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Abstract

The smart healthcare monitoring service has been given more attention in recent decades.

With rising healthcare demand and progress in image processing, video-based gait as-

sessment becomes a good alternative solution to assess the physical recovery progress for

post-stroke survivors. However, most video-based assessment systems, commercially and

in the literature, usually requires large laboratory space, are of high cost, and not portable,

thus are impractical for in-home use. Accurate, low-cost, portable motion capture sys-

tems are growing in popularity, especially those that do not require expert knowledge

to operate. This research proposes an alternative single depth camera based OPTIcal

Kinematics Analysis system (named ‘OPTIKA’). Novel signal processing and computer

vision algorithms are proposed to determine motion patterns of interest from infrared and

depth data, and enable real-time simultaneous tracking of joints based on attached retro-

reflective ball markers. Specifically, an accurate trajectory-based gait phase classification

system is proposed to facilitate the diagnostics of muscle activities during gait, using

readings from low-cost motion capture systems ‘OPTIKA’. Feature selection/extraction

methods are proposed to enable an automatic segmentation of motion records into indi-

vidual gait cycles with nine gait phases slice, which provides a more intuitive diagnostics

experience for clinical therapists to analyze the rehabilitation progress associated to the

kinematics in particular gait periods. This research also analyzes the sensitivity of fea-

ture selection/extraction methods against the classification performance in two healthcare

monitoring applications. To overcome the limitations of high-cost training data labeling

work and when parts of the training labels are noisy, a robust semi-supervised binary clas-

sifier is proposed to combine deep learning and graph based signal processing methods.

The experiments demonstrate that given an acceptable proportion of noisy training labels,

the proposed classifier outperforms several state-of-the-art classifiers. The overall concepts

and systems presented in this thesis form an underlying approach for further video-based

healthcare monitoring service that assists the diagnostics of physical rehabilitation.
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Ẋ, Ẏr A subset of Yr corresponding to the training samples in Ẋ
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Chapter 1

Introduction

This chapter first overviews the state-of-the-art multimedia health monitoring appli-

cations in terms of complexity, portability, cost and highlights the ongoing challenges

in enabling multimedia health monitoring for tele-rehabilitation and home-based solu-

tion, without the need for manual analysis by a clinical expert. Specifically, the focus

of this thesis in designing a motion capture acquisition framework, feature selection

and extraction of kinematics for gait phase classification, investigating the value of se-

quence labeling via hand-crafted feature selection vs machine-based feature selection

as in deep learning networks, and finally designing a generic algorithmic framework for

tackling the problem of noisy labels that can occur during pre-processing/labeling. The

remaining parts outline the aims and objectives of this research, list contributions of

this research, and introduce the organization of this thesis.

1.1 Overview

The radical shift in health monitoring services from expensive and large equipment

ideal for large healthcare facilities, to portable and affordable technology that can be

easily operated in the home setting becomes possible. For example, following a stroke,

the recovery of physical functions such as walking, could be greatly enhanced by the

intervention of a rehabilitation team focused on the identification and resolution of

movement problems, typically through the practice of exercise tasks. A range of move-
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ment abnormalities are periodically assessed to track and design rehabilitation progress

for each individual patient [1]. As reported in [2], post-stroke survivors/patients are

asked to complete a series of exercises and training modules after their conditions have

been stabilized. The outcome of rehabilitation is generally improved if the patient

receives a high intensity of practice combined with feedback on their movement to cor-

rect errors [3]. During their rehabilitation program, the recover progress is periodically

assessed by evaluating their walking patterns based on kinematics measurements [4]

which is called gait analysis. However, this ideal type of therapy is restricted by ac-

cess to professional rehabilitation staff and equipment, a situation which has led to

the growing importance of self-management strategies, including the use of home-use

rehabilitation. Therefore, this research mainly focuses on the study of modern multi-

media health monitoring techniques involved in gait assessment as they form the basis

of further cost-effective home-use rehabilitation services.

Recent advances in the use of video-based motion capture methodologies, muscle

actions have been described as the joint movements that are usually captured by motion

capture systems [5] using spherical objects attached on the body called “markers”.

However, these systems, such as [6], [7], are usually based on multiple cameras/sensors,

used to construct a 3D scene and track the high-precision positions of all markers in the

3D space, at the cost of high expense, require operational expertise and large laboratory

space. To provide the service to patients who do not have access to these facilities,

simple marker-based or markerless tracking systems [8] using multiple or single Red-

Green-Blue (RGB) camera have been investigated in the literature [9]. However, these

systems have limitations, such as requiring operational expertise and time-consuming

processing [10], and requirement for a specific color of the underlying cloths, such

as the single RGB camera systems of [11], [12] and multiple RGB camera systems,

such as [13]. An attractive alternative is to use Microsoft (MS) Kinect sensor [14]

with its own software development kit (SDK) capable of tracking 25 skeleton joints.

However, as demonstrated in [15], Kinect’s skeleton results tend to be too noisy and not

reliable for clinical applications. Therefore, this research investigates the possibility of

incorporating the marker-based motion tracking approaches [6] into a single MS Kinect
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sensor to mitigate the limitations of gait analysis with low portability, complex setup

procedure but still is capable of measuring high accuracy kinematics compared to the

state-of-the-art VICON system.

In gait analysis literature [16], based on those captured joint trajectories that record

the gait motion by the motion capture system, the physiotherapist perform further di-

agnostics of muscle activates based on those calculated kinematics measurements such

as step/stride length and knee angle changes in each gait phase. To facilitate these

diagnostics, this research investigates to possibility of developing a method that auto-

matically extracts the gait phase information given joint trajectories in the gait record.

This task in the gait analysis literature [17] is usually formulated as classification prob-

lem that assign a categorical label (gait phase information) to each frame within the gait

record given joint trajectories data. The quality of feature selection and effectiveness

of feature selection for specific pathological classification in distinguishing whether a

subject is abnormal, have a significant impact on gait assessment methods [18]. There-

fore, this is especially critical for systems relying on inexpensive motion capture sys-

tems, which need to demonstrate a comparable level of accuracy to clinical systems

[19]. Lie group features, investigated in many action recognition applications [20], [21],

have proved to be a strong feature for classifying actions. However, only long-time

actions are investigated in the literature (see review paper [22] and references therein),

whereas the proposed frame-wise solution often suffers from temporal misalignment of

features. Population Hidden Markov Model (pHMM) is proposed in [23] to obtain a

fixed length of silhouettes within a gait cycle for aligning temporal features; however,

the algorithm requires high-quality silhouette extraction, reconstruction, and additional

training. Therefore, this research aims to provide an insight of alternative feature se-

lection/extraction methods and classification systems to achieve a high-precision gait

phase extraction performance.

The results of using kinematics parameters like the knee angle used in [4] proves

that feature selection method is effective to extract the gait phase information which is

one of the sequence labeling problem that assigns a categorical label to a given sequen-

tial data. Therefore, from a research point of view, the question of “whether feature
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selection/extraction method is sensitivity to other healthcare sequence labeling appli-

cations, such as Electrocardiogram (ECG)-based arrhythmia classification [24]”. The

motivation of conducting this case study for detecting cardiac disease is that there is

an emerging trend of deep learning methods like [25] that enables an automatic fea-

ture/selection process through its classifier learning to assign a heartbeat type given

a segment of ECG record. Similar to gait phase classification, several state-of-the-art

feature extraction methods that extract linear and nonlinear features [26] are pro-

posed to train a machine learning model for classifying beats. However, it is hard to

fairly distinguish/evaluate/analyze the importance and sensitivities of feature selec-

tion/extraction methods used in both gait assessment and cardiac disease detection

applications as different data settings are used in the experiments. However, before

we can definitely conclude whether feature selection/extraction is a must for health-

care signal classification, we attempt to answer whether feature selection/extraction is

sensitive to the healthcare application signal labeling sequence by analyzing the value

of our proposed feature selection/extraction approach for another popular healthcare

application, namely Electrocardiogram signal based arrhythmia classification.

Another aspect towards practical classification performance is the quality of labels

in the training data, which usually is time-consuming to generate and requires profes-

sional knowledge, especially for labeling gait phase information which has a potential

risk of mislabeling. Supervised and semi-supervised deep learning techniques have

shown excellent performance for feature extraction and classification tasks [27], but are

particularly sensitive to the quality of the training dataset, since they tend to overfit the

models when learning from incorrect labels [28]–[30]. Conventional approaches to over-

come model overfitting, based on various regularization techniques, e.g., l1− or l2-norm

penalty on weights [31], dropout [32], batch normalization [33], skip-connections [34],

[35] etc., are not effective in mitigating the effects of incorrect labels. These approaches

can be grouped into methods based on: (a) inserting additional “trusted” labels, e.g.,

[36], [37], and (b) loss function correction to penalize classifier learning from training

samples with relative low weights, e.g., [38], [39], [40]. In [36], a probabilistic model is

integrated into the DNN to correct noisy labels. Similarly, in [37], a loss correction tech-
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nique is introduced to mitigate the unreliability of noisy training labels. However, these

methods require clean data to prevent the models from drifting away. A robust loss

function that is less sensitive to label outliers is introduced in [38]. The results indicate

that it achieves the state-of-the-art predictive performance against noisy training labels

by reweighting the training samples that trades convexity for boundedness and remains

constant for strongly negative values of its argument. A combination of training labels

and predicted labels is used in [39] to avoid directly modeling the noisy training la-

bels, but requires pre-training to achieve good results. [40] adds another softmax layer

to further augment the correction model via a noise transition matrix, which is hard

to estimate in practice, especially in multi-class classification problems. Graph signal

processing (GSP) provides an alternative way to restore the noisy training labels using

a graph signal smoothness prior [41]. The advances in using deep learning and GSP

have been making this problem possible to tackle, however can only be performed and

evaluated given a known fixed graph structured data [42]. Therefore, in this research,

alternative approach that incorporates GSP into deep learning based classifier learning

is investigated to mitigate the over-fitting problem without extra clean training labels.

The aims and objectives of this research are listed in the following section to over-

come all main drawbacks of current healthcare monitoring techniques and classification

methods for gait assessment and cardiac disease detection.

1.2 Aims and Objectives

The main aim of this research is to explore alternative video-based and home-use health

monitoring techniques to facilitate physical rehabilitation monitoring for post-stroke

survivors, that are cost-effective, portable and easy-to-use. Specifically, the post-stroke

survivors are usually asked to do the walking tests systematically during the physio-

therapy, their recovery progression is assessed based on the correlations between muscle

activities and kinematic measurements during different gait phases within their gait

records, such as knee angle [16], step length [43]. Therefore, the extraction of gait

phase information for a gait record is one of the major tasks for this assessment which
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is also an aim of this research. To facilitate the automation of gait phase informa-

tion extraction, this research aims to develop effective feature selection and extraction

methods based on the joint trajectories collected in the gait records. Following an

emerging trend of deep learning techniques for sequence labeling problem, this research

evaluates the importance and sensitivity of feature selection and extraction methods

in gait assessment. This research also aims to expand the above evaluation in a wider

application field, such as cardiac disease detection. To tackle the “noisy label” that

occurred in the training dataset caused by the mislabeling of gait phases, this research

also aims to improve the robustness of classification.

The main research objectives are listed below:

1. Develop a cost-effective, portable and easy-to-use motion capture framework for

gait assessment to facilitate rehabilitation for post-stroke survivors, suitable for

local clinics and home use, that do not require any clinical expertise to operate.

The proposed high accuracy imaging methodology should achieve comparable

kinematics measurements with the state-of-the-art optical motion capture system

VICON [6].This comparison is performed by focusing on the following metrics,

common for gait analysis, namely stride length and stance, swing duration and

finally ensuring a less than 5% statistically significant difference.

2. Develop effective feature selection and extraction methods to improve the pre-

dictive performance of gait phase classification, so as to facilitate the kinematics

analysis of muscle activation in individual phases during walking.

3. Investigate the importance and sensitivity of feature selection and extraction

methods in health monitoring applications, using the state-of-the art feature se-

lection/extraction methods and classifiers.

4. Develop a generic deep learning based classification method that is robust to

noisy training labels, without providing extra clean data and prior knowledge;

investigate the importance of each component in the architecture via an ablation

study and evaluate the effects of its hyper-parameters.
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1.3 Contributions of the Thesis

The major contributions of this thesis to achieve the research objectives can be sum-

marized as:

1. To reduce the cost and operation space to assess the gait during the physical

rehabilitation for post-stroke survivors, this research develops a high accuracy

marker-based single-camera imaging methodology based motion capture system

(see “OPTIKA” in Appendix. B) that enables real-time tracking of joint move-

ments, where only single infrared-based (IR-based) depth camera is used (30

frame/sec for Kinect v2 [14]).

1.1. To simplify the system setup, this research proposes an automatic scene

calibration procedure to collect necessary subjective information that can be

used multiple times, without requiring operational expertise.

1.2. To obtain comparable kinematics measurements with the state-of-the-art

VICON system [6], this research proposes a depth maps recovery methodology

that simultaneously detects and tracks the attached retro-reflective markers

in 3D space using adaptive thresholding.

2. To facilitate the diagnostic of post-stroke survivors’ muscle activities in different

gait phases, this research proposes a trajectory-based gait phase classification

method to slice the gait sequence into different slices that enables the kinematics

analysis with gait phase information.

2.1. To better characterize gait patterns, this research proposes a gait pattern

extraction methodology to reduce the amount of duplicated/similar gait pat-

terns in the training data without sacrificing the classification accuracy. This

research uses gait phase information in addition to kinematics, including gait

trajectories, as is usual practice.

2.2. To address the problem of feature mis-alignment in time, e.g., across frames,

this research proposes a trajectory based gait feature extraction method to
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obtain a global optimal set of feature pairs as inputs for the gait phase

classification problem.

2.3. To reduce the high computational complexity used in the filtering-based fea-

ture extraction method without sacrificing the classification performance,

this research proposes an optimized feature extraction method that is com-

putationally efficient.

2.4. To solve mis-classification of the periodic sequential gait phase labels, this re-

search proposes a gait phase reconstruction method to refine the predictions

at post-processing stage.

3. To investigate the question of “if a good classification performance can be ob-

tained by feeding the raw features into robust classifiers or handcrafted feature

generation/selection is necessary”, this research fairly analyzes the importance

and sensitivities of feature selection and extractions used in sequence labeling

problem for healthcare monitoring applications, such as gait phase and arrhyth-

mic classification tasks. Using the state-of-the-art feature selection/extraction

methods with an appropriate experimental settings, this first-person research in

the literature provides a perspective of the importance and cost trade-off between

time and accuracy in using feature selection and extraction methods in the above

two classification tasks.

4. To further improve the robustness of classifier against the “noisy” training labels

caused by mislabeled the ground-truth data, this thesis provides a fundamental

research of developing a framework to perform robust classifier learning without

using extra effort in providing clean training data. The validation results prove

that the proposed framework is capable of learning robust classifier for three

binary classification datasets and a multi-class gait phase classification dataset.

4.1. To avoid over-fitting the classifier, this research proposes a graph-based reg-

ularized loss function that incorporates attention mechanism to regularize

the convolution neural network (CNN) for deep feature learning.

4.2. To improve the reliability of classifier learning against the effects of noisy
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training labels, this research develops a graph-based semi-supervised classifier

to iteratively perform both online denoising and classification at the same

time.

4.3. To assign the degree of freedom for graph connectivity learning that is robust

to noisy label, this research introduces a graph update procedure to better

reflect the node-to-node correlation based on convolution of iteratively up-

dated edges, without prior knowledge of the underlying graph structure.

1.4 Organization of the Thesis

The rest of this thesis consists of four contribution chapters and one conclusion chapter.

Each contribution chapter is structured with a related work pertaining to that chap-

ter, methodology, results, discussion and a summary of research contributions. The

contribution chapters 2-5 present contributions 1-4, respectively.

Chapter 2 - this chapter first reviews state-of-the-art motion capture methodologies

used for gait analysis. Specifically, this thesis focuses on developing an alternative cost-

effective, portable and easy-use video-based motion capture system. This chapter also

highlights the challenges of using a single depth camera to accurately detect, locate and

track the retro-reflective markers in 3D space and how these challenges are addressed

by the proposed algorithms. The developed software system ‘OPTIKA’ is then used

for data acquisition in “4-meter walking test” conducted during two different physi-

cal rehabilitation sessions for both post-stroke survivors and healthy volunteers. This

chapter is based on the work that appeared in 2015 International Conference on Image

Analysis and Processing [44], 2015 IEEE Global Conference on Signal and Information

Processing [45] and IEEE Journal of Selected Topics in Signal Processing [46]. This

chapter address contributions 1-4.

Chapter 3 - this chapter proposes features for better representing gait motions

during each gait phases. A feature extraction method is proposed to further improve the

predictive performance for accurately segment gait records into gait cycles of individual

gait phases, based on the data acquired by ‘OPTIKA’. This chapter is based on the
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work that appeared in 2017 IEEE International Conference on Multimedia and Expo

[47] and the work to appear in IEEE Transactions on Multimedia [48]. This chapter

address contributions 5-7.

Chapter 4 - this chapter gives a review of state-of-the-art feature selection and

extraction methods for sequence labeling in two healthcare monitoring applications,

gait phase and arrhythmic classification. Using different classification methods, the

importance and sensitivity of these feature engineering techniques are evaluated, with

respect to the predictive performance and complexity of the classifier models. This

chapter address contribution 8.

Chapter 5 - this chapter presents a review of state-of-the-art machine learning tech-

niques to learn robust classification model from noisy labeled data. To migrate the

effects of noisy labels, this chapter proposes an end-to-end trainable network for semi-

supervised binary classification. Incorporating the graph signal processing with con-

volutional neural network, an iterative graph update procedure is proposed to better

reflect the correlation between different samples. This chapter is based on the work

that appeared in 2019 IEEE International Conference on Acoustics, Speech and Signal

Processing [49]. This chapter address contributions 9-11.

Chapter 6 - this chapter presents conclusions of this research, highlights the re-

maining challenges and gives insights into the future research directions for home-use

healthcare monitoring techniques and classification methods.

1.5 Ethics Approval

The data collection procedure performed using single imaging sensor for gait analysis

application has passed ethical committee in National Health Service, UK and University

of Strathclyde. See Appendix A for details of the pilot protocol.
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1.6 Associated Publications

1.6.1 Book chapter

1. M. Ye, V. Stankovic, L. Stankovic and G. Cheung “Graph Spectral Image Classifi-

cation”, book chapter in “Graph Spectral Image Processing”, submitted to ISTE,

Feb. 2020. Role: data interpretation, development of graph signal processing and

deep learning based robust classifier learning for image data, chapter writing

1.6.2 Journal articles

1. M. Ye, C. Yang, V. Stankovic, L. Stankovic and A. Kerr, “A depth camera

motion analysis framework for tele-rehabilitation: Motion capture and person-

centric kinematics analysis”, IEEE Journal of Selected Topics in Signal Process-

ing, vol.10, no. 5, pp. 877-887, Aug. 2016.

Role: main concept design for the single depth camera motion capture system,

data acquisition for stroke survivors during two different rehabilitation sessions

at Brain and Spinal Injury Center (BASIC), Manchester, data acquisition for

healthy volunteers during two different sessions at University of Strathclyde, sys-

tem development of software system ‘OPTIKA’, data analysis and interpretation,

paper writing

2. M. Ye, V. Stankovic, L. Stankovic and S. Cheng, “Distinct Feature Extraction

for Video-based Gait Phase Classification”, IEEE Transactions on Multimedia.

doi: 10.1109/TMM.2019.2942479

Role: main concept design of gait pattern extraction and distinct feature extraction

methods, data analysis and interpretation of gait data and proposed algorithms,

paper writing

3. M. Ye, V. Stankovic, L. Stankovic, S. Lulic, A. Anderla and S. Sladojevic, “Fea-

ture Selection and Extraction in Sequence Labeling for Arrhythmia Detection”,

Manuscript was submitted to Elsevier Pattern Recognition Letters, Mar. 2020.
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Role: data analysis and interpretation of deep learning architectures, paper writ-

ing

4. M. Ye, V. Stankovic, L. Stankovic and G. Cheung, “Robust Deep Graph Based

Learning For Binary Classification”. Manuscript was submitted to IEEE Trans-

actions on Signal and Information Processing over Networks, Mar. 2020.

Role: main concept design of joint graph signal processing and deep learning for

robust classifier learning, data analysis and interpretation of proposed concept and

deep learning architectures, paper writing

1.6.3 Conference papers

1. M. Ye, C. Yang, V. Stankovic, L. Stankovic, and A. Kerr, “Gait analysis using a

single depth camera”, IEEE Global Conference on Signal and Information Pro-

cessing, Orlando, FL, Dec. 2015.

Role: main concept design of single camera gait analysis, data acquisition for

stroke survivors during two different rehabilitation sessions at BASIC, Manch-

ester, system development of software system ‘OPTIKA’, data analysis and in-

terpretation for evaluating the tracking accuracy of ‘OPTIKA’, paper writing

2. M. Ye, C. Yang, V. Stankovic, L. Stankovic, and A. Kerr, “Kinematics analysis

multimedia system for rehabilitation”, Workshop on Image and Video Processing

for Quality of Multimedia Experience, Genova, Italy, Sep. 2015.

Role: main idea to develop a single depth camera based motion capture system for

kinematics analysis, data acquisition during two different rehabilitation sessions

at BASIC, Manchester, system development of ‘OPTIKA’, data analysis and

interpretation for evaluating the tracking accuracy of ‘OPTIKA’, paper writing

3. M. Ye, C. Yang, V. Stankovic, L. Stankovic and S. Cheng, “Gait phase classifica-

tion for in-home gait assessment”, IEEE International Conference on Multimedia

and Expo, Hong Kong, China, Jul. 2017. (Finalist of World’s First 10K Best

Paper Award)
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Role: main concept design of gait phase classification algorithms, data analysis

and interpretation, paper writing

4. M. Ye, V. Stankovic, L. Stankovic and G. Cheung, “Deep graph regularized learn-

ing for binary classification”, International Conference on Acoustics, Speech, and

Signal Processing, Brighton, United Kingdom, May. 2019.

Role: main concept design of using graph signal processing to regularize deep

learning based classifier learning, data interpretation, paper writing
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Chapter 2

Motion Capture in Depth Videos

2.1 Review of Motion Capture Methodologies for Reha-

bilitation

Most motion analysis systems used for rehabilitation consist of multiple wearable sen-

sors (e.g., passive/active optical markers, Electromyography (EMG) /Electroencephalo-

gram (EEG) / ECG, inertial sensors, force plates), and require large laboratory space,

are of high cost, and not portable, thus are impractical for flexible, mobile clinical and

home-use rehabilitation programs [50]. Optical motion analysis systems are attractive;

however, current marker-based and marker-less, single or multiple IR/RGB camera

motion analysis systems have limitations, such as dependency on the underlying fabric

color, time-consuming process, lack of portability and/or high price, such as VICON

[6], single RGB camera systems of [4], [8], [11], [51] and multiple RGB camera systems,

such as [13]. Inertial tracker-based systems, like Xsens MVN BIOMECH [52] and M3D

force plate [53], are options for large clinics or hospitals, but are not suitable for small

clinics and home use.

Alternatively, single RGB-depth camera systems, such as [14], [54], [55], after sig-

nificant technological advances, have become cheap and popular options. For example,

MS Kinect enables tracking of human joints in 3D space using a single camera and its

SDK via skeleton tracking [14]. However, Kinect’s skeleton data are too noisy (see,
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e.g., Fig.1 in [56],[57]), and do not provide sufficient accuracy [5], [9], [15], [56]. Using

two Kinect sensors, as in [58], can potentially improve the accuracy, but at the expense

of portability, required expertise, and ease of setup. To investigate the reliability of

lower limb motion tracking using MS Kinect v2 and its SDK, a simple case study is

conducted by placing a single MS Kinect v2 camera in the sagittal view and asking a

subject to walk normally from left to right within the camera view (mirrored). Using

the same inputs of infrared and depth images acquired by the camera, the first column

is obtained by the proposed system ‘OPTIKA’ and the second column is obtained by

using MS Kinect SDK. It is shown that using only MS Kinect v2 and its SDK are not

accurate enough to perform the motion tracking task, such as potential miss-tracking

the positions of feet, knee and waist shown in Fig. 2.1.

The marker-less Kinect-based approach of [59], for performing the ‘Get Up and Go

Test’, which is part of the larger Tinetti test to identify subjects at risk of falling, is

based on the construction of the background depth frame, which enables background

removal, followed by frontal pose analysis to get body structure parameters and the

sagittal view joint trajectory estimation. The method does not achieve clinical accu-

racy showing an error of up to 15 pixels compared to the reference trajectory. Six

joints are tracked in the sagittal plane; the foot joint was not tracked, and it is not

expected to work well due to interference with the floor. A similar approach [60] uses

RGB and depth images of MS Kinect for semi-automatic postural and spinal analysis

using Dynamic Time Warping, pose estimation and gesture recognition. The algorithm

requires substantial manual effort, operation expertise and is time-consuming, hence

not suitable for real-time application. [61] uses Kinect’s depth images to perform 3D

pose estimation with high computational complexity and is unsuitable for real-time

processing (30 frames/second, same as MS Kinect v2). [62] relies on Kinect SDK’s

virtual skeleton of the body and supervised learning to extract positions of the joints of

interest in a gait analysis application, but is limited by high computational complexity,

need for training data, and presents no scientific evidence that the proposed methods

are clinically accurate.

This research develops a general framework to facilitate the next generation of
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Figure 2.1: Sagittal View Motion Capture using ‘OPTIKA’ and MS Kinect v2. The
captured joints in infrared images are shown in unique colors. Comparing the results
of the tracking results from ‘OPTIKA’ and Kinect v2 shown in the first and second
columns, this figure demonstrates the tracking failures of front panel foot, back
panel foot, knee joint, waist from the first to last row, respectively.

portable and cost-effective tele-rehabilitation applications, suitable for local clinics and

home use, that do not require any clinical expertise to operate. The proposed frame-

work combines high accuracy marker-based tracking methodology based on IR sensing

and portability and affordability of range imaging methodology using structured light or
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Time-of-Flight sensors. The proposed kinematics framework is capable of building var-

ious motion analysis assessment tools that target different rehabilitation applications.

In contrast to previous work [59] and [60], the proposed framework is benchmarked

against the state-of-the-art optical motion system VICON [6] for gait analysis using

the walk forward and back test, with 6 markers on each sagittal plane (left and right)

to capture both sagittal planes during the walking test in one go, and most importantly,

create a person-centric subject model to define the geometric relationship between dif-

ferent markers. Since 2D measurements are nonlinear due to the fish eye effect from

the sensor lens, as opposed to [4], [51], [59], the proposed framework maps markers

in 3D space that enables 3D motion tracking. Note that as reported in [63], camera

calibration for a single MS Kinect v2 is insignificant in terms of depth measurement

accuracy.

2.2 Overview of the Proposed Framework

The proposed framework comprises an optical motion capture system and kinematics

analysis tools that enable secondary development for solution enhancement. The inter-

connection among the underlying algorithms and key parameters used in the algorithms

are listed in this section.

