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Abstract

Early diagnosis and appropriate treatment planning are the keys to brain tumour pa-

tients’ survial rate. Radiotherapy (RT) is a common treatment for brain tumour. RT

planning requires segmentation of a gross tumour volume (GTV). Manual segmentation

of the brain tumour done by experts oncologists or clinicians is time-consuming and

subject to intra- and inter-observer variability. This research presents novel image pro-

cessing and deep learning methods for automatic brain tumour regions segmentation

from MRI data. The MRI data of brain tumour patients from Brain Tumour Segmen-

tation or BraTS dataset from 2018-2021 are used in this study.

2D deep neural networks for semantic segmentation of brain tumour regions from

2D axial multimodal (T1, T1Gd, T2, and FLAIR) MRI slices is presented. This pro-

posed network is trained and tested on manual consensus labels by experts from BraTS

2018 dataset. The network has similar architecture to U-Net, which consists of a stream

of down-sampling blocks for feature extraction and a reduction in the image resolution,

then a stream of up-sampling blocks to recover image’s resolution, integrate features,

and classify pixels. The proposed network improved feature extraction by introducing

two-pathways feature extraction in the first block of the down-sampling to extract lo-

cal and global features directly from the input images. Transposed convolution was

employed in up-sampling path. The proposed network was evaluated for the segmenta-

tion of five tumour regions: whole tumour (WT), tumour core(TC), necrotic and non-

enhancing tumour (NCR/NET), edema (ED), and enhancing tumour (ET). The results

obtained from the modified U-Net achieved mean Dice Similarity Coefficient (DSC) of

0.83, 0.62, 0.45, 0.69, and 0.70 for WT, TC, NCR/NET, ED, and ET, respectively.
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These results show a 9% improvement compared to the original U-Net’s performance.

2D predicted segmentation obtained from the proposed network are stacked to visualise

the tumour volume.

A novel deep neural network called 2D TwoPath U-Net for multi-class segmentation

of brain tumour region is described. The proposed network has improved two-pathways

feature extraction to provided cascaded local and global features from 2D multimodal

MRI input. The proposed networks was trained using MRI data from BraTS 2019

dataset and test using MRI data from BraTS 2020 dataset. Data augmentation and

different training strategies including the use of full-size images and patches were em-

ployed to improve the predicted segmentation. The results obtained from the proposed

network feature all intra-structure (NCR/NET, ED, ET) of tumour to form the seg-

mentation of WT and TC regions, and achieved mean DSC of 0.72 and 0.66 for WT

and TC, respectively.

A novel 3D deep neural network for brain tumour regions segmentation from MRI

data called 3D TwoPath U-Net is described. The network has a similar structure to

the 2D TwoPath U-Net, and uses two-pathways feature extraction to capture local and

global features from volumetric MRI data from BraTS 2021 dataset. The volumetric

data were created using T1Gd and FLAIR modalities. To construct a 3D deep neural

network with significantly high computational parameters, cropped voxels from volu-

metric MRI were used to reduce the input resolution. Furthermore, high-performance

GPUs were employed to implement the network. The proposed network achieved the

mean DSC of 0.87, 0.70, and 0.58 for WT, TC, and ET segmentation, respectively,

which represents a 25% improvement compared to the previous segmentation results

obtained using the 2D approach. Moreover, the 3D smooth tumour volume generated

from the proposed network output provide a more visually representative depiction of

the tumour.
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Chapter 1

Introduction

1.1 Preface

According to the Cancer Research UK statistics, brain tumour is the 9th most common

cause of cancer death in the United Kingdom and only 11% of patients survived brain

tumour for 10 or more years [1]. Over 12,000 of new cases diagnosed with brain tumour

each year between 2016-2018 in the UK, and around 3% are preventable [2]. Early di-

agnosis and treatment planning are important keys to increase brain tumour patients

survival rate. In 2016, the World Health Organization [3] classified brain tumour into

more than hundred types, and glioma is the most common type of the brain tumour

that found in both adults and children. Tumour region segmentation gives necessary

reliable information to perform the treatment planning such as observation, surgery,

radiotherapy and chemotherapy.

Radiotherapy is a common treatment option for pre-surgery and post-surgery pa-

tients. Delineation of clinical target volumes are required in order to deliver the ap-

propriate radiotherapy dose to the patient [4]. Traditional estimation of the region

of interest (ROI) that covers the whole tumour required anatomical expertise, and it

is done manually by the expert oncologists. The process involves manually drawing

of the tumour border on each MRI slide of the patients and it is a time-consuming

task [5]. Difference medical imaging modalities were employed to improve the accuracy

of tumour assessment and MRI imaging has become the modality of choice because

1
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of its superior in soft-tissues contrast. Semi-automatic and automatic brain tumour

segmentation were proposed to assist the delineation process [6], [7], [8]. Deep learning

has become an effective technique in image classification and segmentation tasks [9],

and it is also employed in medical imaging segmentation [10], [11].

This research aims to use image processing techniques and deep learning technol-

ogy to create novel automatic segmentation frameworks in order to extract appropriate

region of interest which covers the whole tumour and avoid non-tumour regions. The

results of this research will lead to advance tools for clinical brain tumour assessment

using MRI data and be a great value to help improving the early diagnosis and the

treatment planning.

1.2 Research motivation

Radiotherapy (RT) is common treatment option for brain tumour patients by using high

energy x-ray energy to destroy the tumour cells. Radiation dose is usually delivered to

the tumour plus a margin of 2 cm following the European Organization for Research

and Treatment of Cancer (EORTC) guideline [4, 12]. The RT planning and planning

target volume (PTV) require the delineation of the gross tumour volume (GTV) to

differentiate tumour from the healthy brain tissues. Traditionally, the delineation of

the GTV is done manually and relied on the expertise of the oncologists. It is a time-

consuming, subjective and impractical for large-scale study [13]. There is a need for

automated segmentation algorithm that gives precise location of the GTV and time-

efficient to assist the brain tumour assessment.

Development of segmentation framework combining image processing techniques

and deep learning based model that can automatically segment brain tumour could

greatly benefit tumour assessment, treatment planning, and treatment follow-up for

brain tumour patients.
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1.3 Research hypothesis and objectives

The hypothesis of this thesis is that, an automatic brain tumour regions segmentation

framework, developed using images processing techniques and deep learning method can

obtain similar results when compared to current manual segmentation done by expert

oncologists but less time consuming. To assess the stated hypothesis, the objectives of

this research were to:

1. Determination of the appropriate methodology for the automatic brain tumour

regions segmentation.

2. Developed a novel 2D image processing techniques and deep learning algorithm

for automatic segmentation and visualisation of the brain tumour regions from

multimodal MRI data.

3. Developed a novel 3D image processing techniques and deep learning algorithm

for automatic segmentation and visualisation of the brain tumour region from

multimodal MRI data.

4. To achieve fast and accurate result of the segmentation results comparing to

manually segmentation ground truth done by the experts.

1.4 Summary of original contributions

The main contributions of this thesis are described below:

1. A novel 2D deep learning segmentation algorithm for whole tumour and intra-

structures of tumour region is developed. The algorithm makes use of local and

global feature extraction paths to the first block of a modified version of classical

U-Net model. The proposed algorithm achieves 2D segmentation of all tumour re-

gions and improves the segmentation accuracy compared to that from the original

U-Net.

2. A novel 2D deep learning algorithm for multi-class brain tumour regions seg-

mentation is developed. The model is called TwoPath U-Net which is the im-
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proved two-pathways feature extractions deep learning algorithm. The proposed

algorithm achieves multi-class 2D segmentation of the whole tumour, enhancing

tumour, and necrotic core regions.

3. A novel 3D deep learning algorithm for brain tumour region segmentation is

developed. The algorithm introduced 3D two-pathways feature extraction to the

3D convolutional neural network. The algorithm used 3D voxel from multimodal

MRI data and achieves the 3D segmentation of the brain tumour volume of the

whole tumour, tumour core, and enhancing tumour regions.

1.5 Author’s publications

This thesis is mainly based on the works that have been published in technical confer-

ences as follows:

Technical conference papers

1. Kaewrak, K., Soraghan, J., Caterina, G.D. and Grose, D., 2020, October.

TwoPath U-Net for automatic brain tumor segmentation from multimodal MRI

data. In International MICCAI Brainlesion Workshop (pp. 300-309). Springer,

Cham.

2. Kaewrak, K., Soraghan, J., Di Caterina, G. and Grose, D., 2019, September.

Modified U-Net for automatic brain tumor regions segmentation. In 2019 27th

European Signal Processing Conference (EUSIPCO) (pp. 1-5). IEEE.

Conference abstracts

1. Kaewrak, K., Soraghan, J., Di Caterina, G. and Grose, D., 2020. Automatic

brain tumour regions segmentation using modified U-Net. Academic Journal for

Thai Researchers in Europe, 1(1), pp.45-48.

Here follows an extended lists of publications published during the course of this re-

search, which are not presented in detail in this thesis but have contributed in related

technical challenges and applications:

Conference papers
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1. Basu, A., Kaewrak, K., Petropoulakis, L., Di Caterina, G. and Soraghan, J.J.,

2022, June. Indoor home scene recognition through instance segmentation using

a combination of neural networks. In 2022 IEEE World Conference on Applied

Intelligence and Computing (AIC) (pp. 167-173). IEEE.

2. Basu, A., Kaewrak, K., Petropoulakis, L., Di Caterina, G. and Soraghan, J.,

2022, May. 3-Dimensional object recognition using 1-dimensional capsule neu-

ral networks. In IEEE 2nd International Conference on Electronic Technology,

Communication and Information (ICETCI).

3. Basu, A., Kaewrak, K., Petropoulakis, L., Di Caterina, G. and Soraghan, J.J.,

2020, July. Modified capsule neural network (Mod-CapsNet) for indoor home

scene recognition. In 2020 International Joint Conference on Neural Networks

(IJCNN) (pp. 1-6). IEEE.

1.6 Thesis organisation

The remainder of this thesis is organised as follows:

Chapter 2 provides the fundamental of the human brain structure and its function.

The cause of the brain tumour and the need for medical target volumes delineation are

then discussed. The brain tumour classification and treatment options are reviewed.

The basic concept of the magnetic resonance imaging (MRI) and it acquisition are pre-

sented. Further, the advantages and limitations of different MRI modalities for brain

tumour assessment are discussed.

Chapter 3 describes tumour structure and the corresponding label annotation pro-

tocol. The challenges associated to the automatic segmentation are discussed. Various

automatic segmentation techniques including conventional and deep learning based

methods are explored. Furthermore, the development of U-Net and its variants includ-

ing biomedical image applications are discussed. Finally, implementation resources for

deep learning based model are presented.

Chapter 4 introduces the real (clinical) MRI data of brain tumour patient from

dataset that are used in this thesis. Examples of MRI image, intra-tumour structures,

5



Chapter 1. Introduction

and their corresponding labels are presented. Furthermore, the distribution of labels in

the dataset and its issue of class imbalance are discussed. The evaluation metrics that

can be used to measure the performance of segmentation algorithms are presented.

Chapter 5 describes the novel novel deep neural networks called modified U-Net

for automatic tumour regions segmentation using 2D slices from multimodal MRI data

available in BraTS 2018 dataset. The modification with two-pathways called local and

global feature extractions is presented. Experimental results including the visualisation

of the segmentation obtained from the proposed method implementation are presented

and discussed.

Chapter 6 describes the novel deep neural networks called TwoPath U-Net for multi-

class tumour segmentation using 2D slices from multimodal MRI data available in

BraTS 2019 and 2020. The improved cascaded two-pathways feature extraction is pre-

sented. Experimental results including the visualisation of the segmentation obtained

from the proposed method implementation and BraTS 2020 challenge participation are

presented and discussed.

Chapter 7 describes the novel 3D deep neural networks called 3D TwoPath U-Net

for tumour regions segmentation using 3D volumetric from multimodal MRI data avail-

able in BraTS 2021. 3D segmentation framework is presented and the impact of GPUs

accelerate on 3D deep neural networks implementation is discussed. Experimental re-

sults including visualisation of the segmentation obtained from the proposed method

are presented and discussed.

Chapter 8 presents discussion of the thesis reflecting on research objectives, key

contributions, and limitation of the research. Overall conclusions for this thesis and

suggestion for future work are presented in this chapter.
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Chapter 2

Brain tumour and its imaging

2.1 Introduction

Brain tumours are abnormal growth of cells in the brain that can be either benign

(non-cancerous) or malignant (cancerous). They can vary in size, location, and ag-

gressiveness. The proper diagnosis and treatment planning of the brain tumour relies

on a thorough understanding of their imaging characteristics. In this chapter, a brief

summary of the human brain structure and its function is presented. The cause of the

brain tumour, tumour classification, and treatment options are reviewed. The basic

concept of magnetic resonance imaging (MRI), and the images acquisition are pre-

sented. Finally, the advantages and limitations of different MRI modalities for brain

tumour assessment are discussed.

2.2 The human brain

Human central nervous system (CNS) [14] consists of the brain and spinal cord. The

CNS is capable of taking in information and providing related response. The CNS can

be distinguished by its colour called grey matter and white matter. The brain is the

centre of the CNS, and it is protected inside of skull. The brain contains three main

parts: cerebrum, cerebellum, and brainstem. The cerebrum is the largest part of the

brain, located in the front area of the skull and consisting of right and left hemispheres.
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The cerebrum can be divided into four lobes: frontal lobe, parietal lobe, temporal lobe,

and occipital lobe. Each of them is normally associated with different human functions.

According to [15] and [16], the frontal lobe controls higher functions including judge-

ment, reasoning, problem solving. The frontal lobe also responsible for planning and

executing movement. It is the last brain region to fully develop and not completing

development until individuals reach their 20s. Parietal lobe is associated with inter-

pretation of language and words, sense of touch, interpretation of signals. Temporal

lobe plays a role in sensory processing, hearing, smell, taste, and higher-level visual

processing. The temporal lobe also controls speech and memory. Occipital lobe’s main

function is processing of visual information, image recognition and image perception.

Because the brain is three dimensional structure, there are planes or axes that can

be used to examine the nervous system. As shown in Fig. 2.1, the frontal or coro-

nal plane is a vertical plane that dividing the brain into front and back pieces. The

sagittal plane is also a vertical plane but dividing the brain into left and right pieces.

Finally, the transverse or axial plane divides the brain into top and bottom regions.

These anatomical planes divide the brain to be able to view the internal regions and

structures of the brain.

Figure 2.1: The three anatomical planes of the brain [17].
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The brain is made of two types of cells; nerve cells or neurons and glial cells. The

nerve cells transmit signals to and from the brain, and they consist of a cell body,

dendrite, and axon. Axon conducts the nerve signal and transmits the signals to other

neurons across the small gap called synapse. Dendrites act like arms to picking up

the signals as messages. Neurons are surrounded by glial cells to support, protect

and provide them oxygen. There are four types of glial cells in the CNS; astroglia or

astrocytes, oligodendrocyte, ependymal, and microglia as shown in Fig. 2.2. The glial

cells are 10 to 50 times more than nerve cells and they are the most common type of

cells that involved brain tumours [18].

Figure 2.2: Nerve cells and surrounding glial cells [19].

2.3 Brain tumour

A brain tumour is an uncontrollable growth of abnormal cells of the brain tissues.

Glioma [20] is the type of brain tumour that grows from glial cells. According to Can-

cer Research UK [21], gliomas are the most common type of the brain tumour that

can be found in both adults and children. About 33 percent of all brain tumours are

gliomas. They are graded based on the type of glial cells from which they grow. The
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World Health Organization (WHO) [3] classification system categorized glioma from

grade I to IV based on their histopathologic characterustics and their behaviours (how

fast they are growing).

Grade I - Pilocytic astrocytoma typically occurs in the cerebellum or brainstem and

found in children. Grade I tumours are slow growing.

Grade II - Low grade glioma includes astrocytoma, oligodendroglioma and mixed

oligoastrocytoma typically occurs in the cerebral hemispheres and mostly found in

young adults (20s-50s).

Grade III - Malignant glioma includes anaplastic astrocytoma, anaplastic oligo-

dendroglioma, and anaplastic mixed oligoastrocytoma. They grow faster and more

aggressive than grade II gliomas. They can spread to other part of the brain which is

difficult for completely removal.

Grade IV - Glioblastoma multiforme (GBM) is malignant glioma and it is the

most aggressive brain tumour. GBM spread to another part of the brain quickly with

tentacle-like projections which are more difficult for completely removal.

Grade I and II are considered as low-grade glioma (LGG) [22], and are sometimes

called benign. LGG are slow-growing and have less chance to recur after getting com-

pletely removed. Grade III and IV are high-grade glioma (HGG) [23], and are some-

times called malignant. They are fast-growing and more aggressive tumours.

2.3.1 Brain tumours treatment options

Treatment options for glioma patients vary depending on the size, location, and grade

of the tumour. The goal of the treatment can also differ from patient to patient. It

may be curative or it may focus on relieving symptoms. The treatment options are

also often used in combination with one another. Following the guideline in [20], the

treatment options for gliomas can be summarised as follows:

1. Observation is for low-grade gliomas where tumours are small and located in

the areas that are not candidates for surgery or having high risk to cause damage of

function loss after surgery. Some tumours may never grow.

