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Abstract

Non-invasive imaging modalities used in the diagnosis of lung cancer, such as

Positron Emission Tomography (PET) or Computed Tomography (CT), currently

provide insufficient information about the cellular make-up of the lesion microen-

vironment, unless they are compared against the gold standard of histopathology.

The aim of this retrospective study was to build a robust imaging framework for

registering in vivo and post-operative scans from lung cancer patients, in order

to have a global, pathology-validated multimodality map of the tumour and its

surroundings.

Initial experiments were performed on tissue-mimicking phantoms, to test differ-

ent shape reconstruction methods. The choice of interpolator and slice thickness

were found to affect the algorithm’s output, in terms of overall volume and local

feature recovery. In the second phase of the study, nine lung cancer patients

referred for radical lobectomy were recruited. Resected specimens were inflated

with agar, sliced at 5 mm intervals, and each cross-section was photographed. The

tumour area was delineated on the block-face pathology images and on the pre-

operative PET/CT scans. Airway segments were also added to the reconstructed

models, to act as anatomical fiducials. Binary shapes were pre-registered by align-

ing their minimal bounding box axes, and subsequently transformed using rigid

registration. In addition, histopathology slides were matched to the block-face

photographs using moving least squares algorithm.

A two-step validation process was used to evaluate the performance of the pro-

posed method against manual registration carried out by experienced consultants.

In two out of three cases, experts rated the results generated by the algorithm

as the best output, suggesting that the developed framework outperforms the

current standard practice.
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Chapter 1

Introduction

1.1 Motivation

Lung cancer is the third most common cancer in the UK, with approximately 130

new cases being diagnosed every day [1]. Treatments available for this type of

cancer include: surgical resection of the tumour; radiotherapy, which consists of

delivering ionising radiation to the cancerous site in order to kill the malignant

cells; and chemotherapy, where a combination of drugs is delivered to the tumour.

The choice of treatment is determined by a multidisciplinary team of experts,

and depends on several factors, such as cancer type, size, location, stage and the

patient’s overall fitness [2].

In the majority of cases, treatment decisions are based upon the patient’s clin-

ical history and the visual information extracted from medical scans. However,

non-invasive imaging modalities, such as Positron Emission Tomography (PET)

or Computed Tomography (CT), currently provide insufficient information about

the cellular make-up of the lesion microenvironment. Identification and classi-

fication of different tumour substructures, such as regions with hypoxia (poor

oxygen perfusion), necrosis (dead tissue) or inflammation, is of great importance

during therapy planning. This is because treatment can be tailored depending

on the intratumoural characteristics.

In most cases, tumour biopsies are performed in order to gain a better insight of

the tumour type and pathology. This procedure, however, only offers extremely

localised and discrete information. Multimodality imaging techniques, such as
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combined PET/CT, partially overcome this issue, by providing complementary

knowledge about the cancerous region, like its metabolic fingerprint and anatomy.

In addition to these limitations, information extracted from these modalities can

be ambiguous. For example, a high-absorption area in a CT scan could correspond

to a solid tumour mass, but also to calcified tissue. Similarly, a PET image

showing a zone with a prominent glucose uptake could be indicative of a highly

metabolic carcinoma, or instead a region with acute inflammation. The only way

to confirm the nature of the imaging phenomenon would be to compare it against

the gold standard of histopathology.

For all the reasons exposed above, having an enhanced imaging protocol that pro-

vides a global, pathology-validated map of the cancer environment may influence

clinicians to make better-informed decisions regarding diagnosis, prognosis and

the choice of treatment for a given patient.

1.2 Project Scope

This retrospective study aims to spatially align PET/CT scans, obtained from

lung cancer patients, with their corresponding histopathology data. As histopatho-

logical processing can only take place ex vivo, our cohort is limited to patients

referred for radical lobectomy. In these cases, the entirety of the diseased tissue

is available post-surgery, and a pathologist can carry out a detailed analysis of

the whole tumour.

The project’s main objective is to build an imaging framework to enable the

registration of pre- and post-operative scans of lung cancer patients. Our com-

prehensive approach not only focuses on image processing algorithms, but also

on data acquisition and clinical validation of the results. The study’s workflow is

detailed below:

1. Patient screening and selection: thoracic surgery lists are vetted to

identify candidates for this study. Suitable patients are approached and, if

they wish to participate, their written consent is recorded.

2. Image data acquisition: immediately following surgery, the resected lobe

is fixed, processed and photographed by a consultant pathologist. In addi-

tion, patient’s pre-operative PET/CT scans are retrieved from the imaging

servers.
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3. Tumour 3D reconstruction: virtual, three-dimensional models of the

tumour are generated for all modalities. This is done by interpolating their

cross-sectional binary masks.

4. Image registration: tumour volumes are rigidly registered. Moreover,

microscopic histology data is matched to their corresponding pathology

photographs.

5. Validation: the algorithm’s performance is tested using a two-step valida-

tion method, which qualitatively evaluates its clinical significance against

expert and non-expert manual registrations.

The method proposed establishes a direct spatial correspondence between non-

invasive, in vivo medical imaging modalities and the pathology ground truth.

Its potential applications are manifold. First, the mapping could be used to

retrospectively validate the image-based diagnosis of a patient, and to ascertain

whether the estimated pathological features of the tumour, inferred from the pre-

operative imaging data, were accurate. Moreover, pathology-matched PET/CT

datasets would make it possible for researchers to explore the relationship between

radiomic image features and a particular pathology outcome [3]. Another possible

application would be to support different pharmaceutical validation studies, by

providing a registration framework that maps the emission profile of a radiotracer

to its gold standard. For instance, one of the current research questions within

NHS Greater Glasgow and Clyde is to ascertain whether hypoxia-specific PET

tracers 18F-FAZA and 18F-FMISO reliably identify areas of pathology-validated

hypoxia in lung cancer.

1.3 Novel Contributions

In addressing the scope of the project, the following major contributions have

been identified:

• Pathology processing protocol: a novel tissue dissection protocol was

developed to overcome the difficulties posed by the mechanical properties

of lung specimens, and ensure repeatable, precise pathological processing

across all patients. The main contribution in this area was the design and

construction of a soft tissue slicing rig. This mechanical device allowed

pathologists to fix and immobilise the specimen, adjust the slice thickness,
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perform flat, parallel cuts with uniform thickness, and photograph the ex-

posed cross-section, while maintaining the integrity and clinical value of the

tissue.

• Phantom study: an exhaustive study of several factors that influence the

reconstruction of a 3D shape from sparse 2D cross-sectional images was

performed. Different choices of slice spacing, imaging modality, interpo-

lation and extrapolation functions, offset, and area segmentation methods

were tested, to evaluate their effect on overall volume recovery and shape

reconstruction. A bespoke tumour-mimicking phantom was used in these

experiments. To the best of our knowledge, this comprehensive analysis has

never been reported in the literature before.

• Tumour reconstruction: results obtained from the phantom experiments

provided an invaluable insight into the process of lung tumour reconstruc-

tion from pathology photographs and PET/CT scans. Any discrepancies

found between different modalities, in terms of shape and volume, were

studied. This allowed us to perform a detailed analysis of the different

sources of error involved in tumour segmentation and reconstruction, and

to establish acceptable tolerance margins for each modality.

• Validation of results: the lack of a ground truth against which to evaluate

our method rendered many conventional image registration performance

metrics unsuitable. This required us to develop a novel, two-step validation

process. Expert clinicians were first asked to perform a manual registration

of both datasets, to establish a gold standard result. They were then asked

to blindly rate the output from the proposed method against several manual

registrations, including their own.

1.4 Thesis Structure

This thesis is structured as follows: Chapter 2 contains a literature review of

different medical image registration methods. The first section is devoted to

analysing the three main building blocks of any image registration problem. The

second focuses on the particular question of in vivo to pathology registration.

Chapter 3 provides a theoretical background on all concepts, methods and algo-

rithms discussed in this study. Its contents are split into three sections: anatomy

and medicine; medical imaging; and image processing.
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Prior to starting with human lung tissue processing, several simulations were

run on various synthetic, custom-made, tissue-mimicking phantoms. These are

discussed in Chapter 4. Different imaging protocols and shape reconstruction al-

gorithms were tested on these shapes, and their performance was assessed against

the model’s ground truth. Chapter 5 gives a detailed outline of the study pro-

tocol in terms of patient recruitment, image acquisition and multimodality lung

tumour registration. Results for each of the registration sub-tasks are presented

here. The main issues identified during the realisation of the experiments, such as

movement artefacts affecting the PET signal, or the need for external registration

markers, are also discussed. In Chapter 6, the output of the proposed method is

assessed against the current standard practice using a randomised test. Finally,

Chapter 7 presents the thesis conclusions and gives some suggestions for future

work.

1.5 Publications Arising from this Work

The work presented in this thesis has generated the following research outputs:

• G. Reines March, X. Ju and S. Marshall, “Correlation of pre-operative can-

cer imaging techniques with post-operative gross and microscopic pathology

images,” in Proceedings of the Irish Machine Vision and Image Processing

Conference 2017, J. McDonald et al., Eds. 2017, pp. 257-260.

• G. Reines March and S. Harrow, “Correlation of pre-operative cancer imag-

ing techniques with post-operative gross and microscopic pathology im-

ages,” presented at the 6th Annual Scientific Meeting of the Scottish Ra-

diotherapy Research Forum, Stirling, UK, Nov. 2, 2017.

• G. Reines March, X. Ju, S. Marshall, S. Harrow and C. Dick, “Correlation

of pre-operative cancer imaging techniques with post-operative macro and

microscopic lung pathology images,” presented at USCAP 2018 Annual

Meeting, Vancouver, Canada, Mar. 17-23, 2018.

• G. Reines March, S. Harrow, C. Dick, X. Ju and S. Marshall, “Lung Tu-

mor 3D Reconstruction from Planar CT Scans and Registration to Micro

and Macroscopic Pathology Imaging,” presented at the 40th IEEE EMBS

International Conference, Honolulu, HI, USA, Jul. 17-21, 2018.
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• S. Harrow, G. Reines March, C. Dick, X. Ju and S. Marshall, “Correlation

of pre-operative cancer imaging techniques with post-operative macro and

microscopic lung pathology images,” presented at IASLC World Conference

in Lung Cancer 2018, Toronto, Canada, Sep. 23-26, 2018.

• G. Reines March, S. Marshall, X. Ju, C. Dick and S. Harrow, “Regis-

tration of pre-operative lung cancer PET/CT scans with post-operative

histopathology maps,” presented at IASLC World Conference in Lung Can-

cer 2019, Barcelona, Spain, Sep. 7-10, 2019.
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Chapter 2

Literature Review

This chapter provides the reader with a comprehensive survey of published works

related to medical image registration. In the first section, the registration prob-

lem is broken down into three building blocks: transformation model, similarity

measure and optimisation. A review of different methods available to approach

each task is detailed. The second section focuses on studies about registration of

pathology data with in vivo imaging modalities.

2.1 Medical Image Registration Algorithms

Medical image registration is a term that encompasses many different approaches

and techniques depending on its specific application. For instance, monomodal

bone image registration may be tackled using linear transformations (also known

as rigid registration), because these structures are hard tissues and suffer little

deformation. In contrast, soft organs such as the lungs can experience local and

global deformations, caused by cardiac movement or the patient’s breathing. In

this case, a non-linear or deformable method is used, regularised by the mechan-

ical properties of the organ. Registration methods therefore depend on several

parameters and choices. Due to this high variability, it can prove difficult to clas-

sify all the algorithms using a single criterion. Maintz and Viergever proposed

a detailed scheme for classifying medical image registration techniques, based on

nine criteria [4]. These are: 1) dimensionality of the problem; 2) nature of the

registration basis; 3) nature of transformation; 4) domain of transformation; 5)
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interactivity; 6) optimisation strategy; 7) modalities involved; 8) subject; and 9)

organ registered.

Regardless of the methodology used, the aim of any registration algorithm is to

find a transformation function Ŵ that optimises the following functional [5]:

Ŵ = arg max
W

S(F,M ◦W )−R(W ) (2.1)

where F is the fixed image, which remains static throughout the registration

process, serving as a target; M is the moving image, which is deformed in order

to match F ; W is the transformation applied to M ; S measures the similarity

between the moving and fixed images; and R is a regularisation term, which

enforces some constraints on the transformation model.

Equation 2.1 illustrates that all registration algorithms are composed of three

main blocks: a transformation model, a similarity measure and an optimisation

method. The number of transformation parameters to be estimated differs greatly

depending on the model chosen [5]: in the case of global rigid deformations,

only six parameters need to be estimated, corresponding to the translation and

rotation of the object. Local free-form dense transformations, however, may deal

with hundreds of thousands of parameters, which in many cases outnumber the

model constraints. Therefore, many registration problems are ill-posed, and the

solutions need to be computed using iterative approaches. Moreover, many cost

functions used are non-convex, and the optimisation algorithm can get trapped

in a local minimum, leading to a suboptimal result. This is one of the reasons

for which a pre-registration step, that is, performing a coarse alignment of the

images and use it as an initial solution, can be crucial in determining the quality

of the final registration [6].

2.1.1 Transformation Model

The transformation model defines the deformation nature of the images to be

registered. The more parameters it has, the richer its description is; however,

computational complexity scales rapidly with increasing number of degrees of

freedom, eventually leading to intractability. Another important characteristic

of the transformation model is its symmetry. In a diffeomorphic model, the

transformation is invertible and differentiable, meaning that the topology of the
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images is preserved, and the interchangeability of the moving and fixed images

does not influence the final result [5].

The protocol proposed in this thesis includes two different registration scenarios:

firstly, histopathology slides of the tumour are matched to their corresponding

block-face photographs. Secondly, the reconstructed 3D pathology tumour model

is aligned to its PET/CT counterpart. In the first case, the two images belong to

different modalities, but represent the same reality: the histological composition

of the tumour. A unique, one-to-one mapping can be found that maximises

their level of alignment. Due to the deformations suffered during its processing,

histopathological samples present non-linear distortions with respect to the block-

face images. Therefore, a non-rigid transformation model is appropriate for this

scenario.

However, in the second case, pathology and PET/CT contain slightly different

information about the tumour. Hence, it is not correct to assume that a total

overlap between both modalities, achieved by deforming one in order to match

the other, is the best solution. Our assumption throughout the thesis is that

pathology and pre-operative tumour models have very similar volumes and shape,

but not necessarily the same. For this reason, a rigid registration is best suited

to this purpose, with the main objective to maximise alignment between both

shapes while preserving their structural integrity.

Rigid transformations only include rotations and/or translations. Because the

Euclidean distance between any two points in the image is preserved, scale and

shape are not affected. Conversely, non-rigid deformation models have a higher

number of degrees of freedom, and are used to model local image distortions.

These can be classified in two main groups [6]: transformations guided by physical

models, and free-form deformations based on interpolation theory.

Transformations guided by physical models

Several approaches have used physical models to guide transformations. Elastic

body models were first proposed by [7] to solve a problem of identifying planar

objects in 3D computed tomography images. The cost function proposed con-

fronts deformation of the moving image versus its similarity with the target image,

so that an external force deforms the image in order to achieve maximum sim-

ilarity whilst an internal force, which models the elastic properties of the solid,

tries to oppose this deformation. The optimum solution is found when these
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Figure 2.1: Diagram illustrating elastic body transformation. Moving image (in blue)
is deformed by forces FT to maximise similarity with template image (in green). These
deformation fields are opposed by the elastic forces of the body, FE

two forces reach equilibrium. This concept is illustrated in Figure 2.1. Many

other authors have used this approach: Davatzikos [8] applied it to register brain

cortical images, modelling them as inhomogeneous elastic bodies. Alexander et

al. [9] proposed a multi-resolution elastic matching for aligning brain volumes,

based on the work carried out by [10]. In [11], a combination of rigid and elastic

transformations was used to register pre-treatment and intra-treatment prostate

magnetic resonance (MRI) images.

Fluid-based models are another approach which are a relaxation of the elastic

body models mentioned above, thus allowing higher degrees of deformation. This

kind of transformation is ruled by the Navier-Stokes equations [5]. In Chris-

tensen et al. [12], a hierarchical approach was presented: firstly, an elastic body

model was used to perform a coarse low-dimensional transformation, and the reg-

istration obtained was subsequently refined using a high-dimensional fluid model.

D’Agostino et al. [13] also used a viscous fluid model deformed by the gradient

of the mutual information criterion between multimodal MRI images.

Another kind of physical model transformation is based on the diffusion equation.

Thirion [14], inspired by Maxwell’s Demons paradox, created the so-called demons

algorithm, which would later give foundation to many other diffusion-based al-
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gorithms. This approach defines the object boundaries as semi-permeable mem-

branes, containing perpendicular gradient vectors at each boundary point. The

demons are randomly situated along the target object membrane, and they act

by selectively pushing the inside points (i.e. the points enclosed inside the mem-

brane) of the moving image into the model contour. It is an iterative approach,

where at each repetition all the demon forces calculated are applied to deform

the moving image [14]. Vercauteren et al. [15] proposed a faster variation of the

demons algorithm which had diffeomorphic and symmetric properties. Cahill et

al. [16] formulated a generalisation of the demons algorithm which accounts for

locally adaptive regularisation. Gooya et al. [17] used Thirion’s approach com-

bined with an Expectation-Maximisation routine to register brain cancer patient

scans with a glioblastoma atlas.

Additionally, biomechanical models of the organs can also be used as a source

of prior information. Such methods are closely related to the physics-inspired

models above, but are more realistic and consistent as they convey anatomical

and physiological properties. Breast and prostate are two biomechanical models

widely used in image registration tasks. The former is useful for regularising

large deformations of the breast tissue, as in [18, 19]. Prostate models are used

for MRI/ultrasound image registration in image-aided surgical interventions [20].

Tumour growth models have also been studied in [21,22].

The majority of methods reviewed in this section are applied to images of the

same modality, and the anatomical structures they represent have relatively low

inter-patient variability, such as brain and prostate. In our case, due to the non-

uniform distortions present in histopathology slides, a global physical model will

not suffice to precisely define local tissue deformations. Moreover, due to their ex-

tremely thin cross-sections, histology slides do not share the same biomechanical

properties as bulk lung tissue. Fortunately, the presence of common anatomical

structures on both datasets, such as airways and blood vessels, can be used as

landmarks to guide the registration process. For this reason, an interpolation-

based deformation model is better suited to the task.

Interpolation-based deformations

In many free-form transformation models, the displacements of the moving image

are only known in a discrete subset of points (i.e. the control points), meaning

that the motion vectors need to be interpolated for the rest of the image, as shown
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Figure 2.2: Diagram showing an example of interpolation-based deformation. Control
points in the moving image (red circles) are matched to their corresponding features
on the target image (green crosses). Displacement fields are estimated for the whole
image by interpolating the known motion vectors

in Figure 2.2. One of the most widely used interpolators for this kind of transfor-

mation is the cubic B-spline. Rueckert et al. [23] used the free-form deformation

model combined with cubic B-spline interpolation in order to describe the local

motion of the breast for MRI registration. Rohlfing et al. [24] proposed a free-form

transformation model based on B-splines with a volume-preservation constraint

to register pre-contrast and post-contrast breast MRI images. Sdika [25] applied a

symmetric non-rigid monomodal registration method based on the cubic B-spline.

The advantages of this interpolator are its simplicity and efficiency to produce

smooth deformations. However, the preservation of topology is not guaranteed,

which may result in unrealistic transformations [5].

Another family of interpolators widely used in free-form image registration is

thin-plate splines (TPS). Bookstein [26, 27] used this interpolator to construct

anatomical atlases and study inter-patient variability. Meyer et al. [28] evalu-

ated the performance of an automated multimodal image fusion algorithm using

both linear and TPS registration approaches. Similar to cubic B-splines, TPS

also produces smooth deformations, and it has a closed-form solution. However,

the transformation is not diffeomorphic, and can produce non-uniform scaling

and shearing [5, 29], both undesirable for our model. To overcome this problem,

Schaefer et al. [29] proposed a method based on linear moving least squares. To

limit the amount of local scaling and shearing, only a restricted set of transforma-

tion functions, including rotation, translation and uniform scaling, are permitted.
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The resulting deformation is also smooth. Like thin-plate splines, this method

also has a closed-form solution, which removes the need to use an optimisation

algorithm. These properties make moving least squares an ideal candidate for

our histology to block-face pathology registration task.

2.1.2 Similarity Measure

The similarity measure, also known as cost function or matching criterion, is used

to quantitatively evaluate how aligned or similar the images to be registered are.

Depending on which attributes of the image are used to evaluate their matching,

it is possible to clearly differentiate two methods: intensity-based and feature-

based.

Intensity-based methods

The family of intensity-based similarity measures rely on the intensity value of

the voxels. This approach is usually more computationally demanding, as all

image elements are taken into account for driving the registration process. The

presence of noise can also undermine its performance. However, it is better suited

for dense deformation patterns [5].

A relatively simple and straightforward intensity-based similarity measure is the

sum of squared element-wise differences. This method is useful only in the case of

monomodal image registration, where the images have been taken using the same

imaging technique and the dynamic range of both are similar. This approach has

been used in [30, 31] for brain MRI image registration and normalisation. In

some cases, multimodal algorithms can be simplified to monomodal registration.

This can be achieved by simulating one modality from the other, using prior

knowledge about the physical features of the imaging technique. In [32], the

authors translated a magnetic resonance image into ultrasound (US), using the

MRI intensity and gradient information.

Perhaps the most commonly used methods for multimodal intensity-based reg-

istration are the so-called information theoretic approaches. These are based on

the concept of mutual information (MI), defined as [6]:

I(X, Y ) = H(X) +H(Y )−H(X, Y ) (2.2)
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where H(X) = −
∑N

i=1 p(xi) log p(xi) represents the marginal Shannon’s entropy

of random variable X, and H(X, Y ) = −
∑N

i=1

∑M
j=1 p(xi, yj) log p(xi, yj) is the

expression for the joint Shannon’s entropy. X and Y are random variables with

possible outcomes x1, . . . , xN and y1, . . . , yM , which represent the intensity values

of the fixed and moving images, respectively. Mutual information measures the

interdependence between them.

This approach was first used simultaneously by Collignon et al. [33] and Wells

et al. [34]. Since then, it has received much attention from the research com-

munity. Pluim et al. [35] surveyed the field of image registration based on the

mutual information similarity measure. Different entropy measures (Shannon,

Jumarie, Rényi), pre-processing steps for noise and artefacts removal or inter-

polation strategies were reviewed, among other features. One of the drawbacks

of these methods is that the entropy is measured single pairs of image elements,

therefore neglecting any spatial information. In order to overcome this problem,

Rueckert et al. [36] proposed an extension of the MI approach using second-order

co-occurrence estimators. Studholme et al. [37] suggested the use of regional mu-

tual information (RMI), in which each image region was seen as an independent

source of information, contributing to the global relationship between the two

images to be registered.

Although PET/CT and block-face pathology photographs are completely differ-

ent modalities, our proposed 3D reconstruction method generates binary volumes

that contain shape information only. After this conversion, both datasets share

the same intensity domain. The rationale behind this simplification is that these

two modalities show different aspects of the cancer. For this reason, there is

not necessarily a value correspondence or statistical correlation between pixels

representing the same spatial location.

