakedown Pressures 

 LMM Experiment  

Nozzle 
Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

 

5 4.53 4.58 4.82 5.17 (MPa) 

6 4.12 4.16 4.48 4.82 (MPa) 
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Figure 3.14 shows the location of the plastic strains in Nozzle 5 predicted by the LMM, 

which are located at the nozzle-shell join. This highlights the reverse plasticity mechanism 

which would be observed when the cyclic pressure exceeds the shakedown pressure. This 

location was also highlighted in the C.E.G.B. report, which provides further validation of the 

LMM analysis. A similar correlation was also observed with Nozzle 6. 

 

Figure 3.14 - Location of Reverse Plasticity in Nozzle 5 

3.4 The LMM Strict Shakedown Method Applied to Pipe Bends 

Having introduced and validated the LMM strict shakedown method in this chapter, this 

section introduces a more practical application of the method. Pipe bends are ubiquitous to 

any piping system and their analysis through use of the LMM offers the chance to 

demonstrate the capabilities and advantages of the method when applied to industrially 

relevant situations. Additionally, the strict shakedown behaviour of this geometry has 

received little attention in the literature, and so this study also aims to advance the 

knowledge of the behaviour of pipe bends subject to cyclic loading.  

The cases explored here include 90 degree pipe bends subject to steady state internal 

pressure and either cyclic bending moments or cyclic thermal gradients. In the case of 

internal pressure and bending moments, the limit loads are also provided. A range of bend 

factors are considered and results are normalised so that the conclusions are as generally 

applicable as possible. 
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3.4.1 Existing Pipe Bend Solutions 

 

Figure 3.15 - Pipe Bend Geometry and h Value 

Considerable attention has been given to calculation of limit loads of pipe bends over the 

years. A typical pipe bend, shown in Figure 3.15, is usually described in terms of two ratios, 

r/t and R/r, where r is the mean pipe radius, R is the bend radius and t is the wall thickness. 

The pipe bed factor, h, is given by combining these two ratios. The inside of the bend area is 

named the intrados, and the external area is named the extrados. 

One of the first theoretical solutions for the limit load of pipe bends was that of Calladine 

[98], who derived an expression for the limit moment: 

 
2
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Goodall [99] derived an expression for the limit internal pressure 
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Both of the above theoretical expressions are based on thin shell theory and the Tresca 

yield criterion. Other than these equations, few other theoretical solutions could be found 
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for the plastic limit of this geometry. Instead, researchers have used extensive FEA to 

generate data for various ratios of R/r and r/t. These data points have then been plotted 

and equations derived from curve-fits of the data. 

When carrying out these FEA analyses for this geometry under bending loads, it is common 

that the effects of non-linear geometry are taken into account. Doing this is an attempt to 

capture the geometric strengthening and weakening that is known to occur with this 

geometry. When a pipe bend is subject to opening or closing bending, the cross section of 

the bend changes as shown in Figure 3.16. This change in cross section increases/decreases 

the second moment of area which leads to the strengthening/weakening to further 

application of the bending moment. A typical, small strain, FEA analysis does not capture 

these effects and so FEA which includes the effects of non-linear geometry is common in 

the literature. 

 

Figure 3.16 - Pipe Bend Change in Cross Section Under Bending 

A recent review of the literature regarding the limit loads of pipe bends by Lei [100] 

highlighted some important conclusions. Firstly, the attached straight sections provide a 

significant level of reinforcement to the bend by allowing the plastic zone to spread. This 

increases the limit loads above those of equations (3.31) and (3.32). The second conclusion 

from this study concerned the limit load solutions available in the literature. The equations 

derived from FEA analyses, whilst providing a good fit to the data they are derived from, 

were not able to successfully predict the results from other authors. As a result of this, Lei 

derived a new set of equations to describe the limit moment, pressure and combined 

moment and pressure (which are given in Appendix A). 
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Despite the extensive volume of work regarding limit analysis and limit load solutions for 

mechanical loading, very little work has been published regarding the strict shakedown 

behaviour of this geometry. An experimental ratcheting study was performed for a single 

pipe bend geometry by Chen et al [101] so that material model calibration for FEA studies 

could be carried out. H.F. Abdalla et al [65] presented the strict shakedown behaviour of a 

single bend with R = 480mm, r = 133.5mm and t = 3mm (giving R/r = 3.6 and r/t = 44.5). 

Further calculations are carried out by C.S Oh et al [66] for the strict shakedown of bends 

covering a large range of h for internal pressure and in-plane closing and opening bending. 

Other than these works, no further published shakedown calculations could be found for 

this geometry. 

The numerical studies of both [65] and [66] use a version of the Nonlinear Superposition 

method outlined in section 2.6.1. By using this method, both groups were able to produce 

results which captured the nonlinear geometry aspects of the strict shakedown response by 

selecting this option for the elastic and elastic-plastic analyses that form the shakedown 

calculation. Figure 3.17 shows a typical comparison of the linear and nonlinear geometry 

shakedown results predicted by C.S Oh et al. It can be seen that the shakedown boundary 

for closing bending (nonlinear geometry) is greater than linear geometry, which is in turn 

greater than opening bending (nonlinear geometry), although it is not stated in [66] the 

nature of the bending to generate the linear geometry results. 

 

Figure 3.17 - Sample Results from [66] 
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The LMM is currently formulated for linear geometry only, but Figure 3.17 shows that there 

is some merit in producing these results. Firstly, the reverse plasticity limit at low levels of 

pressure loading limit is relatively unchanged for the linear geometry and nonlinear 

geometry for opening or closing bending.  Additionally the limit load for internal pressure is 

unaffected by linear or nonlinear geometry (which is consistent with the findings in [100]). 

Furthermore, there are modifications to the strict shakedown theorems in the literature 

which take nonlinear geometry effects into account, for example [102][103]. Therefore 

results produced by the LMM would also form the baseline with which to compare 

nonlinear geometry results when these theorems are implemented in the LMM framework 

at a future date. 

Cyclic thermal loading is common in plant components, and pipe bends are often subjected 

to cyclic gradients of temperature through the wall thickness. Despite this common loading 

condition, no published work could be found in the literature regarding the shakedown 

behaviour in this situation.  

3.4.2 LMM Analysis 

The objective of this study is to use the LMM strict shakedown procedure to generate the 

limit loads and shakedown limits of pipe bends. Two cases are considered. The first is when 

the pipe is subjected to an internal pressure and in-plane closing, opening and reversed 

bending. The mechanisms of reverse plasticity and ratcheting are explored and a 

comparison between the shakedown behaviour of opening, closing and reversed bending is 

presented. The second case is where the pipe is subjected to an internal pressure and a 

cyclic temperature gradient through the wall thickness. The effect of temperature 

dependent yield stress is considered and the shakedown behaviour of pipe bends is 

compared to that of a straight pipe. 

The results are presented in normalised form to make them as widely applicable as 

possible. The limit moment equations of Lei differ for opening and closing bending. The 

presence of reversed bending (i.e. involving opening and closing bending in the cycle) 

means that these equations cannot be used to normalise all the results. As a result of this, 

as well as the fact that the geometries with r/t = 5 cannot be considered "thin" as an 

approximation, the results presented here are normalised against the limit pressure and 

moment for a thick walled straight pipe with the same mean radius and wall thickness: 
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where ro and ri are the outer and inner radii of the pipe respectively. Limit load comparisons 

against the equations of Lei are also provided in section 3.4.4.3. 

3.4.3 Description of FEA Model, Parametric Study and Loading 

A three dimensional solid model was constructed in Abaqus. Due to the symmetry of the 

geometry, a one quarter model was used and symmetry boundary conditions were applied 

(see Figure 3.18). ABAQUS type C3D20R quadratic elements with reduced integration were 

used for the structural analysis and ABAQUS type DC3D20 elements were used for the heat 

transfer analysis. 

To mesh the bend, at least three elements were used through the thickness, ten around the 

radius of the bend and twenty elements around the circumference of the pipe. A 

refinement study was conducted to validate the accuracy of the mesh used. Such a mesh 

was chosen to give sufficient density around the area of interest and to maintain 

reasonable element aspect ratios. The attached straight section was meshed with twenty 

elements along its length, which were biased to be smaller in the region of the bend.  

 

Figure 3.18 - Pipe Bend FEA Model Showing Symmetry Planes 

The internal pressure, P, was applied at the inner surface assuming the closed end 

condition, with ○an equivalent axial tension applied at the free end of the straight section 

Symmetry Planes
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to replicate the axial stress. The moment was applied as a linear pressure distribution at the 

free end of the straight section, which was applied using the user subroutine DLOAD in 

ABAQUS (Figure 3.19a). 

When conducting a limit analysis, the pressure and moment loads were applied 

monotonically. When shakedown analysis was performed, the pressure was held at a 

constant value and the initial bending moment was cycled i) from zero to a maximum of M 

for opening bending ii) from zero to a minimum of -M for closing bending or iii) from -0.5M 

to +0.5M for reversed bending, shown in Figure 3.19.  

 

Figure 3.19 - Moment Loading and History 

When the case of internal pressure and cyclic thermal loading was considered, a steady 

state heat transfer analysis was conducted with To = 100oC applied at the inner surface and 

0oC at the outer surface, giving a linear temperature gradient through the wall thickness. 

The temperature distribution calculated by this heat transfer analysis was then applied to 

the model, which gives rise to thermal stresses in the bend. The free end of the pipe was 

constrained via equations to expand in-plane along its length, simulating the thermal 

expansion of a long pipe. The temperature gradient was cycled from zero to a maximum 

and back to zero over the time step. 

Analysis of 9 geometries is presented with R/r = 2, 3 and 5, each of which with
 
r/t = 5, 10 

and 20, which gives 0 1 1. h  . In each case the attached straight sections were a length 

such that L/R = 8, which was found to be more than adequate to always provide the 

maximum reinforcement possible to the bend. In each case a Young's Modulus of 200GPa 

and a Poisson's ratio of 0.3 was used. The steel is assumed to have a thermal expansion 

coefficient of 1x10-5 oC-1. The yield stress is assumed to be temperature dependent, with 

data for this taken from PD5500 British Standard for unfired welded pressure vessel design 

[104], as shown in Table 3.4. 
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Table 3.4 - Temperature Dependent Yield Stress 

Temperature (oC) 0 50 100 150 200 250 300 350 

Yield Stress (MPa) 200 137 126 115 112 100 86 79 

3.4.4 Internal Pressure and Moment Loading 

Figure 3.20 presents the strict shakedown limit and limit load interaction curves for R/r = 2 

and r/t = 5 under internal pressure and opening bending. It can be seen that the shakedown 

boundary follows a classic Bree-like shape whereby the reverse plasticity boundary is a 

constant value of cyclic bending. The limit load surface calculated by the LMM is shown and 

this has been verified at 5 points using ABAQUS elastic-plastic incremental analysis (using 

the Rik's method). The difference between the LMM and ABAQUS limit solutions is less 

than 1%, providing confidence that the LMM produces accurate results for these linear 

geometry analyses.  

 

Figure 3.20 - R/r=2, r/t=5 Limit load, Shakedown Limit and Location of Failure 

The contours of plastic strain resulting from the cyclic loading at points A and B are also 

shown in Figure 3.20, which correspond to the reverse plasticity limit and the ratchet limit 

respectively. These are the locations where ratcheting would occur if the loading was 

increased just beyond that point in the shakedown limit. The location corresponding to the 

reverse plasticity limit is restricted to a very small area at the flank of the pipe, with the 

strains accumulating at the inner surface. The location corresponding to the ratchet limit 

occurs globally at the intrados of the bend, with the strains initiating at the outer surface. 

This ratcheting location matches that found by Chen et al [101], giving further confidence in 
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the accuracy of the method. The reverse plasticity mechanism occurs mainly due to the 

location of the peak stress caused by the bending moment. The ratcheting mechanism 

occurs at the location of peak pressure stress, at the intrados of the bend. 

Figure 3.21a shows a comparison between the linear geometry results obtained by C.S. Oh 

et al and the results obtained here for R/r=2, r/t=10 subject to internal pressure and cyclic 

opening bending. The data is normalised against equation (3.31) and the Goodall limit 

pressure using the von-Mises criterion (equation (3.32) multiplied by 2/√3). The method 

employed by C. S. Oh et al is a lower bound method and both the lower and upper bounds 

calculated by the LMM are shown in the Figure. Comparison of the two strict shakedown 

curves reveals that they produce comparable reverse plasticity boundaries but that the 

LMM predicts a significantly larger ratcheting boundary.  

 

Figure 3.21 - Comparison of the LMM with the Results in [66] 

In order to verify the accuracy of the LMM, the limit load for pressure loading was 

calculated using ABAQUS Rik's analysis and two points were chosen (labelled Point C and 

Point D in Figure 3.21a) for full cyclic analysis in ABAQUS. The limit pressure given by the 

Rik's analysis correlates well with the equivalent value calculated by the LMM, with a 

difference of less than 1% between the two solutions.  The plastic strain histories for the 

cyclic loading at points C and D are shown in Figure 3.21b. These strains were taken from 

the position of maximum plastic strain, which was at the inner surface at the intrados of the 

bend. The plastic strain history of Point C shows that strict shakedown is achieved after 

approximately 100 cycles. Point D shows classic ratcheting behaviour, with the plastic strain 

increasing every cycle. 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

LMM Upper Bound

LMM Lower Bound

Data from C.S. Oh et al

Limit Load by ABAQUS Rik's Analysis

ABAQUS Full Cyclic Elastic Plastic FEA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140

Point D

Point C
Point C

Point D

s

L

M

M

s

L

P

P

Plastic 
strain, %

Cycle number

a) b)



65 
 

3.4.4.1 Effect of the Ratio r/t 

Figure 3.22 shows the shakedown limit and limit load surfaces for fixed R/r values of 2, 3 

and 5, and varying r/t values for an opening bending moment. The general trend for each 

geometry considered is similar. As r/t decreases (i.e. the pipe becomes thicker), the limit 

load surfaces expand, indicating larger loads to failure. Large increases in the limit moment 

are seen with decreasing r/t but comparatively little effect is observed in the normalised 

limit pressure. The graphs also reveal that the alternating plasticity boundary occurs at 

higher values of normalised moment with decreasing r/t. 

 

Figure 3.22 - Effect of r/t on the Limit and Shakedown Boundaries 

One interesting observation is the margin between the limit load and the shakedown limit 

surfaces. In general, there is a significant margin between both lines at low pressures, 

which reduces to a minimum at around the point where alternating plasticity changes to 

ratcheting. At pressures larger than this the margin increases once more before converging 

to the limit load for pressure loading.  As r/t becomes smaller, the margin between the two 

lines becomes smaller to the extent that there is almost no margin between the shakedown 

and limit loads for a large normalised pressure range for R/r = 3, r/t = 5 and R/r = 5 and r/t = 

5. 
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The same study was conducted for R/r = 3 under closing bending, shown in Figure 3.22d. 

The trends observed for opening bending are also observed for closing bending.  

3.4.4.2 Effect of the Ratio R/r 

Figure 3.23 presents the same results as in Figure 3.22 for pipe bends subject to internal 

pressure and opening bending but in each graph r/t is fixed and the effects of changing R/r 

are observed. Each geometry exhibits similar trends. The limit load curve expands with 

increasing R/r, and shows an increase in both the limit moment and limit pressure towards 

a normalised value of 1. This correlates with the expected behaviour that as R/r →∞ the 

behaviour of the bend will tend towards that of a straight pipe. In terms of the shakedown 

limit, increasing R/r increases the normalised moment with which alternating plasticity 

occurs. It is also observed that the margin between the limit load and shakedown limit 

curves reduces with increasing R/r in all cases. 

 

Figure 3.23 - Effect of R/r on the Shakedown Boundaries 

The same study was undertaken with the closing bending case, using a fixed value of r/t = 

10. Figure 3.23d shows that the same effects and trends are observed as per the opening 

bending cases. 
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3.4.4.3 Comparison of Opening, Closing and Reversed Bending 

Figure 3.24 shows a comparison between closing, opening and reversed bending for r/t = 

10 and R/r = 2, 3 and 5. The bending moment range, ∆M, is plotted rather than the peak 

value of moment, M, used in previous figures. In each case the limit load surface for closing 

bending is larger than that for opening bending but gives the same limit load for bending 

and pressure loading alone. Limit analysis of reversed bending is not possible due to the 

conflicting directions of opening and closing bending. 

 

Figure 3.24 - Comparison of Opening, Closing and Reversed Bending 
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range of the bending stress which determines the alternating plasticity boundary rather 

than if it is tensile or compressive. 

The case of the reversed bending strict shakedown limit being greater than closing bending 

for R/r=5 (Figure 3.24c) can be explained since both the cyclic opening bending (Figure 

3.19b) and closing bending (Figure 3.19c) are equivalent to the reverse bending (Figure 

3.19d) superimposed on a constant mean bending moment. This mean moment causes a 

tensile stress at the intrados for opening bending and a compressive stress for closing 

bending. In the majority of the analyses performed in this paper, the addition of the 

stresses from the internal pressure and mean moment at the intrados is always tensile 

along the axis of the pipe, which results in the ratcheting mechanism beginning at the outer 

surface of the intrados. In the case of R/r=5 for closing bending at high values of bending 

moment, the compressive stress from the mean moment is large enough to cause the sum 

of these stresses in the region to be compressive. This change to the stress causes the 

ratcheting mechanism to originate from the inner surface of the intrados. It is this change in 

ratcheting mechanism which reduces the shakedown envelope of closing bending below 

that of reversed bending for pressure values of 0.45<
s

L

P

P

 
 
 

<0.66. 

 

Figure 3.25 - Comparison of LMM Results with the Equations of Lei [100] 
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nonlinear geometry option in the procedure so that cases such as this, where linear 

geometry is non-conservative, can be assessed accurately.  

3.4.5 Internal Pressure and Thermal Loading 

The applied temperature gradient through the wall (To=100oC at the inner surface, 0oC at 

the outer surface) combined with the constraint that the free end expands in-plane creates 

an elastic stress which is linear through the thickness of the straight sections of pipe. The 

results presented here show the effects of R/r and r/t on the shakedown limit interaction 

curves. The internal pressures are normalised against equation (3.33) with a yield stress of 

200MPa and the cyclic thermal loading, T, is normalised against the applied initial inner 

surface temperature To = 100oC. 

3.4.5.1 Temperature Dependent Yield Stress 

Figure 3.26 gives the shakedown boundaries for R/r=3 and r/t=10, showing the difference 

between temperature dependent yield (given in Table 3.4) and temperature independent 

yield (value of 200MPa used). It is clear that where temperature dependency is strong, or 

where large temperatures are involved, it is important to consider this in the analysis. A 

significant reduction in the entire shakedown boundary is observed and the remainder of 

the results presented here therefore take temperature dependent yield stress into 

consideration. 

 

Figure 3.26 - Effect of Temperature Dependent Yield on the Strict Shakedown Limit for R/r=3 r/t=10 
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3.4.5.2 Effect of R/r 

Figure 3.27 gives a comparison of the shakedown boundaries with changing R/r and fixed 

r/t=10. Also included is the shakedown boundary for a straight pipe under the same 

loading. It can be seen that the shape of the shakedown envelopes for the pipe bend is very 

similar to that of the straight pipe. As R/r of the bend increases, the shakedown envelope 

tends towards that of the straight pipe. This is because as the radius of the bend becomes 

larger with respect to the pipe radius, the effect of the bend decreases, resulting in a lower 

stress concentration. When R/r →∞ (i.e. a straight pipe) the concentration is zero. Overall, 

for the range of bends considered here, the reductions are relatively small when compared 

to a straight pipe. The most severe bend considered here, R/r = 2, has a reverse plasticity 

limit which is more than 90% that of the straight pipe and a ratcheting boundary which is at 

least 80% of the straight pipe. 

 

Figure 3.27 - Effect of R/r on Thermal Loading Strict Shakedown 
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thickness has little effect on the normalised shakedown limit interaction diagram (clearly 

the absolute values will be affected). 

 

Figure 3.28 - Effect of r/t on Thermal Loading Strict Shakedown 
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[100] are conservative for opening bending, but are non-conservative for closing bending. 

This highlights the need for a nonlinear geometry theorem implementation in the LMM 

framework for situations when linear geometry calculations may be non-conservative. 

Where thermal loading is involved, the effects of temperature dependent yield stress are 

important and should be included in the shakedown analysis. The effects of the thermal 

loading considered here reduced the strict shakedown boundary compared to that of a 

straight pipe, but the most severe bend considered here (R/r= 2) still retained at least 80% 

of the strict shakedown strength of the equivalent straight pipe.  

3.5 Summary and Discussion 

The LMM strict shakedown procedure has been established for a number of years and is a 

useful tool for calculation of the strict shakedown limit. The derivation and numerical 

implementation presented here from the work of Ponter shows how the plastic response of 

a material can be replicated by a series of linear solutions which satisfy the important 

conditions of the plasticity. 

Validations of this method have been presented for a variety of situations. Comparison of 

the LMM against theoretical solutions of notched bars verifies the implementation of the 

method over the required dimensionalities. The solutions produced by the LMM agree well 

with the solutions of Miller and with Abaqus limit analysis. The Bree cylinder is used as a 

theoretical validation of the strict shakedown boundary, where lower and upper bound 

LMM solutions agree well with the limits derived by Bree and Bradford. These validations 

against theoretical solutions are taken forward by then comparing LMM solutions with 

experimental data. The limit loads of pipe intersections and shakedown pressures of 

nozzles in spherical shells calculated by the LMM compare favourably with the 

experimental results. 

Finally the LMM has been applied to investigate the shakedown limits of pipe bends subject 

to internal pressure and either cyclic bending or cyclic thermal loading. This case study 

demonstrates the kind of investigations that are possible with the LMM due to the explicitly 

defined shakedown limits. The effect of changing geometry on the shakedown limits is 

presented in terms of the ratios r/t and R/r. This case study does, however, highlight that a 

nonlinear geometry option would be beneficial, and the implementation of such a theorem 

into the LMM framework could form the basis of future work with this method.  
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4 The LMM Global Shakedown Analysis Procedure 

4.1 Introduction 

The strict shakedown limit gives the margin to either reverse plasticity or ratchet and is a 

useful quantity to be able to calculate accurately. Strict shakedown is a desirable state for a 

component to be in, and the majority of components within EDF's nuclear fleet are within 

this limit. In high temperature operation, however, the yield stress of materials can reduce 

significantly which can lead to situations where the cyclic loading is outside of the strict 

shakedown limit. 

The R5 procedure allows the component to operate in a global shakedown state, where 

some regions of the component exhibit a reverse plasticity response. In addition to the 

strict shakedown limit, it is therefore useful to be able to calculate the global shakedown 

limit, that is the boundary between reverse plasticity and ratcheting responses.  

Ponter and Chen have derived such a method as part of the LMM framework [82][83]. Chen 

and Ponter then extended this method to include multiple load extremes in the cycle [29]. 

This method is an upper bound method and, as previously stated, it is desirable to have a 

complementary lower bound calculation to add conservatism for regular use by EDF 

engineers.  

The purpose of this chapter is to describe the creation of a lower bound to the method of 

Ponter and Chen with a view to fulfilling objective 1 in section 1.6. Initially the upper bound 

method will be explained, followed by a theoretical derivation of the lower bound 

calculation. The implementation into the numerical procedure will then be described, and 

finally a description of the convergence improvements will be given. 

4.2 LMM Upper Bound Global Shakedown Analysis 

4.2.1 The General Cyclic State 

Similarly to the general cyclic state considered in section 3.2.1, we consider a body of 

volume, V, and surface, S, which is subject to a cyclic history of loading with a cycle time 0 ≤ 

t ≤ Δt. The load history consists of mechanical loading which acts on part of the surface, ST, 

and a temperature history which varies within the entire volume. The remaining surface, SU, 

is constrained to have zero displacement rate (i.e. u  = 0). 
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The load cycle can be expressed as the summation of steady state and time-varying 

components: 

        , , ,F x t F x P x t x t    (4.1) 

Where P(xj,t) and θ(xj,t) are the cyclic histories of mechanical load and temperature with 

cycle time Δt, F  is a constant load independent of time and λ is a positive scalar load 

parameter. The linear elastic stress history associated with this load history is 

      ˆ ˆ ˆ, , ,
F

ij ij ijx t x t x t    where  ˆ ˆ ˆP

ij ij ij   (4.2) 

This cyclic problem will asymptotically approach a steady cyclic state where 

    ij ijt t t   and    ij ijt t t   (4.3) 

This steady state cyclic solution,  ,ij x t , can be expressed in terms of four components: 

the constant and cyclic applied elastic stresses,    ˆ ˆ, ,
F

ij ijx t x t , the constant 

residual stress,  ij x , and the varying residual stress,  ,
r

ij x t  to give 

          ˆ ˆ, , , ,
F r

ij ij ij ij ijx t x t x t x x t     (4.4) 

The constant residual stress,  ij x , is time independent and self equilibrating. The varying 

residual stress,  ,
r

ij x t , represents the changes to the varying residual stress during the 

cycle due to the cyclic plasticity. If the component is not ratcheting then this varying 

residual stress must be identical in consecutive cycles and also satisfy 

      0, ,
r r r

ij ij ijx x t x   (4.5) 

Where  r

ij x  is the constant component of 
r

ij . The material in question has a convex yield 

condition  

   0ijf   (4.6) 

and the associated flow rule 
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 

'

ijP

ij

ij

df

d
  (4.7) 

Then the maximum work principle also applies: 

   0*c c

ij ij ij   (4.8) 

Where 
c

ij  denotes the stress at yield   0c

ijf   and 
*

ij  represents any state of stress 

which satisfies the yield condition of (4.6).  

