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Abstract

Future power systems will source much of their electrical power from converter-based generation,

be it a large scale HVDC link or a smaller system such as the back-to-back converter systems found

in modern, variable-speed wind turbines. This is in stark contrast to the original AC power systems

which used directly-coupled synchronous generation. The transition from the past power system to

the future power system will produce power systems that have both low inertia, which compromises

angular and frequency stability, and low short-circuit ratios, which compromises voltage stability.

In this thesis, the modelling and control of converter-based generation in low short-circuit ratio

systems are investigated. For the modelling of AC power systems and the controllers being applied

to the converter(s), the unified linear state-space approach is proposed. In this approach, linear

state-space models of the electrical system are combined with linear state-space models in a manner

which is highly scalable and sufficiently flexible to allow multiple control algorithms acting in a

system instantaneously to be considered with relative ease.

Three control algorithms are considered in single converter systems: dq-axis vector current control,

proportional resonant control, and power synchronization control. By adopting dq-axis vector cur-

rent control, the system becomes ill-conditioned at the current level, primarily due to the dynamics

of the phase-locked loop, which then causes stability issues for outer feedback loops (for example DC

voltage and AC voltage controllers) which accompany the current controller. Proportional resonant

control, also employing a phase-locked loop, exhibits poor dynamics in the low short-circuit ratio

power system. By mimicking the basic synchronization process of a synchronous generator, power

synchronization control is able to perform satisfactorily in a low short-circuit ratio system, much as

a synchronous generator can.
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Two algorithms are considered in the multi-converter, low short-circuit ratio systems: dq-axis vector

current control and power synchronization control. Performance issues observed in single converter

systems when dq-axis vector current control is applied are observed in the multi-converter sys-

tems. Additional sources of undesirable coupling between control loops at the current control level

are observed, potentially placing more demands on the design of the outer control loops. Power

synchronization control performs satisfactorily in the multi-converter systems; however, oscillatory

behaviour does arise, which requires careful tuning of the controllers. In addition, it is shown that

the introduction of converters using power synchronization control enables other converters (in the

same system) using dq-axis vector current control to exhibit improved performance. This is due to

power synchronization control causing a converter to act as an effective voltage source/regulator,

and dq-axis vector current control relying on electrical proximity to a strong voltage source. This

produces systems with improved conditioning, which will reduce the complexity of the design of

outer controllers for dq-axis vector current controlled converters.

Keywords: control, modelling, HVDC, power systems, stability, voltage-source converter, weak AC

systems, multiple-converter systems, power system planning
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Nomenclature

Controller terminology

con converter

vcc dq-axis vector current control

prc proportional resonant control

psc power synchronization control

pll phase-locked loop

ζ converter number

Control variables with superscript ‘con’ refer specifically to the outputs of the controllers, which

form inputs to the electrical models. The superscript ‘con’ may be vcc, psc, or prc, depending on

the control algorithm being applied to the converter under consideration. The exact converter to

which a specific set/pair of control variables is referring is denoted by subscript ‘ζ’.

Components

Rcζ Resistive component of the phase reactor of converter ζ

Lcζ Inductive component of the phase reactor of converter ζ

Cfζ Capacitance of the filter of converter ζ

Rtζ Resistance of the transmission line for converter ζ

Ltζ Inductance of the transmission line for converter ζ
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Phases, currents and voltages

θabc
vζ

Phase of the bridge voltage of converter ζ as expressed in the abc frame

θg
vζ Phase of the bridge voltage for converter ζ as expressed in the grid dq frame

θc
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Phase of the bridge voltage for converter ζ as expressed in the dq frame established by

the PLL/PSC embedded in converter ζ

θabc
ζ Phase of the filter-bus voltage for converter ζ as expressed in the abc frame

θg
ζ Phase of the filter-bus voltage for converter ζ as expressed in the grid dq frame

θc
ζ Phase of the filter-bus voltage for converter ζ as expressed in the dq frame established by

the PLL/PSC embedded in converter ζ

iabc
cζ

Current flowing through the phase reactor of converter ζ as expressed in the abc frame

igcζ Current flowing through the phase reactor of converter ζ as expressed in the grid dq frame

iccζ Current flowing through the phase reactor of converter ζ as expressed in the dq frame

established by the PLL embedded in converter ζ

iabc
tζ

Current flowing through the transmission line of converter ζ as expressed in the abc frame

igtζ Current flowing through the transmission line of converter ζ as expressed in the grid dq

frame

ictζ Current flowing through the transmission line of converter ζ as expressed in the dq frame

established by the PLL embedded in converter ζ

vabc
ζ Bridge voltage for converter ζ as expressed in the abc frame

vg
ζ Bridge voltage for converter ζ as expressed in the grid dq frame

vc
ζ Bridge voltage for converter ζ as expressed in the dq frame established by the PLL/PSC

embedded in converter ζ

eabc
ζ Filter-bus voltage for converter ζ as expressed in the abc frame

eg
ζ Filter-bus voltage for converter ζ as expressed in the grid dq frame

ec
ζ Filter-bus voltage for converter ζ as expressed in the dq frame established by the PLL/PSC

embedded in converter ζ

uabc
ζ Voltage at the network end of transmission line ζ as expressed in the abc frame

ug
ζ Voltage at the network end of transmission line ζ as expressed in the grid dq frame

uc
ζ Voltage at the network end of transmission line ζ as expressed in the dq frame established

by the PLL/PSC embedded in converter ζ
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Other

SCR short-circuit ratio

PCC point of common coupling
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Chapter 1

Introduction

The continued displacement of conventional synchronous generators, predominantly driven by non-

renewable energy sources, in favour of converter-interfaced generation, typically driven by renewable

energy sources, is producing power systems with low short-circuit ratios (SCRs).

Vector current (dq-axis) control is a popular control approach for converters [1]. Control is im-

plemented in a dq frame established by a phase-locked loop (PLL). The PLL employs a Park

transformation to convert the voltage at the point of common coupling (PCC) into a dq frame.

Assuming the PLL seeks to estimate the phase of the aforementioned voltage, the control objec-

tive of the PLL is to minimise the q-component of the transformed signal. To achieve this, the

q component of the transformed voltage is fed into a loop filter, whose output passes through a

voltage-controlled oscillator. The output of the voltage-controlled oscillator is an estimation of the

phase of the voltage at the PCC; this output signal is then fed back into the aforementioned Park

transformation.

As a result of the reduced SCR values expected in the future, it has been predicted that VCC will

experience undesirable coupling. Indeed, in the single-converter case, it has been reported that a

converter may become unstable when the active power output exceeds 0.4 p.u. in systems with a

short-circuit ratio of one when the converter adopts VCC [2]; with significant tuning effort, this

result was boosted to 0.6 p.u [3][4]. However, this is still far short of the ratings for which the

converter will have been designed.
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Chapter 1. Introduction

In [3], it was shown that in a low SCR system the two inner current control loops were strongly

coupled, particularly in the low frequency region (sub 100 rad/s), which lies inside the region where

outer controllers will be most active. In short, an ill-conditioned system is produced which, from

the perspective of outer active-power and AC-voltage magnitude controllers, will be difficult to

control [4]. Indeed, instabilities in VCC in the low SCR systems have been demonstrated multiple

times with the relevant literature pointing to PLL dynamics having a negative impact [2], [3], [5],

[6], [7], [7]. A solution involving non-linear decoupling outer controllers, enabling a converter using

VCC to operate at 0.8 p.u. when the SCR is one is presented in [5]; studies were constrained to

single-converter systems and those where the SCR is fixed [5].

Given the performance issues associated with the PLL, alternative control schemes have been pro-

posed which bypass the need for a PLL [4], [6], [8]. In this family of controllers, synchronization

is achieved by mimicking the way in which a synchronous generator maintains synchronism in a

power system; that is, perturbations in the power output of a converter translate to perturbations

in the bridge voltage phase angle. By synchronizing by power flow considerations, the converter

is able to behave as a voltage source, much in the same way a synchronous generator does. The

degree to which a controller forces the converter to behave as a synchronous machine varies: at one

extreme, there are synchronverters which have all generator dynamics embedded into the controller

[8]; on the other, only the basic synchronization mechanism is adopted, an example of which is the

Power-Synchronization Controller (PSC) [4]. In [9], a small power system comprising a synchronous

generator, an induction machine, a single converter controlled using the PSC algorithm, and a sim-

ple RLC load was analysed. However, this study was constrained to systems in which there was

only one converter presented.

Generally speaking, multi-converter studies are fairly limited in their scope. For example, in both

[10] and [11], all converters in the power system used the same controller topology. In [12], the

stability of a simple power system comprising two converters and a synchronous generator was

assessed. One converter was controlled using VCC, while the second employed a virtual synchronous

machine (VSM) control algorithm. It was shown that the presence of a converter using VSM allowed

the converter using VCC to operate in conditions it would otherwise not have been able to do

so. However, this analysis involved fixing the power set-points of the converters at 30% of their
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Chapter 1. Introduction

rated powers (in line with the capacity factor of a wind turbine), which, to a significant extent,

eliminates issues associated with the performance of the PLL (this statement may be corroborated

by considering [3]).

With the controller varying from one converter to another in any single power system, such would

be the case where multiple manufacturers are involved and installation dates vary, there is a need

to investigate interactions between converters on all levels, theoretical and practical.

1.1 Project objectives and outline of the thesis

The objectives of this project are as follows:

1. Investigate the performance of control algorithms in single-converter systems, identifying key

factors adversely affecting system performance.

2. Develop a unified approach for modelling multi-converter systems where mixtures of control

algorithms may, simultaneously, be active.

3. Investigate the performance of multi-converter systems covering a range of system configura-

tions.

This project involves both theoretical analysis and time domain simulations. The outline of this

thesis is as follows:

1. In chapter two, a review of converter control algorithms is presented, including, but not limited

to, dq-axis vector current control, proportional resonant control and power synchronization

control. Where applicable, literature illustrating their performance in multi-converter systems

is detailed.

2. In chapter three, the linear state-space model of the electrical part of a single converter system

is outlined, with the resulting model being applied in the following four chapters.

3. In chapter four, a linear state-space model of the dq-axis vector current control scheme is

presented, covering both the employment of first and second order phase-locked loops (PLLs).

The linear state-space model is also developed to allow the effects of outer controllers to be
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Chapter 1. Introduction

studied. This linear model is linked with the electrical model outlined in chapter three, with

the resulting unified linear models being validated through frequency scanning of a non-linear

model. The linear model is also used to assess system performance across a range of operating

points, covering variations in both power set point and short-circuit ratio.

4. In chapter five, a linear model of the proportional resonant control scheme is presented,

covering both the employment of first and second order PLLs. The linear model is linked

with the electrical model outlined in chapter three, with the resulting unified models being

validated through frequency scanning of a non-linear model. The linear model is also used

to assess system performance across a range of operating points, covering variations in both

power set point and short-circuit ratio.

5. In chapter six, a linear state-space model of the power synchronization control scheme is

presented. This linear model is linked with the electrical model outlined in chapter three,

with the resulting unified linear models being validated through frequency scanning of a non-

linear model. The linear model is also used to assess system performance across a range of

operating points, covering variations in both power set point and short-circuit ratio.

6. In chapter seven, the linear model presented in chapter three is extended to cover systems

comprising multiple converters. This is then combined with the linear state-space models of

the controllers developed in chapters four and six to give a unified linear state-space model

which is then used to assess system performance across a range of operating points, covering

variations in controllers, power set points and short-circuit ratios.

7. In chapter eight, the findings of this thesis are summarised in the conclusions, and suggestions

are made for future work.

1.2 Scientific contributions of this thesis

The main contributions of this thesis are as follows:

1. A novel toolbox is developed, through application of the unified linear state-space model, that

can be used to study the small-signal stability of multi-converter systems where a system
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Chapter 1. Introduction

comprises mixtures of control algorithms acting simultaneously.

2. The sources of coupling between control loops in multi-converter systems where only dq-axis

vector current control is applied is demonstrated, which impacts on the design of outer loop

controllers. Specifically, it is shown that voltage stiffness is so compromised in low short-

circuit ratio systems that attempting to control power output on a converter results in larger

changes in the power output of another converter than it does on the first converter (when all

converters use dq-axis vector current control).

3. The interactions between two converters controlled using power synchronization control is

studied, with oscillatory behaviour similar to that seen in multi-synchronous generator systems

being observed.

4. The ability of power synchronization control to boost system conditioning from the perspective

of the current controllers in dq-axis vector current control is demonstrated.
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Chapter 2

Background and review

In this chapter, a review of existing work is presented. This includes studies of dq-axis vector

current control along with a review of possible alternative control algorithms, highlighting their

relative benefits and weaknesses. The assessment of said controllers in multi-converter systems is

also covered.

17



Chapter 2. Background and review

2.1 Converter topology

Power electronic converters in power systems are found in a wide range of applications, ranging

from HVDC systems to wind turbines and electric vehicles. Their role is to enable the connection

of a DC power supply to an AC power system, or vice versa. An AC waveform is synthesised from

a DC signal (and vice versa) by an appropriate switching sequence. In the simplest configuration

for a three-phase system, a set of six thyristors are present as shown in figure 2.1.

C

L R

LDC

System DC system

Figure 2.1: Thyristor-based converter using an LC filter [13].

The thyristor acts as a switch, conducting when the gate receives a current trigger, and continuing

to do so until the voltage across the device is reversed [14]. Thus, thyristors can only be controlled

one-way. As the switching off process is dictated by the voltage of the AC system, thyristor-

based converters are referred to as line-commutated converters (LCC). By their very nature, the

performance of LCC systems is dictated by the dynamics of the AC system to which they connect.

Specifically, LCC systems experience commutation issues when the short-circuit ratio is below 1.5

[14].

The general lack of controllability of the LCC system led to the development of power electronic

systems which employed more flexible devices than the thyristor such as insulated gate bipolar

transistors (IGBTs). In this case, the modulation process can, in principle, be set without any

need for an external voltage signal. IGBT-based converters are loosely referred to as voltage source

converters; however, this naming convention should not always be applied since whether or not the
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Chapter 2. Background and review

converter behaves as a voltage source is subject to the control algorithm applied.

One implementation of the IGBT is simple six-pulse IGBT-based converter, shown in figure 2.2:

CDC vDCSystem

C

L R

Figure 2.2: Two-level LC-filtered IGBT-based converter

To assist with grid code compliance, this content needs to be removed. The simplest form of filter

is the inductor. However, this is often insufficient and so a capacitor bank is introduced as shown

in figure 2.2.

It is commonplace to adopt single-line representations for convenience as shown in figure 2.3. More-

over, studies investigating the voltage stability of converters represent the power system by a simple

RL circuit combined with a slack bus as shown.

Rcζ Lcζ

Cfζ

Converter

eζ Rtζ Ltζ
E∠0

Figure 2.3: Single line illustration of a converter with an LC filter feeding a transmission line.

The subscript ζ is to identify which converter is being referred to; for example, ζ = 1 means

that converter one is being studied. This additional information is included in the labelling and

subsequent model to enable efficient extension of the model to multi-converter systems, which are

covered in chapter 7.

The resistance and inductance of the coupling inductance are given by Rcζ and Lcζ respectively;

Cfζ is the capacitance in the LC filter; Rtζ and Ltζ are the resistance and inductance of a Thevenin
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equivalent model of the grid (which includes the slack bus whose voltage is E). In the multi-

converter studies, Rtζ and Ltζ will represent the resistance and inductance of a local line connecting

converter ζ to a wider network.

Careful tuning of the controller in conjunction with appropriate values for Lcζ and Cfζ are required

as it is particularly important to avoid exciting a resonant frequency.

While an LC or LCL filter does successfully remove the bulk of high frequency content from the

output signal of a converter, thereby making it grid compliant, filtering equipment can be expensive;

furthermore, filtering equipment can consume a lot of space. For offshore installations, this is

particularly undesirable as the required structures to house such equipment push the cost of the

project up considerably. To facilitate the removal of filtering equipment, there has been an uptake

of interest in the Modular Multilevel Converter concept (MMC) in the last decade [15][16].

2.2 DQ-axis vector current control

2.2.1 Basic structure

The conventional converter control algorithm is dq-axis vector current control, which is illustrated

in figure 2.4:
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Figure 2.4: Overview of the dq-axis vector current control scheme including the frame transformations and
PLL. The inner current controller block, ICC, contains two control loops, each with their own PI controller.
The outer loop controllers are omitted in this block diagram.

Control is carried out in a dq frame established by a phase-locked loop, PLL. The role of the PLL is

to achieve synchronization with some reference signal from the power system, typically the voltage

at the point of common coupling, PCC. PLLs typically comprise a Park transformation and a PI

controller [17]. The PLL takes as its input whatever signal it is trying to synchronise with, and

applies to it the Park transformation. The Park transformation converts any three-phase signal

expressed in a stationary reference frame into a two-phase signal expressed in a rotating reference

frame, with the phase of the rotating reference frame being determined from a PI controller. These

two components are referred to as the direct, d, and quadrature, q, components. Since the q

component of the transformed reference signal is zero when synchronisation with the reference

signal is achieved, the PI controller thus acts to minimise the q component of the transformed

reference signal. For a second-order PLL, the output of the PI controller is an estimation of the

perturbation in the angular grid frequency, ∆ω, which is combined with the nominal angular grid

frequency, ω0, with the result being integrated to give the estimation of the phase. Such a PLL is

shown in figure 2.5:
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eabc

dq

abc ec ec
q

PI
∆ω

ω0

ωpll ∫
θc

i

Figure 2.5: Basic second-order PLL structure. ωpll is the PLL estimation of the grid angular frequency.

If the grid frequency is assumed to be constant, the PLL can be simplified such that the estimation

of the phase is the sum of the output of the PI controller and an additive term, ω0t, where t is the

time. Such a PLL is referred to as a first-order PLL and is shown in figure 2.6:

eabc

dq

abc ec ec
q

PI

ω0t

θc
i

Figure 2.6: Basic first-order PLL structure.

Let us now note that power and reactive power, as expressed in a dq frame, are given by equations

2.1 and 2.2 respectively:

P = edid + eqiq (2.1)

Q = eqid − ediq (2.2)

where P and Q are the active and reactive power respectively, and edq and idq are the voltage and

current components at the point of interest respectively.

If the reference signal used by the PLL is the voltage at the PCC and voltage fluctuations are neg-

ligible, it follows that changes in active power flowing through the PCC are directly proportional to

changes in the d component of the current and independent of the q component of the aforemen-

tioned current, while the reverse is the case for the reactive power. Thus, in this scenario, control

over active power may be achieved by controlling the d component of the current, while control
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over reactive power/AC voltage is achieved through controlling the q component of the current.

Thus, two PI-based inner control loops are present in dq-axis vector current control: one which

acts on the d component, and one which acts on the q component. Assuming the PLL is operating

satisfactorily, only weak coupling between the two loops is present due to the fundamental nature

of the Park transformation; this may easily be accommodated for with simple feed-forward terms.

Reference current d and q values are set by outer controllers. Assuming the PLL synchronises with

the voltage at the PCC, the d-component reference value may be set by either an active power

controller or a DC bus voltage controller, while the q-component reference value may be set by

either a reactive power controller or an AC voltage controller.

Between the inner and outer control loops are limiters; that is, the inner loops will only act on

bounded values of id and iq. This is to limit the current flowing through the converter, thus

providing fault tolerance. When applying limiters, the control scheme requires anti-wind up loops

also.

|VAC|ref

−|VAC|

PI controller & anti-windup

P

Q

iref
q

(vref
DC)2

−(vDC)2

PI controller & anti-windup
iref
d

Figure 2.7: Possible outer controllers in the dq-axis vector current control scheme. The square of the DC bus
voltage is used such that the dynamics are independent of operating point.

Droop controllers, both for frequency and voltage, may be introduced to, in some specific circum-

stances, boost system stability, examples of which may be found in [18].

For completeness, if the reference signal used by the PLL is not the voltage at the PCC, active and

reactive power of both functions of both the d and q components of the current. However, control
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over active and reactive power may be achieved through a reformulation of equations 2.1 and 2.2:

P
Q

 =

ed eq

eq −ed

id
iq

 (2.3)

Thus,

iref
d

iref
q

 =
1

e2
d + e2

q

ed eq

eq −ed

P ref

Qref

 (2.4)

Historically, tuning of the inner current controller involves ignoring the dynamics of the PLL

[18][19][20][21]. The only part of the electrical system to be modelled in the bulk of analyses

of the inner current controller is the phase reactor which links the converter terminal to the PCC.

This does have the advantage of yielding simple transfer functions which can be used to guide the

design of the current controllers [19][22].

2.2.2 Studies on stability of dq-axis vector current control

In [5], it was demonstrated that dq-axis vector current control experienced performance difficulties

in systems with low short-circuit ratios. A non-linear (gain-scheduled) decoupling controller of the

form shown in figure 2.8 was appended to the basic dq-axis vector current control. The gains of

the controllers were set according to the power set point. Such an approach significantly increases

the complexity of the controller. Results were only presented for a single converter operating in a

system with a short-circuit ratio of one. In other words, it was not shown how the control solution

performs when the short-circuit ratio varies, or when there are multiple converters present in the

system. This brings up the question of how is the controller scheduled? If the short-circuit ratio

is fixed, the gain-scheduling could be set according to the power set point. However, as the short-

circuit ratio changes, the gain scheduling will not perform as expected. The degree to which it does

not would depend on how finely tuned the original controller was. Alternatively, the gain-scheduling

could be set according to the load angle at the PCC. However, this is also problematic since it would

require knowledge of the phase relative to a reference point where the voltage is stiff. The latter

method, if possible, would at least allow for more effective gain-scheduling.
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P ref

P

k1(s, P ) iref
d

k2(s, P )

Eref

E

k4(s, P ) iref
q

k3(s, P )

Figure 2.8: Illustration of a decoupling controller. For proportional resonant control, k3 may not be necessary,
which reduces both the complexity of the design task, while reducing the chance of developing a solution
which is overly sensitive to uncertainties in the grid impedance.

Durant showed that the PLL dynamics may become significant when the reference signal is not stiff

[2]. Under these circumstances, the low-bandwidth nature of the PLL means that the q component

of the transformed signal is not zero. Thus, the ‘d’ and ‘q’ components as created by the PLL phase

angle are functions of the real ‘d’ and ‘q’ components which would arise if the real phase were used.

That is, control over active and reactive power becomes coupled in a manner that cannot be easily

compensated.

A study by Givaki permitted investigation of the stability margins of dq-axis vector current control[7].

The study was restricted to a specific form of PLL, which involved inverse tangent operations seldom

seen in standard PLLs.

Zhang specifically focused on the standard implemention of dq-axis vector current control; that is,

one where the PLL reference signal is the voltage at the point of common coupling. In his work, it

was shown that dq-axis vector current control would encounter performance issues when the system

to which it was supplying power was of high impedance[3]. Only a 1st order PLL was studied with

an LC filter being employed.
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2.3 Alternatives to dq-axis vector current control

Zmood et al proposed the proportional resonant controller [23][24], sometimes referred to as the αβ

vector current controller, whose structure is illustrated in figure 2.9.

−iabc

eabc PLL
θc

i

iref αβ

dq

αβ

abc

kp

kis

s2 + ω2
vref
α

kp

kis

s2 + ω2

vref
β

i∗α

i∗β

Figure 2.9: Block diagram illustrating the proportional resonant controller. The α-β output signals are
converted to abc signals by a simple inverse Clarke transform.

The proportional resonant controllers mean that there is no need for the PLL phase angle to

be applied after the resonant controllers. This means that the degree of parallel control loops

present is reduced. Papers have shown variants of proportional resonant control being applied to

converters on doubly-fed induction generator wind turbines [25][26] and MMC-HVDC [27]. However,

to the author’s best knowledge, no studies have been presented investigating the performance of

proportional resonant controllers in weak AC systems.

After demonstrating performance issues with dq-axis vector current control, Zhang proposed the

power synchronization control algorithm [3]. In this algorithm, synchronization is achieved by power

flow considerations; specifically, the phase angle is modified according to discrepancies between the

power reference of the converter and the actual power being exported to the AC network (as

measured at the point of common coupling). Thus, the basic power synchronization controller

structure is as shown in figure 2.10:
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P ref

–

P

kp
1

s

ω0t

θv

Figure 2.10: Basic power synchronization controller (suitable only for fixed-frequency systems).

The output of the power synchronization controller may then be used to transform to and from a

rotating reference frame.

Operating in conjunction with the power synchronization controller was an AC voltage controller

which attempts to control the voltage magnitude at the point of common coupling, E:

Eref

–

E

kp,V +
ki,V

s
V

Figure 2.11: AC voltage controller that operates in parallel with the power synchronization controller

The AC voltage controller sets the magnitude of the voltage to be produced at the bridge terminal.

This is coupled with θ from the power synchronization controller to set vref
abc.

Given that power synchronization control attempts to create a dq frame aligned with the bridge

voltage, the ‘unfiltered’ (for reasons about to be discussed) voltage reference as expressed in the

controller dq frame may be expressed as vref,c
un =

[
V 0

]T
.

Owing to the low resistance of converter filtering equipment, the above control system would excite

a poorly damped resonance. In order to avoid this, the reference voltage for the converter bridge,

as expressed in the converter dq frame, is set according to equation 2.5:

vref,c = vref,c
un −HHP(s)icc (2.5)
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where HHP(s) is a high pass filter of the form

HHP(s) =
kvs

αv + s
(2.6)

where kv and αv are respectively the gain and crossover frequency associated with the high pass

filter. icc is the current flowing through the phase reactor as expressed in the converter dq frame.
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–
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s vref,c
un =

[
V0 0

]T

abc

dq
vref

Figure 2.12: Combined power synchronization control system with damping

When the system to which the converter was providing power did not have a stiff frequency, a droop

controller was appended to the power synchronization controller as shown:

ωref Kf

1 + sTf

P ref

P

–
kp,p

1

s
θv

s

1 + sTm

–

Figure 2.13: Modified power synchronization controller to provide frequency droop support

It was demonstrated that power synchronization control facilitated the stable operation of a con-

verter in a low-inertia system, specifically a micro-grid [9]. Originally, the converter would employ

dq-axis vector current control to ensure fault ride-through capabilities. More recently, Mitra applied
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the power synchronization controller to a model of an offshore wind farm connected by a HVDC

link [28].

Ashabani and Mohamed proposed a control system which emulates a synchronous machine in [29][6].

Variations of the virtual synchronous machine concept were proposed. Specifically, one control

algorithm was proposed for frequency and DC-link regulation which was based on virtual torque

control, while the second was based on direct DC-link voltage control, respectively shown in figures

2.14 and 2.15:
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–
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Figure 2.14: Virtual torque control strategy for frequency and DC-link voltage regulation
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Figure 2.15: Direct DC-link voltage control strategy for frequency and DC-link voltage regulation

The virtual flux term, ψds was set either by a reactive power controller, or an AC voltage controller,

respectively shown in figures 2.16 and 2.17:
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Figure 2.16: Control topology for virtual flux regulation that achieves constant reactive power operation.

vg RMS –

vref
g

kv +
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s

1
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Figure 2.17: Control topology for virtual flux regulation that achieves constant voltage operation.

A rigorous small-signal stability analysis is presented for the proposed control algorithm, suggesting

the stability margins and providing guidelines for tuning the controllers.

Subsequently, the proposed algorithms were compared with dq-axis vector current control. In both

pieces of work, a single converter was present, feeding power into a simple network comprising a

resistive load only i.e. there were no inductive/capacitive loads.

Zhong and Weiss developed a control algorithm that caused an inverter to have almost identical

dynamics to a synchronous generator, leading to the system (inverter plus control algorithm) being

termed a synchronverter [8][30]. The control system is shown in figure 2.18:
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Figure 2.18: Synchronverter controller. The grey box contains equations which link flux to electrical torque.

Both simulation and experimental results were presented. However, in neither case were results

presented which evaluate the performance of the inverter during a fault. Moreover, the topology of

the network to which the inverter was connected was not specified.

2.4 Remarks about the literature

There is nothing in the GB grid codes requiring the developer of a renewable energy device to

control the converter as though it were a synchronous machine (in any sense). Accordingly, at

present, developers of renewable energy devices continue to opt for the tried and tested dq-axis

vector current control or, as seems to be the case for some manufacturers of PV panels, proportional

resonant control.

In all of the aforementioned cases, studies were not conducted showing the dynamics of a power

system that comprised multiple converters, with some being controlled using conventional control
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(dq-axis vector current) and some using some algorithm which mimics, to one degree or another, a

synchronous machine. Since almost all installed converters will employ the dq-axis vector current

control algorithm, this is an important study to conduct.

Pogaku and Banadaki presented multi-converter analyses, but did not consider systems in which

different controllers were active at any instant in time [10][11]. All converters used dq-axis vector

current control. Moreover, the impact of weak systems was not studied.
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Single-converter system configuration

In this chapter, an introduction to single converter systems is provided, with the definitions being

given in this chapter being recycled in the subsequent three chapters.

The single converter system models serve as a stepping stone to the development of linear models in

which multiple converters are present, with a given multiple-converter system potentially featuring

a mixture of controllers.
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3.1 Broad definitions & scope

3.1.1 Power system definitions

In the analysis of single converters, the following power system is adopted:

Rcζ Lcζ

Cfζ

igcζ igtζ

vg
ζ

Converter

eg
ζ

Rtζ Ltζ ug
ζ

Local system

ε∠0

Wider network

Figure 3.1: Baseline power system used for stability studies.

Here, Rcζ and Lcζ define the characteristics of the phase reactor in the AC filter of converter ζ. A

capacitor bank may or may not be present.

To allow the models to be easily integrated into the multi-converter model described in chapter 7,

the generalised local state-space models developed will include the option of applying perturbations

to the voltage, ug
ζ . As a result, the generalised local state space models of the electrical part of the

system will take on the following form:

dxloc
Eζ

dt
= Aloc

Eζ
xloc

Eζ
+Bloc

Eζ
zloc

Eζ
+Blin1

Eζ
zlin

Eζ
(3.1)

where the subscript E is included simply to make it clear that the model is referring to the electrical

part only i.e. the control system dynamics are not covered in this part of the overall models. The

superscript ‘loc’ refers to the local system part of the model.

Regardless of which controller is chosen, the controller will always set the voltage reference at the

bridge, vref
ζ . Delays in the PWM process may be represented as vg

ζ = e−stdvref
ζ where td is the delay,
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which may in turn be approximated using a Padé approximant. Thus, the control vector of the

state-space model of the electrical part of the system, zloc
E , is easily linked with the output vector of

the controller. The ‘pseudo’ control vector, zlin
E , is the voltage at the end of the local system, ∆ug

ζ .

When considering the single converter cases, the wider network is just a slack bus and so the voltage

ug
ζ becomes stiff. Accordingly, for the single-converter systems only, the Blin1

E zlin
E = 0 for the linear

models. In this case, the standard state-space model form is produced:

dxloc
E1

dt
= Aloc

E1
xloc

E1
+Bloc

E1
zloc

E1
(3.2)

yloc
E1

= C loc
E1
xloc

E1
+Dloc

E1
zloc

E1
(3.3)

The output vector can be directly linked to the input vector by a transfer function matrix using

the previously stated state matrices in equation 3.4:

yloc
E1

= [C loc
E1

(sI −Aloc
E1

)−1Bloc
E1

+Dloc
E1

]︸ ︷︷ ︸
G1(s)

zloc
E1

(3.4)

3.1.2 Variations in the converter control and filter equipment

Voltage source converters are connected to the grid either by an L-filter, LC-filter or LCL-filter

[31][32]. The exact topology depends on the type of voltage source converter being employed.

A considerable amount of variation can be found in the dq-axis vector current control algorithm.

First- and second-order PLLs will be considered in this work. The latter has the ability to track

frequency deviations, while the former can only track phase (and operates on the assumption that

frequency deviations are negligible).

Based on this, for single converter system analysis, small-signal stability analysis of the following

control systems will be presented:

� DQ-axis vector current control:

– LC filter using a first-order PLL

– L filter using a first-order PLL

35



Chapter 3. Single-converter system configuration

– LC filter using a second-order PLL

– L filter using a second-order PLL

� Proportional resonant control:

– LC filter using a first-order PLL

– L filter using a first-order PLL

– L filter using a second-order PLL

� Power synchronization control:

– LC filter

– L filter

As can be seen, only a handful of topologies are considered. This is for brevity reasons; the author

feels the range covered herein is sufficient to highlight key dynamics and trends. However, it

should be noted that the modelling techniques outlined in this chapter may easily be applied to the

variations not covered.

3.1.3 Grid dq frame

For this chapter, let us define the grid dq frame to be one rotating at a fixed frequency ω0, where

the d axis is aligned with the unperturbed voltage at the end of the transmission line, u. Therefore,

any balanced three-phase quantity with magnitude A0 and instantaneous phase θPOI, maps to ag

by equation 3.5:

ag = A0

 cos(ω0t) cos(ω0t− 2π/3) cos(ω0t+ 2π/3)

− sin(ω0t) − sin(ω0t− 2π/3) − sin(ω0t+ 2π/3)




cos(θPOI)

cos(θPOI − 2π/3)

cos(θPOI + 2π/3)


=

3A0

2

cos(ω0t) cos θPOI + sin(ω0t) sin θPOI

cos(ω0t) sin θPOI − sin(ω0t) cos θPOI

 (3.5)
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For future reference, the superscript g denotes that the quantity is being expressed in the grid dq

frame.

3.2 Linear model of electrical system

3.2.1 LC filter

Figure 3.1 represents a converter, ζ, with an LC filtered connected to a slack bus via a simple

transmission line. In the grid dq frame, the dynamics of the system are as follows:

Lcζ

digcζ

dt
= vg

ζ − e
g
ζ −Rcζ i

g
cζ

+ ω0Lcζ

 0 1

−1 0

 igcζ
Cfζ

deg
ζ

dt
= igcζ − i

g
tζ

+ ω0Cfζ

 0 1

−1 0

 eg
ζ

Ltζ

digtζ
dt

= eg
ζ − u

g
ζ −Rtζ i

g
tζ

+ ω0Ltζ

 0 1

−1 0

 igtζ (3.6)

where igcζ is the converter current flowing through Rcζ and Lcζ , v
g
ζ is the bridge voltage, eg

ζ is the

filter bus voltage, ω0 is the grid frequency, igtζ is the network current flowing through Rtζ and Ltζ ,

and ug
ζ is the grid terminal voltage.

The power output from the converter is given by equation 3.7:

Pζ = eg
ζdi

g
tζd + eg

ζqi
g
tζq (3.7)

The converter bridge voltage magnitude is given by equation 3.8:

Vζ =
√

(vg
ζd)2 + (vg

ζq)2 (3.8)
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In steady-state, equations 3.7 and 3.8 are as follows:

Pζ,0 = eg
ζd,0i

g
tζd,0 + eg

ζq,0i
g
tζq,0

Vζ,0 =
√

(vg
ζd,0)2 + (vg

ζq,0)2 (3.9)

For each single-converter case study, the steady-state power output, the voltage at the end of the

transmission line and the bridge voltage are specified.

The steady-state dynamics are simply those given above but with all derivative terms set to zero.

In other words,

0 = vg
ζ,0 − e

g
ζ,0 −Rcζ i

g
cζ ,0

+ ω0Lcζ

 0 1

−1 0

 igcζ ,0
0 = igcζ ,0 − i

g
tζ,0 + ω0Cfζ

 0 1

−1 0

 eg
ζ,0

0 = eg
ζ,0 − u

g
ζ,0 −Rtζ i

g
tζ ,0

+ ω0Ltζ

 0 1

−1 0

 igtζ ,0 (3.10)

The values igcζ ,0, eg
ζ,0 and igtζ ,0 are all unknowns.

Considering the expressions for steady-state power output and steady-state bridge voltage, there

are eight equations. Note that the expression for the voltage magnitude is a non-linear equation.

Hence, an iterative solver can be applied to determine all the remaining steady-state values. A

MATLAB implementation of this solver can be found in the Appendix.
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Perturbing the system and linearising results in the following:

d∆igcζ

dt
=

∆vg
ζ

Lcζ

−
∆eg

ζ

Lcζ

+

−Rcζ/Lcζ ω0

−ω0 −Rcζ/Lcζ

∆igcζ (3.11)

d∆eg
ζ

dt
=

∆igcζ

Cfζ

−
∆igtζ
Cfζ

+ ω0

 0 1

−1 0

∆eg
ζ (3.12)

d∆igtζ
dt

=
∆eg

ζ

Ltζ

−
∆ug

ζ

Ltζ

+

−Rtζ/Ltζ ω0

−ω0 −Rtζ/Ltζ

∆igtζ (3.13)

The state vector, xloc
Eζ

, can then be deduced:

xloc
Eζ

=
[
∆igcζd ∆igcζq ∆eg

ζd ∆eg
ζq ∆igtζd ∆igtζq

]T
(3.14)

The output vector, yEζ
, must contain all elements that are utilised by a controller in addition to

any quantities for which the response is to be studied. Since power and voltage levels are of interest,

these are included. In strong systems, it may be desirable to assess the response of reactive power

output of a converter to changes in its reference set points instead of voltage levels. Converter

current components in the grid dq frame and the filter bus voltage components in the grid dq frame

are also outputs since they are used in dq-axis vector current control and proportional resonant

control. For power synchronization control, the voltage components are not necessary. However,

to avoid having customised local models for the controller, they will be in the output vector even

when power synchronization control is studied.