The main advantage of handling binary volumes is that all element-wise differ-

ences can be computed using optimised, matrix-based binary logical operators.

Computational time and memory requirements are drastically reduced, compared

to equivalent greyscale problems. Speed becomes especially important when deal-

ing with dense volumetric datasets. Moreover, in the binary case, sum of squared

differences and mutual information metrics are interchangeable, as the joint prob-

ability term in Shannon’s joint entropy formula is equivalent to the averaged sum

of element-wise XNOR (exclusive negated disjunction) binary operations. There-

fore, either can be used in our rigid registration task.
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Feature-based methods

These methods are based on minimising the distance between sets of feature

points or landmarks. This approach is robust for large deformations and is more

efficient computationally, as only a subset of image elements is used (i.e. the

feature points). However, one of the main challenges of this family of algorithms

is to reliably extract the landmarks from the images. A naive solution would

be to manually define the landmarks, based on the expertise of the clinical staff.

Another approach is to place fiducial markers on the patient, such as metallic

screws or skin marks. These constitute a set of salient and well-known feature

points which are useful for guiding the registration process.

However, automatic landmark detection is often desirable. One method is based

on the extraction of contours and spot-like regions. The multi-scale Laplacian

of Gaussian (LoG) is one of the most used blob detectors in computer vision.

The image is first smoothed with a Gaussian kernel, and then the Laplacian is

applied. Lindeberg [38] proposed a feature detection algorithm based on LoG with

automatic scale selection. In [39], a multiscale algorithm was used for extracting

salient parts of an image based on the regional complexity of the image.

Scale-invariant feature transform (SIFT) is another method used for automatic

extraction of keypoints, based on a multi-scale image analysis similar to Lapla-

cian of Gaussian. First proposed by Lowe [40], this algorithm is composed of four

main steps: 1) detection of local scale-space extreme points; 2) keypoint locali-

sation, removing low contrast, candidates situated on edges and unstable points;

3) orientation assignment based on the local image gradient; and 4) labeling of

each keypoint with a descriptor based on the local neighbourhood features.

SIFT provides a powerful method for identifying and matching features on images

depicting different viewpoints of the same object or scene. This makes the algo-

rithm suitable for tasks such as image stitching, object recognition or monomodal

image fusion [40]. However, one of our registration problems concerns two dissim-

ilar modalities (histology and block-face pathology), that contain different pixel

values and statistical distributions. As a consequence, there is no guarantee that

the keypoints identified by SIFT on both datasets will correspond to the same im-

age features, or that these will be correctly matched. For this particular scenario,

manual selection of landmarks is the most robust method. Our other registration

task involves two binary 3D volumes, which by definition are featureless, meaning

that a SIFT-based approach is also unsuitable.
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Once the landmarks are extracted, the correspondences between them need to be

calculated. One approach is to match those landmarks with similar descriptors.

However, with this method the spatial location of the landmarks on the image

plane is ignored. By imposing geometrical constraints, the correspondence prob-

lem becomes more robust. This is shown in [41], where the correspondences are

modelled using graph theory. Another widely used algorithm for feature matching

is the so-called iterative closest point (ICP), proposed in [42], where the corre-

spondences between the moving and fixed images are recursively updated based

on geometrical proximity. When descriptors are not available for each landmark,

like in the proposed histology to block-face pathology registration problem, man-

ual matching, based on prior knowledge about the scene, can be used.

2.1.3 Optimisation Algorithms

Image registration methods usually do not have a closed-form solution for infer-

ring the deformation parameters, due to the non-convexity of the cost functions

used. Therefore, iterative optimisation algorithms are required in order to find

the best match between the two images. As already mentioned above, non-rigid

registration problems are usually ill-posed, meaning that the final result will de-

pend to a great extent on the optimisation algorithm used. According to Sotiras

et al. [5], optimisation methods can be classified into two main families: continu-

ous and discrete. Continuous methods have real-valued parameters and their cost

function is continuously differentiable, whereas discrete optimisers deal with non-

continuous functions and discrete variables. This review focuses on the former,

due to their suitability for our particular problem.

One of the most popular continuous optimisation approaches is the gradient de-

scent algorithm. It is based on iteratively updating the estimated parameters

using the following rule:

xt+1 = xt − γ∇(S(xt)) (2.3)

where x is the vector of deformation parameters at a given iteration, t is the

iteration number, γ is the step size of the algorithm, and ∇(S(xt)) represents

the derivative of the cost function. The estimated parameters move successively

in the direction opposing the gradient, so that eventually a local minimum is

reached, as depicted in Figure 2.3. Some variants of this method also reduce
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Figure 2.3: Illustration depicting the gradient descent method. Concentric lines
are level sets representing the cost function S, and the parameter vector x moves in
the direction opposing the gradient of S until a local minimum is reached (source:
https://commons.wikimedia.org)

the step size as the cost function approaches a local minimum, which leads to

a more stable solution. Pennec et al. [43] showed that the demons registration

algorithm [14] can be understood as a second-order gradient descent method.

Two variants of this algorithm were used in [44], with different update strategies

for the step size parameter.

This approach, however, can be computationally expensive, based on the fact

that the parameters to be estimated have high dimensionality. This issue can be

overcome by using stochastic gradient descent methods. This way, only a random

subset of parameters is used to compute the minimisation direction. Although

the estimations can be suboptimal, due to the fact that only a fraction of the

parameters space is used, the algorithm eventually converges.

Another broadly used optimiser is the Gauss-Newton algorithm. It is useful for

solving unconstrained least-squares problems, and does not require the calcu-

lation of second order derivatives, thus reducing its computational complexity.

Ashburner and Friston [45] showed that the use of the Gauss-Newton optimi-

sation method improved the efficiency of the registration algorithm in terms of

memory requirements and convergence time for large deformation diffeomorphic

maps. Salas-Gonzalez et al. [46] proposed a variant of the Gauss-Newton al-
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gorithm which proved to converge faster than the standard Gauss-Newton or

Levenberg-Marquardt algorithms.

As our rigid registration problem only involves binary image data and a very

limited number of transformation parameters (rotation and translation), both

optimisation algorithms are valid alternatives. In the non-linear registration case,

moving least squares provides a closed-form solution, and therefore an optimiser

is not needed.

2.2 Registration of Pathology Data with in vivo

Imaging Modalities

Positron emission tomography (PET) combined with computed tomography (CT)

is currently the main imaging tool for detection, treatment and assessment of most

cancers. This type of non-invasive, combined scan provides the clinicians with

a wealth of information regarding the anatomical layout of the tumour, as well

as its metabolic fingerprint. However, the accuracy of these imaging modalities

is low, due to their poor spatial resolution (especially in PET), the presence of

artefacts generated during image acquisition, and the lack of a clinical ground

truth. The only way of resolving these uncertainties is by validating PET/CT

against tumour pathology [47].

Performing an accurate registration between pathology data and in vivo imaging

modalities is a challenging task, due mainly to the following issues:

• Resolution: the in-plane resolution disparity between histopathology data

and PET/CT scans can be of several orders of magnitude. The former,

being a microscopy image, can achieve sub-micron pixel sizes, whereas the

latter falls within the millimetre range. In contrast, interslice spacing is

much greater in pathology imaging, due to the fact that the specimen needs

to be physically sliced. Therefore, the mechanical properties of the tissue

will limit the minimum thickness of the sections.

• Deformation: certain organs tend to collapse after surgical resection, es-

pecially those composed mainly of soft tissue, such as the lungs or the colon.

This non-uniform deformation needs to be addressed in order to obtain an

accurate result.
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• Modality: pathology, PET and CT are different modalities, meaning that

there may not be a direct correspondence between image features, land-

marks and/or pixel values. This can potentially hinder registration accu-

racy.

To address this problem, some authors propose the use of an additional interme-

diate scan, namely a computed tomography (CT) or magnetic resonance (MRI)

of the resected specimen [48–56]. This provides a way to bridge the gap between

in vivo images and their corresponding histopatology: the intermediate dataset

shares the same modality as the pre-operative scan, but shows the anatomy of

the excised organ. Figure 2.4 contains a block diagram showing this relationship.

CT
in vivo

CT
ex vivo

Pathology
ex vivo

Figure 2.4: Block diagram showing the usage of an ex vivo scan as a bridging modality
between the patient’s in vivo tomography and the corresponding pathology of the
specimen. In this example, the ex vivo CT scan shows the deformations that the
organ suffered post-resection. The introduction of fiducial markers (+) visible in both
ex vivo CT and pathology images facilitates their posterior registration

Validation of radiopharmaceutical studies is one application of this approach.

Puri et al. [48] used this intermediate step to evaluate the accuracy of registra-

tion between PET and histopathology slices in laryngeal cancer patients. Six

subjects underwent a PET/CT scan prior to radical laringectomy. Sea urchin

spines were inserted into the specimen as fiducials, and after a 24-hour fixation

period in formalin, it was CT scanned. The tissue was subsequently sliced and

microtome sectioned. Through a series of rigid registrations, using the ex vivo CT

as reference, the authors claimed an average registration error of 3 mm. Garcia-

Parra et al. [49] performed PET to histology registration to evaluate the clinical

usefulness of radiotracer 18F-FAZA for identifying hypoxic regions in prostate

cancer. A MRI scan of the prostatectomy specimen acts as bridging modality.
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Another use of this technique is to compare tumour segmentation on in vivo

imaging modalities to the ground truth of histopathology. Park et al. [50, 51]

designed a system to validate tumour delineations made during radiotherapy

planning in prostate cancer. Alignment between MRI/PET and histology sec-

tions was aided by an ex vivo MRI scan of the excised prostate. Their proposed

registration method relies on maximising mutual information after deforming the

images with thin plate splines, and consists of the following five steps:

1. Register each histology slide to its corresponding block-face photograph

(macroscopic image of the whole specimen cross-section) using 6 control

points situated on common landmarks, such as the prostate boundary.

2. Perform rigid registration between consecutive block-face images and stack

them to create a volume. Pad the interslice space with 0’s to preserve

dimension ratio along z-axis.

3. Register reconstructed 3D volume from block-face photos with ex vivo MRI

of the resected specimen, using 18 common landmarks as control points.

4. ex vivo and in vivo MRI scans of the prostate are registered. Deformations

of the organ due to surgical removal are accounted for in this step.

5. Finally, by joining steps 1 to 4 above, histology is registered to its corre-

sponding pre-operative MRI scan.

Zhan et al. [52] built a collection of different MRI appearances of prostate cancer,

validated against their histology sections. Correlation between datasets were in-

ferred from the prostate boundaries and salient structures visible on both modal-

ities. Axente et al. [53] proposed an alternative method for testing the accu-

racy of their registration algorithm against the ground truth: they generated

synthetic PET (sPET) volumes from autoradiography images of head and neck

cancer specimens. sPET data was registered to its corresponding histopatholog-

ical maps, and used to validate tumour segmentation for radiotherapy guidance.

Meyer et al. [54] discussed different approaches for registering in vivo imaging

with histopathology prostate data through the use of ex vivo specimen scans. In

their review, they also listed some common false assumptions that oversimplify

the deformation model and compromise registration accuracy.

Ohnishi et al. [55] proposed a two-step registration method to investigate the rela-

tionship between pathology findings and magnetic resonance signals in brain can-

cer specimens. Firstly, histology sections are aligned to the corresponding gross
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photographs of the resected organ. This is performed using thin-plate splines,

constrained by a set of common feature points. Next, each gross photograph is

matched to its equivalent MRI slice using an affine transform. Using the pa-

rameters from both registrations, spatial correspondences can be drawn between

histology maps and magnetic resonance images.

To overcome resolution limitations of clinical CT, Roth et al. [56] performed an

ex vivo x-ray microtomography (µCT) of the resected lung tissue and aligned it

to the pre-operative CT scan. Volumes were pre-registered by matching common

landmarks, and then deformed using a multi-resolution approach. The authors

claimed that their method could act as a bridging modality in the registration of

clinical CT and histopatology images.

2.2.1 Registration of PET/CT and Pathology Lung Im-

ages

Lung tissue tends to collapse once extirpated from the patient, due to its me-

chanical properties. This makes the registration task even more difficult, as large

non-linear deformations need to be accounted for. To mitigate this issue, in many

cases the specimen is carefully inflated with different materials prior to patho-

logical processing, so it resembles the in vivo shape and volume of the organ. A

selection of studies addressing this particular registration problem are reviewed

below.

Stroom et al. [57] validated the extent of the radiotherapy clinical target volume

delineated on the planning PET/CT scan against histopathology. Five patients

with non-small-cell lung cancer (NSCLC) due for lobectomy were recruited. The

resected specimens were inflated with formalin to attain their pre-operative vol-

umes, and subsequently sliced free-hand at 5 to 10 mm intervals. Orientation of

the lobe was estimated using anatomical landmarks, such as the trachea and main

bronchus. Registration was performed in two steps: CT axial planes were initially

matched to the pathology cross-sections; and each PET/CT slice was deformed

to match its corresponding block-face photographs. Similarly, van Loon et al. [58]

investigated whether microscopic cancerous disease is included in the delineation

of clinical target volumes for radiotherapy planning. 34 patients with NSCLC

were recruited and PET/CT scanned prior to surgery. Resected lobes were in-

flated with 10% formaline through the main bronchus. Slicing was performed
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free-hand along the longest axis of the lobe, with thicknesses ranging between

5 and 10 mm. CT scan slices were assumed co-planar with pathology cutting

planes, and deformations were modeled by an ellipse. Gross tumour volumes

were calculated for both datasets and compared.

Dahele et al. [59] developed a 3D tumour reconstruction algorithm to compare

the information obtained from radiotherapy planning scans and histopathology.

12 cases of NSCLC were processed: excised tissue was inflated with agar, in an

attempt to mimic original shape and volume, and dissected at 3 to 10 mm in-

tervals. Each cross-section was photographed and sectioned. Tumour boundaries

were traced on pathology and PET/CT images. Reconstructed tumour volumes

were manually registered using a rigid transformation. Wu et al. [60] also aimed

to compare radiotherapy target definition on PET/CT against pathology maps.

31 patients were recruited for this study. Lobectomy specimens were inflated

with formalin and sliced every 3 to 5 mm. The tumour’s largest diameter was

measured on pathology block-face photographs, PET and CT datasets.

Yu et al. [61] attempted to empirically determine the cut-off standardised uptake

value (SUV) in combined FDG-PET/CT that better matches the pathological

tumour boundary. All 15 resected lobes were bisected along the longest axis

immediately after surgery. Glass-mounted histopathology slides were obtained at

4 mm intervals, and an experienced pathologist delineated the tumour boundary

in each of them. The pathological gross tumour volume obtained was compared

with PET data, to determine the SUV that yields the better volume match. Meng

et al. [62] also analysed whether cancerous microscopic extensions correlate with

maximum SUV in FDG-PET images of non-small-cell lung cancer. 39 patients

referred for lobectomy were recruited for this study. Specimens were sliced every 4

mm and stained using hematoxylin and eosin dyes. Extension of the tumour was

delineated under the microscope by a senior pathologist. The resulting volume

was correlated to the FDG-PET uptake data.

Wanet et al. [63] used a similar registration protocol to validate a gradient-based

segmentation on FDG-PET against pathological findings. Ten NSCLC patients

due for lobectomy were enrolled in the trial. Freshly excised lobes were inflated

with 15% gelatin until uniformly filled, and left to solidify. These were sub-

sequently placed inside a polystyrene box and fiducials were inserted (wooden

sticks). The box was filled with gelatin to keep the tissue in place, frozen, and

CT scanned. Afterwards, the container was sliced at 4 mm intervals and each
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cross-section photographed. Contours were delineated on CT, FDG-PET and

pathology datasets by experienced clinicians. All images were rigidly aligned

manually until visual agreement was obtained. Schaefer et al. [64] also set out to

assess the performance of a thresholding algorithm for PET tumour delineation

compared to pathology. 15 cases were evaluated. Resected specimens were sliced

every 4 to 5 mm. Each cross-section was photographed, and tumour contour was

manually drawn. Pathology volumes were obtained by interpolating the tumour

boundary along consecutive slices, and compared against PET and CT segmen-

tation results.

Fu et al. [65] studied the correlation between lung tumour consolidation on CT

imaging and pathology findings in 440 patients. Maximal tumour diameter was

measured on two different CT window settings, namely lung and mediastinal.

Lung window setting allows the user to observe areas of ground glass opacity in

the lung, linked to inflammatory processes or alveolar thickening. Mediastinal

window setting only displays solid sections of the carcinoma. Maximal tumour

diameter was also measured on pathology specimens, and compared to the CT

findings. A clear correlation was observed between the type of lung malignancy

and its opacity. Park et al. [66] also compared tumour diameter in 135 resected

lung specimens and their pre-operative computed tomography scans. Pathology

samples were sliced along the lesion’s largest cross-section and measured. CT

volumes were re-sliced to display the greatest diameter of the tumour. Results

showed that, in 27% of the cases, the cancer stage assigned at diagnosis, based

on largest CT size, was overestimated compared to the post-operative pathology

findings.

Comparison between published literature and proposed method

Registration of PET/CT and lung pathology images is a complex problem for

many reasons: firstly, they belong to different imaging modalities, and conse-

quently their pixel values have different physical meanings; secondly, datasets

present heterogeneous resolutions, with pixel sizes spanning across three orders

of magnitude; thirdly, the lungs are highly deformable organs and tend to collapse

after surgical removal, meaning that the resected specimen hardly resembles its

in vivo shape; and finally, the mechanical properties of the tissue make its precise

dissection difficult.
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To facilitate this process, it is often broken down into several sub-tasks, such as

specimen dissection, lesion segmentation and shape alignment. The robustness of

the overall method relies on the performance of each of these building blocks: for

example, a very good image registration algorithm, based on the wrong assump-

tion that specimen cross-sections are parallel, will probably produce sub-optimal

results. Our approach aims to address and correct the shortcomings identified

in the literature, in terms of pathological processing of the tissue, tumour recon-

struction and image registration:

• Pathology tissue processing: the majority of the surveyed works dis-

sected the specimen free-hand, which can easily lead to non-uniform, non-

parallel slices. Wanet et al. [63] partially addressed the issue by freezing

the specimen in a polystyrene box and subsequently cutting it with a saw.

Dahele et al. [59] embedded it in agar gelatine and sliced with a rotary

knife. Nevertheless, in neither case was the blade mechanically guided or

constrained, and therefore it was still susceptible to error. In our method,

the tissue is embedded in agar and sliced using a purpose-built soft tissue

slicing rig (described in Section 4.2.3), which ensures parallel slices of uni-

form thickness.

To facilitate the dissection process, some authors injected the specimen with

a fixation agent, either formaldehide [57,58,60] or agar gelatine [59,63]. Our

approach uses the latter to inflate the lung sample and achieve, approxi-

mately, the same volume and shape it had in vivo. Additionally, the stiffer

texture achieved with the injection of agar facilitates the slicing of the tis-

sue.

• Pathology tumour model reconstruction: building a 3D model of

the tumour from the gross pathology photographs enables us to perform

a volume-to-volume registration between pathology and PET/CT images.

Out of ten studies analysed, only Wanet et al. [63] and Dahele et al. [59]

followed this approach. The rest only used information contained within

the planar tissue slice. Three studies [57, 58, 61] calculated the pathologi-

cal gross tumour volume by multiplying the area of the lesion by the slice

thickness for each cross-section, and adding them together. Schaefer et

al. [64] performed linear interpolation between slices to calculate the over-

all pathlogical tumour volume. The remaining four works [60, 62, 65, 66]

only carried out linear measurements on the images, to compare tumour

extension in pathology and PET/CT.
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• Image registration: the aim of this project is to align pre-operative

PET/CT and post-operative histopathology images of lung tumours, en-

abling clinicians to draw spatial correspondences between both datasets.

The proposed method uses a 3D reconstruction of the pathological lesion,

similar to [59, 63]. Stroom et al. [57] performed a 2D-to-3D registration,

where the CT volume was re-sliced to match the gross pathology cross-

sections.

Regarding registration optimisation, in [57,59,63], pathology and PET/CT

volumes were rigidly aligned using manual rotations and translations, until

visual agreement was reached. In [58, 61], PET/CT slices and pathology

cutting planes were assumed co-planar. Our approach uses mathematical

optimisation criteria to guide the registration problem, which results in a

process that is semi-automatic (potentially reducing the need for supervi-

sion), consistent between executions, and free from human bias.

Table 2.1 summarises these findings. In conclusion, having identified and analysed

the deficiencies found in similar studies, our protocol aims to deliver a robust and

comprehensive solution to this multimodality image registration problem.
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Chapter 3

Background Theory

The aim of this chapter is to provide a foundation on all methods, models and

algorithms described in this thesis. The contents are divided into three main

sections, according to their nature and discipline: anatomy and medicine; medical

imaging; and image processing.

3.1 Anatomy and Medicine

3.1.1 The Human Lung

The lungs are a pair of stretchable organs belonging to the respiratory system.

Their main function is to perform gas exchange between the body and the at-

mosphere, namely to expel carbon dioxide, produced by the body’s cells, and to

take in oxygen. The pulmonary artery transports de-oxygenated blood from the

heart to the lungs, and it ramifies into small capillaries. Gas exchange occurs

at the pulmonary alveoli. Oxygenated blood is then returned to the heart via

the pulmonary vein. The lungs are connected to the outside via the trachea,

allowing air to get in and out. This tubular, cartilaginous structure branches into

the two primary bronchi, and once in the lungs it subdivides further into small

bronchioles [67].

The lungs are surrounded by a mucous membrane called the pleura. Its function

is two-fold: to lubricate the surfaces between the lungs and ribcage, to reduce

friction during breathing; and also to enclose the organs, preventing spread of

infection. The mediastinum is another membranous cavity, situated between the
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Figure 3.1: Diagram showing the gross anatomy of the lungs [67]

lungs, that contains the heart, its vessels and the lymph nodes of the chest.

Each lung is divided into smaller units called lobes. The right lung has three

lobes (superior, middle and inferior). The left lung is slightly smaller, as it

surrounds the heart, and is composed of two lobes only (superior and inferior) [67].

Superior and inferior are also commonly called upper and lower, respectively. The

abbreviated nomenclature used for referring to a particular lobe consists of three

letters: R/L for right or left, U/M/L for upper, middle or lower, and L for lobe.

For instance, RUL refers to Right Upper Lobe. Figure 3.1 shows a diagram with

the gross anatomy of the lungs.

3.1.2 Lungs and Cancer

Cancer refers to a large family of health conditions that have a common trait:

uncontrolled cell growth and reproduction. These rogue cells are capable of in-

vading healthy tissue and organs, and build their own network of nutrient and

oxygen supplies. Normal cells can become cancerous due to aberrations in their

genetic material, acquired through gene inheritance or by spontaneous random

DNA mutations. These can happen naturally, or due to exposure to certain fac-

tors, such as radiation, some chemicals, pollutants, cigarette smoke or substances

present in food [1].
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Lung cancer is one of the most common types of cancer in the UK, affecting

nearly 47,000 people every year [2]. Current 1-year survival rates are at 32.1%

for adults, with less than 1 in 20 surviving beyond 10 years following diagnosis [1].

