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Abstract

This thesis demonstrates a CNOT gate realised using electromagnetically induced
transparency (EIT) which relies on the strong long-range interactions between
Rydberg atoms. The CNOT gate is achieved on a microsecond time scale and ro-
bustly implements a conditional transfer between the two qubit states of a target
atom that is solely dependent on the initial qubit state of a control atom. This
method has the potential to be scaled to a target ensemble without typical

√
N

scaling.

The experiment presented is a cold atom system with two caesium atoms trapped
in optical tweezers at a separation of 5 µm. The hyperfine ground states of the cae-
sium atoms are utilised as qubit states with optical pumping ensuring the atoms
are prepared in the correct state |F = 4,mF = 0〉. Coherent control between the
hyperfine ground states is achieved using microwaves and excitation lasers, and
excitation to the Rydberg state

∣∣81D5/2,mj = 5/2
〉
is achieved by two-photon ex-

citation from lasers locked to a high-finesse ultra-low-expansion (ULE) cavity.

This thesis details the optimisation steps taken in the experiment to demonstrate
the CNOT gate, including experiment upgrades, and how the CNOT gate is used
to prepare the maximally entangled Bell state |Φ+〉. We detail how the Bell state is
probed using parity oscillations to verify the quantum nature of the CNOT gate.
We achieve a loss corrected CNOT gate fidelity of FCNOT ≥ 0.82(2), measure
the Bell state fidelity F|Φ+〉 ≥ 0.66(3) and finally present a number of technical
improvements to advance this to a level required for fault-tolerant scaling.
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Chapter 1

Introduction

The computer and its processing capabilities have given us technological advance-

ments beyond measure, and yet there are limitations to what even the best su-

percomputers of the day can achieve. Since quantum mechanics came to light in

the early twentieth century many proposals have been made to utilise quantum

systems to develop technologies based on phenomena at the quantum level. Over

the last twenty years tremendous progress has been made in developing quantum

technologies in both academic settings and in industry, with programmes such as

the UK National Quantum Technologies programme [1] providing a route between

the two. One area of significant interest is quantum information processing (QIP)

with large investment from companies like IMB [2], Google [3] and Honeywell [4].

There are limitations to what a classical computer can do, for example simulating

a system of interacting molecules or materials, optimisation problems ranging from

logistics (e.g. route planning and traffic management) to recommendations made

to a user by a streaming service, and factorisation for cryptography are all hard

problems which classical computers struggle to solve optimally [5]. The problem

is the algorithms needed to simulate these types of systems require an exponential

scaling of resources and take an increasingly long time to solve. This is where quan-

tum computing offers an advantage [6–10], where proposals like Grover’s search

algorithm [11] reduce the average number of checks a computer would need to make

2



Chapter 1. Introduction 3

from N/2 to
√
N , thus reducing the time taken to find the solution, whilst expo-

nentially large Hilbert spaces on quantum computers are ideal for combinatoric

optimisation problems [12].

Another proposal made by Richard Feynman [13] says that to simulate a complex

quantum mechanical system a quantum system should be used. In other words,

to simulate an unknown quantum system we can use a controllable quantum sys-

tem with well-known parameters to model the complex dynamics of the system

of interest. One such example is using trapped atoms addressed by lasers to ex-

plore topological quantum matter [14]. In general quantum simulation would find

applications in the field of advanced material science and pharmaceuticals [15, 16].

There are many parties developing quantum technologies, including quantum sim-

ulation and quantum computing. The main focus of this thesis is on developing

hardware for use in neutral atom quantum information processing.

1.1 Quantum Information Processing

The idea behind quantum information processing (QIP) is to prepare a set of

quantum objects in a well-defined quantum state and transform the state through

controlled interactions, to overcome the limitations of classical devices. There are

two main types of quantum computing: analog quantum computing where a phys-

ical system is used to mimic another quantum system of interest by reproducing

its Hamiltonian as closely as possible, and digital quantum computing where the

quantum state of the target system is encoded in a quantum register and a se-

quence of programmable quantum gates is applied to simulate the time evolution

of the system [17].

Examples of quantum objects are atoms, ions, photons and superconductors that

can each be used to define a quantum bit or qubit which is the primary building

block of a quantum computer. A sequence of operations or gates can be applied to

the qubits using lasers, microwaves or electrical signals to transform the quantum
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state of the qubit. Qubits and quantum gates will be discussed in detail in Chap-

ter 2. In order to quantify the requirements for achieving quantum computation,

DiVincenzo [18] outlined a list of conditions that need to be satisfied. These are

• a scalable physical system with well-characterised qubits,

• the ability to initialise the qubit in a given quantum state,

• long coherence times - much longer than the gate operation time,

• a universal set of quantum gates, and

• there must exist a method to measure the state of each individual qubit.

This list is used as a check list when considering physical approaches to quantum

computation [19].

There are many proposals and indeed implementations of quantum computation

based on platforms such as NMR [20, 21], trapped ions [22, 23], superconduc-

tors [24], photonic systems [25, 26], and neutral atoms [17, 27]. Each platform has

its benefits and limitations, for example trapped ions have long coherence times

but slow gates, superconducting qubits have fast gates but short coherence times

and neutral atoms offer long coherence times but relatively slow gates [28, 29].

Currently the best high-fidelity quantum logic gates have been achieved using

trapped ions and superconducting qubits, with two-qubit gate fidelities F > 0.999

for ions [22, 23] and F > 0.997 for superconducting systems [24]. The focus of this

thesis is on neutral atoms which is an attractive platform for ease of control and

scaling with recent results demonstrated on neutral atoms being competitive with

the ion and superconducting systems [30].

1.2 Neutral Atom QIP

Neutral atoms are an exciting platform for quantum computing and were first

proposed by Jaksch et al. [31] and Lukin et al. [32]. It was proposed to encode
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quantum information on the long-lived hyperfine ground states of single atoms

or in collective excitations of atomic ensembles and use highly excited Rydberg

states to mediate interactions between the them. The advantage of atoms over

other platforms is scalability as many identical qubits are guaranteed as there is

no fabrication processes involved and, there are well established techniques to trap

and manipulate large numbers of atomic qubits [33].

Microscopic arrays of dipole traps or optical lattices are used to trap atomic qubits.

The limitation of trapping atoms in this way is that they are stochastically loaded

so that the arrangement of the atoms is random. This limitation has been overcome

by using reconfigurable arrays of atoms that use an acousto-optic deflector (AOD)

or a spatial light modulator (SLM) to give dynamical control of the atoms so that

arbitrary geometries can be realised in 1D [34], 2D [35] and 3D [36]. Recently

arrays of > 200 qubits have been realised and manipulated to demonstrate the

potential use in quantum simulation [14, 37–39].

Interactions between neutral atoms in the ground state separated by ∼ 1 µm are

weak and cannot be used directly to perform quantum gates without interven-

tion [40]. One method that has been demonstrated is exploiting spin-exchange

by overlapping pairs of optical tweezers to generate entanglement [41]. Another

approach is the one relevant to this thesis which is to use neutral atoms excited to

Rydberg states [5, 17, 19, 33, 40].

1.3 Rydberg Atom QIP

Rydberg atoms are atoms that have been excited to a state with a high principal

quantum number n [42]. The result of this is an atom with a large orbital radius

which leads to exaggerated properties such as a dipole moment that scales ∝ n2.

The large dipole moment gives rise to an effect called dipole blockade causing atoms

in a Rydberg state to experience an energy shift that prevents the excitation of

more than one atom to the Rydberg state. The Rydberg blockade only effects
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atoms within a distance known as the blockade radius which is typically ∼ 10 µm

allowing deterministic quantum operations to be performed over these distances.

Rydberg atoms also have long radiative lifetimes on the order of 100’s µs which

far exceeds the typical timescale of gate operations [5].

For N atoms within the Rydberg blockade radius, each atom is equally likely to

be excited to the Rydberg state such that an entangled symmetric state can be

created between the ground and singly excited Rydberg state, which exhibits a

collectively enhanced Rabi frequency ΩN =
√
NΩ [32]. Generating an entangled

state using Rydberg blockade has been demonstrated by many groups using alkali

atoms [30, 43–46], including our own [47]. Early experiments were limited to

F ∼ 0.82 due to technical noise, with the dominant error arising from laser

phase noise [45, 48] despite Rydberg systems offering intrinsic fidelities of F ∼

0.999 [19, 40].

Recent results have demonstrated suppression of this technical laser noise to enable

significant improvements in fidelity, reaching single and two-qubit fidelities of F ≥

0.97 [45] and demonstrating a three-qubit Toffoli gate with F ≥ 0.87 [30]. Further

improvements have been obtained using alkali-earth atoms, which offer long-lived

optical qubit states to reach F ≥ 0.991 [49]. These gate fidelities are competitive

against typical superconducting systems, and combined with the scalability of

neutral atoms make them a highly attractive candidate for developing quantum

computers able to tackle real-world problems.

For blockaded gates of N > 2 atoms, collective effects lead to a
√
N scaling in

pulse area for creating a single collective excitation [50]. If N is unknown or

fluctuates (e.g. Poisson loading of an atomic ensemble) high fidelity gates are

challenging [32, 51]. One method to circumvent the
√
N scaling was proposed by

Müller et al . [52] using electromagnetically induced transparency (EIT).

This protocol provides a scalable approach to performing entanglement of large

atomic ensembles using a single control atom whilst circumventing the challenges of

the collective Rabi frequency. The resulting CNOTN gate is robust against number
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fluctuations and acts as a single-atom transistor to amplify the quantum state of

an atom onto an atomic ensemble. This approach provides, a route to creating

useful entangled states for quantum information processing (QIP), high precision

measurements beyond the standard quantum limit [53], and to demonstrate the

crucial gate scheme for implementing surface codes in atomic arrays [54].

1.4 Hybrid System

Achieving a high-fidelity universal set of gates on a scalable platform is a real chal-

lenge as each qubit technology has its own strengths and weaknesses. One solution

is to create a hybrid system that benefits from the strengths of one platform while

overcoming the weaknesses of another. An example of this is to combine neutral

atoms and superconducting circuits to gain the long coherence and lifetimes of-

fered by the neutral atoms in their ground states and the fast gates offered by

superconductor qubits [55–57].

Using the atoms as a quantum memory allows us to take advantage of the long

coherence times of the hyperfine ground states. Then utilising Rydberg states

where interactions between atoms and between neighbouring Rydberg states occur

in the microwave regime, facilitates strong coupling to superconducting circuits [55,

58]. Combining these means that long-range entanglement could be achieved over

mm length scales by entangling atoms trapped at different anti-nodes with the

microwave cavity field [59].

Pioneering work by S. Haroche has shown that is is possible to couple beams of

Rydberg atoms to high-Q microwave cavities [60, 61]. Further to this hybrid sys-

tems composed of Rydberg atoms and a co-planar microwave waveguide (CPW)

have demonstrated cavity driven Rabi oscillations between between a pair of Ry-

dberg states driven by the microwave field of the CPW [56, 62]. A hybrid device

of this type could be used for applications such as microwave-to-optical conver-

sion [63], cavity cooling [64] and scalable long-range interactions between atomic
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ensembles [59].

1.5 Thesis Outline

This thesis is separated into five parts: Part I introduces the concept of quantum

information processing using neutral atoms and introduces Rydberg states dis-

cussing how these can be used to demonstrate quantum gates. Part II covers the

theory of atom-light interactions, highlights the main properties of Rydberg atoms

and outlines a method to realise a CNOT gate. Part III details the main exper-

imental set-up for trapping and detecting two caesium atoms in a well-prepared

state. Part IV presents the experimental demonstration of single qubit and two-

qubit gates and Part V forms a conclusion of the presented work and outlines

future upgrades to the experiment.

The chapter breakdown is as follows;

Part I: Introduction

• Chapter 2 extends the discussion in this introduction to describe in detail

qubits and quantum logic gates, and ways to measure the quantum nature

of the qubit states.

Part II: Atom-Light Interactions

• Chapter 3 considers the case of a two-level atom interacting with mono-

chromatic light and introduces key results that will be used throughout the

thesis.

• Chapter 4 extends the discussion to a three-level atom, describing the dif-

ferent configurations for the interaction with a mono-chromatic light source

and discuss how electromagnetically induced transparency (EIT) arises from

the interaction.
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• Chapter 5 gives a brief introduction to Rydberg atoms and their proper-

ties. In particular we discuss the dipole-dipole interactions between Rydberg

atoms and how this leads to dipole blockade.

• Chapter 6 outlines a protocol to perform a scalable CNOTN gate detailing

the process and presents simulations to optimise the experimental implemen-

tation with expected fidelity.

Part III: Experiment

• Chapter 7 describes the main experiment set-up used to perform the quantum

gates. This includes laser cooling and trapping and single trapping and

imaging.

• Chapter 8 describes the procedure for hyperfine state discrimination and

optical pumping. It also gives a comparison of the effectiveness of optical

pumping using the D1 and D2 lines of caesium.

• Chapter 9 describes the laser systems used to perform rotations on the atoms,

including the experimental upgrades of an optical phase-lock between two

lasers, the installation of a new Rydberg laser and the installation of a mi-

crowave antenna.

Part IV: Single and Two-Qubit Operations

• Chapter 10 describes the optimisation of single qubit rotations between the

hyperfine ground states using both laser and microwave pulses, and a com-

parison of Rydberg excitations driven using the new and previous Rydberg

lasers is made.

• Chapter 11 describes the experiment optimisation that enabled us to perform

a CNOT gate. Firstly, EIT is demonstrated, then two state preparation tech-

niques are discussed and compared to find the optimal experimental setting

for performing the CNOT gate. The novel protocol is used to demonstrate
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a CNOT gate in the experiment and then used prepare and measure a Bell

state.

Part V: Conclusions and Outlook

• Chapter 12 summarises the main results of the thesis and discusses the limi-

tations on the experiment in its current state and details the future direction

of the experiment.

1.5.1 Publications

Publications arising from this work

• K. McDonnell, et al., Demonstration of a CNOT gate based on electromag-

netically induced transparency, (In preparation)

Publications relating to this work

• C. J. Picken, et al., Entanglement of neutral-atom qubits with long ground-

Rydberg coherence times, Quantum Sci. Technol., 4, 015011 (2019)

https://doi.org/10.1088/2058-9565/aaf019


Chapter 2

Qubit Rotations and Quantum

Gates

Quantum information processing, quantum computing and quantum simulation

rely on the ability on initialise a qubit in a known quantum state and manipulate

its quantum state by performing single or multi-qubit gates. In this chapter we

outline the fundamental building blocks of quantum information processing, for-

mally defining qubits and their rotations to realise quantum gates. We introduce

the Bloch sphere to help visualise qubit gates and motivate the implementation of

quantum information processing on a physical system.

2.1 Qubits

The fundamental building block for quantum information processing (QIP) is the

quantum bit or qubit which is analogous to a bit in classical (digital) computing.

In classical computing, the bit has two logical values 0 or 1 whereas the qubit is

a quantum mechanical two-level system which can take the values |0〉, |1〉 or a

superposition of the two given in Dirac notation by,

|ψ〉 = c0 |0〉+ c1 |1〉 ≡

c0

c1

 , (2.1)

11



Chapter 2. Qubit Rotations and Quantum Gates 12

y

x

z

(a)

X

(b)

y

x

z

Z

(c)

y

x

z

Figure 2.1: Bloch sphere representation of a qubit state for (a) a general qubit state

define by polar angles θ and φ, (b) a NOT or X gate showing a rotation of Rx(π) around

the x axis and (c) a Z or phase gate showing a rotation φ around the z axis.

for complex coefficients c0 and c1 with the normalisation condition requiring

|c0|2 + |c1|2 = 1. (2.2)

In general a n-qubit register has 2n mutually orthogonal states of the form

|x1x2 . . . xn〉, where xk ∈ {0, 1} for 1 ≤ k ≤ n. Any state of the system can

then be specified by 2n complex amplitudes cx as [65]

|ψn〉 =
∑
x

cx |x〉 , (2.3)

and normalised as
∑

x |cx|
2 = 1. Therefore, as the number of qubits increases

the number of amplitudes specifying the state of the quantum system becomes

very large which makes simulating quantum systems very difficult on classical

computers.

The quantum state of a qubit can be represented graphically using the Bloch sphere

which is a sphere of unit radius mapped out by the Bloch vector. By writing Eq. 2.1

in a general from

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 , (2.4)

the polar angles (θ, φ) can be used to specify the qubit state on the Bloch sphere.

The Bloch sphere representation of the qubit state is illustrated in Fig. 2.1(a)

with the poles of the Bloch sphere representing the pure states |0〉 (θ = 0) and
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|1〉 (θ = π) and the equatorial positions on the outer surface of the Bloch sphere

representing equally weighted superpositions of |0〉 and |1〉 with varying degrees of

relative phase φ.

2.2 Quantum Logic Gates

A classical computer is made up of a memory and a processor that store and carry

out operations on the bits. The processing operations are carried out as a circuit

of binary logic gates such as the NOT and NAND gates, that perform operations

on one or two bits at a time. The gates take the input bit(s) and perform the

operation on the bit(s) to give a new output such as those shown in the truth

tables for the classical NOT and NAND gates in Tables 2.1 and 2.2 respectively.

The program then determines how the logical circuit will carry out the gates and

in what order. The power of the NAND gate is that it is a universal gate meaning

that any other classical gate can be represented as a combination of NAND gates.

Quantum computing takes a similar approach to the classical case. A series of

quantum logic gates are carried out on the qubits which are stored in a quantum

register and specific processing tasks are carried out by a quantum circuit. Typi-

cally a quantum circuit is represented by a block diagram as shown in Fig. 2.2 as

this is an easy way to represent the qubits and gates, especially as the number of

each increases.

Input bit Output Bit

0 1

1 0

Table 2.1: Truth table for the single-bit

NOT gate.

Input bit A Input bit B Output Bit

0 0 1

1 0 1

0 1 1

1 1 0

Table 2.2: Truth table for the two-bit

NAND gate.
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Figure 2.2: Block diagram used to represent the workings of a quantum computer. The

input qubits {|ψ1〉 , |ψ2〉 , . . . , |ψN 〉} are initialised and fed into the quantum logic circuit.

The quantum logic circuit implements the gate operations and outputs a new set of

qubits {|ψ′1〉 , |ψ′2〉 , . . . , |ψ′N 〉} which are then measured and read out.

In order to discuss quantum information processing in detail, we need to define

single and two-qubit gates.

2.2.1 Single Qubit Gates

A single-qubit gate is one that takes a single qubit input state |ψ〉, and applies

the gate operation U to output another qubit state |ψ′〉 i.e. U|ψ〉 = |ψ′〉. The

normalisation condition on the qubit state given in Eq. 2.2 must hold true for the

final qubit state after the gate has been applied, this means that the gate matrix

U should be unitary

U†U = I, (2.5)

where U† is the adjoint of matrix U, and I is the identity matrix. In the circuit

model of quantum computing, this condition implies that all single qubit quantum

gates are reversible [12, 66].

To relate the gate matrix operations of qubits as rotations on the Bloch sphere,

it is convenient to consider the density matrix ρ̂ = |ψ〉〈ψ|. Expressing the density

matrix in terms of the Pauli matrices gives the relation

ρ̂ =
1

2
(I +X cosφ cos θ + Y sinφ sin θ + Z cos θ)

=
1

2
(I + r̂ρ · σ̂),

(2.6)
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where r̂ρ = (rx, ry, rz) is the unit Bloch vector and σ̂ is the Pauli matrix vector

elements. The Pauli matrices are [12]

X =

0 1

1 0

 , Y =

0 −i

i 0

 , Z =

1 0

0 −1

 , (2.7)

and, when exponentiated give rise to the rotation operators [12]

R̂x(θ) = −ie
θ
2
X =

 cos θ
2
−i sin θ

2

−i sin θ
2

cos θ
2

 , (2.8a)

R̂y(θ) = ie
θ
2
Y =

cos θ
2
− sin θ

2

sin θ
2

cos θ
2

 , (2.8b)

R̂z(θ) = −ie
θ
2
Z =

e−iθ/2 0

0 eiθ/2

 , (2.8c)

which rotate the Bloch vector by an angle θ about the x̂, ŷ and ẑ axes respectively.

The rotation matrices R̂x(θ) and R̂z(θ) are of particular interest as they are used

to represent the single qubit quantum NOT and phase gates respectively, which

will be demonstrated experimentally later in this thesis.

The quantum NOT gate acts in a similar manner to the classical equivalent by

flipping the amplitude coefficients of the qubits as shown in Fig 2.1(b). Note that

in the case of the quantum NOT gate there is an arbitrary phase associated with

the rotation which enables different qubit states to be reached other than just a

complete flip of the qubit from |1〉 ↔ |0〉. The phase gate is often called the Z gate

as it performs a rotation of angle φ = π around the z-axis as shown in Fig. 2.1(c).

The Z-gate results in a sign change of the coefficients of the qubit state as result

of the phase change. The quantum NOT and phase gates are typically represented

by the symbols X and Z respectively as a result of the rotations on the Bloch

sphere.

The final single-qubit gate of interest is the Hadamard gate,

H =
1√
2

1 1

1 −1

 , (2.9)
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Input qubits Output qubits

Control Target Control Target

|0〉 |0〉 |0〉 |0〉

|0〉 |1〉 |0〉 |1〉

|1〉 |0〉 |1〉 |1〉

|1〉 |1〉 |1〉 |0〉

Table 2.3: Truth table for the controlled-NOT gate which takes two input qubits labelled

the control and target qubits, and flips the state of the target qubit if the value of the

control input is |1〉.

which turns the basis state into a superposition state. For example the states |0〉

and |1〉 under the Hadamard gate become (|0〉 + |1〉)/
√

2 with equal probability

that the measured qubit state will be |0〉 or |1〉. The Hadamard gate is extremely

useful when generating quantum gates as it enables superpositions of qubits to

be easily formed. Further quantum gate operations can then be performed on

the superposition state leading to maximal entanglement, a purely quantum phe-

nomenon.

2.2.2 Two-Qubit Gates

The two-qubit gate discussed in this thesis is the controlled-NOT gate (CNOT

gate) which has two input qubits called the control and target qubits. The CNOT

gate acts on the qubits by changing the state of the input target qubit if and only

if the control qubit is in state |1〉 as shown in Table 2.3.

The unitary matrix for the CNOT operation is

UCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , (2.10)
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where the state vector is (|00〉 , |01〉 , |10〉 , |11〉)T with the control qubit written

first. This matrix has the effect of swapping the amplitude of the coefficients for

the |10〉 and |11〉 states, whilst leaving the coefficient for the |00〉 and |01〉 states

unchanged.

The CNOT gate can be coupled with an appropriate single qubit gate to realise

a universal set of quantum gates [12]. A common combination of gates is the

Hadamard applied to the control qubit followed by the CNOT applied to both

qubits as these combined operations generate maximally entangled states.

2.3 Entanglement

If we consider two qubits A and B in states |ψ〉A and |ψ〉B, either qubit has the

possibility to be in state |0〉 or |1〉 or a superposition of the two. A pair of qubits

can exist in any state of the form

|ψ〉 = c00 |00〉+ c01 |01〉+ c10 |10〉+ c11 |11〉 , (2.11)

where the complex coefficients cx for x = {00, 01, 10, 11}, are normalised as∑
x |cx|

2 = 1. A superposition can be understood classically but entanglement

has no classical equivalent and is a purely quantum phenomenon.

A pair of qubits is said to be in an entangled state if it’s wavefunction cannot

be written as a product of the wavefunction of the individual qubits i.e. |ψ〉 6=

|ψ〉A ⊗ |ψ〉B [67]. This means that a measurement on one qubit will be correlated

to the outcome of the measurement of the other qubit which was described by

Einstein as ‘spooky action at a distance’ [68].

In the two-atom basis a maximally entangled state can be created by applying

a Hadamard gate to the control qubit followed by a CNOT gate to both qubits,

generating one of the maximally entangled Bell states [69]∣∣Φ±〉 =
1√
2

(|00〉 ± |11〉), (2.12a)∣∣Ψ±〉 =
1√
2

(|01〉 ± |10〉), (2.12b)
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named after John Bell who formally reviewed the paper written by Einstein, Podol-

sky and Rosen [68].

2.3.1 Measuring Entanglement

There are two main ways in which entanglement is measured: these are parity

oscillations and quantum state tomography. Quantum state tomography involves

reconstructing the whole density matrix by taking measurements in the x and y

basis and is a lengthy process requiring many measurements to verify entangle-

ment [70, 71]. The more common approach is observing parity oscillations [72].

To map out a parity oscillation we consider the state overlap fidelity which is

defined as [72]

F = |〈ψi|ψ〉|2 = 〈ψi| ρ |ψ〉 = [Tr(σ
√
ρσ)]2, (2.13)

where |ψi〉 is the ideal target state, σ = |ψi〉〈ψi| and ρ = |ψ〉〈ψ| is the density

matrix. A general two-qubit density matrix has the form

ρ =


P00 a b c

a∗ P01 d f

b∗ d∗ P10 g

c∗ f ∗ g∗ P11

 , (2.14)

where the diagonal elements represent the real populations and the off-diagonal

elements are the complex coherences.

For the two-qubit density matrix given by Eq. 2.14, the Bell state preparation

fidelities are

F|Φ±〉 =
〈
Φ±
∣∣ ρ ∣∣Φ±〉 = (ρ00 + ρ11)/2 + |c|, (2.15a)

F|Ψ±〉 =
〈
Ψ±
∣∣ ρ ∣∣Ψ±〉 = (ρ01 + ρ10)/2 + |d|, (2.15b)

which shows that we need to measure the Bell state populations and the off-

diagonal coherence terms c and d. By measuring the coherence terms we are able to

distinguish between a phase-coherent entangled state and an incoherence statistical
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mixture. We measure the coherence terms by mapping a parity oscillation. The

parity of the state is defined as [72],

Π ≡
N∑
j=0

(−1)jPj = P00 + P11 − P01 − P10, (2.16)

where N is the number of qubits in the system. The parity oscillates under an

analysis pulse dependent on the prepared state from which different off-diagonal

elements can be accessed.