The optical motion capture system (described in Sec.2.3) consists of a single depth

camera (both IR and depth images are used) that enables creating 3D optical motion

reconstruction. It is designed to capture human motion in real time by detecting retro-

reflective markers attached to joints of interest, and comprises three modules: (1) Data

cleaning - for cleaning IR and depth images (described in Sec.2.3.1). (2) Detection - for

tracking markers in image space (Sec.2.3.2). (3) Mapping - for recovering the markers’

position in camera space through the proposed cluster location algorithm (Sec.2.3.3).

The proposed kinematics analysis tools are developed as an application solution that

sits on the proposed motion capture system, facilitating portable, indoor rehabilitation

diagnosis, as demonstrated by the gait analysis application in Fig. 2.2 and Sec.2.4.

Autonomously located markers attached to subject’s joints during the straight-line
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walking exercise, are used to automatically calculate gait associated parameters com-

monly used for clinical assessment, such as joint angles, velocity, movement patterns,

gait cycle phase, step and stride length, swing and stance phase, etc. [64]. In particular,

the gait analysis tools (Sec.2.4) comprise: (1) Scene calibration (Sec.2.4.1), (2) Sub-

ject modeling (Sec.2.4.2) for building a person-specific body segmentation model, (3)

Kinematics analysis module (Sec.2.4.3) for calculating gait analysis parameters based

on the proposed analytics.

Scene

(Calibration) 
Camera

IR Threshold Analysis (Alg.1)

Gait Analysis Walking 

Scene Calibration (Alg.4)

Scene

(Motion Tracking) 
Camera

Marker Labeling (Alg.5)

Marker Detection (Alg.2)

3D Marker Location (Alg.3)

Inflection Points 

Searching Searching

 (Alg.6)

Visualization 

Diagnostics

Optical Motion Capture System

Gait Analysis 

Application

Figure 2.2: Overall proposed system structure diagram. It consists of an optical mo-
tion capture system that can be independent from applications, such as gait analysis
application investigated in this research. Both optical motion capture system and gait
analysis application rely on MS Kinect v2 camera which captures infrared and depth
images, from the scene where human motion tracking will be performed and the same
scene with only calibration markers, respectively. The output of an initial IR threshold
for detecting the blob(marker) in the infrared image is used by optical motion capture
system to adaptively locate the marker. After optical motion capture system locates
the markers, gait analysis application labels and visualizes the markers, enables further
kinematics diagnostics for gait analysis task, such as measuring step/stride length and
stance/swing duration.

During processing of the IR images, it is observed that motion blur and light con-

ditions strongly influence the speed and accuracy of marker tracking. MS Kinect v2

determines the depth by measuring the time emitted light takes from the camera to the

object and back [65]. Since the retro-reflective markers interrupt the emitted light, the
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depth measurements of those targets are missing. The only way to recover the depth

value for each marker is to use their depth values. Three algorithms are proposed

to address the above problems: (1) Threshold analysis (Alg.1) − extending previous

work in [44] to solve fast motion and camera noise during marker detection, (2) Marker

detection (Alg.2) − the idea is to improve the marker centroid location accuracy and

speed which are attached to joints of interest, in image space, (3) Depth recovery and

mapping (Alg.3) − the 3D texture is partially missing in the marker region and it is

possible to use the point cloud histograms for restoring the depth value of the marker

centroid. By looking at the point cloud histograms, one can get a kernel that has

higher weight inside according to their Euclidean distance to the marker centroid and

frequency of occurrence.

Once the coordinates of the markers in 3D space have been obtained above, the

aim of the gait analysis application is to label or associate the markers to joints on the

human subject, so that joint angles can be calculated during kinematics analysis. In

order to do so, the first step is Scene calibration (Alg.4) whose purpose is to map the

physical measurements of the physical experimental environment into a virtual environ-

ment, recreating a geometric relationship between the camera, calibration markers, and

walking start/end points. This enables Marker labeling (Alg.5), where a person-centric

subject model is constructed to map the subject’s physical dimensions to virtual 3D

space building a geometric relationship among markers on the body and hence markers

can be accurately labeled as belonging to the foot joint, hip, etc. Once all the markers

have been labeled, kinematics analysis commences in Gait event detection (Alg.6) by

examining the relative trajectories of knee, ankle, and heel markers to the floor (ob-

tained during scene calibration and marker labeling) to find inflection points and local

peaks for gait events detection without pre-smoothing the data, in order to get the best

accuracy, including addressing occluded markers.

Table 2.1 lists key parameters used in the proposed algorithms, and which values

were observed to give the best results when trading accuracy and execution time. These

pre-set values were selected based on the MS Kinect 2 sensor, a walking line distance

to the camera of 2.5m-3m and sensor height of about 0.8m from the floor, resulting in
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Table 2.1: Parameters used in Algs. 1–6

Param. Alg. Description How is it set?

S 1,4 Captured infrared image sequence Measured by the sensor

w

1

Blob detection threshold
initialized in Alg. 4 and
updated in Alg. 1

rb Blob base radius Calculated by Alg. 4

n Number of markers used
Application specific (12
in the experiments)

b Scan window length of the previous frames 3 frames (heuristically)

Sd 2
Captured current infrared image Measured by the sensor

Dd Captured current depth image Measured by the sensor

(p, q)
3,5

Marker centroid coordinates
Calculated by Alg. 2rm Marker radius

rr Marker region radius

W

3

Max-Min width 50 mm (heuristically)
D0 Recovery resolution 2 pixels (heuristically)
D1 Depth resolution (Sensor accuracy) 5 mm (heuristically)
D2 Distance resolution 0.5 mm (heuristically)
m Cluster mode Application specific

C 4 Number of calibration markers Application specific

γ

6

Level resolution 0.05 (heuristically)
ξ Range left clip rate 0.03 (heuristically)
φ Range right clip rate 0.03 (heuristically)
τ Local range length boundary 3 (heuristically)

an approximate 4m walking line (see examples in Appendix. B). If the camera sensor

and the latter distances are changed, a standard calibration procedure (e.g., [4], [66])

can be used to find optimal values for D0, D1 and D2.

2.3 Optical Motion Capture System

The task of the proposed optical motion capture system is to simultaneously track

multiple retro-reflective markers using a single IR depth camera, irrespective of the

overlying motion analysis application. Retro-reflective materials were chosen since they

introduce high intensity regions into IR images and blank holes into depth images.

Therefore, the markers are detected on IR images, after which the marker location

is recovered in the depth image and mapped to camera space via the following key

steps: (1) Data cleaning - cleaning invalid data and reducing sensor noise, (2) Marker
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detection - detecting markers in IR image space using connected component algorithm

[67] with scene dependent adaptive thresholds, (3) 3D marker location - recovering

marker depth values using cluster location algorithm (in Sec.2.3.3) and mapping depth

space coordinates to the camera space using the depth map projection method in [68].

Each step is elaborated in the following subsections.

2.3.1 Video Acquisition

The primary source of noise affecting the captured IR images is from the camera lens

of either IR transmitters or receivers and interfering sources such as metallic materials,

retro-reflective materials, etc. Reflective materials other than markers will influence

the measurements and constitute interference while recovering depth values. Fig.2.3

shows the noise, originating from the imaging sensor and reflective material, typically

encountered in an acquired frame.

Figure 2.3: Noise from the Kinect sensor (yellow) and reflective material (red)

Approaches for denoising include depth map denoising, either spatially with, e.g.,

adaptive total variation [69], nonlocal graph-based transform with group sparsity [70]

and layer-based depth correction and completion [71], or temporally with, e.g., paramet-

ric model-based nonlocal means [72] and joint-bilateral filter [73]. Such data cleaning

approaches would potentially preserve sharp edges without over-smoothing, and im-

prove the accuracy of marker tracking. Aiming for real-time applications, a simpler,

intuitive and less complex, but effective approach is used based on Kalman filtering
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[74]. Namely, since the initial locations of interfering materials can be detected in the

first frame and corresponding pixel values, it is easy to predict their next state using

Kalman filter, and exclude them from further processing.

2.3.2 Detection

After cleaning the frame from unwanted noise, IR images are converted to binary format

in order to detect and identify markers via blob detection on a frame-by-frame basis.

Since all retro-reflective marker regions have clearly distingushable pixel values in IR

images from surounding regions, blob detection is a natural object detection choice.

There are several approaches to detect and identify blobs, such as matched filters /

template matching [44], watershed detection [75], structure tensor analysis followed by

hypothesis testing of gradient directions [76], [77], scale-space analysis [78]. All these

approaches are limited by their sensitivity to noise, structure restriction and complexity

[79]. In [44], a concentric cycle-based method (template matching) is proposed to

perform the shape fitting test for each potential blob in order to locate all markers

in image space (2D); however, this method is time consuming and requires expertise

to determine associated parameters for the shape fitter and the kernel cluster filter,

and cannot locate the center of the marker correctly when motion blur occurs and the

marker is out of the sagittal plane, which leads to center deviation on those markers

with circular distributed IR values.

To solve this problem and satisfy the real-time processing constraints, an enhanced

heuristic IR analysis algorithm is proposed in Alg.1, where the threshold value is adap-

tively acquired for blob detection in the next frame. A sequence of b previous IR images

and an initial threshold for blob detection w and blob base radius rb, obtained by Alg.4

during the scene calibration process (which is application and scene dependent), are fed

to Alg.1. Note that the initial threshold w in Alg.1 has little influence on the accuracy

of the adaptive IR threshold. As expected, the further away the value of w from the

optimal value, the higher the number of iterations to find a suitable threshold, result-

ing in longer execution time. Note that it stops iterating when the number of detected

blobs f reaches convergence, i.e., the value of f between iterations is unchanged.
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The main idea behind Alg.1 is to first assign w, for the current frame Sd to that used

in one of the b previous frames, which results in the number of blobs in Sd closest to the

actual number of markers n present in the scene. If this threshold detects more than

n blobs (that is, some detected blobs are not markers), w is calculated by averaging

the pixels from the n most significant blobs weighted by the their radius. Otherwise, if

some markers were missed, a weighted average is taken over all detected blobs in the

current and b previous frames.

After blob detection threshold is set, the connected component labeling algorithm

[67], a classic blob extraction method used to detected connected regions in a binary

image, is used to detect markers from the located blobs. Then, for each detected marker

it finds a centroid, radius and region radius using simple pixel-based geometry. The

overall proposed algorithm is detailed in Alg.2.

2.3.3 3D marker location

Once all blobs have been detected as valid markers, the next step is to obtain the

coordinates of the markers in 3D space. In general, a depth camera has intrinsic

parameters to perform spatial mapping from image space to camera space.

The depth-map projection method of [68] is adopted to acquire undistorted camera

space coordinates of the tracked markers after marker centroids have been located.

However, depth information within the marker region is empty due to the retro-

reflective nature of the attached markers. Therefore, to recover the sensitive pixels

around each marker region in the depth images, Alg.3 calculates the image histograms

with respect to pixel intensity (Steps 21 to 28 in Alg.3) and distance to the marker cen-

troid in IR images (Steps 29-32). The algorithm is executed for each detected marker.

The following parameters are assigned heuristically to improve the recovery accuracy

and are constant for all frames: Max-Min width, W = 50, recovery resolution, D0 = 2,

histogram depth resolution, D1 = 5, histogram distance resolution, D2 = 0.5.

Alg.3 tackles the problem of partial occlusion: the input to the algorithm is a cluster

mode variable, m that can take 3 possible discrete values: (1) Normal - no occlusion for

the marker, (2) Top - occlusion present in front of the marker, (3) Bottom - occlusion
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Algorithm 1: Adaptive blob detection threshold setting for the next frame

Input: Captured image sequence from the sensor, S;
Initial blob detection threshold, w from Alg.4;
Blob base radius, rb from Alg.4;
Number of markers used, n;
Scan window of b previous frames Sd−b, . . . , Sd−1, with their blob
detection thresholds ej , j = d− b, . . . , d− 1;

Output: Blob detection threshold for the next frame, ed;
1 acquire next IR frame Sd from S;
2 set ed = ej∗ , where j∗ = arg minj=d−b,...,d−1 |n− fj |, where fj is the number of

blobs detected in Frame Sd when blob threshold ej from Frame Sj is used;
3 set f as the number of detected blobs when ed is used on Frame Sd;
4 order the detected blobs into the descending order of the blob radius:

id1, . . . , i
d
n, . . . , i

d
f , where d denotes the frame number;

5 set Jdq , q = 1, . . . , f as a matrix of all IR pixel values in Blob idq , k
d
q their mean

value, ldq and udq as radius and blob region radius of Blob idq in Sd, respectively;

6 if f > n then
7 calculate new ed by averaging IR pixel values from Jd1 , . . . , J

d
n weighted by

ld1, . . . , l
d
n;

8 else if f < n then
9 set h0 by averaging IR pixel values from Jd1 , . . . , J

d
f weighted by

ld1/rb, . . . , l
d
f/rb

10 set h1 by averaging IR pixel values from Jq1 , q = d− b, . . . , d− 1 weighted
by eq/w

11 set h2 by averaging blob radius from uq1, q = d− b, . . . , d− 1 weighted by
eq/w ed ⇐ (h0 ∗ f/n+ h1 ∗ h2/rb + w)/(f/n+ h2/rb + 1);

12 if flast 6= fcurrent 6= n then
13 add Sd to scan window when using ed and goto 4;

14 return ed;

at the back of the marker. Assume that markers are placed on the body as shown in

Fig. 2.4, partial occlusion takes place on markers attached to the anterior superior iliac

spine (ASIS), posterior superior iliac spine (PSIS), hip and femur during arm swing.

Those markers are in the bottom mode, while heel, toe, shoulder markers are in the top

mode and the remaining markers are always in the normal mode in Alg.3 since they

are never occluded.
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Algorithm 2: Marker detection

Input: Captured IR image frame, Sd;
IR blob detection threshold, ed obtained by Alg.1;

Output: Marker centroid, (p, q)1, . . . , (p, q)n where n is the number of
detected markers;

Marker radius, rm1 , . . . , rmn ;
Marker region radius, rr1 , . . . , rrn ;

1 Use connected component labeling [67] on Sd with ed for IR-to-binary image
conversion and obtain labeled markers M1, . . . ,Mn;

2 foreach marker Mi in M1, . . . ,Mn do
3 set % as the number of pixels in Mi;
4 set g as the sum of all IR pixel values in Mi;
5 set v = g − % ∗ ed as normalized sum of IR values;
6 let (pi, qi) = (0, 0), rmi = 0, rri = 0 be Mi’s centroid, radius and region

radius, respectively;
7 foreach pixel Px,y in Mi do
8 pi = pi + x ∗ Px,y/v; qi = qi + y ∗ Px,y/v;

9 foreach pixel Px,y in Mi with coordinates (x, y) do

10 set pixel distance l =
√

((x− pi)2 + (y − qi)2);
11 rmi = rmi + l ∗ Px,y/v;
12 if rmi > rri then rri = rmi ;

13 return (p, q)1, . . . , (p, q)n, rm1 , . . . , rmn , rr1 , . . . , rrn ;

Figure 2.4: Example of Marker Placement for Capturing Lower-limb Motion.
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Algorithm 3: 3D marker location

Input: Captured depth image frame, Dd;
Marker centroid, (p, q), Marker radius rm and region radius rr
obtained by Alg.2;
Max-Min width, W ;
Recovery resolution, D0; Depth resolution, D1; Distance resolution,
D2;
Cluster mode, m [defined in Sec. 2.3.3];

Output: Marker position in frame Dd, (x, y, z);
1 acquire depth values V d at rectangle region of {left:p− rr −D0, top:

q − rr −D0, right: p+ rr +D0, bottom: q + rr +D0} in Dd;
2 order pixels in V d in the increasing order vd(1), . . . , vd(N), and set κ = 0 and

z = 0;
3 set Λ0 = vd(1) +W ;

4 set V0 as a vector of all depth values in V d smaller than Λ0 and the remaining
values as V2 , and set V1 = V0;

5 if sizeof(V0) > 2 then
6 let κ = κ+ 1, V0 = V d \ V0 and goto 5;

7 else if sizeof (V0) = 1 then
8 set Λ1 = vd(N) +W ; set V1 as all depth values in V d smaller than Λ1 and

the remaining values as V2; goto 6 when sizeof(V2) >sizeof(V1) + κ,
otherwise goto 13;

9 else
10 if m = normal then
11 set T0 =min(V0) and T1 = T0 +W ;

12 else if m =top then
13 set T0 =min(V1) and T1 = T0 +W ;

14 else if m =bottom then
15 set T1 =max(V2) and T0 = T1 −W ;

16 set H0 as the histogram of pixels in V d that fall between T0 and T1, with
depth resolution D1;

17 foreach bin h in H0 do
18 if sizeof(h) <min((r +D0)2, d2/sizeof(H0) +D0) then
19 if sizeof(h) <min(D0,sizeof(v

d)/sizeof(H0)) then
20 remove h from H0;

21 foreach h in H0 do
22 histogram all pixels in h w.r.t their distance to centroid (p, q), with bin

resolution D2;
23 set ε(h) as the mean value of the bin in h that has the highest count;

24 foreach h in H0 do
25 set z = z + ε(h)∗sizeof(h)/sizeof(H0);

26 return (x, y, z) mapped from (p, q, z) using [68];
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2.4 Gait Analysis Application

This section describes the proposed application-specific algorithms that interface with

the proposed motion capture system (see Sec.2.3). The proposed gait analysis applica-

tion, comprising scene dependent calibration, person-centric modeling, and kinematics

analysis, enables autonomous, high-accuracy processing of gait associated data. Each

of the three algorithms are explained next.

2.4.1 Straight-line Walking Scene Calibration

The purpose of scene calibration is to collect scene dimensions to build a geometric

relationship between the camera, calibration markers, and walking start/end points.

Figure 2.5: Virtual straight walking exercise scene [44].

A typical straight-line walking exercise scene captured by the camera, is represented

as a virtual trapezoidal cylindrical model in Fig.2.5. The plane defined by 4 optical

(calibration) markers, shown as blue dots in Fig.2.5, placed on the ground is perpen-

dicular to the plane defined by the camera and the ground. An example of an IR image

captured during the calibration is shown in Fig.2.6, where the start and end of walk-

ing are shown as red dots. Following [66] which reports an acceptable average depth
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measurements error of 2-4 mm when objects are 2− 3m away from the MS Kinect v2

camera, in this research, a walking line distance of 2.5 − 3m to the camera and the

sensor height of 0.8m from the floor is used to ensure an approximate 4m walking line

for the 4-meter walking test.

Figure 2.6: Scene calibration: Calibration markers in green are labeled (sagittal view).
Walking line is defined between the start and end points, shown in red.

The overall walking scene calibration process is summarized in Alg.4. C = 4 cal-

ibration markers are placed on the ground one-by-one. The scene calibration process

continuously searches and analyzes the status of the calibration marker plane in relation

to the camera to ensure perpendicularity, and reports marker status as: (1) Uninitial-

ized - stop mode, (2) Move Left/Right - camera needs to be moved to the left or right,

(3) Tilt Down/Up, (4) Pan Left/Right, (5) Replace Markers - critical noise detected or

marker placement error, (6) Done - calibration completed. Steps 12-15 perform manual

adjustment of the camera pose.

Threshold w for blob detection (used in Alg.1) is calculated by first forming a

histogram of edge pixels for each detected blob, and then finding the minimum (over

all four marker blobs) of the largest histogram bin (Step 12). Alg.4 relies on subtracting

the background to label the calibration markers and calls Alg.2, with updated w set

to the minimal pixel value in the detected blob, to obtain the calibration marker’s

centroid and corresponding blob radius. Base blob radius rb is set as the mean radius
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of all calibration markers. Alg.4 determines the start and end points of the walking

exercise, which are then physically marked on the floor using a tape to help the post-

stroke for identification of the walking direction (see Appendix. B).

Algorithm 4: Gait Analysis Walking Scene Calibration

Input: Captured IR image sequence from the sensor, S;
Number of calibration markers, C;

Output: Blob centroids, (p, q, z)1, . . . , (p, q, z)C ;
Start and end walking point, (r, s)0, (r, s)1;
Initial IR blob threshold, w;
Blob base radius, rb;
Walking line length, L;

1 set the number of labeled markers c = 0;
2 while c ≤ C do
3 repeat acquire the next IR image from S;
4 apply frame subtraction detection;
5 until no significant motion detected;
6 apply frame subtraction detection using as background the previous frame

with no motion detected;
7 if blob detected then
8 update markers’ state using marker labeling (call Alg.2 with ed set to

the min IR value in the marker blob), and let c = c+ 1;

9 calculate a histogram of edge pixel values for each blob, and set w as the
minimum, over all blobs, of the most significant bin.

10 check diagonal connection condition for (p, q, z)1, . . . , (p, q, z)C mapped using
normal mode Alg.3 with current depth image from S;

11 if connection is intersectant then
12 report plane status defined by (p, q)1, . . . , (p, q)C relative to camera;

13 else
14 report critical error and goto 1;

15 adjust camera’s pose according to the reported status;
16 set rb =mean{r1, . . . , rC}, where {r1, . . . , rC} are obtained by Alg.2 called in

Step 8 above;
17 def start/end points (r, s)0, (r, s)1 relative to center of (p, q)1, . . . , (p, q)C

during streaming with guideline tool;
18 calculate the distance between (r, s)0 and (r, s)1 in camera space as L;
19 return IR base threshold w, blob base radius, rb walking line length L and

visualize start and end points (r, s)0, (r, s)1 in IR/RGB stream.
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2.4.2 Gait Model

Following calibration of the experimental environment, a unique complete subject

model for sagittal gait analysis is constructed for every individual subject by physi-

cally measuring the subject standing at the location shown as X in Fig.2.5, specifically

measuring H0∗, H7∗, and W3∗ to W8∗ (as shown in Fig.2.7) after all markers have

been mapped in 3D space. The model is clustered into three parts: upper body, limb

and foot models shown in Fig.2.7. For each frame, the model comprises the following:

(i) position of all detected markers, (2) geometric relationship between markers, (3)

virtual lines L13-L16 relative to the marker positions.

Figure 2.7: Sagittal Model. 12 visible markers are marked with green circles. 2 partial
invisible markers are shown in circle outlines. ‘R’ (‘L’) denotes right (left) marker. For
example, RPSIS is the right posterior superior iliac spine marker [44].
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Each marker is labeled by examining all potential marker groups for upper body,

limb and foot models using Alg.5, scanning each IR frame from left-top to right-bottom.

In particular, the shoulder (SHO) marker is first chosen as the top marker in the first

frame that shows the subject in the sagittal plane and is labeled within the region

around virtual line L12, predicted by Kalman filtering [74] using the marker position

in the previous frames and its velocity. Then, all relevant distances (see Fig.2.7) are

updated using the subject model of the previous/reference frame in order to solve model

matching errors due to complete occlusion occurences on hip and femur markers. Once

geometric relationships (distances, locations) relative to virtual lines L12 − L16 are

determined, geometric relationships between all marker combinations will be checked.

For example, the upper body model marker group should satisfy D0 > D1 > D2,

XLPSIS < XRPSIS < XRHIP < XRASIS < XLASIS , and the ankle marker of the foot

model should be inside the triangle region defined by tibial, toe, heel markers. Potential

clusters are formed by calculating the distances between the markers in the cluster and

comparing them with the updated distances W3∗ to W8∗.

Since the geometric location relationship of the limb model markers is changing

along the Y axis during leg swing, six markers (Tibial, Ankle, two Heels, two Toes)

are selected on the bottom of the model along the Y axis and determine the two heel

and toe markers attached to the occluded body side, by their relative position to the

knee and other visible markers. Finally, the marker name/position is determined by

comparing the distances between the markers in each cluster relative to the updated

distances W3∗ to W8∗ for each validated marker cluster across the upper body, limb

and foot models.

2.4.3 Kinematics Analysis

Once all the markers have been labeled, kinematics analysis commences, closely follow-

ing the relative joint angle and gait cycle definitions from [64]. The trajectories of the

heel markers to the floor are examined to detect the stance and swing gait phases as

the boundary event is when the heel marker contract the floor.

If a marker is occluded (full marker occlusion happens occasionally on the hip and
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Algorithm 5: Marker labeling

Input: From Alg.2:
Centroids for n markers, (p, q)1, . . . , (p, q)n;
Markers’ radius, rm1 , . . . , rmn ;
Markers’ region radius, rr1 , . . . , rrn ;
Marker positions in the previous frame, F ;

Output: labeled/named markers
1 predict SHO marker from F using Kalman Filter [74];
2 if SHO not found then
3 set centroid of the predicted region as SHO marker with radius and region

radius as in F ;

4 calculate all W ’s and L’s values shown in Fig.2.7 using the current model (see
Subsection 2.4.2);

5 order all markers in the region of L12 and L13 by X-coordinate;
6 determine the most-likely marker cluster for upper body based on D0, D1,

D2 (see Subsection 2.4.2);
7 order markers under L13 by Y, and X afterwards.
8 divide lower limb markers into two clusters by evaluating 6 markers nearest to

the ground by testing all possible clusters for the triangle foot model.
9 combine markers on the other side of the body into the triangle foot model in

the upper limb region according to Y-coordinates;
10 determine the other side’s foot position by checking its relative position with

knee and foot marker;
11 map labeled (p, q)1, . . . , (p, q)n using Alg.3 with rm1 , . . . , rmn and rr1 , . . . , rrn ;
12 return labeled/named markers;

Figure 2.8: Knee angle, step and stride length, stance and swing duration. Stance
and swing phases consist of the period that a foot is on the ground and in the air,
respectively.

femur markers caused by the swing arm), the 2nd or 4th cubic Bezier curve interpolation

[80] are adopted according to the occlusion length. The same curve interpolation is also

used for marker trajectory resampling (from 30 fps to 100 fps) to obtain more samples

for measuring gait associated data (and also for benchmarking with the 100fps state-
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of-the-art VICON). The knee angle, step and stride length, stance and swing phase as

shown in Fig. 2.8 are measured based on the resampled trajectories of heel, ankle, knee

and hip markers as explained next.

Step and Stride Length

Figure 2.9: Heel Horizontal Axis [44] Figure 2.10: Heel Vertical Axis [44]

This task can be simplified into extracting stable values, where the heel marker tra-

jectory horizontal axis value does not change over a window of frames (see an example

in Fig.2.9, where ψ0, ψ1, ψ2 denote three windows with no change detected using win-

dow matching between the inflection points). These points correspond to heel strikes

to the floor. Once the left and right heel’s horizontal stable values are found, the step

and stride length can be calculated using the adjacent stable values over time, i.e., as

ψi+1 − ψi.

Gait Phases Detection

Gait events of heel strike and toe off are used to measure the stance and swing dura-

tion using heel marker trajectory vertical axis values. An example is shown in Fig.2.10,

where η0, η1, η2, η3 denote inflection points, ρ0, ρ1 refer to local extremes. The pro-

posed algorithm quantizes the heel marker vertical axis trajectory and then searches

each quantization region between the inflection points from the global minimum to

the maximum by iteratively regrouping the scanned points. The quantization step-size

(level resolution), γ = 0.05, the range left and right clip rate, ξ = φ = 0.33, and the

local range length boundary, τ = 3 are heuristically set for extracting the inflection
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points and local peaks in order to obtain the relative time of heel strike and toe off

through angle variation between the floor line and the line from toe to heel. A boolean

variable ‘locked’ is used in Alg.6 as a flag for each range between two consecutive in-

flection points. For a given range p, in Step 18, min(p) and max(p)’s lock levels denote

the (local) minima (maxima) below (above) range p.