If the disease originates in the lungs, it is called primary lung cancer. Depending

on the type of cell affected, lung cancer can be divided into two main sub-types,

the most prevalent being non-small-cell lung cancer (as opposed to small-cell). As

cancer progresses, it starts spreading into surrounding tissue, eventually affecting

other parts of the body, often situated far away from the origin (called cancer

metastasis). Depending on the extent of the spread, lung cancer can be staged

into four different categories [1]:

• Stage 1: the cancer is small and has not spread to the lymph nodes or

distant organs. Generally concentrated in one single tumour no larger than

4 centimetres.

• Stage 2: if the tumour is smaller than 5 centimetres, it is classified as stage

2A. Stage 2B means that the tumour is between 5 and 7 centimetres or it

has spread into other parts of the lung, lung lymph nodes, chest wall or

mediastinum.

• Stage 3: it is divided into 3 sub-stages. 3A indicates that the tumour is

up to 5 centimetres but it has invaded the lymph nodes in the centre of

the chest, or that the cancer is between 5 and 7 centimetres and there is

more than one tumour. It also means that the tumour has invaded nearby

organs or structures, such as the heart or windpipe. In 3B, the tumour is

large (5 to 7 centimetres) and has invaded multiple lymph nodes and/or

proximal organs or structures. 3C refers to the cases where a large tumour

has spread to the lymph nodes and also heart, nearby nerves or organs, or

has progressed into several masses in different regions of the lung.

• Stage 4: there are tumours present on both lungs and/or membranes wrap-

ping the lungs (pleura) or the heart, or it has spread to a distant organ (4A).

If it has spread to several areas in one or multiple distant organs, then it is

classified as 4B.

Choice of treatment for lung cancer depends on various factors, including the

position of the tumour in the lung, its stage, and the patient’s level of fitness [1].

Surgery is the most common treatment for cancers in stages 1 and 2. For more

advanced cancers, chemotherapy, radiotherapy or a combination of both is often
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recommended. Due to the nature of this study, the majority of patients recruited

for our clinical trial fall within categories 1 to 2B.

3.1.3 Surgery as Lung Cancer Treatment

If doctors determine that cancer has not spread from the lungs to other parts

of the body, surgery is generally the treatment of choice. The goal of this type

of intervention is to remove the cancerous tissue completely. Depending on how

much tissue is resected, the procedure can be classified into four classes [1]:

• Wedge/segment: if cancer is detected early and is concentrated in a

small area, a wedge resection cuts only the affected area of the lung. A

segmentectomy also removes the blood vessels and airways belonging to the

area.

• Lobe: a lobectomy involves removing the lobe (or lobes) where the cancer

is present. This is the most common type of surgery.

• Lung: if the cancerous tissue is spread over two or more lobes, the surgeon

resects the whole affected lung, known as pneumonectomy.

• Lymph nodes: sometimes the surgeon decides to remove the nearby lymph

nodes if there are suspicions that they also contain cancer cells. This is

called lymphadenectomy. The procedure is normally combined with one of

the above.

Open surgery is normally performed in lung cancer cases. The surgeon makes a

cut or incision in the patient’s chest and the affected part of the lung is removed. If

the tissue to be resected is not very big, a keyhole surgery procedure called video-

assisted thoracoscopic surgery (VATS) is chosen. The approach is less invasive,

allowing quicker recovery and causing less pain to the patient. It is performed

by making two or three small cuts in the subject’s chest: one for a fibre optic

camera, which allows the surgeon to see inside the body, and one or two for the

surgical tools (see Figure 3.2). Once cut, the resected tissue is sucked out of the

chest cavity through one of the small incisions.
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Figure 3.2: Depiction of keyhole lung surgery [1]

3.1.4 Pathological Processing of Cancer Specimens

Cancerous tissue resected by surgical intervention is sent to the pathology de-

partment for analysis. The specimen is immediately put into a chemical bath,

composed mainly of formaldehyde, to prevent decomposition and remove any

infectious agents. After 48 hours, the tissue is rinsed with water and prepared

for dissection. A pathologist slices it several times along the tumour, for cross-

sectional analysis of the cancer. Some healthy tissue is also collected to act as a

baseline. Using a bench-mounted digital camera, they take photographs of the

different sections, called block-face or gross pathology photographs.

Next, the slices of interest are cut into small square segments and placed in plastic

cassettes. The tissue is fixed in paraffin wax, cut into extremely thin sections

(approximately 10 microns thick) using a microtome, and placed on glass slides.

These histology sections are then stained using hematoxylin and eosin. The dyes

highlight sub-cellular structures in two different colours, namely purple for the

cell nuclei and pink for the cytoplasm (see Figure 3.3). Consequently, with the

help of a microscope, the pathologist is able to determine the shape, distribution

and type of cells present in the tumour microenvironment. This analysis is crucial

to determine the cancer stage and grade.
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Figure 3.3: Histology section stained with hematoxylin and eosin

With the advent of digital pathology, laboratories are starting to scan and digi-

tise all glass slides. This expedites diagnosis, enables faster collaborations and

removes the need for physical retrieval of glass slides. It also paves the way for

the introduction of digital image processing techniques into the workflow. Exam-

ples include automatic image analysis and machine learning applications, which

would ultimately help pathologists deliver a faster and more precise diagnosis.

3.2 Medical Imaging

Medical imaging is a broad term that refers to the acquisition, compression, pro-

cessing, visualisation and storage of images for clinical purposes. This section

focuses on the technology and physics involved in their acquisition. Image pro-

cessing is covered in Section 3.3.

A digital medical image is a discretised, numerical representation of some visual

characteristics of a real-world object, usually a human body (or part of it). This

information is distributed onto a n-dimensional grid, where n is 2 for planar im-

ages, 3 for volumes or 4 for spatio-temporal datasets. The smallest, undivisible

units of this grid are called pixels (in the 2D case) or voxels (3D). The number of

grid elements dictates the resolution of the image, and relates to the level of detail

an image holds. For example, a standard High-Definition Video (HDV) image,

which has 1920 columns by 1080 rows of pixels, will be able to unequivocally

resolve finer image features compared to its older DVD counterpart (720×576
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Figure 3.4: Anatomical axes and planes (source: https://commons.wikimedia.org)

pixels). Element size is normally expressed in real-world spatial units (e.g. mil-

limetres) or in terms of density (e.g. pixels per inch, or PPI).

Volumetric medical images are normally acquired as a tomography, that is, stacks

of parallel, 2D cross-sections of the body. These can be taken along any of the

three anatomical axes: craniocaudal (head to toe); left-right; and anteroposterior

(back to front). The anatomical planes perpendicular to said axes are called trans-

verse or axial, sagittal, and coronal or frontal, respectively, and are illustrated

in Figure 3.4. In most cases, the images acquired in tomographic modalities are

axial cross-sections of the body, and run along the craniocaudal axis.

3.2.1 Computed Tomography

Computed Tomography (CT) is an imaging modality that uses multiple x-ray

projections to produce cross-sectional images of the body [68]. These are acquired

using a CT scanner machine. The device is formed of two main parts: the gantry

and the sliding couch. The gantry is a ring-like structure with a central aperture

of 50 to 70 centimetres in diameter, containing the x-ray source and detectors.

The couch is where the patient lies. Its purpose is to move the subject through
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Figure 3.5: Photography of a CT scanner showing the gantry with the circular aper-
ture and the patient couch (source: https://commons.wikimedia.org)

the gantry aperture to obtain axial sections of their body. Figure 3.5 shows a

picture of this type of scanner.

CT image reconstruction

As a convention, x and y axes lie on the transverse plane, and z is parallel to the

craniocaudal axis. The imaging plane can be represented as a m×n matrix, where

n = m = 512 in a standard setting. Every element of this matrix represents a

linear attenuation coefficient µ(x, y). The x-ray source rotates 360 degrees inside

the gantry, obtaining a set of projections of the object from different angles, as

shown in Figure 3.6. Diametrically opposed to the source lies the detector array.

Therefore, for a fixed acquisition angle θ, the relationship between the incident

(Iθ,i) and transmitted (Tθ,i) x-ray intensities, for each array element i, is given by

the Beer-Lambert law of absorption [68]:

Pθ,i = ln

(
Iθ,i
Tθ,i

)
(3.1)

for i = 1, . . . , n, where Pθ,i is the projection of all attenuation coefficients along

the line i and angle θ, that is:

Pθ,i = µ(1, i) + µ(2, i) + · · ·+ µ(m, i) (3.2)
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X-ray generator

Detector array

X-ray fan beam

Figure 3.6: By rotating the x-ray source and detector array around the patient,
different projections of the body can be obtained (adapted from [68])

A sufficiently large collection of 1D projections Pθ can be used to reconstruct a

2D sectional image of the object of interest. Many of the algorithms used for this

purpose are based on either Filtered Back Projection or iterative methods [68].

The first involves projecting the 1D profiles back through the image, so that

areas of constructive interference correspond to a common element in the image.

A high-pass filter is applied to the data before the back-projection, to suppress

flat areas generated by the projective nature of the acquisition method. The

reconstructed image is thus sharpened.

Iterative methods make use of a set of mathematical functions to obtain an ap-

proximate solution to a given problem. The interim result is fed back recursively

to the algorithm until an optimal solution is found. These methods generally start

with an educated guess of the final solution, based on some knowledge extracted

from the data. After an iteration, the difference between the model prediction

and the actual data is calculated. The next cycle takes into account this error to

adjust the model and predict new data, and so on.

Once the CT image has been reconstructed using either method, the attenuation

coefficients calculated for each pixel µ(x, y) are normalised with respect to the

attenuation coefficient of water, µwater, using the following formula [68]:

H(x, y) = 1000 · µ(x, y)− µwater
µwater

(3.3)
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Tissue Absorption (HU)

Air -1000
Lung -200 to -500
Fat -50 to -200

Water 0
Muscle 25 to 40
Bone 200 to 1000

Table 3.1: Typical CT absorption coefficients for different biological tissues expressed
in the Hounsfield scale (adapted from [68])

where H(x, y) is the attenuation in Hounsfield units (HU). Some typical attenua-

tion values for different biological tissues are shown in Table 3.1. Due to the high

sensitivity of the detector array, contrast differences of 0.2% can be discerned.

This translates into approximately 500 different grey levels. However, the hu-

man eye only distinguishes up to about 30 shadows of grey, meaning that subtle

changes in HU will not be appreciated. To overcome this issue, CT scans are

normally examined on interactive displays, where the user can adjust the visual-

isation window in terms of width and level [68]. Window level refers to the mean

CT attenuation level where the window is centred, proportional to the brightness

of the image. Window width relates to the range of levels displayed, and therefore

affects the contrast.

Image enhancement with contrast agents

Depending on the type of exam, radiocontrast agents can be used to highlight

specific structures or organs. These are substances with different, known den-

sities, which act by either offering more attenuation (positive contrast) or less

attenuation (negative contrast) than surrounding regions. Examples of positive

radiocontrast agents include iodine (for angiograms) and barium (for digestive

tract studies). Carbon dioxide gas is often used as a negative agent for gastroin-

testinal examinations [68].

3.2.2 Positron Emission Tomography

Positron Emission Tomography (PET) is a functional imaging modality that

makes use of radioactive agents to monitor metabolic processes of the body [68].

When these radionuclides interact with matter, they emit a pair of high-energy
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photons, which are detected by a PET scanner machine. While the device looks

very similar to a CT scanner, its working principle is completely different.

PET imaging principles

A range of different radionuclides is used for clinical imaging, each one suited to

highlight a particular condition. The choice of radioactive molecule depends on its

decay mode, positron energy, and most importantly, its half-life. A long half-life

will expose the patient to radioactivity for a longer period, whereas a short-lived

radionuclide may deplete even before the scan takes place. One of the most rou-

tinely used agents is a fluorine-labelled glucose molecule called fluorodeoxiglucose

(18F-FDG). It is utilised to detect areas of high metabolical activity, such as in

most tumours. FDG has a half-life of just under two hours, therefore the molecule

needs to be synthetised and injected into the patient within this time frame. For

this to be logistically viable, most radionuclides are produced on-site, using a

cyclotron.

Positron decay is a process in nuclear physics where an unstable atomic nucleus

restores its charge balance by transforming a proton into a neutron. As a byprod-

uct of this reaction, it also releases a positron (positive electron, e+). The positron

travels away from the nucleus until it interacts with a surrounding electron (e−).

When they annihilate, two identical γ photons are produced and emitted in op-

posite directions [68]. Two opposing detectors in the scanner can capture these

photons simultaneously. If the two events are detected within a given time win-

dow τ (typically set between 3 and 9 nanoseconds) and both incident photons

have similar energies, then a coincident event is recorded. The imaginary line

joining the two detectors involved, along which the annihilation event happened,

is known as line of response (LOR). Figure 3.7 illustrates this concept.

A fraction of the coincident events captured during a scan do not match the

ideal scenario described above. In some cases, photons originating from the same

annihilation event change their direction of travel due to Compton scattering.

Although detected within the coincidence timing and energy windows, the asso-

ciated LOR does not represent the actual event location. Similarly, two scattered

photons, belonging to different annihilation processes, may reach the detector

within coincidence windows. The system will regard them as belonging to the

same decay process and therefore generate a false positive. Scattering events

reduce image contrast and lower the accuracy of quantitative measurements [68].
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Figure 3.7: The two γ photons generated in the annihilation process are detected
by opposing detectors. If detection falls within the set time and energy windows, it is
recorded as a coincident event

After the acquisition phase, all projections from parallel LORs are arranged in a

sinogram. Filtered Back Projection and iterative methods are the most common

algorithms used to reconstruct the PET image, as described in Section 3.2.1.

PET/CT multimodality imaging

Sometimes, different image modalities are combined to obtain more information

about a condition or organ of interest. These can be obtained concurrently on

the same physical machine, or recorded in separate scanners or at separate times

and fused posteriorly. PET and CT images are usually acquired on the same

device, and therefore data is inherently aligned, both in space and time. This

removes the need to use complex registration methods. However, alignment errors

can still occur due to physiological motion, such as breathing. This is especially

problematic for PET data, which is acquired in intervals of 2 to 5 minutes of

duration [68]. To account for this movement, time-gated modalities have recently

been introduced. Also known as 4D imaging protocols, they have the capacity

to track physical motion during the scanning procedure. The acquired data is

divided into a set number of bins, depending on time of capture in the breathing

cycle. The technique reduces movement-induced blurring and allows for a more

accurate analysis.

The main advantage of a combined PET/CT scan is that it presents the clinician

with simultaneous anatomic and functional information, which is important for

correct image interpretation. Moreover, CT data is often used to perform attenu-
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Figure 3.8: CT (left), PET (centre) and fused (right) coronal slices of a patient

ation correction on the PET image. Figure 3.8 shows CT, PET and fused coronal

scans of a patient.

3.3 Image Processing

The term digital image processing refers to a set of computer routines and al-

gorithms, aimed at enhancing certain features of an image, for the purpose of

facilitating its interpretation by a human or a computer. Fuelled by the cur-

rent availability of cheap and reliable computing power, digital image processing

techniques have become ubiquitous. A non-exhaustive list of examples include

image rendering and compression, texture analysis, feature extraction, segmen-

tation and pattern recognition. Some of the methods used in this project are

described next.

3.3.1 Interpolation

Interpolation is a mathematical method for inferring intermediate values of a

function from a set of neighbouring, known data points. The well-known Nyquist-

Shannon theorem states that a band-limited, continuous signal can be unequiv-

ocally recovered from its discrete version as long as the sampling rate is at least

twice the highest frequency of that signal [69]. Some applications of interpolation

include: discrete-to-continuous signal conversion; restoration of noise-corrupted

samples; up-sampling of data for enhanced graphical visualisation; and recon-
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struction of sparsely sampled signals [69]. In this work, different interpolation

methods are investigated for the reconstruction of 3D volumes from sparse 2D

cross-sections.

Depending on the choice of interpolant function, the resulting signal will have dif-

ferent properties in terms of computational cost, memory, continuity and smooth-

ness. Similarly, the accuracy of the reconstruction depends on the entropy and

non-stationary characteristics of the original signal, as well as the length of con-

secutive missing data samples [69]. Different interpolation methods used in this

thesis are described below:

Nearest-neighbour interpolation

Nearest-neighbour is one of the simplest methods of interpolation. A given ar-

bitrary point is assigned the value of its closest known neighbour, ignoring any

other known values in the vicinity. The result is a discontinuous, piecewise con-

stant function, as seen in Figure 3.9. This method has very low computational

power and memory requirements.
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Figure 3.9: Discrete sinusoidal signal (circular markers) reconstructed using a nearest-
neighbour interpolator

Polynomial interpolation

Interpolation can also be performed by fitting a polynomial function through the

known data points. Given N + 1 samples, the polynomial of order N that passes
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through all of them is unique, and will have the form:

f(x) = a0 + a1x+ a2x
2 + · · ·+ aNx

N (3.4)

where a0, . . . , aN are the polynomial coefficients that can be found by solving the

following N + 1 system of equations:

f(x0) = a0 + a1x0 + a2x
2
0 + · · ·+ aNx

N
0

f(x1) = a0 + a1x1 + a2x
2
1 + · · ·+ aNx

N
1

...
...

f(xN) = a0 + a1xN + a2x
2
N + · · ·+ aNx

N
N

(3.5)

where f(x0), . . . , f(xN) are the known values of the function at points x0, . . . , xN .

For large signals, the system increases in complexity and becomes ill-conditioned,

leading to unstable results [69]. Moreover, high-order polynomials normally

present oscillatory responses, which may produce unrealistic results, as most nat-

ural signals may fit a smoother function.

A way of simplifying this problem is by using piecewise polynomials [70]. Let [a, b],

where a = x0 and b = xN , be an interval subdivided into [xi, xi+1] subintervals,

for i = 0, . . . , N − 1. A piecewise polynomial is a function p(x) defined in the

interval [a, b] as:

p(x) =



p0(x) if x0 ≤ x ≤ x1

p1(x) if x1 ≤ x ≤ x2
...

...

pN−1(x) if xN−1 ≤ x ≤ xN

(3.6)

where each function pi(x) is a polynomial of at most M -th order and defined in

the interval [xi, xi+1], where M ≤ N .

Depending on the order M and any other constraints imposed on pi(x), different

outcomes are obtained. For instance, M = 1 results in the well-known linear

interpolator. Let us define x̂ as a point located between known values x0 and

x1, that is, x0 ≤ x̂ ≤ x1. The corresponding linear interpolator will have the form

f(x̂) = a0 + a1x̂ (3.7)
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Figure 3.10: Discrete sinusoidal signal (circular markers) reconstructed using a linear
interpolator
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Figure 3.11: Discrete sinusoidal signal (circular markers) reconstructed using a cubic
Hermite interpolator

As f(x0) = y0 and f(x1) = y1 are known points, coefficients a0 and a1 can be

found by solving the following linear system:

f(x0) = a0 + a1x0

f(x1) = a0 + a1x1
(3.8)

which yields a0 = y0 −
y0 − y1
x0 − x1

x0 and a1 =
y0 − y1
x0 − x1

. This corresponds to the

equation of a line passing through points (x0, y0) and (x1, y1). Solving (3.6) for

each interval results in a continuous, piecewise linear function, as shown in Figure

3.10.
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Higher-order polynomials, along with a set of continuity constraints on their

derivatives, can be used to obtain smoother interpolation functions. For exam-

ple, cubic Hermite interpolators are a family of third order polynomials (M = 3)

with specified first derivative values at their known points. They belong to dif-

ferentiability class C1, meaning that their first derivative is continuous [69]. An

example is shown in Figure 3.11.

Another higher-order polynomial method is spline interpolation. Splines are

piecewise, M -th order polynomials that have M − 1 continuous derivatives (class

CM−1). Cubic spline interpolation is one of the most common, where a third-

order function is fitted between two known samples (see Figure 3.12). A cubic

polynomial has four coefficients (a0, a1, a2, a3). Four constraints are therefore

needed to ensure uniqueness of the solution. Two conditions are set by the

known endpoints of the interval (also called nodes). The other two are imposed

by ensuring that the first and second derivatives of the function are continuous

at these points. The general expression for a piecewise cubic spline has the form:

s(x) = si(x) = a0,i + a1,i(x− xi) + a2,i(x− xi)2 + a3,i(x− xi)3 (3.9)

for i = 0, 1, . . . , N − 1 and xi ≤ x ≤ xi+1. That is, a different cubic polynomial

is fitted at each subinterval [xi, xi+1]. With this expression and the additional

constraints, a system of equations can be built to calculate the coefficient values

[69], as explained below.

Firstly, one of the conditions is that s(x) has to fit the known data points. There-

fore, if si(x) is evaluated at x = xi (i.e. the beginning of the subinterval) we

obtain:

si(xi) = a0,i = yi (3.10)

where yi = f(xi) is the value of the function at xi. To simplify the notation, let us

now define Xi = xi+1−xi, as the spacing between known data points. Due to the

continuity constraint, the function si(x) at the end of the subinterval (x = xi+1)

needs to be equal to si+1(xi+1). Therefore:

si(xi+1) = a0,i + a1,iXi + a2,iX
2
i + a3,iX

3
i = a0,i+1 = si+1(xi+1) (3.11)

Another condition is that the second derivative of the function needs to be contin-

uous, meaning that, at the end of the subinterval [xi, xi+1], s
′′
i (xi+1) = s′′i+1(xi+1).
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Therefore:

s′′i (xi+1) = 2a2,i + 6a3,iXi = 2a2,i+1 = s′′i+1(xi+1) (3.12)

From Equation 3.12 it can be seen that at the beginning of the subinterval the

following relationship will also hold:

s′′i (xi) = 2a2,i =⇒ a2,i =
s′′i (xi)

2
(3.13)

Substituting a2,i into Equation 3.12, a3,i is obtained:

a3,i =
s′′i (xi+1)− s′′i (xi)

6Xi

(3.14)

Finally, a1,i can be calculated by inserting a0,i, a0,i+1, a2,i and a3,i into Equation

3.11:

a1,i =
yi+1 − yi

Xi

− s′′i (xi+1) + 2s′′i (xi)

6
Xi (3.15)

If all coefficients are substituted into the general spline expression (Equation 3.9):

(3.16)si(x) = yi+

(
yi+1 − yi

Xi

− s
′′
i (xi+1) + 2s′′i (xi)

6
Xi

)
(x−xi) +

s′′i (xi)

2
(x−xi)2

+
s′′i (xi+1)− s′′i (xi)

6Xi

(x− xi)3

it can be seen that they depend on second derivatives s′′i (xi+1) and s′′i (xi). These

can be calculated by applying the condition of continuity to the first derivatives,

that is, s′i(x) must equal s′i−1(x) when evaluated at x = xi:

s′i(x)
⌋
x=xi

= −Xi

6
(s′′i (xi+1) + 2s′′i (xi)) +

1

Xi

(yi+1 − yi) (3.17)

s′i−1(x)
⌋
x=xi

=
Xi−1

6
(2s′′i−1(xi) + s′′i−1(xi−1)) +

1

Xi−1
(yi − yi−1) (3.18)

Taking into account that s′′i (xi) = s′′i−1(xi), and that 2a2,i = s′′i (xi) (Equation

3.13), equating the right-hand sides of both Equation 3.17 and 3.18 gives:

(3.19)Xi−1a2,i−1 + 2(Xi−1 +Xi)a2,i +Xia2,i+1

= 3

(
1

Xi−1
yi−1 −

(
1

Xi−1
+

1

Xi

)
yi +

1

Xi

yi+1

)
for i = 1, 2, . . . , N − 1. That results in a system of N − 1 linear equations with

N + 1 unknowns, a2,0, . . . , a2,N . To obtain a unique solution, the behaviour of
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Figure 3.12: Discrete sinusoidal signal (circular markers) reconstructed using a cubic
spline interpolator

the derivatives at the extreme points, x0 and xN , must be defined. These can

be set to zero (free boundary conditions), or calculated over the mirrored signal

(clamped boundary conditions) [69,70]. Assuming the former, the resulting linear

system Ax = b is defined by:

A =



1 0 0 . . . . . . 0

X0 2(X0 +X1) X1
. . .