To measure the coherence terms the choice of analysis pulse is crucial as this

determines the off-diagonal elements that will oscillate in the parity. For example

an analysis pulse comprised of a global phase Z(φ) followed by global rotation

X(π/2) can be used to map out a parity oscillation for the Bell states |Φ±〉 but no

oscillation will be observed for the Bell states |Ψ±〉 and, crucially, a mixed state

such as (|10〉 + |00〉)/
√

2 under this rotation. This particular choice of analysis

pulse is one that we used to measure the coherence of the Bell state |Φ+〉 and will

be discussed in Sec. 11.6.

2.4 Practical Implementation using atoms

The results presented in this thesis are concerned with neutral caesium atoms

excited to the high-lying Rydberg state |r〉 =
∣∣81D5/2,mj = 5/2

〉
. We use the

hyperfine ground states of the caesium atom as qubits with

|0〉 ≡ |F = 3,mF = 0〉 ,

|1〉 ≡ |F = 4,mF = 0〉 ,

where the magnetic sub-level mF = 0 is chosen as it is insensitive to magnetic

fields. Single qubit gates are performed using microwave and laser pulses to drive

rotations between the qubit states |1〉 → |0〉. To perform two-qubit gates, we

exploit the strong dipole-dipole interaction between the atoms and use the property

of Rydberg blockade as a way to entangle the states of two neighbouring atoms [31],
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as has been demonstrated by many groups [47, 73, 74]. Using atoms as qubits offer

long coherence times, a scalable system on which to perform gates [32] and well-

established methods for manipulating and measuring the atoms
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Chapter 3

Two-level Atom

The two-level atom is the simplest case in which to consider the interaction between

an atom and a coherent light field. Suppose we have a two-level atom with energy

levels |g〉 and |e〉 separated in energy by ~(ωe − ωg) = ~ω0, which interacts with

a monochromatic electromagnetic field, ω, detuned from the atomic resonance |g〉

→ |e〉 by ∆ = ω0 − ω, as shown in Fig. 3.1(a). We can write the Hamiltonian for

the system as

H = HA +HAL(t), (3.1)

where HA= ~ω0 |e〉〈e| is the Hamiltonian for the bare atom and HAL(t) = −d·E(t)

is the Hamiltonian describing the atom-light interaction in the dipole approxima-

tion, with electric field E(t) = εE0 cos(ωt) and electric dipole d = −er̂.

The atomic wavefunction at any time t is given by

|ψ(t)〉 = cg(t)e
−iωgt |g〉+ ce(t)e

−iωet |e〉 , (3.2)

where ci(t) are the complex amplitudes normalised as
∑

i |ci(t)|
2 = 1. The evo-

lution of the system is governed by the the time-dependent Schrödinger equation

(TDSE),

i~
∂ |ψ(t)〉
∂t

= Ĥ |ψ(t)〉 . (3.3)

Solving the TDSE using Eqs. 3.1 and 3.2, and using the exponential form of

22
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(a) (b)

Figure 3.1: A schematic of (a) a two-level atom with states |g〉 and |e〉 separated in

energy by ~ω0 interacting with an electromagnetic field characterised by ω and detuned

from the atomic resonance by ∆. (b) Energy shifts created by the electromagnetic field.

cos(ωt), we obtain a coupled set of equations

ċg(t) = i
Ω∗

2

[
ei(ω−ω0)t + e−i(ω+ω0)t

]
ce(t), (3.4a)

ċe(t) = i
Ω

2

[
ei(ω+ω0)t + e−i(ω−ω0)t

]
cg(t), (3.4b)

where we have introduced the Rabi frequency Ω = −d·E
~ which describes the

coupling strength between the atom and the electric field.

We can employ the rotating wave approximation (RWA) to remove the counter-

rotating terms (ω+ω0) which oscillate at roughly twice the frequency of the driving

field when |ω − ω0| � ω0 so that they average to zero [75]. This leads to

ċg(t) = i
Ω∗

2
ei∆tce(t), (3.5a)

ċe(t) = i
Ω

2
e−i∆tcg(t), (3.5b)

where ∆ = ω − ω0 is the detuning.

To remove the time dependence e−i∆t we use the transformations [76]:

c̃g(t) = cg(t)e
−i∆t/2, (3.6a)

c̃e(t) = ce(t)e
i∆t/2, (3.6b)

to obtain a new set of coupled equations

˙̃cg(t) = −i∆
2
c̃g(t)− i

Ω∗

2
c̃e(t), (3.7a)

˙̃ce(t) = −iΩ
2
c̃g(t) + i

∆

2
c̃e(t), (3.7b)
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describing the evolution of the two-level system under the influence of an oscillating

E.M. field, with an effective Hamiltonian

Heff =
~
2

∆ Ω∗

Ω −∆

 . (3.8)

3.1 Rabi Oscillations

If we assume that at t = 0 the total population is in state |g〉 i.e. cg = 1 and

ce = 0, then Eqs. 3.7 can be solved to give the probability that the atom is in the

excited state at a given time t:

Pe(t) = |ce(t)|2 =
Ω2

Ω′2
sin2

(
Ω′t

2

)
, (3.9)

where Ω′ =
√
|Ω|2 + ∆2. On resonance, ∆ = 0, the probability for the atom to be

in state |e〉 reduces to

Pe(t) = sin2

(
Ωt

2

)
, (3.10)

from which we can see that when Ωt = π, the entire atomic population has been

transferred |e〉. Similarly, when Ωt = 2π, the population is returns to |g〉 and so

on. This process repeats with odd integer multiples of π transferring the atomic

population to |e〉 and even integer multiples of π returning the population to

|g〉, thus mapping out an oscillation between |g〉 and |e〉 with frequency Ω. This

oscillatory response is called Rabi flopping or Rabi oscillations. Fig. 3.2(a) shows

Rabi oscillations when ∆ = 0 and ∆′ = 0.8Ω in blue and red respectively, both

with the same Rabi frequency Ω/2π = 1 MHz. This shows how significantly the

detuning changes the population transfer between |g〉 and |e〉.

The solution Ωt = π is known as a π-pulse and is an example of a single qubit

operation. In terms of the rotation matrices given by Eq. 2.8, a π-pulse is equivalent

to

R̂x(θ = π) =

 0 −i

−i 0

 . (3.11)
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(a) (b)

Figure 3.2: (a) Rabi oscillations showing the effect of detuning on the population in

|e〉. The blue plot is for ∆ = 0 and the red is ∆′ = 0.8∆ which has significantly lower

amplitude than the case with no detuning. (b) Rabi oscillations including decay from |e〉

by spontaneous emission showing damping of both excited and ground state populations

to a steady state.

Similarly, a π/2-pulse, which is used to generate a superposition of the atomic

states |g〉 and |e〉, is equivalent to the rotation

R̂x(π/2) =
1√
2

1 i

i −1

 . (3.12)

Both π and π/2-pulses will be used extensively in this thesis when demonstrating

single and two-qubit gates.

3.2 AC Stark Shifts

The Hamiltonian given in Eq. 3.8 can be diagonalised to find the eigenvalues by

solving the equation Hx = λx. Taking the determinant gives∣∣∣∣∣∣~∆/2− λ ~Ω/2

~Ω/2 −~∆/2− λ

∣∣∣∣∣∣ = (~∆/2− λ)(−~∆/2− λ)− (~Ω/2)2 = 0, (3.13)

which has eigenenergies λ± = ±~
√

∆2 + Ω2/2.

For large detunings |∆| � Ω, this results in an energy shift of the ground and

excited states by E = ±~Ω2/4∆ which is known as the AC Stark shift or light
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shift. The AC Stark shift depends on the intensity of the laser and on the sign

of the detuning, and can be used to trap atoms in optical fields. For ∆ < 0 the

light shift is attractive such that atoms will be trapped in regions of high intensity,

whereas for ∆ > 0 the light shift is repulsive and atoms will be expelled from

regions of high intensity. The experimental implementation of trapping atoms

using a laser with negative detuning will be discussed in Sec. 7.3.

For a resonant interaction ∆ = 0, the energies are unperturbed with E± = ±~Ω/2.

This leads to two new eigenstates for the system |±〉 = (|g〉 ± |e〉)/
√

2 which are

known as the dressed states [77] with the energy splitting E± called the Autler-

Townes splitting [78].

3.3 Optical Bloch Equations

So far we have described the evolution of the system in terms of state vectors solved

using the TDSE, but this description is not suitable for describing the effects of

spontaneous emission or dephasing. To include these effects we use the density

matrix, ρ̂, and the optical Bloch equations to calculate the time evolution of the

density matrix. We start by representing the system described by the state vector

|ψ〉 in the analogous density matrix form.

The density operator ρ̂, for a pure state represented by the state vector |ψ〉 =∑
cn |n〉, is defined as

ρ̂ = |ψ〉〈ψ| , (3.14)

which is written in density matrix form for the two-level atom as

ρ̂ =

ρgg ρge

ρeg ρee

 =

cgc∗g cgc
∗
e

cec
∗
g cec

∗
e

 (3.15)

The diagonal elements of the density matrix are known as populations and repre-

sent the probability of finding the system in a particular state. The off-diagonal

elements are known as coherences that depend on the relative phase between the

states |g〉 and |e〉 and have the property ρeg = ρ∗eg.
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The density matrix can also be used to describe a statistical mixture of states

{|ψi〉} which has density matrix

ρ̂ =
∑
i

Pi |ψi〉 〈ψi| , (3.16)

where Pi is the probability of the system being in state |ψi〉 and Tr(ρ) =
∑

i Pi ≤ 1.

Representing the system as a statistical mixture allows us to include the effects of

spontaneous emission and dephasing because the state vector changes irreversibly

as these effects are included.

Since the time evolution can be described in terms of the Hamiltonian, the time

evolution of the density matrix is described by the equation

dρ̂

dt
= − i

~
[Ĥ, ρ̂], (3.17)

involving the commutation between Hamiltonian of the system and the density

operator [79]. This equation is called the Liouville’s equation and is equivalent to

the Schrödinger equation.

To include the effect of processes such as spontaneous emission, the effect of decay

is added at a rate Γ. In the two-level system suppose the state |e〉 decays at a rate

Γe, then the time evolution of the populations due to spontaneous emission is [79]

dρee
dt

= −dρgg
dt

= −Γeρee, (3.18)

and for the coherences,

dρeg
dt

= −Γe
2
ρeg, −dρge

dt
= −Γe

2
ρge. (3.19)

The full equation governing the evolution of the density matrix is now [80]

dρ̂

dt
= − i

~
[Ĥ, ρ̂]−

−Γeρee
Γe
2
ρge

Γe
2
ρeg Γeρee

 . (3.20)

Using the Hamiltonian given by Eq. 3.8, we expand the commutator to obtain the
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coupled equations,

ρ̇gg =
i

2
(Ωρ̃ge − Ω∗ρ̃eg) + Γeρee, (3.21a)

ρ̇ge = −(i∆ + Γe/2)ρ̃ge −
iΩ∗

2
(ρee − ρgg), (3.21b)

ρ̇eg = (i∆− Γe/2)ρ̃eg +
iΩ

2
(ρee − ρgg), (3.21c)

ρ̇ee = − i
2

(Ωρ̃ge − Ω∗ρ̃eg)− Γeρee, (3.21d)

which are the optical Bloch equations (OBE) describing the time evolution of the

density matrix that includes the damping of the Rabi oscillations due to sponta-

neous emission [79, 80].

The probability of finding the atom in the state |e〉 which includes the effect of

damping is now given by [79],

P|e〉 =
Ω2

2Ω2 + Γ2
e

[
1 + e−3Γet/4

(
cos
(

Ω̃t
)

+
3Γe

4Ω̃
sin
(

Ω̃t
))]

, (3.22)

where Ω̃ =
√

Ω2 + Γ2
e/4 and we have assumed a resonant excitation. The damping

of the Rabi oscillations converge to a steady state when the time derivate vanishes,

with solutions

ρssee =
|Ω|2/4

|Ω|2/2 + Γ2
e/4 + ∆2

, (3.23a)

ρsseg =
Ω

2

∆− iΓe/2
|Ω|2/2 + Γ2

e/4 + ∆2
, (3.23b)

for the populations and coherences respectively. The effect damping has on the

populations of the states |g〉 and |e〉 is shown in Fig. 3.2(b) as the Rabi oscillations

damp to a steady state with equal atomic population in each state.

3.4 Bloch Sphere

To better understand the effect of coupling the system to the environment, it is

useful to use the Bloch sphere where the density matrix elements are represented

by vectors on a sphere of unit radius. The Bloch vector is represented by R =



Chapter 3. Two-level Atom 29

ux̂+ vŷ + wẑ with the density operator written in the Bloch basis as

u = ρ̃ge + ρ̃eg, (3.24a)

v = −i(ρ̃ge − ρ̃eg), (3.24b)

w = ρee − ρgg, (3.24c)

where w represents population inversion of the system. In the Bloch sphere pic-

ture, the states |g〉 and |e〉 lie at the poles of the sphere while an atom in the

superposition state (|g〉+ |e〉)/
√

2 lies in the equatorial plane with time evolution

leading to precession of the vector around the x−y plane. For a statistical mixture

of states |R| < 1 and corresponds to a point inside the Bloch sphere whereas a

superposition state has |R| = 1 corresponding to a position on the surface of the

Bloch sphere [67]. The Bloch sphere is thus a useful tool for describing decoher-

ence - the evolution of a pure quantum state into a statistical mixture of states -

serving as a boundary between quantum and classical physics [81].

Fig. 3.3(a) shows a π-pulse with ∆ = 0 demonstrating population transfer from |g〉

to |e〉 and Fig. 3.3(b) shows the same π-pulse when ∆ 6= 0, such that the population

does not transfer between the states |g〉 and |e〉. The effect of spontaneous emission

in the Bloch sphere picture is illustrated in Fig. 3.3(c) showing the transfer of the

atomic population decaying to a steady state. Figs. 3.3(a)-(c) show equivalent

results to Figs. 3.2(a)-(b) with the atomic population transfer illustrated on the

Bloch sphere.

Expressing the OBE (Eq. 3.21) in terms of the Bloch vector we get [75]

u̇ = ∆v − u

T2

, (3.25a)

v̇ = −∆u+ Ωw − v

T2

, (3.25b)

ẇ = −Ωv − w − wst

T1

, (3.25c)

where the decay rate Γe has been substituted with the decay times T1 and T2.

The decay times are governed by two decay types: homogeneous effects, which are

irreversible, and inhomogeneous effects which are reversible.
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(c)(a) (b)

Figure 3.3: Bloch sphere representation of Rabi oscillations between |g〉 → |e〉 showing

(a) a perfect π-pulse with ∆ = Γe = 0, (b) the effect of detuning and (c) the effect of

spontaneous emission.

The easiest effect to understand is the longitudinal decay time T1, which describes

the effect of spontaneous emission. This results in population decay to the steady

state wst due to random changes of the phase of the coherences which irreversibly

damp the Rabi oscillations. The rate of longitudinal relaxation is determined by

the lifetime of |e〉 which includes transitions to the ground state and other non-

resonant levels that have been neglected in the two-level approximation.

The transverse decay time T2 is related to the homogeneous transverse decay time

T ′2 and the inhomogeneous transverse decay time T ∗2 by the relation [82]

1

T2

=
1

T ′2
+

1

T ∗2
. (3.26)

T ′2 is related to dephasing processes that do not change the population of the

system but do have an effect on the phase of the wavefunction describing the

state. Examples of such a process are trapping laser intensity fluctuations or

fluctuating magnetic fields. T ′2 is particularly prominent in trapping experiments

as data are acquired by averaging over many repetitions of the same experiment.

The reversible dephasing T ∗2 is caused by the precession of atoms around the Bloch

sphere occurring at different rates, which in turn causes a loss of phase-coherence.

This process can be reversed experimentally using Ramsey spectroscopy and spin-

echo techniques which are extensively used in many experiments, especially in the

atomic clock community [83, 84].
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(i)

Figure 3.4: (a) The sequence of pulses for Ramsey spectroscopy, (b) the evolution of

the Bloch vector for the atomic population: (i) the initial Rx(π/2) rotation places the

Bloch vector on the x− y plane, (ii) the population progression around the x− y plane

during the free-evolution time T , the final Rx(π/2) rotation (iii) returns the population

to |g〉 for a resonant Ramsey sequence or (iv) the population is left in a superposition of

the states |g〉 and |e〉 for a non-resonant Ramsey sequence.

3.5 Ramsey Spectroscopy

Ramsey spectroscopy is well suited to study the decoherence effects which occur

in atomic systems [85]. The idea behind Ramsey spectroscopy is to apply two

coherent pulses (typically microwave or optical) separated in time. The method is

sensitive to phase shifts between the atomic resonance and the driving field which is

why the Bloch sphere is a good way to visualise the system. Ramsey spectroscopy

produces fringes, the frequency of which correspond to the differential shift the

atoms experience during the free evolution time and the detuning from resonance.

The visibility of the fringes reduces as atoms lose their phase relationship, i.e. they

decohere. The application of Ramsey fringes to experiments related to this thesis

are discussed in detail Sec. 10.3, for now we give an overview of the typical method

used.

Ramsey fringes are performed using two Rx(π/2) rotations of duration τ , separated

by a free evolution time T as illustrated in Fig. 3.4(a). If the atoms are prepared

in state |g〉 with Bloch vector u = (0, 0,−1), then applying a Rx(π/2) rotation
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rotates the atoms into the x− y plane with Bloch vector u = (0,−1, 0) as shown

in Fig. 3.4(i). During the free evolution time, the atoms freely precess around the

z-axis with angular frequency ∆ such that after T the rotation angle of the Bloch

vector in the x− y plane is

R(T ) =


− sin(∆T )

− cos(∆T )

0

 . (3.27)

The second Rx(π/2) pulse is then applied to the atoms which produces one of the

following outcomes:

1. If ∆ = 0, there is no precession of the Bloch vector between the Rx(π/2)

rotations and the atoms are transferred to state |e〉 by the second Rx(π/2)

rotation.

2. If ∆T = π, the Bloch vector has undergone a rotation equal to π in the x−y

plane between the Rx(π/2) pulses and the atoms are transferred back to the

state |g〉 with the application of the second Rx(π/2) pulse, as is the case

shown in Fig. 3.4(iii).

3. In any other case, the atom is left in a superposition state (|e〉+ i |g〉) /
√

2

after the second Rx(π/2) pulse as illustrated in Fig. 3.4(iv), for small detun-

ing.

The probability to find the atom in the state |e〉 after the second pulse is [86]

Pe(t) = 4
Ω2

Ω′2
sin2

(
Ω
′
τ

2

)[
cos

(
∆T

2

)
cos

(
Ω
′
T

2

)
− ∆

Ω′
sin

(
∆T

2

)
sin

(
Ω
′
T

2

)]2

.

(3.28)

For the atoms excited by two pulses the excitation probability drops from the

maximum at ω = ω0 to zero when ∆T/2 = π/2 so that the FWHM is

∆f =
1

2T
. (3.29)
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Figure 3.5: (a) The sequence for Ramsey spectroscopy with a spin-echo pulse that can

be applied to reverse the inhomogeneous dephasing T ∗2 . (b) The evolution of the Bloch

vector during the spin-echo sequence (i) A π/2 pulse is applied to rotate the Bloch vector

to the x−y plane, (ii) the Bloch vectors precess with different angular frequencies, which

is corrected by (iii) applying a spin echo (π-pulse) to reverse the dephasing process, such

that (iv) the Bloch vectors converge. The final π/2 pulse returns the Bloch vector to |g〉

if T1 is negligible, otherwise the Bloch vector decays from |g〉 proportional to T1.

From this we can see that the longer the time T that the atoms spend evolving

freely, the narrower the the FWHM thus improving the sensitivity of the mea-

surement [75]. In practice the limit on T is often determined by factors such as

heating from the atomic trapping beams or background collisions within a vacuum

chamber.

To reverse the effect of the dephasing time T ∗2 , a spin-echo pulse can be applied

between the Rx(π/2) pulses of the Ramsey sequence at a time T/2, illustrated

in Fig. 3.5(a). The sequence influences the evolution of the population in the

following way: (i) the initial Rx(π/2) rotation, rotates the Bloch vector of the

atoms to the x − y plane, then (ii) as the atoms freely precess, they do so with

different angular frequencies. If uncorrected this leads to decay of the observed

Ramsey fringes as the fringes are an average of many oscillations of slightly different

frequencies. To correct this, (iii) a spin-echo pulse is applied which reverses the

angular frequencies, such that the faster and slower frequencies are in the reverse
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order and (iv) converge again. The final Rx(π/2) rotation returns the Bloch vector

to |g〉 if T1 is negligible, otherwise spontaneous emission occurs, resulting in the

Bloch vector pointing off-axis by an amount proportional to T1.

The spin-echo pulse is a Rz(π) rotation which reverses the rotation of the atoms

around the x−y plane of the Bloch sphere, allowing the different precession rates to

unify and restore phase coherence during the free evolution time. Such a technique

has been successfully used to increase the coherence of quantum gates [30].

3.6 Summary

Studying the the two-level atom is an excellent way to derive the underlying physics

of atom-light interactions. The model encapsulates atomic population transfer be-

tween states and includes the effects of decay and damping, described by the optical

Bloch equations. This chapter has also covered the Bloch sphere representation of

the two-level system and associated results such as Ramsey spectroscopy, which

will be demonstrated in later chapters.



Chapter 4

Three Level Atom

The two-level system captures most of the physics behind atom-light interactions,

but we also need to discuss a three-level atomic system to accurately describe the

experiment and understand the effect of electromagnetically induced transparency.

There are three configurations that a three-level system can take: the Λ-, ladder-

and V-configurations. In this thesis, we will focus on the Λ-configuration as this

describes the Raman transitions between the hyperfine ground states of the cae-

sium atoms in our experiment. However we include a brief discussion of the ladder

configuration as this is used to drive two-photon excitations to the Rydberg state.

4.1 Three-level Λ-configuration

In the three-level Λ-configuration the states are |0〉, |1〉 and |P 〉 separated in energy

by ~ω0p and ~ωp1 as shown in Fig. 4.1(a). Coupling between the states is driven

by fields ωp, coupling states |0〉 and |P 〉, and ωc which couples states |P 〉 and |1〉

with detunings ∆1 = ωp − ω0p and ∆2 = ωc − ωp1 respectively. The magnitude of

the electric dipole coupling is described by the Rabi frequencies Ωp = −d0p · E1/~

and Ωc = −d1p · E2/~.

To describe the three-level system, we utilise the same approach as the two-level

35
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(a) (b)

Figure 4.1: Three-level atom schematic for (a) the Λ-configuration and (b) the ladder-

configuration.

description by constructing a Hamiltonian using the rotating wave approxima-

tion (RWA) for the Λ-configuration [87] and solve it using the time-dependent

Schrödinger equation (Eq. 3.3). The total Hamiltonian for the Λ-system is

HΛ = HA +HAL, (4.1)

where the unperturbed Hamiltonian HA is given by

HA = ~ω0 |0〉〈0|+ ~ω1 |1〉〈1|+ ~ωe |P 〉〈P | , (4.2)

and the Hamiltonian for the atom-light interaction is given by

HAL =
~Ωp

2

[
e−iωpt |1〉〈0|+ eiωpt |0〉〈1|

]
+

~Ωc

2

[
e−iωct |1〉〈P |+ eiωct |1〉〈P |

]
. (4.3)

By using the rotating wave approximation, the Hamiltonian of the three-level Λ-

system is written [87]

HΛ =
~
2


δ Ωp 0

Ωp −2∆ Ωc

0 Ωc −δ

 , (4.4)

where δ = ∆1 −∆2 and ∆ = ∆1+∆2

2
.

If the detuning with respect to the intermediate state |P 〉 is large then spontaneous

emission can be minimised. Assuming the excited state |P 〉 is initially unpopulated

and Ωp,c � |∆1,2|, then |P 〉 will remain unpopulated as the system evolves. This
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means the change of population of this state is approximately zero ((∂/∂t)cp(t) =

0) and the state can be eliminated [88], resulting in an effective two-level system

given by Hamiltonian,

Heff
Λ =

~
2

∆eff ΩR

ΩR −∆eff

 , (4.5)

where ΩR = Ω1Ω2

2∆
is the effective Rabi frequency and ∆eff = δ + ∆

|0〉
AC + ∆

|1〉
AC is

the AC Stark shift due to the light shift induced by the electric dipole interaction

with the detuned beam.

The reduced matrix elements can be used to calculate the Rabi frequency (Ω1,Ω2)

of each laser and hence the total Rabi frequency (ΩR) of the two-photon process,

ΩR =
Ω1Ω2

2∆
, (4.6)

and the AC Stark shift of one state caused by the laser field on the other i.e. the

off-resonant coupling,

∆
|0〉
AC =

Ω2
1

4∆
+

Ω2
2

4(∆− νhfs)
, (4.7a)

∆
|1〉
AC =

Ω2
2

4∆
+

Ω2
1

4(∆ + νhfs)
, (4.7b)

where νhfs is the ground state hyperfine splitting equal to 9.192 GHz in caesium [89].

To include spontaneous emission in the Λ-configuration we use the same approach

as the two-level case by using the density matrix formalism. The density matrix

for the three-level system given by,

ρ̂ =


ρ00 ρ01 ρ0p

ρ10 ρ11 ρ1p

ρp0 ρp1 ρpp

 . (4.8)

The evolution of the system given by
dρ̂

dt
= − i

~

[
ĤΛ, ρ̂

]
+ L(ρ), (4.9)

with L(ρ) the Lindblad operator describing the decay of the system given by [90]

L(ρ) =


Γ1ρ11 −1

2
Γ1ρ01 −1

2
Γpρ1p

−1
2
Γ1ρ10 −Γ1ρ11 + Γpρpp −1

2
(Γ1 + Γp)ρ1p

−1
2
Γpρp0 −1

2
(Γ1 + Γp)ρp1 −Γpρpp

 , (4.10)
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where Γp is the decay rate from |P 〉 and Γ1 is the decay rate from |1〉, given by

operators cp =
√

Γp |0〉〈p| and c1 =
√

Γ1 |p〉〈1| respectively.

