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Abstract

Air pollution has been linked to a number of health impacts and has been studied in

a variety of contexts using a variety of studies and methodologies. This thesis is made

up of a collection of papers that cover a wide range of research subjects and illustrate

different study analysis and design methodologies. Multiple imputation (MI) techniques

were used to deal with the missing data, where missForest had the lowest imputation

error among the other imputation approaches. Time series modelling was used to predict

Rheumatoid Arthritis (RA) disease activity score (DAS28) using the information of air

pollution. This thesis examined the linkage among SO2, NO2, O3 and disease activity

scores for patients with RA in Kuwait. The association was investigated using the

Granger causality test (using the VECM approach and other time series approaches)

(in analysis of static causality) and the Impulse Response Functions (IRFs) analysis (in

analysis of dynamic causality). A comprehensive conceptual framework was used in the

study, which included a cointegration test, unit root test, and panel VECM. Long-run

causation and asymptotic convergence among the variables were determined using the

panel VECM. The empirical outcomes show that NO2 and O3 are statistically significant

in cases when DAS28 is the dependent variable, in most of the study locations (ASA,

FAH, MAN and JAH). The results demonstrate that the lagged error correction term

(ECT) coefficients in DAS28 and air pollution emissions are statistically significant.

Overall, the main conclusion found in this thesis and according to the cointegration test,

the results show that there exists a long run relationship between the emissions of air

pollution and the change of DAS28 among RA patients.
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Chapter 1

Introduction

1.1 Background

Air pollution has become a significant issue in recent decades, with dire toxicological

consequences for both human wellbeing and the ecosystem. Sources of pollution vary

greatly and can be as small as a single cigarette butt or as a volcanic eruption. Collective

sources exist as well, such as massive volumes of emissions from automotive machines

and industrial processes (Ghorani-Azam et al., 2016).

Over four-fifths of the world’s population live or work in pollution levels higher than

the World Health Organization’s (WHO’s) approved standards (Brauer et al., 2012).

About 3.6 million fatalities are linked to environmental air pollution, with an additional

4 million associated with residential sources (Lim et al., 2012). This worrisome statistic

is expected to double by 2050, surpassing numerous commonly known causes of death

(for instance, hypercholesterolemia) (Brook et al., 2017). Furthermore, air pollution has

the potential to disrupt ecosystems, destroy monuments and buildings, and modify the

earth’s energy balance, resulting in severe climate change (Rao et al., 2017).

In the framework of a long-term scenario, assumptions on the control of air pollution

must also be compatible with the fundamental issues of climate change alleviation and

alteration. In such circumstances, pollution results are predicted to occur due to a vari-

ety of factors, including efficiency gains, human health and pollution-control strategies,
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as well as other problems, such as energy access, climate alteration, and agricultural

productivity.

Research has thoroughly demonstrated that air pollution has extensive effects on the

onset of diseases, such as cancer, cardiovascular dysfunction, and respiratory illnesses

(Robinson, 2005; Habre et al., 2014; Ayres et al., 2006; Saxena and Srivastava, 2020).

Even brief exposure to air pollution can induce or exacerbate a variety of respiratory

and other illnesses, including bronchitis, asthma, diabetes, RA, and chronic obstructive

pulmonary disease (COPD). The health risks of exposure to air pollution have been

a public health issue for almost 700 years (Powell, 2012). For much of this time, the

majority of air pollution and health research case studies have scrutinised the impact

of acute exposure over a few days, instead of chronic exposure in a span of months or

years.

A cohort study is commonly used to determine the health hazards of prolonged ex-

posure. One example comes from an Australian longitudinal cohort research that looked

at the effects of air pollution on the health of a person who was first hospitalised with

heart disease. They discovered that severe pollution exposure elevates readmissions to

hospitals between 3 months to one year of release, with the effect being more pronounced

in individuals with heart conditions (Afoakwah et al., 2020). Another study from China,

investigated the severity of meteorological factors and air pollutants on daily cases of

measles between 2005 and 2009 in Lanzhou City (Chengguan District). They discovered

that air pollution and weather conditions had a delayed effect on the number of measles

cases on a daily basis (Peng et al., 2020).

On the level of spatial-temporal air pollution modelling, Girguis et al. (2020) demon-

strated the impact of utilising a spatiotemporal exposure prediction model that has

three stages and introduced formal techniques of epidemiological health risk estimate

correction using shared, multiplicative measurement error (SMME). They demonstrated

that spatiotemporal models based on machine learning approaches are preferred for use

because they produce superior general exposure approximations due to advances in ac-

curacy and bias reduction. To fully appreciate the inferences of employing these updated
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exposure models in the epidemiological setting, epidemiologists, exposure scientists, data

scientists, and statisticians have to collaborate instead of working in isolation (Butland

et al., 2019).

The discipline of air quality research comprises various subtopics: a) developing air

pollution technology, such as painting for photocatalytic breakdown of nitrogen oxide

(NOx) gases from automobiles, b) formulating methods for estimating and observing

air quality, c) identifying pollutant factors and sources, and their relationships, d) de-

termining cause-effect mechanisms of air pollution, and e) forecasting of temporal and

spatial variations in air concentrations. Difficulties exist within each branch of air qual-

ity research, which inevitably become even more difficult in developing countries due to

institutional, budgetary, and technological constraints. The number of monitoring sta-

tions, in particular, is restricted, and constant observation over long periods of time is

ineffective in many emerging cities. As a result, insufficient data is collected, processed,

and interpreted, which prevents timely, location-specific actions necessary to adapt to

and mitigate the effects of deteriorating air quality.

This thesis develops a multivariate time series model for estimating and measuring

short- and long-term effects of air pollution on chronic diseases toward chronic diseases

such as rheumatoid arthritis (RA), a chronic inflammatory condition affecting a per-

son’s joints. Additionally, this illness can affect several other body systems in certain

individuals, including their eyes, skin, heart, lungs, and blood vessels.

Numerous limitations and barriers presented themselves in our attempt to reach the

optimal level of accuracy for estimating a multivariate time series model to capture the

cause-and-effect relationship between pollutants and their effect on human health. One

of the greatest barriers that faced us was the lack of information within air quality

investigations, that is to say that the available data had missing values. Monitor faults

and errors, power blackouts, system crashes, pollution levels below detection levels, and

filter modifications are all common causes of missing air pollution data (Imtiaz and Shah,

2008; Libasin et al., 2020; Alahamade et al., 2021; Alsaber et al., 2021b).

The second major barrier was the inability to easily compare patient data between
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multiple patient registry databases. We needed a deeper understanding of patient data

than a single database could provide, but due to privacy concerns, there was a lack of

personally identifiable information within the databases that would allow us to link two

different sets of data to the same patient. It was essential to link the data to the same

patient so as to determine relevant characteristics, such as patient address or hospital

location. This deep understanding helped us to generate the key column to link between

the datasets.

Another barrier initially was a lack of programming knowledge. For example, knowl-

edge of programming skills such as using Python or R Programming would help wran-

gling the data into many shapes. For example, the air pollution dataset usually provided

data in terms of hourly observations, but the patient registries usually provided daily

observations. To link the air pollution dataset with the patient dataset, we aggregated

the data on air pollution using R programming to convert it from hourly observations

to daily observations.

Many empirical studies have shown the direct relationship between air pollutants

and most chronic diseases. Prospero et al. (1996), for example, demonstrated that sul-

phur dioxide (SO2) in the atmosphere is generated from both natural and anthropogenic

sources. Sulphur dioxide and its atmospheric derivatives (for instance, sulphuric acid)

can affect the atmosphere on global, regional, and local levels, in addition to having

negative health effects (for instance indirect and direct radiative forcing and acid de-

position). Anthropogenic origins are thought to be responsible for more than 70% of

worldwide sulphur dioxide emissions, with fossil-fuel combustion accounting for 50% of

that.

Air pollution can be defined as an atmospheric condition in which pollutants can have

harmful effects on humans, animals, and the environment (Rao et al., 2017). Pollutants

include, but are not limited to, gases (nitrogen oxides, carbon monoxide, and sulphur

oxides), radioactive substances, and particulate particles, identified based on having an

aerodynamic diameter up to and including 2.5 micrometers in diameter (PM2.5) or 10

micrometers in diameter (PM10).
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Air quality prediction assists in informing the public about the quality of air, in

taking required safety precautions, and in alerting authorities and companies to take

appropriate action, such as actions to reduce emission rates. Consequently, this will

then aid in further reducing and avoiding air pollution exposure.

1.2 Ambient Air Pollution

Human activities pollute the air we breathe, the water we drink, and the soil we farm,

all having negative effects on the environment. While the industrial revolution was

beneficial for science, technology, and society, it was also harmful in that it resulted

in the release of massive amounts of hazardous pollutants into the atmosphere. As a

result, environmental degradation can now be seen as a complex, global, public health

concern. This overarching issue can also be linked to economic, social, and legislative

issues. Clearly, in these times, urbanisation and industrialisation are reaching unsettling,

record-high levels over the world. According to the World Health Organization (WHO),

anthropogenic air pollution "is one of the world’s most serious public health threats,

causing around 9 million fatalities each year" (Kumari et al., 2018).

The WHO defines ambient air pollution as potentially harmful pollutants emitted

by industries, households, cars, and trucks. Of all of these pollutants, fine particulate

matter (PM) has the greatest effect on human health. Most fine PM comes from fuel

combustion from vehicles, power plants, industries, households, or biomass burning. The

WHO estimates fine PM causes 25% of lung cancer deaths, 8% of COPD deaths, and

15% of ischemic heart disease and stroke.

Exposure to air pollution is a risk factor with significant health impacts (Manisalidis

et al., 2020), including epidemiological risks involving the probability that a disease,

injury, or infection will occur. The risk assessment of air pollution follows the air pollu-

tion pathway (Figure 1.1) from a) sources, through b) emissions, c) concentrations, d)

exposures, e) doses, and finally to f) health impacts (Brusseau et al., 2019). Sources can

be defined as the origin of the pollutant, which generally involve the type, quantity, and

quality of fuel used. Emissions are air pollutants released from the source that are trans-
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formed and transported through the environment. Concentrations are the amount of an

air pollutant in a specific space and for a specific duration. Exposures are the concentra-

tions of air pollutants inhaled and can be measured based on the pathways, durations,

intensities, and frequencies of contact with the pollutant. Doses are how much of the

exposure is deposited in the body. Health impacts accrue from doses. They can be acute

(short-term) or chronic (long-term), and are non-specific, in that they have many risk

factors. Monitoring and intervention can occur at any stage along this pathway. Moni-

toring health impacts provides the primary risk indicators, though control measures at

this stage are often too late, further complicated by their non-specific nature. Likewise,

monitoring doses is also too late in the air pollution pathway, further complicated by

a poor understanding of many pollutants. In contrast, control measures and standards

generally focus on sources, emissions, and concentrations, with recent efforts targeting

exposures (Tsiouri et al., 2015; Nguyen and Marshall, 2018).

Sources

Emissions

Concentrations

Exposures

Doses

Health	impacts

Figure 1.1: Health impact assessment following the impact pathway chain.
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1.3 Fundamentals of Ambient Air Pollution

Ambient air pollution is a complex mixture of many aerosol masses– more commonly

referred to as particle matter and gases. Air quality is generally measured from a small

subset of these particles and gases. Two important indicators of air quality are PM2.5

and tropospheric ozone (O3). According to the Health Effects Institute (2018), PM2.5 is

the most consistent and most robust predictor of health effects from studies of long-term

exposure to air pollution. Similarly, O3 has been associated with increased respiratory

mortality (Health Effects Institute, 2018). Quantifying exposure to ambient air pollution

using PM2.5 and O3 as indicators is also consistent with the Global Burden of Diseases

(GBD), Injuries, and Risk Factors Study (Yang et al., 2022; Karimi et al., 2019; Anenberg

et al., 2018).

The 2005 WHO Air quality guidelines offer global guidance on thresholds and limits

for key air pollutants that pose health risks (Organization, 2006; Organization et al.,

2005). The guidelines indicate that by reducing PM10 pollution from 70 to 20 micro-

grams per cubic metre (µg/m3), we can cut air pollution-related deaths by around 15%.

The Guidelines apply worldwide and are based on expert evaluation of current sci-

entific evidence for:

• sulphur dioxide (SO2),

• particulate matter (PM10 or PM2.5),

• ozone (O3), and

• nitrogen dioxide (NO2).

1.3.1 Sulphur Dioxide (SO2)

Historically, the main components of air pollution in many parts of the world have com-

prised SO2 and PM derived from the combustion of fossil fuels (Machol and Rizk, 2013).

Large urban areas have experienced the most serious problems, where coal has been used

for both domestic heating purposes and poorly controlled industrial activities (Fenger,
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1999; Mosley, 2014). In such situations, these sources of pollutants have generally been

considered collectively, with researchers drawing on findings from epidemiological stud-

ies of heavily polluted areas completed decades earlier. To develop guidelines in this

way, researchers review 24-hour averages of acute effects and annual averages of chronic

effects.

Especial attention has been given to SO2, largely based on findings from controlled,

human exposure studies. Such studies have allowed guidelines to be developed based

on shorter averaging periods as short as single-hour averages which are relevant to ex-

posures at peak concentrations that may arise from sources burning coal or heavy oil,

whether or not accompanied by substantial concentrations of particulates. Epidemio-

logical studies published in the last decade have provided further evidence on the health

effects of SO2, warranting an independent section focusing on epidemiological results in

locations mainly polluted by motor vehicles and various industries (Smith et al., 2009).

A major air pollutant in many parts of the world, SO2 derives from the combustion of

sulphur-containing fossil fuels (Tsoeleng and Shikwambana, 2020). Oxidation of SO2,

especially with metallic catalysts, leads to the formation of sulfurous acid and sulfuric

acid. Neutralisation, by ammonia, leads to the production of bisulfates and sulfates.

Although natural sources, such as volcanoes, contribute to environmental levels of SO2,

in Europe, anthropogenic contributions are the greatest concern, as sulphur-containing

fossil fuels are commonly burned for domestic heating and for power generation. How-

ever, in recent years the use of high-sulphur coal for domestic heating has declined in

many western European countries, leaving power generation as the predominant source.

This has led to a continued reduction in levels of SO2 in cities such as London that

were once heavily polluted. The use of tall chimneys at power stations has also led to

widespread dispersion and dilution of SO2 (Smith et al., 1978). These usage pattern

changes have led to similar concentrations of SO2 in urban and rural areas. In fact,

in some areas, rural concentrations now exceed those in urban areas. Exposure to SO2

causes eye-irritation and can affect the respiratory system and the functions of the lungs.

Inflammation of the respiratory tract causes coughing and mucus secretion, aggravates
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asthma and chronic bronchitis, and makes people more susceptible to respiratory infec-

tion. Hospital admission rates for cardiac disease and mortality rates both increase on

days with higher SO2 levels (Xu et al., 2021; Peters et al., 1999). The effects of SO2

are not limited to those on humans. When SO2 combines with water, it forms sulphuric

acid, the main component of acid rain, which can cause deforestation.

1.3.2 Particulate Matter (PM10 or PM2.5)

A common proxy indicator for air pollution is the amount of PM in the air, which affects

more people than any other pollutant (Künzli et al., 2000). The major components of

PM are sulfate, nitrates, ammonia, sodium chloride, black carbon, mineral dust, and

water. These form a complex mixture of solid and liquid particles of both organic and

inorganic substances, suspended in the air (Khaniabadi et al., 2018). While PM10 can

penetrate and lodge deep inside the lungs, PM2.5 are even more damaging, as they

can penetrate the lung barrier and enter the blood system. Chronic exposure to PM

increases one’s risk of cardiovascular and respiratory diseases, as well as lung cancer

(Beeson et al., 1998). Air quality measurements are typically reported in terms of daily

or annual mean concentrations of PM10 particles per cubic metre of air volume (m3).

Routine air quality measurements typically describe such PM concentrations in terms

of micrograms per cubic metre (µg/m3). When sufficiently sensitive measurement tools

are available, concentrations of fine particles (PM2.5) are also reported. There is a

close, quantitative relationship between exposure to high concentrations of PM10 and

PM2.5 and increased mortality or morbidity, both daily and over time (Powe and Willis,

2004). Conversely, all other factors being the same, when concentrations of small and

fine particulates are reduced, related mortality rates also decrease. Understanding this

relationship allows policymakers to project expected population health improvements

upon reducing particulate air pollution. Small particulate pollution, of either PM10 or

PM2.5, has health impacts even at very low concentrations. In fact, there is no threshold

below which damage has not been observed. Therefore, the WHO (2005) guidelines call

for the lowest PM concentrations possible (Organization et al., 2021).
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1.3.3 Ozone (O3)

A colourless, odourless reactive gas, O3 is comprised of three oxygen atoms. It is found

naturally in the earth’s stratosphere, where it absorbs the ultraviolet component of in-

coming solar radiation that would be harmful to life on earth. It is also found near

the earth’s surface, where pollutants emitted from society’s activities react in the pres-

ence of sunlight to form O3. Principal pollutants involved in these reactions include

NOx, volatile organic compounds (V OCs), and carbon monoxide (CO). All of these

compounds are referred to as ozone precursors (Zhang et al., 2019).

Excessive O3 in the air can have a marked effect on human health. Acute O3 expo-

sure can cause breathing problems, trigger asthma, reduce lung function, and cause lung

diseases. Chronic exposure may cause lower lung function and deteriorated or abnormal

lung development in children (Kinney et al., 2000; Gauderman et al., 2002; Zhang et al.,

2019). Although the WHO also considers O3 to be a cause of COPD, the U.S. Environ-

mental Protection Agency (EPA) suggests there is insufficient evidence for a definitive

claim (EPA, 2013). Several studies have correlated acute high O3 concentration with

increased school absences, increased visits to emergency rooms, and increased hospital

admissions (Lin et al., 2008; Khorsandi et al., 2021; Malig et al., 2016; Tian et al., 2018;

Niu et al., 2021). Both the WHO and the EPA consider more susceptible populations at

higher risk of developing negative health effects. These include people with preexisting

respiratory diseases (e.g., asthma, COPD), children, older adults, and people who are

active outdoors, especially outdoor workers (WHO, 2005; EPA, 2013).

1.3.4 Nitrogen Dioxide (NO2)

Nitrogen Dioxide (NO2) is a specific hazardous gas among a group of highly reactive

gases known as nitrogen oxides (NOx). The primary sources of anthropogenic NO2 emis-

sions are combustion processes such as power generation, heating, and vehicle engines.

All NOx are harmful to human health and the environment, but NO2 is of greatest

concern for numerous reasons (Costa et al., 2014). When concentrations are 200 µg/m3

or higher, it causes extreme irritation within human airways. It is the primary source of
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nitrate aerosols, which comprise up a large percentage of PM2.5. When NO2 is combined

with ultraviolet radiation, O3 can also be produced. Chronic exposure to NO2 has been

combined to an increase in bronchitis symptoms in children with asthma, according to

epidemiological research. Evidently, studies have shown reduced lung function develop-

ment to correlate with NO2 levels currently measured in North American and European

cities (Liang et al., 2016). It can also cause an increased risk of inhalation allergies.

There is evidence that both the effects of chronic NO2 exposure on mortality, and the

degree of those effects, are comparable to those of PM2.5 (Faustini et al., 2014).

1.3.5 Air Quality Index (AQI)

There are numerous air quality indices in use around the world, each with its own presen-

tation and concept, making comparisons of air quality between other regions and cities

difficult (Van den Elshout et al., 2008; Kanchan et al., 2015). The air quality index

(AQI) is a numerical indicator used globally and intended to standardize the process of

calculating the degree of air pollution using measured quantities of specific ambient air

contaminants. In an effort to preserve the environment and human health, it informs the

policymakers and public about the seriousness of air pollution and the negative effects

it can have on human health. It is also used to evaluate pollution-reduction initiatives

and track trends in ambient air quality (Plaia and Ruggieri, 2011). Stations monitoring

ambient air quality provide a vast amount of data on a time-specific basis. These statis-

tics are presented to stakeholders as either AQI values or alternative indices that vary in

timeframe, purpose, and several other sub-indices founded on epidemiological research

(Murena, 2004; Cheng et al., 2007; Kumar and Goyal, 2011; Chen et al., 2013; Van den

Elshout et al., 2014; Al-Fadhli, 2017). These statistics focus on six main air pollutants:

NO2, SO2, O3, PM10, PM2.5, and carbon monoxide (CO) (Mintz, 2006, 2009). The

AQI values range from 0 to 500, and their degree is proportional to the concentration

of contaminants in the ambient air, therefore a higher AQI number signals more severe

potential health consequences. When the AQI exceeds 100, the air quality is considered

unhealthy for sensitive groups (Organization et al., 2005). Table 1.1 shows the air pollu-
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tion classification based on the AQI. A different and unique relationship occurs between

AQI level and health effects for every colour-coded AQI.

Table 1.1: Categories of air based on air quality index (AQI) and relevant information
(EPA, 2009)

Range of AQI Air quality conditions/colour code Effect on health

0-50 Good/green Health issues do not exist because the air quality
is good.

51-100 Moderate/yellow

There are no health issues because the air qual-
ity is moderate, and is considered safe for most
individuals. A proportion of highly sensitive
people may experience a minor effect on their
health.

101-150 Unhealthy for sensitive groups/orange
Exacerbation of symptoms in persons who are
prone to effects on the respiratory system and
heart.

151-200 Unhealthy/red
Some members of the general public may experi-
ence health effects; members of sensitive groups
may experience more serious health effects.

201-300 Very unhealthy/purple

Exacerbation of symptoms in those who have
had a heart attack or who have pulmonary ill-
ness and have had their exercise perseverance
reduced; regular healthy people may experience
some symptoms.

>300 Hazardous/maroon
Healthy people’s exercise tolerance deteriorates,
they have evident symptoms, and certain dis-
eases manifest themselves ahead of time.

According to Johnson et al. (2010), the Air Quality Index (AQI) is defined as a

measure of the condition of air relative to the requirements of one or more biotic species

or to any human need (Johnson et al., 1997, 2010). The AQI is divided into categories,

in which they are numbered, and each slot is marked with a colour code. This provides

a scale from a healthy level of zero to a very hazardous level of above 300 as a health

risk indicator associated with air quality.

The AQI is a standardized measure and a communication tool that provides a sum-

mary of ambient air quality and corresponding health risks associated with air pollution

due to gases and PM (Kowalska et al., 2009). These indicators allow the stakeholders to

track their regional, national, and local air quality without having to know the specifics

of the underlying data. From the standpoint of public health, the major goal is to offer

information to the policymakers and public that enables stakeholders to take necessary

12



steps to protect themselves from the harmful effects of air pollution. A secondary goal

is to raise awareness of the effects of air pollution at existing levels of exposure, in order

to motivate changes in individual behaviour as well as public policy (Doan and East,

1977; Stieb et al., 2005).

The WHO (2006) has advised nations creating policies to carefully analyse their own

local situations, taking into account the unique characteristics of each location’s target,

namely AQI (Pruss-Ustun et al., 2006). For our research, we calculated the AQI based

on the Al-Shayji et al. (2008) AQI, which was designed for the state of Kuwait based

on USEPA’s criteria (Fitz-Simons, 1999). In our study, Air Quality Index (AQI) is a

measurement of air quality on a given day. It provides information on how clean the air

is. We then, divided the values into ranges and assigned a descriptor and a colour code

to each range (green for good, yellow for moderate, red for unhealthy, purple for very

unhealthy, and maroon for hazardous). Every AQI range is coupled with uniform public

health advice. The air quality index (AQI) varies by country and pollutant. Equation 1.1

converts each pollutant’s concentration into AQI:

Ip = Ihigh − Ilow

Chigh − Clow
(Cp − Clow) + Ilow, (1.1)

where Ip represents the index (Air Quality Index) for pollutant p (i.e. SO2, NO2, ...,

etc.), Cp is the truncated concentration of pollutant p, Clow refers to the concentration

breakpoint that is the less than or equal to Cp, i.e. ≤ Cp, Chigh refers to the concentration

breakpoint that is greater than or equal to Cp, i.e. ≥ Cp, Ilow is the index breakpoint

that is Clow (i.e. the AQI value corresponding to Clow), and Ihigh refers to the index

breakpoint that is Chigh (i.e. the AQI value corresponding to Chigh) (Fitz-Simons, 1999).

In this study, the air quality was assessed using the AQI developed by Al-Shayji et al.

(2008) for the State of Kuwait, based on the guidelines proposed by the United States

Environmental Protection Agency (USEPA) (Fitz-Simons, 1999). The AQI is an index

for reporting the day-to-day air quality. It gives details about the cleanliness of ambient

air. Table 1.2 was used to convert from pollutant concentration to AQI:
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Table 1.2: Kuwait Air quality index (AQI) values

Categories
AQI,

Sub-Index
O3 (ppm),

8-h
PM10 (µg/m3),

24-h
CO (ppm),

24-h
SO2 (ppm),

24-h
NO2 (ppm),

24-h
Ilow – Ihigh Clow – Chigh Clow – Chigh Clow – Chigh Clow – Chigh Clow – Chigh

Good 0–50 0.0–0.03 0.0–90 0.0–4.0 0.0–0.03 0.0–0.03
Moderate 51–100 0.031–0.06 90.1–350.0 4.1–8.0 0.031–0.06 0.04–0.05

Unhealthy (1) 101–150 0.061–0.092 350.1–431.1 8.1–11.7 0.061–0.182 0.06–0.30
Unhealthy (2) 151–200 0.093–0.124 431.4–512.5 11.8–15.4 0.183–0.304 0.31–0.55

Very Unhealthy 201–300 0.125–0.374 512.6–675.0 15.5–30.4 0.305–0.604 0.56–1.04
Hazardous 301–500 0.375–0.504 675.1–1000 30.5–50.4 0.605–1.004 1.05–2.04

Here we can show an example to perform the AQI calculation using equation 1.1 and

table 1.2. In table 1.2, the third column shows the 24-hour PM10 range (low breakpoint

(Clow) to high breakpoint (Chigh)). For "Good" air quality, This corresponds to an AQI

ranging from 0 to 50. Therefore, if the 24-hour integrated PM10 concentration were 6.0

µg/m3 (Cp), Chigh would be 90.0 µg/m3, Clow would be 0 µg/m3, circumstances Ihigh

would be 50, and Ilow would be 0. The PM10 range of 0 µg/m3 to 90 µg/m3 corresponds

to the AQI range (Ilow - Ihigh). Therefore, for a daily PM10 average concentration of

6.0 µg/m3, the AQI would be calculated in the following manner:

AQI = (50.0 − 0.0)
(90.0 − 0.0)(6.0 − 0.0) + 0.0 = 3.33

1.4 Studying the Relationship between Health and Air Pollution

The bulk of air pollution and health research focuses on the effects of acute exposure

covering a few days instead of chronic exposure over years. In contrast, a cohort study

is commonly used to determine the health hazards of prolonged exposure. Examples

include the Harvard Six Cities Study, where researchers looked at the results of a cohort

research in which nearly 8000 persons from six U.S. cities were tracked for 14-16 years

(Dockery et al., 1993); the Millennium Cohort Study, which sampled roughly 19,000

babies born in Wales and England between 2000 and 2002 (Violato et al., 2009); and

another that collected data on over 1.2 million individuals in 1982 (Pope et al., 1995).

However, because of the large scale of sampling and the related expenditures, cohort
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studies are rarely used.

As a result, time series studies account for the majority of research on the health

effects of air pollution. These studies use collective-level morbidity or mortality data,

which depict the health of a population residing within a given region instead of indi-

vidual health. This kind of data is frequently available, making this type of study both

feasible and affordable. Another benefit of time series analysis is that it is not likely

to be influenced by individual-level risk variables, like smoking and age, as they are

expected to remain consistent during the study period. One limitation, however, is that

connections between health and exposure to air pollution from these studies can only be

evaluated at the group level, which is a significantly weaker kind of analysis compared

to an individual response-exposure association. This thesis will focus on a multivariate

time series approach to study the relationship between air pollution and health, but it

will also include a more general review of health studies and air pollution.

Data on pollution, weather, and health from a large urban region, such as a metropo-

lis, form the basis for time series analyses. The health data consists of daily measured

pollution factors and counts of morbidity and mortality outcomes for the people who

live in the study area. Several fixed-site monitors have been located across the study

zone and provide data that contribute to air pollution. At each site, these monitors

estimate background pollution levels throughout the day and calculate a daily average

for O3, PM10, SO2, and NO2. Additionally, the fixed-site monitors routinely measure

meteorological factors such as temperature, humidity, and wind speed.

1.5 Aim of the Study

The aim of this research was to build a multivariate time series model to predict the

effect of air pollution using historical daily data of the state of Kuwait using multivariate

time series methods, such as the vector auto-regressive (VAR) model and vector error

corrected model (VECM). Descriptive statistics were collected for the AQI during the

observed period. The ground-level air quality was measured both hourly and daily to

determine pollutant concentration data on PM10, O3, NO2, SO2, as well as the overall
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AQI. Data were collected from the Environmental Public Authority of Kuwait (K-EPA)

at a total of ten stations: seven residential and three industrial stations across Kuwait.

The residential stations covered in this study included: Ali-Subah Al-Salem (SAS),

Al-Fahaheel (FAH), Al-Jahra (JAH), Al-Mansouriya (MAN), Al-Qurain (QUR), Al-

Rumaithiya (RUM) and Saad Al-Abdullah (SAA), and the industrial stations included

Al-Mutla (MUT), Al-Shuaiba (SUB) and Al-Shuwaikh (SUK). The data corresponding

to the studied pollutants were continuously monitored at these sites.

The overall goal of this research was to apply and assess commonly known time series

approaches to climate change attribution and detection, as well as to use these methods

to investigate causal relationships between climatic factors and chronic disease activity

(i.e., RA) as dependent variable. Cointegration was used to assess Granger causality

between RA and air pollution using multivariate autoregressive time series models to

see if climate models could replicate actual trends. The work described in this thesis is

divided into three sections, each of which focuses on a different aspect of the air pollution

component of the time series model. The first and second topics are concerned with the

model’s ambient air pollution measurement. The bulk of studies focus on estimating

and forecasting the health effects of a specific pollutant.

The questions highlighted below are addressed in this thesis:

• Can time series models provide accurate detection and attribution estimates?

• Does SO2 Granger-cause chronic disease activity (e.g. RA)?

• Does NO2 Granger-cause chronic disease activity (e.g. RA)?

• Does O3 Granger-cause chronic disease activity (e.g. RA)?

In this thesis, we have implemented the multivariate time series analysis to measure

the short- and long-term relationship to measure how the air pollutants predict the

chronic disease activity over time series. We considered two chronic diseases, respectively

to:
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• patients with RA during the time period of 2013 to 2020, whose data was collected

from the Kuwait Registry for Rheumatic Diseases (KRRD), and

• admitted patients with positive COVID-19 test results in Kuwait during the time

period of March, 2020 to December, 2020; whose data was collected from the

Ministry of Health in Kuwait (i.e. this thesis will demonstrate further evidence to

establish a link between air pollution concentrations of O3, SO2, NO2, CO, and

PM10 with daily COVID-19 admitted cases in the state of Kuwait.

1.5.1 Significance of Study

The ability to predict air pollution is beneficial at the macro level. This study creates

value by contributing to the field of research in its evaluation of the relationship between

air pollution and these diseases within Kuwait. It also aids in alerting the public about

the level of air pollution in their cities so they can be aware and be careful. Predicting air

pollution helps us understand how pollution affects human health, especially concerning

chronic inflammatory autoimmune diseases. Without this knowledge the quality of the

air is likely to be reduced, leading to respiratory problems such as lung cancer, asthma,

infectious disease, and rheumatic disease.

1.5.2 The Study Region and Data

The hourly and daily air pollution datasets were collected from ten locations by the

K-EPA from 1 January, 2012, to 31 December, 2020. Data on RA comes from officially

registered patients of the KRRD from 1 January, 2013, to 30 December, 2020, per

American College of Rheumatology (ACR) criteria (Aletaha et al., 2010; Al-Herz et al.,

2016). Daily information regarding RA patient visits was collected from four main

government hospitals in different Kuwait governorates, reflecting the ethnic diversity of

the country’s population. The Ethics Committees at Kuwait University’s Faculty of

Medicine and the Ministry of Health both approved the KRRD, from which this study

arose. In addition, all patients who satisfied the ACR criteria for RA enrolled in the
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registry gave their official consent (Al-Herz et al., 2016). The COVID-19 daily dataset

was collected from the Ministry of Health in Kuwait between March and December 2020.

1.5.3 Research Objective

The primary objective of this study is to look at a newly constructed multivariate time

series model that enhances air-quality forecasts in Kuwait. We want to evaluate the

effectiveness of univariate and multivariate time series models, as well as earlier models,

with our newly designed multivariate time series model, using the VECM technique. Six

secondary objectives will help us in this task:

• Objective 1 Perform air-quality assessments in Kuwait from 2012 to 2017. The

assessment should be matched with K-EPA’s air-pollution standards.

• Objective 2 Deal with missing data from air pollution datasets and the other clinical

dataset (KRRD). It is very important to fix and treat the missing information using

advanced methods for dealing with deep-learning such as kNN and random forest

to avoid biasing the results.

• Objective 3 Measure and test the association between disease activity scores and air

pollutants, and identify the most significant pollutants contributing to the disease

activity scores for RA patients.

• Objective 4 Dealing with variables distribution using normality assessment and de-

veloping the normality performance using transformation methods if it required.

Cointegrating relationship test for unit root series to estimate the long-run (equi-

librium) equation using the Engle-Granger procedure. In addition, apply the test

for cointegration that allows for more than one cointegrating relationship using

Johansen test to determine if three or more time series are cointegrated.

• Objective 5 Adopt Stationarity test by using unit root assessments such as KPSS,

and Augmented Dickey-Fuller tests in order to choose the order of the model.
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• Objective 6 Use the VECM approach to model a multivariate time series for air

contaminants. Furthermore, to investigate the long-term and short-term causalities

resulting from the selected air contaminants.

1.6 Structure of the Thesis

Chapter 2 explores and analyses the associations with the variables. To do this, we

measured meteorological factors on the concentrations of pollutants in Kuwait using

exploratory data analysis techniques. Meteorological factors included wind direction,

relative humidity, wind speed, and temperature; and pollutants included O3, NO and

NOx, SO2, CO, and PM10. This chapter also discusses the source of the air pollution

datasets.

Chapter 3 analyses the DAS28 and CDAI indices to determine if exposure to ambient

air pollution correlates with an elevated risk of RA. Specific pollutants of concern were

PM10, NO2, SO2, O3, and CO. Additionally, Chapter 3 explains the measurement of

the disease activity score for the RA patients and lists their patient characteristics.

Chapter 4 treats the missing data for air pollution and RA patients by implementing

several advanced methods, including the Automatic Structural Time Series Model for

the air pollution dataset.

Chapter 5 discusses time series methods, cointegration, and Granger causality, with

a close examination of the ramifications of non-stationarity of time series procedures

and the requirement for cointegration modelling. We also use Granger causality and

cointegration to show multivariate time series such as VAR and VECM. This chapter

presents the rationale for the choice of data sources and variables and covers various

statistical methodologies used throughout the thesis, such as the Augmented Dickey-

Fuller unit root test, the Phillip-Peron unit root test, the Engle-Granger cointegration

test, the Johansen cointegration test, and Granger causality tests. A further explanation

is provided on how to estimate Granger causality tests using the Vector Auto Regression

(VAR) model and Vector Error Correction Model (VECM) for cointegrated variables.

To address the research questions and objectives, Chapter 6 shows how to use the
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Augmented Dickey-Fuller and Phillips-Perron unit root tests on out-of-sample time series

data to estimate the VAR Forecast and VECM Forecast descriptive statistics, as well

as their results. Chapter 7 covers the empirical results of a multivariate time series

analysis of the COVID-19 patient sample data. It also presents the descriptive statistics

for air pollution variables and the computation of the VAR model’s optimal lag lengths,

as well as the findings of the Augmented Dickey-Fuller and Phillip-Peron tests for the

respective variables, the Engle-Granger and Johansen cointegration tests, and the Vector

Auto Regression model’s short-run causality connection (VAR). Similarly, the outcomes

of the VECM’s long-term causality association are discussed, as well as the short- and

long-term findings of the Pairwise Granger causality tests.

Finally, Chapter 8 addresses the current study’s findings in relation to the research

objectives and questions, as well as its accomplishments. Other researchers may profit

from the practical and theoretical outcomes of the study, thus some proposals for further

research are also offered.
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Chapter 2

Exploring the Characteristics of Air

Pollution

2.1 Introduction

This chapter presents air pollution measurements from 2012 to 2017 based on ten mon-

itoring stations at various locations across Kuwait. The monitoring stations were cat-

egorized into two distinct categories: the first category was defined as residential areas

(including seven stations), and the second category was defined as industrial areas (in-

cluding three stations). The main objective of this chapter is to analyse the associations

with meteorological variables (wind speed (WS), wind direction (WD), temperature

(Temp.) and relative humidity (RH)) on the concentrations of pollutants Ozone (O3),

Nitric oxide (NO), Nitrogen oxides (NOx), Sulfur dioxide (SO2), Carbon monoxide

(CO), Benzene (C6H6), Particulate matter 10 micrometers or less in diameter (PM10)

and Non-methane hydrocarbons (NMHCs) in Kuwait via exploratory data analysis

techniques. Additionally, the pollutant concentrations mentioned previously in residen-

tial and industrial areas were compared.
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2.2 Air Quality Studies

Air pollution has remained a major concern in recent decades and unfavourably af-

fects the health of residents living in both developed and underdeveloped countries

(Dockery et al., 1993; Bell and Treshow, 2002; Barnes et al., 2019). Millions of peo-

ple worldwide are exposed to high levels of air pollution, which has raised human health

concerns. Some of the contemporary environmental threats resulting from the conse-

quences of human activities include greenhouse effects, ozone holes, acid rain, defor-

estation and photochemical smog as a main responsible threat. The combined effect of

ambient (outdoor) and household (indoor) air pollution poses a major threat to health

and the environment. In 2014, approximately 92% of the global population resided

in areas where World Health Organization (WHO) air pollution standards were not

satisfied (Birmili et al., 2014; Widiana et al., 2019). Rapid population growth and in-

dustrial development have led to an increase in pollution rates. According to the WHO,

particle pollution, ground-level ozone (O3), sulphur dioxide (SO2), nitrogen dioxide

(NO2), and carbon monoxide (CO) have been monitored. In addition, other pollu-

tants occur in air comprising suspended material, such as dust, gaseous pollutants,

smoke, hydrocarbons, fumes, volatile organic compounds (V OCs), polycyclic aromatic

hydrocarbons (PAHs), and halogen derivatives, which may cause vulnerability to many

diseases at high concentrations (Ghorani-Azam et al., 2016). Moreover, Alsaber et al.

(2020) detected an increased risk of rheumatoid arthritis (RA) in subjects exposed to

NO2 through evaluation of the disease activity score with 28 examined joints (DAS28),

and based on the Kuwait Registry for Rheumatic Diseases, they described the detri-

mental effects of short-term exposure to SO2 and NO2 on RA progression, while no

correlation was found in regard to particulate matter with an aerodynamic diameter

smaller than 10 microns (PM10), O3 and CO. Over the last few decades, Kuwait has

experienced rapid socioeconomic and infrastructure development. The steady increase

in its population, human activities, transportation fleet and power demand has con-

tributed to environmental air pollution in Kuwait (Alenezi and Al-Anezi, 2015; Vallejo
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et al., 2021). The major sources of air pollution in Kuwait include petrochemical plants,

power plants, refineries and gasoline and diesel vehicles. The large number of motorized

vehicles and construction expansion in industrial areas have greatly contributed to an

increase in the air pollution level. In a study by Barkley et al. (2017), Kuwait was found

to be the most polluted country in Southwest Asia. In July 2018, Kuwait recorded the

highest air quality index (AQI) value, i.e., 301, which is hazardous and associated with

serious health effects. The daily and annual concentrations of particulate matter with

an aerodynamic diameter of at least 2.5 (PM2.5) and PM10 in Kuwait exceeded the

threshold values (daily mean PM2.5: 10 g/m3; 24-h mean PM2.5: 25 g/m3; daily mean

PM10: 20 g/m3; 24-h mean PM10: 25 g/m3) defined by the WHO (Achilleos et al., 2019).

Several studies on air pollution in Kuwait indicated a notable increase in various air pol-

lutants, such as methane (CH4), CO, O3, SO2, nitrogen oxides (NOx) and total sulphur

(TS), over a certain period (Bouhamra and Abdul-Wahab, 1999; Al-Sarawi et al., 2002;

Al-Salem, 2008; Al-Mutairi et al., 2009). Another study demonstrated that traffic was

the major source of air pollution in the district adjacent to the Kuwait City centre, while

oil refineries contributed the most to the ambient air pollution level in a rural district

(Al-Awadhi, 2014). Albassam et al. (2009) studied three pollutants, namely, CO, NO2

and nonmethane hydrocarbons (NMHCs), in the vicinity of a congested area in Kuwait.

They found that the NMHC concentration was much higher than the corresponding

standard limit defined by the Environmental Public Authority of Kuwait (K-EPA) (an

hourly maximum of 3.65 ppm and a daily average value of 1.6 ppm), which corresponded

to the traffic conditions in the area. The authors focused on the impact of urban growth

resulting in vehicle fleet increase in two case studies involving residential areas. They

recorded excess NO2 and NMHC concentrations in both case studies. To date, no

major analysis has been performed of air pollution in both industrial and residential

areas, thereby identifying the sources of pollutants in Kuwait. Consequently, the aim

of the present study is to measure the concentration of certain major air pollutants in

industrial and residential areas. The pollutants addressed are O3, nitrogen monoxide

(NO), NOx, SO2, CO, benzene (C6H6), PM10 and NMHCs, while weather variables,
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such as the temperature, humidity and wind speed, were also considered.

2.3 Data and Methods
2.3.1 Description of the Study Area

The State of Kuwait is located in the northeastern corner of the Arabian Peninsula

and at the top of the Arabian Gulf. It is a small developing country with a total area

of 17,818 km2 and depends mainly on the oil and petroleum industry. Additionally,

as a desert area with a scarcity of fresh water, its main source of fresh water is desali-

nated sea water. Kuwait hosts three main desalination plants. Furthermore, the area

is affected by severe dust storms during the summer season, which highly contribute to

pollution in this area (Al-Enezi et al., 2014; Al-Ali et al., 2020). The K-EPA maintains

15 distributed air quality monitoring stations to achieve an adequate area coverage. Ten

stations were selected in this study (Figure 2.1). The selection of these 10 stations was

based on the observed variety of land use changes and developments, i.e., industrial and

residential. This selection included the probable effect of industrial and transportation

(traffic) effluents on the air quality.

2.3.2 Air Quality Data Collection

The present study is based on daily air pollutant data pertaining to the period of 2012–

2017 obtained from the Environmental Public Authority at a total of ten stations: seven

residential and three industrial stations across Kuwait. The residential stations covered

in this study included Ali-Subah Al-Salem (ASS), Al-Fahaheel (FAH), Al-Jahra (JAH),

Al-Mansouriya (MAN), Al-Qurain (QUR), Al-Rumaithiya (RUM) and Saad Al-Abdullah

(SAA), and the industrial stations included Al-Mutla (MUT), Al-Shuaiba (SUB) and

Al-Shuwaikh (SUK). The data corresponding to the studied pollutants were continuously

monitored at these sites. The atmospheric pollutant data consisted of O3, NO, NO2,

NOx, SO2, CO, C6H6, PM10 and NMHCs, and the weather parameter data comprised

the temperature, wind direction/speed and humidity.
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Figure 2.1: Location map of the selected monitoring stations—modified after K-EPA
eMISK 2020.

K-EPA uses 15 fixed stations and 3 mobile units (Figure 2.2). According to the K-

EPA method, environmental data acquisition (ENVIDAS-ENVISTA) and data transfer

(every 5 min) is saved in Environmental Monitoring Information System of Kuwait

(eMISK). The climatological measurements were collected at the Kuwait International

Airport by the U.S. Air Force as described according to Masri et al. (2017).

2.3.3 Statistical Analysis

Descriptive analysis was employed in this study to obtain an overview of the studied

variables in the form of the mean, standard deviation (S.D.), percentiles and maximum

and minimum values. This represented the preliminary step to statistically analyse the

different datasets. After the above descriptive analysis, correlation analysis was carried

out to investigate the association among the various air pollutants and with the con-
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Figure 2.2: K-EPA mobile lab and fixed stations used for air pollution monitoring.

sidered meteorological variables. In addition to correlation analysis, graphical analysis

(time series, polar and box plots) was conducted to reveal the effect of meteorology and

investigate the association among the addressed pollutants. Time series data are useful

to extract meaningful statistics and other characteristics over time.

The data were analysed with IBM SPSS statistical software version 21 to generate

descriptive statistics. Statistical data analysis was also carried out with the R pro-

gramming language (R-development team, 2012) and its packages openair (Carslaw and

Ropkins, 2012), ggplot2 (Wickham, 2009) and mcgv (Wood, 2003).
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2.4 Air Pollution Results in Kuwait

Table 2.1 summarises the results of the descriptive statistics of the individual pollutants

(O3, NO2, NOx, NO, SO2, CO, C6H6, PM10 and NMHCs) over the six-year study

period (2012–2017), including the average, S.D., percentiles, and maximum and min-

imum values. The results indicated that the average concentrations of air pollutants

O3, NO2, NOx and NO during the 2012–2017 study period were 0.02 ± 0.01(S.D.),

0.03±0.02(S.D),0.05±0.04(S.D.) and 0.02±0.03(S.D.), respectively, with corresponding

maximum values of 0.03, 0.42, 1.03 and 1.21, respectively. Furthermore, in the Kuwait

environment, the average concentrations of air pollutants CO, PM10 and NMHCs were

0.82±0.73(S.D.), 0.22±0.85(S.D.) and 0.55±0.72(S.D.), respectively, with correspond-

ing maximum values of 68.98, 75.22 and 59.42, respectively. The average concentrations

recorded for air pollutants SO2 and C6H6 were 0.01±0.01(S.D.) and 0.001±0.002(S.D.),

respectively, with corresponding maximum values of 0.37 and 0.05, respectively.

Table 2.1: Descriptive statistics of air pollutants in years (2012–2017) for the State
of Kuwait.

Statistic Mean St. Dev. Min Pctl(25) Pctl(75) Max

O3 (ppm) 0.024 0.013 0.0002 0.015 0.030 0.257
NO2 (ppm) 0.033 0.022 0.0002 0.018 0.042 0.419
NOx (ppm) 0.052 0.039 0.001 0.027 0.065 1.025
NO (ppm) 0.017 0.027 0.0003 0.006 0.020 1.207
SO2 (ppm) 0.009 0.012 0.00000 0.004 0.009 0.366
CO (ppm) 0.815 0.725 0.005 0.489 1.072 68.980
C6H6 (ppm) 0.001 0.002 0.00001 0.0005 0.002 0.054
PM10 (g/m3) 0.222 0.852 0.002 0.084 0.223 75.216
NMHC (ppm) 0.548 0.715 0.010 0.330 0.665 59.415

Table 2.2 summarises the comparison results between the industrial and residential

stations corresponding to the studied pollutants. Independent sample tests were con-

ducted to compare the mean differences between industrial and residential stations in

term of pollutant concentration. We applied independent sample t-test because in large

samples (200 or more) with small standard errors, when the skewness is greater than 2

in absolute value, the variable is considered to be asymmetrical about its mean, how-

28



ever, robust to normality is to recognise that tests which make inferences about means,

or about the expected average response at certain factor levels, are generally robust to

normality. Moreover, when the kurtosis is greater than or equal to 3, then the variable’s

distribution is markedly different than a normal distribution in its tendency to produce

outliers (Ghasemi and Zahediasl, 2012; Field, 2013; Westfall and Henning, 2013). This

applies to the ANOVA test as well.

The daily mean difference among most but not all air pollutants was significant,

i.e., in terms of O3, NO2, NOx, SO2, CO, C6H6, and NMHCs, which also applied to

weather parameter humidity. The analysis indicated high concentrations of NO2, NOx,

CO, PM10 and NMHCs in the residential areas, whereas the daily SO2 and C6H6

concentrations were high in the industrial areas. The difference in daily concentration

between air pollutants NO and PM10 was statistically non-significant. The recorded

daily average NO2, NOx, CO, PM10 and NMHC concentrations in the residential

areas were 0.04. ± 0.02(S.D.), 0.05 ± 0.04(S.D.), 0.88 ± 0.80(S.D.), 0.23 ± 0.99(S.D.)

and 0.59 ± 0.45(S.D.), respectively, whereas the SO2 and C6H6 concentrations in the

industrial areas reached 0.01 ± 0.02(S.D.) and 0.002 ± 0.002(S.D.), respectively.

The study results demonstrated that the overall daily average SO2 and NOx concen-

trations were lower than the corresponding K-EPA standard values in both the industrial

and residential areas. Furthermore, the daily NO2 concentration exceeded the K-EPA

threshold value in the residential areas, while the daily PM10 concentration exceeded

the K-EPA threshold value in both the industrial and residential areas.

Table 2.3 presents the descriptive statistics of the meteorological parameters (the

wind speed, temperature and relative humidity). The results revealed that the average

values of the wind speed, temperature and relative humidity during the 2012–2017 period

were 2.65(S.D. = 1.43), 27.45(S.D. = 9.79) and 38.76(S.D. = 22.74), respectively.

Appendix A.1 provides the daily average concentration of the studied pollutants in

the industrial areas. The comparison results were significant and indicated a significant

difference among the air pollutants in the considered industrial areas. The daily concen-

trations of SO2, NO2 and NOx were lower than the K-EPA standard values defined for
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Table 2.2: Comparison between residential and industrial area.

I R P-value NN = 4649 N = 11,736

O3 (ppm) 0.0235 (0.0153) 0.0242 (0.0120) 0.006 16,006
NO2 (ppm) 0.0248 (0.0145) 0.0368 (0.0239) <0.001 16,064
NOX (ppm) 0.0454 (0.0401) 0.0535 (0.0379) <0.001 12,058
NO (ppm) 0.0168 (0.0226) 0.0176 (0.0281) 0.063 15,136
SO2 (ppm) 0.0094 (0.0167) 0.0082 (0.0091) <0.001 15,953
CO (ppm) 0.6556 (0.4599) 0.8783 (0.7980) <0.001 16,385
C6H6 (ppm) 0.0016 (0.0022) 0.0014 (0.0012) 0.001 4587
PM10 (g/m3) 0.2130 (0.2776) 0.2261 (0.9931) 0.342 8720
NMHC (ppm) 0.4264 (1.1460) 0.5928 (0.4518) <0.001 14,349

WS 2.6662 (1.8385) 2.6444 (1.2339) 0.465 15,778
Temp. 27.4251 (10.1415) 27.4535 (9.6500) 0.872 15,747
RH 35.1748 (21.3329) 40.1788 (23.1217) <0.001 15,751

Note: RH: Relative humidity, Temp.: Temperature in Celsius, WS: Wind speed

Table 2.3: Descriptive statistics of the air climatology.

Statistic N Mean St. Dev. Pctl(25) Pctl(75) Max

Wind Speed 15,778 2.651 1.432 1.692 3.300 22.771
Temperature 15,747 27.445 9.793 18.654 36.300 50.575
RH 15,751 38.757 22.739 19.833 53.583 199.000

Note: RH: Relative humidity, Temp.: Temperature in Celsius, WS: Wind speed

industrial areas except for the SUK site, where the daily NOx concentration matched

the K-EPA standard value of NOx. The daily concentration of PM10 at all the sites

exceeded the corresponding threshold value defined by the K-EPA. Additionally, the re-

sults demonstrated that the daily average humidity and wind speed were high at the

SUB site, whereas the daily temperature was high at the SUK site.

Appendix A.2 lists the daily average concentration of the studied pollutants at the

residential stations. ANOVA test was conducted to measure whether there is significant

differences between the pollutant within the level of the monitoring station that located

in the residential areas. The comparison results were significant and indicated a signif-

icant difference among the air pollutants in the considered residential areas. The daily

concentrations of SO2, NO2 and PM10 at all the sites exceeded the corresponding thresh-

30



old values defined by the K-EPA for residential areas except for the JAH site, where the

daily concentration of NO2 was lower than the standard value. Moreover, corresponding

to the air pollutant NOx, the average daily concentration was lower than the standard

value in all the residential areas, while the standard value was nearly matched at only

the FAH site. The results also demonstrated that the daily average humidity was high

at the RUM site, whereas the daily temperature and wind speed were high at the SAA

and FAH stations, respectively.

Values of the Pearson correlation coefficient are listed in Table 2.4, indicating the

variation in each pollutant with respect to other air pollutants. If a given pollutant

attains a strong correlation with other pollutants, it may thus be deduced that these

pollutants most likely originate from the same emission source, while a low correlation

coefficient value suggests different emission sources. The analysis results revealed a sig-

nificantly high correlation between NO2 and NOx (rp = 0.84), followed by that between

NO and NOx (rp = 0.59), suggesting a notable dependence. Moreover, the determined

high correlation coefficient value indicated a high possibility of the same emission sources

for NO, NO2 and NOx.