4.2.2 Upper Bound Theorem for Loading in Excess of Strict Shakedown 

The shakedown bounding theorems of Melan and Koiter give a very rigorous set of criteria 

for the calculation of the shakedown limit. These criteria, however, are only applicable to 

strict shakedown. Therefore in order to obtain a limit on the global shakedown behaviour 

of a component, where the loading lies outside of the strict shakedown limit, further 

mathematical derivation was required. Ponter and Chen [82] provided one such derivation 

to create an upper bound theorem, which is summarised here.  

Consider a class of strain rate histories, 
c

ij , which accumulate a strain field,
c

ij ,  over the 

cycle which is compatible with the displacement field 
c

iu : 

 

t

c c

ij ij

o

dt   (4.9) 

Consider the upper bound strict shakedown theorem, but written in the following form 

   
0

0ˆ ,

t

c UB c

ij ij ij

V

x t dtdV    (4.10) 

Where λUB is greater than λS, which is the load multiplier at the strict shakedown limit. From 

this the functional,  ,
c

ijI , is defined: 

     
0

ˆ, ,

t

c c c

ij ij ij ij

V

I x t dtdV    (4.11) 
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Then it can be said that the load history is an upper bound to the strict shakedown limit if 

  0,
c

ijI  , and will equal the shakedown limit if   0,
c

ij sI  . 

In their derivation, Ponter and Chen expand this functional and place additional criteria on 

the stress fields, which allows the theorem to be extended beyond strict shakedown. These 

conditions are: 

1) A cyclic history of residual stress,  ,
r

ij x t , is defined corresponding to 
c

ij  such that 

 
cT r c

ij ijkl ij ijC   (4.12) 

Where 
cT

ij  is also a kinematically admissible strain rate and  ,
r

ij x t  also satisfies 

condition (4.5) i.e. 

      0, ,
r r r

ij ij ijx x t x   (4.13) 

Where  r

ij x  is the constant component of  ,
r

ij x t . 

2) There exists a constant residual stress such that the total stress history 

        * ˆ, , ,
r

ij ij ij ijx t x t x x t    (4.14) 

Satisfies the yield condition,   0*

ijf  , during the entire cycle 0 ≤ t ≤ Δt. These conditions 

lead to the functional  ,
c

ijI  becoming 

          
0

ˆ, , ,

t

c c r c

ij ij ij ij ij ij

V

I x t x x t dtdV      (4.15) 

The minimisation of  ,
c

ijI  produces an upper bound to the global shakedown limit. This 

result allows the evaluation of loading which produces a stress field of the form of eqn 

(4.4), i.e. loading which is in excess of the strict shakedown limit. This result reduces to the 

strict shakedown theorem as the varying residual stress field becomes vanishingly small and 
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so proves that the upper bound strict shakedown theorem is a special case of a more 

general result.  

4.2.3 The Two Stage Global Shakedown Limit Calculation 

The functional of equation (4.15) requires the generation of two residual stress fields, one 

which is constant in time and the other which varies within the load cycle. Each of these 

residual stresses is associated with part of the applied loading. The varying part of the 

applied loading,  ˆ ,ij x t , results in a closed cycle of plastic strains developing. Associated 

with this plastic strain cycle is the varying residual stress field,  ,
r

ij x t . The steady state 

loading, ˆ F

ij , causes an additional constant residual stress field,  ij x , to form. 

If it is possible to decompose the applied loading in this manner then the global shakedown 

limit can be evaluated using a two stage calculation process [82][83] where the functional 

(4.15) is also generated in two stages. This first stage considers the cyclic component of the 

applied loading to generate the varying residual stress field and varying plastic strains. By 

considering only the cyclic loading (4.15) becomes 

        
0

ˆ, , ,

t

c c r c

ij ij ij ij ij

V

I x t x t dtdV     (4.16) 

The second stage then finds the ratchet limit by adding the steady state portion of the load 

and calculating the constant residual stress field, which completes the stress fields in (4.15) 

to make 

           
0

ˆ ˆ, , , ,

t

c c F r c

ij ij ij ij ij ij ij

V

I x t x t x x t dtdV       (4.17) 

The advantage of decomposing the solution into two stages like this is that once stage 1 is 

complete, then the second stage is in fact a conventional shakedown analysis as described 

in chapter 3 where the stress history is augmented by the varying residual stress found in 

stage 1.  

4.2.4 Numerical Implementation 

The LMM global shakedown method is implemented in Abaqus in a similar way to the strict 

shakedown procedure, by using the UMAT and URDFIL subroutines. In this numerical 
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implementation the load history is also divided into a number of discrete vertices n=1,2...,N 

with their corresponding time points, t1, t2,...tN. The loads, therefore, follow a series of 

straight line paths in load space (and the elastic stresses follow straight line paths in stress 

space). For a strictly convex yield surface the only instances where plastic strains can 

develop are at the vertices of the stress history, with the remainder of the load cycle spent 

within the yield surface. At each of these time points is an increment of plastic strain,
n

ij , 

which when summed over the cycle gives the total plastic strain increment 

 

1

N
c n

ij ij

n

  (4.18) 

4.2.4.1 Stage 1 - Procedure for Establishing the Steady State Cycle 

With the load cycle divided into discrete time points the functional  ,
c

ijI  of (4.16) can 

be approximated by the sum of the values of 
nI  at each time point in the cycle 

  
1

,
N

c n

ij

n

I I


  (4.19) 

Where, from (4.16) 

       ˆ,
n nn n n r n

ij ij ij ij ij

V

I x x dV   
    (4.20) 

And 

      
1

N
n nr r r

ij i ij ij

n

x x x


   (4.21) 

  
n nT r n

ij ijkl ij ijC x   (4.22) 

Where the total strain increment 
nT

ij  is compatible and the changing residual stress 

 
nr

ij x  satisfies equilibrium.  
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The iterative methodology adopted assumes a total number of load cycles, M, where each 

cycle m = 1,2...M. Each load cycle contains a series of increments, N, which are associated 

with N time points in the load cycle so that each increment n=1,2...N. The LMM 

methodology for the minimisation of  ,
c

ijI  in (4.19) uses the solution of a series of 

linear problems. The following procedure is outlined for an arbitrary point in the structure, 

x and at a single time point in the cycle, n. Assuming that an initial estimate of the strain 

increment,
 

n

ijm
, for load cycle m at time point n is given, then the following procedure 

can be used to define the strain increment in the subsequent cycle m+1, 
1

n

ijm
. Similarly, 

an initial value of the varying residual stress for cycle m at time point tn, 
nr

ijm
, calculated in 

the previous increment is assumed to be known. The process then begins by calculating an 

updated linear coefficient, 1

n

m , by linear matching 

 

 
1

ˆ

yn n

m m n nr

ij ijm

 


 
(4.23) 

Where 
n

m  is the iterative shear modulus and y  is the yield stress of the material. The 

new value of the strain increment 
1

n

ijm
 is obtained through the solution to the 

following problem 

 
1 1 1

1

1

2

n nT r n

ij ij ijnm m m  
     (4.24) 

 
1 1

1

3

n nT r

kk kknm mK 
  (4.25) 

  1

1
1

1

2
ˆ

n n nn r r

ij ij ij ijnm m m
m







     (4.26) 

Where Kn is the bulk modulus, which is obtained from material properties and μ1 is the 

original shear modulus in cycle m=1. The history of residual stress, 
1nr

ijm



, up to that time 

point is found by the cumulative sum of all previous increments of the varying residual 

stress during the cycle m: 
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1 1 2 1n nr r r r r

ij ij ij ij ijm m m m m

 

      (4.27) 

A more detailed explanation of the entire procedure used to obtain the varying residual 

stress is given in Appendix B. Using equation (4.26) allows (4.24) to be written as 

  11 1
1 1 1

1 1 1

2 2 2
ˆ

n n n nT r r

ij ij ij ijn n nm m m
m m



 
 

 
     

 
 (4.28) 

We define  and K  as: 

 

1 1

1 1 1
n n

m

    and  
1 1

nK K
  (4.29) 

Which allows (4.25) and (4.28) to be simplified to 
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The solution of these equations can be solved in the UMAT and URDFIL subroutines. The 

problem is analogous to the standard Abaqus equation of the form 
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Where the Jacobian for a 3D solid is given by 
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And 
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Equations (4.23) to (4.35) have been implemented in Abaqus using a UMAT subroutine. The 

analysis is divided so that each increment of the Abaqus analysis solves one time point, n, in 

the load cycle so that each increment generates the strain increment and the change in 

residual stress associated with that time point. The history of residual stress is generated 

using the numerical procedure outlined in Appendix B. Therefore each N increments 

completes one cycle of loading. The completion of each load cycle generates increasingly 

accurate values of stress increment and changing residual stress, which reduces the value 

of the functional of equations (4.19) and (4.20). Continued iteration for M load cycles 

minimises this functional, hence producing a converged cyclic stress and strain state for the 

applied cyclic loading.  

4.2.4.2 Stage 2 - Calculation of the Global Shakedown Limit 

When the above procedure converges then the varying residual stress field will be known 

along with the associated plastic strain range. As a result the first functional, equation 

(4.16) can be minimised. This leads onto the second stage in the procedure, which 

calculates the constant residual stress field, ij  associated with the addition of a constant 

load ˆ F

ij . The purpose of this second stage is to calculate the maximum level of additional 

constant loading which will not cause ratcheting, i.e. to find the global shakedown limit. 

This stage of the calculation process can be performed using the existing strict shakedown 

method outlined in chapter 3 where the linear elastic solution is augmented by the varying 

residual stress. Therefore the stress field of equation (3.3) is modified and the input stress 

field to the strict shakedown method is now 

        ˆ ˆ ˆ, , ,
F r

ij ij ij ijx t x x t x t  
 

(4.36) 
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Where λ is a scalar multiplier to only the steady state loading. The iterative procedure given 

in equations (3.16) to (3.23) is used to determine the maximum level of this constant 

constant loading,  ˆ F

ij ix , and its associated constant residual stress field which will not 

cause ratcheting to occur. Only two changes are required to the procedure in section 3, 

namely to equations (3.19) and (3.23). Firstly equation (3.19) is updated to reflect the 

applied stress field of (4.36):
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Where the upper bound load multiplier,
UB

k , is applied only to the steady state component 

of the loading. The magnitudes of the cyclic applied stress and varying residual stress, ˆ
ij  

and 
r

ij  respectively, are assumed to be fixed during this calculation procedure. Secondly 

the upper bound multiplier of (3.23) is updated to reflect the fact that this cyclic loading is 

fixed in magnitude, which gives the following upper bound multiplier [29] 
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 (4.38) 

With these modifications in place the method of section 3 is able to monotonically 

converge towards the least upper bound load multiplier. This gives the maximum level of 

steady state loading which can be applied before ratcheting begins. The method outlined 

here has proven to be a robust and reliable global shakedown method which can be readily 

applied to industrially relevant components as discussed in section 2.6.3.  

4.3 Lower Bounds to Global Shakedown 

Melan's theorem has allowed lower bounds to the strict shakedown limit to be assessed for 

a number of years. The criteria of a self equilibrating residual stress and the non-violation of 

the yield function provide definitive shakedown/non-shakedown conditions which can be 

used to determine the strict shakedown status of the component in question.  
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The LMM strict and global shakedown procedures were originally derived as upper bound 

procedures. Recently the lower bounds were added, via Melan's theorem, to the strict 

shakedown procedure as a complementary calculation [28], which now means that the 

strict shakedown procedure calculates lower and upper bound load multipliers 

simultaneously. This addition of a lower bound has several advantages. Firstly, with 

conservatism being a key issue, the nuclear industry clearly favours lower bounds to the 

shakedown limit and so the LMM strict shakedown procedure therefore became a viable 

tool for use within EDF. The second advantage of a simultaneous calculation is the ability to 

compare the two solutions and judge convergence. Both lower and upper bounds should 

converge towards the exact shakedown limit, so the relative difference between the two 

load multipliers gives the user an indication of the current level of convergence and also 

provides confidence in the solution if this difference is small at the end of the solution. One 

of the primary objectives of this project is to add an analogous lower bound calculation into 

the global shakedown method. The benefits of this are similar to those for the strict 

shakedown procedure, namely the ability to use the method in the nuclear industry and the 

inherent self verification provided by simultaneous solution. 

The remainder of this chapter details the creation, implementation and improvement of 

such a lower bound calculation. At present no formal lower bound theorem exists for 

loading in excess of the shakedown limit, and so this process then begins by setting out the 

theoretical foundation for the lower bound. This will be followed by describing the creation 

of the LMM global shakedown lower bound calculation. Finally the convergence properties 

of this lower bound will be investigated and improved upon. 

4.4 A Lower Bound to the LMM Global Shakedown Procedure 

4.4.1 Conditions for a Lower Bound to Global Shakedown 

Melan's theorem, as given in section 2.3, states that a structure will be within strict 

shakedown if a constant residual stress field can be found such its superposition with the 

cyclic elastic stresses does not violate the yield condition at any point in the load cycle. 

      0ˆ ,ij ijf x t x 
 

(4.39) 

We begin by considering a component which is subject to an arbitrary cyclic loading history, 

with its corresponding elastic stress history,  ˆ ,ij x t . Repeated cycles of this stress 
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history, if beyond the elastic limit, will cause an associated residual stress,  ,
r

ij x t , to form. 

If the applied loading is within the strict shakedown limit then the time varying component 

of this residual stress will equal zero, and the lower bound strict shakedown theorem will 

apply. If the loading is beyond the strict shakedown limit then plastic strains will develop in 

every cycle, which in turn will cause the residual stress to include a time varying 

component. If there is a net increase in the plastic strain with each cycle then the 

component is ratcheting, however if the component is not ratcheting then some additional 

characteristics of the plastic strain and residual stress field may be observed. Firstly, the 

residual stress field will cause all load points in the cycle to satisfy the yield stress: 

      0ˆ , ,
r

ij ijf x t x t 
 

(4.40) 

If ratcheting is not occurring then any plastic strains which develop during the cycle must 

sum to zero i.e. a reverse plasticity mechanism. In the steady cyclic state this means that 

plastic strains in consecutive cycles must be identical 

    1
, ,

p m p m

ij n ij nx t x t 
 

(4.41) 

Where m is the cycle number and n is the time point in the cycle. The residual stress must 

also conform to the following behaviour: 

      0, ,
r r r

ij ij ijx x t x    and     1
, ,

r m r m

ij n ij nx t x t 
 

(4.42) 

Where  r

ij x  is the constant component of this residual stress. Therefore the residual 

stress will 1)only vary within the cycle time Δt, 2)will equal the constant component  r

ij x  

at the beginning and end of the cycle and 3)will be identical at each time point in 

subsequent cycles. If the stress fields are such that equation (4.40) is satisfied, the residual 

stress satisfies the conditions of (4.42) and the cyclic plastic strains satisfy (4.41) then the 

component is in global shakedown for the applied loading  ˆ ,ij x t . 

The conditions of (4.40), (4.41) and (4.42) are very useful as they provide a set of criteria by 

which the global shakedown condition can be judged for the given cyclic load history, 

 ˆ ,ij x t . Having found the global shakedown status, the matter then remains of scaling 
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these loads, or a subset of them, to find the global shakedown limit. In strict shakedown 

this problem is simplified by only having to find a constant residual stress,  ij x , which 

satisfies yield. Therefore the entire load history can be scaled, updating  ij x  as this is 

done, to find the strict shakedown limit. The theory states that if any  ij x  can be found 

which satisfies the yield condition then strict shakedown has occurred. When loading is 

beyond strict shakedown, however, no such bounding theorem exists. Therefore each time 

the stress history was scaled, the varying residual stress and plastic strains associated with 

this would need to be re-evaluated and measured against conditions (4.40), (4.41) and 

(4.42), resulting in a lengthy process akin to the trial and error nature of traditional non-

linear FEA. 

The work of Polizzotto [105][106], which is based on earlier work by Ponter and Karadeniz 

[107], provides a neat solution to this issue. First consider that the volume, V, of the 

component to be divided into two regions. VP is the region where alternating plastic strains 

occur and VE is the remainder of the volume where the strains respond entirely elastically in 

the steady state. In [105], Polizzotto was able to show that if the two regions were 

considered separately then global shakedown would still be achieved as long as the volume 

VE remained within strict shakedown without affecting the reverse plasticity of VP. That is, 

additional loading can be applied to V if the additional stress fields do not affect the reverse 

plasticity of VP and VE remains in strict shakedown. This is a powerful idea because it allows 

the global shakedown limit to be determined directly by means of a modified strict 

shakedown assessment - if the strict shakedown limit can be found for the volume VE, then 

the global shakedown limit has been found for V.  

Therefore for a structure subject to  ˆ ,ij x t  which results in  ,
r

ij x t , a lower bound to 

the global shakedown limit can be found for additional loading by satisfying the strict 

shakedown criteria in the volume which is not in reverse plasticity whilst VP remains in 

reverse plasticity itself. 

4.4.2 Lower Bound in the LMM Global Shakedown Procedure 

The conditions described above for a lower bound to the global shakedown limit can be 

interpreted within the existing LMM structure. The two stage procedure adopted for the 
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upper bound calculation also lends itself to the inclusion of a lower bound based on the 

conditions of section 4.4.1.  

Stage 1 of the process considers the cyclic component of the loading,  ˆ ,ij x t , and 

calculates the steady state cyclic response including the varying residual stress field and the 

plastic strain range,  ,
r

ij x t  and  p

ij x  respectively. At this point the lower bound 

conditions are satisfied if 1) the total cyclic stress history satisfies condition (4.40) over the 

entire structure for each point in the load cycle and 2) the varying residual stress satisfies 

conditions (4.41) and (4.42), thereby ensuring no net increase in strain in subsequent 

cycles. The stage 1 calculation is therefore unaltered by the presence of the lower bound 

checks because the minimisation of the functional (4.20) already incorporates these 

criteria, so no further calculations are required as long as convergence is met.  

With a converged cyclic state, stage 2 then determines the maximum additional steady 

state loading,  ˆ ,
F

ij x t , which will not cause ratcheting where λ is a scalar multiplier used 

during the solution. This additional load also causes an additional constant residual stress 

field,  ij x , to form. As described in section 4.2.4.2, each iteration scales the applied 

constant load using λ and the constant residual stress field associated with this additional 

load is calculated. This gives the total stress field at any point in the structure as the sum of 

the applied and residual stress fields: 

          ˆ ˆ, , , ,
F r

ij ij ij ij ijx t x t x t x x t     (4.43) 

The nature of the constant residual stress field and the additional constant load, and the 

way in which they are calculated in this stage two calculation, satisfies the volume 

separation condition of Polizzotto. Consider the stress state of the structure after the stage 

1 calculations are complete. Some part of the volume is in a reverse plastic state, and the 

remainder responds elastically. The stage two calculation then proceeds to add an 

additional constant load and calculate the corresponding constant residual stress. In 

regions which are already in a state of reverse plasticity, no further stress can be supported 

unless it is purely hydrostatic. Therefore the constant residual stress field associated with 

the additional load must be such that the net additional stress is zero or hydrostatic. In this 

way, a constant residual stress field forms which does not affect the reverse plasticity 
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status of the volume VP, but still maintains strict shakedown within VE. This is verified 

through numerical example in section 4.5.1. 

Calculation of the lower bound global shakedown limit can be achieved with each iteration 

of stage 2 of the upper bound procedure. With each iteration the scaling of  ˆ ,
F

ij x t  and 

subsequent calculation of  ij x  produces an updated total stress field. At any given point 

in the structure and time point in the cycle this stress field can be compared to yield to find 

the lower bound load multiplier,  λLB: 

        0ˆ ˆ, ,
LB F V

ij ij ijf x t x x t    (4.44) 

Where      ˆ ˆ, , ,
V r

ij ij ijx t x t x t   can be consolidated into a single entity - their 

magnitudes at each point in the load cycle has been assessed in stage 1 and remains at 

these levels for stage 2. λLB is the only unknown in equation (4.44) and so its value can be 

found for the point in the structure and time point in question. In the finite element 

solution this means solving equation (4.44) at every integration point for each point in the 

load cycle. The algebra involved in the expansion and solution of (4.44) is given in Appendix 

C, and results in the solution of a quadratic 

  
2

0LB LBA B C     therefore  

2 4

2
LB B B AC

A
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  (4.45) 

Where A, B and C are coefficients containing the eighteen stress components (three stress 

fields each with six components) and the yield stress. This gives the load multiplier, which if 

applied to the additional constant load, would make the effective stress at that point and 

load instance equal to or less than the yield stress. At the end of the increment, with λLB 

known for the whole structure at all load points, the minimum of these values is taken as 

the lower bound for the whole model. This gives the value of additional steady state 

loading which can be applied to the whole model which satisfies yield everywhere. 

Continued iteration of the LMM procedure produces improving estimates of the constant 

residual stress field, which in turn increases the lower bound multiplier. 
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4.5 Numerical Example 

The lower bound described above has been implemented into the LMM global shakedown 

code as described in section 4.4.2, which completes the ability of the LMM to calculate 

lower and upper bounds to the strict and global shakedown limits. Simple numerical 

examples are presented here for two purposes. The first is to demonstrate that stage 2 of 

the global shakedown procedure conforms to the requirements set out by Polizzotto, in 

that the additional constant residual stress field must be such that the reverse plasticity 

region is not affected. The second purpose is to demonstrate the convergence properties of 

the newly derived method. 

4.5.1 Verification of the Position of the Constant Residual Stress Field 

It is assumed that stage 2 of the LMM global shakedown procedure conforms to the 

requirement that the constant residual stress field forms so that the reverse plasticity is not 

affected. The basic mechanics arguments put forward in section 4.4.2 would imply that this 

assumption is correct, but nonetheless there is no explicit instruction in the code for the 

regions of reverse plasticity to remain unaffected in the formulation of the residual stress. 

Therefore, this assumption is tested numerically by considering the Bree cylinder as 

described in section 3.3.2.  

 

Figure 4.1 - Bree Stress Fields 
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In this case, the level of cyclic thermal loading considered in stage 1 of the LMM analysis 

creates an elastic stress range of 3 times the yield stress, which is sufficient to cause 

significant regions of reverse plasticity. An additional axial tension is applied in stage two. 

Figure 4.1a) and b) show the total stress fields generated by stage 1 of the LMM calculation 

at both extremes of the cyclic loading. Significant areas of yielding are observed at both 

extremes of the cycle. Figure 4.1c) then shows the constant residual stress field generated 

by stage two of the calculation when the additional axial tension is applied. It can be clearly 

seen that this constant residual stress forms such that the reverse plasticity is not affected. 

In the regions which are in reverse plasticity, this constant residual stress is equal in 

magnitude and opposite in sign to the applied tensile stress, σp. Therefore, because the 

tensile load is applied at all times the constant residual will cancel out σp, leaving the 

reverse plasticity regions unaltered. This test therefore verifies the assumption that the 

LMM follows the criteria set out by Polizzotto, and can therefore generate a lower bound to 

the global shakedown limit. A full analysis of the Bree cylinder is given in chapter 5.2.2. 

4.5.2 Plate with a Central Hole 

To demonstrate the numerical procedures laid out in sections 4.2 and 4.4, the example of a 

plate with a central hole is analysed. Figure 4.2 shows the geometry, finite element mesh 

and load histories applied to the plate. The ratio between the diameter of the hole D and 

the length of the plate L is 0.2. The ratio between the thickness T and L is 0.05. Due to the 

symmetry of the geometry and loading, a quarter model is used with the appropriate 

boundary conditions. In addition, the free edges of the plate are constrained to expand in-

plane to simulate the expansion of a large plate. The geometry is meshed with 642 

elements of type C3D20R, a quadratic brick element with reduced integration (reduced 

integration is recommended in Abaqus for near incompressible solids). 

The plate is subject to a cyclic temperature gradient between the bore of the hole and the 

outer edges. The temperature distribution as a function of radius is given in equation (4.46) 

     
 

 0 0

2 5

5

ln .
,

ln

D r
r t t    (4.46) 

where D is the hole diameter and r is the radial distance from the centre of the hole, which 

appro imates to a temperature of θ=θ (t) at the bore of the hole and θ0 at the edge of the 

plate. This gives a temperature difference between the bore of the hole and the edge of the 
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plate of Δθ. The temperature difference between the bore and edges is cycled, resulting in 

the two load extremes used in the analysis. In addition to this cyclic thermal loading, a 

constant uniaxial tension, P, is applied along one edge of the plate. The plate material is 

perfectly plastic, has a young's modulus of 200GPa, a yield stress of 360MPa and a thermal 

expansion coefficient of 5x10-5 oC-1. 