4.1.1 Three-level Ladder Configuration

The atomic system in the ladder configuration differs from the Λ-system by the

way the energy levels and their detuning’s are defined. A schematic for the ladder

configuration is given in Fig. 4.1(b) where the states |1〉, |P 〉 and |r〉 are addressed

by two light fields with frequencies ω1p and ωpr that couple the states |1〉 → |P 〉,

and |P 〉 → |r〉 respectively. The Hamiltonian for the ladder configuration is the

same as that for the Λ system given by Eq. 4.4 with the total detunings now

defined by δ = ∆1 + ∆2 and ∆ = ∆1−∆2

2
, to account for the different sign of the

detuning ∆2.

The intermediate state can also be eliminated in the ladder configuration in the

same way as the Λ configuration, by assuming the detuning from this state is

large enough that it remains unpopulated with time, to approximate an effective

two-level system described by Eq. 4.5 with ∆eff = ∆1 + ∆2 + ∆
|1〉
AC −∆

|r〉
AC .

Experimentally the two lowest energy levels represented by |1〉 and |P 〉 in the above

notation are the levels |1〉 =
∣∣6S1/2, F = 4

〉
and |P 〉 =

∣∣6P3/2, F
′ = 5

〉
where the hy-

perfine structure is used. The upper energy level given as |r〉 =
∣∣81D5/2,mj = 5/2

〉
is the Rydberg state where the fine structure splitting is sufficient as the hyperfine

splitting is not resolvable at this principal quantum number.

4.1.2 Cs Model: Multi-level Atom

In our experiments we use a laser detuned from the D2 line in caesium which

requires us to account for the fact that caesium is a multi-level atom thus we must

sum over contributions from all possible excitation paths. In a general multi-level

system, there is also coupling between the hyperfine splitting of the intermediate

state |Fe,mFe〉 to the other states
∣∣Fg,s,mFg,s

〉
. To include this we have to sum
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over all dipole coupled states to find the Rabi frequency,

ΩR =
∑

Fe,mFe

ΩA
Fg ,mFg→Fe,mFeΩ

B
Fs,mFs→Fe,mFe

2(∆− νhfs)
, (4.11)

the AC Stark shifts,

∆g
AC =

∑
Fe,mFe

(ΩA
Fg ,mFg→Fe,mFe )

2

4∆
+
∑

Fe,mFe

(ΩB
Fg ,mFg→Fe,mFe )

2

4(∆− νhfs)
, (4.12a)

∆s
AC =

∑
Fe,mFe

(ΩB
Fs,mFs→Fe,mFe )

2

4∆
+
∑

Fe,mFe

(ΩA
Fs,mFs→Fe,mFe )

2

4(∆ + νhfs)
, (4.12b)

and scattering rate

Γsc = γtπ

[ ∑
Fe,mFe

(ΩA
Fg ,mFg→Fe,mFe )

2

4∆
+
∑

Fe,mFe

(ΩA
Fg ,mFg→Fe,mFe )

2

4(∆− νhfs)2

−
∑

Fe,mFe

(ΩB
Fs,mFs→Fe,mFe )

2

4(∆ + νhfs)2
+
∑

Fe,mFe

(ΩB
Fs,mFs→Fe,mFe )

2

4∆

]
, (4.13)

where ∆ is the detuning with respect to the centre of mass of the intermediate

state, tπ = π/ΩFs,mFs→Fs,mFs , νhfs is the hyperfine splitting and Ωi
Fg,s,mFg,s→Fe,mFe

are the Rabi frequencies of the lasers i = {A,B} for the transitions between

hyperfine levels.

Based on simulations carried out using MATLAB, we set the detuning ∆/2π = −88

GHz as this value of ∆ is far detuned from the intermediate state |e〉 with a low

scattering rate Γe. For Raman transitions driven by a laser with 45 µW of power

and beam waist, ω0= 4.5 µm, the estimated Rabi frequency ΩR/2π = 1.91 MHz

and the AC Stark shift ∆AC/2π = −1.17 MHz. Fig. 4.2 shows the results of the

simulation.

The simulation characterises the strength of the interaction of caesium with the

near-resonant laser using the reduced dipole matrix elements with the Wigner 3-j

and 6-j symbols [91, 92] to produce a result that is only dependent on the quantum

number j and j′ for the ground and excited states respectively, summed over all

f-levels. We can also set the polarisation of the Raman lasers which we choose to

be equal to one another with equal strength. The polarisation is set to σ+ circular
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Figure 4.2: Multi-level model of caesium atom showing (a) AC Stark shift (b) Rabi

frequency, and (c) excited state scattering rate, as a function of the centre of mass

detuning ∆.

polarisation, which gives a possible excitation pathway from |F = 4,mF = 0〉 →

|F = 3,mF = 0〉 via the states |Fe = 4,mFe = 1〉 and |Fe = 3,mFe = 1〉.

4.2 Electromagnetically Induced Transparency (EIT)

In this section we discuss the emergence of electromagnetically induced trans-

parency (EIT), using the Λ configuration to do so. The Λ configuration is again

illustrated in Fig. 4.3(a) and we introduce the terms probe and coupling to de-

scribe the lasers with Rabi frequencies Ωp and Ωc respectively. This notation is

typically used when discussing the phenomenon of EIT.

The evolution of the Λ system is described by the Hamiltonian given Eq. 4.4. If we

consider the case where there are small and equal detunings ∆1 = ∆2 = ∆, then

we have the exact two-photon resonance (δ = 0), and we impose the condition

∆ ≤ Ωp,Ωc, the Hamiltonian becomes

H = −~
2


0 Ωp 0

Ωp −2∆ Ωc

0 Ωc 0

 . (4.14)

By diagonalising the above Hamiltonian we obtain the eigenvalues

λ0 = 0, λ± = ∆±
√

Ω2
p + Ω2

c + ∆2, (4.15)
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(b) +

-

(a)

Figure 4.3: (a) The 3-level Λ-system with probe laser Ωp coupling |g〉 and |e〉

detuned by ∆p, and coupling laser Ωc coupling |s〉 and |e〉 detuned by ∆c. (b) In

the strong coupling limit Ωc � Ωp, the energy level |e〉 is split and shifted by E±
to make the probe laser transparent to the atom.

corresponding to the eigenstates [65]

|+〉 = sin θ sinφ |0〉+ cosφ |P 〉+ cos θ sinφ |1〉 , (4.16a)

|D〉 = cos θ |0〉 − sin θ |1〉 , (4.16b)

|−〉 = cos θ sinφ |0〉 − sinφ |P 〉+ cos θ sinφ |1〉 , (4.16c)

where the mixing angles are

tan θ =
Ωp

Ωc

, φ =

√
Ω2
p + Ω2

c

∆
. (4.17)

We can see from Eqs. 4.16 that the zero energy eigenstate |D〉 does not contain the

intermediate state |P 〉, which decays by emitting a spontaneous photon with rate

Γp. The state |D〉 is called the dark state as there is no possibility of excitation

to the state |P 〉. In contrast the states |±〉 are known as bright states as they

contain a contribution from the bare atomic states |0〉, |1〉 and |P 〉 such that they

are shifted in energy by

E± =
~
2

(
∆±

√
∆2 + Ω2

p + Ω2
c

)
. (4.18)

This leads to what is known as Autler-Townes splitting [78] as shown in Fig. 4.3(b).

In the strong coupling regime Ωc � Ωp, Γp, and on resonance (∆ = 0) the eigen-

states are

|D〉 = |0〉 , |±〉 =
|1〉 ± |0〉√

2
, (4.19)
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showing that the dark state is identical to the state |0〉 and no excitation can occur.

Similarly the bright states have excitation probability amplitudes with equal but

opposite signs, giving rise to destructive interference of the excitation pathways.

This makes the probe laser transparent to the atomic medium and the system

stays in the dark state. This coherent phenomenon is known as electromagnetically

induced transparency (EIT).

4.3 Summary

The model of the three-level atom and the interaction with two coherent light

sources describes the underlying mechanisms used to perform fast optical rota-

tions for the ground state Raman transitions and Rydberg excitations using the Λ

and ladder configurations respectively. It also highlighted the way to minimise de-

coherence mechanisms such as spontaneous emission through adiabatic elimination

of the excited state for each system, to achieve large two-photon Rabi frequencies.

Studying the three-level system also allowed us to realise the quantum interference

effect of electromagnetically induced transparency when the two-photon resonance

condition ∆p = ∆c = 0 is satisfied.



Chapter 5

Rydberg Atoms

This chapter highlights the key properties of Rydberg atoms required to interpret

the results presented in this thesis. Rydberg atoms are atoms that have been

excited to a state with a high principal quantum number n, and as a result ex-

hibit exaggerated properties that make them of interest for quantum information

processing. Of particular interest are Rydberg-Rydberg interactions and dipole

blockade which are key components in many quantum information processes with

Rydberg atoms.

5.1 Rydberg Atom Properties

Alkali Rydberg atoms can be described by the Bohr model of the atom, with a

single valence electron orbiting a positive core with a −1/r Coulomb potential at

long range [93]. The binding energy of the electron to the core for a Rydberg state

with principal quantum number n � 1, orbital angular momentum l and total

angular momentum j is given by [94, 95]

En,l,j = −Ry
n∗2

, (5.1)

where Ry is the Rydberg constant, n∗ = n−δn,l,j is the effective principal quantum

number, and δn,l,j is the quantum defect. The quantum defect accounts for the fact

43
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that an electron with an angular momentum l ≤ 3 can penetrate into the electronic

core, thus increasing the effective charge seen by the electron and lowering the

binding energy. The quantum defect is given by the expansion,

δn,l,j = δ0 +
δ2

n∗2
+

δ4

n∗4
+ . . . . (5.2)

The value of the quantum defect is species and quantum number dependent, and

has been measured for caesium using precision spectroscopy [96–99]. Typically, for

heavy alkali metals δl≥3 ≈ 0 [94].

The Rydberg constant for caesium is Ry = 109 736.862 7339 cm−1 [99] and the

most recently determined values for the quantum defects of the nD5/2 Rydberg

state used in this thesis are δ0 = 2.4663144(6) and δ2 = 0.001381(15) [99].

Atoms excited to Rydberg states have interesting features that make them use-

ful for study. The features of particular interest to this thesis come from the

large orbital radius which scales as 〈r〉 ∝ n∗2a0, with a0 the Bohr radius,

causing a strong overlap between the wavefunctions and electric dipole mo-

ment (µ = −er) of the Rydberg states. The resulting dipole matrix elements

d = 〈n, l, j,mj|µ
∣∣n′ , l′ , j ′ ,m′j〉 ∝ n∗2 coupling neighbouring Rydberg states are

large making the Rydberg states very sensitive to electric fields, with a polaris-

ability, α ∝ n∗7 [94]. A summary of the main Rydberg features and their scaling

laws with respect to the effective principal quantum number is given in Table 5.1.

Additionally, Rydberg states have very long radiative lifetimes, τ ∝ n∗3, making

them useful for performing quantum gates. The Rydberg state lifetime is depen-

dent on the radiative decay due to spontaneous emission to low-lying states (τ0),

and black-body radiation (BBR) due to finite temperature T :

τBBR =
3~n2

4α3kBT
(5.3)

where α is the fine structure constant. The BBR dominates decay to close-lying

states with strong electric dipole transitions. This results in a total decay rate [100],

Γ =
1

τ0

+
1

τBBR

, (5.4)
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Property Scaling

Binding Energy n∗−2

Level Spacing n∗−3

Orbital Radius n∗2

Radiative Lifetime n∗3

Polarisability n∗7

Van der Waals coefficient n∗11

Table 5.1: Scaling laws for properties of the Rydberg states with respect to the

effective principal quantum number n∗ [42].

with the effective lifetime τeff = 1/Γ.

In the experiments presented in his thesis, the Rydberg state of interest is the

81D5/2 state which has an effective lifetime of 163 µs at 300 K [101], an increase

of four orders of magnitude over the lifetime of 30 ns of 6P3/2 state used for

cooling [89].

5.2 Rydberg Atom Interactions

The large dipole moment exhibited by Rydberg atoms leads to a strong interaction

between them. Consider two atoms A and B prepared in the Rydberg state |r〉

= |n, l, j,mj〉, separated by a distance R as illustrated in Fig. 5.1(a). The atoms

have dipole moments µA,B associated with the transitions between |r〉 and |r′〉 and

|r′′〉 respectively. As Rydberg atoms are neutral, they interact via dipole-dipole

coupling, described in atomic units by [95],

V (R) =
µA · µB
R3

− 3(µA ·R)(µB ·R)

R5
. (5.5)

If we take R along the z-axis (θ = 0), the dipole-dipole interaction reduces to

V (R) =
µA−µB+ + µA+µB− − 2µAzµBz

R3
, (5.6)
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Figure 5.1: (a) Two Rydberg atoms A and B with dipoles µA and µB respectively,

separated by R with angle θ w.r.t. the quantisation axis z. (b) Transformation from

the single atom basis with Rydberg states |r〉, |r′〉 and |r′′〉 to the pair basis shows near-

resonant states coupled by the dipole-dipole interaction with an energy defect ∆ between

|rr〉 and |r′r′′〉.

where µi,q is the dipole operator for atom i = {A,B} with transitions q =

{−, z,+}. These transitions describe the change in the magnetic quantum number

with ∆mj = ±1 for σ± - polarisation pathways and ∆mj = 0 for a π - polarisation

pathway. The total angular moment along the z-axis is conserved M = mA +mB

in this geometry, despite the individual atoms’ quantum number changing by ±1

or 0 [102].

To understand the energy shift that arises as a result of the dipole-dipole inter-

action we require a basis shift from single atom to pair states, as illustrated in

Fig. 5.1(b). The initial pair state |rr〉 is coupled to a state |r′r′′〉 by V (R) which

has an energy defect given by,

∆ = W|r′〉 +W|r′′〉 − 2W|r〉, (5.7)

representing the energy difference of the pair states at infinite separation. In the

basis {|rr〉 , |r′r′′〉}, the Hamiltonian describing the dipole-dipole interaction is

H =

 0 V (R)

V (R) ∆

 , (5.8)

which has eigenvalues,

λ± =
∆±

√
∆2 + 4V (R)2

2
, (5.9)



Chapter 5. Rydberg Atoms 47

showing that the energy of the pair state is dependent on the separation of the

two atoms.

Two cases of interest arise from the spatial dependence of the atoms:

1. V (R) � ∆: this limit is the long-range van der Waals (vdW) regime with

the interaction scaling as

∆W = −V (R)2

∆
= −C6

R6
. (5.10)

The interaction here is dependent on the coefficient C6 which scales propor-

tional to n∗11 as V (R) ∝ µ2 ∝ n∗4 and the energy defect ∆ ∝ n∗−3. Note

that in this van der Waals regime the sign of the interaction is determined

by the sign of the energy defect.

2. V (R)� ∆: this limit is the short-range resonant dipole-dipole regime. The

strength of the interaction is given by

∆W = ±V (R) = ±C3

R3
. (5.11)

In this regime the interaction depends on the coefficient C3 which scales

∝ n∗4. Using an external electric field it is possible to tune ∆ ≈ 0 and a

Förster resonance is realised [94, 103].

The transition between the dipole and van der Waals regimes occurs at the van der

Waals radius, occurring when V (RvdW) = ∆, where RvdW = 6
√
|C6/∆| ∝ n∗7/3.

5.2.1 Angular Dependence

Above we assumed that the dipoles were aligned with the z-axis (θ = 0), however,

in practice this is generally not the case. Accounting for this the dipole-dipole

coupling written as a function of both θ and R is [104]

V (R, θ) =
µA−µB+ + µA+µB− + (1− 3 cos2 θ)µAzµBz

R3

+
3/2 sin2 θ(µA+µB+ + µA+µB− + µA−µB+ + µA−µB−)

R3

+
3/
√

2 sin θ cos θ(µAzµB+ + µAzµB− + µA+µBz + µA−µBz)

R3
.

(5.12)
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W

Figure 5.2: Rydberg dipole blockade. For two atoms at a large separation R both can be

excited to the Rydberg pair state |rr〉 by pulse Ω. At a separation R < Rb the blockade

radius, the blockade effect prevents the excitation of the pair state.

For θ 6= 0 the total angular momentum M of the initial pair state is no longer

conserved allowing states of different M to be coupled together.

5.3 Dipole Blockade

To further explore the effect that atom separation plays in excitations to Rydberg

states, we consider an excitation laser with Rabi frequency Ω which drives a tran-

sition between |g〉 → |r〉. As illustrated in Fig. 5.2, this can cause excitation to

the singly excited Rydberg states |gr〉 or |rg〉, that is independent of the atoms’

separation.

In the case of double excitation, if one atom is excited to |r〉 the energy required

to excite the other atom to |r〉 is dependent on the proximity of this atom to the

first. When the atoms are far apart the energy shift is negligible and the atoms

can be excited to the doubly excited Rydberg state |rr〉. When the energy shift

is greater than the coupling field ∆W � ~Ω the excitation to the doubly excited

state is forbidden. This effect is called Rydberg blockade and occurs when both

atoms are within the blockade radius which is given by,

Rb =
6

√
|C6|
Ω

. (5.13)

The Rydberg blockade radius scales as Rb ∝ 6
√
C6 ∝ n∗11/6, which means using a
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higher principal quantum number increases the blockade radius.

Placing the atoms at a separation that is within the blockade radius and applying

an excitation pulse Ω that simultaneously addresses both atoms, it is not possible

to determine which atom has been excited to the Rydberg state. This means is it

equally probable to make the states |gr〉 and |rg〉, creating an effective superposi-

tion of both states

|W〉 =
1√
2

(|gr〉+ |rg〉). (5.14)

This can be used to create a maximally entangled symmetric state with a cou-

pling enhanced by a factor of
√

2, resulting in a collective Rabi frequency of
√

2Ω

compared to the single atom case [73, 74]. This has previously been demonstrated

in our experiment with the Rydberg blockade mechanism combined with a two-

photon Raman transition to create ground state entanglement [47].

The Rydberg blockade can be extended to the case of N atoms located within

the blockade sphere, of volume V = 4
3
πR3

b . The system with N atoms shares a

collective oscillation between the collective ground state |G〉 = |gg . . . g〉 and a

collective entangled state [94]

|Wc〉 =
1√
N

N∑
j=1

|gg . . . rj . . . g〉 , (5.15)

where only one of the N atoms is excited to the Rydberg state |r〉. The Rabi

frequency of the collective oscillation is
√
NΩ, demonstrating the accessibility to

a high degree of entanglement for a many body system [30, 46, 105, 106].

5.4 Experiment Implementation

In this thesis the Rydberg state of interest is
∣∣81D5/2,mj = 5/2

〉
, with the mj =

5/2 state chosen to give the strongest coupling to the ground state in order to

achieve a large Rabi frequency for coherent Rydberg excitation. The configuration

of the experiment leads to an angle of θ = π/2 leading to a significant anisotropic

interaction compared to the value along z (θ = 0).
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For the pair state |rr〉 =
∣∣81D5/2 81D5/2

〉
the main contribution to the dipole-

dipole interaction comes form the pair state |r′r′′〉 =
∣∣85P3/2 76F

〉
, which has

energy defect ∆/2π = 0.74 GHz and coefficient C6 = −1626 GHz.µm6 [101]. The

atom-pair state generates strong repulsive interactions with a van der Waals radius

of ∼ 3.6 µm. The atoms in the experiment are separated by ∼ 5 µm such that we

work in the van der Waals regime.

5.5 Summary

Rydberg atoms and their properties are a useful tool for quantum information

processing using neutral atoms. They facilitate two or more qubit interactions

over relatively long distances through the long-range van der Waals interaction

with lifetimes that enable quantum gates to be implemented. Further to this the

collective Rydberg excitation shared between atoms in the blockade sphere offers

a practical route to generate multi-qubit entanglement.



Chapter 6

CNOT Gate

As discussed in Chapter 5, Rydberg atoms have a high principal quantum number,

n, which means they have strong dipole-dipole interactions over length scales of

R ≤ 10 µm. At this separation they are within the Rydberg blockade radius

such that the excitation of more than one atom to the Rydberg state is strongly

suppressed [45]. For simultaneous excitation of N atoms within a blockade sphere,

collective effects lead to a
√
N scaling in pulse area for creating a single collective

excitation [50]. If N is unknown or fluctuates (e.g. Poisson loading of an atomic

ensemble) high fidelity gate operations are challenging [32, 51].

An approach to overcome this limit is to implement gates using sequential pulses

applied to each qubit [87, 107] however this is limited by the requirement for the

control atom to remain in the Rydberg level while operations are performed on

all other qubits, limiting the attainable fidelity. One method to circumvent the
√
N scaling was proposed by Müller et al. [52] using electromagnetically induced

transparency (EIT) to allow a single control qubit to couple to N neighbouring

target qubits.

This protocol provides a scalable approach to performing entanglement of large

atomic ensembles using a single control atom whilst circumventing the challenges

of the collective Rabi frequency. The resulting gate is therefore robust against

number fluctuations and acts as a single-atom transistor to amplify the quantum

51
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Figure 6.1: Four-level energy level schematic for EIT. The states |0〉 and |1〉 are off-

resonantly coupled to |P 〉 with detuning ∆ and equal Rabi frequencies Ωp. The state |r〉

is coupled with Rabi frequency Ωc � Ωp to the state |P 〉 such that |r〉 is in two-photon

resonance with |0〉 and |1〉. In this case the Raman transfer between states |0〉 and |1〉 is

inhibited as the conditions for EIT are satisfied.

state of an atom onto an atomic ensemble. This provides a route to creating

useful entangled states for quantum information processing (QIP), high precision

measurements beyond the standard quantum limit [53], as well as demonstrating

the crucial gate scheme for implementing topological error correction using surface

codes in atomic arrays [54].

6.1 EIT in a 4-Level System

In Sec. 4.2 we discussed the emergence of EIT in the three-level Λ-configuration.

Here we extend this discussion to include a fourth level in the atomic configuration

and will detail how a pair of dark states emerge in this system. We will then

describe how the dark states can be used to implement a CNOTN gate when using

Rydberg atoms as was proposed by Müller et al. [52].

The four-level configuration is shown in Fig. 6.1 where we have introduced the

state |r〉 which is coupled to the state |P 〉 by a strong coupling field with Rabi

frequency Ωc at a detuning ∆c from the |P 〉 → |r〉 transition. If we assume the

states |0〉 and |1〉 are off-resonantly coupled to |P 〉 with equal Rabi frequencies Ωp
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at a single photon detuning from |P 〉 of ∆ = (∆1 + ∆2)/2, then the Hamiltonian

for the four-level system is given by [52],

H = ~


0 0 Ωp(t)/2 0

0 −δ Ωp(t)/2 0

Ωp(t)/2 Ωp(t)/2 −∆ Ωc/2

0 0 Ωc/2 −(∆ + ∆c + V )

 , (6.1)

where δ = ∆1 − ∆2 is the two-photon detuning of |0〉 → |1〉, and the (van der

Waals) interaction energy V describes the interaction between the Rydberg states

of the control and target atoms.

In a similar way to the three-level case discussed in Sec. 4.1, the intermediate state

|P 〉 can also be eliminated in the four-level system. In this case we work in the

limit that ∆ � Ωc > Ωp, ∆c = −∆ and V = 0 such that the state |P 〉 remains

unpopulated as the system evolves, leading to the effective Hamiltonian [52],

H/ε = x(t)2 |+〉〈+|+ |r〉〈r|+ x(t) (|+〉〈r|+ |r〉〈+|) , (6.2)

where ε = ~Ω2
c/(4∆) is the AC Stark shift due to the coupling laser Ωc, x(t) =

√
2Ωp(t)/Ωc is the re-scaled, dimensionless Raman laser Rabi frequency and the

states |±〉 = (|0〉 ± |1〉) /
√

2. As a result of the interaction with the coupling laser

Ωc, the state |P 〉 is shifted in energy by ε such that the resonance condition must

satisfy ∆eff = δ + ∆ + ε to observe full population transfer between the states |0〉

(or |1〉) and |r〉. This energy scaling is important in the blocking mechanism in

the CNOTN gate protocol as will be discussed below.

Working in the limit of the strong coupling regime, i.e. x(t) � 1, and assuming

the two-photon resonance condition is satisfied (δ = ∆), the coupling laser causes

an energy shift ε such that the two-photon resonance condition is broken and the

states |0〉 and |1〉 are no longer coupled. In this case the Hamiltonian describes

the EIT scenario for the four-level system [52] and produces two zero-energy dark

states,
|d1〉 = |−〉 ,

|d2〉 = (1 + x(t)2)−1/2[|+〉 − x(t) |r〉].
(6.3)
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These dark states are key components of the CNOTN gate discussed in the next

section.

6.2 CNOTN Gate Protocol

The presence of EIT in the four-level scheme described in the previous section can

be combined with the Rydberg blockade effect to realise a CNOTN gate proto-

col [52]. This gate protocol is unique as the effect of EIT is independent of the

number of atoms present such that a single control atom can be used to influence

many target atoms. Whilst this approach was originally proposed in the context

of atomic ensembles, the residual interaction between Rydberg states in the target

ensemble requires further consideration and judicious choice of Rydberg state to

obtain high fidelity performance.

In the following discussion we will consider spatially separated target qubits in an

atomic array as it is easy to engineer strong control-target qubits whilst suppress-

ing target-target qubit interactions in this case. Practically this can be achieved

through geometric positioning of the atoms to ensure the target-target spacing

is larger than the control-target spacing, or through the use of different Rydberg

states for the control and target atoms [108].