2. Surgery is the most recommended choice for low-grade gliomas if the tumour can
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be removed without causing damage of function loss.

3. Radiation can be a choice for either following surgery or in case that there is

no surgery. Radiation treatment is recommended after surgery to slow the residual

tumour growth, or recurrent tumours.

4. Chemotherapy is usually used for high-grade gliomas. For grade III gliomas,

chemotherapy is given after radiation for 6-12 months. For grade IV gliomas, chemother-

apy is given during and after radiation for 6-12 months.

2.3.2 Medical imaging for target volumes delineation

Radiotherapy (RT) is an important treatment option of brain tumour and it has been

significantly improved over the past decade. For radiation oncologists, medical imaging

is an important tool which gives reliable clinical information for the assessment of the

brain tumours. Successful radiotherapy required the best possible characterisation of

the location and extent of the tumour. Fig.2.3 illustrates the spatial relation of the three

main volumes in radiotherapy target volumes [24]; the gross tumour volume (GTV),

the clinical target volume (CTV), and the planning target volume (PTV). The GTV

is the position and extent of the primary tumour. The CTV is the extent of tumour

spread surrounds the GTV. After the GTV and CTV are established, the PTV must

be added to allows uncertainties in treatment planning. The PTV is normal tissues

surrounding the tumour.

Figure 2.3: An illustration of radiotherapy planning volumes.
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Fig. 2.4 shows an example of the three target volumes on Computed Tomography

(CT) images of a patient with WHO grade IV glioma [24]. The first image (from the

left) shows original CT with contrast-enhancing tumour, i.e. contrast agent is injected

into the patient body before taking the scan. The second image shows the drawing

of GTV (cyan line) which is the position and extent of the tumour. The third image

shows the drawing of CTV (cyan dash-line) which covers the area of suspected tumour

spread to the adjusted tissue, lymph vessels, or the draining lymph node stations. The

radiation oncologist need expertise in anatomy to generate a rational and individual

CTV. Finally, the PTV (magenta line) is introduced in the last image. It is the CTV

with added margin, allows for uncertainties in radiotherapy planning and to ensure that

the radiotherapy dose is delivered to the CTV. According to the European Organisation

for Research and Treatment of Cancer (EORTC) [12], CTV is GTV plus a margin of

2 cm, and PTV is CTV plus a margin of 3-5 mm. In clinical practice, the edges of

GTV are not always clear, better imaging to delineate gross tumour volume would help

reduce the margin between CTV and PTV.

Figure 2.4: CT image with contrast-enhancing of a patient with WHO grade IV glioma
and its three different tumour target volumes; GTV, CTV, and PTV [24].

Different medical imaging modalities are employed in different aspects of tumour

volumes localisation and treatment planning. Computed Tomography or CT is a non-

invasive medical procedure that uses specialized X-ray equipment to produce cross-

sectional images of the body. Each cross-sectional image represents a slice of the person

being imaged. As reported in modern brain tumour imaging [25], CT may be the first

image modality employed in brain tumour patients. A CT scan of the brain can be
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used to assess the brain tumour, lesions, and other injuries [26]. The CT scan process

can be completed in under 30 minutes. However, the patient is exposed to radiation

during the CT scan, which increases the potential risk of cancer [27].

Magnetic resonance imaging or MRI is current imaging modality of choice for brain

tumour because of its excellent soft-tissue contrast and ability to image directly on

multiple planes as described in [4]. The disruption of blood-brain barrier (BBB) cause

the contrast enhancement on MRI. However, [28] shows that in case of large tumour

parts that BBB is not yet affected, MRI sequences could underestimate the tumours

mass. Subsequently, metabolic image modalities like Positron Emission Tomography

(PET) and single-photon emission computed tomography (SPECT) are also employed

to localise brain tumours rather than MRI alone. C-methionine (C-MET) and F-Fluor-

ethyl-tyrosine (FET) are most two common amino acid tracers used in PET. C-MET

and FET are superior in detecting infiltrative tumours cells that not detected in MRI.

Fig. 2.5 shows an example of different medical imaging modalities from high-grade

glioma patients. We can see that, the tumours and its extent are not easy to localise on

CT and MRI images in this case as shown in Fig. 2.5(a) and Fig. 2.5(b). On the other

hand, the tumour and the surrounding area are easier to localise in FET and C-MET

as shown in Fig. 2.5(c) and Fig. 2.5(d).

Figure 2.5: Different types of medical imaging modalities. (a) CT (b) MRI (c) FET
and (d) C-MET from WHO high-grade glioma patients [28,29].
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2.4 Magnetic resonance imaging (MRI)

2.4.1 The basics of MRI

The basic concept of MRI is the spinning nuclear charge that produces small magnetic

field called a magnetic moment. The medical MRI uses the signal from the nucleus

of hydrogen atom (1H) which naturally abundant found in human body for the image

generation. As seen in Fig. 2.6, a hydrogen atom consists of a single proton and a

single electron orbiting around the atom’s nucleus. The proton has a positive charge

and the electron has a negative charge which make hydrogen atom electrically neutral.

Figure 2.6: An illustration of a hydrogen atom with a single proton and a single electron.

Apart from its positive charge, the proton rotates about its axis and we called this

process spin [30]. Fig. 2.7 illustrates the different types of the spins. In normal envi-

ronment, millions of these spins are in random orientation and do not produce magnetic

field as shown in Fig. 2.7(a). However, when these spins are put in a strong exter-

nal magnetic field, the spins or the magnetic moments now align themselves in given

directions and cause these spins to experience precession at a curtain frequency. This

characteristic frequency is called Larmor frequency [31] and is given by the equation:

ω0 = γB0 (2.1)

where ω0 is Larmor frequency in megahertz (MHz), γ is a specific constant to a partic-

ular nucleus called gyromagnetic ratio and B0 is the strong external magnetic field in

tesla (T).
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We can see from Fig. 2.7(b) that while the spins settle into steady state, the spins

align parallel or anti-parallel to the magnetic field but the parallel alignment is slightly

larger fraction. The longitudinal magnetization Mz is building up in z-direction by

adding individual magnetic moment together. In this steady state, we can introduce

energy to the spin system. A radiofrequency (RF) pulse is applied to tip the magne-

tization by exactly 90◦ and the result is that the longitudinal magnetization flips over

and rotates to transverse magnetization Mxy on the xy-plane. The illustration of this

process is shown in Fig. 2.7(c) and Fig. 2.7(d). This transverse magnetization (Mxy)

can be detected as MR signal by a receiver coil placed in the xy-plane.

Figure 2.7: (a) the spins align randomly, (b) the spins align parallel to the strong
external magnetic field B0 and produce longitudinal magnetization Mz, (c) An RF pulse
tips the magnetization vector by exactly 90◦, (d) the entire longitudinal magnetization
flips over after tipped by RF pulse and rotates into transverse magnetization Mxy.

After the RF pulse has been switched off, the Mxy rapidly fades and returns to

the stable-state before the excitation. Fig. 2.8 illustrates the decreasing of Mxy which

is called relaxation [32]. It involves two independent processes called spin-lattice in-

teraction and spin-spin interaction. These two processes cause T1 relaxation and T2

relaxation, respectively.
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T1 relaxation or longitudinal relaxation illustrated in Fig. 2.8(a) is the process that

Mxy decays and slowly restores in z-direction. The time constant for this recovery is

T1 and it depends on the strength of the external magnetic field B0 and the internal

motion of the molecules.

T2 relaxation or transverse relaxation illustrated in Fig. 2.8(b) is the decay of Mxy

because the spins lose phase coherence. The phase coherence is when the spins have

the 0◦ angle so the individual magnetization vector add up together and result with

the Mxy. Losing phase coherence makes the Mxy becomes smaller and finally disap-

pears. The loss of the phase coherence happens in two ways. Firstly, energy transfer

between spins which causes a local change in the magnetic field and increase the loss

of phase. This process occurs with the time constant T2. Secondly, time-independent

of the external magnetic field B0 which caused by the inhomogeneities in the magnetic

field generator or by the person being imaged. It occurs in time constant T2* and

normally shorter or equal to time T2. The loss of the MR signal due to T2* is called

free induction decay (FID) and can be avoided by using spin echo sequences.

Figure 2.8: An illustration of (a) T1 relaxation. The transverse magnetization decays
and restores from xy-plane to z-direction. (b) T2 and T2* relaxation. It is the process
of transverse magnetization losing phase coherence and finally disappears.
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2.4.2 The imaging process

The spins are excited many times and the result MR signal is recorded to generate

MR slide. Each tissue has its own relaxation time which give us different image con-

trast [33]. Repetition time (TR) is the length of the relaxation period between two

excitation pulses in millisecond (msec). Fig. 2.9 illustrates the relationship between

TR and T1 contrast. When TR is long, the spins have time to regrow the longitudinal

magnetization in z-direction before the next RF pulse is applied, which result with

larger MR signal can be collected. If short TR (less than about 600 msec) is selected,

tissues with a short T1 recover fast and give a large MR signal after next RF pulse

and these tissues appear bright on MRI image. On the other hand, tissues with a long

T1 which require more time to recover the longitudinal magnetization give less MR

signal and appear dark on MRI image. An image acquired with short TR is called

T1-weighted image or T1w. If a fairly long TR is selected (more than 1500 msec), all

tissues have enough time to recover, the effect of T1 on image contrast will be small.

Figure 2.9: Relationship between TR and T1 contrast.

The echo time (TE) is the interval between application of the excitation pulse and

collection of MR signal in millisecond (msec). TE determines the effect of T2 on image

contrast. Fig. 2.10 illustrates the relationship between TE and T2 contrast. If the

short TE (less than 30 msec) is selected, the signal difference between tissues are small

because the relaxation is just started. If a longer TE (over 60 msec) is selected, tissues

appear on MR image with different intensities due to their T2 relaxation times. Tissues
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with short T2 appear dark because they lost most of their signal and tissues with long

T2 still give strong signal so they appear bright. An image acquired with long TE is

called T2-weighted image or T2w.

Figure 2.10: Relationship between TE and T2 contrast.

Table. 2.1 shows an example of different tissue and its contrast appearance on T1

and T2-weighted images. For T1-weighted image, tissues with a short T1 (e.g. fat)

appear bright because they are able to regrow most of their longitudinal magnetization

during the TR interval and produce strong MR signal. While, tissues with a long T1

(e.g. aqueous liquid, tumour, muscle, and compact bone) appear dark because they

require more time to regrow their longitudinal magnetization. For T2-weighted image

with long TE setting, tissues with a short T2 (e.g. muscle, connective tissues, and

compact bone) appear dark because they lost most of their signal. While tissues with a

long T2 (e.g. fat, aqueous liquid, and inflammatory tissue) still produce a strong signal

and appear bright.

Fig. 2.11 illustrates the process of creating MRI images from the MR signals de-

scribed in [34]. The process is that a patients body is divided into a set of slides and

then each slide is cut into rows and columns to form a matrix of individual tissue voxel.

The process consists of signal acquisition and image reconstruction from the acquired

signals. During the acquisition process, the imaging cycle is repeated many times.
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Table 2.1: Signal intensities of difference tissues on T1 and T2-weighted images [33].

Tissue T1-weighted image T2-weighted image

Fat Bright Bright
Aqueous liquid Dark Bright
Tumour Dark Bright
Inflammatory tissue Dark Bright
Muscle Dark Dark
Connective tissue Dark Dark
Compact bone Dark Dark
Air No signal No signal

The signals that emitted by tissues and received by the receiver coils are collected,

digitized and stored in computer memory called k-space. After the signals data are

collected, the data are sorted and delivered to the appropriate image pixels. Fourier

transform [31] is the mathematical process using for this image reconstruction. The

image is also divided into rows and columns to represents the corresponding voxel.

Figure 2.11: An illustration of MRI imaging process [34].
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2.4.3 Image artefacts

Artefacts are undesirable objects that appear in images and do not represent a anatom-

ical structure. There are many different factors that cause the artefacts in MRI images.

In [35], the artefacts that appear on MRI images can be classified into groups based on

their origin as follows;

1. Truncation artefacts or Gibbs phenomena [36] occur near sharp high contrast

boundary and appear as multiple parallel bright and dark lines. They can be misinter-

preted as a syrinx in the spinal cord. Fig. 2.12(a) illustrates Gibbs phenomena appears

as multi parallel white and dark bands (white arrows) on T1 MRI of the brain [37].

Gibbs phenomenal is the consequence of using Fourier transform to reconstruct MR

signals into images.

2. Motion artefacts or ghost artefacts caused by breathing, the heart beating, blood

flow, cerebrospinal fluid pulsation and patients movement. These artefacts appear in

the form of blurring or discrete set of lines or continuous smear as shown in Fig. 2.12(b).

3. Chemical shift artefacts are tissue-related artefacts which are the result of

mismapped fat and water signal from the fluid-filled surrounding by fat structure.

Chemical shift artefacts appear as dark or bright bands as shown in Fig. 2.12(c).

Figure 2.12: (a) Gibbs phenomena artefact, (b) motion artefact, and (c) chemical shift
artefact [37].

4. Noise in MRI image are the results of a form of random, undesired RF energy [34]

from the patient’s body. The presence of noise in MRI image can reduce the image

quality and limit the visibility of od low contrast object and difference among tissues.
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5. Intensity inhomogeneity (IIH) or bias field [38] is a low frequency smooth unde-

sirable signal that blurs the MRI images. IIH is the result of the inhomogeneities in

the magnetic field of the MRI machine. Fig. 2.13 illustrates IIH in the MRI image of

the brain. IIH reduces details of the image such as edges and contours as shown in Fig.

2.13(a). IIH affect the quality of medical image analysis methods such as segmentation

and registration by creating the fake variations of image intensities.

The presence of noise and image artefacts can significantly reduce the ability of

image analysis. Hence, image pre-processing is introduced to eliminate those unde-

sired objects and improve the quality of the images. Morphological filtering [39] is a

method that uses a structuring elements to remove small regions such as noise in the

image. Gibbs phenomena can be reduced by applying post-processing algorithm devel-

oped by [40]. IIH that blurs the MRI image can be resolved by filtering methods [41],

surface fitting [38], N3 or N4ITK methods [42]. The elimination of IIH (Fig. 2.13(b))

gives the image with better quality of edges and contours as shown in Fig. 2.13(c).

Figure 2.13: (a) MRI image of the brain before inhomogeneity field or bias field cor-
rection, (b) inhomogeneity field or bias field, and (c) MRI image of the brain after bias
field correction. [41].

2.4.4 MRI of brain tumour

MRI has been an important tool for the oncologists and radiologists to diagnose and

evaluate the brain tumour. With its superior in soft-tissue contrast, MRI provides an

accurate determination of tumour location and its extent. T1-weighted, T2-weighted,

fluid-attenuated inversion recovery (FLAIR), and postcontrast T1-weighted images are
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typical modalities employed in tumour patient. Fig. 2.14 [43] shows an example of

these four types of MRI image from a high-grade glioma patient. T1-weighted or T1w

images are produced by using short TR and short TE times. T1w are most useful for

providing anatomical detail and cerebrospinal fluid. As seen in Fig. 2.14(a) tumours

appear as low signal intensity (dark) while the area of fat and haemorrhage appear as

high intensity (bright) on T1w images. It is also allows for easy annotation of healthy

tissues.

T2-weighted or T2w images are produced by using long TR and long TE times.

T2w are most sensitive for lesion detection and cerebrospinal fluid which appear with

high intensity as shown in Fig. 2.14(b). FLAIR images are produced by using very

long TR an TE times. FLAIR images are T2w images with low signal of cerebrospinal

fluid. Thus, FLAIR images can display lesion area including tumours and edema with

higher signal intensity than T2w images which can be seen in Fig. 2.14(c).

However, the study in [43] shows that T2w or FLAIR images do not well present the

distinction of tumour from surrounding edema. Gadolinium-enhanced T1-weighted or

T1w+Gd images are current standard image modality for assessing glioma. Gd can be

injected into patient during the scan and it changes signal intensities by shortening T1

time. In T1w+Gd images, tumour boarders appear brighter because of the contrast

agent accumulates there due to the disruption of blood-brain barrier in the growing

tumour region as shown in Fig 2.14(d). According to [44], T2 and T1w+Gd images are

often used by radiologist to define radiological outer margins of the tumour.

Figure 2.14: (a) T1w, (b) T2w, (c) FLAIR and (d) T1w+Gd images of patient with
high-grade glioma [43].
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2.5 Summary

The human brain anatomy and its functions were presented in this chapter. The cause of

brain tumour, brain tumour classification and treatment options (observation, surgery,

radiation, and chemotherapy) for different brain tumour grades were introduced. The

medical image target volumes for tumour delineation were presented. We further dis-

cussed that MRI is the medical imaging of choice because of its superior in soft-tissue

contrast. This chapter then presented the basic concept of MRI and image acquisitions

to obtain different image modalities for brain tumour imaging. Finally, different types

of MRI for brain tumour imaging are also discussed in this chapter. In the next chapter,

machine learning and deep learning technology and its application for medical imaging

will be presented.
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Brain tumour segmentation from

MRI data

3.1 Introduction

The previous chapter introduced gliomas which are the most common type of brain

tumour that can be found in both adults and children. Gliomas were categorised into

different grades based on their characteristics and behaviour. Treatment options and

treatment planning requires the segmentation of GTV and its location information.