Mathematically, the outputs of the electrical part of the state-space model are as follows:

yloc
Eζ

=


[
∆Pζ ∆Qζ ∆igcζd ∆igcζq ∆eg

ζd ∆eg
ζq

]T

for strong systems[
∆Pζ ∆Eζ ∆igcζd ∆igcζq ∆eg

ζd ∆eg
ζq

]T

for weak systems

(3.15)

Using the per unit system approach outlined in [3], the changes in the power dispatched onto the
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network can be evaluated by perturbing equation 3.7:

∆Pζ = igtζd,0∆eg
ζd + igtζq,0∆eg

ζq + eg
ζd,0∆igtζd + eg

ζq,0∆igtζq (3.16)

Similarly for reactive power,

∆Qζ = igtζd,0∆eg
ζq + eg

ζq,0∆igtζd − e
g
ζd,0∆igtζq − i

g
tζq,0∆eg

ζd (3.17)

Again using the per unit system approach outlined in [3], the changes in the filter bus voltage can

be evaluated by perturbing equation 3.8:

∆Eζ =
1

Eζ,0

[
eg
ζd,0∆eg

ζd + eg
ζq,0∆eg

ζq

]
(3.18)

Thus, ∆Pζ and ∆Qζ or ∆Eζ can be linked to xloc
Eζ

meaning all the elements of the output vector

can be linked to the state vector, xloc
Eζ

. Thus, the state-space model can now be constructed.

Aloc
Eζ

=



−
Rcζ

Lcζ

ω0 −
1

Lcζ

0 0 0

−ω0 −
Rcζ

Lcζ

0 −
1

Lcζ

0 0

1

Cfζ

0 0 ω0 −
1

Cfζ

0

0
1

Cfζ

−ω0 0 0 −
1

Cfζ

0 0
1

Ltζ

0 −
Rtζ

Ltζ

ω0

0 0 0
1

Ltζ

−ω0 −
Rtζ

Ltζ



; Bloc
Eζ

=



1/Lcζ 0

0 1/Lcζ

0 0

0 0

0 0

0 0


(3.19)

For some scenarios considered in chapter seven, specifically those where there are local loads, the

Aloc
Eζ

matrix will change. This is addressed at the relevant time.
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The C loc
Eζ

matrix is given by equation 3.20.

C loc
Eζ

=



0 0 igtζd,0 igtζq,0 eg
ζd,0 eg

ζq,0

0 0
eg
ζd,0

Eζ,0

eg
ζq,0

Eζ,0
0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0


or



0 0 igtζd,0 igtζq,0 eg
ζd,0 eg

ζq,0

0 0 igtζq,0 −igtζd,0 eg
ζq,0 −eg

ζd,0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0


(3.20)

The first expression for C loc
Eζ

is used when the short-circuit ratio is one; for all other values of

short-circuit ratio considered in this work, the second expression is used.

Finally, the output matrix for a single-converter model, Dloc
Eζ

, is a six-by-two zero matrix.

3.2.2 L filter

MMC-HVDC systems produce very little harmonic content; thus, such systems will not require

extensive filtering equipment. That is, an L filter is sufficient for MMC-HVDC. Given that MMC-

HVDC systems are increasing in popularity, it seems appropriate to include the L filter in the

analysis.

In the case of a converter having an L filter, the filter may be lumped in with the local transmission

line. However, it needs to be noted that the state-space model should still output the current and

voltage at the local PCC. While the current will always form part of the state-vector, the voltage

at the local PCC will not in the L filter case; nor will it belong to the control vector. However,

by writing the dynamics of the local part of the system as two sections, the filter and the local

transmission line, an expression for the voltage at the local PCC in terms of the state and control

vectors can be derived. Accordingly, let us express the dynamics of the converter part of the system
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as follows:

d∆igtζ
dt

=
∆vg

ζ

Lcζ

−
∆eg

ζ

Lcζ

+

−Rcζ/Lcζ ω0

−ω0 −Rcζ/Lcζ

∆igtζ (3.21)

d∆igtζ
dt

=
∆eg

ζ

Ltζ

−
∆ug

ζ

Ltζ

+

−Rtζ/Ltζ ω0

−ω0 −Rtζ/Ltζ

∆igtζ (3.22)

Thus,

∆eg
ζ =

LtζLcζ

Lcζ + Ltζ

∆ug
ζ

Ltζ

+
∆vg

ζ

Lcζ

+
(
Rtζ/Ltζ −Rcζ/Lcζ

)
∆igtζ

 (3.23)

That is, ∆eg
ζ may be expressed in terms of the state vector and control vector.

Equations 3.22 reduce to a single expression:

d∆igtζ
dt

=
∆vg

ζ

Lcomζ

−
∆ug

ζ

Lcomζ

+

−Rcomζ
/Lcomζ

ω0

−ω0 −Rcomζ
/Lcomζ

∆igtζ (3.24)

where Rcomζ
= Rcζ +Rtζ and Lcomζ

= Lcζ + Ltζ .

Thus, the state-space model for the L-filtered converter is defined using the following state-space

matrices:

Aloc
Eζ

=


−
Rcomζ

Lcomζ

ω0

−ω0 −
Rcomζ

Lcomζ

 ; Bloc
Eζ

=

1/Lcomζ
0

0 1/Lcomζ

 (3.25)
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C loc
Eζ

=



eg
ζd,0 eg

ζq,0 igtζd,0 igtζq,0

0 0
eg
ζd,0

Eζ,0

eg
ζq,0

Eζ,0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




1 0

0 1

f 0

0 f

 (3.26)

where f = LcζLtζ

(
Rtζ/Ltζ −Rcζ/Lcζ

)
/Lcomζ

. For this filter, xloc
E = ∆igζ and zloc

E and zlin
E are as

before, giving the same equation form as seen in equation 3.1.

Finally, the feed-forward matrices, one acting on zloc
E and the other on zlin

E , are given as follows:

Dloc
Eζ

=
Ltζ

Lcomζ



igtζd,0 igtζq,0

eg
ζd,0/Eζ,0 eg

ζq,0/Eζ,0

0 0

0 0

1 0

0 1


; Dlin1

Eζ
=

Lcζ

Lcomζ



igtζd,0 igtζq,0

eg
ζd,0/Eζ,0 eg

ζq,0/Eζ,0

0 0

0 0

1 0

0 1


(3.27)

Note - the output and feed-forward matrices shown above assume that the output contains voltage

magnitude and not reactive power.

As with the LC filter analysis, if the system comprises only one converter, the Dlin
Eζ

matrix can be

omitted.

3.2.3 Frequency response

The matrices are then used to calculate G(s) using equation 3.4. G(s) needs evaluating at each

complex frequency, s = jω. From inspection, G(s) is an six-by-four matrix. The elements in

the top row connect ∆vg
ζ to changes in the real power; the elements of the second row connect

∆vg
ζ to changes in the filter bus voltage/reactive power (depending on the control strategy); the

elements of the third row connect ∆vg
ζ to changes in the d component of the converter current in

43



Chapter 3. Single-converter system configuration

the grid dq frame; the elements of the fourth row connect ∆vg
ζ to changes in the q component of

the converter current in the grid dq frame; the elements of the fifth row connect ∆vg
ζ to changes in

the d component of the filter bus voltage in the grid dq frame; and the elements of the sixth row

connect ∆vg
ζ to changes in the q component of the filter bus voltage in the grid dq frame.

Note - increased predictive capability can be obtained by setting Rfζ → f1(s), Cfζ → f2(s), Lfζ →

f3(s), etc., such that the resistance, inductance and capacitance terms vary with frequency, as

they would in reality. This can, if desired, then be combined with subspace algorithms to form an

effective state-space model of the power system into which frequency dependent characteristics is

naturally embedded.
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Chapter 4

Analysis of dq-axis vector current

control

In this chapter, an analysis of dq-axis vector current control is presented. Linear and non-linear

simulations are presented, with the latter being used to assess the correctness of the former. A range

of topologies are considered, covering different AC filters, different PLLs, and outer loop controllers.

Attention is given to second order PLLs so as to include topologies that could be applied to systems

where the system frequency is not necessarily constant.

The linear models are given both in frequency response form and state-unified space form.. By

utilising sub-space algorithms, the former can be used to extract poles and zeros of the combined

system (controller, plant and feedback). In the second method, the component state-space models of

the various elements of the controller and plant are combined into a unified state-space model (which

is essentially what a sub-space algorithm determines), which is then used to calculate the poles and

zeros. While its derivation may be more involved, the latter approach allows the reader to easily

construct models in compiled languages, which is useful for integration into larger programmes and

also for speed reasons.
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Chapter 4. Analysis of dq-axis vector current control

4.1 Overview of dq-axis vector current control

A popular control algorithm is dq-axis vector current control [1]. Control is carried out in a dq frame

established by a PLL1. The PLL is provided with the voltage eabc
ζ , and estimates the phase of said

voltage. Using this phase estimation, the current flowing through the phase reactor is converted to

the PLL dq frame. In addition, so too is the voltage which was used as an input to the PLL.

Current components (d and q) are compared against reference values which correspond to desired

power output (d reference) and reactive power output/AC voltage (q reference). The error signals,

one for the d component and one for the q component, go through PI controllers, the output of

which are reference dq values for the bridge voltage; the reference dq values are then converted back

to the abc frame by an inverse Park transform. This reference signal then goes through a PWM

process, which sets the switching of the IGBT devices. Accordingly, dq-axis vector current control

can be summarised by figure 4.1:

eabc PLL
θc

i

iabc
c

dq

abc

dq

abc

icc

ec

iref

ICC
vc

r

abc

dq
vabc

r

iref
d

−iccd
eicd

PI

-ωLci
c
cq

ec
fd

vref,c
d

iref
q

−iccq

eicq
PI

ωLci
c
cd

ec
fq

vref,c
q

Figure 4.1: Overview of the dq-axis vector current control scheme including the frame transformations and
PLL. The inner current controller block, ICC, contains two control loops, each with their own PI controller.
The outer loop controllers are omitted in this block diagram.

1The dq frame for the converter is denoted by superscript c.
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In reality, dq-axis vector current control is implemented twice: once for positive-sequence compo-

nents, and once for zero and negative sequence components. This is required for effective perfor-

mance during faults and/or unbalanced loads.

4.1.1 Reference current values

As stated in chapter 2, the d-component current reference value is set either by an active power

controller or a DC bus voltage controller. In this work, an active power controller is introduced in

section 4.5.3.

The q-component current reference value is set either by a reactive power controller or an AC

voltage controller; thus, since AC voltage control is seen as preferable to reactive power control in

weak AC systems, the controller adopted for setting =
{
iref
ζ

}
in this work is as shown in figure 4.2

in section 4.5.3.

Eref
ζ

Eζ

–
CAC
ζ =

{
iref,c
ζ

}
Figure 4.2: AC droop control in the dq-axis vector current control scheme when reactive power is directly
controlled. The CAC

ζ block refers to the reactive power control loop.

Since reactive power goes as the negative of =
{
iref,c
ζ

}
, and voltage is linked to reactive power, the

controller, CAC
ζ , should have a negative gain.

4.2 Relationship between PLL dq frames and grid dq frame

The two PLL algorithms to be considered in this work are the first-order and second-order PLLs.

The former is illustrated in figure 4.3, while the latter is illustrated in figure 4.4.
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eabc
ζ

dq

abc ec
ζ Cpll

ζ

ω0t

θc
ζ,i

Figure 4.3: Simple PLL control system. Cpll
ζ is the PI controller.

The abc to dq transformation of the voltage eabc
ζ is achieved using the standard Park transformation:

P ceabc
ζ = Eζ

 cos θc
ζ,i cos(θc

ζ,i − 2π/3) cos(θc
ζ,i + 2π/3)

− sin θc
ζ,i − sin(θc

ζ,i − 2π/3) − sin(θc
ζ,i + 2π/3)




cos θζ,i

cos(θζ,i − 2π/3)

cos(θζ,i + 2π/3)

 (4.1)

where θc
ζ,i is the PLL estimation of the instantaneous phase of eabc

ζ (whose real instantaneous phase

is θζ,i) and Eζ is the magnitude of eabc
ζ . Considering equation 3.5, the voltage vector in the converter

dq frame can be expressed by equation 4.2:

ec
ζ =

3Eζ

2

cos θc
ζ,i cos θζ,i + sin θc

ζ,i sin θζ,i

cos θc
ζ,i sin θζ,i − sin θc

ζ,i cos θζ,i

 (4.2)

Referring to figure 4.3, it follows that the estimation of the instantaneous phase may be expressed

as θc
ζ,i = ω0t+ θc

ζ , where θc
ζ (which is the output of the PLL) can be interpreted as the estimation of

the phase difference between the filter bus voltage and the voltage at the slack bus. Hence, equation

4.2 may be expressed as follows:

ec
ζ =

3Eζ

2



(cos(ω0t) cos θζ,i + sin(ω0t) sin θζ,i) cos θc
ζ + . . .

(cos(ω0t) sin θζ,i − sin(ω0t) cos θζ,i) sin θc
ζ

(cos(ω0t) sin θζ,i − sin(ω0t) cos θζ,i) cos θc
ζ − . . .

(sin(ω0t) sin θζ,i + cos(ω0t) cos θζ,i) sin θc
ζ


(4.3)
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Applying equation 3.5 again, it follows that

ec
ζ =

 cos θc
ζ sin θc

ζ

− sin θc
ζ cos θc

ζ

 eg
ζ (4.4)

where eg
ζ is the vector containing the dq components of the filter bus voltage in the grid dq frame.

Equation 4.4 allows the connection of a system whose dynamics are expressed in the PLL dq frame

with a system whose dynamics are expressed in the grid dq frame.

If a second-order SRF-PLL is used, the output of the PI controller in the PLL is ∆ω, which is then

added to the nominal frequency, before being integrated to give the phase.

eabc
ζ

dq

abc ec
ζ Cpll

ζ

ω0

1

s
θc
ζ,i

Figure 4.4: Simple PLL control system. Cpll
ζ is the PI controller.

Mathematically,

ec
ζ =

 cos
(∫

∆ωdt
)

sin
(∫

∆ωdt
)

− sin
(∫

∆ωdt
)

cos
(∫

∆ωdt
)
 eg

ζ (4.5)

The integral term may still be interpreted as the estimation of the phase difference between the

filter bus and slack bus, with the steady-state phase difference being the constant of integration.

However, it is important to note that higher-order models experience greater sensitivity, which may

introduce errors and/or decrease the range of validity of a linear model constructed around some

operating point.
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4.3 Linear analysis of the controller

4.3.1 Phase-tracking errors in the PLL

The objective of the PLL is to track the phase of whatever input signal it is provided with. To

do so, using the definition of the Park transformation used in this work, the PLL seeks to create

a reference dq frame in which the q component of the input signal transformed into the PLL dq

frame is zero. With reference to figure 4.3 and the definition of the grid dq frame, the PLL only

seeks to determine θ i.e. the phase of the voltage at the filter bus relative to the slack bus.

4.3.2 First-order PLL

Referring to figure 4.3 it follows that a simple first order PLL has the following control action:

θc
ζ = Gpll

ζ ∗ =
{
ec
ζ

}
(4.6)

where Gpll
ζ represents a PI controller. The ∗ sign denotes the convolution of Gpll

ζ and =
{
ec
ζ

}
. In

the frequency domain, the convolution theorem states that convolution actions become multipliers;

that is,

θc
ζ(s) = Gpll

ζ (s).=
{
ec
ζ(s)

}
(4.7)

For small signal stability analysis, the focus will be constrained to perturbations in the signals;

hence, it is desirable to work towards an expression based on equation 4.8:

∆θc
ζ(s) = Gpll

ζ (s).=
{

∆ec
ζ(s)

}
(4.8)

Starting in the time domain, let us perturb all the variables and linearise the system. For example,

θc
ζ → θζ,0 + ∆θc

ζ The superscript ‘c’ has been omitted from θζ,0 since in steady-state θc
ζ,0 = θζ,0.
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Applying this expression to the trigonometric functions,

cos θc
ζ = cos(θζ,0 + ∆θc

ζ)

≈ cos θζ,0 −∆θc
ζ sin θζ,0 (4.9)

sin θc
ζ = sin(θζ,0 + ∆θc

ζ)

≈ sin θζ,0 + ∆θc
ζ cos θζ,0 (4.10)

Considering figure 4.3 and equation 4.6, perturbations in eabc
ζ map directly onto phase-tracking

errors in the PLL. By taking equation 4.4 into account, it follows that for the PLL

=
{
ec
ζ

}
= =

{
ec
ζ,0 + ∆ec

ζ

}
=
[
− sin(θζ,0 + ∆θc

ζ) cos(θζ,0 + ∆θc
ζ)
] (
eg
ζ,0 + ∆eg

ζ

)
(4.11)

Thus, expanding equation 4.11 and removing the steady-state components and only leaving those

terms with first order perturbations yields

=
{

∆ec
ζ

}
=
[
− sin θζ,0 cos θζ,0

]
∆eg

ζ − Eζ,0∆θc
ζ (4.12)

Thus, taking the Laplace transform of equation 4.12 and substituting into equation 4.8 yields the

following result:

∆θc
ζ(s) =

Gpll
ζ (s)

1 +Gpll
ζ (s)Eζ,0

[
− sin θζ,0 cos θζ,0

]
∆eg

ζ(s) (4.13)

In order to be easily integrated with the network model, equation 4.13 is modified such that yEζ
is

acted upon rather than ∆eg
ζ(s) alone. Accordingly,

∆θc
ζ =

Gpll
ζ (s)

1 +Gpll
ζ (s)Eζ,0

[
− sin θζ,0 cos θζ,0

]
T vcc

1︸ ︷︷ ︸
Gaζ (s)

∆eg
ζ(s) (4.14)
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where

T vcc
1 =

[
O(2, 4) I2

]

θ0
θ0 + ∆θPLL

θv,0

Grid dq frame

e dq fra
medq fra
me of PLL

Brid
ge

dq
fra

m
e

Figure 4.5: Four dq frames: grid dq frame (solid), filter bus voltage dq frame (solid), PLL dq frame (dashed),
converter dq frame (dotted)

Contribution to the unified linear state-space model

In order to facilitate the development of the unified linear state-space model, equation 4.14 must

be expressed in state-space form. Let us begin by expressing equation 4.14 as follows:

∆θc
ζ =

aplls+ bpll

s+ cpll

[
− sin θζ,0 cos θζ,0

]
∆eg

ζ (4.15)
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Such a transfer function can be represented by the following state-space model:

dxpll
ζ

dt
=

− kpll
ζ,i

1 + kpll
ζ,pEζ,0


︸ ︷︷ ︸

Apll
ζ

xpll
ζ + . . .

 kpll
i

1 + Eζ,0k
pll
p

−
kpll

p kpll
i Eζ,0

(1 + kpll
p Eζ,0)2

[O(1, 4) − sin θζ,0 cos θζ,0

]
︸ ︷︷ ︸

Bpll
ζ

yloc
Eζ

(4.16)

∆θc
ζ =

[
1
]

︸︷︷︸
Cpll
ζ

xpll
ζ +

 kpll
ζ,p

(1 + kpll
ζ,pEζ,0)

[O(1, 4) − sin θζ,0 cos θζ,0

]
︸ ︷︷ ︸

Dpll
ζ

yloc
Eζ

(4.17)

4.3.3 Second-order PLL

For a second order PLL, the output of the PI controller is added to the nominal grid frequency,

which is then integrated up to give the instantaneous phase. Due to linearity of the integral, one

could imagine the phase as follows:

θc
ζ =

∫
∆ωdt+

∫
ω0dt︸ ︷︷ ︸
ω0t

(4.18)

The first term could be imagined as a higher-order controller, Gpll
ζ,fic where

Gpll
ζ,fic = (kpll

ζ,ps
2 + kpll

ζ,is)/s
2 (4.19)

= Gpll
ζ /s (4.20)

In which case, it can be shown that the Ga
ζ matrix should be as given in equation 4.21:

Ga
ζ (s) =

Gpll
ζ (s)

s+Gpll
ζ (s)Eζ,0

[
− sin θζ,0 cos θζ,0

]
T vcc

1 (4.21)
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Contribution to unified linear state-space model

To create a linearised state-space model, equation 4.21 may be viewed in the following form:

∆θc
ζ(s) =

[
aPLLs+ bPLL

s2 + cPLLs+ dPLL

]0 0 0 0 − sin θζ,0 cos θζ,0

0 0 0 0 0 0

yloc
Eζ

(4.22)

From this, the PLL portion may be represented in the following way:

d

dt

ẋpll
ssζ

xpll
ssζ

 =

−Eζ,0kpll
ζ,p −Eζ,0kpll

ζ,i

1 0


︸ ︷︷ ︸

Apll
ssζ

ẋpll
ssζ

xpll
ssζ


︸ ︷︷ ︸
xpll
ssζ

+

0 0 0 0 − sin θζ,0 cos θζ,0

0 0 0 0 0 0


︸ ︷︷ ︸

Bpll
ssζ

yloc
Eζ

(4.23)

∆θc
ζ =

[
kpll
ζ,p kpll

ζ,i

]
︸ ︷︷ ︸

Cpll
ssζ

ẋpll
ssζ

xpll
ssζ

 (4.24)

where the fact that ∆eg
ζ belongs to yloc

Eζ
has been exploited.

4.3.4 Frame transformations (abc→dq)

The controller’s inputs are measurements of the converter current and filter bus voltage in the PLL

dq frame.

By operating in a dq frame synchronised with the filter bus voltage, iref
d is used solely to regulate

active power output and iref
q is used solely to regulate AC voltage/reactive power output in dq-axis

vector current control.

However, perturbations in the filter bus voltage cause phase tracking errors in the PLL and so the

PLL dq frame and the filter bus voltage dq frame are not one and the same. These errors in the

PLL result in improper calculation of the d and q components (the d and q components are not

truly aligned with the filter bus voltage dq frame).

By extension, changes in the converter currents are miscalculated due to misalignment of the PLL

dq frame with the filter bus voltage frame.
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Considering equation 4.4, the converter current expressed in the PLL dq frame is given as follows:

iccζ =

 cos θc
ζ sin θc

ζ

− sin θc
ζ cos θc

ζ

 igcζ (4.25)

Applying the perturbation and linearisation technique as before,

∆iccζ (s) =

 cos θζ,0 sin θζ,0

− sin θζ,0 cos θζ,0

T vcc
2︸ ︷︷ ︸

Gb
ζ (s)

yloc
Eζ

(s) +

− sin θζ,0 cos θζ,0

− cos θζ,0 − sin θζ,0

 igcζ ,0︸ ︷︷ ︸
Gc
ζ(s)

[
∆θc

ζ(s)
]

(4.26)

where

T vcc
2 =

[
O(2, 2) I2 O(2, 2)

]
That is, ∆igcζ = T vcc

2 yloc
Eζ

.This is so as to allow easy integration with the network model.

Similar expressions are obtained for ∆ec
ζ :

∆ec
ζ(s) =

 cos θζ,0 sin θζ,0

− sin θζ,0 cos θζ,0

T vcc
1︸ ︷︷ ︸

Gd
ζ (s)

yloc
Eζ

+

− sin θζ,0 cos θζ,0

− cos θζ,0 − sin θζ,0

 eg
ζ,0︸ ︷︷ ︸

Ge
ζ(s)

[
∆θc

ζ(s)
]

(4.27)

Contribution to unified linear state-space model

Since there is no explicit dependence on s in this section, including these components in a combined

linearised state-space model is a trivial process. That is,

yg→c
ζ =

Gb
ζ

Gd
ζ


︸ ︷︷ ︸
Cabc,1
ζ

yloc
Eζ

+

Gc
ζ

Ge
ζ

Cpll
ζ︸ ︷︷ ︸

Cabc,2
ζ

xpll
ζ (4.28)
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with an additional term being present for the first-order PLL:

yg→c
ζ =

Gb
ζ

Gd
ζ

+

Gc
ζ

Ge
ζ

Dpll
ζ


︸ ︷︷ ︸

Cabc,1
ζ

yloc
Eζ

+

Gc
ζ

Ge
ζ

Cpll
ζ︸ ︷︷ ︸

Cabc,2
ζ

xpll
ζ (4.29)

4.3.5 The current controller

Analysing first in the frequency domain, the control law for a dq-axis vector current PI controller

tuned using the Internal Model Control principle is given by equation 4.30 [22]:

vref,c
ζ (s) = αcζ

Lcζ +
Rcζ

s


︸ ︷︷ ︸

Gcc
ζ

(iref,c
ζ (s)− iccζ (s)) + ω0Lcζ

0 −1

1 0

 iccζ (s) +H lp
ζ (s)ec

ζ(s) (4.30)

where αcζ is the bandwidth of the closed-loop system at the current control level, typically chosen

to be 20% of the switching frequency, fs, of the converter to avoid undesirable interactions between

the current controller and the PWM process [3][6]. Alternative tuning algorithms give very similar

transfer functions for the current controller (this is due to the simplistic nature of the model of the

grid upon which almost all converter stability is assessed).

A first-order low pass filter of the form given in equation 4.31 is applied to ec
ζ to improve disturbance

rejection. αfζ being the bandwidth (in rad/s) of the low pass filter.

H lp
ζ (s) = αfζ/(s+ αfζ ) (4.31)

As with the network transfer function matrix, for mathematical reasons it is convenient to represent

linear model of the current controller as the sum of three individual actions: that due to the changes

in iref,c
ζ ; that due to the changes in iccζ , and that due to changes in ec

ζ .
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In matrix form,

∆vref,c
ζ (s) =

Gcc
ζ 0

0 Gcc
ζ


︸ ︷︷ ︸

Gf
ζ(s)

∆iref,c
ζ (s) +

−Gcc
ζ −ω0Lc1

ω0Lcζ −Gcc
ζ


︸ ︷︷ ︸

Gg
ζ(s)

∆iccζ (s) +

H lp
ζ (s) 0

0 H lp
ζ (s)


︸ ︷︷ ︸

Gh
ζ (s)

∆ec
ζ(s)

(4.32)

Contribution to unified linear state-space model

One could express the linearised model of the current controller in state-space form as shown:

∆dec
fζ

dt
=

−αfζ 0

0 −αfζ


︸ ︷︷ ︸

Alp
ζ

∆ec
fζ︸︷︷︸

xlp
ζ

+

0 0 αfζ 0

0 0 0 αfζ

Cabc,1
ζ︸ ︷︷ ︸

Blp,1
ζ

yloc
Eζ

+

0 0 αfζ 0

0 0 0 αfζ

Cabc,2
ζ︸ ︷︷ ︸

Blp,2
ζ

xpll
ζ

(4.33)

ylp
ζ =

0 0 1 0

0 0 0 1

T

︸ ︷︷ ︸
Clp
ζ

∆ec
fζ

(4.34)
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such that

zcc
ζ =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

C
abc,1
ζ

︸ ︷︷ ︸
Mcc,1

ζ

yloc
Eζ

+


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

C
abc,2
ζ

︸ ︷︷ ︸
Mcc,2

ζ

xpll
ζ +C lp

ζ x
lp
ζ (4.35)

dxcc
ζ

dt
=

1 0

0 1


︸ ︷︷ ︸
Bcc,ref
ζ

[
∆iref,c

ζ

]
︸ ︷︷ ︸

zrefζ

+

−1 0 0 0

0 −1 0 0


︸ ︷︷ ︸

Bcc
ζ

∆iccζ

∆ec
ζ


︸ ︷︷ ︸
zccζ

(4.36)

∆vref,c
ζ︸ ︷︷ ︸
yccζ

=

αcζRcζ 0

0 αcζRcζ


︸ ︷︷ ︸

Ccc
ζ

[
∆iref

ζ −∆iccζ

]
︸ ︷︷ ︸

xcc
ζ

+

αcζLcζ 0

0 αcζLcζ


︸ ︷︷ ︸

Dcc,ref
ζ

[
∆iref,c

cζ

]
︸ ︷︷ ︸

zrefζ

+ . . .

−αcζLcζ −ω0Lcζ 1 0

ω0Lcζ −αcζLcζ 0 1


︸ ︷︷ ︸

Dcc
ζ

∆iccζ

∆ec
fζ


︸ ︷︷ ︸
zccζ

(4.37)

That is,

dxcc
ζ

dt
= Bcc

ζ z
cc
ζ +Bref

ζ z
ref
ζ (4.38)

ycc
ζ = Ccc

ζ x
cc
ζ +Ecc

ζ z
cc
ζ +Dref

ζ z
ref
ζ (4.39)

4.3.6 Voltage signals for PWM

The PLL dq frame then connects back to the grid frame by an inverse process, which, after account-

ing for the delays associated with the PWM process, provides the values for ∆vg
ζ(s). In an almost
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identical fashion to that seen in the voltage eg
ζ being transformed into the converter dq frame,

∆vref,g
ζ (s) =

cos θζ,0 − sin θζ,0

sin θζ,0 cos θζ,0


︸ ︷︷ ︸

Gi
ζ(s)

∆vref,c
ζ (s) +

− sin θζ,0 − cos θζ,0

cos θζ,0 − sin θζ,0

vc
ζ,0︸ ︷︷ ︸

Gj
ζ(s)

[
∆θc

ζ(s)
]

(4.40)

Essentially, the sign of θc
ζ has changed to reflect the inverse Park transformation being applied here.

Note, the steady-state values of the bridge voltage in the PLL dq frame are related to the converter

voltage in the grid dq frame by the following:

vc
ζ,0 = vg

d,0 cos θ0 + vg
q,0 sin θ0 + j(vg

q,0 cos θ0 − vg
d,0 sin θ0)

= Vζ,0 cos(θvζ ,0 − θζ,0)︸ ︷︷ ︸
<
{
vcζ,0

} +j Vζ,0 sin(θvζ ,0 − θζ,0)︸ ︷︷ ︸
=
{
vcζ,0

} (4.41)

where Vζ,0 is the converter terminal voltage magnitude. This means that Gj
ζ can be simplified to

the following:

Gj
ζ(s) =

[
−Vζ,0 sin θvζ ,0 Vζ,0 cos θvζ ,0

]T
(4.42)
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Contribution to unified linear state-space model

For the unified linear state-space model for quick time-domain simulations, assuming a second-order

PLL, the component state-space model is as follows:

yc→g
ζ = Gi

ζy
cc
ζ +Gj

ζy
pll
ζ (4.43)

=


O(2, NE)

ρvccζ︷ ︸︸ ︷[(
Gi
ζD

cc
ζ M

cc,2
ζ +Gj

ζC
pll
ζ

)
Gi
ζD

cc
ζ C

lp
ζ Gi

ζC
cc
ζ

]
︸ ︷︷ ︸

Cdq
ζ


xloc

E

xpll
ζ

xlp
ζ

xcc
ζ


︸ ︷︷ ︸
xuni
ζ

+ . . .

[
Gi
ζD

cc,ref
ζ

]
︸ ︷︷ ︸

Ddq
ζ

zref
ζ +

[
Gi
ζD

cc
ζ M

cc,1
ζ

]
︸ ︷︷ ︸

Edq
ζ

yloc
Eζ

(4.44)

where NE covers the number of states due to the electrical part of the system.

If a first-order PLL is modelled, the Edq
ζ term requires a small modification:

Edq
ζ = Gi

ζD
cc
ζ M

cc,1
ζ +Gj

ζD
pll
ζ (4.45)

For the single converter system, NE = 4 or 6, depending on whether an L or LC filter is adopted2.

To permit extending the model to multi-converter systems, the states for a given converter, ζ, using

dq-axis vector current control in a multi-converter system will be defined as

xvcc
ζ =

[(
xpll
ζ

)T (
xlp
ζ

)T (
xcc
ζ

)T
]T

(4.46)

The author would also like to stress that for the multi-converter system, Gi
ζ , D

ref
ζ , Gj

ζ , C
pll
ζ and

Dcc
ζ , etc. will vary from converter to converter i.e. these component matrices need re-evaluation

when moving through the converters in the model construction.

2Different filter topologies would have a different value of NE.
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4.4 Combined system of plant and controller

Combining all the sections except for those which relate to the calculation of reference current

values, the following block diagram is derived when the PLL is applied.

∆iref,c
ζ (s) Gf

ζ(s)

Gg
ζ(s)

Gh
ζ (s)

Gi
ζ(s)

Gk
ζ(s)

∆vref,g
ζ (s)→ ∆vg

ζ(s)

Gζ(s)

yo
ζ(s)

Ga
ζ(s)

Gd
ζ (s)

Ge
ζ(s)∆ec

ζ(s)

Gb
ζ (s)

Gc
ζ(s)∆iccζ (s)

∆θPLL(s)

yloc
Eζ

(s)

ν

µ

Gj
ζ(s)

Current controller

Network responseConv. → grid

Grid → Conv.

Figure 4.6: Complete linearised model for frequency domain analysis of a single converter system.

If one were to include the effects of delays during the PWM process, a Padé approximant could be

used, which would feature in the Gk
ζ matrix; otherwise, Gk

ζ is just the identity matrix. In general, it

was found that the delay had little impact on the stability, presumably due to the fact that it had

a most pronounced effect in the high frequency region, beyond the frequencies where issues have

historically been reported [3].

In this case, simply joining the connecting the blocks (because there are no convolution integrals
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left in the model), it follows that

∆vg
ζ = µ+ ν

= Gk
ζ

[
Gi
ζG

f
ζ∆i

ref
ζ +

[
Gi
ζ

(
Gg
ζ

(
Gc
ζG

a
ζ +Gb

ζ

)
+Gh

ζ

(
Ge
ζG

a
ζ +Gd

ζ

))
+Gj

ζG
a
ζ

]
yloc

Eζ

]
While the author stated that PWM delays have negligible influence on the stability in the weak AC

systems, the Gk
ζ matrix has been included so as to allow users/readers to investigate such impacts

if so desired.

Noting that yloc
Eζ

= Gζ∆v
g
ζ ,

yloc
Eζ

= GζG
k
ζG

h
ζG

e
ζ∆i

ref
ζ +Gζκ

cc
ζ y

loc
Eζ

where

κcc
ζ = Gk

ζ

[
Gi
ζ

(
Gg
ζ

(
Gc
ζG

a
ζ +Gb

ζ

)
+Gh

ζ

(
Ge
ζG

a
ζ +Gd

ζ

))
+Gj

ζG
a
ζ

]
Thus, it follows that the closed-loop frequency response of the inner current controller is as follows:

yo
ζ = Ω

(
I −Gζκ

cc
ζ

)−1
GζG

k
ζG

i
ζG

f
ζ︸ ︷︷ ︸

Hvcc(s)

∆iref
ζ (4.47)

where

yo
ζ =

[
∆Pζ ∆Eζ

]T
(4.48)

The Ω term is just to ensure that only the response of ∆Pζ and ∆Eζ to ∆iref
ζ are considered. Thus,

Ω =

1 0 0 0 0 0

0 1 0 0 0 0

 (4.49)

Note - equation 4.47 is valid only for single-converter systems.
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Unified linear state-space model for single converter system

Now let us complete the unified linear state-space model for the single converter system, which con-

tains the dynamics of both the controller and plant in one single state-space model. For simplicity,

let us ignore the switching delays.

Before substituting for yc→g
ζ and yloc

Eζ
, the state-equation reads as follows:

dxuni
ζ

dt
=



Aloc
Eζ

O(NE, Nc)

O(Nc, NE)


Apll
ζ O(2, Npll) O(2, 2)

Blp,2
ζ Alp

ζ O(Npll, Npll)

Bcc
ζ M

cc,2
ζ Bcc

ζ C
lp
ζ O(2, 2)


︸ ︷︷ ︸

Avcc
ζ


xloc

Eζ

xvcc
ζ


︸ ︷︷ ︸
xuni
ζ

+ . . .



O(NE, 6)
Bpll
ζ

Blp,1
ζ

Bcc
ζ M

cc,1
ζ


︸ ︷︷ ︸

Bvcc,a
ζ


yloc

Eζ
+

 Bloc
Eζ

O(Nc, 2)

yc→g
ζ +



O(NE, Nref)
O(Npll, Nref)

O(2, Nref)

Bcc,ref
ζ


︸ ︷︷ ︸

Bvcc,b
ζ


zref
ζ (4.50)

where Npll refers to the order of the PLL being used and, for a single-converter system, Nref = 2

(one for each component of ∆iref,c
ζ ). The total number of states due to the controller is Nc. For

simulations only covering the PLL and the inner current controller, Nc = Npll +4: in addition to the

state-variables associated with the PLL, there are two state-variables for the action of the low-pass

filter and two for the action of the PI controllers in the inner current controller). If no filtering is

applied to the voltage, Nc = Npll + 2.

This is actually a convenient form to work with when assessing multi-converter systems, which will

be covered in chapter 7.
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For a single converter system,

yc→g
ζ =

(
I2 −Edq

ζ D
loc
Eζ

)−1

︸ ︷︷ ︸
Λ

(
Cdq
ζ x

uni
ζ +Ddq

ζ z
ref
ζ +Edq

ζ C
loc
Eζ
xloc

Eζ

)
(4.51)

yloc
Eζ

= C loc
Eζ
xloc

Eζ
+Dloc

Eζ
yc→g
ζ (4.52)

Thus, the state equation can easily be expressed in terms of only state vectors, xuni
ζ , and the control

vector, zref
ζ ; that is,

dxuni
ζ

dt
= Auni

ζ xuni
ζ +Buni

ζ zref
ζ (4.53)

If a first order PLL is used, the system has five states from the controller side, and either four or six

from the plant, depending on whether an L or LC filter is applied. If a second order PLL is used,

the system has six states from the controller side, and either four or six from the plant, depending

on whether an L or LC filter is applied.

Each component matrix is small, and so the cost of the matrix multiplications is small, as is the cost

of determining Λ. The unified state-space formulation can easily be coded in C++, which gives rise

to significant speed gains, and removes the need for licensed software such as MATLAB/Simulink.

Even if the unified state-space model were not used, it is good to know how many states there are

in order to allow effective operation of a sub-space algorithm.

For convenience, the output vector of the unified model, yuni
ζ , is defined to be yo

ζ .