 

Figure 4.2 - Holed Plate Geometry, Mesh and Load History 

The global shakedown interaction diagram for the plate is shown in Figure 4.3a where the 

applied temperature difference Δθ is normalised against the reference temperature 

difference of Δθ0=100oC and the uniaxial tension P is normalised against the yield stress of 

the material σy=360MPa. The reverse plasticity limit, calculated by the linear matching 

method shakedown procedure, is also shown in the figure and thus shows the capability of 

the linear matching method to calculate lower and upper bound strict and global 

shakedown limits. The interaction diagram follows the classic Bree-like shape, with lower 
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The convergence of the lower and upper bounds at points A and B is shown in Figure 4.3b. 
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stress and therefore satisfy the conditions set out in section 4.4.1. The convergence plot 

also shows that the lower bound at point B (within strict shakedown) converges more 

quickly than point A (which is global shakedown), which requires more increments than are 

shown in the figure to attain convergence. This is due to the fact that point B has no varying 

residual stress and thus a simpler stress state. Stage 1 of the calculation is still performed 

but converges almost instantly and moves onto stage 2. Point A, however, will have a 

significant level of varying residual stress and so will require more stage 1 increments to 

converge on these stresses. The more complex stress fields from stage 1 means that the 

lower bound requires longer to find a constant residual stress which satisfies yield at all 

points in the model. The plateaus seen in the convergence of the lower bounds are a result 

of the subroutine using the "best" value of lower bound calculated up to that increment. 

When the stress redistribution is taking place it is possible for the stress distributions to 

produce a worse lower bound than in the previous increment (especially within the first 

few increments when the rates of change of modulus and stress are high). As a result, the 

subroutines are programmed to use the best value of lower bound calculated up to that 

point. 

 

Figure 4.3 - Holed Plate Interaction Diagram and Convergence 

4.6 Convergence Improvements 

The poor convergence of the lower bound relative to the upper bound seen for Point B in 

Figure 4.3 can be attributed to the nature of lower bounds in finite element analysis. Being 

based on stress values at individual integration points will always leave lower bounds at the 

mercy of numerical errors (which are diluted by an upper bound procedure). The number of 

increments to find a converged lower bound in section 4.5.2 may be satisfactory for small 

models, but it is highly desirable to improve upon this for models of plant components with 

complex load histories. 
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4.6.1 Sources of Convergence Issues 

Lower bounds can show poor convergence properties because of their reliance on stress 

values at individual integration points within the FE mesh. This is true to the point where a 

single integration point can be the sole inhibitor of lower bound convergence; in the lower 

bound search function explained at the end of section 4.4.2, the lowest value of λLB is the 

value taken as the lower bound for the whole model.  

The inherent numerical error present in the stress values of finite element solutions will 

always be present. FEA is a displacement based method, with stress being a secondary 

calculation based on these displacements. In the LMM global shakedown assessment this is 

compounded by the fact that a two stage procedure is used. The convergence of both 

stages is based on numerical tolerances. Therefore whilst stage 1 may have converged to 

within the specified tolerance, there is still a margin for inaccuracies in the stress fields 

which are then carried forward into stage 2. In practice these errors are usually small for a 

converged solution, for example the stress at a particular point may be above the yield 

stress by less than 0.5%. To all intents and purposes the analyst would interpret this point 

as being at yield, but numerically these small errors can make the convergence of the stage 

2 lower bound calculation a challenge. 

Aside from the numerical issues, it is possible that some of the lower bound convergence 

issues are due to the estimates of the stress fields themselves. Figure 4.3b shows plateaus 

in the lower bound convergence. This is due to those increments generating a poorer 

estimate of the residual stress field, and so the best lower bound multiplier from previous 

increments is propagated. If these estimates of the stress fields could be improved then 

there would be a more monotonic increase in the lower bound with each increment.  

Delving a little deeper into this issue, using the equations outlined in section 3.2 for the 

upper bound strict shakedown and stage 2 of the global shakedown, can reveal some 

possible causes in stress field inaccuracy. Revisiting these equations: 

 
1

yn

k n

k

    where   n n

k ijk
  (4.47) 

And 
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It is clear from this sequence of calculations that the updated estimate of the residual stress 

field, 
1ijk

, is strongly linked to the values of the updated modulus 1

n

k  calculated at the 

beginning of the increment. The current scheme used in equation (4.47) matches the 

modulus of every integration point to the yield stress. In areas where the elastic stress is 

above yield, around stress raisers for example, then this scheme is ideal for quickly reducing 

the stress to satisfy the yield condition. In areas adjacent to this where the stress is lower, 

this scheme increases the stiffness to encourage stress to redistribute. In low stress areas 

which are remote from any stress raiser, however, it was hypothesised that this scheme 

could have the effect of over-stiffening the area, which could lead to distorted stress fields 

as a result. In addition to this, it was thought that the sudden large increase (in only a single 

increment in many cases) in modulus compared to the slower changes in high stress areas 

may be creating an imbalance which then requires further increments for the method to 

rectify.  

With this in mind, several modifications to the matching scheme were tested numerically. 

In all cases the spirit of the original scheme was retained in that the yield stress was always 

used as the target stress. The modifications tested here attempted to remedy the over-

stiffening issue by trialling different limits to the modulus values and also limits to the rates 

of change of modulus values. 

4.6.2 Proposed Solutions 

The numerical limit of the maximum value of μ in the LMM code is 1x108 for models using 

units of Newtons and millimetres. This is applied uniformly in the FE model, so no 

integration point may have a stiffness which is greater than this value. This represents a 

stiffening of around 500 times for a typical steel with a young's modulus of 200 GPa (i.e. 

2x105 N/mm2), which is typical for steels and is assumed for the numerical experiments 

conducted here. 
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The first set of matching schemes proposed focused on this ma imum value of μ, and 

several limits were trialled. In order to tackle the over-stiffening in low stress regions the μ 

limit was made a linear function of the stress at the integration point in question, shown 

graphically in Figure 4.4. A stress equal to or greater than yield would use μMax = 1x108 as 

per the original code and a stress value of zero would have a maximum value as specified in 

Figure 4.4.  

 

Figure 4.4 - Setting μMax as a Function of Stress 

Several schemes were also trialled which retained the uniform ma imum value μMax = 

1x108, but instead placed limits on the rate of change of μ in each increment for integration 

points with stresses below yield. The rate of change of μ is defined as the ratio of the 

previous value and current value: 

 
current

Rate
previous



 

(4.50) 

Integration points with a stress above yield were not included, leaving them to reduce to 

the yield stress as per the original scheme. The two methods used to enforce this limit to 

the rate of change are shown graphically in Figure 4.5. 

Rates described as "flat" refer to all points below yield being limited to a maximum rate of 

change of the specified value, which is specified in Figure 4.5. The parabolic distribution 

limits the rate of change based on the stress level, which could target the desired areas 

more effectively. For areas with a very low stress, the rate of change would be small. For 

higher stressed areas the maximum rate would increase to encourage redistribution, and in 

highly stressed areas a low rate would apply because little redistribution would be required. 
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The parabolic distributions all have a μRate = 1 when the stress is equal to zero or yield. The 

parabolic schemes are then defined by the ma  value of μRate which occurs at a stress value 

of half yield. 

 

Figure 4.5 - Trial Schemes for Limiting μrate 

4.6.3 Numerical Testing 

The 10 matching schemes outlined above were implemented into the LMM subroutines for 

comparison with each other. Initially these trials were performed using the strict 

shakedown code (Points 1-3), and schemes which were successful in improving the stress 

field estimates were then brought forward for trialling in the global shakedown procedure 

(Points 4 and 5). 

 

Figure 4.6 - Test Load Cases for the Holed Plate 
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The same holed plate problem as described in section 4.5.2 was used to perform the 

comparisons. Three points on the strict shakedown boundary were selected so that the 

effect of the matching schemes could be seen for both reverse plasticity and ratchet 

mechanisms. These three points are shown in Figure 4.6 and correspond to one point on 

the reverse plasticity limit (Point 1), one point on the ratchet limit (Point 2) and the limit 

load (Point 3). At these three points full elastic-plastic FEA was performed for 50 cycles to 

obtain the stress fields - this number of cycles was found to produce stress fields which 

changed very little between cycles. These stress fields were then used as the benchmark for 

comparison with the LMM.  

The different matching schemes were implemented into the subroutines and solved using a 

convergence value of 1e-4 (difference between consecutive upper bounds, see section 6.4). 

The stress fields produced were compared to those from step by step by comparing plots of 

the nodal equivalent stress along three lines in the finite element model. Path 1 runs along 

the left edge of the plate, Path 2 follows the circumference of the bore and Path 3 runs 

along the bottom of the plate. The location of these three lines is shown in Figure 4.7. 

 

Figure 4.7 - Nodal Paths Used to Compare Stresses 

4.6.4 Results and Selection of Final Scheme 

Considering the Trial 1, 2 and 3 results, the majority of the stress plots obtained showed no 

improvement or very little change in the stress fields calculated when compared to the 

original matching scheme. The points and node paths which displayed the most significant 

changes to these changes are displayed in Figure 4.8. In general, no single matching scheme 

from Trials 1, 2, or 3 showed an improvement over all load points and nodal paths 

considered. Schemes which displayed improvement in one path or load point were then 

shown to have a negative effect in others. From Figure 4.8 it can be seen that Trial 3 shows 

Path 1 Path 2 Path 3
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an improvement to the predicted stresses when compared to those predicted by Step by 

Step analysis. This improvement is marginal, however. 

 

Figure 4.8 - Comparison of Trial 1,2 and 3 with the Original Scheme and Step by Step 

A similar situation was observed with Trials 4, 5, 6 and 7. In many situations these schemes 

showed little improvement or little change from the original scheme. Trial 4 was the 

exception to this, being the only scheme from these which gave stress results which were at 

least no worse than the original scheme. Trial 4 also gave an improvement in some load 

cases, two examples of which are shown in Figure 4.9, where the stresses generated more 

closely match the Step by Step stresses. Note in Figure 4.9 the results for Trials 5-7 and 

Original are coincident. 
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Figure 4.9 - Comparison of Trials 4-7 with the Original Scheme and Step by Step Results 

The schemes of Trials 8-10 did not show any significant change to the results at any of the 

load points or nodal paths. Figure 4.10 shows two stress plots which are typical of the 

results for these three schemes (results for Trials 8-10 and the Original are coincident). 

 

Figure 4.10 - Comparison of Trials 8-10 with the Original Scheme and Step by Step Results 
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for Load Points 4 and 5 is given in Figure 4.11. From this comparison it can be seen that 

Trial 4 produces mixed results. In both cases the convergence of the upper bound is slowed. 
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This is to be expected because the changes in the stress fields are more localised, meaning 

that the energy changes per increment are smaller. The lower bound produced by the Trial 

4 scheme shows an improvement for Load point 5, but has a detrimental effect for Load 

Point 4. 

 

Figure 4.11 - Load Multiplier Comparison of Original Scheme and Trial 4 

In addition to the Trial 4 scheme, a further elemental averaging scheme was tested in stage 

2 of the global shakedown procedure. The element averaging scheme, rather than 

attempting to improve the lower bound by improving the stress field estimates, uses the 

original matching scheme and improves the lower bound by averaging the lower bound 

multipliers over each element. If single integration points are suffering from numerical 

issues then this scheme would aid the overall convergence of the solution by averaging this 

with the adjacent integration points. A comparison of Trial 4, elemental averaging and the 

(un-averaged) original scheme is shown in Figure 4.12 for Load Points 4 and 5.  

The elemental averaging scheme is shown to produce favourable results for both cases. It 

has a smoothing effect to the lower bound convergence of Load Point 4 and a drastic 

improvement in the convergence of Load Point 5.  

Based on these results the decision was taken to implement the elemental averaging of the 

lower bound in the global shakedown analysis procedure. This option is not strictly a lower 

bound because individual integration points may violate the yield condition, but if the finite 

element mesh is dense enough in the regions of interest then this approximation to the 

lower bound is thought to be acceptable given the large savings in solution time which are 

observed. 
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Figure 4.12 - Comparison of Elemental Averaging, Trial 4 and the Original Scheme 

4.7 Summary and Discussion 

The LMM global shakedown method created by Ponter and Chen is able to provide 

accurate upper bounds to the global shakedown limit. The creation of the lower bound 

calculation and the implementation into the LMM framework described in this chapter now 

means that the LMM is capable of producing lower and upper bound to both the strict and 

global shakedown limits. A lower bound solution provides the necessary conservatism 

required for regular use in the nuclear industry. This lower bound is calculated in parallel 

with the upper bound which provides a self verification of the solution. If both lower and 

upper bounds converge to a common value then the analyst can have confidence in this 

final solution. 

Lower bound calculations within FEA are known to suffer from convergence issues due to 

numerical issues at individual integration points. Schemes to improve the stress fields 

generated by the LMM have been investigated with mixed results. Instead an element 

averaging of the lower bound multipliers has been selected to alleviate these convergence 

issues. Whilst this option only provides an approximation of the lower bound, it is thought 

that if the mesh density is high enough in areas of interest then the improved solution 

times justifies this choice. 
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5 Analyses and Validations of the LMM Global Shakedown 
Method 

5.1 Introduction 

The formulation and implementation of a lower bound to the global shakedown analysis 

procedure now means that the LMM is capable of providing lower and upper bound to both 

the strict and global shakedown limits. Validation of the strict shakedown procedure has 

been provided in Chapter 3, where several comparisons with theoretical, numerical and 

experimental results are presented. 

This chapter presents a similar set of comparisons so that the Global Shakedown procedure 

may be validated in accordance with objective 2 in section 1.6. Some of the comparisons of 

Chapter 3 are revisited, such as the Bree Cylinder, to verify the implementation of the new 

lower bound calculation. In addition to these simpler comparisons, the global shakedown 

behaviour of a pipe intersection is investigated using the LMM and validated with step by 

step FEA. This example is a commonly analysed geometry in EDF and so proves that the 

LMM is worthy of regular use by EDF engineers.  

5.2 Validations 

The LMM global shakedown method can be validated using the same examples as were 

used in section 3.3 to validate the strict shakedown procedure, namely the limit loads of 

notched bars and the Bree cylinder. 

5.2.1 Limit Loads of Notched Bars 

The limit loads of notched bars, originally used by Tipping [34], are once again used as a 

validation case. The global shakedown procedure is not intended for limit load calculation. 

The two stage calculation process means that some level of cyclic loading must be present 

in order for stage one to execute. Therefore, when in use in EDF, limit loads would be 

calculated using the strict shakedown procedure. For this validation case, however, the 

limit load can be approximated by the global shakedown procedure by setting the level of 

cyclic loading to a very small value. This will allow the validation of the newly added lower 

bound in a relatively simple setting before more complex situations are considered. 

The four notched bar geometries of section 3.3.1 were analysed using the LMM global 

shakedown procedure to find the limit load for axial tension. The same finite element 

mesh, loads, boundary conditions and material properties were used. An cyclic axial load of 
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0.01% of the axial tension was applied in stage 1 of the procedure before the limit load was 

then calculated in stage 2. This level of cyclic loading was thought to be small enough so 

that the effect on the stage 2 calculation would be negligible. Convergence tolerances of 

1e-4 and 1e-5 were used in stage 1 and stage 2 respectively (see section 6.4 for 

convergence options).  

The load multipliers calculated by the global shakedown method are given in Table 5.1. For 

comparison the limit loads predicted by Abaqus limit analyses and the theoretical solutions 

of Miller. The load multipliers predicted by the strict shakedown procedure are also given. 

Table 5.1 - Comparison of Notched Bar Limit Load Solutions 

Solution 3D Axisymmetric 
Plane 

Strain 

Plane 

Stress 

Miller 0.3041 0.3041 0.8006 0.5565 

Abaqus 0.3454 0.3454 0.8028 0.5573 

LMM Strict Shakedown UB 0.3456 0.3456 0.8025 0.5583 

LMM Strict Shakedown LB 0.3439 0.3439 0.7985 0.5555 

LMM Global Shakedown UB 0.3451 0.3451 0.8024 0.5572 

LMM Global Shakedown LB 0.3434 0.3433 0.7976 0.5545 

 

The limit loads predicted by the global shakedown method agree well with the solutions of 

Miller and Abaqus limit analysis.  

5.2.2 The Bree Cylinder 

The Bree cylinder was used in chapter 3 as a useful example to validate the strict 

shakedown procedure. The strict shakedown procedure was able to accurately predict the 

theoretical strict shakedown limit of Bree and Bradford. These theoretical solutions also 

extend to the global shakedown limit, and so provide a useful example to verify the LMM in 

this regard, especially with the addition of a new lower bound.  
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In addition to this, Bradford has extended his global shakedown solutions in [95] and those 

of Bree [36] to include a temperature dependency in the yield stress [108]. Two yield 

stresses are used in this derivation, cold and hot, which are assumed to be uniform in the 

volume. The uniform hot yield stress applies when the linear temperature distribution is 

acting on the model, and the cold yield applies when this temperature distribution is 

removed. These temperature dependent global shakedown solutions are used as an 

additional comparison for the LMM. 

The plane stress model used in section 3.3.2 was used once again with the same mesh, 

boundary conditions, material properties and loads (a steady state axial tension and a cyclic 

temperature difference between the inner and outer walls). Where the temperature 

dependent yield applies, a hot yield of 60% of the cold yield is used. The LMM global 

shakedown boundary is compared to the theoretical solution of Bree and the temperature 

dependent extension of Bradford in Figure 5.1. The limit load was approximated using the 

using the same technique used for the notched bar solutions. A cyclic thermal load of which 

gave a thermal stress range of 0.01% of the yield stress was used in stage 1, before stage 2 

then found the limit load for the axial tension. Once again the vertical axis represents the 

level of cyclic thermal stress and the horizontal axis represents the level of steady state 

axial stress. Both axes have been normalised against the cold yield stress. A good 

agreement is seen between both solutions. 

 

Figure 5.1 - Bree Cylinder Global Shakedown Results Comparison 
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The global shakedown limit for the modified loading conditions considered by Bradford in 

[95], and the extension to temperature dependent yield, has been calculated using the 

LMM and compared to the theoretical solutions in Figure 5.2. This situation has no steady 

state loading, and so the load decomposition typically required for the LMM two stage 

process cannot be achieved. Instead an approximation of the boundary is found. The level 

cyclic loading in stage 1 is chosen to be just inside the theoretical limit, shown as “steady 

cyclic points” in Figure 5.2. This means that a minimal steady state axial tension is added in 

stage 2 giving a reasonable approximation to the loading considered in the theoretical case.  

 

Figure 5.2 - Modified Bree Global Shakedown Results Comparison 

The vertical axis represents the cyclic thermal stress, and the horizontal axis represents the 

cyclic axial stress, and both are normalised against the cold yield stress. A slightly less 

favourable agreement is seen with these results, with the LMM tending to underestimate 

the global shakedown limit of Bradford. This example highlights the current limitation of 

the global shakedown to calculate the global shakedown limit based on steady state 

loading. This is being addressed by Lytwyn [109] where a global shakedown limit procedure 

is being developed for a generalised load cycle, similar to that of the strict shakedown 

procedure. Until this is complete, examples such as this must be approached with caution, 

and the strict shakedown procedure should be used where possible. 

5.3 Global Shakedown of a Pipe Intersection 
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examples however, consider relatively simple loading and/or geometries. This makes them 

very useful for initial comparisons, but they do not represent the more complex geometries 

and load histories which are analysed within EDF. To ensure that the LMM will be a useful 

tool to EDF engineers a more representative component must be analysed and verified. 

To this end the LMM global shakedown has been used to analyse a fictitious pipe 

intersection with a dissimilar material join. This geometry is commonly analysed with EDF, 

so fulfilling the requirement of realism. Furthermore there is little published work regarding 

the shakedown behaviour of pipe intersections, giving this study additional merit in 

furthering the understanding in this area. 

Two scenarios are considered here. The first sees the intersection subject to steady state 

internal pressure and cyclic thermal loading. The thermal expansions of the materials in the 

dissimilar join serve to enhance the effects of the thermal loading in this case. The second 

scenario also has a steady state internal pressure and the cyclic loading is of the form of a 

bending moment applied to the branch pipe.  

The thermally loaded case is extensively validated using elastic-plastic FEA to compare the 

global shakedown limit, plastic strain ranges and predicted failure mechanisms. The 

bending moment case is used to explore the behaviour of the intersection by altering 

material properties and observing the effect on the global shakedown limits. 

5.3.1 Review of Existing Pipe Intersection Solutions 

The widespread use of pipe intersections has lead to numerous studies of their behaviour 

over the years from early elastic analyses [110] through to more recent analyses 

considering creep effects including the effects of welded regions [111]. In particular, studies 

to calculate limit and plastic collapse loads are common for both internal pressure and 

bending modes. For example Hamilton et al [58] used the elastic compensation method to 

determine non-dimensionalised limit pressures for a number of intersection geometries. 

Another example includes the semi-theoretical limit solutions proposed by Kim et al [112] 

for internal pressure and bending moment loading. These equations use several geometric 

parameters to predict whether failure will occur in the nozzle, the main pipe or the 

intersection of the two for a monotonically applied bending moment or pressure. 

Despite their common use in piping systems, very few studies have been published 

regarding this geometry subject to cyclic loading. A study by Nadarajah et al [59] used the 
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Elastic Compensation Method to conduct a parametric study of this geometry subject to 

internal pressure and cyclic bending moments. Systematically altering the mean radii and 

shell thicknesses of the pipe and nozzle allowed a variety of thin walled intersections 

(radius to thickness ratio between 50 and 200) to be analysed. Both the limit load surface 

and strict shakedown limit was calculated for each geometry using an elastic-perfectly 

plastic material model. The parametric studies found a strong interaction between the 

loads, with small nozzles (having a radius of less than one fifth of that of the main pipe) 

having a near linear interaction curve. Larger nozzles (i.e. with a radius of two fifths of the 

main pipe) still displayed a strong interaction between the loads, but had a circular 

interaction curve which is more akin to the conventional Bree like shakedown boundary.   

In addition to this study, the strict shakedown response of a single thick walled pipe 

intersection was analysed in the EPERC Design by Analysis manual [113]. This geometry 

consisted of two materials and also contained the weld detail at the join between the 

nozzle and main pipe. Several analysis methods were used including the Elastic 

Compensation Method, direct analysis using elastic-plastic FEA and stress categorisation 

methods. The Elastic Compensation results presented for this case show little interaction 

between the bending moment and internal pressure. This is attributed to the thick shells, 

which serve to isolate the loadings from each other. Again, internal pressure and cyclic in-

plane moments were considered. Apart from these studies, no further shakedown 

examples (whether strict or global) of this geometry could be found. 

The intersection analysed here is more akin to the example in the EPERC Design by Analysis 

manual in that it is thick walled, manufactured from several materials and includes the 

geometry of the weld in the model. This should provide a similar complexity to many 

models analysed in EDF and prove the applicability of the LMM in an industrial setting. 

5.3.2 The Pipe Intersection Model and Material Properties 

The pipe intersection analysed in this paper is shown in Figure 5.3. The small intersecting 

pipe is welded to the main pipe, with the weld itself modelled as a chamfer between the 

two shells (as per the EPERC example). The main pipe is made from 316 stainless steel, a 

common material in nuclear plant components. The intersecting pipe was chosen to be 

from low alloy steel SA508 and the weld material is Inconel 82/182. Recently the UK nuclear 

industry has been analysing the residual stresses present in this dissimilar weld with a view 

to investigating stress corrosion cracking [114–116]. 
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Figure 5.3 - Pipe Intersection Geometry 

When conducting thermal analyses it is important to consider the effects of temperature 

dependent material properties. The temperature dependent yield stresses used for all 

three materials is shown in Table 5.2. During the analysis linear interpolation/extrapolation 

is used to calculate the yield stress at intermediate and outlying temperatures. The data for 

316 and SA508 were taken from the British Standard [117] and a paper by Hurrell et al 

[118] respectively. Material data for the Inconel weld in the as-welded condition is limited, 

with the micromechanical tests of Kim et al [119] being the only elevated temperature tests 

which could be found. Linear extrapolation is performed to provide an approximation to 

the temperature dependency, which will give a more accurate solution than if temperature 

independent properties were assumed throughout the weld. An elastic perfectly plastic 

material which satisfies the von-Mises yield criterion is assumed throughout this work. 