The CNOTN gate protocol is illustrated in Fig. 6.2, where an array of atoms are

trapped with a spacing such that they are within the Rydberg blockade radius

allowing a single control atom to effect multiple target atoms simultaneously. The

control atom has qubit states |1〉 and |0〉 which is coupled to the Rydberg state

|r〉 with a two-photon Rabi frequency Ωr. The target atoms have qubit states∣∣0N〉 ≡ ⊗Nk=1 |0〉k and
∣∣1N〉 ≡ ⊗Nk=1 |1〉k, where k is the index for the k-th of N

target atoms, which are off-resonantly coupled with to |P 〉 with detuning ∆ by the

Raman lasers Ωp. A second laser with Rabi frequency Ωc couples |r〉 to |P 〉 such

that the qubit states
∣∣1N〉 and ∣∣0N〉 are in two-photon resonance with |r〉.

The pulse sequence used to perform the CNOTN gate is shown in Fig. 6.2(b): first
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Figure 6.2: The CNOTN gate protocol. (a) An array of trapped atoms separated such

that they are within the Rydberg blockade radius Rb with interaction V (R) > ε. A

single control atom (red) has the potential to effect multiple target atoms (blue). (b)

The sequence of laser pulses acting on the atoms to perform the CNOTN gate. (c) Energy

level structure for the control and target atoms illustrating when the EIT condition is

satisfied and (d) when the EIT condition is broken. These operations combine to realise

a CNOTN gate.

there is a π-pulse that acts on the control atom, then a smooth Raman π-pulse

Ωp(t) with
∫ T

0
Ω2
p(t)/(2∆) dt = π acts on the target atoms and finally a second

π-pulse is applied to the control atom. This pulse sequence is used to block or

enable transfer of the target atoms depending on the initial state of the control

atom.

Blocked transfer of the target atoms

If the control atom is initially in state |0〉, as shown in Fig. 6.2(c), the first π-

pulse has no effect on the control atom. During the smooth Raman π-pulse, the

evolution of the target atoms is described by the four-level EIT scenario described

in Sec. 6.1, i.e. the k-th atom of the target array will follow the dark state

|D〉k =
1√
2

[|d1〉k + |d2〉k] , (6.4)

where |d1〉k = |−〉 and |d2〉k = (1+x2)−1/2 [|+〉k − x |r〉k]. For Ωp = 0, x(t) = 0, the

dark states at the start and end of the pulse map directly to |±〉. This dark state
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evolves adiabatically during the application of the smooth pulse leading to
∣∣1N〉

k
→∣∣1N〉

k
with no change in the state of the target atoms, creating an effective EIT

between the states
∣∣1N〉

k
and |r〉k. The remaining non-dark states are separated

by an energy ≥ ε which suppresses non-adiabatic losses proportional to x(t)6 thus

enabling high fidelity suppression of transfer from
∣∣1N〉

k
→
∣∣0N〉

k
[52, 109]. If the

target atoms are initially in
∣∣0N〉

k
, the system follows an orthogonal dark state

which similarly follows an adiabatic evolution to remain within the state
∣∣0N〉

k
at

the end of the pulse sequence.

The second π-pulse is then applied to the control atom with no effect, thus per-

forming the step |0〉
∣∣1N〉→ |0〉 ∣∣1N〉.

Enabled transfer of the target atoms

If the control atom is initially in state |1〉, as shown in Fig. 6.2(d), the application

of the first π-pulse excites the control atom to |r〉. The strong dipole interactions

between Rydberg atoms causes the k-th target atom in the array to shift by an

energy Vk > 0, breaking the two-photon resonance condition between
∣∣0N〉

k
and

|r〉k. This means the Raman beams couple off-resonantly to |P 〉k and the smooth

pulse drives a two-photon Raman transition from
∣∣1N〉

k
→
∣∣0N〉

k
. The final π-

pulse on the control atom returns the control atom to |1〉. This has the net result

of |1〉
∣∣1N〉

k
→ |1〉

∣∣0N〉
k
.

By preparing the target atoms in qubit states
∣∣1N〉 or ∣∣0N〉, this method generates

a CNOTN gate with the following operations,

|0〉
∣∣0N〉→ |0〉 ∣∣0N〉 ,

|0〉
∣∣1N〉→ |0〉 ∣∣1N〉 ,

|1〉
∣∣0N〉→ |1〉 ∣∣1N〉 ,

|1〉
∣∣1N〉→ |1〉 ∣∣0N〉 .

(6.5)

The advantage of this method is the ability to use a single control atom to influence

many target atoms without changing the pulse sequence. This arises because
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this gate protocol utilises the blockade of the control atom to simply shift the

EIT resonance of the target atoms, rather than requiring sequential pulses on

each atom [107], or tailored engineering of the collective state evolution [30] to

implement multi-qubit gate operations.

6.3 CNOT Gate: Theoretical Fidelity

In our experiment, we consider a single control and target atom only therefore

restrict the following discussion to this case. To model the CNOT gate proto-

col, we simulate the evolution of the four-level system using the T.D.S.E. for the

Hamiltonian described by Eq. 6.1 setting δ = 0, ∆/2π = 1.2 GHz, ∆c = −∆. The

probe pulse shape is defined by

Ωp(t) =
Ωmax
p

2

(
1− 2 cos2(πt/τ)

)
, (6.6)

where τ is the effective pulse duration, resulting in a pulse area for Raman transfer

given by

Aθ =

∫ τ

0

Ωp(t)
2

2∆
dt =

3τ
∣∣Ωmax

p

∣∣2
16∆

. (6.7)

We set, Ωmax
p /2π = 70 MHz and τ = 0.65 µs, to obtain a smooth pulse of area

Aθ = π.

To estimate the fidelity of the gate we initialise the population in state |1〉 and

evaluate the state overlap fidelity F = Tr
[√√

ρtρ
√
ρt
]2, where ρt is the ideal

density matrix for the target state.

Fidelity on Target Atom

Considering only the target atom so that V = 0, we plot the fidelity as a function

of Ωc as shown in Fig. 6.3(a). We see that for Ωc > 2Ωp the fidelity becomes

independent of Ωc with F > 0.98.

In the limit that V 6= 0 the interaction between the Rydberg states of the control

and target atoms has to be considered. We plot the fidelity of the transfer between
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Figure 6.3: (a) The blocking fidelity of EIT for V = 0 as a function of Ωc where we can

see for Ωc > 2Ωmax
p the fidelity becomes independent of Ωc, and (b) the transfer fidelity

as a function of the interaction V for r = Ωc/Ω
max
p = 0.5, 2 and 6.

|1〉t → |0〉t as a function of V in Fig. 6.3(b) for r = Ωc/Ω
max
p = 0.5, 2 and 6. This

shows that for V > 20~Ω2
c/(4∆) a fidelity F > 0.98 can be achieved by careful

choice of Rydberg state so that the blockade effect will break the resonant EIT

condition on the target atom. We use these results to determine the requirements

on Ωc and V to obtain a high-fidelity CNOT gate in Sec. 6.2.

Blocking Fidelity

We now estimate the fidelity of blocking the transfer on the target atom when the

control atom is in qubit state |1〉. Fig. 6.4(a) shows the evolution of the populations

of the states |1〉, |0〉 and |r〉 for V = 0 where it can be seen that the Raman pulse

(illustrated by the grey line) has no effect as this his the case where EIT condition

is satisfied. Fig. 6.4(b) shows the case where V = 40~Ω2
c/(4∆) which shifts the

resonance of the state |r〉 so that the EIT condition is broken and Raman transfer

occurs, demonstrated by an exchange of the populations ρ|1〉 (blue) and ρ|0〉 (red)

while the populations ρ|P 〉 and ρ|r〉 remain unchanged.
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Figure 6.4: Time evolution of the smooth pulse in the 4-level system for (a) V = 0

and (b) V = 40~Ω2
c/(4∆) showing high fidelity blocking and state transfer respectively

while leaving the populations of |P 〉 and |r〉 unchanged. Calculated for ∆/2π = 1.2 GHz,

Ωmax
p /2π = 70 MHz and Ωc = 6Ωp.

6.4 Bell State Preparation Fidelity

As discussed in Sec. 2.3, to verify the quantum nature of the CNOT gate we first

need to prepare one of the maximally entangled Bell states |Φ±〉 or |Ψ±〉, defined

in Eqs. 2.12. To do this the control qubit is placed in a superposition (|0〉 ±

|1〉)/
√

2 whilst the target qubit is left in a pure state |0〉 or |1〉; the choice of target

qubit state determines which Bell state is prepared. Assuming the target qubit

is prepared in |0〉, the two-qubit input state is the mixed state (|00〉 ± |10〉)/
√

2.

The CNOT gate is then applied to the mixed state which prepares one of the Bell

states |Φ±〉. If the target qubit is initially prepared in |1〉 then the Bell states are

|Ψ±〉.

Experimentally we will prepare the Bell state |Φ+〉 and we want to estimate the

Bell state preparation fidelity that we can achieve with the experimental settings.

We can use the Hamiltonian given in Eq. 6.1 to estimate the Bell state preparation

fidelity however, we perform Raman and Rydberg excitations using the D2 line of

caesium which has four levels in the intermediate state hyperfine manifold that

are not accounted for in Eq. 6.1.

To do this we define the qubit states |0〉 = |F = 3,mF = 0〉, |1〉 = |F = 4,mF = 0〉
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Figure 6.5: (a) Energy level scheme showing the hyperfine structure of the 6P3/2 inter-

mediate level where |Pi〉 represent the levels |F ′ = i〉 for i = {2, 3, 4, 5}. (b) Bell state

preparation fidelity showing the coupling to all the intermediate levels of the
∣∣6P3/2

〉
hyperfine manifold.

and |r〉 =
∣∣81D5/2,mj = 5/2

〉
which are coupled by Ωp and Ωc via the intermediate

state using σ+ circularly polarised light in each case. The accessible hyperfine

levels of the intermediate state for σ+ polarisation are |Pi〉 = |F ′ = i,mF ′ = +1〉

for i = {2, 3, 4, 5}. It is important to include these levels as they are only separated

by ∼150 - 250 MHz, such that there may be some coupling between them and the

excitation pulses Ωp and Ωc that can cause spontaneous emission of the qubits

from the computational basis. Including the transitions to the intermediate states

in the Hamiltonian gives Eq. 6.8 where ∆F ′=i = ∆− δhfs, ΩF ′=i
p,j = Ep · dj→F ′/~ for

j = {0, 1}, and ΩF ′=i
c = Ec · dr→F ′/~ where d is the dipole matrix element with

C6 = −1627.8 GHz.µm6 calculated using ARC [101].

We use the Lindblad master equation to solve the Hamiltonian given by Eq. 6.8

to estimate the Bell state preparation fidelity for experiment parameters; |r〉 =∣∣81D5/2,mj − 5/2
〉
, ∆/2π = 1.03 GHz, with a probe beam power of 80 nW with a

beam waist ω0 = 3 µm, a coupling beam power 140 mW with a waist ω0 = 12 µm

and for an atom separation of 5 µm. The finite lifetime of the Rydberg state

is included as a decay to the |Pi〉 levels for the control atom and as a decay to

a dark state for the target atom. In the simulation the values associated with

spontaneous emission and decay are assumed to fall into a dark state that is

outside the computational basis and we assume that the control qubit is prepared
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perfectly in the superposition (|0〉+ |1〉)/
√

2, with perfect coupling to the Rydberg

state and no coupling to the intermediate hyperfine levels. The results are shown in

Fig. 6.5(b) with a predicted Bell state preparation fidelity F = 0.973 when effects

of decay are included. This fidelity is limited by the experimentally attainable

Rydberg laser power which limits Ωc, however for a larger Rydberg power and

increased intermediate state detuning F > 0.99 is achievable.
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Chapter 7

Experiment Set-up

The long term goal of this project is to demonstrate a hybrid quantum system be-

tween cold atoms and a superconducting microwave resonator. The hybrid system

requires cryogenic temperatures which presents a problem as at cryogenic temper-

atures the caesium atoms stick to the walls of the vacuum chamber, meaning the

standard technique of cooling atoms directly from background vapour pressure is

not possible. To overcome this challenge we use a dual chamber design where cae-

sium atoms are loaded from background vapour in a non-cryogenic room temper-

ature environment into a magneto-optical trap (MOT), and are then transported

∼ 30 cm to a second vacuum chamber, which we call the science chamber, using a

mechanical translation stage. A schematic of this design is shown in Fig. 7.1. Note

that none of the experiments presented in this thesis are performed at cryogenic

temperatures.

The MOT chamber is kept under vacuum with a background pressure of 9.3 ×

10−9 mbar using a 3 L/s ion pump that houses two SAES caesium alkali metal

dispensers to provide a source of atoms for the experiment. The MOT and science

chambers are separated by a narrow differential pumping tube which provides

independent pressures in both chambers enabling the science chamber to be kept

at an ultra-high vacuum (UHV) pressure of 1.7 × 10−10 mbar using a 70 L/s

Gamma Vacuum ion pump. A pair of high numerical aperture (NA) lenses (Geltech

64
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Figure 7.1: Experiment CAD drawing showing the two vacuum chambers with the MOT

chamber on the right of the image connected to the science chamber via a differential

pumping tube. The MOT chamber is connected to a 3 L/s ion pump with caesium alkali

dispensers and the science chamber connected to a 70 L/s ion pump to maintain vacuum.

The yellow line illustrates the path of the dipole trapping laser and red lines depict points

where light can enter the vacuum chambers.

355561) with NA = 0.45 at 852 nm with a working distance of ∼7 mm, are located

inside the science chamber to achieve diffraction limited foci for trapping and site

addressability, while three pairs of rectangular shim coils (Helmholtz configuration)

control the magnetic field environment. An additional pair of circular bias coils

are placed around the science chamber viewport to provide a large bias magnetic

field to discriminate the hyperfine magnetic sublevels and define a quantisation

axis. For a detailed description of the vacuum chamber design and construction,

the reader is referred to Refs. [110, 111].

In this section, we will focus on modifications made to the experiment that have

been added to improve the fidelity of quantum gate operations. We will briefly



Chapter 7. Experiment Set-up 66

discuss well-known laser cooling and trapping techniques and their implementation

to realise a MOT and optical dipole trap experimentally, and describe the process

of single atom trapping and imaging in the experiment.

7.1 Laser Cooling

Laser cooling is an essential tool for the cooling and trapping of atoms in many

research laboratories around the world [112–116]. The first step to cool and trap

atoms is using a magneto-optical trap (MOT) [117] which consists of a pair of anti-

Helmholtz magnetic field coils combined with three orthogonal pairs of counter-

propagating laser beams with circular polarisation. The coils create a magnetic

quadrupole field with a magnetic field zero at the origin and a uniform linear

gradient that perturbs the atomic energy levels (Zeeman effect). The laser beams

intersect at the centre of the coils and are red-detuned from the atomic transition,

ω0, such that as the atoms move away from the zero point, the Zeeman shift of the

magnetic field brings the atoms closer to the resonance of the beam going in the

opposite direction. Thus the atoms are trapped by a position dependent restoring

force which returns the atoms to the centre of the beam.

Trapping atoms in a MOT in this way leads to cooling via the Doppler effect. It

works on the principal that a moving atom red-detuned from resonance experiences

a shift which brings it closer to the laser’s resonance frequency, propagating in the

opposite direction to the atom’s motion, leading to a frictional force which slows

the atom down. The MOT cools the atoms to the Doppler limited temperature,

TD =
~γ
2kB

, (7.1)

where γ is the natural linewidth of the cooling transition and kB is the Boltzman

constant. The Doppler temperature for caesium on theD2 line is TD = 125 µK [89].

Cooling below the Doppler temperature can be achieved using sub-Doppler cooling

techniques in atoms with Zeeman substructure which cool the atoms to a few times

the recoil-temperature [75, 112, 118].
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Figure 7.2: Energy levels addressed for cooling and trapping on the D2 line of caesium.

The cooling light (purple) is red-detuned from the |F = 4〉 → |F ′ = 5〉 transition by

∆ = −3Γe, the repump light (green) is resonant with |F = 3〉 → |F ′ = 4〉, optical

pumping (yellow) is resonant with |F = 4〉 → |F ′ = 4〉 and the blow away (blue) is

resonant with |F = 4〉 → |F ′ = 5〉.

7.1.1 Cooling Lasers

To laser cool the atoms experimentally we use two home-built external cavity diode

lasers (ECDL) [119] each with an 852 nm diode (Thorlabs L850P150) providing up

to 150 mW of power. The main cooling laser is used for cooling, optical pumping on

the D2 line and resonant blow away, and the second laser is the repump laser used

to pump atoms out of the F = 3 state. The transitions used within the caesium

atom for cooling and trapping on the D2 line of caesium are illustrated in Fig. 7.2.

The cooling laser is locked to the
∣∣6S1/2, F = 4

〉
→
∣∣6P3/2, F

′ = 5
〉
transition via

polarisation spectroscopy [120] and red-detuned by 400 MHz through a double-

pass acousto-optical modulator (AOM) operating at 200 MHz. The cooling light

then passes through a tapered amplifier (TA) to increase the available power for

trapping and cooling, followed by another double-pass AOM operating at 200 MHz

which is used to control the amplitude and detuning of the cooling light. The

light is then coupled into a polarisation maintaining (PM) fiber and sent to the

experiment.

Before the TA, there are two pick-off’s using polarising beam splitters (PBS) to
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obtain separate paths for the D2 optical pumping and blow away light which are

described in Sec 8.1. These paths have double pass AOM’s to control the detuning

of the light giving frequency control for the desired transitions and are recombined

on a 50:50 beamsplitter before being coupled into the same PM fiber. It should

be noted here that an upgrade to the experiment enabled optical pumping on the

D1 line as is discussed in Sec. 8.2.

The repump laser is used to repump any atoms that have been depumped into

the
∣∣6S1/2, F = 3

〉
dark state back to the cooling transition. The repump laser

is locked using polarisation spectroscopy to the cross-over transition between∣∣6S1/2, F = 3
〉
→

∣∣6P3/2, F
′ = 2

〉
and

∣∣6S1/2, F = 3
〉
→

∣∣6P3/2, F
′ = 4

〉
which

provides a better signal-to-noise ratio than locking to the
∣∣6S1/2, F = 3

〉
→∣∣6P3/2, F

′ = 4
〉
transition. A double pass AOM operating at 88 MHz is in place to

shift the frequency of the light back to the
∣∣6S1/2, F = 3

〉
→
∣∣6P3/2, F

′ = 4
〉
tran-

sition and is coupled into the same PM fiber as the main cooling light following

combination on a 50:50 beam splitter.

The AOMs not only provide frequency control but also enable fast switching of

laser pulses and are accompanied by mechanical shutters [121] in each laser path to

prevent leakage light reaching the experiment. We have the ability to characterise

the MOT using a CCD camera (DMK 335G445), where we measure ∼ 106 atoms

which is sufficient for loading an optical dipole trap - the main tool used in our

experiments. After the atoms are loaded into the MOT, they are cooled to sub-

Doppler temperatures using polarisation gradient cooling (PGC) [112]. To achieve

this the cooling detuning is ramped to ∆ = −15Γe for a period of 10 ms to decrease

the temperature of the atoms from T = 300 µK to 10 µK.

7.2 Optical Dipole Trap

In the experiment described in this thesis, the atoms in the MOT must be trans-

ported over a distance of 30 cm to the science chamber. This is achieved using an
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optical dipole trap (ODT) and a mechanical translation stage. Here we give a brief

overview of optical dipole trapping and it’s implementation in the experiment. A

more detailed description of the optical dipole trap can be found in previous group

theses [110, 111].

Optical dipole traps are produced by tightly focusing a (typically) red-detuned

dipole beam at the centre of the MOT. By using a red-detuned beam the atom is

drawn and trapped in a region of high intensity. The dipole light exerts a dipole

force on the atoms creating a conservative potential [122],

Udip(r) =
3πc2

2ω3
0

Γ

∆
I(r), (7.2)

where ∆ = ω0 − ω is the detuning from the atomic resonance, ω0 is the angular

frequency of the atomic resonance, Γ is the decay rate from the excited state, I(r)

is the position dependent field intensity. The scattering rate from the trapping

field is,

Γsc(r) =
3πc2

2~ω3
0

(
Γ

∆

)2

I(r). (7.3)

From these equations we can see that the dipole potential and scattering rate

depend strongly on the laser’s detuning and intensity therefore optical dipole traps

are formed using large detuned and high-intensity beams to minimise scattering.

In practice atoms are multi-level; taking this into account the expression for the

dipole potential for atoms in the ground state at the maximum intensity is,

U0 =
3πc2

2

(
1

3

ΓD1

ω3
D1

∆D1

+
2

3

ΓD2

ω3
D2

∆D2

)
, (7.4)

where ∆D1,D2 are the effective detunings from the D1 and D2 lines of caesium

respectively [122].

The dipole beam focused on an atom causes a spatially varying potential that is

described by the intensity distribution of a Gaussian beam, i.e.,

I(r, z) =
I0

1 + z2/z2
R

exp

(
−2

r2

w2(z)

)
, (7.5)

where I0 = 2P/(πw2
0), zR = πw2

0/λ is the Rayleigh length and w0 is the 1/e2 in-

tensity radius of the beam waist. The beam waist evolves along the axial direction
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as w(z) = w0(1 + (z/zR)2)1/2, which gives the trapping potential for the Gaussian

trapping beam,

U(r, z) =
U0

1 + z2/z2
R

exp

(
−2

r2

w2(z)

)
. (7.6)

The trapping potential can be approximated as a harmonic oscillator with the

oscillation frequencies of the trapped atoms given by

ωr =

√
4U0

mw2
0

and ωz =

√
2U0

mz2
r

, (7.7)

for the radial and axial directions respectively. The Rayleigh length is larger than

the beam waist such that ωr � ωz.

7.2.1 Experimental Implementation

We achieve optical dipole trapping using a 1064 nm Nd:YAG laser, providing 10 W

of light and use an 80 MHz AOM for fast switching. The ODT is focused to a

waist of 43 µm and overlapped with the MOT in the MOT chamber for 50 ms,

loading 105 atoms into the ODT. The atoms in the ODT are then cooled to 10 µK

by polarisation gradient cooling by applying the cooling beams for 20 ms, and

are then transported 30 cm using a mechanical translation stage into the science

chamber in 800 ms.

The ODT was characterised in previous group theses [110, 111] and the results are

stated here for completeness: the atoms in the ODT have a lifetime of 4.9 s and

the ODT has an axial trap frequency ωz/2π = 8 Hz and, a radial trap frequency

ωr/2π = 1.1 kHz.

7.3 Single Atom Trapping and Imaging

In this experiment we require single atoms which we achieve by loading a micro-

scopic tweezer trap from the ODT. This is implemented following the technique

developed by Schlosser et al. [123] which uses light assisted collisions to expel pair

of atoms from the microscopic tweezer trap.
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Figure 7.3: Atom loading sequence showing; (a) the MOT loading stage, the red arrows

indicate the cooling and repump light, (b) polarisation gradient cooling (PGC) of the

MOT and the overlap with the optical dipole trap (ODT) in green, (c) optical transport

where the ODT is moved from the MOT chamber to the science chamber, (d) the ODT is

overlapped with a pair of microscopic tweezer traps and (e) the atoms are cooled and pair

of atoms are expelled from the microtraps by light assisted collisions (LAC) to achieve a

single atom in each microtrap.

7.3.1 Single Atom Trapping

Following optical transport which brings the atoms into the science chamber, the

ODT is overlapped with a pair of microscopic tweezer traps (microtraps) for a dura-

tion of 60 ms. The microtraps are formed using a Coherent 1064 nm Mephisto laser

with two trapping sites created using PBS’s to split and recombine the light with

a waist of 1.85 µm. During the overlap stage, three pairs of cooling beams are ap-

plied with intensity I = Isat per beam and at a detuning ∆ = −6Γe, which enables

loading of multiple atoms into each tweezer trap, as illustrated in Fig. 7.3(d-e).

The cooling light is modulated out-of-phase with the microtrap light at 1 MHz to

minimise the differential AC Stark shift induced by the trapping light. Single atom

loading is achieved using light assisted collisions (LACs) [123] with the cooling

light detuned by ∆ = −8Γe with intensity I = 0.5Isat per beam. The light assisted

collisions cause pairs of atoms to be removed from the trap leaving only one or no

atom present in each microtrap at the end of this stage with 50 % probability.
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7.3.2 Single Atom Imaging

The single atoms in the microtraps are imaged using fluorescence collected from

the atoms on a sCMOS camera (Andor Zyla 5.5 USB). The details of this can be

found in Ref. [124] and will be summarised here.

To distinguish the presence of an atom from background light, the scattering rate

from the trapped atom needs to be maximised. The scattering rate for a single

atom is given by [75],

Γsc =
Γe
2

I/Isat

1 + I/Isat + 4(∆/Γe)
, (7.8)

where ∆ is the detuning and I the intensity of the laser. This relation suggests

that the greatest scattering rate is achieved on resonance however working in this

regime causes heating, so that the atom will eventually be lost from the trap. To

prevent this from happening, imaging is performed with I = 0.5Isat of cooling

power at a detuning of ∆ = −3Γe with the cooling light modulated out-of-phase

with the microtrap light. This results in an effective photon scattering rate of

Γsc = 450 photons/ms, with an expected flux of 15 photons/ms incident on the

camera [124]. The scattered light is collected in a 3×3 pixel region of interest, cen-

tred on the atom, resulting in a binomial distribution of photon counts which detect

the presence or absence of an atom. An example of this is shown in Fig. 7.4(a)

and (b) which plots the histograms of each microtrap corresponding to background

(BG) and single atom loading, showing that they are clearly distinguishable from

each other.

In our experiments we take two images: the first image is taken after the LAC

stage to verify if a single atom has been loaded into the microtrap and the second

image is taken at a later stage after various pulse sequences have been applied,

e.g. a Raman rotation. Fig. 7.4(c) shows a correlation between counts in the first

image and the second image taken 50 ms later. We can clearly see two distinct

clusters for each microtrap (trap 1 = blue, trap 2 = red); the top right quadrant

counts atoms present in both images and the bottom left quadrant shows no atom
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Figure 7.4: Probability distribution of counts from 250 measurements of (a) trap 1

and (b) trap 2, that distinguish background from a trapped atom within a set region of

interest. (c) Correlation plot showing counts from a first image plotted against a second

image taken some time later.

was detected in either image. The few points in the bottom right quadrant are

atoms loaded in image one but lost from the microtrap by image two. Recording

data in this way enables us to measure the probability to retain an atom after

imaging, achieving a >98 % retention probability for both traps.

