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ABSTRACT

Improving the design of future high-Mach vehicles is crucial to enhance perfor-
mance, safety and sustainability of future air travel. Advanced designs can be
realized by improving low fidelity modelling in the context of Multidisciplinary
Design Optimization (MDO) on one side and making the use of high fidelity
tools more efficient in the context of Multi-fidelity Design Approaches (MFDA)
on the other.

This thesis presents the formulation of an advanced low order model for the
estimation of the shock structure generated by vehicles flying in the supersonic
and hypersonic regimes. Taking as inputs the geometry and the flow conditions,
the proposed approach addresses, in one cohesive methodology, attached and de-
tached shocks in two and three dimensions as well as shock structures composed
of multiple shocks. The procedure is based on classical supersonic flow theories
and has been verified against computational fluid dynamics simulations.

The proposed methodology allows for a cost-effective estimation of shock
wave patterns and their impingement on the vehicle surface on one side, while
on the other it can be used to realize a-priori shock-fitted meshes reducing some
of the uncertainty while generating them for high-fidelity CFD simulations.
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1 INTRODUCT ION

As is the case with any complex system, the design of aerospace vehicles is chal-
lenging and plagued with conflicting objectives. The need of low mass structures
and components while maintaining structural integrity, the push for higher aero-
dynamic efficiency inside a given thermal envelope, robust design versus peak
nominal performance and similar other objectives. All of these factors drive the
design in opposite directions and compromises have to be made.

During the conceptual and preliminary design phases, multiple trade off analy-
sis have to be performed to select a suitable configuration. This process has tradi-
tionally being done by experienced engineers, drawing from practical knowledge
on the development of similar systems.

This classical approach has been formalized and polished by the advent of
multi-disciplinary design optimization (MDO). MDO refers to the use of opti-
mization during design, taking into account multiple aspects of the problem
concurrently, as opposed to the sequential optimization of each discipline. MDO
has the potential to generate better designs, giving some insight on the interrela-
tionships between the disciplines involved in the problem[41].

modelling in the context of mdo

The use of MDO requires the evaluation of the different discipline models a high
number of times during the optimization process. This places constraints on the
evaluation speed of the models used.

One approach to increase computational efficiency is the use of low order
models. These are computationally cheap methods that approximate the be-
haviour of a complex system by introducing simplifications of the underlying
physics. These models are either derived from full models through order reduc-
tion, developed from first principles or inferred from empirical or engineering
correlations.
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While there are situations where the comparatively low fidelity of low order
models is enough to characterize the behaviour of the system and to guide the
optimization in a meaningful way, sometimes their limitations might drive the
process to designs that are considered infeasible in later more detailed analysis.
This is the main motivation behind multi-fidelity design approaches (MFDA).
Here, low and high fidelity models are used concurrently, with the high fidelity
only applied when the results of low fidelity are considered to be not sufficiently
accurate or when a higher degree of confidence in the design is needed. This
combination can lead to the generation of the same designs obtained using
purely high fidelity models but a much lower computational cost. Examples
of these approaches are that of Minisci[32] or Choi[11].

The use of low order modelling is currently extensive, in particular during
conceptual design. However the increase of available computational resources is
making MFDA more attractive.

In the context of aero-thermal modelling in the the supersonic and hypersonic
ranges, low order models are generally based on local inclination methods, as
they allow the computation of the surface values on arbitrary geometries in a sim-
ple manner, while the high fidelity tool is computational fluid dynamics (CFD).

To improve design process in this context, two strategies are possible. One
would be to extend the low order models so the use of high fidelity is not re-
quired, while the other would be to improve the efficiency of the use of high
fidelity tools.

limitations of low order aero-thermodynamic mod-
els

Regarding low order aero-thermal models, codes like HyFlow[45], the aerody-
namic preliminary analysis system (APAS)[7], the configuration-based aerody-
namics (CBAero)[25] tool or the supersonic/hypersonic arbitrary body program
(S/HABP)[16] are especially relevant for the design of supersonic and hypersonic
vehicles.

Their main limitation is that they give no information about the shock struc-
ture. While this information is usually not required during preliminary design,
there are situations where the inclusion of shock related phenomena might be



required in order to guarantee the survivability of the vehicle in presence of the
strong pressure and heat gradients due to shock waves hitting some part of the
vehicle surface.

In fact, when a shock impacts the vehicle, heat transfer rates can grow up to 17

times the values measured at stagnation regions and pressure can reach up to 8

times that of free stream[20]. These extremely high temperatures and pressures
can have an impact on the survivability of the vehicle if they are not dealt with
carefully, either by correctly designing the thermal protection system (TPS) or by
modifying the geometry such as the impingement is no longer present.

A classic example of the effects of impingement is that of the X-15 vehicle. This
was a manned experimental rocket plane operated by NASA in the 1960s and,
as a piece of trivia, it still holds the speed record for a manned powered aircraft.
During one of its test flights, a dummy ramjet was attached on the underside of
the vehicle to explore the use of the X-15 as a test bed for supersonic air-breathing
propulsion. The engine nacelle was attached through an Inconel pylon coated
with an ablative TPS. During a flight at Mach 6.7, the dummy ramjet detached
from the vehicle. Postflight investigation[44] showed that the shock generated
on the nacelle had impacted the pylon, melting trough it and causing structural
damage to the plane.

Along with thermal effects, the peak pressure resulting from impingement
modifies the pressure field over the vehicle, influencing the aerodynamic forces
possibly leading to controllability and manoeuvrability issues[26]. This situa-
tion is especially interesting in the presence of shock interference from proximal
bodies, as those encountered in stage separation of Two Stage To Orbit (TSTO)
vehicles. This complex, time dependant, problem has to be studied to assure that
there is no risk of the stages colliding during separation.

These examples highlight the importance of accounting for shock related phe-
nomena as early as possible in the design process.

Along this perspective, the development of a shock structure estimation method
compatible with low order models would greatly expand their usability in the
context of MDO of high Mach vehicles.



application of cfd in the supersonic/hypersonic
regime

In the supersonic and hypersonic regimes, the presence of shock waves requires
adopting carefully crafted meshes in order to cluster points in the regions of
strong gradients and avoid numerical diffusion arising from meshes that are too
coarse.

Apart from using heuristic methods, the only consistent approach is the adop-
tion of an adaptive procedure where an original, non optimal, mesh is iteratively
improved by the solution computed on previous meshes[4]. This approach is
quite time intensive, making meshing of high Mach flows one important factor in
the relative slowness of the application of high fidelity tools. The shock structure
estimation method mentioned earlier would contribute also to the high-fidelity
CFD, by providing the shock structure directly from the geometry and flow con-
ditions, making the use of CFD simulations faster in the context of MFDA.

previous attempts on shock estimation

During the early days of supersonic flight theory there was an abundance of ap-
proximate models that provided the shock location, either for its own sake or as
a by-product of the computation of pressures over the surface of the vehicle[21].
The interest for these approximations can be explained by the need of predic-
tive capability for the design of supersonic vehicles coupled with very limited
computational resources.

These models can be classified into two main categories according to the de-
velopment path. One group of methods was produced as solutions to the su-
personic problem under simplifying assumptions, either simplifying the physics,
the geometries that the model could address or both. The other category was
that of correlations with experimental data. The spirit of the present method
lays between these two groups, somewhat closer to the second category.

For models produced as solutions to the supersonic problem, a good start-
ing point is the Method of Characteristics (MOC). This numerical method is of
great importance both historically and as background for approximate methods.
The solutions produced are exact within numerical error under the assumptions.



While easy to apply in the two dimensional case, it requires a great number of
calculations. It is for this reason that analytical solutions were sought. This was
achieved through a perturbative solution of the equations. Decomposing the
velocity in the x and y directions as

u = u∞ + u ′; v = v ′

considering

u ′ << u∞; v ′ << u∞
a set of equations is obtained which is known as small perturbation theory.

If, in addition, u ′ << v ′, the equations are further simplified and slender body
theory is obtained. This model, linear in supersonic flow and non-linear in the
hypersonic regime 1, readily produces surface pressures and shock shape for
attached shocks on slender bodies and saw important application on the devel-
opment of supersonic airfoils and fuselages. From these perturbed equations, an-
other simplified method came from the realization that the equations for slender
bodies in steady flow also describe unsteady flow in one less spatial dimension.
This model is known as blast wave theory and, unlike slender body theory, can
tackle blunted bodies by modelling the initial conditions of the unsteady flow as
an instantaneous energy release.

Another approximate method worth mentioning is that of thin shock layer
theory, developed by Maslen. Here the simplification comes from assuming that
the shock, the body and the streamlines in between share the same shape. This
assumption is closest to reality in the high hypersonic regime, as Mach number
tends to infinity.