...

0 X1 2(X1 +X2) X2
. . .

...
...

. . . . . . . . . . . . 0
...

. . . XN−2 2(XN−2 +XN−1) XN−1

0 . . . . . . 0 0 1


,

x =



a2,0

a2,1
...

a2,N−1

a2,N


and b =



0
3
X1

(y2 − y1)− 3
X0

(y1 − y0)
...

3
XN−1

(yN − yN−1)− 3
XN−2

(yN−1 − yN−2)
0


(3.20)

Once all a2 coefficients have been computed by solving the above system, a0, a1

and a3 can be obtained from Equations 3.10, 3.15 and 3.14, respectively. Finally,

the spline interpolation function is calculated by substituting these sets of coef-
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ficients into Equation 3.9. Matlab’s interpn() standard function∗ was used to

implement the interpolation methods described in this section.

Shape-based interpolation

Tomographic medical imaging modalities allow the user to reconstruct 3D models

of organs or other anatomical structures of interest, by acquiring a series of 2D,

parallel slices. These datasets are usually anisotropic, that is, the slice separation

is higher than the in-plane pixel size. In order to obtain an accurate representation

of such data, it is necessary to interpolate the missing information between known

planes. One straightforward method is to interpolate the grey values between

slices, followed by segmentation of the object of interest. However, according

to Herman et al. [71], this approach poses two main problems: a) it puts more

burden on the user performing segmentation, as the number of slices increases,

and b) segmentation by thresholding is likely to produce artefacts due to sudden

changes in boundary location.

An alternative approach is to perform shape-based interpolation. This is based

on the propagation of the organ’s boundary rather than its actual pixel values.

The method works as follows [71]:

1. For each slice of size N ×M , the organ of interest is segmented.

2. Each segmented slice is converted to greyscale, where pixel values represent

the distance of the pixel to the organ boundary. Any geometrical distance

can be used (Manhattan, Euclidean...). A sign convention is assigned to the

distances. For instance, pixels within the boundary can be negative, while

outsiders are positive. This can be reversed without affecting the result.

An example is shown in Figure 3.13.

3. Intermediate slices are estimated by interpolating each pixel in the N ×M
slice along the z axis. Any of the interpolation methods described above

can be used, such as nearest-neighbour, linear or spline. The reconstructed

shape is obtained by thresholding the resulting stack at zero.

Shape-based interpolation produces a 3D, isometric, binary model of the organ.

Compared to the classical method of grey-value interpolation, this approach gives

more accurate quantitative measures in volume and shape, as well as enhanced

visualisation, particularly when inter-slice spacing is large [72].

∗Matlab R2017b, The MathWorks Inc., Natick (US)
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Figure 3.13: Example of a segmented slice (left) and its corresponding distance grey-
value image (right). Pixels inside the boundary have negative values, and positive
outside

One of the main drawbacks of this method is in reference to the reconstruction

of the shape’s extrema. With classical greyscale interpolation, slices immediately

adjacent to the top and bottom of the object can provide some information about

its shape at the endings. However, with shape-based interpolation, due to its

binary nature, any more information beyond the slide where the object was last

identified (and, equally, before the slide where it was first detected) cannot be

inferred [71]. Therefore, a suitable extrapolation algorithm must be used in these

extrema regions to produce natural-looking, smooth endings.

3.3.2 Image Registration

Image registration is the process by which a set of images is projected onto a com-

mon coordinate system, so that they are aligned and spatial correspondences can

be established between them. It is a widely used technique in medical imaging,

with many diagnostic and therapy planning tools relying on visual information

obtained from different image modalities, such as CT, PET, magnetic resonance

(MRI) or ultrasound (US). In many cases, different modalities provide comple-

mentary information about the organ of interest. For instance, the fusion of PET

and CT images is commonly used in cancer diagnosis. The former shows the

metabolic fingerprint of the tumour microenvironment, whereas the latter pro-

vides anatomical information. Similarly, the registration of cardiac MRI, CT and

US data has been proven to enhance the quality of dynamic images of the heart.

This translates into more accurate diagnoses and surgical interventions [73]. An-

other common application of medical image registration is the construction of
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anatomical atlases, where a given organ or tissue is imaged in different subjects.

The fusion of these images allows the study of inter-patient anatomical variability

of a structure or organ.

In any registration task, one image will always serve as reference, remaining un-

changed throughout the process, while a moving image is transformed to match

the reference. If the images are regarded as rigid entities, they can be registered

by simply applying rotation and translation. This is known as rigid registra-

tion. If the images are treated as deformable bodies, an affine transformation or

a non-linear function is needed to match both datasets, and is called non-rigid

registration [74]. The work presented in this thesis tackles two separate image reg-

istration problems: firstly, pathology and PET/CT tumour volumes are aligned

using a global rigid registration. Secondly, histology cross-sections of the tumour

are elastically deformed to match their corresponding block-face photographs.

The methods used for these two different tasks are reviewed below.

Rigid registration

A rigid registration is performed by rotating and translating an image towards

the reference. For 2D images, it can be written as:x
′

y′

1

 =

1 0 tx

0 1 ty

0 0 1


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1


xy

1

 (3.21)

where (x′, y′) are the transformed coordinates of point P = (x, y), T = (tx, ty)

is the translation vector and θ represents the rotation of the moving image in

counter-clockwise direction [74]. These parameters can be estimated using various

methods.

One of such methods is Iterative Closest Point [42]. This is a recursive al-

gorithm for registering two point clouds based on least squares minimisation of

their element-wise distances. It alternates between two main processes: point

matching and transformation.

In the point matching step, two point clouds M,R ∈ Rd are defined, with elements

mi and rj, respectively, i = 1, . . . , p and j = 1, . . . , q. M is to be moved to match

the reference cloud R. We want to find a function ψ : M → R which finds

one-to-one point correspondences that minimise the root mean squared distance
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Figure 3.14: Diagram showing point matching and transformation steps in ICP al-
gorithm. Once one-to-one point correspondences are established between the moving
(red) and target (blue) datasets, a rigid transformation is applied, such that the sum
of squared Euclidean distances between point pairs (mi, ri) is minimised

between sets M and R, that is:

ψ̂ = arg min
ψ

√
1

p

∑
m∈M

‖m− ψ(m)‖2 (3.22)

In other words, ψ̂ finds the nearest neighbour in set R for each point mi ∈ M .

This can be calculated with Voronoi diagrams or k-d trees [75].

In the transformation step, once all one-to-one point matches have been opti-

mised, ψ̂(mi) = ri can be defined. That is, point mi ∈ M is matched to ri ∈ R,

for i = 1, . . . , p. Next, as expressed in Equation 3.23, the algorithm finds an

optimum rigid transformation (orthogonal rotation matrix A and a translation

vector b) that minimise the squared Euclidean norm between both point clouds.

This concept is illustrated in Figure 3.14.

F (A, b) = arg min
A,b

n∑
i=1

‖Ami − b− ri‖2 (3.23)

Arun et al. show that the minimisation problem can be simplified by decoupling

rotation and translation [76]. If µ(M) and µ(R) are the centroids of sets M

and R, respectively, then the translational offset of both sets can be removed by

subtracting the centroid from each point:

m̃i = mi − µ(M) and r̃i = ri − µ(R) (3.24)

49



Taking into account that translation vector b can be expressed as:

b = Aµ(M)− µ(R) (3.25)

if we insert Equation 3.24 into Equation 3.23, we obtain the following simplified

minimisation:

F (A) = arg min
A

n∑
i=1

‖Am̃i − r̃i‖2 (3.26)

Expanding the right-hand term in Equation 3.26 we obtain:

F (A) = arg min
A

n∑
i=1

(Am̃i − r̃i)T (Am̃i − r̃i)

= arg min
A

n∑
i=1

(
m̃T
i A

TAm̃i + r̃Ti r̃i − m̃T
i A

T r̃i − r̃Ti Am̃i

)
= arg min

A

n∑
i=1

(
m̃T
i m̃i + r̃Ti r̃i − 2r̃Ti Am̃i

)
(3.27)

which is equivalent to maximising the last term of the sum:

F ′(A) = arg max
A

n∑
i=1

(
r̃Ti Am̃i

)
= arg max

A

[
tr

(
n∑
i=1

Am̃ir̃
T
i

)]
= arg max

A
[tr (AH)] (3.28)

where tr(·) is the matrix trace operation and H is defined as
∑n

i=1 m̃ir̃
T
i . If we

perform Singular Value Decomposition (SVD) on H:

H = UΣV T (3.29)

where U and V are orthogonal matrices and Σ is a diagonal matrix, it can be

proved that the rotation matrix Â that maximises Equation 3.28 is given by

(see [76] for full derivation):

Â = V UT (3.30)

Finally, translation vector b can be calculated by substituting Â into Equation

3.25.
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The point matching and transformation steps are repeated until the algorithm

converges, that is, when the change in root mean squared distance between con-

secutive iterations falls below a given threshold. In this work, iterative closest

point provides a fast method for registering volume reconstructions of the same

real-world object, taken with different imaging modalities. This applies to the

phantom study, where the shape was reconstructed from CT and pathology cross-

sectional images and aligned to the virtual CAD model.

Other rigid registration methods depend on higher hierarchical image features,

related to the statistical and geometrical properties of the data. Principal com-

ponent analysis and minimal bounding box are some examples of methods that

fall within this category.

Principal Component Analysis (PCA) is a dimensionality reduction sta-

tistical procedure. It works by projecting a dataset onto a new, uncorrelated,

orthogonal basis, in such a way that few of the basis vectors (known as principal

components) represent most of the overall data variance [77]. One of its many uses

is the registration of segmented shapes by aligning their principal components.

In the three-dimensional case, imagine we have M data points xi = (xi1, x
i
2, x

i
3) ∈

R3, where i = (1, . . . ,M), that represent the pixels belonging to shape Ω. Our

goal is to find a 3× 3 matrix A that can project x onto a new basis so that the

projection y = ATx is quasi-sparse, that is, all but a few of its elements are close

(or equal) to zero. Assuming that data points are centred around the origin (zero

mean), then the expected value E of yyT can be obtained from:

E(yyT ) = E(ATxxTA)

= ATE(xxT )A

= ATΣxA (3.31)

where Σx is the covariance matrix of x, defined as:

Σx =

E(x1, x1) E(x1, x2) E(x1, x3)

E(x2, x1) E(x2, x2) E(x2, x3)

E(x3, x1) E(x3, x2) E(x3, x3)

 (3.32)
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where each element is computed from:

E(xi, xj) =
1

M

M∑
k=0

(xki x
k
j ) (3.33)

If we populate the columns of matrix A with the eigenvectors of Σx , then ATΣxA

will become a diagonal matrix whose values λ correspond to the eigenvalues of

Σx. If these are ordered so that λ1 ≥ λ2 ≥ λ3, then the eigenvectors associated

with the largest eigenvalues will be the main principal components of Ω [74]. If

we repeat the same procedure for another shape Φ representing the same scene,

then we can register them by aligning their principal components, as described

next.

Let us define u, v ∈ R3 as the principal axes of shapes Ω and Φ, respectively.

Let û = u/‖u‖ and v̂ = v/‖v‖ be the unit vectors defining the principal axes.

The rotation from û to v̂ can be defined as a 2D rotation on the plane Π with

normal equal to û× v̂, where × represents the cross product operator. As shown

in Equation 3.21, a standard rotation matrix can be expressed as:

R =

cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 =

 û · v̂ −‖û× v̂‖ 0

‖û× v̂‖ û · v̂ 0

0 0 1

 (3.34)

as cos(θ) = û · v̂ and sin(θ) = ‖û× v̂‖. However, this rotation is expressed in the

basis B containing plane Π. This basis B = (i, j, k) is defined by the following

three vectors:

i = û (normalised projection of v̂ onto û)

j =
v̂ − (û · v̂)û

‖(û · v̂)û‖
(normalised rejection of v̂ onto û)

k = û× v̂ (cross product between û and v̂) (3.35)

Therefore, the rotation matrix R′ defined in the canonical basis can be expressed

as:

R′ = B−1RB (3.36)

The translation vector can be easily computed by subtracting the centroids of

both shapes after applying rotation.
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Minimal Bounding Box (MBB) registration is another algorithm that relies

on the geometry of the shape to determine its orientation. The minimal bound-

ing box of a volume is the smallest parallelepiped that fully encloses it. Dura

and Domingo [78] proposed a method for pose normalisation of anatomical struc-

tures based on the alignment of their minimal bounding boxes. Its performance

was compared against the PCA-based approach previously described. The au-

thors claim that MBB outperforms PCA when aligning liver shapes segmented

from MRI scans, and also that MBB is more robust for registration of quasi-

symmetrical volumes. The work presented in this thesis is based on the regis-

tration of lung tumour 3D models. These shapes are typically rounded, without

protruding features or large asymmetries. Therefore, based on the findings re-

ported in [78], minimal bounding box registration was regarded as the best fit for

our particular application. A Matlab toolbox written by Korsawe [79] was used

to compute the MBB for our tumour shapes.

Non-rigid registration

Deformable registration methods generate a non-linear mapping between the

moving image and the reference. This type of transformation is applicable when

the shapes involved correspond to elastic entities in the real world, as is the case

for the majority of human organs and anatomical structures. Most non-rigid reg-

istration problems are ill-posed, meaning that they do not have a unique solution

and the solution space is unfeasibly large. One way to overcome this is by intro-

ducing a regularisation term in the registration function, that is, we assume that

the object has some physical properties that limit its deformation. There is a

plethora of functions that can be used to perform these transformations, such as

thin-plate splines, multiquadric interpolation, piecewise polynomials or moving

least squares [74].

Moving Least Squares [29] is an interactive registration method where the

user selects a number of control points on the image of interest, and when these

are moved, the image deforms accordingly. Let pi be a set of control points for

i = 1, . . . , N , and qi the positions of pi after applying the deformation. Given

a point v in the image, we need to find the transformation function lv(x) that

minimises the following expression [74]:

N∑
i=1

wi‖lv(pi)− qi‖2 (3.37)
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where

wi =
1

‖pi − v‖α
(3.38)

is a non-negative monotonically decreasing weight function which ensures that

a data point v will be most influenced by its closest control point pi. The free

parameter α controls the behaviour of the inverse distance relationship. Note

that, in Equation 3.37, function lv(x) is particular to point v, which means that for

each point in the image, the parameters of the function need to be re-estimated.

Therefore, for the algorithm to be fast, lv(x) has to be simple. A popular choice is

using an affine transformation model, defined by a linear map M and a translation

vector t [29]:

lAv (x) = xM + t (3.39)

As already shown in Equation 3.25, the problem can be simplified by ignoring

the translation term and calculating it a posteriori as t = q̃ − p̃M , where p̃ and

q̃ are the weighted centroids of point sets p and q:

p̃ =

∑N
i=1wipi∑N
i=1wi

, q̃ =

∑N
i=1wiqi∑N
i=1wi

(3.40)

If we substitute t in Equation 3.39, we obtain:

lAv (x) = (x− p̃)M + q̃ (3.41)

and the least squares minimisation in Equation 3.37 becomes:

N∑
i=1

wi‖ṗiM − q̇i‖2 (3.42)

where ṗi = pi− p̃ and q̇i = qi− q̃ are the zero-mean point sets. There is a closed-

form solution for M in Equation 3.42, based on the classical normal equation,

which in the case of affine models takes the following form [29]:

M =

(
N∑
i=1

ṗi
Twiṗi

)−1 N∑
j=1

wj ṗj
T q̇j (3.43)
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Therefore, the deformation function for affine moving least squares lAv (x) at a

given point v becomes:

lAv (v) = (v − p̃)

(
N∑
i=1

ṗi
Twiṗi

)−1 N∑
j=1

wj ṗj
T q̇j + q̃ (3.44)

This deformation function indicates the new position of point v in the deformed

image. When v approaches pi, the weight function wi tends to infinity and la(v)

interpolates, that is, la(pi) = qi.

Schaefer et al. [29] also suggest different deformation functions, that can be ob-

tained by enforcing M to represent other linear transforms. An interesting case

is the use of a rigid transformation matrix, as it avoids non-uniform scaling and

shear. These effects are undesirable for our particular problem, as lung histology

sections do not obey such deformation rules. Again, there is a known closed-form

solution for this problem. The resulting deformation function for rigid moving

least squares lRv (x) is:

lRv (x) =
N∑
i=1

q̇i
Ai
µr

+ q̃ (3.45)

where

Ai = wi

(
ṗi · (x− p̃) −ṗi · (x− p̃)⊥

−ṗi⊥ · (x− p̃) ṗi
⊥ · (x− p̃)⊥

)
(3.46)

and

µr =

√√√√( N∑
i=1

wiq̇iṗi
T

)2

+

(
N∑
i=1

wiq̇iṗi
⊥T

)2

(3.47)

and the 2D operator a⊥ returns a perpendicular vector to a, that is, if a has

coordinates (α, β), a⊥ corresponds to (−β, α).

This registration algorithm was implemented using the ImageJ plugin Moving

Least Squares registration, published by Schindelin [80].

Performance evaluation of registration tasks

Registration methods aim to achieve a meaningful overlap between two or more

images. Their performance can be evaluated in several ways, depending on the

metrics considered.
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The most obvious and naive evaluation is qualitative visual inspection by

an expert. A trained clinician is likely to identify common structures on both

datasets and assess the quality of the registration. Although fast and simple, this

method is not reproducible, as it is highly dependent on the individual carrying

it out. Also, it does not provide a numerical outcome. However, in some cases,

there is no objective ground truth to compare a registration algorithm to, due to

the complexity of the task or the availability of partial information only. In these

cases, the subjective opinion of an expert may be the only way to evaluate the

clinical meaningfulness of the registration. Multiple evaluations performed inde-

pendently by different individuals may remove potential sources of bias. A scoring

system or rubric must be established beforehand, either binary (right/wrong) or

graded. This enables examiners to use the same criteria, ultimately leading to

more consistent results.

A quantitative assessment of how well aligned a set of feature points are is given by

Target Registration Error [81]. This measures the root mean square distance

between corresponding landmarks on the reference and moving images that have

not been used for calculating the deformation map. It is defined as:

TRE =

√√√√ 1

N

N∑
i=1

|mi − ri|2 (3.48)

where mi and ri are the positions of the i-th feature point on the moving and

reference images, respectively, for i = 1, . . . , N .

Another approach is to measure the overlap between registered structures. The

Dice Similarity Coefficient (DSC) calculates the ratio between the intersection

of two sets and their individual areas [82]:

DSC(A,B) =
2 · |A ∩B|
|A|+|B|

(3.49)

where ∩ represents the intersection operator between two sample collections and

| · | indicates the cardinality of the set, that is, the number of elements in it. A

DSC of 1 indicates complete overlap, and 0 no overlap at all. Figure 3.15 shows a

graphical representation of the concept. DSC is widely used for evaluating medical

image registration and segmentation tasks, where the output of an automatic

algorithm is compared against the ground truth produced by an expert.
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A BA∩B

Figure 3.15: Dice Similarity Coefficient calculates the ratio between the intersection
of sets A and B and their individual areas

The distance between the boundaries of two registered objects can also be useful

to assess the performance of a registration algorithm. The Hausdorff distance

measures the maximum distance of a point set to the closest point in the other

set. Its mathematical formulation is defined as [83]:

dH(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)} (3.50)

where sup and inf are the supremum and infimum operators, respectively. In

other words, for every point in set A, find the closest point in set B. Once every

point in A has been evaluated, pick the largest of the shortest distances. As this

measure is asymmetric, the same calculation is repeated from set B to set A. The

largest of these two is defined as the Hausdorff distance between sets A and B.
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Chapter 4

Phantom Study

The design of several tissue-mimicking phantoms, used to test our volume recon-

struction algorithms, are discussed in this chapter. First, the reasons for using

synthetic phantoms in our experiments are explored. In the second section, the

materials and methods used to build and process each sample are explained.

Results are presented and discussed in the last section.

4.1 Motivation

One of the main tasks in the project is to reconstruct an anatomical 3D model of

the tumour from sequences of cross-sectional images, namely CT and block-face

pathology photographs. However, in most tomographic imaging modalities, the

researcher only has access to partial information. A volumetric scan is a stack of

parallel slices separated by a fixed distance. The image values situated between

these planes are either projected onto the closest slice, averaged, or lost. For

this reason, evaluating the performance and accuracy of volume reconstruction

algorithms becomes challenging.

The use of a synthetic phantom offers several advantages in this regard, some of

which are listed below:

• Ground truth: the exact physical measurements of the phantom are

known prior to imaging. Therefore, we can compare the reconstructed

volume against the ground truth model to assess different characteristics

of the reconstruction algorithm, such as overall volume recovery, or local

shape reproduction.
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• Customisation: a phantom can be purposefully designed to present cer-

tain shape or texture traits. These features can mimic real-world char-

acteristics which are normally present in a tumour, or impose challenging

conditions to test the performance of different reconstruction algorithms.

• Reproducible: a phantom can be easily duplicated, keeping the same

physical attributes. Reproducibility is especially useful when comparing

reconstructions obtained with the same method, but under different condi-

tions.

• Ethics: unlike human tissue, synthetic phantoms are not subject to ethical

or legislative regulations. Similarly, it avoids the need to obtain patient

consent, which is required for the collection and use of human samples.

For these reasons, the initial experiments were performed on several phantoms.

Different materials and configurations were tested to achieve similar conditions

to those of lung tumours. These are reviewed in the following section.

4.2 Materials and Methods

4.2.1 Phantom Shape

The shape of the phantom has a direct impact on the performance of the volume

reconstruction algorithms. Depending on the spacing between consecutive cuts,

some details may not be recovered—especially finer or fast-changing features.

Therefore, a phantom can be designed to test specific aspects of the reconstruction

methods, for instance how well a particular shape is recovered.

