bcn 324612

ORE DEPOSITIONAL PROCESSES IN THE FORMATION OF THE NAVAN ZINC/LEAD DEPOSIT,

CO. MEATH, IRELAND.

IAIN KERR ANDERSON

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

STRATHCLYDE UNIVERSITY, GLASGOW DEPT. OF APPLIED GEOLOGY 1990

VOLUME II TABLES AND FIGURES

.

•

.

.

.

.

•

· · · · ·

LIST OF TABLES

CHAPTER 1

- Table 1.1 Grades and tonnages of Zn/Pb deposits.
- Table 1.2 Characteristic features of Irish, carbonate-hosted Zn-Pb deposits.

CHAPTER 5

Table 5.1Underground headings, levels and oreLenses referred to in the text.

CHAPTER 6

- Table 6.1 Summary of the $\delta^{34}S$ values in sulphides from the Navan deposit analyzed by Boast (1978).
- Table 6.2a Tabulated summary of the sulphur isotopic composition of sulphides formed by bedding parallel replacement of, and open space infill within semi-lithified calcarenites, and pyrite in the CGO.
- Table 6.2b Tabulated summary of the sulphur isotopic composition of sulphides formed by bedding-parallel veining, cross-cutting fracturing, and replacement.
- Table 6.2c Tabulated summary of the sulphur isotopic composition of sulphides deposited as open space growths.
- Table 6.2d Tabulated summary of the sulphur isotopic composition sulphides within cross-cutting veins.
- Table 6.2eTabulated summary of the sulphur isotopic..........
- Table 6.2f Tabulated summary of the sulphur isotopic composition of diagenetic pyrite within Lower Paleozoic rocks below the deposit and minor sulphides within veinlets within the Lower Paleozoic rocks.

Table 1.1 Grades and tonnages of different types of Zn/Pb deposits throughout the world.

۰.

<u>Deposit</u>	<u>Tonnage</u> (Mt)	<u>% Zn</u>	<u>% Pb</u>	<u>% Cu</u>	<u>Ag</u> (g/t)
SEDEX					
Howards Pass District, Canada McArthur River, Australia Broken Hill, Australia Mt. Isa (Zn/Pb), Australia Sullivan, Canada Red Dog, Alaska Meggen, Germany Rammelsberg, Germany Silvermines, Ireland Tynagh, Ireland	>500 ¹ 227 180 88.6 155 >85 60 30 18.4 12.3	5.4 9.2 9.8 6.1 5.7 17.1 10.0 19.0 7.4 4.5	2.1 4.1 11.3 7.1 6.6 5.0 1.3 9.0 2.8 4.9	0.2 0.2 0.06 - 0.2 1.0 0.4	- 41 170 160 68 75 3 103 21 58
MVT					
Viburnam Trend, USA Tri-State District, USA Pine Point, Canada	≈800 ≈500 84	1.0 2.3 6.6	6.0 0.6 2.9		
VMS					
Kidd Creek, Canada Neves Corvo, Portugal Matsumine, Japan	>100 ≈66 30	6.0 3.5 2.4	0.2 0.7 1.0	2.46 4.1 3.6	70 - -
¹ Total of indicated plus i	nferred ore	e reserv	ves.		

Table 1.2 Characteristic features of Irish, carbonate hosted Zn-Pb deposits.

	<u>Deposit</u>	(<u>Mt</u>) [.]	%Zn	<u>%Pb</u>	Age of host rocks	Host rocks	Styles of mineralization	Structural control	Specific features
	Navan	69.9	10.27	2.6	Cource yan	Pale Beds micrites and a variety of calcarenites (Navan Group)	Dominantly stratiform Zn/Pb: Fe ore lenses with sub-seafloor relacement, open space infill and lesser veining. Pyrite-rich sulphides occur in the overlying sedimentary-early diagenetic CGO, which also contains clasts of the underlying mineralized Pale Beds. ⁴	Located near the SW flank of a complex faulted Lower Palaeozoic inlier. None of the faults observed (ENE-trending) are mineralized, however there is evidence for an early ENE structural control on the mineralization, which acted as precursors to the presently observed faults. ⁴	Mineralization extends through 120m of the stratigraphic section in places: clasts of mineralized Pale Beds in the pre-Arundian, submarine Boulder Conglomerate places constraints on the timing of mineralization in the Pale Beds; ore horizons in the Pale Beds occur at the contact between a calcarenite or micrite and an overlying dolomite.
	Silvermines ;	17.7	6. 4 -	2.5	Courceyan	Waulsortian mudbank, mudbank and dolomite breccias, dolomites, and Old Red Sandstones. (Navan and ABC Groups)	Dominantly stratiform Fe/Ba: Zn/Pb ore lenses. Veining and replacement are common in lower ore zones (OES and dolomite-hosted) and exhalative mineralization in the upper ore zones (Waulsortian reef/breccia-hosted) is coeval with a bedded barite deposit at Magcobar.	Situated on the northern flank of a Lower Palaeozoic inlier, adjacent to the ENE-trending Silvermines Fault, but with WNW- trending faults and sulphides on the down-dip side. ENE-trending faulting is thought to have controlled rapid subsidence associated with the growth of Waulsortian nudbanks and the onset of mineralization.	Hydrothermal chimneys in the pyritic upper orebody; strong eH control on the sulphide/sulphate/carbonate depositional facies; debris flow deposition of some sulphide and the hanging wall dolomite interpreted as tectonic instability during and after the mineralization. ²
293	Tynagh	9.4	3.2'	3.0	Courceyan	Waulsortian mudbank (ABC Group)	Lenticular orebodies with sulphides deposited within a dilatant fracture system associated with the forceful injection of the ore fluids into the Waulsortian mudbank adjacent to the Tymegh Fault. A banded iron formation occurs at the stratigraphically equivalent horizon to those which host the base metal mineralization. ^{3,4}	Located on the NE side of a Lower Palaeozoic inlier. The orebody occurs at the point of maximum throw on the hanging wall side of the E-W trending Tynagh Fault.	The iron formation occurs more distally north from the Tynagh Fault and possibly represents seafloor deposition: pyrite chimneys within the sulphide support evidence for some sea floor deposition of the base metals; manganese enrichment occurs within the Waulsortian mudbank around the deposit; late-stage copper/dolomite association. ^{3,4,3}
	Keel/(Garrycam)	5.0	(7.0)]	Courceyan	Basal clastics through to Shaley Pales in the Navan Group (base metals) and Wawisortian mudbank in the ABC Group (barite).	Sulphides occur in sub-vertical features as fracture-fill, breccia- matrix and disseminations. Bedded barite at Carrycam occurs stratigra- phically above the Zn/Pb sulphides within the Waulsortian mudbank.	Located on the southern flank of a Lower Palaeozoic inlier, on an ENE trending fault system. The barite occurs on the hanging wall side of a major ENE-trending fault.	Faults are mineralized; high Cadmium content (greater than 1% wt) in the sphalerite.
	Ballinalack	3.5	(7.0	3	Courceyan	Waulsortian mudbank (ABC Group)	Pods of sulphide formed by replacement of Waulsortian mudbank, similar to Tynagh, and infill of stromatactid Cavities.	Located on the NV flank of a an upstanding block of Lower Falaeozoics and on the hanging wall of the NE-trending Ballinalack Fault.	Mineralization in the stromatactid cavities is regarded as occurring prior to the final stage, diagenetic calcite cements.

. .

Table 1.2 Characteristic features of Irish, carbonate hosted Zn-Pb deposits.