The correlation among the remaining air pollutants was not strong, indicating a

high possibility of different emission sources. However, the analysis results revealed a

relatively high correlation between NO2 and NO, since the presence of NO2 in the air

is a result of the NO oxidation reaction in the surrounding air (rp = 0.40), followed by

that between ozone (O3) and temperature (rp = 0.38). Ozone production accelerates at

high temperatures in summer. Short-term exposure to Ozone has been linked to adverse

health effects (Shen and Mickley, 2017).

The obtained values of the correlation coefficients were also significant for all the

air pollutants except for the association between NO, CO and C6H6 and PM10, and

between C6H6 and SO2, which were statistically non-significant (p > 0.05). We can

see from Table 2.4 that most of the pollutants resulted in negative correlation with at-

mospheric temperature and relative humidity; however, they showed variable response

to seasonal variation of meteorological variables (e.g. temperature) and these results
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agreed with Kayes et al. (2019). The analysis results indicated that the average daily

concentration of pollutant SO2 was below the K-EPA daily standard value of SO2 for

industrial areas (0.065 ppm), but it exceeded the allowable SO2 range defined for res-

idential areas (0.030 ppm). The analysis also indicated that the daily concentration of

air pollutant NO2 matched the K-EPA standard level of NO2 (0.030 ppm), whereas in

regard to PM10, it exceeded the threshold value (0.09 g/m3). Additionally, the results

demonstrated that the average daily concentration of this pollutant was below the K-

EPA daily standard value (0.08 g/m3). CO and PM10 were characterized by the highest

measurements, while the SO2 and O3 measurements were the lowest.
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Figure 2.3 shows the trend of the air pollutant components during the period from

2012–2017. The observed trend demonstrated that the concentrations of pollutants

NO2, NOx, NO, CO and NMHCs were the lowest from 2016–17, except pollutant

NO, which exhibited an increasing trend before the beginning of 2017. Furthermore,

it was observed that air pollutants NO2 and NOx exhibited a decreasing trend for the

period from 2013–2016 and then an increasing trend in 2017. It was also found that the

SO2 concentration reached its highest level at a certain point during the period from

2014–2015. The analysis trend did not reveal a consistent pattern for all the pollutants.

Figure 2.3 shows that the C6H6, O3 and SO2 concentrations were lower than 0.005 ppm,

0.035 ppm and 0.015 ppm, respectively. C6H6 and PM10 did not reveal any trend during

the period from 2014–2016 because of missing data values. It should be noted that due

to the missing PM10 data and the importance of PM2.5, it is preferable to replace PM10

with PM2.5.

The daily, hourly, weekly and monthly mean variations in the pollutant concentration

are shown in Figures 2.4–2.6. In regard to NOx, NO and NO2, the two highest mean

values were recorded in the months of January and December, and the lowest NOx and

NO2 concentrations were recorded in June, whereas the NO concentration was the lowest

during the period from June to July. The O3 concentration exhibited the reverse pattern

to that of NOx, NO and NO2. The O3 concentration peaked in July, and it gradually

decreased thereafter until the end of the year, when the lowest O3 concentration was

34



recorded in January and December.
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Figure 2.3: Time series of the studied pollutants from 2012 to 2017— EPA Kuwait.

35



month

N
O

x, 
N

O
, N

O
2, 

O
3

0.02

0.04

0.06

0.08

0 6 12 18 23

Monday

0 6 12 18 23

Tuesday

0 6 12 18 23

Wednesday

0 6 12 18 23

Thursday

0 6 12 18 23

Friday

0 6 12 18 23

Saturday

0 6 12 18 23

Sunday

NOx NO NO2 O3

weekday

N
O

x, 
N

O
, N

O
2, 

O
3

0.02

0.04

0.06

0.08

0 6 12 18 23

month

N
O

x, 
N

O
, N

O
2, 

O
3

0.01

0.02

0.03

0.04

0.05

0.06

JFMAMJ JASOND

weekday

N
O

x, 
N

O
, N

O
2, 

O
3

0.02

0.03

0.04

0.05

MonTueWedThuFriSatSun

mean and 95% confidence interval in mean 

Figure 2.4: Temporal variation of the studied pollutants according to the station site
from 2012 to 2017 for NO, NOx, NO2 and O3—EPA Kuwait. The shaded areas are
the 95% confidence intervals for the mean. Plots created using OpenAir in R.
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Figure 2.5: Temporal variation of the Studied Pollutants according to the station site
from 2012 to 2017 for CO, PM10 and NMHC—EPA Kuwait. The shaded areas are the
95% confidence intervals for the mean. Plots created using OpenAir in R.

Figure 2.5 shows that the concentration of pollutant CO was the highest, followed by

NMHCs and PM10. The figure shows that the CO and NMHC concentrations were

high in the winter season and low in the summer season, whereas PM10 exhibited the

opposite trend, where the concentration was high during the summer period and low

during the winter period.

Generally, regarding O3, a high mean concentration occurred in early summer (June

and August), with low mean values observed in winter (November–February). In the

present study, low nitrogen oxide emission levels (NOx, NO and NO2) were observed

in the winter. This may occur because of the very mild temperatures in Kuwait during

the winter, which led to a very low energy demand for heating purposes and resulted
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in lower nitrogen oxide emission rates. However, during the summer season, a higher

energy consumption was observed because of the intense and continuous use of air con-

ditioners. A large amount of energy is required to operate this equipment, provided by

the combustion of large amounts of fuel, resulting in an increase in the nitrogen oxide

emission rates (NOx, NO and NO2).
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Figure 2.6: Temporal variation of the Studied Pollutants according to the station site
from 2012 to 2017 for C6H6 and SO2—EPA Kuwait. The shaded areas are the 95%
confidence intervals for the mean. Plots created using OpenAir in R.

Figure 2.6 shows that the SO2 pollution level was the highest in the summer months

(April and June–July), while it was the lowest in the months of February and November.

The average concentration of pollutant C6H6 was low throughout the entire study period

(2012–2017).
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2.4.1 Description of Exposure Data

Box plots of the monthly pollutant concentration after suitable transformation from 2012

to 2017 are shown in figure 2.7. Box plots constitute a method to graphically depict

data based on a five-number summary (minimum, first quartile (Q1), median, third

quartile (Q3), and maximum). Using the daily concentration data for NO2, NOx, NO,

SO2, CO, C6H 6, NMHCs and PM10 after conducting the log transformation, however

for O3, the square root transformation was conducted because it has been proved that

ozone concentrations are most appropriately considered in terms of such a time series

model on a square root transformation (Guttorp and Sampson, 1994; Carroll et al.,

1997). A trend analysis was undertaken to examine the diurnal patterns and identify

outliers. Figure 2.7 shows the box plots of daily emissions over 365 days and represents

the median, the upper and lower quartile data range, and abnormal values shown as

black circles in figure 2.7. This way it is possible to study individually the distribution

of the pollutants emissions in each day. Overall, we can understand from figure 2.7 that

there is variability within the hourly measurement for each pollutant and that is due to

traffics with the emission of pollutants from vehicles or it might be from daily factory

activity.
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Figure 2.7: Box plot of the monthly pollutant concentration after suitable transformation
from January 2012 to December 2017. The upper whisker extends to the highest value
within 1.5 IQR from the top of the rectangle, while the lower whisker extends to the
lowest value within 1.5 IQR from the bottom of the rectangle. Values beyond the end
of the whiskers are considered outliers and are shown as dots.

Figure 2.8 shows the air pollutant concentration in the form of polar coordinates

throughout the study period from 2012–2017. A polar plot shows a graphical analysis

of a given database rather than a quantitative analysis. It is constructed based on the

average pollutant concentration as a function of the wind speed and wind direction.

Figure 2.8 shows that the concentrations of pollutants NO2 and NOx exhibited almost

the same pattern. The concentration of these pollutants was higher at a wind speed of
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5 m/s from west to east and the lowest at the northwest site. The polar plots for SO2,

PM10 and NMHCs with slight variations revealed low pollutant concentrations at wind

speeds ranging from 5–10 m/s. However, high SO2 concentrations were also observed

at certain points along the southeast direction. The polar plot for CO demonstrated a

uniform contribution along all wind directions, except for a slightly low concentration

along the east-north direction and a high concentration at a few points in time along the

southeast direction at wind speeds ranging from 20–25 m/s. The high concentrations of

these pollutants at low wind speeds suggested that these air pollutants may be dispersed

at high wind speeds.

2.4.2 Conclusion of Air Quality Assessment in Kuwait

In the present study, time series statistical testing revealed low nitrogen oxide emission

levels (NOx, NO and NO2) in the winter. This may occur because of the very mild

temperatures in Kuwait during the winter, which led to a very low energy demand for

heating purposes and resulted in lower nitrogen oxide emission rates. However, in the

summer season, a higher energy consumption was observed because of the intense and

continuous use of air conditioners. A large amount of energy is observed to operate air

conditioners, provided by the combustion of large amounts of fuel, resulting in an increase

in the nitrogen oxide emission rates (NOx, NO and NO2). In addition, this could be

due to their locations near highways and centres of oil industries centres. Petrochemical

industries and oil refineries in southern Kuwait are major sources of air pollution in

the country.
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Figure 2.8: Air pollutant concentration according to the wind direction and wind speed
from 2012 to 2017.
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Chapter 3

The Association between the

Rheumatoid Arthritis Disease

Activity Score and the Ambient Air

Pollution

In this chapter, we will describe the influence of ambient air pollution on the Rheumatoid

Arthritis (RA) disease activity score index in 28 joints. RA is a chronic autoimmune

of an unknown etiology. Air pollution has been proposed as one of the possible risk

factors associated with disease activity, although has not been extensively studied. In

this study, we measured the relationship between exposure to air pollutants and RA

activity. Data on RA patients were extracted from the Kuwait Registry for Rheumatic

Diseases (KRRD). Disease activity was measured using the disease activity score with

28 examined joints (DAS28) and the Clinical Disease Activity Index (CDAI) during a

patient’s hospital visits from 2013 to 2017. The assessment of DAS28 is based on the

number of swollen and tender joints to provide a number/scale between 0 and 10, in-

dicating how active the RA is at this moment (see Equation 3.2). Air pollution was

assessed using air pollution components (PM10, NO2, SO2, O3, and CO). Air pollution
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data were obtained from Kuwait Environmental Public Authority (K-EPA) from six

different air quality-monitoring stations during the same period. Multiple imputations

by the chained equations (MICE) algorithm were applied to estimate missing air pollu-

tion data (Van Buuren et al., 2015). Patients’ data were linked with air pollution data

according to date and patient governorate address. Descriptive statistics, correlation

analysis, and linear regression techniques were employed using STATA software. This

was a cross-sectional study with a convenience sample that was performed in a rheuma-

tology patients in Kuwait. In total, 1,651 RA patients with 9,875 follow-up visits were

studied. We detected an increased risk of RA using DAS28 in participants exposed to

SO2 and NO2 with regression coefficients β = 0.003 (95% CI: 0.0004–0.005, p < 0.01)

and β = 0.003 (95% CI: 0.002–0.005, p < 0.01), respectively, but not to PM10, O3, and

CO concentrations. Conclusively, we observed a strong association between air pollu-

tion with RA disease activity. This study suggests air pollution as a risk factor for RA

and recommends further measures to be taken by the authorities to control this health

problem.

3.1 Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease that mainly affects the

joints, causing inflammation, pain, and difficulty to use the joints. Although the exact

cause is unknown, many genetic and environmental factors have been linked to the

disease. Exposure to chemicals has previously been proposed as a possible, if not the

main cause of the disease (Chang et al., 2016).

Several studies suggested that exposure of air pollution may increase the risk of RA

(Shen et al., 2015; Solus et al., 2015). Furthermore, epidemiological evidence indicates

a significant association between the risk of RA and exposure to environmental factors,

such as cigarette smoke, dioxin, noise, and traffic-related air pollution (Kobayashi et al.,

2008; Hart et al., 2009; De Roos et al., 2014).

Pollutants with the strongest evidence for public health concern include particulate
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matter (PM), ozone (O3), nitrogen dioxide (NO2), and sulphur dioxide (SO2) (Organiza-

tion et al., 1999). However, few studies have followed adequate methodologies correlating

meteorological variables with RA. In this context, further investigation concerning the

impact of air pollution on the risk of developing RA is still necessary.

With respect to RA, there is a need to investigate the impact of air pollution on

RA through detailed research. Air pollutants are part of the environmental components

resulting from dust storms and fossil fuel combustion, which determine RA symptoms

and worsen the overall disease. Additionally, gases such as SO2, NO2, CO, and O3 are

the other main pollutants that cause RA (Sun et al., 2016). More generally, extensive

investigations have been performed by several researchers about the impact of ambient

air pollution on human health (Bernatsky et al., 2016; Tobón et al., 2010). For instance,

SO2 resulting from the combustion of fossil fuels with high sulphur content is considered

one of the most common pollutants with the worst impact on air quality. The combustion

of fossil fuels containing high sulphur content causes the release of sulphur dioxide into

the atmosphere. Several researchers have adequately documented the harmful effects of

long-term exposure to high levels of SO2 on overall health (Seinfeld, 1975; Scott et al.,

2003); therefore, increased emission of pollutants into the atmosphere may potentially

result in several adverse health effects, including RA.

Many composite indices for RA progress measurement are actually available: for

example, the Disease Activity Score (DAS) with 28 examined joints (DAS28) is one

common RA index that has been extensively employed to identify the disease progress

level for RA patients (Prevoo et al., 1995; Van Gestel et al., 1998; Fransen et al., 2004).

The Disease Activity Score was developed to measure and assess RA disease activity

in daily clinical practice, clinical trials, and long-term observational studies (Van Riel,

2014). The second RA index is the Clinical Disease Activity index (CDAI) (Smolen

et al., 2003; Martins et al., 2014), which is used to assess disease activity. The CDAI

was developed to provide physicians and patients with simple and more understand-

able instruments.

In the present study, we aimed to investigate whether exposure to ambient air pol-
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lution (i.e., PM with aerodynamic diameter < 10 µm (PM10), NO2, SO2, O3, and CO)

is associated with an increased risk of RA using the DAS28 and CDAI indices.

3.2 Materials and Methods
3.2.1 Data on RA from the Kuwait Registry for Rheumatic Diseases (KRRD)

The State of Kuwait is a small country with a total area equal to 17,818 km2 located on

the far west side of the Asian continent. The total population of Kuwait is around 4.6 mil-

lion, distributed into six main governorates (Al-Awadhi, 2014). All RA patients repre-

sented in this study were officially registered from the Kuwait Registry for Rheumatic

Diseases (KRRD) from 2013 until the end of 2017. The KRRD is a national registry list-

ing adult patients with rheumatic diseases. Patients who fulfilled the American College

of Rheumatology (ACR) criteria for RA (Aletaha et al., 2010) registered from January

2013 to December 2017 were included in the study. The RA information data were

collected from the rheumatology departments of four major government hospitals in

Kuwait based on patient visits. The selected hospitals are mainly distributed in differ-

ent governorates covering the ethnic diversity of the Kuwaiti population. The KRRD,

from which this study originated, was approved by the Ethics Committees of the Faculty

of Medicine at Kuwait University, and the Ministry of Health. Additionally, official con-

sent was obtained from all represented patients enrolled in the registry (Al-Herz et al.,

2016).

3.2.2 Calculating RA Indices

RA disease activity scores are measured using two different indices: DAS28 and CDAI.

The DAS28 is the sum of four outcome parameters: TJC281, the number of tender

joints (0–28); SJC282, the number of swollen joints (0–28); ESR, the erythrocyte sedi-

mentation rate (in mm/h) (C-reactive protein (CRP) may be used as an alternative to

ESR in the calculation); and GH, the patient global health assessment (from 0 = best
1Tender 28-Joint Count (shoulders, elbows, wrists, MCPs, PIPs including thumb IP, knees)
2Swollen 28-Joint Count (shoulders, elbows, wrists, MCPs, PIPs including thumb IP, knees)
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to 100 = worst) (see Equation 3.1, (Prevoo et al., 1995)).

The second index is The Clinical Disease Activity Index (CDAI). CDAI takes into

account the following items: TJC28, the number of tender joints (0–28); SJC28, the

number of swollen joints (0–28); PaGH, the patient global health assessment (from

0 = best to 10 = worst); and PrGH, the care provider global health assessment (from 0

= best to 10 = worst) (see Equation 3.2, (Aletaha et al., 2005)).

DAS28 = 0.56×
√

TJC28+0.28×
√

SJC28+0.70× ln(ESR Or CRP )+0.014×GH

(3.1)

CDAI = TJC28 + SJC28 + PaGH + Pr GH (3.2)

3.2.3 Ambient Ambient air Pollutants’ Data (Environmental Public Authority

of Kuwait—K-EPA)

Pollutant data (PM10, NO2, SO2, O3, and CO) were obtained from six fixed monitor-

ing stations run by the Environmental Public Authority of Kuwait (K-EPA). The air

pollutant measurement sampling was from 1 January 2013 to 31 December 2017 based

on hourly observations.

The pollutant data were distributed throughout the residential areas where sta-

tions were measuring different parameters including PM10, NO2, SO2, O3, and CO.

The hourly concentration of PM10, NO2, and SO2 was aggregated using the twenty-

four hours, and eight-hour average concentrations of O3 and CO. For O3 and CO, a

valid 8-hour average is one with at least 75% of the hourly data available (e.g. if there

are only 6 or 7 hourly averages, divide by 6 or 7). Figure 3.1 shows the calculation of

the eight-hour average concentrations of O3:
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Figure 3.1: Example of eight-hour average concentrations of O3.

After we aggregate the air pollutants data from hourly to daily observations, all pol-

lutants concentrations were converted from daily concentration to AQI scores. This was

explained in section 1.3.5 on page 11, the AQI calculation was explained and performed

using equation 1.1 on page 13 and table 1.2 on page 13.

3.2.4 Air Pollution Data Processing and Treatment

AQI data were examined by checking the normality assumption and detecting for any

possible outliers before any statistical analysis or testing between the variables were

done. About 5.8%, 1.6%, 48.4%, 5.3%, and 6.5% of data for PM10, NO2, SO2, O3,

and CO were missing, respectively. Multiple imputations were performed to improve

the accuracy of AQI prediction, where a final estimate was composed of the outputs of

several multivariate fill-in methods (Junninen et al., 2004; Schafer, 1997).

To deal with missing data, the multiple imputation process was performed to estimate

and fill in missing data for better modelling performance (e.g. multiple linear regression
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modelling). Finally, AQI with RA information were matched with patients’ hospital

location and date of patient visit. All AQI data for every pollutant were aggregated

from hourly to daily observation.

3.2.5 Matching Procedure between Patients and AQI

All data management and combination was conducted using R Studio Version 1.1.463

running R 3.5.1 GUI 1.70 (Team, 2014) software. Various R packages were used to

clean, match, and combine the two datasets, including plyr (Wickham et al., 2011),

dplyr (Wickham and Francois, 2014), tidyr (Wickham, 2014), and stringr (Wickham,

2012).

The matching procedure was done using a developed R code to match between RA

patient information and AQI monitoring station using date and governorate variables

for both KRRD and K-EPA. As mentioned above, air pollution information was taken

from six different stations distributed into all six governorates in the state of Kuwait.

The matching procedure was conditioned on the date of the patient visit with the date

of the daily average AQI using a developed R code grouped by governorate physical

address (e.g., if a patient lived in the Ahmadi governorate, the AQI information that

came from the Ahmadi monitoring station was added to their visit information after

matching the same date; see Figure 3.2).
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Figure 3.2: Matching procedures to combine Air Quality Index (AQI) information with
Kuwait Registry for Rheumatic Diseases (KRRD) patient profile records using date and
governorate address information). K-EAPL, Environmental Public Authority of Kuwait;
RA, rheumatoid arthritis.

3.2.6 Statistical Analysis

In the current study, means, standard deviations (SDs), and percentages were used to

summarise and compare RA characteristics between the governorate levels. To estimate

the association between the pollutants and RA indices, hierarchical linear model (HLM)

analysis was performed using a regression approach. HLM is a particular regression

model that is designed to take into account the hierarchical or nested structure of the

data. HLM is also known as multi-level modeling, linear mixed-effects model, or covari-
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ance components model (Goldstein et al., 2002). With HLM we can determine the effects

of potentially remediable environmental conditions (e.g., air pollution) after controlling

for individual characteristics such as RA factors and demographics.

The Pearson correlation test was performed to highlight the significant associations

between AQI for NO2, CO, PM10, SO2, and O3 and with the RA indices (DAS28 and

CDAI). Regression analyses were performed separately for DAS28 and CDAI as response

variables. Four regression models were estimated to highlight the most significant vari-

ables associated with the response variables (DAS28 or CDAI). Because the variables

belong to two different databases, we started with the first regression (M1) that measured

the association between patients’ demographics (e.g., gender, RA disease duration, na-

tionality, governorate, and comorbidity) with the response variables (DAS28 or CDAI),

and then we estimated the second regression model (M2) that measured the association

between rheumatoid factors after adjusting for gender, RA disease duration, nationality,

governorate, and comorbidity with the response variables (DAS28 or CDAI). Models 1

and 2 were estimated from the KRRD database. Then, we estimated Models 3 and 4 to

highlight if there is any association between air pollution with disease activity indices

(DAS28 or CDAI) after merging the EPA with KRRD databases. Model 3 (M3) mea-

sured the direct effect from air pollutants to disease activity indices (DAS28 or CDAI),

whereas Model 4 (M4) measured the association between air pollutants to disease activ-

ity indices after adjusting for the rheumatoid factors mentioned in Model 2 (M2) (e.g.,

comorbidity, treatment class, swollen, tender, etc.). For better data fit, model compar-

ison techniques using deviance scores were implemented to confirm the best choice of

model (Nelder and Wedderburn, 1972; Dobson and Barnett, 2008). All statistical proce-

dures were performed using Stata 15.1 SE version software (StataCorp, College Station,

TX, USA).

Model 1 (M1) was made to explain the influence of demographic variables (Disease

Duration, Gender, Governorate, Nationality, Comorbidity, and Treatment Class) on the

response variables (DAS28 and CDAI). Model 2 (M2) was made to determine the ef-

fect of RA factors (swollen, tender, RF (rheumatoid factor), anti-cyclic citrullinated
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peptide (ACPA), Patient Global Assessment, and Physician Global Assessment) plus

demographics on the response variables. Model 3 (M3) was made to estimate the rela-

tionship between the increase of NO2, CO, PM10, SO2, and O3 concentrations and the

response variables (DAS28 and CDAI). Model 4 (M4) was made to explain the effect of

AQI in terms of NO2, CO, PM10, SO2, and O3 with RA factors (swollen, RF, ACPA,

ESR, and CRP) to indicate RA disease activity.

3.3 Results of RA Patient Characteristics and Air Pollution Re-

lationship

The data of RA patients’ visits were obtained from KRRD, and the air pollution data

were obtained from K-EPA. The analysis was performed during the period from 2013 to

the end of 2017. There were 1,651 RA patients with 9,875 follow-up visits and 13,152

daily air pollution records. Because of the matching process to combine the data from

the air pollution dataset with the RA patient visits from the KRRD dataset, the final

dataset had to meet the matching conditions (matching based on date and governorate)

with a total of 9,875 records.

Table 3.1 shows some information about RA patient characteristics group by gov-

ernorate location in the state of Kuwait. From the results, most patients were from

Fawaniya governorate (n = 4,378 visits; 44.3%). Most of the patients belonged to the

local country with Kuwaiti nationality (n = 5,783 visits; 58.6%). Females accounted for

the majority of total visits (n = 6,008; 60.8%). The average RA disease duration for all

patients was 9.82 years with a SD of 6.48 years.

Most of the patients were positive for rheumatoid factor (RF; n = 6,881; 74.6%)

and positive for anti-cyclic citrullinated peptide (ACPA; n = 4,934; 60.5%). The ma-

jority of RA patients presented co-morbidities (e.g., hypertension, hyperlipidemia, di-

abetes mellitus, chronic kidney disease, coronary artery disease, cancer, or any other

illness; n = 5,393; 54.6%). From the results, most of the consumed drugs were biologics

(n = 5,214; 52.8%).
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In Table 3.1, we can see that most RA patients visited Al-Amiri hospital, with total

visits n = 5,051 (51.1%). Al-Amiri hospital is the only hospital in the Kuwait City

governorate. The second-most patients were from Farwaniya hospital, with total visits

numbering n = 3,981 (40.3%). Farwaniya hospital is the only public general hospital in

Al Farwaniyah governorate. In Kuwait, there are six governorates, and each governorate

has only one hospital.

With regard to disease activity, results in Table 3.1 present the clinical features of all

RA patient visits. The average DAS28 score was 2.67 with SD 1.26, and the average score

of CDAI was 6.24 with a SD of 9.96, both indicating a low disease activity. The average

and SD scores for ESR and CRP were x = 27.19 mm/h and SD = 21.79 and x = 6.32

mg/L and SD = 4.85, respectively, which were both within the normal ranges according

to our laboratory. Moreover, the average and SD for swollen and tender joints for all RA

patient visits were x = 0.69 and SD = 2.26 and x = 2.87 and SD = 5.60, respectively.

Table 3.2 shows the average air pollutant concentrations using AQI scores. The mean

and SD AQIs for PM10, CO, NO2, O3, and SO2 were 167.62 ± 214.27, 1.28 ± 0.61,

47.98 ± 26.64, 17.76 ± 8.94, and 15.87 ± 17.66, respectively. The mean exposure levels

for PM10, CO, NO2, O3, and SO2 were 158.51 ± 68.02, 1.31 ± 0.44, 42.74 ± 18.83,

18.17±7.56, and 13.94±12.04), respectively. Figure 3.3 shows the monthly AQI average

time series for PM10, CO, NO2, O3, and SO2. It is very clear that the AQI for the

pollutants ranged between 0 to 250. It was shown from figure 3.3 that PM10 ranked

first in terms of pollution assessment in the State of Kuwait. It was also shown that the

AQI for PM10 ranged between 100 to 250 which corresponds to the moderate, unhealthy

and very unhealthy categories from the time series between the K-EPA monitoring fixed

stations in Kuwait (see table 1.2 on page 13). And the pollutant that ranked second in

terms of pollution assessment during the period from 2012 to 2017 was NO2. Figure 3.3

shows the AQI for NO2 ranged between 50 to 100 during 2012 to 2014 that corresponds

between moderate and unhealthy AQI categories, then after 2014, the AQI for NO2

ranged between 0 to 50 that corresponds between good and moderate from the AQI

categories. The decline in NO2 rates was due to the government’s decisions through the
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K-EPA towards the industrial sector in Kuwait in the State of Kuwait to limit the NO2

rates. For the other pollutants (CO, O3, and SO2), the AQI ranged between good to

moderate from the AQI categories.

Moreover, all pollutants’ distributions are positively skewed (i.e., the means are

higher than the medians for all pollutants). However, log transformation was employed

for all pollutants in the regression model for better quality parameter estimation. Log-

arithmic transformation pulls extreme values in the pollutants into a more normal dis-

tribution.

In order to measure the correlation between the pollutants (PM10, NO2, SO2, O3,

and CO), the Pearson correlation test was conducted. Table 3.3 shows significant positive

correlations between NO2 and CO (rp = 0.22), NO2 and SO2 (rp = 0.51), and O3 and

PM10 (rp = 0.08). Significant negative correlations were discovered between O3 and NO2

(rp = −0.12), PM10 and NO2 (rp = −0.12), PM10 and SO2 (rp = −0.03), and PM10

and CO (rp = −0.05).

Table 3.3 presents the Pearson correlation coefficients between different air pollu-

tants and RA variables. For the score of RA disease activity using the DAS28 index,

the correlation results showed a positive significant correlation with the exposure of SO2

using AQI (rp = 0.07), and the same results were returned with the exposure to NO2

using AQI (rp = 0.07). As for particular pollutants, only Hart et al. (2013b) provided

evidence of elevated risks for NO2 and SO2, especially in terms of seronegative RA.

Other pollutants (PM10, CO, and O3) did not show any significant correlation. For the

CDAI, the correlation results showed a positive significant correlation with exposure to

SO2 using AQI (rp = 0.10), and the same results were returned with the exposure to

NO2 (rp = 0.11). Other pollutants (PM10, CO, and O3) did not show any significant

correlation with CDAI. For PM10, Hart et al. (2013b) reported an elevated odds ra-

tio (OR), which failed to reach statistical significance. The effects of both PM2.5 and

PM10 were non-significant across the analyses, but were consistently more pronounced

for seronegative RA.

Tables 3.4 and 3.5 present the hierarchical linear model (HLM) analysis using mul-
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tiple linear regression. The first model (M1) demonstrates the effect of patient demo-

graphics on RA disease activity, where DAS28 and CDAI were the response variables

(see Tables 3.4 and 3.5). For both DAS28 and CDAI, the demographics weakly ex-

plained the disease activity scores (R2
DAS28 = 0.034 and R2

CDAI = 0.030). RA disease

duration was not significant for DAS28, but it had a significant association with CDAI

(see Table 3.5 (M1)). Model 2 (M2) shows that RA factors (swollen, tender, RF, ACPA,

patient global assessment, physician global assessment, ESR, and CRP) plus demograph-

ics affected DAS28 (R2 = 0.865) and CDAI (R2 = 0.924). In the CDAI model (M2),

gender and RA disease duration were not significant in explaining the CDAI. Model 3

(M3) demonstrated and highlighted the effects of gaseous pollutants (PM10, NO2, SO2,

O3, and CO) using AQI on RA disease activity; only SO2 and NO2 were significant

risk factors for RA patients using the information of DAS28 (R2 = 0.007) and CDAI

(R2 = 0.015). The final model demonstrated the effect of gaseous air pollutants with

RA factors (Swollen, RF, ACPA, ESR, and CRP) on RA disease activity. The AQI

of NO2 and SO2 still showed positive associations with disease activity performance of

RA. The positive effects of NO2 in Model 4 (M4) were β = 0.003 (95% CI: 0.002–0.005)

and β = 0.048 (95% CI: 0.030–0.066) for DAS28 and CDAI, respectively (e.g., for a

1 µg/m3 increase in daily concentration of NO2, DAS28 index is expected to increase

by 0.003 (95%CI:0.002–0.005) and CDAI index is expected to increase by 0.048 (95%

CI: 0.030–0.066), whereas, for SO2, the results showed a positive significant effect with

β = 0.003 (95% CI: 0.0004–0.005) and β = 0.044 (95% CI: 0.018–0.070) for DAS28 and

CDAI, respectively (e.g., for 1 µg/m3 increase in daily concentration of SO2, the DAS28

index will increase by 0.003 (95%CI: 0.0004–0.005) and the CDAI index will increase by

0.044 (95% CI: 0.018–0.070).
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Figure 3.3: Air quality index (AQI) ambients for six governorate monitoring stations in
Kuwait from 2013 to 2017.
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Table 3.1: RA patient visit demographic and clinical features groups by governorate—2012 to 2017.

[ALL] Ahmadi Farwaniya Hawally Jahra Kuwait City Mubarak Alkabeer

n = 9875 n = 356 n = 4378 n = 1272 n = 226 n = 3007 n = 636

Gender:
male 3867 (39.2%) 73 (20.5%) 2656 (60.7%) 285 (22.4%) 82 (36.3%) 653 (21.7%) 118 (18.6%)
female 6008 (60.8%) 283 (79.5%) 1722 (39.3%) 987 (77.6%) 144 (63.7%) 2354 (78.3%) 518 (81.4%)

Nationality:
Kuwaitis 5783 (58.6%) 328 (92.1%) 1499 (34.2%) 773 (60.8%) 145 (64.2%) 2462 (81.9%) 576 (90.6%)
non-Kuwaitis 4092 (41.4%) 28 (7.87%) 2879 (65.8%) 499 (39.2%) 81 (35.8%) 545 (18.1%) 60 (9.43%)

Visited Hospital:
Amiri 5051 (51.1%) 294 (82.6%) 364 (8.31%) 774 (60.8%) 120 (53.1%) 2955 (98.3%) 544 (85.5%)
Farwaniya 3981 (40.3%) 0 (0.00%) 3976 (90.8%) 5 (0.39%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Jahra 111 (1.12%) 0 (0.00%) 2 (0.05%) 3 (0.24%) 106 (46.9%) 0 (0.00%) 0 (0.00%)
Mubarak 732 (7.41%) 62 (17.4%) 36 (0.82%) 490 (38.5%) 0 (0.00%) 52 (1.73%) 92 (14.5%)

Disease Duration 3 9.82 (6.48) 13.3 (9.11) 9.39 (5.79) 10.4 (7.03) 10.2 (6.45) 9.42 (5.78) 11.4 (9.60)

Comorbidity 2:
Yes 5393 (54.6%) 226 (63.5%) 1658 (37.9%) 802 (63.1%) 123 (54.4%) 2157 (71.7%) 427 (67.1%)
No 4482 (45.4%) 130 (36.5%) 2720 (62.1%) 470 (36.9%) 103 (45.6%) 850 (28.3%) 209 (32.9%)

Treatment Class:
Biologics 5214 (52.8%) 327 (91.9%) 1342 (30.7%) 762 (59.9%) 131 (58.0%) 2124 (70.6%) 528 (83.0%)
cDMARDs 4 4661 (47.2%) 29 (8.15%) 3036 (69.3%) 510 (40.1%) 95 (42.0%) 883 (29.4%) 108 (17.0%)

RF 1:
Positive 6881 (74.6%) 235 (72.8%) 3148 (76.3%) 817 (71.0%) 177 (93.2%) 2042 (72.0%) 462 (76.5%)
Negative 2348 (25.4%) 88 (27.2%) 976 (23.7%) 334 (29.0%) 13 (6.84%) 795 (28.0%) 142 (23.5%)

ACPA :
Positive 4934 (60.5%) 102 (33.6%) 2665 (70.3%) 593 (63.1%) 73 (61.3%) 1205 (48.1%) 296 (60.0%)
Negative 3216 (39.5%) 202 (66.4%) 1125 (29.7%) 347 (36.9%) 46 (38.7%) 1299 (51.9%) 197 (40.0%)

Patient GA 1.64 (2.36) 1.54 (2.34) 1.02 (1.85) 2.60 (2.69) 2.09 (2.52) 1.95 (2.56) 2.39 (2.69)
Physician GA 1.05 (1.77) 1.06 (1.82) 0.72 (1.50) 1.63 (2.02) 1.58 (2.21) 1.13 (1.78) 1.64 (2.18)
DAS28 2.67 (1.26) 1.85 (1.35) 2.70 (1.21) 2.77 (1.29) 3.04 (1.39) 2.61 (1.22) 2.79 (1.44)
CDAI 6.24 (9.96) 4.64 (8.89) 4.83 (8.56) 8.31(10.72) 9.45 (14.25) 6.78 (10.49) 9.00 (11.53)
ESR 27.19 (21.79) 15.12 (16.82) 30.24 (23.10) 26.77 (20.30) 30.06 (19.33) 23.97 (19.54) 27.80 (24.04)
CRP 6.32 (4.85) 4.32 (3.91) 7.29 (4.89) 4.53 (4.53) 6.36 (4.42) 6.08 (4.68) 5.38 (4.87)
Swollen Joints 0.69 (2.26) 0.34 (1.57) 1.08 (2.60) 0.53 (1.97) 0.95 (3.63) 0.26 (1.67) 0.57 (1.99)
Tender Joints 2.87 (5.60) 1.72 (4.32) 2.02 (4.18) 3.55 (6.21) 4.82 (8.39) 3.46 (6.36) 4.54 (7.13)

1 RF, rheumatoid factor; ACPA , anti-cyclic citrullinated peptide antibody. 2 Comorbidity (e.g., hypertension, hyperlipidemia, diabetes mellitus, etc.); 3

Disease Duration, RA disease duration by years. 4 cDMARDs, conventional disease modifying anti-rheumatic drugs. GA, global assessment.
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Table 3.2: Distribution of Kuwait ambient air pollution exposure using AQI during 2012–2017.

Air Pollutant Ahmadi (n = 356) Farwaniya (n = 4378) Hawally (n = 1272) Jahra (n = 226) Kuwait City (n = 3007) Mubarak Alkabeer (n = 636) ALL (n = 9875)

PM10

min 17.108 20.346 21.948 18.837 12.138 5.421 5.421
25th 1 75.839 76.312 80.692 67.417 71.114 74.886 74.965
median 112.623 120.779 113.586 92.788 116.081 109.917 113.586
75th 2 180.403 186.145 180.581 151.762 193.121 184.282 186.568
max 549.419 511.826 588.494 545.789 577.706 585.077 588.494
mean (SD 3) 142.36 ± 99.58 146.47 ± 94.20 145.69 ± 99.23 123.64 ± 95.00 146.81 ± 102.42 142.40 ± 102.79 144.87 ± 100.64

CO

min 0.240 0.207 0.087 0.042 0.087 0.292 0.042
25th 0.938 0.945 0.984 0.854 1.006 0.978 0.975
median 1.367 1.338 1.337 1.151 1.369 1.380 1.346
75th 1.679 1.603 1.672 1.455 1.679 1.728 1.672
max 4.894 4.701 4.471 5.122 8.143 5.287 8.143
mean (SD) 1.37 ± 0.62 1.33 ± 0.57 1.40 ± 0.66 1.14 ± 0.64 1.40 ± 0.66 1.46 ± 0.70 1.39 ± 0.66

NO2

min 9.080 9.080 5.346 8.229 5.346 5.346 5.346
25th 25.768 28.200 27.208 29.127 27.319 32.037 27.391
median 35.762 36.537 35.810 52.420 36.795 44.744 37.355
75th 54.218 53.150 51.409 67.866 52.054 68.210 54.552
max 137.960 135.878 134.123 107.279 208.670 207.557 208.670
mean (SD) 42.85 ± 24.13 42.01 ± 20.70 41.29 ± 20.60 50.92 ± 25.54 43.00 ± 22.76 52.09 ± 27.91 43.74 ± 23.13

O3

min 4.051 4.051 4.051 5.887 3.476 4.877 3.476
25th 10.965 11.030 10.851 12.457 10.581 11.328 10.851
median 15.215 15.372 15.104 18.192 14.709 14.164 14.985
75th 20.874 22.240 20.451 25.172 20.451 19.507 20.759
max 54.262 69.682 80.656 37.539 88.623 57.330 88.623
mean (SD) 17.04 ± 8.75 18.53 ± 11.27 17.58 ± 10.52 18.71 ± 7.24 16.85 ± 10.08 16.26 ± 7.51 17.19 ± 9.90

SO2

min 0.003 1.000 1.000 0.665 0.003 1.000 0.003
25th 4.208 5.293 4.875 5.435 4.490 7.333 4.875
median 8.333 8.000 8.594 13.792 7.993 14.083 8.727
75th 14.146 17.292 17.169 24.583 16.746 22.946 17.504
max 121.833 121.833 121.833 76.875 111.917 127.875 127.875
mean (SD) 13.15 ± 15.46 13.26 ± 14.22 14.18 ± 16.10 17.90 ± 16.52 13.39 ± 14.60 18.62 ± 17.07 14.26 ± 15.42

1 25th, lower quartile (25th percentile). 2 75th, upper quartile (75th percentile). 3 SD: standard deviation.
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Table 3.3: Correlation analysis between rheumatoid arthritis disease factors and AQI for SO2, NO2, CO, O3, and PM10.

DAS28 CDAI NO2 O3 SO2 CO PM10 Swollen Tender ESR

DAS28
CDAI 0.77 ***
NO2 0.07 *** 0.11 ***
O3 0.00 0.00 −0.12 ***
SO2 0.07 *** 0.10 *** 0.51 *** −0.09 ***
CO −0.01 0.02 0.22 *** 0.02 0.07 ***
PM10 0.00 −0.02 −0.12 *** 0.08 *** −0.03 * −0.05 *
Swollen 0.50 *** 0.60 *** 0.01 0.01 0.01 0.00 −0.02
Tender 0.72 *** 0.93 *** 0.13 *** 0.01 0.11 *** 0.03 −0.01 0.42 ***
ESR 0.65 *** 0.20 *** 0.00 −0.02 0.04 * −0.04 * 0.02 0.16 *** 0.17 ***
CRP 0.28 *** 0.02 * 0.01 0.02 0.01 −0.01 −0.01 0.11 *** 0.02 * 0.37 ***

Note: * p < 0.05; ** p < 0.01; *** p < 0.001.
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3.4 Discussion

Air pollution is a major concern for human health, since it is known to trigger and/or

induce several pathologies and subsequently to increase morbidity and mortality rates,

particularly in the Middle Eastern countries such as Kuwait. Therefore, air pollution

control is a crucial element that should be prioritized by governments. According to

the World Health Organization (WHO), six major air pollutants including NO2, CO,

PM10, SO2, O3, and lead (Pb) were identified to be primary and secondary pollutants

with health risks. Many studies have found connections between particulates in the

air and rates of hospitalization, chronic obstructive pulmonary disease, and restricted

activity due to illness (Organization et al., 1999).

RA is considered as the most common chronic systemic auto-immune disease affecting

joints, musculoskeletal apparatus, and fibrous tissues (Gabriel et al., 1999), whose inci-

dence is expected to follow a positive trend during the following years (Chaudhari et al.,

2016). In the present study, the relation between air pollutants and RA disease activity

was measured using several regression models, to examine whether this association was

still present even after the addition of RA factors that were highly significant for DAS28

and CDAI. From Model 1 for both DAS28 and CDAI, demographics weakly controlled

the disease activity level; these results comply with patient-reported outcomes used by

the National Databank for Rheumatic Diseases (NDB) (Covic et al., 2006; Godha et al.,

2010).

The results of Model 1 did not show any significant evidence concerning the effect

of disease duration on the disease activity level as measured by the DAS28; this also

agrees with another study (Gonzalez-Alvaro et al., 2003). Nonetheless, the results of

Models 3 and 4 confirmed the existence of a significant association between exposure to

SO2 and NO2 and increase of RA disease activity: more specifically, in Model 3, where

the effect of air pollutants was presented without adding RA variables, SO2 and NO2

showed significant relationships with RA’s disease activity; in Model 4, where other RA

factors were included, SO2 and NO2 remained risk factors for RA disease activity level.
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Table 3.4: Coefficients estimated by hierarchical linear model (HLM) for DAS28 (95%
confidence interval in parentheses).

Dependent Variable
DAS28

(M1) (M2) (M3) (M4)

Gender (male) −0.213 ** −0.040 **
(−0.268, −0.157) (−0.064, −0.017)

RA Disease Duration −0.002 −0.004 **
(−0.006, 0.002) (−0.006, −0.003)

Nationality (non-Kuwaitis) 0.272 ** 0.022
(0.214, 0.331) (−0.007, 0.051)

Governorate (Farwaniya) 0.807 ** 0.299 **
(0.666, 0.947) (0.239, 0.358)

Governorate (Hawally) 0.852 ** 0.277 **
(0.704, 1.000) (0.214, 0.341)

Governorate (Jahra) 1.143 ** 0.254 **
(0.933, 1.352) (0.150, 0.359)

Governorate (Kuwait City) 0.744 ** 0.290 **
(0.606, 0.882) (0.232, 0.348)

Governorate (Mubarak Alkabeer) 0.955 ** 0.175 **
(0.793, 1.117) (0.106, 0.244)

Comorbidity (Yes) 0.060 * −0.051 **
(0.007, 0.114) (−0.074, −0.029)

Treatment Class (cDMARDs) 0.064 **
(0.036, 0.092)

Swollen 0.090 ** 0.226 **
(0.085, 0.095) (0.208, 0.244)

Tender 0.099 **
(0.096, 0.101)

RF (Positive) 0.035 ** 0.004
(0.010, 0.060) (−0.078, 0.085)

ACPA (Positive) 0.008 0.007
(−0.015, 0.031) (−0.063, 0.078)

Patient Global Assessment 0.097 **
(0.088, 0.105)

Physician Global Assessment 0.014 *
(0.002, 0.025)

ESR 0.028 ** 0.035 **
(0.027, 0.028) (0.034, 0.037)

CRP 0.017 ** 0.001
(0.015, 0.020) (−0.006, 0.009)

NO2 0.003 * 0.003 **
(0.001, 0.005) (0.002, 0.005)

O3 0.002 0.003
(−0.002, 0.006) (−0.001, 0.006)

SO2 0.004 ** 0.003*
(0.001, 0.007) (0.0004, 0.005)

CO −0.051 −0.001
(−0.114, 0.012) (−0.053, 0.052)

PM10 0.0002 0.00003
(−0.0002, 0.001) (−0.0003, 0.0004)

Constant 1.845 ** 1.029 ** 2.586 ** 1.506 **
(1.701, 1.988) (0.966, 1.093) (2.435, 2.738) (1.358, 1.654)

R2 0.034 0.865 0.007 0.488
Adjusted R2 0.033 0.865 0.006 0.486

Note: * p < 0.05; ** p < 0.01; *** p < 0.001.
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Table 3.5: Coefficients estimated through HLM for CDAI (95% confidence interval in
parentheses).

Dependent Variable
CDAI

(M1) (M2) (M3) (M4)

Gender (male) −0.748 ** −0.078
(−1.187, −0.309) (−0.218, 0.061)

RA Disease Duration −0.052 ** 0.005
(−0.082, −0.021) (−0.005, 0.015)

Nationality (non-Kuwaitis) 1.209 ** 0.255 **
(0.747, 1.671) (0.081, 0.429)

Governorate (Farwaniya) 0.066 −1.199 **
(−1.044, 1.176) (−1.550, −0.848)

Governorate (Hawally) 3.408 ** 0.526 **
(2.241, 4.576) (0.152, 0.900)

Governorate (Jahra) 4.662 ** −0.559 *
(3.008, 6.315) (−1.179, 0.062)

Governorate (Kuwait City) 1.947 ** −0.135
(0.858, 3.036) (−0.476, 0.207)

Governorate (Mubarak Alkabeer) 4.430 ** −0.064
(3.150, 5.709) (−0.474, 0.345)

Comorbidity (Yes) 0.984 ** 0.147 *
(0.564, 1.405) (0.014, 0.281)

Treatment Class (cDMARDs) −0.059
(−0.225, 0.107)

Swollen 1.145 ** 3.035 **
(1.114, 1.175) (2.848, 3.222)

Tender 1.423 **
(1.410, 1.435)

RF (Positive) 0.025 −0.066
(−0.123, 0.173) (−0.901, 0.770)

ACPA (Positive) 0.226 ** −0.594
(0.090, 0.363) (−1.320, 0.132)

Patient Global Assessment 1.067 **
(1.059, 1.075)

Physician Global Assessment 0.871 **
(0.861, 0.881)

ESR 0.019 ** 0.085 **
(0.016, 0.022) (0.068, 0.103)

CRP −0.050 ** −0.171 **
(−0.064, −0.037) (−0.246, −0.095)

NO2 0.040 ** 0.048 **
(0.022, 0.058) (0.030, 0.066)

O3 0.027 0.039 *
(−0.008, 0.062) (0.003, 0.074)

SO2 0.044 ** 0.044 **
(0.018, 0.070) (0.018, 0.070)

CO −0.062 0.185
(−0.601, 0.476) (−0.358, 0.729)

PM10 0.001 0.0004
(−0.003, 0.004) (−0.003, 0.004)

Constant 4.537 ** 1.322 ** 5.306 ** 2.540 **
(3.404, 5.671) (0.948, 1.697) (4.006, 6.606) (1.017, 4.064)

R2 0.030 0.925 0.015 0.299
Adjusted R2 0.029 0.925 0.014 0.297

Note: * p < 0.05; ** p < 0.01; *** p < 0.001.
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The Swedish Epidemiological Investigation examined the impact of prolonged expo-

sure to air pollution on the probability of having RA: from this research, there was no

evidence of a higher risk of RA resulting from exposure to PM; however, the overall

risk of RA mildly increased due to atmospheric pollutants. This research confirmed the

presence of a higher risk of RA following increases in NO2 and SO2 concentrations in

ambient air (Hart et al., 2013b).

Among these various fields of research, a study using distance-to-road as a proxy

component for exposure to traffic-associated pollution reported a substantial increase

of RA risk in those residing within shorter distances from the road (Hart et al., 2009).

Moreover, a Canadian nested case-control study reported an augmented risk of devel-

oping RA following exposure to O3 (De Roos et al., 2014). Furthermore, other studies

suggested an increased risk of RA in subjects who were exposed to NO2, particularly in

women (Chang et al., 2016), as well as positive associations between O3, CO, and NO2

and RA incidence (Jung et al., 2017).

The present study has some strengths such as combining patient records with air

pollution concentration to initiate a complete dataset that could be used for future

academic studies. In addition, dealing with missing values using the MICE algorithm

increased the accuracy of the estimated regression coefficients. This study used the

KRRD database that includes data on RA patients in Kuwait with all previous records.

One of the limitations in the study is related to the records of the follow-up visits. As the

data were extracted from a registry, the number of hospital visits is not equal for all

patients. It ranges from 1 to 49 visits. Because of this limitation, time series analysis

across patients’ visits could not be performed to estimate any lag effect between air

pollution and RA disease activity. Single lag day effect or moving average of several

previous days’ lag effect could not be investigated in this study because of the data

layout and the study duration is very short (from 2013 to 2017). However, it could be

developed by improving time series features in the future.
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3.5 Conclusions

Air pollution was significantly associated with disease activity scores in RA patients.

NO2 and SO2 were found to be significant risk factors for RA activity. The results

confirmed that the increasing of the DAS28 can be explained by the increases of NO2

and SO2 with 0.7% approximate correlation as measured by the R-squared value. In

addition, the increasing of the CDAI due to the increases of NO2 and SO2 has 1.5%

approximate correlation as measured by the R-squared value for both (NO2 and SO2).

Future research could also be based on time series analysis by employing univariate or

multivariate time series analysis. It is also recommended that researchers classify the

data on air pollution and disease activity score using a cluster technique and perform

an adequate cluster analysis on the data.
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Chapter 4

Dealing with Environmental and

Clinical Missing Data

Missing data is a problem that exists within virtually any discipline that makes use of

empirical data. When performing longitudinal or cross-sectional studies in any environ-

mental research, it is not uncommon for data to be missing either by chance or by design.

For instance, in research involving multiple waves of measurements, missing data can

arise due to attrition, that is, subjects drop out before the end of the study.

Typically, researchers have many standard complete-data techniques available, many

of which were developed early in the twentieth century like the ordinary least-squares

regression and factor analysis (Seal, 1967), when there was just no solution for handling

missing values. More modern techniques like the random effects model (Henderson et al.,

1959) or the logistic regression (Cox, 1958) that became accessible before 1970 were also

intended for complete data sets. Software packages like R, SAS, and SPSS provide these

routines. However, these methods, being complete-data techniques, are not capable of

dealing correctly with incomplete data sets.

Simple solutions were in use for decades (Schafer and Graham, 2002). These strate-

gies involved discarding incomplete cases or substituting missing data by somehow plau-

sible values. The most popular approach is complete case analysis (CCA) also known
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as listwise deletion. The method is simple, and no particular modifications are needed.

The main difficulty is that not all missing values have the same reason for not being

observed, and there are situations in which missing data do not affect the conclusions,

but generally, no justification is provided for the assumptions underlying the analysis at

hand.

In this chapter we will present two different studies to show how we deal with missing

values for the air quality dataset from K-EPA (Data Imputation: Study 1) and the

patients with rheumatoid disease activity dataset from KRRD (Data Imputation: Study

2).

4.1 Study 1: Dealing with Environmental Missing Data - Appli-

cation on K-EPA Data

Incomplete data may arise due to several different reasons including refusal, attrition,

measurement errors or simply ignorance about the individual question asked. No matter

what the reason is, missing observations is a problem that has to be dealt with in all

statistical areas (Allison, 2001). Besides making sure that the missing observations

really are missing observations (Schafer and Graham, 2002), assumptions, explicitly or

implicitly, about the missing data mechanism are always made. Assuming an ignorable

missing data mechanism simplifies the analysis of the missing data as it means that the

process causing the missing observations does not have to be explicitly modelled. The

concept of ignorable missing data was introduced by Rubin (1976) as "the weakest simple

conditions on the process that causes missing data such that it is always appropriate to

ignore this process when making inferences about the distribution of the data". For the

missing data mechanism to be ignorable, two conditions have to be fulfilled. First, the

missing observations have to be missing at random (MAR). Second, the parameters in

the missing data process have to be distinct from those in the the data.

The missing data pattern, describing which observations in the data are missing, may

further be useful to examine when dealing with incomplete data. A monotone missing
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data pattern (MMP) offers, for example, more flexibility in the choice of the missing

data method than an arbitrary missing data pattern (AMP) (Little and Rubin, 2002).

In this study, we will present how we are dealing with missing data for the environ-

mental dataset using the missing data imputation technique. The imputation methods

used in this work are: multivariate imputation by chained equations (MICE) using

random forest (RFm), k-nearest neighbour (kNN), Bayesian principal component anal-

ysis (BPCA), multiple imputation using expectation maximization with bootstrapping

(EM with Bootstrapping), predictive mean matching (PMM), and the proposed itera-

tive imputation method (missForest) based on a random forest (Buuren and Groothuis-

Oudshoorn, 2010; Shah et al., 2014; Van Buuren et al., 2015; Stekhoven and Bühlmann,

2012; Misztal, 2013; Stacklies et al., 2016). The root mean square error (RMSE) and

mean absolute error (MAE) criteria are used to compare the performances of the im-

putation methods. For the error indicators (RMSE or MAE), the larger the value, the

greater the error. The end product is an outline of the best approaches for managing

missing data in a data set that is critical for public health in Kuwait.