Pyramidal

A square pyramidal shape was initially used, due to its simplicity and the avail-

ability of off-the-shelf moulds. The prototype used was 12 cm in height, with a

base of 8 cm squared. Another advantage of this shape is that it has a constant,

known slope. Therefore, the distance between any two slices can be verified from

the geometry of their cross-sections.
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Anatomical

A more complex shape was needed to approximate the actual geometry of a lung

tumour, to test our reconstruction algorithms on a more realistic model. Some of

the desired new features were: presence of both deep and shallow grooves along

its slicing direction, and inclusion of high-frequency details on its surface. It also

had to be easily reproducible and measurable.

The initial approach consisted of customising a cylindrical mould (12 cm high,

5 cm diameter) using plumber’s putty, a pliable material made from clay and

oil. The cylinder was cut in half lengthways, and several features made with

putty were attached to its walls. This method allowed us to produce different

prototypes in a short space of time. However, it also had several disadvantages:

1. The level of detail was limited by the mechanical properties of the putty.

Only large, smooth features could be produced without them breaking or

deforming.

2. The two halves of the mould have to be joined and sealed before injecting

the phantom material. However, this task proved difficult due to the narrow

cross-section of the cylinder (1 mm wall thickness).

3. Some of the features made with putty stuck to the phantom material and

detached from the cylinder walls, preventing reproducibility.

4. The exact volume of the phantom could not be precisely calculated, due to

the nature of the features.

To overcome these challenges, it was agreed that the most efficient way to proceed

was to generate a virtual shape using computer-aided design (CAD) software, and

use it to 3D-print a negative mould. The only requirement was that the mould

had to be reusable, and so should not be destroyed when the cast was released.

For this reason, the part had to be designed in such a way that it could be

produced with a separable, two-part mould. The location of the parting surface,

i.e. the plane along which the mould splits in two, greatly influences the design:

the resulting halves should not present any undercuts (indentations or features

that would prevent the shape from being released).

A bespoke phantom model was designed using SolidWorks∗, shown in Figure 4.1.

Grooves of different depth can be observed both on the upper and lower sides, as

∗SolidWorks 2013, Dassault Systèmes, Villacoublay (France)
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Figure 4.1: Different views of the anatomical phantom CAD model, showing its front,
right, back and left sides, respectively

well as a fast-changing detail on the left side. The model was subsequently used

to generate a separable injection mould, with the parting surface running along

the phantom’s saggital plane.

After completing and verifying the design, the mould was 3D-printed in two

halves. The material used was acrylonitrile butadiene styrene (ABS), a thermo-

plastic polymer widely used in fused deposition printing processes. It is a tough,

resilient material, with a high impact resistance and is easy to machine [84].

Once printed, an injection inlet was milled in one of the sides, and two holes were

drilled on the opposite half to allow air to escape. Cardboard gaskets were laser

cut and used to seal the joint between the parts, avoiding material spillage. Two

protruding features were also printed on the mould corners to facilitate alignment

when coupling both halves together. Figure 4.2 shows the mould with a cast.

To produce a sample of the phantom, a gasket was placed around the joint and

the two halves were clamped together. A nozzle was screwed to the injection

inlet. Using a syringe, the phantom material was slowly pumped into the cavity,

shaking it regularly to avoid the formation of air bubbles. When the substance

appeared at the air outlets, the pumping was stopped, and the phantom was left

to harden. Once cured, the shape was dislodged, and any excess material was

trimmed with a scalpel.

4.2.2 Phantom Material

The choice of a suitable phantom material was fundamental. Besides evaluating

different reconstruction methods, phantoms were also used to simulate actual
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Figure 4.2: 3D-printed phantom mould. The negative alignment features and the
two air outlets can be seen on the left-hand part. The right-hand half contains a cast
of the phantom made of polyvinyl alcohol, along with the alignment protusions at the
corners. Each half is 64 mm wide by 88 mm high

lung tumour tissue, in order to test the study protocol in realistic conditions.

Therefore, the substance needed to present comparable characteristics: visible in

x-ray and photography modalities, and similar mechanical properties.

Polyvinyl alcohol

Polyvinyl alcohol (PVA) is a non-toxic, water-soluble polymer. PVA hydrogel

was prepared by mixing 7% by weight PVA granules∗ with water at room tem-

perature. The solution was stirred and slowly heated to 95◦C, until the granules

were completely dissolved. The viscous mixture was allowed to cool down to

room temperature, at which point a contrast agent could be added. The solution

was then injected or poured into a mould and subjected to various freeze-thaw

cycles. This was performed using an in-house, automatic thermocycler that froze

the sample at -20◦C for 12 hours. This was followed by a 12-hour thawing period

at 20◦C. The 24-hour cycle was repeated between one and three times, where

more repetitions resulted in a stiffer hydrogel [85].

∗Poly(vinyl alcohol) 99+% hydrolysed (prod. 341584), Sigma-Aldrich UK Ltd, Dorset (UK)
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Agar

Agar is a jelly-like substance of vegetal origin. Its main component is agarose,

a naturally-occurring polymer. Agar hydrogel was prepared by mixing 4% by

weight agar powder∗ with water at room temperature. Once dissolved, the mix-

ture was heated to 98◦C while continuously stirring, until it became a thick fluid.

At this point, a CT contrast agent could be mixed in. The solution had to be

transferred to the mould while still hot, before it solidified at approximately 40◦C.

Agar gel was also used as an embedding medium, to hold the specimens in position

during pathology processing, and was prepared following the same procedure.

Addition silicone

Vinyl polysiloxane (VPS) is an addition-reaction, two-element silicone†. Its two

components, base and catalyst, are stored separately. When mixed together,

the substance quickly becomes a rubber-like, solid material. It is widely used in

dentistry to produce impression moulds.

Due to the high viscosity of the material, it was unfeasible to inject the mixture

through the inlet nozzle. Therefore, the substance was applied uniformly to

both halves of the mould, until the cavities were filled, and the two parts were

subsequently coupled together. The curing time for this material is 6 minutes,

after which the cast is ejected from the mould.

Note that contrast agents could not be added to this material, again due to its

high viscosity and short curing time.

Contrast agents

One of the phantom’s purposes was to mimic visual and scattering attributes

of lung tumours. For this reason, two different CT contrast agents were added

to the preparations, namely aluminium oxide and graphite. Red food colouring

was also used as a dye in some samples. Aluminium oxide‡ is a chemical com-

pound with the formula Al2O3. It is an inert, white substance widely used in

industry as plastic filler, electrical insulator and paint pigment. It is non-toxic

∗Agar-Agar (E406) powder, Special Ingredients Ltd, Chesterfield (UK)
†ExtrudeTMVPS Impression Material (prod. 300916), Kerr Corp., Orange (US)
‡Aluminium oxide powder (3 µm particle size), Logitech Ltd, Glasgow (UK)
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Figure 4.3: On the left, agar samples (110 mm in diameter) with 4% (red) and 2%
(uncoloured) concentrations. On the right, four PVA samples (45 mm in diameter)
with different scattering agents: high-density PVA rod (red and white), PVA control
(red), PVA with aluminium oxide (white), and PVA with graphite (black). The four
samples are embedded in 3% agar gel

and non-flammable, and therefore considered a low-risk substance. Graphite∗ is

a crystalline form of carbon, commonly used in steelmaking and refractory in-

dustries. Its high electrical conductivity makes it an ideal material for electrical

motor components and batteries. It is black in colour, and chemically stable

under normal operating conditions.

To test their x-ray absorption properties, four different PVA samples were built:

a) a control sample made with 7% PVA and food colouring, b) a high density

(15%) PVA rod embedded in 7% PVA, c) a 7% PVA mixed with 1% graphite

powder, and d) a 7% PVA mixed with 1% aluminium oxide. All four samples were

embedded in 3% agar gel, as per protocol guidelines. Different agar concentrations

(2% and 4%) were also tested. Figure 4.3 shows the two agar samples on the left

tray, and the four embedded PVA samples with different contrast agents on the

right.

All samples were scanned in a CT scanner† at the Beatson West of Scotland

Cancer Centre (Glasgow, UK). Images were retrieved from the imaging servers

and visualised using 3D Slicer [86]. A Gaussian blur filter with σ = 1.5 was

∗Graphite powder (44 µm particle size), Easy Composites Ltd, Stoke on Trent (UK)
†GE Discovery CT590, GE Healthcare, Chicago (US)
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Sample composition Avg. absorption (HU)

PVA 7% 19
PVA 15% 28
PVA 7% with Al2O3 1% 25
PVA 7% with graphite 1% 23
Agar 2% 10
Agar 3% 14
Agar 4% 19
Agar 4% with Al2O3 1% 28
Agar 4% with Al2O3 3% 41
Agar 4% with Al2O3 5% 53

Table 4.1: Average absorption coefficients for different phantom samples

applied to remove noise and average neighbouring values. High-density PVA

sample showed the highest absorption, between 27 and 29 Hounsfield Units (HU).

With regard to the contrast agents used, aluminium oxide showed slightly higher

attenuation compared to graphite. It was proven that a higher agar concentration

translates to a higher absorption.

Different concentrations of aluminium oxide (1%, 3% and 5%) were also mixed

with agar and CT-scanned. As expected, the sample with the highest Al2O3

concentration presented the highest contrast. Average absorption of 4% agar

with 5% aluminium oxide was 54 HU, compared to 13 HU for the embedding

medium (agar at 3% concentration). Results are summarised in Table 4.1.

4.2.3 Slicing Rig

Pathological dissection of a surgical specimen is usually performed free-hand by a

pathologist. The tissue is manually sliced at several arbitrary points along the tu-

mour, and a representative number of the samples are selected for histopathology

analysis. Although fast, the method presents two main issues: a) it is imprecise in

terms of slice thickness uniformity; and b) lung tissue is likely to tear and deform

when sliced, especially if sections are thin, due to its mechanical properties.

Volume reconstruction would be less difficult when pathology slices are parallel

and uniformly spaced. For this reason, a bespoke soft tissue slicing rig was de-

signed and built in-house by the Department of Mechanical Engineering (Medical

Devices Unit, NHS Greater Glasgow and Clyde, UK). It consists of a cylindri-
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Figure 4.4: Diagram showing the iterative dissection process using the slicing rig: (A)
photograph the exposed cross-section, (B) lift the embedded tissue 5 mm by performing
two full turns of the threaded plunger, and (C) slice the specimen

cal tissue container that slides into an acrylic frame. This structure features a

threaded plunger at the bottom, that pushes the tissue upwards, and a surgical

blade at the top. Using the plunger, the tissue (embedded in agar) is lifted until

the first slice of interest reaches the cutting plane. The knife, constrained by two

horizontal slits, is then used to perform a clean, flat cut. The plunger thread

has a known pitch of 2.5 mm, allowing the slice thickness to be adjusted with

the number of turns. The exposed cross-section is photographed and the slice is

stored away for further processing. The sample is then lifted 5 mm by performing

two full turns, and subsequently sliced. The new exposed plane is photographed,

and so on. This iterative process, shown in Figure 4.4, is repeated until the whole

tissue has been imaged.

The first prototype of the slicing rig consisted of a small cylindrical container (110

mm inner diameter, 220 mm high) and a frame made of 5 mm-thick acrylic sheet.

A 24-megapixel digital camera∗ was suspended horizontally over the slicing rig

using a 90◦ rotating camera tripod†. External illumination sources were placed

around the rig, to enhance the quality of the photographs. This set-up was

∗Canon EOS M3 digital camera, Canon Inc., Tokyo (Japan)
†Manfrotto 190XPRO Aluminium 3-Section camera tripod, Vitec Imaging Solutions Spa,

Ashby-de-la-Zouch (UK)
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Figure 4.5: Second prototype of the slicing rig, mounted on its trolley

not robust in terms of preventing relative movement between the rig and the

camera, which would hinder the posterior volume reconstruction methods. It

was also difficult to operate due to the protrusion of the plunger thread when

fully retracted, for which the rig had to be suspended above the workbench.

Moreover, its size would not fit larger specimens.

For these reasons, after collecting feedback from all users, a second version was

built. 8 mm acrylic sheet was used for the main frame, which would house a

container 210 mm in diameter. A reinforced 4 cm base, with a built-in brass nut,

provided stability to the threaded plunger. A bespoke trolley was constructed to

hold the frame, with a central aperture through which the thread could retract.

Stands for the light sources and the camera were attached to the trolley, therefore

minimising the risk of movement between the camera and the specimen. Due to

the increased size of the container, the 30 cm knife was more prone to bending at

its middle section, yielding slices of non-uniform thickness. To solve this problem,

the blade was adapted to fit a hacksaw frame, which was used to apply tension.

The second prototype of the slicing rig, mounted on its trolley, is shown in Figure

4.5.
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4.2.4 CT Calibration Phantom

A standardised PET/CT calibration phantom∗ was used to assess the precision

of volume delineation tasks on a CT scan. It consisted of a phantom body made

of 3 mm acrylic sheet, a lung insert and six fillable spheres with outer diameters

of 12 mm, 15 mm, 19 mm, 24 mm, 30 mm and 39 mm. When filled with water,

the spheres presented higher attenuation than the surrounding air, similar to

that of a real lung tumour scenario. The design complied with the International

Electrotechnical Commission (IEC) Standard 61675-1.

4.2.5 Image Processing Methods

Region growing segmentation

Region growing is an interactive segmentation algorithm [87]. Unlike thresholding

approaches, this method tolerates smooth colour variations within the target

area, making it more robust in situations where the scene presents non-uniform

illumination.

The user selects an arbitrary pixel (seed) within the area to be segmented. Next,

the method performs one-to-one comparisons between the seed and its neighbour-

ing pixels: if their colour difference (i.e. image gradient) is lower than a user-

selected threshold, that neighbour is included in the region; if higher, the pixel is

rejected. In the next iteration, the included pixels evaluate their corresponding

neighbours in the same fashion, being added to the region if the condition is met.

The algorithm recursively evaluates neighbouring boundary pixels until it con-

verges and the region cannot grow anymore. After convergence, a morphological

closing is performed on the resulting mask, to remove any small holes produced

by noise.

A pixel’s neighbours are defined by the pixel’s connectivity. The neighbours of a 4-

connected pixel include every pixel that touches one of its edges. The neighbours

of an 8-connected pixel are all pixels in contact with either one of its edges or

corners. This is illustrated in Figure 4.6. The user can select one of the two

connectivity options in the algorithm described above.

∗NEMA IEC Body Phantom SetTM, model PET/IEC-BODY/P, Meditest SAS, Buc
(France)
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(a) (b)

Figure 4.6: Pixel (red) with its corresponding neighbours (blue), in (a) 4-connected
and (b) 8-connected settings

Extrapolation of extrema regions

Shape interpolation methods often need to be complemented with an extrap-

olation algorithm, to produce smooth, rounded edges around the shape’s end

regions. An end region R is defined as a closed area of a cross-sectional image,

present in slice i, but absent in the subsequent plane i+ 1. Extrema are particu-

lar cases of end regions. However, the behaviour of these algorithms needs to be

modulated in the presence of nearby regions, co-habiting in either the same or

contiguous planes. Two approaches are investigated: linear and curvature-based

extrapolation.

With the linear method, an end region R is projected onto slice i + 1, Π̂i+1,

and distance transform ∆(·) is applied. Next, a region A = R⊕D is defined on

Π̂i+1, where ⊕ indicates the dilation operation and D is a disk-shaped structural

element of radius r. That is, A includes R and its adjacent neighbours within

r − 1 pixels. Then, for each pixel pn ∈ A, with value ∆(Π̂i+1(pn)) = δn, the

adjusted distance δ̇n is calculated as:

δ̇n = min
(

max (1, δn + h),∆(Πi+1(pn))
)

(4.1)

where h is the slice thickness in pixels, and ∆ (Πi+1(pn)) is the distance transform

of the original i+1-th slice at point pn, i.e. without the projection of R. In other

words, the distance to the neighbouring slice is considered in and around the area

of the end region R. If, for any pixel within this area, the resulting corrected

distance is lower than or equal to one, then it is clipped to 1. That is because the
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end region should not appear on slice i + 1, as enforced by the data. Moreover,

if the distance d between a point pn ∈ A and a region S ∈ Πi+1 is smaller than

the inter-slice distance, then δ̇n = d. Note that, if the other sign convention

is used for the distance transform (positive values inside a region, and negative

outside), then Equation 4.1 still holds if δ̇n and δn are substituted by −δ̇n and

−δn, respectively.

The curvature-based method uses second-order differences, from the two pre-

ceding slices, to extrapolate the end region, following the same curvature trend.

This approach is also applied locally around the area A of the end region R. Let

us assume that the last cross-section of region R is on slice i, and that the region

exists on slices i− 1 and i− 2. For each pixel pn ∈ A, the first-order differences

between the distance transforms of slices i and i− 1 are defined as:

∇′i(pn) = ∆ (Πi−1(pn))−∆ (Πi(pn)) (4.2)

∇′i−1(pn) = ∆ (Πi−2(pn))−∆ (Πi−1(pn)) (4.3)

Values obtained in Equations 4.2 and 4.3 are used to calculate the second-order

differences:

∇′′i (pn) = ∇′i−1(pn)−∇′i(pn) (4.4)

If we enforce that ∇′′i = ∇′′i+1, that is, second-order differences in slice i have to be

the same for the extrapolated region in slice i+ 1, then the first-order differences

for that slice can be computed as:

∇′i+1(pn) = ∇′i(pn)−∇′′i (pn) (4.5)

Finally, the extrapolated distance values δn on slice i+ 1 can be calculated as:

δn = ∆ (Πi+1(pn)) = ∆ (Πi(pn))−∇′i+1(pn) (4.6)

The resulting distance image also needs to be adjusted, as in the linear case,

to enforce the same data constraints. Adjusted values δ̇n can be obtained using

Equation 4.1.
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Figure 4.7: The food colouring used to dye the phantom permeated into the sur-
rounding agar, thus blurring the edges of the shape

4.3 Results and Discussion

4.3.1 Phantom Material Testing

The first material tested was 4% agar mixed with red food colouring. The reasons

for this initial choice were ease of preparation, and the substances involved being

categorised as having minimal health and safety risk [88]. The pyramidal mould

was used for this test. Once solid, the phantom was embedded in 2% agar, and

left overnight to set. When the sample was sliced the next day in the rig, we

discovered that the phantom’s red dye had permeated into the surrounding agar,

as shown in Figure 4.7. As a consequence, the boundary of the shape was very

diffuse, thus hindering its segmentation. Dyed agar was ruled out as a phantom

material.

The next substance tested was polyvinyl alcohol (PVA). Different concentrations

and contrast agents were used to assess its physical and mechanical properties,

as summarised in Table 4.1. The sample that presented suitable x-ray absorption

properties and the easiest to slice was PVA at 7% with 1% aluminium oxide, cured

for 72 hours (3 freeze-thaw cycles). A trace of red food colouring was also added

to the mixture to enhance its contrast in the visible spectrum. Several phantoms

were produced with this material, initially using the pyramid shape, and later
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Figure 4.8: Cross-section of a phantom sample (4% agar with 5% aluminium oxide)
in the x-ray (left) and visible (right) spectra

with the bespoke 3D-printed mould. In this case, there was no diffusion of dye

into the medium, and therefore the cross-sectional contours were well preserved.

However, due to the rubbery texture of PVA and its high friction coefficient, the

blade was prone to getting trapped in the material when cutting the phantom on

the slicing rig. This caused the phantom to move sideways with the movement of

the knife, instead of being cut through. Eventually, it would cause the shape to

become dislodged from the embedding medium, especially towards the last slices

where agar support was weaker.

Agar gel proved easier to slice than PVA. However, some kind of additive was

needed to make the phantom distinguishable from its surrounding agar, both in a

photograph and in x-ray. The problem with food colouring is that it is a soluble

substance, and it transfers to water-based materials easily. In contrast, aluminium

oxide is non-soluble, and also gives the mixture a white colour. With this in

mind, we created a sample with 4% agar and different Al2O3 concentrations,

namely 1%, 3% and 5%. As expected, the resulting phantoms were white, and

the contrast agent did not permeate into the neighbouring medium. The colour

intensity was proportional to the aluminium oxide concentration: the 1% sample

presented a vitreous white tone, slightly transparent, whereas at 5% it showed a

solid, opaque white colour. Their x-ray absorption properties are listed in Table

4.1. Figure 4.8 shows an arbitrary cross-section of a phantom sample (4% agar

with 5% aluminium oxide) in the x-ray and visible spectra. Its contrast is high

in both modalities, facilitating segmentation. It is also observed that the cut is

uniform across the slice, making agar an ideal candidate material for phantom

preparation.
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4.3.2 Volume Reconstruction

This section describes various experiments designed to test the performance of

different 3D shape reconstruction methods, in terms of volume recovery. Different

modalities, methods and set-ups are reviewed, performed on a variety of phantom

shapes.

Physical phantom slicing

The first experiment consisted of slicing and photographing an anatomical agar

phantom (4% agar with 5% Al2O3) at 5 mm intervals, using the slicing rig.

A picture of a fiducial marker of known size was also taken to establish the

relationship between pixel size and real world units. To reduce the computational

complexity and running time of the algorithm, images were downsampled by a

factor of 4 in each direction, that is, the original 6000×4000-pixel photographs

were shrunk to 1500×1000 pixels. The resulting images had a real-world measure

correspondence of 0.12 mm per pixel.

Phantom cross-sections were segmented using a region growing colour threshold-

ing algorithm. Once the binary masks were obtained, the 3D shape was recon-

structed using shape-based interpolation with a cubic spline interpolant function.

After runing the experiment three times, the average volume recovered was 45,732

mm3 (standard deviation: 804 mm3). This value corresponds to 92.9% of the vol-

ume of the virtual CAD model (ground truth), which was 48,864 mm3. After a

qualitative inspection of the overall recovered shape, it was observed that none of

the shallow valleys at the top or bottom of the model were recovered. This was

due to the low axial sampling frequency. Moreover, the high-frequency wrinkle

on the side was underestimated and only partially recovered. Figure 4.9 shows

orthogonal and perspective views of the reconstructed phantom.

To investigate whether slice thickness had an effect on volume and shape re-

construction, a similar experiment was performed. We used the same set-up,

doubling the axial sampling frequency (2.5 mm slices). The same region growing

segmentation routine was utilised. On this occasion, the overall shape recon-

struction was better from a qualitative point of view. As shown in Figure 4.10,

the shallow trough at the top of the object was recovered, although the bottom

one was still missed. The high-frequency feature on the left side was successfully
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Figure 4.9: Orthogonal and perspective views of a phantom reconstructed from cross-
sectional images taken every 5 mm. It can be seen that none of the shallow valleys were
recovered (solid arrows), and the high-frquency feature on the left was underestimated
(dashed arrow)

reconstructed. The average recovered volume after three runs was 44,950 mm3

(standard deviation: 698 mm3), that is, 92.0% of the ground truth volume.