	<u>Deposit</u>	(<u>Mt</u>)-	<u>%Zn %Pb</u>	<u>Age of</u> host rocks	Host rocks	Styles of mineralization	Structural control	Specific features
	Tatestown/ Scallanstown	3.1	(5.4)	Courceyan	Fale Beds micrites and calcarenites ' (Navan Group)	Stratabound, syndiagenetic mineral- ization as void fills, fracture-fill and local replacement.	Mineralization is preferentially developed in the immediate hanging wall of an ENE-trending, northerly- dipping, normal fault.	Main ore horizons are concentrated below dolomites in the Pale Beds micrites.
	Oldcastle	3.0	(4.9)	Courceyan	Pale Beds micrites (Navan Group)	Stratiform mineralization with syn- diagenetic to spigenetic, cross-cutting fractures and veins.	Located on the southern flank of the Longford Down inlier. The mineralization occurs on both sides of the Drumlerry Fault.	Hineralization occurs below a dolomicrite, with evaporites recorded in micrites in the footwall below.
	. Abheytown - !	1.1	3.8 1.5	Chadian to Arundian	Dolomitized crinoidal calcarenites, micrites and calcareous sandstones (ABC Group)	Statabound, epigenetic replacement, veins and open space infill.	Mineralization occurs in two NNE- trending fault/fracture systems. These fracture systems possibly formed in a pull-apart structure between the termination zones of the Ballysodare and Ox Mountains Faults.	Intensive dolomitization pre-dates the mineralization.
294	Harberton Bridge	0.5	(7.0)	Courceyan to Arundian	Waulsortian mudbank and overlying pelsparrites (ABC and HLG Groups)	Epigenetic sulphide breccias, breccia- matrix infills and fracture-fill mineralization.	Located on the northern side of Lower Palaeozoic inlier. No major faults are associated with the mineralization, houever an early structural control during sulphide emplacement has been suggested.	
	Galmoy	6.9	12.5 1.1	Courceyan	Dolomitized Waulsortian mudbank (ABC Group)	Stratiform lenses formed by replacement of host rock.4	No data at present ?	

x

Brackets around ore grade figures indicate combined Zn+Pb.

Tonnage and grade figures are the totals of all orebodies/lenses for each deposit, eg Navan/Silvermines are composed of many discrete orebodies.

Data and information on the deposits is taken from various papers in the "Geology and Genesis of Mineral Deposits in Ireland" (Andrew et al., 1986, eds). Additional information is from:

.

.

Andrew and Ashton, 1985 Boyce et al., 1983 Russell, 1975 Boast et al., 1981 Banks, 1986

- * Various recent press releases on the Galmoy deposit.

Table 5.1 A list of underground headings, levels and ore Lenses referred to in the text.

•

.

. ·

Lens	Level	Underground heading(s)
2-1	1435	226-229N
2-1	1345	204-206W
2-1	1315	222W
2-2	1285	W205-W405
2-3	1435	224N
2-3	1375	240N
2-3	1315	252S and 253S
2-4	1315	252S and 253S
2-5	1330	2425
2-5	1315	2425
2-5	1190	Haulage
1-5	1330	Block 2, 181-183N
1-5	1315	Block 2, 173N
1-5	1315	Block 6, FW contour drifts
1-5	1315	Block 7, panel 7
1-5	1230	Block 14, 131-133W
CGO	1420	2 Zone Upper
CGO	1405	3 Zone access
CGO	1390	3 Zone access

295

ţ

Table 6.1 A summary of the $\delta^{34}S$ values in sulphides from the Navah deposit analyzed by Boast (1978).

÷

.

.

Lens	Mineral	<u>8345 (%)</u>
2-5	sphalerite	+2.9
2-5	galena	-2.3
2-5	sphalerite	-9.0
2-5	barite	+22.6
2-5	sphalerite	-14.3
2-5	sphalerite	-12.1
2-5	sphalerite	-14.5
2-4	sphalerite	-1.8
2-4	barite	+19.6
2-3	sphalerite	-23.8
2-1	sphalerite	-8.0
2-1	sphalerite	-3.9

Table 6.2a Tabulated summary of the sulphur isotopic composition of sphalerite formed by the bedding-parallel replacement of semilithified calcarenites, pyrite/marcasite in bedding-parallel cavities associated with the sphalerite replacement, and pyrite in the CGO.

Table 6.2b Tabulated summary of the sulphur isotopic composition of different styles of mineralization within the coarse galena/ sphalerite massive sulphides formed by bedding-parallel veining, cross-cutting fracturing, and replacement.

Texture	<u>Code</u>	<u>No. of</u> samples	Range of 8345 values (9/00)	Mean (700)
allochem replacement by sphalerite	ALL	17	-23.0 to -14.5	-19.7
colloform pyrite and marcasite in bedding-parallel cavities in 2-1 Lens	COL	7	-37.3 to -28.2	-31.7
framboidal pyrite in the CGO	FRA	З	-32.0 to -30.2	-31.0

.

- -

.....

<u>Texture</u>	Code	<u>No. of</u> samples	Range of 8345 values (°/00)	<u>Mean</u> (°/ ₀₀)
coarse bladed galena from massive sulphides	BVN	55	-1.1 to +14.1	+7.1
coarse, poorly zoned sphalerite	ZON	11	+3.7 to +12.3	+8.6
zoned sphalerite replacement	MAS	4	-0.1 to +7.2	+3.6
rhythmically banded sphalerite including small, coeval geopetals	RHY	12	-15.6 to +11.3	-2.3
massive sphalerite in 2-5 Lens west	MSA	1	-15.6	-15.6
layered and cubic galena in 2-5 Lens west	CBU	2	-20.3 to -19.5	-20.1
colloform pyrite on galena in 1-5 Lens	CLO	1	-26.6	-26.6
late-stage bournonite crystals	BRN	З	-17.2 to -4.2	-12.1

297

Table 6.2c Tabulated summary of the sulphur isotopic composition of different styles of mineralization in the bedding-parallel sulphide horizons characterized by open space growths and similar styles within more cross-cutting sulphides confined to the micrites.

Table 6.2d Tabulated summary of the sulphur isotopic composition of different sulphide textures within cross-cutting veins. Codes VNB and YRH refer to the cockscomb-type veins whereas codes YHR, DCP and HBY refer to the large vein swarm in 2-5 Lens.

Texture	<u>Code</u>	<u>No. of</u> <u>samples</u>	Range of 8345 values (°/)	(⁹ /90)
layered, internal sphalerite sediment	LAM	32	-23.5 to -3.3	-13.9
layered galena within sphalerite layers	LAY	5	-24.8 to -15.6	-19.4
dendritic/skeletal and platelet galena growths	DPC	9	-20.8 to -6.1	-12.0
coarse cubic galena	CUB	6	-12.0 to +0.2	-7.5
stalactitic growths	STL	6	-32.6 to -12.9	-18.6
rhythmically banded or colloform sphalerite	RYH	2	-18.3 to -10.2	-14.3
honeyblende sphalerite	НУВ	16	-18.2 to -3.6	-12.4

.

<u>Texture</u>	<u>Code</u>	<u>No. of</u> samples	Range of 834S values (°/ee)	(<mark>Mean</mark> (•/ _{**})
coarse bladed galena and marcasite in veins	VNB	8	+0.2 to +14.9	+8.8
rhythmically banded sphalerite in veins	YRH	2	+9.0 to +9.3	+9.2
rhythmically banded sphalerite in the 2-5 Lens vein swarm	YHR	2	-17.0 to -14.6	-15.8
skeletal-cubic galena in the 2-5 Lens vein swarm	DCP	2	-10.3 to -6.8	-8.6
honeyblende in the 2-5 Lens vein swarm	HBY	1	-14.4	-14.4

•

Table 6.2e Tabulated summary of the sulphur isotopic composition of barite and gypsum in the deposit.

٩.

٠.,

Table 6.2f Tabulated summary of the sulphur isotopic composition of diagenetic pyrite within Lower Paleozoic rocks below the deposit and minor sulphides within veinlets within the Lower Paleozoic rocks.

Texture	Code	<u>No. of</u> samples	Range of 834S values (°/₀₀)	<u>Mean</u> (°/ ₈₈)
barite laths and rosettes	LAT	27	+17.9 to +39.1	+22.8
gypsum crystals	GYP	3	+21.0 to +24.9	+22.8

.