Table 5.2 - Temperature Dependent Yield Stress Values 

Temperature (
0
C) 20 50 100 150 200 250 300 350 400 450 

316 220 204 177 162 147 137 127 120 115 112 

SA508 472  460  448  430  395  

Inconel 82/182 378.6      315.8*    

*Yield stress taken at 320oC 
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The Linear Matching Method requires an elastic calculation to be performed for each point 

in the load cycle. This provides a starting point for the Linear Matching solution procedure. 

Temperature dependent yield stress is considered once the linear matching process has 

begun, but because the elastic solutions have been performed before this process a single 

value of thermal expansion must be assumed. This is fine for a single ratchet analysis at a 

fixed level of cyclic thermal load, but to create the Bree diagram a new set of elastic 

solutions would need to be created for each level of thermal loading considered. To avoid 

this, the worst case thermal expansion scenario was chosen.  

When the temperature dependency of the thermal expansion coefficients of the materials 

in [116] is examined, it can be seen that the difference between the three values remains 

almost constant. The magnitude increases with increasing temperature, but does so 

uniformly for all three materials. Therefore, with a maximum temperature considered 

never larger than 6000C, the expansion values at this temperature were used for all thermal 

analyses conducted. Therefore values of 1.8x10-5 for 316, 1.5x10-5 for Inconel 82/182 and 

1.4x10-5 for SA508 are used. This assumption gives conservative results in all cases. 

Two separate load cases are considered for this pipe intersection. The first is a steady state 

internal pressure and a cyclic thermal load. The second load case is the combined action of 

a steady state internal pressure and a cyclic in plane bending moment. 

5.3.3 Internal Pressure and Thermal Loading 

The thermal cycle chosen for this analysis has three load instances. The first point is where 

the intersection is at ambient temperature, θ0, throughout the entire structure. The second 

point is where the inner surface is at an elevated temperature, θE, whilst the outer surface 

remains at ambient, θ0. This results in a linear temperature gradient through the wall of the 

pipe with a temperature difference ∆θ. The differential expansion of the inner and outer 

surfaces results in a linear distribution of elastic stress through the wall thickness. Finally, 

the case where the entire structure is held at a uniform elevated temperature, θE, is 

considered. The different thermal expansion coefficients of the materials create thermal 

stresses at the material boundaries. In addition to this cyclic thermal loading, an internal 

pressure is applied. The closed end condition is assumed, which is applied in the model as 

an axial tension to both pipes. In addition, both free ends of the intersection are 

constrained to expand in plane, which simulates the expansion of a long pipe. 
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Figure 5.4 - Pipe Intersection Quarter Model and Mesh 

Due to the symmetry present in the geometry and the applied loads, a quarter model with 

appropriate symmetry boundary conditions was used to model the pipe intersection. The 

mesh is refined in the region of the weld as all of the structural and material discontinuities 

are in this region. This gives the model a total of 4038 elements as shown in Figure 5.4. 

Element type DC3D20 elements used for the two heat transfer analyses. These temperature 

distributions were then applied as predefined fields in linear elastic structural analyses 

(using C3D20R elements), giving the stresses shown in Figure 5.5. 

 

Figure 5.5 - Elastic Stresses due to a) Internal Pressure, b) Linear Temperature Difference and c) Uniform 
Elevated Temperature 
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These elastic stresses are used as the starting point for the LMM global shakedown analysis. 

In stage 1 the cyclic stresses are considered so that the reverse plasticity mechanism and 

plastic strain range can be calculated. Once this has been found, the maximum level of 

constant internal pressure which will not cause the component to ratchet is calculated. This 

calculation procedure was repeated for different levels of cyclic loading so that the global 

shakedown boundary could be created. The LMM strict shakedown procedure was also 

employed to calculate the reverse plasticity limit. This limit, which divides the regions of 

strict and global shakedown, completes the interaction diagram for the component and 

demonstrates the ability of the LMM to produce lower and upper bound limits for both 

shakedown and ratcheting. 

5.3.3.1 Results 

The interaction diagram for the constant internal pressure and the thermal cycle is shown 

in Figure 5.6. The applied constant internal pressure, P, is normalised against the initial 

applied internal pressure, P0, of 10MPa. The applied temperature difference, ∆θ, is 

normalised against the initial applied temperature difference, ∆θ0, of 1000C. Both 

temperature dependent and temperature independent results (using the yield stress at 

200C in Table 5.2) are plotted, which demonstrates the reduction in the shakedown limits 

caused by considering temperature dependent yield stress. 

 

Figure 5.6 - Strict and Global Interaction Diagram 
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The point corresponding to zero cyclic load (point A in Figure 5.6) represents the limit load 

for internal pressure. The failure mechanism for this loading predicted by the LMM 

calculation is at the crotch corner, which is typical of this geometry subject to pressure 

loading. This mechanism dominates the failure at low levels of cyclic thermal loading. When 

the cyclic thermal load increases in magnitude (Point B), the material mismatch begins to 

play a more significant role in the failure. The difference in the thermal expansions causes a 

reverse plasticity mechanism at the material joins. When the internal pressure is applied, 

this then interacts with the concentration at the crotch corner to produce a failure 

mechanism which has a contribution from both loads. 

 

Figure 5.7 - Ratchet Mechanism at Point A, C and E 

At large levels of cyclic loading (point C), the material mismatch dominates the failure 

mechanism. The concentration due to the mismatch at these levels of thermal loading is 

such that even the severe stress raiser at the crotch corner is no longer a factor in the 

ratchet mechanism. 

5.3.3.2 Validation 

Validation of these results has been achieved using elastic-plastic analysis in Abaqus. Figure 

5.8 shows the results calculated by the LMM using temperature dependent results and the 

load points selected for full step by step analysis in Abaqus. Load points D, E, F and G are 

used to verify the ratchet boundary itself, and the points H to M are used to compare with 

the plastic strain ranges predicted by the LMM. 
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Figure 5.8 - Points Used for Comparison with Step by Step FEA 

Point D lies within the elastic shakedown region, point F lies within the reverse plasticity 

region and the points E and G are beyond the ratchet limit. The step by step analyses were 

performed and the equivalent plastic strain at the most critical locations were checked to 

determine the cyclic response of the structure, and these correlate well with the ratchet 

bound predicted by the LMM. Figure 5.9a shows the plastic strain history for points D, E, F 

and G taken at the points of maximum plastic strain. Point D shows a strict shakedown 

response, the plastic strain ceasing to increase after ten cycles. Point E exhibits a clear 

ratcheting response. The plastic strain increases with every cycle at a constant rate, 

indicating a ratchet mechanism. Point G also shows a very strong ratchet mechanism. 

 

Figure 5.9 - Plastic Strain Response of Points D, E, F and G 

The plastic strain history for point F should form a reverse plasticity mechanism, but it can 

be seen in Figure 5.9a that the plastic strain is still marginally increasing with each cycle. 
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Further Investigation of this load case reveals that, although the plastic strain is increasing 

within the cycles plotted, the rate of accumulation of plastic strain with each cycle is 

decreasing. Figure 5.9b plots the rate of change of plastic strain for point F when the 

analysis is performed for over 1000 cycles. It can be seen that the accumulation of plastic 

strain in each cycle falls to less than 3x10-3 % per cycle and is still falling. If allowed to 

continue it is expected that this would fall to zero and a reverse plasticity mechanism would 

form. This result highlights the usefulness of the LMM in the analysis of cyclic problems in 

general. If step by step analysis were used alone, the result at point F may be interpreted as 

a ratcheting response. The LMM removes any ambiguity in these results, proving that the 

component is not ratcheting. 

A qualitative verification of the LMM comes from its prediction of where the maximum 

plastic strains will occur. Figure 5.10 compares the equivalent plastic strain from points F, G 

and the corresponding point on the ratchet boundary at ∆θ/∆θ0 =2.5. When comparing 

these contour plots an allowance must be made for the varying levels of internal pressure 

applied. Taking this into account the LMM predicts a plastic zone very similar to that from 

both step by step analyses, around the toe of the weld. 

 

Figure 5.10 - Predicted Failure Mechanism at a) Point F, b) the LMM at ∆θ/∆θ0 =2.5 and c) Point G 

The final validation presented here concerns the ability of the LMM to calculate plastic 

strain ranges. To do this, step by step analysis was carried out at points H to M in Figure 5.8. 

The location of the maximum plastic strain range in these analyses was found to be 

coincident with that predicted by the LMM at the same level of cyclic loading. Table 5.3 

shows a comparison of the maximum plastic strain range calculated by both methods, and a 

very good agreement is observed. 
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Table 5.3 - Comparison of Predicted Plastic Strain Ranges for Points H to M 

Normalised Cyclic 
Loading Level (from 

Figure 5.8) 

Plastic Strain Range 

% Difference 

Step by Step LMM 

1.5 (H) 1.26E-03 1.27E-03 0.24 

2 (I) 2.71E-03 2.71E-03 0.08 

2.5 (J) 6.24E-03 6.19E-03 -0.74 

3 (K) 9.54E-03 9.52E-03 -0.17 

3.5 (L) 1.31E-02 1.31E-02 -0.09 

4 (M) 1.69E-02 1.68E-02 -0.62 

5.3.4 Internal Pressure and Moment Loading 

The same geometry of pipe intersection was also analysed subject to a constant internal 

pressure and a cyclic in-plane bending moment. A half symmetry model was used, and once 

again the mesh was highly refined in the region of the weld. The length of the main pipe 

was reduced in an attempt to reduce the number of elements, giving the final model 4200 

elements as shown in Figure 5.11a. Abaqus C3D20R elements were used for the analysis as 

per section 5.3.3. The cyclic bending moment is applied as a pure moment to the end of the 

branch pipe; the DLOAD subroutine was used to create a linear distribution of pressure 

across the branch which mimics the stress distribution of a pure bending moment. The 

pressure stress is near identical to Figure 5.5a and moment elastic solution is shown in 

Figure 5.11b. 

 

Figure 5.11 - a) Half Model Mesh and b) Elastic Stress from Bending Moment 

a) b)
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5.3.4.1 Results 

The ratchet interaction diagram was calculated for the dissimilar material pipe intersection 

subjected to this cyclic moment and constant internal pressure. This is shown in Figure 

5.12, along with the reverse plasticity limit calculated by the LMM strict shakedown 

procedure. The applied constant internal pressure, P, is normalised against the initial 

applied internal pressure, P0, of 10MPa. The applied cyclic moment, M, is normalised 

against the initial applied moment, M0, of 741.95Nm. The form of the interaction diagram 

differs from that of Figure 5.8 in that there is a limit to the level of cyclic loading. This is 

typical of cyclic mechanical loads, which if large enough are able to cause limit state in the 

component. 

 

Figure 5.12 - Global Shakedown Interaction Diagram for Pressure Moment Loading 

From this diagram it is instantly noticeable that there is little interaction between the 

pressure and moment loads. The ratchet boundary is relatively vertical at low levels of 

cyclic moment, and is relatively horizontal at low levels of constant pressure. This is easily 

explained by examining the elastic solutions. The internal pressure primarily affects the 

main pipe and the region around the crotch corner. There is a large stress concentration 

here, and all other stresses remain relatively low. Likewise the moment loading primarily 

affects the small pipe, causing comparatively small stresses in the main pipe. With both 
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loads acting relatively remotely from each other, an interaction is only possible when both 

loads reach high levels. This occurs at the "corner" of the interaction diagram, where both 

load levels are high. 

 

Figure 5.13 - Failure Mechanism at a) Point N, b) Point O and c) Point P 

This behaviour is reflected in the failure mechanisms seen in Figure 5.13. At low levels of 

cyclic moment, such as at point N, the failure mechanism resembles that of the limit load 

for pressure loading alone, where the crotch corner provides the source of the failure 

(Figure 5.13a). Similarly, at point P the large level of cyclic moment causes a failure pattern 

in the small pipe which is similar to that of the limit load of a beam in bending (Figure 

5.13c). This result matches the failure mechanism seen in the EPERC example, where the 

failure is seen to occur in the branch pipe when subject to in-plane moment loading. 

Further verification comes from the work of Kim et al [112], which also predicts the limit 

load failure to occur in the branch pipe at this level of moment loading. At point O there is 

an interaction between the loads, as both become large enough to add significant levels of 

stress to the critical areas of the other load. The resulting failure mechanism is shown in 

Figure 5.13b, which combines the stress concentration at the weld from moment loading 

with the concentration at the crotch corner from pressure loading. 

5.3.4.2 Material Property Study 

In a finite element study, hypothetical situations can be explored to determine the effect 

various parameters have on the resulting behaviour. In the pipe intersection analysed here, 
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the room temperature yield stress of the SA508 small pipe is more than double that of the 

316 of the main pipe, and the weld material yield is also significantly larger. It was 

postulated that if the yield stresses of the small pipe and weld were reduced then there 

may be more of an interaction between the two loads. Figure 5.14 shows the original 

results from Figure 5.12 with two further ratchet boundaries and their accompanying 

reverse plasticity limit. One is for the case where the entire pipe intersection is made from 

316 steel (including the weld), named Case 1. The second is where the main pipe has 

properties of 316 and the small pipe and weld are given a yield stress which is 75% of that 

of 316, named Case 2. 

 

Figure 5.14 - Global Shakedown Interaction Diagram for Original Pipe, Case 1 and Case 2 

Several observations can be made from this set of results. First of all, the limit load for 

internal pressure is not significantly affected. This is to be expected as the failure occurs at 

the crotch corner in the main pipe where the yield stress is unchanged from the original 

case. The gradient of the global shakedown bound at low levels of moment loading is 

unchanged, meaning that there is no change to the interaction of the loads at these levels 

of cyclic bending. To gain more of an insight into the interaction at higher levels of cyclic 

bending moment, the same results were plotted with the cyclic bending moment 

normalised against the limit moment for the small pipe, ML. This is shown in Figure 5.15. 
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When the results are normalised in this way it is clear that the reduced yield stresses of 

Case 1 and Case 2 cause the interaction to begin at lower levels of normalised cyclic 

moment. This is confirmed by the contour plots in the transition region, which show the 

same shift in mechanism as in Figure 5.13 but at lower values of normalised cyclic bending 

moment. 

 

Figure 5.15 - Normalised Interaction Diagram of Original Pipe, Case 1 and Case 2 

5.3.5 Pipe Intersection Summary 

A pipe intersection with a dissimilar material join was selected for global shakedown 

analysis using the LMM. This was chosen to represent a more industrially relevant 

geometry, and so prove that the LMM was suitable for use in EDF. The results for cyclic 
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recommended that a sensitivity study is performed to ensure the results are not 

significantly altered by minor variations in the input parameters. The changes to the 

properties conducted in section 5.3.4.2 is an extreme example of this, but represents the 

possibilities that exist when the LMM is utilised in this way.  

5.4 Summary and Discussion 

Some Validations of the LMM global shakedown procedure have been presented in this 

chapter, and in general the LMM is able to produce favourable results. The limit loads of 

notched bars show an almost identical agreement with those of the strict shakedown 

procedure and Abaqus limit analysis, which in turn correlate well with the theoretical 

solutions. The Bree Cylinder case was revisited where the effects of temperature 

dependent material properties were also included. The LMM was able to predict the global 

shakedown limits for the original Bree loading very well. Where the loading of Bradford is 

concerned, when both loads are cyclic, an approximation of the global shakedown limit is 

obtained. Slightly less favourable results are seen, which highlights the limitations of the 

LMM where no steady state loading is applied. 

The global shakedown behaviour of a pipe intersection with a dissimilar material join is also 

investigated. This shows the applicability of the LMM to geometries and loading which are 

more commonly seen in EDF. The interaction diagrams and plastic strain ranges produced 

for cyclic thermal loading by the LMM have been verified against step by step FEA and very 

favourable results are observed. 

The sum of these comparisons contributes towards fulfilling criteria 2 from section 1.6, so 

that confidence can be built in the solutions provided by the LMM. 
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6 The Creation of a LMM Structural Analysis Tool 

6.1 Introduction 

One of the primary objectives of this project is to deliver the LMM in a form where it can be 

readily used by EDF engineers as an analysis tool. This will allow EDF engineers to access the 

LMM solution methods without having to make any of the changes to the subroutines 

required to run a LMM analysis as was previously required. 

This chapter describes this analysis tool which includes the re-structuring of the user-

subroutines and the creation of a graphical user interface. This will allow EDF engineers to 

perform LMM strict and global shakedown analyses of components with several options 

available within the analysis (such as temperature dependent material properties). This in 

itself is intended for regular use in EDF as a self contained analysis tool, but is also the 

starting point for a continuation project which will add further functionality based on 

recent developments of the LMM framework. Because of this, and for the sake of short 

term support of the code, this chapter and accompanying appendices aim to provide a 

comprehensive description of the structure of the LMM tool, subroutines and scripts.  

6.2 Preliminary Considerations 

6.2.1 Previous LMM Versions 

The original incarnation of the LMM code was created in the University of Leicester [120] 

and is still used for research purposes today. Several subroutines exist, and a LMM analysis 

consists of two stages. In the first stage an elastic analysis for each applied load and 

temperature distribution is performed using the elastic analysis UMAT subroutine. For each 

of these analyses the elastic stress tensor for each integration point is written to a text file, 

and the integration point temperature is written to a separate text file. The second stage of 

this analysis uses a second UMAT subroutine and these text files to perform the strict or 

global shakedown calculation. In this second stage some changes are required to the UMAT 

code in order to set up the analysis. For example, the number of integration points per 

element and the total number of elements in the model needed to be changed so that the 

arrays could be sized appropriately. The code defining the load cycle also requires updating, 

which reads the stress and temperature text files to generate the applied stresses at each 

point in the load cycle.  
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For an analysis using this set of subroutines both the elastic analyses and the shakedown 

calculation are submitted using the Abaqus batch command i.e. the Abaqus input file for 

the model is required. This input file is generated using Abaqus CAE for a complete model. 

The majority of the content of the input file is common between the elastic and shakedown 

calculations (such as geometry and boundary conditions). However there are some 

differences which must be performed manually (such as requesting the energy outputs 

associated with a UMAT subroutine). 

As previously mentioned, a re-structuring of these subroutines was performed by Tipping 

[34] so that the LMM could be used with minimal code changes. The process of performing 

an analysis is similar to the original method in [120] in that the analysis retains the two 

stages of elastic and shakedown calculations, and text files are still used to pass the stresses 

and temperatures between the stages. The major difference with this procedure is that the 

load cycle is defined via a formatted text file which was read by the subroutines. This 

significantly reduces the code changes required for an analysis. However, the changes to 

the Abaqus input file still needed to be performed manually. 

The creation of a formatted text file to configure the LMM analysis was a major step in the 

usability of the LMM, and in fact draws a parallel with the way in which any conventional 

Abaqus analysis operates. In an Abaqus analysis, the user creates the model in CAE and 

submits it for analysis. CAE then creates the formatted text file (the input file) which is 

passed to the Abaqus solver for solution. The text file for the LMM analysis is equivalent to 

the input file, the only difference being that it is created manually. The creation of a text file 

is also adopted here as it is a simple and robust method for passing information from the 

LMM user interface into the subroutines. The major difference in this work is that the text 

file is generated by the user interface rather than manually. 

6.2.2 Customising Abaqus 

Abaqus contains a large number of options for the user to customise a model or analysis for 

their particular situation. To obtain user-generated solution options the user-subroutines 

can be used, which is how the LMM has been implemented. In addition to this Abaqus CAE 

contains the option to use scripts to perform operations on the model or results databases. 

These scripts are written in the Python open source scripting language [121], and Abaqus 

has extended this language to allow operations to be performed within CAE itself. These 

scripts can be used to perform all operations which are available through the CAE interface 
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(i.e. applying loads, meshing, plotting results etc) and can also query the model/odb for 

values. A typical example where scripts serve a useful function is in a sensitivity analysis, 

where an automatic process can vary a particular value in a model, re-submit for solution, 

query the results and decide whether a further iteration is required. 

The use of python scripting within Abaqus is a very powerful tool, because options also 

exist to use this language to customise the CAE user interface itself. This can be achieved by 

creating either an entirely custom CAE interface or a plug-in to the standard CAE. The ability 

to create a custom GUI is a powerful tool as the modules and toolsets which are not desired 

can be removed and custom functions can be added. Abaqus Viewer is an example of this, 

where all the analysis toolsets and modules have been removed, leaving only the 

visualisation module for viewing output databases. Plug-ins form another useful avenue of 

adding functionality to the Abaqus CAE interface. Plug-ins can be created for a variety of 

purposes; commonly they are used to streamline tasks which are complex to perform or are 

performed regularly. An example of this is the automatic generation of geometries, such as 

the “Create Plate” plug-in which is contained within every standard installation of Abaqus 

CAE shown in Figure 6.1. This simple plug-in allows the user to enter the dimensions of the 

plate and, upon clicking OK, the scripts use these values to automatically create the desired 

plate. 

 

Figure 6.1 - The "Create Plate" Plug-in Dialog Box 
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For the LMM application a plug-in has been selected over a custom CAE interface. A plug-in 

can be accessed through the conventional CAE interface during normal use, whereas a 

custom CAE would need to be opened separately. An EDF engineer with an existing Abaqus 

model will be able to access the LMM through CAE, and the plug in will guide them through 

the process of entering the information needed to run a LMM analysis. 

The creation of a plug-in to gather the required data and format the model will require a 

set of subroutines which are compatible with this model configuration and the text file used 

to pass in the data for the analysis. The re-structuring of the subroutines to accommodate 

this presents the opportunity to re-write them for multiple CPU solution, especially since 

even basic desktop computers now have dual or quad core as standard. Some features of 

the UMAT code written by Chen [120] and Tipping [34] are not amendable to solution with 

multiple CPUs, such as: 

 Reading text files (for stress and temperature) from within a UMAT subroutine 

during the solution. This process becomes significantly slower when multiple cores 

are trying to access a single file. This slows the overall solution, defeating the 

purpose of multiple CPU solution. 

 Using model sized arrays within UMAT to store the information for the entire 

model. Such arrays can be stored in common memory so that all CPUs have access 

to them, but the access would be slowed because only one CPU can access the 

array at a time. Instead a method which uses the Abaqus results files to store and 

access the data must be used instead. 

 The use of SAVE statements, which means that the data in arrays is not saved 

between increments. Once again, the results files must be used to store and access 

information required between increments. 

With all of these considerations, a plug-in has been created and the LMM subroutines have 

been re-written. The plug-in posts dialog boxes to gather the required information and data 

from the user. When the process is complete, the plug-in configures the model for the 

LMM analysis using scripts. The plug-in also writes the text file containing relevant data for 

the subroutines. The subroutines themselves have been re-written to allow multiple CPU 

solution in the UMAT routine. 
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The structure and function of the plug-in is dictated by many of the features of the 

subroutines and their re-structuring for multiple CPU solution. Therefore the subroutines 

will be described first, followed by a description of the plug-in created to use them.  

6.3 Re-structuring of the Subroutines 

Figure 6.2 shows the general structure of a LMM solution with the new set of subroutines. 

 

Figure 6.2 - Overall Structure of a LMM Solution 
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The starting point of this process assumes that the plug-in has created a formatted text file 

containing information about the analysis such as the convergence tolerance, analysis type, 

load cycle and temperature dependent material data. The reading of this text file uses the 

Abaqus UEXTERNALDB subroutine. This subroutine is called at the beginning of every 

analysis by Abaqus before the solution begins and also at the end of the analysis. It is 

intended for communication with external files and software and uses only a single CPU, 

regardless of how many are requested for the actual solution stage. This makes this 

subroutine ideal for reading the LMM text file produced by the plug-in. 

When UEXTERNALDB has completed reading the text file at the beginning of the analysis, 

then the solution begins. This means that the UMAT subroutine is called for each 

integration point which has been defined as a User-material from within Abaqus CAE. 

Defining areas of the model as a User-material within Abaqus CAE tells the solver to look to 

the UMAT subroutine for the material behaviour of those areas. This solution stage of the 

analysis uses the number of CPUs requested by the user, and so this UMAT subroutine must 

be coded to accommodate this. 

As part of the restructuring, all the elastic calculations for the applied loads and the LMM 

calculation itself have been incorporated into a single Abaqus analysis. Each elastic 

calculation is carried out as a single analysis step within this Abaqus analysis, with the LMM 

calculation being performed in the final analysis step. This consolidation into a single 

Abaqus analysis means that the passing of stresses and temperatures in text files is no 

longer required. Instead the results file itself can be used for storage and access of this 

information. When defining a User-material in Abaqus CAE, the user is able to specify the 

number of Solution-Dependent State Variables (SDV) for that material. This is the number 

of memory spaces available to the UMAT in the output database file, and so is commonly 

used to provide contour plots of user defined variable fields calculated during the UMAT 

solution. However, the direct access that UMAT has to the SDVs means that they can also 

be used as a way of storing values and data to be used during the analysis. This has been 

used to pass elastic stresses and temperatures between the elastic analyses and the LMM 

analysis, removing the need for text files and therefore removing this restriction to multiple 

CPU solution. 