A detailed description of all these methods can be found in Anderson[2].
Regarding correlation based methods, there was much interest in addressing

blunted geometries using experimental data. Examples of this are works like
that of Kaattari [23] for blunt bodies and high angle of attack airfoils or Love [30]
for detached shock waves. This interest came from the fact that detached shocks
were not very amenable to approximate solutions. Even numerical approaches
were difficult, due to the mixed character of the flow2. From these methods,

1 For small perturbation theory, the slenderness ratio δ << 1. In the supersonic regime M∞ ' 1,
M∞δ << 1 while in the hypersonic regime this is no longer true and M∞δ ' 1

2 The PDEs are elliptical in space in the subsonic part of the field, behind the near normal part of the
bow shock, while hyperbolic in the supersonic part. This was eventually solved by the realisation



Billig’s[5] engineering formula for stand-off distance and shock curvature for
spheres and cylinders in supersonic flow is arguably the most important, and it
is still in use today.

These theories were expanded over time to address more general cases, but
for complex shapes or interactions the only tool available still was experimental
testing.

With the increase of available computational power and the advent of Compu-
tational Fluid Dynamics (CFD), engineers could now have a detailed description
of the flow with a relatively easy, albeit time consuming, method. While classic
approximate methods of shock estimation are still used, new developments are
sparse. An example of one of such developments is that of a shock shape model
for axis aligned cylinders[31].

The current available computational power, however, is an opportunity to de-
velop simplified methods for shock estimation that were simply not possible
at the beginnings of supersonic flight theory. As stated before, these methods
could be a helpful addition to aero-thermodynamic low order models used in
the contexts of MDO and MFDA.

thesis objective

The objective of this thesis is to produce and verify an advanced low order model
for shock structure estimation. It should take as inputs the geometry and the flow
conditions and address, in one cohesive methodology, attached and detached
shocks in two and three dimensions as well as shock structures composed of
multiple shocks. While partial models have been developed since the beginning
of supersonic flight theory, no unified (in the sense of addressing all these situ-
ations with a single model) approach exists yet. This method is to be coupled
with a low order aero-thermodynamic model in order to improve its predictions
when shock related phenomena are present. The intended field of applicability
is preliminary design, especially in the context of MDO. It is also to serve to
improve the efficiency of CFD simulation in the context of MFDA.

The design favours fast execution over high precision while maintaining useful
predictive capabilities.

that the equations are hyperbolic in time for both subsonic and supersonic cases and therefore a
pseudo-time marching scheme can be used for mixed steady flows.



thesis structure

In chapter 2, a methodology for shock estimation on arbitrary geometries, com-
patible with low order aero-thermodynamic models, is described. Chapter 3

contains the verification of the various aspects of the methodology through com-
parisons with CFD simulations. The method is applied to relevant engineering
problems in chapters 4 (improving low order models) and 5 (informing high fi-
delity tools). Finally, chapter 6 contains some concluding remarks and ideas for
future work.



2 METHODOLOGY

In this chapter, the methodology for shock estimation will be presented. The
procedure is first developed for conceptual geometries (two dimensional convex
geometries with attached shocks in inviscid flow) and then generalized, introduc-
ing modifications that allow for the removal of assumptions on the geometry.

Along the chapter, the results of the shock estimation will be compared with
CFD simulations. These have been performed with OpenFOAM[34], a contin-
uous mechanics library with precoded solvers, using the rhoCentralFoam [19]
solver. This solver has been used in the past for hypersonic flows[40] and it is
considered verified. Therefore, in this work, the results from rhoCentralFoam
are taken as reference to which compare the estimated shocks against. Unless
otherwise stated, the CFD simulations are inviscid, using perfect gas model
(ρ = 1

RT P) and run in normalized gas conditions. This means the use of an
idealized perfect gas with a molecular weight that results in a speed of sound of
a =
√
γRT = 1m/s for T = 1K at P = 1Pa.

shock estimation in two dimensions

The starting point for shock estimation is the equations that describe the flow.
The most general set of these equations is that of Navier-Stokes, where the only
assumption is that the fluid can be modelled as a continuum1. Disregarding
viscosity effects, this set of equations can be simplified into the Euler equations
that describe inviscid flows. These, in turn, can be further simplified assuming
the flow to be irrotational (∇× V = 0). While not strictly true in the case of
slender bodies with attached shocks, the assumption is reasonable due to the
low curvature of the shock. In the irrotational case, the velocity can be written
in the form of a potential. Assuming, additionally, the flow to also be isentropic

1 defined as having a Knudsen number Kn = λ
L << 1, where λ is the mean free path and L is a

characteristic length of the flow
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and steady, the Euler equations combine into one expression for the potential
that in the two dimensional case has the form

(
1−

φ2x
a2

)
φxx +

(
1−

φ2y

a2

)
φyy −

2φxφy

a2
φxy = 0 (1)

where φ is the velocity potential (∇φ = V) and a the speed of sound. For the
following discussion, the flow is considered to be steady, inviscid, irrotational,
isentropic and two dimensional.

The method of characteristics (MOC) can now be used to solve for the poten-
tial in the fluid domain. The background of the method is the realization that
a partial differential equation can be transformed into a family of ordinary dif-
ferential equations expressed along certain curves referred to as characteristics.
These ODEs are known as compatibility equations. Their solutions, from a set
initial condition, are a set of curves that form a solution surface of the original
PDE. The equations of supersonic flow are hyperbolic, there are therefore two
intersecting families of characteristics, which allow for the numerical solution of
the equations by marching along the characteristics from a known initial line.

For this flow, the equation for the characteristic curves is

dy

dx
= tan(θ∓ µ) (2)

where θ is the inclination of the streamline through the point and µ = arcsin
(
1
M

)
is the Mach angle. As commented before, two solutions exist. The C+ character-
istic, also known as left running, on the left hand side of the streamline. And the
C− characteristic, known as right running, on its right hand side.

The compatibility equations that hold along the streamlines are

θ+ ν(M) = K− (3)

for the right running characteristic and

θ− ν(M) = K+ (4)



Figure 1: Point over streamline showing the two intersecting characteristics

for the left running. Here K are constants and ν(M) is the Prandtl-Meyer
function

ν(M) =

√
γ+ 1

γ− 1
arctan

√
γ− 1

γ+ 1
(M2 − 1) − arctan

√
M2 − 1 (5)

where M is the Mach number and γ is the ratio of specific heats of the gas.
In this simple case the compatibility equations are algebraic instead of differ-

ential.
The procedure starts from an initial line where the solution is known. This

initial line is selected near the shock attachment point, where the geometry can
be considered a wedge. The flow properties on the line are the after-shock con-
ditions of the attached oblique shock on that wedge. From here, the network of
characteristics is grown.

The first point of the second ray is computed from the intersection of the first
C− characteristic from the initial line and the body. The body is a streamline,
therefore θb is known. Knowing that K− is conserved along the C− characteristic

νb = K−− θb (6)

The rest of the points of this ray are computed along the C+ characteristic
from this first point, intersecting with the C− characteristics that emanate from
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Figure 2: Start of the method of characteristics. The initial line, corresponding oblique
shock and the first few characteristics of the network are shown

the initial line. On this intersection, two constants are conserved along the two
streamline families. The values at the point can then be computed as

θp =
1

2
(K− +K+) (7)

νp =
1

2
(K− −K+) (8)

Finally, the shock point of this ray is computed. Here, K+ is conserved along
the ray (C+ characteristic). Therefore

K+ = θs − νs (9)

The other free variable is the local inclination of the shock, β, which, given
the free stream Mach number, gives the after shock Mach number and velocity
angle that should correspond to the θs − νs set earlier. This problem is solved
iteratively. The procedure continues with the next ray, repeating the previous
calculations. A detailed derivation of the method can be found in Anderson[3].
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Figure 3: Computation of shock position using MOC over CFD Mach field

Figure 3 shows the computed shock position for a two dimensional tangent
ogive at Mach 9. The results match those of the CFD simulation where the
density of the network of characteristics is high enough. This relatively low
resolution has been selected to be able to clearly show the characteristics network,
and increasing the number of points per ray would reduce the error.

The method of characteristics is very precise, but it suffers from certain draw-
backs. While it can be applied in three dimensions, its implementation is very
convoluted and other numerical approaches (i.e. finite volumes) are preferred. It
also requires a starting line where the solution is known.