The segmentation process involves delineating the tumour regions from the surround-

ing healthy tissues, enabling accurate characterization and quantitative analysis. How-

ever, brain tumour segmentation is a challenging task due to the complex anatomical

structures, and tumour appearance that varies from patient to patient. The medical

imaging used in brain tumour image analysis was also discussed and MRI images have

become the image modality of choice due to its superior in soft-tissues contrast.

In this chapter, MRI based brain tumour segmentation and the challenges associated

with the task are discussed. Subsequently, we explore various conventional techniques

employed for brain tumour segmentation. We then focus on the emerging role of deep

learning, particularly U-Net based models, in achieving more accurate and robust brain

tumour segmentation. Finally, we present the available implementation resources for
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automatic segmentation algorithms.

3.2 MRI based brain tumour segmentation

MRI based brain tumour segmentation can be classified into 2D and 3D segmenta-

tion [6] based on dimensionality of the image domain. For 2D segmentation, tumour

region is segmented separately from each MRI slice. For 3D segmentation, all sequen-

tial MRI slides are considered together as one MRI volume, then the segmentation of

the tumour region is performed on the MRI volume to obtain the quantification and

3D visualisation of the tumour. In 2D images, the location od each image intensity is

called a pixel, and in 3D MRI volume, it is called a voxel.

Manual segmentation of brain tumour is carried out by expert oncologists or clini-

cians to provides the ground truth information about the location of the brain tumour

and its different tumour structures. Manual segmentation has been the traditional

approach for brain tumour segmentation. However, it is a time-consuming task and

subjective process. For example, all ground truth for BraTS 2012 challenge were seg-

mented manually using the 3D slicer software [45] and it took about 60 minutes per

subject, which making it impractical for large-scale studies and real-time applications.

As a results, there is a need for automated and accurate segmentation techniques to

overcome the limitations and enhance clinical decision-making.

3.2.1 Research challenges

Replacing the traditional manual segmentation with automated and accurate segmen-

tation techniques could highly benefit the assessment of the brain tumour including

diagnosis, treatment planning, and post-treatment follow-up for each patient. How-

ever, the brain tumour segmentation represents unique technical challenges and can be

summarised as follows [5, 46]:

1. Lesion areas of the brain tumour are only defined based on the intensity changes

relative to the surrounding normal tissues. This issue causes variations of manual seg-

mentations done by experts especially when the intensity gradients between adjacent
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structures are smooth or obscured by image artefacts.

2. Tumour structures vary from patient to patient in terms of size, extension, and

localization. Glioma abnormally grow from glial cells which surround nerve cells as

mentioned in previous chapter. Hence, both HGG or LGG could appear at any loca-

tion inside the brain.

3. The mass effect induced by the growing lesion may displace normal brain tis-

sues, and post-treatment resection cavities further limit the reliability of spatial prior

knowledge for the healthy part of the brain.

4. Various imaging modalities, such as T1, T2, post-contrast T1Gd, FLAIR, per-

fusion and diffusion MRI, provides different types of biological information. Different

type of image can be used to map changes in brain tissues caused by the tumour.

3.2.2 Automatic brain tumour segmentation

Table. 3.1 shows that brain tumour segmentation can also be classified into semi-

automatic segmentation and automatic segmentation. Semi-automatic segmentation

requires human-interaction to initialize a region of interest (ROI). In [47], users roughly

draw around the suspected tumour on an MRI slide, then they applied the algorithm

that combines the techniques such as region and edge-based active contours and level

set method together to segment the tumour region. In Tumor-cut method [48], users

draw the maximum diameter of the target GTV on the post-contrast T1 image before

applied a cellular automata (CA) based seeded tumour segmentation algorithm.
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Table 3.1: Summary of brain tumour segmentation techniques based on human inter-
action.

Techniques References Description

Manual segmentation [5] Tumour structures annotated by
trained experts.

Semi-automatic segmen-
tation
- Guo et al. [47] Users give tumour initialization by

roughly drawing the border.
- Tumor-cut method [48] Users draws maximum tumour di-

ameter.

Automatic segmentation
- Generative models [49–51] Model based on prior knowledge of

brain anatomy and classify tumour
as an outlier.

- Discriminative models [10,52–54] Model extract low image features
and learn the relationship between
features and class label of the given
input.

To eliminate the user interaction, fully automatic segmentation techniques are cur-

rently our main focused. We can broadly group the automatic MRI based brain tumour

segmentation techniques into generative models and discriminative models as shown in

Table. 3.1. Automated segmentations are obtained by combining explicit models of

the anatomy and appearance in the generative model. In generative models, tumours

are classified as an outlier from normal tissues. In [49, 50] Expectation Maximization

(EM) algorithm [55] was employed to segment MRI volume into healthy tissue class

and outlier class while [51] combined Standard hidden Markov field [56] with EM al-

gorithm to classified five normal tissues classes (white matter, grey matter, ventricular

cerebrospinal fluid, extraventricular cerebrospinal fluid, and other), then further clas-

sified the tumour into four tumour structures: edema, non-enhancing, enhancing and

necrotic. On the other hand, discriminative models focus on learning the relationship

between image intensities and the segmentation label. The models directly from the

annotated ground truth labels to differentiate the appearance of normal tissues and the

tumour. Classifiers such as decision tree and random forest in [52,53] and deep neural

networks in [10,54] extracted low level image features then find the relationship between
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features and the label of the given voxel then classified each voxel into a certain class.

These discriminative models have been giving outstanding accurate results according

to the report in the multimodal brain tumour segmentation benchmark [5].

3.3 Conventional methods for brain tumour segmentation

Conventional techniques for automatic brain tumour segmentation have been exten-

sively explored and reported [57–67]. Fig. 3.1 provides an overview conventional tu-

mour segmentation techniques. These techniques include unsupervised and supervised

methods. Unsupervised approaches include region-based methods, edge-based meth-

ods, thresholding, and clustering are used to define the boundary of the target tumour.

On the other hand, supervised approaches apply training samples and learn from prior

knowledge.

Figure 3.1: Conventional methods for brain tumour segmentation.
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3.3.1 Unsupervised methods

Unsupervised methods for segmentation problem do not required prior anatomical

knowledge nor training data to groups image pixels with homogeneous attributes to-

gether [66]. Table. 3.2 shows the summary of unsupervised techniques including edge-

based methods, region-based methods, thresholding methods, and clustering methods.

Table 3.2: Summary of unsupervised brain tumour segmentation techniques.

Techniques References Description

Thresholding
- Ilhan et al. [57] Segmentation of skull, brain, and

tumour obtained by combining mor-
phological operations and intensities
based threshold.

- Otsu’s method [58,59] Optimum value of a global threshold
combined with morphological oper-
ations was used to detect brain tu-
mour.

Edge-based
- Canny operator [60] Brain tumours were segmented us-

ing watershed transform and edge
detection algorithm on colour MRI
images.

- Sobel operator [68] Tumours were extract using So-
bel edge detection combined with
thresholding method.

Region-based
- Region growing [61–63] Morphological operators and seed

region growing are combined to seg-
ment the tumour from the brain
MRI.

Clustering
- K-means [69–71] K-means clustered MRI image into

segments, then a threshold sepa-
rates the tumour from the non-
tumour regions.

- Fuzzy C-Means [72,73] FCM using the Radius Contraction
and Expansion process

- Mean-shift [64, 65] Modified K-means clustering
method and initial segmentation
using MS
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3.3.1.1 Thresholding methods

Thresholding [74] is one of the simplest techniques that converts a greyscale image

f(i, j) into a binary image h(i, j). The intensity values of the image pixels are compared

to the threshold value TF . The pixels with the same or higher intensity value than

threshold value are assigned the value 1, whereas the pixels with lower intensity values

are assigned 0 and can be defined as:

h(i, j) =

 1 if f(i, j) ≥ TF

0 if f(i, j) < TF

(3.1)

Using global threshold when a single threshold value is chosen for the entire image is the

common approach. Otsu’s method [58] where optimum value of the global threshold

was applied to segment the brain tumour in [59]. However, it is not always possible to

divide an image into two regions by using a single threshold value.

3.3.1.2 Edge-based methods

Edge detection methods [75] detect object boundaries in the image by assume that

pixel values rapidly change at the boundary between two regions. Robert operator [74]

as shown in Fig. 3.2(a) is one of the first edge detection operator by applying 2 × 2

masks to calculate gradient of the image and give diagonal edges. 2×2 masks are simple

computational but they are not as useful for computing edges that are symmetric about

their centre and the smallest metric should be 3 × 3. The extension of 2 × 2 to 3 × 3

gives Prewitt operator [74] as shown in Fig. 3.2(b). Sobel operator [74] as shown in

Fig. 3.2(c) is a modified version of Prewitt operator where the central column/row are

multiplied by 2. Sobel operator is prefered as edge detection because its better noise-

suppression or smoothing. [68] combined Sobel operator with thresholding method to

extract tumour regions using intensity information from MRI images. Canny algorithm

[76] is another edge detection used in combination with watershed method [74] to detect

brain tumour from colour MRI image in [60]. However, the algorithm did not work

well with greyscale images of the brain tumours.
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Figure 3.2: Various operators (a) Roberts operator, (b) Prewitt operator, and (c) Sobel
operator.

3.3.1.3 Region-based methods

Region-based methods [75] is another intensity based techniques which assume that

neighbouring pixels within one region have similar property. This leads to region grow-

ing [74] which is a process to group image pixels. The process begins with a seed point

in each region of interest. Subsequently, the neighbouring pixels are connected to the

seed point according to some predefined similarity criteria. The method is kept pro-

gressing till all the pixels are assigned in one of the regions. Region growing method

was used to identify brain tumour from MRI in [62] while [61] combined region growing

method based on the variances and gradients along and inside of the boundary curve to

overcome the difficulty of threshold selection. Morphological operators such as dilation

and erosion also applied to region growing method in [63] to enhance the edge detec-

tion of the tumour. Although, region-growing is effective intensity based segmentation

method by incorporating local relationship between pixels, does not perform well for

images with neighbouring regions sharing similar intensities [66].

3.3.1.4 Clustering

Clustering is segmentation technique that requires no training data to group image

pixels with the same characteristics together. Common clustering techniques are K-

means clustering, Fuzzy C-Means, and Mean-shift. K-means clustering algorithm [62]

partitions image into distinct k clusters. The segmentation using K-means follows a

few steps. Initially, k points are randomly selected as cluster centroids. Each image

pixel then assigned to the nearest centroid. The centroid of each cluster is recalculated
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by taking the mean of all image pixels assigned to that cluster. The steps are iterated

until the new centroids no longer change. Although K-means algorithm is simple and

computationally efficient, it may not optimised even after a large number of iterations.

Fuzzy C-Means (FCM) [77] is an extension of the K-means algorithm that allows soft

or fuzzy clustering. Unlike K-means, which assign each image pixel to a single cluster,

FCM assigns each image pixel a membership value indicating its degree of belongingness

to each cluster. The main disadvantage of using FCM for image segmentation is that it

is sensitive to noise [66]. Mean-shift (MS) [78] clustering is a non-parametric algorithm

that identifies clusters by iteratively moving points towards the densest regions of the

data distribution. One advantage of MS is that it can cluster data without requiring

the predetermined number of clusters. However, it may struggle when the number

of clusters changes abruptly, especially in high-dimensional data [67]. Brain tumour

segmentation using clustering techniques can be found inn [64,65,69–73].

3.3.2 Supervised methods

Supervised methods are often used when training data with corresponding annotated

labels is available. The supervised algorithms use labelled data to build a model that

connects extracted features to classes during the training. Table. 3.3 shows the sum-

mary of supervised techniques including k-Nearest Neighbors, Support Vector Machine,

Markov Random Field, and Artificial Neural Networks.

Table 3.3: Summary of supervised brain tumour segmentation techniques.

Techniques References Description

k-Nearest Neighbors [79,80] Extracting different grey level pixel
values to segment brain components

Support Vector Machine [81,82] Using intensities and texture to dif-
ferentiate tumour and non-tumour
pixels

Markov Random Field [83] A three steps process that perform
bias field correction and segmenta-
tion.

Artificial Neural Networks [46,66,84], Imitates the behaviour of biological
neurons to learn classification
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3.3.2.1 k-Nearest Neighbors

k-Nearest Neighbors (k-NN) [66] is a memory based algorithm that directly compared

the new unlabelled data to the labelled data in the training set. The k in k-NN refers to

the number of nearest neighbors to consider when making predictions. The classification

process of k-NN occurs in two stages. First, the algorithm finds the k nearest neighbors

of an unlabelled data in the training set. Second, the algorithm assigns the class to

new unlabelled data using those neighbors. During the training phase, the algorithm

stores the feature vectors and class labels of the training samples. Then the algorithm

predicts the class labels of new unlabelled test sample by calculating the similarity of

distance between the test sample and the training instances. It identifies the k nearest

neighbors of the test sample from the training set and assigns the assigns their class

label to the test sample based on majority voting. k-NN was employed in [79] to

analyze the characteristics for each brain component including segmentation of light

and dark abnormalities from FLAIR MRI, while [80] used inclusion of tissue type priors

in features set to improve the performance of white matter lesion segmentation.

3.3.2.2 Support Vector Machine

Support Vector Machine (SVM) [66] is an algorithm that divides image into two classes

by finding a hyperplane that best separate the data. The hyperplane is selected based on

its maximum distance from the nearest data points on each side. To achieve this, SVM

solves a particular optimization problem presented in [81]. [82] used SVM to differentiate

tumour and non-tumour pixels on the basis of different features including intensities

and texture. SVM can be used for binary segmentation of tumour region. However,

there are more intra-tumour structures that can be extracted from the segmentation.

3.3.2.3 Markov Random Field

Markov Random Field (MRF) [6] is a statistics model that can be used within the

segmentation method. MRF captures the spatial interactions between nearby pixels in

an image, allowing for the modeling of various image properties. MRF are commonly

employed in medical imaging because neighbor pixels of the image often belong to the

33



Chapter 3. Brain tumour segmentation from MRI data

same class. This implies that anatomical structures consisting of only one pixel have

a very low probability of occurring under the MRF assumption. MRF is usually used

in combination with other techniques for segmentation such as K-means in [85], and

Monte Carlo in [83]. MRF exhibits robustness to noise and artefacts in segmentation

as presented in [6, 83].

3.3.2.4 Artificial Neural Networks

Artificial Neural Networks (ANNs) are inspired by biological neuron systems and mod-

eled as collections of neurons. The biological neurons produce and transmit nerve signal

through the gap called synapse, while ANN is connected by hidden layers as illustrated

in Fig. 3.3. The output of some neurons can be an input of another neuron.

Figure 3.3: An illustration of a biological neuron (left) and artificial neural network [86].

Fig. 3.4 illustrate mathematical model of an artificial neuron. The neuron takes in-

put (x1, x2, ..., xn), and each input is multiplied by its corresponding weights (w1, w2, ..., wn).

The weighted inputs are subsequently summed to produce a net results. This net is

then passed through an activation function f which gives the output of the neuron. Ac-

tivation is used to introduce non-linearity to the neuron’s output. Common activations

for ANNs are Sigmoid, Tanh, Rectified Linear Unit (ReLU), and Leasky ReLU [87].

The number of layers in the networks defines how deep the ANN is. It could contain

only 2 or 3 layers or even up to hundreds of layers [86]. Applications of ANNs in brain
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tumour segmentation are reported in [46, 66, 84]. Details of these applications will be

presented in the next section.

Figure 3.4: Mathematical model of an artificial neuron.

3.4 Deep learning based segmentation methods

3.4.1 Convolutional Neural Networks

Convolutional neural networks (CNNs or ConvNet) is the most popular deep learning

model for image analysis including medical imaging applications. CNNs typically con-

sists of convolutional layer, pooling layers and fully connected layer which are stacked

together to form a complete CNNs architecture. They offer several advantages in

medical image analysis, including modular interconnected operations, input modali-

ties, input patch dimensions, time predictions, and contextual information [84]. CNNs

have been developing over the past decades for image analysis. Initially, LeNet-5 [88]

for handwritten digit recognition from MNIST dataset [89] was developed. It consists

of 5 layers which makes it an excellent choice for grasping the basics of CNN due to

its simplicity and fewer parameters. Series of 5x5 convolutions were used in LeNet-5.

Alex-Net [90] revolutionized the computer vision by introducing the deep CNN archi-

tecture using 11x11, 5x5, and 3x3 convolutions, and won the ImageNet competition

in 2012 [91]. AlexNet network architecture is much larger compared to the LeNet-5,

which required significantly higher computational power. This results in the gap over

20 years between their development. Later VGG [92] introduced 16 and 19 layers CNNs
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with series of small 3x3 filters and showed significant improvement over AlexNet. These

CNNs methods classify entire images from ImageNet dataset into specific class. How-

ever, semantic segmentation problem requires each pixel of the image to be assigned to

a certain class label.