The frequency response data can be obtained from the unified state-space model using 3.4. Since

the state-space model unifies the controller and plant, the state matrices can be used to directly

calculate the poles and zeros of the combined system. The poles of the overall system are just the

eigenvalues of Auni
ζ . The zeros require a little more effort. The QZ method is suitable for this

problem. Alternatively, if the reader uses MATLAB, one can use built in commands as shown in

the Appendices.
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4.4.1 Linear models including outer controllers

An extension of the linear model described earlier to include outer controllers is presented in figure

4.7:

Cm
ζ (s)

C l
ζ(s)[

∆P ref
ζ ∆Eref

ζ

]T

∆iref
ζ (s)

Gvcc
a (s)

Gvcc
b (s)

Gk
ζ(s) Gζ(s)

yloc
Eζ (s)

yloc
Eζ (s)

Network response

Figure 4.7: Simplified linear model of dq-axis vector current control including outer controllers.

However, this assumes that there is a perfect measurement of the voltage magnitude and power

output. Considering [5], the voltage magnitude is sometimes determined from the PLL by equation

4.54:

Eζ = |eg
ζ | (4.54)

To a first order,

∆Eζ =


(
eg
ζ,0

)T

Eζ,0

∆eg
ζ (4.55)

Equation 4.55 may be simplified by simply noting that <
{
eg
ζ,0

}
= Eζ,0 and =

{
eg
ζ,0

}
= 0.

Similarly, if the power output of the converter were calculated from dq quantities, there is a con-

nection to the PLL. Even if they were not, a connection to the PLL would probably exist through

a frequency droop mechanism.
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First order perturbations in the power output are given by equation 4.56:

∆Pζ =
(
iccζ ,0

)T
∆ec

ζ +
(
ec
ζ,0

)T
∆iccζ (4.56)

Thus,

∆Pζ

∆Eζ

 =

(iccζ ,0)T[
1 0

]
∆ec

ζ +

Eζ,0 0

0 0

∆iccζ (4.57)

Hence, it is possible to connect the outer loop voltage measurement with the inner level model. If

so desired, one could add in the effect of frequency droop by linking the output of the PLL to the

outer controllers. However, the author feels that sufficient insight will be given by having the PLL

used to calculate the power output of the converter.

Referring to figure 4.8, it can be deduced that the closed-loop frequency response is as follows:

∆vg
ζ = Gk

ζ

[
Gj
ζG

a
ζ +Gi

ζ

[
Gg
ζ

(
Gb
ζ +Gc

ζG
a
ζ

)
+Gh

ζ

(
Gd
ζ +Ge

ζG
a
ζ

)
+ . . .

Gf
ζ

(
Gm
ζ

(
Gb
ζ +Gc

ζG
a
)

+Gn
ζ

(
Gd
ζ +Ge

ζG
a
ζ

))]]
Gζ∆v

g
ζ +Gk

ζG
i
ζG

f
ζG

l
ζ

∆P ref
ζ

∆Eref
ζ

 (4.58)

Following the same approach as before, it can be shown that

yo
ζ = Gζ

[
I − κout

ζ

]−1
Gk
ζG

i
ζG

f
ζG

l
ζ

∆P ref
ζ

∆Eref
ζ

 (4.59)

where κout
ζ is defined through equation 4.58.
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Contribution to the unified state-space model

The contribution of the outer controllers to the linearised state-space model is given as follows:

dxoc
ζ

dt
=

1 0

0 1


︸ ︷︷ ︸
Boc,ref
ζ

∆P ref
ζ

∆Eref
ζ

+

−Eζ,0 0 −<
{
iccζ ,0

}
−=

{
iccζ ,0

}
0 0 −1 0


︸ ︷︷ ︸

Boc
ζ

yg→c
ζ (4.60)

∆iref,c
ζ =

kapc
i 0

0 kavc
i


︸ ︷︷ ︸

Coc
ζ

∆P ref
ζ −∆Pζ

∆Eref
ζ −∆Eζ


︸ ︷︷ ︸

xoc
ζ

+

kapc
p 0

0 kavc
p


︸ ︷︷ ︸

Doc,ref
ζ

∆P ref
ζ

∆Eref
ζ

+ . . .

−kapc
p 0

0 −kavc
p

Eζ,0 0 <
{
iccζ ,0

}
=
{
iccζ ,0

}
0 0 1 0


︸ ︷︷ ︸

Doc
ζ

yg→c
ζ (4.61)

Thus, there are two additional states to add to Nc. Equations 4.50 and 4.60 may be united as

follows:

d

dt

xuni
ζ

xoc
ζ

 =


Aloc

Eζ
O(NE, Nc − 2) O(NE, 2)
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ζ Coc
ζ

O(2, NE)
[
Boc
ζ C

abc,2
ζ O(2, 4)

]
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ζ
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ζ

+ . . .
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ζ

Boc
ζ C

abc,1
ζ

yloc
Eζ

+

O(NE +Nc − 2, Nref)

Boc,ref
ζ

∆P ref
ζ
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ζ

+ . . .

 Bloc
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ζ (4.62)
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Considering equations 4.44 and 4.61,

yc→g
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([
O(2, NE) ρvcc

ζ O(2, 2)
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+Gi
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ζ
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+Ddq′

ζ

∆P ref
ζ

∆Eref
ζ

+Edq′

ζ yloc
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(4.63)

Using equation 4.52, it is possible to express yc→g
ζ in terms of only the state vector,

[(
xuni
ζ

)T (
xoc
ζ

)T
]T

,

and the control vector,
[
∆P ref

ζ ∆Eref
ζ

]T
.

which means that a unified state-equation featuring only the state and control vectors can be

derived.

The purpose of presenting some simulation results where outer loop is included is to simply illustrate

the knock-on effect of the poor dynamics at the current control and PLL level on outer loop control.

However, it should be noted that the linear model including outer controllers presented here is far

more specific than that presented for the inner current level only. A large amount of variation can be

found in the outer controllers. For example, DC bus voltage regulators could be applied instead of

an active power controller, or the PLL might not be used to calculate either the voltage magnitude

or the active power output. Thus, in order to to remain as generic as possible, multi-converter

system analyses will ignore the outer loop. If the inner loop is functioning well, it is reasonable to

assume that the outer loop controllers, whatever their topology, should not introduce issues in and

of themselves, so long as they are well-tuned.
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Outer controllers

[
∆P ref

ζ ∆Eref
ζ

]
Gl
ζ(s)

Gm
ζ

Gn
ζ

Gf
ζ(s)

Gg
ζ(s)

Gh
ζ (s)
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ζ(s)

Gk
ζ(s)

∆vref
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yo
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ζ(s)

Gd
ζ (s)
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ζ(s)∆ec

ζ(s)

Gb
ζ (s)

Gc
ζ(s)∆iccζ (s)

∆θPLL(s)

yloc
Eζ

ν

µ

Gj
ζ(s)

Current controller

Network responseConv. → grid

Grid → Conv.

Figure 4.8: Linearised model including outer control where outer loop feedback signals are determined from
quantities in PLL dq frame.

If the reader wishes to embed frequency dependent component values i.e. Rc1 → Rc1(ω), the block

diagram approach is more appropriate as it can be paired with the sub-space algorithms.
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4.4.2 Condensed models for upgrading to multi-converter system analyses

For convenience, particularly when considering multi-converter systems as done in chapter 7, the

dq-axis vector current control system for converter ζ may be condensed into two blocks as shown:

∆iref
ζ (s) Gvcc,a

ζ (s)

Gvcc,b
ζ (s)

Gk
ζ(s)

∆vref,g
ζ (s)→ ∆vg

ζ(s)

yloc
Eζ

(s)

Gζ(s)

yo
ζ(s)

Network response

Figure 4.9: Fully condensed linearised model suitable for adapting to more complex systems

That is,

∆vref,g
ζ (s) = Gvcc,a

ζ (s)∆iref
ζ (s) +Gvcc,b

ζ (s)yloc
Eζ

(4.64)

Such a representation can then be easily integrated into a larger model comprising multiple con-

verters, which are covered in chapter 7. However, the structure embedded in Gvcc,b
ζ will change

with the PLL, thus requiring re-evaluation.
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Unified state-space model

For an n converter system, equation 4.50 would be recycled in the following manner:

d

dt
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 (4.65)

where yloc
Eζ

is as defined in equation 3.15. The vector yc→g
ζ contains the bridge voltages set by the

controller for converter ζ.

Note also that the superscript has been dropped from AE and BE. This is because the electrical

system will encompass more than just the local system. Embedded in these terms are the coupling

terms. The controller matrices remain unchanged since the controllers just react to the network

dynamics but do not directly communicate with other controllers. The final source of coupling is

accounted for through substitution for yloc
E . In chapter 7, these matrices will be derived.
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4.5 Linear & non-linear simulations involving dq-axis vector cur-

rent control

For single converter systems, ζ = 1 only. A range of operating points are considered, covering

different short-circuit ratios and different power set points to identify problematic areas.

A study revealed that if delays were ignored from the block diagram model and Rc1 6= Rc1(ω) (and

also for all other components), the unified state-space model and block diagram approach agreed

perfectly (as they should if implemented correctly). Sample MATLAB codes demonstrating such

can be found in the Appendices.

The baseline model to be investigated is one where the converter has only the inner current controller

and uses a simple PLL to synchronise with the grid. The converter uses an LC filter in these

simulations. The filter characteristics are based on [3] and are given in table 4.1. These values are

chosen for two reasons: first, the filter characteristics found in [3] are those found in the Caprivi

link, making the choice of values realistic; second, by taking the same values, direct comparisons can

be made with the results presented in [3], which could then be used to provide additional confidence

in the validity of the models outlined in this work. The second point is subject to the control

algorithms being kept the same in the comparison.

ω0Lc1 Rc1 ω0Cf1

0.20 0.01 1/0.17

Table 4.1: Filter characteristics in p.u. values

The per unit system used is based on a system with a base power, Sbase of 350 MVA, and a base

voltage of 195 kV.

4.5.1 Using a first-order PLL

While comparisons between the non-linear and linear models could be used as a means of validating

the linear model, a first-order PLL with the same gains as found in [3] was adopted to begin with

to allow a direct comparison with results presented in [3] to be made. This in turn would provide
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additional confidence in the model, before proceeding to new territory. In other words, to avoid

confusion, the author would like to stress that the subsection (Baseline case studies (LC filter)

4.5.1) is primarily for validation purposes. The reader is referred to [3] for an extended comparison

(covering an alternative simulation software PSCAD).

The author would also like to draw the reader to the fact that controller set up given in [3] is one

where the PLL is not only 1st order, but of low bandwidth. Through a reverse engineering approach,

it was found that the bandwidth of the PLL adopted in [3] must be below 20 rad/s. Given the

feedback provided by manufacturers and transmission system operators, a 2nd order PLL with a

bandwidth over 120 rad/s should be tested also. This is covered in subsequent sections.

Baseline case studies (LC filter)

Figures 4.10-4.12 show the performance of the dq-axis vector current controller for three different

power set points, P0, when the short-circuit ratio (SCR) is 3: P0 = 0.0, 0.50 and 0.90 p.u. For

each power set point, a set of four Bode plots are presented. Starting at the top left and moving

clockwise, the first Bode plot shows the response of active power output to a change in iref
d , the

second Bode plot shows the response of active power output to a change in iref
q , the third shows the

response of reactive power output to a change in iref
q , and the fourth shows the response of reactive

power output to a change in iref
d . For each Bode plot, there are two curves: the solid line is that

predicted by the linear model; the dotted red line illustrates the results of frequency scanning a

non-linear model. In addition to the Bode plots, for each power set point, time domain results from

simulations using the non-linear model are included. These show the per unit voltage, active power

and reactive power levels during a step change (of 0.1 per unit) in either iref
d (solid lines) or iref

q .

Specifically, the blue lines show the voltage, the orange lines show the active power output, and the

yellow lines show the reactive power output.

A strong system is defined as one having a short circuit ratio (SCR) of 3 or higher. When the short

circuit ratio is 3, the power system is on the border of no longer being defined as strong. However,

it can be seen from figures 4.10-4.12 that dq-axis vector current control algorithm still performs

satisfactorily.
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(b) Time domain simulation of non-linear model of
vcc. Solid - ∆iref,c1 = 0.1, 0; dashed - ∆iref1 = 0, 0.1

Figure 4.10: Performance of the dq-axis vector current controller. SCR = 3, P1,0 = 0.0pu.
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(b) Time domain simulation of non-linear model of
vcc. Solid - ∆iref,c1 = 0.1, 0; dashed - ∆iref,c1 =
0, 0.1

Figure 4.11: Performance of the dq-axis vector current controller. SCR = 3, P1,0 = 0.50pu.
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(b) Time domain simulation of non-linear model of
vcc. Solid - ∆iref,c1 = 0.1, 0; dashed - ∆iref,c1 =
0, 0.1.

Figure 4.12: Performance of the dq-axis vector current controller. SCR = 3, P1,0 = 0.90pu.

Figures 4.13-4.15 show the performance of the dq-axis vector current controller for three different

power set points, P0, when the short-circuit ratio (SCR) is 1: P0 = 0.0, 0.50 and 0.70 p.u. For

each power set point, a set of four Bode plots are presented. Starting at the top left and moving

clockwise, the first Bode plot shows the response of active power output to a change in iref
d , the

second Bode plot shows the response of active power output to a change in iref
q , the third shows the

response of AC voltage magnitude at the filter bus to a change in iref
q , and the fourth shows the

response of AC voltage magnitude at the filter bus to a change in iref
d . As before, for each Bode

plot, there are two curves: the solid line is that predicted by the linear model; the dotted red line

illustrates the results of frequency scanning a non-linear model. In addition to the Bode plots, for

each power set point, time domain results from simulations using the non-linear model are included.

These show the per unit voltage and active power levels during a step change (of 0.1 per unit) in

either iref
d (solid lines) or iref

q . Specifically, the blue lines show the voltage and the red lines show

the active power output.

For a short circuit ratio of 1, the system is regarded as very weak. In this scenario, it can be seen

that performance is not as desired. This is due to the strong influence that changes in iref
q have on

the power output, which can be seen from the Bode plots. The issue becomes more significant as

the converter is operating closer to rated power.
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ning.
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(b) Time domain simulation of non-linear model.
Solid - ∆iref,c1 = 0.1, 0; dashed - ∆iref,c1 = 0, 0.1.

Figure 4.13: Performance of the dq-axis vector current controller. SCR = 1, P1,0 = 0.0pu.
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(a) Solid line - linear model; dotted - frequency scan-
ning.
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(b) Time domain simulation of non-linear model.
Solid - ∆iref,c1 = 0.1, 0; dashed - ∆iref,c1 = 0, 0.1.

Figure 4.14: Performance of the dq-axis vector current controller. SRC = 1, P1,0 = 0.50pu.
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(b) Time domain simulation of non-linear model.
Solid - ∆iref,c1 = 0.1, 0; dashed - ∆iref,c1 = 0, 0.1.

Figure 4.15: Performance of the dq-axis vector current controller. SCR = 1, P1,0 = 0.70pu.
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At the highest power set point considered, high frequency content can be observed in the initial

aftermath of the step change. This can also be observed at lower power set points, but to a lesser

extent. One contributor to this behaviour was internal delays in the PWM process.

Figure 4.16 shows the poles and zeros for a variety of active power set points when the short-circuit

ratio is one. Active power set points vary from 0p.u. to 0.7p.u. At the highest power set point, the

transmission zeros are closest to the origin. Note, while the system is coupled, it is not unstable, as

no poles are in the right half plane. However, the high degree of coupling does imply that instability

could occur if outer feedback control is introduced.

-2000 -1500 -1000 -500 0 500 1000 1500 2000
Real part, rad/s

-1500

-1000

-500

0

500

1000

1500

Im
ag

in
ar

y 
pa

rt
, r

ad
/s

Figure 4.16: Poles and zeros for the controller in a system with a short-circuit ratio of 1 as evaluated at a
range of active power set points.
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Figure 4.17: Zoom on low frequency poles and zeros for the controller in a system with a short-circuit ratio
of 1 as evaluated at a range of active power set points.

Using an L filter

In this section, the capacitor bank is removed and the phase reactor inductance is scaled down

accordingly; thus, the system becomes equivalent to a simple model of an MCC-HVDC system.

If the internal model control principle is recycled, i.e. the gains are set according to Harnefors, the

bandwidth of the inner current controller becomes too great when the short-circuit ratio is one and

the power loading is 0.5pu or greater. This means that an additional source of coupling could be

introduced: that between the current controller and the switching process (of the IGBTs).

Again, cross-coupling is also observed, which is undesirable from the perspective of the outer con-

trollers. That being said, the lack of a low-frequency pole in the system may relax some of the

constraints that would be imposed on the outer controllers.
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(a) Solid line - linear model; dotted - frequency
scanning.
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(b) Time domain simulation of non-linear model.
Solid - ∆iref,c1 = 0.1, 0; dashed - ∆iref,c1 = 0, 0.1.

Figure 4.18: Performance of the dq-axis vector current controller. SCR = 1, P1,0 = 0.0pu.

100 102

Frequency, rad/s

-40

-20

0

ire
f

d 1

 
 P

1, d
B

100 102

Frequency, rad/s

-40

-20

0

ire
f

q 1

 
 P

1, d
B

100 102

Frequency, rad/s

-40

-20

0

ire
f

d 1

 
 E

1, d
B

100 102

Frequency, rad/s

-40

-20

0

ire
f

q 1

 
 E

1, d
B

(a) Solid line - linear model; dotted - frequency
scanning.
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(b) Time domain simulation of non-linear model.
Solid - ∆iref,c1 = 0.1, 0; dashed - ∆iref,c1 = 0, 0.1.

Figure 4.19: Performance of the dq-axis vector current controller. SCR = 1, P1,0 = 0.50pu.
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(a) Solid line - linear model; dotted - frequency
scanning.
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(b) Time domain simulation of non-linear model.
Solid - ∆iref,c1 = 0.1, 0; dashed - ∆iref,c1 = 0, 0.1.

Figure 4.20: Performance of the dq-axis vector current controller. SCR = 1, P1,0 = 0.70pu.

4.5.2 Using a second-order PLL

In reality, a second-order PLL would be employed to make it possible for the PLL to track frequency

variations, which could then be used in droop control systems. The PLL applied in this section was

tuned such that it was critically damped and had a bandwidth of 100 rad/s, which is in line with

both the literature and feedback from manufacturers and transmission system operators.

Since dq-axis vector current control experienced difficulties at a short circuit ratio of one, this section

will focus on said value.

LC filter

The following figures show the performance of the controller when a second order PLL (right) is

applied. It can be observed that the cross-coupling is not only present but worse. Without even

considering outer loop control, the converter becomes unstable when the active power set point is

over 0.5 p.u. This result should be taken as more reflective of the true limitations of dq-axis vector

current control given the topology of the PLL that was used.
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(a) Solid line - linear model; dotted - frequency scan-
ning.
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(b) Time domain simulation of non-linear model.
Solid - ∆iref,c1 = 0.1, 0; dashed - ∆iref,c1 = 0, 0.1.

Figure 4.21: Performance of the dq-axis vector current controller. SCR = 1, P1,0 = 0.0pu.
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(a) Solid line - linear model; dotted - frequency scan-
ning.
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(b) Time domain simulation of non-linear model.
Solid - ∆iref,c1 = 0.1, 0; dashed - ∆iref,c1 = 0, 0.1.

Figure 4.22: Performance of the dq-axis vector current controller. SRC = 1, P1,0 = 0.30pu.

Figure 4.23 shows a discrepancy appearing between the linear and non-linear models. This can be

explained by considering the time domain simulation featuring a step, where it can be observed

that the system is marginally stable i.e. on the brink of becoming highly non-linear. For higher

power set points, it was found that the inner current controller was unstable, with a pole moving

to the right half plane. This could be avoided by reducing the gains of the PLL; however, this may

lead to other issues already mentioned.
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(a) Solid line - linear model; dotted - frequency scan-
ning.
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(b) Time domain simulation of non-linear model.
Solid - ∆iref,c1 = 0.1, 0; dashed - ∆iref,c1 = 0, 0.1.

Figure 4.23: Performance of the dq-axis vector current controller. SCR = 1, P1,0 = 0.50pu.

Figures 4.24 and 4.25 show the poles and zeros as predicted by the unified linear state-space model.

No pole moves over to the right half-plane; however, a pair of poles can be seen to move close to the

y-axis as power set point increases. Coupled with delays, this would probably create an unstable

system.
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Figure 4.24: Pole-zero map for the dq-axis vector current control system when a second order PLL is applied.
System evaluated across a range of active power set points (0 → 0.6p.u.).
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Figure 4.25: Close up of low frequency poles and zeros for the dq-axis vector current control system when a
second order PLL is applied. System evaluated across a range of active power set points (0 → 0.6p.u.).

L filter

In the case of the L filter, there is no system resonance that can combine with the PLL to form

a highly problematic system. This can be seen in figures 4.26 - 4.28. In other words, there is no

strong oscillatory behaviour at the inner current control level as seen in the LC filter case.

Even so, the beginning of the voltage collapse due to <
{

∆iref,c
1

}
seen in the studies with the first

order PLL can be observed, which complicates the role of the outer controllers.

An additional issue can also be seen in figure 4.26. Specifically, there is significant power in the

high frequency region in the transmittance from <
{

∆iref,c
1

}
→ ∆E. This could lead to undesirable

coupling between the PWM process and the current controller. This issue is not observed in the

non-linear model due to the average value model being applied. Nevertheless, the presence of this

issue should be noted, particularly when considering fault performance.
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(a) Solid line - linear model; dotted - frequency
scanning.
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(b) Solid - ∆ird = 0.1; dashed - ∆irq = 0.1

Figure 4.26: Performance of the dq-axis vector current controller. SCR = 1, P1,0 = 0.0pu.

100 102

Frequency, rad/s

-40

-20

0

ire
f

d 1

 
 P

1, d
B

100 102

Frequency, rad/s

-40

-20

0

ire
f

q 1

 
 P

1, d
B

100 102

Frequency, rad/s

-40

-20

0

ire
f

d 1

 
 E

1, d
B

100 102

Frequency, rad/s

-40

-20

0

ire
f

q 1

 
 E

1, d
B

(a) Solid line - linear model; dotted - frequency
scanning.
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(b) Solid - ∆ird = 0.1; dashed - ∆irq = 0.1

Figure 4.27: Performance of the dq-axis vector current controller. SRC = 1, P1,0 = 0.30pu.
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(a) Solid line - linear model; dotted - frequency
scanning.
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(b) Solid - ∆ird = 0.1; dashed - ∆irq = 0.1

Figure 4.28: Performance of the dq-axis vector current controller. SCR = 1, P1,0 = 0.50pu.
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Similar results were obtained when dropping the integral term completely. In other words, when

transitioning to a high-gain first-order PLL, associated with which is a moderately high bandwidth,

stability is compromised in the low short-circuit ratio system.

Considering these results and those presented in section 4.5.2, it is possible to attribute a large

portion of the poor performance to the dynamics associated with the PLL specifically.

In general, the 2nd order filter, particularly when coupled with an LC filter with a low resonant

frequency, suggests dq-axis vector current control may have issues achieving power outputs above

0.5p.u.

4.5.3 Adding outer loop and/or droop controllers

Considering figure 4.15, if a change in <
{

∆iref,c
1

}
causes a drop in the voltage at the filter bus, a

voltage droop controller would respond to this by changing =
{

∆iref,c
1

}
; however, considering figure

4.15, this would impact on the power output, which would trigger the frequency droop controller to

act, which ultimately re-enforce the original drop in voltage. The end result is an unstable system.

Even if droop control were not employed, there would still be outer controllers as discussed in section

4.1.1.

Due to the poor dynamics at the current control level, stability only occurs when the bandwidth

of the outer controllers is very low, at which point response time becomes unacceptable. The only

‘simple’ option available to try and improve the response time would be to increase the gains of the

controller(s); however, this produces an unstable system.
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(a) Zoom on low frequency poles and zeros for the con-
troller in a system with a short-circuit ratio of 1 as
evaluated at a range of active power set points.

(b) Time domain simulation of non-linear model of vcc
during an attempt to change active power set point.

Figure 4.29: Performance of the dq-axis vector current controller. SCR = 1, P1,0 = 0.70pu.

4.5.4 An investigation on the specific influence of the PLL

In the previous sections, it was shown that, at the current control level, the system is ill-conditioned,

which would pose a significant problem for outer controllers, consistent with the work of Egea-

Alvarez [5]. All relevant literature indicates that a major contributor to the ill-conditioning is the

PLL. However, it would be preferable to be more specific. PLLs are known to be stable when

operating in isolation in weak AC systems. Thus, the negative effects of the PLL on dq-axis

vector current control scheme must be in the application of the PLL output. There are three

applications of the PLL: the first two are found in the abc→dq frame transformations acting on

currents and voltages respectively; the third is found in the dq→abc frame transformation. Using

the linear model, it is possible to remove eliminate the dynamics associated with various parts of

the controller. This is not possible with the non-linear time domain model since all elements must

be active during a simulation.

Figure 4.30 shows the influence of ignoring the PLL dynamics on the final frame transformation

i.e. ignoring the Cj
ζ matrix. Particularly in the low frequency region, which is where the outer

controllers will be most active, the main diagonal elements have significantly more power than

before. By discarding the relevant parts of the unified state-space model, a reduced state-space

model can be produced which omits the influence of the PLL, giving the results also shown in figure

4.30. The associated time domain results are shown in figure 4.31.
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(a) Hvcc(s) when P0 = 0.25p.u.
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(b) Hvcc(s) when P0 = 0.5p.u.
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(c) Hvcc(s) when P0 = 0.60p.u.
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(d) Hvcc(s) when P0 = 0.75p.u.

Figure 4.30: Hvcc when (1) all elements of the controller are included (blue), (2) the effect of PLL dynamics
on the final frame transformation are removed (red) and (3) when all effects of the PLL dynamics are removed
(black). Response evaluated at a variety of power set points when the short-circuit ratio is one.
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Figure 4.31: Influence of the PLL dynamics evaluated when SCR = 1, P0 = 0.7pu. The black lines are results
from running the unified state-space model when all PLL dynamics are included; the red lines are results
from when the effect of ∆θ on the final frame transformation have been omitted; the blue lines are from when
the effect of ∆θ has been omitted from all frame transformations. All results have been normalised.
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Of course, there is still strong power from ∆iref
q to ∆P . This is discussed later. Also, note that the

right hand plot shows slightly improved performance in terms of final steady-state error in power

output compared to previous plots. This will be due to the non-linear nature of the combined

system being omitted in figure 4.31.

Note how figure 4.30 is similar to the linearised model when all PLL dynamics have been removed.

This implies that the overwhelming detrimental impact of the PLL is created by the presence of a

frame transformation after the current controller. Why might this be the case?

Let us treat the current reference values as fixed; this would be equivalent to studying dq-axis

vector current control when network perturbations are applied, perhaps at some voltage source in

the system, rather than the perturbation being (conventionally) applied to the current reference

components. In this scenario, dq-axis vector current control may, ‘loosely speaking’, be viewed as a

cascaded control system where the ‘outer loop’ reference variable becomes the target q component

for the voltage transformed into the dq frame (which is zero).

The general rule of cascaded control is that the bandwidth of the outer controller should be less than

that of an inner controller. For completeness, dq-axis vector current control is not a conventional

cascaded control system for three reasons: first, the presence (and location) of the reference current

values; second, the dual application of the PLL phase angle i.e. before and after the current

controller; and third, the application of the output of the PLL in its internal Park transformation.

Nevertheless, the general rule still has relevance, particularly if we continue to treat the current

reference values as fixed (for hypothetical purposes). For this reason, let us focus on the second point.

The second observation of the control architecture produces two criteria: first, the bandwidth of the

PLL should be lower than that of the current controller; and second, the final frame transformation

should contain no major dynamics in the frequency range covered by the bandwidth of the current

controller. It is not possible to achieve both criteria unless the voltage at the point of common

coupling is stiff. If this voltage is not stiff, only one criterion can be satisfied at any one time. Given

that the PLL is a low-bandwidth system, one would expect the final frame transformation to be

problematic if the voltage is weak. This would create a system which, from the perspective of the

active power and AC voltage magnitude controllers, would be difficult to control.
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4.6 Summary

It has been shown that the stability of a single converter using dq-axis vector current control in

the small-signal domain is governed by the following parameters: the line inductance, or more

appropriately the electrical proximity of the PCC to a stiff voltage source; the power loading; the

filter topology; the PLL, and the outer loop controllers. In the weak system (SCR = 1), the coupling

between the two current control loops is strongly dependent on power loading. It has been observed

that operating beyond P = 0.5p.u. may be unachievable in such a system. This would, in one way

or another, severely limit the economic viability of such a system.

An approach to modelling based predominantly in the frequency domain has been outlined. This

can be coupled with experimental data which describes the behaviour of the resistance, capacitance

and inductance of the components across a range of frequencies. This can then be converted to

an effective state-space model using sub-space algorithms. Alternatively, one can use the unified

state-space model to calculate the performance directly, at the cost of losing frequency dependence

in components. Both algorithms can be implemented in compiled languages, but the former re-

quires additional algorithms (sub-space) in order to extract poles and zeros. This makes the latter

algorithm preferable for speed (both in terms of development and programme run times) reasons,

which is important when considering multi-converter systems.

89



Chapter 5

Analysis of proportional resonant

control

In this chapter, the proportional resonant controller is assessed, both through linear and non-linear

models. In so doing, a linear model of proportional resonant control is developed, which may be of

use to developers and/or researchers. To the author’s best knowledge, no linear model of proportional

resonant control which includes PLL dynamics has previously been presented and validated in low

SCR systems.

While proportional resonant control avoids the application of the PLL angle after a current regulator,

it is shown that damping of low-frequency system resonances is poor, making proportional resonant

control (in its basic form) unsuitable for LC-filtered systems, and possibly even L-filtered systems if

the wider network carries with it a low frequency resonance.
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5.1 Development of the linear model of proportional resonant con-

trol including PLL dynamics

Let us now consider another control algorithm which has experienced interest: proportional resonant

control. In this work, figure 5.1 illustrates the proportional resonant controller adopted in this work.

eabc PLL
θc

i

iref,c
ζ

αβ

dq

−iabc
ζ

αβ

abc

kres
p

kres
i ω0s

s2 + 2ωcuts+ ω2
0 vref,α

ζ

kres
p

kres
i ω0s

s2 + 2ωcuts+ ω2
0

vref,β
ζ

h(t) or H(s)

h(t) or H(s)

Figure 5.1: Block diagram illustrating the proportional resonant controller. The αβ output signals are
converted to abc signals by a simple inverse Clarke transform.

As can be observed from figure 5.1, the αβ frame is used extensively. It is therefore much more

convenient to express the frame transformations as abc→ αβ, αβ →abc, dq→ αβ and αβ →dq.

Considering section 4.2, the relevant frame transformations are as follows:

T αβ→g =

 cos(ω0t) sin(ω0t)

− sin(ω0t) cos(ω0t)

 ; T c→αβ =

cos(ω0t+ θc
ζ) − sin(ω0t+ θc

ζ)

sin(ω0t+ θc
ζ) cos(ω0t+ θc

ζ)

 (5.1)

91



Chapter 5. Analysis of proportional resonant control

Let us note that, to a first-order approximation,

T c→αβ =

 cos(ω0t) sin(ω0t)

− sin(ω0t) cos(ω0t)

 cos(θc
ζ,0 + ∆θc

ζ) sin(θc
ζ,0 + ∆θc

ζ)

− sin(θc
ζ,0 + ∆θc

ζ) cos(θc
ζ,0 + ∆θc

ζ)


=

cos(ω0t) − sin(ω0t)

sin(ω0t) cos(ω0t)

cos(θc
ζ,0) − sin(θc

ζ,0)

sin(θc
ζ,0) cos(θc

ζ,0)

 1 −∆θc
ζ

∆θc
ζ 1

 (5.2)

Proceeding to analyse the system in the time domain, the voltage reference set by the proportional

resonant controller may be expressed as follows:

vref,αβ
ζ = h(t) ∗

(
iref,αβ
ζ − iαβcζ

)
= h(t) ∗

[
T c

dq→αβi
ref,c
ζ − T g

dq→αβi
g
cζ

]
= h(t) ∗

cos(ω0t) − sin(ω0t)

sin(ω0t) cos(ω0t)

cos(θc
ζ,0) − sin(θc

ζ,0)

sin(θc
ζ,0) cos(θc

ζ,0)

 1 −∆θc
ζ

∆θc
ζ 1

× . . .
(
iref,c
ζ,0 + ∆iref,c

ζ

)
−

cos(ω0t) − sin(ω0t)

sin(ω0t) cos(ω0t)

(igcζ ,0 + ∆igcζ

) (5.3)

where h(t) is the proportional-resonant controller.

Note how the output of the resonant controller is the αβ signal. A consequence of this is that a

mixture of multiplication and convolution will be present at the same time during the analysis.

This, can instantly be observed when both sides are multiplied by T αβ→g such that the output of

the controller may be linked with the model of the network. That is,

vg
ζ =

 cos(ω0t) sin(ω0t)

− sin(ω0t) cos(ω0t)

h(t) ∗

cos(θc
ζ,0) − sin(θc

ζ,0)

sin(θc
ζ,0) cos(θc

ζ,0)

× . . .
cos(ω0t) − sin(ω0t)

sin(ω0t) cos(ω0t)

∆iref,c
ζ +

− sin(ω0t) − cos(ω0t)

−cos(ω0t) sin(ω0t)

 iref,c
ζ,0 ∆θc

ζ

− . . .
cos(ω0t) − sin(ω0t)

sin(ω0t) cos(ω0t)

∆igcζ

 (5.4)
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From Zmood [24],

L {cos(ω0t) [h(t) ∗ [g(t) cos(ω0t)]]} =
1

4
[H(s+ jω0)G(s+ 2jω0) +H(s− jω0)G(s) + . . .

H(s+ jω0)G(s) +H(s− jω0)G(s− 2jω0)]

L {sin(ω0t) [h(t) ∗ [g(t) sin(ω0t)]]} =
1

4
[−H(s+ jω0)G(s+ 2jω0) +H(s− jω0)G(s) + . . .

H(s+ jω0)G(s)−H(s− jω0)G(s− 2jω0)]

L {cos(ω0t) [h(t) ∗ [g(t) sin(ω0t)]]} =
j

4
[[H(s− jω0)−H(s+ jω0)]G(s) + . . .

H(s+ jω0)G(s+ 2jω0)−H(s− jω0)G(s− 2jω0)]

L {sin(ω0t) [h(t) ∗ [g(t) cos(ω0t)]]} =
j

4
[[H(s− jω0)−H(s+ jω0)]G(s) + . . .

−H(s+ jω0)G(s+ 2jω0) +H(s− jω0)G(s− 2jω0)] (5.5)

where g(t) is some signal, which in this case could be a current signal or phase from the PLL, and

H(s) is, in this work, the transfer function of the resonant controller.

Hence,

Hres = L


 cos(ω0t) sin(ω0t)

− sin(ω0t) cos(ω0t)

h(t) ∗

cos(ω0t) − sin(ω0t)

sin(ω0t) cos(ω0t)

 (5.6)

=
1

2

 {H(s+ jω0) +H(s− jω0)} j {H(s+ jω0)−H(s− jω0)}

j {H(s+ jω0)−H(s− jω0)} {H(s+ jω0) +H(s− jω0)}

 (5.7)

Taking the Laplace transform of equation 5.4 yields the following result:

∆vg
ζ(s) =

cos θc
ζ,0 − sin θc

ζ,0

sin θc
ζ,0 cos θc

ζ,0


︸ ︷︷ ︸

Gb
ζ

H
res︸︷︷︸
Gc
ζ

∆iref,c
ζ +

0 −1

1 0

 iref,c
cζ ,0︸ ︷︷ ︸

Ge
ζ

∆θc
ζ



+ (−HresT 2)︸ ︷︷ ︸
Gd
ζ

yloc
Eζ

(5.8)
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5.1.1 Block diagrams and transfer function matrix extraction

Perturbations in the phase angle are linked to the perturbations in the voltage at the PCC through

the linearised model of the PLL almost completely described in the analysis of dq-axis vector current

control. The phase reactor current and PCC voltage perturbations are then linked to the bridge

voltage perturbations by the network response matrix, Gζ . Thus,

yo
ζ = ΩGζ

[
I −Gb

ζG
c
ζG

e
ζG

a
ζGζ +Gd

ζGζ

]−1
Gb
ζG

c
ζGζ∆i

ref,c
ζ (5.9)

Ga
ζ is the frequency response of the PLL, details of which may be found in the previous chapter.

The Ω term is just to ensure that only the response of ∆Pζ and ∆Eζ to ∆iref,c
ζ are considered.

Thus,

Ω =

1 0 0 0 0 0

0 1 0 0 0 0

 (5.10)

The outer loop controllers were simple PI controllers, with the outputs being passed through low-

pass filters (with a cut-off frequency of αf) to improve disturbance rejection. Including these in the

linear model is achieved through the inclusion of Gg
ζ and Gh

ζ as shown 5.2:
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[
∆P ref

ζ

∆Eref
ζ

]

Gg
ζ(s)

Gf
ζ(s) Gc

ζ(s) Gb
ζ (s)

Gd
ζ (s)

∆vref
ζ (s)→ ∆vg

ζ(s)

Gh
ζ (s) Gζ(s)

Ga
ζ(s)

∆θPLLGe
ζ(s)

PLL

PR control

Network

Controllers
‘Outer’ PI yEζ

∆iref,c
ζ

Figure 5.2: Block diagram illustrating the linearised model

5.2 Linear & non-linear simulations involving proportional reso-

nant control

For single converter systems, ζ = 1 only. In this section, attention is paid to systems where the

short-circuit ratio is 1 and 3. The former is to assess the performance in very weak systems, while

the latter is to assess any coupling issues that may be present as the system strength increases. To

make a fair comparison, the component values are the same as provided in table 4.1.

For each operating point, a Bode-plot figure comprising four Bode sub-plots will be presented. The

four sub-plots form the transfer function matrix, Hprc
1 , evaluated across a large frequency range.