Returning to Figure 6.2, the UMAT subroutine is divided into elastic and LMM sections. An 

elastic analysis is performed for each applied load and the stresses and temperatures are 
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stored in the SDV slots. When all applied loads have been considered, an intermediate 

"null" step is included. This allows key variables in the subroutine to return to zero before 

commencing the LMM solution. The LMM solution itself uses the stresses and 

temperatures from the SDVs along with the load cycle and material property data read in 

the UEXTERNALDB subroutine to perform the calculations.  

Within the LMM solution stage, the data previously stored in model-sized arrays is now 

stored using the SDVs. Abaqus itself manages the multiple CPUs accessing the results files 

as it would during any analysis which uses multiple CPUs. These existing methods for 

managing multiple CPU solution means that the UMAT subroutine can use Abaqus itself to 

manage the multiple CPUs accessing the data simultaneously. The alternative, placing these 

model-sized arrays into common memory, would mean the CPUs would have to queue for 

access to the array and could produce unpredictable results. 

The URDFIL subroutine is called by Abaqus at the end of every increment, and so is used 

here to perform a number of tasks. Firstly, the URDFIL can be used to access the results file 

and so is able to obtain the volume integrals required to calculate the upper bound 

multipliers of equations (3.23) and (4.38). Being called at the end of the increment means 

that the URDFIL is used to provide a summary of the increment to the user to give an 

indication of how the solution is progressing. Finally, the URDFIL routine can also be used to 

terminate an analysis. Convergence calculations are performed in URDFIL and if the 

convergence criteria are satisfied then the analysis is ended. If convergence is not met, then 

the solution continues for a further increment where the UMAT is called and the LMM 

calculations are performed once again. 

With these subroutines there are three LMM analyses possible: strict shakedown, steady 

state cycle only and steady state cycle + ratchet limit (i.e. the global shakedown limit). The 

subroutines have been programmed to be flexible and allow as many options as possible 

within these three analyses. These options are summarised in Table 6.1. A full description 

of all the subroutines is provided in Appendix D. This set of subroutines requires that the 

Abaqus model is configured in a certain way (e.g. one analysis step per applied load) and so 

provides a set of requirements which has dictated the design of the plug-in and its 

operation.  
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Table 6.1 - Functions Available in Each LMM Analysis 

Analysis Option 
Strict 

Shakedown 

Steady State 

Cycle Only 

Steady State 

Cycle + 

Ratchet 

Limit 

All structural continuum element types (3D, 
axisymmetric, plane strain and plane stress)    

Temperature dependent Young's modulus 
and yield stress    

Perfect Plasticity Material Model    

Ramberg-Osgood Material Model (which 
may also be temperature dependent) 

   

Any number of points possible in the load 
cycle    

Ability to select which loads to scale during 
solution    

Two convergence options (see section 6.4)    

 

6.4 Graphical User Interface via an Abaqus Plug-in 

Upon selecting the LMM plug-in from the "plug-ins" menu in Abaqus CAE, the user is then 

guided through the process seen in Figure 6.3, which is implemented within the framework 

of Figure E-1 in Appendix E. The Main dialog box is posted which prompts the user to select 

which model from within the current CAE session they would like to analyse and which type 

of LMM analysis - strict shakedown, steady state cycle or steady state cycle + ratchet limit. 

Selecting a steady state cycle analysis means that only stage 1 of the global shakedown 

procedure is performed to give the steady cyclic state of the component along with the 

associated strain ranges. The second stage, to find the global shakedown limit is not 

performed. 

 



128 
 

 

Figure 6.3 - High Level Overview of LMM Plug-in from the Users Perspective 
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With the information from this dialog, background scripts perform a series of checks on the 

selected model to ensure it is possible to perform a LMM analysis successfully. This includes 

very basic checks, such as ensuring the component is meshed. It also includes checks more 

specific to the LMM, such as ensuring that at least one mechanical load is applied when a 

ratchet limit analysis is selected. Any error found is displayed to the user so that it may be 

remedied. The Main dialog box and example error boxes are shown in Figure 6.4. 

 

Figure 6.4 - Main Dialog Box and Possible Error Messages 

Upon passing these checks, a series of subsequent dialogs are posted. This begins with the 

material data. A Material dialog box is posted for each material which is used in the current 

model. Within each of these dialogs the user is prompted to enter the Young's modulus, 

yield stress, Poisson's ratio and the thermal expansion coefficient. The Young's modulus 

and yield stress may be temperature dependent, which is enabled by selecting this in the 

check box. In many situations the model will have already been used in a previous analysis, 

meaning material property data has already been defined in CAE. If this is the case the 

"Extract" function can be used, which queries the current material for the four properties 

required for the LMM analysis and populates the dialog box accordingly. The Material 

dialog box is shown in Figure 6.5, alongside some of the possible error messages. 

When either a steady state cycle or steady state cycle + ratchet analysis is chosen the user 

has the option of using a Ramberg-Osgood model in stage 1 of this calculation. In this case  
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Figure 6.5 - Material Properties Dialog Box and Possible Error Messages 

the Material dialog is shown in Figure 6.6a. The Ramberg-Osgood parameters may be 

temperature dependent or independent in the same way as the modulus and yield. A 

function is also included to link the R-O parameters to the yield stress. This function 

calculates the 0.2% proof stress from the R-O parameters entered and populates the yield 

stress fields accordingly. Additional advice is available for the R-O model by selecting the 

"Tip" button, which displays the box shown in Figure 6.6b. 

 

Figure 6.6 - a) Material Properties Dialog with Ramberg Osgood Option and b) "Tip" Box 

a)
b)
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A Material dialog box is shown for each active material in the model (i.e. each material 

which has been assigned into a section assignment in the parts). When this is complete, the 

plug-in moves on from materials to the load cycle. 

The Loadcycle dialog boxes shown in Figure 6.7 are broadly the same for all analysis types, 

but contain some small differences. If a strict shakedown analysis is selected, Figure 6.7a 

will be shown. For a steady state cycle the load scaling box in Figure 6.7b will be shown 

instead, and for a steady state cycle + ratchet the load scaling options of Figure 6.7c apply. 

 

Figure 6.7 - Loadcycle Dialog and Load Scaling Options 

In all cases the Loadcycle table at the top of the box is present. This table allows the user to 

define the load cycle by adding any number of time points and scaling the loads to the 

appropriate level for that time point in the cycle. At each time point a temperature field can 

also be applied by selecting desired predefined field from the drop-down list. Selecting the 

a)

c)

b)
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"Tip" button displays a box with additional information on populating this table and a 

simple worked example as shown in Figure 6.8. 

 

Figure 6.8 - "Tip" Box for Loadcycle 

The subtle difference between the three analysis options comes when selecting the loads 

which may be scaled. In a strict shakedown analysis, any of the applied loads and 

temperature may be selected for scaling. These loads and temperature fields will be scaled 

by the load multiplier, λ, to find the strict shakedown limit. The loads which are not 

checked as scalable are left at the magnitudes given in the load cycle table. 

A steady state cycle analysis has no option for scaling loads. This is because no load 

multiplier exists in stage 1 of the global shakedown procedure. The load levels given in the 

table are fixed at those values and the stage 1 procedure determines the steady state 

response due to this load cycle. 

Stage 2 of the global shakedown procedure requires that an additional steady state load is 

applied to find the global shakedown limit. Therefore the user may select which of these 

loads are to be added as additional loads in stage 2. The "Tip" box also contains advice on 

the load scaling for each analysis type. 

The Analysis Parameters dialog shown in Figure 6.9 is the final dialog box and gathers the 

data required to create the analysis (such as the job name and working directory) and the 
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solution controls (convergence level and maximum number of increments. The current 

working directory is automatically detected and displayed, but the user may choose to 

change this. Default values of convergence levels are also displayed for inexperienced 

users. 

There are different convergence options available depending on the analysis type chosen. A 

strict shakedown analysis can use either the difference between consecutive upper bounds 

(which historically was the way convergence was judged) or can use the % difference 

between lower and upper bounds. A steady state cycle convergence is based on volume 

integrals of modulus between consecutive increments. If there is little change in this value 

then the stress fields are not changing and so have reached a converged steady state 

behaviour. The value of convergence in the dialog box represents the percentage change of 

this volume integral in consecutive increments. A ratchet limit analysis requires 

convergence values for both stages of the procedure. Stage 1 is identical to that of a steady 

state cycle analysis, and the convergence options for stage 2 are identical to those for the 

strict shakedown analysis. Once again, the "Tip" box gives additional information and help 

to the user if required. 

 

Figure 6.9 - Analysis Parameters Dialog Boxes for a) Strict Shakedown, b) Steady State Cycle and c) Steady 
State Cycle + Ratchet 

If the data entered in the Analysis Parameters box passes the error checking stage, then the 

user interface portion of the plug-in is complete. In total the dialog boxes will have 

gathered the following information: model name, analysis type, material properties 

(temperature dependent), load cycle, which loads are scalable, job name, max number of 

increments, convergence criteria and working directory. The next stage of the plug-in is to 

a)

b)

c)
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use this information to configure the Abaqus model and write the LMM text file containing 

the information for the subroutines. The changes to the model have been designed so that 

the original model is entirely recoverable i.e. nothing of the original model is deleted. 

Instead items are suppressed or copied so that the LMM configuration of the model can be 

applied. All the model data is passed into a set of scripts which write relevant information 

to the LMM text file and perform a series of changes to the model. Firstly, the LMM text file 

is created and populated with information about the analysis. An example of this is shown 

in Table 6.2. 

Table 6.2 - LMM Text File Example 

LMM Text File Explanation 

Analysis Type: 
STRICT_SHAKEDOWN 
 
 

The analysis type. May also have a value of 
STEADY_CYCLE_ONLY or 
STEADY_CYCLE_AND_RATCHET 

Max Number of Increments: 
350 
 
 

Max number of increments defined by the user 
should convergence prove elusive 

Convergence (%Diff) 
5.00000 

The convergence option chosen and the value. The 
(%Diff) flag is present when the percentage 
difference convergence option is used. It is not 
present when the difference between upper 
bounds is selected 
 

Dimensionality 
THREE_D 
 
 
 

Dimensionality flag. May also have a value of  
THREE_D, AXISYMMETRIC, 
PLANE_STRESS or PLANE_STRAIN. 

Number of Applied Loads 
4 
Number of Load Instances 
2 
 

The number of loads (including temperature 
distributions) and load instances in the cycle 

Load:Bending Moment 
NOT_SCALABLE 
0.00000 
1.00000 
Load:Internal Pressure 
SCALABLE 
0.00000 
1.00000 
Load:Tension 
SCALABLE 
0.00000 
0.50000 
Load:Temperature Difference 
NOT_SCALABLE 
0.00000 
1.00000 

The multipliers for each load as entered in the 
Loadcycle table. The LMM uses these multipliers 
to construct the load cycle in the code and so 
determine the elastic stress at each load point.  
The SCALABLE/NOT_SCALABLE flag dictates 
whether the load can be scaled using the 
calculated λ in each increment. 
 
 



135 
 

Once this information has been written to the LMM text file, the next stage is to configure 

the loads and boundary conditions in the Abaqus CAE model. Two basic requirements 

dictate the way in which this is achieved. The first requirement is that the elastic stress for 

each applied load must be known so that superposition can be used to construct the load 

cycle in the subroutines. The second requirement is that the same boundary conditions are 

used for all elastic analyses and the shakedown/steady cycle/ratchet analysis. Therefore 

one analysis step is created for each of these applied loads and predefined fields and the 

corresponding load or field is applied in isolation in that step. Figure 6.10 shows example 

Load Manager and Predefined Field Manager tables from Abaqus to illustrate this. A "Null" 

analysis step is created where no loads are applied, which allows the subroutines to return 

key variables to zero. The final analysis step created is for the shakedown/steady 

cycle/global shakedown analysis. This situation allows the LMM subroutines to obtain the 

elastic stresses for each load in turn, return the subroutine variables to zero and then carry 

out the shakedown/steady cycle/ratchet analysis. The boundary conditions are moved to 

the first step and set to propagate through the entire analysis. The original analysis steps 

are suppressed, allowing the user to recover the original state of the model. 

 

Figure 6.10 - Load and Predefined Field Manager Dialogs 

The materials are the next area to receive attention. The LMM requires a User-material to 

be defined in Abaqus to link with the UMAT subroutine. In Abaqus CAE a copy of each 
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active material is made which is defined as a User-material for the LMM analysis. The 

original material is retained so that the user may recover the original material properties. 

Values for temperature independent Young's modulus, Poisson's ratio, yield stress and the 

Ramberg-Osgood parameters are entered as constants in this material. A User-material is 

only able to include multiple constants, not tables. Therefore if a property is temperature 

dependent then a value of zero is entered for this constant and the temperature dependent 

values are appended to the bottom of the LMM text file. An example of this is given in 

Table 6.3. 

Table 6.3 - Material Properties Section of the LMM Text File 

LMM Text File Explanation 

Material Properties: 
Number of materials: 3 
 
 
 

The number of materials is printed 
so that UEXTERNALDB knows how 
many materials to look for in the file 

Material:SA508 
Temperature Independent Modulus 
Temperature Independent Yield Stress 
Perfectly Plastic Material 
 
 
 
 

The material name is printed to be 
read by UEXTERNALDB. 
The modulus and yield for each 
material may be either: 
Temperature Independent 
or 
Temperature Dependent. 
Temp independent values are 
written to the User Material in 
Abaqus 
 

Material:INCONEL 82/182 
Temperature Independent Modulus 
Temperature Dependent Yield Stress: 2 
3.7860000000e+002           20.000 
3.1580000000e+002          320.000 
Perfectly Plastic Material 
 

Where temperature dependent 
properties are found, these are 
printed in a formatted way so that 
UEXTERNALDB is able to read them. 

Material:STEEL 316 
Temperature Independent Modulus 
Temperature Independent Yield Stress 
Temperature Independent Ramberg-Osgood 

For each material, the words 
Perfectly Plastic Material 

Are printed unless a Ramberg-
Osgood material is selected.  
Where a Ramberg-Osgood model is 
used with temperature dependent 
properties then a formatted list of 
these is provided in the same way as 
modulus or yield. Otherwise it is 
declared as temperature 
independent and the values are 
written in the User Material. 
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After the materials configuration, the field and output requests are created. Once again any 

original requests in the model are suppressed rather than deleted. The most important of 

the LMM output requests is the variable SDV, which is the user-defined outputs from the 

UMAT subroutine. Requesting this output allows the user to view contour plots of the 

variables calculated within the UMAT routine, and so it is vital that this is included. 

In addition to the field and history outputs, the energy file output must be requested so 

that the volume integrals needed for the upper bound load multiplier of equation (3.23) 

can be accessed. The only way to achieve this is by adding commands to the keyword block 

for the model, which contains all the commands printed to the input file when the analysis 

begins (shown in Figure 6.11). Part of this script inserts the commands to the keyword block 

as if a user had manually typed them. To recover the initial state of the model a user simply 

clicks the button "Discard All Edits", which removes any user-added commands. 

The final script creates the LMM analysis job with the correct subroutine for the analysis 

type selected. When created, the user may edit the job in the same way as any other 

Abaqus job by selecting the number of CPUs to solve with, queue options etc. Finally the 

user may submit the analysis for solution. 

 

Figure 6.11 - Keyword Block After the *ENERGY FILE Command has been Added 

Whilst solving any Abaqus job the progress of the solution may be seen in the "Monitor" 

dialog box. Information such as the current step and increment are displayed along with 

any warnings and errors encountered. The URDFIL subroutine contains code which prints 

additional information about the LMM to the Data file which can be read by this dialog box. 
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During the solution, the lower and upper bound load multipliers and convergence levels are 

printed for the current increment so the user can see the progress of the solution. When 

the analysis is complete a summary is printed which declares the shakedown status of the 

model, the final values of the load multipliers and lists the SDV numbering so the user can 

view contour plots of the results. A sample summary given in the Monitor dialog box is 

shown in Figure 6.12. 

 

Figure 6.12 - Monitor Dialog Box Showing the LMM Summary Report 

When complete, the user may view contour plots of the results in the same way as any 

other Abaqus analysis. 

6.5 Installation and Testing 

The plug-in and subroutines described here have been installed on the EDF computer 

system. An extended visit to the EDF offices allowed time for an independent user to 

extensively test the LMM tool and give feedback on any problems encountered or 

additional functions which would be of benefit. 

This external perspective was a valuable asset. As mentioned in section 6.4 a lot of effort 

was invested in error checking of the inputs of each dialog box. However it is very difficult 

for a single programmer to foresee every eventuality or combination of events which could 
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lead to an error. The testing within EDF highlighted some additional situations which should 

be avoided and minor errors with the plug-in itself, and these were rectified on site when 

they arose. 

This testing also highlighted some small additional functions which would be beneficial in 

regular use. For example in Figure 6.6a the function which calculates the 0.2% proof stress 

was added in this way. Therefore the plug-in overall has been tailored based on the 

requests of EDF, making the tool more convenient for their engineers to use. EDF are now 

satisfied with the current tool. 

6.6 Summary and Discussion 

This chapter has described the development of the LMM into a tool which can be used on a 

regular basis by EDF engineers. This has involved re-structuring the subroutines for multiple 

CPU solution and developing a plug-in for Abaqus CAE. 

This plug-in has been created to provide an intuitive and simple way to perform a LMM 

analysis. The data for the analysis is gathered through Abaqus CAE, which is a familiar 

environment for EDF engineers. The plug-in implements all of the functionality possible in 

the subroutines, and includes extensive error checking to ensure that only permissible 

combinations of options are used. The plug-in and subroutines have been written so that 

the configuration of the subroutines for each analysis is performed automatically, thus 

making a LMM analysis more convenient and less prone to errors. 

As mentioned in the introduction to this chapter, the analysis tool created here is to form 

the basis of a continuation project. This project will extend the capabilities of the LMM to 

include the effects of creep in the cycle (see section 8.2 for further details). These 

extensions will allow the analysis tool to have a wider applicability to structural integrity 

analyses both in EDF and other organisations dealing with structural integrity issues. 
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7 Application of the Complete LMM Analysis Tool 

This chapter demonstrates the use of the LMM analysis tool described in the previous 

chapter. This serves two purposes. Firstly it acts as a worked example of a LMM analysis 

within the context of an R5 assessment. Secondly it acts as another verification of the LMM. 

In the example shown here the use of elastic plastic FEA was necessary to demonstrate 

shakedown and so these results are compared to the LMM.  

The example used is that of a header branch pipe from one of the EDF AGR stations. The 

assessment of this component was performed by T. Siddall in [122]. Proof of shakedown 

proved problematic during the integrity assessment which makes this an ideal example for 

a LMM analysis. A full description of the background to the analysis conducted is given in 

[122]. The important aspects of this background are summarised in this chapter, followed 

by a description of the FEA model. The analyses conducted in [122] are described, which 

are based on the R5 procedure and some elastic-plastic calculations. The setup and 

submission of the LMM analysis of the header is described, followed by a comparison of the 

results with the R5 and elastic-plastic FEA results. 

7.1 Background 

It was required to demonstrate sufficient margin against ratcheting for the secondary 

header tees in the cold reheat system of the AGR. A schematic of such a header is shown in 

Figure 7.1, where the main pipe has two parallel branch pipes. There are a number of these 

secondary headers in this system. They have all been designed with the same wall 

thicknesses, but two variations exist with regards to the distance between the two branch 

pipes.  

NDT was performed on a number of the headers to determine the current wall thicknesses. 

This inspection showed a significant variation in these wall thicknesses, where the 

minimum main and branch pipe thicknesses were found to be 20mm and 10.7mm 

respectively. It should be noted that these minimum thicknesses were not observed in the 

same header. 

In order to prove shakedown in all of the headers whilst keeping the number of analyses to 

a minimum a worst case model was created. The minimum wall thicknesses observed from 

the NDT of all the headers were used in this model despite their occurrence in different 

headers. This gives an inherent conservatism in the model. 
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This worst case model also considered the possibility of an interaction between the two 

branch pipes. There are two header geometries, the difference between them being the 

dimension F (3153.3mm and 4169.3mm). It was shown in [122] that the smaller of these 

two designs could show an interaction of the stresses between the two branches whereas 

the larger design would not. Therefore as a conservative approach the smaller branch 

geometry was used. 

The design conditions of the header are an internal pressure of 4.55MPa, which is limited 

by a safety relief valve upstream of the header, and a temperature of 382.2oC. The analysis 

assumes that the pipework operates between two relatively steady state conditions of cold 

shutdown and hot pressurised, which was confirmed by plant temperature and pressure 

data. Therefore no cold-pressurised or thermal shock conditions are considered.  

In addition to the pressure and temperature, the headers experience bending moments 

due to interaction with the rest of the piping system. The applied bending moments at the 

cold shutdown and hot pressurised conditions were analysed using the PSA5 software for 

the entire cold reheat piping system. There was a variation in the bending moments seen 

across all the headers in the system, and so the worst case bending moments were chosen 

as a conservative option for this model. 

7.2 Finite Element Model 

7.2.1 Geometry 

 

Figure 7.1 - Geometry and Dimensions of Header 
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The dimensions of the header geometry used are shown in Figure 7.1, and the model and 

mesh were created to match that of [122] as closely as possible. The weld is modelled as a 

45 degree chamfer with a leg length of 14.1mm. This gives a weld cap dimension of 20mm, 

which was the minimum observed in the inspection data. Although symmetry exists in this 

geometry, the applied bending moments are not symmetrical. Therefore symmetry could 

not be used. 

 

Figure 7.2 - a) Header Mesh b) Weld Mesh Detail 

The FEA model is meshed with the Abaqus quadratic brick element C3D20R, as shown in 

Figure 7.2a. The mesh is biased to be denser in the region of the intersection and weld, 

resulting in a total of 52240 elements in the model. The weld region is meshed as shown in 

Figure 7.2b, which results in no element warnings for internal angles or aspect ratio. 

7.2.2 Material Properties 

Table 7.1 - Temperature Dependent Material Properties for the Header Branch 

Temperature (oC) 
Yield Stress, 

σy (MPa) 

Shakedown 

Yield Stress, 

Ksσy (MPa) 

Ultimate Tensile 

Strength (MPa) 

Young's 

Modulus 

(GPa) 

20 247.1 180.4 419 210 

382.2 139.7 125.7 389.5 185.9 

Table 7.1 shows the young’s modulus and yield stress at 20oC and 382.2oC. For a shakedown 

assessment R5 also includes a factor, Ks, on the yield stress. This represents the ability of 

the material to harden or soften during repeated cycles of loading. The header pipework is 

a) b)
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produced from BS-3602-HFS-27S carbon steel. The Ks factor for carbon steels given in R5 is 

0.73 at 20oC and 0.9 for temperatures above 150oC. This gives the shakedown yield stresses 

in Table 7.1. 

7.2.3 Loads and Boundary Conditions 

The internal pressure of 4.55MPa is applied to all internal surfaces of the model. The closed 

end condition is replicated by applying the equivalent axial tension to the ends of the main 

and branch pipes as a tensile pressure. The two temperature extremes of 20oC and 382.2oC 

are assumed to be entirely uniform with no temperature differences within the model. 

Therefore these are modelled using uniform predefined fields. 

The FEA model makes use of reference points and rigid kinematic MPC constraints as a 

convenient way of applying bending moments and boundary conditions to the model. 

These are shown in Figure 7.3. To maintain consistency the naming convention used here is 

the same as [122]. In all cases these constraints allow for radial expansion of the pipes due 

to internal pressure.  

 

Figure 7.3 - Reference Points, Multi-Point Constraints and Moment Coordinate System 
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The worst case bending moments from the PSA5 analysis are given in Table 7.2. The PSA5 

analysis has its own global co-ordinate system which differs from that of Abaqus. Therefore 

a Cartesian coordinate system was created in at the Inboard Main reference point so that 

the moments from PSA5 could be directly applied to the model. This coordinate system is 

shown in Figure 7.3.  The model is constrained by fully fixing the Outboard Main Reference 

Point in all degrees of freedom. 

Table 7.2 - Bending Moments Applied to Model (all in Nm) 

 Cold Shutdown Hot Pressure 

Location Mx My Mz Mx My Mz 

Inboard Main 23033 -2823 -6580 -35978 4287 15550 

Inboard Branch -26508 2076 6314 14715 -2952 -5103 

Outboard Branch -15019 -344 8705 4363 -1289 -2750 

7.3 EDF Shakedown Analysis 

To perform the R5 Volume 2/3 shakedown calculations the stresses need to be linearised 

across the section in question. In [122] the stress classification line shown in Figure 7.4 

proved to be most severe, and so those results are presented here. This line is at the 

outboard side of the inboard branch pipe. 

 

Figure 7.4 - Stress Classification Line for Linearised Stresses 

Stress Classification
Line
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7.3.1 R5 Simple Checks 

The checks in R5 Volume 2/3 were used to determine the shakedown status of the 

component, beginning with the simple checks in R5 section 6.6. This check assumed that 

the residual stress field is null. The shakedown condition is met if the linearised elastic 

stresses are less than the modified yield stress: 

  ˆ ,lin s yx t K  (7.1) 

An elastic analysis was performed for the cold shutdown and hot pressurised states. Figure 

7.5 shows a contour plot of the von-Mises equivalent stress at the hot-pressurised 

condition, where the contour limit has been set to the shakedown yield stress of 125.7MPa. 