Table. 3.4 shows the summary of CNNs based brain tumour segmentation tech-

niques developed in the past years. [93] designed CNN for segmenting the infant brain

tissues using various input patch sizes. The CNN classified central pixel of input patch

into white matter, grey matter, or cerebrospinal fluid. Later, deep 11-layers CNNs us-

ing small kernel size (3x3) in convolution layers to extract features with the increasing

depth for brain tumour segmentation was presented in [10]. TwoPathCNNs [54] which

used both smaller kernel size (3x3) and larger kernel size (7x7 and 13x13) as illustrated

in Fig. 3.5 to obtain local features and global features, then concatenated both type of

features together and used the concatenation of feature to classify the class of central

pixel. This work is one of the early multi-path networks. These methods performed

segmentation from 2D input data. Deep 3D CNNs were proposed to extract brain from

MRI volume in [94], while DeepMedic [95] used ensemble networks where each path of

networks can be considered as sub-network to segment tumour regions. These appli-

cations of CNNs on brain imaging were implemented on available public data such as

BraTS [10,54], ISLES [95], IBSR, LPBA40 and OASIS [94].

Figure 3.5: TwoPathCNNs architecture [54].
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Table 3.4: CNNs based brain tumour segmentation techniques.

Method Dataset Description

Zhang et al. [93] private dataset Infant brain structures seg-
mentation using various input
patch sizes

Kleesiek et al. [94] IBSR, LPBA40 and
OASIS

3D CNNs for extracting brain
from MRI

Pereira et al. [10] BraTS 2013, BraTS
2015

Deep 11 layers CNNs with
small kernel

TwoPathCNNs [54] BraTS 2013 Deep CNNs with two-
pathways feature extraction.

DeepMedic [95] BraTS 2015, ISLES
2015

Ensemble 3D CNN with con-
ditional random field

3.5 U-Net: Convolutional networks for biomedical image

segmentation

The U-Net [96] is a fully convolutional network [97] that take arbitrary input size and

produce correspondingly-size output. The network consists of down-sampling path,

bottleneck, and up-sampling path forming the U shape architecture as shown in Fig.

3.6. The down-sampling path built of typical Convolutional networks. It consists of

two 3x3 convolutions, each follows by ReLU as activation function and a 2x2 max pool-

ing operation with stride of 2. The number of feature channels are doubled at each

downsampling step, starting with 64 feature channels for the first block, 128 for the

second, and so on. This downsampling path captures the context of the input image

in order to perform segmentation. The bottleneck is the part between the downsam-

pling path and upsampling path. It consists of 3x3 convolutions follows bu ReLu. The

up-sampling path expand the features by a 2x2 up-convolution that half the number of

feature channels, then concatenated with the cropped features from the corresponding

down-sampling step, and two 3x3 convolutions, each followed by ReLU. The cropping

is necessary due to the loss of border pixels in every convolution. The finally layer is a

1x1 convolution that map each 64-component feature vector to the desired number of

classes. In total the network has 23 convolutional layers.
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Figure 3.6: The U-Net network architecture [96].

U-Net model was designed to tackle the downside of typical CNNs that require large

amount of training data to obtain accurate classification. U-Net requires less training

data to achieve accurate classification and also includes the localisation as semantic

segmentation that assign class label to each pixel. Hence, U-Net is suitable for medical

image segmentation including brain tumour segmentation where there is limited train-

ing data. Applications of U-Net to biomedical imaging can be found in [96, 99–103].

They include both 2D and 3D segmentation of cell structures, organs, and lesion. The

image modalities used ranges from microscopical images, CT, and MRI. Various mod-

ification of U-Net [104–106] also employed in different organs segmentation including

blood vessels, lung, and hippocampus of the brain.

Table. 3.5 shows applications of U-Net and its variant on biomedical image segmen-

tation problems. U-Net based methods for brain tumour segmentation can be found

in [100, 101, 107–109]. Original U-Net was employed in [100] for 2D brain tumour seg-

mentation and achieved 0.86 dice similarity coefficient (DSC) for whole tumour (WT)

and tumour core (TC) segmentation. However, the method was unable to segmented
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enhancing tumour (ET) from low-grade glioma (LGG) patients. Two-stage cascaded

U-Net [101] was developed to segment the substructures of brain tumour from coarse

to fine. The two-stage of the method connected two U-Net like models together to

form cascaded network. The first stage returned rough or course segmentation map

to the next stage U-Net to predict more accurate segmentation. Two-stage cascaded

U-Net achieved 0.90 DSC for WT segmentation, over 0.8 DSC for TC and ET seg-

mentation, and won first place in BraTS 2019 challenge. nnU-Net [107, 110] later won

BraTS 2020 challenge with 0.89, 0.85, and 0.82 DSC for WT, TC, and ET segmentation,

respectively. nnU-Net used a method that automatically configures itself including pre-

processing, network architecture, training and post-processing for any new task. The

nnU-Net set new state-of-the-art solution for brain tumour segmentation. Optimized

U-Net [111] and NAVUTO [108] which are top rank teams from BraTS 2021 were de-

veloped based on nnU-Net achieved over 0.90 DSC in all tumour regions segmentation.

These top performance methods from the BraTS 2019 to 2020 employed 3D volumetric

MRI as input data.
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Table 3.5: U-Net and its variants on biomedical image applications.

Method Application Description Performance

U-Net [96] neuronal struc-
tures from micro-
scopical images

Introduced fully net-
works with features con-
catenation

0.92 IoU

V-Net [104] Prostate from
MRI

3D segmentation and
proposed dice loss

0.87 DSC

U-Net [100] Brain tumour
from MRI

2D U-Net 0.86 DSC

3D U-Net [99] Xenpus kidney
from confocol
microscopic data

3D segmentation form
volumetric data

0.86 IoU

U-Seg-Net [105] hippocampus
from MRI

multi-view ensemble
network

0.89 DSC

CE-Net [106] Optic disc, blood
vessel, lung, and
cell

Context encoder net-
work

0.95 Accuracy

Two-Stage Cas-
caded U-Net [101]

Brain tumour
from MRI

3D segmentation and
the winner of BraTS
2019

0.88 DSC

Channel-
Unet [102]

Liver and tumour
from CT images

Introduced spatial
channel-wise convolu-
tion

0.94 DSC

SA-UNet [103] Retinal vessel
from fundus
images

Proposed spatial atten-
tion module

0.97 Accuracy

nnU-Net [107] Brain tumour
from MRI

BraTS 2020 winner 0.88 DSC

Optimized U-Net
[111]

Brain tumour
from MRI

BraTS 2021 winner 0.91 DSC

NVAUTO [108] Brain tumour
from MRI

BraTS2021 rank 2 0.91 DSC
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3.6 Implementation resources for automatic brain tumour

segmentation

Deep Learning has been providing state-of-the-art solutions for computer vision prob-

lems including medical image analysis such as classification and segmentation. The

availability of frameworks and tools in the programming languages such as MATLAB

and python is one of the key to the success of deep learning in computer vision [112].

MATLAB is a matrix-based language software commonly used for mathematics

computation and graphic visualization. MATLAB provided built-in tools for various

data analysis problems including machine learning application. The most relevant tool-

boxes that provided by MATLAB for the machine learning application are Statistics

and Machine Learning Toolbox, Neural Network Toolbox, Computer Vision System

Toolbox, and System Identification Toolbox. These toolboxes are available to access

in [122]. MATLAB also provide image processing applications e.g. Image Segmenter

that can be used to generate binary mask or ROI label for medical image segmentation

problems. These applications can be found in [123].

Python is one of the most popular programming languages among machine learning

and deep learning researchers. Various powerful libraries and frameworks available in

python make it easier to analyse data, develop algorithms, and create models. For deep

learning programming task, the examples of important python libraries are NumPy,

SciPy, Scikit-learn, and Matplotlib [113–117]. We can also choose to implement the

model on different frameworks such as Keras [118], TensorFlow [119], Tensorlayer [120],

and Pytorch [121].

Traditionally, the training phase of deep learning model takes the longest time to

achieve. Using Graphical processing units or GPUs can significantly reduce the training

time. GPUs allow us to run deep learning model with massive numbers of parameters

quickly and efficiently by enable parallel training and tasks distributing. GPUs are also

optimised to perform computations faster then non-specialised hardware.

Google Colaboratory or Colab is an online Jupyter notebook from Google which

allows any user to write and execute python code through browser. Colab provides
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Jupyter notebook with limited free GPUs access, memory, and runtime. Colab also

provides paid subscription service called Colab Pro and Colab Pro+ for faster GPUs

access, more memory, and longer runtime.

ARCHIE-WeSt [124] is the Research Computing Centre for the West of Scotland

based at the University of Strathclyde. ARCHIE-WeSt provides computing facilities

for multi-disciplinary research. The machine consists of different computational nodes

including two GPU nodes (Lenovo SR670 servers) of eight NVIDIA A100 GPUs, and

192GB RAM (four GPUs per server). Storage of 825TB which capable of over 12GB/s

data transfer is also available. Further information of ARCHIE-WeSt can be found

from [124].

In this thesis, we used the combination of available implementation resources for

different tasks. We used MATLAB and Colab notebook to initially visualise and study

the data. 2D segmentation framework using Tensorflow and Keras libraries with local

GPUs will be presented in chapter 5 and 6. 3D segmentation frameworks using high

performance computing resource from ARCHIE-WeSt will be presented in chapter 7.

3.7 Summary

This chapter reviewed MRI based brain tumour segmentation techniques. Traditional

segmentation of the brain tumour was done manually which is time-consuming and

subjective to individual expertise. The need to replace traditional segmentation with

automated segmentation framework was addressed. Due to the tumour appearance is

unique in each patient, the challenges come with the automatic segmentation frame-

work was also discussed.

This chapter also reviewed the conventional techniques for brain tumour segmen-

tation including unsupervised and supervised approaches. Unsupervised approaches

such as thresholding, edge-based, region-based, and clustering techniques explored the

characteristics of the data without prior knowledge. While supervised approaches such

as k-Nearest Neighbors, Support Vector Machine, Markov Random Field, and Artificial

Neuron Networks utilized the labelled data to associate the extracted features and the
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labels.

Further, the development of deep learning based techniques including convolutional

neural networks or CNNs for computer vision problems were presented. Different CNNs

architectures using different filter sizes for brain structures and brain tumour segmen-

tation were explored. These CNNs used patches input of both 2D and 3D MRI data.

However, these CNNs were only able to classify the centre pixel of the patches input

which resulted in a need of post-processing to obtain the segmentation mask of the

tumour.

Subsequently, this chapter reviewed the semantic segmentation network architec-

ture called U-Net which has become the state-of-the-art solution for biomedical imaging

application. U-Net and its variations of modification were employed in medical image

segmentation including brain tumour segmentation. U-Net has been used as the back-

bone of the automatic brain tumour segmentation algorithms development since 2016

utilizing both 2D and 3D MRI data. However, the ET region remains a challenge of

the segmentation task due to it small appearance or sometimes completely absent es-

pecially in LGG patients. Finally, available deep learning libraries and implementation

resources for the development of automatic segmentation framework were presented.

In the next chapter, the real clinical MRI data of the brain tumour patients, and the

manual segmentation for the labels annotation protocol will be presented. The labels

distribution and its imbalanced problem will be discussed. Finally, the techniques used

to mitigate the biases of the imbalanced data including loss functions and evaluation

metrics will be introduced.
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BraTS dataset and evaluation

metrics

4.1 Introduction

The previous chapter shown that deep learning based techniques have become the pow-

erful tool for automatic brain tumour segmentation. The performance of deep learning

models surpass the traditional approaches and enable precise and efficient tumour seg-

mentation. However, the success of these techniques relied on the quality and diversity

of the data used in model training. Real data capture the complexity and variety pre-

sented in clinical scenarios.

In this chapter, the real MRI data of the brain tumour patients that are available

for segmentation task is introduced. Examples of MRI image, intra-tumour structures,

and their corresponding labels annotation protocol are presented. Furthermore, the dis-

tribution of labels in the dataset and its issue of class imbalance are discussed. Finally,

the loss function for imbalanced segmentation, and the evaluation metrics that can be

used to train and measure the performance of segmentation algorithms are presented.
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4.2 BraTS dataset

In this thesis, we used MRI data from the Brain Tumour Segmentation or BraTS from

2018 - 2021. The dataset contain multimodal MRI scans of glioma patients. The

data are published mainly for the BraTS challenge. The challenge runs in conjunction

with Medical Image Computing and Computer Assisted Interventions (MICCAI) con-

ference [5,125–129]. The clinical tasks focused in the challenge are the segmentation of

the brain tumour, the prediction of patients overall survival, and the evaluation of the

uncertainty in tumour segmentation. The MRI scans of the glioma patients are available

in the Neuroimaging Informatics Technology Initiative or NIfTI format (.nii.gz). The

dataset provides native (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2),

and T2 Fluid Attenuated Inversion Recovery (FLAIR) MRI volumes. Each year, BraTS

challenge publish training dataset, validation dataset and testing dataset for the compe-

tition. The CBICA’s Image Processing Portal [130] and Synapse [131] are the platforms

for the BraTS data request submission for BraTS 2018-2020 and BraTS 2021, respec-

tively. These platforms are also used for the evaluation for the clinical tasks.

The number of glioma patients images data from the BraTS training dataset varies

each year and includes both high-grade glioma (HGG) and low-grade glioma (LGG)

patients. In BraTS 2018, there were MRI scans available from 210 HGG and 75 LGG

patients. For BraTS 2019, there were MRI scans from 259 HGG and 76 LGG patients.

In BraTS 2020, the dataset included MRI scans from 263 HGG and 76 LGG patients.

Finally, BraTS 2021 provided 1251 MRI scans from glioma patients without the sepa-

ration of HGG and LGG. The number of available patients’ data has increased every

year. All the samples available in the previous years of the BraTS dataset are included

in the current year. For example, all the MRI data from BraTS 2018, 2019, and 2020

are included in the BraTS 2021 with addition of new patients.

Table. 4.1 shows examples of the name mapping reference for glioma patients across

the BraTS training dataset from 2018-2020. Each row of the table represents a spe-

cific grade (HGG or LGG) and the corresponding patient ID for each year. In BraTS

2018 and BraTS 2019, patient ID change between years but maintain the same format.
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While the patient ID in BraTS 2020 are presented in sequential format. Note that some

entries are labelled as “NA” indicating that specific patient data is not available for

that particular grade and year combination. The training dataset provided the name

mapping information sheet along with the ground truth segmentation of each patient.

Since BraTS 2021 no longer separates HGG and LGG patients, and the patient IDs

are in sequential format, we did not include BraTS 2021 name mapping in the table.

Table 4.1: Example of name mapping for BraTS training dataset

Grade BraTS 2018 subject ID BraTS 2019 subject ID BraTS 2020 subject ID

HGG Brats18 CBICA AAB 1 BraTS19 CBICA AAB 1 BraTS20 Training 001
HGG Brats18 CBICA AAG 1 BraTS19 CBICA AAG 1 BraTS20 Training 002
HGG Brats18 CBICA BHK 1 BraTS19 CBICA BHK 1 BraTS20 Training 087
HGG Brats18 CBICA BHM 1 BraTS19 CBICA BHM 1 BraTS20 Training 088
HGG NA BraTS19 CBICA ANV 1 BraTS20 Training 089
HGG NA BraTS19 CBICA AOC 1 BraTS20 Training 090
HGG Brats18 2013 10 1 BraTS19 2013 10 1 BraTS20 Training 130
HGG NA BraTS19 TMC 30014 1 BraTS20 Training 157
HGG NA NA BraTS20 Training 336
HGG NA NA BraTS20 Training 369
LGG NA BraTS19 TMC 09043 1 BraTS20 Training 270
LGG Brats18 TCIA09 451 1 BraTS19 TCIA09 451 1 BraTS20 Training 271
LGG Brats18 TCIA10 449 1 BraTS19 TCIA10 449 1 BraTS20 Training 287
LGG Brats18 TCIA13 624 1 BraTS19 TCIA13 624 1 BraTS20 Training 334
LGG Brats18 TCIA13 634 1 BraTS19 TCIA13 634 1 BraTS20 Training 335

4.2.1 BraTS labels annotation protocol

The multimodal MRI (T1, T1Gd, T2, and FLAIR) scans of the BraTS dataset were

obtained from various MRI scans with different image acquisition settings. Therefore,

these MRI were co-registered to a common anatomical template, and re-sampled into

1x1x1 mm3 with the size of 240x240x155 where 155 is the number of MRI slices per

patient [126]. The ground truth of the tumour structures were manually segmented by

a team of expert radiologists. The annotations are label 1 denoted the necrotic and

non-enhancing tumour (NCR/NET), label 2 denoted the peritumoral edema (ED), la-

bel 4 denoted the enhancing tumour (ET), and label 0 for everything else (non-tumour
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region and background of the image). The manual segmentation protocol for defining

different visual tumour structures of the BraTS dataset can be summarised as follows:

1. The edema was primarily segmented from T2 images. Then the extension of

the edema was cross-check using FLAIR images. The initial edema contain the core

structures as shown in Fig. 4.1(a). It is then relabelled in subsequence steps.