4.1.1 Missing Data Imputation for the K-EPA Dataset

In environmental research, missing data are often a challenge for statistical modelling.

This work addressed some advanced techniques to deal with missing values in a data set

measuring air quality using a multiple imputation (MI) approach. MCAR, MAR, and

MNAR missing data techniques are applied to the data set. Five missing data levels

are considered: 5%, 10%, 20%, 30%, and 40%. The imputation method used in this

study is an iterative imputation method, missForest, which is related to the random

forest approach. Air quality data sets were gathered from five monitoring stations in

Kuwait, aggregated to a daily basis. Logarithm transformation was carried out for

all pollutant data, in order to normalise their distributions and to minimize skewness.

We found high levels of missing values for NO2 (18.4%), CO (18.5%), PM10 (57.4%),

SO2 (19.0%), and O3 (18.2%) data. Climatological data (i.e., air temperature, relative

humidity, wind direction, and wind speed) were used as control variables for better
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estimation. The results show that the MAR technique had the lowest RMSE and MAE.

In this chapter, we conclude that MI using the missForest approach has a high level

of accuracy in estimating missing values. MissForest had the lowest imputation error

(RMSE and MAE) among the other imputation methods and, thus, can be considered

to be appropriate for analysing air quality data.

4.1.2 The Review of Missing Imputation

Air quality monitoring is conducted with the aim of protecting public health. Numerous

air contaminants have been found to have harmful effects on human health. The air

quality in cities varies, due to concentrations of particulate matter up to 10 micrometres

in diameter (PM10), NO2, O3, CO, and SO2, from emission sources including vehicle

exhaust, manufacturing operations, and chemical facilities, among other sources.

A major challenge in air quality data management is determining how to deal with

missing data values. Missing information in data sets occurs for multiple reasons, such

as impaired equipment, insufficient sampling frequency, hardware problems, and human

error (Norazian et al., 2008). Incomplete data sets affect the applicability of specific

analyses, such as receptor modelling, which generally requires a complete data matrix.

The occurrence of missing data, no matter how infrequent, can bias findings on the

relationships between air contaminants and health outcomes (Junger and de Leon, 2009).

Incomplete data matrices may provide outcomes that vary significantly, compared to the

results from complete data sets (Forbes et al., 2004).

To gain a more complete data set, researchers must decide whether to discard or

impute (i.e., substitute for) missing data. Ignoring missing values is typically not war-

ranted, as valuable information is lost, which may compromise inferential power (Jadhav

et al., 2019). Therefore, the most appropriate option is to impute the missing data. Yet,

the systematic differences between real and substituted data can also lead to unwanted

bias. Therefore, it is vital to determine an optimal approach for estimating missing

values. Several problems have been linked with missing data (Hawthorne et al., 2005).

These challenges include statistical power reduction, bias as a result of inconsistent
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data, difficulties in managing the data during statistical analyses, and low efficiency.

The criteria implemented for measures to deal with missing data in time series anal-

ysis rely on the missing data replacement mechanism and missing data pattern (Plaia

and Bondi, 2006). Such challenges are especially problematic when the missing data

exceed 60 percent, where existing methods have significant difficulty in addressing such

situations (Farhangfar et al., 2008).

This study focuses on a case study of missing data related to air quality monitoring.

The Kuwait environmental public authority (K-EPA) is mandated with the responsibility

for measuring air quality. A data set collected from five fixed monitoring stations was

associated with missing data, likely caused by multiple reasons. One is that there were

a large number of routine maintenance changes in the monitoring sites. Second, simple

human error occurred. Third, there were some tagging problems that necessitated the

exclusion of some data (e.g. programming or coding issue(s), data structures, backup or

archiving process, ..., etc.).

The main purpose of this chapter is to find the best imputation method to esti-

mate the missing values for the monitored pollutants (SO2, NO2, CO, O3, and PM10)

from K-EPA datasets using multiple imputation methods (RFm, kNN, BPCA, EM with

Bootstrapping, PMM and missForest).

It is important to describe the factors that may lead to missing data in statistical

analyses. The first instance of missing data is missing completely at random (MCAR),

whereby the missing data result from either the observer not collecting the necessary

information or the reporting of incomplete or false information. The second instance of

missing data is missing at random (MAR), whereby the extent of data missing depends

on the type of data under observation. MAR is appropriate when the missing data can

be partially retrieved, depending on the existence of information related to the variables

in the same data set. The third instance is missing not at random (MNAR), whereby the

missing data are dependent on the actual values absent for statistical analysis. Among

the three types of missing data in statistical analysis, MAR and MNAR are the most

common (Graham, 2009). When the type of missing data tends towards MAR, multiple
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imputation techniques are more suitable than other techniques, such as listwise deletion

(Rubin, 1996).

4.1.3 Missing Data Mechanisms

Rubin (1987) outlined three mechanisms behind missing data in his seminal article:

Missing at Random (MAR), Missing Completely at Random (MCAR), and Missing Not

at Random (MNAR).

Missing Completely at Random (MCAR)

When missingness on a variable is independent to the variable’s values or any other

measured variable, the data may be called MCAR (Rubin, 1976; Little and Rubin, 2019;

Van Buuren, 2018). In essence, the observed data constitute a random sampling of the

entire data set. That is, there are no consistent variations between participants who

have missing data and those who have complete data. Because a batch of lab samples

was poorly handled, some participants may have missing laboratory values. The missing

data diminish the study’s analysable population and, as a result, its statistical power,

but they do not generate bias: if the data is considered MCAR, the remaining data can

be categorized a simple random sampling of the entire data set of interest. The MCAR

assumption is considered as a strong and frequently unreasonable assumption.

In MCAR, the chance of missing data values is the same across all instances. The

following example describes an instance in which MCAR occurs in statistical analysis:

Suppose that Y is an n × p matrix which includes all p variables with n cases in

the sample. Let the observed values be denoted as (Yobs), while the missing values

are denoted as (Ymis). The matrix R spots the missing values’ locations in Y . The

observations of R and Y are denoted as rij and yij, respectively. Thus, rij = 1 when

yij is observed, while rij = 0 when yij is missing. Then, the distribution of R depends

upon Y = (Yobs, Ymis). We can write Pr (R|Yobs, Ymis, Ψ) when the data are said to be

assumed as MCAR, if:
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P (R | Y) = Pr (R = 0|Yobs, Ymis, Ψ) = Pr(R = 0|Ψ), (4.1)

where Ψ consists of the parameters of the missing data in the model. This means that

the probability of missing a data value depends only on the estimated parameters in the

model.

Missing at Random (MAR)

When missingness on a variable is associated with the observed data but not the unob-

served data, the data is termed MAR (Rubin, 1976; Little and Rubin, 2019). If male

respondents are less likely to finish a survey on depression gravity than female respon-

dents, a researcher studying depression may come into data that is MAR. In that case,

if the likelihood of completing the survey is connected to their sex (which is completely

observed) but not to the intensity of their depression, the data can be classified as MAR.

Complete case studies of a data set comprising MAR data, which are founded on only

data points for which all relevant data is present and no fields are missing, can or cannot

result in bias. However, if the entire case analysis is skewed, adequate accounting for

known factors (in this case, sex) can give impartial study results.

MAR is, therefore, a less stringent assumption, compared to MCAR; for instance,

when selecting a sample from a population based on certain characteristics, the resulting

missing data can be categorized as MAR. Statistical software for multiple imputations

usually assumes that the data are MAR (Little and Rubin, 2019; Paik and Sacco, 2000).

Therefore, the probability of data missing is dependent on the observed data but not

the unobserved values:

P (R | Y) = Pr (R = 0|Yobs,Ymis, Ψ) = Pr (R = 0|Yobs, ψ) . (4.2)

The K-EPA data are best classified as MAR.
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Missing Not at Random (MNAR)

When missingness on a variable is linked to the unobserved data values, the data is

considered MNAR (Polit and Beck, 2008; Rubin, 1976; Little and Rubin, 2019). To

expand on the preceding scenario, the depression registry may come across MNAR data

if people with acute depression have a high likelihood of declining to fill out the depression

gravity survey. Complete case scrutiny of a data set encompassing MNAR data, as for

MAR data, has the propensity to be biased or not; if it is, this matter cannot be solved

in analysis, and estimated effects will be biased.

For MNAR, the chance of data not being available is dependent on reasons unknown

to the researcher. For instance, when conducting research, some respondents may decide

to withhold information for reasons unknown to the researcher. Due to the nature

of MNAR, it is often regarded as a more complex case in statistical analysis. It can

be addressed by targeting some of the reasons respondents would choose to withhold

information, Ymis, itself. It is represented:

P (R | Y) = Pr (R = 0|Yobs, Ymis, Ψ) . (4.3)

4.1.4 Ignoring the Missing Data Mechanism

One of the major issues that arise when performing imputations is whether the missing

data come from the same distribution as the observed data (Yobs) (Schafer, 1997). As

mentioned above, the observed data are made up of Yobs and R with the joint density

function f (Yobs, R|θ, Ψ), which depends on the model estimated parameters θ for Y

(Little and Rubin, 2002).

We can estimate θ without knowing Ψ by defining the probability density function

of the joint distribution of Yobs and Ymis as f(Y |θ) ≡ f (Yobs, Ymis|θ). Therefore, in order

to compute the marginal probability density of Yobs, we integrate the missing data as:

f (Yobs|θ) =
!

f (Yobs, Ymis|θ) dYmis, (4.4)
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where the likelihood function of θ, according to Yobs while ignoring the missing data,

can be defined as:

Lign (θ|Yobs) ∝ f (Yobs|θ) . (4.5)

To build a more general model, we include R and specify the joint density distribution

of Y and R as:

f(Y, R|θ, Ψ) = f(Y |θ)f(R|Y, Ψ). (4.6)

We can find the distribution of the observed data by integrating Ymis from the joint

density using θ and Ψ, defined as:

f (Yobs, R|θ, Ψ) =
!

f (Yobs, Ymis|θ) f (R|Yobs, Ymis, Ψ) dYmis. (4.7)

Now, we can rewrite Equation (4.7) as:

f (Yobs, R|θ, Ψ) = f (R|Yobs, Ψ)
!

f (Yobs, Ymis|θ) dYmis = f (R|Yobs, Ψ) f (Yobs|θ) . (4.8)

The missing data mechanism is ignorable for likelihood inference if the following hold

1. MAR: when the missing data pattern is missing at random; and

2. Distinctness: when the joint parameter space of (θ, Ψ) is equal to the product of

the parameter space of θ and Ψ (Schafer and Olsen, 1998).

4.1.5 Multiple Imputation (MI)

Some studies investigated the bias and efficiency in data sets with increasing proportions

of missing data (e.g. when it is exceeds 50% of the total missing values) (Haji-Maghsoudi

et al., 2013; Lee and Carlin, 2012; Marshall et al., 2010; McNeish, 2017; Clavel et al.,

2014). Researchers have debated the role of listwise deletion when solving for such
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missing data. Most research studies have concluded that, although the listwise deletion

technique is not commonly used, it is applicable in some instances (Heitjan and Rubin,

1990; King et al., 2001). According to Marshall et al. (2010), multiple imputation is

favourable for computing missing data and especially applicable when the missing data

rate is above 10% (Newman, 2014). For instance, in a regression model, including a

number of variables with a low rate of missing data in the full regression model, when

compared to the outcomes of simple bivariate regressions. Therefore, it is critical for

analysts to evaluate the total missing rate over all variables as well as the partial missing

one for each variable.

One limitation of applying a single imputation approach is that formulas of standard

variance applied to filled-in data tend to underestimate the variance of the estimates;

therefore, multiple imputation methods have been proposed (Little and Rubin, 2019).

The first step in such a method is specifying the single encompassing multivariate ap-

proach for all data sets. There are four types of multivariate models of data completion

to consider (Schafer and Olsen, 1998): (i) standard models, which impute under mul-

tivariate normal distributions; (ii) log-linear models, that have been used traditionally

by social scientists in describing the associations among cross-classified data variables;

(iii) general location models, which combine the log-linear approach for the variables in

the multivariate model of standard regression for the continuous variables; and (iv) a

two-level model of linear regression, which is mostly applied to multi-level data. The

imputation model should be able to adopt the subsequent analysis and should be able

to preserve the interactions of variables, which relates to the central point of the inves-

tigation discussed later in this chapter.

A multiple imputation method balances ease of application and the quality of ob-

tained results. The various imputations identify random errors that are appropriate to

the process of imputation, making it possible to obtain unbiased estimates in all parame-

ters. No deterministic method of imputation can achieve the same result. The technique

also allows for departure from normality assumptions, while providing results that are

adequate with low sample sizes or when significant amounts of data are missing.
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Some requirements are necessary, in order to attain the desired results of multiple

imputation (Allison, 2000). First, there should be random data missing (MAR), which

means that there is a dependence on observed variables and not missing observations.

Second, the method of generating the values imputed should suit the analysis that sub-

sequently follows. This maintains the associations between variables, which is a focus

in the analysis shown later in this chapter. Rubin has given a thorough description of

these conditions. A remaining question, however, relates to adopting the most suitable

practices for performing the imputations (White et al., 2010). It is essential to have an

awareness of the possible prediction problems, in order to reduce or minimize systematic

error.

There have been many applications of multiple imputation in health, environmen-

tal (Allen and DeGaetano, 2001; Kotsiantis et al., 2006), and industrial (Jagannathan

and Wright, 2008; Lakshminarayan et al., 1999) data bases, as well as for survey data

(Van Ginkel et al., 2007; Schenker and Taylor, 1996) and data mining approaches, which

extract patterns from large data sets through a combination of artificial intelligence

and statistical methods, that can be used for database management (Jagannathan and

Wright, 2008).

4.1.6 Multiple Imputation Using Random Forest Method

Let us assume that X = (X1, X2, . . . , Xp) is a n × p-dimensional data matrix. We

propose the use of the random forest technique for imputing missing observations. The

random forest algorithm has a built-in routine to handle the values that are missing.

This is achieved by weighing the frequency of values with the proximity of bagging

modification. Consequently, this builds a large collection of de-correlated trees, and

then averages them after the training of an initially imputed mean data set (Breiman,

2001). This approach requires a response variable that is complete and useful for forest

training. Instead, we estimate the values of all the missing values directly, by use of a

random forest that is trained on the observed data set, where X is the matrix of the

complete data. Xs contains all missing values at entries i(s)
mis ⊆ {1, . . . , n}. The data set
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can be separated into four parts:

1. y(s)
obs: the observed values of Xs.

2. y(s)
mis: the missing values of Xs.

3. x(s)
obs: the observations, i(s)

obs = {1, . . . , n}\i(s)
mis, that belong in the other variables

Xs.

4. x(s)
mis: the observations, i(s)

mis, that belong in the other variables Xs.

Note that x(s)
obs and x(s)

mis are not completely observed, as the index i(s)
obs corresponds

to the observed values of the variable Xs.

According to Stekhoven and Bühlmann (2012), the process starts with an initial guess

for the missing values in X using a mean imputation approach or any other imputation

method, depending on the data. Then, we sort the predictors Xs, s = 1, . . . , p, ascending

or descending, Xs, s = 1, . . . , p, according to the number of missing values. Then, for

each variable Xs, the missing values are imputed by random forest (i.e., the first fitting)

with response y(s)
obs and predictors X(s)

obs. Next, the missing values y(s)
mis are estimated by

applying the trained random forest to x(s)
mis. The imputation approach should be repeated

until a stopping criterion is reached. Pseudo Algorithm 1 shows a representation of the

missForest method (see Algorithm 1).

The stopping criterion (γ) is met when the difference between the last imputed data

matrix and the previous one increases for the first time, with respect to both variable

types. Here, the difference for the set of continuous variables N is defined as:

∆N =
"

j∈N

#
Ximp

new − Ximp
old

$2

"
j∈N

#
Ximp

new

$2 , (4.9)

and that for the set of categorical variables F as:

∆F =

"
j∈F

"n
i=1 IXimp

new ∕=Ximp
old

#NA
. (4.10)
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Algorithm 1 Impute missing values with random forest, Stekhoven and Bühlmann (2012).
Require: X is an n × p matrix. Set up the stopping criterion (γ)

1: set up initial guess for missing values;
2: k is the vector of sorted indices of columns in X w.r.t. increasing the amount of

missing values;
3: while not γ do
4: Ximp

old stores the previously imputed matrix;
5: for s in k do
6: Fit a random forest: y(s)

obs ∼ x(s)
obs;

7: Predict y(s)
mis using x(s)

mis;
8: Ximp

new updates the imputed matrix using predicted y(s)
mis;

9: end for
10: update γ
11: end while
12: return the imputed matrix Ximp

Let X be an n × p matrix; set the stopping criterion (γ); set the initial guess for

missing values. k ← vector of sorted indices of columns in X w.r.t. increasing amount

of missing values. Ximp
old ← stores the previously imputed matrix. Fit a random forest:

y(s)
obs ∼ x(s)

obs. Predict y(s)
mis using x(s)

mis; Ximp
new ← update the imputed matrix using the

predicted y(s)
mis. Update γ and the imputed matrix Ximp,

where #NA is the number of missing values in the categorical variables F.

After imputing the missing values, the performance is assessed using the normalised

root mean squared error (Oba et al., 2003) for the continuous variables, defined by:

NRMSE =

%&&' mean
#
(Xtrue − Ximp)2

$

var (Xtrue) , (4.11)

where Xtrue and Ximp are the complete data matrix and the imputed data matrix, re-

spectively. In this study, all predictors are classified as continuous observations. The

mean and variance are used as a short notation for empirical mean and variance com-

puted over the missing values only.

When an RFm is fitted to the part that is observed on a variable, we use the out-of-bag

(OOB) estimate of an error for the variable. When we meet the stopping criterion (γ), we

average it over the variable set of that type, in order to obtain an approximation of the
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actual errors of imputation. We assess the performance of this estimate by comparing

the absolute difference between the OOB imputation error estimate in all simulation

runs and the true imputation error.

4.1.7 Process of Multiple Imputations (MI) Using Rubin’s Rules

For our data sets, we followed Rubin’s rules (Little and Rubin, 2019) for handling missing

data. The process of multiple imputations (MIs) was conducted separately for each

monitoring station (see figure 4.1). The first step in multiple imputation is to create

values ("imputes" or “mi”), with 10 iterations for each “mi” to be substituted for the

missing data. In order to create imputed values, we need to identify a model (say, a

linear regression) that allows us to create imputes based on other variables in the data

set (predictor variables). As we need to do this multiple times, in order to produce

multiple-imputed data sets, we identify a set of regression lines which are similar to each

other.

Figure 4.1 shows the process for the K-EPA data sets, to process and estimate missing

values using imputation methods. There were five data sets (1-5), relating to FAH,

JAH, MAN, RUM, and ASA, respectively. Each data set should contain 2192 daily

observations for each variable; however, due to missing values, they were all less than

2192.

The power of MI lies in its multiple imputations being able to be performed for

each variable in the data set. While every single imputation is ambiguous or imprecise,

the combination of the computed imputations takes the uncertainty of each imputa-

tion into consideration. According to King et al. (2001) and Newman (2014), MAR or

MCAR pooled estimated parameters are less biased and the associated standard errors

are corrected appropriately.

The implementation of an MI technique requires three steps: First, it imputes several

values for the same observation, using at least two different imputed values (m ≥ 2)

for each MI approach. Then, the second step takes each individual method, m, and

analyses it using standard complete data. Finally, the completed data sets are pooled
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Air pollution dataset
containing missing

values

Imputed: set 1 
(m=20, iteration =10)

Imputed: set 2 
(m=20, iteration =10)

Imputed: set 3 
(m=20, iteration =10)

Imputed: set 4 
(m=20, iteration =10)

Imputed: set 5 
(m=20, iteration =10)

Result 1

Result 2

Result 3

Result 4

Result 5

Pooled Results

Figure 4.1: The steps of implementing multiple imputations for PM10, SO2, O3, CO, and
NO2 during 2012 to 2017 with 20 imputed datasets (m=20) according to site location,
in the State of Kuwait.

by integrating the m analyses, in order to generate overall estimates and standard errors.

This can be done by calculating the mean over the m repeated analyses. Pooling data

from several m allows multiple imputations to ensure higher accuracy (Ghazali et al.,

2020). Figure 4.1 shows how we treated the K-EPA data sets with multiple imputation,

where m = 20.

4.1.8 Data Sets from Kuwait EPA

We have utilised a real-time air quality monitoring data set collected for 5 locations in

Kuwait from the Kuwait Environmental Public Authority (K-EPA), in order to evaluate

and assess the performance of various imputation methods to estimate missing values in

the data set. The data set contained air quality, time, and meteorological data.

1. Air quality data: The air pollutant variables in the air quality data were NO2,

CO, PM10, SO2, and O3;

2. Meteorological data: The meteorological parameters included temperature, hu-

midity, wind direction, and wind speed.

We compiled pollutant data from the Environmental Public Authority of Kuwait
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(K-EPA). The data were gathered from five environmental monitoring stations from

1 January 2013 to 31 December 2017. Based on the daily data, both the 24 hours

aggregation for SO2, NO2, and PM10, and the 8 hours aggregation for CO and O3 at

each station were calculated. All pollutants were measured using the micrograms per

cubic metre
(
µg/m3)

. According to US Environmental Protection Agency (2015), if less

than 75% of data are present (i.e. less than 6 hours), the average is considered missing.

We used the Air Quality Index (AQI), as generated by Al-Shayji et al. (2008).

The AQI was developed, for Kuwait, based on the United States Environmental Pro-

tection Agency (USEPA) recommendations. As mentioned in section 1.3.5 on page 11,

the AQI calculation was explained and performed using equation 1.1 on page 13 and

table 1.2 on page 13.

Using the data obtained from K-EPA, we conducted an in-depth comparative anal-

ysis of the different imputation methods. Missing data were entered into each data set,

assuming a general missing data pattern and three mechanisms of missing data: MCAR,

MAR, and MNAR. Under the MCAR assumption, missing values were randomly applied

to each data set. Under the MAR assumption, the probability of information being miss-

ing depended on class attribute. Under the MNAR assumption, the largest or smallest

values of Xs were removed. The objective of the study was to derive a comparison

of six different imputation methods for MNAR, MAR, and MCAR, concerning missing

data. We simulated the rates of missing data by varying the proportions by 5%, 10%,

20%, 30%, and 40%. We used "ampute" function in "MICE" package in R to generates

multivariate missing data under a MCAR, MAR or MNAR missing data mechanism.

4.1.9 Missing Imputation Evaluation Criteria

To determine the best imputation method, three model performance measures were

considered (Bennett et al., 2013): root mean square error (RMSE), mean absolute error

(MAE), and correlation coefficient (R), which are calculated as follows:
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RMSE =

%&&' 1
n

n*

i=1
(yi − ŷi)2, (4.12)

MAE = 1
n

n*

i=1
|yi − ŷi| , (4.13)

where yi and ŷi are the ith observations for the comparison value and the imputed data

sets, respectively. The error was measured based on the difference between the estimated

value and the observed values. For RMSE and MAE measures, if the value obtained is

small, then the estimation method is better.

4.1.10 R Packages Used for Imputation Process

Five well-known imputation packages accessible in R were applied. The first R pack-

age used here was VIM (https://cran.r-project.org/web/packages/VIM/

VIM.pdf), which is associated with kNN imputation methods and robust model-based

imputation for numerical, semi-continuous, categorical, or ordered variables (Kowarik

and Templ, 2016). The second R package was MICE (https://cran.r-project.

org/web/packages/mice/mice.pdf) which stands for Multivariate Imputation via

Chained Equations (Royston, 2004). MICE is specialised to deal with missing values

of MAR or MNAR types (Buuren and Groothuis-Oudshoorn, 2010). MICE can deal

with different types of variables using different imputation methods, such as predictive

mean matching for numeric variables, logistic regression for binary variables, Bayesian

polytomous regression for factor variables, and a proportional odds model for ordered

variables (Buuren and Groothuis-Oudshoorn, 2010; Horton and Lipsitz, 2001). The

third package was missForest (https://cran.r-project.org/web/packages/

missForest/missForest.pdf). MissForest deals with non-parametric imputation

(Stekhoven and Bühlmann, 2012). MissForest enables the imputation of the predictors

by using regression trees of resampling under the prediction of missing values (Liao

et al., 2014). MissForest has good computational efficiency and can work well with high-

dimensional data (Stekhoven and Bühlmann, 2012). The fourth package was Amelia
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(https://cran.r-project.org/web/packages/Amelia/Amelia.pdf), which

enables imputation by maximizing the level of expectation with a bootstrapping al-

gorithm. The Amelia package has also been recommended under a larger number of

variables with high-dimensional data. The package also provides improved imputa-

tion models by adding Bayesian priors on individual cell values (Honaker et al., 2011).

The final package used was missCompare (https://cran.r-project.org/web/

packages/missCompare/missCompare.pdf). The missCompare package provides

several diagnostic measurements to compare between all imputation methods, using

RMSE, MAE, and other imputation performance criteria.

4.1.11 Statistical Results

Based on results for the real-time ambient air quality and meteorological data from

the monitoring stations in K-EPA, we inferred real-time and fine-grained ambient air

quality information using means and standard deviations. The distribution analysis was

conducted using the skewness and kurtosis with information of the quartiles (e.g., 25th

and 75th quartiles, median, and IQR), where the correlation between the predictors was

assessed by the Pearson correlation coefficient. The rate of missing values is presented

for each monitoring station using the percentage of total number of missing values among

the predictors.

Table 4.1 shows the average air pollutant concentrations. The overall mean and SD

for PM10, CO, NO2, O3, and SO2 were 0.23 ± 1.07, 0.91 ± 0.90, 0.04 ± 0.02, 0.02

± 0.01, and 0.01 ± 0.01, respectively. The missing value rates were 52.16%, 19.37%,

22.35%, 22.40%, and 22.93% from all (N = 9,006), respectively. Figures B.1 and B.2 from

Appendix B.1 show the missing data distribution, based on year and monitoring site.

Missing value patterns for air quality measurements from 2012 to 2017 was explained in

figure B.3.

All pollutant distributions were positively skewed and we corrected the skewness

by applying log transformations (Alsaber et al., 2020). Figure B.4 in the Appendix

B.1 shows the distribution performance after we applied logarithmic transformations to
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PM10, SO2, O3, CO, and NO2.

Table 4.2 shows the Pearson correlation analysis of various air pollutants and mete-

orological parameters. The strongest positive correlation was found between NO2 and

SO2. This was expected, due to their common emission sources (e.g., road traffic). NO2

had a weak association with PM10, whereas O3 had a highly negative association with

NO2. All meteorological parameters (temperature, humidity, wind speed, and wind

direction) showed a negative association with NO2.

We performed time series plots for each pollutant and for meteorological parameters

(e.g. temperature, wind speed, relative humidity) for each monitoring station to better

understand the patterns of the missing data among all observations (see Figures 4.2,

4.3 and 4.4). We concluded that the missing data pattern can be classified as missing

at random (MAR) or missing not at random (MNAR), especially for the large missing

gaps (see Appendix B, Figures B.1–B.3). Figure B.3 from Appendix B shows missing

observation ratios for each pollutant. From Figure B.3, we can conclude that PM10

has the highest missing observation rate among the pollutants (see Appendix B Figure

B.3-left panel). The right side of the Figure B.3 from Appendix B shows the missing

value pattern for each pollutant.
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Table 4.1: Distribution of Kuwait ambient air pollution exposure during 2012–2017.
The total daily observations for ASA are N = 1,779; for FAH, N = 1,820; for JAH, N =
1,819; for MAN, N = 1,777; and, for RUM, N = 1,811. 25th is the lower quartile (25th
percentile), 75th is upper quartile (75th percentile). SD: standard deviation.

Air Pollutant ASA FAH JAH MAN RUM All (N = 9006)

P M10

min 0.017 0.004 0.005 0.008 0.019 0.004
25th 0.099 0.076 0.073 0.099 0.121 0.088
median 0.154 0.109 0.107 0.142 0.211 0.140
75th 0.262 0.163 0.180 0.218 0.273 0.232
max 3.248 5.500 1.714 7.216 2.538 7.216
mean (sd) 0.26 ± 0.32 0.17 ± 0.28 0.17 ± 0.20 0.32 ± 2.38 0.25 ± 0.23 0.23 ± 1.07
%Missing %53.16 %50.43 %53.12 %53.62 %50.48 %52.16

CO

min 0.050 0.078 0.015 0.048 0.015 0.015
25th 0.597 0.981 0.107 0.719 0.743 0.562
median 0.720 1.265 0.235 0.922 0.971 0.860
75th 0.945 1.567 0.471 1.172 1.241 1.198
max 2.661 3.789 5.956 4.483 68.980 68.980
mean (sd) 0.80 ± 0.32 1.30 ± 0.47 0.36 ± 0.41 0.98 ± 0.41 1.08 ± 1.68 0.91 ± 0.90
%Missing %21.57 %17.30 %20.57 %19.57 %17.84 %19.37

NO2

min 0.001 0.005 0.004 0.001 0.000 0.000
25th 0.028 0.032 0.014 0.018 0.018 0.020
median 0.038 0.045 0.019 0.029 0.026 0.030
75th 0.052 0.066 0.026 0.046 0.039 0.046
max 0.361 0.182 0.095 0.194 0.183 0.361
mean (sd) 0.04 ± 0.02 0.05 ± 0.03 0.02 ± 0.01 0.03 ± 0.02 0.03 ± 0.02 0.04 ± 0.02
%Missing %20.89 %17.48 %20.89 %34.87 %17.61 %22.35

O3

min 0.001 0.002 0.001 0.003 0.001 0.001
25th 0.014 0.012 0.019 0.017 0.015 0.015
median 0.021 0.018 0.025 0.022 0.023 0.022
75th 0.029 0.024 0.033 0.029 0.031 0.029
max 0.073 0.076 0.062 0.065 0.075 0.076
mean (sd) 0.02 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01
%Missing %20.35 %18.48 %20.98 %34.55 %17.66 %22.40

SO2

min 0.000 0.000 0.000 0.001 0.001 0.000
25th 0.006 0.005 0.002 0.003 0.005 0.004
median 0.008 0.009 0.003 0.004 0.007 0.006
75th 0.011 0.019 0.005 0.005 0.011 0.010
max 0.038 0.152 0.049 0.058 0.056 0.152
mean (sd) 0.01 ± 0.00 0.02 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.01
%Missing %20.53 %17.39 %22.80 %36.19 %17.75 %22.93
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Table 4.2: Correlation analysis between weather climatology and air-pollution compo-
nents SO2, NO2, O3, CO, and PM10.

NO2 O3 SO2 CO P M10 Temp. RH WS

NO2
O3 −0.35 **
SO2 0.40 ** −0.09 **
CO 0.35 ** −0.26 ** 0.22 **
PM10 −0.06 ** 0.05 * −0.03 * −0.03

Temp. −0.09 ** 0.45 ** −0.06 ** −0.14 ** 0.05 *
RH −0.02 −0.25 ** −0.08 ** 0.29 ** −0.03 −0.61 **
WS −0.20 ** 0.30 ** 0.13 ** −0.22 ** 0.10 ** 0.24 ** −0.32 **
WD −0.25 ** 0.13 ** −0.15** −0.27 ** 0.06 ** 0.14 ** −0.28 ** 0.31 ***

Note: * p < 0.05; ** p < 0.01; *** p < 0.001.
Terms: RH: Relative humidity, Temp.: Temperature in Celsius, WS: Wind speed, WD: Wind Direction.

Table 4.3 shows a comparison of missing rates for each monitored pollutant between

monitoring stations. There were significant differences among the stations in producing

missing values using an ANOVA test (similar to what we have done before in 2.4 on

page 28), where all p-values were less than 0.05, except for PM10 as p > 0.05. PM10

was excluded from all imputation calculations, due to a missing rate that exceeded 50%

(Zakaria and Noor, 2018; Bertsimas et al., 2017).

Table 4.3: Comparing the differences in Missing data by site using ANOVA test. From
the results we conclude that all monitoring fixed stations are different in missing values
amount for each pollutant except PM10.

ASA FAH JAH MAN RUM p-ValueN = 2192 N = 2192 N = 2192 N = 2192 N = 2192

NO2 454 (20.7%) 379 (17.3%) 454 (20.7%) 761 (34.7%) 382 (17.4%) <0.001
O3 442 (20.2%) 401 (18.3%) 456 (20.8%) 754 (34.4%) 383 (17.5%) <0.001
SO2 446 (20.3%) 377 (17.2%) 496 (22.6%) 790 (36.0%) 385 (17.6%) <0.001
CO 469 (21.4%) 375 (17.1%) 447 (20.4%) 425 (19.4%) 387 (17.7%) 0.001
PM10 1163 (53.1%) 1103 (50.3%) 1162 (53.0%) 1173 (53.5%) 1104 (50.4%) 0.069
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Figure 4.2: Time series of air quality monitoring for SO2 and NO2 from 2012 to 2017,
with missing values from five different locations (stations) in the State of Kuwait.

84



2012 2014 2016 2018

0.
00

0.
06

Site = FAH

 O
3

2012 2014 2016 2018

0.
00

0.
05

Site = JAH

 O
3

2012 2014 2016 2018

0.
01

0.
06

Site = MAN

 O
3

2012 2014 2016 2018

0.
00

0.
06

Site = RUM

 O
3

2012 2014 2016 2018

0.
00

0.
06

Site = ASA

 O
3

2012 2014 2016 2018
0

2
Site = FAH

 C
O

2012 2014 2016 2018

0
3

6

Site = JAH

 C
O

2012 2014 2016 2018

0
2

4

Site = MAN

 C
O

2012 2014 2016 2018

0
30

70

Site = RUM

 C
O

2012 2014 2016 2018

0.
0

1.
5

Site = ASA

 C
O

Figure 4.3: Time series of air quality monitoring for O3 and CO from 2012 to 2017, with
missing values from five different locations (stations) in the State of Kuwait.
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Figure 4.4: Time series of weather climatology (temperature and relative humidity) from
2012 to 2017, with missing values from five different locations (stations) in the State of
Kuwait.

4.1.12 Air Quality Missing Data Patterns

As shown in Table 4.4 and Figure B.5 from Appendix B, the RMSE ranged between 1.029

to 2.110 among all methods (EM, PMM, RFm, missForest, BPCA and kNN) based on all

missing mechanisms (MAR, MCAR and MNAR) among all missingness levels (5%, 10%,

20%, 30%, and 40%). The missForest approach performs better among the other impu-

tation methods in all missing mechanisms (MAR, MCAR and MNAR) for all missingness

levels (5%, 10%, 20%, 30%, and 40%). This result was consistent with previous studies

(Valdiviezo and Van Aelst, 2015; Junger and De Leon, 2015). As seen in Table 4.4 and
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appendix Figure B.5, the best imputation method for estimating the simulated missing

data was the missForest method. The missForest method had the smallest values of

MAE and RMSE for all parameters and percentages of simulated missing data rates,

and this finding was consistent with the study of Norazian et al. (2008), where MTB

was the best imputation method for filling the missing data, as it was able to obtain the

smallest error for all percentages of missing data, in agreement with Kokla et al. (2019);

Tang and Ishwaran (2017); Ishak et al. (2017); Valdiviezo and Van Aelst (2015); Shah

et al. (2014); Stekhoven and Bühlmann (2012). The second-best imputation method for

estimating the simulated missing data was the k-nearest neighbor (kNN) method. The

k-nearest neighbor (kNN) was reported as the best imputation approach to fill and esti-

mate the air pollution data by Zakaria and Noor (2018). The worst-performing methods

were multiple imputation using additive regression, bootstrapping, and predictive mean

matching (PMM) methods. This was also consistent with the study reported by Zakaria

and Noor (2018).
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Table 4.4: RMSE comparison between the indexed original values and the imputed values
using missing at random (MAR), missing completely at random (MCAR) and missing
not at random (MNAR) missingness patterns.

Method

5% Missingness Rate

RMSE MAE

MCAR MAR MNAR MCAR MAR MNAR

EM 1.430 1.405 1.536 1.145 1.120 1.238
PMM 1.408 1.430 1.529 1.129 1.140 1.225
RFm 1.413 1.412 1.547 1.128 1.126 1.242
missForest 1.031 1.035 1.270 0.821 0.823 1.036
BPCA 2.110 1.199 1.568 1.686 0.953 1.251
kNN 1.064 1.065 1.288 0.850 0.846 1.047

Method

10% missingness rate

RMSE MAE

MCAR MAR MNAR MCAR MAR MNAR

EM 1.408 1.431 1.517 1.125 1.140 1.218
PMM 1.414 1.415 1.527 1.125 1.131 1.229
RFm 1.414 1.416 1.529 1.129 1.133 1.231
missForest 1.035 1.028 1.260 0.829 0.820 1.025
BPCA 1.816 1.792 1.813 1.456 1.431 1.449
kNN 1.063 1.064 1.282 0.853 0.846 1.041

Method

20% missingness rate

RMSE MAE

MCAR MAR MNAR MCAR MAR MNAR

EM 1.415 1.410 1.523 1.129 1.124 1.225
PMM 1.418 1.417 1.528 1.129 1.131 1.226
RFm 1.413 1.408 1.532 1.128 1.124 1.228
missForest 1.029 1.038 1.253 0.819 0.827 1.019
BPCA 1.653 1.548 1.856 1.319 1.233 1.478
kNN 1.062 1.065 1.270 0.847 0.850 1.032

Method

30% missingness rate

RMSE MAE

MCAR MAR MNAR MCAR MAR MNAR

EM 1.405 1.410 1.531 1.124 1.127 1.232
PMM 1.418 1.419 1.527 1.131 1.132 1.229
RFm 1.419 1.419 1.521 1.136 1.134 1.224
missForest 1.034 1.033 1.255 0.825 0.823 1.023
BPCA 1.891 1.622 2.060 1.506 1.293 1.645
kNN 1.065 1.064 1.276 0.850 0.848 1.036

Method

40% missingness rate

RMSE MAE

MCAR MAR MNAR MCAR MAR MNAR
EM 1.401 1.411 1.518 1.119 1.127 1.222
PMM 1.411 1.399 1.520 1.126 1.116 1.222
RFm 1.412 1.419 1.534 1.124 1.133 1.234
missForest 1.032 1.035 1.259 0.823 0.827 1.027
BPCA 1.564 1.264 1.789 1.250 1.007 1.428
kNN 1.062 1.067 1.279 0.847 0.852 1.042
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From Table 4.3, we can conclude that the missing rates are different among the

selected air monitoring stations for each pollutant except PM10 that shows similarities

in missing rates among the monitoring stations.

The results of the missing data imputation approach were diagnosed using convergent

plots for the mean and standard deviation of the multiple imputation data sets using

missForest (see Appendix B Figures B.6 and B.7). For convergence, the different streams

should not show any definite trends; we did not observe any obvious trends in these data.

In addition, Figure B.8 shows kernel density estimates for the marginal distributions of

the observed data (blue line) and the m = 20 densities per variable calculated from the

imputed data (red lines). This indicates stability after 10 iterations.

We imputed the missing information into the original data sets to assess if the im-

puted data are consistent with the existing data. Figures 4.5 and 4.6 showed how the

imputed data sets fit with the actual information in each station. We can see from the

figures that large gaps of missing data are filled in the same pattern of the historical

values for all pollutants and meteorological parameters which gives a good indication of

the suitability of using missForest to estimate missing air pollutant data.

4.1.13 Study 1 - Discussion and Conclusion

In Kuwait, the Environmental Public Authority (K-EPA) is responsible for monitoring

the air quality status. The data of air quality obtained from the five stations used in

this study usually contain missing data, which can cause bias due to systematic errors

between the observed and unobserved values (Alsaber et al., 2020). Therefore, it is

vital to determine the optimal approach for estimating the missing values, in order to

guarantee that the analysed data are of high quality. Incomplete data matrices may

provide outcomes that vary significantly, compared to the results expected from a data

set that is complete (Forbes et al., 2004). The primary purpose of any data analysis

is to make valid and reasonable inferences on a particular population under study. A

researcher is expected to respond to the missing data problem in a way that aligns with

the population of interest.
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(a) SO2 – FAH fixed station

(b) SO2 – JAH fixed station

(c) SO2 – MAN fixed station

(d) SO2 – RUM fixed station

(e) SO2 – ASA fixed station

(f ) NO2 – FAH fixed station

(g) NO2 – JAH fixed station

(h) NO2 – MAN fixed station

(i) NO2 – RUM fixed station

(j) NO2 – ASA fixed station

(k) Daily temperature in FAH

(l) Daily temperature in JAH

(m) Daily temperature in MAN

(n) Daily humidity – FAH

(o) Daily humidity – JAH

(p) Daily humidity – MAN

Figure 4.5: Daily concentration for SO2, NO2, weather temperature and relative hu-
midity after estimating missing values using missForest approach from 2012-2017
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(a) O3 – FAH fixed station

(b) O3 – JAH fixed station

(c) O3 – MAN fixed station

(d) O3 – RUM fixed station

(e) O3 – ASA fixed station

(f ) CO – FAH fixed station

(g) CO – JAH fixed station

(h) CO – MAN fixed station

(i) CO – RUM fixed station

(j) CO – ASA fixed station

(k) Daily temperature – ASA

(l) Daily temperature – RUM

(m) Daily humidity – FAH

(n) Daily humidity – RUM

Figure 4.6: Daily concentration for O3, CO, weather temperature and relative humidity
after estimating missing values using missForest approach from 2012-2017
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The main contribution of this work was to find the most appropriate method to fill

in missing observations in an air pollution data set from Kuwait. Single and multiple

imputation methods were adopted and their performances were compared using the

RMSE and MAE metrics. To estimate missing data for SO2, NO2, PM10, CO, and

O3 in the K-EPA database, we applied artificially introduced missing values ranging

from 10% to 40% of the data set. We showed that missForest could successfully handle

the missing values, particularly in data sets including different types of environmental

variables.

However, this computation method also had limitations. It requires proficiency in

R programming, being demanding in comparison to the kNN or PMM methods. There

is also a possible connection between the pollutant values and the missing variables.

Therefore, these results are not applicable in cases where the missing data are due

to non-random reasons. It is evident that some of the observed air pollutant records

contained erroneous information. When we ignore this factor during the examination,

the results obtained tend to be misleading.

Missing data are always lost, in their entirety and forever, but a proper imputation

scheme can help to remedy the situation as much as possible. The method that per-

forms best in each situation, in terms of the assessments, is identified in this work. For

this study, missForest gives the most accurate results in estimating the missing values

through the multi-dimensional dataset (the datasets that came from five fixed monitor-

ing stations). The missForest method enables imputation on virtually any kind of data.

In particular, it can deal with multivariate information comprised of continuous and

categorical factors at the same time. This method does not require parameter tuning,

nor does it require assumptions about the distribution of the information. Finally, miss-

Forest had the least imputation error for each frequency of missingness rates (5%, 10%,

20%, 30%, and 40%), and it had the smallest prediction error difference when models

used imputed values.
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4.2 Study 2: Dealing with Clinical Missing Data - Application on

KRRD

Missing data in clinical epidemiological research violate the intention-to-treat principle,

reduce the power of statistical analysis, and can introduce bias if the cause of missing

data is related to a patients’s response to treatment. Multiple imputation (MI) provides

a solution to predict the values of missing data. The main objective of this section

is to estimate and impute missing values in patient records. The data from Kuwait

Registry for Rheumatic Diseases (KRRD) was used to deal with missing values among

the patients’ records. A number of methods were implemented to deal with missing

data, however choosing the best imputation method was judged by the lowest root mean

square error (RMSE). Among 1,735 rheumatoid arthritis (RA) patients, we found the

percentage of missing values vary from 5% to 65.5% of the total observations. The results

show that the sequential random forest method can estimate these missing values with

a high level of accuracy. The RMSE varied between 2.5 and 5.0. MissForest had the

lowest imputation error for both continuous and categorical variables under each missing

data rate (10%, 20%, and 30%) and had the smallest prediction error difference when

the models used the imputed laboratory values.

In much clinical research, missing values or experimental values remain a problem in

correctly analysing results and obtaining accurate outcomes. These missing values often

lead to misinterpretation and biased results, which could ultimately affect the overall

conclusion of an investigation (Sartori et al., 2005; Branden and Verboven, 2009; Alsaber

et al., 2021b). The application of statistical analyses in experiments with missing values

poses serious problems, as the missing values are often automatically ignored by the

statistical algorithms. The results obtained by the investigator in such experiments may

be non-significant or even meaningless (Kang, 2013; Stavseth et al., 2019). Missing data

is a common problem for all kind of research data, especially in clinical trials. It always

becomes problematic when sample collection was not performed in random order or was

obtained using an improper methodology (Junninen et al., 2004). Certain factors are
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responsible for missing values in the data of a study: (i) the data are not captured

due to some unknown reason, such as error in recording the data from an electronic

detector/data recorder or manual recording by technical medical staff; (ii) data are

missing due to a known reason, such as critical medical conditions; or (iii) data are not

recorded as they are unrelated to the patient’s clinical medical condition (Kang, 2013).

However, the biased and misleading information obtained when values are missing can

be managed by the application of imputation methods.

4.2.1 Missing Imputation - Rubin’s Approach

Imputation involves the substitution of missing values with known variables. This type

of approach is widely used, as it produces complete data. However, the decision regard-

ing the imputed value cannot be unbiased (e.g. multiple imputation for missing data

makes it possible for the researcher to obtain approximately unbiased estimates of all

the parameters from the random error. The researcher cannot achieve this result from

deterministic imputation, which the multiple imputation for missing data can do), as it

could lead to an overestimation of confidence in the outcome. To overcome this problem,

Rubin suggested the theory of multiple imputation, in which missing values are imputed

using the appropriate model a few times (generally three to five times) and a standard

method is applied for the analysis (Higgins et al., 2008; Little and Rubin, 2019; Rubin,

1987; Alsaber et al., 2021b). The imputation method provides more accurate results,

but problems with the application of imputation include: (1) maximum use of the avail-

able data to reduce the error for univariate data and preserve covariance in multivariate

data sets; and (2) reporting the variance estimates of uncertainty caused due to the

imputed value (Rubin, 1987). Several parametric and non-parametric techniques have

been employed to deal with missing values. Parametric methods depend on the assumed

method, whereas non-parametric methods require a high number of observations (Di Zio

et al., 2007).
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4.2.2 Categorisation of Missing Values

As we mentioned before in section 4.1.3 on page 67, Rubin categorized the missing

value problem into three categories: missing completely at random (MCAR), missing at

random (MAR), and not missing at random/missing not at random (NMAR/MNAR)

(Little and Rubin, 2019; Di Zio et al., 2007; Thijs et al., 2002). The MAR assumption is

generally used in clinical epidemiological research (Pedersen et al., 2017; Van der Heijden

et al., 2006). It is critical to determine the category of the data, in order to choose a

statistical strategy (Fielding et al., 2008; Moons et al., 2006).

4.2.3 Methods Used for Imputing Missing Values

To treat and estimate the missing values, Breiman (2001) proposed a non-parametric

random forest (RFm) model, which is an extended version of classification and regression

trees (CARTs) and involves a supervised learning group method. The method used to

build the trees involves replacement sampling of the main data set. The classification

and regression trees are created using the training data bootstrap samples and tree

induction using random feature selection (Svetnik et al., 2003; Bagheri et al., 2019).

The performance of a tree is evaluated on the remaining data, which are contained in

an out-of-bag sample.

Missing Imputation Using Random Forest (RFm)

The best RFm is determined based on the out-of-bag error, which is an unprejudiced

gauge of the true prediction error (Shahn et al., 2015). RFm has following advantages:

(1) it is applicable even when number of variables is greater than the number of samples;

(2) it is not prone to multicollinearity; (3) it is suitable for non-linear trends; (4) it does

not suffer from the overfitting problem with an increase in the number of trees; and (5)

it can tolerate outliers and missing values (Fan et al., 2019).
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Missing Imputation Using Sequential Random Forest (missForest)

Another algorithm based on RFm, called sequential random forest (missForest), has re-

cently been developed for missing data imputation (Stekhoven and Bühlmann, 2012).

This algorithm can impute missing values on any kind of data and its goal is the predic-

tion of every single missing value, instead of drawing random values from a distribution.

This algorithm can handle multivariate data sets concurrently comprising categorical

and continuous variables (Shah et al., 2014). The key advantages of missForest over

other imputation methods include: (1) having no requirement for the tuning of param-

eters; (2) it does not depend on assumptions pertaining to the distribution of data sets;

(3) it allows for assessment of imputation quality without setting test data or laborious

cross-validations using out-of-bag imputation error estimates; and (4) it provides above-

par imputation results, even for high-dimensional data sets (i.e., when the number of

variables is greater than the number of observations) (Stekhoven and Bühlmann, 2012).

In the present investigation, we consider four data mining techniques to predict the

missing values in the data from the Kuwait Registry for Rheumatic Diseases (KRRD):

predictive mean matching (PMM), k-nearest neighbours (kNN), random forest (RFm),

and sequential RFm (missForest). The main objective of this study was to handle missing

data in the KRRD, where the amount of missing data varied between 1% and 65.5%

per variable (Table 4.5). Our secondary objectives were to choose the best missing

data mechanism (MAR, MCAR, or MNAR) when assuming three different rates of

missingness (10%, 20%, and 30%), as well as to compare the selected imputation methods

(PMM, RFm, kNN, and missForest) for each missing data mechanism under each rate

of missingness. To select the best method for imputing missing data in KRRD, the root

mean square error (RMSE) was used to evaluate the best imputation method which

minimized the difference between the imputed data points and the original data points

(that were subsequently set to missing).
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Table 4.5: Study variables with abbreviations and with the percentages of missing values
for each variable.

Variable name Abbreviation Measures Missing rate Variable role

RA Disease Duration baseline 12.4% independent
Smoking baseline 26.0% independent
Rheumatoid Factor RF baseline 8.3% independent
Antinuclear Antibodies ANA baseline 21.4% independent
Anti-Cyclic Citrullinated Peptide ACPA baseline 21.0% independent
Sicca Symptoms SICCA baseline 19.8% independent
Rheumatoid Nodules Nodules baseline 18.5% independent
Family History FH baseline 28.4% independent
Treatment Class TC repeated 13.7% independent
Steroid Therapy Steroid baseline 6.6% independent
Joint Pain repeated 3.8% independent
Disease Activity Score 28 DAS28 repeated 1.0% target (outcome)
Erythrocyte Sedimentation Rate ESR repeated 5.1% independent
C-Reactive Protein CRP repeated 2.2% independent
Health Assessment Questionnaire
Disability Index HAQ repeated 65.5% independent

4.2.4 Data Source—Kuwait Registry for Rheumatic Diseases (KRRD)

All rheumatoid arthritis (RA) patients in this study were officially registered in the

Kuwait Registry for Rheumatic Diseases (KRRD). The KRRD is a national registry

listing adult patients with rheumatic diseases. Patients who fulfilled the American Col-

lege of Rheumatology (ACR) criteria for RA (Aletaha et al., 2010) registered from Jan-

uary 2012 through March 2020 were included in the study. The RA information data

were collected from the rheumatology departments of four major government hospitals

in Kuwait, based on patient visits. The selected hospitals are distributed in different

governorates covering the ethnic diversity of the Kuwaiti population. The KRRD, from

which this study originated, was approved by the Ethics Committees of the Faculty of

Medicine at Kuwait University and the Ministry of Health. Additionally, informed con-

sent was obtained from all represented patients enrolled in the registry (Al-Herz et al.,

2016).

Using the data obtained from KRRD, we conducted an in-depth comparative anal-

ysis of the different imputation methods. Missing data were entered into each data set,
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assuming a general missing data pattern and three mechanisms of missing data: MCAR,

MAR, and MNAR. Under the MCAR assumption, missing values were randomly applied

to each data set. Under the MAR assumption, the probability of information being miss-

ing depended on class attribute. Under the MNAR assumption, the largest or smallest

values of Xs were removed. The objective of the study was to derive a comparison of four

different imputation methods for MNAR, MAR, and MCAR, concerning missing data.

We simulated the rates of missing data by varying the proportions of missing values by

10%, 20% and 30%.

4.2.5 Calculating RA Indices

RA disease activity scores are measured using two different indices: DAS28 and CDAI.

The DAS28 is the sum of four outcome parameters: TJC28, the number of tender joints

(0–28); SJC28, the number of swollen joints (0–28); ESR, the erythrocyte sedimentation

rate (in mm/h) (C-reactive protein (CRP) may be used as an alternative to ESR in

the calculation); and GH, the patient global health assessment (from 0 = best to 100 =

worst) (Equation 4.14).

DAS28=0.56 ×
√

TJC28 + 0.28 ×
√

SJC28 + 0.70 × ln(ESR Or CRP ) + 0.014 × GH. (4.14)

4.2.6 Multiple Imputation (MI) Process Using Rubin’s Rules

For our data sets, we used Rubin’s rules (Little and Rubin, 2019) for handling miss-

ing data. The MI process was conducted separately for each variable in the data set

(figure 4.7). The first step in multiple imputation is to create values (imputes or mi),

with 5 iterations for each mi (Imputed: set 1 to set 5, see figure 4.1) to be substituted

for the missing data. To create the imputed values, we need to identify a model (e.g.,

a linear regression) that allows us to create imputes based on other variables in the

data set (predictor variables). As we needed to perform this multiple times to produce

multiple-imputed data sets, we identified a set of regression lines that were similar to
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each other.