If computational efficiency is more important than accuracy, the MOC can be
simplified by ignoring the effect of the C− family of characteristics. This simplifi-
cation is most reasonable in the hypersonic regime, where the reflected C− char-
acteristics from the shock impact the geometry far downstream, with its validity
reducing with decaying Mach number. An approximate method called shock ex-
pansion is so obtained. In this theory, the geometry is discretized into segments.
The conditions at the first segment are computed as the after-shock conditions
of the attached oblique shock. The conditions on subsequent segments are com-
puted through a Prandtl-Meyer expansion fan between them. This method is
usually applied to the computation of surface pressures, where the pressure
value is constant inside each segment of the geometry. Shock expansion theory
can be adapted to compute the shock position over a geometry. If the shock
resulting from the interaction between oblique shock and Prandtl-Meyer expan-
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Figure 4: Shock estimation through shock expansion

sion fan is approximated as a second order polynomial[28], the general shock
can be discretized as straight and parabolic sections, starting from the attached
oblique shock of the the first segment and continuing along the geometry.

This is a simplistic view of an oblique shock overtaking a Prandtl-Meyer ex-
pansion fan. The flow is rotational and non simple after the interaction zone.
This results in different pressure across the shock than through the PM expan-
sion. While it would be wrong to use this model to describe the flow, the shock
position is reasonably well captured.

If the sought result is the shock position and not necessarily the surface pres-
sures, modelling the oblique shock - expansion fan interaction as a parabolic
section might be unnecessary, and an instantaneous turn of the shock on the first
Mach wave of the expansion fan might be preferred. Under this assumption,
shock expansion theory can be further simplified applying ideas from another
surface pressure method, namely tangent wedge, to compute local shock inclina-
tions.



Figure 5: Tangent wedge, as illustrated by Anderson

The tangent wedge method refers to a way of estimating surface pressures on
a body in hypersonic flight. The method equates the pressure at any point of
the surface of the vehicle with the one on the surface of a wedge with the same
inclination with respect to the flow as the local inclination at the point and at
the same free stream conditions. The pressure for the equivalent wedge is then
computed through the use of the oblique shock relations. In contrast with shock
expansion theory, tangent wedge method has very weak theoretical foundations.
It is used because it produces reasonable results with very little effort in a wide
range of flow conditions, but it lacks a strong physical justification.

When estimating pressures, the tangent wedge method assumes a local shock
inclination. The actual position of the shock is however unknown. Considering
the local shock as a straight line with known inclination, determining a point in
it is all that is needed to uniquely identify it. In Anderson [2], the explanation of
tangent method is accompanied by a figure that shows a symmetric ogive. In this
case, the selected point is the apex of the equivalent wedge when intersecting the
axis. This produces an approximation of the local shock.

The global shock would be the envelope2 of these local shock lines. This ap-
proach only requires local information, all points are independent and is there-
fore embarrassingly parallel. While this explanation has great didactical value, it
is of little practical use. This point selection oversimplifies the flow and ignores
the expansion over the body, producing results quite far from the correct shock

2 Curve tangent to all curves of a family.
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Figure 6: Shock estimation for an ogive through tangent wedge over CFD Mach field.
The family of local shocks is shown

structure. Figure 6 shows the estimated local shocks for a bi-dimensional ogive
over a Mach number field obtained with CFD.

The envelope of those shocks falls closer to the surface than the shock com-
puted through CFD, highlighting the limitations of this approach.

The accuracy of the method can be improved by taking into account the expan-
sion over the body combining, in a way, tangent wedge with the shock expansion
theory showed earlier. For attached two-dimensional shocks, and considering
the geometry to be a polyline, the procedure is as follows.

• The shock for the first segment of the geometry is computed as an attached
wedge shock. Its inclination given by solving for shock inclination (β) in
equation 10 through a a numerical root finding algorithm.

tan θ = 2 cotβ
M2
1 sin2 β− 1

M2
1(γ+ cos 2β) + 2

(10)

θ is the inclination of the wedge, M1 the Mach number before the shock
and γ the ratio of specific heats.

• The next shock section has the inclination given by the equivalent wedge
of the second segment of the polyline. Its origin is determined by the
intersection of the first shock segment with the Mach wave produced at



Figure 7: Procedure for flow expansion correction

the end of the first segment of the geometry. The inclination of this Mach
wave is given by µ = arcsin(1/M), where the M is the after shock Mach
number. 3

• This continues for all sections of the geometry polyline.

The procedure is illustrated in figure 7. This turns the method from local
information to advancing front. While this makes the procedure much more
precise, it also makes it slower. Another disadvantage is that the errors are now
cumulative, as the position of each local shock is influenced by the position of
the previous one.

Compared with figure 6, figure 8 matches the CFD results much closer. The
cumulative error in the streamwise direction can also be seen in the way the
estimated shock slowly drifts away from the CFD solution.

The resulting method considers the expansion between segments as infinites-
imal Mach waves, which is reasonable if the polyline is a discretization of a C1

underlying geometry, and takes the local shock inclination and Mach number
from the tangent wedge method. The advantages of this hybrid method against
traditional shock expansion will be made apparent in the next section.

Modification for detached shocks

For detached shocks, the starting procedure employed on the attached shock case
is not applicable. There is no attached equivalent wedge in the first segment of
the geometry. A solution for the detached zone must be imposed. Assuming the
geometry to be a circle in the vicinity of the stagnation point, Billig [5] provides

3 Computed through the oblique shock relations:

M2 = 1
sin(β−θ)

√
1+γ−1

2
M2
1 sin2β

γM2
1 sin2β−γ−1

2
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Figure 8: Shock estimation for an ogive with flow expansion correction over CFD Mach
filed

such a solution. The detached shock around the stagnation point is described as
a hyperbola

x = R+∆− Rc cot2 θ

[(
1+

y2 tan2 θ
R2c

)1/2]
(11)

being R the radius of curvature of the geometry at the stagnation point, Rc the
radius of curvature of the shock at the vertex, ∆ the stand off distance and θ the
asymptotic angle of the hyperbola. This is the free stream Mach angle in the case
of a cylinder and the attached shock angle in the case of a cylinder with a wedge
afterbody. The axes have their origin at the centre of curvature of the geometry,
with the x axis aligned with the flow. The vertex radius of curvature and stand
off distance are given by

Rc/R = 1.386 exp[1.8/(M− 1)0.75] (12)

∆/R = 0.386 exp(4.67/M2) (13)



Figure 9: Starting procedure for detached shocks, showing: Geometry (grey), geometry
section with subsonic after shock conditions for its local tangent wedge (red),
Billig’s solution for that section (blue), first local tangent wedge with super-
sonic after shock conditions (green), and corresponding local shock tangent to
Billig’s solution (yellow)

where M is the Mach number of the free stream. The shock estimation is
patched to this hyperbola at the inclination where the first equivalent wedge
from the geometry produces an attached weak shock (post shock Mach number
is supersonic). The estimation process then continues as in the attached case.

While this procedure provides a suitable start for the shock estimation method,
the results are far worse than the ones obtained in the case of attached shocks.
This can be seen in figure 10. It is not surprising, though, as the assumptions
made earlier do not hold any more. The flow after the bow shock is rotational
and its evolution after is non isentropic.

A careful look at the estimation of the shock for a cylinder suggest a way to
improve the results. The proposed formulation considers the way subsequent
points of the shock are estimated by looking at the intersection of local shocks
with Mach waves. For the first point, this Mach wave should lie on the sonic
line for the procedure to be correct. In the case of the cylinder, Billig’s hyperbola
provides an approximation for the whole shock, and therefore the position of the
sonic line. In general, the first Mach wave and the sonic line position estimated
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Figure 10: Shock estimation without detachment correction
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Figure 11: Detachment correction procedure

by Billig do not match. The procedure can be improved by multiplying the Mach
angle of all Mach waves by a correction factor that matches these two first lines.

Figure 11 illustrates the correction. The CFD sonic line appears in black. The
first point of the cylinder geometry with a local tangent wedge that produces
a shock with supersonic after shock conditions is shown in grey. From this
point, the Mach wave intersecting the first local shock tangent to Billig’s solution
produces the first point of the uncorrected estimated shock. This Mach wave
is far from the estimated sonic line (marked by the end of Billig’s solution and
the grey cylinder point). Matching this Mach wave with the estimated sonic
line gives the correction factor, which is then used for all the other Mach wave
computations.
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Figure 12: Correction factor for detached shocks

The correction factor is a function of Mach number and is shown in figure
12. Applying it to all Mach wave computations greatly improves the results for
shock estimation on detached shocks.

In the detached case, the usefulness of the proposed formulation is observed.
While shock expansion is not applicable in this situation, tangent wedge still pro-
duces useful results. Through the hybridization process and the novel treatment
of detached shocks, the method produces a relatively accurate estimate of shock
position, again at the expense of little theoretical foothold.

Modification for stream wise body concavities

In previous sections, only convex geometries have been considered. This makes
the shock estimation problem simpler, as only one shock is produced by the
geometry. When concavities are present, additional shocks might be produced.



Figure 13: Convex sections and estimated shock

The shocks can now interact with each other or impinge on the geometry. Some
modifications have to be introduced to deal with these situations.