It can be seen that a significant region around the intersections has exceeded this limit, 

shown in grey. The linearised stresses across the classification line in Figure 7.4 exceed the 

yield stress: the von-Mises equivalent membrane + bending stress at the inner and outer 

surfaces are 278MPa and 246Mpa respectively. This is in excess of the modified yield and so 

shakedown cannot be demonstrated using the simplified check. 

 

Figure 7.5 - Elastic Stress at the Hot Pressure Condition 

7.3.2 R5 Shakedown Check Involving a Residual Stress Field 

To generate a residual stress field the elastic analysis in section 7.3.1 was extended to an 

elastic perfectly-plastic analysis with the unmodified yield stress at 382.2oC (i.e. 139.7MPa). 

The internal pressure and associated axial tensions were applied along with the hot 

Inboard
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moments to generate the elastic-plastic response at this state. Following this plastic 

deformation, all the loads were removed which left the resultant residual stress field shown 

in Figure 7.6. 

 

Figure 7.6 - Residual Stress State after Removal of all Loads (temp 382.2 degrees) 

When this route is adopted in R5 the stress across the section (including the residual stress 

field) must satisfy 

  ,s s yx t K  (7.2) 

Where 
s

 is the sum of the applied elastic and residual stresses. If 
s

 is a linearised stress 

distribution, as was used in [122], then equation (7.2) must be satisfied over the entire 

classification line. The superposition of the elastic and residual stresses at the hot pressure 

condition resulted in membrane + bending stresses of 183MPa and 188MPa at the inner 

and outer surfaces respectively. This is greatly in excess of Ksσy at 382.2oC (125.7MPa) and 

so fails the shakedown criteria of R5. 

7.3.3 Elastic-Plastic FEA 

Exhaustion of the simplified criteria in R5 meant that cyclic elastic-plastic FEA was required 

to demonstrate shakedown. An elastic perfectly-plastic material was used with the 

unmodified yield stresses at 20oC and 382.2oC. The model was cycled between the two 

states of cold shutdown and hot pressure. Figure 7.7 shows the plastic strain contours after 

Inboard

Outboard
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the final cycle and highlights the location of peak plastic strain (in the branch side weld toe 

in the inboard branch). The plastic strain in this most critical location is also plotted in 

Figure 7.7. It can be seen that the plastic strain stabilises after the first cycle and so the 

header is within strict shakedown. 

 

Figure 7.7 - Contour of Plastic Strain and Plastic Strain History At the Critical Location 

7.4 Analysis using the LMM 

This header branch has been re-analysed using the newly developed LMM tool. The steps 

used in this section to construct the LMM analysis are detailed so as to act as a worked 

example of a LMM analysis. The results are then compared to the EDF analysis. 

7.4.1 Strict Shakedown Analysis 

The FEA model of section 7.2 was used for a LMM strict shakedown analysis. Figure 7.8a 

shows the first dialog box of the LMM plug-in, which shows the selection of the model and 

a strict shakedown analysis. 

Only one material is defined in this model, therefore a single material properties dialog is 

shown. Figure 7.8b shows the materials dialog with the temperature dependent properties. 

Only two temperature dependent properties are used so the third line of the tables is 

deleted. The Young’s modulus and Poisson's ratio were already defined for the elastic 

analysis, and so the “E tract” function was used to populate the dialog bo . The elevated 

temperature in the model is uniform and so no thermal stresses will be generated. 

Therefore an arbitrary thermal expansion coefficient is entered. 
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Figure 7.8 - a) Main Dialog Box and b) Materials Dialog Box  

 

Figure 7.9 - a) Load Cycle Dialog and b) Job Dialog 

Figure 7.9a shows the Load Cycle dialog box. The load cycle for this component is assumed 

to vary between the two conditions of cold shutdown and hot pressure. Therefore two 

points in the load cycle table are required. The cold moments are applied with a multiplier 

a) b)

a)

b)



149 
 

of 1.0 in the first load instance along with the 20oC temperature field. The hot moments, 

internal pressure and axial tensions associated with this are not applied and so have a 

multiplier of zero. In the second load instance, the cold moments have a multiplier of zero. 

The hot moments, internal pressure and its associated axial tensions are given a multiplier 

of 1.0. The second load instance is given the 382.2oC temperature field. All loads are 

allowed to be scaled during the solution. Therefore the resulting shakedown load multiplier 

will be the level by which all these loads can be scaled to be exactly at the shakedown limit. 

The two temperature fields are not included in this scaling, which means that the yield 

stresses at both load points will remain unaffected.  

The final dialog, shown in Figure 7.9b, is used to name the analysis, set the working 

directory, and specify the number of increments and convergence. This is a relatively large 

model and so a maximum of 300 increments was set. If convergence has not occurred in 

this time then the analysis is terminated to prevent the files becoming too large. A 2% 

difference between lower and upper bounds was chosen as the convergence tolerance. 

This value is thought sufficient to ensure converged lower and upper bounds without 

allowing the solution time to become excessive. 

With the data entered into the dialog, the LMM scripts configure the model as described in 

section 6.4. The analysis job is created in CAE, and at this point the model is ready for a 

LMM analysis. At this point the job definition created by the LMM was modified to solve on 

multiple CPUs, and then it was submitted for analysis. 

The convergence tolerance was met in 118 increments of the LMM solution with upper an 

lower bound multipliers of 1.117 and 1.096, as shown in Figure 7.10. Therefore the applied 

loads could be increased by approximately 10% whilst still achieving strict shakedown. This 

result confirms that the header is in strict shakedown as observed in the cyclic elastic 

plastic FEA. Figure 7.11 compares the contour plots of plastic strain predicted by the LMM 

and elastic plastic FEA. The LMM results are given at the strict shakedown limit, and the 

Abaqus results are for the specified loading. Nevertheless, a good agreement is observed.  
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Figure 7.10 - Abaqus Monitor Dialog for the Strict Shakedown Analysis 

 

 

Figure 7.11 - a) LMM Mechanism Prediction at the Strict Shakedown Limit and b) Location of Peak Plastic 
Strain from Elastic-Plastic Analysis 

The elastic plastic analysis of [122] described in section 7.3.3 used the unmodified yield 

stress to prove shakedown, and this has been validated with the LMM analysis using the 

a) b)
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same values of yield stress. However the R5 assessments use a modified value of yield to 

account for cyclic softening. The header components see a very low number of cycles – 

plant data shows around 6 cycles per year. Therefore it is questionable whether the steel 

would see enough cycles to soften by any significant level. Nevertheless it is prudent to 

check the shakedown status using s yK . 

The LMM analysis was repeated using the shakedown yield stresses from Table 7.1. The 

resulting lower and upper bound shakedown multipliers are 0.867 and 0.886 respectively. 

Therefore the header is not in strict shakedown and further analysis is required to ensure 

that it is not ratcheting.  

7.4.2 Steady State Cycle and Global Shakedown Limit 

Since strict shakedown could not be achieved when the s yK values of yield stress were 

used, the model must either be in global shakedown or ratcheting. To find out which, the 

model was analysed using the LMM global shakedown procedure. The LMM plug-in was 

started once again within Abaqus CAE. Figure 7.12 shows the Main and Material dialog 

boxes, which are nearly identical to that of the strict shakedown analysis. In this case, the 

Ramberg-Osgood model is not used due to lack of material data. 

 

Figure 7.12 - Steady Cycle and Ratchet Limit a) Main and b) Materials Dialogs  

The load cycle is identical to that of the strict shakedown analysis. This means that the 

stage 1 calculation will give the stabilised cycle for these loads and the strain ranges to use 

a)
b)
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in a low cycle fatigue calculation. At this point the global shakedown calculation differs 

from the strict shakedown. In the strict shakedown analysis all the loads were scaled, which 

gives the level by which the entire load case should be scaled to be at the strict shakedown 

limit. The global shakedown procedure, however, adds the selected extra loading to all load 

points to find the global shakedown limit. The additional loads must be selected carefully to 

ensure the ratchet limit is meaningful. In this case the internal pressure and associated axial 

tensions were selected to be added in stage 2, shown in Figure 7.13a. This means that the 

ratchet limit multiplier will correspond to the level of additional pressure loading that will 

not cause ratcheting. If it was deemed that the safety margin against an increase in cold or 

hot moments was needed, then these could be selected instead.  

The global shakedown analysis required two convergence values. A steady cycle 

convergence value of 1e-4 was used to obtain a stabilised cycle. A 5% difference in lower 

and upper bound was chosen for stage 2 in order to reduce the number of increments 

required. Figure 7.13b shows the Job dialog box. The model was then solved. 

 

Figure 7.13 - Steady Cycle and Ratchet a) Load Cycle Dialog and b) Job Dialog 

a)

b)
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The lower and upper load multipliers given by this analysis were 0.024 and 0.087 

respectively, which correspond to an allowable increase in pressure of 2.4% and 8.7% 

respectively. This means that an increase in pressure of 0.4MPa (using the upper bound 

multiplier) can be sustained before ratcheting. The difference in the load multipliers is 

greater than the 5% specified in the plug-in and is a result of the analysis being terminated 

due to the size of the results files, which were becoming large. The purpose of the stage 2 

analysis was to demonstrate if the header is in global shakedown, therefore any positive 

load multiplier indicates this. Examining the load multipliers during the solution shows that 

the upper bound has converged very well, with little change seen between consecutive 

increments. The lower bound, even with the convergence improvements of section 4.6, 

showed a slow convergence with the inboard branch weld toe being the source of the 

problem. Despite this, the lower bound shows that at least 0.11MPa of internal pressure 

can be added before ratcheting will begin and continued solution would approach the 

converged upper bound value. Based on this the header was judged to be within global 

shakedown and the analysis was terminated. 

Two elastic plastic analyses were conducted to validate this result. The first analysis 

considered the exact load history seen by the header. Figure 7.14a shows the contours of 

plastic strain at the weld of the inboard branch given by this elastic plastic analysis and the 

LMM at the hot end of the cycle, and a good agreement is observed. The plastic strain 

history at the point of the highest plastic strain in the elastic plastic analysis is plotted in 

Figure 7.14b, which shows that the header is operating in global shakedown. The plastic 

strain range at this location given by the LMM and the elastic plastic analysis are 9.75e-4 

and 8.97e-4 respectively, which shows that the LMM gives a conservative estimate of this. 

The second elastic plastic analysis was conducted to validate the location of the global 

shakedown limit predicted by stage 2 of the LMM calculation. This analysis considered an 

increase in the internal pressure and tensions of 9%, taking the load cycle just beyond the 

global shakedown limit predicted by the LMM upper bound. Figure 7.15 shows the plastic 

strain history, which shows an accumulation of plastic strain until a plastic hinge forms 

during the 12th cycle and the analysis halts 
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Figure 7.14 - a) Contour Plot of Plastic Strain and b) Plastic Strain History of Elastic Plastic Analysis. 

 

Figure 7.15 - Plastic Strain History of the Second Elastic Plastic Analysis 

These analyses show that the header operates in global shakedown, but is very close to the 

global shakedown limit. A relatively small increase in the pressure would result in 

ratcheting behaviour. Despite this, further evidence to substantiate the global shakedown 

status of the component comes from the available material properties. Table 7.1 shows 

that significant work hardening occurs in this material, which is not taken into account in 

any of the analyses conducted here. If a Ramberg-Osgood model were available then this 

could be used in stage 1 of the global shakedown calculation. This hardening would bring 

the header further away from the global shakedown limit (possibly even to within strict 

shakedown) which supports the global shakedown status of the header. 
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7.5 Summary and Discussion 

This chapter has revisited the analysis of a header branch pipe performed by EDF. The 

original analysis of this component used the R5 procedure, but these checks could not 

demonstrate that the header was in shakedown. Elastic plastic analysis was performed and 

showed that the header was in strict shakedown. 

The LMM has been used in this chapter to re-analyse the header. This provides a worked 

example of the newly created LMM plug-in. The steps involved in running the LMM strict 

shakedown analysis and the outputs it produces are described. The LMM results concur 

with that of the elastic plastic analysis, which show that the header is in strict shakedown 

when the unmodified yield stress is assumed. However strict shakedown is not achieved if 

the R5 Ks factor is applied. 

The LMM global shakedown analysis proved that the header is in global shakedown but, 

with the perfectly plastic material assumed, a relatively small increase in the internal 

pressure would cause ratcheting. Elastic plastic analyses verify the plastic strain locations, 

plastic strain range and global shakedown limit predicted by the LMM. This chapter 

therefore also adds to the validation objective of this thesis by adding one further practical 

application of the LMM to the number of existing examples. The model used for this 

analysis is one of the largest used in any LMM analysis, and the resulting global shakedown 

output files became large as a result. Future development of the plug-in and subroutines 

should include work to reduce the size of these outputs.  
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8 Conclusions, Discussion and Future Work 

8.1 Summary of the Thesis 

The Linear Matching Method has been in development for a number of years, and has been 

used primarily as a research tool within an academic environment. The work presented in 

this thesis centres around the development of the LMM for use within an industrial context. 

The changes and developments to the LMM which allow this to happen were defined by 

three objectives: 

1. Addition of conservative lower bounds to the LMM framework 

2. Provide validations of the solutions produced by the LMM 

3. Create a graphical user interface to the LMM 

The LMM strict and global shakedown procedures were originally derived as upper bound 

procedures. Whilst upper bounds offer advantages in terms of solution convergence, the 

nuclear industry has a clear preference for the conservatism offered by lower bound 

solutions to the shakedown limit. A lower bound to the strict shakedown procedure was 

added before the start of this project, and so the effort in this thesis was focused on 

creating an analogous lower bound to the global shakedown method. 

The process of creating this lower bound began by setting out the theoretical foundations - 

no formal lower bound theorem for global shakedown exists, and so the work of Polizzotto 

was used to construct the basis of a lower bound for the LMM. These theoretical 

foundations were developed into a numerical calculation which was implemented into the 

global shakedown procedure. The resulting method produces the lower and upper bound 

load multipliers simultaneously, which allows the user to judge convergence of the solution 

as it progresses. It also gives confidence in the final solution if the two multipliers have 

converged closely. Improvements to the convergence of the lower bound were invesitgated 

through different modulus matching schemes, but with inconclusive results. An elemental 

average of the lower bound was found to give the best approximation to the lower bound 

whilst improving the speed of convergence dramatically. This now means that the LMM has 

the capability to calculate the lower and upper bounds to both the strict and global 

shakedown limit. 

Ease of use of the LMM was a primary concern with this project. The LMM, implemented 

using subroutines in Abaqus, can be a difficult tool to use for those with little programming 
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experience, especially since some code changes were required for each analysis. The plug-

in created for Abaqus now provides a convenient way for the user to perform a LMM 

analysis because the required data is entered into dialog boxes within the familiar Abaqus 

CAE environment. The need for code changes has been removed, with the analysis being 

configured by passing a text file between Abaqus CAE and the subroutines. The subroutines 

themselves have been re-written to allow solution on multiple CPUs, an improvement over 

the previous single CPU versions of the code. The plug-in and subroutines have been 

installed on the EDF computer system and have undergone testing by an independent user. 

This resulted in some minor adjustments, additional error checking and extra functionality 

to tailor the plug-in for use in EDF.  

Chapter 7 of this thesis re-visits an existing EDF analysis to demonstrate the use of the final 

LMM analysis tool. This gives a worked example of the plug-in to demonstrate how to 

interpret the material properties and applied loads for a LMM analysis. The results are 

compared to the R5 assessment and elastic plastic analysis which demonstrates the 

applicability of the LMM to assessments performed by EDF. For future development and 

support of the code, the subroutines and plug-in scrpts have been described in detail in 

Appendix D and Appendix E respectively.  

A number of LMM analyses have been performed throughout this thesis, which have been 

compared with theoretical, numerical or experimental data. The general purpose of these 

analyses is to validate parts of the LMM framework, add confidence in the results it 

produces and determine its current limitations. These comaprisons will add to existing 

published comparisons, and over time the increasing number of these will prove the 

capabilities of the method and highlight areas for future development.  

Comparisons with theoretical solutions are given for the limit loads of notched bars and the 

Bree cyclinder shakedown limits. These comparisons, with their simple geometries and 

loading, allows the implementation of the bounding theorems to be tested. This includes 

the newly developed lower bound to the global shakedown limit. The notched bar 

examples provide an extra function by allowing the different dimensionalities to be verified. 

In all cases a good agreement between the LMM and the theoretical solutions is seen. This 

is the case even for the the Bree cylinder with modified loading, provided by Bradford [95], 

where an approximation of the load cycle was required for the current LMM global 

shakedown method. 



158 
 

Elastic plastic analyses provide a convenient way to validate the LMM solutions. The 

primary role of the LMM is to provide the same (and more) results as are possible with 

elastic plastic analysis but with shorter solution times. Since elastic plastic FEA is a trusted 

method within EDF, a favourable comparison of the LMM with this method is considered to 

be a suitable method of validation. The examples of pipe bends, pipe intersections and the 

header branch have all been analysed using the LMM and compared to elastic plastic 

analyses. A good agreement is seen in all cases, whether that be the location of the 

shakedown limits, the location of the mechanism or individual values such as the peak 

plastic strain range. 

The LMM is to be used for the analysis of plant components, therefore comparison of the 

LMM with experimental/plant data is a crucial final stage to the validation exercise. This 

thesis presents a comparison of the LMM strict shakedown procedure with experimental 

limit loads of pipe intersections and strict shakedown pressure of nozzles in spherical shells. 

The LMM was able to conservatively predict these limit loads and shakedown limits, which 

is an encouraging result in terms of regular industrial use.  

8.2 Future work 

The work presented in this thesis opens several avenues for improvements and further 

work. In particular there is considerable scope for additional validations with experimental 

comparisons, extending the capabilities of the LMM and for implementing more 

functionality in the plug-in for general structural integrity assessments. 

There is a continuous need for validation of the method against experimental data. The 

experimental limit loads and shakedown limits provide a starting point for this, but there is 

a lot of scope for extending this area of the validations. Some areas to consider include: 

 Thermally load examples. The temperature dependency of material properties is a 

useful function within the LMM, and thermal loading is a common occurrence in 

power plant components. 

 Published tests exist for limit loads and strict shakedown limits, but very few 

examples could be found for loading which is beyond strict shakedown, i.e. tests to 

find the global shakedown limit. 

 Tests were found in the literature which consider creep dwells in the load cycle. 

These may be useful for the continuation project which follows this one (see below) 
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Building a bank of validation cases will give more confidence in the capabilities of the 

method, and will serve to validate any new functionality added to the framework. 

In Section 3.4, the analysis of pipe bends subject to bending moments highlighted that 

small deformation theory used by the LMM may not always be conservative. Work has 

been conducted by some authors to extend the shakedown bounding theorems to include 

the effects of large deformation, for example Gross and Weege [102] and Polizzotto and 

Borino [103]. If enough demand is found for large deformation shakedown solutions then 

work to include these theorems into the LMM framework would be beneficial.  

At present a concurrent EngD project (student: Michael Lytwyn) is tackling developments to 

the global shakedown method so as to allow a generalised load cycle rather than the two 

stage process currently used [109]. Several examples used during this thesis have involved 

situations where the load cycle cannot be easily decomposed into cyclic and steady state 

components. The modified Bree loading mentioned earlier in this section is one such 

example. Another, more practical, situation where this is also true is in the analysis of the 

header branch in chapter 7. None of the loads present in the analysis propagated through 

all load points. A global shakedown method which could scale the loading in the same way 

as the current strict shakedown method would be highly beneficial in these cases. Rather 

than adding extra loads, this method would scale the load cycle itself resulting in a global 

shakedown limit linked directly to this load cycle. When complete, and an associated lower 

bound calculation is available, this method could add to the current global shakedown 

method used in the plug-in to make this shakedown analysis tool more versatile. 

Relatively recently Chen and Ponter [84] and Gorash and Chen [90][91] have made progress 

with the LMM which allows the inclusion of creep into the steady cycle calculation. When a 

creep dwell, and the associated stress relaxation, is part of the cyclic loading the steady 

state behaviour becomes very difficult to determine. These developments to the LMM code 

allow the calculation of, among other things, the stabilised cyclic stresses, the plastic strain 

range and creep strain per cycle. This opens up a number of possibilities for structural 

integrity applications - R5 volume 2/3 uses these parameters to calculate the creep 

damage, fatigue damage, the creep fatigue interaction and ultimately determine if a crack 

will initiate in the component. 
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The development of a plug-in for the LMM in this project, combined with the developments 

by Gorash and Chen, has prompted the creation of a follow on project with EDF. Overall this 

project aims to take the current plug-in and develop it into a more comprehensive 

structural integrity tool with the LMM as the basis. Specifically it aims to: 

 Include creep rupture calculations (both calculating the time to rupture for a given 

load cycle or calculating the maximum loading which will give the desired time to 

rupture) 

 Carry out theoretical developments to develop the work of Chen and Ponter [84] 

and Gorash and Chen [90][91] to include more creep models (such as the strain 

hardening models adopted by EDF) 

 Extend the plug-in to include these options for routine use in EDF 

The plug-in and subroutines described in this thesis will serve as a starting point for this 

continuation project.  
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Appendix A. Equations for limit pressure and moment of a pipe 
bend 

This appendix lists the equations derived by Lei in [100] for the limit pressure and moment 

of pipe bends. Begin by defining the limit pressure and limit moment for a thin straight pipe 

as  
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The limit in-plane opening bending moment is given by: 
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And the limit in-plane closing bending moment is given by: 
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Where combined pressure and bending moments are applied, the following limit locus is 

defined: 
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Where  
0L P

M


 is the limit moment with no pressure loading (equation (A1.3) or (A1.4)) 

and  
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P
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 is the limit pressure with no moment loading (equation (A1.2)). 
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Appendix B. Iterative Evaluation of the Varying Residual Stress 
Field 

The procedure for obtaining the varying residual stress field involves a load cycle which has 

N load instances where n=1,2,...N, which is associated with N increments in the solution 

procedure. This cycle repeats M times so that m=1,2,...M. The iterative procedure is as 

follows: 

During Load Cycle m=1: 

Increment 1: 
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If a convergent solution is obtained which is inside the ratchet limit then the sum of the 

increments of residual stress over the final cycle M must tend to zero: 
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And the accumulated residual stress at a particular time point in the cycle is therefore the 

sum of the constant part 
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Which is equivalent to equation (4.27) used in the numerical procedure. 
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Appendix C. Algebraic Expansion of Equation (4.44) 

Equation (4.43) describes the total stress field in the structure, and is re-iterated here for 

convenience 

          ˆ ˆ, , , ,
F r

ij ij ij ij ijx t x t x t x x t     (C1.1) 

The stage 1 calculation does not scale the applied cyclic stresses and find the varying 

residual stress associated with that fixed level of cyclic loading. Therefore when these 

stresses are brought forward to stage 2, they can be considered as a single stress field: 

      ˆ ˆ, , ,
V r

ij ij ijx t x t x t 
 

(C1.2) 

During the stage 2 calculation equation (4.44) must be satisfied for the loading to be within 

global shakedown: 

        0ˆ ˆ, ,
LB F V

ij ij ijf x t x x t  
 

(C1.3) 

Numerically this means checking the yield condition has not been violated at all integration 

points in the model and at all time points in the cycle. To find the global shakedown limit λLB 

should be scaled so that the effective stress equals the yield stress. As λLB is the only 

unknown in equation (4.44) it can be rearranged to find λLB and give the lower bound 

multiplier for that integration point and time point in the load cycle. Each of the three 

stresses in equation (C1.3) is described by six components, which gives a total of eighteen 

stresses. The von-Mises yield function is used, so equation (C1.3) expands to: 

 

   
   
   

22

3
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

F V F V

yield LB x x x H LB y y y H

F V F V

LB z z z H LB xy xy xy

F V F V

LB yz yz yz LB xz xz xz

          
   

       
 

     

 (C1.4) 

Where σH is the hydrostatic stress: 
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H

        
 
 
 

 
(C1.5)

 

Re-arranging for λLB results in a quadratic: 

  
2

0LB LBA B C  
 

(C1.6) 

Where the coefficients A, B and C are: 
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y z y z yz
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   
  (C1.7) 
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where x, y, z, xy, xz and yz are the direct and shear components of stress.  
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Appendix D.  The LMM Subroutines 

This appendix gives details of each of the LMM subroutines and the calculations and tasks 

they perform. This appendix should give a better understanding of the code for support and 

future development.  

UEXTERNALDB(LOP,LRESTART,TIME,DTIME,KSTEP,KINC) 

The UEXTERNALDB subroutine is called by Abaqus once at the beginning of the analysis 

(LOP=0), at the start of each increment (LOP=1), the end of each increment (LOP=2) and the 

end of the analysis (LOP=3). 