KRRD Dataset

Imputed: set 1  

Imputed: set 2  

Imputed: set 3  

Imputed: set 4  

Imputed: set 5  

Result 1

Result 2

Result 3

Result 4

Result 5

Pooled Results 
Completed dataset 

for KRRD Data

Figure 4.7: The steps of implementing multiple imputations using Rubin’s rules to esti-
mate missing values for the Kuwait Registry for Rheumatic Diseases (KRRD)

4.2.7 Number of Needed Imputations

An important aspect of previous technical treatments of multiple imputation is that

the discussion of selecting the number of imputations that are required for acceptable

statistical inference (e.g., (Rubin, 1987; Schafer, 1997; Schafer and Olsen, 1998)). For

example, Schafer and Olsen (1998) recommend that in several applications, simply 3-

5 imputations are enough to get sufficient results. Many are surprised by the claim

that only 3-5 imputations may be needed. Rubin (1987) shows that the efficiency of an

estimate based on m imputations is approximately

+
1 + γ

m

,−1
(4.15)

where γ is the fraction of missing information for the quantity being estimated, so

that the gains rapidly diminish after the first few imputations. In most situations there’s

merely very little advantage to generate and analyse over more than a few imputed

datasets (”m”). In theory, the more imputation, the better performance in estimating

missing values, but it takes a lot of time, which is a barrier for this research. It is

convenient to set m = 5 during the stage of model building, and raise the amount in the
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evaluation stage if it is needed (Van Buuren, 2018). So, in this study, the MI methods

are performed with m = 5 imputed data sets which can be considered as satisfactory

(Rubin, 1987).

4.2.8 Multiple Imputation Using RFm Method

We described this approach before in 4.1.6 on page 73, and we propose using the random

forest technique to impute missing observations. As it has previously been mentioned in

section 4.1.6, the random forest algorithm has a built-in routine to handle the values that

are missing. This is achieved by weighing the frequencies of values with the proximity

of a random forest after the training of the mean data set is initially imputed (Cutler

et al., 2012). This approach needs a response variable that is complete and useful for

forest training. After imputing the missing values, the performance of different methods

was assessed using the normalised root mean squared error (NRMSE) (Oba et al., 2003)

for the continuous variables, defined by:

NRMSE =

%&&' mean
#
(Xtrue − Ximp)2

$

var (Xtrue) , (4.16)

where Xtrue and Ximp are the complete data matrix and the imputed data matrix,

respectively. In this study, all predictors were classified as continuous observations. The

mean and variance are used as a short notation for the empirical mean and variance

computed over the missing values only, respectively. When an RFm fits to the part

that is observed on a variable, we reach the out-of-bag (OOB) estimate of the error for

the variable. When the stopping criterion (γ) is met, we average it over the variable

set of that type to obtain an approximation of the actual errors of imputation. We

assessed the estimation performance by comparing the absolute difference between the

OOB imputation error estimate in all simulation runs and the true imputation error.
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4.2.9 Evaluation Criteria

The KRRD data set was simulated with these imputation methods; the best method was

selected according to the RMSE score. To determine the best imputation method, three

model performance measures were considered (Bennett et al., 2013): root mean square

error (RMSE), mean absolute error (MAE), and correlation coefficient (R), which are

respectively calculated as follows:

RMSE =

%&&' 1
n

n*

i=1
(yi − ŷi)2, (4.17)

MAE = 1
n

n*

i=1
|yi − ŷi| , (4.18)

where yi and ŷi are the ith observations for the comparison and reconstructed data

sets, respectively. The error is measured based on the difference between the estimated

and observed values. For RMSE and MAE, the smaller the value obtained, the more

accurate the estimation method.

4.2.10 Study 2 Results

The performance of three imputation mechanisms (MCAR, MAR, and MNAR) was

analysed using sub-data sets from KRRD patients using three different missingness rates

(10%, 20%, and 30%). A total of 1,735 patients (62.8% women and 37.2% men) from

2012–2020 were included in this study (Table 4.6). The baseline investigated patient

characteristics included factors such as smoking, RF, SICCA, ANA, ACPA, family his-

tory, treatment class, comorbidity, steroid and joint pain.

The average duration of RA disease was 9.19 ± 6.76 (SD) years. Most of the data

were recorded at Amiri and Farwaniya hospitals (79%). A majority of the patients

were non-smokers (89.6%), 77.1% were RF-positive, 65.9% of RA patients were ACPA-

positive, and 58.8% had joint pain. The results showed a minority of RA patients had

positive SICCA (18.7%), positive ANA (28.4%), positive family history (18.4%), and
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positive steroid use (22.6%).

Table 4.6: Baseline patient characteristics of KRRD (2012 to 2020). In brackets is the
percentage of cases or the standard deviation of the variable according to the type of
the variable.

Variables n or mean (% or SD) N=1735

Sex (Female) 1,090 (62.8%) 1,735
Age (years) 54.0 (12.6) 1,719
RA Disease Duration (years) 9.19 (6.76) 1,520
Nationality 1,735

Kuwaiti 839 (48.4%)
Non-Kuwaiti 896 (51.6%)

Main Hospital 1735
Amiri 708 (40.8%)
Farwaniya 663 (38.2%)
Jahra 83 (4.78%)
Mubarak 280 (16.1%)
Sabah 1 (0.06%)

Smoking (Yes) 133 (10.4%) 1,284
RF (Positive) 1,227 (77.1%) 1,591
SICCA (Yes) 260 (18.7%) 1,391
ANA (Positive) 388 (28.4%) 1,364
ACPA (Positive) 903 (65.9%) 1,370
Family History (Positive) 229 (18.4%) 1,243
Treatment Class (Biologics) 488 (32.6%) 1,498
Co-morbidity (Yes) 926 (53.4%) 1,735
Current Steroid (Yes) 366 (22.6%) 1,620
Joint Pain (Yes) 982 (58.8%) 1,670

Note: All categorical variables were described using frequencies and percentages (e.g.
sex, nationality, main hospital, smoking, RF, SICCA, ANA, ACPA, family history, treat-
ment class, co-morbidity, current steroid and joint pain. All the variables that are scale
were described by mean and standard deviation (e.g. age and RA disease duration.

Table 4.7 provides a descriptive analysis of RA lab tests for ESR, CRP, HAQ, and

DAS28, which were calculated five different times from five different data sets after

implementing missing values’ methods (original data set compared with imputed data

sets using PMM, RFm, kNN, and missForest).

The mean and SD value of ESR, CRP, HAQ, and DAS28 were 27.5729 ± 22.2706,

5.9904 ± 4.9334, 0.9517 ± 0.6649, and 2.6756 ± 1.2902, respectively, for the original

data, and the mean and SD for the imputed data sets values ranged between 27.0639
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Table 4.7: The mean and standard deviation for ESR, CRP, HAQ, and DAS28 from the
original data set and the imputed data sets (IM).

Data Set Variable N Minimum Maximum Mean SE SD

Original data ESR 10703 0.0000 134.0000 27.5729 0.2153 22.2706
CRP 8769 0.0000 21.0000 5.9904 0.0527 4.9334
HAQ 4004 0.0125 3.0000 0.9517 0.0105 0.6649
DAS28 11213 0.0000 9.7050 2.6756 0.0122 1.2902

IM1 = PMM ESR 11282 0.0000 134.0000 27.0701 0.2066 21.9426
CRP 11282 0.0000 21.0000 6.4456 0.0441 4.6873
HAQ 11282 0.0125 3.0000 0.9053 0.0044 0.4647
DAS28 11282 0.0000 9.7050 2.6761 0.0121 1.2883

IM2 = RF ESR 11282 0.0000 134.0000 27.0639 0.2068 21.9637
CRP 11282 0.0000 21.0000 6.4426 0.0442 4.6961
HAQ 11282 0.0125 3.0000 0.9042 0.0044 0.4657
DAS28 11282 0.0000 9.7050 2.6763 0.0121 1.2878

IM3 = kNN ESR 11282 0.0000 134.0000 27.1245 0.2074 22.0287
CRP 11282 0.0000 21.0000 6.4323 0.0441 4.6865
HAQ 11282 0.0125 3.0000 0.9061 0.0044 0.4658
DAS28 11282 0.0000 9.7050 2.6767 0.0121 1.2876

IM4 = missForest ESR 11282 0.0000 134.0000 27.0939 0.2064 21.9236
CRP 11282 0.0000 21.0000 6.4396 0.0440 4.6772
HAQ 11282 0.0125 3.0000 0.9062 0.0044 0.4628
DAS28 11282 0.0000 9.7050 2.6759 0.0121 1.2861

and 27.1245, 6.4323 and 6.4456, 0.9042 and 0.9062, and 2.6759 and 2.6767, respectively.

The skewness and kurtosis values were mostly positive: 1.2248, 1.0182, 0.8120, and

0.5963 for skewness and 1.6256, 0.3932, –0.0311, and 0.2599 for kurtosis in the case of

imputed data sets that ranged between 1.2551 and 1.2675, 0.8085 and 0.8135, 1.1352

and 1.1430, and 0.5961 and 0.6005 for skewness, respectively, and 1.7394 and 1.7854,

0.1395 and 0.1493, 2.1178 and 2.1560, and 0.2664 and 0.2798 for kurtosis, respectively.

The data showed that the original data set and the imputed data sets had very close

values with small differences for all RA lab tests (ESR, CRP, HAQ, and DAS28).
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4.2.11 Predicting the Influence of RA Factors on DAS28 Using the Original

Data Set

Here we are trying to estimate a regression model that explains the effect from the

independent variables (see Table 4.5) toward the outcome variable (DAS28). We used

the original Kuwait Registry for Rheumatic Diseases (KRRD) dataset. As we mentioned

before, the original dataset contains missing values in all variables (see Table 4.5).

The rate of missing values in the original data set vary from 2% to 66%. Ta-

ble 4.8 shows the estimated parameters for predicting DAS28 using a multiple linear

model. Only six variables were found to be significant risk factors that influence DAS28

(R2
DAS28 = 0.773). The results showed that ESR, CRP, HAQ, disease duration, and cur-

rent steroid use were risk factors predicting DAS28, with β = 0.034, 0.020, 0.129, 1.489,

0.247, 1.095, respectively (95% CIs: 0.032–0.036, 0.012–0.029, 0.075–0.183, 1.415–1.562,

0.138–0.356, and 0.963–1.228, respectively). Other factors (RF, ANA, ACPA, SICCA,

nodules, smoking, family history and joint pain) were not found to be risk factors influ-

encing DAS28 (Table 4.8).

Because of the existence of missing values, smoking, joint pain and SICCA were not

found to be a significant risk factor for DAS28. However, many scholars showed that

those variables (smoking, joint pain and SICCA) can be risk factors toward DAS28 (e.g.

Martínez et al. (2020) and Choe et al. (2013)).

4.2.12 Predicting the Influence of RA Factors on DAS28 from the PMM-

Imputed Data Sets

Using the imputation process to predict all missing values in the KRRD data set using

the three different missing imputation mechanisms (MAR, MCAR, and MNAR), we

constructed a quality data set after fixing all missing values using PMM. Table 4.9

shows the estimated parameters when predicting DAS28 using multiple linear models

and the PMM-imputed data sets.

The regression results showed the same significant risk factors, this time adding
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Table 4.8: Multiple regression coefficients with 95% confidence intervals (in parentheses)
for predicting DAS28 using the original data set including the missing values.

DAS28

Data Set = Original

ESR 0.034∗∗∗ (0.032, 0.036)
CRP 0.020∗∗∗ (0.012, 0.029)
HAQ 0.129∗∗∗ (0.075, 0.183)
RF 0.021 (−0.064, 0.106)
ANA −0.062 (−0.139, 0.014)
ACPA 0.008 (−0.066, 0.082)
SICCA 0.083 (−0.011, 0.178)
Nodules −0.519 (−1.122, 0.083)
Smoking 0.184 (-0.019, 0.350)
Family History −0.087 (−0.174, 0.001)
Joint Pain 0.273 (-0.015, 0.530)
Disease Duration 1.489∗∗∗ (1.415, 1.562)
Current Steroid 0.247∗∗∗ (0.138, 0.356)
Constant 1.095∗∗∗ (0.963, 1.228)

R2 0.773
Adjusted R2 0.769

Note: ∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001.

rheumatoid factor (RF) to predict DAS28 (R2
DAS28 = 0.727); in addition, smoking was

found to be a very strong risk factor when we used the imputed data sets, but was not

when we used the original data set to predict the influence on DAS28.

The regression model that used the original data set did not indicate that RF has a

significant influence on DAS28 but, if we used the PMM-imputed data set, the regression

model indicated that RF had a significant influence when predicting DAS28.

Due to the effect of bias induced by the missing values, the RF results were not

significant when using the original data set; however, after we imputed all the missing

data in the KRRD data set, the regression results became more sufficient and reliable.
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Table 4.9: Multiple regression coefficients with 95% confidence intervals (in parentheses)
to predict DAS28 from other predictors from PMM- and RFm-imputed data sets.

DAS28
Imputed data set

(PMM) (RFm)
ESR 0.031∗∗∗ (0.030, 0.031) 0.031∗∗∗ (0.030, 0.031)
CRP 0.015∗∗∗ (0.012, 0.017) 0.015∗∗∗ (0.012, 0.017)
HAQ 0.202∗∗∗ (0.178, 0.226) 0.202∗∗∗ (0.178, 0.225)
RF 0.061∗∗∗ (0.035, 0.087) 0.050∗∗∗ (0.024, 0.076)
ANA 0.005 (−0.020, 0.031) 0.003 (−0.023, 0.028)
ACPA 0.003 (−0.020, 0.026) 0.008 (−0.016, 0.031)
SICCA 0.064∗∗∗ (0.034, 0.094) 0.060∗∗∗ (0.031, 0.090)
Nodules 0.016 (−0.044, 0.077) −0.011 (−0.071, 0.049)
Smoking 0.131∗∗∗ (0.086, 0.177) 0.140∗∗∗ (0.095, 0.186)
Family History −0.029 (−0.059, 0.001) −0.022 (−0.052, 0.008)
Joint Pain 0.674∗∗∗ (0.662, 0.686) 0.676∗∗∗ (0.664, 0.688)
Disease Duration −0.007∗∗∗ (−0.009, −0.006) −0.007∗∗∗ (−0.009, −0.005)
Current Steroid 0.128∗∗∗ (0.093, 0.162) 0.118∗∗∗ (0.084, 0.153)
Constant −0.032 (−0.146, 0.083) 0.002 (−0.112, 0.117)
Observations 11,282 11,282
R2 0.727 0.728
Adjusted R2 0.727 0.728

Note: ∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001.

4.2.13 Predicting the Influence of RA Factors on DAS28 from the Imputed

Data Sets Using kNN

The kNN-based imputation of missing data restored the values of observations for neigh-

bouring data points in the data set (e.g. the KRRD data set) and better standard data

were obtained (Malarvizhi and Thanamani, 2012). As shown in Table 4.10, various

parameters were used to establish DAS28 prediction using the kNN-imputed data sets.

The regression results were calculated based on similar factors as those of the original

data set with further incorporation of RF and SICCA and further prediction of DAS28

(R2
DAS28 = 0.727).

Similar to the PMM-based analysis, the kNN imputation revealed that RF can sig-

nificantly influence the prediction of DAS28, which was not significant in the original

data set due to bias. The disease duration factor had a negative value in both PMM
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and kNN, whereas it was positive in the original data set.

4.2.14 Predicting the Influence of RA Factors on DAS28 from the RFm-Imputed

Data Sets

The results of RFm imputation, in terms of removing bias in the KRRD data set, were

similar to those of PMM-based imputation. Table 4.9 shows that the factors that sig-

nificantly affected the DAS28 parameter at p < 0.01 were similar between PMM- and

RFm-based imputation, with their values being very close. The adjusted R2
DAS28 value

of 0.728 was obtained after imputation.

4.2.15 Predicting the Influence of RA Factors on DAS28 from the missForest-

Imputed Data Sets

One of the best methods for imputation reported in the literature and evident from

the analysis was missForest. A part from all the factors listed in the original data set

and compared to the imputation by kNN, and RFm, the missForest-based imputation

analysis produced better results, as evidenced by MAR, MCAR, and MNAR missing

value mechanisms (Table 4.10).

The adjusted R2
DAS28 value was 0.731. We conclude, based on the better results, that

the data set was the most refined and its quality was the most improved after applying

the missForest imputation method.

We hypothesized that the missing data could be imputed using the different impu-

tation strategies; therefore, the MCAR, MAR, and MNAR mechanisms were simulated

for missing values in the three different missingness proportions of 10%, 20%, and 30%.

As shown in Table 4.11, the RMSE value ranged between 2.518 to 6.066 for MAR, 2.555

to 5.590 for MCAR, and 3.631 to 8.004 for MNAR. The MAR had the lowest RMSE,

compared to the other missing data methods.

Similar investigations have been previously performed and our results were in agree-

ment with those in the earlier reports (Valdiviezo and Van Aelst, 2015; Junger and

De Leon, 2015).
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Table 4.10: Multiple regression coefficients with 95% confidence intervals (in parentheses)
to predict DAS28 from other predictors from kNN- and missForest-imputed data sets.

DAS28
Imputed data set

(kNN) (missForest)
ESR 0.031∗∗∗ (0.030, 0.031) 0.031∗∗∗ (0.030, 0.031)
CRP 0.015∗∗∗ (0.013, 0.018) 0.015∗∗∗ (0.012, 0.017)
HAQ 0.203∗∗∗ (0.180, 0.227) 0.204∗∗∗ (0.180, 0.227)
RF 0.058∗∗∗ (0.032, 0.084) 0.056∗∗∗ (0.030, 0.082)
ANA 0.001 (−0.025, 0.026) 0.008 (−0.018, 0.033)
ACPA 0.004 (−0.019, 0.027) 0.004 (−0.020, 0.027)
SICCA 0.065∗∗∗ (0.035, 0.094) 0.057∗∗∗ (0.027, 0.087)
Nodules −0.002 (−0.062, 0.058) 0.004 (−0.056, 0.063)
Smoking 0.132∗∗∗ (0.087, 0.177) 0.139∗∗∗ (0.093, 0.184)
Family History −0.024 (−0.054, 0.006) −0.021 (−0.051, 0.010)
Joint Pain 0.674∗∗∗ (0.662, 0.686) 0.677∗∗∗ (0.666, 0.689)
Disease Duration −0.007∗∗∗ (−0.009, −0.005) −0.007∗∗∗ (−0.009, −0.005)
Current Steroid 0.125∗∗∗ (0.091, 0.159) 0.129∗∗∗ (0.094, 0.163)
Constant −0.017 (−0.131, 0.098) −0.037 (−0.151, 0.077)
Observations 11,282 11,282
R2 0.728 0.731
Adjusted R2 0.728 0.731

Note: ∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001.

In the MAR, MCAR, and MNAR mechanisms, missForest was the best method

of imputation, having the lowest RMSE values for all of the parameters and at all

three percentages of simulated missing data (MAR: 2.518, 3.013, and 3.032; MCAR:

3.168, 2.555, and 2.871; and MNAR: 4.962, 4.180, and 3.631 for 10%, 20%, and 30%,

respectively) these results agreed with Kokla et al. (2019); Tang and Ishwaran (2017);

Valdiviezo and Van Aelst (2015) and Stekhoven and Bühlmann (2012).

This was followed by kNN, which performed better than the other two imputation

methods (RFm and PMM), in terms of RMSE values, at every percentage of missingness

(MAR: 4.107, 4.884, and 4.184; MCAR: 3.820, 3.560, and 3.734; and MNAR: 6.236,

5.507, and 5.062 for 10%, 20%, and 30%, respectively); see Table 4.11. Similar results

have been reported that strongly support the better imputation of kNN, compared with

RFm and PMM (Zakaria and Noor, 2018). RFm and PMM were the worst-performing
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Table 4.11: Comparison between imputation methods after we simulated 10%, 20%, and
30% missing data in the KRRD data set. The RMSE is used to highlight and select the
best missing imputation method with the lowest RMSE score.

Method MAR MCAR MNAR

Missingness rate 10% 20% 30% 10% 20% 30% 10% 20% 30%

Predictive mean matching (PMM) 5.349 6.066 4.944 5.590 4.590 5.135 6.950 7.471 6.516
Random forest (RFm) 4.618 5.233 5.234 4.837 4.204 4.539 8.004 7.212 6.737
Classification and regression trees (kNN) 4.107 4.884 4.184 3.820 3.560 3.734 6.236 5.507 5.062
missForest 2.518 3.013 3.032 3.168 2.555 2.871 4.962 4.180 3.631

multiple imputation methods; of the two, using RFm had a slight advantage over PMM

but PMM had better imputation in a few of the cases, such as MAR 30% or MNAR

10% and 30%, where RFm had a larger RMSE value than PMM. Table 4.9 and Table ??

represent the multiple regression coefficients with 95% confidence intervals (CIs) for the

prediction of DAS28 using the imputed data sets (PMM, RFm, kNN, and missForest).

The table demonstrates the effect of patient demographics on RA disease activity, where

DAS28 was the response variable.

The disease activity score for DAS28 is also reported; where R2
DAS28 = 0.727 for PMM

method, and R2
DAS28 = 0.728 for RFm method. Regarding kNN and missForest, R2

DAS28

= 0.728 for kNN method, and R2
DAS28 = 0.731 for missForest method. The results show

the positive effect of various factors, such as ESR, CRP, HAQ, RF, SICCA, smoking, joint

pain, and current steroid use, with β = 0.031, 0.015, 0.202–0.204, 0.050–0.061, 0.057–

0.065, 0.131–0.140, 0.674–0.677, and 0.118–0.129, respectively, on RA disease activity,

whereas family history and disease duration—with β = (0.029) to (–0.021) and 0.007,

respectively—had negative effects under all four imputation methods (Table 4.9 and

Table 4.10).

Additionally, nodules showed diverse effects per imputation method. The nodules

had positive values for PMM and missForest, with β = 0.016 and 0.004, respectively,

and negative values for RFm and kNN, with β =-0.011 and -0.002, respectively. The

constant had negative values for PMM, kNN, and missForest, with β = -0.032, -0.017,

and -0.037, respectively, and a positive value for RF, with β = 0.002 (Table 4.9 and
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Table 4.10).

4.2.16 Study 2 - Discussion and Conclusion

The obtained rheumatoid arthritis (RA) patient data recorded in the Kuwait Registry for

Rheumatic Diseases (KRRD) registry were utilised to quantify the Rheumatoid Arthritis

Disease Activity Score. All the information was acquired from 1,735 patients from public

healthcare facilities with permission from the relevant ethical committees. The baseline

variables under investigation for every patient included smoking, sex, disease duration,

age, nationality, SICCA, RF, ACPA, ANA, family history, treatment class (biologics,

cDMARDs), current steroids, comorbidity, DAS28 group, and joint pain.

Systematic errors that existed between the anticipated and noted values due to the

missing value led to outcome bias. However, to get the accurate missing values (Alsaber

et al., 2020), it is important to eliminate the bias and apply the optimal approach to

guarantee reliability and quality of data analysis. The uncompleted data sets contra-

dicted significantly with the complete data file (Forbes et al., 2004). The emergence of

imputation algorithms has been attributed to their substantial global use.

Imputation methods overcome the existing bias caused by missing values. However,

their values may potentially lead to bias in the result. Therefore, they should be used

vigilantly. The research utilised numerous variables to define the RA disease activity

scores. The application of many factors resulted in data with missing characteristics in

various patients, leading to biased results. The focal point was to identify the suitable

imputation approach to complete the missing features in the RA data set.

The variation of the percentage of missing data ranged from 2% to 66%. At this

point, four imputation approaches were assessed, the kNN, PMM, missForest, and RFm

throughout three diverse missing approaches MAR, MNAR, and MCAR with Kuwait

Registry for Rheumatic Diseases (KRRD) RA infection data set. Performance evalua-

tions of the imputation methods were done utilising RMSE values, with the minimum

RMSE value showing the best imputation technique.

Multiple imputations (MI) are computationally comprehensive and require estima-
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tions. To get enough needed results, several algorithms should be run frequently, where

running time increases with more missing data. Concerning our missing data problem,

we conclude that MI imputation using missForest is the most efficient approach for our

research. This has been a successful adapted approach in our data set that is related to

the medical field as it provides an attractive balance of both accuracy and conceptual

simplicity. However, the balance of the statistical expertise of the research team, valid-

ity of the method, and ease of interpretability for readers must be taken into account

in order for the optimal imputation method to be deemed successful. MI outperformed

the single imputation methods or deletion (Shrive et al., 2006).

The findings, in this case, are similar to the findings obtained when using a hypothet-

ical data set to differentiate missing data approaches. The current research was possible

since the variable estimates attained by each missing data approach could be contrasted

to the already known values of the variables of an absolute data set acquired from the

clinical setting. The result reveals that is possible to apply missing data methods like

MI in the current context (Baraldi and Enders, 2010).

However, despite the effectiveness of the MI method in replacing the missing data, it

is significant to note that the associated problem with missing data cannot be improved

by any missing data approach. MI and numerous missing data techniques are useful

for MAR or MCAR despite their unreliability when data is MNAR. Determination of

whether data is MAR or MNAR is often difficult as there is no reliable technique to do

so. But, in some clinical or environmental studies (e.g. Tsiampalis and Panagiotakos

(2020); Alsaber et al. (2021b); Mishra and Khare (2014); and Pedersen et al. (2017)),

either MAR or MCAR are preferable rather than the MNAR mechanism.

Finally, the variety of data and the negative effects of missing data, and the corre-

lated variables that come with using traditional approaches to handle the missingness

of data are not considered important (Baraldi and Enders, 2010). The findings show

that techniques like MI perform better than the traditional approaches as they facilitate

the reintroduction of the difference that would occur upon attaining missing scores (i.e.

multiple imputation better handles missing data by estimating and replacing missing
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values many times). Multiple imputation fills in missing values by generating plausible

numbers derived from distributions of and relationships among observed variables in the

data set (Rubin, 1987).

Multiple imputation differs from single imputation methods because missing data

are filled in many times, with many different plausible values estimated for each missing

value. Using multiple plausible values provides a quantification of the uncertainty in

estimating what the missing values might be, avoiding creating false precision (as can

happen with single imputation). Multiple imputation provides accurate estimates of

quantities or associations of interest, such as treatment effects in randomised trials,

sample means of specific variables, correlations between two variables, as well as the

related variances. In doing so, it reduces the chance of false-positive or false-negative

conclusions. As a result, this reduces bias produced by missing data and enhances the

ability to realise meaningful results. MI and other techniques are fast and elementary to

use and their long term merits are worth the time taken to learn the techniques and apply

it within the clinical research setting. From the results, missForest is regarded as the

most productive imputation technique with the least RMSE, reproduced employing 10%,

20%, and 30% missing data. The RFm and PMM were identified as the worst performing

imputation techniques. Due to the availability of large data from the registered RA

patients used, the research and its outcomes are considered robust. Additionally, the

imputation method considered and missingness procedures (implemented at 10% to 30%,

utilising MAR, MNAR, and MCAR) improved data reliability with notable p-values

attained (Li et al., 2015). MissForest is a highly accurate method of imputation for

missing data in KRDD data sets and outperforms other common imputation techniques

in terms of imputation error and maintenance of predictive ability with imputed values

in clinical predictive models. This approach can be used in data registries to improve

the accuracy of data, including the ones for rheumatoid arthritis patients.
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Chapter 5

Time Series Statistical Methods

Review

5.1 Introduction

This chapter gives an overview of the time series analysis procedures and the concepts

employed for examining the long- and short-run relationship between air pollution and

chronic disease activity among patients from Kuwait. It will also present the primary

methods of time series analysis implemented in this thesis (i.e., univariate and multivari-

ate time series analysis). We begin with a discussion of the fundamental concepts of the

time series approach, followed by an examination of correlation- and partial-correlation

matrices used. Next, the methodology for implementing a time series analysis is intro-

duced, beginning with testing stationarity for each variable using the following methods:

a) the Augmented Dickey-Fuller test (Dickey and Fuller, 1979a) the Phillips-Perron test

(Phillips and Perron, 1988), and c) the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test

(Dickey and Fuller, 1979b). Then, we present the ARIMA model to measure the time

series association between chronic disease activity and the pollutants. The auto-arima

model is used to set up the best ARIMA (p, d, q) by using the Akaike information cri-

terion (AIC), and Schwarz Bayesian information criterion (SBC). The model is checked
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by indicators: mean absolute percentage error (MAPE) and root mean square error

(RMSE). In addition, the GARCH model is provided for modelling both a more pliable

lag structure and a longer memory to explain the relationship between chronic disease

activity and the effect of air pollutants.

Then, we switch from univariate time series modelling to a multivariate time series

approach. As usual, we start with the Vector Autoregression (VAR), and the vector

error-correction model (VECM). However, to implement the VECM, we have to evaluate

the Granger Causality in a VAR. The lag length selection using information criteria will

be presented in section 5.9.2 using three different criterion tools to establish the number

of lags that should be added as regressors. The method of Johansen and Juselius’

cointegration test will be mentioned. The VECM used in this thesis will be presented in

section 5.15 after testing for the number of cointegration ranks in section 5.14. Finally,

the impulse response function is implemented to trace the ramification of one standard

deviation disturbance to one of the dependent variables on present and future estimates

of the endogenous variables. The variance decomposition, as described in section 5.19,

decomposes variation in an endogenous variable into component disturbances to the

endogenous variable that exists in VAR.

5.2 Fundamental Concepts

5.2.1 Time Series Modelling

In the last few years, researchers have put significant effort into building and improving

appropriate time series prediction models. Time series modelling seeks to model the pro-

cess that produces time series data so that many statistical aspects of the observed data

can be reproduced (Granger et al., 1986). Time series analysis involves the procedure of

fitting a time series to the correct model (Juselius, 2006). Once an appropriate model is

tailored to a time series, the associated parameters can be calculated using known data.

Later, the model is used to predict future events. This can then be used in forecasts

and simulations, and it comprises various ways for trying to comprehend the series’
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nature. There are two types of time series processes: stationary and non-stationary.

5.2.2 Time Series Definition

A time series refers to a collection of sequential data points measured in chronological

order over a period of time, or a method that analyse the components and explainable

parts of a time series, allowing for the detection of trends, estimations, and projections.

The mathematical definition is a set of vectors x(t), t = 0, 1, 2, . . ., where t is the elapsed

time (Cochrane, 2005; Hipel and McLeod, 1994; Raicharoen et al., 2003). Another way

to say this is that it is the process of fitting a time series to an appropriate model (Hipel

and McLeod, 1994), and then calculating associated parameters using known data values.

Fundamentally, time series analysis uses a model to estimate future values founded

on known previous values to try to understand the underlying context of the data points.

To forecast with a time series, previous observations are gathered and examined to con-

struct a mathematical model reflecting the series’ fundamental data generation process

(Zhang, 2007, 2003). It can take several decades to build and improve suitable time

series predictive models, which are then used to predict future events.
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5.2.3 Time Series and Stochastic Process

In nature, a time series is usually non-deterministic, which means we cannot forecast

what will happen in the future with certainty. A time series {x(t), t = 0, 1, 2, . . .}, is

usually considered to follow a probability model (Cochrane, 2005) that defines the joint

distribution of the random variable xt. The stochastic process is a mathematical phrase

used to explain the probability structure of a time series (Hipel and McLeod, 1994). As a

result, the series’ sequence of observations is a sample realisation of the stochastic process

that created it. The time series variables Xt are usually assumed to be independent

and identically distributed (i.i.d) in a normal distribution. However, time series are

not strictly i.i.d; rather, they follow an approximately regular pattern throughout time

(Cochrane, 2005). For example, if a city’s temperature is extraordinarily high today,

it may be reasonably assumed that the temperature tomorrow will be similarly high.

This is why, when done correctly, time series forecasting produces results that are near

to the real value. The choice of an appropriate model is critical, as it reflects the

series’ fundamental arrangement, and the fitted model is then utilised for subsequent

forecasting.

Several models for time series analysis exist, including: autoregressive (AR), mov-

ing averages (MA), autoregressive moving averages (ARMA), autoregressive integrated

moving averages (ARIMA), autoregressive conditional homoscedasticity (ARCH), gen-

eralised ARCH (GARCH), component GARCH, exponential GARCH, fractionally inte-

grated GARCH, and threshold ARCH (Wu et al., 2012; Yusof et al., 2013; Sparks and

Yurova, 2006). The focal point of this study is on the first four. Time series models can

also be linear or non-linear, depending on whether the present value of the series is a lin-

ear or non-linear function of prior observations. These primary concepts and definitions

of time series analysis, as well as the conditions, assumptions, processes, and principles

included in the use of AR, MA, ARMA, and ARIMA, are thoroughly examined in this

chapter.

Zt = [Z1,t, Z2,t, . . . , Zm,t]′ is a stationary m-dimensions vector time series process if

all of its component series are a univariate stationary process and its first two moments
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are time-invariant. A stationary vector time series model or process is defined by its

correlation matrix function, partial correlation matrix function, and mean vector. In

contrast, a univariate stationary model or process is defined by its moments, such as its

autocorrelation function, partial autocorrelation function, and mean, which we turn to

now.

5.2.4 Correlation and Partial Correlation Matrix Functions

Let Zt = [Z1,t, Z2,t, . . . , Zm,t]′ , t = 0, ±1, ±2, . . . be a stationary real-valued vector pro-

cess of m-dimensions, with E (Zi,t) = µi being constant for all i = 1, 2, . . . , m and

the cross-covariance between Zi,t and Zj,s being constant for all i = 1, 2, . . . , m and

j = 1, 2, . . . , m are functions only of the time difference (s − t), where the mean vector

is:

E (Zt) = µ =

-

......./

µ1

µ2
...

µm

0

11111112

(5.1)

and the covariance matrix with lag k

Γ(k) = Cov {Zt, Zt+k} = E
3
(Zt − µ) (Zt+k − µ)′

4

= E

-

......./

Z1,t − µ1

Z2,t − µ2
...

Zm,t − µm

0

11111112

[Z1,t+k − µ1, Z2,t+k − µ2, . . . , Zm,t+k − µm]

=

-

......./

γ1,1(k) γ1,2(k) · · · γ1,m(k)

γ2,1(k) γ2,2(k) · · · γ2,m(k)
...

...
...

...

γm,1(k) γm,2(k) · · · γm,m(k)

0

11111112

,

(5.2)
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where

γi,j(k) = E (Zi,t − µi) (Zj,t+k − µj) . (5.3)

for k = 0, ±1, ±2, . . . , i = 1, 2, . . . , m, and j = 1, 2, . . . , m. Γ(k) is the covariance matrix

function for the vector process Zt as a function of k.

The cross-covariance function where i = j, γi,i(k) is the autocovariance function for

the ith component process, Zi,t; and if i ∕= j, γi,j(k) (i.e. between the series Zi,t and

Zj,t). The process’s contemporaneous variance-covariance matrix is easily identified by

the matrix Γ(0).

5.3 Stationary Time Series

Stationary time series processes involve procedures with statistical outcomes, such as

variance and mean, that are time insensitive. It is essential that time series models are

shaped within the realm of possibility so that researchers may utilise them to estimate

future values. This also allows the creation of models with minimised mathematical

intricacy. There are two types of stationary processes, strictly (or strongly) station-

ary and weakly stationary. A process {x(t), t = 0, 1, 2, . . .} is strictly stationary if the

joint probability distribution function of {xt−s, xt−s+1, . . . , xt, . . . , xt+s−1, xt+s} is inde-

pendent of t for every s. As a result, any feasible combination of random variables from

a strictly/strongly stationary process has a joint distribution that does not depend on

time. However, strict stationarity is not necessarily required in practical applications,

thus a slightly weaker variant is proposed. A process is weakly stationary if the statisti-

cal moments of a stochastic process up to that order depend only on time differences of

events of the data being used to approximate the moments, and not on the time itself.

It is worth noting that neither weak stationarity nor strong stationarity have any im-

plications on the other. A weakly stationary process that follows a normal distribution,

for example, is also strongly stationary. To find stationarity in a time series data set,

some mathematical tests, such as Dickey and Fuller’s (Dickey and Fuller, 1979a), are
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commonly utilised.

The mean of a stationary series is well-defined, and it can fluctuate with constant

limited variation around it. For all t and j, a process is stationary if its first and second

moments are time invariant: E (yt) = µ, Var (yt) = σ2
0 and Cov (yt, yt−j) = σ2

j for all t

and j, where t is the observation date and j is the time interval between observations

(Hamilton, 1994). The covariance between yt and yt−j is only determined by j, the time

interval between observations, and not by t, the observation date.

Autoregressive models have been found to accurately reflect a variety of time series

processes. The present value of the process, yt, is shown in AR models as a linear

combination of a white noise shock term εt and prior values of the process that are finite

in nature. A univariate AR model of order 1 (AR1), for example, is defined as:

yt = φ1yt−1 + εt, t = 1, 2, · · · , T. (5.4)

Equation (5.4) can be written as (1 − φ1L) yt = εt using the lag operator L. The root of

the characteristic polynomial has to be on the exterior part of a unit circle for Equation

(5.4) to be a stationary process, as established by Box and Jenkins (1976, pp. 47-82).

That is, the outcome for 1 − φ1z = 0 must meet the condition |z| > 1. This means that

the AR(1) in Equation (5.4) is stationary strictly if |φ1| < 1.

These stationarity factors can be extended to include multivariate time series pro-

cesses. Consider time series vector Zt with k dimensions. VAR(p), the pth-order vector

autoregressive model for zt, is expressed as follows:

zt = Π1zt−1 + Π2zt−2 + · · · + Πpzt−p + εt, t = 1, 2, · · · , T. (5.5)

In this case Πi is a k×k autoregressive coefficient matrix, i = 1, 2, · · · , p,, and εt is a k×1

unobservable zero mean white noise vector process with covariance matrix Σ. When the

roots of det
(
Ikλp −

"p
i=1 Πiλ

p−i
)

= 0 (the eigenvalue) lie inside the unit circle for all

values of p, the VAR(p) in Eqn. (5.5) is stationary (Hamilton, 1994).

A MA-eigenvalue matrix’s diagonal is the reciprocal of the corresponding root of the
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characteristic polynomial, z, as established by Johansen (1996, pp. 15-16). As a result,

all values of z meeting Eqn. (5.5) satisfy the alternative stationarity requirement that

all values of z satisfying det
(
Ik −

"p
i=1 Πiz

i
)

= det (Π∗(z)) = 0 should lie outside a unit

circle ( for λ = 1/z).

5.4 Non-Stationary Time Series

Most climate variables, including global greenhouse gas levels, mean temperatures, an-

thropogenic aerosols and solar irradiance, have shown increasing trends over the previous

150 years, making them non-stationary (Stern and Kaufmann, 2000; Stock and Watson,

2001; Liu and RodrıÌguez, 2005; Stern and Kaufmann, 1999; Kaufmann et al., 2006). It

is also well-known that statistical procedures like regression analysis can produce erro-

neous conclusions when dealing with non-stationary data (Granger and Newbold, 1974).

This could also happen in climate change attribution and detection studies that use

static regression approaches to attribute and detect changes.

Rather than utilising time series models for climate to explain optimum variation

in observed time series, it may be more useful to see if the time series climate model

can remove a trend from the series under observation. Suitable effective time series

models, such as vector autoregression (VAR) models, have the capability to handle non-

stationarity appropriately and prevent erroneous attribution. Causality between climate

variables can also be tested using such models (Granger, 1969). The statistics of non-

stationary time series are dependent on the time period chosen. There are major ten-

dencies in these systems that do not revert to the mean. If φ1 = 1 in Equation (5.5), the

second moment of the process becomes a rising function of time, i.e., Var (yt − y0) = tσ2,

where σ2 represents the variance of the error term εt. Removing trends or differencing

can make a non-stationary time series stationary. Non-stationary processes are classified

as either difference-stationary or trend-stationary. It is possible to model a series as a

deterministic trend model, for example:
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yt = µ + θt + εt. (5.6)

Stationarity is achieved by deleting the linear deterministic trend µ + θt; the zero

mean white noise process is represented by εt. This strategy, on the other hand, would

not be effective for a series produced by a stochastic trend model,

yt = µ + yt−1 + εt,

= µt + y0 +
t*

s=0
εs.

(5.7)

When the deterministic factor is removed, the model is left with a cumulated total of

error terms that is still not stationary. To produce a stationary process ∆yt = µ + εt

for such a process, first differencing (5.7) is needed. An integrated process of order d

is a non-stationary process that can only be made stationary after differencing d times

and is indicated by I(d). When the level stationarity is zero, it is a specific instance

of trend-stationarity (5.7). If the VAR(p) process in (5.6) has a unit root, that is, if

z = 1, det (Ik −
"p

i=1 Πi) = det (Π∗(1)) = 0. As a result, the matrix Π∗(1) is non-

invertible for a non-stationary VAR process.

As a result, the presence and type of trend in a time series should be determined

before proceeding with further analysis. This is an important step since mistreating

the type of trend can lead to seriously misleading results (for example, false removal of

trends, false differencing, false regression, and so on).

5.5 Testing for Difference-Stationarity

Many different types of unit root test methodologies are useful in model construction

(e.g., Phillips and Perron (1988); Dickey and Fuller (1981); Perron (1990); Dickey and

Fuller (1979b); Choi et al. (2002)), however, the majority of them receive criticism for

their lack of power in finite sample investigations (Cochrane, 1991; Faust, 1996; Blough,

1992). A reasonable strategy to minimize such hazards is an amalgamation of tests with
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the addition of contrasting null hypotheses. When testing for non-stationarity of a time

series, this thesis employs the augmented Dickey-Fuller non-stationarity test (Dickey

and Fuller, 1981) and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) stationarity test

(Dickey and Fuller, 1979b), which are discussed in fuller detail. These two methods were

chosen since they both test contrasting null hypotheses, both have significant research

supporting them, and are both widely used in the literature.

The stationarity of a series having the ability to impact its behaviour is a significant

phenomenon. Modelling the x and y association as a basic OLS relationship, as in

equation (5.8) , will result in a false regression if the x and y series are non-stationary

random processes (combined).

Yt = α + βXt + εt. (5.8)

Time series stationarity refers to the statistical features of a series over time, such as

its variance and mean. The time series is considered a stationary process (that is, it is

not a random walk or it does not have unit root) if they are all constant across time;

otherwise, the series will be defined as a random walk or a series that has unit root (see

equation (5.9)).

x level xt

x1st -diferenced value ∇xt = xt − xt−1

x2nd -diferenced value ∇2xt = (∇xt − ∇xt−1) = xt − 2xt−1 + xt−2.

(5.9)

A series that is stationary without differencing is referred to by I(0), or integrated of

order 0. A series that is stationary with first differences, on the other hand, is referred

to as I(1) , or integrated of order one (1). The Phillips-Perron test and the enhanced

Dickey-Fuller test (1979) will be implemented to determine whether the variables were

stationary (Phillips and Perron, 1988; Dickey and Fuller, 1979a).
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5.6 Unit-Root Test

When utilising an estimated model with non-stationary variables, false results can occur,

and conclusions cannot be trusted. This is known as a false regression. Performing a

unit-root test on every variable before the analysis can minimize false regression.

To find the unit root, we employed the Augmented Dickey-Fuller (ADF) test (Said

and Dickey, 1984), and the Phillips and Perron (1988) test (PP test). One advantage

of the PP test compared to the ADF test is that it does not need the assumption of

homoscedasticity in the error term. The DF-GLS test outdoes the ADF test in terms of

power and small sample size and power (Elliott et al., 1992).

5.6.1 Dickey-Fuller Tests (DF Test and ADF Test)

One of the most well-known and extensively utilised unit root tests is the Dickey-Fuller

test (Dickey and Fuller, 1979a). It is founded on the first-order autoregressive process

model (Box et al., 2015):

yt = φ1yt−1 + εt, t = 1, . . . , T. (5.10)

εt is the non-systematic constituent of the model that meets the features of the white

noise process, where φ refers to the auto-regression parameter. The null hypothesis is

H0 : φ1 = 1, which states that the process has a unit root and is thus non-stationary,

and is expressed as I(1); the alternative hypothesis is H1 : |φ1| < 1, which states that

the process is stationary since it does not contain a unit root, and is expressed as I(0).

We utilise an expression that we get if we subtract yt−1 from both sides of the equal sign

of the equation (5.10) to compute the test statistic for DF tests:

∆yt = βyt−1 + εt. (5.11)

where β = φ1 − 1. The test statistic is expressed as:

123



tDF = φ̂1 − 1
sφ̂1

. (5.12)

where φ̂1 is a least squares estimate of φ1 and sφ̂t
its standard error estimate. This

test statistic follows the Dickey-Fuller distribution if the null hypothesis φ1 = 1 is true.

Critical values for this distribution were derived by simulation and tabulated in Dickey

(1976) and Fuller (2009).

A linear trend or a constant can be used to expand Model (5.10):

yt = β0 + φ1yt−1 + εt,

yt = β0 + β1t + φ1yt−1 + εt.
(5.13)

The Augmented Dickey-Fuller test is developed when a non-systematic component in DF

models is autocorrelated (Dickey and Fuller, 1981). After that, model (5.10) is changed

into:

yt = φ1yt−1 +
p−1*

i=1
γi∆yt−i + εt. (5.14)

The test statistic for the ADF test is calculated using the following equation:

∆yt = (φ1 − 1) yt−1 +
p−1*

i=1
γi∆yt−i + εt. (5.15)

Dickey and Fuller (1981) also provided many theories for testing for a unit root in

univariate time series. They demonstrated that an F-type likelihood ratio test statistic

Φ1 (for more information, see Dickey and Fuller (1981)) has greater power over the other

rival test statistics. This test is founded on a regression, such as in (5.16), where the

initial value y0 is treated as fixed.

yt = µ + π1yt−1 + π2yt−2 + εt, t = 1, 2, · · · , T. (5.16)

When one rewrites (5.16) in a different way, we get:
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∆yt = µ + ρyt−1 + γ∆yt−1 + εt. (5.17)

where ρ = (π1 + π2 − 1) , γ = −π2 and µ is the mean of the process. The process in

(5.16) is said to contain a unit root if it is difference stationary (DS) and (5.17) is not,

i.e., if ρ = 0 ⇒ π1+π2 = 1. Thus, this method tests null hypothesis H0 : µ = 0 and ρ = 0

against the alternative hypothesis Ha : µ ∕= 0 and ρ ∕= 0. In other words, it compares if

the series is I(1) with nonzero drift against I(0) with zero drift. If the calculated value

of test statistic Φ1 is larger than a critical value, then, the null hypothesis is rejected.

5.6.2 Phillips-Perron Test (PP Test)

Phillips and Perron (1988) developed a number of unit root tests that have become

popular in the analysis of financial time series. The Phillips-Perron (PP ) unit root

tests differ from the ADF tests mainly in how they deal with serial correlation and

heteroscedasticity in the errors. In particular, where the ADF tests use a parametric

autoregression to approximate the ARMA structure of the errors in the test regression,

the PP tests ignore any serial correlation in the test regression. The test regression for

the PP tests is:

∆yt = β′Dt + πyt−1 + ut (5.18)

where ut is I(0) and may be heteroscedastic. The PP tests correct for any serial

correlation and heteroscedasticity in the errors ut of the test regression by directly mod-

ifying the test statistics tπ=0 and T π̂. These modified statistics, denoted Zt and Zπ, are

given by

Zt =
5

σ̂2

λ̂2

61/2

· tπ=0 − 1
2

5
λ̂2 − σ̂2

λ̂2

6

·
+

T · SE(π̂)
σ̂2

,

Zπ = T π̂ − 1
2

T 2 · SE(π̂)
σ̂2

#
λ̂2 − σ̂2

$
(5.19)

The terms σ̂2 and λ̂2 are consistent estimates of the variance parameters
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σ2 = lim
T →∞

T −1
T*

t=1
E

3
u2

t

4

λ2 = lim
T →∞

T*

t=1
E

3
T −1S2

T

4
(5.20)

where ST =
"T

t=1 ut. The sample variance of the least squares residual ût is a consistent

estimate of σ2, and the Newey-West long-run variance estimate of ut using ût is a

consistent estimate of λ2.

Under the null hypothesis that π = 0, the PP Zt and Zπ statistics have the same

asymptotic distributions as the ADF t-statistic and normalised bias statistics. One

advantage of the PP tests over the ADF tests is that the PP tests are robust to general

forms of heteroscedasticity in the error term ut. Another advantage is that the user does

not have to specify a lag length for the test regression.

If unit root testing is generated by the heteroscedastic and autocorrelated non-

systematic component, it is difficult to estimate lag p in the regression model. To describe

the autocorrelation structure of the producing process, Phillips and Perron (1988) used

the standard DF test with non-parametrically adjusted test statistics instead of employ-

ing proper autocorrelation models. This test is based on the model equations (5.10) and

(5.13), and with the exception of the last model, the linear trend is substituted by a

centered time variable (see equation (5.18)).

5.6.3 Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test

The Kwiatkowski Phillips Schmidt Shin (KPSS) test examines if a time series fluctuates

around a linear trend or mean or is non-stationary or stationary due to a unit root.

This test is also known as the stationarity test (Sephton, 1995). Against a unit root

alternative, the null hypothesis is that a process is trend stationary. Dickey and Fuller

(1979b) presented a test statistic based on the Lagrange multiplier (LM) equation (5.21)

yt = θt + wt + εt,

wt = wt−1 + ut.
(5.21)
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where wt is a random walk with fixed initial value w0, ut
iid∼ N

(
0, σ2

u

)
and εt

iid∼ N
(
0, σ2

ε

)
.

The KPSS test is used to test the null hypothesis that the time series H0 : σ2
u = 0

versus Ha : σ2
u > 0, because εt is I(0) under the stationarity assumption (Kwiatkowski

and colleagues, 1992). The null hypothesis states that the time series yt is integrated

of order one, I(1), as tested by all of the above tests. The KPSS test describes the

opposite case, namely testing the null hypothesis that the time series yt is I(0) (Dickey

and Fuller, 1979b).

The linear regression is used in the KPSS test. The regression equation divides a

series into three parts: a random walk (rt), a deterministic trend (βt), and a stationary

error (εt), with the regression equation:

xt = rt + βt + ε1. (5.22)

In cases where the data is stationary, the series will be stationary or the intercept

will be around a fixed level (Wang, 2006).

The test finds the equation using ordinary least squares (OLS), which varies some-

what contingent on whether the researcher wants to test for level or trend stationarity

(Kočenda and Černỳ, 2015). Before conducting the KPSS test, data is usually log-

transformed to convert any exponential into linear trends.

5.7 Autoregressive Integrated Moving Average (ARIMA) Process

ARIMA models come in a wide range of shapes and sizes (Box and Jenkins, 1968).

ARIMA (p, d, q), where p refers to the number of autoregressive terms, d refers to the

number of differences, and q refers to the number of moving average terms, is an overall

non-seasonal model. A white noise model is characterized as ARIMA (0, 0, 0) since

there is no AR part because it is independent of yt−1, there is no differencing, and there

is no MA part because yt is independent of et−1. Briefly, the ARIMA univariate analysis

models consist of 3 sub-processes: model identification, parameter estimation and model

diagnosis. By repeating these three steps, the optimal prediction model is screened out
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(Chadsuthi et al., 2012).

If yt is non-stationary, for example, we can take a first-difference of yt to make it

stationary.

∆yt = yt − yt−1( d = 1 implies one time differencing ),

∆yt = c + α1∆yt−1 + α2∆yt−2 + · · · + αp∆yt−p + θ1ut−1+

θ2ut−2 + · · · + θqut−q + ut.

(5.23)

refers to an ARIMA (p, 1, q) model.

Since there is no AR or MA component and only one difference, a random walk

model is classed as ARIMA (0, 1, 0).

The following steps are used to fit the model:

• Firstly The Augmented Dickey-Fuller (ADF) test and the disease sequence diagram

are used to determine the initial sequence’s stationarity. In cases where the se-

quence is non-stationary, the first-order seasonal difference (D = 1) and the first-

order ordinary difference (d = 1) and are used to stabilise it and remove the

seasonality and trend. The stationary series is investigated further.

• Secondly The study looks at the partial autocorrelation function (PACF) and the

autocorrelation function (ACF) graphs to calculate the model parameters, p and

q. These parameters are then estimated using the maximum likelihood estimation

(MLE) approach. Next, the residuals and parameters of the established ARIMA

model are examined to determine its acceptability, and the Ljung-Box (Q) test

(Ljung and Box, 1978) is used to determine if the residuals of the model are white

noise (Davies et al., 1977).

• Finally If multiple models satisfy the condition of having significant parameters and

the residual sequence of the model is white noise, the optimal univariate model

can be chosen using the Schwarz Bayesian information criterion (SBC), Akaike

information criterion (AIC), root mean square error (RMSE) and mean absolute

percentage error (MAPE) indicators.
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5.8 GARCH Model

To overcome the limitations of the standard autoregressive conditionally heteroscedas-

tic (ARCH) model, Bollerslev (1986) presented a generalised ARCH (GARCH) (Engle,

1982). Both a longer memory and a more flexible lag structure were possible with the

GARCH model. The conditional variance in the ACRH process is expressed as a linear

mapping of prior sample variance alone, but the GARCH process also allows for lagged

conditional variances to be included in the model. Bollerslev (1986) and Engle (1982)

could not distinguish between how positive and negative values affected the variance of

the return in their GARCH and ARCH models.