The question was now whether this volume underestimation was intrinsic to the

interpolation method, due to imprecisions in the segmentation routine, or a com-

bination of both. To isolate the interpolation problem, a virtual slicing and

reconstruction of the original CAD model was proposed. Using this method, the

phantom cross-sectional areas are explicitly defined by the model, thus avoiding

the need to segment the images. The procedure is described in the following

section.
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Figure 4.10: Orthogonal and perspective views of a phantom reconstructed from
cross-sectional images taken every 2.5 mm. The top shallow valley was successfully
recovered (solid arrow), and the high-frquency feature on the left side was correctly
reproduced (dashed arrow)

Virtual phantom slicing

Virtual slicing is performed by selecting a subset of planar, parallel slices of a

computer-generated 3D shape, in order to obtain its cross-sectional profiles. The

advantages of this method are numerous:

• There is no need to segment the phantom area from the cross-sections, as

it is explicitly defined by the virtual shape model.

• Simulations can be quickly set up and reproduced multiple times, without

the need to produce a physical phantom sample every time. Multiple rep-

etitions of an experiment will improve the statistical power of the results.

• Smaller slice thicknesses can be simulated without the mechanical con-

straints of a physical phantom.

75



During the design phase of the experiment, a new issue had to be taken into

consideration: where to position the first slice in the virtual model. The default

behaviour of the algorithm was to place it in line with the uppermost voxel of the

shape. However, with a physical phantom, it is unfeasible to perform a cut that

corresponds to the cross-section of the very first distinguishable feature situated

at the phantom’s apex. In addition, in a real tumour scenario, this is impossible,

as the tumour is embedded within the lung tissue, which is opaque. Therefore, the

randomness associated with the positioning of the first slice had to be considered,

in order to perform a truthful simulation of the physical slicing process. The

assumption was that the first slice could be situated anywhere between 0 (the

apex of the shape) and S (one slice thickness), with uniform probability.

The simulation was set to run a parameter sweep over the slice thickness and in-

terpolation functions, to find the optimum conditions for volume reconstruction.

Slice thicknesses were set from 0.5 mm to 10 mm in 0.5 mm steps. Shape-based

interpolation was performed using nearest neighbour, linear and cubic spline in-

terpolants. The experiment was run 200 times for each combination of slice

thickness and interpolation function, introducing a random offset to the first cut

at each iteration.

Results are displayed in a box and whisker plot, shown in Figure 4.11. Regardless

of slice thickness, nearest neighbour shows the most accurate results, with mean

reconstructed volume consistent with the ground truth value. Similarly, recov-

ered volume using cubic spline is relatively constant, although it shows a constant

underestimation of 0.7% irrespective of slice thickness. In contrast, linear inter-

polation function shows a clear negative trend, where volume underestimation

is proportional to slice frequency. Another observation is that data uncertainty

increases with thickness. Interestingly, this trend is reversed for 9, 9.5 and 10

mm slices. One hypothesis to explain this behaviour is that at certain low slicing

frequencies, most of the fast-changing features will be lost. Therefore, the ran-

domness in the position of the first slice will not influence the recovered volume

as much, because all fine details will be averaged regardless.

If this conjecture is true, it means that the performance of the algorithm is

influenced by the particular shape of the phantom. To prove this assertion,

we qualitatively analysed several of the phantom virtual cross-sections, obtained

from the simulations with different slicing frequencies and random offsets. For

thicknesses below 1.5 mm, all detailed features were recovered, including both
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Figure 4.12: Two sets of virtual cross-sections of a phantom, sliced at 2.5 mm inter-
vals, with different offsets for the position of the first slice: 1.9 mm (A) and 0.7 mm (B).
Red and green arrows indicate the critical slices that influence the recovery of selected
shape features

shallow valleys. However, for slices between 2.5 and 3.5 mm thick, the position of

the first cut greatly influenced the shape recovered. This is illustrated in Figure

4.12: on set A, an offset of 1.9 mm was introduced to the first slice, and an

offset of 0.7 mm was applied to set B. The transition between the fourth and

fifth cross-sections in the first row of set A (red arrow) indicates that the shallow

valley, situated at the top of the phantom, is missed. However, observing the

same slices on set B, it can be seen that the feature is successfully recovered,

as the spacing between the left and central regions is captured. Similarly, the

fourth cross-section in row four shows how the bottom shallow valley is missed

in A (green arrow), but reconstructed in B. Finally, for slices over 7.5 mm, the

profile of the cuts was very similar at each iteration, only capturing the deep

valley situated at the top of the phantom. All other detailed features present

along the slicing direction were smoothed out.

These results suggested that the size of the features influence volume recovery.

Also, the constant underestimation shown in spline reconstruction and the nega-

tive trend proportional to slice thickness observed with linear interpolation needed

further study. To obtain more proof, the experiment was repeated on different

object shapes.
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Figure 4.13: Anatomical phantom split into its four quadrants (left) and ovoid shape
(right), used to validate the results obtained in the initial virtual slicing experiments

Virtual slicing on different shapes

Ideally, a number of different shapes would be designed in CAD software, virtu-

ally sliced and reconstructed. However, building a virtual object with a set of

particular features is a lengthy process. A compromise was reached by splitting

the original, anatomical shape into its four quadrants, and using each segment

as an independent object. A simple ovoid shape was also used to evaluate the

algorithm performance on smooth, regular shapes. These are displayed in Figure

4.13. Following the same protocol used in the previous experiments, all five new

shapes were virtually sliced, with thicknesses ranging from 0.5 mm to 10 mm.

Nearest neighbour, linear and cubic spline were used as interpolation functions,

and a random offset was introduced to the position of the first cut. The script

was run 200 times for each configuration, on all five objects. Phantom quadrants

are labelled RR (rear right), RL (rear left), FR (front right) and FL (front left).

Results are displayed in box and whisker plots, shown in Figures 4.14 (RR), 4.15

(RL), 4.16 (FR), 4.17 (FL) and 4.18 (ovoid).

All five shapes presented some common trends. Nearest neighbour appeared to be

the most accurate method, with average recovered volume closest to ground truth

values for any slice size. Linear interpolator showed a negative linear trend, with

volume underestimation proportional to slice thickness. Cubic spline produced a

constant volume undercalculation of 1% to 2% with respect to the ground truth

volume, irrespective of slicing frequency. Moreover, all models presented very

little data spread up to 2.5 mm thickness. In general, none of the five phantoms
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exhibited a clear linear relationship between data spread and slice thickness. For

instance, quadrant FL (Figure 4.17) showed very precise measurements for 6.5

mm thickness. This fact contrasts with the comparatively larger spread of 5.5

mm, 7 mm or 8 mm slices. Also, the ovoid shape (Figure 4.18) produced very

consistent estimates for 8.5 mm and 9.5 mm slices, compared to their adjacent

thickness values.

In addition to their statistical properties, we looked at the individual values

obtained for each realisation of the experiment, to analyse the actual distribution

of data points. One interesting observation was that, for certain shapes and slice

frequency, the 200 points showed a tendency to group in clusters, rather than

being uniformly distributed. In other words, for a range of offset values, the

reconstructed volume was very similar. To further investigate, we plotted the

volume figures against the offset applied to the first cut. The trends suggested

that there is a strong correlation between slice thickness, offset and phantom

feature size.

To better illustrate these findings and understand the behaviour of the experi-

ments, a real example is analysed. In this case, we used quadrant FL, sliced at 9

mm intervals and reconstructed using linear interpolation. The first cut was ran-

domly placed between 0 and 9 mm (one slice thickness), and the experiment was

repeated 200 times. Figure 4.19a contains a graph that plots the offset applied to

the first cut against reconstructed volume. It shows three critical points, marked

with arrows, which are related to the position and size of the phantom’s smaller

details. Initially, the volume increased linearly, mainly due to the omission of

the top shallow dip and consequent shape overestimation. At a 4 mm offset, two

main events produced the sudden decrease in volume. Firstly, the side wrinkle

is completely missed, as cuts 4 and 5 fall on either side of the protuberance.

Secondly, the bottom protrusion is heavily underestimated due to the particu-

lar positioning of cutting planes 7 and 8, as shown in Figure 4.19b. At a 5.6

mm offset, the top dip and side wrinkle are roughly averaged out. However, as

shown in Figure 4.19c, cutting planes 6 and 7 just miss the shallow feature at the

bottom, causing major overestimation. As the offset increases, the side wrinkle

is similarly exaggerated, which causes the overall estimated volume to increase.

Finally, at a 7.3 mm offset, the bottom protrusion stabilises and the top feature

starts to shrink, as cutting plane 1 encounters the top depression.
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Figure 4.19: Virtual slicing example showing the influence of first cut offset over
reconstructed volume. Shape used is quadrant FL, sliced at 9 mm intervals and recon-
structed using linear interpolation. The experiment was run 200 times, introducing a
random offset between 0 and 9 mm at every iteration. (a) Stem plot showing the vol-
ume recovered at each run (y axis) against the offset applied (x axis). Arrows indicate
inflection points at 4.0 mm, 5.6 mm and 7.3 mm offset values. (b) Frontal and lateral
views of the shape. Continuous lines indicate the position of the cutting planes at 4
mm offset. Dashed lines represent linear interpolation between planes. (c) Frontal and
lateral views of the shape. Continuous lines indicate the position of the cutting planes
at 5.6 mm offset. Dashed lines represent linear interpolation between planes
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These experiments demonstrate that slicing frequency and offset greatly influence

the final reconstruction, both in terms of shape and volume. Ideally, slice thick-

ness should be half the size of the smallest feature, as described in Section 3.3.1.

Moreover, the choice of interpolation function influences the overall volume re-

construction, with nearest neighbour being the most accurate method regardless

of slice size. The effect of the interpolant on shape recovery is discussed in the

following section.

4.3.3 Shape Analysis

So far, experimental analysis has focused solely on the evaluation of overall vol-

ume recovery. However, shape and volume are closely related: any inaccuracies

in one will affect the other. Robust shape reconstruction is also of paramount im-

portance, especially as our tumour registration approach relies on shape features

to guide the alignment process.

We performed a quantitative evaluation of the shapes obtained by aligning the

reconstructed phantom to the original CAD model, following these steps:

1. The outermost layer of voxels (shell) of the reconstructed shape and the

model are extracted. Both datasets are converted to point clouds, by trans-

forming each voxel into a point coordinate.

2. Reconstructed shape is rigidly registered to the model using Iterative Clos-

est Point algorithm.

3. For each point in the registered shape, the distance to its nearest neighbour

in the model is calculated.

4. These distances are colour-coded and represented on a 3D heatmap, which

helps the user visualise the areas with most distortion.

This routine was repeated for different slice thicknesses and interpolation func-

tions. As expected, nearest neighbour produced the most deformed shape, in

terms of absolute sum of distances, due to the stepped profile of the reconstruc-

tions. The dips and phantom’s extrema were the features that produced the

most error, regardless of the interpolator. Figure 4.20 displays a shape distortion

heatmap of a reconstructed anatomical phantom, sliced at 2.5 mm intervals, and

interpolated using spline (left) and nearest-neighbour (right) functions. Near-

est neighbour shows a persistent, small error on every slice, consistent with the
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Figure 4.20: Heatmap showing shape distortion on reconstructed anatomical phan-
toms, sliced at 2.5 mm intervals, and interpolated using spline (left) and nearest-
neighbour (right) functions. Arrows indicate “swelling” artefacts produced by spline
interpolation

step-like nature of the reconstruction. On the other hand, spline interpolation

produces swelling artefacts around some of the shape’s extrema (marked with

arrows). This can also be observed in Figure 4.10.

This phenomenon, characteristic of shape-based interpolation methods, is linked

to some specific changes in topology between consecutive slices. When cross-

sectional images are converted into distance functions, the transform is applied on

each plane independently. That is, distance transform of slice i does not depend

on neighbouring slices i − 1 or i + 1. In the particular case where a topological

region R, present in slice i, disappears in slice i + 1, the distance transform

function of slice i + 1 does not have any prior knowledge of the existence of R
in previous slices. This is illustrated in Figure 4.21: on the left, slice i has two

regions, R and S. Point pi = (a, b, i) (marked with a red +) belongs to region R.

When the distance transform is applied to the slice, point pi will be assigned a

relatively small negative number−q (following the convention proposed in Section

3.3.1), because it is an inner point situated close to the region’s boundary. On

the right, slice i+1 has only one region S. In this case, point pi+1 = (a, b, i+1) is

an outer point, placed a long distance from the closest boundary point of S, and

therefore will be assigned a large positive number d. Even though pi+1 may be

closer to R (situated in the previous slice) than S, it will be assigned a distance

equal to d, because inter-slice distances are not considered. As −q � d, the

interpolator will encounter a sudden change in the values of the function around
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Figure 4.21: Example of topology change between consecutive slices. Region R,
present in slice i, contains point pi (marked with a red +). When the region disappears
in slice i+1, pi+1 becomes an outside point, away from region S. White arrow indicates
the minimum distance d between pi+1 and S

the region that disappeared, which may affect its performance. In the case of

cubic spline interpolation, the function produces ringing artefacts on each side of

a discontinuity to preserve its class C2 differentiability condition.

To mitigate this effect, neighbouring slices shall be taken into account when

computing distance transform. We investigated two approaches based on the ex-

trapolation of end regions, to produce natural-looking, rounded extrema: linear

and curvature-based (see Section 4.2.5). The performance of these two meth-

ods was evaluated on the anatomical phantom, which was virtually sliced at 2.5

mm intervals. The same initial offset was applied on both methods and cubic

spline interpolator was used. Figure 4.22 shows the results obtained, with the

extrapolated features marked with arrows. It can be observed that the linear

extrapolation approach, on the left, produces a pointed end, which is especially

salient in cases where the surrounding curvature is smooth. In contrast, the

curvature-based method, on the right, displays a rounder finishing, more in line

with the true shape. We obtained similar responses when the two extrapola-

tion algorithms were used on different shapes. Therefore, the curvature-based

approach was selected as the method of choice. To round off the top and bottom

89



Figure 4.22: Comparison between linear (left) and curvature-based (right) methods
for region extrapolation. Arrows indicate the extrapolated features

ends of the shape, this extrapolation routine was applied to the first and last

slices of the phantom.

4.3.4 Phantom Reconstruction from CT Data

The next set of experiments was aimed at evaluating the shape reconstruction

methods used on computed tomography (CT) data. For this purpose, an anatom-

ical agar phantom (4% agar with 5% Al2O3) was produced and embedded in a

cylindrical container using agar at 3% concentration. The sample was scanned in

a CT scanner∗ at the Beatson West of Scotland Cancer Centre (Glasgow, UK).

CT slice thickness was set at 2.5 mm. Next, for each slice, a consultant oncolo-

gist (S.H.) delineated the contour of the phantom on a commercial radiotherapy

planning software tool†. Figure 4.23 shows the transverse, saggital and coronal

planes of the specimen’s CT scan, as well as a 3D representation of the recon-

structed volume. The purple areas indicate the segmentation performed by the

consultant.

The resulting shape, automatically reconstructed by the treatment planning soft-

ware tool, presented an overall volume of 55,590 mm3. That is a 13.7% overesti-

mation with respect to the phantom’s ground truth volume of 48,864 mm3. This

result was unexpected, especially after obtaining an 8% volume underestimation

from the physical slicing experiments performed earlier (see Section 4.3.2). To

∗GE Discovery CT590, GE Healthcare, Chicago (US)
†EclipseTMTreatment Planning System, Varian Medical Systems, Palo Alto (US)
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Figure 4.23: Transverse, saggital and coronal views of the CT-scanned phantom.
Purple areas show the segmentation performed by the consultant. On the top-right
corner, a 3D representation of the reconstructed volume is displayed

understand the origin of these discrepancies, two possible sources of error were

identified and analysed: low precision of the delineated contours, and inconsis-

tency between theoretical and actual phantom volume.

Contour precision

To evaluate the first source of error, the consultant oncologist (S.H.) was asked to

review the segmentation several days after. This time, the visualisation window of

the scan was modified to highlight the phantom structure and reduce background

noise. The delineation was also checked independently by a consultant pathologist

(C.D.). They both ascertained that the contours were as close to the phantom

body as they would be in a real cancer patient situation, following standard

practice. Consequently, it was agreed that shrinking the volume would be non-

realistic.

Their delineated transverse cross-sections were compared against the output of

our region-growing segmentation algorithm, P . A qualitative inspection revealed

that the consultants’ contours included, in general, an extra 1-voxel-thick layer

around P . To quantify the effect of this slight increase in diameter, we calculated
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how much volume an additional shell of voxels H would add to region P :

H =
∣∣∣(P ⊕ 13)− P

∣∣∣ ∗ V (4.7)

where | · | is the notation for cardinality, ⊕ indicates the morphological dilation

operation, 13 is a 3-by-3 matrix of ones, and V is the voxel size. That is, the

original phantom P is dilated by one pixel all around. Next, P is subtracted from

its dilated version. The voxels of the resulting shell are counted and multiplied

by the voxel volume. For a voxel size of 2.5× 0.98× 0.98mm3, the resulting shell

H was 9,047 mm3. Therefore, the 6,726 mm3 overestimation in the consultant’s

phantom delineation was within tolerance.

Two conclusions can be drawn from these results: firstly, contours traced by clin-

ical experts will tend to slightly overestimate the actual specimen area on CT

scans. Secondly, due to the relatively large voxel size in diagnostic CT scanners,

small delineation errors (i.e. inclusion versus exclusion of a voxel) have the poten-

tial to greatly influence the final overall volume. Therefore, manual contouring

is one of the highest sources of error. A word of caution: the phrase manual

contouring as a major source of error needs to be interpreted in the context of

phantom segmentation for the purpose of this study. By no means does it imply

that manual tumour segmentation, performed by trained medical staff in a real

clinical scenario, is overestimated or indeed erroneous.

To further study the relationship between specimen size and overestimation error

percentage, a CT calibration phantom (described in Section 4.2.4) was scanned,

and three of its water-filled spheres (12, 24 and 39 mm in diameter) were seg-

mented by the consultant oncologist using the same radiotherapy planning soft-

ware. Figure 4.24 displays a transverse slice with the segmented cross-sections in

different colours. The cyan region corresponds to the 12 mm sphere segmentation,

red to 24 mm, and green to 39 mm. A quick visual inspection revealed that the

drawn contours extended slightly beyond the solid area of the phantom, in line

with our previous findings. Results obtained from these manual segmentations

are shown in Table 4.2.

As expected, the overestimation percentage is larger for smaller volumes, and

shows a tendency to stabilise with increasing sample size. Compared to the

anatomical phantom shape, spheres present a lower overestimation ratio for simi-

lar volumes. For example, the 31,059 mm3 sphere displays a 6.2% magnification,

whereas the anatomical phantom, at 48,864 mm3, shows a 13.7% enlargement.
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Figure 4.24: Transverse slice showing the segmentation performed by the consultant
oncologist on a CT calibration phantom. Cyan, red and green regions correspond to
the segmentation of the 12 mm, 24 mm and 39 mm-diametre spheres, respectively

Diameter Manual segmentation Ground truth Discrepancy

12 mm 1199.0 mm3 904.8 mm3 32.5%
24 mm 8095.3 mm3 7238.2 mm3 11.8%
39 mm 32975.5 mm3 31059.4 mm3 6.2%

Table 4.2: Results from manual segmentations on CT calibration phantom, compared
against the ground truth. Discrepancy between segmented and ground truth values
are expressed as a percentage. Ground truth volumes were calculated using the sphere
volume formula: Vsphere = 4πr3/3

One probable cause for this behaviour is that spheres have the lowest surface-area-

to-volume ratio of all the shapes. To illustrate this, suppose we have a sphere S

and an irregular shape P , both with equal volume v. Both shapes are delineated

including a 1-voxel-thick overestimation error around their cross-sections, result-

ing in volumes vS and vP , respectively. Due to the lower area-to-volume ratio

of S, the quotient vS/v will be smaller than vP/v, thus explaining the results

obtained in our experiments.

Virtual and actual phantom volume comparison

Lastly, we designed a set of experiments to ascertain whether the theoretical

CAD and actual phantom volumes were consistent. The initial approach was
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to use water displacement to measure the volume of the physical phantom. A

one-litre glass beaker was filled with 750ml of water, and its level marked. Next,

the phantom was immersed, and the new water level recorded. The volume of

the liquid displaced was calculated using the cylinder volume formula (Vcyl =

πr2∆h), with the beaker’s inner diameter (2r) and the increase in water level

(∆h). However, the uncertainty in the different measurements, namely water

level and distance between water level markings, meant that we could only capture

volume changes to a 1,000 mm3 (1 ml) precision (0.1 mm change in water level).

Weighing the amount of displaced water was also explored, but it was not possible

to reach the desired level of precision either.

The next strategy adopted was to use a laser scanner∗, to render a precise 3D

model of an actual phantom sample. The first trial was performed on a phantom

made from 4% agar and 5% aluminium oxide. However, due to the glossy, uniform

surface of the sample, the scanner could not capture and track any features,

and the measurement procedure was unsuccessful. In the next scan, we used

silicone as the material of choice, which was correctly picked up by the scanning

device. To get a 360◦ coverage of the shape, the procedure had to be performed

twice, scanning one half at a time. A special stage holder was built to facilitate

image acquisition. The resulting two meshes were subsequently stitched at post-

processing using VRMesh†, producing a watertight model. However, the volume

measurement obtained was 70,977 mm3, 45% higher than the theoretical model.

After a visual inspection of the reconstructed shape, several scanning artefacts

could be observed on its surface. The raw mesh data was stitched again using

a different software package‡, and the resulting volume was 53,076 mm3. This

large discrepancy between both measurements meant that reconstructions are

highly dependent on the software used, and that there is not a unique way to

stitch the raw data. For this reason, added to the impracticalities of the scanning

procedure, this strategy was also abandoned.

As a last resort, we took several physical measurements on the phantom mould

and sample using a digital caliper, and compared them against the CAD dimen-

sions. Measurements were repeated 3 times and averaged. Results showed that

all physical distances differed by less than 0.2 mm from the virtual model. As

the potential error introduced by these discrepancies was an order of magnitude

∗7Series Optical 3D Scanner (v13.0.6), Dental Wings Inc., Montreal (Canada)
†VRMesh 10.2 Studio, VirtualGrid, Bellevue (US)
‡Autodesk Netfabb Standard 2017.3, Autodesk Inc., San Rafael (US)
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smaller than the error introduced by any manual delineation inaccuracies, this

source of uncertainty was deemed irrelevant.

4.4 Conclusions

The different experiments described in this chapter provided a wealth of knowl-

edge about the behaviour of our reconstruction algorithms. We proved that

results are highly dependent on several factors: image modality; slice thickness;

interpolation method; and segmentation. Virtual slicing showed that higher sep-

aration between slices produces larger uncertainty in terms of volume recovered,

also affecting the reconstruction of small features. In addition, the position of

the first cutting plane was found to influence the end result.

The three interpolation functions evaluated generated different outcomes. Near-

est neighbour produced the most accurate volume estimation, regardless of slice

thickness or phantom shape. However, it also was the method that produced the

highest shape distortion, the best being cubic spline.

It was also observed that CT data segmented by clinical experts consistently

shows an overestimation margin of 1-2 voxels. This has a significant effect on

the overall volume reconstructed, both in relative and absolute terms. Resolu-

tion of commonly-used diagnostic CT scanners may limit the precision of the

delineations.
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Chapter 5

Lung Tumour Image Registration

This chapter focuses on the registration of multimodality lung tumour images.