First, the geometry is separated into convex sections and concavity zones. This
is done by computing the angle between any two connected segments of the
geometry. If that angle increases stream wise, a concavity is detected. This
concave zone persists until the angle between segments stops increasing. Then,
a new convex section starts.

From the point of view of the methodology, each convex section will produce
a shock, with each concave zone in between producing a compression fan.

The estimation of the shock structure is as follows. The shock produced by
the first convex section is estimated as previously described. The first shock
point for the next convex section is placed at the apex of a compression fan
defined in the intervening concave zone. The free stream conditions for these
computations are taken as the area weighted mean of the conditions after the
first shock, discarding subsonic values. Specifically, the after shock conditions
for each shock section are computed using the oblique shock relations. A single
value of for the whole shock is then obtained by averaging the results for all
shock sections (that produce supersonic values), taking into account their length.
While this assumption lacks a strong theoretical justification, it does produce
reasonable results. The shock estimation then continues in the usual manner on
the next convex section. Therefore, the compression fan is only used to locate
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Figure 14: 2D section of HB-2 body. Shock estimation over CFD Mach field with Mach
gradient overlay

the start of the second shock, while its structure is given by the preceding convex
section.

Figure 14 shows the estimation of the shock structure for the HB-2 geometry
over CFD. The HB-2[18] is a calibration model defined by the Advisory Group
for Aeronautical Research and Development (AGARD) that has been used exten-
sively to study hypersonic flows. The computation captures both the first and
the weaker second shock.

Viscosity effects

Up until now, the method has not taken into account the effect of viscosity on
the shock position. This effect is most apparent when an inviscid flow would not
produce a shock while one would be obtained in the viscous case, as for example
in a supersonic flat plate at zero angle of incidence. In the inviscid case, the flow
would be unperturbed, while in the viscous case a boundary layer would grow
over the plate that would interact with the free stream creating an oblique shock.

The previously presented method can be applied to this case, maintaining
the inviscid assumption for the rest of the flow, by modifying the geometry to
account for the boundary layer displacement thickness. This thickness can be
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Figure 15: Shock estimation for a laminar viscous flat plate at Mach 2. The computed
displacement thickness of the boundary layer is also shown

estimated from Blasius[6] solution for laminar boundary layers of incompressible
flows and results in

δ∗ =
1.72x√
Rex

(14)

where

Rex =
ρu0x

µ
(15)

being ρ the density of the fluid, u0 the free stream velocity, x the coordinate
along the plate in the stream wise direction, and µ the viscosity of the fluid.

While the use of a result for incompressible flows in supersonic conditions is
suspect, this has been done as Blasius solution is much simpler than its compress-
ible counterpart and produces results that are accurate enough in the context of
this low order shock estimation methodology.

The result of the shock estimation is shown in figure 15 for a laminar viscous
flat plate at Mach 2. The estimation accurately captures the shock position.



shock estimation in three dimensions

The shock estimation procedure, as explained before, can be applied to three di-
mensional geometries by carrying out the computation over surface streamlines
on the body and then combining these 2D shock estimations into a 3D envelope.
While this explanation is straight forward, the application of the method to three
dimensional geometries requires some adaptations and introduces certain com-
plications. In an implementation note, while in 2D the language chosen for the
code was Python3, C++11

4 has been selected for the 3D cases.
The geometrical manipulations that were trivial in two dimensions are com-

plex and cumbersome in 3D. For this reason, the implementation of the shock
estimation in three dimensions is supported by CGAL[42], a computational ge-
ometry library that provides algorithms for common geometrical manipulation
tasks. The use of CGAL is the main driver behind the selection of C++11 as
implementation language, being speed another important factor.

In the next subsections, the adaptations required for three dimensional cases
will be explored.

Local inclination method

While in 2D the local shocks were computed using tangent wedge method, in
3D tangent cone is more suitable. This local inclination method is conceptually
similar to tangent wedge, substituting the flow field used on the estimation from
supersonic wedge to supersonic cone. The solution of this flow field is given by
the Taylor-Maccoll equation.

γ− 1

2

[
1− V ′r

2
−

(
dV ′r
dθ

)2][
2V ′r +

dV ′r
dθ

cot θ+
d2V ′r
dθ2

]
−
dV ′r
dθ

[
V ′r
dV ′r
dθ

+
dV ′r
dθ

d2V ′r
dθ2

]
= 0 (16)

4 The 2011 standard of the C++ programming language



Figure 16: Conical flow

with

V ′ =

[
2

(γ− 1)M2
+ 1

]−1/2
(17)

The equation is expressed in a spherical reference frame, with r and θ as
radial and angular coordinates (with constant values on ψ), as shown in figure
16. Additionally, γ is the ratio of specific heats, and V ′r is the radial component
of V ′.

To solve this equation, an inverse procedure similar to the one by Anderson[3]
was followed. Knowing the semi-angle of the shock, the integration of equation
16 would provide the semi-angle of the cone that supports that shock. Calling
this integration f(x), the shock semi-angle is obtained from the cone one by
solving f(x) − θc = 0.

The integration and root finding are implemented using the Boost libraries 5.

5 Boost is a collection of peer-reviewed C++ source libraries that provides functionality not present
in the C++ Standard Library (https://www.boost.org/).

https://www.boost.org/


Figure 17: Half-edge data structure

Geometry representation

The geometry in the 2D cases was described by a polyline. In 3D, the geometry
is discretized as a triangular surface mesh. The actual implementation of this
mesh in code is carried out using a half-edge data structure.

In a half-edge data structure, each edge of the mesh is represented through two
oriented half-edges. Figure 17 shows a minimal diagram of this structure. The
structure stores each half-edge (h, in the figure) with references to its opposite,
previous and next half-edges around the incident face. Each vertex, as well as
each face, stores a reference to one of its incident half-edges.

The structure is general, in that it can represent a polyhedral mesh of any
kind (being triangular meshes only one of them). While this form of storage is
more complex than the common face-vertex approach, it makes for more efficient
manipulation and traversal. For example, finding the face that is connected to
another face through an edge is trivial in the case of the half-edge data structure
(h→ opposite→ face), while it is convoluted in the face-vertex approach (know-
ing the indices of the vertices of the edge, it requires traversal of the face list to
find the face that also contains those two indices).

2D sections

In three dimensions, the procedure presented for 2D is applied over surface
streamlines. Streamlines are curves that are tangent to the velocity vector of



Figure 18: AABB tree of an icosphere

the flow. When the flow is steady (the derivative of the velocity field with re-
spect with time is zero), streamlines and pathlines (trajectories followed by fluid
particles) are the same and can be computed integrating equation 18.

dx
dt

= u(x) (18)

being u the velocity vector of the flow and x the position of the fluid particle.
Two computational geometry algorithms are used to simplify the streamline

computation, namely Axis Aligned Bounding Box (AABB) trees and K-D trees.
An AABB tree is a hierarchy of axis-aligned bounding boxes where the last

elements (leafs) of the hierarchy are bounding boxes around the triangles of the
geometry. The procedure for creating the tree starts by creating AABBs around
all the triangles on the geometry and sorting them along the longest axis, these
boxes are then grouped into two equal size sets and new AABBs are created
around those sets. Those sets are then again grouped into (now four) equal size
set, creating new AABBs around them. This process is applied recursively until
the leaf level is reached (top-down method).

For distance queries, a sphere is created around the query point. The sphere is
then tested for intersections against the tree. Only if the parent box is intersected
are then the next level boxes tested. When a leaf is intersected by the sphere,
the distance between the closest point on the triangle and the query point is
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Figure 19: Points in 2D and associated K-D tree

computed and the sphere radius is shrunk to this distance. The initial radius of
the sphere is selected so as to be small while still intersecting the geometry. This
procedure greatly reduces the number of distance queries between the query
point and the triangles of the geometry. The procedure is implemented using
the 3D Fast Intersection and Distance Computation[1] package of CGAL.

A K-D tree is a data structure to store k dimensional points. Each node of
the tree generates an hyperplane that divides space in two, through one of the
k-dimensions. The left branch generated at that node will correspond to one
space side according to one of the k-dimensions, with the other side covered by
the right branch.

The structure is useful to perform efficient computation of nearest neighbours
in point clouds, testing by bisection against the tree. The structure has been
implemented in code using the nanoflann library 6

The procedure followed here to compute surface streamlines is similar to that
of the original implementation of HyFlow[45]. An outline of the surface stream-
line computation is as follows. The free stream velocity vector is projected over
the geometry, this creates an interpolant of surface velocities. From the centroid
of some facets, equation 18 is integrated backwards, until an stagnation point is
reached. The algorithm for selecting streamline origins, the method for surface

6 nanoflann is a C++ header-only library for building KD-Trees (https://github.com/jlblancoc/
nanoflann).

https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann


interpolation of the velocity and the algorithm used to maintain the streamline
integration on the surface, differ from HyFlow’s original implementation.