For GARCH models, the general equation is:

Yt = µ + Xtεt,

Xt = σtεt,

σ2
t = α0 + α1X2

t−1 . . . αpX2
t−p + β1σ2

t−1 + . . . + βσ2
t−q.

(5.24)

In this case, Yt is the series return, and u is the average series; εt are separate and

identical distribution chains that trace the standard normal distribution with an average

of 0 and variance of 1. Equation (5.24) can be rewritten as:

σ2
t = α0

p*

i=1
αiX

2
t−1 +

q*

j=1
βjσ2

t−j . (5.25)

where the model parameters are represented by α0 ≥ 0, αi ≥ 0, β1 ≥ 0 for i > 0, j > 0.

When p = 1 and q = 1, the GARCH model is expressed as:

Yt = µ + Xt,

Xt = σtεt,

σ2
t = α0 + α1X2

t−1 + β1σ2
t−1,

(5.26)

This model can be statistically compared using the Hannan-Quinn information criterion

(HQC) and Akaike information criterion (AIC) to see if it is suitable for forecasting
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purposes (Pereira et al., 2004).

5.9 Vector Autoregression (VAR)

Multivariate time series (MTS) models come in a variety of shapes and sizes. The deci-

sion between linear and non-linear models (Casdagli, 1992) comes first, followed by the

precise type of model within these two classifications. Many non-linear models have been

specifically constructed and tailored for the issue domain they are used to, and deciding

which model to apply, particularly in the financial realm, can be difficult. One of the

multivariate linear time series models will be used to model the dataset under discussion

in this study. The Vector Moving Average (VMA) process, the Vector AutoRegressive

(VAR) process, and the Vector AutoRegressive Moving Average (VARMA) process are

the three basic linear models (Lütkepohl, 2013).

Vector autoregression (VAR) was developed by Sims (1980) and it was established as

a method for macroeconomists to use when describing the joint dynamic behaviour of a

set of variables deprived of the need for severe constraints, such as those required for de-

tecting underlying structural factors. Since then it has become a widely used time series

modeling technique. Although not always required, strong identification assumptions

are needed for some of the most practical applications of the estimates. Examples of

such include computing variance decompositions or impulse-response functions (IRFs).

A common constraint is defined as an assumption about a pair of variables’ dynamic

correlation. For instance, x affects y only with m variables in a VAR system as well as p

lags and an error term. While exogenous variables like time trends or seasonal dummies

can also be included in a VAR, it is more important to understand the basics first. An

order-p VAR consists of two equations with two variables, x and y:

yt = βy0 + βyy1yt−1 + . . . + βyypyt−p + βyx1xt−1 + . . . + βyxpxt−p + vy
t ,

xt = βx0 + βxy1yt−1 + . . . + βxypyt−p + βxx1xt−1 + . . . + βxxpxt−p + vx
t .

(5.27)
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The coefficient of y in the equation for x at lag p is denoted by βxyp using the subscript

convention. If another variable z is added to the system, a third equation for zt will be

created, and phrases using p delayed or lagged values of z, such as βxzp, will be included

to each of the three equations, on the right-hand side.

The fact that none of the variables currently exist on the right-hand side of the

equations is a significant aspect of equations (5.27). This suggests that the regressors

in (5.27) are not strongly exogenous and that, provided that the variables are ergodic

and stationary, OLS can generate asymptotically suitable estimators, albeit this is not

always the case. Variables that have been determined to be exogenous, such as seasonal

dummy variables, can be easily included on the right-hand side of the VAR equations,

and without the need for extra equations to describe them. Such exogenous factors will

not be included in our instances.

A vector error-correction (VEC) model is used when the variables of a VAR are

cointegrated (Engle and Granger, 1987). The following is an example of a VEC with

two variables:

∆yt = βy0 + βy1∆yt−1 + . . . + βyp∆yt−p + γy1∆xt−1 + . . . + γyp∆xt−p

−λy (yt−1 − α0 − α1xt−1) + vy
t ,

∆xt = βx0 + βx1∆yt−1 + . . . + βxp∆yt−p + γx1∆xt−1 + . . . + γxp∆xt−p

−λx (yt−1 − α0 − α1xt−1) + vx
t .

(5.28)

where the long-run cointegrating connection between the two variables is yt = α0 +α1xt,

and the error-correction parameters are λy and λx, which quantify how y and x react to

departures from long-run equilibrium.

5.9.1 Forecasting using VAR Model

The equations’ structure in (5.27) is intended to represent how the values of the variables

in period t are connected to previous values. As a result, the VAR is well-suited to
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estimating the future courses of x and y based on their prior histories. Assume the

study has a sample of x and y observations that ends in period T , and we want to

forecast their values in T + 1, T + 2„ and so on. Assume that p = 1, which means that

there is just one lagged value on the right-hand side. Our VAR for period T + 1 is

yT +1 = βy0 + βyy1yT + βyx1xT + vy
T +1,

xT +1 = βx0 + βxy1yT + βxx1xT + vx
T +1.

(5.29)

Taking the expectation as a function of the sample’s relevant information (xT and yT )

yields

E (yT +1 | xT , yT ) = βy0 + βyy1yT + βyx1xT + E
#
vy

T +1 | xT , yT

$
,

E (xT +1 | xT , yT ) = βx0 + βxy1yT + βxx1xT + E
(
vx

T +1 | xT , yT

)
.

(5.30)

In order for OLS to estimate the coefficients consistently, the conditional expectation

of the VAR error components on the right-hand side must be zero. The serial correlation

features of the v terms will determine whether or not this assumption is correct; as we’ve

seen, serially correlated mistakes and lagged dependent variables like those found in the

VAR can be a toxic mix.

As a result, we must ensure that E
#
vj

t | vx
t−1, vy

t−1

$
= 0. We assume that our VAR

system has a long enough lag for the error term to be non-serially correlated, and that

the conditional expectation of the error term for all periods following T is zero. This

means that the right-hand side of each equation in (5.30) has a zero final term, thus the

projections are

Pr (yT +1 | xT , yT ) ≡ ŷT +1|T = β̂y0 + β̂yy1yT + β̂yx1xT ,

P r (xT +1 | xT , yT ) ≡ x̂T +1|T = β̂x0 + β̂xy1yT + β̂xx1xT .
(5.31)

The forecast error in the predictions in equation (5.31) will come from two sources:

the unpredictable error term at time T + 1 and the errors we make in estimating the β

coefficients. Formally,
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yT +1 − ŷT +1|T =
#
βy0 − β̂y0

$
+

#
βyy1 − β̂yy1

$
yT +

#
βyx1 − β̂yx1

$
xT + vy

T +1,

xT +1 − x̂T +1|T =
#
βx0 − β̂x0

$
+

#
βxy1 − β̂xy1

$
yT +

#
βxx1 − β̂xx1

$
xT + vx

T +1.
(5.32)

If our estimates of the β coefficients are constant and there is no sequential correlation

in v, then the expectation of the forecast error is asymptotically zero. The variance of

the forecast error is

var (yT +1 − ŷT +1T T ) = var
#
β̂y0

$
+ var

#
β̂yy1

$
y2

T + var
#
β̂yx1

$
x2

T

+ 2 cov
#
β̂y0, β̂yy1

$
yT + 2 cov

#
β̂y0, β̂yx1

$
xT + 2 cov

#
β̂yy1, β̂yx1

$
xT yT

+ var
#
vy

T +1

$
,

var (xT +1 − x̂T +1T ) = var
#
β̂x0

$
+ var

#
β̂xy1

$
y2

T + var
#
β̂xx1

$
x2

T

+ 2 cov
#
β̂x0, β̂xy1

$
yT + 2 cov

#
β̂x0, β̂xx1

$
xT + 2 cov

#
β̂xy1, β̂xx1

$
xT yT

+ var
(
vx

T +1
)

.

(5.33)

With the exception of the last item, all of the terms in this formula converge to zero as our

consistent estimates of the β coefficients converge to the true values (as T increases). As

a result, the error in estimating the coefficients is frequently overlooked when calculating

the variance of the forecast error, resulting in

var
#
yT +1 − ŷT +1|T

$
≈ var

#
vy

T +1

$
≡ σ2

v,y,

var
#
xT +1 − x̂T +1|T

$
≈ var

(
vx

T +1
)

≡ σ2
v,x.

(5.34)

The ability to employ the VAR recursively to extend forecasts into the future is one

of its most useful features. For the time span T + 2,

E (yT +2 | xT +1, yT +1) = βy0 + βyy1yT +1 + βyx1xT +1,

E (xT +2 | xT +1, yT +1) = βx0 + βxy1yT +1 + βxx1xT +1.
(5.35)

So, by recursive expectations, we have:
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E (yT +2 | xT , yT ) = βy0 + βyy1E (yT +1 | xT , yT ) + βyx1E (xT +1 | xT , yT )

= βy0 + βyy1 (βy0 + βyy1yT + βyx1xT ) + βyx1 (βx0 + βxy1yT + βxx1xT ) ,

E (xT +2 | xT , yT ) = βx0 + βxy1E (yT +1 | xT , yT ) + βxx1E (xT +1 | xT , yT )

= βx0 + βxy1 (βy0 + βyy1yT + βyx1xT ) + βxx1 (βx0 + βxy1yT + βxx1xT ) .

(5.36)

To obtain the necessary projections (forecasts), coefficient estimates are substituted

once again.

Pr (yT +2 | xT , yT ) ≡ ŷT +2|T = β̂y0 + β̂yy1ŷT +1|T + β̂yx1x̂T +1|T ,

P r (xT +2 | xT , yT ) ≡ x̂T +2|T = β̂x0 + β̂xy1ŷT +1|T + β̂xx1x̂T +1|T .
(5.37)

If we once again ignore error in estimating the coefficients, then the two-period-ahead

forecast error in (5.9.1) is

yT +2 − ŷT +2|T ≈ βyy1
#
yT +1 − yT +1|T

$
+ βyx1 (xT +1 − xT +11T ) + vy

T +2

≈ βyy1vy
T +1 + βyx1vx

T +1 + vy
T +2,

xT +2 − x̂T +2|T ≈ βxy1 (yT +1 − yT +11T ) + βxx1
#
xT +1 − xT +1|T

$
+ vx

T +2

≈ βxy1vy
T +1 + βxx1vx

T +1 + vx
T +2.

(5.38)

The error terms for period T +1 will be correlated across equations in general. Therefore

the variance of the two-period forecast will be roughly:

var
#
yT +2 − ŷT +2|T

$
≈ β2

yy1σ2
v,y + β2

yx1σ2
v,x + 2βyy1βyx1σv,xy + σ2

v,y

=
#
1 + β2

yy1

$
σ2

v,y + β2
yx1σ2

v,x + 2βyy1βyx1σv,xy,

var
#
xT +2 − x̂T +2|T

$
≈ β2

xy1σ2
v,y + β2

xx1σ2
v,x + 2βxy1βxx1σv,xy + σ2

v,x

= β2
xy1σ2

v,y +
#
1 + β2

xx1

$
σ2

v,x + 2βxy1βxx1σv,xy.

(5.39)
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Since the errors made in forecasting period T +1 spread into errors in the forecast for

T +2, the two-period-error forecast error has a higher variance than the one-period-ahead

error. The variation grows as our prediction horizon grows, indicating our inability to

foresee far into the future, even if we had correct estimations of the coefficients (as we

have optimistically assumed here).

When larger forecast horizons are considered, the computations in equation (5.39)

get more complicated. In both (5.9.1) and (5.39), including more than one lag on the

right-hand side or more than two variables in the VAR more than significantly increases

the number of terms. These processes have been automated for us thanks to current

statistical software such as Gretl, RStudio, E-Views, Python and STATA.

5.9.2 Lag Length Selection Using Information Criteria

Economic theory can occasionally drive the choice of lag lengths in autoregressive dis-

tributed lag (ADL) and AR models. There are, however, statistical approaches for de-

termining how many lags should be used as regressors. Overall, too many lags increase

the standard errors of coefficient estimates, implying a rise in forecast error, whereas

removing lags that should be involved in the model might lead to estimation bias.

There are two methods for determining the order of an AR model:

• The F-test approach Calculate an AR(p) model and examine the importance of

the longest lag(s). If the test fails, remove the lag(s) in question from the model.

This method tends to yield models with excessive order: we always run the risk of

rejecting a true null hypothesis in a significance test!

• Relying on an information criterion We can utilise the criteria’s minimal val-

ues to determine the length of the lag to be chosen. The following are some

examples of regularly used criteria:

• Final Prediction Error (FPE) (Akaike, 1969):

FPE(p) =
+

T + p∗

T − p∗

,n

|Ŝ(p)|; (5.40)
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• The Akaike information criterion (AIC) (Akaike, 1973):

AIC(p) = ln(|Ŝ(p)|) + 2n2p

T
; (5.41)

• The Schwarz Bayesian Criterion (SBC) (Schwarz, 1978):

BIC(p) = ln(|Ŝ(p)|) + ln T

T
pn2; (5.42)

• Hannan-Quinn Criterion (HQC) (Hannan and Quinn, 1979):

HQC(p) = ln(|Ŝ(p)|) + 2 ln(ln(T ))
T

pn2. (5.43)

where Ŝ(p) = 1
T

"T
t=1 êt (êt) represents the residuals’ estimated covariance matrix

from the model VAR(p), and p represents the order for a given vector time series, T

represents the number of observations, and n represents the length of the model VAR,

where, p∗ is the total number of parameters in each.

The observed time series were minimally Gaussianized and deseasonalised before

being included in any of the models we presented. It is conceivable to test auto-regression

order from 1 to 20 days or more using the function "VARselect" in the R package "vars"

(Pfaff et al., 2008) to determine the optimal values based on the information criteria; for

instance, in our reference study (the association between rheumatology disease activity

score DAS28 and air pollution), the auto-regression of order seven was chosen based

on the outcomes of Akaike Information Criterion (AIC) and Bayes information criterion

(BIC or SBC). We also used some GRETL-provided criteria, such as the Finite Prediction

Error (FPE), Akaike Information Criterion (AIC), Hannan and Quin Criterion (HQC)

and Schwarz Bayesian criterion (BIC or SBC).

5.10 Johansen and Juselius Cointegration Test

Because the variables to be utilised are unlikely to be stationary, Granger and Newbold

(1974) point out that using OLS on the level variables will generate erroneous results.
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Engle and Granger (1987) proposed a two-step method based on a unit root test of the

residuals and OLS estimation of the long-run equation. When the residual series is proven

to be stationary, it is used as an error correction term in the (differenced) short-run

specification. The error correction (EC) term indicates how quickly the long run equation

is adjusted to equilibrium. Even while it is popular, it has flaws. There may be more than

one cointegrating vector in a model if there are more than two variables. These different

cointegrating vectors cannot be detected using the single-equation approach. Even if

there is just one cointegrating vector, the univariate technique is inefficient if not all

variables on the cointegrating vector’s right-hand side are weakly exogenous. The vector

error correction (VEC) is one of the numerous cases of the VAR method that is based on

the variables that are stationary in their differences (i.e., I(1)). The VEC method can

also take into account any cointegrating relationships among the variables and that is the

purpose why we use it in this thesis. The vector error correction (VEC) was proposed

and developed by Johansen (1991, 1988) and Johansen (1992). The Trace test and the

Maximum Eigenvalue test are two tests used by Johansen procedures Johansen and

Juselius (1990) to identify the number of cointegration vectors. For r = 0, 1, 2 · · · n −

1, the Maximum Eigenvalue statistic compares the null hypothesis of r cointegrating

relations to the alternative of r + 1 cointegrating relations. These test statistics are

calculated as follows:

LRmax(r/n + 1) = −T ∗ log(1 − λ̂), (5.44)

where T is the sample size and λ is the maximum eigenvalue. For r = 0, 1, 2 · · · n−1,

trace statistics compare the null hypothesis of r co-integrating relations to the alternative

of n co-integrating relations, where n is the number of variables in the system. The

following formula is used to calculate its equation:

LRtr(r/n) = −T ∗
n*

i=r+1
log

#
1 − λ̂i

$
. (5.45)

In rare circumstances, the findings of the Trace and Maximum Eigenvalue statistics
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may differ, and Alexander (2001) suggests that the outcomes of the trace test should be

favoured.

5.11 Granger Causality Test

Because regression analysis simply considers one variable’s dependency on other vari-

ables, it does not always imply causality or have predictive value (MacNally, 2000). In

contrast, Granger causality tests are used to analyse the causal relationship between

variables. To determine the presence and direction of causation between the variables

under examination, this study uses the widely utilised Granger causality test. The link

between variables is determined by the direction of causality. There could be one-way

causation, two-way causality, or no causality between the variables. According to the

Granger causality test, if a variable X causes variable Y , the mean square error of a

forecast of Y based on past values of X is lower than that of a forecast based on simply

previous values of Y . To perform a Granger causality test, we start by assuming that

all variables are stationary. If the original variables have unit roots, we can conclude

that differences have been made to account for the original variables’ changes in the

model (which do not have unit roots). We started with an Autoregressive Distributed

Lag Model ADL(p, q) model for Y as the dependent variable for investigating Granger

causation between X and Y . The model ADL(p, q) presupposes that a time series Yt

may be characterised by a linear function of q lags and p lagged values of another time

series Xt:

Yt =β0 + β1Yt−1 + β2Yt−2 + · · · + βpYt−p

+ δ1Xt−1 + δ2Xt−2 + · · · + δqXt−q + ut.
(5.46)

is an autoregressive distributed lag model with q lags of Xt and p lags of Yt and where

E (ut | Yt−1, Yt−2, . . . , Xt−1, Xt−2, . . .) = 0. (5.47)

We utilised this model to detect if X Granger caused Y . After that, we looked at
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causation in the opposite manner, reversing the roles of X and Y in the ADL. X became

the dependent variable in particular. The two equations can be written as follows:

Yt = α1 + δ1t + φ11Yt−1 + . . . + φ1pYt−p + β11Xt−1 + . . . + β1qXt−q + ε1t,

Xt = α2 + δ2t + φ21Yt−1 + . . . + φ2pYt−p + β21Xt−1 + . . . + β2qXt−q + ε2t.
(5.48)

The first equation determines if X Granger causes Y , while the second determines

whether Y Granger causes X. The coefficients now contain subscripts showing which

equation they belong to. Subscripts have been added to the error terms to indicate that

they will be different in the two equations.

5.12 Cointegration: Empirical Background

The distinction between non-stationary and stationary time series, as well as weak and

rigorous stationarity, is critical. This is important for stock market cointegration analysis

since we anticipate stock prices to be non-stationary (Richards, 1995). If the probability

distribution of a time series’ values does not vary over time, it is said to be strictly

stationary (Brooks, 2019):

f (yt, yt+1, . . . , yT ) = f (yt+k, yt+1+k, . . . , yT +k) . (5.49)

Strict stationarity requires that all higher-order moments, such as mean and variance,

remain constant. In practice, however, strictly stationary time series are uncommon. As

a result, in our next investigation, we will concentrate on weakly stationary processes.

Weakly stationary processes might be considered stationary if their assumptions and

conditions are met. When the mean, variance, and autocovariance of a time series

remain consistent across time, it is considered weakly stationary (Enders, 2008).

Non-stationary time series, on the other hand, have features that change with time.

At different time points in this type of time series, the variance and mean have different

values. As the sample size grows larger, the variance will increase (Korkas and Pry-
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zlewiczV, 2017). There are various reasons why distinguishing between non-stationary

and stationary series is significant. We’ll demonstrate this with the help of a simple

autoregressive (AR) process:

yt = µ + ρyt−1 + ut. (5.50)

where the present value of variable y is determined by the constant term µ, the

variable y’s value from the previous period t−1, and an error term ut. We’re particularly

interested in the value of ρ since it indicates whether the process is stationary or non-

stationary. There are three different scenarios that could happen, or three different

values that could be used of ρ (Brooks, 2019):

1. |ρ| < 1; a shock to the system in the present period t is transient; it will fade away

with time, and this series is stationary because its variance, mean, and autocovari-

ance are all constant. In the long run, a stationary time series will return to its

mean value ("Mean reversion").

2. ρ = 1; A shock in time will not fade away with time, but will remain everlasting.

Over time, its variance will approach infinity. This time series is non-stationary,

or the unit root case, since the variable y contains a unit root.

3. ρ > 1; a shock in the timeline, since this type of time series is likewise non-

stationary, will explode with time. Over time, there is no mean reversion to its

true value.

Non-stationary variables are integrated of order d, where d ≥ 1 : yt ∼ I(d), while

stationary variables are integrated of order 0, denoted yt ∼ I(0). Only the values d = 0

and d = 1 will be considered in the remainder of the thesis.

By taking the difference one or more times, non-stationary variables can be turned

into stationary variables. If a time series has one unit root (order one integration),

then subtracting the difference once makes the time series variable stationary. Similarly,

140



subtracting the difference d -times from a non-stationary variable with d unit roots

(integrated of order d) converts the variable to a stationary variable (Enders, 2008).

The work of Engle and Granger laid the foundation for the notion of cointegration

(1987). Two variables are cointegrated if they have the same long-term stochastic trend.

When two integrated variables are combined, the higher of the two integration orders is

always used. In time series, either zero or one is the most common order of integration

(Brooks, 2019):

1. if yt ∼ I(0), and xt ∼ I(0) , then their combination (axt + byt) will also be I(0),

2. if yt ∼ I(0), and xt ∼ I(1), then their combination (axt + byt) will now be I(1),

because I(1) is a higher order of integration and dominates the lower order of

integration I(0),

3. if yt ∼ I(1), and xt ∼ I(1), then their combination (axt + byt) will also be I(1), in

the general case.

Cointegration between non-stationary I(1) variables exists if there is a linear combi-

nation of them that is stationary, I(0).

Two I(1) non-stationary variables, yt and xt, are included in the following regression

model:

yt = µ + βxt + ut. (5.51)

These two variables are cointegrated if the OLS estimate β makes the linear combination

of yt and xt stationary. The error term between them becomes stationary with time:

ut = yt − βxt. (5.52)

Two variables must be integrated with the same order for them to be cointegrated.

They cannot be cointegrated, for example, if one order is I(0) and the other is I(1). If

two variables are integrated with different orders, cointegration will not exist since the

highest order of integration of the two variables will dominate.
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5.13 Cointegration: Model and Notation

Assume that the k-dimensional vector process zt presented in Section 5.3 is an order 1

integrated process. The VAR(p) model in equation (5.5) can be given several parameter-

izations for such a process without placing any binding limits on the model parameters,

i.e. without modifying the likelihood function’s value. In differenced form, the equivalent

of equation (5.5) can be written as:

∆zt = ΠZt−1 +
p−1*

j=1
Γj∆zt−j + εt, t = 1, 2, · · · , T. (5.53)

where ∆ = 1 − L, Γj = −
"p

i=j+1 Πi and Π =
"p

i=1 Πi − Ik. Here the long-run matrix

Π = −Π∗(1) for Π∗(1) discussed in Section 5.4, which should be singular if Zt is a vector

integrated time series.

Note that inclusion of ΠZt−1 in equation (5.53) can raise a question of how to handle

the non-stationarity problem while setting ΠZt−1 = 0 will leave a model with only the

short-run dynamics (long-run information will be lost). Thus equation (5.53) makes sense

only if ΠZt−1 defines stationary linear combinations of the I(1) variables, in which case

the reparametrized model is in vector error correction model (VECM) form. According

to Engle and Granger (1987) VECM implies cointegration.

A k × 1 vector time series Zt is assumed to be cointegrated (Hamilton, 1994) if each

of the series is I(1), or non-stationary with a unit root, while some (at least one) linear

combinations of the series β′
izt−1 are stationary, or I(1), for any nonzero k × 1 vector βi

called the cointegrating vector. The cointegrating rank (Johansen, 2000) is defined as

the number r of linearly independent cointegrating vectors, and the cointegration space

is defined as the space spanned by the cointegrating vectors.

As a result, the cointegration hypothesis may be expressed within the VAR(p) model

as a reduced rank limitation on the long-run matrix Π, such that Π = αβ′, for α and β

with p×r matrices, and with βi (i = 1, 2, · · · , r) being the ith column of the cointegrating

matrix β. The loading or adjustment matrix (α) is a matrix whose members determine

the adjustment of change to the long-run equilibrium (Juselius, 2006).
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5.14 Cointegration Analysis

If the analytical variables are non-stationary and integrated in order d, I(d), we can

difference d times to make their differences stationary. However, the factors may have a

cointegrating relationship. If two non-stationary variables are integrated in the same or-

der d, I(d), a linear combination of these two variables may be stationary, which is known

as cointegration. If the two variables have a cointegrating relationship, differencing will

result in a loss of information. Let’s say we’ve got the following equation:

x1t = β1 + β2x2t + . . . + βnxnt + et. (5.54)

We get the following equation when we solve for the error term:

et = x1t − β1 − β2x2t − . . . − βnxnt. (5.55)

In light of this, Engle and Granger (1987) proposed the notion of cointegration with a

collection of long-run equilibrium variables.

β1x1t − β2x2t − . . . − βnxnt = 0. (5.56)

In this case β = (β1, · · · , βn) is the cointegrating vector. We can formulate the

following equation because the divergence from long-run equilibrium is et:

β1x1t − β2x2t − . . . − βnxnt = et. (5.57)

Here et must be stationary if the equilibrium is significant. Non-stationary variables can

build a linear relationship using this method. The Engle-Granger methodology can be

used to look for cointegration by attempting to identify the stationarity of the equilibrium

relationship’s residuals. To begin, the unit root test outlined in the preceding section

is used to establish the order of integration of each variable. Because we are ignoring

multicointegration, which is beyond the scope of this thesis, all variables should be

integrated in the same order. The long-run equilibrium connection is then calculated
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using the equation:

xt = α0 + α1zt + et. (5.58)

If there is cointegration, the α0 and α1 approximations in the OLS regression re-

veal "super-consistent" estimators. The fitted values of the et series (êt) are tested for

stationarity in this estimation. DF or ADF tests could be utilised in this analysis. In

hypothesis testing, however, critical values developed by MacKinnon (1996) are applied.

We can deduce that there is cointegration between xt and zt if this series is stationary.

êt can be used as the model’s error correcting term.

5.15 VECM Theoretical Notions and the Model

One of the models in Multivariate Time Series is VECM (Vector Error Correction Mod-

elling) that was proposed and analysed by Johansen (1995). ECM (Error Correction

Modelling), a long-term association between particular non-stationary variables in the

original data, is the most basic type of univariate modelling. The introduction of this

cointegration is like a new ray of hope for the long-term establishment of a stable state

using a combination of linear variables. So, if two or more non-stationary time series are

integrated together in a way that they cannot deviate from equilibrium in the long term,

they are considered to be cointegrated. ECM can be employed if cointegration analysis is

probable. If testing reaches the ECM analysis (short-term relationship), the term Error

Correction Term (ECT) will be used. This is utilised when the rate of adjustment of the

state of equilibrium is projected to be negative (convergent). Furthermore, the potential

of ECM in a cointegration study is equivalent to the normal regression of known terms

of independent and constrained variables.

One of the specific versions of system simultaneous equations is the vector autore-

gression (VAR). If all of the variables are steady, VAR can be used. If the variables in

vector Zt are nonstationary, the model utilised is the Vector Error Correction Model

(VECM) if the variables have at least one or more cointegration relationships. The
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VECM is a VAR that was created to work with nonstationary data with a cointegration

connection (Enders, 2008).

In this thesis, we used the VAR and VECM models to analyse our hypothesis of

how air pollution influences public health. The VECM model allows us to estimate the

long and short run equilibrium effect for each variable interacting with itself and with

other variables without imposing any theoretical structure on the estimates or making

any assumptions regarding exogeneity of variables a priori. If all variables in our VAR

co-integrate with order I(1), and if there are cointegration relationships between them,

then we utilise a VECM to approximate the impulse response functions. The number

of co-integrating vectors is indicated by the cointegration rank in VECM. Combinations

of two linearly independent, non-stationary variables with a rank of two, for example,

are stationary. If the ECM coefficient is negative and substantial (ei−1 in the preceding

equations), any short-term fluctuations between the independent variables and the de-

pendent variable will generate a stable long-run relationship between the variables. If

there is no cointegration among the variables, the result of the cointegration analysis

allows us to determine whether the specific model will be a VAR model in its group

form, or a VAR model in the form of a VECM, if there is at least one association of

cointegration between the variables. A VAR model can be written as follows in matrix

notation:

yt = A0 + A1yt−1 + . . . + Apyt−p + B0zt + B1.zt−1 + . . . + Bpzt−r + εt (5.59)

in cases where y is a n × 1 vector with the model’s endogenous variables, and z is a

m × 1 vector with the model’s exogenous variables. A0 is a n × 1 vector of intercepts;

A1, . . . , Ap are n × n coefficient matrices that connect endogenous variable lag values

to present values; B1, . . . , Bp are n × m coefficient matrices that connect exogenous

variable current values to endogenous variable values; and et is a n × 1 vector of random

disturbances IID N
(
0, σ2)

.
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Because of the system’s cointegration linkages, a Vector of Error Correction Model

(VECM) must be utilised instead of a VAR model. Granger and Engle (1987) developed

VECM models with the goal of including short-term modifications due to the presence

of cointegration. The following is a representation of a VECM model:

∆yt = Π1yt−k + Γ1∆yt−1 + Γ2∆yt−2 + . . . + Γk−1∆yt−(k−1) + ut. (5.60)

where Π =
#"k

j=1 βi

$
− Ig; Γi =

#"i
j−1 βj

$
− Ig, ∆yt is a vector of differences with n

variables, ut ∼ (0, Σ), Σ is a covariance matrix of ut with E (utu
′
s) = 0 ∀t ∕= s. On

the left side of the equation, there are g variables, and on the right side, there are

k − 1 dependent variable delays, each of which is coupled with a coefficient matrix Γi

(Johansen and Juselius, 1990).

The Vector Error Correction Model is a restriction variant of the Vector Autoregres-

sive Model. Because there are non-stationary yet cointegrated data forms, this additional

limitation is necessary. The cointegration restriction information is then used by VECM

in its requirements. For nonstationary series with cointegration relationships, VECM is

often referred to as the VAR design. After the cointegration has been determined, the

following test is carried out using the error correction approach. If the test variables

have different degrees of integration, the test is conducted simultaneously between the

long-term equations and the error correction equation after it is determined that the

cointegration variable exists. Lee and Granger refer to multi cointegration as the degree

of integration for cointegrated variables. If no cointegration event is observed, the test

is repeated using the first difference variable. The VAR is a particular instrument with

a specific function in understanding the interaction between model variables. Forecast

Error Variance Decompositions (FEVD) and Impulse Response Function (IRF) often

known as Variance Decompositions (VD), are two of the instruments (Lütkepohl, 2005).
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5.16 VAR and VEC Models

When it’s unclear whether or not a variable in an equation is exogenous, it’s best to

handle it symmetrically. This means assuming that there is an xt series that is influenced

by present and previous values of zt, as well as a variable zt that is influenced by current

and previous values of xt. The following bi-variate system can be written in this situation:

xt = a11 − a12zt +
p*

i=1
τ1izt−i +

p*

i=1
ψ1ixt−i + ξ1t,

zt = a21 − a22xt +
p*

i=1
τ2izt−i +

p*

i=1
ψ2ixt−i + ξ2t.

(5.61)

This is a bivariate VAR model in which xt and zt are assumed to be stationary and

have white-noise and the error factors are uncorrelated. Since xt is correlated with zt

and ξ2t is correlated with ξ1t, the system of equations produced by (5.61) cannot be

approximated directly. When using typical estimation approaches, regressors should not

be correlated with the error term. A reduced variant of the VAR model is built in order

to estimate the VAR model. We get a simplified form of the VAR model after making

the appropriate corrections:

xt = α11 +
p*

i=1
λ1izt−i +

p*

i=1
δ1ixt−i + e1t,

zt = α21 +
p*

i=1
λ2izt−i +

p*

i=1
δ2ixt−i + e2t.

(5.62)

The error terms e1t and e2t in the simplified form of the system are composites of the

two shocks ξ1t and ξ2t. Both e1t and e2t have constant variances, zero means, and are

serially uncorrelated since ξ1t and ξ2t are white-noise processes. If the lag length is 1

(p = 1), the error terms e1t and e2t are as follows:

e1t = (ξ1t − a12ξ2t) / (1 − a12a21) ,

e2t = (ξ2t − a21ξ1t) / (1 − a12a21) .
(5.63)
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We should test if one of the lagged endogenous variables has an effect on the other

endogenous variable after estimating this system of equations (5.62). The conventional

F-test is used to examine this under the assumption of variable stationarity. When

determining if zt has an effect on xt, the null hypothesis is H0 : λ1i = 0, and the

alternative hypothesis is Ha : one of the λ1i is not zero, where i = 1, 2, . . . , p. Similarly,

when determining if xt has an effect on zt, the null hypothesis is H0 : δ1i = 0, and the

alternative hypothesis is Ha : one of the δ1i is not equal to zero, where i = 1, 2, . . . , p.

We can conclude that zt has an effect on xt if the null hypothesis is rejected.

Because of the presence of a cointegrating association, a linear combination of non-

stationary variables may be stationary, as previously mentioned. The error term must be

stationary if the long-run equilibrium is relevant. Instead of a differenced VAR model, a

Vector Error Correction Model (VECM) might be created with this functionality. The

VECM is illustrated by the following model:

∆xt = µ11 +
p−1*

i=1
θ1i∆zt−i +

p−1*

i=1
γ1i∆xt−i + β11ECt−1 + u1t,

∆zt = µ21 +
p−1*

i=1
θ2i∆zt−i +

p−1*

i=1
γ2i∆xt−i + β21ECt−1 + u2t.

(5.64)

In Eq. (5.64), ∆xt−i and ∆zt−i are stationary variables, where ECt−1 is the error cor-

rection term, and u1t and u2t are stationary error terms. The short-run dynamics of the

variables in an error correction model are influenced by the departure from equilibrium.

The coefficients of the lagged right hand side variables (θli, θ2i, γ1i and γ2i) demonstrate

a short run effect, which is referred to as the impact multiplier in this methodology. The

adjustment effects are the coefficients of the error correction variables (β11 and β21),

which show the correction of the disequilibrium from the long-run equilibrium. When

the coefficient of the error correction term is big, the response to the prior period’s de-

viation from long-run equilibrium is considerable, whereas when the coefficient is small,

the left hand side variable is unresponsive to the previous period’s equilibrium error

(Becker et al., 2004). The adjustment coefficient in this model captures the long-run

relationship. If both error correction term coefficients are 0, we deduce that there is no
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long-run link and the model should be approximated using the VAR model. If one of

the adjustment coefficients in a VECM is 0, the other adjustment coefficient handles all

of the adjustments. The endogenous variable with a zero adjustment coefficient might

be viewed as weakly exogenous in this scenario.

Cointegration must be discovered before VECM can be used. Four phases are pro-

posed by the Engle-Granger methodology. The unit root test presented in this Chapter

is used to establish the order of integration of each variable in the first step. In the

second stage, Equation (5.58) is used to estimate the long-run equilibrium association,

and the fitted values of the error term et series are checked for stationarity by comparing

the ADF or DF test statistic to critical values (MacKinnon, 1996).

We can deduce that there is cointegration between xt and zt if this series is station-

ary. Engle and Granger (1987) suggested the VECM as an instrumental variable for

the (xt−1 − α1zt−1), and êt can be utilised as an error correction term of the VECM.

Equations (5.64) form the VECM, with ECt−1 being êt. The final phase involves esti-

mating VECM and determining the significance of each coefficient of lagged endogenous

variables and coefficient of error correction terms. The F-test can be used to test the

restriction on lagged endogenous variables’ coefficients, and the t-test can be used to

evaluate the significance of adjustment coefficients. The model’s appropriateness should

be tested as the final phase.

The lag duration in both VAR and VEC models can be found by utilising the con-

ventional VAR model in levels. The VAR model is evaluated using various lag length

selection methods such as the Hannan-Quinn Information Criterion (HQ), Schwarz Infor-

mation Criterion (SC)), Final Prediction Error (FPE), Sequential Modified Likelihood

Ratio (LR) and Akaike Information Criterion (AIC). The outcomes of these five data

criteria may be contradictory. The criterion is determined based on the theory and prior

knowledge about the relationship in question, as the goal is to find the best feasible out-

comes. In most cases, the Akaike Information Criterion (AIC) or the Schwarz Bayesian

Criterion is employed to determine the length of the lag. The optimal model is chosen

as the one that minimizes these criteria.
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5.17 Cointegration and VECM

When two series are identified as co-integrated, it is assumed that they have a long-term

equilibrium association, thus we use VECM to assess the co-integrated series’ short-run

characteristics. We bypass VECM and move right to Granger causality tests to discover

the causal links between variables if there is no cointegration. The VECM regression

equation looks like this:

∆Yt = α1 + p1e1 +
"n

i=0 βi∆Yt−i +
"n

i=0 δi∆Xt−i +
"n

i=0 γiZt−i,

∆Xt = α2 + p2et−1 +
"n

i=0 βiYt−i +
"n

i=0 δi∆Xt−i +
"n

i=0 γiZt−i.
(5.65)

The number of co-integrating vectors is represented by the cointegration rank in

the VECM. A rank of two, for instance, shows that two non-stationary variable amal-

gamations will be stationary if they are linearly independent. If the ECM coefficient

is negative and significant (i.e. et−1 in the above equations), any short-term oscilla-

tions between the independent and dependent variables will result in a steady long-run

relationship between the variables.

• Johansen’s Methodology for Modelling Cointegration The basic steps in

Johansen’s methodology are:

• Specify and estimate a VAR(p) model for Yt;

• Construct likelihood ratio tests for the rank of Π to determine the number of

cointegrating vectors;

• If necessary, impose normalisation and identifying restrictions on the cointe-

grating vectors;

• Given the normalised cointegrating vectors estimate the resulting cointegrated

VECM by maximum likelihood.
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5.18 Specification of Deterministic Terms

Considering the cointegrated VECM for ∆Yt, that can be written as:

∆Yt = αβ′Yt−1 + εt. (5.66)

The VECM formula equation by equation gives:

∆y1t = α1 (y1t−1 − βy2t−1) + ε1t,

∆y2t = α2 (y1t−1 − βy2t−1) + ε2t.
(5.67)

The change in y1t according to the lagged disequilibrium error β′Yt−1 = (y1t−1 − βy2t−1)

is explained in the first equation, however, the second equation explains the change in

the ∆y2t to the lagged disequilibrium error as well. Notice that the reactions of y1 and

y2 to the disequilibrium errors are captured by the adjustment coefficients α1 and α2.

If the deterministic terms are unrestricted, then the time series in Yt may exhibit

quadratic trends and there may be a linear trend term in the cointegrating relationships.

Restricted versions of the trend parameters µ0 and µ1 limit the trending nature of the

series in Yt. The trend behaviour of Yt can be classified into five cases:

1. Model H2(r) : µt = 0 (no constant). The restricted VECM is:

∆Yt = αβ′Yt−1 + Γ1∆Yt−1 + · · · + Γp−1∆Yt−p+1 + εt (5.68)

and all the series in Y t are I(1) without drift and the cointegrating relations β′Yt

have mean zero.

2. Model H∗
1 (r) : µt = µ0 = αρ0 (restricted constant). The restricted VECM is

∆Yt = α
(
β′Yt−1 + ρ0

)
+ Γ1∆Yt−1 + · · · + Γp−1∆Yt−p+1 + εt. (5.69)

The series in Yt are I(1) without drift and the cointegrating relations β′Yt have

non-zero means ρ0
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3. Model H1(r) : µt = µ0 (unrestricted constant). The restricted VECM is:

∆Yt = µ0 + αβ′Yt−1 + Γ1∆Yt−1 + · · · + Γp−1∆Yt−p+1 + εt. (5.70)

The series in Yt are I(1) with drift vector µ0 and the cointegrating relations β′Yt

may have a non-zero mean.

4. Model H∗(r) : µt = µ0 + αρ1t (restricted trend). The restricted VECM is:

∆Yt =µ0 + α
(
β′Yt−1 + ρ1t

)

+ Γ1∆Yt−1 + · · · + Γp−1∆Yt−p+1 + εt.
(5.71)

The series in Yt are I(1) with drift vector µ0 and the cointegrating relations β′Yt

have a linear trend term ρ1t.

5. Model H(r) : µt = µ0 + µ1t (unrestricted constant and trend). The unrestricted

VECM is:

∆Yt = µ0 + µ1t + αβ′Yt−1 + Γ1∆Yt−1 + · · · + Γp−1∆Yt−p+1 + εt. (5.72)

The series in Yt are I(1) with a linear trend (quadratic trend in levels) and the

cointegrating relations β′Yt have a linear trend.

5.19 Impulse Response Functions and Variance Decompositions

Innovation accounting, which consists of impulse response and variance decomposition

analysis, is used to represent system dynamics. In VAR, variance decomposition de-

composes variation in an endogenous variable into component shocks to the endogenous

variable, whereas an impulse response function traces the effect of one standard devi-

ation shock to one of the innovations on current and future values of the endogenous

variables.

152



When considering equations (5.62), a shock to a variable affects the variable itself.

Because VAR has a dynamic structure, this effect is passed on to all of the system’s

endogenous variables. Because of the presence of lagged xt in both equations, a change

in et1 will have an immediate effect on xt and will also impact future values of zt and

xt. If the innovations et1 and et2 are not correlated, et1 represents xt and et2 represents

zt. However, in practice, the innovations are frequently connected, resulting in a shared

component between the two variables that cannot be associated with one of them indi-

vidually. This issue could be overcome by attributing the entire effect of any common

component to the VAR system’s initial variable. Cholesky decomposition is the term

given to this procedure. This analysis can vary depending on the order of the variables

in the VAR system; as a result, this property should be considered while performing

an impulse response analysis. To put it another way, variance decomposition "provides

the variance of a given variable’s forecast errors to its own shocks and the shocks of the

other variables in the VAR model" (Lanne and Nyberg, 2016).
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Chapter 6

The Long/Short Run Relationship

Between RA and AQI Using VECM

6.1 Introduction

This chapter will present and apply the empirical idea of cointegration, however it is

necessary to first introduce the concept’s essence in order to comprehend its implications.

The primary principle behind cointegration is that the variables have a propensity to

move collectively in the long run, implying that they have reached a state of equilibrium.

Deviations in the short term from equilibrium are conceivable, but due to the error or

equilibrium correction model, the variables will recover to their equilibrium relation in

the long run (Engle and Granger, 1987).

The widely utilised cointegration approach in econometrics has been found to provide

approximations that give more accurate results for air pollution trend identification and

attribution (Tang et al., 2019; Taghizadeh-Hesary and Taghizadeh-Hesary, 2020; Zhu

et al., 2019; Zou et al., 2016). The maximum likelihood (ML) estimates from a coin-

tegrating vector autoregressive (VAR) model are compared to the total least squares

(TLS) and the conventional ordinary least squares (OLS) estimates from a static regres-

sion model.
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Environmental time series can be seen in the form of air quality measurements. The

most common methodology for estimating environmental parameters is conventional

descriptive statistics, but due to the considerable variability associated with the low

signal-to-noise ratio of the available observations and air quality data, this is of lit-

tle value. Time series analysis, which allows the detection of underlying deterministic

behaviour and so contributes to the understanding of cause and effect links in environ-

mental problems, may be a viable way to avoid these difficulties (Schwartz and Marcus,

1990).

The time series forecasting method is beneficial for projecting future air quality

conditions based on numerous characteristics of each country’s development. To create

a forecasting model, the forecasting approach examines the sequence of historical data

inside a time series. The ARIMA approach has been thoroughly investigated and applied

in prior research, and it has been shown to be effective in the field of forecasting. Many

prior articles have discussed forecasting approaches for the pollution field using the

ARIMA time series method (Abhilash et al., 2018; Wang and Guo, 2009; Kumar and

Jain, 2010).

So, this chapter will present the univariate and multivariate time series analysis for

predicting disease activity scores (DAS28) among patients from Kuwait with rheumatol-

ogy arthritis (RA) using the information of air pollution. In addition, we will examine

the long and short run relationship between air pollution components such as NO2, SO2

and O3 with the rheumatoid arthritis (RA) disease activity score (DAS28).

6.2 Background of the Study

According to a 2016 WHO report, 7 million people die each year as a consequence of being

exposed to ambient (outdoor + indoor) air pollution around the world (Organization,

2016). People who are very young, elderly, have pre-existing respiratory disorders, or

have a low socioeconomic status are the most vulnerable to air pollution. The pollutants

with the most consequential evidence of health effects were found to be CO, PM10, NO2,
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SO2 and O3. Several studies have linked ambient air pollution to a variety of negative

health effects, ranging from asymptomatic to fatal results (Dominici et al., 2006; Li et al.,

2018; Mölter et al., 2015).

The relationship between RA risk and the exposure to several specific air pollu-

tants, including NO2, SO2, and PM10, from local sources (traffic and home heating)

was investigated in a recent analysis from the Swedish Epidemiological Investigation of

Rheumatoid Arthritis (EIRA) case-control study, and the outcomes indicate that se-

lected pollutants (NO2 and SO2) had a relationship with increased risk of RA (Hart

et al., 2013b). This also agreed with Chang et al. (2016) who discovered that PM2.5 and

NO2 are risk factors of increasing RA in participants.

Also, a study in Korea suggested an increased risk of incident RA in adults exposed

to CO and O3 (Shin et al., 2019). They found a positive relationship between exposure

to some gaseous pollutants (CO and O3) and the risk of RA.

A study was undertaken in Kuwait to determine the relationship between disease

activity ratings and air pollution in RA patients. The study concluded that NO2 and

SO2 were discovered to be important risk factors for the development of RA (Alsaber

et al., 2020).

Next, after discovering the relationship between the pollutions (NO2, SO2 and O3)

with the rheumatology disease activity, it is important to build a multivariate time

series model that predicts the disease activity of RA given the information of the most

correlated components of air pollution with RA (NO2, SO2 and O3).

6.3 Multivariate Time Series and Air Pollution

Various extended models such as VARMA (Vector Autoregressive Moving Average) and

VAR (Vector Autoregressive) have been used for multivariate time series analysis in envi-

ronmental studies. VAR and VEC (Vector Error-correction) were exploited for long-term

prediction based on multivariate time series data (Cox et al., 1981), and VARMA was

used for multivariate time series data in financial services (Veenstra and Haralambides,
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2001). The study in Chevillon and Hendry (2005) researched prediction performance of

the VAR model using direct multi-step estimation for both stationary and non-stationary

time series generated in economic activities, and the study in Haldrup et al. (2010) fore-

casted the price of electricity by a VAR model using fractional cointegration. One draw-

back of the VAR model is that the number of parameters to be estimated can become

large (Gong et al., 2019). Recently, predictions for fuzzy time series were performed us-

ing a multivariate heuristic model (Huarng et al., 2007), and a new method using a fuzzy

relation based on a neural network algorithm was suggested for high-dimensional time

series data (Egrioglu et al., 2009). However, these models need to satisfy too many con-

ditions and constraints; the VARMA model is slow with complicated data (Isufi et al.,

2019). In addition, even if the models handle multivariate time series data, they are

usually not suitable to forecast a certain dependent variable of the data. Thus, given

many situations, traditional single models for forecasting multivariate time series have

limits.

With the fast application and development of sensor technology and the Internet of

Things in the big data era, air quality prediction is becoming increasingly reliant on

a variety of data acquisition equipment and sensors to gather big data for urban air,

such as weather data, PM10, NO2, PM2.5, and traffic data, among other things. Some

academics have been working on air quality predictions and air pollution incidences in

recent years (Zhang et al., 2012a,b). However, to characterise the evolution of air pollu-

tion, the majority of these research studies rely on mathematical equations or simulation

methodologies (Vardoulakis et al., 2003). Classic shallow machine learning algorithms

epitomise these conventional methodologies. In another example, Dong et al. (2009)

introduced a unique approach for PM2.5 concentration value prediction based on hidden

semi-Markov models (HSMMs). Based on the Nonparametric Regression approach and

Integrated Parametric approach, Donnelly et al. (2015) proposed a model for creating

real-time air quality forecasts with excellent accuracy and computing efficiency. Because

air pollution is influenced by weather, traffic, and other factors, statistical approaches

and shallow machine learning models struggle to effectively capture and predict it.
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Air quality prediction has a long history of research in the literature; most of the

existing studies use shallow machine learning models and statistical methods to handle

the difficulties of air quality prediction (Vardoulakis et al., 2003) including Regression

(Donnelly et al., 2015), ARIMA (Díaz-Robles et al., 2008), Artificial Neural Networks

(Zhou et al., 2014) and HMM (Dong et al., 2009). For example, Zhang (2007) offered

a comprehensive overview of real-time air quality forecasting difficulties, including their

history, important research, current state and future directions (Zhou et al., 2015; Zheng

et al., 2013). To identify the dynamic temporal relationships of PM2.5, Zhang (2007) de-

veloped a probabilistic dynamic causal (PDC) model based on Lasso-Granger to uncover

the dynamic temporal dependencies (Zhou et al., 2015). Founded on ensemble empirical

mode decomposition and a general regression neural network technique, Zhang (2007)

built a hybrid model for one-day-ahead PM2.5 prediction (Zhou et al., 2014). In another

example, Deleawe et al. studied the application of machine learning technologies to pre-

dict CO2 levels in urban air settings, which is an indicator of air quality (Deleawe et al.,

2010).

The Box and Jenkins technique is used to develop functional correlations between

several time series variables and it was examined for environmental studies. Moving av-

erage, stochastic processes, autoregressive, and autoregressive integrated moving average

models are commonly utilised. To cope with the non-stationarity of the time series, the

Box and Jenkins technique offers differencing of the variables. However, differencing

the series is not always wanted because it confines the model to only short-run fluctua-

tions, obviating the importance of long-run variations, which may be a key aspect of the

stochastic process. Furthermore, if the series act in an equilibrium manner, estimating

the magnitude of the departures from the equilibrium route may be informative. Fur-

thermore, if non-stationarity is neglected, a relationship may be constructed when none

existed; erroneous conclusions can be generated from non-stationary series regression

(Granger and Newbold, 1974).

As a result, the model may need to consider not just long-run but also short-run

fluctuations. Though analysis can be founded solely on short-run changes, this may
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not be particularly useful because long-run variations, assuming they are important, are

neglected when determining a relationship. De-trended variables might also be employed

to avoid non-stationarity, but the dynamic model would still only describe the long-

run phenomenon. Furthermore, choosing certain variables as exogenous and others as

dependent at random is not a recommended method for evaluating connected time series.

As a result, a new methodology is required.

Granger proposes the cointegration strategy to deal with these kinds of problems

(Engle and Granger, 1987). There are two types of cointegration models to cope with

non-stationarity: the vector error correction model (VECM) and vector autoregressive

(VAR). If the coefficient matrix related with the stochastic equations indicating variable

associations is less than full rank, either (1) cointegration restrictions on the coefficients

are applied, (2) the error correction representation is used, or (3) the random walk el-

ement is disjointed, leaving the approximation to progress in the VAR representation.

Level as well as differenced variates are included in the error correction model. As a

result, adopting this version of the vector autoregressive model is advantageous because

it includes both short and long run parameters. These may stray from each other from

period to another period, but they normally go in the same direction. They may di-

verge in the short term, but in the long run, they will converge. Assuming an arbitrary

sequence of variables and using univariate models may not be acceptable for such time

series because they could be endogenous at the same time. Instead, at least as a starting

point for the inquiry, a systems or simultaneous equations method could be more ap-

plicable. Surprisingly, a cointegration strategy using a mixture of stochastic equations

produces a stable process even in situations where the variables are non-stationary.

According to what we have presented, in the next section we will present the im-

portance of this study in term of implementing a multivariate time series approach in

order to capture and predict the influence of air pollutants toward rheumatology disease

activity scores among RA patients from Kuwait.
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6.4 Importance of the Study

This study is limited to cover the situation in Kuwait as a country. Over the pre-

vious four decades, Kuwait’s infrastructure and socioeconomic development has been

extremely rapid. Hundreds of kilometres of metropolitan highways and arterials have

been built to accompany the rapid growth of the socioeconomic sectors. Kuwait City,

with a population of over four and half million people and a vehicle fleet of over two mil-

lion, is facing increased traffic volumes, increased trip frequency, and increased journey

length (Al-Mutairi et al., 2009). As a result of its use for internal ventilation, outdoor

air quality is becoming a serious air pollution issue and concern for residents of Kuwait

City. It is also one of the most pressing issues in the urban environment. The quanti-

ties of non-methane hydrocarbons in the ambient air are generally higher than Kuwait

Environment Public Authority (K-EPA) guidelines (Al-Awadhi and Al-Awadhi, 2006);

suggesting oil related factors are the contributing agents. Nearly 29% of the cities tested

had sulphur dioxide concentrations (typically from power plants) that were above WHO

maximums, while 71% had nitrogen dioxide concentrations (primarily from urban traffic)

that surpassed WHO limits (Al-Mutairi et al., 2009).