(^{Mean}) Texture Code No. of Range of 834S samples values (°/...) . diagenetic pyrite clots and concretions +6.0 to + 61.1 +24.3 DGN 10 . sulphides within veinlets in the Lower +1.8 to +3.6 +3.3 VNT 4 Palaeozoics

ــــ مــــ مـ !

•

LIST OF FIGURES

.

CHAPTER 2

Figure	2.1	Simplified general geology of Ireland.
Figure	2.2	Lower Carboniferous carbonate depositional facies.
Figure	2.3	Schematic diagram illustrating the major formations in the Courceyan stage.
Figure	2.4	Simplified structural geology of Ireland.
Figure	2.5	Geological setting of the Navan orebody.
Figure	2.6	Lower Carboniferous stratigraphy in the Navan area.
Figure	2.7	Location of Lower Carboniferous, carbonate hosted mineral deposits in Ireland.
Figure	2.8	Regional facies variations in the Pale Beds.
Figure	2.9	Structural plan of the Navan orebody.
Figure	2.10	Strike section through the Navan orebody.
Figure	2.11	Dip section through the Navan orebody.
CHAPTER	3	
Figure	3.1	Detailed graphic stratigraphic logs.
Figure	3.2	Correlation of dolomitized horizons in the 5 Lens interval.
Figure	3.3	Detailed cross-section (NE-SW) through 1 Zone.
Figure	3.4	Simplified representation of Figure 3.3.
Figure	3.5	Plan of major facies variations across the Navan mine area.
Figure	3.6	Contours of the micrite thickness across the Navan mine area.
Figure	3.7	Diagram illustrating a tidal channel model.

Figure	3.8	Diagram	illustrating	a	palaeoslope	model.
-		<u> </u>	U		· · ·	

•

.

Figure 3.9 Diagrammatic illustration of the 3 Lens microconglomerates.

Figure 3.10 Carbonate depositional environment.

CHAPTER 4

- Figure 4.1 Summary of the diagenetic stages in the Pale Beds.
- Figure 4.2 Diagram illustrating the carbonate cement sequences.
- Figure 4.3 Diagram illustrating the carbonate cement sequences.

CHAPTER 5

Figure	5.1	The location in plan of underground head- ings referred to in the text.
Figure	5.2	Bedding-parallel replacement of calc- arenites in 2-1 Lens.
Figure	5.3	Bedding-parallel replacement of calc- arenites in 2-3 Lens.
Figure	5.4	Sulphide infill of a bedding-parallel cavity in 2-1 Lens.
Figure	5.5a	Stalactitic sulphides within a small, bedding parallel-cavity in 2-1 Lens.
Figure	5.5Ъ	Colloform sulphide within a small, bedding-parallel cavity in 2-1 Lens.
Figure	5.6	Pull-apart structures in sulphides in 2-3 Lens.
Figure	5.7	Deformed sulphide layering in 1-5 Lens.
Figure	5.8	Mechanism to produce the features in Figure 5.7.
Figure	5.9	Buckled sulphide vein in 2-1 Lens.
Figure	5.10	Collapsed sulphide clasts in 2-3 Lens.
Figure	5.11	Bedding-parallel sulphide stringers in 2-4 Lens.

.

Figure 5.12a Sphalerite inclusions in dolomite in 2-4 Lens. Figure 5.12b Sphalerite inclusions in dolomite and quartz in 2-4 Lens. Figure 5.13 2-2 Lens underground. Figure 5.14 Coarse galena in 2-2 Lens. Figure 5.15 Mechanism for producing contorted galena layers. 5.16 Figure Alternative mechanism for producing contorted galena layers. Figure 5.17 Mechanism for producing funnel structures. Dark argillite at the base of a sulphide Figure 5.18 horizon. Figure 5.19 Mechanism for the deposition of the internal sphalerite sediment. Figure 5.20 Complex assemblage of sulphide clasts in 2-1 Lens. Figure 5.21 Rhythmically banded sphalerite in 1-5 Lens. Figure 5.22 Sulphides at the contact between a micrite and an overlying dolomite in 1-5 Lens. Figure 5.23 Sulphides at the contact between micrite and overlying dolomite in 1-5 Lens. Figure 5.24 Massive sulphides within the micrites in 1-5 Lens. 5.25 Figure Massive sulphides within the micrites in 1-5 Lens. Figure 5.26 Sulphides within the micrites in 1-5 Lens. Figure 5.27 Symmetrically banded rhythmic sphalerite in 1-5 Lens. Figure 5.28a Mechanism for the mineralization in the micrites - initial fracturing. Figure 5.28b Mechanism for the mineralization in the micrites - continual extension. Figure 5.28c Mechanism for the mineralization in the micrites - presently observed features.

302

- Figure 5.29 Sulphide vein within the micrites in 1-5 Lens. Figure 5.30 Birdseyes within micrites in 1-5 Lens. 5.31 Massive sulphide horizon below a dark Figure stylolitic micrite in 1-5 Lens. 5.32 Paragenetic sequence of sphalerite and Figure galena deposition in 2-5 Lens. Figure 5.33 Relationships within the 2-5 Lens FW mineralization. Figure 5.34 Relationships between styles of mineralization in 2-4 Lens. Relationships between styles of mineral-Figure 5.35 ization in 2-2/1-2 Lenses. Figure 5.36 Relationships between different styles of mineralization in 2-1 Lens west. Accumulation of sulphides adjacent to the Figure 5.37a F3 Fault. Accumulation of sulphides adjacent to the Figure 5.37b F2 Fault. Figure 5.38 Zn + Pb contours in the 5 Lens. Figure 5.39 Conglomerate Group Ore in 3 Zone. CHAPTER 6 6.1 Influence of fo₂ and pH on the isotopic Figure composition of H₂S in an ore fluid. Figure 6.2a Influence of the SO_4^{2-}/H_2S ratio on the isotopic composition of sulphides deposited from an ore fluid. Influence of a changing SO_4^{2-}/H_2S ratio on 6.2b Figure the isotopic composition of SO_4^{2-} , H_2S_1 , ZnS and PbS. Figure 6.3 The sulphur isotopic composition of SO42-
- and H₂S during closed system bacteriogenic reduction.
- Figure 6.4 Secular variation in the sulphur isotopic composition of seawater sulphate through time.

- Figure 6.5 Histogram of the sulphur isotopic composition of all sulphides and sulphates analyzed from the Navan deposit.
- Figure 6.6 Summary of the sulphur isotopic composition of sulphides formed by beddingparallel replacement of, and open space infill within semi-lithified calcarenites, and pyrite in the CGO (Table 6.2a).
- Figure 6.7 Histogram of Figure 6.6.
- Figure 6.8 Summary of the sulphur isotopic composition of sulphides deposited by beddingparallel veining, cross-cutting fracturing, and replacement.
- Figure 6.9 Histogram of the sulphur isotopic composition of sulphides deposited by beddingparallel veining, cross-cutting fracturing, and replacement.
- Figure 6.10 Summary of the inter-lens variation in the sulphur isotopic composition of coarse bladed galena.
- Figure 6.11 Trends towards relatively lighter $\delta^{34}S$ values in paragenetically later sulphides.
- Figure 6.12 Trend towards relatively lighter $\delta^{34}S$ values in later paragenetic stages in 2-5 Lens.
- Figure 6.13 Sulphur isotopic traverse across a coarse galena band from 2-1 Lens.
- Figure 6.14 Lasered sulphur isotopic traverse across a coarse galena band from 2-1 Lens.
- Figure 6.15 Summary of the sulphur isotopic composition of sulphides deposited entirely as open space mineralization.
- Figure 6.16 Histogram of the sulphur isotopic composition of sulphides deposited entirely as open space mineralization (Table 6.2c).
- Figure 6.17 Histogram of the sulphur isotopic composition of sulphides within veins (Table 6.2d).
- Figure 6.18 Histogram of the sulphur isotopic composition of pyrite in the CGO and pyrite from small, bedding-parallel cavities in 2-1 Lens.