For creating the surface interpolant, the free stream velocity vector is projected
over each face as

us = u∞ − (u∞ · n) · n (19)

where us is the surface velocity vector, u∞ is the free stream velocity vector,
and n is the normal to the face. From here, the velocity vector associated to each
vertex of the geometry is computed as an area averaged mean of the values of
the connected faces. The value of the velocity at any point of the surface can now
be calculated as the barycentric mean7 of the values of the vertices of the face to
which the point belongs.

The goal of the computation is to uniformly cover the surface with streamlines
with the least amount of calculations. The initial point of the inverted streamlines
are the centroids of the facets and its selection plays a big role in this reduction
of computational cost. The facet centroids are added to a list. The list is ordered
in such a way that elements closer to the beginning of the list are farther with
respect to direction of the free stream. That way, the inverted streamlines pro-
duced by the first elements will hopefully be the longest ones present over the
geometry. The first element of the list is taken as a source. The streamline is
integrated, with a time step equal to the quotient between the mean minimum
triangle edge length and the maximum surface velocity. At each time step, the
computed streamline point is projected back to the surface. This projection re-
quires the computation of the closest triangle and the closest surface point to the
computed streamline point. In a naive approach, this would require testing all
triangles of the geometry against the point. This approach is infeasible due to the
huge computational cost it would entail. The projection is simplified by the use
of an AABB tree. When the distance between two consecutive computed stream-
line points fall bellow a certain threshold, a stagnation point has been reached
and the integration stops.

Once the streamline is calculated, the centroid list is filtered against the com-
puted streamline. As shown in figure 20, the midpoints between streamline
points are calculated and spheres are defined with centres on those midpoints
and in contact with each other. If a centroid on the list lies inside one of those

7 Linear interpolation on the face using barycentric coordinates



Figure 20: Source filtering

spheres, it is deleted as a streamline source as it is too close to the current com-
puted streamline. For the first point of the streamline, the sphere is centred on
the point instead of on the first segment midpoint. This is done as to filter out the
stagnation region together. Again, this nearest neighbours calculation would be
highly computationally expensive if preformed in a naive way. The calculation
is supported by a K-D tree.

After this filtering, the next centroid from the list is chosen as a source and
the integration starts again. When the centroid list is empty, the streamline
computation ends.

Shock envelope

Once the shocks are computed over the streamlines, the result is a point cloud
without connectivity information. To turn this cloud into a triangular mesh, and
advancing front meshing procedure is used. This is implemented in code using
the Advancing Front Surface Reconstruction[12] module of CGAL.

This meshing procedure is a surface based Delaunay sequential algorithm. A
3D Delaunay mesh of the input surface cloud is created. From that mesh, some
triangles are selected to form the output surface. The selection starts from a seed
triangle and continues with the best connected triangle. Best here means the
smallest connected triangle with internal angles smaller than a threshold, with a
difference between its normal and the normal of the connected triangle smaller
than another threshold, and that keeps the surface manifold.



Figure 21: Advancing Front meshing. From left to right: initial point cloud, 3D Delau-
nay mesh (shrank) and final surface mesh from selected faces

Detached shocks

In the two dimensional case, the geometry around the stagnation point was ap-
proximated by a circle. The detached shock was then described using Billig’s
engineering formula for cylinders. In three dimensions, the situation is more
complicated. A general stagnation point can be locally described by two prin-
cipal curvatures, k1 and k2, along the principal directions. Billig’s engineering
formula provides stand off distance and shock radius of curvature for spheres
and cylinders in supersonic flow. Between a sphere and a cylinder with the
same radius (R), there is a continuum of tori with constant maximum curvature
(k1 = 1/R) and descending minimum curvature (k2 = [0, 1/R]). Billig’s formula
can be generalized to describe those tori and therefore describe the local condi-
tions around general stagnation points in supersonic flow.

For stand off distance and minimum radius of curvature, this generalization
is computed by blending Billig’s solutions for sphere and cylinder. The blending
function should take the value for spheres when the ratio λ = k1/k2 = ρ2/ρ1 = 1

and the value for cylinders when λ = k1/k2 = ρ2/ρ1 →∞, where ρ are the radii
of curvature (k = 1/ρ). Inspired by Billig’s formulas, the following functional
form has been formulated

ftori = fcylinder · exp

 ln
(
fsphere
fcylinder

)
λn

 (20)

where f is either the stand off distance or the radius of curvature of the shock
at the vertex in the direction of the maximum curvature. The constant n is fitted
to the results of CFD simulations of tori of different ratios of curvatures at Mach
number nine. Its value has been computed as n = 0.57987417201950564
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Figure 22: Shock stand off distance as a function of ratio of principal radii of curvature
of the geometry (M = 9)

Figure 22 shows the shock stand off distance divided by the minimum radius
of curvature of the geometry at the stagnation point as a function of the ratio
of principal radii of curvature of the geometry at the stagnation point. The dots
show the results of the CFD simulations, the dashed lines show the limits for
sphere and cylinder while the solid line shows the fitted blending function.

Similarly, figure 23 shows the shock minimum radius of curvature at the apex
divided by the minimum radius of curvature of the geometry at the stagnation
point as a function of the ratio of principal radii of curvature of the geometry at
the stagnation point.

The fitting seems to correctly capture the behaviour with variable ratio of radii.
Billig’s solution assumes a hyperbola as the shock shape. For extracting stand

off distance and shock radius of curvature from the CFD simulations, the equa-
tion of the hyperbola has been fitted to the shock position on the CFD simula-
tions for both principal directions. This generates ∆ and Rc values which are
consistent with the assumptions of Billig’s formula.



0 5 10 15 20 25

ρ2/ρ1

1.2

1.4

1.6

1.8

2.0

R
c1
/ρ

1

Sphere limit

Cylinder limit

CFD results

Fitting

Figure 23: Minimum radius of curvature of the shock as a function of ratio of principal
radii of curvature of the geometry (M = 9)
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Figure 24: Shock stand off distance as a function of Mach number (λ = 3)

The functional dependency of the stand off distance with the Mach number is
already captured by Billig’s formulas for cylinders and spheres. Therefore, the
blending function presented in equation 20 does not have to contain it explicitly.
Figure 24 shows this functional dependency for λ = 3. The fact that the formula
shows good agreement with CFD results suggests that the fitting parameter was
correctly selected.

For minimum radius of curvature, figure 25 shows the behaviour with Mach
number. The fitting is slightly worse than in the case of the stand off distance.
This might be due to the difficulty of computing the radius of curvature of the
shock from the CFD.

Finally, figure 26 shows the maximum radius of curvature of the shock as a
function of ratio of principal radii of curvature of the geometry. For this variable,
a linear fitting has been selected in the form

Rc2 = n2λ+ (Rs −n2) (21)
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Figure 25: Minimum radius of curvature of the shock as a function of Mach number
(λ = 3)
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Figure 26: Maximum radius of curvature of the shock as a function of ratio of principal
radii of curvature of the geometry (M = 9)

with n2 = 0.9583619656145238 computed through least squares. The fitting is
again computed at Mach number nine.

From figure 27, the fitting for the maximum radius of curvature seems worse
than for stand off distance and minimum radius of curvature. The relative error,
however is still below 10%

Tangent cone eccentricity

In 3D, the local inclination method that best describes the flow around a point
of the geometry depends on the cross-flow curvature of the surface at that point.
For mainly flat surfaces, tangent wedge would be more adequate while, for
(cross-flow) curved surfaces, some version of tangent cone would better repre-
sent the flow. In general, the flow field produced by an elliptic cone at zero
angle of attack could be used to address any of these situations.
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Figure 28: Local radius in the stream-wise direction

The eccentricity of of the local tangent elliptic cone is computed as

e =

√
1−

b2

a2
(22)

where a is the semi-major axis and b the semi-minor axis of the elliptical
cross-section of the cone. These values are the maximum and minimum equiv-
alent radii of the local tangent cone in the stream-wise and cross stream-wise
directions.

For the stream-wise direction, the radius of the equivalent cone is calculated
intersecting in the streamline plane the local surface tangent with the previously
computed local shock. This construction is shown in figure 28.

For the cross stream-wise direction, radius of the equivalent cone is calculated
from the curvature of the surface section perpendicular to the axis of the local
tangent cone. The curvature of a curve embedded in a surface can be expressed
as

k = knn+ kg(n× τ) (23)

where kn is the normal curvature, n is the normal to the surface at the point,
kg the is the geodesic curvature, and τ is the tangent vector of the curve a the



point. The normal curvature can be computed, knowing the principal curvatures
of the surface at the point (k1,k2), as

kn = k1 cos2 θ+ k2 sin2 θ (24)

where θ is the angle between the tangent vector of the curve and principal
direction corresponding to the maximum principal curvature. From here, the
curvature of the curve can be computed multiplying equation 23 by n

k ·n = knn ·n+ kg(n× τ) ·n

k cosψ = kn

where ψ is the angle between the normal to the curve and the normal to the
surface. Finally obtaining

k =
kn

cosψ
(25)

and r = 1/k. As stated before, a and b will be the maximum and minimum of
these computed radii. These parameters are shown in figure 29.