The first section describes the rationale behind the approach followed. Materials

and methods are introduced in Section 5.2, built upon the experiments performed

on phantoms (see Chapter 4). Finally, results are presented and discussed in the

last section.

5.1 Introduction

The registration of two images belonging to completely different modalities, namely

PET/CT and miscroscopy, is not a trivial task. On the one hand, PET/CT is

a volumetric dataset, of relatively low resolution, that shows the anatomical and

functional characteristics of the cancerous tissue and its surroundings. On the

other hand, microscopic histopathology slides are inherently 2D, with very high

in-plane resolution. These images contain detailed information about the cel-

lular make-up of the tumour. Moreover, histopathology samples undergo some

deformations during pathological processing.

Due to the heterogeneity, deformities and non-coplanarity of the images, it is dif-

ficult to draw spatial correspondences directly between both datasets. Therefore,

in order to provide a robust solution, the overall registration algorithm is broken

down into smaller sub-tasks, as illustrated in Figure 5.1:

1. Registration of microscopic histology slides to the corresponding gross pho-

tographs of the specimen.
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2. Reconstruction of a macroscopic 3D model of the tumour from the gross

pathology photographs.

3. Segmentation of the tumour volume on the pre-operative PET/CT scans.

4. Registration of pathology and pre-operative virtual tumour models.

5. Application of the transformation parameters to PET/CT data, in order to

match the pre-operative scans to the pathology cutting planes.

Figure 5.1: Flowchart depicting the different steps involved in the proposed lung
tissue registration algorithm

Although not shown in the diagram, the use of an ex vivo CT scan of the re-

sected specimen was also tested, as suggested by some authors. However, no

useful information could be extracted from this and, therefore, the strategy was

abandoned. Further details are provided in the following sections.

5.2 Materials and Methods

Some of the materials and methods used in this chapter, particularly tissue dissec-

tion and 3D tumour reconstruction, are identical to the ones explored in Section

4.2, and therefore are not detailed again in this section. Similarly, all image
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registration algorithms mentioned later in this chapter are reviewed in Section

3.3.2.

5.2.1 Patient Recruitment

The use of human tissue for research purposes is tightly regulated by government

and regulatory authorities. Additionally, ethical considerations need to be taken

into account, such as seeking informed consent from the tissue donor, ensuring

anonymity of the samples, or finding a balance between patient inconvenience

versus potential benefits of the research. Our study protocol was examined by a

NHS Research Ethics Committee∗, and was given favourable ethical opinion in

February 2017 (reference 17/WS/0027).

Between January and June 2018, nine patients with suspected primary non-small-

cell lung cancer, referred for radical lobectomy, were recruited from the Golden

Jubilee National Hospital (Clydebank, UK). Potential subjects were screened to

check whether they fulfilled the study’s inclusion criteria:

• adult patient referred for radical lobectomy with curative intent

• cancerous tissue concentrated in one single tumour cluster

• main volume of the tumour located within the lung, that is, not spread over

the pulmonary pleura and/or airways

• lesion’s major axis longer than 30 mm

Suitable patients were approached by a research nurse, who handed them a Partic-

ipant Information Sheet containing the details of the research project, including

the implications for the participants. The nurse was also in charge of seeking

informed consent, for which the patients had to initial and sign a form, acknowl-

edging and agreeing to the terms of the study. These two forms are included in

Appendix B.

Of the nine recruited patients, one had to be excluded at a later stage, as the

lesion was found to be benign after resection.

∗West of Scotland REC 4, Clinical Research and Development, NHS Greater Glasgow and
Clyde, Glasgow (UK)
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5.2.2 Lung Tissue Processing

Recruited patients proceeded to have radical surgery with curative intent. Dis-

eased pulmonary lobe was removed using either open or video-assisted thoraco-

scopic (keyhole) surgery. Immediately after resection, the specimen was trans-

ferred to the pathology laboratory. Next, the lobe was put in a formaldehyde

bath for 48 hours. This process is known as tissue fixation, which is standard

procedure in pathology for three reasons: it prevents the tissue from biological

decay, by halting all ongoing biochemical processes; it eliminates any infectious

agents; and it increases the stiffness of the lobe, which ultimately facilitates its

slicing. Finally, the sample was rinsed with water, to remove any formaldehyde

residue.

The specimen was subsequently prepared for enhanced dissection. An agar so-

lution at 4% by weight was injected, while in liquid form, into the tissue. This

procedure was carried out to inflate the lung lobe to its approximate in vivo size.

Once set, the sample was placed into the slicing rig’s tissue container, and embed-

ded in agar at 4% concentration. The mixture was then left to solidify overnight.

At this point, some of the samples were scanned ex vivo on a CT machine (see

Section 5.2.3). Next, the specimen was dissected at 5 mm intervals using the

slicing rig, as described in Section 4.2.3. Each cross-section was photographed

and stored for further processing. After slicing, tumour-containing slices were

segmented into approximate 2×2 cm squares by an experienced pathologist, and

placed into plastic cassettes, as shown in Figure 5.2. These samples were embed-

ded in paraffin wax, cut into 10 µm-thick sections using a microtome, and stained

with hematoxylin and eosin dyes. Finally, they were placed on microscope glass

slides, for ease of handling and inspection.

5.2.3 Image Acquisition

PET/CT scans

A free-breathing PET/CT scan is one of the most common tests performed on

patients suspected of suffering from lung cancer. The images obtained show the

anatomical and metabolic fingerprints of the cancerous lesion. Referred cases

were scanned at the Beatson West of Scotland Cancer Centre (Glasgow, UK) in a
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Figure 5.2: Lung tissue is segmented and placed into plastic cassettes for histology
processing

combined PET/CT machine∗. Slice thickness was set at 2.5 mm for the CT and

3.27 mm for the PET. After obtaining informed consent from the participants,

their corresponding image sets were anonymised and downloaded from the or-

ganisation’s Picture Archiving and Communication System (PACS)† in DICOM

format.

An ex vivo CT of the excised tissue was performed immediately before patholog-

ical dissection. The specimen, which had been previously inflated and embedded

in agar inside the slicing rig’s tissue container, was imaged at the West of Scot-

land PET/CT Centre in a CT simulator scanner‡, with slice thickness set at 2

mm. Images were stored in DICOM format.

Gross pathology photographs

Gross photographs of the specimen cross-sections were taken using the same set-

up described in Section 4.2.3. The digital camera was focused prior to slicing by

placing a fine, high-contrast pattern at the same position as the cutting plane,

and adjusting the focus accordingly. Once the calibration grid was in focus, the

camera was set to manual focus mode. Also, the shutter was triggered with a

∗GE Discovery 690/710, GE Healthcare, Chicago (US)
†Carestream Vue PACS, Carestream Health, Rochester (US)
‡Brilliance Big Bore CT scanner, Philips, Amsterdam (Netherlands)
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Figure 5.3: Cross-sectional gross pathology photograph taken on the slicing rig, show-
ing the laser-engraved ruler on the top and left-hand side of the frame

remote controller, to avoid touching the camera and therefore minimising move-

ment between takes.

Once the slice of interest was exposed, it was dabbed with ethanol to remove any

traces of formaldehyde and to improve its contrast. A ruler, laser-engraved on the

slicing rig frame, was also included in the scene, to help establish a relationship

between pixel size and real-world units. This is shown in Figure 5.3. Images were

captured and stored in both RAW and JPG formats.

Histology slides

Histology glass slides were digitised using a high-resolution slide scanner∗. Images

were acquired at a resolution of 96,262×162,822 pixels (40x magnification), each

pixel corresponding to a 250nm×250nm square area in real-world units. Due to

the extremely large size of these datasets, a subsampled (1x magnification) version

was used for registration purposes. Images were anonymised and downloaded in

PNG format.

∗Philips Ultra Fast Scanner (v1.8.6524), Philips, Amsterdam (Netherlands)
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5.2.4 Image Segmentation

Gross pathology photographs

Gross pathology images were visually inspected and segmented by an experi-

enced consultant pathologist. For each cross-sectional photograph, the perimeter

of the lesion was manually delineated using ImageJ software [89]. Resulting bi-

nary masks were subsampled by a factor of 2 in each direction and exported

in PNG format. A 3D model of the tumour was generated from the masks us-

ing shape-based interpolation with a cubic spline kernel, which minimises local

shape reconstruction errors, as explained in Section 4.3.3. Shape extrema were

extrapolated with the curvature-based method described in Section 4.2.5.

PET/CT scans

PET/CT scans, taken prior to surgery, were exported from PACS to a commercial

radiotherapy planning software∗ with segmentation capabilities. An experienced

consultant oncologist visually inspected and manually segmented the tumour on

the CT scans, using a lung window visualisation setting (-1350 to 150 Hounsfield

Units). Attenuation-corrected PET scans were segmented in 3D Slicer [86] by

thresholding at 50% of the tumour maximum SUV, as suggested in [90]. In both

cases, resulting volumes were exported in STL format.

In three of the eight cases processed, the patients’ CT volumes were independently

segmented by three different experienced thoracic consultants, using the same

settings detailed above.

5.3 Results and Discussion

5.3.1 Histology to Gross Pathology Registration

Moving Least Squares with affine deformation was used to register block-face

gross pathology photographs of the specimens with their corresponding histology

slides. Common anatomical landmarks, such as blood vessels, airways or edges,

were visually identified on each pair of images. A subset of those was utilised as

∗EclipseTMTreatment Planning System, Varian Medical Systems, Palo Alto (US)
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control points for the algorithm, and some of the remaining were used to evaluate

the quality of the registration using Target Registration Error (TRE) measure.

In order to calculate the optimal parameters to minimise registration error, three

different slices, I3187(12), S3510(10) and F3203(3), were selected, each showing

a characteristic feature: I3187(12) presents a branched section of the lesion, sur-

rounded by large, hollow spaces in the lung tissue (emphysema); slice S3510(10)

is mainly comprised of solid tumour, which shows up as an intense pink region in

the hematoxylin and eosin-stained histology image; and case F3203(3) contains a

cancerous lesion with a hollow, necrotic core. These are shown in Figure 5.4. A

total of 18 common points were chosen for each pair of images. For each run of

the algorithm, n = {4, 6, 8, 10, 12, 14} landmarks were randomly selected, to act

as control points, and another 4 were used for evaluation. Also, three different

α values (see Equation 3.38) were tested. This parameter controls the attraction

force a control point exerts over its neighbours. For each set of images, the algo-

rithm was executed 10 times for every configuration of n and α. Histology slides

were deformed to match their corresponding gross pathology photograph.

Results are shown on Table 5.1. As expected, TRE decreased as the number of

common landmarks n increased. Note that the experiments were capped at 18

landmarks (14 control points and 4 for TRE calculation). The reasoning behind

this choice comes from the observation of multiple histology and gross pathology

pairs of images. It was noted that the vast majority of cases shared between 15

and 20 unique, common landmarks, easily indentifiable by an observer without

specialist pathology training. Any higher number produces redundant points that

do not contribute to the overall result. Moreover, their manual selection becomes

more time-consuming.

In all three cases, points that corresponded to the corners of the histology slide

were included in the landmark cohort, in order to maximise overlap between both

images. Whenever, due to random selection, one or more of the corner locations

were not included in the pool of control points, registration error was noticeably

higher, especially in cases when these corner locations were used as evaluation

points. Visual inspection of such cases showed a consistent underwarping around

the missed corners. As the algorithm lacked an anchor point around the missed

corner points, the deformed image was not stretched in those directions. There-

fore, a larger n produced better results not only because of the increased number
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Figure 5.4: Cases used to assess histology to gross pathology registration accuracy
(top: I3187(12); middle: S3510(10); bottom: F3203(3)). 18 landmarks were selected
on each pair of images, marked with yellow/black circles. Numbers indicate correspon-
dences
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TRE (mm)

α = 1 α = 1.5 α = 2

n Mean Std dev Mean Std dev Mean Std dev

4 9.06 2.88 9.79 3.11 10.05 2.64
6 8.43 2.01 8.37 2.48 8.98 3.01
8 7.79 1.86 8.03 1.82 7.98 2.41
10 4.56 1.02 4.69 1.11 4.93 1.06
12 2.34 0.56 2.31 0.40 2.40 0.51
14 1.37 0.23 1.39 0.24 1.36 0.22

Table 5.1: Target Registration Error (TRE) mean and standard deviation for different
values of α as a function of the number of landmarks n

of enforced correspondences, but also because the corner points had a greater

probablility of being selected.

For smaller n, the algorithm produced more significant errors for larger α val-

ues. The higher the magnitude of α, the greater the attraction force of the

landmarks closer to the point being transformed. Particularly, TRE increased

when landmarks were sparsely distributed on the plane, leading to large image

overstretching in those areas with no control points. However, for larger n, the

choice of α had little influence on the overall registration. In such cases, over-

stretching was minimised due to the elevated number of spatial constraints, and

consequently distortion was low.

As expected, best performance was observed for n = 14, when some control points

were placed at the corners of the scene, independently of α. Warped histology

images were overlaid to their corresponding block-face pathology photographs at

50% transparency, to allow visual comparison of both datasets. An example is

shown in Figure 5.5.

5.3.2 Gross Pathology 3D Tumour Reconstruction

Pathology cross-sectional photographs were taken after the lung specimen was

sliced at 5 mm-thick intervals. For each image, tumour outline was manually

delineated by an experienced pathologist (CD), using ImageJ [89]. Resulting bi-

nary masks were subsampled by a factor of 2 in each direction, to reduce the

computational complexity and execution time of the subsequent interpolation al-
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Figure 5.5: Gross pathology photograph with two registered histology slides overim-
posed

gorithm. Cubic spline interpolation was applied to the data, and extrema regions

were smoothed with the curvature-based method described in Section 4.2.5.

An example is shown in Figure 5.6: six binary masks, corresponding to the tu-

mour cross-sections extracted from block-face photographs (left); and 3D model

obtained after interpolating the data (right). The narrow crests that can be seen

at the top and bottom of the volume are created by the curvature-based smooth-

ing algorithm, as the extrapolated data follows the gradient’s rate of change to

generate extrema. This behaviour can be explained by the steep slope found

along one of the cross-sectional major axes, combined with the slow-changing

features observed perpendicularly.

The accuracy of the resulting reconstructions could not be quantitatively eval-

uated, due to the lack of ground truth data. However, the protocol had been

previously tested on synthetic phantoms, as discussed in Chapter 4.

5.3.3 PET/CT Tumour Segmentation

Similarly, tumour regions were segmented from PET/CT scans and imported

into Matlab∗ and converted to matrix form. Voxel size was matched to their

∗Matlab R2017b, The MathWorks Inc., Natick (US)
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Figure 5.6: Binary masks corresponding to the gross pathology tumour cross-sections
(left) and 3D model obtained after interpolation (right)

corresponding pathology models. For each case, PET, CT and pathology tumour

volumes were compared, as shown in Table 5.2.

Volume (mm3)

Patient ID Location Pathology CT PET

G3397 RL 31,779 36,920 83,851
N5398 RU 6,990 11,747 17,266
F3203 LL 34,107 45,012 91,557
J5258 LL 74,520 93,444 139,082
S3510 RU 14,233 17,215 22,474
I3187 RU 39,828 43,510 59,301
R3473 RU 13,281 13,572 18,707
S6454 RL 21,646 23,073 34,569

Table 5.2: Tumour volumes obtained from pathology, CT and PET modalities. The
second column indicates the anatomical location of the lesion (RL - right lower lobe;
RU - right upper lobe; LL - left lower lobe)

In line with the results discussed in Chapter 4, CT volumes were larger than

their pathology counterparts. This behaviour can be explained by the standard

delineation procedures followed by radiation oncologists, and also by the coarser

resolution of CT scans, which hinders segmentation precision. Also, PET vol-

umes were, on average, 60% larger than their corresponding CT segmentations,

following the trend reported in [91]. This result is a consequence of the slow

image acquisition procedure in PET. Breathing-induced chest movement affects

the PET signal in two ways: a) metabolically active regions appear larger on the

resulting images; and b) maximum SUV is underestimated. Deep-inspiration,

breath-hold techniques are not feasible, due to the long acquisition times. Le-
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sions situated in the lower lobes exhibit more pronounced volume mismatches

between PET and CT, due to their close proximity to the diaphragm, which

means they are more affected by respiratory motion [92]. One possible way of

reducing these motion artefacts would be to use time-gated (4D) PET scanning

protocols. In this modality, a movement tracking device is placed on the patient’s

chest, which allows decorrelation of the image signal from the periodic breathing-

induced oscillations. However, 4D PET is not a standard diagnostic procedure

for lung cancer patients.

After reviewing the results in conjunction with the clinical team, it was concluded

that the PET signal obtained was too distorted. The resulting smooth volumes

lacked any distinctive features for them to be registered accurately to their cor-

responding pathology models. For this reason, PET data was given no further

consideration for the purposes of this study.

In addition, to analyse the inter-rater variability of manual tumour segmentation

on CT scans, three radiation oncologists independently delineated the lesions of

three patients∗: J5258, S3510 and S6454. For each patient, Dice coefficient (see

Equation 3.49) was used to calculate the overlap between pairs of segmentations,

as shown in Table 5.3. The purpose of this experiment was to establish a registra-

tion accuracy reference value, against which to compare the subsequent pathology

to CT tumour registrations. Results show that CT lesion segmentations of the

same patient differ, on average, by 10%, depending on the operator. Therefore,

the reciprocal of this divergence value can be used as a pseudo-upper bound when

assessing multimodal registration accuracy.

Lung specimen ex vivo CT scan

The use of an ex vivo CT scan of the resected specimen as a bridging modality

between pathology and pre-operative CT was investigated, following the results

reported in [48–52, 54]. Specimens from patients G3397 and N5398 were CT

scanned after resection. An example is shown in Figure 5.7. Resulting images

were analysed by a consultant thoracic oncologist, who concluded that the tumour

region could not be distinguished from its surroundings. Upon comparison with

their corresponding pre-operative scans, it was observed that the absorption pro-

∗It should be noted that manual segmentation of tumours is a highly time-consuming task.
For this reason only three cases were evaluated. However, region overlap was computed on
every CT slice for each pair of consultants, therefore figures shown in Table 5.3 represent the
average over all pairwise calculations, for each patient.
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Dice coefficient

Patient ID C1-C2 C1-C3 C2-C3 Avg.

J5258 0.894 0.952 0.905 0.917
S3510 0.878 0.892 0.920 0.897
S6454 0.879 0.941 0.892 0.904

Table 5.3: Overlap between pairs of CT manual tumour segmentations, calculated
using Dice coefficient, performed by three independent consultants (C1, C2 and C3).
Column labelled C1-C2 shows the overlap between segmentations performed by con-
sultants 1 and 2, and so on. The last column displays the average Dice coefficient for
each patient

file of the in vivo tumours was very similar to the properties of the agar used for

inflating and embedding the tissue. After discussion with a consultant pathol-

ogist, the possibility of adding a contrast agent during the inflation stage was

excluded, as it could potentially change the chemical properties of the specimen

and thus affect its clinical value.

The main difference between the tissue used in our study, in comparison to that

of the surveyed literature, is its mechanical properties. Lung specimens need to

be injected with an inflating agent, such as paraffin or agar, to prevent the tissue

from collapsing. In contrast, prostate and esophagus are both rigid organs which

do not need a supporting medium, and therefore their pre- and post-resection

radiological properties remain very similar. For this reason, it was concluded

that an ex vivo CT scan of the lung specimen would not provide any additional

information to the registration process, and the strategy was therefore abandoned.

5.3.4 Pathology to CT Tumour Volume Registration

Reconstructed STL tumour models from pathology gross photographs and CT

were imported into Matlab and converted to binary volumetric images, preserving

their correspondence to real-world units. A naive pre-registration step was applied

to the data, which consisted of aligning their centres of mass, to increase spatial

overlap. Next, rigid registration was performed between both volumes, using

gradient descent as the optimiser and sum of squared element-wise differences as

metric. The pathology model was used as reference image. Optimiser parameter

values used for this task are shown in Table 5.4.
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Figure 5.7: Transversal, sagittal and coronal slices of a lung specimen ex vivo CT
scan, corresponding to patient G3397

Parameter Value

Convergence threshold (ε) 1× 10−5

Max. iterations (n) 1000
Initial step size (γ0) 0.1

Step relaxation factor (r) 0.75
Min. step size (γmin) 1× 10−5

Table 5.4: Gradient descent parameters used for rigid registration of pathology and
CT tumour models

Registered volumes were visually inspected, and their overlap was calculated using

the Dice method. Nevertheless, despite relatively large Dice coefficients (between

0.79 and 0.84), further analysis of the results uncovered potential feature mis-

matches in some of the cases. For instance, in patient S6454, the basal end of

its pathology tumour model presented a well-defined crest. After transformation,

however, this feature was aligned with the apical region of the CT model.

To further assess the quality of the registrations, common anatomical fiducials

that could be visualised on both modalities were added to the models. The most

easily distinguishable feature that was present in most cases was the primary and

secondary bronchi, as suggested in [57]. These structures were segmented in the

pathology and CT images of patient S6454, and added to their corresponding

tumour volumes. Next, the models were manually aligned, using as reference the

position of the bronchial segments. Although the final registration was only ap-
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Figure 5.8: Pathology (green) to CT (red) tumour registration results for patient
S6454. On the left, only the tumour shape was used to compute optimal alignment.
Green arrow indicates the crest feature on the pathology model, and red arrows mark
two salient features of the CT volume. On the right, bronchial segments are used to
guide the transformation. The crest on the pathology model (green arrow) is aligned
with the basal region of the CT shape

proximate, it was clear that the crest feature in the pathology model was matching

the basal region of the CT volume, as initially expected. This is illustrated in

Figure 5.8: green arrows indicate the position of the crest in the pathology model.

On the left, only the tumour shape was used to compute optimal alignment. On

the right, shapes were manually registered using the bronchus as spatial reference.

These findings proved that the optimisation metric used (mean square error)

was not convex, with many local minima that led to sub-optimal registration

results. Therefore, algorithm initialisation was found to be a key step in the

process to guarantee best shape alignment, especially in those cases where the

tumour models were quasi-spherical. For that purpose, bronchial regions were

also included as anatomical fiducials in the lesion segmentations of two more

patients: G3397 and S3510. These two cases were selected because the airway

tree was clearly visible on both modalities.

Following the results published by Dura et al. [78], pre-registration of shapes

was performed by aligning their Minimal Bounding Box (MBB) bases. Firstly,

for each case, the MBB algorithm was run on a subset of points situated on

the outermost layer of the volume, to reduce its computational time. Figure 5.9

shows an example of the minimal bounding boxes corresponding to the pathology

111



(green) and CT (red) tumour models of patient S6454, calculated over a 5%

random sample of their outermost layer of voxels.
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Figure 5.9: Minimal bounding boxes corresponding to the pathology (green) and CT
(red) tumour models of patient S6454, calculated over a 5% random sample of their
outermost layer of voxels

Secondly, for each model, the direction of its MBB longest side was arbitrarily

taken as the x axis, the second longest as the y axis, and the shortest as the z

axis [78]. To resolve sign ambiguity, a vector a was defined, joining the centres of

mass of the tumour-only model (without the external fiducials) and the tumour-

plus-bronchus model. The idea behind this reasoning was that a will always point

towards the bronchus. Next, the inner product between the x axis unit vector î

and a was calcuated for each direction of î. The positive direction of the x axis

was defined as the one giving the largest inner product î · a (i.e. most closely

aligned to a). The sign for axes y and z was subsequently defined using the

left hand rule. Therefore, the MBB orthonormal bases for the pathology and CT

tumour models were defined as Rp = {̂ip, ĵp, k̂p} and Rc = {̂ic, ĵc, k̂c}, respectively.