Algorithm 6: Inflection Points Searching

Input: Vertical coordinate of heel marker trajectory T (e.g., see y-axis on
Fig.2.10)
Level resolution, γ;
Range left clip rate, ξ;
Range right clip rate, φ;
Local range length boundary, τ ;

Output: Inflection points ηs;
Local peaks ρs;

1 quantize T using a step size γ into quantization levels Ω;
2 def range pool P as an empty set;
3 set σ = min(T )
4 for k = min(Ω) to max(Ω) do
5 find all ranges, i.e., differences between two values in T that fall within the

quantization bin k and are smaller than σ; foreach found range
f = [fl, fr] do

6 set locked(fl) = false, locked(fr) = false;
7 if f insides P then
8 set T = T \ f and goto 5;

9 if locked(fl) == true or locked(fr) == true then
10 update P with f ;

11 else
12 if fl’s rate change < ξ then
13 set locked(fl) = true and goto 6;

14 if fr’s rate change < φ then
15 set locked(fr) = true and goto 6;

16 foreach p in P do
17 if (locked(pl) == true and locked(pr) == true) or p is start or end

range with one side locked then
18 if length(p) > τ and min(p’s lock levels) < 2 ∗max(p’s lock

levels)−p’s initial local peak then
19 return p’s boundary values as inflection points η and initial

local peak as relevant local peak;
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2.5 Visualization & Results

The proposed framework is demonstrated using an MS Kinect v2 sensor [14], though

other similar sensors can be investigated as further case studies, e.g., commercially

available MS Kinect v1 [81], Intel RealSense R200 [55], SoftKinetic DepthSense Cam-

eras [54]. The MS Kinect v2 sensor outputs 16-bit 512x424 pixel resolution of IR and

depth images at 30fps. A user-friendly interface is developed as part of ‘OPTIKA’

software in this work for the proposed underlying framework (see Sec.B).

Fig.2.11 shows the snapshot of the software, which shows how convenient it is to

access the recorded experiments by selecting the tracker tool. Users can also view

the automatic reconstruction process within the proposed multimedia application or

manually playback the whole experiment. Autonomous analysis is performed and gait

associated parameters are generated afterwards. These data (including joint angles,

movement patterns, gait phases, step and stride length, swing and stance duration)

can be easily accessed within the analyzer toolbox. For the rehabilitation application,

a diagnostics interface is developed to report the patient’s condition.

The proposed gait analysis application, and inherently the proposed framework and

its six algorithms, was tested using 92 experiments with 14 subjects (11 males and 3

females), including 9 stroke survivors, and 25633 frames. The percentage of difference

between the proposed system and VICON system in measuring knee angle α, step

length ζ, stride length ξ, stance and swing duration is used to evaluate the motion

tracking accuracy.

Evaluation of the proposed adaptive threshold analysis algorithm, Alg. 1, on an

Intel i7-4710HQ 2.5GHz CPU, Windows10 operating system, implemented by Visual

C++, against the static-threshold marker detection algorithm of [44], [45] indicates

higher detection accuracy as shown in Table 2.2. Note that the results are averaged

over all 92 experiments based on the ground truth of marker positions that are manu-

ally labeled clearly. However, it introduces an extra preprocessing step which increases

the processing time by roughly 1ms per frame. In addition, as the distance between the

camera and marker increases, the number of pixels in the captured IR images increases
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Figure 2.11: Multi-view tracker snapshot.

which requires more time to search for the regions of retro-reflective marker in Alg.1.

This distance is also dependent on subject body dimensions and their walking direc-

tion. However, as will be shown next, the proposed blob detection threshold analysis

algorithm simplifies the following processing steps, making the overall processing faster.

Table 2.2: Performance of the proposed dynamic vs static thresholding for marker
detection, showing percentage of successfully detected markers and mean execution
time per frame.

Algorithms Detected (%) Time (ms/frame)
Static Threshold [44] 91.44± 3.52 0.15± 0.04
Adaptive Threshold 98.08± 1.08 1.21± 0.33

The performance of the proposed marker identification algorithm, Alg.2, is evalu-

ated for each marker using recall rate of marker centroid’s distance error (within error

reference β = 0.5, 1.5, 2.5 pixels), that is, the average number of frames where the dis-

tance between the detected marker centroid and its true position is within β. Fig.2.12

shows the recall rate increments of 8 experiments for 12 markers using the proposed

adaptive threshold based algorithm and the algorithm of [44] when β = 0.5 pixel. It

can be seen that the recall rate has been improved by about 3∼9% especially for those

markers that are attached to feet (ankle, toe, heel, another foot’s toe and heel) where

out-of-plane, motion blur are most likely to occur.
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Figure 2.12: Recall Rate Increments when β = 0.5 pixel for 8 of experiments. Top
boundary of each incremental rectangle is the recall rate using the proposed adaptive
threshold based algorithm and bottom boundary is the one using the algorithm of [44].

Averaged results over all experiments and all markers are shown in Tab.2.3. It can

be seen that the proposed Alg.2 significantly outperforms the static threshold approach

in terms of both accuracy and the overall execution time.

Table 2.3: Performance of the proposed adaptive threshold based algorithm to locate
center of a marker averaged over all markers and 92 experiments.

Characteristics Adaptive Static[44]

Aver. callback (%), β = 0.5 95.86± 1.64 88.12± 2.61

Aver. callback (%), β = 1.5 97.32± 1.75 90.84± 2.67

Aver. callback (%), β = 2.5 98.04± 1.73 92.10± 2.45

Time (ms/frame) 7.72± 1.16 117.53± 17.94

Evaluation of accuracy of detecting gait events is performed by manually selecting

the key frames and examining (with expert knowledge) the whole IR image sequence

with corresponding static point clouds captured during the experiments, which are used

as reference (i.e., ground truth), for validating the step and stride length, stance and

swing duration. In order to evaluate the performance of swing phase detection, results

were averaged to obtain the mean percentage error and percentage standard deviation

in Table 2.4. It can be seen from the table, that the mean and standard deviation of

the error are very small and slightly decreased with the proposed adaptive threshold

based system compared to that of [44], attributed to the proposed Alg.6.

The evaluation of the overall proposed system using VICON as a benchmark is
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Table 2.4: Performance of the two methods for measuring step and stride length, and
stance and swing phase

Metric Step Stride Stance Swing

Mean(%)[44] 1.06 1.16 1.81 1.12
Std(%)[44] 5.31 4.72 5.78 4.24
Mean(%) 0.98 1.08 1.73 1.09
Std(%) 4.12 4.23 4.56 3.56

discussed next. 5 subjects were simultaneously recorded using VICON and the proposed

motion capture system. Each subject walked from left to right and back 8 times,

hence a total of 40 experiments are used for comparison. The knee angle results of

4 experiments from 4 different healthy subjects are shown in Fig.2.13. Following [82]

that uses statistical significance (5%) to evaluate the difference between VICON systems

with different camera setups, in this research, it can be seen that the angles from the

proposed system are well within the 5% error margin compared to VICON.

Figure 2.13: Knee angle comparison with VICON.

The knee angle measurement performance is next evaluated by calculating root-

mean-square error (RMSE) for each of the 40 experiments between the proposed frame-
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work and VICON. This is compared with the RMSE calculated from the system of

[44] with VICON. The RMSE results are shown in Fig.2.14 as RMSE per experiment,

where the effect of the algorithmic improvements over the static threshold based system

is clearly illustrated by reduced RMSE for all 40 experiments. Lower RMSE for the

proposed system is attributed to the adaptive thresholding and the improved marker

detection/labeling method. The maximum RMSE with the proposed system was under

6 degrees. Note that VICON returns joint trajectories instead of marker trajectories,

thus a potential error comes from the misalignment between marker positions and ac-

tual joints.

Figure 2.14: Knee angle RMSE over 40 experiments.

Figure 2.15: Knee angle for two stroke survivors.

Fig.2.15 shows two examples of knee joint angle during three walking cycles for two

stroke survivors obtained by the proposed system. Comparing these results with those

of the 4 healthy subjects shown in Fig.2.13, the effect of stroke is noticeable indicating
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movement abnormalities unique to each individual. This clearly shows the need for a

person-centric framework, as proposed in this chapter.

2.6 Summary

A video-based motion capture framework is proposed for motion analysis using a single

MS Kinect sensor based on simultaneous marker detection and identification in 3D

space and model-based kinematics analysis. Both the optical motion capture system

and gait analysis application are evaluated over close to 100 sequences, involving 9

stroke survivors and 5 healthy subjects, and benchmarked against the 12 camera state-

of-the-art VICON system following the system configuration in [82]. The acquired

trajectory data by the proposed system is further used in the rest chapters as pre-

processed data.

In contrast to VICON and similar commercial systems like Qualisys, the proposed

framework, which supports a portable sensor for capturing experiments, is suitable

for tele-rehabilitation programs through visualization, presentation and rehabilitation

interfaces built in the proposed application. Validation results indicate high accuracy

for sagittal plane gait analysis in measuring kinematics measurements, such as step and

stride length, stance and swing duration. This makes the system practical in clinical

tests for different rehabilitation studies. Furthermore, the application-specific results

clearly show the need for a person-centric framework, as proposed in this chapter.

A novel software package (“OPTIKA”) is developed as a major contribution of this

chapter which had been evaluated during two different rehabilitation sessions at Brain

and Spinal Injury Center, Manchester, UK.

However, the proposed system still has some drawbacks: (1) still needs expertise to

manually place the markers on the body. (2) requires extra time in scene calibration to

capture the sensitive parameters associated to the environment and application, such as

threshold for blob detection, blob base radius, start and end walking points (see Alg. 4).

(3) application specific model, such as skeleton model of walking exercise in sagittal

view (see Fig. 2.7), is required to perform the marker labeling. This results in low
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practical value and high complexity in deploying the system for various motion capture

based healthcare monitoring applications, such as gait analysis from different views,

timed-up-and-go test [58]. (4) can only be operated in indoor environment which is

lack of portability for outdoor motion capture applications. Approaches to solve these

drawbacks can be a research direction in the future work (see Sec. 6.2).

In the proposed framework, algorithms associated with optical motion capture are

generic to any application while only Algs. 4, 6 and 5 are application specific, Hence,

only the latter three need modification for different rehabilitation exercises that require

motion analysis. While the results are presented for the rehabilitation walking exercise

in the sagittal plane view only, the frontal view gait analysis (see for example [51] for

assessing upper limb movement) can be a research direction in the future work (see

Sec. 6.2).
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Trajectory-based Motion

Assessment

3.1 Review of Gait Phase Classification Methodologies

High-level features, such as step through length, step height speed, step interval, are

extracted in [83] via a MS Kinect, during 360◦-turn analysis. A simple statistical fea-

ture thresholding method further performs the classification of normal/abnormal gait.

However, no numerical classification results are presented and lack of abnormal data

is a limitation of this preliminary study to determe empirical thresholds. A point-

of-care gait assessment framework in [84] quantifies several gait indices and evaluates

limb impairment for patients with multiple sclerosis, involving Dynamic Time Warp-

ing (DTW), Principal Component Analysis (PCA) and Linear Discriminant Analysis

(LDA). However, [84] reports that the inaccuracy of the captured joint trajectories

limits the validation of this preliminary study; furthermore, no benchmarking is in-

cluded. In [85], kinematic parameters are extracted from a unified representation via a

generic full-body kinematic model to segment motion sequences into repetitive action

sequences, based on the zero-velocity crossing of the feature selection. The proposed

unsupervised temporal segmentation method in [85] requires manual parameter tun-

ing of the involved unscented Kalman filter, frequency analysis and adaptive k-means
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clustering to achieve good performance. However, full-body actions involved in the

experiments are easily-distinguishable and such unsupervised segmentation requires

prior knowledge of the number and order of actions occurred in the motion sequences.

Moreover, the method fails when a full sequence is not measured correctly. A similar

video-based gait phase classification system in [4] first acquires joint trajectories by

tracking 2D bullseye paper markers using a single high-speed expensive RGB camera.

Heuristic thresholding criteria performs further automatic gait phase labeling once six

gait events are extracted. Motivated by [4], a 3D motion capture system is proposed

in [46] to facilitate the kinematics representation by tracking 3D trajectories of retro-

reflective ball markers together with image processing algorithms. Based on the high

precision joint trajectories, a heuristic method [46] is proposed to extract stance and

swing phases. Both [4] and [46] require adaptive parameter tuning to achieve accept-

able low classification error rate (the proportion of patterns that have been incorrectly

classified).

In [17], a lower limb exoskeleton robot ROBIN-H1, a walking rehabilitation service

for stroke patients, first acquires pitch orientations and angular velocities of the robot

legs. The task of classifying stance and swing phases by the captured kinematics are

then investigated by training a Multilayer Perceptron (MLP) neural network (NN) and

an NN-based non-linear autoregressive with exogenous inputs (NARX). Results show

that NARX-NN outperforms MLP-NN, but the classification error rate is 5.7% worse

than its offline version. [17] suggests that the further research direction is to use an

autoencoder for feature extraction and acquiring more data that comprises walking

pattern to improve the ACC against data from stroke patients.

[18] acquire knee joint angle and foot switches as features to detect gait events.

The experimental results of the classification fit percentages comparison between ar-

tificial neural fuzzy inference systems (ANFIS), autoregressive models with exogenous

variables (ARX), output error models (OE), NARX and other NN-based models demon-

strate the best model is NARX with a 11.41% classification error rate.

In [23], pHMM is proposed to extract a dynamics-normalized, averaged, gait cycle

by observing silhouettes of gait stances, leading to the state-of-the-art identification
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of the human subject. Various-length silhouettes are projected into a fixed-length

sequence by training pHMM on manual silhouettes created from a subset of the Gait

Challenge dataset [86]. However, human silhouettes vary with respect to subject shape,

gait speed and walking direction, and it is impractical to generate a dataset manually

to cover all possible silhouettes, especially for physical rehabilitation programs. Thus,

a more robust and practical high-level motion representation approach is to rely on

joint trajectories.

In [87], a commercial motion capture system ‘Visual3D’ is employed to acquire knee

angle parameters to perform four-class gait phase classification by J48 Decision Tree,

Random Decision Forest (RF), MLP, and Support Vector Machines (SVM) [88]. It is

demonstrated that RF achieves the lowest classification error rate.

This chapter provides the following improvements on the prior state-of-the-art work

reviewed above: (1) a comprehensive set of gait parameters, based on 3D joint trajec-

tories, to generalize high-level kinematics across all gait phases, and (2) given a gait

sequence, unlike [4], this research better slices the sequence into individual gait phase

segments by frame-wise classification instead of detecting gait event frames.

Sec. 3.2 optimally extracts distinct features by observing transitions of 12 gait pa-

rameters within a sliding window at varying gait speed and direction, unlike [17] and

[18] that only rely on a single kinematics parameter at a fixed gait speed and direction.

As a result, temporal feature misalignment is addressed by extracting distinct fea-

ture transitions via gait cycle standardization and clustering, mapping spatio-temporal

feature transitions by RF and reconstructing adjacent gait phases by fine-tuning gait

events. Section IV employs SVM, a two-layer NN, and a NARX-NN model [17] as

benchmarks for the evaluation of the classification performance.

3.2 Gait Phase Classification

Gait assessment reveals significant factors of abnormal gait, guiding the rehabilitation

assessment and treatment, supporting clinical diagnosis and therapeutic effect evalu-

ation. Gait phase analysis, as an important part of gait assessment [89], facilitates
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medical diagnosis [18] by capturing movement of joints of interest during individual

gait phase, analyzing precisely the status of a patient’s muscle activation for effective

gait rehabilitation treatments [90].

This section proposes a gait phase analysis method, which aims to accurately iden-

tify the start and end of each gait phase, that is, the time period between two consec-

utive gait events. This is achieved by classifying each frame of the captured video into

one of K = 9 different gait phases (see Fig. 3.1), labeled as {P1, · · · , PK}, in order to

locate K gait events such as heel strike, toe off, etc.
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Figure 3.1: A complete typical gait cycle, from a right foot heel strike until the next
right foot heel strike. Circles with different colours annotate eight joints of interest
listed on the left. Nine specific skeleton poses are described with their corresponding
gait events, shown in red text, starting from the Heel Strike event. Colour marking of
nine gait phases P1 −P9, where P1 denotes Loading Response1, and so on. Gait phase
denotes a period between two consecutive gait events. Bottom panel demonstrates a
typical curve of knee angle ratio λ2 through the whole gait cycle. Table 3.1 defines the
remaining gait parameters, targeting significant gait kinematics.

12 gait parameters (λ1, · · · , λ12), defined in Table 3.1, are used to characterize the

gait motion during a 4-meter walking test. These gait parameters and their kinematics

observations, are defined following [91] and [4]. Fig. 3.2 demonstrates the definitions

of the proposed gait parameters. A typical visual representation of each proposed

gait parameters are shown in Fig. 3.3, regarding the gait phase information shown in

individual color. The change of these gait parameters during the walking test is used as
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Figure 3.2: Visual representation of distances di and angles ai that are used to define
gait parameters in Table 3.1. ‘x’ denotes the 3D position at a segment centroid of two
relevant joints represented by the same color-coded cycles as in Fig. 3.1. Note that in
this figure, the camera is placed at the subject’s right side. Thus R (right) ankle is
captured while L(left) ankle is only tracked when the camera is placed on the left side.
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Figure 3.3: Visualization of proposed 12 gait parameters during almost three gait cycles.
The colors that refer to each gait phase are the same as shown in Fig. 3.1.

47



Chapter 3. Trajectory-based Motion Assessment

Table 3.1: Definitions and observations of the proposed 12 gait parameters. See Fig. 3.2
for the definition of parameters di and ai. Note that parameters named with/without
“1” are associated the back/frontal leg seen in sagittal view.

Parameter Value Observation

foot distance ratio λ1
d2
d1

foot switch

knee angle ratio λ2
a1

180◦ limb support

thigh plane angle ratio λ3
a2

180◦ femur swing

toe raise ratio λ4
d3
d1

toe contact

heel raise ratio λ5
d4
d1

heel contact

toe 1 raise ratio λ6
d5
d1

toe 1 contact

heel 1 raise ratio λ7
d6
d1

heel 1 contact

leg plane 1 angle ratio λ8
a3

180◦ leg 1 swing

ankle angle ratio λ9
a4

180◦ limb support

shank plane angle ratio λ10
a5

180◦ tibia swing

foot angle ratio λ11
a6

180◦ foot support

foot 1 angle ratio λ12
a7

180◦ foot 1 support

the input features to perform gait phase classification (see Sec. 3.2.2). Joint trajectories

[46] are used to calculate gait parameters per frame, which will, in turn, be used to

perform feature extraction and classification to label the gait phases.

The block diagram of the overall proposed system is shown in Fig. 3.4, compris-

ing 3 major steps: (1) gait pattern extraction, (2) gait phase feature extraction, and

(3) gait phase reconstruction. These are described in the following three subsections,

respectively.

3.2.1 Gait Pattern Extraction

Gait pattern, i.e., the sequence of limb movements during walking, can be characterized

by the defined gait parameters (see Table 3.1). While gait patterns are periodic as

shown in Fig. 3.1, they vary among subjects due to differences in age, activity type,

gender, proportion and health status. Like [92] that uses kinematic data to describe

different gait patterns, this research characterizes a gait pattern as the joint movement

(here referred to as λ1, · · · , λ12 changes) occurring on a complete normalized gait cycle,

invariant of walking speed and direction.

Gait cycle detection: Before characterizing the gait patterns, each gait cycle is
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Figure 3.4: Overall system diagram. Note that either Alg. 7 (proposed Filtering
method) or Algs. 8 and 9 (proposed Optimized method) are used.

detected by slicing the gait sequences into individual gait cycle (subsequence) based on

heel strike event detection. The heel strike event occurs when the foot makes contact

with the ground, heel-first; thus, it can be extracted by detecting change points of

distances between heel joint and the ground, via the inflection points search method

of [46].

Based on trajectories of joints of interest, obtained, for example, by tracking the

markers placed on the joints in the recorded video, as in [46], gait parameters (see

Table 3.1) are calculated in each frame. For the j-th gait cycle, let V λi
j (f), i = 1, · · · , 12,

denote the value of gait parameter λi in Frame f given a gait parameter sequence. For

example, V λ2
1 (10) denotes the value of knee angle ratio of gait cycle 1 at Frame 10

within a gait parameter sequence.

To extract distinctive gait patterns after gait cycle detection, this research adopts

the following three steps: (Step1) resample complete gait cycles into a fixed length of

L samples, called standardized gait patterns; (Step2) cluster similar gait patterns into

groups per gait parameter using density-based spatial clustering of applications with
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noise (E-DBSCAN) [93]; (Step3) generalize gait patterns through DTW-Barycenter

Averaging (DBA) [94].
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Figure 3.5: An example of the gait pattern representation (360 frames are used in this
gait sequence). Note that all 12 gait parameter curves and their gait phase progress
jointly characterize gait patterns.

Step1: Gait pattern standardization. First, gait pattern standardization is

used to mitigate the influence of varying gait speed. Fig. 3.5 shows an example of gait

phase periodicity for the proposed 12 gait parameters. Since, in general, V λi
j varies for

different gait cycles, i.e., different j, 2nd-cubic Bezier curve interpolation [80] is used

to resample V λi
j to a fixed length of L samples leading to a standardized gait parameter

curve Sλij (x = 1, · · ·L), denoted in the following by Szj , z ∈ {λ1, · · · , λ12}.

Step2: Gait pattern clustering. Clustering analysis is usually used to group

similar gait patterns in order to further perform abnormal detection, person recog-

nition, etc. Gait phases are usually ignored in the literature for those tasks. How-

ever, similar standardized kinematics might have different gait phases across subjects

and this variability is important to capture key gait events. For example, in [95], a

wearable sensor-based gait phase detection system uses gait phase duration to classify

level-walking and walking upstairs and downstairs by learning a decision tree model.

This research takes both gait parameter change and gait phase transition into account

to capture the differences between standardized gait patterns. The function Φz
i,j(x, y)

that measures the distance between sample x in i-th gait pattern Szi and sample y in
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Figure 3.6: Proposed gait pattern extraction, showing steps from left to right: extrac-
tion of gait parameter curves V λi via gait cycle detection, then standardizing to Sz

(Step1), clustering to Gz (Step2) and averaging as S̄z (Step3).

j-th gait pattern Szj is defined as:

Φz
i,j(x, y) =

(
Szi (x)− Szj (y)

)
· exp

(
φ(PSzi (x), PSzj (y))

)
, (3.1)

where

φ(Pa, Pb) =
⌈K − 1

2

⌉
−
∣∣∣1
(
b2|Pa − Pb|

K + 1
c mod 2 = 0

)
·

⌈K − 1

2

⌉
−
(
|Pa − Pb| mod

⌈K + 1

2

⌉)∣∣∣.
(3.2)

Note that PSzi (x) ∈ {1, 2, · · · ,K} refers to the corresponding gait phase label at sample x

in i-th the gait pattern Szi . 1(p) is an operator that returns 1 if a Boolean expression p is

true, and 0, otherwise. Eq. (3.1) includes both the numerical distance (Szi (x)− Szj (y))

and exponential label distance exp
(
φ(PSzi (x), PSzj (y))

)
, instead of other conventional

distance functions that are commonly used in DTW. Furthermore, parameter-free E-

DBSCAN is used to obtain groups of gait patterns via DTW with distance function

Φz
i,j(x, y). Each cluster group Gz = {S̊z1 , · · · , S̊zM} represents M similar gait patterns.

Step3: Gait pattern averaging. After E-DBSCAN clustering, DBA is operated
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to extract labeled gait parameter curves to represent distinctive gait patterns. For each

cluster, distance function Ψz
m(x, y) is the conventional DTW distance function between

the sample x in the averaged curve S̄z (a curve that averages all curves in the same

cluster and is initialized as the curve with minimum Euclidean distance compared with

all other curves) and the sample y at any S̊zm in the m-th cluster, m = 1, · · · ,M , given

by:

Ψz
m(x, y) = exp

(
− ω̄zm(x, y) ·

(
S̊zm(y)− S̄z(x)

))
, (3.3)

where a shared weight ω̄zm(x, y) is computed as:

ω̄zm(x, y) =

∑K
k=1

(
1
(
PS̊zm(y) = k

))

∑K
k=1

∑my
y′=1

(
1
(
PS̊zm(y′) = k

)) ·

exp
(
φ
(
PS̄z(x), PS̊zm(y)

))
.

(3.4)

Note that the number of occurrences of gait phase label k, is counted in all S̊z1,··· ,M

within the same cluster. The exponential label distance is used as metric to weight

the distance S̊zm(y) − S̄z(x) in Eq. 3.3. The following two measurements are used to

tradeoff: 1) between S̊zm(y) and cluster mean S̄z(x); 2) among gait phase labels PS̄z(x)

and PS̊zm(y) for better gait pattern generalization.

To obtain the corresponding gait phase label for each sample at the averaged curve

S̄z, this research first extracts all warped paths between the averaged curve and all

curves within a cluster via DTW using distance function Eq.3.3. Then, it adopts min-

max standardization to limit the path cost at each iteration of DBA. Finally, for each

sample x, it measures the summed path cost for each possible label across all warped

paths at all iterations and then label sample x as the label with minimum-sum path

cost. Therefore, both numerical gait parameter value averaging and gait phase progress

averaging are taken into account to obtain a good representation of a set of similar gait

patterns.

Fig. 3.6 demonstrates the overall gait pattern extraction. The resulting series of

the standardized curves S̄z are obtained by performing Steps 1-3 for the purpose of

data reduction from a large number of Sz curves. For example, 2 to 7 clusters can be
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obtained in S̄z for each z ∈ {λ1, · · · , λ12}, from a total 205 gait patterns Sz during

experiments.

Since the duration of each gait phase is different, the different numbers of frames

in each class (gait phase) result in imbalanced class distribution for the classification

task. This results in categorizing the samples into the majority class, in particular the

insufficient identification of minority class. Following the validated work in [96] that

assigns individual weights for each class to address this bias problem for medical data,

the class weights Ck=1,··· ,K of each gait phase label in this work are used during training

as:

Ck=1,··· ,K =
12 · L

∑λ12
z=λ1

∑L
l=1

(
1
(
PS̄z(l) = k

)) . (3.5)

3.2.2 Gait Phase Feature Extraction

Recall that the task is to classify each frame into one of K = 9 gait phases. Two

main challenges in this multi-class gait phase classification problem are: (1) partial

gait parameter curves due to both incomplete gait cycles and missing values due to

the occlusion at joints of interest; (2) subject-sensitive gait patterns with varying gait

speeds. The missing values result in corrupted input features for classification task.

RF as one of the widely used machine learning algorithm enables the input missing

observations by replacing the missing values with the following two ways: (a) the

most frequent non-missing values of each class, (b) an average over the non-missing

values of the m-th variables weighted by the proximities between the n-th case and

the non-missing value case, given a missing feature value x(m,n) as proposed in [97].