The principal curvatures and principal directions are computed using the ”Es-
timation of Local Differential Properties of Point-Sampled Surfaces” [38] package
of CGAL.

To compute the shock angle that corresponds to the tangent elliptic cone, the
perturbation solution shown in Rasmussen[39] is used.

Given the eccentricity (e) of the local ellipse, the semi-major axis of the per-

turbed cone can be computed as b = k tan θ, where k =
√
e+1
1−e and θ the local

surface inclination. From here, the mean apex semi-angle of the perturbed cone
is computed as θm = arctan (b

√
1− e). The semi-angle of the basic circular cone

that supports the perturbation solution is then

δ = θm + (e2/32)[3− 2 sin2 θm] sin 2θm (26)

Finally, the shock angle of the elliptic cone results

θs = β− εg cos 2φ (27)



Figure 29: Surface embedded curve (red). Principal directions (blue) and relevant angles
are shown

where β is the shock angle that corresponds to the basic circular cone of semi-
angle δ (obtained by solving Taylor Maccoll equation),

g = 6σ3
[
3 cos−1(1/σ)√

σ2 − 1
+

6

γ+ 1
(σ6 + σ2) + 3σ4 − σ2 − 5

]−1
(28)

and

ε = (e/4)[1+ (e2/32)[15− 20 sin2 θm + 8 sin4 θm]] sin 2θm (29)

being σ = β/δ. The angle φ takes the value φ = 0 for surfaces flatter than the
local circular cone and φ = π

2 for situations where the surface is sharper. These
variables are shown in figure 30.

Rasmussen perturbation solution for eccentricity e = 0.2 is plotted in figure 31,
along with the limits for wedge and circular cone.

Figure 32 shows, for a given local surface inclination of θ = 25◦, the variation
of the shock angle with eccentricity. The value of the shock angle goes from the
circular cone solution (for e = 0) to the wedge solution (for e = 1).

For high eccentricities, the computed shock angle should approach the one
computed for a supersonic wedge. Figure 33 shows shock angle against cone



Figure 30: Geometrical quantities involved in the perturbation solution
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Figure 31: Shock angle as a function of local surface inclination for an elliptic cone with
e = 0.2
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Figure 33: Perturbed solution that corresponds to a highly elliptical cone (e = 0.99)

angle for an elliptic cone with e = 0.99. The solution is closer to circular cone
than to wedge for low angles but is reasonably accurate in the rest of the domain.

While it is possible to use elliptic tangent cone for all geometries, using circu-
lar tangent cone in axially-symmetric cases is preferred as the execution of this
model is faster and its accuracy, for these cases, is higher.

Concavity in 3D

In three dimensions, two types of concavity are possible, stream wise concav-
ity and cross stream wise concavity. The former refers to the case where the
computed streamlines are not convex while the later refers to geometries and
flow conditions that present more than one stagnation region. The cross stream
direction will be addressed first.

When using the present method on geometries and flow conditions with cross
stream wise concavity, even though each streamline is involved in the generation



Figure 34: Geometry of an aircraft-like vehicle

of only one local shock not all local shocks produced over streamlines should
coalesce into the same global shock. Indeed, on these geometries, it is expected
to obtain multiple distinct shocks that interact with each other.

The aircraft-like vehicle shown in figure 34 has been selected as an example
to guide this section. Here, the expected shock structure is composed of three
shocks, one attached on the nose and two attached on the wing. At certain Mach
numbers the shock from the nose of the vehicle could impact the wing.

The shock estimation method described in previous sections produces the
point cloud shown in figure 35. In the current method, all those points would be
meshed together to obtain the surface of the global shock. That result is not sat-
isfactory, as the different origin of the shocks is not accounted for. Furthermore,
this approach would prevent any meaningful study of shock impingement from
the nose shock on the wings or any nose shock - wing shock interaction.

Classifying the local shock point cloud into distinct shocks is infeasible. The
solution adopted here is to group together streamlines, applying a clustering
algorithm on detected stagnation points. These groups will then be meshed
separately to produce distinct shock surfaces.

The algorithm selected to group the stagnation points is the density based spa-
tial clustering of applications with noise (DBSCAN)[15]. As its name suggests, it
is a density based clustering algorithm. It has been considered the best for this



Figure 35: Estimated shock points on a aircraft-like vehicle

application as it supports the discovery of clusters of arbitrary shape, it does not
require to know the number of clusters in advance, and it has only two control
parameters (ε and MinPoints ).

The algorithm has been implemented in C++ and it works as follows. Given
a point cloud, core points are defined as those which neighbourhood of radius
ε contains at least MinPoints. Those neighbour points are said to be directly
density-reachable from the core point. An arbitrary point q is density-reachable
from p if there is a chain of points directly density-reachable from each other
where p and q are the extrema of the chain. Finally, two arbitrary points (p,q)
are density-connected if there is a point from which both p and q are density-
reachable. A point belongs to a cluster if it is density-connected to it. Points
not belonging to any cluster are classified as noise. The procedure starts by
selecting a random point. If its ε neighbourhood contains less than MinPoints
it is classified as noise and another point is selected. Otherwise, a cluster is
grown through all density-connected points to it. These points are labelled as
belonging to the cluster. Once all density-connected points are reached, a new
non-labelled point is selected and a new cluster is grown. The process continues



Figure 36: Clusters computed from stagnation points

in this manner until all points have been classified as either belonging to a cluster
or noise.

Applying DBSCAN on the stagnation points detected on the plane-like vehi-
cle, three clusters are obtained as seen in figure 36. The first one is the nose
stagnation point, while the other two are stagnation lines on the wing leading
edge. The non clustered points are considered noise by the algorithm. These
three clusters are now ordered in the stream wise direction, with the goal of esti-
mating which clusters are influenced by others. The assumption here is that all
clusters upwind of a given one might influence its shock structure. Now that the
streamlines are classified, the local shocks can be meshed into these three global
shocks. Once the first global shock (nose) is estimated, the flow conditions after
it are computed. The streamlines from other clusters which stagnation points lie
inside the convex hull of this first shock are assigned its after shock flow condi-
tions instead of using those of the free stream. The local shock and Mach wave
inclinations will then be different than those computed if this interference was
not taken into account. The procedure continues cluster by cluster in a stream
wise order until all clusters are meshed.

The result of this procedure is shown in figure 37. The only influence of
the nose shock on the wing shock currently taken into account is that the flow
conditions inside the former are not free stream. This will influence the shock



Figure 37: Shock structure around a aircraft-like vehicle

around the wing roots, which will be less inclined with respect of the free stream
as the Mach number used for the computation is lower. The shocks are otherwise
considered transparent, with no shock-shock interaction.

Concavity in the stream wise direction is addressed in a way similar to the
one employed in 2D. Each streamline would generate more than one shock, as
opposed to the cross stream wise concavity case. As such, each streamline is
divided into concave and convex sections, with each convex section producing a
local shock. Between two of such sections of the same streamline, an expansion
fan is computed. The start of each convex section is considered a stagnation
point for the purpose of clustering.

Once the clusters have been computed, the estimation proceeds as in the cross
stream wise concavity case. The clusters are ordered in the stream wise direction
and after shock conditions are applied to any stagnation point (meaning here
any streamline or streamline section start) contained inside the convex hull of
any previously computed shock.

The procedure is shown, in figures 38 and 39, applied to the HB2 vehicle at
zero angle of attack. The streamline breaking and clustering produces two dis-
tinct clusters, one at the stagnation point on the nose of the vehicle and another
annular group at the beginning of the flange.



Figure 38: Clusters computed from streamline section starts

Figure 39: Shock structure around the HB2 vehicle

Two shock estimations are then performed. The bow shock is generated first,
using exclusively the first convex part of the streamlines. Then, the conical flange
shock is computed over the convex part of the streamlines that lay on the flange.
For this zone, the conditions after the bow shock are applied to the computation.
It is important to note that this second sock does not start from the surface of the
vehicle, but from the convergence point of the compression fan formed on the
curved body-flange interface.



3 VER IF I CAT ION

The verification of the method has been performed by comparing the shock es-
timation against CFD simulations. Each test case explores one aspect of the
estimation procedure.