2. The gross tumour core including both enhancing and non-enhancing structures

was first segmented by evaluating hyper-intensities in T1Gd in Fig. 4.1(c) together

with the inhomogenous component of the hyper-intense lesion visible in T1 and the

hypo-intense regions visible in T1 as shown in Fig. 4.1(b).

3. The enhancing core was subsequently segmented by thresholding T1Gd inten-

sities within the resulting gross tumour core including the Gd enhancing tumour rim

and excluding the necrotic centre as shown in Fig. 4.1(c). The appropriate intensity

thresholding was determined on a case-by-case basis.

4. The necrotic core was defined as the low intensity necrotic structure within the

enhancing rim visible in T1Gd as shown in Fig. 4.1(c).

5. Finally, the non-enhancing core structures were defined as the remaining part of

the gross tumour core after subtraction of enhancing core and necrotic core structures

as shown in Fig. 4.1(d).

Figure 4.1: Manual annotation of the tumour structures in different MRI images. (a)
The whole tumour appear bright in FLAIR image. (b) The tumour core is visible
in T2 image. (c) The enhancing tumour structure visible in T1Gd surrounding the
necrotic components of the core. (d) All tumour structures combined to generate the
final labels : edema (yellow), non-enhancing tumour (brown), necrotic (green), and
enhancing tumour (blue) [5].
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Fig. 4.2 illustrates example of MRI images from the BraTS training dataset. Each

row displays axial view images of FLAIR, T1, T1Gd, T2, and ground truth overlaid

on FLAIR of each patient. The ground truth is visually represented by red, yellow,

and blue contours, corresponding to the NCR/NET, ED, and ET tumor regions, re-

spectively. The first three rows feature patients with HGG, while the fourth to sixth

rows depict patients with LGG. We can see that all tumour regions (NCR/NET, ED,

and ET) are presented in all three of the HGG patients. However, ENT region appears

very small in the LGG patient shown in the fourth row. In the fifth row, the ET region

is completely absent. These examples show that the presence and the size of tumour

regions varies in different patients. Additionally, the sixth row of the Fig. 4.2 shows

an example of images without any tumour regions presented.
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Figure 4.2: Examples of the BraTS training dataset. Each row shows FLAIR, T1,
T1Gd, T2, and FLAIR with ground truth labels; NCR/NET (red), ED (yellow), and
ET (blue) from HGG patients (rows 1-3) and LGG patients (row 4-6).
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For the purpose of algorithm implementation in this thesis the original label 4 for ET

was changed to label 3. Hence, we now use label 1 for NCR/NET, label 2 for ED, label

3 for ET, and label 0 for everything else including background. Table 4.2 shows that

we can also group the intra-tumour structures into three tumour regions namely the

whole tumour (WT) region, the tumour core (TC) region, and the enhancing tumour

(TC). The WT region is the complete extent of the tumour including all intra-tumour

structures (ED,NCR/NET,ET). The corresponding labels for WT are 1,2,and 3. The

TC region includes all tumour structures except ED. The corresponding labels for the

TC are 1 and 3. Finally, ET or active tumour region only contains the enhancing core

of the tumour with label 3. These three tumour regions better represent in clinical

tasks including segmentation task in BraTS challenge [5, 127,128].

Table 4.2: Summary of tumour region structure and corresponding annotated labels
from BraTS dataset.

Tumour regions Intra-tumour structures labels

Whole tumour (WT) ED, NCR/NET, ET 1,2,3
Tumour core (TC) NCR/NET, ET 1,3
Enhancing tumour (TC) ET 3

4.3 Labels distribution of BraTS dataset

The field of medical image segmentation faces significant challenges due to class im-

balance problem in the data as presented in [132–134]. The ROI target presented in a

medical image usually takes small percentage of pixels in the image comparing to the

remaining of the image annotated as background. This situation creates an extreme

inequality in class distribution, with the background class often prevailing over 90%

or even close to 100% of the data. It affects all aspects of the segmentation pipeline

including image preprocessing, model architecture, model training strategy, and per-

formance evaluation.

Recall to Fig. 4.2 in the previous section, it can be seen that tumour regions and

the size of the tumour vary in different patients. The tumour region can appear very

small or completely absent in some patients especially LGG patients. The proportion
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of the ROI can also be very small comparing to the non-tumour region and background

of the image. Fig. 4.3 shows an example of labels distribution across the BraTS 2020

training dataset. We can see from Fig. 4.3(a) that the majority pixels of the MRI

scans are everything else and background of the image as label 0 is the highest number

across the dataset. It means that we will train the automatic segmentation algorithms

on mostly background of the images. To be able to see the ROI that contain glioma

sub-regions, Fig. 4.3(b) shows label distribution without label 0. We can see that, ED

regions appear almost 2.5 times more than NCR/NET and ET tumour regions across

the whole dataset.

(a) (b)

Figure 4.3: Labels distribution from BraTS 2020 dataset. (a) Labels distribution in-
cluded label 0 for everything else and background, label 1 for NCR/NET, label 2 for
ED, and label 3 for ET. (b) Labels distribution included all labels except 0.

In summary, the BraTS dataset that we used in this thesis represent the extreme

inequality in class distribution. The majority of the image pixels are the background

class over 90% of the data. This results in the segmentation algorithms of this strong

class imbalance can be challenging to train and evaluate. The appropriate loss functions

and evaluation metrics that are used to train and evaluate the performance of the

segmentation algorithms under this circumstance will be presented in Section 4.4 and

4.5.
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4.4 Loss functions of imbalanced segmentation

In medical image analysis including brain tumour segmentation, it is often to encounter

the situation where the region of interest (ROI) presents in a small fraction of image

pixels compared to the rest of the image as discussed in the previous section. This

scenario potentially leads the segmentation algorithm’s learning process trapped in

the local minimum of the loss optimization, and results in the algorithm that heavily

biases its predictions towards the background, and inefficiency detect or entirely miss

the foreground (ROI). Various studies have attempted to address this issue through loss

functions that prioritize foreground regions during the learning process [96,104,135,136].

Weighted crossed-entropy (WCE) was used to train U-Net for biomedical image

segmentation in [96] and can be defined as

WCE = − 1

N

N∑
n=1

wrn log pn + (1 − rn) log 1 − pn (4.1)

where w is the weight attribute to the foreground class, and rn, pn represent the pixel

values of the ground truth and the predicted probability map of the nth element, re-

spectively.

Dice Loss (DL) was proposed by [104] for prostate segmentation from 3D volumetric

data and has been widely adopted in other medical image segmentation problems. DL

was developed based on the Dice Similarity Coefficient and it can be defined as

DL = 1 −
2
∑N

i pigi∑N
i p2i +

∑N
i g2i

(4.2)

where pi ∈ P is the predicted binary segmentation volume, gi ∈ G is the gound truth,

and the sums run over the N voxels.

A variant of DL for binary segmentation was proposed in [135] and can be define as

DL2 = 1 −
∑N

n=1 pnrn + ε∑N
n=1 pn + rn + ε

−
∑N

n=1(1 − pn)(1 − rn) + ε∑N
n=1 2 − pn − rn + ε

(4.3)
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where rn, pn represent the pixel values of the ground truth and the predicted probability

map of the nth element, respectively. The ε term is a small positive number used to

ensure loss function stability in the cases where ground truth and prediction do not

contain the region of interest (ROI).

4.5 Evaluation metrics

Evaluation metrics of semantic segmentation measures the classification accuracy as

well as the localization correctness. To improve the algorithm performance, the aims is

to score the similarity between the predicted segmentation and the annotated segmen-

tation or the ground truth. Fig. 4.4 illustrates an example of overlapping region of the

actual tumour T1 (blue contour) and predicted tumour region P1 (red contour). The

T0 is the actual non-tumour region and P0 is the predicted to be normal brain tissues.

These regions will be used to calculate several evaluation metrics.

Figure 4.4: An illustration of regions used for calculating evaluation metrics [5].

Fig. 4.5 illustrates another example of the relationship between a confusion matrix

and the overlapping areas of the ground truth (blue contour) and predicted segmenta-

tion (red contour) of the tumour. The confusion matrix is a performance measurement

table that contains four distinct combinations of the actual class or ground truth and

the predicted class. In Fig. 4.5(a), the actual class is divided into positive and negative
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groups. The positive class represents the ground truth of the annotated ROI, while the

negative represent the ground truth of the annotated background. True positive (TP)

denotes cases where the algorithm correctly predicted a positive class label, whereas

false positive (FP) denotes the cases where the algorithm incorrectly predicted a posi-

tive class when the actual class was negative. True negative (TN) represent the cases

where the algorithm correctly predicted a negative class label, whiles false negative

(FN) represent the cases where the algorithm incorrectly predicted a negative class

label when the actual class was positive. Fig. 4.5(b) illustrates the an example of pre-

dicted tumour segmentation (red contour) and the corresponding ground truth (blue

contour). TP represents the overlapping area between the predicted segmentation and

the ground truth, indicating that the algorithm correctly predicted the tumour region.

FP refers to the area where the algorithm incorrectly predicted normal brain tissues

as tumour region. FN represents the actual tumour region that the algorithm failed

to predict, and TN represents the area correctly predicted as non-tumour region and

background.

(a) (b)

Figure 4.5: (a) Confusion matrix. (b) The overlapping of the ground truth (blue
contour) and predicted segmentation (red contour).
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The following metrics can be computed from the confusion matrix:

Accuracy or Rand index is the number of correct predictions including correct

positive and negative predictions divided by the total number of predictions.

Accuracy =
TP + TN

TP + TN + FN + FP
(4.4)

Recall or sensitivity is known as the positive rate. Recall is the number of true

positive results divided by the number of all samples that should have been identified

as positive. It is a performance metric that assesses the algorithm’s capability to accu-

rately detect positive instances among all the actual positive instances in the dataset.

In other words, it measures how well the algorithm identifies the true positives.

Recall =
TP

TP + FN
(4.5)

Precision measures the correctness of positive predictions and indicates how many

of the predicted positive instances are actually true positive. It is calculated as the

ratio of the numbers of true positive to the sum of the number of true positive and

false positive.

Precision =
TP

TP + FP
(4.6)

Specificity is also known as true negative rate. It measures the accuracy of the

negative prediction made by the algorithm. It quantifies the algorithm’s ability to avoid

false positive. It is calculated as the ratio of the number of true negative to the sum of

the number of true negative and false positive.

Specificity =
TN

TN + FP
(4.7)

Dice Similarity Coefficient (DSC) [137], also known as F1 Score or Sørensen

index, is the metrics that calculated from harmonic mean of precision and recall and it
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can be define as:

DSC =
2

1

Precision
+

1

Recall

(4.8)

=
2

1

TP
TP+FP

+
1

TP
TP+FN

(4.9)

=
2TP

2TP + FP + FN
(4.10)

DSC measure the overlapping between predicted segmentation tumour regions and the

ground truth. From the ground truth T1 and prediction P1 regions defined in Fig. 4.4,

we can also consider equation 4.10 as:

DSC =
2 × |T1 ∩ P1|
|T1| + |P1|

(4.11)

where ∩ is the intersection operator and |·| is the size of the set (i.e., number of image

pixels belonging to it). The metric range from 0-1 with 0 means that there is no

overlapping between the predicted segmentation and the ground truth, while 1 means

the predicted segmentation perfectly overlap with the ground truth.

Intersection Over Union (IoU) or Jaccard Index [138] is another metric that

measure the overlapping area between the predicted segmentation and the ground truth

and can be defined as:

IoU =
TP

TP + FP + FN
(4.12)

We can also consider equation 4.12 using ground truth T1 and prediction P1 regions

defined in Fig. 4.4 as:

IoU =
|T1 ∩ P1|
|T1 ∪ P1|

(4.13)
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where ∩,∪ are the intersection and union operators, and |·| is the size of the set. The

difference between IoU and DSC is that IoU penalises under- and over-segmentation

more than DSC [132].

In a medical image, where the significant class imbalance between the background

and the ROI at the ratio of 9:1, the number of correct predictions for the background

class is significantly higher compared to the ROI class. Using metrics that equally weigh

true positives and true negatives can produce misleading results. Hence, Accuracy and

Specificity that included true negative will produce excessively high score and should

therefore be avoided. Metrics that focus solely on true positive prediction without

considering true negatives, such as DSC and IoU, are recommended and widely used

in the field of medical image segmentation.

4.6 Summary

The real MRI data of glioma patients from the BraTS dataset from 2018-2021 were

presented in this chapter. The dataset included multimodal MRI scans (T1, T1Gd,

T2, and FLAIR) from both HGG and LGG patients, and the ground truth which are

manually segmented by the expert radiologists. The BraTS dataset were published as

part of the annually brain tumour segmentation challenge. Examples of the tumour

regions and the corresponding labels from the BraTS training dataset were illustrated.

The manual segmentation protocol used for the labels annotation of the BraTS dataset

was presented. The image data showed that the appearance of tumour structures

and the size of the tumour vary in each patient. The data also presented an extreme

inequality in labels distribution due to the ROI usually take small percentage of the

image compared to the annotated background. The techniques used to mitigate the

bias of the segmentation algorithms such as loss functions that prioritize the foreground

segmentation during the training process, and the appropriate evaluation metrics for

medical image segmentation were discussed.

Further in chapter 5, the development of automatic brain tumour segmentation

algorithms using BraTS 2018 dataset will be presented. BraTS 2019 and 2020 dataset
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will be used as training and testing data for multi-class segmentation algorithm in

chapter 6. Finally, 3D brain tumour region segmentation using BraTS 2021 will be

presented in chapter 7. The loss functions and evaluation metrics introduced in this

chapter will be used to train and measure the performance of the developed algorithms.
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Automatic brain tumour

segmentation using modified

U-Net

5.1 Introduction

Previously, treatment options for brain tumour patients were presented in Section 2.2

and the manually segmentation of the ROI in order to deliver the appropriate treat-

ment was presented in Section 3.2. To eliminate the subjectiveness of and make tumour

segmentation effective for large-scale studies, there is a need for automated segmenta-

tion. Classical approaches for automatic brain tumour segmentation were explored in

Section 3.3 but deep learning based models with convolutional neural networks have

proved superior in learning essential features and segmenting of the tumour in Section

3.4.

In this chapter, the use of deep neural networks for 2D automatic brain tumour

regions segmentation through a modified version of U-Net [96] is proposed. Because

the tumour appearance varies from patient to patient, the brain tumour segmentation

represent a particular challenging segmentation problem and the underestimation of

the tumour can lead to an inefficient treatment planning including the RT. The pro-
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posed method introduced the two-pathways local and global feature extractions inspired

by [54] to give the model larger context information of region around the image pixel

for the segmentation prediction.

The remainder of this chapter is organised as follows. The framework of deep learn-

ing based segmentation using 2D MRI slices is described in section 5.2. The details

of the proposed method is given in section 5.3 and 5.4. The proposed method perfor-

mance using evaluation metrics introduced in chapter 4, visualisation of the results and

conclusion will be in section 5.5 and 5.6.

5.2 Deep learning based segmentation framework

The process of deep learning based brain tumour segmentation involves model training

and model testing as illustrated in Fig. 5.1. The dataset is initially split into training

and testing data. The test data is kept aside as an unknown data to evaluate the final

model performance. Data normalization is performed for both training and testing

data to brings pixel values to a standardized scale and ensure fair comparisons between

different image modalities [139]. Subsequently, the normalized training data can be

further split into training and validation data. The training data is used as an input

for the DL model to extracts essentials high level features from the input and predicts

each image pixel into a curtain class of non-tumour and tumour regions. The prediction

output is compared with the ground truth segmentation mask or the label. The loss is

then calculated using a selected loss function. The process is iterated and the model

learns to minimise the loss until the loss is under the desired threshold or the iteration

reached the setting number of training epoch. During this training phase, the validation

data is used to iteratively evaluate the model and, the weights from the epoch that

gives the best performance will be saved to the model. We then observe the model

performance from the trained model output using the testing dataset. To visualise the

segmentation mask, post-processing is applied to generate the predicted segmentation

mask of the brain tumour regions and non-tumour region background.
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Figure 5.1: Deep learning based segmentation framework from 2D MRI data.

5.3 Modified U-Net

A novel CNN architecture which is based on the U-Net [96] that performs automatic

segmentation of the brain tumour regions from 2D MRI slices is proposed. Fig. 5.2

illustrates that the modified U-Net has similar structure to the U-Net comprising down-

sampling and up-sampling paths. However, the first block of the conventional U-Net

is replaced with two-pathway feature extraction. Two convolutional layers with kernel

size of 3x3 and 9x9 are used followed by a ReLU to capture low-level features from

2D axial multimodal MRI input. The multimodal MRI; T1, T2, T1GD, and FLAIR

are concatenated to form 4 channels of the input image. We refer to these features

obtained from 3x3 and 9x9 kernels as local and global feature maps. Global and local

feature maps are subsequently concatenated. A 2x2 max-pooling with stride of 2 is

used to halve the image size. A 3x3 convolutional layer followed by ReLU and 2x2

max-pooling with stride of 2 are repeated until image resolution deceases from 240x240

to 15x15 and feature maps increases from 4 to 512. Two repeated 3x3 convolutional

layers followed by a ReLU are used in the fifth block of down-sampling path to double
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feature maps to 1024.