Motivated by this, in this work, RF is used to handle the missing observations for the

first challenge. In order to address the second challenge, inspired by image classification

study [98], this research introduces the feature candidate pair and sliding window to

mitigate feature alignment.

In general, feature engineering of gait phase classification comprises: (1) Feature

Alignment: extracting time-varying features to solve temporal misalignment that causes

feature mismatch, such that extracted abstract features are invariant to gait speed and
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subject-dependent patterns. (2) Feature Mining: mine distinct feature pairs, reducing

feature candidate pair set without sacrificing the performance.
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Figure 3.7: Feature candidate pair extraction in standardized frame domain: for target
frame l ∈ 1, . . . , L, different candidate pairs (u, v), that link frames with local extrema,
give different value responses in terms of knee angle ratio λ2. Same frames with local
extrema give different (u, v) values for different target frames from 1 to L and its
corresponding L-length sliding window starting from frame 1− 0.5L to 0.5L.

Proposed Feature Alignment

To extract the transition information of adjacent gait phases, gait pattern curves S̄z

are used which can be obtained as explained in Sec.3.2.1 (Step 3). A sliding window

across the frames is selected in order to extract time-varying and linearly separable

temporal features, where the extracted full gait cycle length L is set to be the length

of the sliding window. Since some gait cycles are incomplete, this research estimates

the length of each incomplete gait cycle from full gait cycles based on the speed of the

hip marker.

Considering the continuity of two adjacent gait pattern curves, S̄z becomes periodic
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by connecting its starting frame to the end frame (see Fig. 3.7) of its replica by:

S̃z =
S̄z(1) + S̄z(L)

2

S̄z(x) =





S̄z(x+ L) x ∈ 1− 0.5L, · · · , 1

S̄z(x) + (τL−x)(S̃z−S̄z(1))
τL x ∈ 1, · · · , τL

S̄z(x) x ∈ τL, · · · , L− τL

S̄z(x) + (τL+x−L)(S̃z−S̄z(L))
τL x ∈ L− τL, · · · , L

S̄z(x− L) x ∈ L, · · · , 1.5L,

(3.6)

where continuous edge ratio is set to τ = 0.1 to make sure that the boundaries between

adjacent S̄z’s are smooth, e.g., the target point S̄z(x) at any position x of the gait

pattern curve is smooth within an L-length sliding window. Since the standardized

curve is obtained by its replicas, the gait phase labels are the same as the ones extracted

during gait cycle averaging. The standardized time stamp at sample x becomes x/L

given a fixed length of L samples of a sliding window, centered at x. In order to address

misalignment of features, this research introduces feature pair (u, v), where u and v take

values in the range [−0.5, 0.5] with a minimum resolution step of 1/L to describe any

two points near x within the sliding window.

To capture the time-varying features for each sample x within an L-length sliding

window on the periodic gait pattern curve S̄z(x), z ∈ {λ1, · · · , λ12}, given a feature

pair (u, v)z for gait parameter z, the feature value are calculated by:

<l(u, v) =
‖S̄z(l + uL)− S̄z(l + vL)‖

|u− v| , (3.7)

Since the standardized gait cycle/gait pattern length is heuristically set to 100 for

matching the resampling ratio in Chapter 2 (benchmark kinematic measurements with

the state-of-the-art motion capture system VICON). To generate features for classify 9

gait phases for each frame, L = 100 is chosen as the fixed length of sliding window such

that a full gait cycle can be observed in the sliding window. As a result, the feature

candidate pairs can be located in any two different gait phases within a full gait cycle
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in order to provide features across any two gait phases for each frame. This results in
(
L
2

)
= 4950 feature candidate pairs for each gait parameter, including (−0.5,−0.49),

(−0.5,−0.48), · · · , (−0.5, 0.5), (−0.49,−0.48), · · · , (0.49, 0.5) as (u, v)z.
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Figure 3.8: Feature pairs (u, v) at target frames a and b. Different values of foot angle
ratio parameter λ11 for the same (u, v) pair can be observed at the target frames a and
b.

In order to ensure the same time-varying feature statistics for the same (u, v) at the

testing stage, this research introduces the following equation to calculate the feature

value:

<f (u, v) =
‖V z(f + u$f )− V z(f + v$f )‖
|tz(f + u$f )− tz(f + v$f )| , (3.8)

where for a frame f , t(f+u$f ) denotes the u shifted timestamp from the time at which

target frame f is acquired given a $f -frame long sliding window centered at frame f .

Thus, a gait sequence sampled from frame f + u$f to frame f + v$f represents a

complete gait cycle. Fig. 3.8 demonstrates the feature pairs (u, v) in the time domain.

Proposed Feature Mining

To reduce the size of the feature candidate pairs set Ω, only the most informative pairs

is selected. Since missing feature values often occur near the boundary of the gait

parameter curves, the missing features for those conditions are limited. To deal with
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the missing feature issues and further reduce the classification error rate, enhanced

randomized decision forest (ERF) [99] is used to perform this task by keeping only

uncorrelated high performing trees in random forests, reducing the occurrence of bad

trees caused by randomization.

Two mining approaches are proposed to extract the feature pairs: (1) filtering

method: enumerate all (u, v) link combinations in terms of standardized length L = 100

such that the quality of 12
(
L
2

)
feature candidate pairs for all gait parameters is evaluated

during mining; (2) optimized method: find all (u, v) link combinations of local extrema

frames via Persistence1D [100] that finds paired local extrema indices based on a certain

threshold of absolute data difference for all local edges given a set of one-dimensional

numerical values.

2.1) Filtering method (Alg. 7): It enumerates all possible (u, v) link combi-

nations of any two frames within an L-length sliding window centered on the target

frame. Then it computes the feature values using (3.7) from the standardized curve S̄z

extracted in Sec. 3.2.1. To ensure the feature values are in the same feature space as

the ERF model, [101] uses Gini impurity = 1−∑K
k=1(pk)

2 (where pk is the probability

of a frame being classified to a particular gait phase class k) as evaluation metric to

quantify the information content of a feature candidate pair. To avoid overfitting the

ERF model, it selects
∑λ12

z=λ1
numz top feature candidates with lowest Gini impurity

from a total of 12
(
L
2

)
candidate pairs, where numz is the resulting feature count for

each gait parameter z. The distinct feature pairs are chosen via the following Criteria

and Alg. 7:

(1) Given a finite set of feature candidate pairs {(u, v)zε} for each gait parameter z,

it computes Gini impurity Gzε (Pa, Pb) (see Alg. 7) to separate samples with gait phase

labels Pa and Pb, a, b ∈ {1, · · · ,K} as a measure of the quality Qzε(Pa, Pb) for the ε-th

feature candidate pair (u, v)ε for the gait parameter z.

(2) For each z, it calculates the quality Qz for all possible gait phase label combinations
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H = {(P1, P2), (P1, P3), · · · , (P2, P3), · · · , (Pk−1, Pk)} by:

Qz =

(L2)∑

ε=1

∑

H∈H
Qzε(H). (3.9)

(3) To maximize the total quality, only numz distinct pairs with the highest quality

are considered, where

numz =
Ω
∑(L2)

ε=1

∑
H∈HQ

z
ε(H)

∑λ12
z=λ1

∑
H∈HQ

z(H)
. (3.10)

Algorithm 7: Feature candidate pair filtering.

Input: Standardized gait pattern curves {Sz} (Sec.3.2.1);
Potential feature candidate pair list {(u, v)z};

Output: Feature pair list {(u, v)z};
1 update standardized gait pattern curves {S̄z} via Eq. 3.6;
2 foreach z ∈ {λ1, · · · , λ12} do
3 foreach H = (Pa, Pb) ∈ H do
4 foreach (u, v) ∈ {(u, v)z} do
5 compute {<l(u, v)z} for all {S̄z} via Eq. 3.7;
6 find best split for Pa and Pb that minimizes

Gzε (Pa, Pb) = 1− p2
Pa
− p2

Pb
from {<l(u, v)z};

7 update {<l(u, v)z} for all {Sz} via Eq. 3.7;
8 update Gzε (Pa, Pb) using the found best split;
9 set Qzε(H) = 1− Gzε (H);

10 update Qz via Eq. 3.9;

11 estimate numz using Eq. 3.10;
12 foreach z ∈ {λ1, · · · , λ12} do
13 sort {(u, v)z} by Qz;
14 keep top numz in {(u, v)z};

2.2) Optimized method (Algs. 8 and 9): It observes heuristically that most of

the distinct feature pairs link two frames where at least one frame has a local extreme

value. Given the large time-varying feature value response and availability of a more

distinguishable difference for classifying two gait phases, in order to reduce the compu-

tational complexity of feature mining, a more efficient way to extract feature candidate

pairs (u, v) is to find those pairs that link local extrema. To detect the local extrema,
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Persistence1D [100] is used to filter out those extrema with relatively large persistence.

Algorithm 8: Feature candidate pair detection.

Input: Standardized gait pattern curves {S̄z} (Sec.3.2.1);
Neighbor radius rz;

Output: Potential feature candidate pair list {(u, v)z};
1 update standardized gait pattern curves {S̄z} via Eq. 3.6;
2 foreach frame l ∈ {1, · · · , L} do
3 find frames {fi=1:n} from frames l − 0.5L+ 1, · · · , l + 0.5L− 1 with local

extrema and persistences β = {βi=1:n} via [100];
4 if n < 2

√
L then

5 βthreshold = median(β);

6 else
7 βthreshold = 0;

8 keep frames {fj=1:̊n} with corresponding persistence βj < βthreshold;
9 for U = {fj=1:̊n} do

10 for V = {U, · · · , fj=n̊} do
11 if V − U > rz then

12 add (u, v) = (U−lL , V−lL ) to feature candidate pair list {(u, v)z};

For a standardized gait pattern curve S̄z, Alg. 8 extracts feature candidate pairs

{(u, v)z} where neighbor radius rz is designed to remove duplicate feature candidate

pairs with similar feature values during adjacent frames. A good value for rz is deter-

mined as follows: find the minimum frame length for which any two distinguishable

frames are separated, and calculate the median duration T̈p=1,··· ,K for each gait phase in

the training sets. For example, it is observed that min(T̈p=1,··· ,K) ≈ 6% of a gait cycle;

therefore, at least rz = 6%L = 6 frames are required to observe two distinguishable

frames within the same gait phase. Note that a standardized gait pattern curve S̄z=2

for knee angle ratio λ2 is first extracted as explained in Sec. 3.2.1 (see Fig. 3.7).

As shown in Fig. 3.7, the standardized frames from 1 to L are used to generate

periodic gait pattern curve frames from 1 − 0.5L to 1.5L using Eq. 3.6. Next, an L-

length sliding window moves from frame 1−0.5L to 0.5L with its corresponding target

frame l from 1 to L for full enumeration of standardized gait pattern frames in terms

of all potential feature candidate pairs. For each enumerated frame inside the sliding

window, Persistence1D [100] extracts local extrema and its persistence. In order to
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Algorithm 9: Feature pair mining.

Input: Potential feature candidate pair list {(u, v)z1, · · · , {(u, v)zNz} for each
gait parameter z ∈ {λ1, · · · , λ12};
Desired Feature Count Ω;

Output: Feature pair list {(u, v)z} for each gait parameter z;
1 foreach z in {λ1, · · · , λ12} do
2 for nz = {1, · · · , Nz} do
3 estimate probability of each candidate pair by

Onz = num((u,v)nz )
num((u,v)1,··· ,(u,v)Nz ) ;

4 let Omedianz = median({O1, · · · , ONz});
5 foreach (u, v)z in {(u, v)z} do
6 extract gait phase probabilities {p1

(u,v)z , · · · , pK(u,v)z} when (u, v)z is
detected at its target frame l;

7 foreach z in {λ1, · · · , λ12} do

8 set feature count Ωz = Ω · Omedianz∑λ12
z=λ1

Omedianz
;

9 sort feature candidate pairs {(u, v)z} descending by probability Onz ;
10 group {(u, v)z} by its top 2 gait phase labels with relative high gait phase

probabilities;
11 add Ωz (u, v)z in total of groups to feature pair list {(u, v)z} balancedly

based on class weights Ck=1,··· ,K ;

filter out those extrema with a relatively small value change, median persistence is

heuristically use set as the threshold. For the remaining frames with local extrema,

feature candidate pair (u, v) links any two frames based on their normalized offsets to

the target frame l.

In order to reduce the computation time, Alg. 9 selects the potential feature can-

didate pairs based on their probabilities of occurrence in terms of gait parameter

z ∈ {λ1, · · · , λ12}. This reduces the number of input feature candidate pairs when

globally optimal feature selection criteria is applied, such that significant computation

time is saved to maximize the factor of variation between gait phases.

Given a total of 12
(
L
2

)
= 59, 400 feature candidate pairs for all gait parameters

z ∈ {λ1, · · · , λ12}, the filtering method examines each (u, v) by Gini impurity and

selects those candidate pairs as per Eq. 3.10 on all extracted standardized gait patterns

S̄ within the training samples. Instead of this exhaustive search, the proposed optimized

method first detects potential feature candidate pairs via Alg. 8 where those pairs with
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Figure 3.9: Class probability representation in a complete gait cycle and correlation
coefficient for adjacent gait phase periods. Unique color is assigned to each gait phase
label where low transparency means low probability of the label occurrence at specified
frame.

low feature response are dropped; afterwards, the pairs will be selected according to

their probabilities of occurrence in the training samples, via Alg. 9.

3.2.3 Gait Phase Reconstruction

After the ERF-based frame-wise classification, this research re-segments each gait phase

period using the proposed gait phase reconstruction approach described next.

Since the gait phase is defined as the period between two adjacent gait events, the

gait phase label sequence is a periodic piece-wise smooth signal. The gait phase label

sequence obtained by the gait phase classifier, described in the previous subsection,

sometimes contains classification errors and could even be non-periodic.

In particular, this research first locates a gait event as a time-stamp within two

adjacent gait phases. Then, it obtains a class probability vector ρf = {ρ1
f , · · · , ρKf },

given feature values <z(u, v) for each frame f from the trained ERF model as discussed

in Sec. 3.2.2. Since, as shown in Fig. 3.9, mis-classification often occurs near the bound-

ary of two adjacent gait phases, a correlation coefficient ηf in Eq.3.11 is proposed to

capture similarity between adjacent gait events Pa and Pb, within the frames fs, · · · , fe:

ηf (a, b) =

f∑

i=fs

ρai

fe∑

i=f

ρbi −
f∑

i=fs

ρbi

fe∑

i=f

ρai . (3.11)
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Fig. 3.9 shows the refinement of gait phase labels which is done by detecting the gait

event at the moment when the correlation coefficient reaches the global maximum.

3.3 System Validation

This section reports the experimental results. Each step proposed in the methodology

is assessed in terms of classification error rate and complexity in order to show its

importance towards the final result, benchmarking each step with relevant algorithms

in the literature.

Joint trajectories are obtained using the MS Kinect v2- based motion capture system

of [46], which does not rely on Kinect skeleton data and shows close accuracy to com-

mercial 12-camera VICON system [6]. A biomechanical model “Plug-in-Gait model”

[102] is implemented by VICON to describe limb motion by placing retro-reflective

markers along anatomical landmarks. As the marker placement defined in the model

is widely used in the literature across different conventional gait model [103], in this

work, the maker placement of “Plug-in-Gait model” is used in the experiments in or-

der to benchmark with the commercial motion capture system VICON. Note that, the

proposed algorithms are applicable to other motion capture systems, requiring only 10

joint trajectories defined in the widely used conventional gait model for gait assessment

as input. However, the overall gait phase classification performance will depend on the

tracking accuracy of the employed motion capture system.

9 stroke survivors and 6 healthy volunteers are asked to walk for 6 meters while

the middle 4-meter motion is recorded at two different rehabilitation sessions. All 15

participants read the participant information sheets and completed the consent forms

before data collection. The study covered in this research is conducted with the ethical

approval of both National Health Service (NHS) and University of Strathclyde, and

healthy volunteers with the ethical approval of University of Strathclyde (see Appendix

A). As per similar experiments in [17], [18], [104] where 15 subjects, 10 subjects (116

strides), and 25 strides are used, respectively, in the experiments, 126 records (613

strides) are captured from 15 subjects with various walking speeds, directions and
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patterns. The trajectories of hip, knee, ankle, toes, heels joints are acquired during

the 4-meter walking test. To form ground-truth for classifying K = 9 gait events,

this research first manually identifies all frames that separate adjacent gait phases by

finding specified gait poses defined in [91]. Then, the timestamps are carefully refined

by pose template matching on interpolated gait parameters (see Table 3.1). Finally, a

gait phase label is assigned to each frame by slicing the extracted gait events.

To evaluate the predictive performance, classification error rate (%), average re-

ceiver operating characteristic (ROC) curve [105], [106] and area under the curve (AUC)

[105] are used as evaluation metrics. ACC is defined as the percentage of correctly clas-

sified frames across all sequences. The average ROC is plotted by measuring the true

positive rate (TPR) and false positive rate (FPR) based on one-versus-all binary classifi-

cation across all sequences and all gait phases. For each gait phase k, the corresponding

TPR measures the proportion of frames at phase k that are correctly classified. FPR

calculates the proportion of frames not at gait phase k that are classified as gait phase

k frames. This research divides the dataset into training and testing set, where the

training set comprises stroke survivors 1-5 and healthy volunteers 1-3, and testing set

comprises stroke survivors 6-9 and healthy volunteers 4-6. Grid search is adopted to

tune hyper-parameters.

The importance of different steps in the proposed system (Fig. 3.4) is evaluated

in the following ways. First, to justify the selection of ERF as classifier, this research

tests One vs One multi-class SVM and classical two-layer softmax NN against ERF. To

test the reliability and validity of the defined 12 gait parameters at frame-wise level,

this research feeds normalized trajectories to the classifiers and compares performance

when the proposed 12 gait parameters are used as features instead. To assess the value

of gait phase reconstruction, schemes with and without this step are assessed.

Evaluations and benchmarking are grouped as follows: (1) Schemes denoted with

SVM1, NN1, and ERF1 use normalized joint trajectories as input (as discussed in

[107]), e.g., acquired joint trajectory sequences from the output of video-based motion

capture are fed directly into the classifier (after normalization); (2) Schemes denoted

with the classifier name without any superscripts, e.g., SVM, NN, and ERF, perform
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Kinematics Extraction and the proposed Gait Cycle Detection (see Fig. 3.4) and feed

the resulting gait cycle curves V z(λ) directly into the classifier; (3) The scheme denoted

by NARX-NN uses the state-of-the-art NARX-NN model [18] (Matlab 2016a Neural

Time Series toolbox) on the standardized gait cycle curves Sz; since the NARX-NN

performs worse when data with incomplete gait cycle is used, frames with complete gait

cycles are used only. (4) NARX-NN2, Filtering2 (Alg. 7) and Optimized2 (Alg. 8 and

Alg. 9), denote NARX-NN, the proposed system with feature candidate pair filtering,

and the proposed system with feature candidate pair detection and feature pair mining,

respectively, without the Gait Phase Reconstruction block. (5) The proposed Filtering

and Optimized schemes with all the steps, e.g., including Gait Phase Reconstruction.

Note that for the NARX-NN model, given a regression result Γf at frame f [18],

its corresponding gait phase label is P (f) = 1
{
bΓfc mod K = 0

}
·K + bΓfc mod K,

where 1 all ones matrix, b·c returns the first smaller integer, and mod returns a

remainder, and the corresponding class probability is calculated by:

ρkf =





1− |k − Γf | k ∈ {bΓfc, dΓfe}

0 k 6∈ {bΓfc, dΓfe}.
(3.12)

Levenberg-Marquardt method is used to train a two-layered NARX-NN. In the experi-

ments, data is randomly spitted into 70% data used for training, 15 used for validation

and 15% used for testing. All 9×10 trained networks are evaluated for the 15% testing

data for time delays from 1-9 frames with 10 network per time delay. The mean ACC

of the NARX-NN model is evaluated in [47], showing that the best result is obtained

for the input time delay of 8 frames, and this will be used in the following experiments.

The proposed gait phase classification system randomly chooses approximately 80%

of the training data as training set and the rest as validation to tune hyper parameters.

Note that both sets include frames with incomplete gait cycles, to match the training

configurations using NARX-NN. 20 sets of ERF models with depth 20 and 30 trees are

trained to evaluate the ACC for various sizes of feature candidate pair set, Ω.

The results are shown in Table 3.2 and Fig. 3.10 that are averaged over 126 gait
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records and 20 experiments for each scheme. Benefits from a better characterized gait

presentation using the proposed kinematics extraction method can be observed from

Table. 3.2 and Fig. 3.10, since the methods that rely on the proposed Kinematics Ex-

traction (SVM, NN, ERF) show a significant ACC and AUC improvement over feeding

normalized joint trajectories to the classifiers (schemes with superscript 1). Indeed,

SVM consistently significantly outperforms SVM1 with both higher ACC and AUC,

while ERF, NN, ERF1 and NN1 show similar results, but all being significantly worse

than the proposed (Filtering and Optimized) methods. NARX-NN generally outper-

forms SVM and NN classifiers, but it is consistently outperformed by the proposed

method.

Table 3.2: Mean Classification Error Rate (%) for all K = 9 gait phase classes for all
tested schemes.

Gait Phase Class 1 2 3 4 5 6 7 8 9 Mean

SVM1 47.7 61.3 27.2 44.8 33.7 31.3 13.6 16.4 24.3 32.3

NN1 38.0 50.9 19.2 19.4 21.3 18.4 9.2 12.6 19.2 22.3

ERF1 48.4 45.3 16.7 21.4 26.9 29.4 7.8 16.8 28.8 25.9

SVM 18.6 38.1 25.9 33.6 20.4 12.5 11.5 12.1 17.9 20.7

NN 20.3 39.5 22.7 24.4 19.6 16.3 12.4 10.1 20.4 20.0

ERF 30.3 38.1 21.2 25.0 19.1 15.8 11.5 10.8 22.7 18.9

NARX-NN2 20.3 17.6 18.2 19.6 20.6 17.1 15.5 12.7 13.8 16.7

Filtering2 18.3 14.5 17.6 16.8 17.9 15.7 18.0 12.2 13.7 15.5

Optimized2 16.9 12.8 13.3 14.7 15.7 14.8 16.8 11.5 13.7 13.9

NARX-NN 17.7 8.8 9.7 9.7 18.1 11.8 7.1 11.5 10.9 11.2

Filtering 1.8 0.9 0.9 1.4 2.4 1.3 1.6 1.8 2.2 1.1

Optimized 1.5 0.7 0.8 1.1 2.0 1.3 1.3 1.8 2.0 0.8

NARX-NN2, Filtering2 and Optimized2 algorithms all significantly outperform ERF

classifier. When comparing NARX-NN2, Filtering2 and Optimized2 algorithms with

NARX-NN, Filtering and Optimized algorithms, it is observed that the proposed Gait

Phase Reconstruction method used in the latter algorithms leads to significantly reduce

the classification error rate, of up to 15%. Finally, the proposed Optimized and Filtering

methods consistently outperforms all prior benchmarks.

Next, Figs. 3.11 and 3.12, compares more closely the two proposed approaches of

feature candidate pair mining, Filtering and Optimized. Since the Filtering method
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Figure 3.10: Average ROC curves for all tested schemes.

enumerates
(
L
2

)
feature candidate pairs for each gait parameter during feature extrac-

tion and mining, it is obvious that the ERF model is over-fitted when the feature

number reaches approximately 630 with the lowest final classification error rate. On

the other hand, for the Optimized method that extracts all feature candidate pairs with

local extrema linkage, a smaller feature number can achieve lower classification error

rate. Both validating and testing classification error rates at the classifier stage are

improved by using the optimized feature candidate pair detection and mining method

(Algs.8 and 9).

This research defines the computational efficiency as Speedup = Tbaseline/Tevaluate,

where Tbaseline is the average total execution time required to train a classifier using the

proposed filtering method, while Tevaluate refers to the average total execution time for

obtaining the results using the evaluated methods (e.g., Alg. 8 + Alg. 9, or NARX-NN).

For instance, the Speedup of optimized mining approach during testing equals to the

execution time ratio between optimized and filtering mining approach on testing sets

using corresponding trained models. The experiments were performed on an Intel i7-

4710HQ 2.5GHz CPU, Windows10 operating system, implemented using Visual C++

and Matlab 2016a.

Fig. 3.13 confirms that there is a large computation performance boost using the
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Figure 3.11: Validating classification error rate of the two mining methods during
classifier stage using ERF.
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Figure 3.12: Testing classification error rate of the four mining methods before and
after gait phase reconstruction using ERF.

proposed optimized feature candidate mining approach compared to the filtering method.

The reduction in computation time comes from detecting feature candidate pairs with

local extrema linkage before selection instead of using Gini impurity calculations.

Since the filtering feature extraction firstly computes qualities of all potential feature

candidate pairs for each gait parameter, the computation time of feature extraction

does not depend on the feature count Ω. Unlike the filtering approach, the proposed

optimized feature extraction firstly detects the feature candidate pairs by detecting

local extrema, and then narrows the potential candidates based on probabilities of
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Figure 3.13: Computation performance (1x times of baseline) of the proposed feature
extraction methods: the base line computation time is measured using the filtering
method with 1020 feature candidate pairs.

different gait phase label combinations. This filters out potential feature candidate

pairs before the feature selection process. A slight improvement is also observed in the

final classification error rate after the gait phase reconstruction process, as shown in

Fig. 3.12.

Finally, this research also compares the computational efficiency with the NARX-

NN model-based method, where for fair comparison, the frames with full gait cycles

are used only. The parameters for each method are set to achieve their best final

classification error rates. The Speedup of the three approaches are listed in Table 3.3.

Note that the corresponding best results for these three methods are shown in Table 3.2.

It can be seen that Optimized method is the fastest method, 2 to 6 times faster than

NARX-NN model.

Table 3.3: Speedup (1x times of baseline) of the proposed feature extraction methods
and NARX-NN model corresponding to their lowest classification error rate.

Method Filtering Optimized NARX-NN

Train 1 18.2 3.1

Test 253 1286 1110
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3.4 Summary

This chapter proposes a classification system suitable for clinical diagnostics during

rehabilitation program, enabling the possibility to reflect the muscle activities in each

phase of gait. Given a gait record/sequence, this research distinguishes which gait

phase is a frame associated with. With gait phase information (classes) of each frame,

this research facilitates the diagnostics of individual gait phase for physical therapy,

thus improving the quality of the overall gait assessment.

To better characterize gait motion and its patterns, 12 gait features (gait param-

eters) are first proposed drawing from the medical literature based on observations of

lower limb movement focusing on foot switch and leg swings. These proposed param-

eters are then used as input to the proposed multi-channel time-series classification

methods that fully utilizes temporal information of gait parameters improving the fi-

nal classification accuracy. Optimized feature candidate pair detection and mining

algorithms (Algs. 8, 9) are proposed to reduce the computational complexity without

sacrificing the classification performance. In order to refine the gait phase labels, this

work develops a classification approach to relocate the gait events between adjacent

gait phases. The validation, conducted using 126 experiments, with 6 healthy volun-

teers and 9 stroke survivors with manually-labeled gait phases, achieves state-of-art

classification accuracy of gait phase with lower computational complexity compared

to static threshold based solutions. The overall proposed, frame-wise, multi-channel,

time-series classification algorithm demonstrates a significant low classification error

rate with respect to the state-of-the-art NARX-NN model.