The characterisation of the microtraps is detailed in previous group theses [110,

111] and is summarised here. The lifetime of the microtrap is 8.7 s at a trap depth

of U0 = 1 mK and is mainly limited by background collisions [124]. The radial

trapping frequencies are ωr/2π = 23.7 and 23.2 kHz which give waists of 1.88 µm

and 1.81 µm for the microtraps. The temperature of the atoms in the microtraps

is T = 16 µK which is measured using the release-recapture method [125, 126].

7.4 Summary

In this chapter we have given an overview of the core cold atom experiment that

is used throughout this thesis. Laser cooling and trapping techniques are used to

create a MOT loaded from background vapour caesium atoms, which are loaded

into an optical dipole trap and transported 30 cm to a science chamber. The

atoms are then loaded into a pair of microscopic tweezer traps and light assisted
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collisions are used to ensure only one atom is loaded into each microtrap, with

50 % probability. The atoms are imaged by non-destructive fluorescence imaging

on a sCMOS camera with a retention efficiency of > 98 %.



Chapter 8

Qubit State Preparation and

Readout

To prepare the atoms in a state useful for performing quantum gates, we use the

technique of optical pumping [86, 127]. This involves applying a magnetic field

using coils placed around the experiment chamber to define a quantisation axis

and to separate the hyperfine levels of the atom. Optical pumping light can then

be applied along the quantisation axis to pump the atoms into a desired hyperfine

level, in our case this is the state |1〉 = |F = 4,mF = 0〉.

For the results presented in this thesis, a new optical pumping laser was installed to

enable optical pumping on the D1 line of caesium, to improve the optical pumping

efficiency compared to using the D2 line. In this chapter we discuss our ability to

prepare and measure the atoms in the desired qubit state, the detection methods

used to distinguish between the qubit states |1〉 and |0〉 = |F = 3,mF = 0〉 and de-

scribe the optical pumping technique used experimentally, including a comparison

of the optical pumping efficiency between the D1 and D2 lines of caesium.

75



Chapter 8. Qubit State Preparation and Readout 76

8.1 Hyperfine State Discrimination

Our ability to determine which qubit state the atoms are in is crucial to performing

rotations between the ground states |1〉 → |0〉. To do this we use a blow away beam

which is sourced from the cooling laser (see Sec. 7.1) and use AOMs to shift the

blow away light such that it is resonant with the
∣∣6S1/2, F = 4

〉
→
∣∣6P3/2, F

′ = 5
〉

transition. The blow away beam heats atoms in the F = 4 manifold out of the

trap, which leaves only atoms in the F = 3 manifold.

The blow away light enters the vacuum chamber via the same path as the optical

light as illustrated in Fig. 8.1 with a beam waist of 500 µm and a power of 20 µW

corresponding to ∼ 2Isat. The microtrap light is chopped on and off at 1 MHz to

minimise light shifts while the blow away light is applied. Using this blow away

technique we can remove atoms from the microtrap in the F = 4 manifold with

an efficiency > 99% [110].

The atoms are imaged in the F = 4 hyperfine level, meaning that to image atoms

in the F = 3 hyperfine level we need to apply repump light (see Sec. 7.1.1). The

repump light pumps the atoms into the F = 4 manifold, then fluorescence imaging

(described in Sec. 7.3.2) is used to detect the presence of an atom. Using the blow

away beam prior to imaging allows us to distinguish between atoms in the F = 4

and F = 3 hyperfine levels, and realise state sensitive readout.

8.2 Optical Pumping

To perform coherent operations it is essential to initialise the atoms in a given

quantum state. This involves initialising the atoms in a specific Zeeman sub-level

within the hyperfine manifold which we achieve by optical pumping.

There are two main ways in which atoms can be optically pumped; stretched

state and clock state optical pumping. Clock state optical pumping - so called

because this transition is used in optical clocks to define the second [83] - places
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Figure 8.1: A schematic of the experiment set-up describing the blow away and optical

pumping pathways along the y-axis. A 7 G bias field is applied along the z-axis to separate

the hyperfine levels for qubit state preparation and the pathways for the Raman laser

and microwave antenna are shown.

the atoms in the state |F = 4,mF = 0〉 using π-polarised light. The dipole tran-

sition between |F = 4,mF = 0〉 → |F ′ = 4,mF = 0〉 is forbidden due to angu-

lar momentum selection rules, however spontaneous emission occurs randomly so

that ∆mF = {−1, 0,+1}, allowing the atoms to accumulate in the dark state

|F = 4,mF = 0〉 as illustrated in Fig. 8.2(a). The clock state is magnetically in-

sensitive which is advantageous as random fluctuations in the applied magnetic

field do not couple into the experiment. We utilise clock state optical pumping in

all the results presented in this thesis.

Stretched state optical pumping places the atoms in one of the extreme hyperfine

levels, which for caesium are |F = 4,mF = ±4〉, using σ±-polarised light. The

case of σ+-polarised light is shown in Fig. 8.2(b) where all the atoms are optically

pumped into the dark state |F = 4,mF = 4〉.

Previously we have used the D2 line for optical pumping [47] but an experimental

upgrade now means we can apply optical pumping using the D1 line of caesium.

The advantage of using the D1 line for optical pumping is that there are only

two hyperfine levels associated with the
∣∣6P1/2

〉
level as shown in Fig. 8.3(a) and

these are separated by ∼ 1.1 GHz [89] which makes unwanted coupling between
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Figure 8.2: The possible optical pumping schemes are (a) clock state optical pumping

using linearly polarised light and (b) stretched state optical pumping using circularly (σ+

in this case) polarised light, shown here for theD1 line. In each case the atoms accumulate

in a dark state which is not coupled to the light fields due to angular momentum selection

rules.

the hyperfine levels less likely to occur. On the other hand, the
∣∣6P3/2

〉
level

of the D2 line shown in Fig. 8.3(b), has four hyperfine levels separated by ∼

150 − 250 MHz [89] which makes off-resonant coupling more likely. This can

reduce the effectiveness of the optical pumping beam so that the atoms are not be

well-prepared in the desired hyperfine state and, ultimately, decrease the fidelity

of the qubit rotations. To compare the effectiveness of each optical pumping laser

we make a comparison of the two.

The source of the 852 nm light used to drive D2 optical pumping comes from a

pick-off on the cooling laser beam path. A double-pass AOM is used to shift the fre-

quency of the light by 80 MHz to be resonant with the transition
∣∣6S1/2, F = 4

〉
→∣∣6P3/2, F

′ = 4
〉
and is coupled into a polarisation maintaining fiber to be sent to

the experiment. The 895 nm light for driving optical pumping on the D1 line is

provided by a home-built ECDL with a 895 nm diode (EYP-RWE-0920-04010-

1500-SOT02-0000) and locked on the transition
∣∣6S1/2, F = 4

〉
→ |6P1/2, F

′ = 4〉

using polarisation spectroscopy [128]. This light passes through two double pass

AOMs operating at 250 MHz to enable fast pulse switching and for possible future

locking to the |6P1/2, F
′ = 3〉 level. The D1 light is also sent to the experiment
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Figure 8.3: The optical pumping schemes for (a) D1 line and (b) D2 line, showing the

hyperfine structure in each case.

using a polarisation maintaining fiber.

The light for both D1 and D2 optical pumping beams address the experiment along

the same axis as shown in Fig. 8.1, by combining their light using a 50:50 fiber

splitter. This gives both optical pumping beams the same fiber output therefore

the same beam path to address the atoms. The optical pumping light passes

through a Glann-Taylor polariser to achieve linearly (π) polarised light with high

purity before entering the vacuum chambers. A 7.5 G bias field is applied along the

y-axis of the experiment chamber to drive π-transitions with the optical pumping

beams. During the optical pumping stage, repump light sourced from the molasses

beams (see Sec. 7.1.1), is applied to repump atoms that fall into F = 3 back into

the F = 4 manifold.

8.2.1 Optimisation of Optical Pumping

The fidelity of optical pumping can be measured using a depump method [129].

As illustrated in Fig. 8.4(a), this involves applying an optical pumping pulse with

repump light to pump the atoms into the desired state, |1〉 = |F = 4,mF = 0〉.

After this the optical pumping light is applied without repump for a variable

duration so that the atoms will accumulate in the F = 3 manifold as the length

of the pulse increases. Using the blow away pulse, the F = 3 and F = 4 levels can
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Figure 8.4: A comparison of the effectiveness of using the D1 and D2 lines for optical

pumping. (a) The optical pumping light is applied without repump light for a variable

time to measure the rate of depump from the |F = 4,mF = 0〉 state for the D2 (red) and

D1 (blue) lines with depump rates τD2
DP = 10 ms and τD1

DP = 30.9 ms respectively. (b)

The effectiveness of each optical pumping line is compared by applying a X(π)-rotation

as the optical pumping pulse duration is scanned. This gives an optical pumping rate of

τD2
OP = 390 µs and τD1

OP = 440 µs for the D2 (red) and D1 (blue) lines respectively.

be distinguished allowing us to measure the rate of depump of the atoms from the

|1〉 state. A longer depump rate, means more efficient optical pumping. To enable

a fair comparison of the D1 and D2 lines, the power in each optical pumping beam

is 20 µW and as they address the atoms via the same optical path after the fiber,

all other beam parameters should be the same.

Using this depump method we compare the effectiveness of the D1 and D2 lines,

when used for optical pumping. The data are plotted in Fig. 8.4(a) and are fit to

a function of the form −A exp(−t/τ) + B, where τ is the decay rate for depump.

From the fits, the depump decay rates are τD2
DP = 10 ms and τD1

DP = 30.8 ms showing

a three-fold increase in efficiency when using the D1 line for optical pumping.

To measure the optical pumping rate we use the sequence shown in Fig. 8.4(b),

which allows us to directly measure the effectiveness of the optical pumping beam

as a function of its duration. The optical pumping beam (with repump) is applied

for a variable duration, this is followed by an X(π) rotation (see Sec. 10.3) and
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a blow away pulse which allows us to measure the effectiveness of the optical

pumping beam by observing how quickly the atoms are transferred from |1〉 → |0〉

= |F = 3,mF = 0〉. The data for this measurement are presented in Fig. 8.4(b) for

the D2 (red) and D1 (blue) optical pumping beams. The data are fitting with the

same function as the depump scans, to give optical pumping rates τD2
OP = 360 µs

and τD1
OP = 440 µs.

The fidelity of optical pumping is calculated using [129],

FOP = 1− 1

τDP/τOP
, (8.1)

which assumes there is an optical pumping rate τOP pumping atoms into |1〉, and

a depumping rate τDP removing atoms from |1〉. This essentially normalises the

power of the optical pumping laser. Using this relation gives fidelities FD2
OP = 0.966

and FD1
OP = 0.986 for D2 and D1 optical pumping respectively.

From the calculation of this fidelity we can see that there has been an improvement

in the optical pumping efficiency by using the D1 line, however there is still room

for more improvement. The main issue with optical pumping in our experiment

is the ability to set the polarisation due to access restrictions on the optics table.

The optical pumping beams have their polarisation set before entering the MOT

chamber, the light then passes through several windows including a low optical

quality CF16 Kodial glass viewport, in the MOT and science chambers before it

can be measured again. This means that there may be some distortion to the

polarisation of the optical pumping beam so that it has a weak σ± component

that causes leakage from the optical pumping state.

8.3 Summary

The pair of trapped atoms are addressed by an optical pumping beam which pre-

pares the atoms in the qubit state |1〉 = |F = 4,mF = 0〉 and a blow away beam

is used to distinguish between atoms in the F = 4 and F = 3 manifolds to enable

state sensitive readout of the ground state hyperfine levels. We have compared the
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efficiency of applying optical pumping using the D1 and D2 lines of caesium and

found some improvement in using the D1 line. There are however some experi-

mental challenges associated with setting the polarisation of the optical pumping

beam which impacts the fidelity of preparing the atoms |1〉 and subsequently qubit

rotations we want to apply.



Chapter 9

Excitation Lasers and Microwave

Antenna

In this chapter we describe the laser systems that are used to experimentally realise

two-photon Rydberg excitations and Raman transfer. The key features are the

installation of a SolsTiS ECD-X (MSquared) laser system, and the implementation

of an optical phase-lock loop to the Raman laser. In addition, we describe the

installation of a microwave antenna to realise ground state rotations.

A schematic of the arrangement of the Rydberg, Qubit and Raman lasers, and

microwave horn with respect to the atoms is shown in Fig. 9.1. This addressing

arrangement of the lasers and microwaves is used consistently throughout this

thesis.

9.1 Qubit and Rydberg Lasers

The work presented in this thesis uses a two-photon ladder excitation scheme to

excite to the Rydberg state |r〉 =
∣∣81D5/2,mj = 5/2

〉
. The two-photon process

is achieved using an 852 nm laser to provide the lower photon for excitation and

one of two Rydberg lasers for the upper photon. Excitations to the Rydberg

83
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Figure 9.1: A schematic of the experiment set-up showing the position of the Rydberg

(green), Qubit (red) and Raman lasers (brown) as the address the atoms. The position

of the microwave horn is outside of the science chamber (not shown in the schematic)

which is placed outside a viewport at 45◦ w.r.t. the z-axis.

state require narrow linewidth, well-stabilised lasers to minimise errors which we

implement this using a high-finesse ultra-low expansion (ULE) cavity, achieving

sub-kHz linewidth with a measured linear frequency drift of ∼1 Hz/s, details of

which can be found in Refs. [111, 130]. The free spectral range of the ULE cavity

is 1.5 GHz which puts a boundary on the detuning from the intermediate state

and the possible Rydberg state [111, 130].

9.1.1 Qubit Laser

The Qubit laser is a home-built ECDL operating at 852 nm with an Eagleyard

diode(EYP-RWE-0860-06010-1500-SOT02-0000), which has a maximum output

power of 100 mW. The Qubit laser is locked to a cavity mode detuned from∣∣6P3/2, F
′ = 5

〉
by +1.134 GHz using the Pound-Drever-Hall technique [131], with

frequency and intensity control achieved using the -1 diffraction order of a double-

pass AOM with a central frequency of 80 MHz to give a detuning at the atoms

∆A/2π = +870 MHz. A mechanical shutter is also used to prevent leakage light

reaching the atoms. The light is coupled into a polarisation maintaining (PM) fiber

and output to the experiment. Before entering the science chamber the polarisa-
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tion is set to σ+ circular polarisation and the beam is focused so that it addresses

a single atom within the science chamber, with a 1/e2 beam waist of 3 µm.

The atom that the Qubit laser addresses in the science chamber is labelled the

control atom as the atom is used as the control qubit in the demonstration of the

CNOT gate in Chapter 11. The optimisation of the two-photon excitation to the

Rydberg state on the control atom is presented in Sec. 10.4.

In addition to Rydberg excitation, the Qubit laser is used in an optical phase lock

loop to stabilise the Raman laser (Sec. 9.2) and to enable single site sensitivity

during a microwave rotation (Sec. 10.3).

9.1.2 Ryberg lasers

The two Rydberg lasers used to provide the upper photon for Rydberg excitation

are a home-built ECDL with 1018 nm AR-coated laser diode (Sacher SAL-1030-

060) and a SolsTiS ECD-X laser from MSquared. Both lasers are stabilised to

the high-finesse ULE cavity with locking achieved using an electronic sideband

technique described in [111, 130]. The relevant detail of the Rydberg laser locks

for this thesis is that they are generated using an EOM which is controlled by

a variable frequency input that we scan to find a particular Rydberg state. The

ULE lock is used to achieve a linewidth that is narrow compared to the lifetime

of the Rydberg state, typically 10-100 kHz [111, 130], allowing quantum gates to

be performed.

Rydberg B

Our home-built Rydberg laser which we call Rydberg B, passes through a ta-

pered amplifier to increase the power available and frequency doubled via cavity-

enhanced second harmonic generation (SHG) [132] to obtain green light at 509 nm.

The linewidth of this laser was measured to be ∼ 130 Hz at 509 nm [130]. The

laser pulses are intensity controlled using an 80 MHz AOM and coupled into PM
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fiber, giving ∼ 100 mW of available green light at the atoms with σ+ circular

polarisation. To increase the power available at the atoms we later removed the

AOM and used only mechanical shutters to control the Rydberg laser pulses giving

∼ 140mW of green light at the atoms.

SolsTiS

The SolsTiS ECD-X laser is a commercial Ti:Sapph laser from MSquared and was

installed to provide a well-stabilised narrow-linewidth laser with an increase of the

power available at the atoms compared to Rydberg B. The main features of this

laser are a Vedri V-18 (Coherent) pump laser, a SolsTiS module and an ECD-X

frequency doubling module. The SolsTiS module is pumped with the Vedri V-18

laser to output a stable mode at 1018 nm which is frequency doubled to 509 nm

by the ECD-X module. A pick-off from the SolsTiS module allows us to stabilise

the laser to the ULE reference cavity giving a laser with a narrow linewidth and

excellent frequency stability. The SolsTiS module inherently produces a linewidth

<50 kHz without an external cavity, thus when coupled to the ULE cavity in our

experiment, we expect a narrower linewidth compared to the home-built Rydberg

B laser (≤ 130 Hz), however we have not measured this directly.

The ECD-X module is used to improve the efficiency of frequency doubling by

directing the fundamental laser beam into an enhanced cavity (in conventional

methods of single pass frequency doubling using non-linear crystals the efficiency

is very low, typically 0.01%). When the beam is correctly aligned the intensity of

the fundamental beam increases inside the ECD-X module. The cavity mirrors,

except the input coupler, are highly reflective at the fundamental mode such that

this setup generates an approximate Fabry-Perot cavity. Control electronics are

used to lock to the maximum intensity within the cavity, found by varying the

cavity length through piezo modulation of a cavity mirror, to generate interference

fringes. The ECD-X module uses the Hansch-Couillaud technique [128] to lock the

enhanced cavity to the fundamental laser mode.



Chapter 9. Excitation Lasers and Microwave Antenna 87

The laser is then controlled in the same manner as the Rydberg B laser. The light

output from the ECD-X passes through an 80 MHz AOM to stabilise intensity

noise and to act as a fast switch for generating pulses at the atoms. The light is

coupled into a PM fiber and provides up to 190 mW of green light at the atoms

with σ+ circular polarisation. There is also a mechanical shutter after the PM

fiber to prevent any leakage light reaching the atoms.

9.2 Raman Laser

Raman transitions between the qubit states |1〉 and |0〉 are achieved using an

852 nm home-built ECDL which we call the Raman laser, the schematic of which

is shown in Fig. 9.2(a). The 852 nm diode (Eagleyard: EYP-RWE-0860-06010-

1500-SOT02-0000) can output 100 mW of power and we generate sidebands using

an electro-optic modulator (EOM). The EOM operates at ±4.6 GHz, half the

hyperfine ground state splitting, and uses a Haubrich-Dornseifer-Wynands (HDW)

interferometer [133] to suppress the carrier and second order sidebands, resulting

in the first order sidebands equally sharing > 95% of the amplitude, as shown in

Fig. 9.2(b).

The light from the Raman laser is split into two optical paths using a beam splitter

(BS); one for local addressing of the atoms and the other for global addressing. The

local Raman beam has a 1/e2 beam waist 2.9 µm with pulse control provided by an

-80 MHz AOM. The global Raman beam has a 1/e2 beam waist of 17 µm with an

AOM modulated at +80 MHz to enable fast switching and to prevent coupling of

the global beam to the EIT resonance in the demonstration of the CNOT gate (see

Chapter. 11). Each beam path also has an independently controlled mechanical

shutter in place to block any leakage light. The beams are coupled into polarisation

maintaining fibers and the two paths are recombined on a polarising beam splitter

(PBS) before passing through a waveplate entering the science chamber to address

the atoms, giving the local Raman beam σ+ circular polarisation and the global
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Figure 9.2: (a) A schematic of the Raman laser set-up, (b) the peaks generated by

the EOM without the HDW lock (grey), the output at port A showing the first order

sidebands with the carrier and second order sidebands filtered (red) and the output at

port B showing the carrier and second order sidebands (blue), and (c) the frequency

spectrum of the beatnote between the Raman and Qubit lasers.

σ− circular polarisation.

The carrier of the Raman laser is stabilised using an optical phase-lock loop with

the Qubit laser so that the detuning of the Raman laser at the atoms is ∆A/2π =

+870 MHz from the
∣∣6S1/2, F = 4

〉
→
∣∣6P3/2, F

′
= 5
〉
. The phase-lock enables the

Raman laser to inherit the stability of the ULE cavity to which the Qubit laser is

locked, and the absolute detuning from the transition, without the need to couple

the Raman laser to the ULE cavity. This stability is crucial to perform the CNOT

gate in Chapter. 11.

9.2.1 Optical Phase-Lock Loop

To perform the EIT based CNOT gate described in Sec. 6.2, the excitation lasers

need a common detuning from the excited state
∣∣6P3/2, F

′ = 5
〉
. The HDW lock

on the Raman laser is not stable enough to ensure a constant detuning from the
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∣∣6P3/2, F
′ = 5

〉
state, but the ULE cavity is. We therefore use an optical phase-lock

loop (OPLL) to generate feedback that enables the Raman laser to be phase-locked

at a detuning equal to that of the Qubit laser. We use a design for the OPLL based

on the design in Ref.’s [134, 135].

An optical phase-lock loop is a way to electronically control the optical phase

difference between a ‘slave’ laser and a ‘master’ laser (sometimes called the local

oscillator or reference laser) [136, 137]. The phase difference is converted in to a

voltage difference and is used to generate an error signal to lock the slave laser

thus generating a fixed phase relation between the two lasers.

By expressing the electric fields of the lasers, labelled A (Qubit) and B (Raman),

as [136],

EA(t)= Eae
i(ωAt+ϕA(t)), (9.1)

EB(t)= Ebe
i(ωBt+ϕB(t)), (9.2)

with field amplitudes Ea,b, oscillating frequencies ωA,B and laser phase fluctuations

ϕA,B (which can be set to zero), the instantaneous phase of the lasers is,

φA(t)= ωAt+ ϕA(t), (9.3)

φB(t)= ωBt+ ϕB(t). (9.4)

This gives a frequency difference,

∆ω =
d

dt
∆φ =

d

dt
[φA(t)− φB(t)]] = (ωA − ωB) + [ϕ̇A(t)− ϕ̇B(t)]. (9.5)

From this we can see that if there are no phase fluctuations between lasers A and

B, the phase difference ∆ϕ(t) = ϕA−ϕB, is constant leading to a fixed frequency

difference between the lasers.

A typical set-up of an OPLL is shown in Fig. 9.3. For each laser, Qubit (master

laser) and Raman (slave laser), ∼1 mW of light is picked-off from the main ex-

periment using a polarising beamsplitter (PBS). The beams are then overlapped

on a 50:50 beam splitter (BS) and superimposed onto a photo-detector (Thor-

labs DET08CFC/M) which converts the optical signal to an electronic one with
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Figure 9.3: Schematic of the beat set-up used to phase lock the lasers. Light from

the qubit and Raman lasers are combined on a beam splitter (BS) and converted to an

electrical signal by the photodiode (PD). The electrical signal is mixed with a microwave

reference and filtered through a low-pass filter. A phase-frequency control loop is used

to generate an error voltage from which the Raman laser can be locked.

intensity,

I(t) = IA + IB + 2
√
IAIB cos[(ωA − ωB) + (ϕ̇A(t)− ϕ̇B(t))]. (9.6)

Using a spectrum analyser, a beatnote is observed with frequency

νbeat =
ωA − ωB

2π
= 4.52 GHz. (9.7)

This beatnote is then mixed with a stable microwave signal (HP 83731B) with

frequency νµwave = 4.6 GHz, generating the sum (νµwave + νbeat) and difference

(νµwave − νbeat) frequencies of the mixed signal. These signals are filtered through

a low-pass filter to remove the high frequency signal leaving only the low frequency

signal at 80 MHz. This mixed 80 MHz signal is first sent through a prescaler that

divides the frequency by an integer between 10 and 80, the value of which is set

via three jumpers that control the voltage applied to three ports of the prescaler.

In our case the prescaler divides the 80 MHz signal by 10 so that this frequency

matches the 8 MHz reference signal provided by a signal generator (Rigol DS1054).

The beat and reference signals are digitised and sent through a digital phase/frequency
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discriminator (PFD) chip (AD9901KQ) that detects the phase and frequency dif-

ference between them. The output generated by the PFD is split into fast and

slow error signals, separated using high and low pass filters. The fast error signal

is sent through a loop filter directly to the DC current modulation of the Raman

laser (slave). The slow error signal is connected to a lock-box that is a standard

PI controller, to give control over the grating piezo.

To lock the Raman laser, the fast error signal is passed through a feedback loop

connected directly to the laser diode. The current passing to the laser diode is

controlled by a n-type Junction-Field-Effect-Transistor (JFET) which enables us to

control the frequency of the laser diode. The fast error input signal is attenuated

by a variable resistor and is then applied to the gate of the JFET. When less

current flows through the JFET, the gate current is low and more current flows

through the laser diode resulting in an increase in frequency. We can use this

feedback to lock the Raman laser frequency to the Qubit laser frequency with a

constant phase relationship.

The frequency spectrum of the beatnote generated by the error signal is shown in

Fig. 9.2(c) which has two distinct servo bumps indicating the bandwidth of the

lock, where the feedback of the control loop is no longer very efficient due to a

phase lag [134]. We calculate the linewidth of the beatnote to be 6.71 kHz which

is limited by the bandwidth of the spectrum analyser.

9.3 Microwave Antenna

Amicrowave antenna was installed in the experiment to allow us to perform ground

state rotations between the qubit states |1〉 → |0〉.