304

- Figure 6.19 Summary of the sulphur isotopic composition of barite and gypsum (Table 6.2e).
- Figure 6.20 Histogram of Figure 6.19.
- Figure 6.21 Summary of the inter-lens variation in the sulphur isotopic composition of barite.
- Figure 6.22 Possible origins of the hydrothermal H_2S .
- Figure 6.23 Pyrite concretions in drillcore from the Lower Palaeozoics.
- Figure 6.24 Summary of the sulphur isotopic composition of diagenetic pyrite and sulphides within veinlets in Lower Palaeozoic rocks below the Navan deposit (Table 6.2f).
- Figure 6.25 Histogram of Figure 6.24.
- Figure 6.26 Lateral variation in the sulphur isotopic composition of sulphides in 2-5 Lens.
- Figure 6.27 Lateral variation in the sulphur isotopic composition of sulphides in 2-2/ 1-2 Lenses.

CHAPTER 7

- Figure 7.1 Process for the continual generation of open space beneath a dolomitic "crust".
- Figure 7.2 Possible derivations of the bacteriogenic H_2S .
- Figure 7.3 Model for the mineralization at Navan during deposition of at least part of the Pale Beds sequence.
- Figure 7.4 Model for the mineralization at Navan during the deposition of the Boulder Conglomerate.

Figure 2.1 Simplified general geology of Ireland and location of the Navan deposit.

,

•

.

.

1.

Figure 2.2 Variation in Lower Carboniferous carbonate depositional facies prior to the onset of Zn/Pb mineralization in Ireland (compiled from Navan Resources company data).

- 4.5 m

Figure 2.3 Schematic diagram illustrating the general diachronous nature of the major formations in the Courceyan stage and the stratigraphic position of the mineralization at Navan and Silvermines (modified from Andrew, 1986c).

Figure 2.4 Simplified structural geology of Ireland (adapted from Gill, 1962; Phillips and Sevastopulo, 1986).

e ---

Figure 2.5 Surface geology of the Navan area and the location of the Navan orebody (from Ashton et al., 1986).

· · ·

ł

Figure 2.6 Diagrammatic illustration of the Lower Carboniferous stratigraphy in the vicinity of the Navan orebody (from Ashton et al., 1986).

.

,

Figure 2.7 Location of Lower Carboniferous, carbonatehosted mineral deposits in Ireland and other localities referred to in the text.

Figure 2.8 Schematic diagram illustrating the major facies variations in the Pale Beds across the Central Irish Midlands.

Figure 2.9 Structural plan of the Navan orebody drawn at the base of the 5 Lens.

.

Figure 2.10 Strike section through the central part of the Navan orebody (from Ashton et al., 1986).

.

co

channel

Figure 2.11 Dip section through 2 Zone (from Ashton et al., 1986).

Figure 3.1 A comparison of detailed graphic stratigraphic logs.from the main mine area (N314) and the western mine (N910) area respectively.

ų

1

Ą

NAROUGH SZO \triangleleft H C H C H C S O C CARBONIFEROUS I Z E U V E R U

GRAPHIC SECTIONS THROUGH THE CENTRAL REAS, BASED ON DRILL HOLES N314 AND ILLUSTRATING THE MAIN STRATIGAPHIC ND FACIES VARIATIONS ACROSS THE DEPOSIT. GENERALIZED STRATIG AND WESTERN MINE AR N910 RESPECTIVELY, UNITS, THICKNESS AN

	IGNEOUS	MINOR INTRUSIVE	++++ MAJOR INTRUSIVE	VOLGANICS	STRUCTURE		France FAULT	FULDING	BX General	BXT Tectonic BXS Slump	GRAIN OR CLAST SIZE	<pre>< 0.06mm SILTITE 0.06 - 2.0mm ARENITE</pre>
IC LUG NET		- GEOPETAL	-O- BIRDSEYE	* INTRACLASTS	ONCOLITES AND PELLETS ONCOLITIC	E3 VUGGY	LEACHED	FOSSILS	CRINOIDS	SOLITARY CORALS	BRACHIOPODS	3 BIODEBRIS
UTATU UTATU	BEDDING FEATURES	INTERBEDS	TRANSITION	L LAMINATED (<0.01m)	<pre>h THIN (0,01-0.1m) m MEDIUM (0.1-0.3m)</pre>	T THICK (0.3-1.0m)	M MASSIVE (>1.0m)	FINING DOWN	B FINING UP	X CROSSBEDDED	TEXTURAL FEATURES	BIOTURBATION
	DLOGY	MICRITE	RAULSORTIAN) "REEF"	CALCSILTITE	CALCARENITE	CALCIRUDITE	BUILDER / CONGLOMERA		BRECCIA	ARGILLITE OR MUD	SHALE	SILT OR SILTSTONE
	LITH					0.000 0.0000 0.0000 0.0000 0.000000	0.8.		400		22	