However, this research still have some drawbacks, such as: (1) a more careful study

of “sensitivity of each gait parameter to the classification problem” and “importance of

each gait parameter in distinguishing whether a gait frame is in two adjacent frames”

which will help to understand how important the associated observation of gait move-

ment is associated with the extraction of gait phase information. (2) more simulations

are required to investigate the sensitivity of neighbor radius rz (input parameter of

Alg. 8) in determining whether two given frame is adjacent or not in resulting optimal
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feature sets to improve the predictive performance. (3) this research needs to consider

the sensitivity of the proposed gait phase features in classifier learning to study whether

the features are universal to every state-of-the-art machine learning methods. All these

drawbacks can be taken into consideration as further research direction to gait phase

classification task.
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Feature Selection and Extraction

in Sequence Labeling for

Trajectory-based Gait Analysis

and Arrhythmia Detection

4.1 Review of Sequence Labeling

Sequence labeling or sequence classification assigns categorical/classification labels to

a sequence of data points based either on a set of previous timestamped observations

or based on a specific time segment of the signal. Sequence labeling is a pattern

recognition task that in general can be: (1) one-to-one: predict an individual label in

a sequence using a previous observation. (2) one-to-many: similar to the one-to-one

method but with multiple predictions by retaining states from their previous outputs

and observations as inputs for the next one. (3) many-to-one: predict a data label for

a set of observations from multiple previous observations. (4) many-to-many: assign

labels to each member of a subsequence given observations over a period of time.

In this thesis, two sequence labeling applications are studied, including gait phase

classification and arrhythmia detection. In the gait analysis application, the objective
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of gait phase classification (see Chapter 3) is to assign gait phase label to each frame

of a given gait record (joint trajectory sequence). The resulting labeled sequence is

then used to assess the kinematics in each gait phase for tracking the rehabilitation

progress. In the arrhythmia detection application, each detected segment of ECG

signals is classified into different beat classes after detecting the combination of Q,R,S

graphical deflections seen on a typical ECG (QRS) complex [24].

The most commonly used types of algorithmic architectures for gait analysis and

arrhythmia detection applications are one-to-one and many-to-one model, such as in

[108]. In the following sections, the focus is therefore based on one-to-one and many-

to-one algorithmic approaches.

In the literature, two types of labeling approaches are commonly investigated: (1)

Model based Labeling: Probabilistic model that finds the best matched label via sta-

tistical inference. The most commonly used model sequence labeling relies on Markov

assumption, that is, the target label is dependent only on the immediately adjacent

labels/observations, such as Hidden Markov Model (HMM) and Conditional Random

Fields (CRF). (2) Feature Based Labeling: Classification mapping problem that relates

the input observations (features) to a categorical label, using techniques such as SVM,

RF, DNN.

In the next sections, model-based and feature-based labeling approaches are re-

viewed in the context of one-to-one and many-to-one architectures, followed by feature

selection and extraction in those state-of-the-art methods that are commonly used to

solve sequence labeling problems.

4.1.1 Model Based Labeling

Hidden Markov Models

Hidden Markov Model is a statistical model for time-series classification introduced in

[109]. Under the assumption that the conditional probability distribution of the future

states of the process depends only on the current state [110], the model describes the

state transitions and stochastic processes with an underlying set of hidden parameters.
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[111] proposed a distributed classifier to assign four gait phases (Flat Foot, Heel Off,

Swing, Heel Strike) given a sequence of sagittal lower limb angular velocities during a

gait cycle. The angular velocity is measured via three uni-axial gyroscopes embedded

in inertial measurement units (IMUs) attached on the three lower limb segments. Sim-

ilarly, [112], [113] investigate the HMM-based classifier based on motion data captured

from gyroscope. The evaluation metric for successful detection of a gait phase is based

on walking speed relative tolerance window (30-60 ms) of the labeled gait phases. The

results indicated that HMM-based classifier outperforms the threshold-based method

[114] using relative high sampling rate gyroscope motion data.

HMM-based classifier is also investigated in cardiac arrhythmia classification [115],

[116] to detect and classify three beat categories (normal beats, ventricular arrhythmia,

supraventricular arrhythmia) based on a parallel combination of separate models for

each beat class. [116] reports that wavelet transform leads to a better characterization

than raw signals of ECG records using HMM-based classifier.

Conditional Random Fields

[117] proposed a discriminant probability model Conditional Random Fields (CRF) to

tackle the potential victims of label bias problem in Maximum Entropy Markov Model

(MEMM). The most commonly used CRF model to solve the sequence labeling task is

linear chain CRF model (many-to-one), such as in gait recognition [118] and arrhythmia

classification [119].

As in gait recognition [118] task, two-layer MLP classifiers and CRF are trained

given two different sets of input features to model dependencies between adjacent frames

that finally assign a categorical label to a video. Similarly, this chapter investigates the

linear chain CRF-based classifier for gait phase classification given a set of observations

from adjacent frames near the target frame to be classified.

[119] proposed a weighted CRF-based classifier to overcome the class unbalance

issue via a cost-sensitive objective function and l1-norm penalty on weights. However,

no evaluation is performed using unweighted approaches to compare with the proposed

cost-sensitive classifiers. Feature analysis is not involved in [119], instead a combi-
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nation of 249 state-of-art features are selected to perform classification. The results

indicate that the CRF-based classifier outperforms SVM and LDA classifiers for the

intra-subject MIT-BIH Arrhythmia Dataset [120], which is also used in this study.

4.1.2 Feature based Labeling

This section first reviews the widely-used supervised machine learning algorithms for

gait phase classification and arrhythmia classification and then reviews the associated

feature selection and extraction approaches.

Support Vector Machine

Support Vector Machine is widely used in the literature for the classification task. The

basic binary classification model projects the input observations into a metric space,

usually specified by a kernel function, and finds the hyperplane that maximizes the

margin between the two classes [121]. As in most binary classifiers, to solve the multi-

class classification problem, one-vs-all or one-vs-one criteria [122] are used to perform

inference during testing.

Random Decision Forest

Random decision forest [97] has been reported in the literature as a practical, high

performance classifier that comprises ensemble, bootstrap and bagging to reduce the

effects of over-fitting introduced by decision trees [123]. Its performance has also been

shown and discussed in Chapter 3 in relation to the gait analysis application.

Convolution Neural Network

Convolution Neural Network [27] is one of the state-of-the-art deep learning neural

networks that uses shared-weight filters to extract translation invariant features. By

only receiving a restricted subarea of input observations for each neuron, it typically has

lower complexity and connectedness compared to the fully-connected design in classical

MLP network. Leveraging big data, CNN replaces the hand-crafted feature selection
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and extraction into an automatic approach by learning the robust feature maps that

contribute to its prediction accuracy during its training process [124].

Recurrent Neural Network

Recurrent Neural Network (RNN) is one of the state-of-the-art methods for modeling

sequential data. Each layer of RNN shares the weights across time that iteratively

capture dependencies between targets and past observations. However, classical RNN

is usually hard to train and often suffers gradient vanishing problem as the number of

matrix multiplications increases with the number of time steps (observations). Long

short term memory (LSTM) [125] is proposed to solve the gradient vanishing problem

by introducing gating mechanisms to allow self-loop flow for an indefinite amount of

time. The gated recurrent unit (GRU) [126] makes less restrictive flow inside the unit by

using only two gating units, and typically performs comparable performance compared

to LSTM. Compared to classical RNN, bidirectional RNN [127] often performs better

by considering both past and future of a specified time step.

4.1.3 Feature Selection and Extraction

Regardless of the classifier algorithm, feature selection is one of the most important

pre-processing approaches to conduct dimensionality reduction addressing the following

aspects in terms of: (1) selecting the most important features from high-dimensional

datasets to mitigate the curse of dimensionality, (2) removing features that does not

contribute to the prediction accuracy to make interpretation easier and training a simple

model in less time, (3) reducing the risk of over-fitting and hence improve generalization,

trading-off the bias and variance. The selected subset of original features achieves

best performance with respect to some criteria, such as the proposed feature selection

method in Chapter 3 for gait phase classification, or QRS complex detection [24]

performed to detect the relevant ECG segments of interest in arrhythmia classification.

Specifically for trajectory based gait phase classification, to select features, this research

only focuses on lower limb joint trajectories considering the prior knowledge from the

widely used plug-in-gait model [102]. In other sequence labeling task like “arrhythmia
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detection”, segments of two leads ECG records are selected by QRS complex detection

to detect cardiac diseases [128].

Usually following feature selection, feature extraction is another powerful method

to extract the most discriminatory information, transforming the original features into

an optimal set of new features. It usually improves the final predictive performance and

is conducted either before applying machine learning algorithm or inside the algorithm

in feature engineering, such as gait features proposed in Chapter 3, or linear and

nonlinear features used in [26], [129]–[131].
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Figure 4.1: Many-to-One Architecture: One label is assigned to each sliding window.
A frame refers to seven 3D joint positions, three coordinates (x,y,z) from each joint.
ML Model 1 refers to RF, DNN, or CNN classifiers. ML Model 2 refers to HMM, CRF
or Bidirectional GRU classifiers.

For time-series features, sliding window is a vital step to represent the sequential

pattern and feature selection [132]. In the many-to-one model, the sliding window
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frame refers to two samples, one from each channel. ML Model 1 refers to SVM, RF,
DNN, or CNN classifier. ML Model 2 refers to Bidirectional GRU classifier. The time
unit of time-series feature vectors that are feed into ML Model 2 depends on the feature
extraction algorithms, i.e., time resolution in wavelet transform.

method reconstructs the input observations as a window of observations around the

target frame instead of a single set of observations at the target frame. For gait phase

classification, the sliding window is chosen based on the target frame that sits in the

middle of the window as shown in Fig. 4.1. For arrhythmia classification, the target

frame refers to be the R peak frame extracted by QRS detection as shown in Fig. 4.2.

The length of the window controls the dimensionality of the input observations into ma-

chine learning algorithms, thus directly affecting the performance. Chapter 3 proposes

a feature extraction method to extract the distinct observation changes (sequential pat-

terns) within the sliding window. The proposed method offers the advantages of both

dimensionality reduction and better classification performance, resulting in simplified

77



Chapter 4. Feature Selection and Extraction in Sequence Labeling for Trajectory-based
Gait Analysis and Arrhythmia Detection

machine learning models. The signal representations of the gait trajectories vary with

walking speed thus the sliding window length of a similar sequential pattern is often

different.

Unlike gait trajectories features that have varying window length, ECG signals

represent biomedical signs showing the working activity of the heart muscle which is

often detectable through QRS complex detection with a stable wave/window length.

Therefore, in this chapter, distinct feature extraction is performed with variable window

length for gait phase classification and fixed window length for arrhythmia classification

and the resulting predictive performance evaluated for both classification tasks. The

amount of input information associated with the target frame in sequence labeling

task varies with the window length prior to the sliding window technique. In this

research, the sensitivity to window length for gait phase classification is evaluated,

based on the classification performance of different classifier algorithms which has not

been investigated in the literature for gait phase classification problem.

4.2 Simulations

This section evaluates the sensitivity of state-of-the-art feature engineering approaches

using different sequence labeling classifiers, using inference speed and classification error

rate as performance measures. The following two sections describe the simulation setup

for gait phase classification and ECG arrhythmia classification, respectively.

4.2.1 Gait Phase Classification

As described in Chapter 3, data is collected for lower limb joint trajectories from 9 stroke

survivors and 6 healthy volunteers during normal 4-meter walking test at two different

rehabilitation sessions. Each frame within a total of 126 gait records is manually labeled

with a categorical label (one of the nine gait phases) by experts which is organized

into a dataset, named as Gait. In order to analyze the muscle recovery progression

in the rehabilitation program, gait phase classification is performed to automatically

label the sequence into gait cycles and 9 gait phases. This facilitates the decision
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making when physical therapy evaluation are conducted on kinematics measurements

in different gait phases. The feature selection in gait phase classification requires prior

domain knowledge of gait phases defined in [64]. Similarly, in [87], the importance of

knee angle measurements is analyzed in 4 gait phases classification task based on the

classification performance using RF, J-48 Decision Tree (DT) [133], SVM and MLP

classifiers. The results demonstrate that the classifier performance increases if knee

angle measurements are provided and RF outperforms other classifiers, achieving a

lower mean classification error rate. The simulation setup for Gait dataset is list in

Table. 4.1.

Table 4.1: Simulation Setup for Gait Dataset. There are 9 classes and class distribution
shows the number of samples in each class.

Configuration Description

Data Scale 126 Records (613 Strides) with 83898 Frames

Train Test
Distribution

Training: 41924, Testing: 41974 Frames, Inter Subjects

Target 9 Gait Phases (9 Classes)

Class
Distribution

Loading Response 1: 5806, Loading Response 2: 6474,
Mid-Stance: 11271, Terminal Stance 1: 10201,

Terminal Stance 2: 13915, Pre-swing: 7241,
Initial-swing: 11656, Mid-swing: 7290, Terminal Swing: 10024 Frames

Raw Feature 7 (Joints)×3(x,y,z) Joint Coordinates per Frame

Feature Map
Normalized Joint
Trajectories [107]

7×3 Real Attributes per Frame

12 Gait Parameters (see
Chapter 3)

12 Real Attributes per Frame

Many-to-one
Scheme

Sliding Window
Concatenated Feature Maps from Ad-
jacent 1, 10, 15, 20 Frames per Frame

Distinct Features (see
Sec. 3.2.2 in Chapter 3)

420 Real Attributes per Frame and
Vary with the Length of Sliding Win-
dow

4.2.2 ECG Arrhythmia Classification

The widely-used MIT-BIH Arrhythmia Dataset [120] (denoted as Arrhythmia) is used

to analyze the sensitivity of different state-of-the-art features among classical sequence

labeling approaches and deep learning based approaches. The dataset contains 48 half-
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hour excerpts of two channel ambulatory ECG recordings from 47 subjects in 1979.

The recordings are digitized at 360 samples per second. Experts are asked to manually

annotate each beat (approximately 11000 annotated beats). A ten seconds of data and

five typical beat types from record 208 of this dataset are illustrated in Fig. 4.3.

To investigate the intra-subject variability in arrhythmia classification with less

attention on the class distribution in intra-subject variability, the whole dataset is split

into training, validation, and testing sets with proportions 0.5, 0.15, 0.35, respectively.

The simulation setup for Arrhythmia dataset is listed in Table. 4.2.

Table 4.2: Simulation Setup for Arrhythmia Dataset

Configuration Description

Data Scale 126 Records (613 Strides) with 73854 Segments

Class
Distribution

Training: 44179, Validation: 13242, Testing: 31002 Segments,
Intra Subjects

Target 5 Classes

Class
Distribution

“N”: 74683, “V”: 6605, “Q”: 3880, “S”: 2469, “F”: 786 Segments

Raw Feature 2 ECG Channels × 180 (Frames) per Detected QRS Segment

Feature Map

RR-Intervals (RRI) [129] 4 Real Attributes per Segment
Fast Fourier Transform

(FFT)
35 × 2 Real Attributes per Segment

Wavelet 23 × 2 Real Attributes per Segment
Wavelet with Uniform
Local Binary Pattern
(WaveletULBP) [134]

59 × 2 Real Attributes per Segment

Higher order statistics
(HOS) [26]

4 × 5 × 2 Real Attributes per Seg-
ment

Hermite [135] 22 × 2 Real Attributes per Segment

Many-to-one
Scheme Sliding Window

Concatenated Feature Maps from
Adjacent 180 Frames around Seg-
ment

4.2.3 Classifier Setup

Following the aforementioned simulation settings for Gait and Arrhythmia Dataset,

the sensitivity of sliding window length and different feature selection methods via

HMM, Bidirectional GRU, CRF, RF, DNN, CNN classifiers is evaluated. The deep

learning architectures used in this study are shown in Figs. 4.4–4.6 for Bidirectional
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(a) Ten seconds from record 208 of the MIT-BIH Arrhythmia Dataset
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(b) “N”: normal sinus rhythm
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(c) “S”: supraventricular ec-
topic beats
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(d) “V”: ventricular ectopic
beats
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(e) “F”: ventricular fusion
beats
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(f) “Q”: unknown beats

x

Figure 4.3: Illustration of typical ECG record with two ECG lead signals (denoted ECG
1 and ECG 2) and a subsequence of ECG lead signals for each beat type. QRS detection
is first performed to extract the R peak frame shown as ’x’. The two subsequence of
ECG lead signals within the ’red dashed’ sliding window of 180 frames (the mean R
peak interval is 0.5 second which is close to the suggested value in [26], [131]) are
selected as the input features for feature extraction and then to be classified as one of
the five beat types.
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GRU, DNN, CNN classifiers, respectively, in relation to the dimensions of the input

observations. The parameters for each architecture is heuristically set based on the

findings from [136].

GRU, 

10 drop,

0.5
GRU, 

10

Forward

Backward

Input

GRU, 

20

GRU, 

20

Forward

Backward

fc 

9 or 5
Output

Figure 4.4: Deep learning architecture for bidirectional GRU based classifier. ‘GRU’
refers to the gated recurrent unit (GRU) based recurrent neural network layer with
parameters of hidden state size. ‘drop’ refers to the dropout layer with keeping ratio.
‘fc’ means the fully connected layer with number of neurons.
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Input Output

fc 
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 "

fc 
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Figure 4.5: Deep learning architecture for DNN based classifier. The number of neurons
υ1, υ2, υ3 in fully-connected layers vary dependent on the dimension of the input data
(see details in Table. 4.3).

Table 4.3: Hyper-parameters used in DNN-based classifier for both Gait dataset and
Arrhythmia dataset.

Dimensions of Observation υ1 υ2 υ3

<8 16 32 None

≥8 and <16 32 64 32

≥16 and <32 64 128 32

≥32 and <64 128 256 64

≥64 and <128 256 512 64

≥128 512 1024 128

The hyper-parameters used in DNN-based classifier are listed in Tab. 4.3. There

are 9 output neurons for gait phase classification and 5 for arrhythmic classifications.

Similarly to Sec. 3.3, 30 decision trees with depth of 20 are used for RF-based classifier.
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(b) Block diagram of the architecture when number of features
≥8 and <16
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(c) Block diagram of the architecture when number of features ≥16 and <32
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(d) Block diagram of the architecture when number of features ≥32 and <64
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(e) Block diagram of the architecture when number of features
≥64 and <128
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(f) Block diagram of the architecture when number of features
≥128

Figure 4.6: Deep learning architecture for CNN based classifier. ‘a conv b’ refers
to the 1D convolutional layer with parameters of kernel size=b, filter number=a. A
constant stride size of 1 is used for ’conv’. ‘BN’ refers to the batch normalization layer.
Hyper-parameters of different layers vary dependent on the dimensions of the input
observation.
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4.3 Results and discussion

This section first compares the predictive performance of different classifiers using the

state-of-the-art feature selection/extraction methods reviewed in Sec. 4.1. Three fea-

ture maps are compared, namely: trajectories (raw data as features), gait parameters

and distinct features. Following the simulation setup in Sec. 4.2, this section demon-

strates the classification error rates, inference speed for Gait and Arrhythmia. ‘HMM’

classifier, as a one-to-one algorithmic architecture, predicts categorical label for an in-

dividual frame based on its previous observations. Therefore, the length of the sliding

window used by HMM classifier is restricted to one frame results. Unlike HMM, the

single frame sliding window case is not considered for many-to-one Bidirectional GRU

and CRF architectures since they are designed to explore the relation across multiple

frames in the sequence. In addition, the sliding window method is used on the result-

ing distinct features using gait phase feature extraction method proposed in Chapter 3.

Those distinct features within the sliding window are selected as the input observations

for the target frame. Therefore, this research focuses on the results for multiple frame

sliding window cases using distinct features. Note that, distinct features are extracted

by feature extraction method proposed in Chapter 3 for gait classification task, thus

not applicable to arrhythmic classification task.

For Gait dataset, as demonstrated in Tab. 4.4, with feature selection, namely the

proposed 12 gait parameters in Chapter 3, all classifiers are observed to constantly out-

perform the ones using normalized trajectories (raw data without feature selection),

with respect to when using the mean classification error rate as metric. With increas-

ing window size, more input observations/features are fed into the classifiers, resulting

in better predictions. Similar results can also be observed in Figs. 4.7–4.10 using F-

Measure as evaluation metrics. Especially for those classifiers (HMM, CRF) with much

worse predictive performance, the proposed feature selection method facilitates the

classification task. Comparing deep learning based feature extraction approaches, i.e.,

Bidirectional GRU, DNN, CNN, it can be observed that Bidirectional GRU performs

better in modeling gait features (gait parameters). Similar to the feature selection ap-
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Table 4.4: Classification Error Rate (%) for Gait Dataset. ∗ refers to automatic feature
extraction approach. Bold font is used to present the best metric value across different
methods.

Method Feature Map
Window Size (Frames)

1 10 15 20

HMM
Trajectories 51.8 —
Gait Params 26.4 —

Bidirectional GRU∗
Trajectories — 20.0 19.6 18.9
Gait Params — 19.2 18.5 18.5

CRF
Trajectories — 43.4 43.5 44.3
Gait Params — 24.9 26.8 27.8

Random Decision Forest
Trajectories 25.9 23.7 23.4 23.0
Gait Params 20.4 19.6 19.4 19.0

Distinct Features — 20.3 18.8 18.2

DNN∗
Trajectories 24.2 22.3 21.7 20.4
Gait Params 23.9 21.4 19.8 19.1

Distinct Features — 17.1 16.3 16.1

CNN∗
Trajectories 22.8 20.6 19.0 18.5
Gait Params 21.7 20.5 19.0 18.5

Distinct Features — 16.4 15.9 15.7

proach proposed in Chapter 3, the bidirectional GRU model enables learning from both

forward and backward temporal information, resulting in better predictive performance.

With distinct features, DNN and CNN further learn the relations of temporal features

with significant performance improvements by deep learning based feature extraction.

Figure 4.7: F-Measure Increments for Each Class in Gait Dataset using Feature Se-
lection without sliding window. ∗ refers to deep learning based feature extraction
approach.
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Figure 4.8: F-Measure Increments for Each Class in Gait Dataset using 10-Frame
Sliding Window and Feature Selection. ∗ refers to deep learning based feature extraction
approach.

Figure 4.9: F-Measure Increments for Each Class in Gait Dataset using 15-Frame
Sliding Window and Feature Selection. ∗ refers to deep learning based feature extraction
approach.

To further analyze the sensitivity of feature extraction, F-measure demonstrates the

improvements as shown in Fig. 4.11, by comparing the results before and after feature

extraction method proposed in Chapter 3. A significant improvement is observed for

relatively rare gait phase classes, such as loading response 1, loading response 2 and

pre-swing.

Unlike gait analysis application whose task is to classify individual frame into a

categorical label/class, arrhythmia classification is performed on a sub-sequence of

time-series data. For Arrhythmia dataset, this research shows the classification error

86



Chapter 4. Feature Selection and Extraction in Sequence Labeling for Trajectory-based
Gait Analysis and Arrhythmia Detection

Figure 4.10: F-Measure Increments for Each Class in Gait Dataset using 20-Frame
Sliding Window and Feature Selection. ∗ refers to deep learning based feature extraction
approach.

Figure 4.11: F-Measure Increments for Each Class in Gait Dataset using Feature
Selection and Distinct Feature Extraction. The increments are visualized based on the
F-measure using proposed gait parameters and distinct feature extraction methods. ∗

refers to deep learning based feature extraction approach.
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rates and F-measure for each class in Tabs. 4.5 and 4.6, respectively. It is clear that

zero-mean standardized ECG signals outperform sensitive feature extractions across all

benchmarked classifiers. Both SVM classifier and deep learning based classifiers achieve

high predictive performance. Deep learning based classifiers that automatically extract

deep features achieve comparable mean classification error rate and F-measure using

Wavelet and HOS feature extraction methods.

Table 4.5: Classification Error Rate (%) for Each Class in Arrhythmia Dataset. ∗

refers to deep learning based feature extraction approach.

Method Feature Map
Arrhythmia Classes

N S V F Q Mean

Bidirectional GRU∗
Raw 0.6 25.6 5.6 25.2 0.5 11.5

Wavelet 0.5 33.8 5.1 24.7 0.6 13.0

SVM

Raw 5.1 12.1 3.8 8.9 0.4 6.0
RRI 1.3 98.6 92.4 85.1 56.8 66.8
FFT 0.0 100 100 100 100 80.0

Wavelet 0.0 60.9 96.5 96.8 97.6 70.4
WaveletULBP 35.8 37.2 39.1 27.7 19.9 31.9

HOS 1.0 15.7 3.3 22.7 4.0 9.3
Hermite 36.6 15.5 27.2 21.6 5.4 21.3

Random Decision Forest

Raw 0.1 40.2 6.1 38.8 1.0 17.3
RRI 1.6 31.1 20.4 77.0 14.2 28.9
FFT 0.6 59.8 51.8 96.3 84.7 58.6

Wavelet 0.1 38.9 5.7 37.1 0.9 16.5
WaveletULBP 0.4 58.4 32.9 48.0 28.9 33.7

HOS 0.1 35.1 5.7 35.6 2.2 15.7
Hermite 0.3 36.6 6.6 30.1 0.73 14.8

DNN∗

Raw 0.4 12.3 1.9 19.1 0.4 6.8
RRI 0.4 95.2 74.5 100 100 74.0
FFT 1.7 66.2 54.3 86.4 70.5 55.8

Wavelet 0.4 17.3 3.9 19.7 0.4 8.4
WaveletULBP 1.4 45.3 21.9 39.9 15.7 24.8

HOS 0.5 18.3 2.8 20.1 0.4 8.4
Hermite 0.6 35.7 5.1 32.5 1.2 15.0

CNN∗

Raw 0.3 10.6 3.0 16.7 0.4 6.8
RRI 3.2 56.5 39.9 100 60.4 52.0
FFT 1.4 57.7 56.7 83.1 82.1 56.2

Wavelet 0.4 13.4 2.7 17.7 0.4 6.9
WaveletULBP 1.1 56.3 46.8 41.2 24.3 33.9

HOS 0.4 12.1 2.7 16.0 0.3 6.3
Hermite 0.6 24.6 4.4 29.6 0.6 12.0
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Table 4.6: F-Measure for Each Class in Arrhythmia Dataset. ∗ refers to deep learning
based feature extraction approach.