Hprc
1 (1, 1) captures the response of power output to changes in P ref

1 ; Hprc
1 (1, 2) captures the response

of power output to changes in Eref
1 ; Hprc

1 (2, 1) captures the response of reactive power output/voltage

magnitude (depending on the system strength) to changes in P ref
1 ; and Hprc

1 (2, 2) captures the

response of reactive power output/voltage magnitude (depending on the system strength) to changes

in Eref
1 .

95



Chapter 5. Analysis of proportional resonant control

In addition, for each operating point, time domain simulations using the non-linear model are

presented showing step changes of ∆P ref
ζ = 0.1p.u. and ∆P1 = P1,0 where P1,0 is the steady-state

power set point around which the given linearisation has been applied. For example, considering

the operating point SCR = 1, P1,0 = 0.5p.u. The top left plot features the Bode plots evaluated at

P1,0 = 0.5p.u. The top right plot features the time domain plots showing the active power output

(red), reactive power output (yellow) and PCC voltage (blue) over a period of time during which a

step change of ∆P1 = 0.5p.u. is introduced, after which a step change is ∆P1 = 0.1p.u introduced.

The currents during both step changes are shown in the bottom two plots, covering both small and

large disturbances. The zooms show the current of a single phase compared against its effective

reference (calculated by inverse Clarke transform). If the SCR = 1, step changes in Eref
1 are also

presented; these can be seen in the top right plot with the dashed lines.

The proportional term in the resonant controller has a gain that is the same as that found in the dq-

axis vector current controller; however, the integral gain was adjusted to give the desired resonant

response. To produce currents at the grid frequency, the resonant frequency of the controller is set

at the grid frequency. A small amount of damping was included to reduce sensitivities to variations

in the grid frequency, but also to remove numerical issues associated with undamped resonances

(which can produce infinities).

For LC filtered systems, it was found that moderate bandwidth 2nd order PLLs had adverse inter-

actions with the capacitor bank. While not presented here, the reader can easily confirm such a

statement through the models provided in the Appendices.

If a low bandwidth 1st-order PLL is used, such as that used in [3], it was possible to achieve stable

operation in power systems with short circuit ratios of one; however, in order to do so, significant

effort was required so that the outer controllers could (a) compensate for improper performance of

the inner level controller (current regulator becomes coupled) (b) provide damping.

The main controller settings are given in table 5.1:

kres
p kres

i ωcut kpow
p kpow

i kvol
p kvol

i αf

αcLc 13kres
p 15 rad/s 0 50 0 60 100

Table 5.1: Parameters for the proportional resonant controller for LC systems
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For the L-filtered cases, the gains were boosted and the cut-off frequency for the low-pass filters

could also be increased. The author acknowledges that this may result in an overly fine-tuned

controller. However, this is done to simply assess the potential for proportional resonant control if

all the resonant frequencies are high, at which point, active damping techniques such as those found

in [33][34][35].

kres
p kres

i ωcut kpow
p kpow

i kvol
p kvol

i αf1

αc1Lc1 13kres
p 15 rad/s 0 70 0 70 180

Table 5.2: Parameters for the proportional resonant controller for L systems

Depending on the order, the following settings were adopted for the PLL:

kpll
p kpll

i

1st order 20 20
2nd order 100 7

Table 5.3: Parameters for the PLL.

The gain associated with the resonant controller yields an error of approximately 0.55% in current

magnitude (phases were significantly more accurate). That being said, the steady-state errors in

the active power output and AC voltage magnitude are eliminated by the outer controllers.

5.2.1 Using a first-order PLL

Baseline case studies (LC filter)

For the LC-filtered converter, an outer control loop topology as shown was adopted:
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Eref
ζ

Eζ

–

P ref
ζ

Pζ

– kpow
p s+ kpow

i

s
<
{
iref
ζ

}

kvol
p s+ kvol

i

s
=
{
iref
ζ

}

kcou
i

s

kcou
p

Figure 5.3: Illustration of the coupling controller.

A non-linear gain-scheduled control approach may improve performance further; however, for im-

plementation reasons similar to those discussed in chapter two, it was decided that gain-scheduling

would not be applied. Moreover, improved tuning techniques for the main diagonal controllers may

yield sufficient performance in their own right.

kcou
p kcou

i

-40 -25

Table 5.4: Parameters for the cross-coupling controllers

Figures 5.4 to 5.6 illustrate the performance of proportional resonant control when the short-circuit

ratio is three. In general, the main diagonal terms are dominant. However, the transmittance from

Eref to P does carry power around 30 rad/s; this is mainly the result of the integral cross-coupling

controller, which has deliberately not been gain-scheduled for simplicity and because it might be

difficult to infer what the system short-circuit ratio is in practice (which would be required for

effective gain scheduling). As a result, in some operating points it boosts performance, while in

others it degrades it. The choice of the gain was ultimately set such that it had a greater positive

influence on weak systems than it did negatively affect performance in strong systems.

The transmittance from P ref to E has very little power; hence, when a small change in power set
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point is introduced, there is very little response in the voltage level as can be seen from the time

traces. Contrary to power synchronization control, for systems with short-circuit ratios of three,

the transmittances from Eref to P and P ref to E actually decrease as the converter operates closer

to rated power.
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Figure 5.4: Performance of the proportional resonant controller. SCR = 3, P1,0 = 0.0pu.
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Figure 5.5: Performance of the proportional resonant controller. SCR = 3, P1,0 = 0.5pu.
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Figure 5.6: Performance of the proportional resonant controller. SCR = 3, P1,0 = 0.90pu.

Figures 5.7 to 5.9 show the performance of proportional resonant control when the short-circuit ratio

is one. When the short-circuit ratio is one, there is significantly more power in the transmittances

Eref
1 → P1 and P ref

1 → E1. This is similar to what was observed in dq-axis vector current control,

with coupling tending to increase with power set point. In addition, the high frequency resonances

are poorly damped, which is an undesirable trait.
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(b) Time domain simulation of non-linear model.
Solid - change in P ref

1 ; dashed - change in Eref
1

Figure 5.7: Performance of the proportional resonant controller. SCR = 1, P1,0 = 0.0pu.
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Figure 5.8: Performance of the proportional resonant controller. SCR = 1, P0 = 0.5pu.
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(b) Time domain simulation of non-linear model.
Solid - change in P ref

1 ; dashed - change in Eref
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(c) Current tracking capability of controller when
∆P1 = 0.1p.u. and P1,0 = 0.7p.u.
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(d) Current tracking capability of controller when
∆P1 = 0.7p.u. and P1,0 = 0.0p.u.

Figure 5.9: Performance of the proportional resonant controller. SCR = 1, P1,0 = 0.70pu.
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(a) Time domain simulation of non-linear model
when a large disturbance, ∆P1 = 0.86p.u., is in-
troduced.
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(b) Current tracking capability of controller when
∆P1 = 0.80p.u. and P1,0 = 0.0p.u.

Figure 5.10: Performance of the proportional resonant controller. SCR = 1, ∆P1 = 0.86pu.
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An inspection of the poles and zeros of the transfer function matrix, Hprc
1 shows that all the poles

are in the left half plane; however, two pairs of poles are close to the origin and poorly damped.

This is probably due to improper filtering techniques. Future studies could involve developing a

controller with improved filtering. This may also remove the need for one (or even both) of the

cross-coupling controllers.
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Figure 5.11: Poles and zeros for the controller in a system with a short-circuit ratio of 1 as evaluated at a
range of active power set points. Each colour corresponds to a different active power set point.

Active power set points vary from 0p.u. to 07p.u. The associated colours are blue, orange, yellow-

ochre, purple, green, cerulean, red and blue.

Using an L filter

Figures 5.12 to 5.14 show the performance of proportional resonant control when the short-circuit

ratio is one. it can be seen that there is significantly more power in the transmittances Eref
1 → P1

and P ref
1 → E1. As with dq-axis vector current control, the coupling tends to increase with power
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set point.
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1 . Solid line - linear model; dotted - fre-

quency scanning.
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(b) Time domain simulation of non-linear model.
Solid - change in P ref

1 ; dashed - change in Eref
1

Figure 5.12: Performance of the proportional resonant controller. SCR = 1, P1,0 = 0.0pu.

100 102

Frequency, rad/s

-40

-20

0

P
re

f
1

 
 P

1, d
B

100 102

Frequency, rad/s

-40

-20

0

E
re

f
1

 
 P

1, d
B

100 102

Frequency, rad/s

-40

-20

0

P
re

f
1

 
 E

1, d
B

100 102

Frequency, rad/s

-40

-20

0

E
re

f
1

 
 E

1, d
B

(a) Hprc
1 . Solid line - linear model; dotted - fre-

quency scanning.

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
Time, s

0

0.2

0.4

0.6

0.8

1

1.2

1.4
P

ow
er

 a
nd

 V
ol

ta
ge

, p
.u

.

(b) Time domain simulation of non-linear model.
Solid - change in P ref

1 ; dashed - change in Eref
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(c) Current tracking capability of controller when
∆P1 = 0.1p.u. and P1,0 = 0.5p.u.
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(d) Current tracking capability of controller when
∆P1 = 0.5p.u. and P1,0 = 0.0p.u.

Figure 5.13: Performance of the proportional resonant controller. SCR = 1, P1,0 = 0.5pu.
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(b) Time domain simulation of non-linear model.
Solid - change in P ref

1 ; dashed - change in Eref
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(c) Current tracking capability of controller when
∆P1 = 0.1p.u. and P1,0 = 0.7p.u.
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(d) Current tracking capability of controller when
∆P1 = 0.7p.u. and P1,0 = 0.0p.u.

Figure 5.14: Performance of the proportional resonant controller. SCR = 1, P1,0 = 0.70pu.

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
Time, s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ow

er
 a

nd
 V

ol
ta

ge
, p

.u
.

(a) Time domain simulation of non-linear model
when a large disturbance, ∆P1 = 0.86p.u., is in-
troduced.
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(b) Current tracking capability of controller when
∆P1 = 0.86p.u. and P1,0 = 0.0p.u.

Figure 5.15: Performance of the proportional resonant controller. SCR = 1, ∆P1 = 0.86pu.
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5.2.2 Using a second-order PLL

Using an L filter

In this section, results are presented only for the case where the short-circuit ratio is one when a

2nd order PLL is applied. As can be seen, the controller encounters issues at high power set points

in weak AC systems.
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(b) Time domain simulation of non-linear model.
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1 ; dashed - change in Eref
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(c) Current tracking ability of the resonant con-
troller when ∆P1 = 0.1p.u. and P1,0 = 0.5p.u.
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(d) Current tracking ability of the resonant con-
troller when ∆P1 = 0.5p.u. and P1,0 = 0.0p.u.

Figure 5.16: Performance of the proportional resonant controller. SCR = 1, P1,0 = 0.5pu.
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(b) Time domain simulation of non-linear model.
Solid - change in P ref

1 ; dashed - change in Eref
1

Figure 5.17: Performance of the proportional resonant controller. SCR = 1, P1,0 = 0.0pu.
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(b) Time domain simulation of non-linear model.
Solid - change in P ref
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(c) Current tracking capability of controller when
∆P1 = 0.1p.u. and P1,0 = 0.7p.u.
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(d) Current tracking capability of controller when
∆P1 = 0.7p.u. and P1,0 = 0.0p.u.

Figure 5.18: Performance of the proportional resonant controller. SCR = 1, P1,0 = 0.70pu.
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(b) Time domain simulation of non-linear model.
Solid - change in P ref

1 ; dashed - change in Eref
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(c) Current tracking capability of controller when
∆P1 = 0.1p.u. and P1,0 = 0.75p.u.
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(d) Current tracking capability of controller when
∆P1 = 0.75p.u. and P1,0 = 0.0p.u.

Figure 5.19: Performance of the proportional resonant controller. SCR = 1, P1,0 = 0.75pu.

5.3 Summary

In general, it was found that proportional resonant control was less effective at damping system

resonances, which restricts its ability to function well in weak systems. Compensating action was

achieved through a mixture of low-pass filters and cross-coupling controllers. In other words, the

controller design was relatively complex.

A linear model of proportional resonant control which can be easily integrated into large systems

has been developed. It includes PLL dynamics. The linear model predicted the dynamics in the low

and medium frequency ranges fairly well. However, in the high frequency range, the resonance was

under-predicted by the linear model, highlighting the need for appropriate gain and phase margins
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and damping. By attempting to achieve these criteria, the bandwidth of the outer controller was

compromised, yielding a slow system at the high power set points.
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Chapter 6

Analysis of power synchronization

control

The third control algorithm considered in this work is the power synchronization controller. As

with dq-axis vector current control and proportional resonant control, the mathematical analysis is

presented for converters which use either an L or an LC filter.
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6.1 Overview of power synchronization control

As previously mentioned, in contrast to the dq-axis vector current control algorithm, the power

synchronization control algorithm has no PLL. Synchronization is achieved through power flow

considerations. Changes in the measured power output and/or changes in the phase angle of the

bridge voltage. The AC voltage is supported by a second control loop. A high-pass filter is combined

with a measurement of the current flowing through the phase reactor in order to provide damping

of a resonance. This is summarised in figure 6.1:

P ref
ζ

–

Pζ

kp

s

ω0t

dq

abc

iabc
cζ

kvζs

αvζ + s

–

Eref
ζ

–

Eζ

kv
p,ζ +

kv
i,ζ

s vref,c
un,ζ =

[
Vζ,0 0

]T

abc

dq
vref
ζ

Figure 6.1: Combined power synchronization control system with damping

Note that the output of the AC voltage controller is defined to be the d-component of the bridge

voltage reference in the converter dq frame. That is, synchronization is with the bridge voltage and

not the PCC voltage. This lines up with the expression for power flow across a reactance.

Mathematically, the voltage reference (for the PWM process) as expressed in the converter dq frame

is set according to

vref,c
ζ (s) = vref,c

un,ζ (s)−H
hp
ζ (s)iccζ (s) (6.1)

The power reference could be set by a DC voltage controller.
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6.2 Linear analysis of the controller

6.2.1 The PI controllers

Referring to figure 6.1, the control laws could be expressed in the following matrix form:

 θvζ (s)

Vun,ζ(s)

 =

Gpsl
ζ (s) 0

0 Gavl
ζ (s)

P ref
ζ (s)

Eref
ζ (s)

+

−Gpsl
ζ (s) 0

0 −Gavl
ζ (s)

Pζ(s)
Eζ(s)

 (6.2)

where Gpsl
ζ (s) and Gavl

ζ (s) are the PI controllers for the two loops.

In order to be easily combined with the state-space model of the power system, let us express

equation 6.2 as follows:

 θvζ (s)

Vun,ζ(s)

 =

Gpsl
ζ (s) 0

0 Gavl
ζ (s)


︸ ︷︷ ︸

Ga
ζ(s)

P ref
ζ (s)

Eref
ζ (s)

+

−CPSL(s) 0 0 0 0 0

0 −CAVL(s) 0 0 0 0


︸ ︷︷ ︸

Gb
ζ (s)

yloc
Eζ

(6.3)

If load compensation techniques are to be applied, something which will be of importance for multi-

converter systems (see chapter 4), the measurement fed into the voltage controller should be as

follows:

Eζ → |eg
ζ + kcζ (Rcζ + jXcζ )i

g
cζ
| (6.4)

where

Xcζ = ω0Lcζ (6.5)

Let

wζ =

wζ,d
wζ,q

 =

eg
d + kc(Rci

g
cd − ω0Lcζ i

g
cq)

eg
q + kc(Rci

g
cq + ω0Lci

g
cd)

 (6.6)
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To a first order,

∆Wζ =
1

W0
(wd,0∆wd + wq,0∆wq) (6.7)

In other words, with load compensation applied,

Gb
ζ (s)→

−Gpsl
ζ 0

0 −Gavl
ζ

× . . .


1 0 0 0 0 0

0 0
kc(Rcζ + ω0Lcζ )wζ,d0

Wζ,0

wζ,q0kc(Rcζ − ω0Lcζ )

Wζ,0

wζ,d0

Wζ,0

wζ,q0

Wζ,0

 (6.8)

Contribution to the unified state-space model

For the unified state-space model, let us repeat previously outlined approaches:

dxol
ζ

dt
=

1 0

0 1


︸ ︷︷ ︸
Bref
ζ

∆P ref
ζ

∆Eref
ζ


︸ ︷︷ ︸

zrefζ

+ . . .

−

1 0 0 0 0 0

0 0
kcζ (Rcζ + ω0Lcζ )wd,0

W0

wq,0kc(Rc − ω0Lc)

W0

wd,0

W0

wq,0

W0


︸ ︷︷ ︸

Bol
ζ

yloc
Eζ︸︷︷︸
zolζ

(6.9)

 θv

Vun

 =

kapc
i 0

0 kavc
i


︸ ︷︷ ︸

Col
ζ

∆P ref
ζ −∆Pζ

∆Eref
ζ −∆Eζ


︸ ︷︷ ︸

xol
ζ

+

kapc
p 0

0 kavc
p


︸ ︷︷ ︸

Dref
ζ

∆P ref
ζ

∆Eref
ζ


︸ ︷︷ ︸

zrefζ

+−Dref
ζ B

ol
ζ︸ ︷︷ ︸

Dol
ζ

yloc
Eζ

(6.10)
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6.2.2 Voltage reference signals in the converter dq frame

Perturbing equation 6.1 yields

∆vref,c
ζ (s) = ∆vref,c

un,ζ (s)−H
hp
ζ (s)∆iccζ (s) (6.11)

In a similar fashion to section 4.3.4, perturbations in the current components, as expressed in the

converter dq frame, may be related to perturbations in the phase angle of the converter dq frame

and perturbations in the current components, as expressed in the grid dq frame, as shown:

∆iccζ (s) =

 cos θvζ ,0 sin θvζ ,0

− sin θvζ ,0 cos θvζ ,0

T psc
1︸ ︷︷ ︸

Cc
ζ(s)

∆igcζ (s) + . . .

− sin θvζ ,0 cos θvζ ,0

− cos θvζ ,0 sin θvζ ,0

 igcζ ,0 O(2, 1)


︸ ︷︷ ︸

Gd
ζ (s)

 ∆θc
vζ

(s)

∆Vun,ζ(s)

 (6.12)

where the linking matrix, T psc
1 , is introduced to enable easy connection to the network model. T psc

1

is defined as follows:

T psc
1 =

0 0 1 0 0 0

0 0 0 1 0 0

 (6.13)

Thus, first-order perturbations in the voltage reference, as expressed in the converter dq frame, are

given as follows:

∆iccζ (s) Ce
ζ(s)[

∆θc
vζ

(s) ∆Vunζ (s)
]T

Cf
ζ(s)

∆vref,c
ζ
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where

Ge
ζ(s) = −Hhp

ζ (s)

1 0

0 1

 ; Gf
ζ(s) =

0 1

0 0

 (6.14)

Cf
ζ contains two columns, including one for ∆θc

vζ
, so that it can easily be linked to the collective

output of the PI controllers. In addition, it comprises two rows so that a dq vector for the voltage

reference is formed; this is because the PI controller acting on (Eref
ζ −Eζ) only sets the magnitude

(of the d component) of the unfiltered voltage reference signal.

Contribution to the unified linear state-space model

As with dq-axis vector current control, the initial frame transformation process is easily embedded

into the unified state-space model by simply recycling Gc
ζ and Gd

ζ .

yabc→dq
ζ = Gc

ζy
loc
Eζ

+Gd
ζy

ol
ζ (6.15)

Let us note that a state-space form of a high-pass filter with unity gain, which takes as an input

zhp
ζ , is as follows:

dxhp
ζ

dt
= −αvζx

hp
ζ + zhp

ζ (6.16)

yhp
ζ = −αvζx

hp
ζ + zhp

ζ (6.17)

117



Chapter 6. Analysis of power synchronization control

where yhp
ζ is the output, which in this case is being fed into the final stages of the controller. In

other words, the state-space representation of the action −Hhp
ζ (s)∆iccζ is as follows:

dxhp
ζ

dt
=

−αvζ 0

0 −αvζ


︸ ︷︷ ︸

Ahp
ζ

xhp
ζ +

kvζ 0

0 kvζ


︸ ︷︷ ︸

Bhp
ζ

∆iccζ (6.18)

yhp
ζ =

αvζ 0

0 αvζ


︸ ︷︷ ︸

Chp
ζ

xhp
ζ +

−kvζ 0

0 −kvζ


︸ ︷︷ ︸

Dhp
ζ

∆iccζ (6.19)

which, when combined with the unfiltered signal, may be expressed as follows:

zdq→abc
ζ = yhp

ζ +Gf
ζy

ol
ζ (6.20)

6.2.3 Voltage signals for the PWM

The converter dq frame then connects back to the grid frame by an inverse process, which provides

the values for ∆vref
ζ . Hence, the dynamics associated with the inverse Park transformation are as

follows:

∆vg
d = cos θv,0∆vref,c

d − sin θv,0∆vref,c
q − (vc

d,0 sin θv,0 + vc
q,0 cos θv,0)∆θc

v

∆vg
q = sin θv,0∆vref,c

d + cos θv,0∆vref,c
q + (vc

d,0 cos θv,0 − vc
q,0 sin θv,0)∆θc

v (6.21)

Given that the converter dq frame is, in steady-state, aligned with the bridge voltage, it follows

that vc
d,0

vc
q,0

 =

cos θv,0 − sin θv,0

sin θv,0 cos θv,0

vg
d,0

vg
q,0


=

 cos θv,0v
g
d,0 + sin θv,0v

g
q,0

− sin θv,0v
g
d,0 + cos θv,0v

g
q,0

 (6.22)
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Hence, it can be shown that

Gh
ζ =

−={vg
ζ,0

}
0

+<
{
vg
ζ,0

}
0

 (6.23)

Expressed in matrix form, the frame transformation process is as follows:

∆vref,g
ζ =

cos θvζ ,0 − sin θvζ ,0

sin θvζ ,0 cos θvζ ,0


︸ ︷︷ ︸

Gg
ζ(s)

∆vref,c
ζ (s) +

−={vg
ζ,0

}
0

+<
{
vg
ζ,0

}
0


︸ ︷︷ ︸

Gh
ζ (s)

 ∆θc
vζ

(s)

∆Vun,ζ(s)

 (6.24)

∆vref,c
ζ Gg

ζ(s)[
∆θc

vζ
(s) ∆Vun,ζ(s)

]T
Gh
ζ (s)

∆vg
ζ

Figure 6.2: Section of controller where the drive voltages are converted to the grid frame.

Contribution to unified state-space model

A useful result that will be applied in chapter 7 is one which links the bridge voltage to the state-

vector, output vector

ydq→abc
ζ =


O(2, NE)

ρpscdq︷ ︸︸ ︷[(
Gg
ζ

(
Dhp
ζ G

d
ζ +Gf

ζ

)
+Gh

ζ

)
Gol
ζ Gg

ζC
hp
ζ

]
︸ ︷︷ ︸

Cdq
ζ

xuni
ζ + . . .

[(
Gg
ζ

(
Dhp
ζ G

d
ζ +Gf

ζ

)
+Gh

ζ

)
Dol,ref
ζ

]
︸ ︷︷ ︸

Ddq
ζ

zref
ζ + . . .

[(
Gg
ζ

((
Dhp
ζ G

d
ζ +Gf

ζ

)
+Gh

ζ

)
Dol
ζ +Dhp

ζ G
c
ζ

)]
︸ ︷︷ ︸

Edq
ζ

yloc
Eζ

(6.25)
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where

xuni
ζ =

[(
xloc

Eζ

)T (
xol
ζ

)T (
xhp
ζ

)T
]T

(6.26)

For the single converter system, NE = 6 (see chapter 3). To permit extending the model to multi-

converter systems, the states for a given converter, ζ, using power synchronization control in a

multi-converter system will be defined as

xpsc
ζ =

[(
xol
ζ

)T (
xhp
ζ

)T
]T

(6.27)

Again, the component state-space matrices will vary from converter to converter i.e. these compo-

nent matrices need re-evaluation when moving through the converters in the model construction.

6.3 Block diagrams and transfer function matrix extraction

Combining the blocks for the control system with the block diagram for the network, a global block

diagram is obtained:

[
∆P ref

ζ

∆Eref
ζ

]

Gb
ζ

Ga
ζ

Gf
ζ

Gd
ζ

Gc
ζ

Ge
ζ

Gg
ζ

Gh
ζ

Gi
ζ

∆vref,g
ζ (s)→ ∆vg

ζ(s)

Gζ(s)

Damping

Conv. → grid

Network
Controllers

PI

yEζ

Figure 6.3: Block diagram illustrating the linearised model
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From inspection,

∆vg
ζ = Gi

ζ

[((
Gh
ζ +Gg

ζ

(
Gf
ζ +Ge

ζG
d
ζ

))
Gb
ζGζ +Gg

ζG
e
ζG

c
ζGζ

)
∆vg

ζ+ . . .(
Gh
ζ +Gg

ζ

(
Ge
ζG

d
ζ +Gf

ζ

))
Ga
ζz

loc
Eζ

]
(6.28)

Since yloc
Eζ

= Gζ∆v
g
ζ , it follows that

yo
ζ = Hpsc

ζ zloc
Eζ

(6.29)

where

yo =
[
∆Pζ ∆Eζ

]T
(6.30)

and

Hpsc
ζ = ΩG

[
I2 −

((
Gh
ζ +Gg

ζ

(
Gf
ζ +Ge

ζG
d
ζ

))
Gb
ζGζ +Gg

ζG
e
ζC3Gζ

)]−1
× . . .(

Gh
ζ +Gg

ζ

(
Ge
ζG

d
ζ +Gf

ζ

))
Ga
ζ (6.31)

yo = Ωyloc
Eζ

(6.32)

The Ω term is just to ensure that only the response of ∆Pζ and ∆Eζ to
[
∆P ref

ζ ∆Eref
ζ

]T
are

considered. Thus,

Ω =

1 0 0 0 0 0

0 1 0 0 0 0

 (6.33)

Unified linear state-space model

Now let us complete the unified linear state-space model, which contains the dynamics of both the

controller and plant in one single state-space model. For simplicity, let us ignore the switching

delays.
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Before substituting for yc→g
ζ and yloc

Eζ
, the state-equation reads as follows:

dxuni
ζ

dt
=


Aloc

Eζ
O(NE, Nc)

O(Nc, NE)

 Aol
ζ O(2, 2)

Bhp
ζ G

d
ζC

ol
ζ Ahp

ζ


︸ ︷︷ ︸

Apsc
ζ


xloc

Eζ

xpsc
ζ


︸ ︷︷ ︸
xuni
ζ

+


O(NE, Nref) Bref

ζ

Bhp
ζ G

d
ζD

ref
ζ


︸ ︷︷ ︸

Bpsc,b
ζ

 z
ref
ζ + . . .

 Bloc
Eζ

O(Nc, 2)

yc→g
ζ +


O(NE, 6) Bol

ζ

Bhp
ζ (Gc

ζ +Gd
ζD

ol
ζ )


︸ ︷︷ ︸

Bpsc,a
ζ

y
loc
Eζ

(6.34)

where Nref = 2, one for the power reference and one for the PCC voltage reference. The number of

states associated with the controller, Nc, is four.

Equation 6.34 is actually a convenient form to work with when assessing multi-converter systems,

which will be covered in chapter 7.

Since

yc→g
ζ =

(
I2 −Ddq

ζ D
loc
Eζ

)−1

︸ ︷︷ ︸
Λ

(
Cdq
ζ x

uni
ζ +Edq

ζ z
ref
ζ +Ddq

ζ C
loc
Eζ
xloc

Eζ

)
(6.35)

yloc
Eζ

= C loc
Eζ
xloc

Eζ
+DEζy

c→g
ζ (6.36)

a unified linear state-space model (plant and controller) can be constructed i.e.

dxuni
ζ

dt
= Auni

ζ xuni
ζ +Buni

ζ zref
ζ (6.37)

Assuming an LC filter, the resulting system has ten states (six due to the plant and four due to the

controller). For an L filter, the number of states is reduced to eight. From a purely programming

perspective, this makes power synchronization control a simpler algorithm which can be assessed

more rapidly than dq-axis vector current control.

The frequency response data can be obtained using 3.4. Since the state-space model unifies the
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controller and plant, the state matrices can be used to directly calculate the poles and zeros of the

combined system. The poles of the overall system are just the eigenvalues of Auni
ζ . The zeros require

a little more effort. The QZ method is suitable for this problem. Alternatively, one can use built

in MATLAB commands.

6.3.1 Condensed models for multi-converter system analyses

As with the linear model of dq-axis vector current control, the model may be condensed as shown

below: [
∆P ref

ζ ∆Eref
ζ

]T
Cpsc

aζ
(s)

G(s)

yo(s)

Network response

yE(s)

Cpsc
bζ

(s)

C9(s)

∆vref,g
ζ (s)→ ∆vg

ζ(s)

Figure 6.4: Fully condensed linearised model suitable for adapting to more complex systems

In this case, it follows that

∆vref,g
ζ (s) = Cpsc,b

ζ yEζ
(s) +Cpsc,a

ζ

∆P ref
ζ

∆Eref
ζ

 (6.38)

which is a result that will be used in chapter 7.
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Unified state-space model

For an n converter system, equation 4.50 would be recycled in the following manner:

d

dt



xE

xpsc
1

xpsc
2

...

xpsc
n


=



AE

Apsc
1

Apsc
2

. . .

Apsc
n





xE

xpsc
1

xpsc
2

...

xpsc
n


+

 BE

O(4n, 2n)



yc→g

1

yc→g
2

...

yc→g
n


︸ ︷︷ ︸

zE

+ . . .



O(NE, 6n)
Bpsc,a

1

Bpsc,a
2

. . .

Bpsc,a
n


︸ ︷︷ ︸

Bpsc,a




yE1

yE2

...

yEn


︸ ︷︷ ︸
yE

+ . . .



O(NE, 2n)
Bpsc,b

1

Bpsc,b
2

. . .

Bpsc,b
n


︸ ︷︷ ︸

Bpsc,b




zref

1

zref
2

...

zref
n


︸ ︷︷ ︸
zref

(6.39)

where yEζ
is as defined in equation 3.15. The vector yc→g

ζ contains the bridge voltages set by the

controller for converter ζ.

6.4 Linear & non-linear simulations involving power synchroniza-

tion control

For all simulations, the same diagonal controller (with the same gains is used), along with the same

filter for the current components. The values used are given in table 6.1 [3]:
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kpsl
p kpsl

i kavl
p kavl

i kif αif

0 50 0 60 0.45 40

Table 6.1: Settings for the power synchronization controller.

These were as given by Zhang in [3]. This was done to ensure that the controller was not tuned in

a manner to make other controllers appear superior by comparison, which would lead to biased and

unfair comparisons.

In the following subsections, a range of operating points are considered, covering different filter

topologies, different short-circuit ratio values and different power set points. For each operating

point considered, four Bode plots are presented such as can be seen in figure 6.5. Starting from

the top left and moving clockwise, the first Bode plot shows the frequency response of active power

output to a change in P ref
ζ , the second Bode plot shows the frequency response of active power

output to a change in Eref
ζ , the third Bode plot shows the frequency response of the AC voltage

magnitude at the filter bus to a change in Eref
ζ , and the fourth Bode plot shows the frequency

response of the AC voltage magnitude at the filter bus to a change in P ref
ζ . Each Bode plot has two

curves: the solid curve shows results obtained from the linear model, while the dotted curve shows

results obtained from frequency scanning of a non-linear model. In addition, time domain plots

are shown for each operating point considered. The solid lines show the response of the system to

a 0.1 p.u. step change in power set point, while the dashed lines show the response to a 0.1 p.u.

step change in the reference AC voltage magnitude at the filter bus, Eref
ζ . The blue lines show the

AC voltage magnitude at the filter bus, the red-orange lines show the active power output, and the

yellow lines show the reactive power output.

6.4.1 Baseline case studies (LC filter)

In this section, two short-circuit ratio values are considered: three and one. The former is to illus-

trate the performance of the control algorithm in moderate strength systems, while the latter is to

illustrate the performance of the control algorithm when the converter is highly isolated electrically

speaking.

Figures 6.5 to 6.7 illustrate the performance of the controller in a system with a short-circuit ratio
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of three for three different power set points: P0 = 0.0 p.u., 0.50 p.u. and 0.9 p.u.

It can be seen that there is a strong response in the off-main diagonal elements at around 100

rad/s. This can be thought of as the converter ‘swinging’ with and against the slack bus. As more

converters with controllers which mimic synchronous machine dynamics are installed, the effective

short-circuit ratio is boosted, which will lead to greater swinging. In addition, as can be observed,

the oscillatory behaviour increases with power set point.

While this may suggest a weakness in the power synchronization control algorithm, decoupling could

be boosted by incorporating a power system stabiliser, much as would be done in a real synchronous

generator.
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(b) Time domain simulation of non-linear model
featuring a change in P ref .

Figure 6.5: Performance of the power synchronization controller. SCR = 3, P0 = 0.0pu.
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Figure 6.6: Performance of the power synchronization controller. SCR = 3, P0 = 0.50pu.
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(b) Time domain simulation of non-linear model
featuring a change in P ref .

Figure 6.7: Performance of the power synchronization controller. SCR = 3, P0 = 0.90pu.

Figures 6.8 to 6.10 show the performance of the power synchronization control scheme when the

short-circuit ratio is one. It can be seen that cross-coupling between the control loops is relatively

minor, with most coupling again occurring at frequencies around 100 rad/s. That is to say, the

system properties have a secondary role in the location of the peak i.e. the controller is the primary

driver of the location. This is desirable since it reduces the need to know about system topology in

order to effectively compensate for the coupling.

As can be seen, the linear model developed in this thesis is in good agreement with the frequency

scanning results. This gives confidence that the dynamics predicted by the linear model are accurate.
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(a) Bode magnitude plots for power synchroniza-
tion control. Solid line - linear model; dotted -
frequency scanning.
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(b) Time domain simulation of non-linear model.
Solid - change in P ref ; dashed - change in Eref

Figure 6.8: Performance of the power synchronization controller. SCR = 1, P0 = 0.0pu.
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(a) Bode magnitude plots for power synchroniza-
tion control. Solid line - linear model; dotted -
frequency scanning.
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(b) Time domain simulation of non-linear model.
Solid - change in P ref ; dashed - change in Eref

Figure 6.9: Performance of the dq-axis vector current controller. SCR = 1, P0 = 0.50pu.
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(a) Bode magnitude plots for power synchroniza-
tion control. Solid line - linear model; dotted -
frequency scanning.
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(b) Time domain simulation of non-linear model.
Solid - change in P ref ; dashed - change in Eref

Figure 6.10: Performance of the power synchronization controller. SCR = 1, P0 = 0.70pu.

At P0 = 0.7pu, it can be observed that there is a significant discrepancy developing between the

linear and non-linear models. Specifically, the predicted response, from the linear model, of power

output to changes in P ref is lower than observed in the non-linear model in the mid-to-high frequency

range. This is probably partly due to a combination of the size of the amplitude of the disturbance

to which the system was subjected, and the high load angle, which would result in high order terms

becoming more powerful. To understand this, consider perturbing sin θv:

sin(θv,0 + ∆θv) = sin θv,0 cos(∆θv) + cos θv,0 sin(∆θv)

= sin θv,0

1−
(∆θv)2

2
+ . . .

+ cos θv,0

∆θv +
(∆θv)3

6
+ . . .

 (6.40)

If P0 is high, θv,0 will be high also. As a result, sin θv,0 will not be very small. As a result, the

coefficient in front of (∆θvζ )
2 term may be sufficiently large to accommodate for the small size of

(∆θv)2 on its own. The weighting of this effect would be dependent on the control topology, the

filter topology, and would also have a frequency bias by virtue of the present of PI controllers and

the high-pass filter.

Figure 6.11 and 6.12 show the poles and zeros of the combined system (plant and controller with

feedback) for a range of power set points. As can be seen, there are no right half plane poles. Active
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power set points vary from 0p.u. to 0.85p.u. At the highest power set point, the transmission zeros

are closest to the origin. Relative to the transmission zeros, the poles exhibit lower sensitivity to

the power set point.
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Figure 6.11: Poles and zeros for the controller the combined system when the short-circuit ratio is 1 as
evaluated at a range of active power set points.
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Figure 6.12: Close up of low frequency poles and zeros for the combined system when the short-circuit ratio
is 1 as evaluated at a range of active power set points.

6.4.2 Using an L filter

In this section, results are presented only for the case where the short-circuit ratio is one. It can

be observed that the performance of the power synchronization controller does not exhibit strong

sensitivity to the filter topology. It would thus be suitable for application to MMC systems.
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(a) Bode magnitude plots for power synchroniza-
tion control. Solid line - linear model; dotted -
frequency scanning.
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(b) Time domain simulation of non-linear model.
Solid - change in P ref ; dashed - change in Eref

Figure 6.13: Performance of the power synchronization controller. SCR = 1, P0 = 0.0pu.
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(a) Bode magnitude plots for power synchroniza-
tion control. Solid line - linear model; dotted -
frequency scanning.
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(b) Time domain simulation of non-linear model.
Solid - change in P ref ; dashed - change in Eref

Figure 6.14: Performance of the power synchronization controller. SCR = 1, P0 = 0.5pu.
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(a) Bode magnitude plots for power synchroniza-
tion control. Solid line - linear model; dotted -
frequency scanning.
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(b) Time domain simulation of non-linear model.
Solid - change in P ref ; dashed - change in Eref

Figure 6.15: Performance of the power synchronization controller. SCR = 1, P0 = 0.7pu.

6.5 Summary

A pole-zero analysis revealed power synchronization control had superior damping capabilities. In

addition, the relative simplicity of such a controller (or similar such algorithms) makes it appealing

for developers. Importantly, the controller was able to make the converter behave as a voltage

source.