1ENTS

DOLOMITIZATION

LOG SUMMARY

																																											1.K.ANDERSON PhD THESIS 1990	PROCESSES	. BLACK	McDEKMUI I
WITH CRINOIDAL DEBRIS FOUND THROUGHOUT. HIGH SILT AND SAND CONTENT AND PARTIAL	THIN SHALE BAND WITH A CONCENTRATION OF FINGER BRYDZDA 1.2m BELOW. DISTINCT CHANGE IN LITHOLOGY BELOW LBY INTO COARSE C/ARENITES	A FINE-GRAINED, MUDDY UNIT, WITH PARTIAL DOLOMITISATION AND ABUNDANT SILT.	LIGHT GREY.OOLITIC AND SPARRY CALC-	DARKER IN COLOUR AND HAVE A HIGH SAND DARKER IN COLOUR AND HAVE A HIGH SAND CONTENT. TOWARDS THE TOP OF THE UNIT. THE	ROCKS ARE BANDED WHERE THERE IS A STRONG BIOCLASTIC COMPONENT.	TRANSITIONAL INTO A DARKER, SILTY CALCARENITE.		GOOD MARKER HORIZON WHICH IS A DARK GREY SILTY UNIT WITH MUDDY WISPS, ESPECIALLY	AT THE TOP. UPPER CONTACT IS GRADATIONAL AND LOWER IS OFTEN SHARP.	2 OR 3 DARK, SILTY, MUDDY DOLOMITIC LITHOLOGIES, SEPARATED BY A MEDIUM TO	LIGHI GRET.CLEAN UDLITIC LIMESTONE. THE CONTACTS BETWEEN LOWER CALCARENITES AND UPPER SILTY, DOLOMITIC LITHOLOGIES	ARE OFTEN VERY SHARP.	LIGHT TO MEDIUM GREY, BIOCLASTIC	CALCARENITES, INTERSPERSED WITH MINOR SANDY SECTIONS.	WHITE BIOCLASTIC BANDS WELL-DEVELOPED ABOVE	THE LSM. A DULL GREY, DOLOMITISED SANDSTONE	WITH DOLOMITISATION MORE INTENSE AT THE BASE. MUDDY FLAKES OCCUR IN THE BOTTOM	SIMILAR LITHOLOGY TO THE LSM BASE.	SHARP CONTACT WITH CLEAN OOLITES BELOW. A CONCENTRATION OF BRACHTOPODS 1 TO 2m	THICK, DEVELOPED 10 TO 12m ABOVE BASE OF THE LDM.	WELL-DEVELOPED DARK, SILTY ARGILLITE, OFTEN DOLOMITISED, ESPECIALLY AT THE BASE,	UVERLAIN BY A SANDY, DOLUMITIC LITHOLOGY OF THE LSM-TYPE. SHARP BASAL CONTACT INTO A CDARSF.LIGHT	GREY BIOPELSPARRITE. MINERALISATION IS OFTEN BUILT-UP AT THIS CONTACT.	DARK, SILTY DOLOMITIC UNIT WHICH IN SOME AREAS MAY SPLIT INTO 2 HORIZONS.	THIN. PALE. DOLOMITIC SILTSTONE.	THIN MICRITE HORIZON WITH A MUDDY TOP IN PLACES. IN SOME AREAS MICRITES ARE DEVELOPED FROM HERE DOWN TO THE MLT.	PALE/BUFF, FINE-GRAINED, SANDY DOLOMITE. FINE-GRAINED DOLITES OCCUR ABOVE AND BELOW	MICRITES AND LESSER CALCSILTITES.	VARYING THICKNESS OF MUDDY CALCSILTITES. MICRITIC CONGLOMERATE HORIZONS ARE PRESENT	AT THE TOP. CONTACT WITH OVERLYING MICRITES CAN BE DIFFICULT TO PLACE IN MANY AREAS. BLACK FISCHE ADDITITES WITH CONNING	AND CORALS THROUGHOUT. A THIN RUDITE IS DEVELOPED AT THE BASE TOWARDS THE WEST.	VARIABLE, INTERBEDDED PALE SANDSTONE AND DARK ARGILLITE, WITH OCCASIONAL COARSE BIOSPARRITE HORIZONS.	DARK.FISSILE ARGILLITE WITH A QUARTZ MARKER AT THE BASE. RAPID CHANGE BELOW INTO A VERY LIGHT GREY CALCSILTITE WITH SMALL MUD	FLAKES. VARYING LITHOLOGIES INCLUDING C/SILTITES, C/SANDSTONES AND ARGILLITES. GOOD MARKER	3m FROM TOP, IS AN ONCOLITIC HORIZON. MASSIVE, LIGHT GREY, NON-CALCAREOUS SANDSTONE.	A SEQUENCE OF FINELY INTERBEDDED PALE SANDSTONES AND DARK ARGIILITES.	THE ARGILLITE CONTENT INCREASES IN THE LOWER HALF OF THE UNIT, WITH GREEN SHALE HORIZONS UP TO 3m THICK	FOUND LOCALLY. SOFT-SEDIMENT DEFORMATION IS FOUND THROUGHOUT AND BIOTURBATION IS WELL-DEVELOPED IN UPPER SECTIONS.	CONGLOMERATES, GRITS, SANDSTONES AND	HUDSIONES, WHICH MAT BE UP 10 40M THICK.		HIGHLY FOLDED, FAULTED AND SHEARED SHALES, MUDSTONES, TUFFS AND VOLCANICS, WITH INTRUSIONS OF COARSE-GRAINED, ALTERED, PINK SYENITE.			COMPILED BY : K. ANDERSON & A	UKAWIN BI . N. ANUCROUN & F.
60 <u></u>		SDM 75 ~ 1-11 ~ X m					100-1	mn 105- ~ 1 1~ 20		115-1- + + + + + + + + + + + + + + + + + +		m-t					LSM 150-		ara 100 0 0		m-T			BDM 185- ~ 1 ~ 1 ~ 1 ~ M m-T		200 1 200 1	205-1 1 T-M	MU 210-0-1-	MLT 215-12-12	220-1-1-1	ML 225		CC CADATION ARKER L CD 240-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CE 245 1 1 1 1 0 0 0	CF 250-		260		275 50000000	RB 280 000000		LP 295 + + + + + + + + + + + + + + + + + + +				
ICM - LIDDED CANDETONE MADKED	UDM = UPPER DARK MARKER		LBY = LOWER BRYOZOAN MARKER	SDM = SUB DARK MARKER	NOD = NODULAR MARKER	LSM = LOWER SANDSTONE MARKER		SLS = SUB LUWER SANDSTUNE	LDQ = LOWER DARK MARKER EQUIVALENT	LDM = LOWER DARK MARKER	MIL - MICDITE IMIT	IIO - IITONTIE ONTI	BDM = BOTTOM DARK MARKER	DOL = DOLOMITE		MLT = MUDDY LIMESTONE TRANSITION	ML = MUDDY LIMESTONES	I CG = 1 IMESTONE CONCLOMEDATE		CB	CC	SUBDIVISIONS OF THE	CD LAMINATED BEDS	E.	L	5	CG	RB = RED BEDS	LP = LOWER PALAEOZOICS																	
UDM. WHICH MARKS A CHANGE FRUM SAND-RICH LITHOLOGIES ABOVE, TO DARKER, MUDDY CALC- SILTITES BELOW.	L 3 BLACK MUDSTONE HORIZONS SEPARATED BY MUDDY CALCSILTITE. A UNIFORM SERIES OF MED-DARK GREY. MUDDY	CALCSILTITES AND CALCARENITES. CRINOIDAL DEBRIS SCATTERED THROUGHOUT.	A LARGE CONCENTRATION OF FINGER BRYOZOA.	T ABRUPT CHANGE BELOW THE LBY INTO LIGHTER GREY.COARSE CALCARENITES WITH LITTLE OR NO SILICLASTIC CONTENT.	A DARK. MUDDY CALCSILTITE WITH ABUNDANT SILT	M MEDIUM TO LIGHT GREY, COARSE-GRAINED	WITH HORIZONS OF COARSER BIOCLASTIC MATERIAL.	DRILL CORE IN THIS AREA IS OFTEN EXTENSIVELY DOLOMITISED, GIVING A VUGGY	APPEARANCE.	T DARK GREY.FINE-MEDIUM GRAINED LITHOLOGY WITH A GRADATIONAL UPPER CONTACT AND A SHARPER LOUER CONTACT A 2-3- SUITTE	IS DEVELOPED AT THE BASE .	A CLEAN.LIGHT-MEDIUM GREY, DOLITIC CALC- ARENITE.		VARY IN THICKNESS. INDIVIDUAL BEDS CANNOT BE CORRELATED WITH ANY DEGREE OF	CONFIDENCE. THEY ARE INTER-DIGITATED WITH RUDACEOUS OR MICROCONGLOMERATIC LITHOLOGIES DICH IN COARSE BIDDERDIS INTRACIASTS AND	QUARTZ CLASTS. A SHARP. POSSIBLY EROSIONAL. CONTACT EXISTS BETWEEN RUDITE AND THE UNDER-	LYING DULL, BUFF DOLOMITIC SANDSTONE (LSM).	A SIMILAR LITHOLOGY TO THE LSM.BUT HAS	SMALL 5mm MUDDY FLAKES PARALLEL TO BEDDING.	T DULL UNIT SIMILAR TO LSM-TYPE WITH MUD FLAKES. SHARP LOWER CONTACT WITH	UNDERLYING LITHOLOGIES.	SECTIONS DEVELOPED TOWARDS THE TOP.	LOCAL DOLOMITISATION OF SOME HORIZONS.	DARK SHALE BANDS < 5-100m THICK, WITH ALTERNATING MICRITES AND DOLITIC SECTIONS IN BETWEEN.	T LIGHT GREY MICRITES	A MEDIUM-FINE GRAINED DOLOMITIC SANDSTONE	M TOWARDS THE TOP IT IS LESS DOLOMITIC, AND GRADES INTO A SAND-RICH CALCARENITE.	POORER DEVELOPMENT OF BIRDSEYES THAN THE	MICRITES ABOVE SHALE BANDS. PALE/BUFF FINE GRAINED DOLOMITIC HORIZONS	CCUR TOWARDS THE BASE. WITH THE MICRITES BECOMING SILTY AND ONCOLITIC HORIZONS PRESENT IN THE ROITOM P-7 _	A VARIED TRANSITIONAL LITHOLOGY INTO THE MUDDY LIMESTONES WHICH INVARIABLY CONTAINS	A BLACK BIOCLASTIC ARGILLITE, WITH MINOR	CALCULATIONAL INTO A MUDDY, BIOCLASTIC CALC-	A COARSE MICROCONGLOMERATE WHICH MAY BE UP TO 15m THICK, AND IS COMPOSED OF ROUNDED MICRITIC CLASTS, QUARTZ (often jasper)	CLASTS AND ABUNDANT COARSE BIODEBRIS. LOCAL EROSION SURFACE CUTS DOWN INTO THE CE UNIT OF THE LAMINATED BEDS.	M A HOMOGENEOUS LIGHT GREY TO BROWN-GREY SANDSTONE.	A SEQUENCE OF ALTERNATING, THIN-LAMINATED INTERBEDS OF LIGHT GREY, CALC-SANDSTONES AND SILTY ARGILLITES. THE ARGILLACEOUS	LOWER SECTIONS OF THE UNIT. AND GREEN/ BLACK, FISSILE ARGILLITE HORIZONS UP TO	Zm THICK ARE PRESENT. SHARP CONTACT BETWEEN RB AND OVERLYING LB. TOP 0.5 TO 1.0m OF THE RED BEDS IS MARKED	T RED CONGLOMERATES.SANDSTONES AND MUDSTONES. WITH MINOR CALICHE LAYERS	DEVELOPED LOCALLY. MAJOR UNCONFORMITY.	PROFOUND DEEP WEATHERING IN THE UNDERLYING LOWER PALAEOZDICS EXPRESSED AS A REDDENING DUE TO HAEMATISATION.				
	-1 MDM 170-1-2-1	m 175 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LBY 180-01010		SDM 190-12.12 2 m		3	202 I O I O	210-12				DTE 31.000000000000000000000000000000000000	240-1265-000-036			T LSM THE TRANSPORT		SIS con million and a			E Date date		290 - marian and and a second	-m	1 A 900-00E 100	305 1 1 1	310-	315	320 - Castranter Color	MLT 325-1~1~1	1-1 1-1 1-1 1-1	340- <u>1~1~1</u> × 1 × 1 × 1 × 1 × 1 × 1 × 1	LCG 345-200 000 000 000 000 000 000 000 000 000		CF 355-	360- **		375-22	RB 380 00 00 00 00 00 00 00 00 00 00 00 00 0	385 wet of a	LP 396-				