This subroutine is used at the beginning of the analysis (LOP=0) to read the LMM text file 

created by the plug-in. It is also used at the end of the analysis (LOP=3) to properly close 

this text file. 

The structure of the subroutine is broadly similar for all three analysis types. There are 

some minor differences between the strict shakedown code and the steady cycle and 

ratchet code which relates to the slightly different data required by these analyses. For 

example the Ramberg-Osgood model is only implemented in the steady cycle and ratchet 

code. Table D-1 summarises the order in which the values are read from the text file and 

the respective differences between the strict shakedown and steady cycle and ratchet 

codes. 

The values read by UEXTERNALDB are placed into COMMON blocks. This means that this 

data can be shared with the UMAT and URDFIL subroutines. 

The UMAT Subroutine1 

This subroutine is where the bulk of the LMM calculations take place. The initial stress 

tensor (STRESS), initial strain (STRAN) and strain increment (DSTRAN) are passed into UMAT 

at the beginning of the increment. The UMAT subroutine must then return the updated 

stress tensor (STRESS) and Jacobian matrix (DDSDDE). UMAT is called for each integration 

point which has been assigned a User-material, and at each integration point it is called at 

least twice during an increment. 

 

                                                           
1
 See the Abaqus User Subroutines Reference Manual in [31] for a full argument list for UMAT 
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Table D-1 - UEXTERNALDB operations 

Strict Shakedown Only Common to Both 
Steady Cycle and Ratchet 

Only 

 Analysis type  

 
Maximum number of 

increments 
 

Convergence type and value  
Steady cycle convergence 

value 

  
Global shakedown 

convergence value (if this 
analysis is selected) 

 Dimensionality of the model  

 Number of applied loads  

 Number of load instances  

 
Multipliers for each load and 
whether it is scalable or not 

 

 Number of materials  

 

For each material read the 
temperature dependent 

modulus and yield stress (if 
any) 

 

  

Read if this material has a  
Ramberg-Osgood model 

associated with it, and if it 
does then read the 

temperature dependent 
parameters (if any) 

The UMAT subroutine is used for several tasks within the LMM framework. It is used to 

calculate the elastic stresses for each applied load. It is also used to perform an increment 

of the strict shakedown/steady cycle/steady cycle and ratchet analysis, depending on which 

is selected. There are two files which contain the LMM UMATs and the associated URDFIL 

subroutine, and each UMAT is further divided into subroutines to perform these different 

aspects of the LMM solution. 

 LMM_Shakedown_Multi_Process.for. In this file the UMAT is divided into two 

subroutines named ELASTIC and SHAKEDOWN. 

 LMM_Steady_Cycle_and_Ratcher.for. In this file the UMAT is divided into three 

subroutines: ELASTIC, STEADYCYCLE and RATCHET. 
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When the solution begins the UMAT is called and in all cases the ELASTIC subroutine is used 

to carry out an elastic analysis for each applied load. Once complete, the ELASTIC 

subroutine is called once more during the null step which has no applied loads. This allows 

key variables, such as the strain increment (DSTRAN), to return to zero before the LMM 

solution commences with one of the other subroutines. 

A UMAT subroutine uses an array of Solution-Dependent State Variables (STATEV) to store 

values calculated. The STATEV array is passed into UMAT at the beginning of the increment 

and contains the values calculated at the end of the previous increment (or propagates the 

values if they are unchanged in the previous increment). These are used to provide the user 

with contour plots in the odb file for a number of variables such as stresses and strains. The 

STATEV array is also used within the calculation procedures to pass variables between 

consecutive increments. 

UMAT contains three variables, SSE, SPD and SCD, which have no effect on the solution but 

are intended for energy output. The LMM uses these values because they can be extracted 

in URDFIL as volume integrals of the values needed for the upper bound load multiplier. 

ELASTIC 

In both files the ELASTIC subroutine replicates a standard elastic analysis in Abaqus. The 

reason that this analysis is performed using UMAT rather than using Abaqus itself is so that 

the stress tensor and temperature for each applied load can be stored in the STATEV array. 

This allows the subsequent SHAKEDOWN/STEADYCYCLE/RATCHET subroutine access to 

these values. The STATEV numbering is determined by the number of applied loads. 

SHAKEDOWN 

The SHAKEDOWN subroutine follows the calculations given in chapter 3 to perform a single 

LMM strict shakedown increment. The major steps of the code are as follows: 

1. Initialise variables and ensure they equal zero to begin a new increment 

2. If this is the first increment then set the upper bound load multiplier to 1.0 

3. Call LOADCYCLE to obtain the elastic stress and temperature at each point in the 

load cycle 

4. If temperature dependent yield is defined then call YIELDSTRESS to obtain the yield 

stress. Otherwise the yield stress equals the User-material property 
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5. In the first increment the Shear modulus is obtained by 1/young's modulus. If this is 

temperature dependent then call MODULUS to obtain this value. 

6. After the first increment the shear modulus is obtained by dividing the effective 

strain by the yield stress (equation (3.16)) 

7. The value of 
1kin

ij



is calculated according to equation (3.19) using the values of 

shear modulus and applied stress. 

8. JACOBIAN is called to form the stiffness matrix (DDSDDE) 

9. The estimate of the constant residual stress field, 
1k

ij


, is obtained by equation 

(3.20) 

10. RLOWER is called to calculate the lower bound multiplier 

11. Provide Abaqus with a STRESS tensor which is compatible with the Jacobian and 

strain increments. This stress has no meaning in the LMM solution. 

12. Call COMPLIANCE to obtain the compliance matrix and then calculate the strains 

according to equation (3.21). If the problem is plane stress then calculate the out of 

plane strain. 

13. Write the energy values of equation (3.22) to the variables SSE, SPD and SCD. These 

will be extracted as volume integrals in the URDFIL when all integration points have 

been considered in UMAT. 

14. Calculate the effective strain increment. The magnitude of this value in 

unimportant and not used in the calculation procedure. Instead, the contour plot of 

this value shows the location of the reverse plasticity or ratchet mechanism. 

STEADYCYCLE 

The STEADYCYCLE subroutine performs stage 1 of the global shakedown analysis as given in 

section 4.2.4.1. As mentioned in this section, the numerical implementation of this 

procedure interprets one Abaqus increment as one point in the load cycle. Therefore a load 

cycle with N points will need N Abaqus increments to analyse it once. If this is repeated 

over M cycles then a convergent solution is obtained. The major steps in the code are as 

follows: 

1. Initiate key variables and set their value to zero 

2. One increment is used per point on the load cycle. Therefore the current point in 

the load cycle is determined by the remainder of the current increment number 
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divided by the number of points in the load cycle (which is given by the MOD 

intrinsic function in Fortran) 

3. Call SCLOADCYCLE to obtain the elastic stress and temperature for the load cycle 

point in question 

4. Add the varying residual stress increment calculated in the previous increment to 

the RSTRESS variable. This gives the current total varying residual stress as given in 

equation (4.27). See Appendix B for further details on the cumulative total method 

used to obtain the varying residual stress. 

5. When a complete cycle has been evaluated (i.e. when the method is back to the 

start of the load cycle again) then the current value of RSTRESS is equal to the 

constant component of the varying residual stress. 

6. Calculate the yield stress for this increment. The first time around the load cycle the 

yield stress entered in the plug-in is used (and if this is temperature dependent 

then YIELDSTRESS is called). If a Ramberg-Osgood model has been selected then it 

is only after the first time around the load cycle that this is used. If this is not 

selected then the yield stress is calculated in the same way as during the first time 

round the load cycle. 

7. If the young's modulus is temperature dependent then call MODULUS to obtain this 

value. Then use this value to calculate the multi-axial young's modulus and bulk 

modulus. 

8. During the first time round the load cycle the multi-axial young's modulus is used. 

In subsequent iterations after the first cycle then modulus adjustment is performed 

according to equation (4.23) 

9. Calculate  and K  as per equation (4.29) 

10. Calculate STRESSIN, which corresponds to  
1

nin

m
 in equation (4.34) 

11. Calculate E and ν from equation (4.35) and populate the Jacobian by calling 

JACOBIAN 

12. Calculate the varying residual stress increment by solving equation (4.32) 

13. Provide Abaqus with a STRESS tensor which is compatible with the Jacobian and 

strain increments. This stress has no meaning in the LMM solution 

14. Calculate the plastic strain increment 
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15. When a complete load cycle has been calculated then the ratchet strain can be 

computed by summing the plastic strain increments. These plastic strain 

increments are re-called from the STATEV array into the array PTSTRAN. This is then 

used to sum the plastic strain increments over the load cycle, with the remainder 

being the ratchet strain. 

16. Call COMPLAINCE to obtain the compliance matrix and then calculate the elastic 

strains 

17. Calculate the elastic strain range when a complete load cycle has been calculated. 

First the elastic strains from all load points are re-called from the STATEV array into 

the ETSTRAN array. These elastic strain components are used to find the maximum 

elastic strain range between any two load points in the cycle, which is given as the 

elastic strain range for that point. 

18. If a complete load cycle has been considered then the plastic strain range can be 

calculated. The plastic strain at each load point is given by the sum of the plastic 

strain increments up to that point. These are used to find the maximum difference 

in plastic strain between any two load points. 

19. A similar process is used for total strain range, which uses the sum of elastic and 

plastic strains. 

20. The shear modulus is summed over the cycle and the inverse is written to the 

variable SSE to be read by the URDFIL subroutine. 

RATCHET 

If the global shakedown limit is requested by the user, then the RATCHET code is called 

once the stage 1 calculation using the STEADYCYCLE subroutine is complete. The RATCHET 

subroutine is very similar to the SHAKEDOWN subroutine 

1. Initiate key variables and set their value to zero 

2. If it is the first increment in the global shakedown analysis then set the upper 

bound increment to 1.0 

3. Call RLOADCYCLE to obtain the stress of the additional constant loads added to the 

cyclic stresses from stage 1 

4. If temperature dependent yield is defined then call YIELDSTRESS to obtain the yield 

stress. Otherwise the yield stress equals the User-material property 
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5. If a Ramberg-Osgood material was used in stage 1 then find out if hardening has 

occurred during any point in the load cycle. If it has then use the hardened yield 

stress for that point in the load cycle. If no hardening has occurred then use the 

yield stress as calculated in number 4 above 

6. In the first increment the Shear modulus is obtained by 1/young's modulus. If this is 

temperature dependent then call MODULUS to obtain this value. 

7. After the first increment the shear modulus is obtained by dividing the effective 

strain by the yield stress 

8. The value of 
1kin

ij



is calculated according to equation (3.19) using the values of 

shear modulus and applied stress 

9. JACOBIAN is called to form the stiffness matrix (DDSDDE) 

10. The estimate of the constant residual stress field, 
1k

ij


, is obtained by equation 

(3.20) 

11. The total stress is calculated and RLOWER is called to calculate the lower bound 

load multiplier 

12. Provide Abaqus with a STRESS tensor which is compatible with the Jacobian and 

strain increments. This stress has no meaning in the LMM solution. 

13. Call COMPLIANCE to obtain the compliance matrix and then calculate the strains 

according to equation (3.21). If the problem is plane stress then calculate the out of 

plane strain. 

14. Write the energy values of equation (3.22) to the variables SSE, SPD and SCD. These 

will be extracted as volume integrals in the URDFIL when all integration points have 

been considered in UMAT 

15. Calculate the effective strain increment. This magnitude of this value in 

unimportant and not used in the calculation procedure. Instead, the contour plot of 

this value shows the location of the ratchet mechanism 

URDFIL(LSTOP,LOVRWRT,KSTEP,KINC,DTIME,TIME) 

The URDFIL subroutine performs a number of functions in a LMM analysis. It is called by 

Abaqus at the end of the increment after the solution has completed. The Abaqus utility 

routines DBFILE and POSFIL can be used within URDFIL to access the results file. 
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URDFIL for Strict Shakedown 

The URDFIL routine is only used during the shakedown step, i.e. no actions are taken during 

the elastic or null steps. During each shakedown increment the following actions are taken 

by looping over the results for each element and integration point: 

1. Call DBFILE and POSFIL to access the results 

2. Extract the elemental lower bound multiplier 

3. Add this multiplier to the running total for the element 

4. When all integration points in the element have been added then take the average 

5. Zero off the counter to begin the total for the next element 

6. Extract the volume integrals for equation (3.23) 

When this loop is complete the lower bound multiplier is finalised for the increment. If the 

element average lower bound value is greater than 99.5% of the upper bound then the 

integration point value is used instead. The upper bound multiplier is calculated from the 

volume integrals. 

At this point a section of code is in place to detect a change in the mechanism of the model. 

During a normal solution the best value of the lower bound is displayed, and over 

consecutive increments this tends towards the upper bound. If a change in mechanism 

occurs then the upper bound will reduce and, due to the best lower bound restriction, can 

drop below the lower bound. If this is the case then the best lower bound restriction is 

removed and the convergence is judged using consecutive upper bounds. 

The convergence calculations are the final task in the URDFIL. The convergence condition 

selected by the user must be satisfied for five consecutive increments, at which point the 

analysis is terminated. 

URDFIL for Steady Cycle and Ratchet 

Similarly to the strict shakedown, URDFIL is only used during the steady cycle and ratchet 

step. The variable CURRANALYSIS is used to indicate whether the solution is currently using 

the STEADYCYCLE or RATCHET subroutine. 

When URDFIL is called after an increment which used the STEADYCYCLE subroutine:  

1. Call DBFILE and POSFIL to access the results 
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2. Calculate the ratio of ratchet strain to plastic strain range. Issue warning if this is 

too high 

3. Calculate convergence by extracting the relevant volume integral 

If the convergence criterion is met for 5 consecutive increments or the increment number is 

40 time the number of load instances then the steady cycle calculation is complete. If the 

user has not requested the ratchet limit then the analysis terminates and the analysis 

information is printed to the data file. If the ratchet limit is requested then the variable 

CURRANALYSIS is updated and the analysis continues using the RATCHET subroutine. After 

each increment which uses this subroutine: 

1. Call DBFILE and POSFIL to access the results 

2. Extract the elemental lower bound multiplier 

3. Add this multiplier to the running total for the element 

4. When all integration points in the element have been added then take the average 

5. Zero off the counter to begin the total for the next element 

6. Extract the volume integrals for equation (4.38) 

When this loop is complete the lower bound multiplier is finalised for the increment. This is 

done in the same way as for the strict shakedown where if the element average lower 

bound value is greater than 99.5% of the upper bound then the integration point value is 

used instead. The upper bound multiplier is calculated from the volume integrals. 

The same mechanism shift code is also present in this URDFIL which posts a warning to the 

user, removes the best lower bound and continues using the convergence based on the 

consecutive upper bounds. 

The analysis is terminates when the convergence criteria is met for five consecutive 

increments or the maximum number of increments is met.  

JACOBIAN(ITYPE,PNU,YM,DDSDDE,NTENS,NDI) 

This subroutine forms the jacobian matrix. It is dependent on the dimensionality of the 

model 

For 3D elements: 
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For plane strain and axisymmetric elements: 
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For plane stress elements: 
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Argument Description 

ITYPE Dimensionality of the model (0=3D, 1=plane strain 2=plane 
stress, 3=axisymmetric 

PNU Poisson's ratio 

DDSDDE The Jacobian matrix 

NTENS Number of stress components (for 3D NTENS=6, for plane strain 
and axisymmetric NTENS=4 and for plane stress NTENS=3) 

NDI Number of direct stress components (for 3D, plane strain and 
axisymmetric NDI =3 and for plane stress NDI =2) 

COMPLIANCE(SM,PNU,NTENS,NDI,COMP,ITYPE) 

This subroutine forms the compliance matrix. It is dependent on the dimensionality of the 

model. For 3D elements: 
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For plane strain elements 
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For axisymmetric elements 
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For plane stress elements 
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Argument Description 

SM 1/Young’s modulus 

PNU Poisson's ratio 

NTENS Number of strain components (e.g. for 3D NTENS=6) 

NDI Number of direct strain components 

COMP The compliance matrix 

ITYPE Dimensionality of the model 

VMSTRS(VMSTRESS,NTENS,ITYPE) 

Calculates the von-Mises equivalent stress for the given stress tensor using the following 

equation: 

       
22 2 2 2 23

2
2ij x H y H z H xy xz yz
         
  

 



XVIII 
 

3
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Argument Description 

VMSTRESS Stress tensor 

NTENS Number of stress components (e.g. for 3D NTENS=6) 

ITYPE Dimensionality of the model 

VMSTRN(VMSTRAN,NTENS,ITYPE,OUTPLNSTRN,HYD) 

Calculates the equivalent strain for the given strain tensor. If the strains are not deviatoric 

then the following equation is used: 

       
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0 5
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If the strains are already deviatoric then the following equation is used: 

 2 2 2 2 2 22
2

3ij x y z xy xz yz
      
 

 

Argument Description 

VMSTRAN Strain tensor 

NTENS Number of stress components (e.g. for 3D NTENS=6) 

ITYPE Dimensionality of the model 

OUTPLNSTRN Out of plane strain for plane stress elements 

HYD Flag to indicate whether the strains are deviatoric or not 

 

YIELDSTRESS(CMNAME,TDYIELD,TEMP) 

Calculates the temperature dependent yield stress. Temperatures and temperature 

dependent values are passed in via a common block from UEXTERNALDB. This subroutine 

uses the ZZPRIN subroutine to linearly interpolate to find the yield stress for the given 

temperature. 
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Argument Description 

CMNAME Name of material at current integration point 

TDYIELD Value of yield stress passed back into main subroutine 

TEMP Temperature at the current integration point 

RAMBERG(CMNAME,YIELD,TEMP,ATI,BETATI,PLSTRAIN,RONAMES) 

This subroutine calculates the hardened “yield” stress based on the Ramberg-Osgood 

model 

1

plastic A

 
  
 

 

If the parameters A and β are temperature dependent then temperature dependent values 

are passed in via a common block from UEXTERNALDB. The ZZPRIN subroutine is then used 

to linearly interpolate these values before use in the above equation. 

Argument Description 

CMNAME Name of material at current integration point 

YIELD Hardened yield stress passed back into main routine 

TEMP Temperature at the current integration point 

ATI Temperature independent value of A 

BETATI Temperature independent value of β 

PLSTRAIN Plastic strain 

RONAMES List of materials for which a R-O model defined 

MODULUS(CMNAME,TDMOD,TEMP) 

Calculates the temperature dependent modulus. Temperatures and temperature 

dependent values are passed in via a common block from UEXTERNALDB. This subroutine 

uses the ZZPRIN subroutine to linearly interpolate to find the yield stress for the given 

temperature. 

Argument Description 

CMNAME Name of material at current integration point 

TDMOD Value of modulus passed back into main subroutine 

TEMP Temperature at the current integration point 
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LOADCYCLE(STATEV,NSTATV,KINC,NTENS,DEV,NSO,NLOADS,M,SLOAD,ELAFIX,ELASCL, 

TEM) 

This subroutine is used during a strict shakedown assessment to give the elastic stress 

tensor of the applied loads for each point in the load cycle. 

Firstly, the elastic stresses and tempaeratures for each applied load (calculated by the 

ELASTIC subroutine) are read from the STATEV array. If this load is marked as scalable then 

the stresses and temperature for that load are scaled by the current upper bound load 

multiplier. Superposition is used with the load multipliers to calculate the total applied 

elastic stress at each load point. Additional arrays are also created containing only scaled 

stresses and only unscaled stresses - these are used when calculating the upper bound load 

multiplier in the URDFIL subroutine. 

Argument Description 

STATEV The array containing the solution dependent variables in the 
UMAT subroutine 

NSTATV The number of spaces in the STATEV array 

KINC The increment number 

NTENS Number of stress components 

DEV Elastic stress tensor for each point in the load cycle. 

NSO Number of points in the load cycle 

NLOADS Number of applied loads 

M Array of load multipliers given by the user in the plug-in 

SLOAD Vector containing flags indicating whether loads are scalable 
during the solution or not 

ELAFIX Elastic stresses which are not scaled during the solution 

ELASCL Elastic stresses which are scaled during the solution 

TEM Temperature at each load point 

 

RLOADCYCLE(STATEV,NSTATV,KINC,NTENS,DEV,NSO,NLOADS,SLOAD,STRFIX,STRSCL,TEM,

ESTART) 

This subroutine is used during stage 2 of a global shakedown analysis. It takes the stresses 

and temperatures calculated by the STEADYCYCLE subroutine and adds the steady state 

loads chosen by the user in the plug-in. 
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Firstly the total stress from each load point (calculated by STEADYCYCLE) is read from the 

STATEV array. The stresses from the additional steady state loads are scaled by the upper 

bound load multiplier. The stress for each load point is found by superposition of the 

stresses from STEADYCYCLE and the additional steady state loads. 

Argument Description 

STATEV The array containing the solution dependent variables in the 
UMAT subroutine 

NSTATV The number of spaces in the STATEV array 

KINC The increment number 

NTENS Number of stress components 

DEV Elastic stress tensor for each point in the load cycle. 

NSO Number of points in the load cycle 

NLOADS Number of applied loads 

SLOAD Vector containing flags indicating whether loads have been 
selected to be added as additional steady state loads 

STRFIX Elastic stresses from the STEADYCYCLE subroutine 

STRSCL Elastic stresses from loads which have been selected to be added 
as additional steady state loads 

TEM Temperature at each load point 

ESTART The NSTATV number at which the elastic solutions begin. 

 

SCLOADCYCLE(STATEV,NSTATV,KINC,NTENS,DEV,NSO,NLOADS,M,SLOAD,TEM,ILOAD, 

NOEL,NPT,ESTART) 

This subroutine is used during a steady cycle analysis or during stage 1 of a global 

shakedown analysis.  

Firstly the elastic stresses are read from the STATEV array. They are then scaled according 

to the multipliers given in the plug-in. Superposition is used to obtain the elastic stress at 

each point in the load cycle. The temperature at each load point is also read from the 

STATEV array. 

Argument Description 

STATEV The array containing the solution dependent variables in the 
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UMAT subroutine 

NSTATV The number of spaces in the STATEV array 

KINC The increment number 

NTENS Number of stress components 

DEV Elastic stress tensor for each point in the load cycle. 

NSO Number of points in the load cycle 

NLOADS Number of applied loads 

M Array of load multipliers given by the user in the plug-in 

SLOAD Vector containing flags indicating whether loads are scalable 
during the solution or not 

TEM Temperature at each load point 

ILOAD Load point number 

NOEL Element number 

NPT Integration point number 

ESTART The NSTATV number at which the elastic solutions begin. 

 

DEVIATORIC(ITYPE,STRESSES,DEVOSTR,NTENS,NDI) 

Finds the deviatoric stresses of the given stress tensor STRESSES. The hydrostatic stress is 

found: 

3

x y z
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 
  

And the deviatoric stresses are found by subtracting the hydrostatic stress from the direct 

components  

ii ii H
    

Where the shear components remain unchanged. 
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Argument Description 

ITYPE Dimensionality of the model 

STRESSES Stress tensor containing hydrostatic stress (i.e. not deviatoric) 

DEVOSTR Tensor of deviatoric stresses 

NTENS Number of stress components 

NDI Number of direct stress components 

 

RLOWER(STRSCL,STRFIX,CSTRESS,YIELD,YLAMAC0,NTENS,NSO,ITYPE,STATEV,NSTATV, 

NOEL,NPT,LMMANTYPE,I) 

This subroutine is used in a strict shakedown assessment and also in stage 2 of the global 

shakedown assessment. It calculates the lower bound multiplier on the selected loads. 

A check is performed for no or negligible scalable loads (which would cause the calculation 

to fail). If this is passed then the quadratic of Appendix C is solved. The coefficients A, B and 

C are found from the stress components and the roots of the quadratic are found. The 

largest positive root is taken to be the lower bound multiplier for that load point and is 

stored in the STATEV array. If it is not possible to find a positive root then a flag is stored in 

the STATEV array. 

Argument Description 

STRSCL Array of scalable stresses. In a strict shakedown analysis these 
stresses are from the loads which have been ticked as scalable. 
In stage 2 of global shakedown these stresses are the additional 
steady state stresses. 

STRFIX Array of fixed stresses. In a strict shakedown assessment these 
are the stresses selected not to be scalable. In stage 2 global 
shakedown these are the stresses from the steady cycle 
calculation. 

CSTRESS Constant residual stress tensor 

YIELD Yield stress at each load point 

YLAMAC0 Calculated lower bound multiplier 

NTENS Number of stress components 

NSO Number of points in the load cycle 

ITYPE Dimensionality of the model 

STATEV The array containing the solution dependent variables in the 
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UMAT subroutine 

NSTATV The number of spaces in the STATEV array 

NOEL Element number 

NPT Integration point number 

LMMANTYPE Flag indicating if the analysis is strict shakedown or stage 2 of 
global shakedown 

I Load point number 

 

ZZPRIN(LENGTH,PVALS,TVALS,TMAX,TMIN,VALT,FLAG,PROP) 

Performs linear interpolation when tabular temperature dependent material properties are 

entered.  