Figure 5.2: Modified U-Net network architecture.

For the up-sampling path, a 3x3 transposed convolution with stride of 2 is used

to double image size in both dimensions and to halve the feature maps. The result

is then concatenated with the corresponding feature maps from the same level in the

downsampling path providing the higher resolution feature map the localization context

and allowed more precise segmentation. A 3x3 convolutional layer followed by a ReLU

is used to halve the concatenation feature maps. The process is repeated until the image

resolution increases from 15x15 to original 240x240 with 64 feature maps. Finally, a 1x1

convolutional [140] layer of length 1x1x64 with Sigmoid function is employed to produce

a 240x240x2 output. One for the foreground and one for the background segmentation.

The main novelty of the modified U-Net comes from the local and global feature

extractions inspired by TwoPathCNN [54] which aim to capture low-level features from

multimodal MRI input and provides the network with contextual information of the

essential features. Additional details of modified U-Net and network implementation

is presented in the next section.
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5.4 Details of modified U-Net

5.4.1 Local and global feature extraction

Fig. 5.3 illustrate the two-pathways local and global feature extraction. It is made

of a concatenation of smaller 3x3 kernel and a larger 9x9 kernal. This two-pathways

architecture is inspired by TwoPathCNN [54] which aim to provide the segmentation

model with two aspects of the input including data visual details of the region around

that pixel and its larger context including the localization information.

Figure 5.3: Two-pathways feature extraction.

Fig. 5.4 shows an example of feature maps obtained from the two-pathways feature

extraction in the first layer of the modified U-Net. Local features from 3x3 kernels

and global features from 9x9 kernels are illustrated in Fig. 5.4(a) and Fig. 5.4(b),

respectively. These features were extracted from the same MRI slice. While both local

and global features represent the brain’s structure well, the edges of the brain are more

highlighted in the local features, and the fine details of the brain are better preserved in

the global features. More example of feature maps obtained from 3x3 and 9x9 kernels

can be found in the Appendix A.
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Figure 5.4: Feature maps obtained from the first layer of modified U-Net using (a) 3x3
kernels, and (b) 9x9 kernels.
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5.4.2 Up-sampling: Transposed convolution

Transposed convolution or fractionally strided convolutions [141] is used to restore the

original image size of the initial feature. The size of output feature map o from a

convolution with kernel k on a given input i with padding p, and stride s is may be

written as:

o =
i + 2p− k

s
+ 1. (5.1)

The convolution defined above has an associate transposed convolution kernel k′ = k

where ĩ′ is the size of the stretched input obtain by adding s − 1 zeros between each

input i′ with s′ = 1 and p′ = k− p− 1. The transposed convolution output size can be

written as:

o′ = s(i′ − 1) + k − 2p. (5.2)

Fig. 5.5 shows an example of the transpose of 3x3 convolution over a 5x5 input with

1x1 zeros padding boarder using a stride of 2 (i.e., i = 5, k = 3, s = 2, and p = 1). It

is equivalent to convolving a 3x3 kernel over a 3x3 input with 1 zero inserted between

inputs, padded with 1 zeros boarder using the stride of 1 (i.e., i′ = 3, ĩ′ = 5, k′ = k =

3, s′ = 1, and p = 1). In the proposed modified U-Net, we used the 3x3 transposed

convolution with zeros padding and a stride of 2 to allowing the model to learn the

weights for expanding the resolution of the feature maps to original image size.

Figure 5.5: The transposed convolution of a 3x3 kernel over a 3x3 input with 1 zero
inserted between inputs, padded with 1 zeros padding and using a stride of 1 [141].
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5.4.3 Network implementation

An Adam optimizer [142] was used with a learning rate of 0.00001, values of β1 = 0.9,

β2 = 0.999, batch size of 16, and an epoch size of 50. All weights were initialized using

He initialization [143] with mean of 0 and standard deviation of
√

2/n, where n is the

number of input units in the weight tensor, and all biases were initialized as 0. Dice

Loss (DL2) [104,135] was used as a loss function and can be defined as

DL2 = 1 −
∑N

n=1 pnrn + ε∑N
n=1 pn + rn + ε

−
∑N

n=1(1 − pn)(1 − rn) + ε∑N
n=1 2 − pn − rn + ε

(5.3)

where rn, pn represent the pixel values of the ground truth and the predicted probability

map of the nth element, respectively. The ε term is a small positive number used to

ensure loss function stability in the cases where ground truth and prediction do not

contain the region of interest (ROI). The experiment was implemented using Tensorflow

and Tensorlayer library on PC equipped with NVIDIA GeForce GTX 1070 GPU, an

Intel Core i5-8400 CPU 2.80 GHz processor, 16 GB of RAM.

5.5 Experimental results

We evaluated the proposed modified U-Net for the segmentation of five tumour regions:

whole tumour (WT), tumour core (TC), edema (ED), necrotic and non-enhancing tu-

mour (NCR/NET), and enhancing tumour (ET). WT is the union of all annotated

tumour labels (ED+NCR/NET+ET), TC is the union of NCR/NET and ET. The

proposed model was trained separately for each tumour region. Multimodal MRI scans

(T1, T1Gd, T2, and FLAIR) of 210 HGG and 75 LGG patients from BraTS 2018 was

split into the ratio of 0.6:0.2:0.2 for training, validation, and testing data. Data nor-

malization was performed for all dataset. First, the mean and standard deviation of

each MRI modality across the dataset are calculated. Subsequently, multimodal MRI

of each patient is subtracted with the mean, and divided by the standard deviation of

the corresponding modality.
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Mean DSC and IOU obtained from the modified U-Net are reported in Table 5.1.

The proposed method achieved mean DSC over 0.8 and mean IoU over 0.7 in all tu-

mour regions segmentation from training data. It can be seen that the proposed method

achieved the best performance in WT segmentation with 0.81 and 0.83 DSC from val-

idation and testing data, respectively. The segmentation results decreased to over 0.6

DSC for TC, ED, and ET segmentation from validation and testing data, and signifi-

cantly decreased to over 0.4 DSC for NCR/NET segmentation compared to the results

of training data. Example of training curves from WT and ET segmentation are illus-

trated in Fig. 5.6(a), and Fig. 5.6(b), respectively. It can be observed that the proposed

method experienced overfitting [144], especially in ET segmentation where the model

learn to fit the training data. The model is not able to generalise to the validation data

which leads to the increasing of loss while the training loss is still decreasing as shown

in Fig. 5.6(b). To mitigate the overfitting, techniques such as weights regularization,

Dropout, and early stopping can be employed [145]. Additionally, the proposed method

used multimodal MRI scans from HGG and LGG together and the label distribution

is highly imbalanced as discussed in chapter 4. The appearance of NCR/NET and

ET regions are small in fraction compared to the annotated background of the image.

These reasons combined could affect the performance of the NCR/NET segmentation.

Table 5.1: Segmentation results of the proposed method using BraTS 2018 dataset.

Tumour regions
DSC IoU

Train Val Test Train Val Test

WT 0.92 0.81 0.83 0.89 0.69 0.69
TC 0.89 0.61 0.62 0.88 0.45 0.47

NCR/NET 0.81 0.40 0.45 0.71 0.29 0.31
ED 0.88 0.66 0.69 0.82 0.51 0.52
ET 0.83 0.68 0.70 0.72 0.54 0.56

Table 5.2 shows the comparative segmentation results obtained from the modified

U-Net and the original U-Net using the testing data. The proposed method and the

original U-Net achieved over 0.8 DSC for the WT segmentation. However, the proposed

method outperformed the U-Net in ET and NCR/NET regions segmentation indicate

67



Chapter 5. Automatic brain tumour segmentation using modified U-Net

Figure 5.6: Learning curve from (a) WT segmentation, and (b) ET segmentation.

Table 5.2: Brain tumour regions segmentation performance comparison.

Method
DSC

WT ED ET NCR/NET

U-Net 0.82 0.70 0.62 0.31
Proposed 0.83 0.69 0.70 0.45

that the two-pathways feature extraction introduced in the down-sampling of the pro-

posed method has improved the segmentation performance.

Fig. 5.7 illustrate the visualisation of the WT segmentation (red contours) ob-

tained from the proposed method compared to the corresponding ground truth (blue

contours) of patient ID Brats18 TCIA08 469 1. Fig. 5.7(a) shows the predicted seg-

mentation contours and ground truth over the original FLAIR images from slice 40,

70, 90, and 110, respectively. The proposed method successfully segmented the WT

in slice 70, 90, and 110. Furthermore, the proposed method was able to identify the

slice without ROI (no segmentation predicted) in slice 40, which reduces a chance of

an overestimation of the tumour. Fig 5.7(b) and Fig. 5.7(c) illustrate the comparison

between the stacked 2D contours of the ground truth (blue) and the predicted WT

segmentation (red) from all 155 slices of this patient.
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Figure 5.7: Visualisation of the predicted WT segmentation (red) and corresponding
ground truth (blue) contours from patient ID Brats18 TCIA08 469 1, (a) tumour con-
tours obtained from the modified U-Net on 2D axial FLAIR images, (b) stacked 2D
contours of the ground truth, and (c) stacked 2D contours of the predicted segmenta-
tion.
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Fig. 5.8 give more examples of different tumour regions segmentation obtained

from the proposed method. Each row of the image displays original T1Gd images with

corresponding ground truth, and the predicted segmentation masks of different tumour

regions from various patients. Fig. 5.8(a)-(c) feature the segmentation of TC region

which included all tumour structure except the ED. Fig. 5.8(d)-(l) visualise each intra-

structure of the tumour. ET is shown in (d)-(f), ED is shown in (g)-(i), and NCR/NET

regions is shown in (j)-(l), respectively. From the first column, TC (a) is not easy to

differentiate from ED comparing to ED region that appears darker than normal brain

tissue as shown in (g). ET appears as very bright region and it is visible in (d), while

NCR/ENT is the dark solid inside the bright ET ring as shown in (i).
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Figure 5.8: Visualisation of original T1Gd image, ground truth, and predicted segmen-
tation of brain tumour regions. The images are from various patient of BraTS 2018
dataset.
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5.6 Summary

This chapter presented a novel deep learning based automatic brain tumour regions

segmentation using 2D multimodal MRI slices from BraTS 2018 dataset. The proposed

method is based on U-Net architecture that had proved to work well in biomedical

segmentation. We used two-pathway feature extraction with 3x3 and 9x9 kernels to

extract local and global feature directly from the input. These features provide the

model with two aspects of the visual information from the input data. Two-pathways

feature extraction provided the details around the image pixel from local pathway and

larger context including localization information from global pathway. The low-level

local feature maps obtained from the two-pathways preserved the edges of the brain

structures while global feature maintain the fine details of the brain.

The proposed method was trained and evaluated for five tumour regions including

WT, TC, NCR/NET, ED, and ET. The training phase required a GPU, and took

approximately 12 hours for each tumour region. However, the trained model was able

to segment all 155 slices of each patient in under a minute which is significantly less-time

consuming compared to the manual segmentation. The segmentation results obtained

from the proposed method have achieved over 0.8 DSC for WT segmentation and

over 0.6 DSC for TC, ED, and ET segmentation in both validation and testing data.

Furthermore, it was able to identify the MRI slices without ROI, reducing the chance of

an overestimation. Additionally, it has improved the segmentation performance when

compared to the original U-Net, especially the cases of smaller tumour regions including

ET and NCR/NET. This improvement indicates that the use of the two-pathway feature

extraction benefits the model’s learning. However, the proposed method experienced

overfitting and still faced the difficulty of NCR/NET region segmentation, which also

a challenge in manual segmentation due to inhomogeneity of NCR/NET compared to

WT and TC regions.

To tackle the drawbacks experienced in this chapter, an improved two-pathways

feature extraction and deep neural networks for multi-class segmentation of the brain

tumour will be presented in the next chapter.
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TwoPath U-Net for multi-class

2D segmentation

6.1 Introduction

In the previous chapter, new deep learning based segmentation framework using 2D

slices from multimodal MRI data and the modified U-Net for tumour regions segmen-

tation were presented. It was shown that the new method faced difficulty in segmen-

tation of NCR/NET and ET which are smaller tumour regions comparing to WT TC

and ED. The segmentation of each tumour region obtained from training the model

was carried out separately. In this chapter, we present a new multi-class deep CNN

called TwoPath U-Net that provides segmentation of all tumour regions. The proposed

method keeps the same U-Net structure as in chapter 5. However, it now comprises a

two-pathways local and global feature extraction in all down-sampling blocks.

The remainder of this chapter is organised as follows. The network architecture

of the proposed TwoPath U-Net and its details are presented in Section 6.2. The ex-

periments set up including data preparation, data augmentation, parameters setting

are discussed in Section 6.3. Further, experimental results including the BraTS 2019

dataset and BraTS 2020 challenge participation are reported and discussed in Section

6.4 and 6.5. Finally, Section 6.6 gives the conclusion of this chapter.
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6.2 TwoPath U-Net for multi-class segmentation

A novel CNN architecture which is an extension version of the modified U-Net described

in chapter 5 is presented. This is referred to as the TwoPath U-Net, and is illustrated

in Fig. 6.1. It comprises three down-sampling blocks, a bottle-neck layer, and three up-

sampling blocks. The proposed method uses 2D slices from multimodal MRI scans in

the same manner of previous modified U-Net. In every down-sampling block, cascaded

two-pathways feature extraction is used to provide local and global feature extractions.

The cascaded two-pathway consists of a 3x3 convolution concatenate with 12x12 fol-

lows by 9x9 convolution layers with ReLU. These local and global feature extraction

paths capture low-level essential features and provide multi-perspective of the essential

context from the input to the model. Then, 2x2 max-pooling operator is performed

to halve the size of the feature maps dimension and these features maps become the

input of the next down-sampling block. The feature extractions are repeated until the

feature maps increase from 4 to 512 dense features. Subsequently, two repeated 3x3

convolution layers followed by ReLU are performed. Dropout layer [145] is used after

the second convolution in the bottleneck block of the network architecture to reduce

overfitting.

For up-sampling blocks, a 3x3 transposed convolution with stride of 2 is used to dou-

ble images resolution in both dimensions and to halve the feature maps, followed by 3x3

convolution with ReLU. The result of the up-sampling is then concatenated with the

corresponding features from the down-sampling side of the same block level as shown

in Fig. 6.1. These concatenations or skip connections provide the higher resolution

features with local and global localization contextual information to the up-sampling

process. The process repeated until the feature resolution increase back to original

resolution with 64 feature maps. Finally, 1x1 convolution layer of length 1x1x64 with

softmax function is employed to produce the output of segmentation mask with four

classes prediction of ED, ET, NCR/NET and background. The details of TwoPath

U-Net and its experiments are presented in the next section.
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Figure 6.1: TwoPath U-Net network architecture for multiclass segmentation.

6.2.1 Cascaded two-pathway feature extraction

The novelty of the proposed TwoPath U-Net is the cascaded two-pathways of local

and global feature extraction. However, instead of using 9x9 convolution as global

feature extraction like modified U-Net in chapter 5, we used consecutive 12x12 and 9x9

convolutions as shown in Fig. 6.2 to enlarge the receptive filed and able to extract

global feature from input using more neighbour pixels. This two-pathways are used

in every down-sampling block. The concatenated feature map obtained from the two-

pathways become input of the next down-sampling block, and create cascaded feature

extraction architecture.

Figure 6.2: Cascaded local and global pathways.
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Fig. 6.3 illustrate the feature maps obtained from the cascaded two-pathway fea-

ture extraction architecture. Examples of feature maps obtained from the first to the

third down-sampling block of the TwoPath U-Net are displayed in Fig. 6.3(a)-(c), re-

spectively. Each column of Fig. 6.3(a)-(c) represents the feature maps obtained from

3x3, 9x9, and 12x12 kernels. It can be observed that the features extracted from the

first down-sampling block preserve the structures of the brain as shown in Fig. 6.3(a).

Feature maps obtained from the second and third down-sampling blocks present a

more abstract representation of the brain and the tumour as shown in Fig. 6.3(b) and

Fig. 6.3(c). Additional examples of feature maps obtained from two-pathway feature

extraction are featured in Appendix A.

Figure 6.3: Feature maps obtained from cascaded TwoPath feature extraction using
3x3, 9x9, and 12x12 kernels. From (a)-(c) shows feature maps obtained from the first
to third down-sampling block of the proposed TwoPath U-Net.

6.3 Experiments

6.3.1 Data preparation

For model training, we implemented the proposed TwoPath U-Net using BraTS 2020

training dataset. Details of the number of HGG and LGG patients available in BraTS

2020 dataset and it corresponding labels were previously presented in chapter 4. The

dataset was split into the ratio of 0.8:0.2 for training and validation data. BraTS 2019
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validation dataset and BraTS 2020 testing dataset were used as unknown data for

model evaluation further in Section 6.4 and 6.5. Note that both BraTS 2019 validation

dataset and BraTS 2020 testing dataset do not contain the ground truth segmentation.