Figure 3.2 Diagram illustrating the correlation of dolomitized horizons in the 5 Lens interv in 1 Zone.			-	• • •	
Figure 3.2 Diagram illustrating the correlation of dolomitized horizons in the 5 Lens interv in 1 Zone.	, , , , , , , , , , , , , , , , , , ,				
	Figure 3.2	Diagram'illu dolomitized in 1 Zone.	strating the c horizons in th	orrelation o e 5 Lens int	f erv
	· ·				

£

i

• •

•

, , ,

. .

•

.

Figure 3.3 Detailed cross-section (NE-SW) through 1 Zone illustrating the major facies variations. •

C.R.S.NW		1	1				1
WNCOO	693 NW	701 NW	709 NW	717 NW	725NW	733 NW	741 NW
- 1600 elevation in the mine.	SIMPLIFIED ST	RATIGRAPHIC SE	CTION ACROSS	THE NAVAN MINE ARE	A		
1500							
- 1400							
							Microco
					3 Lens micr	oconglomerates only developed 10-12m above	the base of the LSM
Γ			Ero	sional surface cutting out the upper sections of th	he Laminated Beds Shale hor	zons in the upper sections of the micrites dying	out

merate

Willia.	829 NW		837 NW		1 845 N W	
					1	600 -
o 8m thick						
n Surface	UPPER DARK	MARKER				
	BASE OF	SUB-DARK MARKER	SILTY HORIZON	S THROUGHOUT OG	I	500 -
	-	and a second		AR MARKER ODULAR SILTY, MUI	DDY MARKERS	
+ 0 0	10 0 0					
	0	0 	LOWER	SANDSTONE MAR	KER	
A	Rent		SUB LI BRACH	OWER SANDSTONE	MARKER	
	• + • •		LOWER COAR	E DARK MARKER	ASTIC, OOLITIC LIMESTON	E
	07.11		MIXED IN PLA	LITHOLOGIES WIT	H MICRITES ONLY 2m THIC	к
0000			SILTY / DARK	MUDDY LIMESTONE MUDDY LIMESTONI	TRANSITION AT BASE OF MI	CRITES
			CB UN CCC SH CD UN CE UN	NIT IALE UNIT IIT		
A			CF SA			
	H	- III	RED B	EDS		
- III					1	300 -
[
	LEASUR					1200 -
	LEGEND	HORIZONTAL	SCALE = VERTICA	LSCALE		
		Sand 0 10 20	30 40 50 m			
		Shaler				
		Mud				
		Interbedded muds and sand	5			
		Micrites				100 -
		Calcareous muds				
	0000 00:00	"Microconglomerates"				
		Dolomitic				
	0	Oolitic				
	10 ¹⁰ 1	Bioclastic				1000
	•:	Pelletal				1000 -
		Brachiopod horizons (b	ecoming impersistar	11)	14 0.000	
	000	Intraclasts		4	PhD THESIS	
					"ORE DEPOSITIONAL PROCESSES	
		4				
	829 NW		837 NW		845 NW	
					The set of	

i

۱

;

Figure 3.5 Plan view of the major facies variations and trends across the Navan mine area.

í.

Figure 3.6 Contoured plan of the thickness of micrites across the Navan mine area.

.

.

.

.

Figure 3.7 Diagram illustrating a tidal channel model to explain the thinning of the micrites in the central mine area.

a set a sure and a set of a set of a

) !

;

.

The second s

Figure 3.8 Diagram illustrating a palaeoslope model to explain the thinning of the micrites in the central mine area.

Figure 3.9 Diagrammatic illustration of the features of the 3 Lens microconglomerates.

Figure 3.10 Depositional environment for the Lower Carboniferous stratigraphy in the Navan mine area (inset is a comparison with the Bowland Basin).

Figure 4.1 Simplified summary of the diagenetic stages within the Pale Beds limestones and dolomites at Navan.

;

TANK BURNESS

ALCORONIC MARK

a la la caractería mar

	Features	<u>Timing</u>
	Deposition	
LIMESTONES	Calcite cement (Stage a) Calcite cement (Stage b) Calcite cement (Stage c) Dolomite cement (Stage d)	
SIG-RICH DOLOMITES	Dolomite replacement (Stage 1) Dolomite cement (Stage 2) Dolomite cement (Stage 3) Calcite cement (Stage 4)	••••••••••••••••••••••••••••••••••••••
VUGGY/PITTED DOLOMITES	Dolomite replacement (Stage A) Dolomite replacement (Stage B) Dolomite cement (Stage C) Calcite cement (Stage D)	
	Neomorphism of calcite cements and allochems	· · · · · · · · · · · · · · · · · · ·
	Silicification	
	Mineralization	*** ***

,

Figure 4.2 Diagram illustrating the carbonate cement sequence in thin sections prepared from typical Pale Beds oolitic calcarenites; transmitted light vs cathodoluminescence.

early rimming calcite cement

echinoderm fragments

oolites (and lesser pellets)

CATHODOLUMINESCENCE

stage 3 blocky calcite cement (medium luminescent)

stage 2 zoned calcite cement (dull-bright luminescent)

stage 1 calcite rimming cement and larger overgrowths

(dark to non-luminescent)

ooli

oolites (and lesser pellets)
Figure 4.3 Diagram illustrating the carbonate cement sequence in thin sections prepared from typical Pale Beds bioclastic calcarenites; transmitted light vs cathodoluminescence.

late-stage ferroan dolomite

early bladed calcite cement

carbonate allochems

blocky calcite becoming more ferroan in later stages

F.

CATHODOLUMINESCENCE

stage 4 dolomite cement (essentially non-luminescent with a bright red zone in places)

stage 3 blocky calcite cement (medium luminescent)

stage 2 zoned calcite cement (dull-bright luminescent)

stage 1 calcite rimming cement (dark to non-luminescent)

carbonate allochems

Figure 5.1 The location in plan view of underground headings referred to in the text. The position of the faults is defined by their intersection with the base of the 5 Lens.