A schematic of the RF components to enable microwave addressing of the atoms

is shown in Fig. 9.4. The microwave source is a HP 83624A and is set to

νµwave = 9.192, 645, 490 GHz to match the ground state hyperfine splitting of the

caesium atom [89]. The microwave signal is amplified using two Kuhne Electronic
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Figure 9.4: (a) Schematic showing the set-up of the RF microwave components leading

to the microwave horn.

amplifiers; 2 W (KU PA 9001250 2A) and 10 W (KU PA 10001050-8B), which are

connected to a circulator (Atlantic Microwave ACC-20220-SF-SF-SF) to prevent

back reflection from the microwave horn. The signal is connected to a standard

gain horn (Flann 16240) with 20 dB (≈ 1W) gain via a waveguide to SMA coax

adaptor (Flann 16094-SF40).

The microwave horn is placed outside of the science chamber, near a viewport 45◦

to the z-axis as shown in Fig. 9.1. The microwaves have a linear polarisation but

due to the placement of the horn have a strong anisotropy. The microwave pulse is

controlled using a DDS board such that the RF can be toggled on and off during

an experiment sequence, enabling a microwave pulse with a controllable duration

and, frequency control so that the microwave frequency can be scanned. The

optimisation of the ground state microwave transitions is presented in Sec. 10.3.

9.4 Summary

This chapter describes the excitation lasers that are used in the experiment to

drive excitations to the Rydberg state and Raman transitions between the ground

states. We gave an overview of each laser system, highlighting the important

features such as the ULE cavity used to stabilise the Qubit and Rydberg lasers,

and introduced the OPPL that is used to stably lock the Raman laser with the

same detuning from
∣∣6P3/2, F

′ = 5
〉
state as the Qubit laser.
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We also discussed the installation of a microwave antenna to the experiment set-up

which will be characterised in Sec. 10.3.
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Chapter 10

Single Qubit Operations

In this chapter we discuss the optimisation of the Rydberg, Raman and microwave

excitation pulses in a single atom basis. In each case, the experiment sequence

is as follows; the atoms are loaded and imaged in the microtrap to determine

if an atom is initially present, and are then optically pumped into the state∣∣6S1/2, F = 4,mF = 0
〉

= |1〉. Following this a series of pulses are applied rele-

vant to the operation being performed, before a second image is taken to detect

the presence of an atom in the microtrap at the end of the sequence. The presence

or absence of the atom in the second image is dependent on the operation per-

formed between images and is used to determine the success of the operation on

the qubits up to a small loss error. The probability to lose an atom due to heating

during the imaging process is < 2 %, however other losses may occur which are

addressed in the following sections where relevant.

The single qubit operations that are optimised in this chapter form the basis of

the two-qubit CNOT gate demonstrated in Chapter 11.

95
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10.1 Zeeman splitting of the hyperfine levels

To find the resonance between the qubit states in the experimental setting, we need

to consider the differential light shift due to the trapping light, and the quadratic

Zeeman shift caused by the application of a magnetic field along quantisation axis.

Applying a magnetic field, B, lifts the degeneracy of the magnetic sublevels |F,mF 〉

in each hyperfine manifold. The shift of each sublevel can be calculated using the

Breit-Rabi formula [86, 138]

∆EF,mF = − ∆Ehfs

2(2I + 1)
− gIµBmFB ±

∆Ehfs

2

√
1 +

4mF

2I + 1
x+ x2, (10.1)

where x = (gJ − gI)µBB/∆Ehfs. For clock state transitions, represented in exper-

iment notation as |1〉 and |0〉, the shift is second order and simplifies to

∆E|1〉→|0〉 =
(gJ − gI)2µ2

B

2∆Ehfs

B2. (10.2)

In our experiment, the B-field applied along the quantisation axis has magnitude

∼7.5 G and the pre-factor of eqn. 10.2 is 427 Hz/G2 [89] for caesium. This gives

an expected quadratic Zeeman shift of δB/2π = +24 kHz from the centre of mass

detuning between the hyperfine levels.

The differential AC Stark shift due to the trapping light comes from the fact that

an atom in F = 4 experiences a slightly stronger light shift than an atom in F = 3,

and is given by [82]

~δLS = U0(∆eff)− U0(∆eff + δhfs), (10.3)

where U0 is the trap depth, ∆eff is the effective detuning of the weighted contribu-

tions of the D1 and D2 lines and δhfs is the hyperfine splitting between the F = 4

and F = 3 levels. In the experiment, the trap depth U0 = 300 µK which gives a

calculated value of δLS/2π = 800 Hz.

The atomic resonance frequency, w0, between the qubit states |0〉 and |1〉 is mod-

ified according to

ω0 = δhfs + δLS + δB + δ′ (10.4)
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where δhfs is the hyperfine splitting, δLS is the differential light shift, δB is the

quadratic Zeeman shift and δ′ includes all other unknown frequency shifts. This

gives a total detuning ∆ = ω0−ω, where ω is the frequency of the exciting radiation

- in this case either the Raman or the microwave pulse.

The value of δhfs/2π = 9.192, 628, 47 GHz is set using a GPS reference which differs

from the field-free caesium clock frequency by -3.3 kHz [89]. To find ∆ using the

Raman or microwave pulses experimentally, we set the value of δhfs = 0 in the

experiment frame allowing us to perform a spectroscopy measurement to find the

exact resonance with respect to δhfs.

10.2 Raman Transitions

The Raman laser, as the name suggests, drives Raman transitions between the

qubit states |1〉 → |0〉 = |F = 3,mF = 0〉, using the laser system is described

in Sec. 9.2. The atomic configuration is described by the three-level Λ-system

discussed theoretically in Sec. 4.1, which drives Raman transitions under the con-

dition that the laser coupling Ωp � |∆A|, where ∆A = +870 MHz is the detuning

from the excited state |P 〉 =
∣∣6P3/2, F

′ = 5
〉
at the atoms, such that the system

can be approximated as an effective two-level system, eliminating the dependence

on the excited state.

To optimise the transfer of atoms between the qubit states |1〉 → |0〉, we performed

a spectroscopy for the locally and globally addressing beams to find the two-photon

resonance of each. The spectroscopy was followed by a Rabi flop to determine the

Rabi frequency from which a π-pulse can be calculated to perform a full population

inversion between |1〉 → |0〉. This π-pulse is equivalent to a X gate denoted X(π).
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(b)(a)

Figure 10.1: (a) Local Raman spectroscopy measured with respect to the hyperfine

splitting δhfs to give an effective two-photon detuning ∆Raman = 0.25(1) MHz. (b) Local

Rabi flop with the detuning adjusted for the shift due to the trapping potential, giving

Ω/2π = 0.43(1) MHz. In each case the local Raman beam effects only the target atom

(red) leaving the control atom (blue) in its initial state, with an error < 1 %.

Local Raman Transitions

The locally addressing Raman laser has 65 nW of power with σ+ circular polari-

sation and is focused with a 1/e2 beam waist of 3 µm to address the target atom

only. The spectroscopy is performed by scanning the microwave frequency of the

sidebands created by the EOM until maximum transfer is achieved corresponding

to the two-photon resonance. The EOM is calibrated so that δhfs = 0 in the frame

of the experiment and the detuning is scanned w.r.t. δhfs. The AC Stark shift

associated with the Raman light is much larger than any of the other shifts given

by Eq. 10.4, and is dependent on the power of the beam. We use a spectroscopy

measurement to find the two-photon resonance.

The pulse duration used during the spectroscopy is equivalent to that of area π

which in this case is tπ = 1.16 µs. The data in Fig. 10.1(a) are fitted to the function

(See Sec. 3.1)

P|0〉(tπ) =
Ω2

Ω2 + ∆2
sin2

(√
Ω2 + ∆2

tπ
2

)
, (10.5)

where ∆ is the effective two-photon detuning. From this equation we extract the

two-photon resonance at ∆/2π = 0.25(1) MHz w.r.t. δhfs.

To optimise the pulse area for maximum transfer between the qubit states |1〉 → |0〉
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(a) (b)

Figure 10.2: The Raman laser aligned equally on the atoms showing (a) global spec-

troscopy with two-photon resonance ∆Raman/2π = 0.25(1) MHz and (b) global Rabi flop

with Rabi frequencies Ω/2π = 0.43(1) and 0.42(1) MHz.

a Rabi flop is performed with the detuning set to the two-photon resonance. The

local Raman pulse duration is scanned which maps out a Rabi oscillation as a

function of the pulse duration as shown in Fig. 10.1(b) with fit given by Eq. 3.22

from which an effective Rabi frequency Ω/2π = 0.43(1) MHz is extracted. The

Rabi frequency gives a full rotation from |1〉 → |0〉 for a local Raman pulse duration

of 1.16 µs with this duration corresponding to the qubit gate X(π).

Of particular note in Fig. 10.1 is that the local Raman beam only affects one atom

(the target atom shown in red) and the effect on the other atom (control atom in

blue) is < 1 % thus demonstrating excellent alignment of the local Raman beam on

the desired atom. The alignment of the local Raman beam such that it effects the

target atom but not the control atom is a key setting for the CNOT gate allowing

the target atom to be well-defined.

Global Raman Transitions

Using the same procedure as in the local case, we scan the EOM sideband frequency

to find the two-photon resonance with the global Raman beam and then perform a

Rabi flop to get the Rabi frequency. There is 2.2 µW of power in the global beam

which was chosen so that the two-photon resonance of the global beam matches

that of the local. The 1/e2 beam waist of the global beam is 15 µm and is aligned
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on the atoms such that both atoms are equally addressed.

The results of the global Raman spectroscopy are shown in Fig. 10.2(a) and fitted

using Eq. 10.5 from which the two-photon detuning ∆/2π = 0.25(1) MHz is ex-

tracted for both atoms. The Rabi oscillations are shown in Fig. 10.2(b) fitted using

Eq. 3.22 with Rabi frequencies Ω/2π = 0.43(1) and 0.42(1) MHz observed on the

atoms. The almost equal Rabi frequency of each atom in response to the global

Raman beam shows that the beam is well-aligned to address both atoms equally.

The difference in Rabi frequency between the atoms is small enough that it does

not effect the transfer between the qubit states on the time scales the experiments

are carried out on. Using a global Raman pulse duration of 1.16 µs is equivalent

to the gate rotation X(π) for this beam.

The Raman transfer between |1〉 → |0〉 is only ∼ 85 % efficient when optimised in

both the local and global cases. This is primarily due to imperfect optical pump-

ing and working with a relatively small detuning ∆A/2π = +870 MHz from the

transition
∣∣6S1/2, F = 4

〉
→
∣∣6P3/2, F

′ = 5
〉
which may cause scattering and hence

losses from the experiment basis. To try to overcome this problem we added a mi-

crowave antenna to the experiment. While this results in slower pulses, we do see

an improvement in the transfer between |1〉 → |0〉 using microwaves compared to

the Raman laser. The optimisation of the microwave pulses is presented Sec. 10.3.

10.3 Ground State Microwave Transitions

Microwave transitions between the qubit states |1〉 → |0〉 form a two-level system

as described in Chapter 3, where the qubit states |1〉 and |0〉 represent the energy

levels |e〉 and |g〉 respectively, and is schematically shown in Fig. 10.3(a). The

microwaves due to their wavelength address both atoms equally with about 1 W

of power.

Following Eq. 10.4, the shift of the microwave resonance ∆µwave of the two-level

system is dominated by the quadratic Zeeman shift δB, as δhfs deviates by -3.3 kHz
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Figure 10.3: (a) Upper: Two-level energy level for microwave transitions between qubit

states |1〉 → |0〉, Lower: Ramsey sequence used to fine tune the microwave transition.

(b) Rabi sequence scanning the microwave detuning to find the resonance accounting for

the Zeeman shift between the two qubit states. (c) Microwave Ramsey spectroscopy with

gap time T = 200 µs scanning in the frequency domain, with a fixed microwave pulse

duration and, (d) microwave Rabi flop with Ω/2π = 3.67(6) kHz.

from the standard resonance defining the second, δLS/2π = 800 Hz and δ′ is

expected to be small, whereas δB/2π = +24 kHz which is much larger than the

other shifts. We use the calculated Zeeman shift δB/2π = +24 kHz as a reference

point from which to scan ∆µwave to find the microwave resonance

In the first instance we apply a single microwave pulse for a duration of 1 ms to find

a broad resonance centred around ∆µwave/2π = +23.5 kHz as shown in Fig. 10.3(b).

To fine tune the microwave resonance we use Ramsey spectroscopy (see Sec. 3.5)

scanning in the frequency domain to optimise the exact resonance of the microwave

pulse. A schematic of the Ramsey sequence is illustrated in Fig. 10.3(a) where two

microwave X(π/2) rotations are applied separated by T= 200 µs to generate a

Ramsey fringe which is fit to Eq. 3.28. Fig. 10.3(c) shows the resultant Ramsey
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fringes which have a resonance ∆µwave/2π = 23.2(1) kHz.

To optimise the transfer between |1〉 and |0〉, a Rabi flop is performed with the

microwave detuning set to the resonance ∆µwave = 23.2 kHz. In this case a single

microwave pulse is applied for a variable duration tµwave. The resultant oscilla-

tion is shown in Fig. 10.3(d) and is fit to Eq. 3.22 from which the microwave

Rabi frequency Ω/2π = 3.67(6) kHz is extracted. By iterating between Ramsey

spectroscopy and Rabi flopping we optimise the microwave resonance and Rabi

frequency to maximise the transfer between qubit states.

The optimised microwave pulses have a transfer efficiency of ∼95 % which is su-

perior to that achieved with the Raman laser. The microwave pulses are however

not 100 % efficient and we expect this is mainly due to the problem we have with

imperfect optical pumping, which can cause off-resonant excitation to other mF

levels.

10.3.1 Local Microwave Operations

Using microwaves which have a wavelength λµwave ∼1 cm to drive transitions

between the qubit states |1〉 → |0〉 works well globally but cannot be used to locally

address an atom in the experiment as they are only separated by ∼ 5µm. To enable

local addressing of an atom we use the Qubit laser (described in Sec. 9.1.1) to apply

a local AC shift on the control atom to shift this atomic site out of resonance with

the microwave rotation. This enables us to keep the control atom in it’s initial

state while the target atom undergoes a microwave rotation and is unaffected by

the Qubit laser. We do this following the method of Xia et al. [139].

Applying the Qubit laser to the control site, essentially detunes the microwave

resonance by a factor ∆ equivalent to the AC Stark shift of the Qubit laser on the

control atom. The detuning suppresses the microwave qubit rotation by a factor

Ω2/∆2, however there is a trade-off between the suppression of the microwave field

for small values of ∆ and, the excessive photon scattering from the Qubit laser at
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large values of ∆.

The work presented by Xia et al. [139] shows that there is an optimal choice of ∆

that minimises the off-resonant coupling to the target atom, therefore leaving the

qubit state of the target atom unaffected by the AC Stark shift from the Qubit

light. The optimal detuning to achieve this occurs when ∆ = 4nπ, for an integer

n. This means that for a resonant microwave rotation of area θ = Ωt, the minimal

coupling to the target site occurs when

|∆|
Ω

=

√
16n2π2

θ2
− 1. (10.6)

The first local minimum occurs for a microwave X(π) rotation with θ = π, at

|∆| =
√

15Ω. For a microwave X(π/2) rotation, θ = π/2, has minimal coupling

when |∆| =
√

63Ω.

The measured microwave Rabi frequency is Ω/2π =3.67(6) kHz, substituting this

into |∆| =
√

15Ω and |∆| =
√

63Ω gives |∆|/2π = 14.21(7) kHz and |∆|/2π =

29.13(7) kHz for microwave X(π) and X(π/2) rotations respectively. The rotation

on the control atom induced by the Qubit laser is equivalent to a rotation Z(θ)

where θ is the rotation angle described by the evolution around the Bloch sphere

- in essence there is a phase accumulation on the control atom which can be

measured by varying the time the control atom is exposed to the Qubit laser.

To calibrate the AC Stark shift induced by the Qubit laser, we use microwave

Ramsey spectroscopy to generate an oscillation as a function of the AC shift on

the control atom. The sequence used is shown in Fig. 10.4(a), where a microwave

X(π/2) rotation is applied followed by a fixed free evolution time T during which

the Qubit laser applies a Z(θ) rotation on the control atom for variable time

0 ≤ Tq ≤ T , then a final microwave X(π/2) rotation is applied. By applying the

rotation Z(θ) during the free evolution time the control atom accumulates a phase

with respect to the target atom which is mapped out by the final X(π/2) rotation.

Fitting the resultant oscillation to A cos(∆Tq + φ)+B for some amplitude A, phase

off-set φ and off-set B, the AC Stark shift ∆ induced by the Z(θ) rotation can be

extracted.
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(a)

(b) (c)

Figure 10.4: (a) Ramsey sequence used to measure the AC Stark shift ∆ on the control

atom, (b) the results of the Ramsey measurement for 7.1 nW of Qubit laser power and,

(c) the measured AC Stark shift plotted against the power of the Qubit laser. The red

triangle is the AC Stark shift for a X(π) rotation and red square is for a X(π/2) rotation.

The results of this are shown in Fig. 10.4(b) for 7.1 nW of Qubit laser power, from

which we extract an AC Stark shift of ∆/2π = 14.6 kHz, which closely matches

the calculated value required for a microwave X(π) rotation. In this figure there

is no evidence of the Qubit laser affecting the target atom (red), with only the

control atom (blue) oscillating as a result of the interaction with the Qubit laser,

the fluctuations that are observed on the target atom are due to fluctuations in

the rotation driven by the microwave pulse. In addition to choosing a detuning

that minimises the effect of the AC Stark shift of the Qubit laser on the target

atom, the Qubit laser is also focused so that it only addresses the control atom

with an error of cross-talk < 1 %.

Repeating this modified Ramsey spectroscopy for different powers of the Qubit

laser, we plot in Fig. 10.4(c), the extracted AC Stark shifts as a function of power.

We find that Qubit laser powers of 7 nW and 9.9 nW give the appropriate shifts

for microwave X(π) and X(π/2) rotations respectively. For microwave X(π) and

X(π/2) rotations, the rotation of the control atom in the time that the AC Stark

shift is applied is equivalent to a Z(π) rotation.
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10.4 Rydberg Excitations

In this section we discuss the optimisation of the two-photon excitation to the

Rydberg state |r〉 =
∣∣81D5/2,mj = 5/2

〉
using the Qubit and Rydberg lasers de-

scribed in Sec. 9.1. The Qubit laser is focused to a beam waist of 3 µm to address

only the control atom such that the excitation to the Rydberg state only occurs

on this atom, and no blockade effect is observed. The Qubit laser drives the

lower photon of the excitation to |r〉 off-resonantly coupling the qubit state |1〉 and

|P 〉 =
∣∣6P3/2, F

′ = 5
〉
at a detuning ∆A/2π = +870 MHz, as shown in Fig. 10.5(a).

The upper photon comes from one of the Rydberg lasers, namely Rydberg B or

SolsTiS, coupling from the detuned state |P 〉 → |r〉. The Rydberg beam has a

beam waist of 15 µm and is aligned to equally address both atoms.

We compare the difference in response of the atoms excited to |r〉 using the Rydberg

B and SolsTiS lasers by finding the resonance of the two-photon excitation then

optimising the transfer by observing a Rabi flop. From these measurements we

can determine the Qubit laser pulse duration required to perform a pulse of area

π to excite the control atom to the Rydberg state which will be used to influence

the target atom when performing the CNOT gate in Sec. 11.5.

10.4.1 Rydberg State Detection

Detecting the Rydberg state of an atom in the experiment utilises the anti-trapping

potential that a Rydberg atom experiences due to the dipole trapping beam. Ex-

citations to the Rydberg state are performed with the trapping potential turned

off, so that the rotations are performed on the atoms in free-space, then the dipole

trapping light is reapplied and the Rydberg atoms are expelled from the trap. This

enables us to distinguish between an atom in the Rydberg state and an atom in

the qubit state |1〉.

To ensure this works efficiently the Rydberg lifetime τRyd needs to be large com-

pared to the time it takes for an atom to leave the trapping region τt. A Rydberg
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state with a larger principal quantum number increases the detection efficiency

as τRyd ∝ n2. For n > 50 the error associated with the detection scheme is

εD = τt/τRyd [48].

This method of detecting the atom in the Rydberg state is indirect as experimen-

tally we measure an atom in the state |1〉 and assume that the Rydberg population

corresponds to P|r〉 = 1−P|1〉. Due to detection errors, imperfect optical pumping

(εOP) and false positive detections (εF, e.g. an atom is lost from the trap, not due

to Rydberg excitation), the true Rydberg population (P ′|r〉) differs slightly. The

detected Rydberg population has been estimated to relate to the true population

according to [48]

P|r〉 = εFεOP + (1− εOP)
[
εFP|1〉 + (1− εD + εDεF)P ′|r〉

]
. (10.7)

Due to the cold atom temperature of 10 µK and good back-ground pressure εF <

0.01, is small and from Sec 8.2 the optical pumping preparation error εOP = 1−F =

0.02. The detection error εD ≈ 0.05 has been measured in previous work and gave

a measured Rydberg population P|r〉 = 0.9 [110]. With the improvement in optical

pumping efficiency by using the D1 line, the work presented in this thesis is capable

of measuring a Rydberg population P|r〉 > 0.9.

10.4.2 Rydberg Rotations

This initial experiment set-up for Rydberg excitation is the same as the previous

sections: the presence of an atom in the microtrap is determined via fluorescence

imaging, then the atoms are prepared in state |1〉 via optical pumping. The se-

quence then changes to enable Rydberg excitation and, importantly, Rydberg state

detection.

The sequence of pulses used for Rydberg excitation are shown in Fig. 10.5(b).

First the trapping light is turned off for a duration of 5 µs to prevent the atom

excited to the Rydberg state being expelled from the microtrap. During this time

the Rydberg laser is turned on for 5 µs and a Qubit laser pulse of variable duration
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Figure 10.5: (a) Excitation scheme to the Rydberg level using the the ladder configu-

ration with lower photon Ωp provided by the qubit laser detuned from |P 〉 by ∆A/2π

= 870 MHz and upper photon provided by the Rydberg laser with coupling Ωc to the

Rydberg state |r〉. (b) The pulses applied experimentally to drive a Rydberg excita-

tion showing ODT (blue), Qubit (red) and Rydberg (green). (c) Rydberg spectroscopy

achieved by scanning the sideband frequency of the Rydberg laser to find the two-photon

resonance. Rabi oscillations are observed on the two-photon resonance with Ωc provided

by (d) the Rydberg B laser which has a Rabi frequency Ω/2π = 2.7 MHz, and (e) the

SolsTiS laser with Ω/2π = 2.95 MHz.

is applied to excite the atom from |1〉 to |r〉. The trapping light is then re-applied

to expel any atom in the Rydberg state. A second image of the atoms is then

taken, with the loss of the control atom indicating excitation to |r〉.

To find the two-photon resonance we perform a spectroscopy by scanning the

sideband frequency, ∆c, of the Rydberg EOM until we see maximum loss of the

atom indicating excitation to the Rydberg state. The Qubit laser is applied for

a time corresponding to a π-pulse with a power of 218 nW. The spectroscopy is

shown in Fig. 10.5(c) which is fit to Eq. 10.5 from which the two-photon resonance
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is extracted. In this case we set the two-photon resonance ∆c to zero when the

resonance is found as the absolute value of the Rydberg EOM frequency changes

at a rate of 1 Hz/s [130] in line with the ULE cavity lock drift.

Setting the Rydberg EOM frequency to the two-photon resonance we generate Rabi

oscillations by varying the duration of the Qubit laser pulse and fit the oscillations

to Eq. 3.22 to extract the Rabi frequency. The observed Rabi oscillation with

Rydberg B is shown in Fig. 10.5(d) with Rabi frequency Ω/2π = 2.7 MHz and a

decay time τ = 2.24 µs, achieved with 110 mW of Rydberg power and 218 nW of

Qubit power. The Rabi oscillation with the SolsTiS laser is shown in Fig. 10.5(e)

with Rabi frequency Ω/2π = 2.93 MHz and a decay time τ = 1.69 µs achieved

with 170 mW of Rydberg power and 132 nW of power in the Qubit laser.

The Rabi frequencies for each laser are fairly similar but different Qubit laser

powers have been used to achieve this. In addition for the Rydberg B results,

the AOM had been removed to increase the power available at the atom which

results in slower switching of the Rydberg pulses and presented some additional

challenges in the experiments verifying the quantum nature of the gates.

The decay times in both cases are quite fast and can be attributed mainly the

laser phase noise as a consequence of the ULE locks [48, 110]. Indeed reduction

of the laser phase noise in Levine et al. [45] lead to an increase in the decay time

of up to 27 µs. The CNOT gate demonstrated in Chapter 11 happens on a faster

time scale than the decay time, so we do not address the laser phase noise on the

experiment.

In general, the stronger coupling provided by the SolsTiS laser is favourable for

working in the EIT regime when performing the CNOT gate, where it is essential

that Ωc � Ωp to maximise the EIT coupling. This laser provides more power and

can be controlled on a fast timescale using an AOM, however technical issues with

this laser lead to some measurements being performed with Rydberg B.
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10.5 Conculsion

In this chapter we have described the experimental optimisation of single-qubit

operations using microwave and optical pulses. We have achieved this by optically

pumping the atoms into the qubit state |1〉 and used the state sensitive detection

methods of applying a blow away pulse to distinguish between the qubit states

|0〉 and |1〉 when performing ground state transitions, and used the anti-trapping

potential of the Rydberg atoms to detect excitations to the Rydberg state.