To evaluate the segmentation results, the predicted segmentations were submitted to

CBICA image processing portal [130] to obtain the segmentation results.

Data normalization was performed to all dataset prior model training and testing.

First, the mean and standard deviation of each MRI modality across the dataset are

calculated. Subsequently, multimodal MRI of each patient is subtracted with the mean,

and divided by the standard deviation of the corresponding modality.

Instead of solely utilizing 2D axial view slices, we incorporated multi-view 2D MRI

slices to increase the training samples. From left to right, Fig. 6.4 illustrated an

example of the original axial view (top to bottom), frontal view (front to back), and

sagittal view (left to right) of the image. The corresponding ground truth for each view

was also provided. Additionally, Fig. 6.4 shows examples of each class of the ground

truth with red, yellow, and blue contours representing NCR/NET, ED, and ET tumour

regions, respectively.

Figure 6.4: Examples of 2D axial view (left), frontal view (middle), and sagittal view
(right) from training data with overlaid ground truth labels; NCR/NET (red), ED
(yellow), and ET (blue).

We performed experiments using a full-size image and smaller patches for model

training. For full-size image training, input image of the size 240x240x4, where 4 is

the multimodal MRI (T1, T1Gd, T2, and FLAIR), were used as input of the proposed

networks as shown in Fig. 6.1. At the end of the down-sampling path, the resolution of
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the input data were halved in both dimension from 240x240 to 30x30 and the feature

maps were increase from 4 to 512. For up-sampling path, the dense feature maps

resolution from bottleneck of the network were doubled in each block back to original

image resolution and final output was the prediction of 4 classes including 3 tumour

regions and background .

Since the majority of the image labels are the background and cause the imbalance

in label distribution as discussed in chapter 4. We used smaller patches as the input

to eliminate the background of the images that do not contain the brain and the

tumour extents as shown in Fig. 6.5. The original MRI images were cropped to the

size of 160x160x4 using middle crop (Fig. 6.5(a)) and overlapping crop (Fig. 6.5(b)).

Therefore, we performed another two experiments implementing the proposed method

with middle cropped images and overlapping cropped images as model input. At the

end of the down-sampling path, the resolution of the input data were halved in both

dimension from 160x160 to 20x20 and the feature maps were increase from 4 to 512. For

up-sampling path, the dense feature maps resolution from bottleneck of the network

were doubled in each block back to 160x160 resolution. The final output was the

prediction of tumour regions and background.

Figure 6.5: Examples of (a) middle cropped images, and (b) overlapping cropped im-
ages.
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6.3.2 Network implementation

An Adam optimizer was used with a learning rate of 0.00001, values of β1 = 0.9,

β2 = 0.999. All weights were initialized using He initialization [143] with mean of 0

and standard deviation of
√

2/n, where n is the number of input units in the weight

tensor, and all biases were initialized as 0. Dropout [145] with probability of 0.5 setting

is used to minimise overfitting. We used the training batch of 16 and trained the model

for 50 epochs for each segmentation experiments. Categorical cross entropy [146] for

multi-class segmentation was used as a loss function and can be defined as

LCCE(y, p) = − 1

N

N∑
i=1

C∑
c=1

yi,c · log (pi,c) (6.1)

where y is ground truth labels, p is a matrix of predicted values for each class, and

where indices c and i iterate over all classes and pixels, respectively. The parameters

setting and loss function were chosen based on the best performance obtained from

series of experiments. Initially, Dice Loss was used to trained the proposed method.

However, it did not yielded the segmentation of the tumour regions. Therefore, we used

Categorical cross entropy for this multi-class segmentation problem. The proposed

method was implemented using Tensorflow and Keras library on PC equipped with

NVIDIA GeForce GTX 1070 GPU, an Intel Core i5-8400 CPU 2.80 GHz processor, 16

GB of RAM.

6.4 Experimental results

BraTS 2019 validation dataset was used as unknown testing data to evaluate the trained

TwoPath U-Net’s performance. The dataset contains multimodal MRI scans (T1,

T1Gd, T2, FLAIR) of 125 patients without the ground truth. To obtain the evaluation

results, we uploaded the predictions masks to CBICA image processing portal [130]

for the segmentation task. We evaluated the proposed method for three tumour re-

gions; WT, TC, and ET. Corresponding labels of each tumour region were previously

described in chapter 4 and 5.
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Table. 6.1 compares the segmentation result from the classic U-Net, proposed

method trained with full-size image (proposed-1), middle cropped images (proposed-

2), and overlapping patches (proposed-3). The proposed method with full-size image

approach obtained the highest DSC of 0.76, 0.64, and 0.58 for WT, TC, and ET, re-

spectively. However, patches training approach using middle cropped images yields the

best performance for identifying the image pixels that contain whole tumour regions

with the Sensitivity of 0.85. The specificity values are close to 1 in every tumour regions

segmentation because the majority of image pixels are background without ROI.

Table 6.1: Comparative segmentation results using BraTS 2019 validation dataset.

Metric/Tumour region
DSC Sensitivity Specificity

ET WT TC ET WT TC ET WT TC

Classic U-Net 0.38 0.67 0.46 0.39 0.72 0.43 0.99 0.98 0.99
Proposed-1 0.58 0.76 0.64 0.69 0.83 0.63 0.99 0.98 0.99
Proposed-2 0.55 0.73 0.62 0.63 0.85 0.61 0.99 0.97 0.99
Proposed-3 0.51 0.68 0.56 0.60 0.81 0.56 0.99 0.97 0.99

6.5 Brain tumour segmentation (BraTS) 2020 Challenge

To participate the BraTS 2020 Challenge, we evaluated the proposed method on BraTS

2020 testing dataset. The testing dataset contains multimodal MRI scans of 166 pa-

tients without ground truth. The segmentation results validated by the challenge are

shown in Table 6.2. We obtained mean dice score of 0.72, 0.66, and 0.64 for the WT,

TC, and ET segmentations. The results from BraTS 2020 Challenge has a similar

profile to the preliminary results we tested on BraTS 2019 validation dataset. At 50%

and 75% quantile of dataset, the proposed method achieved over 0.7 and 0.8mean dice

score for all tumour regions segmentation.

Table. 6.2 also provided the performance comparison between the proposed method

and nnU-Net [107] which is the winner of BraTS 2020 challenge. The mean DCS scores

obtained from the proposed method are generally lower in all tumour regions compared

to the nnU-Net’s performance.
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Table 6.2: Brain tumour regions segmentation performance comparison.

Metric/Tumour region
DSC

ET WT TC

Proposed
Mean 0.64 0.72 0.66
25% quantile 0.60 0.64 0.55
50% quantile 0.74 0.79 0.79
75% quantile 0.81 0.86 0.85

nnUNet [107]
Mean 0.82 0.89 0.85
25% quantile 0.79 0.88 0.88
50% quantile 0.86 0.93 0.93
75% quantile 0.92 0.95 0.96

Fig. 6.6 gives visualisation of the comparison between ground truth (left) and pre-

dicted segmentation (right) with NCR/NET (red contours), ED (yellow contours), and

ET (blue contours) overlaid on original FLAIR image. The images are from two dif-

ferent patients. The second row of the figure, show that the proposed method faced

difficulty in the ET and NCR/NET regions which considered smaller region when com-

pare to ED.
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Figure 6.6: Comparison between ground truth (left) and prediction (right) segmen-
tation results on original FLAIR images from training dataset with overlaid labels
NCR/NET (red), ED (yellow), and ET (blue) regions.

6.6 Summary

This chapter introduced a novel deep neural networks for multi-class segmentation of

the brain tumour regions. The proposed method is called TwoPath U-Net which con-

sists of cascaded local and global feature extraction at every down sampling block of the

U-Net like network architecture. The two-pathways feature extraction in this chapter

was extended from the Chapter 5 using additional 12x12 kernels to extract global fea-

ture from the multimodal MRI input. The proposed method was trained using BraTS

2020 training dataset and evaluate using BraTS 2019 validation dataset.

The proposed method was trained using with different input data strategies includ-

ing original image resolution of 240x240x4, and cropped image resolution of 160x160x4,

where 4 represents four MRI modalities (T1, T1Gd, T2, and FLAIR). The cropped im-

age input aimed to reduce the pixels that belong to the background class. The cropped

input also reduced the computation parameters of the model. The training phase of

each experiment took approximately 8-12 hours, and the trained model was capable of

predicting the segmentation of 155 slices under a minute per patient. The proposed
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method obtained the mean DSC of 0.76, 0.64, and 0.58 for WT, TC, and ET seg-

mentation, respectively. Additionally the proposed method reduced the training time

compared to the modified U-Net presented in Chapter 5 which trained for each tumour

region segmentation separately. However, the proposed method obtained lower DSC

for WT and ET segmentation compared to the modified U-Net performance.

The segmentation results obtained from the proposed method were also submitted

to participate the BraTS 2020 challenge using BraTS 2020 testing dataset. The results

obtained from the proposed method were also compared with the winner of the BraTS

2020. They are overall lower than the winner’s performance. The winner of the BraTS

2020 used 3D volumetric input to train the network, while the proposef method used

2D input. The lack of spatial information between slices could be the cause of the

overall lower segmentation performance.

Deep neural network for 3D segmentation that combines the advantages of modified

U-Net presented in chapter 5 and the proposed method for tumour regions segmentation

will be presented in the next chapter.
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Chapter 7

3D TwoPath U-Net for brain

tumour regions segmentation

7.1 Introduction

In the previous chapters, automatic segmentation algorithms using 2D slices from mul-

timodal MRI data were presented. These networks showed promising results. It is

arguably a non-optimal use of the volumetric MRI data. In this chapter, we propose

a 3D deep CNN called 3D Two-Path U-Net that give 3D tumour region segmentation.

The proposed network keeps the same network architecture of the 2D Two-Path U-Net

introduced in the previous chapter but it is extended to a 3D model.

The remainder of this chapter is organised as follows. The framework of deep

learning based segmentation using 3D volumetric MRI data and the impact of GPUs

in model implementation are described in Section 7.2. The details of the proposed

method is given in Section 7.3. Data-preparation and network implementation are pre-

sented in Section 7.4. The proposed method performance, visualisation of the results

and conclusion are provided in Section 7.5 and 7.6.
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7.2 3D brain tumour segmentation

7.2.1 3D brain tumour segmentation framework

3D segmentation of brain tumour considers all sequential MRI data as one volume

which makes the process of 3D segmentation framework different from the previously

2D segmentation framework presented in chapter 5 as illustrated in Fig. 7.1. Using 3D

deep CNNs based model for segmentation problem significantly increases the training

parameters. Hence the original MRI data are usually cropped into a smaller patches

and the patch size of 128x128x128 is commonly used among the BraTS challenge par-

ticipants [101, 107, 108, 111]. Data normalization is performed for both training and

testing dataset. Subsequently, the normalised data is used as an input for the 3D DL

model to extracts essentials features from the input and predicts each voxel into a cur-

tain class of non-tumour and tumour. The process of model training by minimising the

loss calculated from a selected loss function is the same as 2D segmentation framework.

Figure 7.1: 3D TwoPath U-Net network architecture.
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We then observe the model performance from the pre-trained model using the test-

ing dataset. To visualise the segmentation output, post-processing is applied to generate

the predicted tumour volume. A tumour volume generated from the output of the 3D

segmentation model is a preferred representative of the tumour for further quantifica-

tion analysis. The process of model training for 3D segmentation is usually required an

exceedingly longer training time compared to 2D segmentation framework presented in

chapter 5. It also requires high-performance computing resource. GPUs acceleration

is practically always employed to the implementation of the model. An impact of the

GPUs is discussed in the next section.

7.2.2 Impact of GPUs on 3D deep CNNs implementation

Using 3D deep CNNs for segmentation problem comes with increased numbers of train-

ing parameters and significant memory and computational requirements [95]. Graphics

Processing Unit (GPU) [147] is crucial in 3D segmentation implementation. GPUs

were originally developed for 3D graphics but were quickly adopted by the scien-

tific community for powerful parallel computing. Because the computational in CNNs

can be represented as tensor or matrix operations and can be effectively parallelised.

GPUs enable efficient training of CNNs. Additionally, the most popular deep learning

frameworks offer default GPU acceleration support, further enhancing the training pro-

cess [148]. NVIDIA, a world leading company in AI computing, released a library called

cuDNN [149] which is designed to accelerate deep CNNs using GPUs. GPUs also offer

high memory capacity which are crucial for working with large 3D volumes [150]. Using

GPUs can significantly speed up the model training processes, and enable more effi-

cient and accurate 3D segmentation tasks. In this study, we implemented the proposed

method on a GPUs node of ARCHIE-WeST. The specification of ARCHIE-WeST’s

GPUs node is presented in section 7.4.
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7.3 3D TwoPath U-Net

We propose a novel 3D CNNs which is an extension version of 2D TwoPath U-Net

introduced in chapter 6. This is referred to as the 3D TwoPath U-Net and is illus-

trated in Fig. 7.2. It comprises three down-sampling blocks, a bottle-neck layer, and

three up-sampling blocks. The proposed method uses multimodal MRI volume (T1Gd,

and FLAIR) of 128x128x128 with 2 channels as an input. In every down-sampling

block, cascaded 3D two-pathways feature extraction is used to provide local and global

feature extractions. The cascaded 3D two-pathway consists of a 3x3x3 convolution con-

catenate with 12x12x12 followed by 9x9x9 convolution layers with ReLU. Then, 2x2x2

max-pooling operator is performed to halve the size of the feature maps dimension and

these features maps become the input of the next down-sampling block. The feature

extractions are repeated until the feature maps increase from 2 to 512 dense features.

Subsequently, two repeated 3x3x3 convolution layers followed by ReLU are performed.

Dropout [145] layer with probability of 0.2 is used after the second 3x3x3 convolution

layer of the bottleneck block of the network architecture to reduce overfitting.

For up-sampling blocks, a 3x3x3 transposed convolution with stride of 2 is used to

double images resolution in three dimensions and to halve the feature maps, followed

by 3x3x3 convolution with ReLU. The result of the up-sampling is then concatenated

with the corresponding features from the down-sampling side of the same block level

as shown in Fig. 7.2. These concatenations or skip connections provide the higher

resolution features with local and global localization contextual information to the

up-sampling process. The process repeated until the feature resolution increase back

to original resolution with 64 feature maps. Finally, 1x1x1 convolution layer of length

1x1x64 with Sigmoid function is employed to produce the output of tumour volume seg-

mentation and background. Note that in this 3D TwoPath U-Net, we conducted binary

segmentation instead of multi-class segmentation presented in Chapter 6. Although,

the multi-class segmentation significantly reduced the training time. The binary seg-

mentation was able to made effective use of the dice loss during the training process,

and yielded higher DSC, especially for WT and TC segmentation.
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Figure 7.2: 3D TwoPath U-Net network architecture.

7.4 Experiments

7.4.1 3D Data-preparation

We employed the proposed 3D TwoPath U-Net on BraTS 2021 dataset for the segmen-

tation of whole tumour (WT), tumour core (TC), and enhancing tumour (ET) regions

instead of learning the labels ED, ET, and NCR/NET to better represent the clinical

tumour structure as previously discussed in chapter 4. The dataset were split into the

ratio of 0.8:0.2 for cross validation. Volumetric MRI data from BraTS 2021 training

dataset were cropped into a volume of the size 128x128x128 using middle cropping to

reduce the background. To further reduce the computational parameters, T1Gd and

FLAIR scans were selected as multimodal MRI based on the manual segmentation pro-

tocol presented in Chapter 4. Data normalization was performed on each MRI volume

across the dataset. The proposed model was trained separately for each tumour region.

We also used pre-trained weights from WT segmentation as transfer learning for TC

and ET segmentation model trainings.

88



Chapter 7. 3D TwoPath U-Net for brain tumour regions segmentation

7.4.2 Network implementation

An Adam optimizer was used with a learning rate of 0.00001, values of β1 = 0.9,

β2 = 0.999. All weights were initialized using He initialization [143] with mean of 0 and

standard deviation of
√

2/n, where n is the number of input units in the weight tensor,

and all biases were initialized as 0. Dropout [145] with probability of 0.2 setting is used

to minimise overfitting. We used the training batch of 1 and trained the model for 50

epochs for WT segmentation. The pre-trained model then used to train for another 25

epochs for TC and ET. Dice loss [104] was used as a loss function and can be defined

as

DL = 1 −
2
∑N

i pigi∑N
i p2i +

∑N
i g2i

(7.1)

where pi ∈ P is the predicted binary segmentation volume, gi ∈ G is the gound truth,

and the sums run over the N voxels. The proposed method was implemented using

Tensorflow and Keras library on GPUs node of ARCHIE-WeST with 4 NVIDIA A100

GPUs, housed in Lenovo SR670 servers, each with 40 cores and 192GB RAM.