330

.

Figure 5.2 Diagram from an underground heading in 2-1 Lens illustrating bedding-parallel, sphalerite replacement of calcarenites.

Figure 5.3 Diagram from an underground heading in 2-3 Lens (240N) illustrating bedding-parallel, sphalerite-rich replacement of calcarenites.

332

•

Figure 5.4 Diagram from an underground heading in 2-1 Lens, (206W), illustrating sphalerite replacing calcarenites around a small bedding-parallel cavity, with the cavity itself infilled by laminated argillite/ sphalerite and blocky calcite/dolomite.

ຍ ຍ ຍ ຍ

:

Figure 5.5a Diagram from an underground heading in 2-1 Lens (204W) illustrating stalactitic sulphides within a small, bedding-parallel cavity.

Figure 5.5b Diagram from the same underground heading as Figure 5.5a illustrating colloform and laminated sulphides within a small, bedding-parallel cavity.

Figure 5.6 Diagram from an underground heading in 2-3 Lens illustrating pull-apart structures within sulphides surrounded by calcarenites.

Figure 5.7 Diagram from an underground heading in 1-5 Lens (173N) illustrating layered sulphides compacted around an unreplaced block of calcarenite.

Figure 5.8 Diagram illustrating a mechanism to produce the features observed in Figure 5.7, during compaction of the stratigraphic section.

Figure 5.9 Diagram from an underground heading in 2-1 Lens illustrating a squashed or buckled, cross-cutting sulphide vein hosted in calcarenites, indicating that the vein formed while the calcarenites were still compacting.

Figure 5.10 Diagram from a handspecimen from 2-3 Lens (252/253S) illustrating collapsed sulphide clasts within a small, bedding-parallel cavity.

Figure 5.11 Diagram from an underground heading in 2-4 Lens (252/2535) illustrating beddingparallel sulphide stringers. The stringers consist of a thin veinlet of galena and sphalerite and a surrounding, diffuse halo dominated by sphalerite.

Figure 5.12a Diagram from a polished thin section prepared from the sphalerite halo around a bedding-parallel stringer veinlet (2-4 Lens, 252/253S), illustrating dolomite rhombs with sphalerite inclusions, in both reflected and cathodoluminescent light.

Figure 5.12b Reflected light diagram from the same polished thin section as Figure 5.12a, illustrating the relationships between sphalerite, authigenic dolomite and authigenic quartz overgrowths.

Figure 5.13 Diagram from an underground heading in 2-2 Lens (W255) mapped by mine geologists, illustrating the gross morphology of the massive sulphide horizon at the contact between an colitic calcarenite and the overlying Nodular Marker.

Figure 5.14 Diagrams from underground headings in 2-2 Lens (W20S-W40S) illustrating galena deposited within small cavity structures.

Figure 5.15 Diagram illustrating a mechanism for producing contorted galena layers through slumping of the sulphides after initial deposition in small, bedding-parallel cavities.

1 ··· ·

a) Initial infill of some form of small, bedding-parallel, "diagenetic?" spaces and replacement of surrounding carbonate

b) Subsequent "slumping" of the sulphides

Figure 5.16 Diagram illustrating a mechanism for producing contorted galena layers by the coating of clasts of host rock (which are subsequently totally replaced by sphalerite) in a cavity system.

Figure 5.17 Diagram illustrating a mechanism for producing the funnel structure illustrated in Plate 5.23a by density slumping associated with extension and the initiation of fractures in the host lithologies.

ł

Figure 5.18 Diagram from an underground heading in 2-1 Lens (222W) illustrating dark argillite infilling a former depression at the base of a sulphide horizon.

Figure 5.19 Diagram illustrating the mechanism for deposition of the internal sphalerite sediment involving rapid precipitation of fine-grained sphalerite in the ore fluid, possibly when the ore fluid encountered a supply of bacteriogenic H₂S. The sphalerite was subsequently deposited out of suspension.

Figure 5.20 Diagram from an underground heading in 2-1 Lens (229N) illustrating a complex assemblage of sulphide clasts with occassional clasts of host rock.

Figure 5.21 Diagram from a thin section under transmitted light illustrating late-stage calcite replacement of rhythmically banded sphalerite best-developed at re-entrant angles within the rhythmically banded sphalerite (1-5 Lens, Block 6, FW contour drifts).

E

-

Figure 5.22 Diagrams of drillcore illustrating sulphides at the contact between a micrite and an overlying dolomite, with some collapse of the dolomite (1-5 Lens FW).

Figure 5.23 Diagram from an underground heading in 1-5 Lens (Block 6 FW contour drift) illustrating bedding-parallel massive sulphides at the contact between micrite and overlying dolomite.

Figure 5.24 Diagram from an underground heading in 1-5 Lens (Block 6 FW contour drift) illustrating bedding-parallel massive sulphides within the micrites.

Figure 5.25 Diagram from an underground heading in 1-5 Lens (Block 6 FW contour drift) illustrating complex, chaotic clasts within bedding-parallel massive sulphides.

Figure 5.26 Diagram from an underground heading in 1-5 Lens (133W) illustrating complex, chaotic sulphide clasts in cross-cutting mineralization within the micrites.

Figure 5.27 Diagram of drillcore from 1-5 Lens illustrating disrupted layers of symmetrically banded rhythmic sphalerite within the matrix around clasts of sulphide and micrite.

Figure 5.28a Diagram illustrating initial fracturing of the micrites as mechanism for explaining the style of mineralization in the micrites.

.

Figure 5.28b Diagram illustrating sulphide deposition and disruption during continual extension of the micrites.

.

.

Figure 5.28c Diagram illustrating the presently observed features of mineralization within the micrites.

Figure 5.29 Diagram from an underground heading in 1-5 Lens illustrating a sulphide vein crosscutting the micrite and dying out on encountering an overlying dolomitic horizon.

. . . Figure 5.30 Diagram from an underground heading in 1-5 Lens (Block 6 FW contour drift) illustrating layered birdseyes within micrites truncated by the footwall of a massive sulphide horizon.

Figure 5.31 Diagram from an underground heading in 1-5 Lens (Block 6 FW contour drift) illustrating a dark stylolitic micrite directly above a massive sulphide horizon.

Figure 5.32 Diagram compiled from observations made on thin sections prepared from 2-5 Lens (242S, 1315 and 1330 levels) illustrating the sequence of sphalerite and galena deposition in both transmitted light and cathodoluminescence.

Figure 5.33 Simplified diagram illustrating the relationships between the 2-5 Lens FW mineralization in the central mine area and that further towards the west.

Figure 5.34 Diagram illustrating and explaining the apparent relationships between different styles of mineralization in a heading in 2-4 Lens (252/2535).

Figure 5.35 Simplified diagram illustrating and explaining the relationships between styles of mineralization in 2-2/1-2 Lenses.

.

.

Figure 5.36 Simplified diagram illustrating the relationships between different styles of mineralization in 2-1 Lens west.

Figure 5.37a Diagram illustrating the accumulation of sulphides adjacent to the F3 Fault.

Figure 5.37b Diagram illustrating the accumulation of sulphides adjacent to the F2 Fault.

Figure 5.38 Diagram showing Zn + Pb contours in the 5 Lens, supplied by Tara Mines computer graphics (from Andrew and Ashton, 1985).

. .

,

;

י. איזיי

Zn+Pb DISTRIBUTION IN 5 LENS - TARA MINES, NAVAN

Figure 5.39 Diagram from an underground heading in the Conglomerate Group Ore (3 Zone access drift, 1390 level) illustrating massive and laminated pyrite.

.