To compare the estimated shock with the CFD simulations, the shock position
has to be extracted from CFD. There are multiple strategies to do so. Post et
al[37] give an overview of the most succesful ones. The approach taken in the
present work is the one presented by Pagendarm and Seitz [35]. The shock posi-
tion is described as the locus of the maxima of density gradient in the direction
of the velocity. This locus is constructed as a zero level isosurface of the second
derivative of the density in the direction of the velocity. To detect only maxima
(and discard minima and zones of low gradients) this surface is filtered by select-
ing only the regions where the first derivative is higher than a certain threshold
ε. This threshold is case dependent, and is selected as to filter erroneous shocks
while still capturing the whole shock structure. This shock extraction strategy
has been implemented inside Paraview, the postprocessing software used in this
work.

The error in the estimation is computed as the mean minimum distance be-
tween the vertices of mesh of the estimated shock and the shock position de-
tected from CFD, non-dimensionalized with the length of the geometry. That is,
the minimum distance from each vertex of the mesh of the estimated shock to
the extracted shock surface from CFD is calculated, and the mean of these values
is computed.

case 1: conical flow

The first case addressed is that of the circular cone at zero angle of attack. This
very simple case is used to test that there are no major issues on any of the
components (i.e. streamline tracing, conical flow solver, shock surface mesher
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Figure 40: Estimated shock and comparison with TM result for a cone at Mach 9

etc.) of the shock estimation procedure. The solution of the Taylor Maccoll
equation readily provides a shock position to which compare the estimation.

Figure 40 shows the mesh of the estimated shock over the conical shock ob-
tained from the Taylor Maccoll equation.

The estimation is as good as the tolerance selected while numerically solving
the Taylor Maccoll equation.

case 2: axially-symmetric attached shock. tangent
ogive body

The basic shock estimation procedure, including the effect of the expansion of the
flow along a streamline, is illustrated with a tangent ogive body. This geometry
is obtained by revolution of a circle arc, which corresponds to the expression

r =
√
ρ2 − (L− x)2 + R− ρ

where

ρ =
R2 + L2

2R
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Figure 41: Tangent ogive as a revolution of a circle arc

being R the maximum ogive radius and L the ogive length.
The shock generated is attached and axially-symmetric. This simple test case

is a good benchmark to judge how well the basic method works, where no de-
tachment or three dimensional effects are present.

Figure 42 shows the estimated shock, compared with CFD, for Mach 9 con-
ditions. As expected, the distance between the estimation and the actual shock
increases with the distance to the stagnation point.

Figure 43 shows the distance between estimated shock and CFD shock, non-
dimensionalized with the length of the ogive, along the same section showed
in the previous figure. The estimation is quite accurate, with a maximum error
below 2.5%.

Regarding the behaviour with Mach number, the error is expected to decrease
as Mach number increases. This comes as a result of the reduced effect of the
perturbations reflected from the shock. This is indeed the case until Mach 6, with
the error slightly increasing after that.

case 3: axially-symmetric detached shock. blunted
tangent ogive body

A blunted tangent ogive has been selected to verify the modification for detached
shocks. This geometry is obtained blunting the tangent ogive previously de-



Figure 42: Estimated shock and comparison with CFD for an ogive at Mach 9 and zero
angle of attack
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Figure 43: Distance between estimated shock and CFD shock along the surface of the
ogive



2 3 4 5 6 7 8 9

Mach

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

D
is

ta
n
ce

Figure 44: Mean distance between estimated shock and CFD shock as a function of
Mach
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Figure 45: Spherically blunted tangent ogive

scribed with a tangent spherical nose. The center of the spherical nose is given
by

x0 = L−
√
(ρ− rn)2 − (ρ− R)2

where rn is the nose radius and R and L are again the maximum ogive radius
and the ogive length, being ρ the radius of the supporting circle. From these
values, the tangent point is given by

yt =
rn(ρ− R)

ρ− rn
; xt = x0 −

√
r2n − y2t

being the apex point

xa = x0 − rn

Figure 47 shows the error in the estimated shock with Mach number. The
error is higher than in the attached case due to the fact that the estimation is not
started from a known condition (attached shock). The solution is started from
Billig’s generalized formula, which is on its own an approximation. On top of
that, the estimation of the principal curvatures of the geometry (triangular mesh)
at the stagnation point required by the formula is complex and prone to errors.
This last point will be explored later in the chapter.



Figure 46: Estimated shock and comparison with CFD for a blunted ogive at Mach 9

and zero angle of attack

case 4: asymmetrical attached shock. elliptic tan-
gent ogive body

Next, the effect of non axial symmetry is explored. An elliptic tangent ogive is
selected as a test case. This ogive is the same one used as the first test case but
scaled in the z direction by a factor of two.

The lack of axial symmetry suggests the use of elliptic tangent cone theory in-
stead of the traditional (circular) tangent cone theory. Figure 49 shows the error
in the estimated shock as a function of Mach number. The error is noticeably
higher than in the first test case. This is due to the additional approximations
being introduced in the elliptic cone perturbation solution, and the need to com-
pute surface curvatures in order to calculate the eccentricity of the local elliptic
cone.

Even with the required additional approximations, the result obtained using
elliptic tangent cone theory is much better than the one obtained using circular
tangent cone theory. Figure 50 shows a comparison between the two estimations,
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Figure 47: Mean distance between estimated shock and CFD shock as a function of
Mach



Figure 48: Estimated shock and comparison with CFD for an elliptic ogive at Mach 9

and zero angle of attack

with the circular cone theory presenting errors twice as high as the ones present
with elliptic cone theory.

case 5: asymmetrical detached shock. blunted el-
liptic tangent ogive body

The combined effect of bluntness and lack of axial symmetry provides a challeng-
ing test case. The geometry is a blunted elliptic tangent ogive. The main feature
of the method tested here is is the generalized Billig formula, required to start
the shock estimation. As shown in figure 52, the formula accurately captures the
shock shape around the stagnation point, with the expected higher error along
the principal direction associated with the smallest principal curvature.

Figure 53 shows the error in the estimated shock with Mach number. The
error increases with Mach number due to the increased error in the generalized
Billig’s estimation, as seen in figure 27.

The effects of the curvature calculation are also apparent in this test case.
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Figure 49: Mean distance between estimated shock and CFD shock as a function of
Mach
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Figure 50: Comparison between estimations using circular tangent cone theory and el-
liptical tangent cone theory



Figure 51: Estimated shock and comparison with CFD for a blunted elliptic ogive at
Mach 9 and zero angle of attack

case 6: multi-component shock structure. hb-2

The test case selected for analysing the multi-component shock structure estima-
tion is that of HB-2. Here, two shocks are generated, a bow shock around the
blunted nose and a conical shock on the aft flange of the geometry. These two
shock are shown in figure 54 along with the Mach field resulting from a CFD
simulation.

The error in the estimated bow shock with Mach number is shown in figure
55. No clear behaviour can be discerned, but the estimation is quite accurate at
all tested Mach numbers.

While the procedures required for the estimation of the bow shock position
have been verified before (blunted tangent ogive), the secondary conical shock
showcases new aspects of the computation. The estimation of the position of the
secondary shock requires the flow conditions after the bow shock, as well as the
computation of the compression fan present in the body-flange shoulder.

Figure 56 shows the error in the estimated secondary shock with Mach number.
The geometry of the flange itself is very simple, a cone as the one verified in



Figure 52: Detail of shock estimation around the stagnation point over CFD Mach field.
Left, principal direction of maximum curvature. Right, principal direction of
minimum curvature
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Figure 53: Mean distance between estimated shock and CFD shock as a function of
Mach

Figure 54: Estimated shock structure and comparison with CFD for the HB-2 at Mach 9

and zero angle of attack
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Figure 55: Mean distance between estimated (bow) shock and CFD shock as a function
of Mach
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Figure 56: Mean distance between estimated (flange) shock and CFD shock as a function
of Mach

case 1 to great accuracy. A lot of aspects contribute to the final error shown
in the figure. The error on the estimation of the bow shock propagates to the
computation of its after shock flow conditions, that are then used to compute
the compression fan that sets the first point of the estimated flange shock and
that feed the estimation process. The solution degrades with decreasing Mach
number, as it does the estimation of the bow shock and its after shock conditions.

case 7: angle of attack. tangent ogive body

In this section, the effect of the angle of attack is studied. The geometry used is
the tangent ogive, seen before while verifying attached shocks.

The angle of attack introduces an asymmetry in what would otherwise be an
axially symmetric flow. As such, elliptical tangent cone might be more suitable



Figure 57: Estimated shock and comparison with CFD for an elliptic ogive at Mach 9

and 10
◦ angle of attack

than traditional circular cone. Figure 58 shows the error in the estimated shock
while using elliptical tangent cone for the computation of local shocks.