A re-formulation of the linear model of power synchronization control has been presented and thor-

oughly validated. By containing all control elements in the control part of the combined model

(controller and plant with feedback), the model can easily be integrated into larger systems com-

prising multiple converters. In the next chapter, studies involving multiple converters where some

use power synchronization control and others use dq-axis vector current control will be presented.
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Small-signal stability in

multiple-converter systems

In reality, power systems will comprise numerous converters. Not only is it possible for coupling

to occur within a converter’s numerous control loops, it is also possible for interactions to occur

between the control loops of different converters. That is to say, in an n converter system, it is of

interest to know how converter 1 influences converter 2, 3, 4, and so on, and also the influence of

all converters on converter 1 (and every other converter for that matter).

In this chapter, the models developed in the previous chapters are extended to allow investigations

of high-impedance systems comprising multiple converters. Moreover, the linear models herein de-

veloped are formulated in such a way as to be sufficiently flexible to model an arbitrary number

of converters. Readers should be able to easily implement the state-space models herein developed

in their desired programming language with relative ease. Additionally, the models are such that a

single simulation comprising multiple converters may be such that each converter has its own unique

controller may be studied. As a representative example, converter 1 may use dq-axis vector current

control, while converter 2 may use power synchronization control.

Given the multivariate nature of the system, the exact stability margins would highly be specific to

the system under consideration. Thus, it is the author’s belief that it is more appropriate to outline

an algorithm which can be used to quickly evaluate an extensive range of scenarios.
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7.1 Power system modelling

Let us consider power systems in which there are parallel lines linking at some global point of

common coupling, which then links to a wider network through a simple RL line. For each parallel

line, there is a converter with a filter and local transmission line as described in chapter 3. This

forms a system as shown in figure 7.1:
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Rc1 Lc1
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∠θ1

...

Vζ∠θVSCζ

vg
ζ

Rcζ Lcζ

Cfζ

igcζ
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ug
CP

Rn Ln
E0∠0

Figure 7.1: Circuit diagram (single-line representation) of a simple multi-converter power system. ug
CP is the

voltage at the ‘global’ connection point, as expressed in the grid dq frame.

Note that there are no local loads in this topology. To account for such, a second system is defined

as shown in figure 7.2
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Figure 7.2: Circuit diagram (single-line representation) of a simple multi-converter power system where each
converter has its own local load. ug

CP is the voltage at the ‘global’ connection point, as expressed in the grid
dq frame.

For analysing these systems, the grid dq frame is now defined such that it is aligned with the slack

bus at the end of the network line. As a result, the voltages at the end of the each local transmission

line, ug
ζ , are no longer guaranteed to be aligned with the d axis of the grid dq frame.

The system may be split into three sections: one section which represents the dynamics of the

inverter filters and their local transmission lines; one which represents the linking of the inverters

to a common point; and one which represents the remainder of the system.
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The part of the network model which represents the wider power system is a simple transmission

line with a slack bus. The dynamics of this section are given as follows:

Ln

d
∑

ζ ∆igfζ
dt

= ∆ug
CP −Rn

∑
ζ

∆igfζ + ω0Ln

 0 1

−1 0

∑
ζ

∆igfζ (7.1)

7.1.1 No local loads

To begin with, let us consider a network comprising n converters as shown in figure 7.1. This could

be a local network corresponding to a cluster of wind turbines, or a set of solar panels, or even a

very simplified model of a system comprising a collection of HVDC systems.

From inspection, it can be observed that igfζ = igtζ . In addition, by Kirchoff’s law,

ign =
∑
ζ

igfζ (7.2)

where ign is the current flowing through the transmission line with inductance Ln, which represents

the wider network.

Derivation of the linear model of the power system

Consider a single instance of the local system first. In this chapter, the voltages at the ends of local

transmission lines are not necessarily stiff; thus, the Blin1
E zlin

E are not neglected and so the dynamics

are no longer expressed in the standard state-space form, but in the form of equation 3.1, which is

shown below for convenience:

dxloc
Eζ

dt
= Aloc

Eζ
xloc

Eζ
+Bloc

Eζ
zloc

Eζ
+Blin1

Eζ
zlin

Eζ
(7.3)

where the superscript ‘loc’ is to denote that the matrix/matrices and associated vectors are referring

to local, single converter systems (see Fig. 3.1 and 7.1). The superscript ‘lin’ describes the voltages

at the ends of the local transmission lines.
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For the n converter case, let us define

xloc
E =

[(
xloc

E1

)T (
xloc

E2

)T (
xloc

E3

)T
. . .

(
xloc

En

)T]T

zloc
E =

[
(∆vg

1)
T

(∆vg
2)

T
(∆vg

3)
T

. . . (∆vg
n)

T
]T

zlin
E =

[
(∆ug

1)
T

(∆ug
2)

T
(∆ug

3)
T

. . . (∆ug
n)

T
]T

(7.4)

where the vectors are as given in chapter 3.

Thus, equation 7.3 becomes

dxloc
E

dt
= Aloc

E xloc
E +Bloc

E zloc
E +Blin1

E zlin
E (7.5)

where

Aloc
E =



Aloc
E1

Aloc
E2

Aloc
E3

. . .

Aloc
En


(7.6)

Bloc
E =



Bloc
E1

Bloc
E2

Bloc
E3

. . .

Bloc
En


;Blin1

E =



Blin1
E1

Blin1
E2

Blin1
E3

. . .

Blin1
En


(7.7)

The elements of xloc
Eζ

will be set according to the filter of converter ζ.

Since there are no local loads to consider, the local system matrices Aloc
Eζ

, Bloc
Eζ

and Blin1
Eζ

, are as

defined in chapter 3.
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To facilitate the linking of the local systems with the wider network, a model of the connection

point is included which includes a small inductance for each line, Lfζ ; this may be thought of as

part of the inductance of the transmission line. The dynamics of said section are thus as follows:

Lfζ

d∆igtζ
dt

= ∆ug
ζ −∆ug

CP + ω0Lfα

 0 1

−1 0

∆igtζ ζ = 1, 2, 3, . . . , n (7.8)

Therefore, for each line,

Lfζ

d∆igtζ
dt

= ∆ug
ζ −

Ln

d
∑

η ∆igtη

dt
+Rn

(∑
η

∆igtη

)
− ω0Ln

 0 1

−1 0

(∑
η

∆igtη

)+ . . .

ω0Lfζ

 0 1

−1 0

∆igtζ (7.9)

Let

xlin
E =

[
(∆igt1)T (∆igt2)T (∆igt3)T . . . (∆igtN)T

]T
(7.10)

Therefore, the combined dynamics of all linking sections and the wider network may be expressed

as follows:

dxlin
E

dt
= Alin1

E xlin
E +Alin2

E

dxlin
E

dt
+Blin2

E zlin
E (7.11)
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The matrices Alin1a
E , Alin1b

E , Alin2
E and Bloc1a

E are given as follows:

Alin1a
E =



 0 ω0

−ω0 0


 0 ω0

−ω0 0


. . .  0 ω0

−ω0 0




(7.12)
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Alin1b
E =




−
Rn

Lf1

ω0Ln

Lf1

−
ω0Ln
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−
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Lf1
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ω0Ln
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
−
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−
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−
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Lf2

ω0Ln

Lf2

−
ω0Ln

Lf2

−
Rn

Lf2


...

...
. . .

...
−
Rn

Lfn

ω0Ln

Lfn

−
ω0Ln

Lfn

−
Rn

Lfn



−
Rn

Lfn

ω0Ln

Lfn

−
ω0Ln

Lfn

−
Rn

Lfn

 . . .


−
Rn

Lfn

ω0Ln

Lfn

−
ω0Ln

Lfn

−
Rn

Lfn





(7.13)

Alin2
E = −Ln
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1

Lf1

0
1

Lf1

0 . . .
1

Lf1

0

0
1

Lf1

0
1

Lf1

. . . 0
1

Lf1

1

Lf2

0
1

Lf2

0 . . .
1

Lf2

0

0
1

Lf2

0
1

Lf2

. . . 0
1

Lf2
...

...
...

...
. . .

...
...

1

Lfn

0
1

Lfn

0 . . .
1

Lfn

0

0
1

Lfn

0
1

Lfn

. . . 0
1

Lfn



(7.14)
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Finally,

Blin2
E =



1/Lf1

1/Lf1


1/Lf2

1/Lf2


. . . 1/Lfn

1/Lfn




(7.15)

The above matrices can be very easily coded in MATLAB (using the repmat command) or in C++

by appropriate looping.

Considering equation 7.11

dxlin
E

dt
=
(
I −Alin2

E

)−1
Alin1

E︸ ︷︷ ︸
Alin3

E

xlin
E +

(
I −Alin2

)−1
Blin2

E︸ ︷︷ ︸
Blin3

E

zlin
E (7.16)

Equations 7.5 and 7.16 can be linked through the appropriate substitution for zlin
E . Also, the state

vector of the wider network part of the model, xlin
E , can be thought of as a sub-group of the state

vector of the converter part, xloc
E . Thus, the two sections can be linked:

dxloc
E

dt
= Aloc

E xloc
E +Bloc

E zloc
E + . . .

Blin1
E

(Blin3
E

)−1 dxlin
E

dt
−
(
Blin3

E

)−1
Alin3

E xlin
E

 (7.17)

κ
dxloc

E

dt
=

(
Aloc

E −B
lin1
E

(
Blin3

E

)−1
Alin3

E σ

)
xloc

E +Bloc
E zloc

E (7.18)
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where

κ = I −Blin1
E

(
Blin3

E

)−1
σ (7.19)

and

σ =



σ1

σ2

σ3

. . .

σn


(7.20)

The linking matrices, σζ , will depend on the type of converter filter being applied i.e. L or LC:

σζ =



0 0 0 0 1 0

0 0 0 0 0 1

 for LC− filtered converters

1 0

0 1

 for L− filtered converters

(7.21)

Therefore,

dxE

dt
= κ−1

(
Aloc

E −B
lin1
E

(
Blin3

E

)−1
Alin0

E σ

)
︸ ︷︷ ︸

AE

xE + κ−1Bloc
E︸ ︷︷ ︸

BE

zE (7.22)

where xE = xloc
E and zE = zloc

E i.e. the dq components of perturbations in the bridge voltages for

all converters.

The steady-state solver

To carry out the small signal stability analysis, it is necessary to evaluate the steady-state operating

conditions around which the perturbations will be applied. In steady-state, the derivative terms

are omitted from the state-equation; thus, to determine the steady-state values, the steady-state
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equivalent of equation 7.22 needs solving. This is almost a simple case of swapping perturbation

terms for the steady-state values e.g. ∆eg
1 → eg

1,0. However, it must be stressed that this involves

adding in an additional term in the form of the steady-state slack bus voltage, for which there is no

perturbation term. Including the slack bus,

ug
CP,0 = Ln

d
∑

ζ i
g
fζ ,0

dt
+Rn

∑
ζ

igfζ ,0 − ω0Ln

 0 1

−1 0

∑
ζ

igfζ ,0 +

ε0
0

 (7.23)

Therefore, for each line,

zlin
Eζ ,0

= ug
ζ,0

= Rn

∑
ζ

igtζ ,0 − ω0Ln

 0 1

−1 0

∑
ζ

igtζ ,0 +

E0

0

− ω0Lfζ

 0 1

−1 0

 igtζ ,0

=


 Rn −ω0Ln Rn −ω0Ln . . . Rn −ω0Ln

ω0Ln Rn ω0Ln Rn . . . ω0Ln Rn


︸ ︷︷ ︸

Bssa
ζ,0

σζ

xE,0 + . . .

 0 −ω0Lfζ

ω0Lfζ 0


︸ ︷︷ ︸

B
ssb
ζ,0

igtζ ,0 +

ε0
0

 (7.24)

This may then be substituted into a steady-state form of equation 7.5 to give an equation of the

form

O(2n, 1) = Aloc
E,0xE,0 +Bloc

E,0z
loc
E,0 +Blin1

E,0

ε0
0

+ . . .

Blin1
E,0




Bssa

1,0

Bssa
1,0

...

Bssa
n,0

+


Bssb

1,0

Bssb
1,0

. . .

Bssb
n,0



σxE,0 (7.25)
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where

Aloc
E,0 = Aloc

E (7.26)

Bloc
E,0 = Bloc

E (7.27)

Blin1
E,0 = Blin1

E (7.28)

Equation 7.25 cannot be solved on its own since there are too many unknowns for the number

of equations. That is, there are 2n unknowns which cover the dq components of the steady-state

bridge voltages at each converter, and the nE unknowns which are the steady-state state vector

elements i.e. xE. There are currently only nE equations.

As before, this issue is resolved by including the expressions for steady-state powers (one for each

converter) and steady-state voltage magnitudes at every local point of common coupling (or any

other point in the local system). Including these, there is a sufficient number of equations for the

system to be solved. As before, due to the non-linear nature of the voltage magnitude expression,

an iterative solver is required.

For completeness, the steady-state active power outputs for all converters is given by equation 7.29:



P1,0

P2,0

P3,0

...

Pn,0


=



CP1

CP2

CP3

. . .

CPn


xE,0 (7.29)

where

CPζ ,0 =


[
0 0 igtζd,0 igtζq,0 0 0

]
for LC-filtered converters[

eg
ζd,0 eg

ζq,0

]
for L-filtered converters

(7.30)
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The steady-state bridge voltage values are described by equation 7.31:


V 2

1,0

V 2
2,0

...

V 2
n,0

 =


CV1,0

CV2,0

. . .

CVn,0


︸ ︷︷ ︸

CV,0

zE,0 (7.31)

where

CVζ ,0 =
[
vg

dζ ,0
vg

qζ ,0

]
(7.32)

7.1.2 Including local loads

While a system like a wind farm may not have local loads, there are many examples of power systems

where there are energy sources and sinks intertwined. To handle this case, the power system model

illustrated in figure 7.2 is considered.

Derivation of the linear model of the power system

For simplicity, only resistive loads have been considered, and all converters will be assumed to have

an associated local load1. In this case, an extra set of equations is introduced:

∆ug
ζ = ∆iglζRlζ (7.33)

=
(

∆igtζ −∆igfζ

)
Rlζ (7.34)

Consequently, the state-equation for the set of local systems is best expressed as follows:

dxloc
E

dt
= Aloc

E xloc
E +Bloc

E zloc
E +Blin1

E xlin
E (7.35)

1The second statement is required for stable evaluation of the state-space model in its presented form
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where

xloc
E =

[(
xloc

E1

)T (
xloc

E2

)T (
xloc

E3

)T
. . .

(
xloc

En

)T]T

zloc
E =

[
(∆vg

1)
T

(∆vg
2)

T
(∆vg

3)
T

. . . (∆vg
n)

T
]T

xlin
E =

[(
∆igf1

)T (
∆igf2

)T (
∆igf3

)T
. . .

(
∆igfn

)T]T

(7.36)

and, as with the case with no resistive loads,

Aloc
E =



Aloc
E1

Aloc
E2

Aloc
E3

. . .

Aloc
En


; Bloc

E =



Bloc
E1

Bloc
E2

Bloc
E3

. . .

Bloc
En


(7.37)

Blin1
E =



Blin1
E1

Blin1
E2

Blin1
E3

. . .

Blin1
En


(7.38)

147



Chapter 7. Small-signal stability in multiple-converter systems

For an LC-filtered converter, the component sub-matrices are as follows:

Aloc
Eζ

=



−
Rcζ

Lcζ

ω0 −
1

Lcζ

0 0 0

−ω0 −
Rcζ

Lcζ

0 −
1

Lcζ

0 0

1

Cfζ

0 0 ω0 −
1

Cfζ

0

0
1

Cfζ

−ω0 0 0 −
1

Cfζ

0 0
1

Ltζ

0 −
Rtζ +Rlζ

Ltζ

ω0

0 0 0
1

Ltζ

−ω0 −
Rtζ +Rlζ

Ltζ



; Bloc
Eζ

=



1

Lcζ

0

0
1

Lcζ

0 0

0 0

0 0

0 0



Blin1
Eζ

=

0 0 0 0 Rlζ/Ltζ 0

0 0 0 0 0 Rlζ/Ltζ

T

(7.39)

While not explicitly presented in this work for brevity reasons, the component sub-matrices for

an L-filtered converter have been coded up also (see Appendices) for the reader’s interest. The

associated sub-matrices are as follows:

Aloc
Eζ

=


−
Rcζ +Rlζ +Rtζ(

Lcζ + Ltζ

) ω0

−ω0 −
Rcζ +Rlζ +Rtζ(

Lcζ + Ltζ

)

 ; Bloc
Eζ

=


1(

Lcζ + Ltζ

) 0

0
1(

Lcζ + Ltζ

)


Blin1

Eζ
=

Rlζ/Ltζ 0

0 Rlζ/Ltζ

T

(7.40)

Equation 7.1 remains unchanged. However, equation 7.8 should be expressed without any explicit
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dependence on ∆ug
ζ ; that is,

Lfζ

d∆igfζ
dt

=
(

∆igtζ −∆igfζ

)
Rlζ −∆ug

CP + ω0Lfζ

 0 1

−1 0

∆igfζ ζ = 1, 2, 3, . . . , n (7.41)

Therefore, for each line,

Lfζ

d∆igfζ
dt

=
(

∆igtζ −∆igfζ

)
Rlζ + ω0Lfζ

 0 1

−1 0

∆igfζ − . . .Ln

d
∑

ζ ∆igfζ
dt

+Rn

∑
ζ

∆igfζ − ω0Ln

 0 1

−1 0

∑
ζ

∆igfζ

 (7.42)

Since all occurrences of ∆igfζ , i.e. covering all values of ζ, are members of xloc
E , the combined

dynamics of all linking sections and the wider network may be expressed as follows:

dxlin
E

dt
=
(
I −Alin2

E

)−1 (
Alin1a

E +Alin1b
E

)
︸ ︷︷ ︸

Alin1
E

xlin
E +

(
I −Alin2

E

)−1
Bloc1a

E︸ ︷︷ ︸
Bloc1

E

xloc
E (7.43)

where nE,L = nE − 2n. By extension, if the system comprises no LC-filtered converters, the zero

matrix in Bloc1
E will not be required.
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The matrices Alin1a , Alin1b , Alin2
E and Bloc1a are given as follows:

Alin1a
E =




−
Rl1

Lf1

ω0

−ω0 −
Rl1

Lf1



−
Rl2

Lf2

ω0

−ω0 −
Rl2

Lf2


. . . 

−
Rln

Lfn

ω0

−ω0 −
Rln

Lfn





(7.44)

Alin1b
E =




−
Rn

Lf1

ω0Ln

Lf1

−
ω0Ln

Lf1

−
Rn

Lf1



−
Rn

Lf1

ω0Ln

Lf1

−
ω0Ln

Lf1

−
Rn

Lf1

 . . .


−
Rn

Lf1

ω0Ln

Lf1

−
ω0Ln

Lf1

−
Rn

Lf1



−
Rn

Lf2

ω0Ln

Lf2

−
ω0Ln

Lf2

−
Rn

Lf2



−
Rn

Lf2

ω0Ln

Lf2

−
ω0Ln

Lf2

−
Rn

Lf2

 . . .


−
Rn

Lf2

ω0Ln

Lf2

−
ω0Ln

Lf2

−
Rn

Lf2


...

...
. . .

...
−
Rn

Lfn

ω0Ln

Lfn

−
ω0Ln

Lfn

−
Rn

Lfn



−
Rn

Lfn

ω0Ln

Lfn

−
ω0Ln

Lfn

−
Rn

Lfn

 . . .


−
Rn

Lfn

ω0Ln

Lfn

−
ω0Ln

Lfn

−
Rn

Lfn





(7.45)

150



Chapter 7. Small-signal stability in multiple-converter systems

Alin2
E is given as follows:

Alin2
E = −Ln



1

Lf1

0
1

Lf1

0 . . .
1

Lf1

0

0
1

Lf1

0
1

Lf1

. . . 0
1

Lf1

1

Lf2

0
1

Lf2

0 . . .
1

Lf2

0

0
1

Lf2

0
1

Lf2

. . . 0
1

Lf2
...

...
...

...
. . .

...
...

1

Lfn

0
1

Lfn

0 . . .
1

Lfn

0

0
1

Lfn

0
1

Lfn

. . . 0
1

Lfn



(7.46)

Finally,

Bloc1a
E =



O(2, 4)


Rl1

Lf1

Rl1

Lf1



O(2, 4)


Rl2

Lf2

Rl2

Lf2


. . .

O(2, 4)


Rln

Lfn

Rln

Lfn





(7.47)

The above matrices can be very easily coded in MATLAB (using the repmat command) or in C++

by appropriate looping.
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Let the combined state-vector for the electrical part of the system be xE =
[(
xloc

E

)T (
xlin

E

)T]T
;

thus,

dxE

dt
=

Aloc
E Blin1

E1

Bloc1
E Alin

E


︸ ︷︷ ︸

AE

xE +

 Bloc
E

O(2n, 2n)


︸ ︷︷ ︸

BE

zE (7.48)

The steady-state solver

To carry out the small signal stability analysis, it is necessary to evaluate the steady-state operating

conditions around which the perturbations will be applied. In steady-state, the derivative terms

are omitted from the state-equation; thus, to determine the steady-state values, the steady-state

equivalent of equation 7.48 needs solving. This is almost a simple case of swapping perturbation

terms for the steady-state values e.g. ∆eg
1 → eg

1,0. However, it must be stressed that this involves

adding in an additional term in the form of the steady-state slack bus voltage, for which there is no

perturbation term. Including the slack bus,

ug
CP,0 = Ln

d
∑

ζ i
g
fζ ,0

dt
+Rn

∑
ζ

igfζ ,0 − ω0Ln

 0 1

−1 0

∑
ζ

igfζ ,0 +

E0

0

 (7.49)

Therefore, for each line,

O(2, 1) =
(
igtζ ,0 − i

g
fζ ,0

) Rlζ

Lfζ

+ ω0

 0 1

−1 0

 igfζ ,0 +

ω0

Ln

Lfζ

 0 1

−1 0

− Rn

Lfζ

∑
ζ

igfζ ,0 − . . .

1

Lfζ

E0

0

 (7.50)

The steady-state form of equation 7.43 is thus as follows:

O(2n, 1) =
(
Alin1a

E,0 +Alin1b
E,0

)
︸ ︷︷ ︸

Alin1
E,0

xlin
E,0 +Bloc1a

E,0︸ ︷︷ ︸
Bloc1

E,0

xloc
E,0 +Blin

E1,0

E0

0

 (7.51)
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where

Blin
E1,0 = −


1

Lf1

0
1

Lf2

0
1

Lf3

0 . . .
1

Lfn

0

0
1

Lf1

0
1

Lf2

0
1

Lf3

. . . 0
1

Lfn


T

(7.52)

Equation 7.53 represents the combined system which needs solving:

O(NE, 1) = AExE +BEzE +

O(Nloc, 2)

Blin
E1

E0

0

 (7.53)

As with all previous examples, in order to determine all the unknowns, 2n+NE, an additional 2n

equations are required. These are the bridge voltage magnitudes and active power set points for all

converters.

Thus, there is a sufficient number of equations for the number of unknowns, allowing an iterative

solver to be developed.

For readers who use MATLAB, the fsolve command can be exploited in order to give a simple solver

for obtaining the steady-state values of all terms.

7.2 The unified linear state-space model

Sub-space algorithms are computationally intensive; thus, for system identification and analysis,

specifically pole-zero evaluation and simple small-signal time domain simulations, the unified lin-

ear state-space model is preferred for multi-converter systems. The block diagram approach may,

however, still be used for determining frequency response data, which can then be used to evaluate

gain and phase margins.

For the unified linear state-space model, let us first note that the bridge voltages of all converters
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may be expressed as follows:



∆vg
1

∆vg
2

∆vg
3

...

∆vg
n


︸ ︷︷ ︸
zE

=


O(2n,NE)



ρcon
1

ρcon
2

ρcon
3

. . .

ρcon
n


︸ ︷︷ ︸

ρcon


︸ ︷︷ ︸

Cdq



xE
ζ

xcon
1

xcon
2

...

xcon
n


︸ ︷︷ ︸
xuni
ζ

+ . . .



Ddq
1

Ddq
2

Ddq
3

. . .

Ddq
n


︸ ︷︷ ︸

Ddq

zref +



Edq
1

Edq
2

Edq
3

. . .

Edq
n


︸ ︷︷ ︸

Edq

yE (7.54)

Following on from chapters, let the output of the electrical part of the model, yE contain

[
∆Pζ ∆Eζ

(
∆igcζ

)T (
∆eg

ζ

)T
]T

(7.55)

for all converters. Thus,

yE = CEx
uni +DEzE (7.56)

where

CE =





Ccon
E1

Ccon
E2

Ccon
E3

. . .

Ccon
En


O(6n, 2n)


(7.57)
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and

DE =



Dcon
E1

Dcon
E2

Dcon
E3

. . .

Dcon
En


(7.58)

If there are no local loads, the zero matrix in equation 7.57 should be omitted.

Thus, an expression for zE in terms of only xuni and zref can be obtained much in the same way as

done in previous chapters:

zE = Cdqxuni +Ddqzref +Edq [CExE +DEzE] (7.59)

Note that

zE =
[
(yc→g

1 )
T

(yc→g
2 )

T
(yc→g

3 )
T

. . . (yc→g
n )

T
]T

(7.60)
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In addition, the state equation with yE, and zE dependence is given as follows:

d

dt



xE

xcon
1

xcon
2

...

xcon
n


=



AE

Acon
1

Acon
2

. . .

Acon
n





xE

xcon
1

xcon
2

...

xcon
n


+

 BE

O(Nc, 2n)



yc→g

1

yc→g
2

...

yc→g
n


︸ ︷︷ ︸

zE

+ . . .



O(NE, 6n)
Bcon,a

1

Bcon,a
2

. . .

Bcon,a
n


︸ ︷︷ ︸

Bcon,a




yE1

yE2

...

yEn

+ . . .



O(NE, 2n)
Bcon,b

1

Bcon,b
2

. . .

Bcon,b
n


︸ ︷︷ ︸

Bcon,b




zref

1

zref
2

...

zref
n

 (7.61)

Combining equations 7.54 and 7.61 with the expressions for AE and BE from equation 7.22, it is

possible to create a unified linear state-space model of the multi-converter system which can easily

be coded up in C++.

7.3 Simulations ignoring local loads

In this section, analysis is confined to dq-axis vector current control and power synchronization

control. The reason for doing so is that dq-axis vector current control has substantial presence in

real applications already, and, out of the three controllers reviewed in the previous chapter, power

synchronization control exhibited the best voltage regulating capability. If the reader is interested,
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the theory developed in the previous section does allow studies with proportional resonant control

to be conducted also.

In addition, each converter is modelled as having an LC filter with per-unit characteristics as given

in the previous chapters. The local transmission line is set to 0.1p.u.

7.3.1 DQ-axis vector current control only

Let us consider the two converter case where both converters employ dq-axis vector current control.

Let the PLLs used be 1st order. Second-order PLLs can be (and have been) simulated; however,

for brevity reasons, results primarily focus on the first-order PLL simulations.

In this system, the outputs can be expressed by equation:


∆P1

∆E1

∆P2

∆E2

 =



∂P1

∂iref
d1

∂P1

∂iref
q1

∂P1

∂iref
d2

∂P1

∂iref
q2

∂E1

∂iref
d1

∂E1

∂iref
q1

∂E1

∂iref
d2

∂E1

∂iref
q2

∂P2

∂iref
d1

∂P2

∂iref
q1

∂P2

∂iref
d2

∂P2

∂iref
q2

∂E2

∂iref
d1

∂E2

∂iref
q1

∂E2

∂iref
d2

∂E2

∂iref
q2


︸ ︷︷ ︸

Hcom


∆iref

d1

∆iref
q1

∆iref
d2

∆iref
q2

 (7.62)

For each operating point, Bode and time traces are presented, respectively showing the frequency

and time domain results from evaluation of the linear model at this operating point. From left

to right, the top row of both figures show the response (either in the frequency domain or time

domain) of the active power output, P1, of converter one to changes in the control variables, iref
d1

,

iref
q1

, iref
d2

and iref
q2

. From left to right, the second row of both figures show the response (either in

the frequency domain or time domain) of the voltage magnitude at the filter bus of converter one,

E1, to changes in the control variables, iref
d1

, iref
q1

, iref
d2

and iref
q2

. From left to right, the third row of

both figures show the response (either in the frequency domain or time domain) of the active power

output of converter two, P2, to changes in the control variables, iref
d1

, iref
q1

, iref
d2

and iref
q2

. Finally, from
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left to right, the fourth row of both figures show the response (either in the frequency domain or

time domain) of the voltage magnitude at the filter bus of converter two, E2, to changes in the

control variables, iref
d1

, iref
q1

, iref
d2

and iref
q2

.

The system strength is set such that the steady-state voltages at the local PCCs have high phases

relative to the voltage at the slack bus when the converters operate at Pζ,0 = 0.7 p.u..

In figures 7.3 and 7.4, the steady-state power output of converter one is fixed at 0.5pu, while the

steady-state power output of converter one is 0.0 p.u.. This translates to the voltage at the filter

bus of converter one having a phase of 14.9659 degrees relative to the slack bus, while the equivalent

voltage for converter two is 17.4770 degrees. In other words, both converters have relatively low

phase differences relative to the slack bus. Considering the findings of [5], [3] and [2] along with

chapter 4 of this thesis, it is no surprise that the system, at the current controller level, is well-

conditioned at this operating point. In other words, as can be seen in figures 7.3 and 7.4, the

diagonal is dominant.
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Figure 7.3: Hcom evaluated when P1,0 = 0.0 p.u. and P2,0 = 0.50 p.u. Bode magnitude response only.
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Figure 7.4: Normalised responses to small step changes in the reference values. System evaluated when
P1,0 = 0.0 p.u. and P2,0 = 0.50 p.u.

When both converters are at Pζ,0 = 0.5 p.u., both converters have filter bus voltages that have a

phase difference of 34.9104 degrees relative to the slack bus. In the low frequency region, it can

be observed in figure 7.5 that ∂P1/∂i
ref
d1

is below unity, while at the same time the strengths of

∂P1/∂i
ref
q1

, ∂P1/∂i
ref
d2

and ∂P1/∂i
ref
q2

have all increased in the same frequency range. In other words,

the system conditioning is deteriorating. It is interesting to note ∂P1/∂i
ref
d2

. The control variable,

iref
d2

is set according to a power controller for converter two i.e iref
d2

is being manipulated with the

intention of controlling P2. Yet, it can be observed that this control variable is beginning to have

an impact on P1. This can be understood by considering chapter four and/or ∂E1/∂i
refd2 and

∂E2/∂i
refd2 . In the single converter system, iref

d has a significant impact on the voltage (which in

the multi-converter system maps to ∂E2/∂i
ref
d2

being strong). By disturbing the local voltage, the

voltages at other points in the system are also affected (see ∂E1/∂i
ref
d1

in figures 7.5 and 7.6). By

noting that power flow across a reactance is proportional to the product of the voltages at the ends

of the reactance, by disturbing the wider system voltages, iref
d2

is able to influence the power output

of converter one, which can be seen in figure 7.6. The same is also the case for the influence of

imathrmrefd1
on P2.
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Figure 7.5: Hcom evaluated when P1,0 = 0.50 p.u. and P2,0 = 0.50 p.u. Bode magnitude response only.
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Figure 7.6: Normalised responses to small step changes in the reference values. System evaluated when
P1,0 = 0.50 p.u. and P2,0 = 0.50 p.u.

In figures 7.8-7.12, the same investigation is carried out, but with converter two having its steady-

state active power output fixed at 0.7 pu. Again, it can be observed that when converter one is
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operating at P1,0 = 0 p.u., the performance of converter two’s d-component current loop is superior

to that seen in chapter 4, even though converter two is operating at 0.7p.u. active power. This is

due to the relatively small phase difference between the slack bus voltage and that at the PCC of

converter two (approximately 25 degrees).
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Figure 7.7: Hcom evaluated when P1,0 = 0.00 p.u. and P2,0 = 0.70 p.u. Bode magnitude response only.
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Figure 7.8: Normalised responses to small step changes in the reference values. System evaluated when
P1,0 = 0.0 p.u. and P2,0 = 0.70 p.u.

However, as the set points of both converters increases, the coupling of the system in the low

frequency range re-appears, reaching levels greater than that seen in figures 7.5 and 7.6, in line with

an increasing phase angles of the pair of local PCCs relative to the slack bus. Again, the strong

connection between iref
d2

and P1 can be observed, and by extension the strong connection between

iref
d1

and P2. In other words, there is strong coupling between converters in addition to between

the control loops in a single converter. This additional coupling introduces an additional degree

of freedom to the system which would make the design of outer controllers more complex. More

specifically, adopting a gain-scheduled de-coupling scheme such as that presented in [5] may require

each controller to have an estimation of the system conditions.
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Figure 7.9: Hcom evaluated when P1,0 = 0.50 p.u. and P2,0 = 0.70 p.u. Bode magnitude response only.
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Figure 7.10: Normalised responses to small step changes in the reference values. System evaluated when
P1,0 = 0.50 p.u. and P2,0 = 0.70 p.u.
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Figure 7.11: Hcom evaluated when all converters are operating at 0.7p.u. Bode magnitude response only
(with the response given in dB).
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Figure 7.12: Normalised responses to small step changes in the reference values. System evaluated when
P1,0 = 0.70 p.u. and P2,0 = 0.70 p.u.

Figures 7.13 and 7.14 show the poles and zeros of the combined system (plant plus controllers (with
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feedback)). It can be seen that there are two pairs of symmetric transmission zeros, which move

closer to the origin as the power set point of converter one is increased, imposing a restriction on the

achievable bandwidth of the outer controller. Again, while the system is observably ill-conditioned

(see figures 7.11), there are no poles in the right half-plane; that is, at the inner current level, the

system is not unstable. That being said, in reference to figure 7.12, the ability of the converters to

effectively translate set point changes in iref
d to changes in the power output is highly compromised.
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Figure 7.13: Root locus showing the poles and zeros for combined system (plant and controllers (with
feedback)) for a range of operating points. For all cases considered, P2,0 = 0.7p.u. P1,0 was varied from 0 to
0.7p.u. with steps of 0.05p.u.
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Figure 7.14: Close up of low frequency poles and zeros for combined system (plant and controllers (with
feedback)) for a range of operating points. For all cases considered, P2,0 = 0.7p.u. P1,0 was varied from 0 to
0.7p.u. with steps of 0.05p.u.

While not extensively studied, figures 7.15 and 7.16 are included to show the performance when a

moderate bandwidth 2nd order PLL is employed (that found in chapter four). No local loads are

present. Converter two has its power set point fixed at 0.7p.u, while the power set point of converter

one is varied in the same manner as before. As the power set point of converter one rises above

0.25p.u., the system enters an unstable region.

166



Chapter 7. Small-signal stability in multiple-converter systems

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500
Real part, rad/s

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

Im
ag

in
ar

y 
pa

rt
, r

ad
/s

Figure 7.15: Root locus showing the poles and zeros for combined system (plant and controllers (with
feedback)) for a range of operating points. For all cases considered, P2,0 = 0.7p.u. P1,0 was varied from 0 to
0.7p.u. with steps of 0.05p.u.
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Figure 7.16: Close up of low frequency poles and zeros for combined system (plant and controllers (with
feedback)) for a range of operating points. For all cases considered, P2,0 = 0.7p.u. P1,0 was varied from 0 to
0.7p.u. with steps of 0.05p.u.
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Summary of systems where all converters use dq-axis vector current control

In summary, two degrees of coupling are present: that within the converter controller, and that

between converters, both of which have significant power. Both are due to a lack of a stiff voltage

in proximity to the converters. In general, it can be seen that the performance of each converter

depends not only on its own operating point, but also those of the other converters in the system.

Ultimately, the stability of the system is dependent on numerous parameters; thus, any hard number

quantifying the tipping point for a system will be confined to the system being considered, along

with its global operating points.

7.3.2 Power synchronization control only

In this section, both converters employ the power synchronization controller. For this system, the

small-signal system dynamics may be expressed as follows:


∆P1

∆E1

∆P2

∆E2

 =



∂P1

∂P ref
1

∂P1

∂Eref
1

∂P1

∂P ref
2

∂P1

∂Eref
2

∂E1

∂P ref
1

∂E1

∂Eref
1

∂E1

∂P ref
2

∂E1

∂Eref
2

∂P2

∂P ref
1

∂P2

∂Eref
1

∂P2

∂P ref
2

∂P2

∂Eref
2

∂E2

∂P ref
1

∂E2

∂Eref
1

∂E2

∂P ref
2

∂E2

∂Eref
2


︸ ︷︷ ︸

Hcom


∆P ref

1

∆Eref
1

∆P ref
2

∆Eref
2

 (7.63)

As with dq-axis vector current control, the same set of operating points are considered. Figures 7.17-

7.26 show the performance of the system across a range of operating points when both converters

using power synchronization control.

The system strength is again set such that the steady-state voltages at the local PCCs have high

phases relative to the voltage at the slack bus when the converters operate at Pζ,0 = 0.7 p.u..
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Figure 7.26 shows that the main diagonal elements are again dominant even when P1,0 = 0.7 p.u.

and P2,0 = 0.7 p.u. with the exception of a small range of frequencies as before. This, as before, is

equivalent to the oscillatory behaviour seen in synchronous machines.
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Figure 7.17: Hcom evaluated when P1,0 = 0.0 p.u. and P2,0 = 0.50 p.u. Bode magnitude response only.
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Figure 7.18: Normalised responses to small step changes in the reference values. System evaluated when
P1,0 = 0.0 p.u. and P2,0 = 0.50 p.u.
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Figure 7.19: Hcom evaluated when P1,0 = 0.50 p.u. and P2,0 = 0.50 p.u. Bode magnitude response only.
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Figure 7.20: Normalised responses to small step changes in the reference values. System evaluated when
P1,0 = 0.50 p.u. and P2,0 = 0.50 p.u.