Ground state rotations using microwave pulses were optimised using Ramsey spec-

troscopy to fine tune the microwave resonance and Rabi flopping to find the pulse

duration corresponding to a X(π) rotation. Single atom addressing of the mi-

crowave pulses is achieved by using the Qubit laser to provide an AC Stark shift

on the control atom such that it is not resonant with the microwave pulse. An

optical phase-lock loop was introduced to the Raman laser to provide a stable

frequency reference between the Raman and Qubit lasers, which is a necessary

component for the CNOT gate. The Raman laser pulse was optimised to max-

imise the transfer between |1〉 → |0〉. The Qubit and Rydberg lasers are stabilised

to a high-finesse cavity and have been used to demonstrate two-photon excitation

to the Rydberg state
∣∣81D5/2,mj = 5/2

〉
. We compared two lasers used to drive

the upper photon of the Rydberg excitation one a home-built and the other a

commercial which were optimised to have Rabi frequencies Ω/2π = 2.7 MHz and

2.95 MHz respectively.
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Demonstration of a CNOT Gate

We demonstrate a CNOT gate based on the method detailed in Chapter 6 which

was proposed by Müller et al. [52]. In our case we demonstrate the CNOT gate

on a pair of trapped atoms separated by ∼ 5 µm such that they are within the

Rydberg blockade radius. As the CNOT gate is applied in the two-atom basis we

only consider cases where both atoms are loaded into the microtraps in the first

image. As a result of this each iteration of the experiment is the result of 200-

500 measurements to build reliable statistics on which to base our results. These

statistics are essential as the loading of the microtraps is stochastic which means

an atom will load in a trap ∼50% of the time and we are only interested in cases

when both atoms load which reduces the useful data collected to ∼25%.

The single qubit excitations optimised in Chapter 10 are the foundation of the

excitation pulses that make up the CNOT gate. The control atom is addressed by

the Qubit laser, the target atom is addressed by the local Raman laser and the

Rydberg lasers are aligned globally on the atoms, as illustrated in Fig. 11.1(a).

The Qubit laser drives the lower photon between |1〉 → |r〉 with strength ΩA and

detuning ∆A/2π = +870 MHz from the excited state |P 〉 =
∣∣6P3/2, F

′ = 5
〉
. The

Rydberg laser with coupling strength Ωc provides the upper photon to complete

the excitation to |r〉. Both the Qubit and Rydberg excitations are driven by

σ+ polarised light and the two-photon optimisation has been demonstrated in

110
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Figure 11.1: (a) Energy level excitation scheme used during the experimental imple-

mentation of the CNOT gate. The Qubit and Raman lasers with coupling strengths ΩA

and Ωp respectively are detuned by ∆A from the excited state |P 〉 =
∣∣6P3/2, F

′ = 5
〉
,

with the Qubit laser addressing only the control atom and the Raman laser addressing

only the target atom. The Rydberg laser with coupling Ωc, the Qubit laser and local

Raman laser have σ+ polarised while the global Raman laser has σ− polarised light (b)

Experiment set-up showing two atoms trapped in the optical dipole trap (ODT). The

Qubit and local and global Raman lasers combine on a polarising beam splitter (PBS)

and pass through a quarter waveplate (QWP) before entering the chamber. The trapping

and Rydberg light are combined on a dichroic mirror (DM) before entering the chamber

and counter-propagate with the direction of the Qubit and Raman lasers.

Sec. 10.4. The Rydberg level |r〉 =
∣∣81D5/2,mj = 5/2

〉
is chosen to maximise the

angular matrix element for coupling between |1〉 and |r〉, and we use both the

Rydberg B and SolsTiS lasers in separate demonstrations of the gate with varying

results.

The Raman laser described in Sec. 9.2, drives Raman transitions between |1〉 → |0〉

and is detuned by ∆A/2π = +870 MHz from |P 〉. The global Raman beam is

aligned equally on both atoms and uses a square pulse controlled by an AOM

and mechanical shutters to drive the Raman transition. The local Raman beam

is aligned on the target atom and is used as a square pulse for state preparation

and as the smooth pulse with coupling strength Ωp to drive the qubit rotation

|1〉 → |0〉. In the presence of the Rydberg laser with coupling strength Ωc, the
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coupling of the smooth and the Rydberg pulses is tuned to form a dark state such

that EIT is observed. We discuss the characterisation of the smooth pulse and the

tuning involved to find the EIT resonance in the next section.

The experiment set-up, including the alignment of the excitation pulses as they

address the atoms is shown in Fig. 11.1(b). The Rydberg beam enters the cham-

ber along the same axis as the microtrap light, which counter-propagate to the

direction of the Qubit and Raman beams. The local and global Raman beams,

and the Qubit beam combine on a polarising beam splitter (PBS) before entering

the science chamber.

11.1 Smooth Pulse

The Raman laser described in Sec. 9.2 is used to apply the smooth pulse for the

CNOT gate protocol which drives an adiabatic Raman transition between |1〉 → |0〉

in the absence of the Rydberg coupling Ωc. The smooth pulse is generated using

an arbitrary function generator (Rigol DG4162) connected to the AOM in the

local Raman laser beam path to shape the pulse into a Gaussian shape rather

than the typical square pulse. Fig. 11.2(a) shows the smooth pulse shape for pulse

durations of 1.5 µs, 2 µs and 3 µs. The power of the smooth pulse is controlled

by the amplitude of the DDS (direct digital synthesiser) which controls the AOM

settings for the square pulse. We measure the instantaneous power of the smooth

pulse using a fast photodiode and use the amplitude control of the smooth pulse to

match the area under the smooth curve to that of a square π-pulse pulse simply by

changing the amplitude on the DDS controller to rescale the shaped pulse power.

The resulting scan for a 2 µs smooth pulse duration is shown in Fig. 11.2(b) where

we see the area under the curve changes as a function of the amplitude from which

the power of the smooth pulse can be extracted. The area under each curve for

each amplitude setting is extracted and compared to the area of a square π pulse,

finding that an instantaneous power of 14.5 nW has an area equal to π.
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(a) (b)

Figure 11.2: (a) Signals recorded on a photodiode of the smooth pulse shaped by a

function generator for durations 1.5 µs, 2 µs and 3.5 µs. (b) The smooth pulse is applied

for a duration of 2 µs and the amplitude of the AOM is scanned to measure the area

under the curve. It is compared to that of a square π-pulse to extract the power.

The optimised settings for the smooth pulse are shown in Fig. 11.3 where we have

chosen a 2 µs smooth pulse duration to allow an adiabatic transfer while still

maintaining coherence of the Rydberg when performing the CNOT gate. The

resulting Raman transfer as a function of the power is shown in Fig. 11.3(a) where

we see around 85 % transfer, comparable to that achieved using the square pulse.

At the optimised power setting a spectroscopy is performed finding the two-photon

resonance at 0.25 MHz to match that of the local and global square Raman pulses.

We also performed these measurements with smooth pulse durations ranging from

1.5 to 3.5 µs finding a duration of 2 µs was optimal for the EIT as will be discussed

in the next section.

11.2 EIT on the Target Atom

A crucial element of the CNOT gate is being able to observe EIT on the target

atom. The adiabatic transfer between the qubit states |1〉 → |0〉 was optimised

in the previous section, so now we detail the steps taken to observe EIT on the

target atom. To do this we apply the Rydberg laser and scan the detuning using
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(a) (b)

Figure 11.3: The optimisation of Raman transfer using the smooth pulse to maximise

the transfer between |1〉 → |0〉 achieved by (a) scanning the power of the smooth pulse to

have an area under the curve equal toπ, and (b) performing a spectroscopy to optimise

the Raman transfer at 0.25 MHz.

the offset lock frequency sent to the EOM, in the same way as the single-qubit

Rydberg excitations in Sec. 10.4, while applying the smooth pulse at the settings

that will rotate the atoms between |1〉 → |0〉.

As before the atoms are optically pumped into the qubit state |1〉 and the dipole

trapping light is turned off before the Rydberg light is applied. With the dipole

trapping light off, the optimised smooth pulse is applied which will cause the qubit

state to undergo the rotation |1〉 → |0〉 unless the EIT condition is satisfied, in

which case the qubit will see a dark state and no rotation will take place. The

Rydberg light is extinguished as the dipole trapping light is turned on then a blow

away pulse is applied to remove any atom in the qubit state |1〉. In this way, when

the EIT condition is satisfied the target atom will remain in |1〉 and be lost from

the trap when the blow away pulse is applied, otherwise Raman transfer will occur

and the atom will be rotated to |0〉 and remain in the trap.

We find the EIT resonance for smooth pulse durations ranging from 1.5 to 3.5 µs

using the the Rydberg B and SolsTiS lasers in turn. In each case the Rydberg

EOM frequency is scanned over a broad frequency range to map out the EIT

resonances with 100 measurements taken per iteration.
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Figure 11.4: EIT data taken using the Raman and Rydberg B lasers compared to

simulations using smooth pulses with durations (a) t = 2 µs, (b) t = 3 µs and (c) t =

3.5 µs.

11.2.1 EIT with Rydberg B

The first demonstration of EIT was achieved using Rydberg B with 73 mW of

power available at the atoms. The resultant scans of the Rydberg EOM sideband

frequency are shown in Fig. 11.4 for adiabatic pulse durations of 2 µs, 3 µs and

3.5 µs. The EIT resonances correspond to a minima in survival following blow

away indicating the atom prepared in |1〉 has adiabatically followed the dark state

during the smooth pulse evolution.

The data are compared to simulated results which are modelled using the the

Hamiltonian given in Eq. 6.1 with experiment values used for the matrix elements.

From the comparison there is a good correlation between the expected results

and the observed data however it is clear there are some missing features in the

observed data which we are unable to resolve experimentally. This is most likely

due to the power in the Rydberg B laser which is quite low when trying to satisfy

the condition Ωc > Ωp that is required for optimal EIT. To improve the strong

coupling, we switched to using the SolsTiS laser and repeated the measurements

with a higher Rydberg coupling.
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Figure 11.5: EIT data obtained with the Raman and SolsTiS lasers compared to sim-

ulations using adiabatic pulses of duration (a) t = 1.5 µs, (b) t = 2 µs and (c) t =

3 µs.

11.2.2 EIT with SolsTiS

The SolsTiS laser has a greater power capability than the Rydberg B laser with

up to 190 mW available. The SolsTiS power on the day the EIT data presented

here was taken was 170 mW which more fully satisfies the strong coupling Ωc > Ωp

required for EIT. We use Raman pulse durations of 1.5 µs, 2 µs and 3 µs and scan

the Rydberg EOM sideband frequency to achieve the results shown in Fig. 11.5.

For each of the data sets there is a better match of the observed data to the

simulated data, showing the effect of stronger coupling using the higher powered

SolsTiS laser. We see that there are two well resolved dips for each Raman pulse

duration indicating the EIT resonances with good contrast. In these data we also

see more efficient EIT for longer Raman pulse durations due to the Raman pulse

becoming more adiabatic as the pulse duration increases. The shortest pulse of

duration 1.5 µs is too fast to efficiently couple to Ωc, and a 3 µs pulse may be

too slow to achieve a high-fidelity quantum gate as the longer the Raman pulse

the longer the control atom remains in the Rydberg state, we therefore use a 2 µs

pulse for the CNOT gate demonstration.
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11.3 Two-Atom Readout

For neutral atom qubits, the dominant error in state detection is the inability to

distinguish between an atom lost from the computational basis and an atom in

state |1〉. As demonstrated by Gaetan et al. [140] it is possible to estimate the

fidelity by extracting parameters from the statistics of two-atom survivals P00,

which is free from the errors due to loss, by careful analysis of the loss mechanisms

of each atom. We consider two possible outcome states for the atoms: {x} which

contains atoms lost and those outside the computational basis, and {••, •◦, ◦•, ◦◦}

corresponding to atom survival • and atom loss ◦. We can relate this new two-

atom basis to measurements that can be performed with the state selective blow

away pulse (A) or without (B).

When using the blow away beam, the measurement corresponds to the operators

A•• = σ00, (11.1a)

A•◦ = σ01 + σ0x, (11.1b)

A◦• = σ10 + σx0, (11.1c)

A◦◦ = σ11 + σ1x + σx1 + σxx, (11.1d)

and for the measurements without blow away,

B•• = σ00 + σ01 + σ10 + σ11, , (11.2a)

B•◦ = σ0x + σ1x, (11.2b)

B◦• = σx0 + σx1, (11.2c)

B◦◦ = σxx, (11.2d)

where σij = |ij〉〈ij| are the projection operators. From these equations we can

see that A•• is not sensitive to single atom losses and provides a robust output

measurement state.

As a result of this, when performing the CNOT gate measurements we rotate the

atoms to the basis |00〉 before readout such that the measured output state is A••
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when the blow away beam is applied. By repeating the measurements without the

blow away pulse the measured output state is B•• which gives the normalisation for

the total population remaining within the computational basis. Thus the corrected

population in |00〉 is P cor
00 = A••/B••.

11.4 State Preparation

Before generating the CNOT gate matrix, we first measure how well the basis states

can be prepared. We do this by applying a series of local and global rotations to

the qubits following optical pumping to generate each of the two-qubit input states

|11〉 , |10〉 , |01〉 and |00〉 in turn. We then leave the qubits in one of these states for

a 5 µs trap drop to match the conditions that will be necessary when performing

the CNOT gate, and again apply a series of local and global rotations to generate

a state matrix. By turning off the trapping potential a fair comparison can be

made between the state preparation fidelity and that achieved by the CNOT gate

as the finite temperature of the atoms may results in unwanted losses or decay

to states out of the computational basis. The state matrix can thus be used to

provide an upper bound on the fidelity of the CNOT gate.

A state matrix is generated experimentally using two different techniques as illus-

trated in Fig. 11.6: Method A uses optical pumping to prepare the atoms in |11〉,

and Method B follows optical pumping with a X(π) rotation to put the atoms in

|00〉 then a resonant blow away pulse is applied to remove any atom left in |11〉.

Method B corrects for imperfect optical pumping by removing any atom outside

the computational basis giving a purer state on which to perform the CNOT gate

however the overall retention of the atoms is lower as a result. We find optical

pumping polarisation purity is a problem in our experiment so using method B

gives better results as it removes atoms outside of the computational basis.

After preparing the initial qubit state using method A or B, a series of X and Z

gates are performed on the qubits to cycle through the two-qubit input states and
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Figure 11.6: State preparation methods using optical pulses to prepare the states. (a)

Method A - optical pumping only, (b) Method B - optical pumping followed by a global

X(π)-rotation and blow away pulse. Inset gate sequence

then trapping light is then turned off for 5 µs. Next a second set of X and Z gates

are performed to rotate the diagonal elements of the matrix into the two-qubit

state |00〉 to allow a positive detection of the qubits rather than assigning loss to a

particular state as is done in Rydberg detection. A final blow away pulse is applied

to distinguish between the states |1〉 and |0〉 which gives us the measurement A••

for the state matrix. Repeating the state matrix without this final blow away

pulse allows us to measure the atoms lost from the computational basis during the

measurement, to give B••.

In addition to generating a state matrix using method A or B, we also have the

choice of using optical or microwave rotations to perform the X and Z gates re-

quired cycle through each basis state. In the following sections we present the

results of the state matrices prepared with optical and microwave rotations follow-

ing methods A and B.

11.4.1 State Preparation with Optical Pulses

We generate a state matrix for each of the preparation methods A and B using

optical input and output pulses sourced from the Raman laser. The Raman laser is

applied locally to the target atom to perform a Xlocal(π) rotation to switch between
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Figure 11.7: Uncorrected state matrix prepared using optical pulses for (a) method A

- with optical pumping only with an uncorrected fidelity FA
state = 0.71(2), and (b) with

method B - optical pumping followed by a global rotation and blow away pulse which

has an uncorrected fidelity FB
state= 0.29(2).

the qubit states |1〉 → |0〉 as was shown in Sec 10.2. Similarly the global Raman

pulse has been optimised to switch the qubit states of both atoms thus performing

the rotation Xglobal(π) on the qubit states. Each of the desired two-qubit input

states |11〉, |10〉, |01〉 and |00〉 can be realised by combining the rotations Xlocal(π)

and Xglobal(π). The state matrices prepared using optical pulses only are shown

in Fig. 11.7.

The state preparation matrix generated using method A shown, in Fig. 11.7(a), is

UA
state =


0.80(4) 0.05(2) 0.05(2) 0.00(1)

0.07(2) 0.67(5) 0.01(1) 0.04(2)

0.01(1) 0.00(1) 0.60(5) 0.06(2)

0.00(1) 0.01(2) 0.06(2) 0.78(4)

 , (11.3)

where the value of each element is given by the log of the maximum likelihood

estimate for the binomial distribution of the data taken in the two-atom basis and

the errors given by the standard deviation of the elements. This state matrix has

a fidelity FA
state = Tr

(
UA

stateUi

)
= 0.71(2), where Ui is the ideal state matrix and

UA
state is the measured state matrix. This matrix demonstrates how well the atoms

can be rotated into the basis |00〉 before readout and gives an upper bound of
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0.71(2) for the uncorrected fidelity of a CNOT gate prepared in this way.

Repeating the state matrix prepared using method A without the final blow away

pulse so that all atoms in the qubit states |00〉 and |11〉 are detected in the final

readout, allows us to correct the state matrix for losses of the qubits from the com-

putational basis. Correcting the state matrix UA
state for this loss gives a corrected

state matrix,

UA,cor
state =


0.89(5) 0.05(4) 0.05(4) 0.00(3)

0.07(4) 0.74(5) 0.01(3) 0.04(4)

0.01(3) 0.00(3) 0.67(6) 0.06(4)

0.00(3) 0.01(3) 0.06(4) 0.87(5)

 . (11.4)

The uncertainties of these corrected elements are calculated using the relation ε =√
ε2

BA + ε2
noBA, where εBA and εnoBA are the errors given by the standard deviation,

on the individual elements for the data acquired with and without the final blow

away pulse respectively. This results in a corrected fidelity of FA,cor
state = 0.79(2)

when compared to the ideal case.

Ideally the diagonal elements of the matrix should be 1 and off-diagonal elements 0

but we are limited by the efficiency of the optical state preparation pulses; optical

pumping, Xlocal(π) and Xglobal(π), which are only 90 % efficient in the single qubit

basis, which includes the error associated with imperfect optical pumping. This

translates to the two-qubit basis as (0.9)2 so that the highest achievable state

preparation fidelity is 0.81. The difference of 0.02 between the expected result

and the measured fidelity FA,cor
state is most likely due to atoms being lost from the

microtrap as a result of the finite temperature of the atoms during the trap drop

stage.

Achieving only 90 % transfer in the single atom basis is likely due to imperfect

optical pumping, to eliminate this we repeat the state matrix measurement using
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method B. The uncorrected state matrix generated using method B is,

UB
state =


0.53(5) 0.10(3) 0.09(3) 0.00(1)

0.03(1) 0.39(5) 0.00(1) 0.07(2)

0.05(2) 0.01(1) 0.29(4) 0.09(3)

0.01(1) 0.05(2) 0.18(4) 0.36(5)

 , (11.5)

and is shown in Fig. 11.7(b), with fidelity, FB
state = 0.29(2). The overall retention

of atoms in the two-qubit basis is lower in this case as expected since any atom

not optically pumped in to qubit state |1〉 initially will be removed by the first

blow away pulse. This combined with imperfect gate rotations and losses from the

computational basis through decay or heating from the dipole traps contribute to

the low fidelity obtained.

The fidelity is however much lower than expected and we repeat the state matrix

prepared using method B without the final blow away pulse to quantify how much

of the loss is due to imperfect optical pumping. The state matrix corrected for the

losses associated with the initial preparation is

UB,cor
state =


0.83(8) 0.15(7) 0.14(7) 0.00(6)

0.05(7) 0.67(8) 0.00(7) 0.12(7)

0.09(7) 0.02(7) 0.56(8) 0.17(7)

0.01(7) 0.08(7) 0.31(8) 0.62(8)

 , (11.6)

which has a corrected fidelity FB,cor
state = 0.50(1). The corrected fidelity is still much

lower than that achieved using method A suggesting that optical pumping is not

the main source of error for this particular data.

In Fig. 11.7(b) we see that the off-diagonal elements are high which indicate that

the two-qubit state preparation is not very good. The Raman laser which is used to

provide the Xlocal(π) and Xglobal(π) rotations is sensitive to changes in laboratory

conditions such as temperature and humidity and at the time these measurements

were being performed the laboratory environment was unstable. This means that

the pulse durations which correspond to X(π) rotations were drifting throughout

the day and were not always optimised. Additionally the detuning of the Raman
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laser from the |P 〉 is relatively small so that the transfer |1〉 → |0〉 may be effected

by scattering. To try to circumvent problems associated with laser drifts and

scattering we switched to a microwave antenna and use this to drive ground state

rotations. As shown in Sec. 10.3, the microwave pulses are slower but much more

stable due to using RF components.

11.4.2 State Preparation with Microwave Pulses

The state matrices generated using method A and B using a combination of mi-

crowave and optical pulses are shown in Fig. 11.8. As before, the microwave

rotation is set so that a Xµwave(π) rotation changes the qubit states from |1〉 → |0〉

with both atoms effected by the microwave pulse. As detailed in Sec. 10.3, we can

use an AC Stark shift generated by the Qubit laser to satisfy a ZAC(π) rotation to

shift the control atom out of resonance with Xµwave(π) thus achieving single qubit

state selection. Combining the Xµwave(π) and ZAC(π) rotations we can realise each

of the two-qubit states and use these to generate a state preparation matrix. Both

state matrices generated using the microwave antenna to drive the qubit rotations

have higher fidelities than those measured using the Raman laser, indicating that

the Raman laser is indeed problematic.

We firstly measured the diagonal elements only of each state matrix prepared

using methods A and B to get a comparison of the two methods, as typically the

off-diagonal elements are very low. Only the diagonal elements were measured

as a data run to measure the whole matrix with and without the final blow away

pulse, takes over nine hours to complete. In the interest of time, measuring only the

diagonal elements with each method allowed us to quickly compare the effectiveness

of each method, and then measure a full state preparation matrix with method B

as the fidelity was higher.

The state matrix diagonals prepared using method A, shown in Fig. 11.8(a), pro-
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Figure 11.8: The uncorrected state matrix prepared using microwave Xµwave(π) assisted

by the ZAC(π) driven by the qubit laser for (a) method A - with optical pumping only

achieving a fidelity FA
state= 0.81(2), and (b) with method B - optical pumping followed

by a Xµwave(π) rotation and blow away pulse with fidelity FB
state =0.81(2).

duces an uncorrected state matrix with elements

UA
state =


0.92(5) 0.00 0.00 0.00

0.00 0.80(6) 0.00 0.00

0.00 0.00 0.75(6) 0.00

0.00 0.00 0.00 0.77(3)

 , (11.7)

where the unmeasured off-diagonal elements are set to zero. We compare the

uncorrected state matrix to the ideal case and achieve a fidelity FA
state = 0.81(2)

which is higher than we achieved with when using optical pulses to prepare the

atoms.

The measurement of the diagonal elements was repeated without the final blow

away pulse and used to correct the state matrix UA
state to account for losses, giving

a corrected state matrix

UA,cor
state =


0.94(6) 0.00 0.00 0.00

0.00 0.88(7) 0.00 0.00

0.00 0.00 0.78(6) 0.00

0.00 0.00 0.00 0.85(5)

 , (11.8)

with the off-diagonal elements again set to zero. The corrected state matrix fidelity
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is FA,cor
state = 0.87(2). Both FA

state and FA,cor
state may be higher in value than they

would be if the entire state matrix had been measured as there will be some error

associated with the off-diagonal elements which we have assumed to be zero here.

For method B, the initial Xµwave(π) rotation prior to blow away is implemented

using the microwave antenna, and we measure the state matrix

UB
state =


0.91(4) 0.05(3) 0.04(2) 0.00(1)

0.00(1) 0.81(4) 0.00(1) 0.04(2)

0.07(3) 0.00(1) 0.77(5) 0.10(4)

0.00(1) 0.02(2) 0.03(2) 0.75(5)

 , (11.9)

with an uncorrected fidelity FB
state=0.81(2) when overlapped with the ideal case.

The data for the uncorrected state matrix is shown in Fig. 11.8(b) and we can

see that the uncorrected data is better than the corrected data when using only

optical pulses for preparation.

Then repeating without the final blow away pulse and applying this correction to

the state matrix UB
state, we achieve a corrected state matrix

UB,cor
state =


1.00(6) 0.05(5) 0.05(5) 0.00(6)

0.00(6) 0.92(7) 0.00(3) 0.05(5)

0.09(5) 0.00(6) 0.91(7) 0.12(6)

0.00(6) 0.02(6) 0.04(5) 0.82(7)

 , (11.10)

with a loss corrected fidelity FB,cor
state = 0.91(1) showing a far superior result to any

other method.

As a result, we proceed to use the method of preparing the atoms in the desired two-

qubit states using optical pumping, a Xµwave(π) rotation and blow away, followed

by a combination of Xµwave(π) and ZAC(π) to apply the input and output state

rotations when demonstrating the CNOT gate. Based on our ability to prepare

the state matrix using this technique, we expect to prepare the CNOT gate with

an upper bound on the achievable fidelity FCNOT ≤ 0.91.
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11.5 Demonstration of a CNOT Gate

We demonstrate the CNOT gate based on the protocol described in Sec. 6.2 which

uses the Rydberg blockade effect to condition EIT on a target atom. We demon-

strate the CNOT gate by optically pumping the atoms into the qubit state |11〉, we

then apply the rotation Xµwave(π) using the microwave antenna and a blow away

pulse to correct for imperfect optical pumping. We use Xµwave(π) and ZAC(π)

rotations to create each of the two-qubit basis states in turn which are applied

as input before the CNOT gate pulses are applied. The pulses that make up the

CNOT gate are global Rydberg light applied for 5 µs, a π-pulse applied to the

control atom, an adiabatic pulse applied to the target atom for 2 µs and a second

π-pulse applied to the control atom, as shown in the inset of Fig. 11.6. After the

gate pulses, another sequence of Xµwave(π) and ZAC(π) pulses are applied to cycle

through the output basis states which rotate the two-qubit state to |00〉 and a

final blow away pulse is applied to distinguish between the qubit states |0〉 and

|1〉. By cycling through the input and output pulses we generate a CNOT gate

matrix which displays the characteristic swapping of the target qubit when the

control qubit is in state |1〉. As with the state matrix this allows us to measure in

the basis A•• and correct for losses by measuring B•• without the final blow away

pulse.