So, in this study, we want to measure the long and short term effect from air pollu-

tants (NO2, SO2, O3) toward chronic diseases. The rheumatoid arthritics (RA) among

patients from Kuwait was chosen to be a case study for this research as a chronic disease

factor. However, air pollution information was collected through four different monitor-

ing fixed stations (see figure 6.1). In this chapter, a comparison of traditional shallow

time series models and Vector Error Corrected Model (VECM) is used. By perform-

ing feature selection automatically and leveraging multivariate time series data, this is

inspired to handle long temporal dependency concerns and local trend features. We

presume that air quality and chronic diseases move in lockstep, so they can’t deviate

from one other on their own. Alternatively, any imbalance between them is a deviation

in the short run (Arize, 2017).
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Figure 6.1: The location of monitoring fixed stations selected for this study (ASA, FAH,
JAH and MAN) that belong to Kuwait Environment Public Authority (K-EPA)

6.5 Aim and Objective

As mentioned in previous chapters, the importance of the estimated coefficient of the

long-run associations between model projections of air pollution variables and observa-

tions is used to detect and attribute changes in the disease scores among RA patients

from Kuwait.

However, estimating and testing the predicted long-run relationship should not be

considered a goal in and of itself. The two series (modelled and observational) should

have a true long-run connection. Examining the function of air pollution components in

the assessment of disease activity score of the patients with high Rheumatoid Arthritis
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Disease Activity Score is an important subject to address before estimation (e.g. DAS28

calculated score).

6.6 Procedures and Methodology

6.6.1 Selected Variables

In this section, we will express the time series plots for the selected air pollution com-

ponent in this study. As we mentioned before, the selected air pollution variables are

NO2, SO2, and O3 in addition to patients with RA disease activities score DAS28 based

on their hospital records.

6.6.2 Rheumatoid Arthritis (RA) Patients’ Data

Rheumatoid arthritis (RA) refers to an inflammatory illness that mostly affects the

joints, producing inflammation, discomfort, and difficulty in moving them. Although the

specific etiology is uncertain, the condition has been related to a number of hereditary

and environmental variables. Chemical exposure was in the past suggested as a possible,

if not primary, cause of the condition (Chang et al., 2016).

RA Data from KRRD

All RA patients in this study were officially registered with the Kuwait Registry for

Rheumatic Diseases from January 1, 2013 to December 30, 2020. (KRRD). The KRRD

is a national registry for patients with adult rheumatic illness. Patients with RA who

satisfied the American College of Rheumatology (ACR) criteria (Aletaha et al., 2010)

and were registered between January 2013 and December 2020 were included in the

study.

Based on patient visits, RA data was obtained from the rheumatology sections of

four main Kuwaiti government hospitals. The chosen hospitals are primarily located in

several governorates to accommodate Kuwait’s ethnic mixture. The Ethics Committees

at Kuwait University’s Faculty of Medicine and the Ministry of Health both approved
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the KRRD, from which this study arose. In addition, all involved patients enrolled in the

registry gave their official consent (Al-Herz et al., 2016). The total number of patients

included in the study was 1,809 RA patients having 10,215 follow-up visits.

Calculating RA Indices

The DAS28 and CDAI indices (RA golden standards) are used to assess the severity of

RA disease activity (Salaffi et al., 2009; Aletaha and Smolen, 2005; Muñoz et al., 2017).

These involve the following: TJC28: The number of tender joints (0 − 28); SJC28: The

number of swollen joints (0 − 28); D ESR: erythrocyte sedimentation rate (in mm/h);

CRP: C-reactive protein (CRP) may be used instead of ESR in the calculation; and GH:

Global health assessment of the patient (from 0 = best to 100 = worst) (see Equation

(6.1)).

DAS28 = 0.56×
√

TJC28+0.28×
√

SJC28+0.70× ln(ESR Or CRP )+0.014×GH.

(6.1)

Figure 6.2 shows the assessment form to assess an RA patient in order to calculate

the disease activity score for the RA patient (DAS28):
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Figure 6.2: RA patient visit form; the information in this form will be used for calculating
DAS28 by using the formula 6.1 for the RA patient.

6.6.3 EPA Data and Materials

The investigation used data from four Kuwait Environmental Public Authority (K-EPA)

Air Monitoring Stations through the Environmental Monitoring Information System of

Kuwait (eMISK) which are working under the Environmental Data Management Depart-

ment. The provided data was used during the time from January 2013 till December

2020 as daily base information after we aggregate all the pollutants from an hourly base

to daily. In this study, out of 18 monitoring air quality fixed stations, four were chosen,

which are ASA, FAH, MAN and JAH. One of the four stations was chosen to represent

Mansoria (MAN), a key urban centre with considerable traffic density; an additional

two districts in the neighbourhood of oil refineries, which are Fahaheel (FAH) and Ali
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Abullah Al-Salem (ASA), and the fourth is an urban district named Al-Jahra (JAH)

which is located in the north of Kuwait that has the highest population density among

the other three urban districts. Each of the four air pollution observation stations is

around 25 kilometres apart. Figure 6.3 shows the K-EPA data processing structure per

monitoring stations:

Monitored Air Quality
Fixed Stations 

K-EPA

Mansoria (MAN) 

Residential areas
affected by Commercial

activities

Fahaheel (FAH) 

Residential areas
affected by industry

Ali Abullah Al-Salem
(ASA) 

Residential areas
affected by industry

Al-Jahra (JAH) 

Residential areas

Air Pollution Data Weather Climate data

Automatic Air Quality Analyzers 

calibration, maintenance & real-time measurements

SO2 NO2 O3 Temp. RH WS

Environmental Data Acquisi�on 

(ENVIDAS/ENVISTA) Data transfer (every 5 minutes) Saved in
eMISK SQL Servers

Data Output

5-Minitues Data

Hourly Averages

Daily Averages

Reporting

Hourly database

Daily database

Monthly database

Missing Imputation

Random Forest

missForest

Figure 6.3: K-EPA air quality data process and flow chart.
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6.6.4 Ambient Air Quality in Kuwait

The country Kuwait is situated in the north eastern corner of the Arabian Peninsula and

at the tip of the Arabian Gulf. It is a small developing country covering an area of 17,818

km2 and depends mainly on the oil and petroleum industry. Additionally, as a desert

area with a scarcity of fresh water, its main source of fresh water is desalinated sea water.

Kuwait hosts three main desalination plants. Furthermore, the area is affected by severe

dust storms during the summer season, which highly contribute to pollution in this

area (Al-Ali et al., 2020). The K-EPA maintains 18 distributed air quality monitoring

stations to achieve an adequate area coverage. As we have mentioned before, four stations

were selected in this study, which are ASA, FAH, MAN and JAH (Figure 6.1). The

selection of these four stations was based on the observed variety of land use changes

and developments, i.e., industrial and residential. This selection included the probable

effect of industrial and transportation (traffic) effluents on the quality of air.

The AQI produced by Al-Shayji et al. (2008) for the State of Kuwait was used to

assess air quality in this study, which was based on criteria proposed by the United

States Environmental Protection Agency (USEPA) (Fitz-Simons, 1999). The air quality

index (AQI) is a measurement of day-to-day air quality. It provides information about

the purity of the surrounding air. As mentioned in section 1.3.5 on page 11, the AQI

calculation was explained and performed using equation 1.1 on page 13 and table 1.2 on

page 13.

An Air Quality Index (AQI) is a colour-coded numerical scale that is extensively used

to link data on air pollution exposure to the probability of short-term unfavourable health

effects. The concentrations of the common air pollutants - nitrogen dioxide (NO2),

sulphur dioxide (SO2) and ozone - are a subset of air pollutant exposures in practice

(O3 is used to determine the AQI). R code was developed to calculate the AQI for all

pollutants in the study.

For the seven-year study period, data on meteorological factors such as wind speed,

temperature, humidity, and wind directions were also gathered. The data was then

compiled in the cloud computing memory and processed and analysed using the following
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Statistical Analysis Softwares:

RStudio - version 1.4.1717 Used for data cleaning, data manipulation, data wrangling,

processing, descriptive analysis, correlation analysis, regression analysis, testing

stationary level, testing for normality, multivariate time series modelling using

VECM, VAR, ARIMA, GARCH and calculating the model accuracy performance

using R-square, MAPE, RMSE.

Stata/SE 16.1 Used for calculating some specific results such as IRF and FEVD.

Gretl 2021a Was used to calculate the details of VECM, cointegration analysis and

Granger Test.

JASP version 0.14.1 Was used to generate the formatted tables for OLS (linear regres-

sion) and Correlation analysis.

6.7 Descriptive Analysis and Correlation

Table 6.1 demonstrates the summary statistics of the study variables— Sulphur dioxide

(SO2), Nitrogen dioxide (NO2), Ozone (O3), temperature, relative humidity, and wind

speed— for each location included in the study. The mean values of the pollutants

SO2, NO2 and O3 ranged between (5.66 ± 2.74 − 12.67 ± 8.85), (17.18 ± 9.27 − 29.18 ±

13.38) and (20.65 ± 9.25 − 22.96 ± 9.74) respectively. The maximum mean value of the

pollutants SO2(12.67 ± 8.85) and NO2(29.18 ± 13.38) were observed in FAH station and

the maximum mean value of the pollutant O3 was observed in the MAN location with

mean ± s.d. = 22.96 ± 9.74. The mean value of the weather parameters temperature,

relative humidity and wind speed ranged between (27.00 ± 9.13 − 31.67 ± 9.73), (31.34 ±

14.42 − 41.62 ± 31.63) and (2.15 ± 0.84 − 2.55 ± 1.33) respectively. The maximum mean

value of the weather parameters temperature, relative humidity and wind speed was

observed for the FAH (31.67±9.73), JAH (41.62±31.63) and ASA (2.55±1.33) stations

respectively.
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Correlation analysis was conducted to analyse the association among the study

variables, i.e. DAS28, pollutants and weather parameters (DAS28, SO2, NO2, O3,

TEMP, RH and WS). The analysis shows significant association of DAS28 with NO2

(rp = 0.029), O3 (rp = 0.039) and WS (rp = 0.056). Besides this a significant interde-

pendence was also observed among the weather parameters and pollutants (Figure 6.4).

The strongest significant positive correlation among these parameters is observed be-

tween SO2 and O3 (rp = 0.476) whereas the strongest significant negative correlation

among these parameters is observed between RH and Temp (rp = −0.517). The result

of correlation analysis is shown in Table 6.2.
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Table 6.1: Descriptive statistics for study air pollutants per location in terms of AQI
calculation.

Variable ASA FAH JAH MAN All
SO2

min 0.337 0.143 0.190 1.874 0.143
25th quartile 3.070 6.450 6.680 3.790 4.110
median 4.640 10.890 10.000 5.310 6.450
75th quartile 7.360 16.610 15.500 7.100 11.000
max 127.300 76.400 76.000 45.600 127.000
mean (sd) 6.64 ± 7.29 12.67 ± 8.85 11.97 ± 7.82 5.66 ± 2.74 8.94 ± 7.79

NO2
min 2.854 0.943 0.750 2.276 0.75
25th 10.8 19.1 11.9 14.6 14
median 14.9 27.1 21.1 20.6 21.5
75th 21.5 36.9 32.9 29.2 32
max 95.5 99.7 153.0 111.3 153
mean (sd) 17.18 ± 9.27 29.18 ± 13.38 25.35 ± 19.60 23.65 ± 13.27 25.23 ± 16.34

O3
min 0.926 0.792 1.134 1.271 0.792
25th 16.2 14.0 14.8 16.8 15.6
median 21.5 19.3 20.3 21.8 20.6
75th 28.2 26.1 26.8 27.1 26.9
max 75.5 52.0 84.3 84.3 116
mean (sd) 22.74 ± 9.30 20.65 ± 9.25 21.36 ± 9.64 22.96 ± 9.74 22.21 ± 10.41

Temperature
min 0.00 6.85 0.00 0.00 0
25th 17.4 23.6 18.5 17.6 19.4
median 27.8 32.6 27.6 28.3 28.6
75th 37.0 39.4 35.3 36.7 37.2
max 50.4 53.7 44.6 47.1 53.7
mean (sd) 27.08 ± 11.21 31.67 ± 9.73 27.00 ± 9.13 27.07 ± 10.19 28.17 ± 10.19

RH
min 0.00 6.89 0.00 0.00 0
25th 18.56 17.21 3.56 23.96 21.9
median 38.1 29.3 40.3 30.5 33.8
75th 57.8 47.7 68.0 35.1 52.4
max 149.1 96.7 99.2 102.8 149
mean (sd) 40.81 ± 24.97 33.94 ± 18.83 41.62 ± 31.63 31.34 ± 14.42 38.12 ± 22.76

WS
min 0.000 0.537 0.000 0.000 0
25th 1.58 1.54 1.74 1.12 1.46
median 2.22 1.99 2.19 1.90 2.02
75th 3.16 2.59 2.82 3.12 2.8
max 9.43 5.63 5.55 11.45 11.4
mean (sd) 2.55 ± 1.33 2.15 ± 0.84 2.34 ± 0.81 2.40 ± 1.75 2.28 ± 1.21
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Table 6.2: The correlation test between DAS28, SO2, NO2, O3, Temp, RH and WS
using Pearson’s Correlations

Variable DAS28 SO2 NO2 O3 Temp RH WS
1. DAS28 –
2. SO2 0.012 –
3. NO2 0.029* 0.368*** –
4. O3 0.039** 0.476*** 0.223*** –
5. Temp 0.022 -0.020* 0.011 0.181*** –
6. RH 0.013 -0.119*** 0.016 -0.196*** -0.517*** –
7. WS 0.056*** 0.022* -0.086*** 0.236*** 0.143*** -0.109*** –

* p < .05, ** p < .01, *** p < .001
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Figure 6.4: A Pearson correlation coefficient heat map between RA disease activity
scores (DAS28) and the daily average concentrations of SO2, NO2, O3, TEMP, RH and
WS. Note that * p < .05, ** p < .01, *** p < .001
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6.8 Normality and Transformation Approach

In regression analysis, transformations are crucial (Cook and Weisberg, 1999). A trans-

formation from a parametric family of transformations is frequently chosen. The most

common power family is the Box-Cox power family (Sakia, 1992; Weisberg, 2001; Hos-

sain, 2011), which is described by

y(λ) =

7
889

88:

#
yλ − 1

$
/λ if λ ∕= 0

log(y) if λ = 0
(6.2)

where y is a list of n strictly positive values. The Box-Cox family is valuable because

it is identical to the power transformation family, which makes the parameter λ is easy

to understand, and it contains the key special instances of untransformed logarithmic,

cube root, inverse and square. The Box-Cox family is utilised in a variety of locations,

including transforming a set of predictors and selecting response transformations toward

multivariate normality. There have been several attempts to create transformation fam-

ily variables with negative values. Consider transformations of the type (y + γ)λ, where

γ is large enough to ensure that the result is strictly positive. In theory, (γ, λ) might

be estimated at the same time, but in fact, estimates of γ are highly varied. Other

transformation families, such as the folded power family (see Cook and Weisberg, 1999,

p. 330), have also been proposed, although they are rarely employed due to the poor

qualities of the resulting transformations. Yeo and Johnson (2000) presented a new

family of distributions that have many of the positive qualities of the Box-Cox power

family and can be utilised without limits. The following are the characteristics of these

transformations:

y
(λ)
i =

7
88888888889

8888888888:

#
(yi + 1)λ − 1

$
/λ if λ ∕= 0, y ≥ 0

log (yi + 1) if λ = 0, y ≥ 0

−
3
(−yi + 1)(2−λ) − 1

4
/(2 − λ) if λ ∕= 2, y < 0

− log (−yi + 1) if λ = 2, y < 0

(6.3)
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The Yeo-Johnson transformation is identical to the Box-Cox power transformation

of (y+1) if y is strictly positive. If y is strictly negative, the Yeo-Johnson transformation

is the same as the Box-Cox power transformation of (−y + 1), but with power 2 − λ.

Because the transformation is a combination of both negative and positive values, differ-

ent powers are needed for positive and negative values. The transformation parameter

in this situation is difficult to grasp because it has different meanings for y ≥ 0 and

y < 0. Although the Yeo-Johnson transformation parameter is difficult to read, this

family of transformations can be beneficial as techniques for choosing a transformation

for linearity or normalcy (Yeo and Johnson, 2000).

6.8.1 Cullen and Frey Graph

Before developing models, different transformations could be used to improve the dis-

tribution and minimize the variability of the data. We employ descriptive statistics to

choose candidate theoretic distributions or models to fit the trajectory data in this study.

Kurtosis and skewness are two commonly used coefficients in descriptive statistical anal-

ysis. Kurtosis is a measure of a distribution’s tailedness in comparison to the normal

distribution, which has a kurtosis of 3. The term "leptokurtic" refers to distributions

with a kurtosis larger than 3, whereas "platykurtic" refers to distributions with a kurto-

sis less than 3. The degree of asymmetry of a distribution on its mean is measured by

skewness. When a distribution’s skewness is positive, the probability density function

on the right of the mean is "fatter" than the one on the left. The negative skewness of

a distribution, on the other hand, indicates that the left part of the density function is

"larger" than the right.

The following results show the pollutants’ distribution and the suggested transfor-

mation approach using Cullen and Frey graphs (Figure 6.5):
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Figure 6.5: The distribution performance for Air quality index (AQI) using Cullen and
Frey graphs for five governorate monitoring fixed stations in Kuwait during the period
from 2013 to 2020. This figure captured the distribution performance for SO2, NO2 and
O3 monitored by ASA and FAH fixed stations.
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Figure 6.5, for ASA and JAH locations, shows the square of skewness of displacements

and the blue circle observation is the kurtosis of the variable. For example, the first sub-

figure in the left corner is related to the skewness analysis for SO2 in the ASA location.

The results indicate that the distribution of SO2 violates the normality assumption, and

the values of SO2 require to be transformed into another shape of data. All the results

for the other stations are in table 6.3.

In this study, we have implemented many transformation methods in order to reach

for the best normality shape of SO2. Table 6.3 presents the skewness results for each

pollutant in each location. We can see from table 6.3 that SO2 in ASA has a better

normality shape when we transform the values using Box-Cox transformation because

the skewness result for this approach equals 6.511, that is the lowest value among the

other transformation methods. However, the best transformation method for SO2 in

JAH is Yeo-Johnson with skewness results equal to 1.951, which is the lowest among the

other transformation methods for SO2 in JAH location. But, the best transformation

method for SO2 in MAN is log transform with skewness results of 42.530, which is the

lowest among the other transformation methods for SO2 in the MAN location.

We have chosen the best transformation approach for each pollutant in each location

in order to promote the data for better normality performance. Figure 6.8 shows the

skewness results after implementing transformation, and the distribution performance

for the air quality index (AQI) using Cullen and Frey graphs in each monitoring fixed

station during the period from 2013 to 2020. As we can see from figure 6.8, the solid

blue circle observation has now shifted to the best normality standing point (i.e. if the

solid blue circle observation becomes closer to the star point in the figure, this means

that the skewness becomes closer to one).

So, figures 6.6 to 6.10 show the normality performance before and after the trans-

formation approach in the ASA, FAH, JAH and MAN locations for SO2, NO2 and O3.

It is very obvious that the selected transformation improves the normality performance

for the study variables. The results for the other locations are presented in appendix C.
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Figure 6.6: The distribution performance for Air quality index (AQI) using Cullen and
Frey graphs for five governorate monitoring fixed stations in Kuwait during the period
from 2013 to 2020. This figure captured the distribution performance for SO2, NO2 and
O3 monitored by JAH and MAN fixed stations.
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Figure 6.7: The distribution performance for Air quality index (AQI) using Cullen and
Frey graphs for five governorate monitoring fixed stations in Kuwait during the period
from 2013 to 2020. This figure captured the distribution performance for SO2, NO2 and
O3 monitored by MUT fixed station.
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Table 6.3: In-sample transformation efficacy measured by probability density function
(Pdf) on the original samples (n = 16,480) after transformation using skewness results.
Values close to one indicate normally transformed data.

Pollutants Location/methods ASA FAH JAH MAN MUT

SO2 Arc Sin 8.190 5.985 3.929 40.996 17.436
Box-Cox 6.511 3.331 2.257 44.015 12.472
Lambert S 11.472 3.495 2.369 43.510 22.670
Log Transform 7.863 6.552 4.181 42.530 13.743
No Transform 79.329 19.566 19.142 55.899 83.378
Square Root 24.815 4.362 4.828 46.269 32.833
Yeo-Johnson 7.364 3.335 1.951 43.826 13.341

Selected Transformation Box-Cox Box-Cox Yeo-Johnson Log Transform Yeo-Johnson

NO2 Arc Sin 1.433 2.483 9.362 2.365 1.959
Box-Cox 1.351 1.876 5.550 2.330 2.539
Lambert S 1.655 1.946 5.376 2.669 3.991
Log Transform 1.422 2.524 9.441 2.440 2.124
No Transform 17.057 9.349 26.214 17.736 26.204
Square Root 5.496 2.851 8.629 5.927 8.223
Yeo-Johnson 1.310 1.918 5.534 2.011 2.142

Selected Transformation Yeo-Johnson Box-Cox Lambert S Yeo-Johnson Log Transform

O3 Arc Sin 3.489 4.869 9.021 4.980 8.381
Box-Cox 0.750 1.639 2.578 3.372 7.815
Lambert S 0.814 1.476 2.131 3.168 10.126
Log Transform 3.594 5.091 9.300 5.021 8.474
No Transform 5.178 6.678 4.288 8.829 35.745
Square Root 0.949 1.739 2.399 3.401 16.286
Yeo-Johnson 0.802 1.568 2.524 3.435 7.563

Selected Transformation Box-Cox Lambert S Lambert S Lambert S Yeo-Johnson
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Figure 6.8: After implementing transformation, the distribution performance for Air
quality index (AQI) using Cullen and Frey graphs for five governorate monitoring fixed
stations in Kuwait during the period from 2013 to 2020. This figure captured the distri-
bution performance for SO2, NO2 and O3 monitored by ASA and FAH fixed stations.
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Figure 6.9: After implementing transformation, the distribution performance for Air
quality index (AQI) using Cullen and Frey graphs for five governorate monitoring fixed
stations in Kuwait during the period from 2013 to 2020. This figure captured the distri-
bution performance for SO2, NO2 and O3 monitored by JAH and MAN fixed stations.
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Figure 6.10: After implementing transformation, the distribution performance for Air
quality index (AQI) using Cullen and Frey graphs for five governorate monitoring fixed
stations in Kuwait during the period from 2013 to 2020. This figure captured the dis-
tribution performance for SO2, NO2 and O3 monitored by MUT fixed station.

The following figures (6.11, 6.12 and 6.13) show normality performance for SO2,

NO2 and O3 from ASA monitoring fixed station before and after the Box-Cox and

Yeo-Johnson transformation methods:
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(a) SO2 measured in ASA location before Box-Cox trans-
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(b) SO2 measured in ASA location after Box-Cox trans-
formation

Figure 6.11: Normality plots (Q-Q plot, P-P plot, Histogram and CDF plot) for SO2
before and after the Box-Cox transformation; it is obvious that the Box-Cox transfor-
mation enhances the normality performance for SO2 in ASA location.
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(b) NO2 measured in ASA location after Yeo-Johnson
transformation

Figure 6.12: Normality plots (Q-Q plot, P-P plot, Histogram and CDF plot) for NO2
before and after the Box-Cox transformation; it is obvious that the Yeo-Johnson trans-
formation enhances the normality performance for NO2 in ASA location.
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(b) O3 measured in ASA location after Box-Cox transfor-
mation

Figure 6.13: Normality plots (Q-Q plot, P-P plot, Histogram and CDF plot) for O3 be-
fore and after the Box-Cox transformation; it is obvious that the Box-Cox transformation
enhances the normality performance for O3 in ASA location.
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All other pollutants’ distribution performance for the other monitoring fixed stations

are attached in Appendix C [see figures from C.1 to C.12].
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Figure 6.14: Descriptive statistics over time for each numerical variable in our data
frame (DAS28, SO2, NO2, O3, Temp, RH and WS), a plot is made, shown in the left
panel, showing where data exist (blue) and missing data (red). For clarity, only running
sequences of ≥ 24 hours of missing.

In figure 6.14, the plots in the left panel demonstrate the time series data, where

blue shows the presence of data and red missing data. The 24-hour mean values are also

shown in pale yellow scaled to cover the range in the data from zero to the maximum daily

184



value. As such, the daily values do not necessarily convey quantitative information, but

they indicate instead an overall trend. For each pollutant, the overall summary statistics

are given. Moreover, the yearly captured percentage data is shown in green font. The

distribution of each variable is presented using a histogram plot in the panels on the

right. Therefore, it is obvious that the first and the last parts of the time series for

DAS28 are missing. It is also evident that the time series stops at the end of 2020.

Each panel shows statistical summaries, which include: number of missing points (with

percentage shown in parentheses), minimum, maximum, mean, median and the 95th

percentile. For each year, the data capture (%) is shown in green font. So, for example,

the data capture for O3 in 2012 was 83.4%, and in another example, the data capture

for DAS28 in 2014 was 42%. The pale yellow line gives an indication of the variation in

values over time expressed as a daily mean.

6.9 DAS28 OLS Models

A linear regression analysis was conducted to assess whether SO2, NO2, O3, Tempera-

ture, relative humidity (RH), and wind speed (WS) significantly predicted DAS28.

Table 6.4 presents the results of the linear regression model for each location. The

results of the linear regression model were significant, F (6, 1286) = 4.98, p < .001, R2 =

0.066, indicating that approximately 6.6% of the variance in DAS28 is explainable by

SO2, NO2, O3, Temp, RH, and WS. In ASA and JAH stations, SO2 did not significantly

predict DAS28, p-value > 0.05. Based on this sample, a one-unit increase in SO2 does

not have a significant effect on DAS28. However, our results showed that in MAN station,

SO2 significantly predict DAS28 as B = 0.102, p = .018. This indicates that on average,

a one-unit increase of SO2 will increase the value of DAS28 by 0.102 units. In ASA

station, NO2 significantly predicted DAS28, B = 0.178, t(1286) = 2.51, p = .012. This

indicates that on average, a one-unit increase of NO2 will increase the value of DAS28

by 0.178 units. In all stations except FAH, O3 did not significantly predict DAS28,

B = 0.01, t(1286) = 0.82, p = .410.
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In ASA and FAH stations, temperature significantly predicted DAS28, B = −0.007,

t(1286) = −2.42, p = .015 and B = −0.012, t(1286) = −2.42, p = .015 respectively. This

indicates that on average, a one-unit increase of Temp will decrease the value of DAS28

by 0.012 or 0.007 units depending on the living address. Also, in MAN station, RH

significantly predicted DAS28, B = −0.006, t(1286) = −3.31, p < .001. This indicates

that on average, a one-unit increase of RH will decrease the value of DAS28 by 0.006

units. For ASA and FAH stations, RH will significantly decrease the value of DAS28 by

0.005 units for those patients living close to FAH and ASA stations. In MAN station, WS

significantly predicted DAS28, as B = 0.048, t(1286) = 2.13, p = .018. This indicates

that on average, a one-unit increase of WS will increase the value of DAS28 by 0.048

units.

As a result, the regression analysis models developed in this work can be used in

an early warning system to aid in the mitigation and prevention of illness cases using

predictor information. However, there are also some weaknesses in the regression per-

formance as it shown in the R-square for the models. One of the study’s flaws is that it

only looks at the effects of air pollution factors on disease cases based on data collected

during a specific time period. Conclusively, regression models will not be sufficient to

explain RA disease activity score using the information of the air pollutants. We will

present the multivariate time series approach to better explain and predict DAS28 using

information of AQI for SO2, NO2 and O3.
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Table 6.4: OLS regression models of air pollution’s impact on DAS28 in Kuwait during
the period from 2012 to 2020.

Dependent variable:
DAS28

(ASA) (FAH) (JAH) (MAN)

SO2 -0.042 -0.052∗ -0.045 0.102∗

(0.041) (0.020) (0.028) (0.018)

NO2 0.178∗ 0.010 0.004∗ 0.002
(0.071) (0.028) (0.002) (0.040)

O3 0.018 0.005 0.009∗∗ -0.002
(0.017) (0.003) (0.003) (0.003)

Temp -0.007∗ -0.012∗∗ 0.002 -0.003
(0.003) (0.003) (0.003) (0.003)

RH -0.005∗∗ -0.005∗∗ 0.002∗∗ -0.006∗

(0.001) (0.002) (0.001) (0.002)

WS 0.041∗ -0.032 -0.004 0.048∗∗

(0.018) (0.031) (0.031) (0.018)

Constant 2.530∗∗ 3.387∗∗ 2.480∗∗ 2.682∗∗

(0.270) (0.228) (0.142) (0.249)

Observations 1,328 1,330 1,331 1,330
R2 0.066 0.048 0.064 0.052
Adjusted R2 0.061 0.045 0.061 0.049

Note: ∗p<0.05; ∗∗p<0.01
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6.10 Observations’ Time Line

The monitored air pollution variables for NO2, SO2, and O3; were saved based on hourly

observations (24 records in a day for each pollutant) from the monitoring stations. Then,

all pollutants’ observations were aggregated according to a daily basis. The reason for

this aggregation is because the RA disease activity scores (DAS28) values were collected

based on daily observations, and that will make the databases more convenient to be

matched. Also, there is another reason related to missing values’ treatment, because

daily aggregation will reduce the missing values’ rate, and that will promote the quality

level of the combined dataset.

Figure 6.15 presents the time series plots for the pollutant with the disease activity

score (DAS28) for RA patients during the period from 2012 to 2020. The grey line is

the time series for DAS28 and the red line is the time series for the pollutant. It is

obvious in some plots in figure 6.15, that the time series for both pollutant and DAS28

are moving slightly around each other. For example, if we look at the figure 6.15 part

(c), we can see that SO2 and DAS28 are moving slightly around each other which gives

an indication that there is a Granger causality between SO2 and DAS28. With NO2 in

location ASA, we can see that there is a Granger causality between NO2 and DAS28.

So, figure 6.15 suggests that for some pollutants in some locations there is a causality

association between the RA disease activity score with the exposure to the pollutant.

To judge and confirm this long or short run relationship, we will use the cointegration

test in section 6.13 and causality test which was explained in section 6.14.

This part of the analysis depicts each location’s mean monthly pollutant readings

along three percentiles: 50th, 5th, and 95th, to see if similar changes occur. Plotting

these numbers over time reveals variations in the data’s low, mid, and high ranges. To

show monthly and long-term fluctuation, these lines have been smoothed. The plots also

provide a 95% confidence interval around the long-term trend line between the pollutant

and DAS28, which is indicated by shading around the line. Figures 6.16 to 6.18 explain

the smooth time series model in order to show if there is any possible trend between the
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pollutant and DAS28 by location.

As illustrated in figure 6.16, the monthly mean SO2 concentrations as measured at

the four monitoring sites (ASA, FAH, MAN and JAH), went through different relation-

ships during the considered time interval. A downward trend in SO2 concentrations was

observed between the years 2012 and 2020 in JAH and MAN sites associated with a

downward trend for DAS28 for example.
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Figure 6.15: Multivariate time series graphs between DAS28 (grey line) with pollutant
concentration line (red line) from the period from 2012 to 2020 based on monitoring
station name.
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Figure 6.16: Long-term (2012-2020) trends of SO2 concentrations and DAS28 calculated
using the smooth trend method based on the mean measurements for four locations.
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Figure 6.17: Long-term (2012-2020) trends of NO2 concentrations and DAS28 calculated
using the smooth trend method based on the mean measurements for four locations.
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Figure 6.18: Long-term (2012-2020) trends of O3 concentrations and DAS28 calculated
using the smooth trend method based on the mean measurements for four locations.

6.11 Stationarity Test

6.11.1 Unit Root Test

Because the data in this study contains all time series, a unit root test for each variable

in all study locations is required before the main analysis in order to avoid misleading

or spurious regression.

The KPSS test (Sephton, 1995) and Augmented Dicky-Fuller (1981) (ADF) test are

used to examine unit root properties of the series. The ADF test is founded on the null
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hypothesis (H0) that the levels of the series have a unit root. The alternative hypothesis

(H1) states that the levels of the series are stationary (Dickey and Fuller, 1981).

6.11.2 Augmented Dicky-Fuller (ADF) Test

Table 6.5 shows the results of the Augment Dickey-Fuller Unit Root Test (ADF), and

it shows that O3, SO2, NO2 and log(DAS28) are stationary at first difference, which

is known as I(1). This result fulfilled the prerequisite of the VECM model, that none

of the data or variables is 2nd difference stationary or I(2). The ADF estimations show

that at the first difference, all variables are stationary. This fulfills the basic requirement

of cointegration.

Table 6.5: ADF root test with constant and with constant and trend for EPA datasets
(ASA, FAH, MAN and JAH monitoring fixed stations).

Station
with constant with constant and trend

Type level First difference level First difference
Variables t-statistic t-statistic t-statistic t-statistic

ASA

SO2 -10.413*** -22.604*** -10.414*** -22.600***
NO2 -6.242*** -22.453*** -6.573*** -22.451***
O3 -7.771*** -28.983*** -7.939*** -28.978***
log(DAS28) -5.505*** -22.342*** -5.525*** -22.341***

FAH

SO2 -9.973*** -22.067*** -10.596*** -22.064***
NO2 -12.764*** -22.488*** -12.873*** -22.487***
O3 -6.320*** -25.976*** -6.346*** -25.974***
log(DAS28) -5.505*** -22.342*** -5.525*** -22.341***

MAN

SO2 -6.636*** -23.343*** -8.293*** -23.339***
NO2 -8.045*** -21.274*** -8.172*** -21.272***
O3 -7.263*** -31.094*** -7.585*** -31.093***
log(DAS28) -5.505*** -22.342*** -5.525*** -22.341***

JAH

SO2 -11.150*** -24.928*** -11.306*** -24.923***
NO2 -8.460*** -22.628*** -9.583*** -22.624***
O3 -7.677*** -22.764*** -7.852*** -22.764***
log(DAS28) -5.505*** -22.342*** -5.525*** -22.341***

* p < .05, ** p < .01, *** p < .001
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6.11.3 Augmented Dickey-Fuller Generalised Least Squares (ADF-GLS) Unit

Root Test Results

The results of the ADF-GLS unit roots test for the level and first difference data are

shown in Table 6.6. The ADF-GLS test confirms that all variables used in the research

[SO2, NO2, O3 and log(DAS28)] in all four regions are integrated of first order I(1), as

proposed by Elliott et al. (1992) and Dickey and Fuller (1979b). As a result, the null

hypothesis of the ADF-GLS test is non-stationarity, implying that the null hypothesis

must be rejected before proceeding. The ADF-GLS test is used to establish the order of

integration for each variable, which is a key step in our cointegration investigation. The

cointegration test and the Error Correction Model (ECM) can be employed if all variables

are determined as integrated of first order using the ADF-GLS test. We discovered that

all series are integrated of first order in table 6.6. As a result, the analysis rejects the null

hypothesis that the variables have a unit root, implying that they are non-stationary,

and concludes that the undifferenced data is stationary.

6.11.4 KPSS Root Test Results

The ADF is criticised (Loganathan and Subramaniam, 2010) for having low power as

compared to the KPSS test. The KPSS model is employed as a confirmatory test to the

ADF test in this study. The KPSS test pits the null hypothesis that the series variables

have no unit root against the alternative hypothesis that the series variables do have a

unit root.

The KPSS test has the hypothesis Ho : δ = 0, there is no root unit (stationary data),

and the opponent is H1 : δ < 0, there is unit root (data not stationary). Test results of

SO2, NO2, O3 and log(DAS28) using the KPSS unit root test can be found in table 6.7.

Using the KPSS test, each series is first difference stationary at the 1%, 5% and 10%

levels, according to the numbers in table 6.7. As a result, we use the KPSS test result to

conduct a cointegration test among all stationary series of the same order, implying that

the SO2, NO2, O3 and log(DAS28) series are stationary at their first differences [they

are I(1) integrated]. Because the p-value was more than 0.05 (the null and alternate
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Table 6.6: AD-GLS root test with constant and with constant and trend for EPA datasets
(ASA, FAH, MAN and JAH monitoring fixed stations).

Station
constant constant and trend

Type level First difference level First difference
Variables t-statistic t-statistic t-statistic t-statistic

ASA

SO2 -6.47075*** -1.96593 -6.59976*** -4.02148**
NO2 -3.42669** -1.11922 -4.23287*** -2.44038
O3 -3.65971*** -1.29717 -5.0391*** -2.79732
log(DAS28) -2.42743* -75.2977*** -3.61741** -2.7367

FAH

SO2 -3.74548*** -1.63613 -4.08276** -2.17749
NO2 -3.60929*** -74.3357*** -4.57909*** -6.34743***
O3 -4.30975*** -0.85265 -4.33135*** -2.07934
log(DAS28) -2.42743* -75.2977*** -3.61741** -2.7367

MAN

SO2 -3.64533*** -87.089*** -3.77802** -3.74617**
NO2 -3.1167** -2.20553* -4.77832*** -4.49956***
O3 -2.83155** -2.52982* -3.42937** -5.15543***
log(DAS28) -2.42743* -75.2977*** -3.61741** -2.7367

JAH

SO2 -2.51654* -84.2394*** -3.97833** -84.3189***
NO2 -2.6942** -0.751061 -5.1681*** -1.97689
O3 -3.53047*** -5.97657*** -4.1241** -5.68603***
log(DAS28) -2.42743* -75.2977*** -3.61741** -2.7367

* p < .05, ** p < .01, *** p < .001, in ADF-GLS test indicate the rejection of the null
hypothesis that the series has a unit root at 1%, 5% and 10% levels of significance. The
optimum lag of 7 was determined using SBC.

hypotheses for the KPSS test are the opposite of those of the ADF test), the KPSS

results for the SO2, NO2, O3 and log(DAS28) suggest the presence of a unit root while

the data is stationary, p > 0.05 except the KPSS results for the SO2 related to MAN

station.
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Table 6.7: KPSS test with constant and with constant and trend for EPA datasets (ASA,
FAH, MAN and JAH monitoring fixed stations).

Station
constant constant and trend

Type level First difference level First difference
Variables t-statistic t-statistic t-statistic t-statistic

ASA

SO2 1.25242** 0.005 1.23984** 0.004
NO2 2.54604** 0.002 0.588188** 0.007
O3 1.57345** 0.007 0.880004** 0.880
log(DAS28) 1.19348*** 0.008 1.16369*** 0.008

FAH

SO2 2.08946** 0.017 0.194559* 0.007
NO2 0.497695* 0.015 0.228419** 0.006
O3 0.493232* 0.011 0.44757** 0.010
log(DAS28) 1.19348** 0.008 1.16369** 0.008

MAN

SO2 6.4743** 0.007 0.758877** 0.006
NO2 1.21025** 0.006 0.447266** 0.005
O3 0.938624** 0.024 0.073 0.011
log(DAS28) 1.19348** 0.008 1.16369** 0.008

JAH

SO2 1.21666** 0.008 0.684289** 0.008
NO2 4.43434** 0.011 0.338869** 0.006
O3 1.12034** 0.015 0.482687** 0.009
log(DAS28) 1.19348** 0.008 1.16369** 0.008

* p < .05, ** p < .01, *** p < .001, *, **, *** denotes rejection of the null hypothesis
of trend stationarity at the 5%, 1%, and 0.1% significance levels, respectively.

6.11.5 Phillips-Perron (PP) Test Results

The Philips-Perron Unit Root test was used to determine the series’ stationary level.

According to the results in table 6.8, for the Phillips-Perron test (PP) for SO2, NO2,

O3 and log(DAS28), the p-values for all of the sample variables were close to zero

(i.e. p < 0.05). The results showed that all of the sample variables’ data had reached

stationarity in both the level base and the first difference base according to the Phillips-

Perron test (Phillips and Perron, 1988).
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Table 6.8: Phillips-Perron test with constant and with constant and trend for EPA
datasets (ASA, FAH, MAN and JAH monitoring fixed stations).

Station
constant constant and trend

Type level First difference level First difference
Variables

ASA

SO2 -43.21843*** -172.6618*** -43.21523*** -172.6233***
NO2 -34.75011*** -153.8485*** -35.86924*** -153.8465***
O3 -22.4985*** -114.77*** -22.98516*** -114.7429***
log(DAS28) -45.00959*** -205.7314*** -44.99826*** -205.6868***

FAH

SO2 -42.56249*** -168.2883*** -43.00987*** -168.2655***
NO2 -39.09392*** -151.3224*** -39.09981*** -151.3189***
O3 -21.58105*** -118.4749*** -21.61616*** -118.4669***
log(DAS28) -45.00959*** -205.7314*** -44.99826*** -205.6868***

MAN

SO2 -43.062*** -193.837*** -47.34359*** -193.7997***
NO2 -40.13827*** -166.533*** -40.40814*** -166.4973***
O3 -18.7203*** -107.402*** -19.3696*** -107.4398***
log(DAS28) -45.00959*** -205.7314*** -44.99826*** -205.6868***

JAH

SO2 -45.04141*** -182.8147*** -45.08749*** -182.7723***
NO2 -41.72624*** -172.1351*** -43.69968*** -172.1097***
O3 -21.64522*** -107.6285*** -21.94752*** -107.6275***
log(DAS28) -45.00959*** -205.7314*** -44.99826*** -205.6868***

* p < .05, ** p < .01, *** p < .001

6.12 Lag Selection Criteria

Prior to performing the Johansen cointegration test, variables were entered as levels into

a VAR to determine the optimal number of lags needed in the cointegration analysis. In

addition to the likelihood ratio (LR) test, three criteria were used to identify the ideal

lag length: Bayesian Schwartz Information Criteria (BIC), Akaike Information Criteria

(AIC), and Hannan-Quinn Criteria (HQC). Based on HQC and BIC criteria, we chose

a lag of the 7th order based on assessment of different models. Table 6.9 present the

lag selection for ASA location. We can see from table 6.9, according to BIC, lag 7 has

the lowest BIC among the other 20 lags. These results agreed with those of the other

locations (FAH, MAN and JAH).
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Table 6.9: VAR Lag order selection - ASA Station.

lags loglik p(LR) AIC BIC HQC

1 -13999.904 9.835909 10.395764 10.037628
2 -13820.482 0.000 9.723282 10.316069 9.936866
3 -13715.614 0.000 9.662036 10.287756 9.887486
4 -13639.448 0.000 9.620571 10.279223 9.857887
5 -13608.654 0.000 9.610375 10.30196 9.859557
6 -13531.047 0.000 9.567917 10.292435 9.828965
7 -13360.841 0.000 9.461641 10.219091* 9.734555*
8 -13345.477 0.015 9.462079 10.252462 9.746858
9 -13320.167 0.000 9.455663 10.278978 9.752308
10 -13289.215 0.000 9.445358 10.301607 9.753869
11 -13281.546 0.500 9.4511 10.340281 9.771477
12 -13262.490 0.001 9.448994 10.371108 9.781237
13 -13225.729 0.000 9.434686 10.389732 9.778794
14 -13161.564 0.000 9.401491* 10.38947 9.757465
15 -13156.184 0.824 9.408811 10.429722 9.776651
16 -13139.939 0.009 9.408642 10.462486 9.788348
17 -13121.667 0.002 9.407076 10.493853 9.798648
18 -13117.692 0.950 9.415363 10.535073 9.818801
19 -13106.261 0.117 9.418512 10.571154 9.833815
20 -13087.083 0.001 9.416322 10.601896 9.843491

* indicates lag order selected by the criterion, and LR test
statistic (each test at 5% level)

6.13 Johansen Cointegration Test

The Engle-Granger (Engle et al., 1987) methods can be used to assess the existence of

cointegration between log(DAS28) and SO2, NO2 and O3, after calculating the inte-

gration level for all the variables involved. The cointegration vector must be at level

1 to support the premise that air pollutants (SO2, NO2 and O3) and log(DAS28) are

cointegrated.

The Johansen cointegration test was employed to see if there was a cointegration

relationship between our variables. Most researchers prefer the Johansen cointegration

test because it has the advantage of evaluating and estimating several long-run equilib-

rium relationships, which overcomes the limitations of single-equation approaches based
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on restricted assumptions.

The outcomes of the Johansen cointegration test for the distinct stations are shown

in table 6.10. The presence of three cointegration vectors is indicated by both the L-max

and the Trace tests, however the L-max test marginally rejects the existence of a fourth

cointegrating vector. This is confirmed also for all stations individually.

Table 6.10: Johansen Cointegration Test for the different monitoring stations.

Station Rank Eigenvalue Trace test p-value Lmax test p-value

ASA

0 0.077933 568.3 [0.0000] 236.51 [0.0000]
1 0.059775 331.79 [0.0000] 179.67 [0.0000]
2 0.028315 152.12 [0.0000] 83.73 [0.0000]
3 0.023188 68.388 [0.0000] 68.388 [0.0000]

FAH

0 0.087122 576.84 [0.0000] 265.71 [0.0000]
1 0.04579 311.13 [0.0000] 136.63 [0.0000]
2 0.041648 174.5 [0.0000] 124 [0.0000]
3 0.017175 50.5 [0.0000] 50.5 [0.0000]

MAN

0 0.10863 651.27 [0.0000] 335.21 [0.0000]
1 0.052898 316.05 [0.0000] 158.43 [0.0000]
2 0.029995 157.63 [0.0000] 88.774 [0.0000]
3 0.023344 68.855 [0.0000] 68.855 [0.0000]

JAH

0 0.056878 523.43 [0.0000] 170.7 [0.0000]
1 0.052237 352.73 [0.0000] 156.39 [0.0000]
2 0.035548 196.34 [0.0000] 105.51 [0.0000]
3 0.030679 90.831 [0.0000] 90.831 [0.0000]

The Johansen cointegration’s trace statistics (Trace test) and maximum statistics

(Lmax) were both used. The following equation mathematically represents the maximum

statistics:

Max statistic = − SIn (1 − Lr+1) . (6.4)

where S is the sample size and L is the ith largest canonical correlation. The null

hypothesis of r cointegration is evaluated against the alternative hypothesis of r+1 using

maximal statistics. The Johansen cointegration’s maximum statistics illustrate that we

reject the null hypothesis when the maximum statistic is greater than the critical value
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at the 5% significance level under none, at most r=1, at most r=2, and at most r=3

cointegration.

In addition, the trace statistic tests the null hypothesis that the cointegration rank

is equal or less than k versus the alternative that it is greater than k. The log-likelihood

ratio, as estimated, is used to compute this trace test in the following equation:

Ln [Lmax(r)/Lmax(r + 1)] . (6.5)

The null hypothesis that the cointegration rank is equal to r is rejected when the

trace is bigger than the critical value for a certain rank. So, for our case, when r is

greater or equal to 4, then the trace is lower than the critical value, and then we reject

all cointegration rank greater or equal 4.

It can be deduced from the Johansen cointegration test that the null hypothesis of

no cointegration is rejected for rank of zero at the 5% significance level for d (maximum

eigenvalue tests and trace). We established that Lmax and trace tests both show 3

cointegrating equations based on the 5% level of significance (see table 6.10).
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6.14 Causality Test

Even though the cointegration test can determine whether X and Y have a long-

term equilibrium association, more research is needed to determine whether this link is

causative. Regression of Y with both X and Y past values is better and more convincing

than regression of Y with only Y past values. X is either the Granger or non-Granger

cause of Y in the first scenario. In Chapter 5, under equation (5.48), the Granger test’s

form was described.

When computing multivariate time series models, one of the advantages is the ability

to apply causality tests, which we could not do when examining univariate time series

models. The result variable is determined by the cause variable, and changes in the cause

variable lead to variations in the outcome variable. According to the formula (5.48), the

outcomes are illustrated in Table 6.11.

Table 6.11 depicts that, in cases where the significance level is p-value ≤ 0.05, the

hypothesis, X (i.e. SO2, NO2 or O3) is not the Granger-cause of Y (i.e. log(DAS28)),

is rejected during lag phases (lag = 7), which means that air pollution is the Granger

cause of disease activity score for RA patients.

Table 6.11 shows the results of the Granger causality test. At the 5% significance

level, SO2, NO2 or O3 Granger-cause log(DAS28) for VAR(1), and, SO2 and NO2 did

not Granger-cause log(DAS28) only in the FAH location. However, SO2, NO2 and O3

Granger-cause log(DAS28) for both the ASA and MAN locations. In the JAH location,

SO2 and O3 Granger-cause log(DAS28).

According to the cointegration test, there is a long-term and stable cointegration

relation-ship between the environmental pollution variables (SO2, NO2 or O3) and

log(DAS28). Based on the reported F- statistics and P-values, we reject our null hypoth-

esis for the regressions shown in Table 6.11. In the long term, we find a unidirectional

causality from pollution variables (SO2, NO2 or O3) on log(DAS28).
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Table 6.11: Granger causality test - Long-run Estimation Results.

Location Hypothesis Constant Constant + Trend Granger Cause
F-Statistic F-Statistic

ASA

Constant -3.826*** -2.540**
Does SO2 Granger
cause log(DAS28) -2.558** -2.337** Yes

Does NO2 Granger
cause log(DAS28) 3.577*** 2.912*** Yes

Does O3 Granger
cause log(DAS28) -8.800*** -8.926*** Yes

FAH

Constant -3.725*** -3.383***
Does SO2 Granger
cause log(DAS28) -0.9534 -0.7065 No

Does NO2 Granger
cause log(DAS28) -0.4586 -0.4818 No

Does O3 Granger
cause log(DAS28) -8.944*** -8.975*** Yes

MAN

Constant -10.30*** -8.416***
Does SO2 Granger
cause log(DAS28) 3.619*** 2.649*** Yes

Does NO2 Granger
cause log(DAS28) 5.754*** 5.881*** Yes

Does O3 Granger
cause log(DAS28) -5.247*** -5.406*** Yes

JAH

Constant -12.12*** -9.562***
Does SO2 does Granger
cause log(DAS28) 4.596*** 4.499*** Yes

Does NO2 Granger
cause log(DAS28) 1.284 0.9439 No

Does O3 Granger
cause log(DAS28) -4.676*** -4.731*** Yes

* p < .05, ** p < .01, *** p < .001

6.15 VAR Modelling Results

As previously said, the main goal of this chapter is to look into how air pollution, and

disease activity score (DAS28) among RA patients are all interrelated in the State of
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Kuwait and how they affect each other. A vector autoregression (VAR) model is used to

capture these dynamics. The primary benefit of using a VAR model to study dynamics

is that it regards all variables as endogenous, allowing for temporal analysis in an a

theoretical framework. Every variable needs an equation clarifying its development based

on its own lags and the lags of the other variables in the model, so all variables are treated

symmetrically in a structural sense. VAR models require minimum understanding of the

forces that influence each of the variables because all variables are viewed as endogenous.

The following are the components of the VAR model:

Yt = Φ1Yt−1 + Φ2Yt−2 + · · · + ΦpYt−p + H + εt, (6.6)

where p is the maximum lag with a nonzero coefficient matrix,

Yt = (DAS28t, SO2,t, NO2,t, O3,t)′ (6.7)

and Φi(i = 1, 2, · · · , p) is a 4×4 matrix of coefficients, H is a column vector of constants,

εt is the error, which is considered as white noise. We allow for seven lags (p = 7) as

recommended by the AIC and BIC information criteria.

The results in table 6.12 show the final VAR estimates to explain the relationship

between log(DAS28) with other air pollutants factors (SO2, NO2 and O3), in addition

to weather factors which are temperature (Temp), relative humidity (RH) and wind

speed (WS). There are three main findings deduced from table 6.12.

First, consider the direction of the relationship between log(DAS28) and SO2. The

results in table 6.12 explains the relationship between log(DAS28) and SO2 in the four

locations, and we found a significant relationship between log(DAS28) and SO2 only in

the MAN and JAH locations with positive impact equal to 1.905 and 2.118 respectively

at lag 2. This means that after one day of the emission increasing from SO2, the disease

activity score for RA patients living in MAN and JAH will increase by 1.905 and 2.118

respectively.

The second finding is about the direction of the relationship between log(DAS28) and
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NO2. The results in table 6.12 explain the relationship between log(DAS28) and NO2

in the four locations as well, and we found a significant relationship between log(DAS28)

and NO2 only in the ASA and MAN locations with negative impact equal to -2.089 and

-1.894 respectively at lag 2, however lag 5 for the JAH location has negative impact

equal to -1.704. These results confirmed that the RA patients in ASA, MAN and JAH

locations do not suffer by the increases of NO2 in their locations and the reason is the

major sources for NO2 emissions are far away from their location. But, for the RA

patients living in MAN or close to the MAN location, the results in table 6.12 show

that when NO2 emission increases, then the disease activity score for RA patients will

significantly increase by 2.67 after one lag (one day) from NO2 emission increases, and

the reason for that is because MAN location is surrounded by four major traffic highways,

and in addition, MAN is very close to an industrial area which is in the centre of Kuwait.

Similarly, the third finding is about the direction of the relationship between log(DAS28)

and O3. As for the results of NO2, the results show a positive significant relationship

between log(DAS28) and O3 in the JAH location. When O3 emission increases, then

the disease activity score for RA patients will significantly increase by 1.875 after two

lags (two days) from O3 emission increases.

Finally, the weather factors (Temp, RH and WS) do not show any positive significant

relationship with log(DAS28) among RA patients in Kuwait.

Table 6.12: The results of estimation and verification of the vector autoregressive model:
VAR estimates to predict Yt = (DAS28t, SO2,t, NO2,t, O3,t)′ based on the information of
air pollutants among the air monitoring fixed stations. Note that: * p<.05, ** p<.01,
*** p<.001.