In the final set of operating points considered in this section, converters two is operating at P2,0 =0.7

p.u. active power in steady-state and the power output of converter one is varied. With the definition

of the wider network transmission line, this corresponds to the voltages at the local PCCs both being

56 degrees when both converters are operating at 0.7 p.u.
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Figure 7.21: Hcom evaluated when P1,0 = 0.0 p.u. and P2,0 = 0.70 p.u. Bode magnitude response only.
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Figure 7.22: Normalised responses to small step changes in the reference values. System evaluated when
P1,0 = 0.00 p.u. and P2,0 = 0.70 p.u.
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Figure 7.23: Hcom evaluated when P1,0 = 0.50 p.u. and P2,0 = 0.70 p.u.. Bode magnitude response only.

0 0.2 0.4
Time, s

0
0.5

1

 P
re

f
1

 P
1

0 0.2 0.4
Time, s

0
0.5

1

 E
re

f
1

 P
1

0 0.2 0.4
Time, s

0
0.5

1

 P
re

f
2

 P
1

0 0.2 0.4
Time, s

0
0.5

1
 E

re
f

2
 P

1

0 0.2 0.4
Time, s

0
0.5

1

 P
re

f
1

 E
1

0 0.2 0.4
Time, s

0
0.5

1

 E
re

f
1

 E
1

0 0.2 0.4
Time, s

0
0.5

1

 P
re

f
2

 E
1

0 0.2 0.4
Time, s

0
0.5

1

 E
re

f
2

 E
1

0 0.2 0.4
Time, s

0
0.5

1

 P
re

f
1

 P
2

0 0.2 0.4
Time, s

0
0.5

1

 E
re

f
1

 P
2

0 0.2 0.4
Time, s

0
0.5

1

 P
re

f
2

 P
2

0 0.2 0.4
Time, s

0
0.5

1

 E
re

f
2

 P
2

0 0.2 0.4
Time, s

0
0.5

1

 P
re

f
1

 E
2

0 0.2 0.4
Time, s

0
0.5

1

 E
re

f
1

 E
2

0 0.2 0.4
Time, s

0
0.5

1

 P
re

f
2

 E
2

0 0.2 0.4
Time, s

0
0.5

1

 E
re

f
2

 E
2

Figure 7.24: Normalised responses to small step changes in the reference values. System evaluated when
P1,0 = 0.50 p.u. and P2,0 = 0.70 p.u.
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Figure 7.25: Hcom evaluated when P1,0 = 0.70 p.u. and P2,0 = 0.70 p.u. Bode magnitude response only.
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Figure 7.26: Normalised responses to small step changes in the reference values. System evaluated when
P1,0 = 0.70 p.u. and P2,0 = 0.70 p.u.

Figures 7.27 and 7.28 show the poles and zeros for the combined system (controllers and plant (with

feedback)). The same pair of transmission zeros observed in the dq-axis vector current control set

174



Chapter 7. Small-signal stability in multiple-converter systems

up can be observed.
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Figure 7.27: Root locus showing the poles and zeros for combined system (plant and controllers (with
feedback)) for a range of operating points. For all cases considered, P2,0 = 0.7p.u. P1,0 was varied from 0 to
0.7p.u. with steps of 0.05p.u.
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Figure 7.28: Close up of low frequency poles and zeros for combined system (plant and controllers (with
feedback)) for a range of operating points. For all cases considered, P2,0 = 0.7p.u. P1,0 was varied from 0 to
0.7p.u. with steps of 0.05p.u.
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Summary of systems where all converters use power synchronization control

Unlike dq-axis vector current control, power synchronization control allows a converter to operate

satisfactorily in weak AC systems with multiple converters. However, a strong off-diagonal response

can be observed at around 100 rad/s. The frequency at which this occurs is consistent with that

seen in chapter six. In addition, the frequency at which the strong response is observed seems to be

relatively insensitive to the operating point, although its magnitude does depend on the operating

point of the overall system. The fact that the location, in frequency terms, does not change from one

system to another suggests that a controller modification (left as future work) could be introduced

to compensate effectively for this coupling across a wide range of operating points.

7.3.3 Mixture of controllers

Two converters: one controlled using dq-axis vector current control, one controlled

using power synchronization control

Let us consider the two converter case where one converter employs dq-axis vector current control

and the other power synchronization control. For this system, the small-signal dynamics may be

expressed as follows:
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The system strength is again set such that the steady-state voltages at the local PCCs have high

phases relative to the voltage at the slack bus when the converters operate at Pζ,0 = 0.7 p.u..

In the weak system case, the ability of the slack bus to aid the performance of converter one (using

dq-axis vector current control) is compromised. Since converter two uses power synchronization

control, it is capable of behaving as an effective voltage source. Figures 7.29 - 7.34 show the

performance of the system for a variety of operating points. In all cases, the voltage at the PCC is

strongly influenced by the voltage controller of converter two. In fact, the voltage loop of converter

two has more impact on the voltage at the PCC of converter one than does the q-component current

control loop of converter one.

100 101 102 103

Frequency, rad/s

-40
-20

0

H
1,

1, d
B

100 101 102 103

Frequency, rad/s

-40
-20

0

H
1,

2, d
B

100 101 102 103

Frequency, rad/s

-40
-20

0
H

1,
3, d

B

100 101 102 103

Frequency, rad/s

-40
-20

0

H
1,

4, d
B

100 101 102 103

Frequency, rad/s

-40
-20

0

H
2,

1, d
B

100 101 102 103

Frequency, rad/s

-40
-20

0

H
2,

2, d
B

100 101 102 103

Frequency, rad/s

-40
-20

0

H
2,

3, d
B

100 101 102 103

Frequency, rad/s

-40
-20

0

H
2,

4, d
B

100 101 102 103

Frequency, rad/s

-40
-20

0

H
3,

1, d
B

100 101 102 103

Frequency, rad/s

-40
-20

0

H
3,

2, d
B

100 101 102 103

Frequency, rad/s

-40
-20

0

H
3,

3, d
B

100 101 102 103

Frequency, rad/s

-40
-20

0

H
3,

4, d
B

100 101 102 103

Frequency, rad/s

-40
-20

0

H
4,

1, d
B

100 101 102 103

Frequency, rad/s

-40
-20

0

H
4,

2, d
B

100 101 102 103

Frequency, rad/s

-40
-20

0

H
4,

3, d
B

100 101 102 103

Frequency, rad/s

-40
-20

0

H
4,

4, d
B

Figure 7.29: Hcom evaluated when P1,0 = 0.00 p.u. and P2,0 = 0.70 p.u. Bode magnitude response only.
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Figure 7.30: Normalised responses to small step changes in the reference values. System evaluated when
P1,0 = 0.00 p.u. and P2,0 = 0.70 p.u.

When P1,0 = 0.50 p.u. and P2,0 = 0.70 p.u., the voltage at the filter bus of converter one has a

phase of 43.8490 degrees relative to the slack bus, while the voltage at the filter bus of converter

two has a phase of 44.9753 relative to the slack bus. For this operating point, when all converters

use dq-axis vector current control, the large phase differences between the filter bus voltages and

slack bus was shown to be associated with ill-conditioning and poor performance at the current

level (see figures 7.9 and 7.10). However, as can be seen in figures 7.31 and 7.32, the performance

of converter one, which uses dq-axis vector current control, is improved.
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Figure 7.31: Hcom evaluated when P1,0 = 0.50 p.u. and P2,0 = 0.70 p.u. Bode magnitude response only.
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Figure 7.32: Normalised responses to small step changes in the reference values. System evaluated when
P1,0 = 0.50 p.u. and P2,0 = 0.70 p.u.

In the final operating point considered in this section, the converters are both operating at 0.7p.u.

active power in steady-state. With the definition of the wider network transmission line, this
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corresponds to the voltages at the local PCCs both being 57.2558 degrees.

For this operating point, it can clearly be observed that converter two essentially becomes the voltage

source/slack bus from the perspective of converter one. Consequently, the response of power output

of converter one is positively affected by the presence of converter two (using power synchronization

control). Unity response in P1 to a unit change in iref
d1

is not observed; however, P1 is predominantly

determined by iref
d1

, which is as desired. As will be shown, the response of P1 to changes in iref
d1

can

be further boosted by introducing additional instances of power synchronization control into the

system; this will also be accompanied by a reduction in ∂P1/∂E
ref
2 .

In addition, figure 7.34 shows that ∂E1/∂i
ref
d1

is much weaker than observed in figure 7.12, indicative

of improved system conditioning.

It is also important to stress that converter one is not able to regulate its own voltage effectively

(compare ∂E1/∂i
ref
q1

with ∂E1/∂E
ref
2 in figures 7.33 and 7.34). Thus, conventional dq-axis vector

current control can only really be used as a current source, with the q-component current control

loop being used to regulate the reactive power output of the converter. In this sense, converter one

is a slave and converter two is a master.
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Figure 7.33: Hcom evaluated when P1,0 = 0.70 p.u. and P2,0 = 0.70 p.u. Bode magnitude response only.
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Figure 7.34: Normalised responses to small step changes in the reference values. System evaluated when
P1,0 = 0.70 p.u. and P2,0 = 0.70 p.u.

Five converters: one using dq-axis vector current control, four using power synchro-

nization control

Let us now consider the case where four converters use the power synchronization control algorithm

and another uses dq-axis vector current control. In this case, the transfer function matrix is as
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follows:

Hcom =
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(7.65)

Only one operating point is considered for brevity reasons; this is where all converters are operating

at 0.7 p.u. active power with the network line defined such that each filter bus voltage has a phase

of 57.2558 degrees relative to the slack bus (to facilitate comparisons with the two-converter system

results).

Due to this definition, all converters using the power synchronization controller respond to changes

in reference values in the same fashion. For this reason, only the first four columns and first four

rows are shown along with columns five and six from rows three and four. The latter set are

included to observe the influence of one converter using power synchronization control on another

using power synchronization control also. Note - in spite of the condensed results presented, the

model was initialised and run with five converters to ensure no coupling was omitted.

The time domain plots also show that the steady-state error left in the power output of converter

one following a unit change in iref
d1

is smaller. The final value is 0.921 (as opposed to 0.84 in the

previous subsection of section 7.3.3). Again, note how terms such as ∂E1/∂i
ref
d1

have no power

associated with them, which is an indicator of the system conditioning improving. Given results
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published in literature [5], it should be possible for a conventional dq-axis vector current controller

with standard outer controllers to accommodate for this error.

As more converters which behave like true voltage sources are added to the power system, the

performance of existing converters that use dq-axis vector current control is bolstered, allowing the

latter to operate closer to their rated power than they would otherwise have been able to do so.

This can be observed in figures 7.35 and 7.36.
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Figure 7.35: First four rows and four columns of Hcom evaluated when all five converters are operating at
0.7p.u. Converter one uses dq-axis vector current control, while all other converters use power synchronization
control. Bode magnitude response only.
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Figure 7.36: Normalised response of output variables related to converters one and two following changes in
reference values in the controllers of converters one and two.

With just two converters, one using dq-axis vector current control and the other using power syn-

chronization control, the former is exclusively a slave to one converter. However, as can be seen,

in the multi-converter system, the converter which uses dq-axis vector current control is jointly

supported by all effective voltage sources. This also means that as more and more converters which

behave in a manner similar to one using power synchronization control are introduced, the stability

of the dq-axis vector current controlled converter is no longer tied exclusively to the connection

of a single converter which behaves as an effective voltage source. This is desirable from a fault

performance perspective. This can be seen in figure 7.37.
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(a) Response of outputs of converter one (using
dq-axis vector current control) to changes in set
points on converter two (using power synchroniza-
tion control) in a system comprising two convert-
ers, one of which use power synchronization con-
trol.
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(b) Response of outputs of converter one (using
dq-axis vector current control) to changes in set
points on converter two (using power synchroniza-
tion control) in a system comprising five convert-
ers, four of which use power synchronization con-
trol.

Figure 7.37: Sensitivity of a converter using dq-axis vector current control to power synchronization control
for two- and five- converter systems. In the former, one converter uses power synchronization control, while
in the latter, four use power synchronization control.

At this point, the issue which should require attention is the coupling between power and voltage

control loops in the converters that use power synchronization control (or some other virtual syn-

chronous machine controller). This can be observed in figure 7.38. To reiterate comments from

the previous section (7.3.2), given the fact that the peak response in the relevant off-main diago-

nal elements occur at a frequency of around 100 rad/s irrespective of either the short-circuit ratio

(see chapter three) or the number of power-synchronization-controlled converters, it would appear

that the coupling is in some senses internalised, which would allow for a suitable controller which

effectively targets this coupling to be developed.
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Figure 7.38: Illustration of the coupling between two instances of power synchronization control in the five
converter system.

7.4 Including local loads

In this section, the effect of local loads is assessed. For brevity, only two operating points are

considered: one of a five-converter system connected to a strong wider network, and one of the same

five-converter system connected to a weak wider network. In both cases, all converters operate at

0.9 p.u. to focus on the problematic operating region for dq-axis vector current control. On top of

this, each local line has the same local load as all other lines, set to 2.125 p.u.

7.4.1 DQ-axis vector current control only

For each operating point, Bode and time traces are presented, respectively showing the frequency

and time domain results from evaluation of the linear model at this operating point. From left

to right, the top row of both figures show the response (either in the frequency domain or time

domain) of the active power output, P1, of converter one to changes in the control variables, iref
d1

,

iref
q1

, iref
d2

and iref
q2

. From left to right, the second row of both figures show the response (either in

the frequency domain or time domain) of the voltage magnitude at the filter bus of converter one,

E1, to changes in the control variables, iref
d1

, iref
q1

, iref
d2

and iref
q2

. From left to right, the third row of

both figures show the response (either in the frequency domain or time domain) of the active power

output of converter two, P2, to changes in the control variables, iref
d1

, iref
q1

, iref
d2

and iref
q2

. Finally, from

left to right, the fourth row of both figures show the response (either in the frequency domain or
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time domain) of the voltage magnitude at the filter bus of converter two, E2, to changes in the

control variables, iref
d1

, iref
q1

, iref
d2

and iref
q2

. The other Bode and time domain plots, covering the other

converters, are not shown given the symmetry of the system.

Strong AC systems

In the first system, the definition of the system is such that the steady-state angle of the voltage

at the filter bus of converter one is 12.7858 degrees relative to the slack bus. This performance of

this system is shown in figures 7.39 and 7.40. Figures 7.39 and 7.40 both show the system to be

well-conditioned at the current control level, implying that there will be no major issues associated

with designing and tuning outer controllers. It can be seen that the active power output of converter

one is almost solely affected by iref
d1

. Some very small influence can be seen from changing the other

reference values; however, this is to be expected and should not cause any issue. By extension,

the active power output of converter two behaves as desired. Weak responses to E1 and E2 are to

be expected since the wider network is strong. To cause a converter using dq-axis vector current

control to have a significant impact on the voltage, an outer AC voltage magnitude controller will

need to be introduced as expected.
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Figure 7.39: Hcom evaluated when all converters are operating at 0.7p.u. Bode magnitude response only
(with the response given in dB).
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Figure 7.40: Normalised response of output variables relevant to converters one and two following changes
in reference values in the controllers of converters one and two.
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Weak AC systems

In the second system, the definition of the system is such that the steady-state angle of the voltage

at the filter bus of converter one is 40.5909 degrees relative to the slack bus. The performance of

this system is shown in figures 7.41 and 7.42. Figures 7.41 and 7.42 both show the system to be

ill-conditioned at the current control level, implying that there will be major issues associated with

designing and tuning outer controllers. Strong coupling can be seen between all reference variables

and output variables. This is due to the voltage weakness, which was also seen in chapter 4 and

section 7.3.1 of this chapter. The voltage weakness is why iref
d2

is able to have a larger impact on P1

than is iref
d1

. Thus, for systems including local loads, there are two sources of undesirable coupling

arising from voltage weakness: that between control loops in a single converter, and that between

control loops between converters. The latter introduces an additional degree of freedom that would

be difficult to compensate for with outer controllers across the full operating envelope.
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Figure 7.41: Hcom evaluated when all converters are operating at 0.7p.u. Bode magnitude response only
(with the response given in dB).

189



Chapter 7. Small-signal stability in multiple-converter systems

0 0.5
Time, s

-0.5
0

0.5
1

 ire
f

d1
 P

1
0 0.5

Time, s

-0.5
0

0.5
1

 ire
f

q1
 P

1

0 0.5
Time, s

-0.5
0

0.5
1

 ire
f

d2
 P

1

0 0.5
Time, s

-0.5
0

0.5
1

 ire
f

q2
 P

1

0 0.5
Time, s

-0.5
0

0.5
1

 ire
f

d1
 E

1

0 0.5
Time, s

-0.5
0

0.5
1

 ire
f

q1
 E

1

0 0.5
Time, s

-0.5
0

0.5
1

 ire
f

d2
 E

1

0 0.5
Time, s

-0.5
0

0.5
1

 ire
f

q2
 E

1

0 0.5
Time, s

-0.5
0

0.5
1

 ire
f

d1
 P

2

0 0.5
Time, s

-0.5
0

0.5
1

 ire
f

q1
 P

2

0 0.5
Time, s

-0.5
0

0.5
1

 ire
f

d2
 P

2

0 0.5
Time, s

-0.5
0

0.5
1

 ire
f

q2
 P

2

0 0.5
Time, s

-0.5
0

0.5
1

 ire
f

d1
 E

2

0 0.5
Time, s

-0.5
0

0.5
1

 ire
f

q1
 E

2

0 0.5
Time, s

-0.5
0

0.5
1

 ire
f

d2
 E

2
0 0.5

Time, s

-0.5
0

0.5
1

 ire
f

q2
 E

2

Figure 7.42: Normalised response of output variables relevant to converters one and two following changes
in reference values in the controllers of converters one and two.

7.4.2 Power synchronization control only

For each operating point, Bode and time traces are presented, respectively showing the frequency

and time domain results from evaluation of the linear model at this operating point. From left

to right, the top row of both figures show the response (either in the frequency domain or time

domain) of the active power output, P1, of converter one to changes in the control variables, P ref
1 ,

Eref
1 , P ref

2 and Eref
2 . From left to right, the second row of both figures show the response (either in

the frequency domain or time domain) of the voltage magnitude at the filter bus of converter one,

E1, to changes in the control variables, P ref
1 , Eref

1 , P ref
2 and Eref

2 . From left to right, the third row

of both figures show the response (either in the frequency domain or time domain) of the active

power output of converter two, P2, to changes in the control variables, P ref
1 , Eref

1 , P ref
2 and Eref

2 .

Finally, from left to right, the fourth row of both figures show the response (either in the frequency

domain or time domain) of the voltage magnitude at the filter bus of converter two, E2, to changes

in the control variables, P ref
1 , Eref

1 , P ref
2 and Eref

2 . The other Bode and time domain plots, covering

the other converters, are not shown given the symmetry of the system.
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Strong AC systems

In the first system, the definition of the system is such that the steady-state angle of the voltage

at the filter bus of converter one is 12.7858 degrees relative to the slack bus. This performance of

this system is shown in figures 7.43 and 7.44. Figures 7.43 and 7.44 both show the system to be

well-conditioned. Oscillatory behaviour can be observed, particularly from Erefζ to Pζ . As with

the multi-converter system with no local loads, this coupling is strongest around 100 rad/s. This

coupling arises from the fact that multiple effective voltage regulators, including the slack bus, are

in electrical proximity to each other. Moreover, considering that power flow across a reactance is

proportional to both the voltage at each end of the line and the sine of the phase difference between

said voltages, it is unsurprising to see a strong coupling between the voltage regulator and the power

output. This phenomenon will require more attention in the future if multiple instances of virtual

synchronous machines are to be installed.
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Figure 7.43: Hcom evaluated when all converters are operating at 0.7p.u. Bode magnitude response only
(with the response given in dB).
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Figure 7.44: Normalised response of output variables relevant to converters one and two following changes
in reference values in the controllers of converters one and two.

Weak AC systems

In the first system, the definition of the system is such that the steady-state angle of the voltage

at the filter bus of converter one is 12.7858 degrees relative to the slack bus. This performance of

this system is shown in figures 7.45 and 7.46. Figures 7.45 and 7.46 both show the system to be

well-conditioned. Oscillatory behaviour can still be observed from Erefζ to Pζ . As with the multi-

converter system with no local loads, this coupling is strongest around 100 rad/s. This coupling

persists in the weak system because of the fact that there are still multiple effective voltage regulators

in electrical proximity to each other i.e. the converters using power synchronization control.
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Figure 7.45: First four rows and four columns of Hcom evaluated when all converters are operating at 0.9
p.u. Bode magnitude response only (with the response given in dB).
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Figure 7.46: Normalised response of output variables relevant to converters one and two following changes
in reference values in the controllers of converters one and two.

193



Chapter 7. Small-signal stability in multiple-converter systems

7.4.3 Mixture of controllers

For each operating point, Bode and time traces are presented, respectively showing the frequency

and time domain results from evaluation of the linear model at this operating point. From left

to right, the top row of both figures show the response (either in the frequency domain or time

domain) of the active power output, P1, of converter one to changes in the control variables, iref
d1

,

iref
q1

, iref
d2

and iref
q2

. From left to right, the second row of both figures show the response (either in

the frequency domain or time domain) of the voltage magnitude at the filter bus of converter one,

E1, to changes in the control variables, iref
d1

, iref
q1

, P ref
2 and Eref

2 . From left to right, the third row of

both figures show the response (either in the frequency domain or time domain) of the active power

output of converter two, P2, to changes in the control variables, iref
d1

, iref
q1

, P ref
2 and Eref

2 . Finally,

from left to right, the fourth row of both figures show the response (either in the frequency domain

or time domain) of the voltage magnitude at the filter bus of converter two, E2, to changes in the

control variables, iref
d1

, iref
q1

, P ref
2 and Eref

2 . The other Bode and time domain plots, covering the other

converters, are not shown given the symmetry of the system.

Strong AC systems

In the strong system case, converter one, using dq-axis vector current control, can rely on both the

converters using power synchronization control (converters two, three, four and five) along with the

slack bus to provide a stiff voltage at the filter bus of converter one, yielding good performance

in the dq-axis vector current controller. Some oscillatory behaviour can be observed in the power

synchronization control scheme, primarily due to ∂P/∂Eref . Again, the strongest response occurs

around 100 rad/s.
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Figure 7.47: Hcom evaluated when all converters are operating at 0.7p.u. Bode magnitude response only
(with the response given in dB).
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Figure 7.48: Normalised response of output variables relevant to converters one and two following changes
in reference values in the controllers of converters one and two.
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Weak AC systems

As observed when there were no local loads, the converters using power synchronization control are

able to provide voltage support, which allows the PLL in the dq-axis current controller on converter

one to perform satisfactorily, which leads to good overall performance. Again, note how a single

instance of power synchronization control does not, on its own, impact heavily on the output of

converter one (which uses dq-axis vector current control).
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Figure 7.49: Hcom evaluated when all converters are operating at 0.7p.u. Bode magnitude response only
(with the response given in dB).
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Figure 7.50: Normalised response of output variables relevant to converters one and two following changes
in reference values in the controllers of converters one and two.

As with multi-converter systems without local loads, there are simply too many operating points to

consider. In other words, some topologies will feature local loads of a certain nature that permits

desirable behaviour of the inner current controllers. A thorough evaluation of such operating points

is left as future work. The linear model herein described, however, should significantly aid the

evaluation of said operating points.

7.5 Summary

In this chapter, linearised models developed in the previous chapters have been extended to analyse

multi-converter systems. The models presented in this chapter have the following properties:

1. Modular and scalable - By adopting a modular approach to the modelling, the model can

easily be implemented in a way that is not system specific i.e. the number of converters in

the system does not need to be set at the start of the analysis.

2. Automatic - Often, researchers create non-unified linear models of a plant and controller, be-
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fore using software such as Simulink to evaluate the closed-loop performance. By unifying the

controller(s) and plant, there is no need to use external software; all feedback is automatically

self-contained in the state-space matrices.

3. Fast - While not novel, speed is important for engineers. Even when using MATLAB, a global

operating point (an ensemble of the local points of all converters) for an eight-converter system

could be evaluated in seven seconds; in C++, the equivalent process took less than one second

if BLAS is fully utilised. If an algorithm scales (speed-wise) better than another, it allows

researchers, manufacturers and transmission system operators to study more complex systems

more quickly and easily.

4. Flexible - Given controllers will vary from manufacturer to manufacturer, real systems will

have mixtures of controllers; thus, the models presented in this chapter were developed specif-

ically to allow for such system realisations. In addition, the models have the ability to assess

the impact of local loads on small signal stability.

It was shown that the performance of a converter using the dq-axis vector current control algorithm

is heavily dependent on external influences. This could be system short-circuit ratio or the presence

of another converter in relative electrical proximity. For the two-converter system where both

converters employed dq-axis vector current control, when one converter operated at a low power set

point, said converter was able to provide some voltage stability that allows the other converter to

operate in a more desirable manner than it would have been able to do when isolated. However, as

both converters operate closer to their rated powers, this effect disappears.

Power synchronization control showed good performance in the multi-converter system when the

converters were electrically isolated from a slack bus. However, converters which use power syn-

chronization control and are in electrical proximity to one another may begin to experience virtual

rotor oscillations.

Due to the present popularity of the dq-axis vector current control algorithm, systems containing

a mixture of controllers were analysed. It was shown that including converters using the power

synchronization control algorithm does improve the performance of the active power control of a

converter using dq-axis vector current control, essentially by bringing voltage stability to otherwise
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weak AC systems. The ability of the dq-axis vector current control scheme to regulate the local

voltage was poor, being dominated by the influence of other converter controllers. In this sense, dq-

axis vector current control behaves as a slave, with converters using power synchronization control

behaving as masters.
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Chapter 8

Conclusions & Future work

8.1 Conclusions

This work has shown the various challenges that are to be expected in coming years when converters

represent larger parts of the network. Although wind turbine control engineers and even network

operators believe frequency support to be the primary concern for networks, the service that will

be demanded the most in the future is voltage support. Attempting to provide frequency support

without first taking into account the issues surrounding voltage support can result in reduced overall

stability. This could be inferred from the impact of adding outer loop controllers as was done in

chapter 4.

In chapter 4, the limitations of the dq-axis vector current control algorithm in high impedance

systems were explored. It was shown that the small-signal stability was strongly governed by the

stiffness of the voltage at the measurement point. In addition, it was revealed that the dq-axis

vector current control scheme may experience additional coupling issues when applied to MMC-

HVDC systems; specifically, coupling may arise between the control loops and the PWM process.

A linearised model suitable for integration to more complex systems was developed.

Chapter 5 featured an analysis of proportional resonant control in weak (high impedance) systems.

It was found that proportional resonant control was particularly sensitive to low frequency system

resonances.
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A third algorithm, power synchronization control, was reviewed in chapter 6. Power synchronization

control was found to be substantially less sensitive to the system impedance. Linearised models for

studying both controllers were derived and properly validated using a frequency scanning technique.

In chapter 7, a unified linear state-space model was developed which has the following attributes:

1. High degree of modularity, which makes it readily scalable, which is desirable from a program-

ming perspective

2. Unified dynamics of the plant and controllers active in the system, which makes it easy to

determine the poles and zeros of the system without using any other software/codes.

3. Sufficiently flexible to handle different combinations of controllers, which will be of use to

transmission system operators who have to consider system in which a mixture of controllers

may be active at any one time.

4. Easily identifiable entry points, which makes it suitable for coupling with other codes that

represent other parts of the system (DC bus(es) and, potentially, aerodynamic systems).

Using the unified linear state-space model, it was shown that by applying the power synchronisation

control algorithm to a small number of appropriately placed converters in a power system, it was

shown that the remaining converters, assumed to be controlled using the dq-axis vector current

algorithm, could be stable at operating points that they would otherwise not have been.

8.2 Future work

Since it was shown that stability depends quite strongly on the capacity factors, a statistical model

which represents the combined probabilities of wind profiles across GB and the British Isles could be

developed. Integration of such a model would make it possible to identify which unstable operating

points are likely, unlikely or have negligible chances of occurrence. If electric vehicles also become

more prevalent, the statistical model could include user patterns for electric vehicles also.

In addition, an in-depth study of the dynamics of future power systems during a range of faults would

be desirable. Future work could involve addressing frequency stability issues that are associated
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with low inertia systems.

The development of more linearised state-space models of existing controllers would be desirable

since this would add to the library, permitting more varied studies.
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Appendix A

Cross coupling terms in a dq frame

Cross-coupling terms arise because of the presence of derivative terms in the equations in an abc

frame. Consider a generic vector of a three-phase voltage or current. Let this be aabc. To express

this in a dq frame, it must be operated on by a Park transformation, P :

ag = P {aabc} (A.1)

When an equation in the abc frame contains a derivative, operating on the equation with a Park

transformation means that the vector aabc and the operator P are separated by a differentiator:

P {daabc/dt}.

By the product rule,

dPaabc

dt
=

dP

dt
aabc + P

daabc

dt
(A.2)

Hence,

P
daabc

dt
=

dPaabc

dt
−

dP

dt
aabc (A.3)

The first term on the right hand side can be identified as dag/dt. The second term is evaluated by
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considering the definition of the Park transformation matrix:

dP

dt
=

dθ

dt

dP

dθ

= ω
d

dθ

cos θ cos(θ − 2π/3) cos(θ + 2π/3)

sin θ sin(θ − 2π/3) sin(θ + 2π/3)


= ω

− sin θ − sin(θ − 2π/3) − sin(θ + 2π/3)

cos θ cos(θ − 2π/3) cos(θ + 2π/3)


= −ω

 0 1

−1 0

cos θ cos(θ − 2π/3) cos(θ + 2π/3)

sin θ sin(θ − 2π/3) sin(θ + 2π/3)


= −ω

 0 1

−1 0

P (A.4)

Thus,

P
daabc

dt
=

dag

dt
+ ω

 0 1

−1 0

ag (A.5)

Hence, a cross-coupling term is an unavoidable feature of the dq transformation when derivative

terms are involved. This is why the inner current controller has de-coupling terms.
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Appendix B

Sample code for linearised models

The following sections contain MATLAB codes that can be used for analysing single-converter

systems.

B.1 Common codes

B.1.1 Steady state solver

The following code determines all relevant steady-state values for a given operating point around

which a linearised model is evaluated.

1 f unc t i on F = root8d ( x )

2

3 g l o b a l Power ;

4 g l o b a l Voltages ;

5 g l o b a l Components ;

6

7 %Grid f requency in per un i t :

8 w1 = 1 ;

9 %Power :
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10 i f Components . Cf == 0

11 %Voltage components at the PCC:

12 u fd0 = x (1) − x (3 ) *Components . Rc + w1*Components . Lc*x (4 ) ;

13 u fq0 = x (2) − x (4 ) *Components . Rc − w1*Components . Lc*x (3 ) ;

14

15 F(1) = x (3) * u fd0 + x (4) * u fq0 − Power . P0 ;

16 e l s e

17 F(1) = x (5) *x (7 ) + x (6) *x (8 ) − Power . P0 ;

18 end

19 %Voltage magnitude :

20 F(2) = s q r t ( x (1 ) ˆ2 + x (2) ˆ2) − Voltages . V0 ;

21 %C i r c u i t equat ions :

22 i f Components . Cf == 0

23 F(3) = x (1) − Voltages . E0 − ( Components . Rc + Components .Rn) *x (3 ) +

. . .

24 w1*( Components . Lc + Components . Ln) *x (4 ) ;

25 F(4) = x (2) − ( Components . Rc + Components .Rn) *x (4 ) − . . .

26 w1*( Components . Lc + Components . Ln) *x (3 ) ;

27 e l s e

28 F(3) = x (1) − x (5 ) − Components . Rc*x (3 ) + w1*Components . Lc*x (4 ) ;

29 F(4) = x (2) − x (6 ) − Components . Rc*x (4 ) − w1*Components . Lc*x (3 ) ;

30 F(5) = x (3) − x (7 ) + w1*Components . Cf*x (6 ) ;

31 F(6) = x (4) − x (8 ) − w1*Components . Cf*x (5 ) ;

32 F(7) = x (5) − Voltages . E0 − x (7 ) *Components .Rn + w1*Components . Ln*x

(8) ;

33 F(8) = x (6) − x (8 ) *Components .Rn − w1*Components . Ln*x (7 ) ;

34 end

1 f unc t i on [ s t e a d y s t a t e ] = g e t s t e a d y s t a t e v a l u e s ( components , x )

2
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3 w1 = 1 ;

4 %Extract a l l the va lue s :

5 s t e a d y s t a t e . v d0 = x (1) ;

6 s t e a d y s t a t e . v q0 = x (2) ;

7 s t e a d y s t a t e . i c d 0 = x (3) ;

8 s t e a d y s t a t e . i c q 0 = x (4) ;

9 %Handle L and LC f i l t e r ca s e s :

10 i f components . Cf == 0

11 s t e a d y s t a t e . u fd0 = s t e a d y s t a t e . v d0 − . . .

12 s t e a d y s t a t e . i c d 0 *components . Rc + . . .

13 w1*components . Lc* s t e a d y s t a t e . i c q 0 ;

14 s t e a d y s t a t e . u fq0 = s t e a d y s t a t e . v q0 − . . .

15 s t e a d y s t a t e . i c q 0 *components . Rc − . . .

16 w1*components . Lc* s t e a d y s t a t e . i c d 0 ;

17 s t e a d y s t a t e . i nd0 = s t e a d y s t a t e . i c d 0 ;

18 s t e a d y s t a t e . i nq0 = s t e a d y s t a t e . i c q 0 ;

19 e l s e

20 s t e a d y s t a t e . u fd0 = x (5) ;

21 s t e a d y s t a t e . u fq0 = x (6) ;

22 s t e a d y s t a t e . i nd0 = x (7) ;

23 s t e a d y s t a t e . i nq0 = x (8) ;

24 end

25 %Work out a l l the steady−s t a t e ang l e s :

26 s t e a d y s t a t e . theta v0 = atan2 ( s t e a d y s t a t e . v q0 , s t e a d y s t a t e . v d0 ) ;

27 s t e a d y s t a t e . theta u0 = atan2 ( s t e a d y s t a t e . u fq0 , s t e a d y s t a t e . u fd0 ) ;

28 %Work out the steady−s t a t e magnitude o f the f i l t e r bus vo l tage :

29 s t e a d y s t a t e . U f0 = s q r t ( s t e a d y s t a t e . u fd0 ˆ2 + s t e a d y s t a t e . u fq0 ˆ2) ;
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B.1.2 linearised models of plant

The following code contains an implementation of the state-space models found in chapter 3.

L filter

1 f unc t i on [ s s l i n ] = l i n s t a t e s p a c e l f i l t e r ( components , s t e ady s ta t e

, . . .

2 AC control , s imul ink )

3 %

4 w1 = 1 ;

5 %Get the r e l e v a n t in fo rmat ion :

6 Rc = components . Rc ;

7 Lc = components . Lc ;

8 Rn = components .Rn ;

9 Ln = components . Ln ;

10 %Get the steady−s t a t e va lue s :

11 i f s imul ink == 1

12 u fd0 = s t e a d y s t a t e . s imu la t i on . u g0 (1 ) ;

13 u fq0 = s t e a d y s t a t e . s imu la t i on . u g0 (2 ) ;

14 i nd0 = s t e a d y s t a t e . s imu la t i on . i ng0 (1 ) ;

15 i nq0 = s t e a d y s t a t e . s imu la t i on . i ng0 (2 ) ;

16 %Voltage magnitude :

17 U f0 = s q r t ( u fd0 ˆ2 + u fq0 ˆ2) ;

18 e l s e

19 u fd0 = s t e a d y s t a t e . u fd0 ;

20 u fq0 = s t e a d y s t a t e . u fq0 ;

21 i nd0 = s t e a d y s t a t e . i nd0 ;

22 i nq0 = s t e a d y s t a t e . i nq0 ;

23 %Voltage magnitude :

24 U f0 = s q r t ( u fd0 ˆ2 + u fq0 ˆ2) ;
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25 end

26 %Calcu la te the A−matrix :

27 s s l i n .A = [−(Rc+Rn) /( Lc+Ln) ,w1;−w1,−(Rc+Rn) /( Lc+Ln) ] ;

28 %B matrix :

29 s s l i n .B = [ 1 / ( Lc+Ln) , 0 ; 0 , 1 / ( Lc+Ln) ] ;

30 %Generic C matrix :

31 i f AC control == 1

32 C = [ 1 , 0 , 0 , 0 ; . . .

33 0 , 1 , 0 , 0 ; . . .

34 0 , 0 , 1 , 0 ; . . .

35 0 , 0 , 0 , 1 ; . . .

36 u fd0 , u fq0 , i nd0 , i nq0 ; . . .

37 0 ,0 , u fd0 /U f0 , u fq0 / U f0 ] ;

38 e l s e

39 C = [ 1 , 0 , 0 , 0 ; . . .

40 0 , 1 , 0 , 0 ; . . .

41 0 , 0 , 1 , 0 ; . . .

42 0 , 0 , 0 , 1 ; . . .

43 u fd0 , u fq0 , i nd0 , i nq0 ; . . .

44 u fq0 ,−u fd0 ,− i nq0 , i nd0 ] ;

45 end

46 %D matrix :

47 s s l i n .D = C* [ 0 , 0 ; . . .

48 0 , 0 ; . . .

49 Ln/( Lc+Ln) , 0 ; . . .

50 0 ,Ln/( Lc+Ln) ] ;

51 %Actual C matrix :

52 s s l i n .C = C* [ 1 , 0 ; . . .

53 0 , 1 ; . . .

54 Lc*Ln/( Lc+Ln) *(Rn/Ln−Rc/Lc ) , 0 ; . . .
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55 0 , Lc*Ln/( Lc+Ln) *(Rn/Ln−Rc/Lc ) ] ;

LC filter

1 f unc t i on [ s s l i n ] = l i n s t a t e s p a c e l c f i l t e r ( components , s t e ady s ta t e

, . . .