•

Figure 6.1 Diagram illustrating the influence of for and pH on the sulphur isotopic composition of H₂S in an ore fluid; Temperature = $250^{\circ}C$, $\delta^{34}S_{EB} = 0^{\circ}/_{\circ\circ}$ (from Ohmoto, 1972).

~

.

•

Figure 6.2a Diagram illustrating the influence of the SO_4^{2-}/H_2S ratio on the sulphur isotopic composition of galena and sphalerite deposited from an ore fluid with $\delta^{34}S_{ES} = 0^{\circ}/_{\circ\circ}$, at 200°C (from Rye and Ohmoto, 1974).

Figure 6.2b Graph illustrating the influence of a changing SO_4^{2-}/H_2S ratio on the sulphur isotopic composition of SO_4^{2-} , H_2S , ZnS and PbS in a closed system at 200°C, $\delta^{34}S_{ES} = 0^{\circ}/_{\circ\circ}$.

B

SO4/(SO4+H2S)

Figure 6.3 Graph illustrating the isotopic composition of SO_4^{2-} and H_2S during closed system bacteriogenic reduction with a fractionation between the starting SO_4^{2-} and the H_2S produced of around $25^{\circ}/_{\circ\circ}$. The graph assumes that the H_2S produced is continually removed from the system during the reduction process.

•

Figure 6.4 Diagram illustrating the secular variation in the sulphur isotopic composition of seawater sulphate through time as determined from evaporites preserved in the stratigraphic record (adapted from Claypool et al., 1980).

Figure 6.5 Histogram of the sulphur isotopic composition of all sulphides and sulphates analyzed from the Navan deposit.

Figure 6.6 Summary of the sulphur isotopic composition of sphalerite formed by the beddingparallel replacement of semi-lithified calcarenites, pyrite/marcasite in beddingparallel cavities associated with the sphalerite replacement, and pyrite in the CGO (Table 6.2a). Range in the Isotopic Composition of Laminated and Massive Pyrite

in the Conglomerate Group Ore, Navan Mine

 $\frac{3}{\Delta}$ framboidal pyrite in the Conglomerate Group Ore

Range in the Isotopic Composition of Sulphides Deposited by

Replacement of a Semi-lithified Carbonate Host, and

Local Bedding-parallel Veining, Navan Mine

Figure 6.7 Histogram of the sulphur isotopic composition of bedding-parallel sphalerite replacement of allochems, pyrite/marcasite deposited within associated small, beddingparallel cavities, and pyrite in the CGO (Table 6.2a).

Figure 6.8 Summary of the sulphur isotopic composition of different textures within coarse galena/ sphalerite ores deposited by beddingparallel veining, cross-cutting fracturing, and replacement. Similar textures within cross-cutting, cockscomb veins are included for comparison.

Figure 6.9 Histogram of the sulphur isotopic composition of different textures within sulphides deposited by bedding-parallel veining, cross-cutting fracturing, and replacement (Table 6.2b).

.

..

Figure 6.10 Summary of the inter-lens variation in the sulphur isotopic composition of coarse bladed galena, and a comparison with similar textures within cross-cutting veins.

Inter-Lens Variation in the Sulphur Isotopic

Composition of Coarse Bladed Galena

× 1

•

378

Figure 6.11 Diagrams from hand specimens and thin sections illustrating trends towards relatively lighter $\delta^{34}S$ values in paragenetically later sulphides.

.

,

 r^{-1}

•

2-2 Lens/massive sulphide

(2)

5

Figure 6.12 Diagram compiled from thin sections prepared from sulphides in 2-5 Lens (242S stope, 1315 and 1330 levels) illustrating the trend towards relatively lighter δ^{34} S values in later paragenetic stages.

.

Figure 6.13 Diagram illustrating a hand-drilled sulphur isotopic traverse across a coarse galena band from 2-1 Lens (229N, 1435 level) illustrating shifts in the isotopic composition of the galena in the direction of crystal growth.

Aufter Maltant, a Nad-Mat.

+15

+10

Distance in mm above the base of the galena band

ŧ

Figure 6.14 Diagram illustrating a lasered sulphur isotopic traverse across the same galena sample as that in Figure 6.13, except conducted about 1cm away from the handdrilled traverse, illustrating the detailed nature of the shifts and fluctuations in the isotopic composition of the galena. The initial hand-drilled traverse is incorporated for comparison.

Figure 6.15 Summary of the sulphur isotopic composition of different textures in sulphide horizons deposited as open space mineralization. Similar textures within a large vein swarm in 2-5 Lens are included for comparison.

Figure 6.16 Histogram of the sulphur isotopic composition of different textures within sulphide horizons deposited as open space mineralization (Table 6.2c).

384

Munit

Figure 6.17 Histogram of the sulphur isotopic composition of different textures within cross-cutting vein sulphides (Table 6.2d).

,

.

.

-

Figure 6.18 Histogram of the sulphur isotopic composition of pyrite in the CGO and pyrite from small, bedding-parallel cavities in 2-1 Lens.

.

,

•

....

.

Figure 6.19 Summary of the sulphur isotopic composition of barite and gypsum (Table 6.2e).

-

•

•

Range in the Sulphur Isotopic Composition of

.

.

. .

Barite and Gypsum, Navan Mine

.

Figure 6.20 Histogram of the sulphur isotopic composition of barite and gypsum (Table 6.2e).

пгодаосор

Figure 6.21 Summary of the inter-lens variation in the sulphur isotopic composition of barite and a comparison with barite in late stage veins.

Inter-Lens Variation in the Sulphur

Isotopic Composition of Barite

 $\hat{}$

local evaporitic conditions ? shallow sea phate-ric/ Lower brine mineralization Carboniferous 10-100m carbonates 9.000000000 00000000 **Red Beds** Lower Carbonifero seawater H₂S produced by thermochemical 1-10km reduction of sulphate within a dense brine in the Red Beds, by sulphate-bearing Lower Palaeozoics hydrocarbons in the ore fluid H_sS produced by thermochemical reduction of Lower Carboniferous seawater sulphate by organic material present in the Lower Palaeozoic pile H,S produced by the leaching/ alteration of diagenetic pyrite in the Lower Palaeozoic pile

416.6 dd

Figure 6.23 Diagram from drillcore (drillhole U80) illustrating pyrite concretions (stipple) deforming laminae in the Lower Palaeozoic host rock and implying the pyrite formed prior to lithification of the shale, ie diagenetically.

Figure 6.24 Summary of the sulphur isotopic composition of diagenetic pyrite and sulphides within veinlets in Lower Palaeozoic rocks below the Navan deposit (Table 6.2f).

Diagenetic pyrite "clots" and concretions in

Figure 6.25 Histogram of the sulphur isotopic composition of diagenetic pyrite and sulphides in veinlets in Lower Palaeozoic rocks below the Navan deposit (Table 6.2f).

Figure 6.26 Diagram illustrating the lateral variation in the sulphur isotopic composition of sulphides in the 2-5 Lens footwall.

1

.

•

00 C.:

Figure 6.27 Diagram illustrating the lateral variation in the sulphur isotopic composition of sulphides in 2-2/ 1-2 Lenses.

Figure 7.1 Diagram illustrating a process for the continual generation of open space beneath a dolomitic "crust" during mineralization and compaction of the stratigraphic section. "rigid" dolomitic horizon

Figure 7.2 Schematic diagram illustrating two possible derivations of the bacteriogenic H_2S in the Navan deposit. In both cases the H_2S is derived by the reduction of Lower Carboniferous sea water sulphate and transported in a sea water fluid. The regional gradient is exagerated for the purposes of the diagram.

Figure 7.3 Hodel for the mineralization at Navan during deposition of at least part of the Pale Beds sequence in late Courceyan times. The diagram illustrates a simplified picture of one pulse of ore fluid.

Figure 7.4 Model for the mineralization at Navan during the deposition of the Boulder Conglomerate in late Chadian to early Arundian times. The diagram illustrates a simplified picture of one pulse of ore fluid.

late Chadian - early Arundian