Dependent = DAS28 ASA t-ratio FAH t-ratio MAN t-ratio JAH t-ratio

const -0.6396 -0.185141 -5.09434 -0.3521

log(DAS28) lag 1 14.21*** 14.47*** 14.01*** 14.42***

log(DAS28) lag 2 -1.586 -1.505 -1.927* -1.884*

log(DAS28) lag 3 0.7488 0.9152 0.6163 0.6653
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Table 6.12: The results of estimation and verification of the vector autoregressive model:
VAR estimates to predict Yt = (DAS28t, SO2,t, NO2,t, O3,t)′ based on the information of
air pollutants among the air monitoring fixed stations. Note that: * p<.05, ** p<.01,
*** p<.001.

Dependent = DAS28 ASA t-ratio FAH t-ratio MAN t-ratio JAH t-ratio

log(DAS28) lag 4 0.3547 0.676 0.1871 0.3427

log(DAS28) lag 5 -1.918* -1.706* -1.925* -1.673*

log(DAS28) lag 6 5.329*** 5.692*** 5.549*** 5.783***

log(DAS28) lag 7 16.53*** 16.82*** 16.82*** 16.77***

SO2 lag 1 -0.9181 -1.310 -0.1984 0.3453

SO2 lag 2 -0.4475 1.905* -0.9284 2.118**

SO2 lag 3 1.224 -1.343 0.4937 -2.283**

SO2 lag 4 -0.4453 0.4909 1.421 2.78***

SO2 lag 5 0.5426 1.499 0.5997 -0.7575

SO2 lag 6 -0.004409 -0.2892 1.438 0.4997

SO2 lag 7 -0.6928 -0.3040 0.7391 0.8444

NO2 lag 1 1.233 0.9038 2.67*** 1.132

NO2 lag 2 -2.089** -1.894* -0.6797 0.8065

NO2 lag 3 0.9671 1.049 0.8027 -0.1255

NO2 lag 4 -0.6236 0.4131 0.4441 0.9369

NO2 lag 5 0.2404 -1.508 0.09582 -1.704*

NO2 lag 6 0.5421 -0.3719 0.4579 -0.7098

NO2 lag 7 1.004 1.205 0.6297 -1.376

O3 lag 1 -2.192** -2.055** -0.6607 -2.077**

O3 lag 2 0.3603 0.6921 -0.6951 1.875*

O3 lag 3 0.1801 -0.3352 -0.06933 -0.1311

O3 lag 4 1.413 2.074** 0.7754 -0.2799

O3 lag 5 -0.4190 -1.826* -0.5828 -0.9562

O3 lag 6 -1.205 -0.6435 -0.5605 1.319
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Table 6.12: The results of estimation and verification of the vector autoregressive model:
VAR estimates to predict Yt = (DAS28t, SO2,t, NO2,t, O3,t)′ based on the information of
air pollutants among the air monitoring fixed stations. Note that: * p<.05, ** p<.01,
*** p<.001.

Dependent = DAS28 ASA t-ratio FAH t-ratio MAN t-ratio JAH t-ratio

O3 lag 7 -1.173 -0.2936 0.3191 -0.8976

Temp -1.223 -0.6413 0.576 -1.819*

Temp lag 1 -0.3555 0.6319 -0.8024 0.07723

Temp lag 2 1.515 -0.3139 0.5781 0.9921

Temp lag 3 -0.7100 0.7163 -1.521 -0.8275

Temp lag 4 0.2598 -1.710* 1.145 0.503

Temp lag 5 0.2101 1.424 -0.2844 -0.01190

Temp lag 6 -0.1633 -0.05875 1.03 -0.5192

Temp lag 7 0.2306 -0.1634 -0.6590 1.253

RH -0.8138 -1.776* 0.09794 -1.588

RH lag 1 0.101 1.495 -1.007 -0.2386

RH lag 2 0.8028 -1.867* 1.589 -0.06524

RH lag 3 0.05713 1.948* -1.718* 0.1011

RH lag 4 0.4094 -1.080 2.393** 1.393

RH lag 5 -0.2113 1.244 -2.341** -0.4872

RH lag 6 -0.8290 -1.310 -0.2942 -0.4780

RH lag 7 0.5406 0.8546 1.615 0.3491

WS -0.07126 -0.06144 -1.254 -0.4758

WS lag 1 0.7804 -0.3803 1.137 -0.2261

WS lag 2 -0.7738 -0.9771 0.3537 -0.02841

WS lag 3 1.167 0.3892 -0.5036 -0.5103

WS lag 4 -2.698*** -1.034 -0.4940 0.6195

WS lag 5 0.6093 -0.8763 -1.082 -0.7711

WS lag 6 0.5465 0.7003 1.105 -2.033**
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Table 6.12: The results of estimation and verification of the vector autoregressive model:
VAR estimates to predict Yt = (DAS28t, SO2,t, NO2,t, O3,t)′ based on the information of
air pollutants among the air monitoring fixed stations. Note that: * p<.05, ** p<.01,
*** p<.001.

Dependent = DAS28 ASA t-ratio FAH t-ratio MAN t-ratio JAH t-ratio

WS lag 7 0.6948 -0.1648 0.4803 -1.424

6.16 Vector Error Correction Model (VECM) Analysis

According to Engle-Granger (1987), if the Granger causality test is conducted at I(1)

using the VAR framework, it will be misrepresentative in the presence of cointegration;

thus, adding another variable to the VAR method, like the error-correction term, will aid

in the exploration of the long-run association. The negative coefficient of the one lagged

error-correction component of the long-run effects can be used to establish the direction

of causation between the fundamental variables. The VECM model treats each variable

individually as endogenous, therefore the number of variables matches the number of

equations in the model (Hondroyiannis et al., 2002).

Each dependent variable in the VECM technique is a function of its own error-

correction term, lags, a random variable and lags of explanatory variables. As a result,

the VECM aids in the identification of causation among cointegrated variables as well as

the detection of short and long-run correlations. The Granger-Causality test in VECM

outline between log(DAS28), VECM tests the relationship between log(DAS28) and

the emission of the air pollutant variables (SO2, NO2 and O3). Whereas, the other

climatological variables are considered as exogenous variables. As it has previously been

mentioned in Chapter 5, the VECM model is written as follows:
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(6.8)

It is assumed that residual terms εit are distributed independently and normally, with

constant variance and zero mean. The VECM distinguishes between three categories

of causality: strong, weak and long-run causal linkages (Zambrano-Monserrate et al.,

2016). The following results represent the VECM with unrestricted constant, referring

to equation (5.70) from Chapter 5:

Table 6.13: VECM model with lag order equal to 7 and Maximum likelihood estimates,
observations from 2013-01-08 to 2020-12-31 with cointegration rank = 3 and using an
unrestricted constant. Note that: * p<.05, ** p<.01, *** p<.001.

Dependent = DAS28 ASA t-stat. FAH t-stat. MAN t-stat. JAH t-stat.

const -2.502** 0.3148 -5.898*** -0.5564

∆log(DAS28)t−1 -11.66*** -12.20*** -11.39*** -11.41***

∆log(DAS28)t−2 -13.43*** -14.08*** -13.47*** -13.51***

∆log(DAS28)t−3 -13.89*** -14.48*** -14.10*** -14.17***

∆log(DAS28)t−4 -15.02*** -15.46*** -15.43*** -15.44***
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Table 6.13: VECM model with lag order equal to 7 and Maximum likelihood estimates,
observations from 2013-01-08 to 2020-12-31 with cointegration rank = 3 and using an
unrestricted constant. Note that: * p<.05, ** p<.01, *** p<.001.

Dependent = DAS28 ASA t-stat. FAH t-stat. MAN t-stat. JAH t-stat.

∆log(DAS28)t−5 -18.90*** -19.28*** -19.37*** -19.28***

∆log(DAS28)t−6 -16.84*** -16.96*** -17.10*** -16.89***

∆SO2,t−1 1.009 -1.719* -2.341** -2.491**

∆SO2,t−2 0.4775 -0.2370 -2.958*** -0.9516

∆SO2,t−3 1.25 -1.220 -2.661*** -2.570**

∆SO2,t−4 0.7893 -0.8624 -1.784* -0.5689

∆SO2,t−5 1.128 0.3869 -1.568 -1.224

∆SO2,t−6 1.084 0.2198 -0.5927 -0.9288

∆NO2,t−1 -2.192** 1.095 -2.898*** 2.813***

∆NO2,t−2 -3.548*** -0.3642 -3.012*** 3.02***

∆NO2,t−3 -2.302** 0.3928 -2.087** 2.682***

∆NO2,t−4 -2.581*** 0.7104 -1.578 3.384***

∆NO2,t−5 -2.198** -0.5770 -1.414 2.014**

∆NO2,t−6 -1.553 -1.147 -0.9488 1.542

∆O3,t−1 1.013 1.163 1.412 -0.9155

∆O3,t−2 1.306 1.637 0.5927 1.007

∆O3,t−3 1.413 1.153 0.4199 0.8532

∆O3,t−4 2.79*** 3.089*** 1.137 0.5554

∆O3,t−5 2.486** 1.241 0.5026 -0.5090

∆O3,t−6 1.318 0.5025 -0.1958 0.996

Tempt -1.091 -0.5708 0.6927 -1.789*

Tempt−1 -0.3795 0.6228 -0.8152 0.09788

Tempt−2 1.539 -0.3043 0.6038 1

Tempt−3 -0.6967 0.7229 -1.510 -0.8151

Tempt−4 0.2787 -1.713* 1.164 0.5038
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Table 6.13: VECM model with lag order equal to 7 and Maximum likelihood estimates,
observations from 2013-01-08 to 2020-12-31 with cointegration rank = 3 and using an
unrestricted constant. Note that: * p<.05, ** p<.01, *** p<.001.

Dependent = DAS28 ASA t-stat. FAH t-stat. MAN t-stat. JAH t-stat.

Tempt−5 0.2027 1.426 -0.2637 -0.005042

Tempt−6 -0.2069 -0.06470 1.017 -0.5123

RHt -0.8593 -1.921* 0.05043 -1.575

RHt−1 0.06087 1.479 -1.021 -0.2264

RHt−2 0.798 -1.902* 1.591 -0.06244

RHt−3 0.06348 1.912* -1.722* 0.1085

RHt−4 0.4036 -1.113 2.394** 1.401

RHt−5 -0.2227 1.206 -2.357** -0.4753

RHt−6 -0.8588 -1.338 -0.3054 -0.4674

WSt -0.07329 -0.1150 -1.207 -0.5146

WSt−1 0.891 -0.3754 1.376 -0.3045

WSt−2 -0.6496 -0.9479 0.5708 -0.1044

WSt−3 1.287 0.4284 -0.2915 -0.5804

WSt−4 -2.590*** -1.006 -0.2809 0.5552

WSt−5 0.7195 -0.8554 -0.8754 -0.8398

WSt−6 0.6746 0.7572 1.323 -2.102**

ECT1 -11.02*** -11.19*** -11.94*** -11.49***

ECT2 -2.101** 0.9439 2.613*** 3.097***

ECT3 7.98*** -0.5594 8.206*** -4.549***

The results in table 6.13 show four different VECM models (i.e. each VECM model

refers to a separate location [ASA, FAH, MAN and JAH]). The results in table 6.14

show the VECM estimates for the ASA location. We can easily conclude that the short

run effect for O3 with lag 4 and 5 has a positive relationship with the disease activity

score for RA patients, which means, if the Ozone emission tends to increase by 0.234
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(VECM coefficient estimate for O3 with lag equal to 4) there is a 1% increase in RA

DAS28 and if the Ozone emission tends to increase by 0.195 with lag equal to 5 there

is a 1% increase in RA DAS28, while NO2 exerted a negative influence on the disease

activity score for RA patients, that tends to decrease by around 1% if the emission of

NO2 increases by 1.71 with 2 lags.

The speed of the change that restores equilibrium in the dynamic model is shown by

the error correction term (ECT) in tables 6.14 and 6.15. The ECM coefficient indicates

how rapidly variables return to equilibrium, and it should have a statistically significant

coefficient with a negative sign at the 5% level of significance (Pahlavani et al., 2005).

The one-lag error correction terms (ECT) are found to be statistically significant and

have the predicted negative sign. This demonstrates that the variables in the model have

a co-integrated association. For instance, ECT1 of -0.36 (table 6.14) reveals that 36% of

the discrepancy between the actual and the predictive value of the overall relationship

between the disease activity scores (DAS28) is affected by air pollutants and weather

factors. This implies that convergence to equilibrium is relatively high and deviations

from the long run DAS28 (dependent variable) are corrected by 36% over the following

year.

However, this result does not hold in the long run, when air pollutants significantly

increase disease activity scores (DAS28). On the other side, the long-term period, it

indicates that the relationship between the environmental quality index SO2, NO2, O3

and disease activity scores (DAS28) has a long-term equilibrium. It shows in the values

of EC1 and EC2 (Cointegration with rank 1 and 2) which are negative and significant.

The results in table 6.15 show the VECM estimates for the JAH location. The results

for JAH show different indications than the other locations (e.g., if you look at table

6.14, NO2 has a positive effect to increase the RA disease scores, however other locations

indicate that NO2 has a negative influence on RA disease scores). Because the Al-Jahra

area (JAH) is bounded by various utility industries, electricity and desalination plants,

the northern oil fields, roads connecting it to the rest of Kuwait and other nations, and,

a wastewater treatment plant, the results are more realistic. The results in table 6.16
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show that the short run effect for NO2 with lags 1 to 4 has a positive relationship with

the disease activity score for RA patients which means, if the NO2 emissions tend to

increase by 0.0182 with lag equal 2 there is a 1% increase in RA DAS28 and if the Ozone

emissions tend to increase by 0.021 with lag 4 there is a 1% increase in RA DAS28.

There were several studies done by many scholars which proved and confirmed the

pollution situation in Al-Jahra with increased emissions for SO2, NO2 and O3 (Al-

Fadhli et al., 2019; Al-Baroud et al., 2012; Alenezi and Al-Anezi, 2015). Furthermore,

Al-Hemoud et al. (2021) confirmed that ambient NO2 levels in Kuwait surpassed both

Kuwaiti EPA requirements and WHO norms. The O3 levels were found to be extremely

low, well below local and international standards. The highest NO2 levels were observed

in the early morning and mid-afternoon, during autumn and winter, and on Saturdays

(the "weekend effect"). The highest O3 levels were reported in the early morning and

mid-afternoon, during autumn and winter, and on Saturdays (the "weekend effect").

Long-term and short-term NO2 pollution exposures were found to be linked to all-cause

mortality and hospital admissions for respiratory illnesses, respectively. The inversion

conditions that occur throughout the evenings in Kuwait contribute to the higher noc-

turnal NO2 accumulation (Al-Hemoud et al., 2018). The two main electric-water power

plants (Al-Doha and Al-Zour) may be contributing to the elevated NO2 levels observed

late at night. Kuwaiti power plants use a mix of heavy fuel oil, crude oil, natural gas

and gas oil, which contributes to NO2 levels above international regulations (Al-Fadhli

et al., 2019).

Table 6.14: VECM estimates – "Air pollutants" model dependent variable:
∆ log(DAS28)t for ASA location using an unrestricted constant. Note that: * p<.05,
** p<.01, *** p<.001.

VECM ASA coefficient std. error t-ratio p-value level

const -2.39196 0.956 -2.502 0.0124 **

∆log(DAS28)t−1 -0.379436 0.0325473 -11.66 1.02E-30 ***

∆log(DAS28)t−2 -0.403711 0.0300517 -13.43 6.05E-40 ***

∆log(DAS28)t−3 -0.384838 0.0277112 -13.89 1.75E-42 ***
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∆log(DAS28)t−4 -0.373680 0.0248787 -15.02 3.85E-49 ***

∆log(DAS28)t−5 -0.404401 0.021392 -18.90 3.32E-75 ***

∆log(DAS28)t−6 -0.301519 0.0179001 -16.84 8.85E-61 ***

∆SO2,t−1 0.193205 0.191561 1.009 0.3133

∆SO2,t−2 0.0930696 0.194893 0.4775 0.633

∆SO2,t−3 0.237655 0.190071 1.25 0.2113

∆SO2,t−4 0.141892 0.179761 0.7893 0.43

∆SO2,t−5 0.184753 0.163814 1.128 0.2595

∆SO2,t−6 0.145779 0.134467 1.084 0.2784

∆NO2,t−1 -0.652572 0.297769 -2.192 0.0285 **

∆NO2,t−2 -1.17133 0.330091 -3.548 0.0004 ***

∆NO2,t−3 -0.785332 0.341156 -2.302 0.0214 **

∆NO2,t−4 -0.870410 0.337231 -2.581 0.0099 ***

∆NO2,t−5 -0.699384 0.318242 -2.198 0.0281 **

∆NO2,t−6 -0.422541 0.272041 -1.553 0.1205

∆O3,t−1 0.0865264 0.085403 1.013 0.3111

∆O3,t−2 0.112582 0.0861857 1.306 0.1916

∆O3,t−3 0.122085 0.0863903 1.413 0.1577

∆O3,t−4 0.234276 0.0839791 2.79 0.0053 ***

∆O3,t−5 0.195243 0.0785508 2.486 0.013 **

∆O3,t−6 0.0942837 0.071536 1.318 0.1876

ECT1 -0.360731 0.0327376 -11.02 1.11E-27 ***

ECT2 -0.361791 0.172159 -2.101 0.0357 **

ECT3 1.15157 0.144299 7.98 2.09E-15 ***
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Table 6.15: VECM estimates – "Air pollutants" model dependent variable:
D log(DAS28)t for JAH location using an unrestricted constant.

VECM JAH coefficient std. error t-ratio p-value level

const -0.442770 0.513019 -0.8631 3.88E-01

∆log(DAS28)t−1 -0.366271 0.0323887 -11.31 4.86E-29 ***

∆log(DAS28)t−2 -0.399408 0.0298043 -13.40 9.16E-40 ***

∆log(DAS28)t−3 -0.385873 0.0274014 -14.08 1.34E-43 ***

∆log(DAS28)t−4 -0.378186 0.0246069 -15.37 2.77E-51 ***

∆log(DAS28)t−5 -0.407082 0.0211975 -19.20 2.04E-77 ***

∆log(DAS28)t−6 -0.299348 0.0177942 -16.82 1.23E-60 ***

∆SO2,t−1 -0.315700 0.133203 -2.370 0.0179 **

∆SO2,t−2 -0.114534 0.13448 -0.8517 3.95E-01

∆SO2,t−3 -0.330972 0.130512 -2.536 0.0113 **

∆SO2,t−4 -0.0677819 0.122644 -0.5527 0.5805

∆SO2,t−5 -0.136022 0.110428 -1.232 0.2181

∆SO2,t−6 -0.0850799 0.0892041 -0.9538 0.3403

∆NO2,t−1 0.0142354 0.00609843 2.334 0.0197 **

∆NO2,t−2 0.0181633 0.00695515 2.611 0.0091 ***

∆NO2,t−3 0.0167398 0.00725146 2.308 0.021 **

∆NO2,t−4 0.0212342 0.00707505 3.001 0.0027 ***

∆NO2,t−5 0.010216 0.00646597 1.58 0.1142

∆NO2,t−6 0.00496561 0.0051761 0.9593 0.3375

∆O3,t−1 -0.0118603 0.0137424 -0.8630 0.3882

∆O3,t−2 0.0148023 0.0139532 1.061 0.2888

∆O3,t−3 0.0133771 0.0138945 0.9628 0.3358

∆O3,t−4 0.00873131 0.0134905 0.6472 0.5175

∆O3,t−5 -0.00495398 0.0129027 -0.3839 0.701

∆O3,t−6 0.0125141 0.0120629 1.037 0.2996
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ECT1 -0.373654 0.0325914 -11.46 8.75E-30 ***

ECT2 0.352718 0.119477 2.952 3.20E-03 ***

ECT3 -0.00882579 0.00284637 -3.101 0.0019 ***

The following results in table 6.16 show the VECM with unrestricted constant and

trend (referring to equation (5.72) from Chapter 5):

Table 6.16: VECM model with lag order equal 7 and Maximum likelihood estimates,
observations from 2013-01-08 to 2020-12-31 with Cointegration rank = 3 using an unre-
stricted constant and trend. Note that: * p<.05, ** p<.01, *** p<.001.

Dependent = DAS28 ASA t-ratio FAH t-ratio MAN t-ratio JAH t-ratio

const -2.748*** 0.7465 -5.033*** -0.7885

∆log(DAS28)t−1 -11.76*** -12.43*** -11.48*** -14.21***

∆log(DAS28)t−2 -13.51*** -14.29*** -13.61*** -16.05***

∆log(DAS28)t−3 -13.98*** -14.66*** -14.21*** -16.29***

∆log(DAS28)t−4 -15.09*** -15.58*** -15.55*** -17.13***

∆log(DAS28)t−5 -18.96*** -19.38*** -19.47*** -20.53***

∆log(DAS28)t−6 -16.86*** -17.00*** -17.15*** -17.51***

∆SO2,t−1 1.179 -1.644 -2.130** -4.566***

∆SO2,t−2 0.6619 -0.2003 -2.805*** -2.524**

∆SO2,t−3 1.41 -1.166 -2.539** -3.957***

∆SO2,t−4 0.9302 -0.8097 -1.706* -1.649*

∆SO2,t−5 1.247 0.4778 -1.456 -2.100**

∆SO2,t−6 1.198 0.312 -0.5677 -1.540

∆NO2,t−1 -2.366** 1.5 -2.919*** 3.087***

∆NO2,t−2 -3.667*** -0.04629 -2.997*** 3.257***

∆NO2,t−3 -2.350** 0.7018 -2.037** 2.915***

∆NO2,t−4 -2.581*** 1.008 -1.457 3.479***

∆NO2,t−5 -2.127** -0.3771 -1.233 1.988**
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Table 6.16: VECM model with lag order equal 7 and Maximum likelihood estimates,
observations from 2013-01-08 to 2020-12-31 with Cointegration rank = 3 using an unre-
stricted constant and trend. Note that: * p<.05, ** p<.01, *** p<.001.

Dependent = DAS28 ASA t-ratio FAH t-ratio MAN t-ratio JAH t-ratio

∆NO2,t−6 -1.490 -1.075 -0.6091 1.26

∆O3,t−1 0.8597 1.553 1.462 -0.2986

∆O3,t−2 1.179 1.966** 0.6203 1.526

∆O3,t−3 1.291 1.436 0.3885 1.365

∆O3,t−4 2.665*** 3.305*** 1.119 0.991

∆O3,t−5 2.35** 1.398 0.4537 -0.1164

∆O3,t−6 1.174 0.5221 -0.3210 1.226

Tempt -1.093 -0.5549 0.7461 -1.741*

Tempt−1 -0.3800 0.6446 -0.8849 0.07058

Tempt−2 1.557 -0.2884 0.5894 1.139

Tempt−3 -0.7163 0.6866 -1.523 -0.8564

Tempt−4 0.3106 -1.700* 1.132 0.6216

Tempt−5 0.1355 1.469 -0.2960 -0.08086

Tempt−6 -0.03828 -0.3503 0.8263 0.5223

RHt -0.8673 -1.879* 0.1158 -1.738*

RHt−1 0.04071 1.498 -0.9441 -0.2374

RHt−2 0.808 -1.892* 1.55 0.02475

RHt−3 0.08635 1.932* -1.589 0.07907

RHt−4 0.4109 -1.045 2.447** 1.416

RHt−5 -0.2689 1.099 -2.278** -0.3919

RHt−6 -0.7272 -1.100 0.6102 -0.1214

WSt 0.02792 0.01191 -1.158 -0.5807

WSt−1 0.9842 -0.3093 1.368 -0.4774

WSt−2 -0.5550 -0.8493 0.6386 -0.2132

WSt−3 1.434 0.4828 -0.2231 -0.7583
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Table 6.16: VECM model with lag order equal 7 and Maximum likelihood estimates,
observations from 2013-01-08 to 2020-12-31 with Cointegration rank = 3 using an unre-
stricted constant and trend. Note that: * p<.05, ** p<.01, *** p<.001.

Dependent = DAS28 ASA t-ratio FAH t-ratio MAN t-ratio JAH t-ratio

WSt−4 -2.505** -0.9155 -0.2296 0.4599

WSt−5 0.8163 -0.7751 -0.8560 -0.9825

WSt−6 1.054 0.8261 1.604 -2.518**

ECT1 -10.94*** -11.04*** -11.92*** -10.31***

ECT2 -2.324** 0.8835 2.227** 6.26***

ECT3 8.678*** -1.123 8.146*** -3.253***

The results in table 6.16 show the same significant effect that was described from

table 6.13 between RA disease activity score and air pollution. Thats means, when we

use the unrestricted constant and trend, that will never explain the trend effect between

air pollution and DAS28.

Table 6.17 shows comparisons between time series models using the information of R-

Square, MAPE, RMSE, MAE, MPE and Theil’s U2. It is very clear that the best model

that explains and captures the most fitted values was VECM with R-square varying

between 0.43 to 0.45, and with mean predictive error varying between 2.87 to 2.9 with

lowest error among the other time series models in prediction performance. Also, if we

look at figures 6.19 to 6.22, we can see that the best model with the best prediction

performance (the time series model that captures most of the green lines) was VECM

(e.g. the green line presents the actual values of DAS28, the red line presents the model

forecast, and we can see that the models with the weakest performance in prediction

were OLS and GARCH models because the model predictions could not capture most of

the actual values). Therefore, the results revealed that the values of the VECM model of

cointegration for long- and short-term RA disease activity predictions were lower than

the values predicted by the time series models. It meant that the VECM model of

cointegration predicting performance was sufficient, and that the model did not need
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to be revised. These statistics indicated that the VECM model’s predicting ability is

superior compared to other time series models, and this conclusion was supported by

the data (Khin et al., 2015).

Table 6.17: Comparison of models based on several selection criteria (R-Square, MAPE,
RMSE, MAE, MPE and Theil’s U2).

Station Model R-Square MAPE RMSE MAE MPE Theil’s U2

ASA

OLS 0.066 307.660 3.783 3.627 159.880 0.688
ARIMA 0.152 271.590 3.606 3.296 152.300 0.752
GARCH 307.920 3.822 3.552 184.180 0.846
VAR 0.250 221.640 3.390 2.911 149.230 0.367
VECM - Constant 0.436 215.810 3.397 2.877 151.100 0.397
VECM - Trend 0.435 215.610 3.398 2.876 151.160 0.400

FAH

OLS 0.048 336.290 3.820 3.697 137.060 0.388
ARIMA 0.145 292.220 3.619 3.318 132.910 0.529
GARCH 354.170 3.883 3.615 146.380 0.477
VAR 0.249 226.940 3.392 2.915 143.080 0.310
VECM - Constant 0.437 223.470 3.394 2.895 143.660 0.319
VECM - Trend 0.436 223.980 3.395 2.888 142.710 0.318

MAN

OLS 0.064 322.730 3.789 3.638 149.150 0.642
ARIMA 0.149 283.490 3.611 3.306 143.870 0.744
GARCH 341.080 3.842 3.561 160.760 0.565
VAR 0.254 225.480 3.382 2.899 146.830 0.434
VECM - Constant 0.439 221.660 3.386 2.875 147.600 0.448
VECM - Trend 0.440 222.920 3.385 2.879 146.890 0.444

JAH

OLS 0.052 333.980 3.813 3.682 139.930 0.636
ARIMA 0.145 287.390 3.620 3.319 139.730 0.769
GARCH 360.050 3.879 3.639 145.140 0.548
VAR 0.253 241.990 3.385 2.903 128.240 0.466
VECM - Constant 0.439 240.010 3.387 2.895 128.340 0.473
VECM - Trend 0.435 236.150 3.400 2.842 125.170 0.471
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(f ) VECM - Constant+Trend

Figure 6.19: Forecast performance for the study time series models for ASA station.
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(f ) VECM - Constant+Trend

Figure 6.20: Forecast performance for the study time series models for FAH station.
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(f ) VECM - Constant+Trend

Figure 6.21: Forecast performance for the study time series models for MAN station.
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Figure 6.22: Forecast performance for the study time series models for JAH station
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6.17 The Results of the Impulse Response Analysis

VECM Granger causality, on the other hand, is unable to provide a meaningful estimate

of the strength of the causal association between variables beyond the sample period

chosen. Furthermore, Granger causality only considers the direction of a causal associa-

tion, rather than the sign of the association. VECM order is thought to have little effect

on the Cholesky impulse response function (IRF) (Enders, 2008; Johansen, 1991). This

allows the IRF to evaluate if a shock has a positive or negative long-term or short-term

effect on the future and current values of all endogenous variables. The magnitude of

the relevant effect is not provided by the IRF (Lau et al., 2018).

The Impulse Response Functions (IRFs) based on back-transforming the VECM

model to its level VAR for each site are shown in Figures 6.23 to 6.26. The sensitivity

of the dependent variables in a VAR to shocks from every variable is traced out using

impulse response analysis (Brooks et al., 2008). It also depicts the effects of shocks on

the variables’ adjustment paths. It displays the magnitude of the shock’s impact as well

as the rate at which the shock dissipates, taking into account interdependencies and

demonstrating how each variable reacts dynamically to shocks. The following order was

used: log(DAS28), SO2, NO2 and O3.

Figures 6.23 to 6.26 show the results of DAS28’s response to its own shocks, in the

first row of plots. It displays the impulse response function of DAS28’s progress over

a 20-day time horizon, showing the dynamic response of DAS28 to standard deviation

shocks in one period to the exposure of air pollutants’ emissions, as well as the persistence

and direction of the response to each of its own shocks. These findings revealed that in

the short run, the response of patients with RA disease activity scores to a one standard

deviation of pollution in its past values was significantly positive (fundamentally from

period one to around the 1st and 2nd horizons from the response from SO2 to DAS28 in

ASA) before oscillating around negative values (say the 3rd horizon to the 6th horizon),

and in the long run, it is moving smoothly around zero, and results for the other locations

showed the same conclusion to explain the shock response of DAS28 from SO2.
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However, the response of DAS28 shock from NO2 in the ASA location, showed that

the response of patients with RA disease activity scores to a one standard deviation

shock of the pollution in its prior values, in the short run, was significantly positive

(fundamentally from period one to around the 1st and 2nd horizon from the response

from NO2 to DAS28 in ASA) prior to an oscillation around negative values (say the

5th horizon). Moreover, shocks on NO2 emission values increase disease activity scores

among RA patients (say from the 5th day horizon to more than the 20th horizon day)

and this is similar with the MAN and FAH locations.

6.18 The Stability of VECM

Finally, checking the stability of the model is an important test in time series analysis.

The stability of the VAR model requires the moduli of the eigenvalues to lie within

the unit circle. Otherwise, the system is not stationary. Rather it is explosive or non-

convergent. Figure 6.27 confirms that all roots are less than one and no root lies outside

the unit circle for each model used in this study. This result signifies and satisfies the

stability condition of the model. As the VAR model is stable, it is possible to present

the impulse response functions and variance decomposition in response to a one-time

shock in the system.
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Figure 6.23: The results of the Impulse Response Functions (IRFs) based on back-
trasforming the VECM model to its level VAR representation for the ASA station
dataset.
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Figure 6.24: The results of the Impulse Response Functions (IRFs) based on back-
trasforming the VECM model to its level VAR representation for the FAH station
dataset.
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Figure 6.25: The results of the Impulse Response Functions (IRFs) based on back-
trasforming the VECM model to its level VAR representation for the MAN station
dataset.
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Figure 6.26: The results of the Impulse Response Functions (IRFs) based on back-
trasforming the VECM model to its level VAR representation for the JAH station
dataset.
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Figure 6.27: Roots of the cointegration matrix.
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6.19 Discussion and Conclusion

The results of this chapter agreed with and support our previous published paper that

presented in Chapter 3. In a previous work (Alsaber et al., 2020), we used numerous

regression models to explain the link between RA disease activity and air pollutants,

ensuring that the link remained even after the addition of RA variables that were highly

significant for CDAI and DAS28. Moreover, Hart et al. (2013b) explored the effect of

extended exposure to air pollution on the possibility of suffering RA in the Swedish

Epidemiological Investigation. From this exploration, there was no evidence of a higher

risk of RA for PM10 contact. Moreover, for gaseous pollutants, the overall risks for RA

were mildly increased, though after controlling for the variables education and smoking,

the effect was not statistically significant. The presence of a greater risk of RA incidence

following increases in SO2 and NO2 was established in this thesis.

We also found that the most affected location is Jahra (JAH). In Jahra, the increases

of air pollutants’ emissions (i.e. NO2) will positively influence DAS28 among RA pa-

tients. Based on the findings, NO2 negatively affects DAS28 for RA patients living in

the ASA and MAN locations. As we mentioned before, because Jahra is surrounded

with major Al-Doha electric-water power plants that increases the emissions of NO2

incidence throughout late nights. Moreover, these power plants usually work on a mix-

ture of heavy fuel oil, crude oil, natural gas and gas oil that that cause NO2 pollution.

This is the reason why RA patients who belong to the JAH location have a high disease

activity score of DAS28 when NO2 increases and this agrees with Hamoda et al. (2022);

Al-Fadhli et al. (2019); Al-Baroud et al. (2012).

In addition, the VECM with unrestricted constant and trend confirmed that Ozone

(O3) was detected as a risk factor for increasing the DAS28 score among the RA patients

who are living in ASA and FAH. Those two locations are located in the south of Kuwait

(see figure 6.1). The sources of pollution around Al-Fahaheel (FAH) and Ali Abdullah

Al-Salem (ASA) locations are from the southeast (Mina Al-Ahmadi, storage tanks and

refineries, 2 kilometres away; Shuaiba refinery, 4.6 kilometres away; and Mina Abdullah
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refinery, 8 kilometres away), from the south (Shuaiba Industrial Area, factories, 8.8

kilometres away), and from the west (Magwaa and Burgan fields 8 kilometres away)

(Hamoda et al., 2022). Those mentioned sources are the main cause of increasing the

emission of O3 for the ASA and FAH locations. Ozone has long been regarded as a

key pollutant affecting air and environmental quality as a vital indicator substance of

photochemical smog (Steinfeld, 1998; Seinfeld, 1989). Furthermore, the World Health

Organisation (WHO) classifies six air pollutants as detrimental to human health: ground-

level ozone (O3), sulphur dioxide (SO2), carbon monoxide (CO), lead, nitrogen dioxide,

and suspended particle matter (SPM), which is commonly found in smoke and dust

(Organization et al., 1997).

The one lag error correction terms (ECT) are found to have the expected negative

sign and are highly statistically significant. This confirms the existence of co-integrated

relationships among the variables in the model. So this indicates that the variables have

a contrasting impact on DAS28 in the short run compared to the impact in the long

run. O3 and NO2 which both exhibited a negative influence on DAS28 in the long run,

exert a positive effect in the short run, especially in ASA and MAN.

So, conclusively, the VECM confirms that for long and short run equilibrium there

are causal effects from O3 and NO2 toward the disease activity score for RA patients

who are living in the residential areas surrounded by the sources of pollutants.

This study has several limitations. Firstly, there were very few published articles

discussing the relation between air pollution and rheumatology disease using the disease

activity scores. Furthermore, we acknowledge that one of our study’s major limitations

is that we did not track particle matter, which has been linked to a number of well-

documented health hazards, and that was because of the missing values, with more than

60% of the total daily records missing.

Secondly, to link between RA patients’ records and the information of air pollutants

according to patients’ living locations, we faced some problems to make that link because

some patients have several living addresses, and because of that, we have dropped them

out from the study.
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Lastly, we could not use mobile labs to measure the daily observation of air pollutants

in some residential locations that are close to the main hospitals in Kuwait, however the

provided air pollution data were collected from air observation fixed stations and most

of them are far away from patients’ living addresses. The reason for that was because

this study was not funded by any institute or governmental organisations, and all the

costs and expenses were covered by the main author. Moreover, other factors, such as

wind speed, humidity, and wind direction, may need to be modified in the multivariate

time series using VECM. However, we did not adjust them in our study because their

data was not accessible per study location or was not genuine.

Based on that, some policies and recommendations that can be given to the Kuwait

government. First, there are a variety of policy solutions that can aid in the reduction

of emissions. One of them is the imposition of pollution charges. Another strategy to

help reduce air pollution levels is to enhance the role of renewable and clean energy,

for instance, nuclear energy, consumption and energy efficiency. Suggestions for future

research should employ time series techniques founded on machine learning or artifi-

cial intelligence with deep learning processes, such as the deep repeated neural network

(DRNN) model, or a hybrid deep neural network (HDNN) framework which is one of

the most successful to predict air pollution (Bhanja and Das, 2021). The Artificial Neu-

ral Networks (ANNs) are machine learning approaches and their basic idea is about

constructing a model for mimicking the intelligence of human brain into a machine. A

spatial method could be used to estimate the distance between a living area or a work-

place and a pollution source. Also, crucial variables controlling the relationship between

air pollution and disease activity include economic variables or social characteristics.

In this chapter, the VECM was employed to investigate the effects of air ambient

pollutant (SO2, NO2, O3, PM10 and CO) emissions on a RA disease activity score

(DAS28) in Kuwait over the period of 2013-2020. The empirical results show that there

is a long-term cointegration relationship between SO2, NO2, O3 and DAS28.

According to the Granger causality test and the VECM, the emissions of nitrogen

dioxide (NO2) and ozone (O3) have a positive short-term effect on the rheumatoid
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activity score (DAS28) among RA patients in Kuwait. Impulse response test results

show that for some locations in Kuwait there is a short-term positive causal relationship

between emissions of NO2 and DAS28, due to sources of pollution surrounding the

location. While emissions increased in NO2 and O3, they increase the disease activity

index (DAS28) in patients with RA from Kuwait.
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Chapter 7

Multivariate Time Series: The Impact

of Air Pollution on COVID-19 Daily

Cases in Kuwait using the VECM

Approach

In this chapter, we explore the association between air pollutant concentration rates for

O3, SO2, NO2, CO and PM10 with daily COVID-19 admitted cases in Kuwait during

the period 10-03-2020 to 31-12-2020 using the cointegration test and the vector error

correction model (VECM).

We used a multivariate framework called the Vector Error Correction Model to cre-

ate 30-days-ahead forecasts using a leading indicator, the local COVID-19 infection in-

cidence, as well as the rising or decreasing level of daily concentrations of air pollutants

(O3, SO2, NO2, CO, and PM10). This model is also used to generate 60-day scenario

estimates based on various pandemic trajectories. The two time series show a steady

long-run relationship, according to our findings. In comparison to a more traditional

model based solely on medical data, the model exhibits a strong fit for the data and

good forecasting performance. Our study proposes a novel model for precise short-term
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forecasts and practical scenario-based long-term forecasts of COVID-19 daily cases in

Kuwait utilising daily air pollution concentrations (O3, SO2, NO2, CO, and PM10) to

aid healthcare decision-making.

7.1 The Relationship Between Air Pollution and COVID-19 Hos-

pitalisation

In urban areas, air pollution is one of the most serious global environmental issues. Using

time series’ approaches, this study looked into the validity of the relationship between air

pollution and COVID-19 hospitalisation. This time series research was carried out in the

state of Kuwait. It used stationarity testing, cointegration testing, Granger causality and

stability tests, and finally building the multivariate time series using the Vector Error

Correction Model (VECM) technique. The findings reveal that the concentration rate

of air pollutants (O3, SO2, NO2, CO, and PM10) has an effect on COVID-19 admitted

cases via Granger-causality. The Granger causation test shows that the concentration

rate of some air pollutants (O3 and SO2) influences and predicts the COVID-19 admitted

cases. The findings suggest that Ozone (O3) and sulphur dioxide (SO2) induce an

increase in COVID-19 admitted cases in the short term. The evidence of a positive

long-run association between COVID-19 admitted cases and environmental air pollution

might be shown in the cointegration test and the VECM. There is a confirmation that

the usage of air pollutants (O3, SO2, NO2, CO, and PM10) has a significant impact on

COVID-19 admitted cases’ prediction.

Healthcare systems must have sufficient resources to meet demand from COVID-19

cases during the epidemic. One of the most essential planning measures is to examine

the association between the daily cases of COVID-19 patients with the concentrations of

five major air pollutants: Ozone (O3), sulphur dioxide (SO2), carbon monoxide (CO),

nitrogen dioxide (NO2), and particulate matter (PM10). Only a few articles explore the

potential utility of local COVID-19 infection incidence data in developing a forecasting

model for the COVID-19 hospital census using multivariate time series models (Nguyen
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et al., 2021). Nguyen et al. (2021) used a multivariate framework called the Vector

Error Correction Model to create 30-days-ahead forecasts using a leading indicator, the

local COVID-19 infection incidence, as well as the rising or decreasing level of daily

concentrations of air pollutants (O3, SO2, NO2, CO, and PM10). This model is also

used to generate 60-day scenario estimates based on various pandemic trajectories. In

comparison to a more traditional model based solely on medical data, the model exhibits

a better fit to the data and good forecasting performance. Our study proposes a novel

model for precise short-term forecasts and practical scenario-based long-term forecasts

of COVID-19 daily cases in Kuwait utilising daily air pollution concentrations (O3, SO2,

NO2, CO, and PM10) to aid healthcare decision-making.

The need for hospital administrators to have timely and precise air pollution pro-

jections in order to plan surges in hospital demand due to the epidemic spurred our

effort. When hospitals surpass their historical capacity, adequate preparation can help

minimise or mitigate demands on hospital resources to deal with COVID-19. As a result,

a model that predicts the number of COVID-19 positive patients who will be admitted

to a hospital or health system in the short and long term is critical. This COVID-19

hospital census is vital for making decisions that involve a lot of forethought, such as

hiring more people, building physical beds and rooms, and purchasing critical equipment

(for instance, personal protective equipment and ventilators).

Using univariate time series models such as Seasonal Autoregressive Integrated Mov-

ing Average (SARIMA), Autoregressive Integrated Moving Average (ARIMA), and ex-

ponential smoothing, past research has shown the utility of forecasting hospital de-

mands (e.g., hospital admissions, intensive care unit census, and overall hospital census)

(Earnest et al., 2005; Jones et al., 2008; Capan et al., 2016; Nguyen et al., 2021; Konaras-

inghe, 2020; Yonar et al., 2020; Tyagi et al., 2020; Roy et al., 2021).

In this chapter, we seek to acquire further evidence in order to establish a link between

air pollution concentrations and daily COVID-19 admitted cases in Kuwait. Our study’s

essential contribution and innovation are as follows:

• To our knowledge, the majority of the existing literature focuses on examining the
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relationship between COVID-19 admitted cases and other climatology factors like

average humidity (Fareed et al., 2020) or investigating the correlation between

the average daily temperature and the rate of coronavirus epidemic growth in the

affected regions (Pirouz et al., 2020). However, there is a paucity of literature

that examines the association between daily COVID-19 admitted cases and air

pollution.

• Most notably, this study seeks to explore the dynamic causality between air pollutants

(O3, SO2, NO2, CO, and PM10) concentrations rate and the daily COVID-19

admitted cases using the panel Granger causality test based on the vector error

correction model (VECM).

• The VECM was chosen for this study for the following reasons: The method can al-

low endogenous variables; the VECM methodology can provide alternative analysis

channels to analyse causality that is disregarded by the traditional Granger causal-

ity test due to the error correction term (ECM) (Azlina et al., 2014). Meanwhile,

the VECM is capable of distinguishing between short-run and long-run causality

(Azlina et al., 2014).

7.2 Literature Review

7.2.1 Relationship Between Air Pollution and Human Health

Numerous studies have indicated that the major air pollutants causing adverse health

effects in Saudi Arabia include O3, SO2, NO2, CO and PM10 (Al Mulla et al., 2015;

Argyropoulos et al., 2016).

It has been discovered that incomplete burning of Arabian incense produces emissions

of CO, PM10, PM2.5, black carbon, and polycyclic aromatic hydrocarbons (PAHs), all of

which have negative health effects on the population who are exposed to these emissions

(Du et al., 2018). Ischemic heart disease (IHD), chronic obstructive pulmonary disease

(COPD), and lung cancer have all been linked to these air pollutants (Amoatey et al.,

237



2018).

7.2.2 Impact of Air Pollution as a Risk Factor to COVID-19 patients

During COVID-19, air pollution was identified as a risk factor in several Italian research

studies. Among the areas of Northern Italy, a correlation with higher levels of pollutants

such as PMs has a considerable impact on human health (Domingo et al., 2020; Martel-

letti and Martelletti, 2020). It has also been discovered that people who live in areas

with high levels of air pollution are more likely to acquire chronic respiratory illnesses

and are more susceptible to any infectious agent (Distante et al., 2020).

In China, air pollution has been proven to be positively associated with SARS mor-

tality (Cui et al., 2003). Although COVID-19 risk factors are still being investigated, it

is probable that environmental variables such as air pollution could substantially impact

the epidemic’s spread among the population. In the case of SARS-CoV-2, many studies

have found a significant relationship between air pollution and the rate at which the

virus spreads. Six air pollutants (PM2.5, PM10, SO2, CO, NO2, and O3) were signifi-

cantly linked to confirmed cases in 120 Chinese cities from January 23 to February 29,

2020, according to Zhu et al. (2020). The most badly afflicted regions in Europe are

the same as the ones with the highest concentrations of PM10 and PM2.5, according

to Martelletti and Martelletti (2020). In addition, the majority of fatality cases were

in areas with the highest NO2 concentrations (Ogen, 2020). According to Bashir et al.

(2020a); Sharma et al. (2020), the associations were also confirmed in California, the

United States, and India.

7.2.3 The Relationship between Atmospheric Variables and Numbers of COVID-

19 Cases

Finally, for other coronavirus epidemics, it is well documented in the literature how cli-

matic circumstances can influence transmission, either promoting or reducing it. Atmo-

spheric variables such as ambient temperature and humidity, as well as sun irradiation,

have various impacts on coronavirus survival, for example, (Casanova et al., 2010; Lauc
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et al., 2020). This indicates that the coronavirus spread is facilitated in dry and cold

weather. Nonetheless, it is still unknown if and how the SARS CoV-2 virus spreads or

is impacted by meteorological factors like other seasonal viruses. Several recent studies

looked at the role of meteorological variables in COVID-19 transmission all over the

world. As shown in Pani et al. (2020) studies from China (Shi et al., 2020; Liu et al.,

2020; Xie and Zhu, 2020; Ma et al., 2020), Iran (Ma et al., 2020), Spain (Briz-Redón

and Serrano-Aroca, 2020), the USA (Bashir et al., 2020b; Gupta et al., 2020), Indonesia

(Tosepu et al., 2020), Norway (Menebo, 2020) and also over the globe (Sobral et al.,

2020; Wu et al., 2020) are controversial and The World Health Organization (WHO) has

stated that more research should be focused on how to quantify how the weather affects

the virus’s spread.

7.2.4 Time Series Analysis to Predict COVID-19 Cases

It is clear from previous research that time series models such as exponential smoothing,

ARIMA, and SARIMA performed well and provided adequate results for COVID-19

prediction. Many scholars have researched COVID-19 virus infection predictions. All

previous research has established that the ARIMA model is the most effective for fore-

casting (Sahai et al., 2020; Jain et al., 2021; Murugesan et al., 2020; Sahai et al., 2020;

Sulasikin et al., 2020; Mustafa and Fareed, 2020; Benvenuto et al., 2020). Sulasikin

et al. (2020) used three approaches to predict the COVID-19 instances (Holt’s method,

Holt-Winters method, and ARIMA). Among the other models, the ARIMA model was

deemed the best by the authors. Furthermore, Nguyen et al. (2021) demonstrated that

the COVID-19 infection incidence could be effectively incorporated locally into a VECM

with the COVID-19 hospital data to improve the existing forecast models and produce

precise short-term forecasts and practical situation-based long-term trajectories.

7.2.5 Data and Variables

The data utilised for the study spans the months of March 10, 2020, to December

31, 2020. Kuwait Environment Public Authority provided statistics on air pollutants
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(O3, SO2, NO2, CO, and PM10) (K-EPA). Kuwait’s Ministry of Health provided the

daily COVID-19 cases (MOH). Information at the Kuwait’s Ministry of Health website

(https://corona.e.gov.kw/en) presented a summary of the daily COVID-19 cases

in Kuwait that related to MOH data. All of the variables were converted to their natural

logarithms before using the model in order to make additive and linear models make more

sense (Nelder and Wedderburn, 1972).

7.2.6 Air Quality Index (AQI)

The Air Quality Index (AQI) is a numerical indicator of a region’s air quality. The

AQI scale has the range 0 to 500, with a higher AQI value indicating poor air quality

and a lower AQI (< 100) signifying good air quality in a given area. AQI values were

calculated using 24-hour average PM10, 8-hour average CO and O3, and 1-hour average

NO2 and SO2 levels in the current study. The maximum AQI observed for a city was

used as the overall AQI. As mentioned in section 1.3.5 on page 11, the AQI calculation

was explained and performed using equation 1.1 on page 13 and table 1.2 on page 13.

7.3 Results and Discussion

7.3.1 The Descriptive Statistics

Table 7.1 shows the descriptive statistics for the air pollutant variables. The mean

values corresponding to O3, CO, PM10, SO2 and NO2 were 24.82 ± 7.20, 9.11 ± 3.61,

79.51 ± 24.45, 11.24 ± 5.21 and 26.72 ± 13.00 respectively. It is also evident that except

O3, all the pollutants were positively skewed, i.e. the mean values of these pollutants

were high as compared to the median values. Moreover the Shapiro-Wilk test shows that

the distributions of the variables were significantly different from a normal distribution.

Therefore log-transformation will be applied on the variables to convert the distribution

of the variable to to make them more normally distributive, before performing any

further analysis. Minimum, maximum and percentile values of the pollutants are also

shown in Table 7.1.
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Table 7.1: Descriptive statistics for air pollutants.

O3 CO PM10 SO2 NO2

Mean 24.818 9.112 79.511 11.239 26.719
Std. Deviation 7.202 3.611 24.452 5.214 12.996
Skewness 0.026 1.969 2.542 1.383 0.514
Kurtosis 0.514 6.324 11.931 2.325 0.521
Shapiro-Wilk (SW) 0.991 0.844 0.813 0.895 0.959
P-value of (SW) 0.066 < .001 < .001 < .001 < .001
Minimum 9.250 3.791 35.357 3.802 5.154
Maximum 42.226 28.445 234.057 34.443 64.515
25th percentile 19.249 6.618 67.104 7.523 15.502
50th percentile 25.398 8.184 76.334 10.001 24.529
75th percentile 29.755 10.936 87.004 13.906 35.561

Descriptive statistics for daily climatology variables (RH, Temp, WD and WS),

COVID-19 cases and COVID-19 deaths are shown in Table 7.2. The mean values

for RH, Temp, WD and WS are 35.51(S.D. = 20.06), 30.26(S.D. =7.96), 206.138(S.D.

=54.48) and 2.18(S.D. =0.66) respectively. Moreover, on average, 506 cases of COVID-

19 and 3 deaths due to COVID-19 were reported in the study period. Results of the

Shapiro-Wilk test show that the distributions of the climatology parameters, COVID-

19 cases and COVID-19 deaths were different from the normal distribution. Therefore

log-transformation will be applied on the variables to convert the distribution of the vari-

ables to be more normal. The values of other statistics, i.e. median (50th percentile),

skewness, kurtosis, minimum, maximum and percentiles, for each variable are also shown

in Table 7.2.

7.3.2 Correlation Analysis

Table 7.3 presents results of the correlation analysis for air pollutants, climatology

parameters and number of COVID-19 cases. A strong significant positive correla-

tion was observed between temperature and COVID-19 cases (rp = 0.61), indicating

that as the value of temperature increases, number of COVID-19 cases also increases,

whereas a negative significant correlation was observed between RH and COVID-19 cases
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Table 7.2: Descriptive statistics for weather climatologies and number of COVID-19
cases (infected and death cases) in Kuwait.

RH Temp WD WS COVID-19 Cases Death Cases
Mean 35.506 30.255 206.138 2.183 506.436 3.145
Std. Deviation 20.062 7.956 54.481 0.662 276.988 2.524
Skewness 0.793 0.371 0.123 0.786 0.290 0.918
Kurtosis 0.367 1.069 1.202 0.106 0.902 0.513
Shapiro-Wilk (SW) 0.897 0.935 0.948 0.948 0.956 0.915
P-value of (SW) < .001 < .001 < .001 < .001 < .001 < .001
Minimum 11.619 12.199 89.663 0.938 1.000 0.000
Maximum 91.534 43.150 297.845 4.271 1073.000 11.000
25th percentile 18.564 24.714 160.862 1.670 278.000 1.000
50th percentile 28.010 31.141 199.509 2.020 554.500 3.000
75th percentile 51.462 37.501 257.648 2.606 711.750 4.000

RH: Relative humidity, Temp.: Temperature in Celsius, WD: Wind direction, WS: Wind speed,
COVID-19 Cases: daily reported cases from Kuwait ministry of health

(rp = −0.49), indicating that as the value of relative humidity (RH) increases, number

of COVID-19 cases decreases. Moreover, a small effect of O3(rp = 0.25), CO(rp = 0.24),

PM10(rp = 0.18) and NO2(rp=0.22) was also observed on COVID-19 cases.

Additionally to the correlation analysis, regression analysis has been performed to

check how the pollutant and climatology variable are related to the COVID-19 cases.

Table 7.4 demonstrates the results of the linear regression analysis. The model so formed

by regression analysis was statistically significant (F (9,286) =29.16, p<0.01, R2=0.48).