2 AC control , s imul ink )

3 %

4 w1 = 1 ;

5 %Get the r e l e v a n t in fo rmat ion :

6 Rc = components . Rc ;

7 Lc = components . Lc ;

8 Cf = components . Cf ;

9 Rn = components .Rn ;

10 Ln = components . Ln ;

11 %Get the steady−s t a t e va lue s :

12 i f s imul ink == 1

13 u fd0 = s t e a d y s t a t e . s imu la t i on . u g0 (1 ) ;

14 u fq0 = s t e a d y s t a t e . s imu la t i on . u g0 (2 ) ;

15 i nd0 = s t e a d y s t a t e . s imu la t i on . i ng0 (1 ) ;

16 i nq0 = s t e a d y s t a t e . s imu la t i on . i ng0 (2 ) ;

17 %Voltage magnitude :

18 U f0 = s q r t ( u fd0 ˆ2 + u fq0 ˆ2) ;

19 e l s e

20 u fd0 = s t e a d y s t a t e . u fd0 ;

21 u fq0 = s t e a d y s t a t e . u fq0 ;

22 i nd0 = s t e a d y s t a t e . i nd0 ;

23 i nq0 = s t e a d y s t a t e . i nq0 ;

24 %Voltage magnitude :

25 U f0 = s q r t ( u fd0 ˆ2 + u fq0 ˆ2) ;

26 end
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27 %Calcu la te the A−matrix :

28 s s l i n .A = [−Rc/Lc , w1,−1/Lc , 0 , 0 , 0 ; . . .

29 −w1,−Rc/Lc ,0 ,−1/Lc , 0 , 0 ; . . .

30 1/Cf , 0 , 0 , w1,−1/Cf , 0 ; . . .

31 0 ,1/ Cf ,−w1,0 ,0 ,−1/ Cf ; . . .

32 0 ,0 ,1/Ln,0 ,−Rn/Ln , w1 ; . . .

33 0 ,0 ,0 ,1/Ln,−w1,−Rn/Ln ] ;

34 %B matrix :

35 s s l i n .B = [1/ Lc , 0 ; 0 , 1 / Lc ; 0 , 0 ; 0 , 0 ; 0 , 0 ; 0 , 0 ] ;

36 %Generic C matrix :

37 i f AC control == 1

38 s s l i n .C = [ 1 , 0 , 0 , 0 , 0 , 0 ; . . .

39 0 , 1 , 0 , 0 , 0 , 0 ; . . .

40 0 , 0 , 1 , 0 , 0 , 0 ; . . .

41 0 , 0 , 0 , 1 , 0 , 0 ; . . .

42 0 ,0 , i nd0 , i nq0 , u fd0 , u fq0 ; . . .

43 0 ,0 , u fd0 /U f0 , u fq0 /U f0 , 0 , 0 ] ;

44 e l s e

45 s s l i n .C = [ 1 , 0 , 0 , 0 , 0 , 0 ; . . .

46 0 , 1 , 0 , 0 , 0 , 0 ; . . .

47 0 , 0 , 1 , 0 , 0 , 0 ; . . .

48 0 , 0 , 0 , 1 , 0 , 0 ; . . .

49 0 ,0 , i nd0 , i nq0 , u fd0 , u fq0 ; . . .

50 0 ,0 ,− i nq0 , i nd0 , u fq0 ,−u fd0 ] ;

51 end

52 %D matrix :

53 s s l i n .D = ze ro s (6 , 2 ) ;

B.1.3 Bode plots

1 f unc t i on [ ] = bo de p l o t t i n g ( compare , save , order , s y s s e t t i n g s , phase , P0
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, . . .

2 omega ,H, omega fs , r e s p o n s e f s , varag in )

3

4 %Get cur rent d i r e c t o r y :

5 c u r r e n t d i r e c t o r y = cd ;

6

7 %% Magnitude p l o t t i n g :

8

9 %f o n t s i z e = 20 ;

10 f o n t s i z e = 20 ;

11

12 f i g u r e ( ’ un i t s ’ , ’ normal ized ’ , ’ o u t e r p o s i t i o n ’ , [ 0 0 1 1 ] )

13 hold on

14 g r id on

15 %f o n t s i z e = 16 ;

16

17 mag H = abs (H) ;

18

19 i f compare == 0

20 x l im vec = [ 1 5 0 0 0 ] ;

21 y l im vec = [10ˆ−2 2 0 ] ;

22 e l s e

23 x l im vec = [1/ s y s s e t t i n g s . w base 5000/ s y s s e t t i n g s . w base ] ;

24 y l im vec = [−30 1 0 ] ;

25 end

26

27 subplot ( 2 , 2 , 1 ) ;

28 hold on

29 i f compare == 1

30 semi logx (omega ,20* l og10 ( squeeze (mag H ( 1 , 1 , : ) ) ) , ’ b ’ )
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31 s e t ( gca , ’ x s c a l e ’ , ’ l og ’ , ’ Fonts i z e ’ , f o n t s i z e )

32 e l s e

33 l o g l o g ( omega* s y s s e t t i n g s . w base , ( squeeze (mag H ( 1 , 1 , : ) ) ) , ’ b ’ ) %20*

l og10 ( . . . )

34 %I f f requency scanning i s done :

35 i f narg in == 10

36 l o g l o g ( omega fs * s y s s e t t i n g s . w base , r e s p o n s e f s ( : , 1 ) , ’ . r ’ , ’

MarkerSize ’ ,20)

37 end

38 s e t ( gca , ’ x s c a l e ’ , ’ l og ’ , ’ y s c a l e ’ , ’ l og ’ , ’ Fonts i z e ’ , f o n t s i z e )

39 end

40 g r id on

41 x l a b e l ( ’ Frequency , rad/ s ’ , ’ FontSize ’ , f o n t s i z e , ’ Color ’ , ’ k ’ ) ;

42 y l a b e l ( ’ |H {1 ,1} | ’ , ’ Fonts i z e ’ , f o n t s i z e ) ;

43 xlim ( x l im vec )

44 ylim ( y l im vec )

45

46 subplot ( 2 , 2 , 2 ) ;

47 hold on

48 i f compare == 1

49 semi logx (omega ,20* l og10 ( squeeze (mag H ( 1 , 2 , : ) ) ) , ’ b ’ )

50 s e t ( gca , ’ x s c a l e ’ , ’ l og ’ , ’ Fonts i z e ’ , f o n t s i z e )

51 e l s e

52 l o g l o g ( omega* s y s s e t t i n g s . w base , ( squeeze (mag H ( 1 , 2 , : ) ) ) , ’ b ’ )

53 %I f f requency scanning i s done :

54 i f narg in == 10

55 l o g l o g ( omega fs * s y s s e t t i n g s . w base , r e s p o n s e f s ( : , 2 ) , ’ . r ’ , ’

MarkerSize ’ ,20)

56 end

57 s e t ( gca , ’ x s c a l e ’ , ’ l og ’ , ’ y s c a l e ’ , ’ l og ’ , ’ Fonts i z e ’ , f o n t s i z e )
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58 end

59 g r id on

60 x l a b e l ( ’ Frequency , rad/ s ’ , ’ FontSize ’ , f o n t s i z e , ’ Color ’ , ’ k ’ ) ;

61 y l a b e l ( ’ |H {1 ,2} | ’ , ’ Fonts i z e ’ , f o n t s i z e ) ;

62 xlim ( x l im vec )

63 ylim ( y l im vec )

64

65 subplot ( 2 , 2 , 3 ) ;

66 hold on

67 i f compare == 1

68 semi logx (omega ,20* l og10 ( squeeze (mag H ( 2 , 1 , : ) ) ) , ’ b ’ )

69 s e t ( gca , ’ x s c a l e ’ , ’ l og ’ , ’ Fonts i z e ’ , f o n t s i z e )

70 e l s e

71 l o g l o g ( omega* s y s s e t t i n g s . w base , ( squeeze (mag H ( 2 , 1 , : ) ) ) , ’ b ’ )

72 %I f f requency scanning i s done :

73 i f narg in == 10

74 l o g l o g ( omega fs * s y s s e t t i n g s . w base , r e s p o n s e f s ( : , 3 ) , ’ . r ’ , ’

MarkerSize ’ ,20)

75 end

76 s e t ( gca , ’ x s c a l e ’ , ’ l og ’ , ’ y s c a l e ’ , ’ l og ’ , ’ Fonts i z e ’ , f o n t s i z e )

77 end

78 g r id on

79 x l a b e l ( ’ Frequency , rad/ s ’ , ’ FontSize ’ , f o n t s i z e , ’ Color ’ , ’ k ’ ) ;

80 y l a b e l ( ’ |H {2 ,1} | ’ , ’ Fonts i z e ’ , f o n t s i z e ) ;

81 xlim ( x l im vec )

82 ylim ( y l im vec )

83

84 subplot ( 2 , 2 , 4 ) ;

85 hold on

86 i f compare == 1
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87 semi logx (omega ,20* l og10 ( squeeze (mag H ( 2 , 2 , : ) ) ) , ’ b ’ )

88 s e t ( gca , ’ x s c a l e ’ , ’ l og ’ , ’ Fonts i z e ’ , f o n t s i z e )

89 e l s e

90 l o g l o g ( omega* s y s s e t t i n g s . w base , ( squeeze (mag H ( 2 , 2 , : ) ) ) , ’ b ’ ) %20*

l og10

91 i f narg in == 10

92 l o g l o g ( omega fs * s y s s e t t i n g s . w base , ( r e s p o n s e f s ( : , 4 ) ) , ’ . r ’ , ’

MarkerSize ’ ,20)

93 end

94 s e t ( gca , ’ x s c a l e ’ , ’ l og ’ , ’ y s c a l e ’ , ’ l og ’ , ’ Fonts i z e ’ , f o n t s i z e )

95 end

96 g r id on

97 x l a b e l ( ’ Frequency , rad/ s ’ , ’ FontSize ’ , f o n t s i z e , ’ Color ’ , ’ k ’ ) ;

98 y l a b e l ( ’ |H {2 ,2} | ’ , ’ Fonts i z e ’ , f o n t s i z e ) ;

99 xlim ( x l im vec )

100 ylim ( y l im vec )

101

102 %Change d i r e c t o r y and save :

103 s t r 0 = ’d :\ Users \pkb12186\Desktop\Models\Thes is \ Images\ one conve r t e r \

vcc\ ’ ;

104 %L or LC f i l t e r :

105 i f s y s s e t t i n g s . Cf == 0

106 s t r 1 = ’L\ ’ ;

107 e l s e

108 s t r 1 = ’LC\ ’ ;

109 end

110 %SCR:

111 i f (1/ s y s s e t t i n g s . Ln) == 1

112 s t r 2 = ’V\ ’ ;

113 s t r s c r = ’ 1 ’ ;
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114 e l s e

115 s t r 2 = ’Q\ ’ ;

116 s t r s c r = num2str (1/ s y s s e t t i n g s . Ln) ;

117 end

118 %PLL order :

119 i f o rder == 1

120 s t r 3 = ’ 1 s t o r d e r \ ’ ;

121 e l s e i f order == 2

122 s t r 3 = ’ 2 nd order \ ’ ;

123 end

124

125 cd ( s t r c a t ( s t r 0 , s t r 1 , s t r 2 , s t r 3 ) )

126

127 P0 st r = num2str (P0*100) ;

128

129 i f save == 1

130 i f narg in == 10

131 saveas ( gcf , s t r c a t ( ’ v c c s c r ’ , s t r s c r , ’ p 0 ’ , P0 str , ’

b o d e v a l i d a t i o n ’ ) , ’ epsc ’ )

132 e l s e

133 saveas ( gcf , s t r c a t ( ’ v c c s c r ’ , s t r s c r , ’ p 0 ’ , P0 str , ’ bode ’ ) , ’

epsc ’ )

134 end

135 end

136

137 %% Phase p l o t t i n g :

138

139 i f phase == 1

140 f o n t s i z e = 20 ;

141
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142 f i g u r e ( ’ un i t s ’ , ’ normal ized ’ , ’ o u t e r p o s i t i o n ’ , [ 0 0 1 1 ] )

143 hold on

144 g r id on

145

146 subplot ( 2 , 2 , 1 ) ;

147 hold on

148 semi logx ( omega* s y s s e t t i n g s . w base ,180/ p i * . . .

149 unwrap ( atan2 ( squeeze ( imag (H( 1 , 1 , : ) ) ) , squeeze ( r e a l (H( 1 , 1 , : ) ) ) ) ) ,

’ b ’ )

150 %s e t ( gca , ’ x sca l e ’ , ’ log ’ , ’ Fonts ize ’ , f o n t s i z e )

151 g r id on

152 %Add the a x i s l a b e l s :

153 x l a b e l ( ’ Frequency , rad/ s ’ , ’ FontSize ’ , f o n t s i z e , ’ Color ’ , ’ k ’ ) ;

154 y l a b e l ( ’ Argument , degree s ’ , ’ Fonts i z e ’ , f o n t s i z e ) ;

155 xlim ( x l im vec )

156

157 subplot ( 2 , 2 , 2 ) ;

158 hold on

159 semi logx ( omega* s y s s e t t i n g s . w base ,180/ p i * . . .

160 unwrap ( atan2 ( squeeze ( imag (H( 1 , 2 , : ) ) ) , squeeze ( r e a l (H( 1 , 2 , : ) ) ) ) ) ,

’ b ’ )

161 %s e t ( gca , ’ x sca l e ’ , ’ log ’ , ’ Fonts ize ’ , f o n t s i z e )

162 g r id on

163 %Add the a x i s l a b e l s :

164 x l a b e l ( ’ Frequency , rad/ s ’ , ’ FontSize ’ , f o n t s i z e , ’ Color ’ , ’ k ’ ) ;

165 y l a b e l ( ’ Argument , degree s ’ , ’ Fonts i z e ’ , f o n t s i z e ) ;

166 xlim ( x l im vec )

167

168 subplot ( 2 , 2 , 3 ) ;

169 hold on
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170 semi logx ( omega* s y s s e t t i n g s . w base ,180/ p i * . . .

171 unwrap ( atan2 ( squeeze ( imag (H( 2 , 1 , : ) ) ) , squeeze ( r e a l (H( 2 , 1 , : ) ) ) ) ) ,

’ b ’ )

172 %s e t ( gca , ’ x sca l e ’ , ’ log ’ , ’ Fonts ize ’ , f o n t s i z e )

173 g r id on

174 %Add the a x i s l a b e l s :

175 x l a b e l ( ’ Frequency , rad/ s ’ , ’ FontSize ’ , f o n t s i z e , ’ Color ’ , ’ k ’ ) ;

176 y l a b e l ( ’ Argument , degree s ’ , ’ Fonts i z e ’ , f o n t s i z e ) ;

177 xlim ( x l im vec )

178

179 subplot ( 2 , 2 , 4 ) ;

180 hold on

181 semi logx ( omega* s y s s e t t i n g s . w base ,180/ p i * . . .

182 unwrap ( atan2 ( squeeze ( imag (H( 2 , 2 , : ) ) ) , squeeze ( r e a l (H( 2 , 2 , : ) ) ) ) ) ,

’ b ’ )

183 %s e t ( gca , ’ x sca l e ’ , ’ log ’ , ’ Fonts ize ’ , f o n t s i z e )

184 g r id on

185 %Add the a x i s l a b e l s :

186 x l a b e l ( ’ Frequency , rad/ s ’ , ’ FontSize ’ , f o n t s i z e , ’ Color ’ , ’ k ’ ) ;

187 y l a b e l ( ’ Argument , degree s ’ , ’ Fonts i z e ’ , f o n t s i z e ) ;

188 xlim ( x l im vec )

189

190 %saveas ( gcf , s t r c a t ( ’ v c c s c r ’ , s t r s c r , ’ p 0 ’ , P0 str , ’ phase ’ ) , ’ epsc

’ )

191

192 end

193 %Restore d i r e c t o r y :

194 cd ( c u r r e n t d i r e c t o r y )
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B.2 Vector current control

B.2.1 main function

Note - the following code contains function calls for non-linear models, the codes for which have

not been provided. These can be commented out where appropriate; this will make no difference

to the functioning of the linear model.

1 %% Analys i s o f a conve r t e r c o n t r o l l e d by VCC f e e d i n g Xn,Rn :

2

3 c l e a r

4 c l c

5 c l o s e a l l

6

7 %Yes I know − I r e a l l y hate us ing g l o b a l v a r i a b l e s , but MATLAB i s

MATLAB. . .

8 g l o b a l Voltages ;

9 g l o b a l Power ;

10 g l o b a l Components ;

11 g l o b a l AC control ;

12

13 s t r b a s e 1 = ’D:\ Users \pkb12186\Desktop\Models\High impedance systems ’ ;

14 s t r b a s e 2 = ’ \ S i n g l e conver t e r systems \Vector cur rent c o n t r o l \ ’ ;

15 s t r b a s e = s t r c a t ( s t r b a s e 1 , s t r b a s e 2 ) ;

16 s t r mat lab = ’ Matlab s c r i p t s ( f o r i n i t i a l i s a t i o n and Bode p l o t t i n g ) ’ ;

17 s t r s i m u l i n k = ’ Simulink s tate−space models\abc models ’ ;

18

19 l i n a n a l y s i s = 1 ;

20 f r equency scann ing = 0 ;

21 show phase = 0 ;

22 s tep change = 0 ;
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23 pz mapping = 1 ;

24 o u t e r c o n t r o l = 1 ;

25 compare = 0 ;

26 save = 0 ;

27 %Per−uni t nominal angular f requency :

28 w1 = 1 ;

29 %Range o f angular f r e q u e n c i e s ( in per un i t ) :

30 omega = horzcat ( ( 0 . 0 0 0 0 2 : 0 . 0 0 0 0 2 : 0 . 0 1 ) , ( 0 . 0 2 : 0 . 0 1 : 1 0 ) ) ;

31 %Assoc iated range o f s :

32 s = 1 i *omega ;

33 %Get system s e t t i n g s :

34 [ s y s s e t t i n g s ] = g e t s y s t e m s e t t i n g s ( ) ;

35 %Get c o n t r o l l e r s e t t i n g s :

36 [ c o n t r o l l e r ] = g e t v c c s e t t i n g s ( s y s s e t t i n g s ) ;

37 %Def ine the SCR:

38 f o r i = 1

39 %Which P0 va lue s should be s imulated f o r the g iven value o f SCR:

40 i f i == 1

41 AC control = 1 ;

42 i f c o n t r o l l e r . p l l . o rder == 1

43 P0 vec = 0 : 0 . 0 5 : 0 . 8 5 ;

44 e l s e

45 P0 vec = 0 : 0 . 0 5 : 0 . 8 5 ;

46 end

47 e l s e

48 AC control = 0 ;

49 P0 vec = [ 0 , 0 . 5 , 0 . 9 ] ;

50 end

51

52 i f pz mapping == 1
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53 f i g u r e ( ’ un i t s ’ , ’ normal ized ’ , ’ o u t e r p o s i t i o n ’ , [ 0 0 1 1 ] )

54 end

55

56 f o r j = 1 : l ength ( P0 vec )

57

58 cd ( s t r c a t ( s t r ba s e , s t r mat lab ) )

59

60 P0 = P0 vec ( j ) ;

61 %Def ine the g r id parameters in terms o f the per un i t system

being

62 %used in t h i s work :

63 s y s s e t t i n g s .Xn = 1/ i ;

64 s y s s e t t i n g s . Ln = s y s s e t t i n g s .Xn ;

65

66 %% Steady−s t a t e va lue s at a l l r e l e v a n t po in t s :

67

68 %Steady−s t a t e vo l tage magnitudes :

69 E0 = 1 ;

70 V0 = 1 ;

71

72 Power . P0 = P0 ;

73 Voltages . V0 = V0 ;

74 Voltages . E0 = E0 ;

75 Components . Rc = s y s s e t t i n g s . Rc ;

76 Components . Lc = s y s s e t t i n g s . Lc ;

77 Components . Cf = s y s s e t t i n g s . Cf ;

78 Components .Rn = s y s s e t t i n g s .Rn ;

79 Components . Ln = s y s s e t t i n g s . Ln ;

80 %Non−l i n e a r steady−s t a t e s o l v e r :

81 fun = @root8d ;
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82 i f s y s s e t t i n g s . Cf == 0

83 x0 = [ 0 , 0 , 0 , 0 ] ;

84 e l s e

85 x0 = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ;

86 end

87 x = f s o l v e ( fun , x0 ) ;

88

89 [ s t e a d y s t a t e ] = g e t s t e a d y s t a t e v a l u e s ( s y s s e t t i n g s , x ) ;

90

91 %% Linear model :

92

93 i f l i n a n a l y s i s == 1

94 i f s y s s e t t i n g s . Cf == 0

95 [ s s l i n ] = l i n s t a t e s p a c e l f i l t e r ( s y s s e t t i n g s , . . .

96 s t eady s ta t e , AC control ) ;

97 e l s e

98 [ s s l i n ] = l i n s t a t e s p a c e l c f i l t e r ( s y s s e t t i n g s , . . .

99 s t eady s ta t e , AC control ) ;

100 end

101 %Run the s−domain model :

102 [H] = l in mode l ( s s l i n , s y s s e t t i n g s , s t eady s ta t e , c o n t r o l l e r

, s ) ;

103 %Show the r e s u l t s :

104 i f f r equency scann ing == 0 && pz mapping == 0

105 b od e p l o t t i n g ( compare , save , c o n t r o l l e r . p l l . order , . . .

106 s y s s e t t i n g s , show phase , P0 , omega ,H) ;

107 end

108 %Uni f i ed s tate−space models :

109 i f o u t e r c o n t r o l == 0

110 [ s s model ] = c r e a t e s t a t e s p a c e l i n m o d e l v c c i n n e r ( . . .
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111 s s l i n , c o n t r o l l e r , s t e ady s ta t e , s y s s e t t i n g s ) ;

112

113 i f compare == 1

114 f i g u r e ( ’ un i t s ’ , ’ normal ized ’ , ’ o u t e r p o s i t i o n ’ , [ 0 0 1

1 ] )

115 bode ( ss model , omega )

116 g r id on

117 end

118 e l s e i f o u t e r c o n t r o l == 1

119 [ s s model ] = c r e a t e s t a t e s p a c e l i n m o d e l v c c o u t e r ( . . .

120 s s l i n , c o n t r o l l e r , s t e ady s ta t e , s y s s e t t i n g s ) ;

121 end

122 %Plot po l e s and ze ro s :

123 i f pz mapping == 1

124 i f j == length ( P0 vec )

125 complete = 1 ;

126 e l s e

127 complete = 0 ;

128 end

129

130 p z p l o t s ( ss model , s y s s e t t i n g s , c o n t r o l l e r , complete ,

o u t e r c o n t r o l ) ;

131 end

132 end

133

134 %% Some steady−s t a t e va lue s f o r the non−l i n e a r model ( i n i t i a l ) :

135

136 c o s t h e t a u 0 = cos ( s t e a d y s t a t e . theta u0 ) ;

137 s i n t h e t a u 0 = s i n ( s t e a d y s t a t e . theta u0 ) ;
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138 i c d 0 c = s t e a d y s t a t e . i c d 0 * c o s t h e t a u 0 + s t e a d y s t a t e . i c q 0

* s i n t h e t a u 0 ;

139 i c q 0 c = −s t e a d y s t a t e . i c d 0 * s i n t h e t a u 0 + s t e a d y s t a t e . i c q 0

* c o s t h e t a u 0 ;

140

141 %% Non−l i n e a r model ( abc frame based ) :

142

143 %Phase o f the g r id dq frame at t = 0 :

144 phase = 0 ;

145 %Convert br idge vo l tage to abc frame :

146 [ v abc ] = dq to abc ( s t e a d y s t a t e . v d0 , s t e a d y s t a t e . v q0 , phase ) ;

147 %Convert phase r e a c t o r cur rent to abc frame :

148 [ i c a b c ] = dq to abc ( s t e a d y s t a t e . i cd0 , s t e a d y s t a t e . i cq0 ,

phase ) ;

149 %Convert phase r e a c t o r cur rent to abc frame :

150 [ e abc ] = dq to abc ( s t e a d y s t a t e . u fd0 , s t e a d y s t a t e . u fq0 , phase

) ;

151 %Convert phase r e a c t o r cur rent to abc frame :

152 [ i n abc ] = dq to abc ( s t e a d y s t a t e . i nd0 , s t e a d y s t a t e . i nq0 ,

phase ) ;

153 %Create i n i t i a l va lue s :

154 i f s y s s e t t i n g s . Cf == 0

155 X0 = i c a b c ;

156 e l s e

157 X0 = [ i c abc , e abc , in abc ] ;

158 end

159

160 i f s y s s e t t i n g s . Cf == 0

161 [ A abc , B abc , C abc , D abc ] = n o n l i n s t a t e s p a c e l f i l t e r

( . . .
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162 s y s s e t t i n g s ) ;

163 e l s e

164 [ A abc , B abc , C abc , D abc ] = n o n l i n s t a t e s p a c e l c f i l t e r

( . . .

165 s y s s e t t i n g s ) ;

166 end

167 %Remaining C matr i ce s :

168 C1 abc = [ eye (3 ) , z e r o s (3 , 6 ) ] ;

169 C2 abc = [ z e ro s (3 ) , eye (3 ) , z e r o s (3 ) ] ;

170 C3 abc = [ z e ro s (6 , 3 ) , eye (6 ) ] ;

171

172 %% Run Simulink model ( f requency scanning ) :

173

174 i f l i n a n a l y s i s == 1 && frequency scann ing == 1 && pz mapping

== 0

175 g l o b a l switch on ;

176 g l o b a l omega sim ;

177 %I n i t i a l s e t t i n g s :

178 switch on = 0 ;

179 %Cal l the model to be e x c i t e d :

180 [ omega fs , r e s p o n s e f s ] = run f r equency scann ing (

s y s s e t t i n g s , . . .

181 s t r ba s e , s t r s i m u l i n k , c o n t r o l l e r ) ;

182 %Show the r e s u l t s :

183 b od e p l o t t i n g ( compare , save , c o n t r o l l e r . p l l . order ,

s y s s e t t i n g s , show phase , . . .

184 P0 , omega ,H, omega fs , r e s p o n s e f s ) ;

185 end

186

187 %% Run Simulink model ( s tep changes in r e f e r e n c e va lue s ) :
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188

189 i f s tep change == 1

190

191 %Get cur rent d i r e c t o r y :

192 c u r r e n t d i r e c t o r y = cd ;

193 %Change d i r e c t o r y to a l low Simulink models to run :

194 cd ( s t r c a t ( s t r ba s e , s t r s i m u l i n k ) )

195

196 i n i t = 1 ;

197 ts im = 1400 ;

198 t s t e p = 200* s y s s e t t i n g s . w base ;

199 s t e p i = 0 . 1 ;

200 swi tch d = 1 ; %#ok<NASGU>

201 sw i tch q = 0 ; %#ok<NASGU>

202

203 i f c o n t r o l l e r . p l l . o rder == 1

204

205 set param ( ’ v e c t o r c u r r e n t c o n t r o l 1 s t o r d e r p l l ’ , ’ L o a d I n i t i a l S t a t e ’

, ’ o f f ’ ) ;

206 set param ( ’ v e c t o r c u r r e n t c o n t r o l 1 s t o r d e r p l l ’ , ’ SaveFina lState ’ , ’

on ’ , ’ FinalStateName ’ , . . .

207 ’ myOperPoint ’ , ’ SaveCompleteFinalSimState ’ , ’ on ’ ) ;

208

209 e l s e i f c o n t r o l l e r . p l l . o rder == 2

210

211 set param ( ’ v e c t o r c u r r e n t c o n t r o l 2 n d o r d e r p l l ’ , ’ L o a d I n i t i a l S t a t e ’

, ’ o f f ’ ) ;

212 set param ( ’ v e c t o r c u r r e n t c o n t r o l 2 n d o r d e r p l l ’ , ’ SaveFina lState ’ , ’

on ’ , ’ FinalStateName ’ , . . .

213 ’ myOperPoint ’ , ’ SaveCompleteFinalSimState ’ , ’ on ’ ) ;
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214

215 end

216 %Run the model :

217 i f c o n t r o l l e r . p l l . o rder == 1

218 sim ( ’ v e c t o r c u r r e n t c o n t r o l 1 s t o r d e r p l l ’ )

219 e l s e i f c o n t r o l l e r . p l l . o rder == 2

220 sim ( ’ v e c t o r c u r r e n t c o n t r o l 2 n d o r d e r p l l ’ )

221 end

222

223 i c d 0 c = i n i t i a l s t a t e . data ( end , 1 ) ;

224 i c q 0 c = i n i t i a l s t a t e . data ( end , 2 ) ;

225 i n i t = 0 ;

226

227 i f c o n t r o l l e r . p l l . o rder == 1

228

229 set param ( ’ v e c t o r c u r r e n t c o n t r o l 1 s t o r d e r p l l ’ , ’ L o a d I n i t i a l S t a t e ’

, ’ on ’ , . . .

230 ’ I n i t i a l S t a t e ’ , ’ myOperPoint ’ ) ;

231 set param ( ’ v e c t o r c u r r e n t c o n t r o l 1 s t o r d e r p l l ’ , ’ SaveFina lState ’ , ’

o f f ’ ) ;

232

233 e l s e i f c o n t r o l l e r . p l l . o rder == 2

234

235 set param ( ’ v e c t o r c u r r e n t c o n t r o l 2 n d o r d e r p l l ’ , ’ L o a d I n i t i a l S t a t e ’

, ’ on ’ , . . .

236 ’ I n i t i a l S t a t e ’ , ’ myOperPoint ’ ) ;

237 set param ( ’ v e c t o r c u r r e n t c o n t r o l 2 n d o r d e r p l l ’ , ’ SaveFina lState ’ , ’

o f f ’ ) ;

238

239 end
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240

241 ts im = 2600 ;

242 t s t e p = 6* s y s s e t t i n g s . w base ;

243 s t e p i = 0 . 1 ;

244 %Change id r e f and ana lyse re sponse :

245 swi tch d = 1 ; %#ok<NASGU>

246 sw i tch q = 0 ; %#ok<NASGU>

247 %Cal l the model :

248 i f c o n t r o l l e r . p l l . o rder == 1

249 sim ( ’ v e c t o r c u r r e n t c o n t r o l 1 s t o r d e r p l l ’ )

250 e l s e i f c o n t r o l l e r . p l l . o rder == 2

251 sim ( ’ v e c t o r c u r r e n t c o n t r o l 2 n d o r d e r p l l ’ )

252 end

253

254 y1 = y1 abc ;

255

256 %Change iq r e f and ana lyse re sponse :

257 swi tch d = 0 ;

258 sw i tch q = 1 ;

259 %Cal l the model :

260 i f c o n t r o l l e r . p l l . o rder == 1

261 sim ( ’ v e c t o r c u r r e n t c o n t r o l 1 s t o r d e r p l l ’ )

262 e l s e i f c o n t r o l l e r . p l l . o rder == 2

263 sim ( ’ v e c t o r c u r r e n t c o n t r o l 2 n d o r d e r p l l ’ )

264 end

265 %

266 y2 = y1 abc ;

267 %Bring back to the o r i g i n a l f o l d e r :

268 cd ( c u r r e n t d i r e c t o r y )

269
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270 %Plot the r e s u l t s :

271 power p lo t t ing ( s y s s e t t i n g s , c o n t r o l l e r , P0 , y1 , y2 ) ;

272 end

273 end

274 end

B.2.2 Combined linear model of controller and plant

Frequency response data

1 f unc t i on [H] = l in mode l ( s s l i n , components , s t e ady s ta t e , c o n t r o l l e r , s )

2 %Create space f o r the t r a n s f e r func t i on matrix :

3 H = ze ro s (2 , 2 , l ength ( s ) ) ;

4 %Grid f requency ( per un i t ) :

5 w1 = 1 ;

6 %Get the r e l e v a n t in fo rmat ion f o r the system :

7 Lc = components . Lc ;

8 Cf = components . Cf ;

9 %Get the c o n t r o l l e r in fo rmat ion :

10 k p p l l = c o n t r o l l e r . p l l . kp ;

11 k i p l l = c o n t r o l l e r . p l l . k i ;

12 a l p h a f = c o n t r o l l e r . i c c . a l p h a f ;

13 k p i c c = c o n t r o l l e r . i c c . kp ;

14 k i i c c = c o n t r o l l e r . i c c . k i ;

15 %Get the outer loop c o n t r o l l e r in fo rmat ion :

16 kp apc = c o n t r o l l e r . apc . kp ;

17 k i apc = c o n t r o l l e r . apc . k i ;

18 kp vp = c o n t r o l l e r . dec . kp vp ;

19 k i vp = c o n t r o l l e r . dec . k i vp ;

20 kp pv = c o n t r o l l e r . dec . kp pv ;
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21 k i pv = c o n t r o l l e r . dec . k i pv ;

22 kp avc = c o n t r o l l e r . avc . kp ;

23 k i avc = c o n t r o l l e r . avc . k i ;

24 %Get the steady−s t a t e va lue s :

25 v d0 = s t e a d y s t a t e . v d0 ;

26 v q0 = s t e a d y s t a t e . v q0 ;

27 i c d 0 = s t e a d y s t a t e . i c d 0 ;

28 i c q 0 = s t e a d y s t a t e . i c q 0 ;

29 u fd0 = s t e a d y s t a t e . u fd0 ;

30 u fq0 = s t e a d y s t a t e . u fq0 ;

31 %Get the steady−s t a t e ang l e s :

32 theta v0 = atan2 ( v q0 , v d0 ) ;

33 theta u0 = atan2 ( u fq0 , u fd0 ) ;

34 %Voltage magnitude at the br idge :

35 V0 = s q r t ( v d0 ˆ2 + v q0 ˆ2) ;

36 %Run through a l l f r e q u e n c i e s , c a l c u l a t i n g the network response :

37 f o r k=1: l ength ( s )

38 %Network t r a n s f e r matrix :

39 i f Cf == 0

40 G = s s l i n .C* ( ( s ( k ) * eye (2 ) − s s l i n .A) \ s s l i n .B) + s s l i n .D;

41 e l s e

42 G = s s l i n .C* ( ( s ( k ) * eye (6 ) − s s l i n .A) \ s s l i n .B) + s s l i n .D;

43 end

44 %S p l i t the network t r a n s f e r matrix in to three par t s :

45 G1 = G( 1 : 2 , 1 : 2 ) ;

46 G2 = G( 3 : 4 , 1 : 2 ) ;

47 G3 = G( 5 : 6 , 1 : 2 ) ;

48 %Low−pass f i l t e r :

49 H LP = a l p h a f /( s ( k )+a l p h a f ) ;

50 %PLL c o n t r o l l e r ga in :
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51 CPLL = k p p l l + k i p l l / s ( k ) ;

52 %Inner cur rent c o n t r o l l e r ga in :

53 Ci = k p i c c + k i i c c / s ( k ) ;

54 %Ci matr i ce s :

55 i f c o n t r o l l e r . p l l . o rder == 1

56 C1 = 1/(1+CPLL*( u fq0 * s i n ( theta u0 )+u fd0 * cos ( theta u0 ) ) ) * . . .

57 [−CPLL* s i n ( theta u0 ) ,CPLL* cos ( theta u0 ) ] ;

58 e l s e i f c o n t r o l l e r . p l l . o rder == 2

59 C1 = 1/( s ( k )+CPLL*( u fq0 * s i n ( theta u0 )+u fd0 * cos ( theta u0 ) ) )

* . . .

60 [−CPLL* s i n ( theta u0 ) ,CPLL* cos ( theta u0 ) ] ;

61 end

62 C2 = [ cos ( theta u0 ) , s i n ( theta u0 ) ;− s i n ( theta u0 ) , cos ( theta u0 ) ] ;

63 C2 inv = [ cos ( theta u0 ) ,− s i n ( theta u0 ) ; s i n ( theta u0 ) , cos ( theta u0 )

] ;

64 C3 = [ u fq0 * cos ( theta u0 )−u fd0 * s i n ( theta u0 ) ; . . .

65 −u fq0 * s i n ( theta u0 )−u fd0 * cos ( theta u0 ) ] ;

66 C4 = [ i c q 0 * cos ( theta u0 )− i c d 0 * s i n ( theta u0 ) ; . . .

67 − i c q 0 * s i n ( theta u0 )− i c d 0 * cos ( theta u0 ) ] ;

68 C5 = [−Ci ,−w1*Lc ; w1*Lc,−Ci ] ;

69 C6 = [ Ci , 0 ; 0 , Ci ] ;

70 C7 = [ H LP , 0 ; 0 , H LP ] ;

71 C8 = [−V0* s i n ( theta v0 ) ; V0* cos ( theta v0 ) ] ;

72 C9 = 1 ;%/( s ( k ) * pi /33 + 1) ;

73 %Calcu la te kappa :

74 kappa = C9*C2 inv *(C5*(C2*G1+C4*C1*G2) + . . .

75 C7*(C2*G2+C3*C1*G2) )+C8*C1*G2;

76 %Calcu la te I − kappa :

77 eye kappa = eye (2 ) − kappa ;

78 %Calcu la te H ( c l o s e d loop t r a n s f e r func t i on o f the power system ,
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79 %i n c l u d i n g the c o n t r o l l e r s ) :

80 H inner = G3*( eye kappa \(C9*C2 inv*C6) ) ;

81 %Outer loop c o n t r o l l e r s :

82 C21 = [ ( kp apc+k i apc / s ( k ) ) , ( kp vp+ki vp / s ( k ) ) ; . . .

83 −(kp pv+ki pv / s ( k ) ) ,−( kp avc+k i avc / s ( k ) ) ] ;

84 %Overa l l t r a n s f e r func t i on :

85 H( : , : , k ) = H inner ;

86 %( eye (2 ) + H inner *C21) \( H inner *C21) ;

87 %s ( k ) * v e r t c a t (C1 , C1) ;%

88 end

Unified linear state-space model

1 f unc t i on [ ss model ] = c r e a t e s t a t e s p a c e l i n m o d e l v c c i n n e r ( s s l i n , . . .