7.5 Experimental results

7.5.1 Segmentation results

Table. 7.1 shows the comparative segmentation results using validation data from

BraTS 2021 dataset. The proposed method achieved the mean DSC of 0.87, 0.70, and

0.67 for WT, TC, and ET, respectively. By significantly increasing the training data,

the proposed method outperformed the 2D TwoPath method introduced in chapter 6

for all tumour regions. Table. 7.1 also shows that segmentation results from Optimized

U-Net [111], and NVAUTO [108], the top-rank teams in the BraTS 2021 challenge.

Both teams represent NVIDIA, a world leading company in AI computing. Although

the proposed method’s segmentation accuracy is generally lower than both teams, it

was only 5% lower for WT segmentation.
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Table 7.1: Segmentation results of the proposed method using validation data from
BraTS 2021 dataset.

Method
DSC

ET WT TC

2D TwoPath (BraTS2020) 0.58 0.76 0.64
Proposed method 0.67 0.87 0.70
Optimized U-Net [111] 0.91 0.91 0.91
NVAUTO [108] 0.89 0.92 0.93

Fig. 7.3 visualises multi-view of the WT segmentations obtained from the proposed

method. Each row of the image features the original FLAIR, T1Gd, ground truth, and

the predicted segmentation. The first row shows the axial view of the segmentation,

the second row shows the sagittal view, and the third row shows the frontal view.

The predicted segmentations of axial view and sagittal view show promising results.

However, an underestimation of the tumour is presented in the frontal view. The model

failed to identify the rest of the smaller tumour region on the left of the larger tumour

region.

Figure 7.3: Visualisation of multi-view original FLAIR, T1Gd, ground truth and pre-
dicted segmentation of WT.
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Fig. 7.4 gives the visualisation of predicted segmentation WT volume (red) obtained

from the proposed method and the corresponding ground truth (blue). Each row of

the image features the segmentation from different patients. An underestimation of the

tumour volume can be observed in the top right and the bottom left of the predicted

segmentation from the first patient, as well as the top right of the prediction from the

second patient. However, the predictions generally show promising results compared

to the corresponding ground truth. Furthermore, the 3D tumour output obtained from

the proposed method provides a better clinical representation because its ability to

incorporate spatial information between the slices compared to the stacked 2D contours

where the gaps between slices are presented as shown in Chapter 5.

Figure 7.4: Visualisation of ground truth (blue) and predicted segmentation (red) tu-
mour volumes from two patients.
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7.5.2 Segmentation time

The proposed method was implemented on the GPUs node of ARCHIE-WeST with

specification presented in the section 7.4.2. The model training took approximately

74 hours for WT segmentation, 37 hours for TC segmentation, and 37 hours for ET

segmentation. Fig. 7.5 shows example of a terminal for job script submission in the

login node of the ARCHIE-WeSt. Command sacct -j followed by job script id was

used to display the accurate runtime. The elapsed time of model training for TC

segmentation shown in this terminal was 1-13:25:34 indicating 37 hours 25 minutes and

34 seconds.

Figure 7.5: Example of training time for TC segmentation task.

Fig. 7.6 gives the predicted WT from the first patient presented in Fig. 7.4 with

the prediction time using pre-trained 3D TwoPath U-Net on Google Colab with Tesla

V100 GPU. The prediction and visualisation took approximately 45 seconds with the

DSC of 0.92. Although the training phase of the proposed method took long hours, the

predicted segmentation by the pre-trained model achieved time-efficient comparing to
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the manual segmentation presented in chapter 3.

Figure 7.6: Example of WT segmentation with prediction time.
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7.6 Conclusion

This chapter presented a novel 3D deep CNN for brain tumour regions segmentation

called 3D TwoPath U-Net. The proposed method is an extended version of the 2D

TwoPath U-Net introduced in chapter 6. The proposed method keeps the two-pathways

feature extraction architecture to provided the model with cascaded local and global

features. The proposed method conducted the binary segmentation which trained for

WT, TC, and ET segmentation separately. However, Dice Loss and transfer learning

techniques were employed during the model training to improve the segmentation per-

formance.

Due to the significantly computational requirement of the 3D deep learning net-

work, cropped voxels from volumetric MRI data were used as model’s input. T1Gd

and FLAIR scans were selected as multimodal MRI input. This further reduced the

computation parameters of the networks. Furthermore, the reduction in MRI modali-

ties required in an automatic segmentation framework could decrease the time patients

spend on the MRI imaging process. The proposed method was implemented using a

GPUs node of ARCHIE-WeST which is a high performance computing (HPC) facility

available at the University of Strathclyde.

The 3D volumetric used as the model input consist of sequential data that leverage

the spatial information between slices. The segmentation results obtained from the

proposed method achieved the mean DSC of 0.87, 0.70, 0.67 for WT, TC, and ET

segmentation, respectively. The results also show the improvement of the segmentation

compared to the results obtained from the modified U-Net and 2D TwoPath U-Net

presented in the previous chapters. Furthermore, the results were compared with the

top rank teams from the BraTS 2021 challenge, showing that the performance of the

proposed method are overall lower than the top rank teams in all tumour regions. Ad-

ditionally, the 3D visualisation of the predicted tumour volumes were obtained using

the proposed method. Moreover, the proposed method achieved time-efficiency seg-

mentation, and was capable of giving the predicted segmentation in under a minute,

whereas the manual segmentation takes approximately 60 minutes per patient.
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Overall, the presented novel 3D CNN approach shows the potential for improved

segmentation performance using volumetric MRI data. Future research can focus on

refining the model architecture and the quantification of tumour volume using the 3D

results obtained from the 3D CNNs.
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Conclusions and future work

8.1 Conclusions

In this thesis, a variety of image processing techniques and deep learning methods have

been explored to tackle several challenges of radiotherapy planning. Traditional process

of manually GTV delineation requires clinical expertise which is subjective and time-

consuming. The main aim of this thesis is to determine the appropriate method for

the automatic brain tumour segmentation, and to develop an automatic segmentation

of brain tumour that covers whole tumour and its intra-tumour structures, and avoids

healthy brain tissues using MRI data.

In Chapter 2, an extensive literature review was presented, focusing on the anatom-

ical structures of the human brain, introducing the brain tumour and its imaging, in-

cluding the basic concept of the MRI imaging. Various brain tumour segmentation

techniques including the conventional methods and the deep learning based methods

were presented in Chapter 3. In Chapter 4, the real dataset of the brain tumour patients

and its imbalanced in label distribution were discussed. The techniques to mitigate the

biases from the imbalanced data includes loss functions and evaluation metrics were

also introduced.

The first novel contribution of this thesis was presented in chapter 5. A novel deep

neural networks for fully automatic semantic segmentation of brain tumour region from

MRI was presented. The proposed method is a modified version of the classical U-Net
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architecture. The modification introduced two-pathways feature extraction to extract

low-level local and global features directly from the multimodal MRI input. 2D axial

slices from four modalities of the MRI including T1, T1Gd, T2, and FLAIR from the

BraTS 2018 dataset were used to form four channels of the model input. Transposed

convolution was also employed as the up-sampling operator. The novel achievement

from this work is the brain tumour regions segmentation results with an improvement

of the tumour regions segmentation in higher Dice Similarity Coefficient (DSC) com-

pared to the original U-Net. The proposed method outperforms U-Net especially in

the segmentation of ET and NCR/NET which considered difficult regions to segment.

Stacked 2D contours obtained from the proposed method provides the visualisation

of the gross tumour volume (GTV). However, the proposed method experienced the

overfitting during the model training process and the segmentation of NCR/NET could

be improved. The segmentation obtained from the validation data using the proposed

method were generally poor due to the inhomogeneity of the NCR/NET and ET re-

gions. The proposed method took approximately 12 hours to train for each tumour

segmentation, and capable of giving the predicted segmentation under a minute per

patient after the model was trained.

The second contribution of this thesis was the development of a multi-class deep neu-

ral network called 2D TwoPath U-Net presented in Chapter 6. The proposed method

extended the two-pathway feature extraction model to provide cascaded local and global

features in every down-sampling step of the network architecture. The cascaded archi-

tecture was shown to be able to preserve the global information of the brain structure,

image intensity along with its location. To further improve the segmentation, the pro-

posed method returns the output with 4 predicted classes of NCR/NET, ED, ET, and

background to generate WT and TC regions. The proposed method was trained using

BraTS 2020 dataset and tested using BraTS 2019 validation dataset. Experiments with

cropped images input to decrease the background of the images were also conducted.

Because the proposed method performed multi-class segmentation, this significantly

decreased the model training time. The segmentation results obtained from the 2D

TwoPath U-Net are overall higher than original U-Net. However, WT and ET segmen-
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tation obtained from the proposed method are lower in DSC compared to the results

obtained from the modified U-Net. Moreover, the segmentation results obtained from

the proposed method using BraTS 2020 testing dataset were submitted to participate

the BraTS 2020 challenge. Although the performance of the proposed method are

generally lower than the winner of the challenge, we have made contribution to the

automatic brain tumour segmentation research.

The third contribution of this thesis was presented in chapter 7. A novel 3D deep

neural networks called 3D TwoPath U-Net was developed as an extension version of

the previous 2D TwoPath U-Net. Implementation of the 3D deep neural networks faces

the burden of significantly high computational parameters. A GPUs node of ARCHIE-

WeST was employed in this work. Cropped voxels of the sequential volumetric MRI

data were used as model input. T1Gd and FLAIR scans were selected to generate mul-

timodal MRI. This further decreased the computational parameters of the 3D TwoPath

network. Additionally, it could benefits the patient to reduce the time spend during

the MRI imaging process. The proposed 3D TwoPath U-Net performed binary seg-

mentation thus enabling the use of dice loss. The novel achievement obtained from this

work is the brain tumour regions segmentation with improved DSC compared to the

results obtained from the modified U-Net and the 2D TwoPath U-Net. Furthermore,

the output of the proposed method gives 3D visualisation of the tumour volume with

spatial information without the gaps between MRI slices compared to the stacked 2D

contours. Finally, time-efficient segmentation is achieved, tumour regions can be seg-

mented in less than a minute for each patient using the proposed method.

Overall this thesis explored the deep learning based methods for semantic segmen-

tation and developed novel automatic segmentation frameworks for brain tumour seg-

mentation. The novel contributions were achieved through the 2D and 3D segmentation

techniques. While the 3D segmentation framework produces the desired segmentation

output, it is undeniable that it requires high-performance GPUs and extensive training

time (over 37 hours for each tumour region). In situations where high-performance

computing facilities are not available, the 2D segmentation framework becomes an effi-

cient segmentation option, as it demands less computational power and shorter training

98



Chapter 8. Conclusions and future work

time. The 2D segmentation only took approximately 8-12 hours using single NVIDIA

GeForce GTX 1070 GPU which is more accessible compared to the NVIDIA A100

GPUs node of the ARCHIE-WeSt. Additionally, the 2D segmentation framework can

utilize 2D slices from sequential 3D volumetric MRI input data, with further 3D recon-

struction for visualising the GTV output.

8.2 Future work

There are various possible works that can be explored for further research. Firstly,

train the networks with more data. BraTS 2021 dataset significantly increases the

number of MRI data compared to the previous years, and provides an opportunity to

enhance the training process. However, computational limitations restrict the use of all

available image modalities, leading to the utilization of only T1Gd and FLAIR images

in chapter 7. Future work can be conducted to incorporate all four MRI modalities,

including T1, T1Gd, T2, and FLAIR. The algorithms can capture more comprehensive

understanding of the tumour characteristics and potentially improve segmentation ac-

curacy by using more modalities. To further reduce model complexity, exploring the

use of consecutive small kernels instead of large kernels for global feature extraction is

worth considering. This adjustment could allow to model to be able to utilize more

image modalities without requiring higher computational power. Moreover, further

algorithms for quantification of 3D tumour volume obtained from the proposed 3D

TwoPath U-Net can be explored.

Secondly, an improvement of the model training technique. Inspired by the winner

of BraTS 2019 challenge who used the cascaded U-Net to train the segmentation from

coarse to fine. We could stack the proposed 3D TwoPath U-Net in the same manner

to possibly improve the segmentation performance especially for NCR/NET and ET

regions segmentation.

Thirdly, a crucial aspect of translating the proposed algorithms into practical ap-

plications is the development of rapid diagnosis tools with user-friendly interfaces. The

algorithms can be transformed into intuitive software applications that integrate into
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the existing clinical workflow An example of such interface could be a web-based ap-

plication that allows clinicians to upload MRI scans, run the segmentation algorithm,

and visualise the segmented tumour regions interactively. This could lead to a pilot

study in the clinical use with the real patients.

Lastly, we can refine the proposed algorithms to learn from time-dependent data

such as MRI scans of the same patient from different time period during the treatment.

This could enable clinicians to monitor the effectiveness of the treatment and allow

personalised treatment that is appropriate for each patient.

In summary, future research in automatic brain tumour segmentation using deep

neural networks can focus on network training with larger and more diverse datasets,

improving the network training with cascade model technique, developing user-friendly

diagnosis tools, and refining algorithms to learn from time-dependent data. These fu-

ture works have the potential to revolutionise tumour segmentation and assist clinicians

in making more accurate diagnosis and treatment planning.
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Appendix A

A.1 Visualisation of feature maps obtained from 2D TwoPath

U-Net

The visualisation of feature maps obtained from cascaded two-pathway feature extrac-

tion of the 2D TwoPath U-Net were presented in section 6.2.1. More example of feature

maps from each down-sampling block are illustrated as follows:

Figure A.1: Example of feature maps obtained from the first down-sampling block of
the TwoPath U-Net using 3x3 kernels.
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Figure A.2: Example of feature maps obtained from the first down-sampling block of
the 2D TwoPath U-Net using 9x9 kernels.

Figure A.3: Example of feature maps obtained from the first down-sampling block of
the 2D TwoPath U-Net using 12x12 kernels.
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Figure A.4: Example of feature maps obtained from the second down-sampling block
of the 2D TwoPath U-Net using 3x3 kernels.

Figure A.5: Example of feature maps obtained from the second down-sampling block
of the 2D TwoPath U-Net using 9x9 kernels.
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Figure A.6: Example of feature maps obtained from the second down-sampling block
of the 2D TwoPath U-Net using 12x12 kernels.

Figure A.7: Example of feature maps obtained from the third down-sampling block of
the 2D TwoPath U-Net using 3x3 kernels.
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Figure A.8: Example of feature maps obtained from the third down-sampling block of
the 2D TwoPath U-Net using 9x9 kernels.

Figure A.9: Example of feature maps obtained from the third down-sampling block of
the 2D TwoPath U-Net using 12x12 kernels.
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ARCHIE-WeST

B.1 ARCHIE-WeST access

To access GPU node on ARCHIE-WeSt HPC system, we used ThinLinc remote desk-

top. ThinLinc allows remote access to Linux server for Windows, MAC and Linux

desktops. Fig. B.1 shows an example of the ThinnLinc login interface. We used thin-

linc.hpc.strath.ac.uk server and the user’s Strathclyde DS username and password to

login. After successfully login, user can submit job scripts via the server login node

terminal as shown in Fig. B.2.

Figure B.1: ThinLinc remote desktop access.
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Figure B.2: The login node and the example of job script submission terminal.

B.2 Example of single GPU job script

The following script is an example of job script for submitting our 3D brain tumour

segmentation python codes to GPU node of the ARCHIE-WeST HPC system. In this

script, we set the GPU node to NVIDIA A100 with 48 hours runtime limit.

#!/bin/bash

# Propogate environment variables to the compute node

#SBATCH --export=ALL

# Run in the standard partition (queue)

#SBATCH --partition=gpu --gres=gpu:A100

# Specify project account

#SBATCH --account=dicaterina-bts

# Specify (hard) runtime (HH:MM:SS)

#SBATCH --time=48:00:00

#SBATCH --job-name=brats2020

# Output file

#SBATCH --output=slurm-%j.out
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module purge

module load anaconda/python-3.8.8/2021.05

module load nvidia/sdk/21.3

#=========================================================

# Prologue script to record job details

#=========================================================

/opt/software/scripts/job_prologue.sh

#----------------------------------------------------------

source /opt/software/anaconda/python-3.8.8/2021.05/etc/profile.d/conda.sh

. ${HOME}/setup-conda

#conda init bash

conda activate keerati

cd /users/kkb17226/Brats20

python3 /users/kkb17226/Brats20/train_brats2021_1000_T1ceFlair_ET.py

#=========================================================

# Epilogue script to record job endtime and runtime

# Do not change the line below

#=========================================================

/opt/software/scripts/job_epilogue.sh

#---------------------------------------------------------
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C.1 Automatic segmentation results from 3D TwoPath

U-Net

The visualisation of multi-view segmentation obtained from 3D TwoPath was presented

in section 7.5. More example of TC and ET segmentation results are shown in Fig. C.1

and Fig. C.2, respectively.

Figure C.1: Visualisation of multi-view original FLAIR, T1Gd, ground truth and pre-
dicted segmentation of TC.
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Figure C.2: Visualisation of multi-view original FLAIR, T1Gd, ground truth and pre-
dicted segmentation of ET.
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