Method Feature Map
Arrhythmia Classes

N S V F Q Mean

Bidirectional GRU∗
Raw 0.99 0.80 0.95 0.80 0.99 0.91

Wavelet 0.99 0.77 0.95 0.81 0.99 0.90

SVM

Raw 0.97 0.57 0.95 0.74 0.99 0.84
RRI 0.92 0.03 0.14 0.17 0.56 0.36
FFT 0.92 0.00 0.00 0.00 0.00 0.18

Wavelet 0.92 0.56 0.07 0.06 0.05 0.33
WaveletULBP 0.77 0.29 0.44 0.10 0.51 0.42

HOS 0.99 0.85 0.94 0.84 0.98 0.92
Hermite 0.77 0.16 0.80 0.15 0.97 0.57

Random Decision Forest

Raw 0.99 0.75 0.96 0.74 0.99 0.89
RRI 0.97 0.79 0.82 0.32 0.86 0.75
FFT 0.94 0.57 0.61 0.07 0.26 0.49

Wavelet 0.99 0.76 0.96 0.76 0.99 0.89
WaveletULBP 0.97 0.58 0.77 0.66 0.80 0.76

HOS 0.99 0.78 0.96 0.77 0.99 0.90
Hermite 0.99 0.77 0.95 0.80 1.00 0.90

DNN∗

Raw 0.99 0.90 0.98 0.86 1.00 0.95
RRI 0.92 0.09 0.38 0.00 0.00 0.28
FFT 0.94 0.47 0.57 0.21 0.41 0.52

Wavelet 0.99 0.86 0.97 0.86 0.99 0.94
WaveletULBP 0.97 0.67 0.82 0.68 0.86 0.80

HOS 0.99 0.86 0.97 0.86 1.00 0.94
Hermite 0.99 0.75 0.95 0.79 0.99 0.89

CNN∗

Raw 1.00 0.91 0.97 0.87 1.00 0.95
RRI 0.94 0.59 0.67 0.00 0.44 0.53
FFT 0.94 0.55 0.55 0.24 0.28 0.51

Wavelet 0.99 0.89 0.97 0.87 0.99 0.95
WaveletULBP 0.96 0.59 0.67 0.59 0.79 0.72

HOS 0.99 0.89 0.97 0.87 1.00 0.95
Hermite 0.99 0.81 0.96 0.80 0.99 0.91
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Note that, the inference speed decreases and model size grows rapidly with the

increasing dimensionality of input observations/features, such as the increasing win-

dow size for Gait dataset. Especially for deep learning based classifiers, a deeper

architecture that automatically extracts deeper features suffers with significant longer

inference time shown in Tabs. 4.7 and 4.8, limited by the size of model and computa-

tion capacity. Given sufficient training data, deep learning classifiers with higher model

capability achieve better generalization and inference performance without considering

domain knowledge.

Table 4.7: Inference Speed(microseconds/frame) for Gait Dataset. ∗ refers to auto-
matic feature extraction approach.

Method Feature Map
Window Size (Frames)

1 10 15 20

HMM
Trajectories 1.2 —
Gait Params 0.7 —

Bidirectional GRU∗
Trajectories — 2467.8 4522.2 6288.9
Gait Params — 2407.6 4351.7 5951.3

CRF
Trajectories — 85.6 141.9 186.0
Gait Params — 84.1 137.1 181.1

Random Decision Forest
Trajectories 1.3 4.6 5.5 8.3
Gait Params 1.0 4.3 5.1 7.5

Distinct Features — 6.3 12.5 18.3

DNN∗
Trajectories 123.2 1361.7 1891.3 3002.5
Gait Params 111.0 1102.9 1665.3 2541.4

Distinct Features — 2010.5 3023.7 5914.8

CNN∗
Trajectories 82.2 747.4 1254.4 2521.7
Gait Params 62.6 649.8 1027.3 2109.5

Distinct Features — 1223.2 2301.8 4633.1
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Table 4.8: Inference Speed(microseconds/frame) for Arrhythmia Dataset. ∗ refers to
automatic feature extraction approach.

Feature Map
Method

Bidirectional GRU∗ SVM RF DNN CNN

Raw 33258.9 8275.1 8.0 838.4 1366.3

RRI — 2803.2 3.6 428.5 555.5

FFT — 5375.5 3.9 513.8 935.6

Wavelet 3673.4 2810.5 3.7 505.6 832.8

WaveletULBP — 6632.8 4.0 575.1 1132.9

HOS — 539.7 3.6 536.9 854.4

Hermite — 2944.3 3.6 567.5 942.7

4.4 Summary

This chapter reviews the state-of-the-art feature selection and extraction methods in

sequence labeling tasks of trajectory based gait analysis and cardiac diseases detection.

The main contribution of this chapter is a rigorous evaluation, in terms of classification

error rate, F-measure and inference speed, the sensitivity of feature selection and feature

selection including sliding windows on model-based learning and feature-based learn-

ing classifiers with one-to-one and many-to-one architectures. The simulation results

indicate that the influence of feature selection is dependent on the data or applica-

tion, for instance, gait phase classification is strongly influenced by the feature selec-

tion/extraction, sliding window length which achieves lower classification error rate and

higher F-measure. However this observation is not true for arrhythmia classification

task, the state-of-the-art selection/extraction results in losing discriminative features to

achieve comparable machine learning model in terms of classification performance. It is

found that automatic feature extraction approaches, i.e., Bidirectional GRU, DNN and

CNN, outperform HMM, RF and SVM. However, those deep learning-based classifiers

often operate slower at inference, thus require to be accelerated by modern computing

devices such as GPUs. Although a rigorous evaluation is conducted for these two appli-

cations, the question of how feature selection and extraction methods contribute to the

sequence labeling accuracy is still open for other applications, such as gait recognition,

natural language processing, etc.
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Chapter 5

Robust Graph-based Classifier

Learning

5.1 Review of Robust Classifier Learning

This section first provides an overview of the related work on robust graph-based classi-

fier learning and robust DNN-based classifier learning, in the presence of “noisy labels”.

Then it discusses graph-based methods integrated with DNN that do not consider noisy

data. Finally, the weaknesses of the state-of-the-art classifiers are discussed to motivate

the present work.

5.1.1 Robust Graph-based Learning

A label propagation method is proposed in [137] to evenly spread, throughout the

graph, label distributions from selected labeled nodes, which are usually noisy and with

heuristic information. A KNN-sparse graph-based semi-supervised learning approach

is proposed in [138] to remove most of the semantically-unrelated edges and adopt a

refinement strategy to handle noisy labels.

To achieve more robust binary classification, in [139], negative edge weights are

introduced into the graph to separate the nodes in two different clusters. A perturbation

matrix is found to perform generalized GLR for binary classification via iterative re-
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weighted least squares strategy [140]. The results demonstrate the applicability of

negative edge weights for robust graph-based classifier learning for small amount of

data without learning feature representation. This research evaluates this approach

when sufficient but noisy training labels are provided.

5.1.2 Robust DNN-based Classifier Learning

Many studies investigate methods to accommodate a wide range of label noise levels

and types, which often focus on data augmentation, network design-based regularization

and loss correction. Data augmentation techniques have been successfully used in [141]–

[143] to automatically annotate unlabeled samples and use these samples for retraining.

In [144], training examples are assigned weights by a proposed meta-learning algorithm

to minimize the loss on a clean unbiased validation set based on gradient direction.

The effectiveness of dropout regularization for cleaning noisy labels is shown in [145].

For image classification, the annotations obtained from web sources when building a

very large image classification dataset are usually partial or unreliable [146], [147].

Based on these findings, [148] indicate that increasing the batch size and downscaling

the learning rate is a practical approach to mitigate the effects of label noise, as noisy

labels roughly cancel out and only a small learning signal remains.

The loss correction approach of [38] proposes a boosting algorithm ‘SavageBoost’

that is less sensitive to outliers and converges faster than conventional methods, such

as Ada, Real, or LogitBoost. A dimensionality-driven learning strategy is discussed in

[30] to avoid overfitting by identifying the transition from an early learning stage of

dimensionality compression to an overfitting learning stage when the local intrinsic di-

mensionality steadily increases. Unlike the above loss correction studies to handle noisy

and incomplete labeling, [39] use a combination of training labels and the prediction

from the current model to update the training targets and perform weakly-supervised

learning. Similarly, [149] integrate the Expectation-Maximization (EM) algorithm into

CNN to detect and correct noisy labels, but require a properly pre-trained model. [150]

propose an iterative learning framework to facilitate ‘robustness to label noise’ classifier

learning by jointly performing iterative label detection, discriminative feature learning
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and re-weighting.

5.1.3 Graph-based classifier learning with DNN

Recent years have seen integration of graph-based learning with deep learning. Given

a fixed graph structure, [151]–[153] design CNNs for feature learning by feeding a

polynomial of the graph Laplacian. [154] adopt edge convolution to learn combinational

spatial features from neighboring nodes given a fixed skeleton graph. Based on the

ideas of edge convolution, [155] propose a deeper CNN model to learn the underlying

KNN graph structure of point cloud data by iteratively updating the graph. The results

demonstrate the capability of edge convolution for feature generalization on point-cloud

data.

The problem of insufficient data or incorrect training labels has not been investi-

gated in the above graph-based hybrid methods for classifier learning. For incomplete or

imprecise categories of tags (observations) in the training samples, [156] combine CNN

and GLR using the sum of the cross-entropy loss and the GLR term for multi-label

image annotation, where CNN is used to construct the fully-connected similarity-based

graph. Unlike [156], [49] integrates GLR into CNN with a graph-based loss correction

function to tackle the problem of insufficient training samples through semi-supervised

graph learning.

5.1.4 Novelty with respect to reviewed literature

To enhance the classifier learning against the potential noisy training labels in gait

phase classification task caused by mislabeling the gait event frames, this chapter pro-

poses a generalized end-to-end CNN-based approach to learn a robust classifier. Based

on the work in [49] that introduces the GLR operator to regularize a CNN given in-

sufficient training data, the proposed approach performs iteratively GLR (similar to

[157]) as a classifier signal restoration operator, update the underlying graph to better

reflect the node-to-node correlation and regularize CNNs by introducing a graph-based

loss correction function to pay less attention on those relatively less reliable training

samples. Compared to the reviewed graph-based classifiers and robust DNN-based
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classifiers, the proposed approach learns deep feature representations by: (1) adopt-

ing edge convolution to aggregate features from neighbors that are labeled in the same

class, resulting in smoothed edge weights. (2) assigning the degree of freedom for learn-

ing the underlying data structure that better reflects the node-to-node correlation. (3)

iteratively updating graph and operating GLR to perform label restoration and semi-

supervised classification at the same time that helps to regularize the CNN training

without an extra clean dataset. As a result, the proposed approach brings together the

regularization benefits of GLR and the proposed loss functions to perform more robust

deep metric learning. This study also adopts a rank-sampling strategy to find those

training samples with high predictive performance, resulting in lower label noise level

in the training set which further benefits the inference.

5.2 Robust Deep Graph Based Classifier Learning

This section first introduces notation and formulates the robust classifier learning prob-

lem following the related work [41], [139], [157]–[159]. Then, it describes the main con-

cept behind the proposed Dynamic Graph Laplacian Regularization (DynGLR) neural

network that learns robust deep feature map to effectively perform GLR when parts of

the labeled data available to train the model are noisy.

5.2.1 Problem Formulation and Notation

Given a set of observations X = {x1, . . . , xN}, where xi ∈ Rn, i = 1, . . . N , the task

of a binary classifier is to learn an approximate mapping function that maps each

observation x ∈ X into a corresponding binary discrete variable y ∈ Y = {y1, . . . , yN},
called classification label, where yi ∈ {−1,+1}, i = 1, . . . , N .

Let Ẏ0 = {−1, 1}M = {y1, . . . , yM} ⊂ Y, 0 < M < N , be a set of known (possibly

noisy) labels that correspond to instances Ẋ = {x1, . . . , xM} ⊂ X used for training. Let

Y0 = {Ẏ0,0N−M}, where all N −M unknown labels are set to zero (to be estimated

during testing).

Given X, the problem addressed in this study, is to learn the robust mapping func-
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tion to assign a classification label to each observation x ∈ X when some classification

labels y ∈ Ẏ0, used for training the model, are incorrect.

Let G = (Ψ,E,W) be an undirected graph, where Ψ = {ψ1, . . . , ψN} is a set of

nodes, each corresponding to one instance in X, E = {ei,j}, i, j ∈ {1, . . . , N}, is a matrix

representing the edge connectivity of G; that is, ei,j = 1 if there is an edge connecting

vertices i and j and ei,j = 0 otherwise; and each entry wi,j in the weight matrix

W = {wi,j}, i, j ∈ {1, . . . , N} corresponds to the weight associated with edge ei,j .

Then, Y0 can be seen as a graph signal that indexes the graph G. The combinatorial

graph Laplacian matrix is given by L = D − A, where A is a symmetric N × N

adjacency matrix with each entry ai,j = max(wi,j · ei,j , wj,i · ej,i), and D is a degree

matrix with entries di,i =
∑N

j=1 ai,j , and di,j = 0 for i 6= j.

Similarly to [159], triplets are defined as observations (xa, xp, xn), xa, xp, xn ∈ X

corresponding to vertices ψa, ψp, ψn ∈ Ψ, respectively, such that ya = yp 6= yn, and

ya, yp, yn ∈ Ẏ. Let P be a set of all edges ea,p, such that ya = yp, and Q a set of all

edges ea,n, for which ya 6= yn, that is, P and Q are sets of all edges that connect nodes

with the same and opposite labels, respectively.

Motivated by CNNs ability to extract discriminative features and GLRs to ‘clean’

unreliable labels, this research formulates graph-based classifier learning as a two-stage

learning process: (1) graph learning - extract deep feature maps, i.e., find a deep metric

function that returns the most discriminative feature maps, and then generate an initial

graph by learning the underlying E to maximize/minimize similarity between any two

nodes in G that are indexed by the same/opposite labels. (2) classifier learning -

iteratively refine the graph and effectively performing GLR to restore the corrupted

classifier signal.

5.2.2 Initialization

Given the observation sets X and corresponding, potentially noisy labels, Ẏ0, the first

task is to learn a discriminative feature map V0(·) and generate an initial underlying

graph for the learnt feature map.
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Let

di,j(V0) = ‖V0(xi)− V0(xj)‖22,

be the Euclidean distance between the corresponding feature maps. For a node ψi ∈ Ψ,

let Ei be a set containing all vertices except ψi in ascending order with respect to the

metric di,k(V0), k = 1, . . . , N − 1, k 6= i. Let Si be a subset of Ei containing the first

γi elements of Ei, that is, the set Si contains γi most correlated vertices to vertex ψi

according to metric di,k(V0).

To effectively perform GLR, as in [139], [157], the underlying graph should be a

sparsely connected graph. To control the sparsity of the resulting graph whilst main-

taining connectivity, the proposed model uses an indicator operator to minimize the

number of Q edges. A typical option is a KNN indicator that keeps only a maximum

of γi edges for each individual node i, and sets others to zero. That is, each graph edge

ei,j is set to:

ei,j =





1, if ψi ∈ Sj or ψj ∈ Si

0, otherwise.

(5.1)

Once an optimal edge matrix E0 = {e0
i,j} is computed through V0(·) and Eq. 5.1, an

initial undirected and unweighted graph G0 = (Ψ,E0,W0 = 1) can be obtained. The

block diagram is shown in Fig. 5.1. Note that, in the implementation, γ1 = · · · = γN =

γ0 is the initial condition, that is learnt as explained in Sec. 5.3.1.

CNN Eq.(5.1)

Figure 5.1: The block diagram of the unweighted graph generation scheme. V0(·) is
a CNN-based feature map learnt by minimizing a loss function in order to reflect the
node-to-node correlation. The implementation of the proposed CNN and loss function
is described in Sec. 5.3.1.
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5.2.3 Proposed Classifier Learning with Iterative Graph Update

If the noisy training labels are seen as a piece-wise smooth graph signal, Y0, then one

can iteratively perform GLR for denoising the labels and performing semi-supervised

classification, while refining the set of deep feature maps and the underlying graph.

Let r > 0 be the iteration index, initialized to 1, and let Gr = (Ψ,Er−1,Wr) be

the graph, with Wr to be learnt, and Yr the noisy labels in the r-th iteration. Thus,

G1 is an N -node graph with edges set by Eq. 5.1. In the r-th iteration, each vertex ψi

is indexed by a label yr−1
i ∈ Yr−1 (graph signal), and is associated to a feature vector

Vr(xi).

Typically, the edge weight is computed using a Gaussian kernel function with a

fixed scaling factor σ, i.e., exp
(
− ‖xi−xj‖

2
2

2σ2

)
, to quantify the node-to-node correlation.

Instead of using a fixed σ as in [41], [139], [158], motivated by [160], the proposed model

introduce an auto-sigma Gaussian kernel function to assign edge weight wri,j in Gr by

maximizing the margin between the edge weights assigned to P-edges and Q-edges, as:

σ∗ = arg max
σ

[
exp

(
−
ω2
{ψa,ψp}

2σ2

)
− exp

(
−
ω2
{ψa,ψn}

2σ2

)]

wri,j = exp
(
− ‖V

r(xi)− Vr(xj)‖22
2σ∗2

) (5.2)

where ω{ψa,ψp} and ω{ψa,ψn} compute the mean Euclidean distances between nodes

connected by P-edges and Q-edges, respectively. By setting the first derivative to zero,

one can obtain the resulting optimal σ∗ =

√
ω2
{ψa,ψn}

−ω2
{ψa,ψp}

2 log(ω2
{ψa,ψn}

/ω2
{ψa,ψp}

)
, which is used to

assign edge weights of the graph.

Closely following related work [139], [157], one can obtain the restored classifier

signal by finding the smoothest graph signal Yr as:

Yr = arg min
B

(‖Yr−1 −B‖22 + µrBLrBT ). (5.3)

The minimization above finds a solution that is close to the observed set of labels in the

previous iteration, Yr−1, while preserving piece-wise smoothness. To guarantee that

the solution Yr to the quadratic programming (QP) problem Eq. 5.3 is numerically
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stable, Theorem 1 ([157] is adopted by setting an appropriate conditional number κ.

The maximum value of the smoothness prior factor µr is then calculated as: µrmax =

(κ − 1)/(2drmax), where drmax is the maximum degree of the vertices in graph Gr. See

Fig. 5.2(a).

Eq.(5.2) Graph Construction

QP Solver Eq.(5.3)CNN

(a) The block diagram of the proposed classifier scheme. CNN is learnt
by minimising the loss function to better reflect the node-to-node cor-
relation. The edge matrix Er−1 is used as a mask when assigning edge
weights to construct adjacency matrix Ar. The proposed scheme per-
forms GLR to restore the corrupted classifier signal Yr−1 given the re-
sulting sparse graph Laplacian Lr and apply the constrained smoothness
prior factor µr to ensure the numerical stability of QP solver. The imple-
mentation of Vr(·) varies depending on the data scale and the dimension
of the input observations. The output is the new set of ‘denoised’ labels
Yr.

Eq.(1) Eq.(4)CNN

(b) The block diagram of the proposed graph update scheme. Based on
the adjacency matrix Ar and restored classifier signal Yr, the proposed
scheme learns a CNN to better refine the graph structure. The edge
matrix Er is updated via Eq. 5.4 and Eq. 5.1 based on both the previous
restored classifier signal and the regularised deep feature map. The
output of this block is the new edge matrix Er that will be used in the
next iteration.

Figure 5.2: The proposed graph-based classifier and graph update scheme. The green
and blue colors denote input and output, respectively. The implementation details are
given in Sec. 5.3.2.

Between each two GLR iterations, this research uses CNN to refine the feature

map based on the denoised label signal, Yr−1 obtained in the previous GLR iteration.

See an illustration in Fig. 5.2(b) for the graph update after r-th GLR iteration. The
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individual degree of Vertex i is updated as:

e̊ri,j =





1, if eri,j ∈ Pr & ari,j > β

0, if eri,j ∈ Qr & ari,j ≤ β,

γri =

N∑

j=1

e̊ri,j ,

(5.4)

where Pr and Qr sets are formed based on the denoised classifier signal Yr. The edge

eri,j is removed if it connects vertices with opposite labels or the corresponding entry

to adjacency matrix is less than β, which is heuristically set to 0.1.

5.3 Proposed Network

Based on the concepts described in the previous section, this section presents the algo-

rithmic flow and describe the architecture used to implement the proposed DynGLR

network.

The block diagram of the proposed DynGLR-Net is presented in Fig. 5.3. The

overall network consists of three sub-networks: (1) G-Net (graph generator network)

used to learn a deep metric function to construct an undirected and unweighted KNN

graph G0 = (Ψ,E0,W0 = 1). (2) W-Net (graph weighting and classifier network)

used to assign edge weights Wr for effectively performing GLR to restore the corrupted

classifier signal Yr. (3) U-Net (graph update network) used to refine Er to better

reflect the node-to-node correlation based on the restored classifier signal in the previous

iteration Yr−1.

5.3.1 G-Net

In order to learn the optimal metric space, as in [159], this research uses a CNN, denoted

by CNND, to learn a mapping function D(·). The detailed architecture of CNND is

shown in Fig. 5.4.

For a random observation triplet (xa, xp, xn), such that ea,p ∈ P and ea,n ∈ Q, the
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Graph 
Generation

KNN 
Classifier

Graph-based                                   
Classifier

G-NetOptimizer

update Acc

Optimizer

GLR (r=1)

update
W-Net

Graph Update

Graph-based 
Classifier

Optimizer

update

U-Net

Optimizer

GLR (r=2)

update W-Net

Figure 5.3: The overall block diagram of the proposed DynGLR-Net for r = 2.
Given observations X, G-Net (see Subsec. 5.3.1) first learns an initial undirected
and unweighted KNN-graph by minimizing LossE. The resulting edge matrix E0

is then used in the following, first, GLR iteration. The learnt shallow feature map
f1(X) = {X,ZD(X)} is then used as input to learn a CNNC1 network for assigning
weights to the initial graph edges. Given a subset of, potentially noisy labels, Ẏ, GLR
is operated on the constructed undirected and weighted graph to restore the labels. The
resulting restored labels are used in the following GLR iterations (see Subsec. 5.3.2).
To assign the degree of freedom for refining graph connectivity, the proposed network
updates the graph edge sets by minimizing LossW1(HU) given neighbor information for
each node based on the resulting denoised classifier signal from the first GLR iteration.
The proposed network then reassigns edge weights to the updated graph edge sets to
perform better node classification in the second GLR iteration (see Subsec. 5.3.3).

proposed model minimizes the following loss function to learn the feature map:

LossE =
∑
a,p,n

[
αE − ‖D(xa)−D(xn)‖22 + ‖D(xa)−D(xp)‖22

]
+
, (5.5)
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3x1 
conv, 
16, 
/

fc 
32

pool, 
/2, 
/2

fc 
32

3x1 
conv, 
16, 
/

pool, 
/2, 
/2

fc 
32

Figure 5.4: CNND neural network: ‘pool/q/w’ refers to a max-pooling layer with
q=pool size and w=stride size. ‘x conv y/ρ1’ refers to a 2D convolutional layer with y
filters each with kernel size x and stride size ρ1. ‘fc x’ means the fully connected layer
with x=number of neurons. The stride size ρ1 varies depending on the input data (see
details in Sec. 5.4.1).

where D(·) is a CNN-based feature map function, to be learnt, that returns a feature

vector corresponding to the input observation, αE is the minimum margin, and operator
[
·
]
+

is a Rectified Linear Units (ReLU) activation function which is equivalent to

max(·, 0). Let ZD(x) be the learnt feature map output at the second to the last layer

of CNND (see Fig. 5.4) obtained by minimizing the loss Eq. 5.5.

The loss function Eq. 5.5 promotes a community structure graph that has relatively

small Euclidean distance between the feature maps of vertices connected by the edges

in P, and a large distance between the vertices connected by the edges in Q, while

keeping a minimum margin αE between these two distances.

Since the lack of a priori knowledge of the connectivity of the nodes, this research

generates the initial graph as a fully connected graph; justification for starting with a

fully connected graph is provided in [161]. A sparse E0 minimizes the number of Q

edges by keeping only the connections with γ0 neighbors per individual node. KNN-

graph is constructed based on Eq. 5.1, where optimal maximum number of neighbors

γ0 is obtained via grid-search by evaluating classification accuracy of the KNN classifier

(denoted by Acc in Fig. 5.3) using the validation data with the same amount of noisy

labels as the training dataset. Note that, as one do not have any prior knowledge

of the optimal maximum degree of each individual node, this research initially sets

all γ0 = γ1 = . . . = γN . Once the optimal number of neighbors γ0 is obtained, the

resulting graph edges E0 are used in the following section for pruning edge weights

during edge weighting and are updated based on the regularized metric function and
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the difference between the classifier signal, before and after GLR.

5.3.2 W-Net

For assigning edge weights Wr to the graph Gr, this research first employs a CNN,

denoted by CNNCr , to learn a deep metric function. A robust graph-based triplet loss

function is proposed to better learn feature map Vr, as:

LossWr (V) =
∑

ψa,ψp,ψn

[
αW − ‖Vr(fr(xa))− Vr(fr(xn))‖22

·π(ψa,ψn|ea,n∈Q) + ‖Vr(fr(xa))− Vr(fr(xp))‖22

·π(ψa,ψp|ea,p∈P)

]
+

Πr ={πψi,ψj} = {Θ(ẏri , ẏ
r−1
i , ẏrj , ẏ

r−1
j )}.

(5.6)

Θ is an edge attention activation function (see Eq. 5.7) for the particular function)

that estimates how much attention should be given to each edge and Yr = {Ẏr =

[−1, 1]M , [−1, 1]N−M} is the restored classifier signal obtained via Eq. 5.3 starting from

the classifier signal in the previous iteration, Yr−1. πψi,ψj is the amount of attention,

i.e., edge loss weights, assigned to the edge connecting vertices ψi and ψj . Note that

Cr(·) is the feature map learnt by minimizing Eq. 5.6.

The architectures for r = 1 and r = 2 are shown in Fig. 5.5. Since, at the first

iteration r = 1, many noisy labels are expected, the residual network architecture will

be different to the r > 1 case [162].

3x1 
conv, 
16, 
/

pool, 
/2, 
/2

fc 
64

fc 
32

3x1 
conv, 
16, 
/

pool, 
/2, 
/2

fc fc 

Figure 5.5: CNNCr neural nets. The stride ρ1 and the number of neurons ρ2, ρ3 vary
depending on the input data (see details in Sec. 5.4.1).

The architecture presented in Fig. 5.5 (top) is used as the feature map C1(·), after
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G-Net, to construct the graph G1 = (Ψ,E0,W1) by minimizing LossW1(C1) taking as

input undirected graph G0 learned via G-Net. The input to CNNC1 is the concatenated

observations X and “shallow feature maps” learned via G-Net, i.e., the output of the

second to last layer of CNND as presented in Fig. 5.4, denoted by ZD(X).

The r = 2 architecture is shown in Fig. 5.5 (bottom), with observations X and

“shallow feature maps” learned via U-Net (described in the next subsection) to facilitate

the regularization of CNNC2 by minimizing LossW2(C2) based on the denoised labels,

convolution on both feature maps, denoised classifier signal and their differences across

neighbors.

Unlike [159], this research introduces edge attention activation Θ in Eq. 5.6 to

dropout some edges with relatively large changes between Ẏr and Ẏr−1 via GLR.

This helps to focus learning on edges with high confidence given noisy training labels.