2 c o n t r o l l e r , s t e ady s ta t e , components )

3 %State−equat ion matr i ce s :

4 Ae = s s l i n .A;

5 Be = s s l i n .B;

6 %Re−order rows to make c o n s i s t e n t with t h e s i s equat ions :

7 Ce = v e r t c a t ( s s l i n .C( 5 : 6 , : ) , s s l i n .C( 1 : 4 , : ) ) ;

8 De = v e r t c a t ( s s l i n .D( 5 : 6 , : ) , s s l i n .D( 1 : 4 , : ) ) ;

9 %Number o f e l e c t r i c a l s t a t e s :

10 Ne = length (Ae ( 1 , : ) ) ;

11 %Grid f requency ( per un i t ) :

12 w1 = 1 ;

13 Lc = components . Lc ;

14 %Get the c o n t r o l l e r in fo rmat ion :

15 order = c o n t r o l l e r . p l l . o rder ;

16 k p p l l = c o n t r o l l e r . p l l . kp ;

17 k i p l l = c o n t r o l l e r . p l l . k i ;

18 a f = c o n t r o l l e r . i c c . a l p h a f ;
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19 kp cc = c o n t r o l l e r . i c c . kp ;

20 k i c c = c o n t r o l l e r . i c c . k i ;

21 %Number o f c o n t r o l l e r s t a t e s :

22 i f o rder == 1

23 Nc = 5 ;

24 e l s e i f order == 2

25 Nc = 6 ;

26 end

27 %Get the steady−s t a t e va lue s :

28 v d0 = s t e a d y s t a t e . v d0 ;

29 v q0 = s t e a d y s t a t e . v q0 ;

30 i c d 0 = s t e a d y s t a t e . i c d 0 ;

31 i c q 0 = s t e a d y s t a t e . i c q 0 ;

32 u fd0 = s t e a d y s t a t e . u fd0 ;

33 u fq0 = s t e a d y s t a t e . u fq0 ;

34 U0 = s q r t ( u fd0 ˆ2 + u fq0 ˆ2) ;

35 %Get the steady−s t a t e ang l e s :

36 theta v0 = atan2 ( v q0 , v d0 ) ;

37 theta u0 = atan2 ( u fq0 , u fd0 ) ;

38 %Voltage magnitude at the br idge :

39 V0 = s q r t ( v d0 ˆ2 + v q0 ˆ2) ;

40

41 %% Current c o n t r o l l e r s ta te−space model :

42

43 %Def ine the f i r s t l i n k i n g matrix :

44 T1 = [ 0 , 0 , 0 , 0 , 1 , 0 ; 0 , 0 , 0 , 0 , 0 , 1 ] ;

45 %Def ine the PLL state−space matr i ce s :

46 i f o rder == 1

47 Apll = −k i p l l *U0/(1 + k p p l l *U0) ;

48 Bpl l = k i p l l /(1 + U0* k p p l l ) *(1 − U0* k p p l l /(1 + U0* k p p l l ) ) * . . .
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49 [0 ,0 ,0 ,0 ,− s i n ( theta u0 ) , cos ( theta u0 ) ] ;

50 Cpl l = 1 ;

51 Dpll = k p p l l /(1 + k p p l l *U0) * [0 ,0 ,0 ,0 ,− s i n ( theta u0 ) , cos ( theta u0 )

] ;

52 e l s e i f order == 2

53 Apll = [−U0* kp p l l ,−U0* k i p l l ; 1 , 0 ] ;

54 Bpl l = [0 ,0 ,0 ,0 ,− s i n ( theta u0 ) , cos ( theta u0 ) ; 0 , 0 , 0 , 0 , 0 , 0 ] ;

55 Cpl l = [ kp p l l , k i p l l ] ;

56 end

57 %Def ine the second l i n k i n g matrix :

58 T2 = [ 0 , 0 , 1 , 0 , 0 , 0 ; 0 , 0 , 0 , 1 , 0 , 0 ] ;

59 %Def ine the abc −> dq frame trans fo rmat ion s tate−space matr i ce s :

60 C2a = [ cos ( theta u0 ) , s i n ( theta u0 ) ;− s i n ( theta u0 ) , cos ( theta u0 ) ]*T2 ;

61 C2b = [ cos ( theta u0 ) , s i n ( theta u0 ) ;− s i n ( theta u0 ) , cos ( theta u0 ) ]*T1 ;

62 C3 = [ i c q 0 * cos ( theta u0 )− i c d 0 * s i n ( theta u0 ) ; . . .

63 − i c q 0 * s i n ( theta u0 )− i c d 0 * cos ( theta u0 ) ] ;

64 C4 = [ u fq0 * cos ( theta u0 )−u fd0 * s i n ( theta u0 ) ; . . .

65 −u fq0 * s i n ( theta u0 )−u fd0 * cos ( theta u0 ) ] ;

66 i f o rder == 1

67 Cabc1 = [ C2a ; C2b ] + [ C3 ; C4 ]* Dpll ;

68 e l s e i f order == 2

69 Cabc1 = [ C2a ; C2b ] ;

70 end

71 Cabc2 = [ C3 ; C4 ]* Cpl l ;

72 %Def ine the low−pass s ta te−space matr i ce s :

73 Alp = −a f * eye (2 ) ;

74 Blp1 = [ 0 , 0 , af , 0 ; 0 , 0 , 0 , a f ]*Cabc1 ;

75 Blp2 = [ 0 , 0 , af , 0 ; 0 , 0 , 0 , a f ]*Cabc2 ;

76 Clp = [ 0 , 0 ; 0 , 0 ; 1 , 0 ; 0 , 1 ] ;

77 %Def ine the mod i f i e r :
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78 M = [ 1 , 0 , 0 , 0 ; 0 , 1 , 0 , 0 ; 0 , 0 , 0 , 0 ; 0 , 0 , 0 , 0 ] ;

79 %Def ine the M matr i ce s :

80 Mcc1 = M*Cabc1 ;

81 Mcc2 = M*Cabc2 ;

82 %Def ine the cur rent c o n t r o l l e r s ta te−space matr i ce s :

83 Bccz = eye (2 ) ;

84 Bcc = [ −1 ,0 ,0 ,0 ;0 , −1 ,0 ,0 ] ;

85 Ccc = [ k i c c , 0 ; 0 , k i c c ] ;

86 Dccz = [ kp cc , 0 ; 0 , kp cc ] ;

87 Dcc = [−kp cc ,−w1*Lc , 1 , 0 ; w1*Lc,−kp cc , 0 , 1 ] ;

88 %Def ine the dq −> abc frame trans fo rmat ion s tate−space matr i ce s :

89 C8 = [ cos ( theta u0 ) ,− s i n ( theta u0 ) ; s i n ( theta u0 ) , cos ( theta u0 ) ] ;

90 C9 = [−V0* s i n ( theta v0 ) ; V0* cos ( theta v0 ) ] ;

91 %Def ine Cdq , Ddq and Edq :

92 Cdq = [ z e ro s (2 , 6 ) , [ C8*Dcc*Mcc2+C9*Cpll , C8*Dcc*Clp , C8*Ccc ] ] ;

93 Ddq = C8*Dccz ;

94 i f o rder == 1

95 Edq = C8*Dcc*Mcc1 + C9*Dpll ;

96 e l s e i f order == 2

97 Edq = C8*Dcc*Mcc1 ;

98 end

99 %Calcu la te lambda :

100 lambda = eye (2 ) − Edq*De ;

101 %Lambda terms :

102 lambda cdq = lambda\Cdq ;

103 lambda ddq = lambda\Ddq ;

104 lambda edq = lambda\Edq ;

105 %Def ine s tage one u n i f i e d s ta te−space model :

106 Avcc = [ Apll , z e r o s ( order , 4 ) ; Blp2 , Alp , z e r o s (2 ) ; Bcc*Mcc2 , Bcc*Clp , z e r o s (2 )

] ;
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107 A1 = [ Ae , z e r o s (Ne , Nc) ; z e r o s (Nc , Ne) , Avcc ] ;

108 Bvcca = [ Bpl l ; Blp1 ; Bcc*Mcc1 ] ;

109 B1 = [ z e ro s (Ne , 6 ) ; Bvcca ] ;

110 B2 = [ Be ; z e r o s (Nc , 2 ) ] ;

111 Bvccb = [ z e ro s ( order +2 ,2) ; Bccz ] ;

112 B3 = [ z e ro s (Ne , 2 ) ; Bvccb ] ;

113 %Unify :

114 A l in = A1 + B1 * ( [ Ce , z e r o s (Ne , Nc) ] + De*( lambda cdq + . . .

115 lambda edq * [ Ce , z e r o s (Ne , Nc) ] ) ) + B2*( lambda cdq + . . .

116 lambda edq * [ Ce , z e r o s (Ne , Nc) ] ) ;

117 B l in = B3 + B1*De* lambda ddq + B2* lambda ddq ;

118 %Ref ine the output equat ion :

119 C l in = [ Ce , z e r o s (Ne , Nc) ]+[De* lambda edq*Ce , z e ro s (Ne , Nc) ]+De* lambda cdq

;

120 D l in = De* lambda ddq ;

121 %Def ine the t h i rd l i n k i n g matrix :

122 T3 = [ 1 , 0 , 0 , 0 , 0 , 0 ; 0 , 1 , 0 , 0 , 0 , 0 ] ;

123 %Def ine the f i n a l u n i f i e d output equat ion so i t only f o c u s e s on dP and

dE :

124 C l in = T3*C l in ;

125 D l in = T3*D l in ;

126 %Put in to a s s model :

127 ss model = s s ( A l in , B l in , C l in , D l in ) ;

128

129

130 %% Old mate r i a l :

131

132 % A l in = [ Be ; Bpl l *De ; Blp1*De ; Bcc*Mcc1*De ]* lambda cdq + . . .

133 % [ Ae+Be* lambda edq*Ce , z e ro s (6 ) ; . . .

134 % Bpl l *(Ce + De* lambda edq*Ce) , Apll , z e r o s (2 , 4 ) ; . . .
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135 % Blp1 *(Ce + De* lambda edq*Ce) , Blp2 , Alp , z e r o s (2 ) ; . . .

136 % Bcc*Mcc1*(Ce + De* lambda edq*Ce) , Bcc*Mcc2 , z e r o s (2 , 4 ) ] ;

137 % B l in = [ Be ; Bpl l *De ; Blp1*De ; Bcc*Mcc1*De ]* lambda ddq + [ z e ro s (10 ,2 ) ;

Bccz ] ;

B.3 Power synchronization control

B.3.1 main function

Note - the following code contains function calls for non-linear models, the codes for which have

not been provided. These can be commented out where appropriate; this will make no difference

to the functioning of the linear model.

1 %% Analys i s o f a conve r t e r c o n t r o l l e d by PSL f e e d i n g Xn,Rn :

2

3 c l e a r

4 c l c

5 c l o s e a l l

6

7 g l o b a l Voltages ;

8 g l o b a l Power ;

9 g l o b a l Components ;

10 %Range o f angular f r e q u e n c i e s ( in per un i t ) :

11 omega = horzcat ( ( 0 . 0 0 0 0 2 : 0 . 0 0 0 0 2 : 0 . 0 1 ) , ( 0 . 0 2 : 0 . 0 1 : 1 5 ) ) ;

12 %Assoc iated range o f s :

13 s = 1 i *omega ;

14 %Modulation index o f the conve r t e r ( f s / freq nom ) :

15 Mod Ind = 33 ;

16 %Def ine g r id f requency :

17 freq nom = 50 ;

18 %Assoc iated angular f requency :
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19 w base = 2* pi * freq nom ;

20 %Express t h i s in per un i t terms :

21 w1 = 1 ;

22 %Def ine the base power :

23 P base = 350 e6 ;

24 %Def ine the base vo l tage :

25 V base = 195 e3 ;

26 %Def ine the parameters o f f i l t e r and f o r the conver t e r :

27 Xc = 0 . 2 ;

28 Lc = Xc ;

29 Rc = 0 . 0 1 ;

30 Xf = 1 / 0 . 1 7 ;

31 Cf = 1/Xf ;

32 %High pass cur rent c o n t r o l parameters :

33 c o n t r o l l e r . p s l . kv = 0 . 4 5 ;

34 c o n t r o l l e r . p s l . a lpha v = 40/ w base ;

35 %Gains o f the power synchron i za t i on c o n t r o l l e r :

36 c o n t r o l l e r . p s l . k i = 50/ w base ;

37 %Gains o f the vo l tage c o n t r o l l e r :

38 c o n t r o l l e r . vo l . k i = 60/ w base ;

39 %Def ine the short−c i r c u i t r a t i o :

40 f o r i = 1 :5

41 %Which P0 va lue s should be s imulated f o r the g iven value o f SCR:

42 i f i == 1

43 AC control = 1 ;

44 P0 vec = [ 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 7 5 , 0 . 8 5 ] ;

45 e l s e

46 AC control = 0 ;

47 P0 vec = [ 0 , 0 . 5 , 0 . 9 ] ;

48 end

242



Appendix B. Sample code for linearised models

49 f o r j = 1 : l ength ( P0 vec )

50

51 cd ( s t r c a t ( s t r ba s e , s t r mat lab ) )

52

53 P0 = P0 vec ( j ) ;

54 %Def ine the g r id parameters in terms o f the per un i t system

being

55 %used in t h i s work :

56 Xn = 1/ i ;

57 Ln = Xn;

58 Rn = 0 . 0 1 ;

59

60 %% Steady−s t a t e va lue s at a l l r e l e v a n t po in t s :

61

62 E0 = 1 ;

63 V0 = 1 ;

64

65 Power . P0 = P0 ;

66 Voltages . V0 = V0 ;

67 Voltages . E0 = E0 ;

68 Components . Rc = Rc ;

69 Components . Lc = Lc ;

70 Components . Cf = Cf ;

71 Components .Rn = Rn;

72 Components . Ln = Ln ;

73 %

74 fun = @root8d ;

75 x0 = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ;

76 x = f s o l v e ( fun , x0 ) ;

77
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78 [ s t e a d y s t a t e ] = g e t s t e a d y s t a t e v a l u e s ( Components , x ) ;

79

80 %% Linear model :

81

82 i f Components . Cf == 0

83 [ s s l i n ] = l i n s t a t e s p a c e l f i l t e r ( Components , s t e a d y s t a t e

) ;

84 e l s e

85 [ s s l i n ] = l i n s t a t e s p a c e l c f i l t e r ( Components ,

s t e a d y s t a t e ) ;

86 end

87

88 [H] = l in mode l ( s s l i n , Components , c o n t r o l l e r , s , s t e a d y s t a t e ) ;

89

90 b od e p l o t t i n g ( Components . Cf , i , show phase , P0 , omega , . . .

91 w base ,H) ;

92

93 %% Poles and ze ro s :

94

95 %Bring back to the o r i g i n a l f o l d e r :

96 cd ( s t r c a t ( s t r ba s e , s t r mat lab ) )

97

98 i f l i n a n a l y s i s == 1

99 %p z a n a l y s i s (H, omega , w base ) ;

100 end

101

102 end

103 end
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B.3.2 Combined linear model of controller and plant

Frequency response data

1 f unc t i on [H] = l in mode l ( s s l i n , components , c o n t r o l l e r , s , s t e a d y s t a t e )

2 %Create space f o r the t r a n s f e r func t i on matrix :

3 H = ze ro s ( l ength ( s ) , 2 , 2 ) ;

4 %Get the steady−s t a t e va lue s :

5 v d0 = s t e a d y s t a t e . v d0 ;

6 v q0 = s t e a d y s t a t e . v q0 ;

7 i c d 0 = s t e a d y s t a t e . i c d 0 ;

8 i c q 0 = s t e a d y s t a t e . i c q 0 ;

9 %Angles :

10 theta v0 = s t e a d y s t a t e . theta v0 ;

11 %Run through a l l f r e q u e n c i e s , c a l c u l a t i n g the f requency response :

12 f o r k=1: l ength ( s )

13 %Network response :

14 i f components . Cf == 0

15 G = s s l i n .C* ( ( s ( k ) * eye (2 ) − s s l i n .A) \ s s l i n .B) + s s l i n .D;

16 e l s e

17 G = s s l i n .C* ( ( s ( k ) * eye (6 ) − s s l i n .A) \ s s l i n .B) + s s l i n .D;

18 end

19 %S p l i t the network t r a n s f e r func t i on matrix :

20 G1 = G( 1 : 2 , : ) ;

21 G2 = G( 3 : 4 , : ) ;

22 %High pass f i l t e r :

23 H HP = c o n t r o l l e r . p s l . kv* s ( k ) /( s ( k )+c o n t r o l l e r . p s l . a lpha v ) ;

24 %C matr i ce s :

25 C10 = [ c o n t r o l l e r . p s l . k i / s ( k ) , 0 ; 0 , c o n t r o l l e r . vo l . k i / s ( k ) ] ;

26 C11 = −C10 ;

27 C12 = [ cos ( theta v0 ) , s i n ( theta v0 ) ;− s i n ( theta v0 ) , cos ( theta v0 ) ] ;
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28 C13 = [ i c q 0 * cos ( theta v0 )− i c d 0 * s i n ( theta v0 ) , 0 ; . . .

29 i c q 0 * s i n ( theta v0 )− i c d 0 * cos ( theta v0 ) , 0 ] ;

30 C14 = −H HP* eye (2 ) ;

31 C15 = [ 0 , 1 ; 0 , 0 ] ;

32 C16 = [ cos ( theta v0 ) ,− s i n ( theta v0 ) ; s i n ( theta v0 ) , cos ( theta v0 ) ] ;

33 C17 = [−v q0 , 0 ; v d0 , 0 ] ;

34 %Calcu la te I − kappa :

35 eye kappa = ( eye (2 )−((C17+C16*(C15+C14*C13) ) *C11*G1 + . . .

36 C16*C14*C12*G2) ) ;

37 H(k , : , : ) = G1*( eye kappa \ ( ( C17+C16*(C14*C13+C15) ) *C10) ) ;

38 end

Unified linear state-space model

1 f unc t i on [ ss model ] = c r e a t e s t a t e s p a c e l i n m o d e l ( s s l i n , c o n t r o l l e r

, . . .

2 s t eady s ta t e , components )

3 %State−equat ion matr i ce s :

4 Ae = s s l i n .A;

5 Be = s s l i n .B;

6 %Re−order rows to make c o n s i s t e n t with t h e s i s equat ions :

7 Ce = v e r t c a t ( s s l i n .C( 5 : 6 , : ) , s s l i n .C( 1 : 4 , : ) ) ;

8 De = v e r t c a t ( s s l i n .D( 5 : 6 , : ) , s s l i n .D( 1 : 4 , : ) ) ;

9 %Grid f requency ( per un i t ) :

10 w1 = 1 ;

11 Lc = components . Lc ;

12 Rc = components . Rc ;

13 %Get the c o n t r o l l e r in fo rmat ion :

14 kp apc = c o n t r o l l e r . p s l . kp ;

15 k i apc = c o n t r o l l e r . p s l . k i ;

16 kp avc = c o n t r o l l e r . vo l . kp ;
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17 k i avc = c o n t r o l l e r . vo l . k i ;

18 %F i l t e r i n g terms :

19 av = c o n t r o l l e r . p s l . a lpha v ;

20 kv = c o n t r o l l e r . p s l . kv ;

21 kc = c o n t r o l l e r . vo l . kc ;

22 %Get the steady−s t a t e va lue s :

23 v d0 = s t e a d y s t a t e . v d0 ;

24 v q0 = s t e a d y s t a t e . v q0 ;

25 i c d 0 = s t e a d y s t a t e . i c d 0 ;

26 i c q 0 = s t e a d y s t a t e . i c q 0 ;

27 u fd0 = s t e a d y s t a t e . u fd0 ;

28 u fq0 = s t e a d y s t a t e . u fq0 ;

29 %Get the steady−s t a t e ang l e s :

30 theta v0 = atan2 ( v q0 , v d0 ) ;

31 %Def ine w ( equat ion 6 . 6 ) :

32 w d0 = u fd0 + kc *(Rc* i c d 0 − w1*Lc* i c q 0 ) ;

33 w q0 = u fq0 + kc *(Rc* i c q 0 + w1*Lc* i c d 0 ) ;

34 %Assoc iated magnitude :

35 W0 = s q r t ( w d0ˆ2 + w q0 ˆ2) ;

36 %Def ine the outer c o n t r o l l e r s ta te−space matr i ce s ( equat ions 6 .9 and

6 . 1 0 ) :

37 Bolz = eye (2 ) ;

38 Bol = − [ 1 , 0 , 0 , 0 , 0 , 0 ; . . .

39 0 ,0 , kc *(Rc*w d0+w1*Lc*w q0 ) /W0, kc *(Rc*w q0−w1*Lc*w d0 ) /W0, w d0/W0,

w q0/W0] ;

40 Col = [ k i apc , 0 ; 0 , k i avc ] ;

41 Dolz = [ kp apc , 0 ; 0 , kp avc ] ;

42 Dol = −Dolz * [ 1 , 0 , 0 , 0 , 0 , 0 ; . . .

43 0 ,0 , kc *(Rc*w d0+w1*Lc*w q0 ) /W0, kc *(Rc*w q0−w1*Lc*w d0 ) /W0, w d0/W0,

w q0/W0] ;
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44 %Def ine the f i r s t l i n k i n g matrix ( equat ion 6 . 1 3 ) :

45 T1 = [ 0 , 0 , 1 , 0 , 0 , 0 ; 0 , 0 , 0 , 1 , 0 , 0 ] ;

46 %Def ine the abc −> dq frame trans fo rmat ion s tate−space matr i ce s :

47 C3 = [ cos ( theta v0 ) , s i n ( theta v0 ) ;− s i n ( theta v0 ) , cos ( theta v0 ) ]*T1 ;

48 C4 = [ i c q 0 * cos ( theta v0 )− i c d 0 * s i n ( theta v0 ) , 0 ; . . .

49 i c q 0 * s i n ( theta v0 )− i c d 0 * cos ( theta v0 ) , 0 ] ;

50 C6 = [ 0 , 1 ; 0 , 0 ] ;

51 %Def ine the e f f e c t o f the high−pass f i l t e r s ta te−space matr i ce s (−ve

s i gn ) :

52 Ahp = [−av ,0 ;0 ,− av ] ;

53 Bhp = [ kv , 0 ; 0 , kv ] ;

54 Chp = [ av , 0 ; 0 , av ] ;

55 Dhp = [−kv ,0 ;0 ,−kv ] ;

56 %Def ine the C7 and C8 matr i ce s ( equat ions 6 .23 and 6 .24 r e s p e c t i v e l y ) :

57 C7 = [ cos ( theta v0 ) ,− s i n ( theta v0 ) ; s i n ( theta v0 ) , cos ( theta v0 ) ] ;

58 C8 = [−v q0 , 0 ; v d0 , 0 ] ;

59 %Def ine Cdq , Ddq and Edq ( equat ion 6 . 2 6 ) :

60 Cdq = [ z e ro s (2 , 6 ) , [ ( C7*(Dhp*C4+C6) + C8) *Col , C7*Chp ] ] ;

61 Ddq = (C7*(Dhp*C4+C6)+C8) *Dolz ;

62 Edq = (C7*(Dhp*C4+C6)+C8) *Dol + C7*Dhp*C3 ;

63 %Calcu la te lambda ( g l o b a l c o e f f i c i e n t f o r equat ion 6 . 37 ) :

64 lambda = eye (2 ) − Edq*De ;

65 %Lambda terms ( c o e f f i c i e n t s f o r equat ion 6 . 37 ) :

66 lambda cdq = lambda\Cdq ;

67 lambda ddq = lambda\Ddq ;

68 lambda edq = lambda\Edq ;

69 %Def ine s tage one u n i f i e d s ta te−space model ( equat ion 6 . 3 6 ) :

70 A1 = [ Ae , z e r o s (6 , 4 ) ; z e r o s (4 , 6 ) , [ z e r o s (2 , 4 ) ; Bhp*C4*Col , Ahp ] ] ;

71 B1 = [ z e ro s (6 , 2 ) ; [ Bolz ; Bhp*C4*Dolz ] ] ;

72 B2 = [ Be ; z e r o s (4 , 2 ) ] ;
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73 B3 = [ z e ro s (6 ) ; [ Bol ; Bhp*(C3 + C4*Dol ) ] ] ;

74 %Def ine u n i f i e d s tate−space model ( i n t e g r a t i n g equat ion 6 .37 in to 6 . 3 6 )

:

75 A l in = A1 + B2*( lambda cdq + [ lambda edq*Ce , z e ro s (2 , 4 ) ] ) + . . .

76 B3 * ( [ Ce , z e r o s (6 , 4 ) ] + De*( lambda cdq + [ lambda edq*Ce , z e ro s (2 , 4 ) ] ) )

;

77 B l in = B1 + B2*( lambda ddq ) + B3*De* lambda ddq ;

78 %Ref ine the output equat ion ( r e f o rmu la t i on o f equat ion 6 . 3 7 ) :

79 C l in = [ Ce , z e r o s (6 , 4 ) ] ;% + [ De* lambda edq*Ce , z e ro s (6 ) ] + De* lambda cdq

;

80 D l in = De* lambda ddq ;

81 %Def ine the second l i n k i n g matrix ( equat ion 6 .35 moved to s tate−space ) :

82 T = [ 1 , 0 , 0 , 0 , 0 , 0 ; 0 , 1 , 0 , 0 , 0 , 0 ] ;

83 %Def ine the f i n a l u n i f i e d output equat ion so i t only f o c u s e s on dP and

dE :

84 C l in = T*C l in ;

85 D l in = T*D l in ;

86 %Put in to a s s model :

87 ss model = s s ( A l in , B l in , C l in , D l in ) ;

B.4 Proportional resonant control

B.4.1 main function

Note - the following code contains function calls for non-linear models, the codes for which have

not been provided. These can be commented out where appropriate; this will make no difference

to the functioning of the linear model.

1 %% Analys i s o f a conve r t e r c o n t r o l l e d by VCC f e e d i n g Xn,Rn :

2

3 %MMC w i l l not r e q u i r e c a p a c i t o r bank , whereas the 2− l e v e l system w i l l .
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4 %Want to des ign a c o n t r o l l e r which has the same ga ins with and without

5 %c a p a c i t o r bank .

6

7 c l e a r

8 c l c

9 c l o s e a l l

10

11 g l o b a l Voltages ;

12 g l o b a l Power ;

13 g l o b a l Components ;

14 %Def ine g r id f requency :

15 freq nom = 50 ;

16 %Assoc iated angular f requency :

17 w base = 2* pi * freq nom ;

18 %Express t h i s in per un i t terms :

19 w0 = 1 ;

20 %Range o f angular f r e q u e n c i e s ( in per un i t ) :

21 omega = horzcat ( ( 0 . 0 0 0 0 2 : 0 . 0 0 0 0 2 : 0 . 0 1 ) , ( 0 . 0 2 : 0 . 0 1 : 1 5 ) ) ;

22 %Assoc iated range o f s :

23 s = 1 i *omega ;

24 %Modulation index o f the conve r t e r ( f s / freq nom ) :

25 Mod Ind = 33 ;

26 %Def ine the base power :

27 P base = 350 e6 ;

28 %Def ine the base vo l tage :

29 V base = 195 e3 ;

30 %Def ine the parameters o f f i l t e r and f o r the conver t e r :

31 Xc = 0 . 2 ;

32 Lc = Xc ;

33 Rc = 0 . 0 1 ;
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34 Xf = 1/( 0 . 17 ) ;

35 Cf = 1/Xf ;

36 %Low−pass f i l t e r :

37 c o n t r o l l e r . l p f . a f = 80/ w base ;

38 %PLL ga ins : the se are s e t accord ing to Lidong ’ s t h e s i s

39 c o n t r o l l e r . p l l . kp = 20/ w base ;

40 c o n t r o l l e r . p l l . k i = 20/ w base ;

41 %Bandwidth o f the inner cur rent c o n t r o l l e r :

42 a lpha c = 2500/ w base ;

43 %Gains o f the resonant c o n t r o l l e r s ( t h i s can be s e t accord ing to ICC kp

) :

44 c o n t r o l l e r . r c . kp = alpha c *Lc ;

45 %Gain f o r the i n t e g r a l part o f the resonant c o n t r o l l e r :

46 c o n t r o l l e r . r c . k i = 15* c o n t r o l l e r . r c . kp ;

47 %Resonant f requency and damping ( prov ide s a b i t o f leeway f o r f r e q . var

) :

48 c o n t r o l l e r . r c . w res = w0 ;

49 c o n t r o l l e r . r c . w cut = 15/ w base ;

50 %Gains o f the outer loop c o n t r o l l e r s ( same f o r 2− and multi−l e v e l conv )

:

51 c o n t r o l l e r . apc . kp = 000/ w base ;

52 c o n t r o l l e r . apc . k i = 060/ w base ;

53 c o n t r o l l e r . avc . kp = 000/ w base ;

54 c o n t r o l l e r . avc . k i = 060/ w base ;

55 %Decoupling terms :

56 c o n t r o l l e r . dec . kp pv = −50/w base ;

57 c o n t r o l l e r . dec . k i pv = 0/ w base ;

58 %Decoupling terms ( a f f e c t s P wobble ) :

59 c o n t r o l l e r . dec . kp vp = 0/ w base ;

60 c o n t r o l l e r . dec . k i vp = −30/w base ;
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61 %Def ine the SCR:

62 SCR val = [ 1 , 3 , 5 ] ;

63 %Run through SCR va lues :

64 f o r i = 1 : l ength ( SCR val )

65 %Which P0 va lue s should be s imulated f o r the g iven value o f SCR:

66 i f i == 1

67 AC control = 1 ;

68 P0 vec = [ 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 7 5 , 0 . 8 ] ;

69 e l s e

70 AC control = 1 ;

71 P0 vec = [ 0 , 0 . 5 , 0 . 9 ] ;

72 end

73

74 f o r j = 1 : l ength ( P0 vec )

75

76 P0 = P0 vec ( j ) ;

77 %Def ine the g r id parameters in terms o f the per un i t system

being

78 %used in t h i s work :

79 Xn = 1/ i ;

80 Ln = Xn;

81

82 i f Cf == 0

83 Rn = 0 . 0 1 ;

84 e l s e

85 Rn = 0 . 0 3 ;%0.01 f o r MMC, 0 .03 f o r 2− l e v e l .

86 end

87

88 %% Steady−s t a t e va lue s at a l l r e l e v a n t po in t s :

89
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90 %Steady−s t a t e vo l tage magnitudes :

91 E0 = 1 ;

92 V0 = 1 ;

93

94 Power . P0 = P0 ;

95 Voltages . V0 = V0 ;

96 Voltages . E0 = E0 ;

97 Components . Rc = Rc ;

98 Components . Lc = Lc ;

99 Components . Cf = Cf ;

100 Components .Rn = Rn;

101 Components . Ln = Ln ;

102 %Non−l i n e a r steady−s t a t e s o l v e r :

103 fun = @root8d ;

104 i f Components . Cf == 0

105 x0 = [ 0 , 0 , 0 , 0 ] ;

106 e l s e

107 x0 = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ;

108 end

109 x = f s o l v e ( fun , x0 ) ;

110

111 [ s t e a d y s t a t e ] = g e t s t e a d y s t a t e v a l u e s ( Components , x ) ;

112

113 %% Linear model :

114

115 i f Components . Cf == 0

116 [ s s l i n ] = l i n s t a t e s p a c e l f i l t e r ( Components , . . .

117 s t eady s ta t e , AC control , 0 ) ;

118 e l s e

119 [ s s l i n ] = l i n s t a t e s p a c e l c f i l t e r ( Components , . . .
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120 s t eady s ta t e , AC control , 0 ) ;

121 end

122 %Run the l i n e a r i s e d model :

123 [H] = l in mode l ( s s l i n , Components , s t e ady s ta t e , c o n t r o l l e r , s , 0 ) ;

124 %Poles and ze ro s :

125 %p z a n a l y s i s ( s ,H, omega , w base , c o n t r o l l e r ) ;

126

127 b od e p l o t t i n g ( Components . Cf , c o n t r o l l e r . dec , i , show phase , . . .

128 P0 , omega , w base ,H) ;

129 end

130 end

B.4.2 Combined linear model of controller and plant

1 f unc t i on [H] = l in mode l ( s s l i n , components , steady , cont , s , . . .

2 s imul ink )

3 %Create space f o r the t r a n s f e r func t i on matrix :

4 H = ze ro s ( l ength ( s ) , 2 , 2 ) ;

5 %

6 w0 = 1 ;

7 %See i f a c a p a c i t o r bank i s inc luded :

8 Cf = components . Cf ;

9 %Get the c o n t r o l l e r in fo rmat ion :

10 k p p l l = cont . p l l . kp ;

11 k i p l l = cont . p l l . k i ;

12 kp re s = cont . rc . kp ;

13 k i r e s = cont . rc . k i ;

14 w cut = cont . rc . w cut ;

15 w res = cont . rc . w res ;

16 %Get the outer loop c o n t r o l l e r in fo rmat ion :
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17 kp apc = cont . apc . kp ;

18 k i apc = cont . apc . k i ;

19 kp vp = cont . dec . kp vp ;

20 k i vp = cont . dec . k i vp ;

21 kp pv = cont . dec . kp pv ;

22 k i pv = cont . dec . k i pv ;

23 kp avc = cont . avc . kp ;

24 k i avc = cont . avc . k i ;

25 %Get steady−s t a t e va lue s :

26 i f s imul ink == 1

27 u fd0 = steady . s imu la t i on . u c0 (1 ) ;

28 u fq0 = steady . s imu la t i on . u c0 (2 ) ;

29 %Get the steady−s t a t e ang l e s :

30 theta u0 = atan2 ( u fq0 , u fd0 ) ;

31

32 i r e f d 0 = +steady . s imu la t i on . i c g 0 (1 ) ;

33 i r e f q 0 = +steady . s imu la t i on . i c g 0 (2 ) ;

34 e l s e

35 u fd0 = steady . u fd0 ;

36 u fq0 = steady . u fq0 ;

37 %Get the steady−s t a t e ang l e s :

38 theta u0 = atan2 ( u fq0 , u fd0 ) ;

39 %

40 i r e f d 0 = steady . i c d 0 * cos ( theta u0 ) + steady . i c q 0 * s i n ( theta u0 ) ;

41 i r e f q 0 = steady . i c q 0 * cos ( theta u0 ) − steady . i c d 0 * s i n ( theta u0 ) ;

42 end

43 %Low−pass f i l t e r :

44 H LP = cont . l p f . a f . / ( s + cont . l p f . a f ) ;

45 %Run through a l l f r e q u e n c i e s , c a l c u l a t i n g the network response :

46 f o r k=1: l ength ( s )
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47 %Network t r a n s f e r matrix :

48 i f Cf == 0

49 G = s s l i n .C* ( ( s ( k ) * eye (2 )− s s l i n .A) \ s s l i n .B)+s s l i n .D;

50 e l s e

51 G = s s l i n .C* ( ( s ( k ) * eye (6 )− s s l i n .A) \ s s l i n .B)+s s l i n .D;

52 end

53 %S p l i t the network t r a n s f e r matrix in to three par t s :

54 G1 = G( 1 : 2 , 1 : 2 ) ;

55 G2 = G( 3 : 4 , 1 : 2 ) ;

56 G3 = G( 5 : 6 , 1 : 2 ) ;

57 %PLL c o n t r o l l e r ga in :

58 CPLL = k p p l l + k i p l l / s ( k ) ;

59 %Modify acco rd ing ly :

60 CPLL = CPLL*H LP( k ) ;

61 %Resonant c o n t r o l l e r ga in ( s ee Zmood frequency domain a n a l y s i s

paper ) :

62 Hs up = kp re s + k i r e s *w res *( s ( k )+1 i *w0) / . . .

63 ( ( s ( k )+1 i *w0) ˆ2+2*w cut *( s ( k )+1 i *w0)+w res ˆ2) ;

64 Hs down = kp re s + k i r e s *w res *( s ( k )−1 i *w0) / . . .

65 ( ( s ( k )−1 i *w0) ˆ2+2*w cut *( s ( k )−1 i *w0)+w res ˆ2) ;

66 %Ci matr i ce s :

67 C1 = 1/(1 + CPLL*( u fq0 * s i n ( theta u0 ) + u fd0 * cos ( theta u0 ) ) ) * . . .

68 [−CPLL* s i n ( theta u0 ) ,CPLL* cos ( theta u0 ) ] ;

69 C2 = [ cos ( theta u0 ) ,− s i n ( theta u0 ) ; s i n ( theta u0 ) , cos ( theta u0 ) ] ;

70 C3 = 1/2* [ Hs up+Hs down,−1 i *( Hs up−Hs down ) ; . . .

71 1 i *( Hs up−Hs down ) , Hs up+Hs down ] ;

72 C4 = C3*[− i r e f q 0 ; i r e f d 0 ] ;

73 C5 = −C3 ;

74

75 kappa = C2*C4*C1*G2 + C5*G1;
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76 %Calcu la te I − kappa :

77 eye kappa = eye (2 ) − kappa ;

78 %Calcu la te H ( c l o s e d loop t r a n s f e r func t i on o f the power system ,

79 %i n c l u d i n g the c o n t r o l l e r s ) p lus the low pass f i l t e r i n g :

80 H inner = H LP( k ) *G3*( eye kappa \(C2*C3) ) ;

81 %Outer loop c o n t r o l l e r s :

82 C21 = [ ( kp apc+k i apc / s ( k ) ) , ( kp vp+ki vp / s ( k ) ) ; . . .

83 −(kp pv+ki pv / s ( k ) ) ,−( kp avc+k i avc / s ( k ) ) ] ;

84 %Overa l l t r a n s f e r func t i on :

85 H(k , : , : ) = ( eye (2 ) + H inner *C21) \( H inner *C21) ;

86 end
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