The relative orientation S of the pathology model basis Rp with respect to the

CT model basis Rc is defined by:

S = R−1p Rc (5.1)

Hence, the CT tumour model was projected onto the pathology MBB basis using

Equation 5.2, where p is any point of the original CT dataset, and p′ is its

transformed counterpart:

p′ = S−1p (5.2)
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Finally, the centres of mass of the pathology and rotated CT models were aligned.

Fine shape registration was subsequently performed, using the same metric and

optimisation method described above. Resulting rotation matrix F was stored. It

should be noted that the translational part of the registration was not considered.

This is because the registration is performed on a subset of the image data that

contains tumour information. However, clinicians usually inspect the whole CT

volume, to visualise the lesion in its anatomical context. As the registration

results were displayed side-by-side, rather than overimposed, the relative position

of the CT tumour with respect to its pathological counterpart was not relevant.

Dice coefficients were calculated for the alignment results with MBB-based pre-

registration, and compared to the previous approach with naive pre-registration,

as shown in Table 5.5. In two of the cases, the overlap decreased with MBB-based

pre-registration, although being qualitatively superior. These results confirm that

Dice coefficient is not sufficient to assess registration performance in this partic-

ular problem, and therefore other metrics are needed. In this instance, visual

inspection of common anatomical landmarks was used. However, mathematical,

quantitative alternatives would provide more consistent results.

Dice coefficient

Patient ID Naive pre-reg. MBB pre-reg.

G3397 0.7993 0.7864
S3510 0.7881 0.7922
S6454 0.8398 0.8209

Table 5.5: Dice coefficient comparison, obtained from pathology to CT tumour model
registration tasks, for different patients, using naive and MBB-based pre-registration

5.3.5 Visualisation on CT Imaging Data

Overall transformation matrix T = F−1S−1, obtained from the registration be-

tween the pathology and CT binary tumour models, was applied to the CT imag-

ing data using 3D Slicer [86]. Relative position along the z axis (pathology slicing

direction) was manually adjusted until visual correspondence between pathology

and CT slices was achieved. CT volume was resliced at 5 mm intervals, to match

the slice separation of the pathology dataset. An example is shown in Figure

5.10, where two registered pairs of pathology and CT images are displayed.
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Finally, using the method described in Section 5.3.1, microscopic slides were

overimposed to the gross pathology photographs, thus achieving the main goal

of the project: the registration of pre-operative CT scans and post-operative

histopathology maps in lung cancer patients.

5.4 Conclusions

Lung tumour multimodality registration was carried out using a five-step ap-

proach, to tackle the different challenges previously identified. The use of binary

tumour models, to perform shape-based registration, proved insufficient to de-

termine the correct orientation of the volumes, despite the fact that high Dice

overlap coefficients were reported. Anatomical fiducials had to be included in

the lesion segmentations to improve the clinical significance of the registration

results.

Moreover, PET models were found to be severely affected by breathing movement,

which resulted in large volume overestimation and smooth, featureless shapes. For

these reasons, PET images were not included in the final results. Similarly, in

all cases, CT tumour volumes were larger than their pathology segmentations by

22% on average, in line with the results obtained in Chapter 4.
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(a) Slice #1

(b) Slice #5

Figure 5.10: Two registered pairs of pathology (left column) and CT images (right
column) from patient S6454. (a) Tumour boundary can be visualised as a slight change
of colour in the pathology photograph, which corresponds to an area of ground glass
opacity in the CT slice (dashed circle). Trifurcation of the main bronchus can be clearly
seen on both modalities (solid arrow). Dot-dashed line indicates the boundary of the
pulmonary lobe. (b) Solid tumour with necrotic, hollow core (dashed circle). Airway
structures can be observed on both images, such as the oblique cross-sections of a group
of tertiary bronchi (solid arrow) and a branched bronchiole (dotted arrow). Dot-dashed
line indicates the boundary of the pulmonary lobe. Histology sections are overlaid on
the pathology block-face photograph
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Chapter 6

Clinical Validation of Results

This chapter focuses on the validation of the lung image registration results pre-

sented in Chapter 5. Due to the lack of ground truth, a subjective evaluation was

performed by two experienced clinicians, using a blind, randomised, two-step ap-

proach. The first section covers the rationale behind this testing method. Next,

the two experiments used for validation are described. Finally, in the last section,

results are discussed.

6.1 Introduction

The performance of many medical image processing algorithms, such as lesion

segmentation and registration, are usually assessed against the manual output

obtained from expert clinicians, which acts as ground truth. However, in some

circumstances, there is no gold standard against which to compare the solution

delivered by an automatic computer method. The lack of a well-defined procedure

included in the standards of care, or the high dimensionality of a particular

dataset, are examples of why ground truth results are not always available.

In our case, the registration of pre-operative CT scans and post-operative pathol-

ogy photographs is a procedure not performed as a standard clinical procedure,

in part due to the inherent difficulties derived from the manual handling of two

virtual 3D shapes on a two-dimensional medium, such as a computer screen.

Therefore, the generation of a ground truth, even when defined by experienced

thoracic consultants, would be complicated and unreliable.
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To overcome this, we designed two tests that would allow an expert clinician to

blindly compare and rate their manual pathology to CT alignments against the

algorithm output, thus providing a consistent, qualitative measure of the auto-

matic method’s performance. These experiments are described in the following

section.

6.2 Experiment Design

6.2.1 Manual Registration

A pathology consultant (CD) and a thoracic oncology consultant (SH) were in-

dependently asked to perform, to the best of their abilities and within the lim-

itations of the software tools used, a manual registration of the pathology and

CT tumour datasets. For this purpose, they were provided with a dual-screen

computer: on the left monitor, they were shown the pathology photograph stack,

which they could navigate using the mouse central wheel. On the right display,

the corresponding CT volume was displayed in 3D Slicer [86], which allowed the

user to rotate the dataset around its three main axes. Similarly, the CT stack

could be navigated along its z axis using the mouse wheel. A screenshot showing

the set-up used in 3D Slicer is displayed in Figure 6.1.

After familiarising themselves with the software controls, the consultants were

asked to rotate the CT volume until visual correspondence with the pathology

cross-sections was achieved. No time limit was enforced, and they performed the

tasks independently, to avoid inter-operator bias. Once satisfied with the level of

accuracy obtained, they notified the test instructor, who recorded the rotation

and offset applied to the CT data. This process was repeated for three different

patients: G3397, S3510 and S6454.

The purpose of this first test was to determine the feasibility of performing a

manual multimodality regstration at baseline, that is, without the use of any reg-

istration algorithms. It was used to evaluate the user-friendliness of the software,

time consumption, and registration accuracy. Also, it would allow the expert con-

sultants to blindly review their own manual registrations, as described in Section

6.2.2.
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Figure 6.1: Screenshot showing the set-up in 3D Slicer used to rotate the CT volume.
Operators can interact with the sliders shown on the left-hand side of the screen,
which control the degree of rotation around the three main anatomical axes: left-right
(LR), anteroposterior (PA) and craniocaudal (also known as inferior-superior, IS). The
resulting transform matrix is also displayed

In addition, an external, non-expert operator was asked to repeat the test de-

scribed above for the same three cases. This added result was used to increase

the number of rating samples, and therefore potentially reduce the raters’ bias.

6.2.2 Qualitative Rating of Registration Results

The test instructor collated the registration outputs from the expert, non-expert

and automatic registrations, and arranged the pathology photographs next to

their matched CT cross-sections. A sample dataset is shown in Figure 6.2, corre-

sponding to the algorithm registration output for patient ST3510 (see Appendix

A for a complete list of registration results). Three days later, both consultants

(CD and SH) were given the anonymised registration results, grouped by patient.

Each patient folder contained four cases, labelled A to D. They were informed

that each of the four cases could be any of the following: the algorithm output,

a non-expert manual registration, their own manual registration, or their fellow

consultant’s manual registration.
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Figure 6.2: Sample dataset used for rating registration results, containing nine pairs
of registered pathology (left) and CT cross-sectional images (right). Images correspond
to the registration output generated by our algorithm, for patient ST3510.
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A scoring rubric was also provided to the raters, with a grading scale ranging

from 0 to 3. The scores were based on the number of anatomical correspondences

between both datasets:

• 0: no match between pathology and CT

• 1: partial match, where most of the tumour mass coincides spatially on

both pathology and CT

• 2: good match, where tumour mass and at least one other feature (airways,

tumour shape, lobe contour) coincide spatially on both pathology and CT

• 3: best match, where tumour mass and at least two other features (airways,

tumour shape, lobe contour) coincide spatially on both pathology and CT

Both experts, with no knowledge of the registration methods applied, graded all

cases following the above rubric. Results are discussed in the next section.

6.3 Results and Discussion

Scores obtained from the assessment of registration outcomes, assigned by two

experienced consultants (CD and SH), are summarised in Table 6.1. Several

trends can be observed in the data: first, both raters agreed that the devel-

oped method consistently outperforms manual registrations in patients G3397

and S6454, where the algorithm output achieved the highest possible score. This

result is encouraging, as it indicates that the method developed has the potential

to deliver superior results, compared to the baseline standard of manual registra-

tion.

Patient S3510 also provides an interesting case. The algorithm output was rated

as a no-match by both consultants. However, each expert graded their colleague’s

registration as a no-match, while assigning a 2 out of 3 score to their own. Upon

inspection of the registered datasets for that patient, a large pocket of agar was

observed in many of the pathology cross-sections (see Figure 6.2). These arte-

facts can appear when the lung is affected with emphysema, which creates large,

hollow spaces within the tissue. When agar is injected as a fixation medium, it

tends to acumulate in these cavities, thus distorting the shape of the lobe. Our

hypothesis is that the deformation introduced an additional confounding factor

for the raters, which potentially demonstrates that, in complex cases, experts may

be unable to reach consensus on whether a given alignment is correct or incorrect.
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Registration score

Patient ID Algorithm Non-Exp Exp-CD Exp-SH

G3397 3 1 1 2
S3510 0 1 2 0
S6454 3 2 1 2

(a) CD results

Registration score

Patient ID Algorithm Non-Exp Exp-CD Exp-SH

G3397 3 0 0 1
S3510 0 1 0 2
S6454 3 3 2 2

(b) SH results

Table 6.1: Scores obtained from blind assessment of registration outcomes, assigned
by experienced consultants CD and SH. For each patient, four different cases were
evaluated: algorithm output, non-expert manual registration, expert (CD) manual
registration, and expert (SH) manual registration. Scores range from 0 to 3, as defined
in the evaluation rubric described in Section 6.2.2

That said, patient G3397 also shows large agar pockets in some of the block-face

photographs. However, it is suspected that the presence of a main bronchus and

blood vessels in the images, along with the tumour, helped experts to establish a

relationship between both scenes, regardless of distortion.

Another relevant observation is that in all cases, non-expert manual registrations

are at least as good as one of the expert outputs. Two mutually-exclusive readings

can be made from this: either manual registration is a trivial task, that can be

performed by non-trained operators; or it is a complex undertaking, open to

misinterpretation and prone to error. The lack of expert consensus shown in

case S3510, added to the inherent difficulty experienced by the operators when

carrying out the manual transformations described in Section 6.2.1, support the

latter hypothesis.

In terms of data variance, both graders scored all cases consistently, with inter-

rater differences of 1 point at most. These small deviations can be explained by

the lack of a quantitative scoring rubric, which potentially leaves the definition of

a grade open to interpretation. The only exception to this trend was observed in
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the experts’ ratings for patient S3510, which could be attributed to the apparent

complexity of this case.

Finally, it is worth commenting on the user experience the operators had with

the manual registration software, 3D Slicer. Regardless of their level of expertise,

all three individuals spent between 5 and 7 minutes per patient. However, two

main usability issues were reported: firstly, the lack of a 3D representation of the

tumour in both modalities; and secondly, the fact that pathology cross-sections

could not be overimposed to the CT. Regarding the first issue, the registration

of a stack of 2D pathology photographs with a volumetric CT scan effectively

becomes a 2D-to-3D registration, which is more complex to perform compared to

3D-to-3D. The impossibility of overlaying pathology data onto the CT images was

a limitation of the software used. These two factors reflect the inherent difficulty

of the task, and may explain why none of the expert registrations achieved the

highest score.

6.4 Conclusions

The purpose of these tests was two-fold: to investigate the feasibility of perform-

ing manual multimodality registrations with off-the-shelf, open-source software;

and to provide a framework for validating and rating these manual alignments

against the output of our proposed method. Operators encountered several dif-

ficulties when trying to manually register pathology and CT data, due to the

lack of a 3D perspective of the scene and the impossibility of overlaying both

modalities.

Blind scoring of different registration outputs revealed that the proposed algo-

rithm consistently outperforms manual methods in 2 out of 3 cases. The no-match

obtained in case S3510 could be explained by the presence of additional deforma-

tions in the pathology dataset, supported by the fact that both expert graders

disagreed on the quality of their own manual registrations.
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Chapter 7

Conclusion and Future Work

The scope of this project was to develop a robust imaging framework to enable the

registration of in vivo and post-operative scans of lung cancer patients. A review

of the literature identified several studies pursuing the same objective. However,

three main shortcomings were found across all reviewed articles: firstly, incon-

sistencies in the pathological dissection of the lung specimen could potentially

result in non-parallel cross-sections, introducing error in the posterior tumour

model reconstruction and registration. Secondly, tumour volume reconstruction

from pathology photographs was disregarded in most cases, or otherwise built us-

ing cross-sectional area projection. Lastly, registration of pre- and post-operative

modalities was either performed manually, or assumed co-planar. With these lim-

itations in mind, a comprehensive data acquisition and processing protocol was

designed.

Initial experiments were carried out on synthetic tumour phantoms. The funda-

mental advantage of this approach was the existence of a ground truth against

which to compare the shape reconstruction algorithms. Physical dissection of

the phantom was performed on a bespoke soft tissue slicing rig, to observe the

relationship between slice thickness and overall reconstructed shape. Similarly,

virtual slicing of the model allowed us to investigate the outcomes of different

interpolation functions in terms of shape and volume recovered.

In the next phase of the study, nine lung cancer patients who were due for radical

lobectomy were recruited. Their resected tissue was sliced at 5 mm intervals using

the slicing rig, and each cross-section photographed. Tumour area was delineated

on each image by experienced consultants, and virtual 3D models of the lesions
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were reconstructed. Likewise, pre-operative PET/CT scans were segmented. Un-

fortunately, PET images could not be used, as they were severely distorted by

respiratory artefacts. The registration of pathology and CT models was guided

by the shape of the tumour, combined with external anatomical fiducials. A

pre-registration step (based on their minimal bounding box) was used prior to

performing rigid registration. Moreover, histopathology slides were matched to

their block-face photographs by applying a non-linear registration algorithm.

Validation of the results was a complex task, with no ground truth to evaluate

the outcomes of the proposed method against. Dice coefficient was calculated to

assess the registrations, but proved to be insufficient as a quality measure. To

investigate further and establish a baseline standard, two experienced thoracic

consultants and a non-expert performed manual registrations between pathology

and CT for three different patients. Subsequently, the two experts were asked to

rate all registrations, generated manually and by the proposed algorithm, without

knowing which method was used in each case. Results showed that in two out

of three cases both clinicians scored the algorithm’s output as better than their

own manual alignments.

This proof-of-concept study was conceived to ascertain whether meaningful regis-

trations could be carried out between in vivo functional imaging and histopathol-

ogy maps. While there are still difficulties to overcome, some of the results pre-

sented earlier are promising, suggesting that the proposed approach outperforms

expert manual registration, and thus demonstrating its feasibility.

In terms of future work, the next logical step would be to include functional

imaging into the registration workflow. As discussed in Chapter 5, the current

standard of care for lung cancer patients is to use conventional, free-breathing

PET/CT combined scans. Although faster and simpler, respiratory motion blurs

the signal, which causes the total tumour volume to be grossly overestimated.

One potential solution to this problem would be to use respiratory-gated 4D

PET, where breathing movement is cancelled out by tracking the patient’s chest

motion. At the time of writing, two new 4D PET/CT scanning protocols were

being deployed and trialled within NHS Greater Glasgow and Clyde. The main

advantage of using combined scans is that both PET and CT signals are al-

ready registered by the scanner. For this reason, adding the functional imaging

modality to our method is straightforward. Unfortunately, we could not fulfil this

requirement due to time constraints. As said before, respiratory-gated PET/CT
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was not the standard procedure for lung cancer patients. To acquire this modal-

ity, subjects would have to be re-scanned using the new protocol, in addition

to their standard diagnostic scan. As PET/CT imaging involves ionising radia-

tion, it would have been necessary to apply to the relevant NHS Research Ethics

Committee for a substantial protocol amendment, and prove that the benefits

obtained from the new modality outweighed the risks for the patient. Due to the

limited timespan of the project, that was not possible.

Another unanswered research question is whether the macroscopic tumour seg-

mentation matches the microscopic extent of the disease. Currently, our recon-

struction method relies on a consultant pathologist (CD) manually tracing the

contours of the lesion on the block-face photographs. The decision to include

or exclude a region within the tumour boundary is based on colour information

(lung carcinomas are normally whiter than their surroundings) and their clini-

cal experience. However, in some cases, the chromatic contrast between healthy

and diseased tissue is not clear, and tumour segmentation becomes ambiguous.

Further research work would determine the precision of the macroscopic delin-

eation by comparing it against the lesion shown on histopathology images. The

latter, due to their high resolution, would allow the pathologist to trace the tu-

mour contour at cellular level, and could act as ground truth for testing different

segmentation routines.
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Appendix A

Lung Image Registration Results

This appendix displays the registration outcomes for patients G3397 (Figure

A.2), S3510 (Figure A.3) and S6454 (Figure A.4), generated manually and by

the proposed algorithm. Rows within the figures correspond to the slice number.

Columns are arranged as follows, from left to right: pathology block-face pho-

tograph; CT volume registered by our method; CT volume manually registered

by non-expert; CT volume manually registered by consultant 1 (CD); and CT

volume manually registered by consultant 2 (SH). For clarification purposes, Fig-

ure A.1 shows a diagram with the arrangement of the registration results within

Figures A.2, A.3 and A.4.

Figure A.1: Diagram showing the arrangement of the registration results
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Appendix B

Participant Information Sheet

and Consent Form

This appendix includes the Participant Information Sheet and Consent Form used

in the patient recruitment process described in Section 5.2.1.
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Participant Information Sheet v4 
20/02/2017 

1 

PARTICIPANT INFORMATION SHEET 
 

Investigation of new medical imaging techniques for improving 
accuracy in lung cancer treatment 

 
 
You are being invited to take part in a research project. This document contains information 
regarding the implications for the patient and the potential benefits for the wider 
community. Please take time to read the following information, and feel free to discuss it 
with others. Please be assured that your clinical standard of care and future treatment will 
not be affected in any way regardless of your decision. 
 
Why have I been chosen to participate? 
 
For the purpose of our research study, we need adult patients who have been diagnosed 
with lung cancer and are due to undergo surgery for their tumour. 
 
What should I expect if I choose to take part? 
 
You will not be asked to do anything extra, and the study will not change your treatment or 
diagnosis. We only wish to perform additional scans on the lung tumour after it has been 
removed. Additionally, we need to collect information from your records. 
 
What will happen to my extracted tissue if I choose to take part? 
 
Following any surgery, the tissue is sent to the pathologist for dissection and analysis, to 
give important information about the tumour.  The study will follow this normal pathway, 
but there will be some additional steps which will look at the tissue in a more detailed way. 
The tissue will also be scanned before dissection and during dissection to try and give us 
more information about the tumour - this is an additional step which does not normally take 
place. It will not interfere with the normal pathology work we do on your specimen. This 
additional step is expected to provide information to help us improve the accuracy of the 
scans that have been taken before the operation. We can then compare them with the 
scans and the pathology information we take after the tumour has been removed. 
 
What are the benefits of taking part? 
 
It is not likely that the study will benefit you directly. Our aim is to build a system that allows 
lung tumour scans to be used more accurately in the future.  This should help with 
treatments and therapy that rely on these scans. You are welcome to request project 
updates and/or relevant publications by contacting any of the investigators. 
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2 

Do I have to take part? 
 
No, and be assured that your clinical standard of care will not be affected in any way 
regardless of your decision. 
 
Will my personal information be kept confidential? 
 
Your records will only be accessed by clinical staff (e.g. doctors, nurses) who are part of your 
care team. Additionally, clinical research regulatory authorities might also need to access 
your records for research audit purposes. 
 
Contact information: 
 
……………………………… 
………………………………………………………………………………………………………………………………………………
……………………………………………………………… 
……………………………………………………………………………… 
 
…………………………………… 
………………………………………………………………………………………………………………………………………………
……………………………… 
………………………………………………………………………… 
 
……………………… 
………………………………………………………………………………………………………………………………………………
……………………………………… 
…………………………………………………………………………… 
 
………………… 
………………………………………………………………………………………………………………………………………………
………………………………………………… 
………………………………………………………… 
 
……………………… 
…………………………………………………………………………………………………………………………………… 
……………………………………………………………… 
 
If you wish to take part in the study you will be asked to read and sign a Consent Form. 
You will be provided with a copy of this Participant Information Sheet and the signed 
Consent Form for you to keep. 
 
 



             

Consent Form v1.1 
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When completed: 1 for participant; 1 for researcher site file; 1 (original) to be 
kept in medical notes. 
 

Centre Number:  
Study Number: 
Participant ID num. for this trial: 
 

CONSENT FORM 
 
Title of Project: PET-PATH: Investigation of new medical imaging techniques for improving 
lung cancer treatment 
 
Name of Principal Investigators: ……………………………………………………………………………………… 
…………………………………………………………………………………… 
 

Please initial box  
 

1. I confirm that I have read the information sheet dated ................... 
(version ............) for the above study. I have had the opportunity to 
consider the information, ask questions and have had these answered 
satisfactorily. 

 
2. I understand that my participation is voluntary and that I am free to 

withdraw at any time without giving any reason, without my medical 
care or legal rights being affected. 
 

3. I understand that relevant sections of my medical notes and data 
collected during the study may be looked at by individuals from 
regulatory authorities or from NHS GG&C, where it is relevant to my 
taking part in this research. I give permission for these individuals to 
have access to my records. 

 
4. I understand that the information collected about me will be used to 

support other ethically approved research in the future, and may be 
shared anonymously with other researchers. 
 

5. I agree to take part in the above study. 
 
 
 
 
_____________________________  _______________  _______________ 
Name of Participant    Date    Signature 
 
            
 
_____________________________  _______________  _______________ 
Name of Person taking consent  Date    Signature 
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