Therefore, the overall training performance is better than the standard dropout layer

approach, which drops out random neuron units in the network. The edge attention

activation Θ and Φ for this study is implemented as:

Φ(ẏr−1
i , ẏri ) =





1, if |ẏr−1
i − ẏri | ≤ εr

0, if |ẏr−1
i − ẏri | > εr

Θ(ẏr−1
i , ẏri , ẏ

r−1
j , ẏrj ) =min(Φ(ẏr−1

i , ẏri ),Φ(ẏr−1
j , ẏrj )),

(5.7)

where threshold εr is used to determine whether a node’s label can be trusted and also

helps to control the sparsity of edge attention matrix Πr. That is, if the difference

between the signal label in the previous and current iteration is large, this means that

the label most likely changed sign (from -1 to +1 or vice versa) and is unreliable in

this iteration. To reflect the fact that there might be many noisy (unreliable) labels at

the start, this research heuristically sets ε1 = 0.6 for the first GLR iteration (see the

results in Sec. 5.4). Since after applying GLR the classification signal is expected to

be cleaner, this research heuristically sets threshold ε2 = 0.15 for the second stacked

W-Net during training to ensure that it regularizes CNNs with less concern about the

over-fitting issue introduced by noisy labels.
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5.3.3 U-Net

Edge convolution has been proven recently to be a rich feature representation method

[154], [155]. This research adopts edge convolution in deeper feature map learning, i.e.,

after GLR r = 1. That is, given A1, from the first GLR iteration, each node’s feature

representation is enhanced by considering observations of both X and classifier signal

Y1 from its six nearest neighbors (set heuristically), which are most-likely to have the

same label.

fc 
- 3x1 

conv, 
16, 
/

pool, 
/2, 
/2

fc 

zero pad

or

concat

fc

concat

Figure 5.6: CNNHU
neural nets. The stride size ρ1 and the number of neurons ρ4, ρ5

vary depending on the input data (see details in Sec. 5.4.1).

Incorporating an additional CNN, denoted by CNNHU
, shown in Fig. 5.6, this

research constructs a richer feature representation HU(g(x)) to enhance the graph-

based classifier learning with a single input to the network, g(x), comprising xi and

{y1
i ,y

1
U − y1

i }, where y1
i denotes a tuple (yi, 0), if yi > 0 or (0, yi) otherwise. y1

U is

a 6 × 2 matrix formed by concatenating y1
i with the nearest six neighboring nodes.

Finally, y1
U − y1

i is obtained by subtracting each row of y1
U by y1

i .

Graph edge Er−1 is updated by Eq. 5.4 based on the learnt regularized feature map

HU(·) in order to better reflect the node-to-node correlation. The new edge matrix E1

and the denoised classifier signal Y1 are then used in the second graph-based classifier

iteration.

Though one can continue iterating between W-Net and U-Net, in the practical
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implementation, only two iterations are performed, to reduce computation complexity,

since heuristically no improvement can be observed after r = 2 iterations.

5.4 Simulations

This section presents the simulation results, including the ablation study, visualization

results, and comparison of the performance against different, classic and state-of-the-art

classifiers, under different label noise levels.

5.4.1 Simulation setup: Datasets, Benchmarks, Parameters and Per-

formance Measure

Datasets

Three corrected labeled binary-class datasets and a multi-class dataset are selected from

Knowledge Extraction based on Evolutionary Learning dataset (KEEL) [163] and this

thesis that vary in the number and type of features; these sets are, from low dimensional

feature sets to higher ones: (1) Phoneme : contains nasal (class 0) and oral sounds

(class 1), with 5404 instances (frames) described by 5 phonemes of digitized speech.

(2) Magic: contains images generated by primary gammas (class 0) from the images

of hadronic showers initiated by cosmic rays in the upper atmosphere (class 1), where

19020 instances are generated for simulation using the imaging technique, with each

instance containing 10 attributes to characterize simulated images. (3) Spambase : to

determine whether an email is spam (class 0) or not (class 1), with 4597 email messages

summarized by 57 particular words or characters. (4) Gait : contains 15 subjects’ 126

gait sequence records of middle 4-meter motion at two different rehabilitation sessions

collected in Chapter 2. Each frame of the gait sequence is categorized as one of the 9

gait phases as shown in Fig. 3.1 and is described by 420 distinct features extracted in

Chapter 3. The inputs and output (inputs ⇒ output) of the classification task for the

above datasets are: (1) Phoneme : 5 real values ⇒ 1 boolean value (zero or one). (2)

Magic: 10 real values ⇒ 1 boolean value. (3) Spambase : 47 real values ⇒ 1 boolean

value. (4) Gait : 420 real values ⇒ 1 categorical value (one of {0,1,. . .,8}). The mo-
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tivations of selecting the above datasets are: (1) To evaluate the binary classification

performance of the proposed robust classifier against label noise across different appli-

cations, such as speech recognition (Phoneme), image classification (Magic), spam

detection (Spambase). (2) To investigate the ability of using the proposed network

for multi-class classification task and evaluate its robustness against the potential risks

of mislabeling in gait phase classification application which is one of the major research

tasks in this thesis.

Benchmark classifiers

This section compares the proposed network against 10 different classification methods:

(1) SVM with radial basis function kernel (SVM-RBF) (2) a classical CNN, consisting

of two CNN blocks and two fully connected layers afterwards, where each CNN block

has a convolution layer, a max pooling layer and one dropout layer (3) a graph CNN

with multiple graph construction blocks, where each block constructs a KNN graph

based on multiple graph structures learnt via edge convolution; batch normalization

with decay is used (called DynGraph-CNN [155]) (4) a KNN classifier using CNN-

based deep metric learning (used CNN is the same as CNND) [159] (called DML-

KNN) (5) a rank-sampling [164] based KNN classifier using CNN-based deep metric

learning (CNN used is same as in DynGraph-CNN), where sampling is performed on

the training set by calculating the resulting classification accuracy using randomly

sampled samples. For each dataset, the top 480 training samples with relatively high

classification accuracy in the validation set are used. During inference, 480 selected

training samples are divided into 6 equal-size batches by stratified random sampling

and the predictions using each batch are averaged to obtain the final decision (6) label

noise robust SVM with RBF kernel [165] (LN-Robust-SVM-RBF) (7) a graph-based

classifier with negative edge weights assigned between the centroid sample pairs and

between the boundary sample pairs (named Graph-Hybrid [139]) (8) a CNN network

(same as in DynGraph-CNN) trained by savage loss (called CNN-Savage [38]) (9) a CNN

network (same as in DynGraph-CNN) trained by bootstrap-hard loss (called CNN-

BootStrapHard [39]) (10) a CNN network (same as in DynGraph-CNN) trained via
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dimensionality-driven learning strategy (called CNN-D2L [30]). Note that Classifiers

(1)-(4) are classical methods for normal, ‘noise-free’, conditions, and methods (5)-(9)

are proposed to avoid overfitting under noisy training labels. All CNN-based methods

adopt l2 regularization for each layer. Similar to Benchmark (5), this research also

adopts rank-sampling technique on the training set to select trusted samples that will

further facilitate the predictive performance and consistency of the proposed model,

denoted by ‘s’ appended to the model name. Note that one-vs-all (OVA [166]) scheme

is adopted to perform multi-class classification for Gait dataset based on the above

classifiers (1)(6)(7).

Ablation study

To understand how different components of the proposed architecture affect the results,

an ablation study is investigated by removing some components. The resulting archi-

tectures are denoted by DynGLR-G-number, where ‘G’ refers to Graph generation and

‘1’ refers to edge weighting, ‘2’ to GLR, and ‘3’ graph update. That is, the following

variants of the proposed scheme are compared: (1) DynGLR-G-2: importing the un-

weighted graph G0 generated by G-Net (see Fig. 5.1) into GLR for classification. (2)

DynGLR-G-12: assigning weights to the unweighted graph G0 via an adaptive Gaus-

sian kernel function (see Eq. 5.2); the resulting undirected and weighted graph is then

used to perform node classification via GLR. (3) DynGLR-G-1232: updating the graph

edge sets by considering the neighbors of each node with denoised classifier signal and

observed feature maps (see Fig. 5.2); the resulting unweighted graph is then used for

classification. (4) DynGLR-G-12312: reassigning weights to the updated unweighted

graph to effectively perform classification; this research performs rank-sampling for all

architectures to evaluate the benefits, denoted by ‘s’ appended to the name of each

proposed architecture. Note that for Gait dataset, OVA scheme is adopted to perform

multi-class classification for all proposed architectures.
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Simulation setup, performance measure and parameters

The experiments are conducted on Phoneme,Magic,Spambase datasets for binary

classification task and Gait dataset to further investigate the multi-class classification

performance and evaluate the robustness against the mislabeling of gait event frames

in gait phase classification task. For the first three binary classification datasets, each

dataset is randomly divided into training, validation and testing sets with 40%, 20%,

40% of instances with balanced class distribution, ensuring that there are enough train-

ing and validation samples without considering the under fitting problem caused by

training models on the insufficient training data and inappropriate hyper-parameters

found using insufficient validation samples. In gait phase classification task, training

and testing split is used as the same as the experiments conducted in Chapter 3.

To evaluate the robustness of different classification methods against label noise,

this research randomly samples subsets of instances from both training and validation

sets and reverse their labels. Since there is no record of how the samples are labeled in

the first three binary datasets, for each dataset, a subset of samples is first randomly

sampled from training/validation sets with uniform distribution. Then the binary labels

that correspond to the selected samples are reversed. To build a gait phase classification

dataset, experts like therapist usually first manually extract the gait event frames that

are located on the boundary of two adjacent gait phases by searching for a specified

human pose introduced in [91]. The associated human pose to each gait event frame

is drawn in Fig. 4.1 as skeleton that is labeled in red texts. Once all gait event frames

are found, gait phase labels are assigned to their adjacent frames sequentially. Based

on this record, in the chapter, the simulation of potential label noise for the Gait

dataset is conducted by randomly shifting the timestamp of gait phase event within in

the training set, resulting in shifted gait event frames and incorrect categorical labels.

In detail, the number of frames shifted to the correctly extracted gait event frame is

randomly selected from {−Γ, . . . , Γ}, where Γ is defined as the maximum number of

frames that could be mis-shifted by a data annotator when extracting the gait event

frames.
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Mean classification error rates are measured by running 20 experiments per label

noise level (0% to 25%) or mislabeling level (0 to 8 frames). The same random seed

settings are used across all classification methods for reproducing the simulation results

and ensuring a same split of training, validation and testing sets. All duplicated samples

of same features are removed to ensure a fair comparison considering the potential pre-

diction failures made by semi-supervised classifiers such as DML-KNN, Graph-Hybrid

and the proposed DynGLRs.

Hyper-parameters used for each experiment are obtained from the validation sets

by grid search. All used parameters are listed in Table 5.1.

Table 5.1: Parameters for the proposed architectures. x ⇒ y means that the learning
rate decreases linearly from x to y with the epoch number.

Hyper-parameters Phoneme Magic Spambase Gait

ρ1, ρ2, ρ3, ρ4, ρ5 1,256,64,256,6 1,128,32,128,4 2,32,32,64,6 2,128,32,128,6

G-Net learning rates 0.02⇒0.01 0.02⇒0.01 0.02⇒0.01 0.02⇒0.01

G-Net epochs 160 160 60 180

W-Net(r=1) learning rates 0.02⇒0.01 0.02⇒0.01 0.02⇒0.012 0.02⇒0.01

W-Net(r=1) epochs 320 320 80 240

U-Net learning rates 0.002⇒0.001 0.002⇒0.001 0.002⇒0.001 0.002⇒0.001

U-Net epochs 120 180 100 60

W-Net(r=2) learning rates 0.01⇒0.002 0.01⇒0.002 0.02⇒0.01 0.02⇒0.01

W-Net(r=2) epochs 60 40 40 180

To guarantee the solution Yr to Eq. 5.3 is numerically stable, the conditional num-

ber κ = 60 and µr = 0.67µrmax are used in all experiments. Eq. 5.5 and Eq. 5.6 use

the distance margin αE = αW = 10. For each epoch, the batch size is 16, each batch

comprising 80 labeled instances from training set and 20 unlabeled instances from val-

idation set; thus 16 · 100 instances are randomly selected. This results in 16 graphs to

regularize training per epoch.

All CNNs are learnt by Adam optimizer [167], classification accuracy and classifier

signal changes are used as metric for rank-sampling for further improving the predictive

performance.
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5.4.2 Results and Discussion

This section is organized as follows. As part of the ablation study, Subsecs. 5.4.2

and 5.4.2 evaluate the ability of the proposed schemes to clear the noisy labels and

observation samples during the training phase, respectively. This research analyzes

the sensitivity of hyper-parameters that affect the regularization performance in Sub-

sec. 5.4.2. It shows the effectiveness of the proposed iterative graph update scheme in

Subsec. 5.4.3 by visualizing the learnt underlying graph in spectral domain. To analyze

the impact of different components on the classification accuracy, it shows the classifi-

cation error rates in Subsec. 5.4.3 and discuss the findings of the ablation study during

the testing phase and show comparison with state-of-the-art schemes.

Evaluating graph update block

0

0.1

0.2

0.3

0.4

Noise Ref Noise Ref Noise Ref Noise Ref

Phoneme Magic Spambase Gait

G-2 G-12 G-1232 G-12312

Figure 5.7: Mean Edge Weight Proportion % for the proposed DynGLR-Nets for the
three binary class datasets when 25% labels used for training are wrong (denoted by
‘Noise’) or when all training labels are correct (denoted by ‘Ref’ without use of GLR).
G-2, G-12, G-1232, and G-12312 schemes are described in the previous subsection.
Note that, for Gait dataset, the results are averaged over all binary classifiers based
on OVA scheme when Γ=8 frames.

First, this research evaluates ability of the graph update block to clear noisy labels.

The measure of mean edge weight proportions are used, which is defined as:

% =

∑N
p,nwp,n∑N

i,j 1(wi,j > 0)
, (5.8)

where ψp and ψn are two nodes with the opposite labels, wp,n is the weight of the edge
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ep,n and 1(c) is an operator that returns 1 if condition c is fulfilled, and 0 otherwise.

The results are shown in Fig. 5.7, which shows that, for all datasets, the number of

connections between nodes with opposite labels decreases with iterations and becomes

similar to that without any noise, indicating that the graph update manages to restore

the noisy labels.
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Figure 5.8: Classifier signal changes |Ẏr−1 − Ẏr| density visualization for Phoneme
dataset after the first (top row) and second (bottom row) GLR iteration during the
training period. Vertices with clean/incorrect labels are shown in the first/second col-
umn. The intensity of the classifier signal changes across all experiments are represented
through colormaps.

Eq. 5.7 uses a threshold to distinguish reliable nodes from unreliable nodes. In order

to evaluate the used approach and to set thresholds, the changes of the classifier signal

|Ẏr−1−Ẏr| during the first two iterations are shown in Fig. 5.8. One can see that when

all the labels are clean (left column) the difference between the signals before and after

GLR is mainly below 0.6 and 0.15, in the first and the second iteration, respectively.

Thus, by setting the thresholds at ε1 ≈ 0.6 and ε2 ≈ 0.15 for the first and the second

GLR iteration, respectively, it is easy to distinguish the vertices with potentially noisy

labels. Similar observations are made for the Spambase and Magic datasets.

Heuristically, it can be observed that as more GLR iterations are performed, the

overlap between the clean and noisy vertices distribution of classifier signal changes
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is high, resulting in reduced ability to use thresholding for distinguishing if a node is

sufficiently cleaned. That is why in all experiments, to reduce complexity, the graph

update is performed only after the first iteration, i.e., for r=1.
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Figure 5.9: Classification Error Rate (%) for Spambase dataset using different ε1,2 in
DynGLR-G-12312.

Hyper-parameter sensitivity

This research uses attention activation Eq. 5.7 to detect the label of vertex ψi as possibly

noisy if Φ(ẏi
r−1, ẏi

r) = 1. To analyze the sensitivity of hyper-parameters ε1 and ε2

(thresholds) in Eq. 5.7, Fig. 5.9 shows the classification error rate for the Spambase

dataset during training using different values of ε1 and ε2. It can be observed that

the thresholds ε1 = 0.6, ε2 = 0.15, from the density visualization of classifier signal

changes |Ẏr−1−Ẏr| of Fig. 5.8, are appropriate to improve the regularization of CNNs.

Note that the classification error rate reduces from first GLR iteration to second GLR

iteration.

Evaluating Rank-sampling

To evaluate the denoising effects of GLR, Fig. 5.10 shows the mean noise level of

the training labels after GLR is performed across all proposed architectures with and

without sampling. It is clear from Fig. 5.10, for all three datasets, that the mean
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Figure 5.10: For the three binary class datasets, the mean noise level of the training
labels after GLR is performed in all proposed DynGLR-Nets when 25% labels used for
training are incorrect. For Gait dataset, the mean noise levels are measured over all
binary classifiers based on OVA scheme when Γ=8 frames.

noise level is lower with rank-sampling than without. This confirms that with rank-

sampling, one can further reduce the effects of noisy training labels by dropping out

the less reliable training samples.

5.4.3 Feature map visualization

To demonstrate the effectiveness of denoising effects in feature-space domain, this re-

search visualizes the underlying data structure learned by the proposed DynGLR-G-

12312 for Magic dataset by Principal component analysis (PCA) of the learned deep

feature maps at various stages of the algorithm. The results are shown in Figs. 5.11

and 5.12 using a single batch with 80 training and 20 testing samples. The vertical and

horizontal axis values correspond to the values of PCA projected observation feature

maps and the color (red or blue) corresponds to one of the two classes.

Fig. 5.11 show all observations (training and testing) for the case of no noise in the

labels (left plots) and when 25% of labels are wrong (right plots). The first row shows

the input observations, while the remaining rows present outputs of r-th iteration. By

comparing the positions of red and blue dots in the left and right plots, one can see the

way feature-space is changing due to iterative application of GLRs for denoising the

labels.

For Magic dataset, it can be observed that the number of noisy+known labels

drops from 41 (at the input of the network), to 24 (after the first iteration) to 21
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after the second iteration. After C1(X) is learnt, one can see from the second row

of the figure that a decision boundary has been made, but there are several small

clusters located at the boundary of the two major clusters contributing towards 24

miss-labeled nodes. After graph update and the second GLR iteration, it is obvious

that a significant improvement of underlying structure where clean decision boundary

can be made, leading to reduction on the number of wrongly restored labels.

Fig. 5.12 shows only unlabeled and miss-labeled samples for both datasets, where

left and right columns present training and testing samples, respectively. It can be

observed that a decreasing number of miss-labeled samples in both training and testing

sets as GLR is effectively performing label denoising.

Graph spectrum visualization

Graph Fourier Transform (GFT) is another approach to represent the smoothness and

connectivity of an underlying graph. As in [168], this research visualizes the magnitude

of the GFT coefficients in Figs. 5.13 and 5.14 along the graph update iterations.

In accordance with [168], where it is shown that the magnitude of GFT coefficients

decay rapidly for a smooth signal, in the results, one can clearly observe that the mag-

nitude of GFT coefficients is decaying more rapidly along spectral frequencies once the

graph is updated (in iteration r = 1). Furthermore, comparing the visualization results

in the first and the second column, it can be seen that the graph weighting (W-Net)

smooths the graph data, with low frequency components becoming more prominent.

Classification Error Rate Comparison

Tabs. 5.2–5.5 show comparison between the proposed DynGLR networks and all the

benchmarks in terms of classification error rate. From the tables, it can be seen that the

proposed DynGLR networks outperform all the benchmarks. The results also indicate

that the proposed robust classifier can effectively mitigate the effects of noisy training

labels caused by mislabeling of gait event frames for gait phase classification.
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Figure 5.11: PCA-projected feature-space structure of input observations for Magic
Dataset for noise-free input labels (left); 25% of mislabeled observations (right column).
The top row shows the input observations, while the two rows below show outputs of
W-Net iterations. Red, blue, black crosses correspond to Class 1, 2 and unlabeled
nodes, respectively.
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Train Test
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Figure 5.12: PCA-projected feature-space structure of input observations for Magic
Dataset under 25% of mislabeled observations: training nodes (left) and testing nodes
(right column). The top row shows the input observations, while the two rows below
show outputs of W-Net iterations. Red, blue, black crosses correspond to Class 1, 2
and unlabeled nodes, respectively.
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Figure 5.13: The magnitude of the Graph Fourier Transform coefficients for Phoneme
Dataset. The density of each Eigenvalue λ` across all experiments on the testing sets
is represented through colormaps. Top row shows the result after initialization and
before GLR (G-Net output) and the second and third row show the result after the
first (r = 1) and the second iteration (r = 2), respectively.
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Figure 5.14: The magnitude of the Graph Fourier Transform Coefficients for Spambase
Dataset. The density of each Eigenvalue λ` across all experiments on the testing sets
is represented through colormaps. Top row shows the result after initialization and
before GLR (G-Net output) and the second and third row show the result after the
first (r = 1) and the second iteration (r = 2), respectively.
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Table 5.2: Classification Error Rate (%) For Phoneme Dataset

% label noise 0 5 10 15 20 25

SVM-RBF 18.33 18.75 19.13 19.57 20.07 20.87

CNN 17.58 17.77 18.00 18.57 19.01 20.00

DynGraph-CNN 17.66 19.04 20.80 22.44 25.20 28.84

DML-KNN 17.04 17.54 17.82 18.58 19.64 21.00

DML-KNN-s 17.01 17.49 17.71 18.43 19.24 20.41

LN-Robust-SVM-RBF∗ 18.57 19.42 19.65 19.70 20.03 20.28

Graph-Hybrid∗ 22.01 23.77 25.58 27.97 30.33 33.39

CNN-Savage∗ 17.52 17.72 18.04 18.51 19.02 19.87

CNN-BootStrapHard∗ 17.46 17.72 18.00 18.31 18.84 20.15

CNN-D2L∗ 17.47 17.80 17.96 18.41 18.91 20.04

DynGLR-G-2∗ 17.04 17.50 17.70 18.34 18.81 20.03

DynGLR-G-12∗ 16.93 17.36 17.64 18.23 18.52 19.59

DynGLR-G-12s∗ 16.89 17.36 17.62 18.21 18.52 19.54

DynGLR-G-1232∗ 16.90 17.29 17.36 18.16 18.48 19.47

DynGLR-G-12312∗ 16.87 17.19 17.34 18.03 18.38 19.43

DynGLR-G-12312s∗ 16.87 17.18 17.32 17.91 18.24 19.18

Table 5.3: Classification Error Rate (%) For Magic Dataset

% label noise 0 5 10 15 20 25

SVM-RBF 18.42 19.07 19.63 20.18 20.61 21.13

CNN 16.45 16.87 16.91 17.62 18.09 18.86

DynGraph-CNN 17.74 18.69 19.33 21.05 24.15 27.40

DML-KNN 15.33 15.51 15.80 15.94 16.83 18.29

DML-KNN-s 15.33 15.51 15.78 15.89 16.58 17.08

LN-Robust-SVM-RBF∗ 18.57 18.70 18.80 19.05 19.39 19.82

Graph-Hybrid∗ 24.82 25.92 27.23 28.84 30.79 33.23

CNN-Savage∗ 16.31 16.74 16.99 17.41 18.10 18.87

CNN-BootStrapHard∗ 16.34 16.89 17.02 17.46 18.13 18.65

CNN-D2L∗ 16.34 16.79 17.21 17.48 18.20 18.75

DynGLR-G-2∗ 15.35 15.51 15.77 15.94 16.75 18.03

DynGLR-G-12∗ 15.22 15.47 15.68 15.85 16.60 17.33

DynGLR-G-12s∗ 15.22 15.47 15.68 15.83 16.52 16.91

DynGLR-G-1232∗ 15.22 15.46 15.66 15.85 16.58 17.18

DynGLR-G-12312∗ 15.22 15.46 15.66 15.85 16.55 17.17

DynGLR-G-12312s∗ 15.22 15.45 15.65 15.83 16.49 16.85
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Table 5.4: Classification Error Rate (%) For Spambase Dataset

% label noise 0 5 10 15 20 25

SVM-RBF 8.09 8.50 8.98 9.75 10.68 11.49

CNN 7.69 8.27 8.89 9.85 10.8 12.47

DynGraph-CNN 8.33 9.01 10.45 12.68 16.78 22.34

DML-KNN 7.84 8.41 8.49 8.98 9.83 11.02

DML-KNN-s 7.81 7.35 8.42 8.86 9.74 10.34

LN-Robust-SVM-RBF∗ 7.84 8.38 8.89 9.68 10.56 11.32

Graph-Hybrid∗ 18.34 19.19 20.37 21.85 24.17 26.68

CNN-Savage∗ 8.04 8.36 8.90 9.80 10.42 12.13

CNN-BootStrapHard∗ 7.69 8.30 9.24 9.68 10.05 12.01

CNN-D2L∗ 7.73 8.46 9.05 9.87 10.96 12.17

DynGLR-G-2∗ 7.84 8.37 8.42 8.95 9.85 10.83

DynGLR-G-12∗ 7.73 8.13 8.37 8.78 9.44 9.82

DynGLR-G-12s∗ 7.72 8.11 8.35 8.75 9.35 9.63

DynGLR-G-1232∗ 7.65 8.05 8.22 8.67 9.15 9.56

DynGLR-G-12312∗ 7.55 7.99 8.21 8.64 9.01 9.18

DynGLR-G-12312s∗ 7.55 7.94 8.18 8.61 8.96 9.13

Table 5.5: Classification Error Rate (%) For Gait Dataset

Γ frames (% approx. label noise) 0 (0) 2 (9) 4 (18) 6 (26) 8 (33)

SVM-RBF 15.50 15.79 16.87 18.24 20.10

CNN 14.90 16.12 17.88 20.61 24.34

DynGraph-CNN 14.98 16.45 18.33 23.10 26.36

DML-KNN 14.77 16.20 18.01 20.71 22.32

DML-KNN-s 14.76 15.85 16.83 19.26 20.89

LN-Robust-SVM-RBF∗ 15.52 15.74 16.66 17.89 18.91

Graph-Hybrid∗ 24.38 25.84 26.17 27.68 29.20

CNN-Savage∗ 14.90 16.10 17.77 20.37 22.11

CNN-BootStrapHard∗ 14.88 16.09 17.71 20.12 22.04

CNN-D2L∗ 14.89 16.09 17.72 19.90 21.89

DynGLR-G-2∗ 14.78 15.81 16.78 18.87 20.45

DynGLR-G-12∗ 14.77 15.74 16.52 18.12 19.38

DynGLR-G-12s∗ 14.73 15.55 16.44 17.67 18.25

DynGLR-G-1232∗ 14.71 15.58 16.49 17.43 17.94

DynGLR-G-12312∗ 14.68 15.50 16.42 17.04 17.42

DynGLR-G-12312s∗ 14.68 15.45 16.34 16.86 17.20
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5.4.4 Summary of findings

The DynGLR-G networks at the bottom of performance tables Tabs. 5.2–5.5 show the

outcomes of the ablation study. Specifically:

• DynGLR-G-12 consistently outperforms DynGLR-G-2, showing the effect of edge-

weighting.

• The improvement due to graph update can be observed between DynGLR-G-12

and DynGLR-G-1232

• By comparing DynGLR-G-1232 and DynGLR-G12312, small gains are observed,

except for low noise in Spambase dataset, due to iterative design, incorporating

edge weighting.

• By comparing DynGLR-G-2 and DML-KNN, performance improvements can be

observed due to replacing KNN-based classification with GLR; larger gains can

be observed as noise level increases.