The results reveal that the air pollutants O3 (β=7.70, S.E.=2.41, t= 3.20, p<0.05) and

CO (β=20.38, S.E.=4.88, t= 4.17, p<0.001) significantly and positively affect COVID-19

cases in Kuwait. It indicates that an augmentation in O3 and CO by 1 unit increases the

expected number of COVID-19 cases by 7.70 and 20.38 units respectively. Additionally,

the climatology parameters, temperature (β=17.38, S.E. = 2.73, t= 6.36, p<0.001) and

wind speed (β= -58.36, S.E.= 24.54, t= -2.38, p<0.05) also have shown significant effects

on COVID-19 cases. It implies that a one unit increase in temperature will increase the

expected COVID-19 cases by 17.38 units, whereas, a one unit increase in wind speed

will decrease the COVID-19 cases by 58.36 units on average.
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Table 7.3: Pearson’s Correlation test between the number of COVID-19 cases and air
pollutants in Kuwait during March 10, 2020, to December 31, 2020.

Variable O3 CO PM10 SO2 NO2 RH Temp WD WS
1. O3 –
2. CO -0.419*** –
3. PM10 0.124* 0.080 –
4. SO2 0.033 0.008 -0.044 –
5. NO2 -0.452*** 0.614*** -0.002 0.132* –
6. RH -0.491*** 0.228*** -0.228*** -0.391*** -0.027 –
7. Temp 0.461*** 0.009 0.292*** 0.124* 0.010 -0.753*** –
8. WD 0.026 -0.233*** 0.085 0.272*** -0.035 -0.411*** 0.134* –
9. WS 0.350*** -0.333*** 0.317*** -0.088 -0.492*** -0.139* 0.206*** 0.317*** –
10. COVID-19 Cases 0.248*** 0.235*** 0.182** 0.114 0.222*** -0.487*** 0.608*** 0.157** -0.025

* p < .05, ** p < .01, *** p < .001

Table 7.4: Regression Coefficients to estimate the influence from air pollutants toward
the changes in COVID-19 daily cases.

95% CI
Variable Unstandardised Standard Error Standardised t p Lower Upper
(Intercept) -494.427 182.605 -2.708 0.007 -853.847 -135.006
O3 7.699 2.408 0.200 3.197 0.002 2.959 12.438
CO 20.382 4.884 0.266 4.173 < .001 10.768 29.996
PM10 0.122 0.545 0.011 0.224 0.823 -0.951 1.195
SO2 -2.269 2.662 -0.043 -0.852 0.395 -7.510 2.971
NO2 1.852 1.404 0.087 1.319 0.188 -0.911 4.616
RH -0.344 1.337 -0.025 -0.257 0.797 -2.976 2.288
Temp 17.377 2.732 0.499 6.360 < .001 11.999 22.755
WD 0.991 0.285 0.195 3.483 < .001 0.431 1.551
WS -58.359 24.539 -0.140 -2.378 0.018 -106.659 -10.059

Note. Results: F(9,286) = 29.16, p < 0.001, R2 = 0.48

7.3.3 Results of Unit Root and Granger Causality test

The Granger Causality test has been conducted to check if the series of independent

variables is useful for making prediction or not. Results of the ADF Root Test, KPSS,

Phillips-Perron (PP), Lag selection criterion for the VAR model, and the Granger Causal-

ity test will be presented in the following subsection:

Results of the Unit-Root Tests

After acquiring the significant association results for some of the air pollutants and

climatology parameters with COVID-19 cases, VECM analysis has been carried out

to evaluate short and long term relationships of these variables with COVID-19. It

is necessary to perform stationarity tests on the time series data before performing

VECM analysis, as the non-stationary series may produce spurious regression results for

VECM (Asari et al., 2011; Latief et al., 2021). Therefore, tests have been performed for
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integrating properties of the series to check if the series are stationary at the original

level or not. To do this, the conventional Augmented Dickey-Fuller (ADF), and Phillips-

Perron (PP) and KPSS tests have been performed. Table 7.5 and Table 7.6 show the

results of the ADF test. Results of the PP test and KPSS test are demonstrated in

Table 7.7 and Table 7.8 respectively.

All variables are transformed in their log forms to mitigate inconsistency in the data

and ease interpretation of the results via elasticities:

ln COV ID19t =β0 + β1 ln[O3]t + β2 ln[SO2]t + εt. (7.1)

Table 7.5: ADF Root Tests with constant.

level First Difference
coefficient t-ratio p-value coefficient t-ratio p-value

Log(O3) -0.0708452 -1.854 0.3548 -0.373708 -5.953 7.67e-09***
Log(CO) -0.151600 -3.869 0.0023* -0.120178 -1.911 0.0570
Log(PM10) -0.401449 -5.633 8.68e-07*** -0.129774 -1.770 0.0778
Log(SO2) -0.235017 -4.358 0.0003*** -0.183925 -2.763 0.0061**
Log(NO2) -0.0768789 -2.393 0.1436 -0.253951 -4.118 5.01e-05***
Log(COVID-19 Cases) -0.0460937 -2.932 0.0417* -0.393289 -6.970 2.18e-11***

*Stationarity at 5% significance levels **Stationarity at 1% significance levels *** Stationarity at 0.1%
significance levels

Table 7.6: ADF Root Tests with constant and trend.

level First Difference
coefficient t-ratio p-value coefficient t-ratio p-value

Log(O3) -0.183827 -3.594 0.0303* -0.305549 -4.686 4.31e-06***
Log(CO) -0.247380 -5.165 8.51e-05*** -0.0613829 -0.9560 0.3399
Log(PM10) -0.427096 -5.832 2.93e-06*** -0.112507 -1.518 0.1300
Log(SO2) -0.235853 -4.362 0.0025** -0.183525 -2.752 0.0063**
Log(NO2) -0.184001 -4.066 0.0070** -0.187636 -2.938 0.0036**
Log(COVID19 Cases) -0.0382004 -2.171 0.5055 -0.403573 -7.036 1.47e-11***

*Stationarity at 5% significance levels **Stationarity at 1% significance levels *** Stationarity at 0.1%
significance levels

The ADF root test with constant shows that the time series for pollutants CO, PM10,

SO2 and the series of COVID-19 cases are stationary at the 5%-level, whereas the series

of O3 and NO2 were stationary at the first difference (see table 7.5). The results of the

ADF test with constant and trend demonstrate that the series of all the pollutants are
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Table 7.7: Unit root tests using KPSS with constant and trend.

level First Difference
coefficient t-ratio p-value coefficient t-ratio p-value

Log(O3) -0.00227119 -13.02 6.43e-31*** -8.82232e-05 -0.6322 0.5278
Log(CO) 0.00210608 10.56 2.53e-22** 6.37E-05 0.4359 0.6632
Log(PM10) -0.000566757 -3.161 0.0017** 9.78E-06 0.05286 0.9579
Log(SO2) 0.000286053 0.9786 0.3286 4.94E-05 0.2043 0.8383
Log(NO2) 0.00402837 14.63 8.82e-37*** 7.88E-05 0.3921 0.6953
Log(COVID19 Cases) 0.00685064 8.903 5.74e-17*** -0.000319900 -1.302 0.1940

*Stationarity at 5% significance levels **Stationarity at 1% significance levels *** Stationarity at 0.1%
significance levels. The KPSS test using the trend option rejects the hypothesis of trend stationarity at
the 5% significance level.

Table 7.8: Phillips-Perron (PP) Unit Root Test constant and trend.

constant trend
coefficient t-ratio p-value coefficient t-ratio p-value

Log(O3) 0.80646 22.523 2e-16** 6.76E-01 15.73 2e-16**
∆Log(O3) -0.301562 -5.398 1.4e-07** -0.3029678 -5.417 1.27e-07**
Log(CO) 0.32928 5.971 6.81e-09** 3.10E-01 5.567 5.87e-08**
∆Log(CO) -0.35475 -6.482 3.85e-10** -3.55E-01 -6.471 4.13e-10**
Log(PM10) 0.49101 9.655 2e-16** 4.74E-01 9.203 2e-16**
∆Log(PM10) -0.26979 -4.784 2.73e-06** -2.70E-01 -4.776 2.84e-06***
Log(SO2) 0.66515 15.129 2e-16** 6.64E-01 15.066 2e-16**
∆Log(SO2) -0.24294 -4.279 2.55e-05** -2.43E-01 -4.274 2.61e-05**
Log(NO2) 0.8495 27.27 2e-16** 7.28E-01 18.49 2e-16**
∆Log(NO2) -0.184247 -3.198 0.00153** -1.85E-01 -3.202 0.00152**
Log(COVID19 Cases) 0.9394 58.309 2e-16** 0.9354317 51.365 2e-16**
∆Log(COV ID19Cases) -0.29767 -5.327 1.99e-07** -0.306341 -5.489 8.81e-08**

*Stationarity at 5% significance levels **Stationarity at 1% significance levels *** Stationarity at 0.1%
significance levels, The null hypothesis of non-stationarity is rejected in all the cases, this shows that the
lagged series are stationary at 5% level of significance.

stationary at the original level, whereas the series of COVID-19 was stationary at the first

difference (see table 7.6). The results of the PP unit root test show that the series of all

the pollutant variables and COVID-19 cases are stationary at the original level as well as

on the first difference (Table 7.8). The results of the KPSS test show that the series of all

the pollutants (except SO2) and COVID-19 cases are non-stationary at the original level,

though all the series are found to be stationary at the first difference. Additionally, the

plots of the sample autocorrelation function (SACF) and sample partial autocorrelation

function (SPACF) for the residuals are shown in Figure 7.1. From the figures, there are

spikes at lag 22 in both SACF and SPACF indicating significant correlation between

residuals.
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Figure 7.1: Log COVID-19 Kuwait daily cases, first difference, SACF and SPACF of the
residuals of the multivariate model.

Estimation of VAR Model

After checking the stationarity of the series, the next step is to determine the number of

optimal lags. To choose the number of lags that need to be included in the VAR model,

the VARselect function has been taken into consideration. This function calculates four

different information criteria across a number of different lags (up to a maximum specified

within the function) and chooses the lag that has the lowest information criteria for each
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of the four statistics. The asterisk symbol indicates the best values under the respective

information criteria, AIC = Akaike criterion, BIC = Schwarz Bayesian criterion and

HQC = Hannan-Quinn criterion. Table 7.9 and Table 7.10 illustrate the results of these

lag order statistics. The Akaike information criteria statistics suggests that the optimal

lag order for the model is 2.

Table 7.9: Lag selection criterion VAR Test using constant model with the endogenous
series Log(COVID-19 Kuwait), Log(O3), Log(SO2), Log(NO2), Log(CO).

lags loglik p(LR) AIC BIC HQC
1 85.07777 -0.305516 0.236896* -0.088003*
2 135.59486 0.00000 -0.408474* 0.598862 -0.004521
3 166.70389 0.00429 -0.373786 1.098474 0.216606
4 194.71554 0.01782 -0.317131 1.620053 0.459701
5 227.19868 0.00217 -0.292189 2.10992 0.671083
6 250.20871 0.12236 -0.200062 2.666971 0.94965
7 277.22468 0.02721 -0.136345 3.195612 1.199806
8 292.43136 0.73111 0.011125 3.808007 1.533716
9 316.40908 0.08782 0.09639 4.358196 1.80542
10 339.38759 0.12365 0.18874 4.915471 2.084211

*Stationarity at 5% significance levels ** Stationarity at 1% signifi-
cance levels.

Table 7.10: Lag selection criterion VAR Test using trend model with the endogenous
series Log(COVID-19 Kuwait), Log(O3), Log(SO2), Log(NO2), Log(CO).

lags loglik p(LR) AIC BIC HQC
1 119.82876 -0.520498 0.109137* -0.267836*
2 172.34973 0.00000 -0.640215* 0.461646 -0.198057
3 196.71379 0.07647 -0.555897 1.01819 0.075758
4 217.67414 0.22951 -0.446914 1.599399 0.374237
5 241.60391 0.08932 -0.359449 2.159091 0.651199
6 270.35655 0.01286 -0.306932 2.683834 0.893213
7 299.06562 0.01311 -0.254099 3.208893 1.135542
8 317.95827 0.38768 -0.130132 3.805086 1.449005
9 346.78133 0.01246 -0.078126 4.329319 1.690508
10 370.4986 0.09622 0.01088 4.89055 1.96901

*Stationarity at 5% significance levels ** Stationarity at 1% significance levels.
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Johansen Cointegration Tests

The Johansen cointegration test has been performed to check the long term relationship

among the variables. In order to explain the long term relationships among the variables

is necessary to conduct VECM analysis. The Johansen cointegration test fails to reject

the null hypothesis saying there is no level of cointegration (r = 0, trace test=130.71,

p = 0.00). This reveals that there exists at least one level of cointegration equation,

which indicates that the variables have a long-term relationship. Further, the results of

the cointegration test show that there exist at most two levels of cointegration (r ≤ 1,

trace test=83.29, p=0.00) between the times series of Log(COVID-19 Kuwait), Log(O3),

Log(SO2), Log(NO2), Log(CO) (Table 7.11). Overall, it can be concluded that there is

a long-term stationary equilibrium between the daily admitted COVID-19 cases and air

pollution levels.

Moreover, Engle and Granger (1987) suggested a two step process to test the coin-

tegration (an OLS regression and a unit root test). According to Engle and Granger

(1987), if a set of variables are cointegrated, then there exists a valid error correction

representation of the data, and vice-versa. Therefore, an analysis of OLS regression and

the error correction model has been performed to test the cointegrating relationship (r

= 2) in a system of k = 2, I(1) variables. The results of cointegration regression analysis

(Table 7.12) and the error correction model (Table 7.13), confirm that there is a long

term relationship between the series Log(COVID-19 Kuwait), Log(O3), Log(SO2), and

Log(CO). Figure 7.2 shows the simultaneous variation of Log(COVID19) with Log(CO),

Log(NO2), Log(O3), Log(SO2), Log(PM10) and Log(Humidity).
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Figure 7.2: Daily time series for Log COVID-19 (Kuwait) compared with Log(O3),
Log(SO2), Log(NO2), Log(CO) and Log(PM10).

7.3.4 Determination of Optimal VAR

Table 7.14 and Table 7.15 show the results of VECM analysis with restricted constant

and restricted trend respectively. The analysis demonstrated that the past COVID-19

cases, and the pollutants O3 and SO2 significantly affect the future COVID-19 cases in

Kuwait. The value of EC1 is negative and significant, which indicates the existence of a
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Table 7.11: Johansen Test for selecting the best cointegration rank (r) that reflects linear
combinations of underlying series to form a stationary series for Log(COVID-19 Kuwait),
Log(O3), Log(SO2), Log(NO2), Log(CO) and Log(PM10). The asterisk reflects the best
cointegration rank which is at r = 1.

Rank Eigenvalue Trace test p-value Lmax test p-value
r = 0 0.14989 130.71 0.0000 47.419 0.0041
r ≤ 1∗ 0.1231 83.29 0.0023 38.359 0.0105
r ≤ 2 0.06056 44.931 0.0907 18.242 0.4872
r ≤ 3 0.047901 26.689 0.1122 14.333 0.3519
r ≤ 4 0.031223 12.356 0.1417 9.2624 0.2710
r ≤ 5 0.010538 3.0933 0.0786 3.0933 0.0786

Table 7.12: Cointegration regression for the series Log(COVID-19 Kuwait), Log(O3) and
Log(SO2) with constant and trend.

coefficient std. error t-ratio p-value
const -3.21775 0.824189 -3.904 0.0001**
∆Log(O3) 2.09399 0.224713 9.318 2.99E-18***
∆Log(SO2) 0.307531 0.134071 2.294 0.0225*
time 0.0115185 0.000844428 13.64 4.09E-33***

Dependent variable is Log(COVID-19 Kuwait), * Stationarity at 5%
significance levels ** Stationarity at 1% significance levels *** Sta-
tionarity at 0.1% significance levels. R-squared = 0.409, Adjusted R-
squared = 0.403, Akaike criterion = 833.977.

long-run causality of the future COVID-19 cases with the past COVID-19 cases.

Sometimes it is difficult to directly observe the relations between the variables in a

VAR model from the parameter matrices. In that case, Impulse Response Functions

(IRF) have been implemented as a tool for interpreting the VAR model (Lütkepohl,

2010). The impulse response function shows the changes in a variable over a period

of time, when a shock is given to the other variable. In IRF, a shock was given to

the pollutant variables CO, SO2, O3 and COVID-19 and its impact was observed on

COVID-19 (Figure 7.3) through the fitted VAR model. Figure 7.3 illustrates that a

shock to the SO2 and O3 impacts the future value of COVID-19 in a positive manner

in the longer run period. It is difficult to conclude directly from Figure 7.3 whether the
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Table 7.13: Estimates from the Error Correction Model for the series Log(COVID-19
Kuwait), Log(O3) and Log(SO2) with constant and trend.

Residual coefficient std. error t-ratio p-value
uhat_1 -0.137586 0.0315632 -4.359 0.0256*
d_uhat_1 -0.186812 0.056996 -3.278 0.0012**

AIC: 437.476 BIC: 444.843 HQC: 440.426,* Stationarity at 5% significance levels **
Stationarity at 1% significance levels *** Stationarity at 0.1% significance levels. Sta-
tionarity test statistic: tau_ct(3) = -4.35906, asymptotic p-value 0.02562, 1st-order
autocorrelation coeff. for e: -0.029.

Table 7.14: VECM Equation d_l_KWT_Cases with restricted trend, lag order = 2,
cointegration rank order = 3.

Coefficient Std. Error t-ratio p-value
const -0.016889 0.318250 0.053 0.9577
∆log(COV ID19) 0.273270 0.055023 4.966 <0.0001 ***
∆log(O3) 0.242484 0.108913 2.226 0.0268 **
∆log(SO2) 0.124354 0.062629 1.986 0.048**
EC1 -0.073499 0.019090 -3.850 0.0001 ***
EC2 0.090969 0.099738 0.912 0.3625
EC3 0.061642 0.051422 1.199 0.2316

Mean dependent var 0.015501 S.D. dependent var 0.360049
Sum squared residuals 32.03256 SS.E. of regression 0.334667
R-squared 0.156664 Adjusted R-squared 0.136023
rho -0.030311 Durbin-Watson 2.046586

changes in impulse response functions are significant or not, as the error margin (shown

with dotted lines) is very high. Moreover, a current shock to the CO and COVID-19

indicate no long run impact on the future values of COVID-19.

Figure 7.4 illustrates the result of Forecast Error Variance Decomposition (FEVD).

It can be observed that COVID-19 itself influences the future error forecast variance of

COVID-19. Moreover, a small effect of O3 can be observed on the future error forecast

variance of COVID-19. The effects of CO and SO2 have not shown any influence on

COVID-19 cases. Therefore, it can be concluded that the future value of COVID-19 will

only be affected by O3 and past cases of COVID-19 itself.
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Table 7.15: VECM Equation d_l_KWT_Cases with restricted constant, lag order = 2,
cointegration rank order = 3. Note that: * p < .05, ** p < .01, *** p < .001.

Coefficient Std. Error t-ratio p-value
∆log(COV ID19) 0.278729 0.054523 5.112 < 0.0001 ***
∆log(O3) 0.222039 0.103087 2.154 0.0321 *
∆log(SO2) 0.126831 0.062415 2.032 0.0431 *
EC1 -0.065624 0.015564 4.216 < 0.0001 ***
EC2 0.046889 0.065545 0.715 0.475
EC3 0.062704 0.051343 1.221 0.223

Mean dependent var 0.015501 S.D. dependent var 0.360049
Sum squared residuals 32.07109 SS.E. of regression 0.334284
R-squared 0.157217 Adjusted R-squared 0.139598
rho 0.031156 Durbin-Watson 2.038010

Figure 7.3: Impulse Responses
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Figure 7.4: Forecast Error Variance Decomposition (FEVD).

Figure 7.5 shows the future trend of COVID-19 by using VECM. From Figure 7.5, it

can be observed that the forecasted value shows a linear trend and the predicted value
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lies within the 95% confidence interval.
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Figure 7.5: Forecasting COVID-19 cases using VECM.

7.4 Conclusion and Recommendations

The primary goal of the current study is to look into the association between changes

in daily admitted COVID-19 cases and air pollution levels during the Corona pandemic

from March to December 2020. Based on a descriptive analysis of the variables, the

association between air pollutants (O3, SO2, NO2, CO, and PM10) and daily admit-

ted COVID-19 patients has been established, and this is consistent with the literature

reviewed. This research used the vector error corrected model (VECM) with the cointe-

gration technique to look at the long and short run association between the effect of air

pollution (O3, SO2, NO2, CO, and PM10) and the daily admitted COVID-19 cases. We

discovered that for COVID-19 patients, a greater AQI was linked to a higher number of
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hospitalisations.

When the health variables were examined, it was shown that the majority of the

people infected with COVID-19 were already exposed to air pollution because Kuwait’s

regions have significant pollution rates. The biggest cause of pollution has been air

pollutants emitted by cars and businesses (Hamoda et al., 2022). COVID-19 impacts

the human respiratory system, and people who are already susceptible to respiratory

disease have a propensity to be affected by the pandemic (Domingo and Rovira, 2020).

COVID-19’s lockdown paralysed human activities, mostly involving vehicle usage and

public transportation, as well as industrial processes (Pata, 2020; Gautam, 2020; Shehzad

et al., 2020). The importance of air pollution and COVID-19 has been demonstrated

in numerous researches. The spread of COVID-19 has been found predominant through

airborne bio-aerosol droplets together with various aspects of urban air pollution (Fareed

et al., 2020). Past exposure to air pollution has led to an increase in the cases of

COVID-19. The ability to transfer these viruses is demonstrated by air pollution. We

approximated the error correction model based on the VECM procedure to obtain short-

term coefficients after investigating the long-term findings. The results show that while

O3 and SO2 have an increasing short-term effect, they have a long-term positive effect

on the daily admitted COVID-19 cases. The error correction term (ECT) is statistically

significant and has a negative value, indicating that a deviation from the long-term

equilibrium will be repaired. The findings show that the short-term coefficients of O3

and SO2 are lower than the long-term coefficients.

Our research has several limitations. We have to revert to the air quality index as a

measure of air pollution level due to inadequate reporting on certain pollutants. This,

however, may obscure the impact of certain contaminants on the number of hospitalisa-

tions. Furthermore, because our estimates focused on a single link between factors, any

ascribed cost estimation should be cautiously approached. Other aspects, such as hu-

midity, wind speed, and seasonality level, may need to be adjusted in the model (winter,

autumn, spring and summer). However, because their data was not available or valid in

this study, we did not adjust for them.
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Other time series methods, such as the vector autoregression (VAR) model, which is

one of the most effective, flexible, and user-friendly models for multivariate time series

analysis, could be recommended for future investigations. The basic model for studying

a stationary time series in terms of two polynomials is the autoregressive-moving aver-

age (ARMA) process. Other multivariate time series analysis techniques include Vector

Autoregression Moving-Average (VARMA), VARMAX (VARMAX with Exogenous Re-

gressors), and Holt Winter’s Exponential Smoothing (HWES). A spatial multivariate

time series approach could be used to assess the distance between the location of a job

or a living area and a pollution source.
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Chapter 8

Discussion and Conclusion

8.1 Overview

Air pollution is presently the world’s single, largest, environmental health risk (WHO,

2014a). Furthermore, air pollution and climate conditions influence the trends of vi-

ral respiratory illness epidemics by altering host immunity and virus survival period

(Mirsaeidi et al., 2016). It has long been established that the exposure of atmosphere

particles to ambient air pollutants (O3, SO2, NO2, CO, and PM10) is closely connected

to the incidence and mortality rate of respiratory disorders (WHO, 2014c; as cited in:

(Ferreira et al., 2016; Li et al., 2021; Sacramento et al., 2020; Rodríguez-Camargo et al.,

2020). These elements have also been identified as the most important environmental

predictors of sicknesses such as Middle East Respiratory Syndrome (MERS) and Severe

Acute Respiratory Syndrome (SARS) as well as premature death in humans.

Studies in a variety of contexts using an array of different methods and approaches

have consistently shown that air pollution correlates with a wide range of health ef-

fects. This thesis contains a collection of papers covering several research topics with

differing strategies for analysis and designs. Individual papers discuss the findings of

the investigations in depth within the context of the contemporary literature. Difficul-

ties in interpreting, conducting, analysing, and even presenting studies of air pollution’s

health effects provide a perspective for the discussions. An explanation of the well-known

258



approach for modelling multivariate time series analysis using a vector error corrected

model to examine the relationship between air pollution and health outcomes over time

provides additional perspective.

8.2 The Characteristics of Air Pollution in Kuwait

In the first part of this thesis we explored the characteristics of air pollution in Kuwait

from 2012 to 2017 using hourly data from ten fixed stations distributed throughout

Kuwait. Specifically eight air pollutants were of interest: O3, NO, NO2, NOx, SO2, CO,

NMHCs, and PM10. The results of various statistical tests regarding the measurements

of these pollutants led us to formulate the following conclusions:

- The daily SO2, NO2 and PM10 concentrations exceeded the corresponding thresh-

olds or permissible limits defined by the K-EPA in the residential areas.

- The comparison results for the industrial areas indicated significant differences

among the air pollutants. The daily SO2, NO2 and NOx concentrations exceeded

the K-EPA standard values only in the SUK area, whereas PM10 concentrations

exceeded the K-EPA threshold value at all industrial sites.

- The concentrations of all pollutants in residential areas resulted from high levels of

industrial and vehicular emissions in nearby areas and depended on meteorological

conditions (PM10 and NOx).

- A strong interdependence occurred between NOx (NO and NO2), indicating the

high oxidation reaction. Relatively high correlation occurred between climatology

variables (e.g., temperature and humidity) and air pollutants (e.g., O3 and CO).

Increase in ozone levels could lead to more respiratory illnesses.

- Concentrations of different pollutants varied by seasons, where the NO, NO2 and

NOx concentrations were very high in winter, while the O3 concentrations were

high during the first intermonsoon season, peaking in summer (July).
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The State of Kuwait faces a growing risk of health-related problems due to the poor

air quality originating from its various industrial and domestic activities (Al-Hurban

et al., 2021). Dust from adjacent deserts collects both living (biogenic) and non-living

(chemical) constituents as it passes through areas with industrial emissions. Regular

monitoring and careful statistical examination of all measured air pollutants could help

in maintaining a clean healthy environment and resolving pollution-related problems in

a timely manner.

8.3 The Relation Between RA and Ambient Air Pollution

In the second part of this thesis we demonstrated and explained the relationship between

ambient air pollution and patients’ Rheumatoid Arthritis (RA) Disease Activity Scores

using an index with 28 joints (DAS28) and the Clinical Disease Activity Index (CDAI).

With this knowledge, we used Generalised Additive Models (GAMs) to estimate the risk

of developing RA due to air pollution (Alsaber et al., 2020). Our findings have significant

implications on the relationship between increased concentrations of SO2 and NO2 air

pollutants and RA disease activity, with lesser implications on that of O3 and CO.

Particularly regarding SO2 and NO2, our results show that increased concentrations

of these pollutants may increase the risk of developing RA disease activity, as measured

by both the DAS28 and CDAI. These results offer significant support to those of other

studies regarding SO2 and NO2 (Hart et al., 2013b,a).

Regarding O3, and CO, our results using the DAS28 do not support those of a

study from Korea that found an increased risk for developing RA in adults exposed

to increased O3 and CO concentrations (Shin et al., 2019). However, our results offer

partial support when using the CDAI, which do indicate that O3 in addition to SO2

and NO2 as reported above, but not CO, is a statistically significant risk factor for

predicting RA disease activity.

Regarding PM10, our results agree with the consensus of the literature that has not

established a link between PM10 and RA disease activity (Hart et al., 2013b,a; Shin
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et al., 2019). This reflects our results using both the DAS28 and CDAI measurements.

Generally, the major sources of air pollutants in Kuwait are oil refineries, traffic, and

power plants, mostly using fossil fuels. These are also thought to be the main sources

of SO2 and NO2 in Kuwait City (Al-Awadhi, 2014). Additionally, the most prevalent

pollutants generated from road transport are NO2, CO, SO2, volatile organic compounds

(VOCs), and particulate matter (Hankey et al., 2012).

With a population of over four million people and a fleet of more than two million

vehicles both growing rapidly, Kuwait is experiencing increases in traffic volume, trip

frequency, and trip length (Al-Mutairi et al., 2009), causing the poor air quality to be-

come an increasingly major concern, especially for people living in Kuwait City. Kuwait

is a relatively small country for such a high quantity of fixed and especially mobile

sources of different pollutants affecting air quality. Automobiles are particularly respon-

sible for VOCs and NO2 emissions, whereas power stations and water distillation plants

using fossil fuel combustion to support Kuwait’s oil exports are liable for the elevated

atmospheric SO2 concentrations (Al-Awadhi, 2014).

8.4 Dealing with Missing Data

Missing data, on the other hand, can cause a variety of issues in statistical modelling. To

begin with, the lack of data diminishes statistical power, which refers to the likelihood

that the test will reject the null hypothesis if it is wrong. Second, missing data can lead

to parameter estimation bias. Third, it may reduce the sample’s representativeness.

Fourth, it may make the study’s analysis more difficult. Each of these inaccuracies can

jeopardise the trial’s legitimacy and lead to erroneous results (Kang, 2013), therefore

it is important to consider factors that may potentially facilitate missing data before

beginning research (Graham, 2012). In doing so, researchers can measure these factors

influencing data missingness and do extensive analysis.
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8.4.1 Dealing with Missing Data - Air Pollution Data

In chapter 4 we presented several advanced statistical approaches relating to deep learn-

ing machines prepared for treating missing observations. Many contributions have been

made to this discipline, such as in environmental science (Junninen et al., 2004; No-

razian et al., 2008; Plaia and Bondi, 2006; Kabir et al., 2019), statistics (Di Zio et al.,

2007; Huisman and Krause, 2018), and medicine (Sartori et al., 2005; Branden and Ver-

boven, 2009). In environmental science imputation refers to a statistical process for

giving inferential figures to all missing data by utilising prior information from other

factors. Once a nascent process, as more people have become knowledgeable about im-

putation algorithms, inquisitiveness regarding the methodology has increased, leading

to the invention of more and more sophisticated imputation methods. The existence

of these elaborate and efficient imputation algorithms has led to their extensive usage

around the world. However, the main challenge concerning imputed values is whether

to consider them as actual measurements, or to be handled with caution. In the field

of research, it is preferable to handle imputed data with great discretion. The use of

imputed figures as actual data may misguide researchers into potentially falsifying the

final results. Therefore, imputed values should be given low priority, and it is vital for

a researcher to assess the robustness of the associated data estimation when working

with imputed data. However, environmental information that relies on technological

processing and simulation remains a challenge.

Another approach to treating missing data is data ascription. A substantial quality

of ascription methods is that they are reliable and limited to one type of variable. This

variable may be considered as persistent or unmitigated. If the data type is mixed, the

method must deal with the different types of data separately. Ultimately, while reliable

for single-factor variables, these techniques ignore the potential associations between

different factor types. To avoid any bias and maximise model performance for accurate

estimation, it is essential when working with multi-factor variables to treat the missing

values and estimate them using information from other predictors before conducting any

statistical modelling or performing a time series analysis.
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A third approach to treating missing data is the missForest imputation method,

which has a consistent and comparatively lower imputation error (of 0.82) (Alsaber

et al., 2021b). The approach had a minimum root mean square error (RMSE) equal to

1.04. MissForest also exhibited the smallest prediction deviation for the imputed values

of pollutants. Furthermore, missForest simulation provides the most readily available

imputation method for missing values, as its freeware R package is freely available.

When compiling our report of the study, we utilised the missing at random (MAR)

tool, which assumes values of missing variables are not necessarily directly related to their

causes. This premise is essential for the development of a prototype of the observation

for the imputation of missing data. There was a possibility that the missing data was

not missing at random (MNAR). In such a case, the values of missing variables are

directly related to their causes. Distinguishing between MNAR and MAR would involve

a meticulous investigation of the data capturing process, and, if determined to be MNAR,

it can still be challenging to determine the actual missing data mechanism. Other

potential assumptions include Gaussian-distributed data, which also could have been

erroneous for some variables.

8.4.2 Dealing with Missing Data - KRRD Data

The process of estimating the missing data was repeated on data from the Kuwait Reg-

istry for Rheumatic Diseases (KRRD). We came to the same conclusion: MissForest

is a very accurate approach of missing data imputation in KRRD that surpasses other

standard imputation strategies, in terms of both minimising imputation error and main-

taining predictive performance in clinical models. This method can be used to maximise

the usefulness of data in registries, such as those for patients with RA (Alsaber et al.,

2021a). In general, our results show that MI using the MAR mechanism had the lowest

RMSE among the other missingness mechanism (MCAR or MNAR). Compared with

Complete Case Analysis (CCA), its effectiveness is due to MI’s use of information in

incomplete cases, while CCA is only valid in the case of MAR or MCAR data (Lit-

tle, 1992). In well-designed studies, such as clinical trials, MAR mechanisms are more
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common than MCAR, because in most cases, observable data explain most of the de-

ficiencies (Molenberghs and Kenward, 2007). However, the MI technique sometimes

presents challenges that prevent it from being the better method, even when the MCAR

or MAR mechanism holds. For example, a small sample size may minimise the accuracy

of MI (McKnight et al., 2007). Additionally, the utilisation of MI in longitudinal designs

with layered data may necessitate the use of alternate approaches (Enders, 2010, 2011;

Graham, 2012). Another challenge is that statistical packages vary in how easy it is to

merge variables and to conduct test statistics because sometimes this requires program-

ming knowledge. Even so, by providing numerous missing data methods, MI tends to

have the most benefit in the clinical surrounding.

Additionally, it also indicates the significance of having a comprehensive understand-

ing of the type and the effect of the missing data despite active handling of the data

to manage and estimate the missing values. It is also important to consider factors

that may potentially cause missing data before the beginning of the research (Graham,

2012). That way, researchers can measure these factors influencing data missingness and

do extensive analysis.

8.5 Time Series Modelling to Predict COVID-19 Cases using the

Information of Air Pollution

The main objective of this thesis has been to build a multivariate time series model to

measure the short- or long-term relationship between the effect of air pollutants (SO2,

NO2, CO, O3, and PM10) with chronic disease in Kuwait. As mentioned in chapter 1,

we first applied a multivariate time series Vector Error-Correction Model (VECM) to the

number of admitted hospital patients with COVID-19 to measure the causal relationship

of air pollution on the total number of hospital admissions. Secondly, we applied a VECM

multivariate time series model to forecast the short- and long-term association between

air pollution and patients with rheumatoid disease.

The VECM results showed that increasing the air quality index (AQI) had a signifi-
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cant and positive effect on increasing the admitted number of COVID-19 patients over

time, as with increased pollution came increased hospital admissions. The effect was not

immediate, however. The lags of the dependent variable showed significance until the

second lags, implying that there were long delays between an increased AQI particularly

for O3 and SO2 and an increased number of COVID-19 patients. The model revealed

that a shock intended to achieve long-term balance rectified approximately 7% of the

short-term imbalance in just one day. In the long term, boosting the AQI for O3 and

SO2 successfully increased the number of admitted COVID-19 patients.

The coefficient of the air pollution index was positive and significant for modelling

the number of hospitalised COVID-19 patients. This suggests that raising the AQI of

O3 and SO2 can increase the number of COVID-19 patients admitted to hospital. This

finding supports another study that found air pollution to have a significant impact on

COVID-19 infection and mortality rates (Frontera et al., 2021), and a third that used a

time series method to find upsurges of approximately 6% in daily COVID-19 associated

deaths daily to be significantly associated with large IQR increases in CO, NO2, and

PM2.5 (Dales et al., 2021).

8.6 Time Series Modelling to Predict RA Disease Activity Score

(DAS28) using the Information of Air Pollution

Chapter 6 examined the linkage between SO2, NO2, O3 and DAS28 scores for patients

with RA in Kuwait using the Granger causality test and the Impulse Response Func-

tions (IRFs) analysis. The Granger causality test analyses static causality using several

time series approaches, including the VECM; while the IRFs analyse dynamic causal-

ity. We also utilised a comprehensive conceptual framework, including a panel VECM,

cointegration test, and unit root test. The panel VECM provided data on the long-term

causation and asymptotic convergence among the variables. Our empirical outcomes

showed that NO2 and O3 are statistically significant in most of the study locations

(ASA, FAH, MAN and JAH) when the DAS28 was the dependent variable. The results
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demonstrate that the lagged Error Correction Term (ECT) coefficients in DAS28 and

air pollution emissions are statistically significant.

The results of the Granger causality test reinforced the hypothesis that NO2 and

O3 have a Granger causal relationship with DAS28 scores for RA in several residential

locations in Kuwait (Table 6.11), though the study did not discover evidence of Granger-

causality between SO2 and DAS28 in VECM models. However, the study did discover

that NO2 and O3 emissions in the environment have a Granger causal relationship with

DAS28 scores in the long term. These results agree with expectations of factory emissions

and are but an example of what is common to many underdeveloped and industrialising

countries (Hwang and Yoo, 2014).

The Johansen cointegration test gives long-term associations to explain the relation-

ship between air pollutants and DAS28, and it also provides the magnitude of correction

needed for long-term deviations. If the system assembles to a long-term equilibrium from

the short-term changes, the magnitude of the error correction term is also established

for the time series SO2, NO2, and DAS28. We employ cointegration and vector error

correction modelling to identify functional correlations, which we treat as endogenous

variables in our analysis. For the unit root test, we first utilised the Dicky-Fuller Coin-

tegration Regression test to rule out the existence of a unit root in the residuals. The

test statistic was within the acceptable region for the null of no unit root. Next, we

determined the number of cointegrating vectors using the Johansen trace test. For the

rank of the coefficient matrix, not only the null of zero was rejected, but also rank one

and two, instead, revealing that the rank should be three.

Although the VECM had confirmed the short- and long-term relationship of the

DAS28 scores and the pollutants of SO2, NO2, O3, this data has the potential of inad-

equately or only very feebly supporting the second integration relationship. To supple-

ment the data from the VECM, we also utilised a vector autoregressive (VAR) model to

analyse cointegration in the short- and long-term associations between SO2, NO2, O3

emissions and the DAS28. Consequently, we anticipate that our integrated analytical

approach increases the relevance of these studies to better understand the interaction
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between air pollution and rheumatoid arthritis disease progression.

The rise in the AQI for SO2, NO2 and O3 has a significant and positive impact on the

DAS28 in RA patients, and the lags of the dependent variable are significant until the

seventh lags, indicating that the increase in AQI affects patients, with extended delays.

Other elements like temperature, relative humidity, and windspeed do not appear to have

any impact on this relation. The error correction model revealed that in the event of a

shock, 33% to 37% of the short-term imbalance is rectified in order to achieve long-term

balance in just one day.

By comparison, in our previous study (Alsaber et al., 2020), we used numerous

regression models to explain the link between air pollutants and RA disease activity,

verifying that the link remained even after the addition of other highly significant RA

covariates for CDAI and DAS28 scores. Those findings supported other studies such as

Hart et al. (2013b) who explored the bearing of protracted exposure to air pollution on

the possibility of suffering RA, in the Swedish Epidemiological Investigation. While there

was no evidence of a link between PM10 exposure and an increased risk of RA in that

study, and while the overall risks of gaseous pollutants on RA were somewhat elevated,

they were not statistically significant after controlling for the variables of education and

smoking.

In contrast, the results of this thesis established significant implications of a greater

risk of RA incidence following elevated levels of NO2 and SO2. However, the negative,

one-lag error correction terms demonstrated a cointegrated association of the model’s

variables, meaning the variables had a different impact on DAS28 scores in the short-

term as compared to the long-term. Although O3 and NO2 have a negative impact on

DAS28 in the long-term, they have a favourable impact in the short-term, particularly

so in the ASA and MAN locations. Conclusively, the VECMs confirm that for both

short- and long-term equilibrium, O3 and NO2 both have causal effects on the DAS28

for RA patients who are living in residential areas surrounded by the sources of these

pollutants.
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8.7 Conclusion of the Study

8.7.1 Limitation of the Study

This study has several limitations. Firstly, there was a very limited number of published

articles discussing the relation between air pollution and rheumatology disease using the

CDAI and DAS28, so we have little with which to compare our findings. This, however,

gives our study additional value, as future research can contribute to the literature

by putting our findings to further test. Secondly, we acknowledge that two significant

drawbacks of our study are that we did not measure PM2.5 which has well-documented

links to health hazards and that more than 60% of our total daily recordings had missing

values. However, the latter allowed us to test various VECMs to provide additional data

regarding their reliability and limitations to the available literature. Concerning the

former, additional studies should take particle matter into account to help ascertain

a more well-rounded perspective of our findings. Thirdly, in order to establish a link

between specific RA patient’s records and the data on air pollutants where they live,

we encountered difficulties in linking some of them due to patients who have multiple

addresses. Because of this, we were forced to exclude them from the study, limiting our

sample size. However, we believe that we maintained a robust sample of RA patients

within our study, and that it is approximately indicative of the population of patients

with RA within Kuwait at large. Finally, we unfortunately were not able to use mobile

labs to measure the daily observation of air pollutants in some residential locations close

to main hospitals in Kuwait. This forced us to gather air pollution data from fixed

monitoring stations, most of which are far away from patients’ residences. The reason

for this was due to the study’s financial costs, which were not funded by any institute or

government organisations, but rather all borne by the primary author. Moreover, this

prevented us from using VECM to modify a selection of co-variates in the multivariate

time series, such as including humidity, wind speed, and wind direction. We did not

adjust for them in our study because their data was not accessible per study location or

was not genuine.
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Ultimately, Johansen’s technique gives long-term associations as well as the magni-

tude of correction needed if the system diverges from the long-term association. If the

system converges to a long run equilibrium from short term changes, it also outlines the

degree of the error correction term. For the time series SO2, NO2, O3, and DAS28, we

employ vector error correction modelling and cointegration to identify functional corre-

lations. They are treated as endogenous variables in our analysis. To test for a unit

root, we first utilised the cointegration Regression Dicky Fuller test. In the residuals,

the test statistic rules out the existence of a unit root. For the null of no unit root, the

test statistic is within the acceptable range. The number of cointegrating vectors was

determined using the Johansen trace test. For the rank of the coefficient matrix, those

rejected included the null of zero and one or two.

8.7.2 Recommendation and Suggestions

The findings of our research lead to certain recommendations and policy suggestions

that can be offered to the Kuwaiti government. Firstly, there are a variety of policy

solutions that can aid in the reduction of emissions. One of them is the imposition

of pollution taxes. Another strategy to help reduce air pollution levels is to enhance

the role of renewable and clean energy consumption, specifically nuclear energy, and of

energy efficiency. Besides this, significant variables that control the association between

disease activity and air pollution, such as economic output, could be measured by GDP

per capita or energy use per capita. Additionally, a spatial method could be used to

assess the distance between a residence or workplace and a pollution source.

Suggestions for future research could be the use of novel time series methodology

based on machine learning or artificial intelligence with deep learning processes, such

as the deep recurrent neural network (DRNN) model, or hybrid deep neural network

(HDNN) framework, which is one of the most successful at predicting air pollution

(Bhanja and Das, 2021). The Artificial Neural Networks (ANNs) are machine learn-

ing approaches, and their basic idea involves constructing a model for mimicking the

intelligence of human brain within a machine.
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In fact, we highly recommend scholars and researchers consider deep learning for

predicting air pollution and any other type of disease activity. With the fast application

and development of the sensor technology, air quality prediction is becoming more and

more reliant on a variety of sensors and data acquisition equipment to collect large

volumes of urban air data regarding pollutants and other factors, such as PM2.5, NO2,

PM10, traffic data, and weather data. Because classic, shallow learning models are

limited in their ability to handle large amounts of data, new air quality forecasting

methods require data-driven model support (Zhou et al., 2015; Zheng et al., 2013). We

highly recommend implementing intelligent computation to predict air pollution and its

effect on disease activity scores. In addition, we highly recommend using the Kalman

filter to estimate a smoothed trend line through time series consisting of one observation

per time point, such as day, month or year. This method depends on a deep learning

approach based on structural time series models in combination with the Kalman filter.

This is very useful when dealing with missing data to fill long periods of missing values

for meteorological observation data (Xie et al., 2021; Hadeed et al., 2020; Afrifa-Yamoah

et al., 2020).

Conclusively, the VECM confirms for long and short run equilibrium that there are

causal effects from O3 and NO2 toward disease activity score for RA patients who are

living in a residential area surrounded by the sources of pollutants.
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Appendix A

Air Pollution Comparisons

A.1 Air Pollutants’ Comparison between Industrial & Residen-

tial Stations

Table A.1: Comparison between Industrial Stations using ANOVA test.

MUT SUB SUK p-Value NN = 1772 N = 1093 N = 1788

O3 (ppm) 0.026 (0.012) 0.019 (0.023) 0.023 (0.011) <0.001 4595
NO2 (ppm) 0.024 (0.012) 0.018 (0.018) 0.030 (0.012) <0.001 4634
NOx (ppm) . (.) 0.035 (0.046) 0.052 (0.034) <0.001 2783
NO (ppm) 0.012 (0.008) 0.016 (0.031) 0.021 (0.025) <0.001 4432
W.S. (ppm) 2.938 (1.814) 3.354 (2.607) 1.974 (0.727) <0.001 4498
SO2 (ppm) 0.004 (0.002) 0.020 (0.032) 0.008 (0.006) <0.001 4572
CO (ppm) 0.882 (0.345) 0.775 (0.538) 0.358 (0.327) <0.001 4649
C6H6 (ppm) . (.) 0.001 (0.002) 0.002 (0.002) <0.001 1339
PM10 (g/m3) 0.259 (0.358) 0.128 (0.189) 0.199 (0.194) <0.001 2504
NMHC (ppm) 0.473 (0.174) 0.602 (2.488) 0.305 (0.204) <0.001 3894
Temperature 26.985 (10.260) 23.421 (8.806) 30.323 (9.883) <0.001 4498
RH 29.364 (17.491) 47.913 (25.320) 33.030 (18.703) <0.001 4476
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Appendix B

Missing Imputation Results

B.1 Figures
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Figure B.1: Missing values for air quality pollutants from 2012 to 2017 per fixed station.
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Figure B.2: Missing values for air quality pollutants from 2012 to 2017 per year.
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Figure B.3: Missing value patterns for air quality measurements from 2012 to 2017. Left:
Frequency of missingness in each variable. Right: Observed missingness patterns in the
data set. The least frequent occurring patterns are located at the top of the plot, with
gradually increasing frequency towards the bottom. The y-axis shows the proportion of
Non-Missing(Blue) and Missing(Yellow) values.
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Figure B.4: Distribution analysis for PM10, SO2, O3, CO, and NO2 during 2012 to 2017,
according to site location in the State of Kuwait. It is very obvious that log transforma-
tion fixes the distribution shape for all pollutants. This step is very important—that is,
normalizing the skewed data, such that they approximately conform to normality—in
order to use them in the imputational calculation for more accurate results (Changyong
et al., 2014).
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Figure A.4. Mean RMSE and MAE results for the KEPA data, in order to estimate missing values for
Figure B.5: Mean RMSE and MAE results for the Kuwait Environmental Public Au-
thority (KEPA) data, in order to estimate missing values for SO2, NO2, CO, and O3
after eliminating PM10 due to a high level of missing values. Results are shown for
MCAR (left), MAR (middle), and MNAR (right) data.
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Figure B.6: Inspecting the trace line convergence levels using an iterative Markov Chain–
Monte Carlo type of algorithm with respect to the imputed means and standard devi-
ations for PM10, CO, and temperature. These trace plots show the imputed value
summaries for all imputed data sets with m = 20 after applying 10 iterations, in order
to reach to the convergence level of stability.
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Figure B.7: Inspecting the trace line convergence levels using an iterative Markov Chain–
Monte Carlo type of algorithm with respect to the imputed means and standard devia-
tions for SO2, NO2, and O3. These trace plots show the imputed value summaries for
all imputed data sets with m = 20 after applying 10 iterations, in order to reach to the
convergence level of stability. Each colour in the graph represents an imputed data set,
where the x-axis represents the number of iterations implemented during the imputa-
tional calculation and the y-axis represents the mean (left-side) and standard deviation
(right-side) of the imputed values only.
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Figure B.8: Density plots with multiple imputations for SO2, NO2, PM10, CO, and O3
data. The blue line represents the observed data and the red lines are the density plots
of the 20 imputed data sets. As we can see, in all density plots, the red lines almost
match the blue line (the observed data), which is an indication of matching between the
observed and imputed values.
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Appendix C

Normality Assessment
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(a) SO2 measured in FAH location before Box-Cox trans-
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Figure C.1: Normality plots (Q-Q plot, P-P plot, Histogram and CDF plot) for SO2 be-
fore and after the Box-Cox transformation, it is obvious that the Box-Cox transformation
enhances the normality performance for SO2 in FAH location.
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(a) NO2 measured in FAH location before Box-Cox trans-
formation
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Figure C.2: Normality plots (Q-Q plot, P-P plot, Histogram and CDF plot) for NO2 be-
fore and after the Box-Cox transformation, it is obvious that the Box-Cox transformation
enhances the normality performance for NO2 in FAH location.
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(a) O3 measured in FAH location before Lambert S trans-
formation

Empirical and theoretical dens.

Data

D
en

si
ty

−10 0 10 20 30 40

0.
00

0.
01

0.
02

0.
03

0.
04

−20 0 20 40

−1
0

0
10

20
30

40

 Q−Q plot

Theoretical quantiles

Em
pi

ric
al

 q
ua

nt
ile

s

−10 0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

Data

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities

Em
pi

ric
al

 p
ro

ba
bi

lit
ie

s

O3, Location = FAH

(b) O3 measured in FAH location after Lambert S trans-
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Figure C.3: Normality plots (Q-Q plot, P-P plot, Histogram and CDF plot) for O3 before
and after the Lambert S transformation, it is obvious that the Lambert S transformation
enhances the normality performance for O3 in FAH location.
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(a) SO2 measured in JAH location before Yeo-Johnson
transformation
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(b) SO2 measured in JAH location after Yeo-Johnson
transformation

Figure C.4: Normality plots (Q-Q plot, P-P plot, Histogram and CDF plot) for SO2
before and after the Yeo-Johnson transformation, it is obvious that the Yeo-Johnson
transformation enhances the normality performance for SO2 in JAH location.
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(a) NO2 measured in JAH location before Yeo-Johnson
transformation
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(b) NO2 measured in JAH location after Yeo-Johnson
transformation

Figure C.5: Normality plots (Q-Q plot, P-P plot, Histogram and CDF plot) for NO2
before and after the Yeo-Johnson transformation, it is obvious that the Yeo-Johnson
transformation enhances the normality performance for NO2 in JAH location.
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(a) O3 measured in JAH location before Lambert S trans-
formation
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(b) O3 measured in JAH location after Lambert S trans-
formation

Figure C.6: Normality plots (Q-Q plot, P-P plot, Histogram and CDF plot) for O3 before
and after the Lambert S transformation, it is obvious that the Lambert S transformation
enhances the normality performance for O3 in JAH location.
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(a) SO2 measured in MAN location before Log transfor-
mation
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(b) SO2 measured in MAN location after Log transfor-
mation

Figure C.7: Normality plots (Q-Q plot, P-P plot, Histogram and CDF plot) for SO2 be-
fore and after the Log transformation, it is obvious that the Log transformation enhances
the normality performance for SO2 in MAN location.
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(a) NO2 measured in MAN location before Yeo-Johnson
transformation

Empirical and theoretical dens.

Data

D
en

si
ty

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0 2 4 6

1
2

3
4

5
6

 Q−Q plot

Theoretical quantiles

Em
pi

ric
al

 q
ua

nt
ile

s

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

Data

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities

Em
pi

ric
al

 p
ro

ba
bi

lit
ie

s

NO2, Location = MAN

(b) NO2 measured in MAN location after Yeo-Johnson
transformation

Figure C.8: Normality plots (Q-Q plot, P-P plot, Histogram and CDF plot) for NO2
before and after the Yeo-Johnson transformation, it is obvious that the Yeo-Johnson
transformation enhances the normality performance for NO2 in MAN location.
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(a) O3 measured in MAN location before Lambert S trans-
formation
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(b) O3 measured in MAN location after Lambert S trans-
formation

Figure C.9: Normality plots (Q-Q plot, P-P plot, Histogram and CDF plot) for O3 before
and after the Lambert S transformation, it is obvious that the Lambert S transformation
enhances the normality performance for O3 in MAN location.
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(a) SO2 measured in MUT location before Yeo-Johnson
transformation
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(b) SO2 measured in MUT location after Yeo-Johnson
transformation

Figure C.10: Normality plots (Q-Q plot, P-P plot, Histogram and CDF plot) for SO2
before and after the Yeo-Johnson transformation, it is obvious that the Log Transform
transformation enhances the normality performance for SO2 in MUT location.
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(a) NO2 measured in MUT location before Log transfor-
mation
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(b) NO2 measured in MUT location after Log transfor-
mation

Figure C.11: Normality plots (Q-Q plot, P-P plot, Histogram and CDF plot) for NO2
before and after the Log transformation, it is obvious that the Log transformation en-
hances the normality performance for NO2 in MUT location.
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(a) O3 measured in MUT location before Yeo-Johnson
transformation
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(b) O3 measured in MUT location after Yeo-Johnson
transformation

Figure C.12: Normality plots (Q-Q plot, P-P plot, Histogram and CDF plot) for O3
before and after the Yeo-Johnson transformation, it is obvious that the Yeo-Johnson
transformation enhances the normality performance for O3 in MUT location.
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