Argument Description 

LENGTH Length of the arrays PVALS and TVALS i.e. the number of 
temperature dependent properties entered 

PVALS Vector containing temperature dependent values 

TVALS Vector containing temperatures 

TMAX Max temperature for valid extrapolation (set to 50 degrees 
above highest value in TVALS) 

TMIN Min temperature for valid extrapolation (set to 50 degrees below 
lowest value in TVALS) 

VALT Temperature at the point in question 

FLAG False if VALT outside allowable temperature range TMIN< VALT< 
TMAX 

PROP Linearly interpolated property value at temperature VALT 
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Appendix E.  Structure of the LMM Plug-in 

The purpose of this appendix is to give a more detailed description of the LMM plug-in and 

its structure. This appendix does not describe how to create a plug-in, although the 

structure of a generic plug-in is briefly given to better describe the functioning of the LMM. 

Firstly the overall structure of the LMM plug-in is described within the context of the 

Abaqus plug-in system. Next the code which constitutes the dialog boxes themselves is 

described. Finally all the scripts which perform the peripheral and supplemental operations 

are described. 

E.1 Structure of the LMM Abaqus Plug-in 

Abaqus has a well established structure which any user-defined plug-ins must conform to. 

This includes certain methods which are called in a specified order, as shown in Figure E-1. 

The python class which contains all of these methods is called the Mode, and in the case of 

the LMM plug-in a Form Mode is used.  

The form contains numerous data structures called keywords which store data as the plug-

in process continues. Any number of keywords may be defined in the form depending on 

the amount of data required for the purpose. When the last dialog has been posted and 

completed then the form takes the data contained in these keywords and sends it in a 

command string to the designated target. Put simply, the form is a process for gathering 

the required data into the keywords so it can send a command string. The data is gathered 

by posting dialog boxes and running scripts. The dialog boxes contain widgets (such as text 

fields, tables and check boxes) which are connected directly to keywords in the form which 

takes the user's input and directly populates the keywords.  

To create a plug-in some or all of the methods in Figure E-1 may be over-written to perform 

the functions desired. The methods which have been re-written for the LMM plug-in are 

coloured red. Those which remain in their original implementation are coloured blue. 



XXVI 
 

 

Figure E-1 - Structure of a Generic Abaqus Plug-in 

The process is activated when the user invokes the plug-in through CAE. The 

getFirstDialog() contains code which determines the first dialog box to be displayed to the 

user. Dialog boxes themselves are defined independently of the process in Figure E-1 and 

are called and posted when required. After posting the first dialog box and obtaining the 
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user input, two stages of error checking are performed. The first, 

verifyCurrentKeywordValues(), performs basic checking of the values. For example it checks 

that text has not been entered in a field which requires an integer. The doCustomChecks() 

method is originally empty by default, and so the user can use this to add in additional error 

checking. doCustomChecks() has been extensively used in the LMM plug-in to check the 

validity of the values. If errors are returned by either of these scripts then an error is posted 

and the user is returned to the dialog box to rectify the error. If no errors are found then 

the process moves onto the getNextDialog() method, which determines the next dialog (if 

any) to be posted. Once again the data entered by the user is checked by 

verifyCurrentKeywordValues() and doCustomChecks() with an error posted for invalid 

entries. 

When getNextDialog() has posted the last dialog box and the data has been successfully 

checked, then all the data entered is assembled into the command string which, in the case 

of the LMM plug-in, is sent to a series of scripts for model configuration.  

getFirstDialog(self) 

For any plug-in it is compulsory to write this method. For the LMM this script first finds the 

file path of the current model and queries self.modelTgt for the previous file path. 

LMM_newModelCheck is called and these are passed in as arguments. Finally, the first 

dialog is posted, LMM_main. 

getNextDialog(self, previousDb) 

This script uses the argument previousDb to determine the next dialog box to display. After 

LMM_main the materials dialog, LMM_mats, is posted. A counter is also started. Each 

materials dialog posted adds one to the counter, which is compared to the number of 

materials in the model. Each subsequent time getNextDialog is called these two numbers 

are compared and a LMM_mats dialog is posted until they are equal. 

When the counter equals the number of materials, the script LMM_remove_mats is called 

to remove any materials data from the keywords which is no longer needed (for example if 

the material has been deleted from CAE, then it should be deleted from the keywords as 

well). After this script has run then the LMM_loadCycle dialog is posted. 
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If the loadCycle box is the previousDb then LMM_job is posted, which is the final dialog box 

in the plug-in. 

doCustomChecks(self) 

This method is used extensively in the LMM plug-in for checking of data. It is called to 

perform checks for every dialog box. If these checks are not passed, then doCustomChecks 

does not allow the dialog box to be unposted. Instead an error message is shown to the 

user indicating the source of the error and the dialog box remains so that the error can be 

fixed. 

 

Figure E-2 - doCustomChecks Dialog Box Descision 

A different stream of error checking is invoked depending on which dialog box is currently 

being displayed, shown in Figure E-2 above. Each stream is shown graphically in Figure E-3a 

and b and Figure E-4a and b. 

The checks for LMM_main follow a fairly sequential path. A series of scripts is called which 

checks a different aspect of the model. First the dialog box itself is checked by 

LMM_main_checks() to make sure the user has entered the data correctly. An error is 

posted if this is not the case. Otherwise the series of scripts is called. These each return an 

integer value. Any value above zero indicates a different type of error which allows the 

error message to be tailored to the situation. If all error flags are zero then 

doCustomChecks is complete for this dialog and returns to the form. 

The checks for material data are less sequential due to the many options available in this 

dialog box. Normally the widgets in the dialog are connected directly to the keywords. In 
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this case the data from many text fields and tables must be stored in a single tuple 

keyword, and so the conventional connection between widget and keyword cannot be 

used. Instead the data from this dialog must be manually extracted, checked in the usual 

way, and then manually populated in the keywords.  

Beginning with the modulus, the dialog is queried for this data. Depending on its 

temperature dependency LMM_matTI_checks or LMM_matTD_checks is called for error 

checking. This is repeated for the yield stress. The thermal expansion and Poisson's ratio are 

always temperature independent. If a steady cycle or ratchet analysis is chosen and a 

Ramberg-Osgood is selected then these values are queried and error checked. If no errors 

are found (i.e. an error flag of zero) then the materials tuple keywords are searched for any 

existing data for the current material. Any data found is deleted and replaced with the data 

from the dialog box. 

The loadCycle dialog suffers from a similar problem to the materials in that the 

conventional widget-keyword connection cannot be used. This is due to errors when the 

table is re-posted but with a different number of rows or columns. Therefore the data in 

the dialog is manually extracted, error checked and then the tuple keywords are manually 

populated. 

When the data has been extracted, LMM_loadCycle_checks is called to perform the error 

checking. If the error checking is passed (i.e. an error flag of zero) then the data in the load 

cycle keywords is deleted entirely and replaced with the data from the dialog box. 

The LMM_job dialog box connects the widgets directly to the keywords and so these values 

can be queried directly. LMM_job_checks performs the error checking and Errors are 

posted for any mistakes made. If the job name selected by the user already exists in the 

current model then the user is asked if they would like to overwrite it. 
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Figure E-3 - doCustomChecks for a)LMM_main and b)LMM_mats dialog boxes 
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Figure E-4 - doCustomChecks for a) LMM_loadCycle and b) LMM_job 
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operations which are performed on the model and to write the LMM text file for the 

subroutines. The final result of these operations is a model which has been configured for 

the analysis, an analysis job created and the text file printed in the working directory. 

E.2 Dialog Boxes 

The posting of dialog boxes is controlled by the getFirstDialog() or getNextDialog() scripts 

shown in Figure E-1. When posted, a dialog box will display the widgets which have been 

arranged according to layout managers. 

The code written to display these widgets is performed once. Dialogs also have a 

processUpdates method associated with them, which allows actions to be performed on 

the dialog whilst it is posted. For example some buttons may be stippled based on whether 

a check box in the dialog has been ticked. The processUpdates() script is continuously called 

by Abaqus CAE whilst the dialog box is displayed which allows these updates to happen 

instantly. However it also means that time consuming tasks should not be completed here 

or the plug-in and CAE will become slow. 

LMM_main Dialog Box and Scripts 

This dialog is present to introduce the LMM to the user and allow them to select the model 

and analysis type to be carried out. 

The processUpdates is used here to determine if previous LMM modifications have been 

made to the selected model. The model name selected from the drop down menu in the 

dialog is passed into the LMM_existing script. If this detects that the LMM has already been 

used on this model then an error dialog box is posted. 

LMM_mats Dialog Box and Scripts 

This dialog is posted once for each material in the analysis. It contains four main areas – 

Young’s modulus, yield stress, Poisson's ratio & thermal expansion and finally Ramberg-

Osgood. The Ramberg-Osgood section is only available for steady cycle or ratchet limit 

analyses. 

The Young’s modulus and yield stress areas are governed by similar code. A text field is 

used for temperature independent values, and a table is used for temperature dependency. 

The user may select temperature dependent or independent via a check box. This check 
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box is linked to an FXswitcher in the processUpdates script which swaps the view of the text 

box/table according to the state of the check box. When the dialog box is first called the 

keywords are queried for existing data which determines the initial state of the FXswitcher 

and populates the values. 

The thermal expansion and Poisson's ratio are given in text fields. The keywords are 

queried for existing data for the current material and this is entered into the text fields if it 

exists. 

The Ramberg-Osgood area is only shown if the analysis type is steady cycle or steady cycle + 

ratchet limit. It contains two switchers. The first toggles the use of the model. This displays 

or hides the widgets used to enter the coefficients. Within this switcher is a second 

switcher which toggles the use of temperature dependent properties. This area of the 

dialog also contains a “Tip” button, which displays a help bo  to e plain this material model 

to the user.  

The processUpdates for this dialog is used entirely to control the FX switchers based on the 

condition of the check boxes. In addition to this, two automatic functions are included in 

this dialog bo : “E tract” which e tracts any e isting material data from the CAE model and 

“Calculate” which calculates the 0.2% proof stress from the Ramberg-Osgood parameters 

and populates the yield stress area of the dialog box. 

The Extract function is initiated by clicking the Extract button which calls the onCmdSelect 

method. This method queries the dialog box to determine if there are values present in any 

of the widgets. If values are found then a question is posted asking the user if they wish to 

continue and overwrite these values. Clicking “no” cancels this process. Clicking “Yes”, or if 

no values are found then LMM_extract_CAE_Matprops is called to query the CAE file for 

properties. This is followed by the populateValues method which fills in the widgets with 

the extracted values. 

The Calculate function is initiated by clicking on the Calculate button in the Ramberg-

Osgood area of the dialog. This calls the onProofSelect method which checks for incomplete 

Ramberg-Osgood parameters which, if found, displays an error. The onProofSelect also 

checks for existing values in the yield stress widgets. If values are found then a question is 

posted asking the user if they wish to continue and overwrite these values. Clicking “no” 

cancels this process. Clicking “Yes”, or if no values are found, the calcProof method is called 
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to give the proof stresses followed by the populateProof method to populate the yield 

stress widgets. 

LMM_loadCycle Dialog Box and Scripts 

This dialog is posted to gather the load cycle multipliers for each load and predefined field. 

It also allows the user to choose which loads area scalable in a strict shakedown or ratchet 

analysis. 

First the model is queried to obtain the names of the loads and predefined fields, which are 

put into tab separated lists (which is needed for the table headings). The keywords are 

queried to find the number of columns to show in the table, where one column equals one 

load point in the cycle. When the table has been constructed then it is populated with any 

existing data from the keywords. 

The second half of the dialog allows the user to select which loads are scaled during 

solution. This depends on the analysis type chosen in the LMM_Main dialog box. If a strict 

shakedown assessment is chosen then all of the loads and predefined fields are displayed. 

In a steady cycle analysis none of the loads are displayed as no scaling occurs during this 

calculation. If a steady cycle + ratchet is selected then only the mechanical loads are shown. 

A help bo  is displayed when the user clicks “Tip”, which gives advice on this load scaling 

situation. 

The processUpdates for this dialog deals with the formatting of the table. When columns 

are added or removed by the user the heading above the table must span over all columns. 

If a column is added then a drop down list must be added in the “Temp Field” row so that 

the user has this option in the new column. 

LMM_job Dialog Box an Scripts 

This dialog is the final in the series and is the last step in the user interface. Text fields are 

used for the job name, max number of increments and the working directory. The current 

working directory is automatically detected and displayed. Clicking the “Select” button 

displays a file selector dialog so the user can navigate to a new working directory if desired.  

The convergence options displayed depend on the analysis chosen in the LMM_Main 

dialog. Strict shakedown has two options: the difference between consecutive upper 
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bounds and the percentage difference between lower and upper bounds. A steady cycle 

analysis uses the difference in modulus between consecutive increments as its only 

convergence option. A steady cycle + ratchet analysis needs two convergence values, one 

for each stage of the analysis. Convergence for stage 1 is identical to that of the steady 

cycle analysis described above. Convergence for stage two has the same two options as the 

strict shakedown analysis. 

The convergence for strict shakedown and stage 2 of the ratchet analysis contains an 

FXswitcher to swap the te t field depending on the user’s selection. Both of these te t 

fields are linked to an AFXfloatTarget in the form, which allows different default values to 

be displayed for each text field. The processUpdates for this dialog manages the FXswitcher 

based on the two radio buttons.  

A help bo  is displayed by clicking on the “Tip” button. The help content changes depending 

on the analysis type chosen and explains the convergence options to the user. 

E.3 Supplemental Scripts 

This file contains several scripts which perform error checking of the values in the dialog 

boxes.  

LMM_main_checks(mdl) 

This script performs a very basic check on the LMM_Main dialog box. It checks that the user 

has selected a model from the drop down menu and it is not blank. 

LMM_dimension_checks(mdl) 

This script determines the dimensionality of the model and to make sure that the model 

does not contain mixed dimensionalities (e.g. plane stress and plane strain).  

Each instance in the assembly is queried in turn to find if it is 3D, axisymmetric or 2D planar. 

If it is 2D planar then the element is queried to find out if it is plane strain or plane stress. 

The dimensionality of each instance is stored in a list which is then examined. If every 

instance is not identical then an error is returned. The dimensionality of the model is also 

returned to populate the jobInfoKw keyword. 

LMM_matTI_checks(value,poisFlag) 
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This script checks the temperature independent material properties are valid. A single 

number is passed in by the variable value. Firstly the script checks that value is not blank, 

that it is a floating point number and that it is non-negative. The poisFlag variable indicates 

if the current value being checked is the Poisson's ratio. If it is then the extra condition that 

it cannot be greater than 0.5 is applied.  

LMM_matTD_checks(valuesTD,temps,roFlag=0) 

A script to check the validity of temperature dependent values. The variable valuesTD 

contains the temperature dependent values and temps contains the temperatures. Both of 

these lists are checked for blank values, non-floating point numbers and negative numbers. 

The roFlag variable indicates if the data currently being checked is for a Ramberg-Osgood 

model or not. If it is not, then the data must be in order of increasing temperature (and 

therefore decreasing value). This does not strictly apply to a Ramberg-Osgood material, and 

so this restriction is not applied to this material. 

LMM_loadCycle_checks(cycle,scl,tempCycle,analysisType,mechLoadFlag) 

This script checks the load cycle for invalid entries. The load cycle table in the dialog box is 

divided into the mechanical loads at the top and two lines for the temperature field and its 

multiplier at the bottom. If mechanical loads have been applied in the model, as indicated 

by the mechLoadFlag variable, then these multipliers are checked for blank values and that 

they are floating point numbers. If the analysis is strict shakedown or steady cycle + ratchet, 

which is indicated by the variable analysisType, then the scl list is checked to make sure at 

least one load has been selected for scaling. 

The temperature fields and their multipliers are then checked. Blank fields return an error. 

A temperature field which has been assigned without a multiplier also returns an error. 

Finally a check is made to ensure that that a steady cycle analysis or steady cycle + ratchet 

analysis contains at least two points in the load cycle. 

LMM_job_checks(job,wDir,existingJobs,loadInst,analysisType,convType,SCconv,conv) 

This script checks the final dialog box for errors in the name, convergence, max number of 

increments and working directory. Firstly the job name is checked. This follows the same 
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rules as are enforced when creating a job in Abaqus CAE (therefore the script 

LMM_solution will be able to create a job with a legal name).  

Next a check is performed to find if a job with that name already exists (this is used to post 

an overwrite question to the user in doCustomChecks script). Blank values are checked for, 

and if a steady cycle + ratchet analysis is being performed then the maximum number of 

increments must be greater than the (40 * the number of load instances) that the steady 

cycle requires. 

The convergence values are checked depending on the analysis type chosen. An analysis 

involving a steady cycle stage checks that this convergence is a floating point number 

between 0.0 and 1.0. A strict shakedown or steady cycle + ratchet has two options for 

convergence. The consecutive upper bound convergence option is checked for a floating 

point number between 0.0 and 1.0. The % difference option is checked for a floating point 

number between 0.0 and 100.0. 

Finally the working directory field is checked to ensure it is not blank. 

LMM_activeMats(model) 

In abaqus CAE it is possible to define a number of materials and then not use them in the 

analysis. This script queries the model to create a list of materials which are currently being 

used so that only these are considered by subsequent parts of the plug-in. 

The script begins by querying the assembly to create a list of all the parts which are present 

in the assembly. For each of these assembled parts, the section assignments are queried to 

create a list of unsuppressed sections (with no duplicate sections). Finally, this list of 

sections is queried to create a list of materials which have been assigned to these sections 

(with no duplicate materials) 

This list of materials used in the model is returned. 

LMM_existing(model) 

This script queries the selected model to find if LMM modifications have already been 

made. Specifically it queries the step names. If ‘LMM’ is in the title then the LMM has been 

used on this model before. 
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LMM_matCheck(materials, model) 

In Abaqus CAE it is possible to re-name or delete a material and then not update the 

section definitions that this material was assigned to. Therefore when Abaqus solves the 

model, the section will reference a material which is not there. This script takes the list, 

materials, and checks that each of these exists within the CAE model. 

LMM_remove_mats(self,materials) 

If there are materials which are no longer part of the CAE model, then this script ensures 

that no data associated with these materials remains in the keywords. 

The temperature independent keywords are considered first. Each of the keywords is 

searched and if the material is not in the materials list then its data is removed. Similar 

action is taken with the temperature dependent keywords. In this case, a search is 

performed to find out how many data entries are associated with the rogue material. 

LMM_newModelCheck(self,fPath,oldfPath) 

This script applies if a LMM analysis is performed on a model, and then another model is 

opened in the same CAE session also for a LMM analysis. This script compares the filepaths 

of the current model and that of the model last acted on by the plug-in. If these two values 

are different then all data in the keywords is removed, allowing this new model to start 

fresh. If it is the same model, then the data in the keywords is retained so that the user 

does not have to re-enter all the information in the dialog boxes. 

The current filepath is updated in the AFXStringTarget named self.modelTgt. Therefore the 

current model filepath will be passed in as the previous filepath the next time the plug-in is 

called. 

LMM_extract_CAE_Matprops(model,matName)  

The material definitions in the model may contain data which are relevant to the LMM 

analysis, such as Young’s modulus. This script has been written to extract such material 

data, so that the user does not have to re-enter it in the materials dialog box. 

First the script determines whether to take the data from the material or the “original” 

material (see LMM_Mats for details of creating copies of the material definitions). When 
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this has been established then several “try” statements determine if the material has 

elastic, plastic or thermal expansion data which can be extracted. Each of these is then 

taken in turn, extracting the data which is compatible with the LMM analysis: 

 The Young’s modulus must be isotropic and not contain any field variables. In 

addition, the LMM does not support temperature dependent Poisson's ratio and so 

these values are not extracted from temperature dependent data 

 The plastic data must be isotropic, not contain any field variables and cannot be 

rate dependent. 

 The thermal expansion data must be isotropic, not contain any field variables, 

cannot be from the UEXPAN subroutine and cannot be temperature dependent. 

All data which passes these checks is extracted into tables and returned. 

LMM_mechLoadCheck(model,anType) 

When a steady cycle + ratchet limit analysis is selected at least one mechanical load must 

be applied in the model so that stage 2 in the subroutines can find the ratchet limit. This 

script checks that at least one mechanical load is applied in the model. 

LMM_openModelCheck(model) 

The LMM plug-in has been designed to operate on existing models which are ready to be 

submitted for analysis. This script performs a quick check to ensure that the user is not 

invoking the LMM plug-in on a new/blank model. 

E.4 Scripts Called Once the Command String is Sent - LMMScripts.py 

This file contains all the scripts which are used once the user-interface portion of the plug-

in is complete. In other words, these scripts perform the model configuration and create 

the LMM text file based on the information from the dialog boxes. 

LMMMainScript(...All keywords as arguments...) 

This script performs some initial preparatory work and then acts as the governing script for 

all operations which happen after the user-interface is complete. The preparation work 

includes tasks such as creating lists of the loads and predefined fields in the model, setting 

the working directory, naming the LMM text file and determining the number of state 
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dependent variables required by UMAT subroutine. When these tasks are complete, the 

following scripts are called in this order: 

1. LMM_loadcycle 

2. LMM_loads 

3. LMM_Mats 

4. LMM_Output 

5. LMM_solution 

LMM_loadcycle(...) 

This script writes the majority of the data to the LMM text file (everything bar the material 

properties). Table 6.2 is an example of the data which would be printed by this script. 

First the script creates the te t file with the name of the job + “LMM_LC”. The analysis type 

is written followed by the maximum number of increments specified by the user. The 

convergence tolerance is written (both tolerances for a steady cycle + ratchet). A 

percentage difference option is marked with the flag “%Diff” to differentiate it. The 

dimensionality of the model is then written. 

The number of loads and load instances is written so that the UEXTERNALDB knows how 

many times to loop in order to read all the loads. The first load is named along with a flag 

indicating if it is scalable during the solution or not. The multipliers for that load are then 

written. This is repeated for all loads and predefined fields. 

LMM_loads(model,appLoads,preDef,BCs,jobInfo) 

This script formats the loads, predefined fields and boundary conditions in the CAE model 

in the following order: 

1. Create a new “placeholder” step and place it first after the “Initial” step. 

2. Move all loads, predefined fields and boundary conditions so that they are created 

in this step. This means that all the remaining steps may be operated on, 

suppressed or deleted without fear of deleting any loads or boundary conditions. 

3. Delete any step with a name beginning in “LMM-“. This is from a previous LMM 

analysis and will not be needed. 

4. Suppress non-LMM steps 



XLI 
 

5. Create a static-general step for each of the loads and predefined fields and name it 

after the associated load or field. Also create the “null” and “shakedown” steps. 

6. Move the loads and fields to their corresponding step. 

7. Move the boundary conditions and suppressed loads to the first step which is not 

the placeholder. 

8. Modify each load so that it is created in its corresponding step, but inactive in all 

subsequent steps. Similarly for the predefined fields configure them so that they 

are created in their corresponding step, but reset to initial in subsequent steps. This 

means that only one load or predefined field is active in any given step, and no 

loads are active in the “null” and “shakedown” steps. 

LMM_Mats(...) 

This script creates the User-materials needed by the UMAT subroutine. Where temperature 

dependent properties exist then this script also prints these to the LMM text file.  

Firstly, the number of materials is written to the LMM text file. Then the active materials in 

the model are copied and the originals are renamed with “-Original” in their name so that 

the user can recover them if necessary.  

The remainder of the script is contained within a large for loop. Each material is considered 

in turn and the following actions are performed: 

1. Delete the material and create new with the same name. This is the quickest way to 

ensure the material has no properties defined. 

2. Query the modulus data passed in from LMMMainScript. If it is temperature 

independent then write this to the LMM text file and put the value into the User-

material. If temperature dependent values are used then write these and their 

temperatures to the LMM text file and write a zero in the User-material. 

3. Repeat 2. for the yield stress and Ramberg-Osgood. 

4. Write the Poisson's ratio and thermal expansion to the User-material. 

When all materials have been considered in this loop, then the LMM text file is closed. 

 

 



XLII 
 

LMM_Output(model,anType) 

This script creates the correct output requests for the LMM analysis. The existing requests 

are suppressed so they can be recovered. The LMM does not require history outputs, but a 

minimal one is created to prevent Abaqus CAE showing a warning to the user. 

Output to the energy file is requested in this script. The only way to achieve this is to edit 

the keyword block i.e. no command exists to perform this directly. Lines of text are printed 

at the end of the keyword block to make these requests. This must be the last action taken 

before creating the job – these lines of text are only valid at the end of the keyword block. 

Any further manipulation of the model would add commands after these, making them 

invalid.  

LMM_solution(modelSel,jobInfo,anType) 

This short script creates the analysis job with the correct subroutine for the analysis chosen. 

This is the final script in the entire plug-in, and once complete the user will have an analysis 

job which is ready to submit for solution. 