• Semi-supervised classifiers DML-KNN and all DynGLRs with sampling (DynGLR-

G-12s and DynGLR-G-12312s) benefit from rank-sampling, which also reduces

the scale of training set without sacrificing the performance.

Furthermore, findings are that the importance of the following algorithmic steps,

in order of largest to least importance, to the performance can be summarized as: (I)

iterative graph update Eq. 5.4 - disconnect Q-edges and connect/reconnect P-edges

based on the restored labels after each GLR iteration to refine the graph structure,

(II) edge convolution operation - performing feature and denoised label aggregation on

neighboring nodes provides richer and smoother inputs and results in a spatially sparse

graph, (III) edge attention function Eq. 5.7 - to better reflect node-to-node correlation,

regularizing CNN training by weighting the edge loss based on classifier signal changes

before and after GLR.
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5.5 Summary

This chapter introduces an end-to-end iterative graph-based deep learning architec-

ture design to tackle the overfitting problem caused by the effects of noisy training

labels. It first proposes a CNN-based graph generator G-Net to build an initial graph.

Relying on the proposed graph-based regularized loss functions, it then proposes a

graph-based classifier W-Net to perform online label denoising of the training samples

that potentially have noisy labels. Based on the denoised training labels, the proposed

model updates the underlying graph structure by learning the proposed graph update

U-Net. Finally, the model learns a refined graph-based classifier W-Net to perform

classification using the updated underlying graph structure. The validation on three

different binary classification datasets demonstrate that the proposed architecture out-

performs the state-of-the-art classification methods when uniform noise are added to

the clean training labels. In further evaluation of the robustness against structured

label noise, the results of multi-class dataset indicates that the proposed approach is

capable of learning a robust classifier against the potential mislabeling of gait event

frames for gait phase classification dataset, contributing the classifier learning that are

previously investigated in Chapters 3 and 4. The rank-sampling method is adopted

to achieve another enhancement for this semi-supervised classification problem. How-

ever, the methodologies to enhance such a robust classifier to achieve better predictive

performance is still a open question which can be a future research direction.

There are still several drawbacks in the proposed architecture that can be further

studied, such as: (1) the K nearest neighbor based graph construction process limits

the maximum of node degree and requires manual tuning the hyper-parameter K to

achieve a good practice. (2) the selection of the values for thresholds ε is critical in

distinguishing whether the label of the sample is reliable or not which requires to be in-

vestigated for more datasets. (3) train multiple W-Nets for each GLR iteration is time

consuming which might results in significantly time waste for large-scale image classifi-

cation dataset. To mitigate these drawbacks, two main aspects can be investigated: (1)

G-Net: during graph construction process, different graph edge generation methods can
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be investigated to study the impact the graph construction in the proposed architec-

ture, such as [169] that proposes a simple switching based graph generator to generate

graph preserving features of graph structure satisfying given feature constraints. (2)

W-Net: refining a single W-Net across all GLR iteration can be an alternative solution

to reduce the model size and boost the training process.
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Chapter 6

Conclusions and Future Work

This chapter gives a brief summary and conclusion of this work. It also provides several

insights into the future research.

6.1 Conclusions

Driven by recent advances in imaging and multimedia signal processing technology,

healthcare monitoring services based on multimedia processing are emerging. Gait

analysis as one of the diagnostics tools in physical rehabilitation programs, being, for

example, periodically performed in the post-stroke recovery assessment. Video-based

gait analysis that enables cost-effective visual tele-rehabilitation for home-use attracts

more attentions from the community in recent decades. However, current optical di-

agnostic and patient assessment tools tend to be expensive and not portable, such as

VICON [6], Qualisys [7] and etc. This research proposed an alternative video-based

smart healthcare monitoring solution that is cost-effective, portable and requires much

less expertise knowledge. This thesis achieves this goal via: (1) automatic real-time

motion capture with autonomous scene calibration using a portable single depth cam-

era (MS Kinect v2) to reduce the system complexity in system setup and manual efforts

in measuring kinematics parameters (2) gait analysis by automatic and effective gait

phase segmentation using the proposed feature selection and extraction methods to

facilitate the diagnostics of muscle activities occurred in each different gait phase. Fol-
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lowing the recent advances in automatic feature extraction approach using deep learning

techniques, to study whether those hand-crafted features is sensitivity to those state-

the-of-art classification methods in sequence labeling problem, this research analyzes

the importance and sensitivity of feature selection and extraction methods in health-

care monitoring applications like gait assessment and cardiac diseases detection. To

improve the robustness of classifier learning when partial of training data are incor-

rectly labeled caused by manual mislabeling of the ground truth data, this research

introduces an iterative graph-based deep learning architecture design to learn robust

classifier model, reducing the risk of overfitting problem.

Specially, the following methodologies are proposed to address the related chal-

lenges. Chapter 2 proposes: (1) adaptive IR thresholding algorithm to reduce the

complexity of determining an appropriate threshold to correctly detect retro-reflective

markers without leading to center deviation on those markers with circular distributed

IR values. (2) histogram-based 3D marker location algorithm to map the detected 2D

marker into 3D space by recovering the depth maps even when partial occlusion occurs.

(3) automatic scene calibration procedure to setup the initial parameters that can be

reuse multiple times, without requiring expertise knowledge compared to the state-of-

the-art motion capture systems. (4) model-based automatic marker labeling to perform

robust classification of markers attached on the body joint of interests. Facilitating the

diagnostics of gait motion in individual gait phases, Chapter 3 includes: (1) 12 gait

features to better characterize the joint movements in different gait phases. (2) gait

pattern extraction method to prevent overfitting the classifier learning and reduce the

amount of training samples without sacrificing the classification performance. (3) opti-

mal feature extraction method to tackle the problem of temporal feature misalignment.

(4) gait phase reconstruction method to improve the segmentation of gait phases by

iteratively smoothing the predictions results globally. To further analyze the impor-

tance and sensitivity of feature selection and extractions, this research evaluates the

predictive performance and complexity of the classifier models using the state-the-art

classification methodologies for both gait phase and arrhythmia classification applica-

tions in Chapter 4. Improving the robustness of classifiers against the noisy training

128



Chapter 6. Conclusions and Future Work

labels, Chapter 5 proposes: (1) graph-based regularized loss functions to regularize the

CNN networks, considering the reliability of training samples. (2) iterative graph-based

semi-supervised classifier to perform both online denoising of training labels and clas-

sification of unlabeled testing samples. (3) graph update procedure to better reflect

the correlation between samples using denoised training labels resulting from graph

Laplacian regularization.

However, besides the drawbacks discussed in each chapter’s summary, there are

some limitations, drawbacks and considerations for this work, such as: (1) In Chap-

ter 2, this work does not provide the analysis of marker tracking accuracy in terms of

3D marker position comparison with the benchmarked VICON system. An alternative

way to investigate this can be done by using both static and dynamic testing similar to

[170] that uses the distance measurements of two markers (with constant distance in

real-world) to evaluate the linear tracking accuracy between two motion capture system

for gait analysis. (2) Alg. 3 relies on the identification of marker position first which

is not universal to unknown marker positions. An alternative method can be used to

replace it with a machine learning based regression model to improve the robustness of

marker location in 3D space, such as [171] that uses convolutional neural network to

automatically label the retro-reflective markers and reconstruct the hand motion. (3)

In Chapter 2, more IR-based marker detection algorithms can be used to benchmark

the detection accuracy instead of using only two proposed thresholding methods (static

threshold and adaptive threshold). Alternative methods with small number of tunable

parameters include: (a) [172] proposes a generalized Laplacian of Gaussian filter to

detect elliptical bob structure by locating the local maxima of an intermediate map

obtained from aggregating the log-scale-normalized convolution responses of each indi-

vidual filter. (b) [173] finds the maximas in the matrix of the Determinant of Hessian

of the input image. (4) In Chapter 3, this work propose 12 gait parameters to charac-

terize the gait motion. However, no other state-of-the-art approach is investigated to

benchmark with the proposed gait parameters to conduct the gait phase classification

task. More parameters as investigated in the literature can also be considered in the

future work, such as sagittal plane velocity, relative anterior acceleration in [174]. In
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addition, there is a open question “if less number of gait parameters is still effective

to be selected as input features to perform the classification task”. Therefore, differ-

ent combinations of the proposed gait parameters can be selected as input features

to investigate this question. (5) The overall video based motion capture system and

gait phase classification method still requires expertise in accurate marker placement

on the human body. This limitation should be addressed to finally deploy this kind of

system for in-home use without manual efforts from human. Future research direction

to reduce the manual efforts is discussed in the next section.

In summary, this thesis not only provides an alternative cost-effective, portable mo-

tion capture solution, but also investigates the feature selection & extraction methods

and robust classifier learning to facilitate the visual diagnostics for home-use healthcare

monitoring application.

6.2 Challenges and Future Work

Emerging healthcare monitoring techniques facilitate the cost reduction, effectiveness

improvement for traditional diagnostics which is often conducted in hospitals and lo-

cal clinics. For gait assessment in physical rehabilitation programs, although many

challenges are addressed in this research, there still remain open challenges where this

section provides several suggestions for future research:

1. gait analysis using a single depth camera in different views

Gait analysis is a clinical tool to perform a detailed assessment of a patient with

a walking disorder [175]. One of the elements in typical clinical gait analysis

is kinematic analysis, video-based motion capture system as one of the widely

used solutions to capture kinematics measurements, like state-of-the-art VICON

system often requires multiple cameras to capture the full body movements to

perform gait analysis [176]. To reduce the complexity and cost of such video-based

motion capture in gait analysis, this work propose a motion capture framework in

Chapter 2. However, only sagittal view gait analysis is investigated in this work.

Gait analysis from other view can be a future research direction. Experiments
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can be conducted similar to [62] which place the sensor to the ceiling in front of

the walking path line. Furthermore, accuracy of more kinematics measurements

are suggested to validate the robustness of system in wider range of gait analysis

like [177].

2. robust marker labeling without pre-defined model

The model-based marker labeling method in Chapter 2 requires automatic body

measurements before performing motion capture which is lack of robustness across

different motion capture based healthcare monitoring applications, such as gait

analysis from different views, timed-up-and-go test [58]. An application specific

pre-defined model like Plug-in-Gait is required, which is not universal for captur-

ing human motion in more generic tasks, such as when additional markers are

required during the session. A more generic approach like [178] that incorporates

deep learning techniques to automatic label the retro-reflective markers can be a

potential research direction to tackle this challenge. To conduct the experiments

for using a universal model to label the marker, the following steps can be one

of the potential approaches: (1) project the joint trajectory data in public avail-

able motion capture dataset [179] ( consists of 2600 recordings with 144 different

human subjects performing a variety of motions), into random views in order to

generate enough synthetic joint trajectory data. (2) for each frame, assume that

the marker label (joint name) is unknown to the project joint positions and use

the marker positions as input features and the corresponding joint as output cat-

egorical label to build a multi-class classification dataset. (3) develop a machine

learning model to assign individual categorical label (joint name) to a given set

of marker positions in each frame. (4) split the dataset into training, validation,

testing sets and train a model to evaluate its predictive performance in the testing

set. (5) evaluate the transferability of the model trained on [179] dataset to the

acquired trajectory data in Chapter 2. The motivation of the suggested study is

to investigate the possibility of using machine learning technique to automatically

assign joint names to a set of marker positions.
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3. feature fusion for multi-lead ECG classification

In this research, the sensitivity analysis of the feature selection/extraction method

in classification task focuses on the fixed two-lead ECG signals using a single fea-

ture extraction method. [180] investigates the deep feature fusion based methods

for classifying normal/abnormal samples using multi-lead ECG signals. The re-

sults show that the proposed multi-lead feature fusion based method [180] can

improve the classification accuracy compared to the one only with the single-

lead features. However, the target task in [180] is binary classification, which

requires a more board study in multi-class case, such as arrhythmia classifica-

tion. Since currently the method of 12-lead simultaneous recording ECG is very

popular in clinical practice, the study of analyzing feature fusion based feature

selection/extraction methods on 12-lead ECG signals can be a potential research

direction.

4. graph structure generation learning

Without prior knowledge of the underlying graph structure of partially labeled

data, in Chapter 5 proposes a CNN-based graph generator to build an initial graph

structure to reflect the node-to-node similarity. However, this method requires

to heuristically set the maximum degree for each node, which in this thesis is

estimated by grid search using a K nearest neighbor classifier. An alternative

method can be joining the random walk algorithm and graph sampling algorithm

to decrease the number of edges to an appropriate number without sacrificing the

underlying graph structure to represent the relationship between samples.
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dynamic time warping, with applications to clustering,” Pattern Recognition,

vol. 44, no. 3, pp. 678–693, 2011.

[95] J.-S. Wang, C.-W. Lin, Y.-T. C. Yang, and Y.-J. Ho, “Walking pattern classi-

fication and walking distance estimation algorithms using gait phase informa-

tion,” IEEE Transactions on Biomedical Engineering (TBME), vol. 59, no. 10,

pp. 2884–2892, Oct. 2012.

[96] M. Zhu, J. Xia, X. Jin, M. Yan, G. Cai, J. Yan, and G. Ning, “Class weights

random forest algorithm for processing class imbalanced medical data,” IEEE

Access, vol. 6, pp. 4641–4652, 2018.

142

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf


Bibliography

[97] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, Oct.

2001.

[98] J Shotton, R Girshick, A Fitzgibbon, T Sharp, M Cook, M Finocchio, R Moore,

P Kohli, A Criminisi, A Kipman, et al., “Efficient human pose estimation from

single depth images,” in Decision Forests for Computer Vision and Medical

Image Analysis. Springer, 2013, pp. 175–192.

[99] S Bharathidason and C. J. Venkataeswaran, “Improving classification accuracy

based on random forest model with uncorrelated high performing trees,” Inter-

national Journal of Computer Applications (IJCA), vol. 101, no. 13, pp. 26–30,

Sep. 2014.

[100] Y. Kozlov and T. Weinkauf, Persistence1d: Extracting and filtering minima and

maxima of 1d functions, https : / / www . csc . kth . se / ~weinkauf / notes /

persistence1d.html, Mar. 2019.

[101] L. Breiman, Classification and regression trees. Routledge, 2017.

[102] VICON, Plug-in-gait model, https://www.vicon.com/downloads/documentation/

plug-in-gait-model-details, Mar. 2019.

[103] M. Schwartz and P. C. Dixon, “The effect of subject measurement error on joint

kinematics in the conventional gait model: Insights from the open-source pycgm

tool using high performance computing methods,” PloS one, vol. 13, no. 1, 2018.

[104] Y. Yang, F. Pu, Y. Li, S. Li, Y. Fan, and D. Li, “Reliability and validity of kinect

rgb-d sensor for assessing standing balance,” IEEE Sensors Journal, vol. 14,

no. 5, pp. 1633–1638, May 2014.

[105] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters, vol. 27,

no. 8, pp. 861–874, 2006.

[106] Q. Zou, L. Ni, Q. Wang, Q. Li, and S. Wang, “Robust gait recognition by inte-

grating inertial and rgbd sensors,” IEEE Transactions on Cybernetics, vol. 48,

no. 4, pp. 1136–1150, 2018.

143

https://www.csc.kth.se/~weinkauf/notes/persistence1d.html
https://www.csc.kth.se/~weinkauf/notes/persistence1d.html
https://www.vicon.com/downloads/documentation/plug-in-gait-model-details
https://www.vicon.com/downloads/documentation/plug-in-gait-model-details


Bibliography

[107] L. Lo Presti and M. La Cascia, “3d skeleton-based human action classification,”

Pattern Recognition, vol. 53, no. C, pp. 130–147, 2016.

[108] C. Zhang, J. Zhang, and J. Hong, “Classification of eeg signals using multiple gait

features based on small-world neural network,” in International Conference on

Ubiquitous Robots and Ambient Intelligence (URAI), IEEE, Aug. 2016, pp. 61–

66.

[109] L. R. Rabiner and B.-H. Juang, “An introduction to hidden markov models,”

IEEE ASSP Magazine, vol. 3, no. 1, pp. 4–16, 1986.

[110] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in

speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[111] J. Taborri, S. Rossi, E. Palermo, F. Patanè, and P. Cappa, “A novel hmm
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Appendix A

Pilot Study Protocol for Gait

Analysis

Research Group

Philip Rowe, Biomechanics Unit, Biomedical Engineering, University of Strathclyde;

Andrew Kerr, Biomechanics Unit, Biomedical Engineering, University of Strathclyde;

Vladimir Stankovic, Electronic and Electrical Engineering, University of Strathclyde;

Lina Stankovic, Electronic and Electrical Engineering, University of Strathclyde;

Shikha Sarkar, Electronic and Electrical Engineering, University of Strathclyde;

Cheng Yang, Electronic and Electrical Engineering, University of Strathclyde.

Minxiang Ye, Electronic and Electrical Engineering, University of Strathclyde.

Protocol Title

Validation of a 2D single camera video system and a 3D single camera video system to

measure limb motor control: A pilot study

Design

Pilot validation of a two and three dimensional video system to measure metrics of limb

motor control. Concurrent comparison will be made with a state of the art motion

analysis (VICON, Oxford, UK).
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Sample

A pilot sample of 5-10 healthy subjects.

The small sample size (5-10) is considered sufficient to provide the mean and vari-

ance data for a power calculation of sample size for a future larger study as well a

testing the feasibility of procedures.

Recruitment

Individuals will be recruited from the staff and student community of the University of

Strathclyde. Interested individuals being given information sheets.

Data Collection Protocol

Interested individuals will be offered a two hour appointment in the large biomechanics

laboratory (Wolfson Building, Biomedical Engineering, University of Strathclyde) with

dates and times arranged at the convenience of the interested individual.

Taking Consent

On arrival at the biomechanics laboratory one of the research team will provide a short

introduction to the biomechanics unit as well as the motion analysis and video camera

systems. The objectives of the study will be explained again to the participants and

they will be given an opportunity to ask any questions. If the individual is still happy

to proceed they will be asked to sign a consent form. At this point they will be assigned

a study number, e.g. PVT001, and referred to thereafter as study participant number

PVT00[No.].

Participant Preparation

Each participant will then be helped to put on lycra clothing, if the clothes they are

wearing are considered too loose fitting. To help construct the three dimensional model

each participant will then have the following dimensions measured and recorded in their

individual case report file in addition to their age and gender:
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Height – cm;

Weight – Kg;

Arm length - cm;

Shoulder width – cm;

Elbow width – cm;

Wrist width – cm;

Leg length – cm;

Pelvis width – cm;

Knee width – cm;

Ankle width - cm;

Retro-reflective markers will then be attached to the skin (or clothes) overlying the

following anatomical points:

• Upper limb:

posterior superior iliac spine;

anterior superior iliac spine;

mid iliac crest;

spinous process of 7th cervical vertebra;

tragus of ear;

most lateral border of the acromion process;

mid humerus;

lateral and medial epicondyles of humerus;

radial styloid process;

head of ulna.

• Lower limb:

anterior superior iliac spine;

front waist;

back waist;

tip of the big toe;

outside of the thigh below hand swing;

outside of the knee joint;
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outside of the lower leg;

bony prominence on the outside of the ankle;

back of the foot;

outside of the foot at the base of the little toe;

tip of the big toe.

For the 2D and 3D video analysis, circular sticky paper labels marked with a con-

centric black and white pattern will be attached to the wrist [radial styloid process],

elbow [lateral epicondyles of humerus], shoulder [most lateral border of the acromion

process], pelvis [mid iliac crest), and head (tragus of ear), for upper limb; pelvis, knee,

and ankle, for lower limb. Where these landmarks already have the retro-reflective

markers attached the paper labels will be placed directly under the reflective marker

which will be attached to the center of the paper label. This has worked well in a

previous validation study for the lower limb (Ugbolue et al 2012).

For upper limb movement analysis, participants will sit in a standard sized armless

chair in front of an adjustable table in the middle of the laboratory with their affected

arm resting on the table. For lower limb movement analysis, participants will walk on a

scaled mat (6 meters long, 0.7 meter wide) in one direction, and the other way around.

For the 2D video analysis, a high speed camera (Camera A) will be mounted on a

tripod and position approximately 4m from the participant in line with their elbow. For

the 3D video analysis, a conventional camera with a distance sensor will be mounted

above Camera A.

Movement Tasks

For upper limb movement analysis, when the starting position has been achieved and

the participant is happy to continue they will be asked to perform the following move-

ments three times each giving a total of 15 movements.

1. Reach forward to touch a plastic cup positioned on the table directly in front of

them at a distance equivalent to 80;

2. Reach forward to lift the same plastic cup towards their mouth. Instruction: bring

the cup to your mouth;
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3. Reach forward to lift the same plastic cup and turn it. Instruction: reach and turn

cup over;

4. Reach forward to touch a plastic cup positioned on the table toward their unaffected

at a distance equivalent to 20;

5. Lift their hand to touch the back of their head.

For lower limb movement analysis, again, when the starting position has been

achieved and the participant is happy to continue they will be asked to perform the

following movements three times each giving a total of 6 movements.

1. Walk from one end (Point A) of the scaled mat to the other (Point B);

2. Walk from Point B to Point A.

Participants will be asked to perform each movement as naturally as they can.

Once the movements have all been attempted the participant will be thanked for

their participation and markers removed from their body. This will conclude their

participation in the study.

Data Storage

The case report file (using participants study number) will be stored in a locked cabinet

for the duration of the study i.e. until September 2014. Video files will be stored on

an encrypted external hard drive and locked in the same cabinet. After the study has

ended the video files will be permanently deleted and the paper records of the data kept

in storage (locked cabinet in the Biomedical Engineering, Department) for a period of

5 years. Processed results will be made available for publication and to inform a grant

application for a larger study.

Statistical Analysis

Data from the three systems (3D motion analysis and 2D and 3D video analysis) will

be compared for each movement using analysis of variance and intra class correlation

coefficients. The variables for comparison will be:

1. Movement duration;

2. Maximum forward tilt of trunk;
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3. Magnitude of angular displacement at shoulder and elbow;

4. Relative timing of trunk, shoulder and elbow movements;

5. Magnitude of angular displacement at knee;

6. Relative timing of hip, knee, and ankle movements.

This data will be used to inform a power calculation of sample size for a second larger

study planned for next year which will investigate validity, reliability and responsiveness

of the video system with a larger sample including stroke survivors as participants.
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Optical Kinematics Analysis

(OPTIKA) Software

B.1 Introduction

OPTIKA is a software package for analyzing motions(gait) in a easy way via a single

MS Kinect camera. It is written by me using Visual C++ and C# during my PhD. This

appendix provide an operation manual for the OPTIKA software which autonomously

tracks the movement of markers attached to the body and measures kinematics param-

eters related to joint movement and velocity. OPTIKA software is equipped with the

latest state-of-the-art signal processing and computer vision algorithms to determine

motion patterns of interest from infrared and depth data. OPTIKA is portable and

easy to set up, thus suitable for local clinics and home use, without requiring any clini-

cal expertise to operate. It is independent of the color of the fabric of subjects’ clothing

or lighting conditions. Motion capture is enabled using only a single camera (infrared

+ depth), which is portable and cost effective compared to most industry-standard

optical systems, without compromising on accuracy.

A user-friendly interface to the proposed underlying framework of OPTIKA is pro-

vided for a gait analysis application. It supports the following features:

1. Recording of infrared and depth images, for example, using MS Kinect SDK [14].
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2. Real-time camera/scene calibration.

3. Real-time subject modeling for sagittal plane.

4. Multi-view tracking and 3D trajectory reconstruction.

5. Kinematics analysis using customized analyzers.

6. Rehabilitation diagnostics interface using local or cloud database.

Figure B.1: GUI Interface for Multi-view Tracking

Fig. B.1 shows the snapshot of the graphical user interface (GUI), which shows how

convenient it is to access the recorded experiments by selecting the walking compo-

nent. Users can also view the automatic reconstruction process within the multimedia

application or manually playback the whole experiment. Autonomous analysis is per-

formed and gait associated parameters are generated afterwards. These data (including

joint angles, movement patterns, gait phases, step and stride length, swing and stance

duration) can be easily accessed within the analyzer toolbox. For the rehabilitation

applications, a diagnostics interface is developed to report the patient’s condition. The

following sections describe which components are needed, including sensor and mark-

ers, how to set-up the sensor camera, place the markers and use the software. The

kinematics engine currently calculates the following parameters:
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1. Step and stride length.

2. Swing and stance duration.

3. Ankle, knee and hip angle during gait - in the sagittal plane.

4. Movement of the pelvis around the horizontal axis.

5. Velocity and acceleration of the ankle, knee and hip joint.

B.2 Equipment

1. MS Kinect v2 for Windows or MS Kinect v2 for Xbox One and Adapter for

Windows [181].

2. A Kinect compatible computer/laptop. Please use Kinect Configuration Verifier

tool to check compatibility [182].

3. Retro-Reflective Markers (19mm, see Table. B.1 for the number of markers needed).

4. Tape, scissors or marked walking mat.

B.3 Environment Setup

This setup is only performed if the camera location is changed before measurements.

There are three steps as below:

1. Place walking mat or walking line (tape) 4 meters in length. Mark the center

(indicated by ‘Model Point’) - see Fig. B.2.

2. Place Kinect camera on a tripod 2.8 meters away from the center – see Fig. B.3.

3. Place the Floor Tool on the model point and use OPTIKA Scene Scanner for

scanning the scene.
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Figure B.2: Physical environment setup 1

Figure B.3: Physical environment setup 2
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B.4 Subject Setup

The following two steps should be executed for each new subject before measurements

take place.

Marker location Knee
An-
gle

Ankle
An-
gle

Hip
An-
gle

Pelvis
Tilt

Step Stride Swing Stance Gait
Ve-
loc-
ity

Shoulder 1 1 1 1 1 1 1 1 1

Hip 1 1 1 1 1 1 1 1 1

ASIS 1

PSIS 1

Knee 1 1 1 1 1 1 1 1 1

Ankle 1 1 1 1 1 1 1

Toe 2 2 2 2 2

Heel 2 2 2 2 2

Table B.1: Marker Placement. 1: Marker always present during all experiments. 2:
Marker should be placed on both left and right feet.

1. Place markers on subject’s body depending on the required measurements – see

Table. B.1. The first column lists the joint position. The first row names the

required parameters to be calculated. For example, if step length is needed,

markers should be placed on the shoulder, hip, knee, ankle joint, as well as toe

and heel of both left and right foot.

2. Use OPTIKA Subject Calibrator and follow the instructions/prompts. a) Ask

subject to stand at the model point such that their left sagittal body is facing

the camera. b) Ask subject to turn the opposite way such that the right sagittal

faces the camera. Note: Ensure all markers are visible on your screen during the

modeling process.

B.5 Measurement

1. Use OPTIKA Tracker tool and follow the prompts. a) Ask subject to walk from

walking start to walking end or from walking end to walking start. b) Select
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desired mode (e.g. Left Sagittal Full Mode is walking from right to left when

looking from camera and all markers in Table. B.1 are attached). c) Press start

button when subject starts walking. d) Press stop button when subject returns.

2. Press save button to store the results for reviewing.

3. Review previous video and correct marker labels through marker manager.

4. Select desired analyzer for processing the kinematics and the results will be ex-

ported as different formats.
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