The measured CNOT gate using this preparation method is shown in Fig. 11.9(a),

with matrix elements

UCNOT =


0.64(5) 0.07(3) 0.06(3) 0.00(1)

0.06(3) 0.65(5) 0.04(2) 0.01(1)

0.05(2) 0.07(3) 0.05(2) 0.49(6)

0.00(1) 0.06(3) 0.42(5) 0.10(3)

 . (11.11)

This CNOT matrix has fidelity FCNOT = 0.55(2) when overlapped with the ideal

case.

Repeating the CNOT gate matrix measurement without the final blow away pulse

gives a measure of losses due to imperfect state preparation and qubits from the
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Figure 11.9: (a) The measured CNOT gate matrix uncorrected for losses from the

computational basis with fidelity FCNOT = 0.55(2), (b) the corrected CNOT gate matrix

with fidelity Fcor
CNOT = 0.84(2).

experiment basis. By correcting the CNOT gate matrix UCNOT for these losses we

achieve a corrected gate matrix shown in Fig.11.9(b), with matrix elements

Ucor
CNOT =


0.79(5) 0.09(3) 0.08(3) 0.00(1)

0.08(3) 0.82(6) 0.05(2) 0.02(1)

0.08(2) 0.12(3) 0.06(3) 0.87(6)

0.00(1) 0.11(3) 0.82(6) 0.17(3)

 , (11.12)

which has fidelity F cor
CNOT = 0.84(2) when overlapped with the ideal case.

The fidelity of the CNOT gate generated in this way is quite good but can be

improved. In particular, the fidelity is 0.07 lower than predicted from the state

matrix measured using the same method which placed an upper bound of FCNOT ≤

0.91. Examining the individual elements of Fig. 11.9(a), we can determine where

the main sources of error come from.

Considering the upper left-hand quadrant of the matrix, with input states |01〉

and |00〉, the dominant error is imperfect EIT which results in the target atom

not fully following the dark state hence there is some probability that it undergoes

Raman transfer. At the EIT resonance on the target atom, there is 5-10 % of

the atomic population left in the qubit state |1〉 (see Fig. 11.5), leading to 5-10 %

error on those gate elements. The experimental limitations on EIT are finite laser
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power and fluctuations in the EIT resonance caused by frequency drifts of the ULE

Rydberg laser locks, as discussed in Sec. 10.4.2.

The bottom right-hand quadrant of the gate matrix, with input states |10〉 and

|11〉, are the cases where the control atom is excited to |r〉. The dominant error

here is due to the loss of the control atom in the Rydberg state due to finite lifetime

of the Rydberg state and dephasing effects reducing the recovery to |1〉 after the

second π pulse on the control atom. As discussed in Sec. 10.4.2, the measured

decay time of the Rydberg state is ∼ 2.24 µs which is just greater than the 2 µs

gap between the two π-pulses on the control atom. An independent measurement

of the pulses on the control atom, showed that the control atom was returned to

the qubit state |1〉 80 % of the time. This means that 20 % of the control atoms

decay from |r〉 before the gate operation is complete, thus potentially reducing

the effectiveness of Rydberg blockade, which is crucial for controlling the CNOT

operation.

By considering the errors on each of these quadrants, we can account for the

reduced fidelity of the CNOT gate compared to that measured for the state matrix.

If we consider the fidelity of the state matrix prepared using the same method is

Fstate = 0.91 and compare this to the fidelity of the gate FCNOT = 0.84, then the

gate operation is implemented with ∼ 92 % efficiency.

11.6 Measuring Entanglement

To verify the quantum nature of the CNOT gate we generate entanglement by

inputting a two-qubit mixed state and applying the CNOT gate operation on this

state. In our case the target atom is prepared in |0〉 and the control atom in the

superposition (|1〉 + |0〉)
√

2 which under the CNOT gate leads to(
|1〉+ |0〉√

2

)
⊗ |0〉 CNOT−−−→ |11〉+ |00〉√

2
, (11.13)
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the maximally entangled Bell state |Φ+〉. As discussed in Sec. 2.3 the generic

two-qubit density matrix is

ρ =


P00 a b c

a∗ P01 d f

b∗ d∗2 P10 g

c∗ f ∗ g∗ P11

 , (11.14)

and the Bell-state preparation fidelity for |Φ+〉 is

F|Φ+〉 =
〈
Φ+
∣∣ ρ ∣∣Φ+

〉
= (P00 + P11)/2 + |c|. (11.15)

This shows that to verify the preparation of an entangled state we need to measure

both the diagonal populations and the off-diagonal coherence terms of the density

matrix. As described in Sec. 2.3 we can measure the coherences using parity

oscillations.

The parity analysis pulse that will allow us to measure the coherence term |c|

consists of a global phase shift Z(φ) followed by a global X(π/2). When applying a

globalX(π/2) rotation in the experiment using either Raman beams or microwaves

we actually implement Rϕ(π/2) which introduces an additional phase factor ϕ.

Applying these rotations to the generic density matrix given above and converting

to parity as a function of phase accumulation φ gives a parity oscillation of the

form

Π(ϕ, φ) = 2 Re(d) cos(φd)− 2|c| cos(2(φ− ϕ) + φc), (11.16)

where 2 Re(d) is the coherence of the |01〉 and |10〉 states, φd is the phase of d,

|c| is the coherence of the |00〉 and |11〉 states, φc is the phase of c, φ is the

phase accumulation prior to the Rϕ(π/2) pulse. This oscillation scheme is thus

well suited for characterising the |Φ±〉 Bell states, with the parity only showing an

oscillation at cos(2φ) if the coherence term is non-zero, whilst for |Ψ±〉 the parity

simply gains a constant offset.

In practice, if the additional phase ϕ is not stable with respect to the other pulses

and rotations in the experiment, then ϕ randomises over 0 − 2π for each experi-

mental run [140], which is cycle averaged to zero over many experimental repeats.
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(a)

RO

(b)

RO

Figure 11.10: (a) Ramsey-type sequence used to prepare the control atom in the su-

perposition (|1〉+ |0〉)/
√

2 and the target atom in |0〉 using the local and global Raman

beams to realise a phase gate Z(φ) dependent on the free evolution time between the

pulses. (b) The results of the Ramsey-type sequence as the free-evolution time is scanned

with phase φ/2π = 250 kHz.

As a result of this we cannot use microwave pulses to perform either the parity

analysis or the input state rotations as these are not phase-synchronous with re-

spect to the Raman rotation pulse used during the CNOT gate. This issue arises

due to the AC Stark shift term of the Raman beams with respect to the microwave

pulses, leading to the microwave oscillator generating the Raman pulses operating

at a detuning of 23.2 kHz from the unperturbed microwave resonance. As the

experiment cycle is not triggered at integer multiples of this detuning, the effect

is to introduce a random ϕ between Raman and microwave pulses within a given

experimental run. For the data shown in Sec. 11.5 we used diagonal input states

which are not sensitive to these phases.

For the Bell state preparation we therefore perform all state preparation and parity

analysis using the Raman lasers which are phase-locked to the Rydberg excitation

lasers and ensure all pulses are phase-synchronous when keeping the relative timing

of each pulse fixed.

Generating a superposition state using the Raman laser introduces a new challenge

as only the global Raman beam addresses the control atom in the experiment,

which also effects the state of the target atom, and we want to prepare the atoms

in different states. To achieve this we apply a Ramsey-type sequence on the target
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atom using the Raman laser to apply Xlocal(π/2) and Xglobal(π/2) to the target

atom, separated by a variable free-evolution time τ , as illustrated in Fig. 11.10(a).

During the free-evolution time, the target atom accumulates a differential phase

φ = δACτ with respect to the Raman laser, that is caused by the AC Stark shift

δAC. This results in a phase gate Z(φ) that is dependent on the free-evolution

time. By scanning τ an oscillation that is sensitive to the phase of the state of the

target atom is observed and is shown in Fig. 11.10(b). From the fit of this data the

target atom is rotated to the qubit state |0〉 on the application of Xglobal(π/2) when

τ = 1.96 µs with δAC/2π = 10.1 kHz. This then places the control atom in the

superposition (|1〉 + |0〉)
√

2 and prepares the two-qubit input state (|10〉+|00〉)/
√

2

as desired.

We measure the populations and parity using method B to prepare the atoms then

apply the input pulse sequence to create the mixed state (|10〉+ |00〉)/
√

2, followed

by the CNOT gate sequence to create the Bell state |Φ+〉. An analysis pulse is

then applied on the Bell state, that depends on the measurement we want to make.

11.6.1 Population Measurement

To measure the populations we generate the Bell state |Φ+〉 as described above

and apply an analysis pulse that allows us to measure to the populations in a

basis that corresponds to A••. As illustrated in Fig. 11.11(a), to measure the

population of P00 we apply no analysis pulse and for P11, we apply Xglobal(π)

followed, in each case, with a blow away pulse to measure A••. The measurements

are then repeated without the blow away pulse to measure B•• to give a correction

on the total population remaining in the computational basis.

The populations P01 and P10 cannot be measured directly so we use the method

employed in Ref. [30] to estimate a lower bound on these populations. The

populations P01 and P10 can be expressed in terms of Eq’s 11.1 and 11.2 as

P01 = A◦•−(B◦•−σx0) and P10 = A•◦−(B•◦−σ0x). Since we cannot independently

measure each of these terms, we evaluate a lower bound for the populations given
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(a) (b)
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CNOT

no pulse
/
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Figure 11.11: (a) Experiment sequence used to prepare and measure the Bell state |Φ+〉

with analysis pulses Xglobal(π) and no pulses to measure the populations P00 and P11

respectively. (b) The populations P00 and P11 are measured directly from the data whilst

P01 and P10 are estimates of the lower bound (see text for details).

by

P01 ≥ A•◦ −B•◦, (11.17a)

P10 ≥ A◦• −B◦•. (11.17b)

From the measurement of the population P00, we can extract the values of A•◦,

A◦•, B•◦, and B◦• to estimate a lower bound on the value of the populations P01

and P10.

The corrected populations measured using these sequences are shown in Fig. 11.11(b)

with values 
P00

P01

P10

P11

 ≥


0.385± 0.03

0.024

0.005

0.406± 0.03

 . (11.18)

The total sum of the populations is ∼ 0.82 which shows there is about 0.18 of the

total population outside the computational basis. This value is consistent with

the measured value of B•• = 0.85(3) when only the preparation method is applied,

i.e. optical pumping, Xµwave(π) and blow away. Additionally the measured value

of B◦◦ ≈ 0.06 for each population measurement showing that a small fraction

of the atoms are lost from the microtraps which is most likely due to the finite

temperature of the atoms during the trap drop.
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11.6.2 Parity Oscillation

The full sequence used to measure the parity is shown in Fig. 11.12(a), where

the atoms are prepared as before and the Bell state is probed using the analysis

pulse Z(φ) and Xglobal(π/2) to observe a parity oscillation. From Eq. 11.16, we

can see that the parity will only oscillate when the Bell state |Φ±〉 is created. For

the chosen analysis pulse, the parity of Bell states |Φ±〉 are independent of phase

and have a constant value of 2 Re(d) and a statistical mixture shows no output

oscillation under the phase accumulation.

To verify that there is no oscillation when the mixed state is used as the input,

we apply the parity analysis pulses to the mixed state. The results are shown

in Fig. 11.12(b) where we can see the data have no oscillation as expected for a

state with no off-diagonal coherence. This means that when the Bell state |Φ+〉 is

created any observed oscillation amplitude is related to the coherence term |c|.

The parity in the experimental basis is given by

Π = A•• + A•◦ + A◦• + A◦◦, (11.19)

and results in an oscillation with an additional offset compared to Eq. 11.16 due

to losses of both atoms from the traps

Π(φ, ϕ) = 2 Re(d) cos(φd)− |c| cos(2(φ− ϕ) + φc) + ρxx. (11.20)

This equation shows that the amplitude of the coherence term c is preserved even

in the presence of loss and can be extracted directly from the fitted oscillation

amplitude. The additional offset ρxx is equivalent to B◦◦ in this basis and can be

measured directly when repeating the parity measurement without the final blow

away pulse.

The resulting parity oscillation is shown in Fig. 11.12(c) which is fit to Eq. 11.16,

from which the coherence |c| = 0.18(3) is extracted. The weighted average value

of the parity measurement is 0.0055, shown as the solid grey line in Fig. 11.12(c),

which has an error of 0.02 given by the standard deviation and shown by the
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Figure 11.12: (a) Experiment sequence used to prepare and probe the Bell state |Φ+〉.

The parity measurement is performed using the analysis pulse consisting of a global phase

Z(φ) and global rotation X(π/2). The results of the parity measurement for (b) an input

mixed state (|10〉 + |00〉)/
√

2 with no evidence of an oscillation, and (c) the Bell state

|Φ+〉 showing a parity oscillation with respect to accumulated phase θ.

dashed grey line. This shows there is a very slight off-set to the parity result,

which should be centred around zero.

From Eq. 11.20 this off-set is due to the terms 2 Re(d) cos(φd) + ρxx, with ρxx ≡

B◦◦ = 0.06(1) directly measured by repeating the parity measurement without

the final blow away beam. The term 2 Re(d) cos(φd) is related to the unwanted

Bell states |Ψ±〉, which has a calculated value -0.055, to account for the additional

off-set.

The measurement without the final blow away pulse also gives us B•• = 0.67(5),

which allows us to correct for atoms lost from the computational basis. This

gives a loss corrected coherence |c|cor = 0.26(6). As stated earlier, the presence

of an oscillation is a clear indicator of the coherence, which can only exist for the

entangled Bell state and represents a non-factorisable coherence.
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11.6.3 Bell State Fidelity

Using the uncorrected, measured values for the populations P00 and P11 and the

coherence |c|, the measured fidelity of the Bell state is

F|Φ+〉 = (P00 + P11)/2 + |c| ≥ 0.44, (11.21)

which is just below the threshold to prove entanglement. Using the loss-corrected

values from each measurement gives a correct Bell state fidelity F cor
|Φ+〉 ≥ 0.66 which

is above the threshold to prove entanglement. Importantly, the analysis method

used to measure the parity exhibits no oscillation if an entangled state not created.

11.7 Analysis of the Losses

The method described in Sec. 11.3 enables us to perform a measurement on the

atoms remaining at the end of the sequence, hence those that are in the correct

measurement basis. From the measurement of B•• we get a two-atom survival of

0.67(5) which means 33 % of the atoms are lost from the microtrap from sources

that do not contribute to the measurement. These losses can be evaluated by

looking at the atoms separately following the discussion in Gaetan et al. [140].

The probability of losing an atom, independently of the other, is related to the

mean value 〈Pc,t(φ)〉 of the single atom survival for phase accumulation φ, via the

relation

Lc,t = 1− 2〈Pc,t(φ)〉. (11.22)

This assumes that the mean value of the probability of an atom being measured

in |1〉 at the end of the measurement is 1/2, assuming there is no additional loss

during the gate and analysis pulses. Using the mean values for each atom during

the parity sequence, the loss probabilities of the control and target atoms are

Lc = 0.37(3) and Lt = 0.12(4), respectively, which we can see are not equal.

The loss probabilities show that the control atom is more likely to be lost, which

is not surprising as this atom is excited to the Rydberg state, which may decay
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from |r〉 before the second π-pulse is applied or remain in the Rydberg state when

the trapping light is re-applied. In either case the control atom would be lost from

the trap and not contribute to the parity analysis pulses that follow the gate. The

error associated with Rydberg excitation on the control atom is ∼ 20 %, which

accounts for intensity fluctuations and spontaneous emission from |r〉, the finite

temperature of the atoms during the trap drop accounts for about 5 % atom loss

and the imaging accounts for ∼ 2 %. Imperfect optical pumping accounts for

∼ 10 % of the atom loss which couples to the loss channel {x} by placing atoms

in a state outside of the computational basis. In total, this accounts for the 37 %

loss of the control atom.

The lower loss probability of the target atom is again unsurprising, as the target

atom should always be in one of the qubit states |1〉 or |0〉 so that the main loss

of this atom comes from the initial preparation pulse involving Xµwave(π) followed

by blow away which removes about ∼ 10 % of the atoms from the trap. This is

close to the value of 12 % loss observed on the target atom.

The total probability of losing at least one of the atoms is given by

Ltotal = Lc + Lt − LcLt = 0.44(5). (11.23)

This should be equivalent to the probability of losing an atom pair in the

computational basis at the end of the sequence without the blow away pulse

1 − B•• = 1 − 0.67(5) = 0.33 but there is ∼ 10 % difference. This implies that

∼ 10 % of the atomic population is in the wrong state rather than lost from the

trap as assumed when calculating Ltotal.

We can evaluate the contribution to loss as a result of the preparation of the wrong

Bell state as this appears as an off-set to the parity oscillation. The off-set from

the preparation of the wrong Bell state can be calculated from the the analysis of

A•• averaged over φ,

〈A••〉φ =
1

4
(P00 + P01 + P10 + P11) +

1

2
|d| cos(φd)

=
1

4
B•• +

1

2
|d| cos(φd),

(11.24)
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which gives |d| cos(φd) = −0.05(6) which matches that deduced from the observed

experimental off-set, showing there is a small proportion of the atoms in the wrong

Bell state. This accounts for ∼ 5% of the difference between the two loss calcula-

tions.

11.8 Outlook

The results presented in the preceding sections demonstrate that the novel protocol

using EIT can produce a CNOT gate with FCNOT ≥ 0.84, and be used to create a

Bell state to prove the quantum nature of the gate with corrected fidelity F ≥ 0.66.

Comparing this result to other demonstrations of a CNOT gate using Rydberg

atoms, we observe that our gate has a lower fidelity than the best demonstrated

which achieved FCNOT ≥ 0.97 and F|Φ+〉 ≥ 0.95 [30]. The main limitation to the

results presented in this thesis come from state preparation and laser phase noise

which drastically reduce the fidelity of the gate operation being performed. If

these issues were to be improved by, e.g. improving the optical pumping efficiency

by replacing the Kodial glass viewport with high optical quality fused silica, we

estimate that the fidelity of the CNOT gate based on EIT could achieve a similar

fidelity to that presented in Ref. [30].

There are two main advantages to implementing the CNOT gate using the EIT-

based protocol: firstly, multi-qubit gates can be achieved directly without the

necessity to split the operations into pair-wise interactions and, secondly, the EIT

based CNOT gate protocol also allows the direct implementation of a CNOT gate

as most other Rydberg CNOT gates have been achieved by applying a controlled-

phase (CZ) gate between two X(π/2) rotations [17].

The next step would be to scale the experiment to more than one target atom,

to measure the scalability and fidelity of the gate in this case, as it is the main

advantage of implementing a CNOT gate using this protocol. To do this we would

ideally introduce a third tweezer trap to the experiment, to create a three-atom
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array, such that all atoms are within the Rydberg blockade radius. The use of an

array is important as the atoms are confined in such a way that the interactions

between target atoms can be neglected; if a target ensemble is used instead, the

target-target interactions require a careful choice of Rydberg state to realise EIT

on all target atoms. Due to the scalable nature of the gate protocol, the Rydberg,

Qubit, Raman and microwave pulses utilised to perform the gate in Sec. 11.5 can

be kept the same.

11.9 Conclusion

In this chapter we have demonstrated a new protocol for a CNOT gate based on

EIT with a fidelity FCNOT ≥ 0.84 and used the protocol to create a Bell state with

corrected fidelity F ≥ 0.66. Whilst this fidelity is lower than expected for the

fidelities obtained in simulations, these measurements represent data accumulated

over 15 hours of measurements during which several critical parameters require

periodic re-optimisation such as the EIT resonance which drifts as a result of the

drift in the frequency of the Rydberg EOM frequency lock. The EIT resonance

was particularly effected as it has a very narrow linewidth so a change of ∼10 kHz

in the Rydberg EOM lock changes the EIT resonance. Even with interlacing

recalibration, the extended measurements combined with relatively slow repetition

rate (<1 Hz) makes these measurements challenging to improve without upgrades

to the system including faster cycle times, improved optical pumping (for example

by replacing the Kodial glass viewport with high optical quality fused silica) and

increased Rydberg laser power.

As discussed in Sec. 10.4.2 another source of error is the laser phase noise from the

ULE cavity which directly affects the Rydberg B, SolsTiS and Qubit lasers, which

is then coupled into the Raman laser via the OPPL. To reduce the laser phase

noise from the lock, we could use the light from the ULE cavity as a spectral filter

to injection lock another laser diode as was done in [45] with great success. The
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benefit of this would be to improve the decay time of the Rydberg excitations,

therefore reduce the error associated with the control qubit decaying from the |r〉

before the gate sequence is complete.

Additionally, during the final parity measurements there was significant increase

in mains electrical noise arising from building works in the neighbouring building

that compromised laser lock stability and state preparation fidelity making these

already challenging measurements substantially harder to obtain.
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Chapter 12

Conclusion

In this thesis we have described the experimental implementation of a CNOT gate

using a new protocol that utilises EIT and Rydberg dipole blockade. To do this

we have given an overview of the experimental set-up that allows us to optically

trap and manipulate a pair of caesium atoms and discussed experimental upgrades

that have been implemented to perform the CNOT gate.

The first experiment upgrade was to install an optical phase-lock loop between the

Qubit and Raman lasers. The Qubit laser acts as a master laser to the Raman

such that the Raman laser inherits the stability of the Qubit laser which is locked

to a high-finesse ULE cavity. This gives both lasers an equal detuning from the

intermediate state
∣∣6P3/2, F

′ = 5
〉
which is crucial for the implementation of the

CNOT gate.

The second upgrade was to perform optical pumping using the D1 line which en-

abled us to prepare the atoms in the state |F = 4,mF = 0〉 with fidelity FD1
OP =

0.986, an improvement on that achieved using the D2 line which has FD2
OP = 0.966.

The main limitation we have in our ability to improve the optical pumping ef-

ficiency is the polarisation of the optical pumping beam which has a weak σ±

component as a result of the beam passing through several windows before reach-

ing the atoms.
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The third experimental upgrade was to the Rydberg laser for excitation to the

Rydberg state. A MSquared SolsTiS laser was installed to give an increase in

power of light available at the atoms with more stability. We achieved Rydberg

excitation using this laser with a Rabi frequency Ω/2π = 2.93 MHz with a power

of 170 mW which allowed us to perform controlled faster rotations to the Rydberg

state than those achieved using the home-built laser. Due to technical issues we

later reverted to using the home-built Rydberg B laser with the modification of

removing an AOM to enable more power at the atoms however this removed finer

control over the Rydberg pulse duration which was compensated to some degree

by detuning the global Raman laser further from resonance and using mechanical

shutters.

The final upgrade was the installation of a microwave antenna which allowed us

to apply microwave pulses to drive rotations between the qubit states |1〉 → |0〉

more efficiently that using the Raman laser. Once optimised the microwave pulses

reproducibly produced a transfer between the qubit states with an efficiency >

95 %, an increase from the ∼ 85 % achieved with the Raman beams. We also

optimised single-site selectivity using the Qubit laser to provide an AC Stark shift

on the control atom so that the atom was not resonant with the microwaves pulse.

This was also highly reproducible with an efficiency > 95 %.

We optimised microwave and Raman transitions between the qubit states |1〉 → |0〉

for both local and global rotations, and optimised the two-photon excitation to

the Rydberg state
∣∣81D5/2,mj = 5/2

〉
using the Qubit and Rydberg lasers. These

single qubit rotations are the basic building bocks on which the two-qubit CNOT

gate can be implemented.

To perform the CNOT gate we characterised a smooth pulse with the local Raman

laser so that it could drive a transition between the qubit states on a target atom.

Then when the Rydberg laser was applied a dark state formed such that the

target atom adiabatically followed this state, thus remaining in the qubit state it

was prepared in. The effect of Rydberg blockade controlled this operation such
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that when the control atom is prepared |1〉 the strong dipole interactions between

the atoms shifted the target atom by an energy great enough to break the EIT

condition. By preparing the control and target atoms in the states |0〉 and |1〉 in

turn, we realised a CNOT gate matrix with a fidelity FCNOT ≥ 0.84 when corrected

for losses.

The CNOT gate protocol was then used to create the Bell state |Φ+〉, the quantum

nature of which was measured using the parity. When correcting for losses the

measured Bell state fidelity F|Φ+〉 ≥ 0.66 which verifies the quantum nature of the

CNOT gate.

12.1 Outlook

The future direction of the project will involve a hybrid atom-superconductor sys-

tem. The experiment set-up discussed throughout this thesis has been designed

to allow integration of a superconducting microwave circuit into the science cham-

ber and for a 4 K cryostat to be installed. At 4 K the quality factor, Q, of

superconducting resonators is limited by quasi-particle excitation due to finite

temperature effects [57], however using highly-excited Rydberg states overcomes

the finite-temperature limitation to engineer long-distance entanglement that is

independent of the thermal occupation and to achieve ground-state cooling of a

mechanical oscillator [141].

The benefit of superconducting circuits are that they operate at a microwave fre-

quency range that overlaps with the frequency range of highly excited Rydberg

transitions [62, 142, 143]. The integration of the two technologies gives access

to a range of potential applications such as quantum memories where the atomic

qubit acts as a quantum memory, that can couple to the microwave mode of the

superconducting circuit to realise long-distance entanglement [58, 144], ground-

state cooling [145, 146] and opto-mechanical conversion of single photons from the

optical to microwave domain [63, 147, 148].
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In the first instance we aim to demonstrate ground-state cooling by coupling a

Rydberg atom to a superconducting microwave circuit and probing the microwave

field to demonstrate coherent atom-cavity dynamics [149]. This can be used to

implement long-distance microwave communication which would allow coupling

of distant qubits via a thermally excited waveguide by cooling the intermediate

resonators which is required to perform high-fidelity state transfer [150, 151].
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