Meanwhile, figure 59 shows a comparison between the error in the estimated
shock while using elliptical tangent cone versus circular tangent cone for the
computation of local shocks. While in the circular case the errors are overall
smaller, they increase with angle of attack as the asymmetry becomes more pro-
nounced. In the elliptic case, however, the errors seem independent from the
angle of attack. Elliptic cone appears therefore theoretically better suited for
this case due to this error independence, even if practically it is still convenient
to use the circular approximation until the problems with elliptic cone are ad-
dressed. The higher error comes from the need to compute curvature values on
the geometry.
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Figure 58: Mean distance between estimated shock and CFD shock as a function of angle
of attack
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Figure 59: Comparison between estimations using circular tangent cone theory and el-
liptical tangent cone theory



Figure 60: Shock structure over CFD results

case 8: complex shock structure. aircraft-like ge-
ometry

A more general geometry of engineering interest is showcased here. The CFD
simulation for this case is very computationally expensive, therefore only one
flight condition (Mach 9 at zero angle of attack) has been simulated.

The estimated shocks for both fuselage and wing qualitatively match the shock
position from CFD. There is a complex wing shock - nose shock interference
which is not captured by the estimation, with the only effect taken into account
being the flow conditions after the nose shock for the part of the wing shock that
lies in its wake. The complex shock interference, however is limited to a small
zone of the flow, with the overall result being satisfactory.



Figure 61: Tangent ogive at high angle of attack

limitations of the method

To finalize the verification, the limitations of the method are explored. These are
situations where the models underlying the shock estimation procedure are ill
suited for the conditions where they are applied or where their shortcomings
become apparent.

The tangent ogive body at an angle of attack will serve to illustrate some of
these issues.

The first stage of the shock estimation procedure is the computation of surface
streamlines over the geometry. These are computed under the assumptions of
Newtonian flow (flow particles transfer momentum normal to the surface while
maintaining their momentum tangent to it). This assumption is reasonably ac-
curate on the windward part of the geometry, but fails on the leeward side. An
extreme manifestation of this can be seen in a tangent ogive at high angle of
attack. In this case, along with the usual shadowing not contemplated by New-
tonian theory, there is flow separation which further complicates the surface
streamlines.



Figure 62: Windward side of the ogive

Figure 63: Leeward side of the ogive



Figure 64: Side view of computed streamlines over CFD surface streamlines

The computed streamlines successfully approximate the CFD surface stream-
lines for the windward side of the body. On the leeward side, however, there is
little similarity between computed and actual streamlines.

Figure 64 shows a side view of the ogive, with the computed streamlines su-
perimposed over the streamlines obtained from CFD. It can be seen how the
computed streamlines drift way from the actual ones as the flow wraps around
the geometry.

The difference between actual streamlines and approximated ones will cause
the shock to be computed from the wrong conditions. This effect, however, is
not as serious as it might seem. Due to the expansion over the body, a relative
small zone around the stagnation point is responsible for the shock structure at a
distance many times its size. The streamline segments on the leeward side of the
geometry only influence the shock far away downstream. This can be observed
in figure 65.

Another aspect that can be studied from this test case is the influence of the
curvature estimation. The presence of angle of attack suggest the use of elliptical
tangent cone theory to compute the local shocks. The application of this theory
requires the computation of principal curvatures and principal directions over



Figure 65: Surface streamlines (red) responsible for shock structure (blue)

the geometry. As the geometry is described by a triangular mesh, this procedure
is complex and prone to numerical errors.

For the tangent ogive geometry, the curvatures are easily computed analyti-
cally as follows.

The radius of the circle that supports the ogive can be computed from the
maximum ogive radius R and the ogive length L

ρ =
R2 + L2

2R

The radius of the ogive at any x coordinate along it is then

r =
√
ρ2 − (L− x)2 + R− ρ

with x ∈ [0,L]. The point where the curvatures are computed can be defined
by the angles θ and ψ

θ = arctan
(
L− x

ρ− R

)
ψ = arctan

(
z

y

)
The curvatures are then calculated as
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Figure 66: Principal directions for a point on a tangent ogive

k1 = −
1

ρ

k2 = −
1

r/ cos θ

with the principal directions (v1, v2) and the normal vector (n) given by

v1 = (− cos(θ), − sin(θ) cos(ψ), − sin(θ) sin(ψ))

v2 = (0, − sin(ψ), cos(ψ))

n = (− sin(θ), cos(θ) cos(ψ), cos(θ) sin(ψ))

Figure 67 shows an histogram of the values per vertex of the first principal
curvature as computed by CGAL. The analytical result indicates that this value
should be constant and, for the parameters L and R considered in this test, k1 =
−0.117647. The distribution of CGAL values is centred on the analytical value,
but the presence of outliers is readily seen on the plot.

Regarding the second principal curvature, figure 68 shows a comparison be-
tween CGAL obtained and analytical values. While the distributions are similar,
differences can be seen again between the two. Differences increase as the radius
of curvature becomes smaller, towards the nose of the ogive. The estimation in
zones of high curvature is harder due to the limitations imposed by the mesh
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Figure 67: Histogram of first principal curvature at each vertex of the geometry as com-
puted by CGAL
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Figure 68: Histogram of second principal curvature at each vertex of the geometry com-
paring CGAL with the analytical result

geometry1. This situation is unfortunate, as the shock estimation starts from the
nose of the vehicle, and therefore in a zone of high curvature, and the errors here
will propagate along the estimation.

These differences will introduce an error in the shock estimation procedure.
The error introduced by the curvature calculation can be quantified by compar-
ing the shock estimations when using analytical curvatures against the fully au-
tomated method.

For a tangent ogive at a moderate angle of attack (10
◦), figure 69 shows a

comparison for estimated shock using CGAL and analytical curvatures. While
both shocks look qualitatively similar, the errors in curvature computation show
in the shock estimation as noise in the shock position.

The next limitation is illustrated by a cone with high apex angle at zero angle
of attack. A detailed study of this case can be found at Leyva[27]. Here, the

1 A finer surface mesh for the geometry would reduce these errors, concentrating them in a smaller
and smaller high curvature zone around the ogive apex.



Figure 69: Estimated shock for a tangent ogive at 10
◦ angle of attack. Curvatures com-

puted by CGAL on the left and analytical curvatures on the right

shock is detached but the stagnation point is located at a singular point of the
surface, therefore the principal curvatures there cannot be computed. As it is not
possible to apply the starting procedure for detached shocks (generalized Billig’s
formula) on this geometry, the shock cannot be estimated. This can also be seen
as a consequence of the global origin of the shock. The stand off distance and
the shock curvature depends of the actual size of the cone geometry, and not on
local information around the stagnation point. A similar situation is encountered
with a cylinder aligned with the flow.

discussion

The present method has been shown to be able to address a wide range of ge-
ometries and Mach numbers in a unified manner. Especially relevant, due to
its novelty, is the ability to predict shock position for three dimensional cases
and the treatment of multi-shock situations. Despite its limitations, the present
method produces predictions that are accurate enough to be useful in the design
and analysis of hypersonic vehicles. This usefulness will be substantiated in the
next chapters, dedicated to applications.



4 APPL ICAT IONS : IMPROV ING LOW
ORDER MODELS

The shock estimation method can be used as an addition to a low order aero-
thermodynamic model for supersonic and hypersonic vehicles. As such, its main
application is the improvement of the predictions and increase of capabilities of
that model when shock related phenomena is present.

The low order model that this shock estimation method was designed to com-
plement is HyFlow[45]. This is an aerodynamic model optimized for its use in
MDO of reusable space vehicles. The code is implemented in Python3, with
some computationally expensive routines written in C++, and follows an object
oriented programming paradigm. HyFlow was created in the Laboratory for
Future Air-Space Transportation Technology (FASTT-Lab) at the University of
Strathclyde.

There are a number of shock related situations that cannot be described by the
surface inclination methods at the heart of HyFlow. These are opportunities to
apply the shock estimation algorithm shown in the present work. The first one
treated here is the estimation of off body flow conditions. The other is the effect
of shock impingement, both from one body interacting with its own shock and
from shock interference from proximal bodies.

flow field interpolation

Local inclination methods lack any inherit capability for off-body flow predic-
tions. This limitation is often not important during the design process, as the
goal is the computation of surface values. Off-body conditions are however rel-
evant in certain situations, like radiative flows or in proximal body interference.
A fast prediction of these values could allow for the study of these situations in
the context of low order modelling.

The estimation of the shock position provides a way to compute an approx-
imated flow field around the vehicle. The procedure starts by computing the
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shock position. Then, after-shock conditions are calculated for each facet of the
estimated shock, using the oblique shock relations, and then interpolated into
its vertices. HyFlow readily provides surface values using its internal methods.
This results in a shock and geometry point cloud with associated pressure, tem-
perature and velocity values.

To obtain an approximation of the flow field, this cloud is meshed using a De-
launay algorithm. This provides connectivity information to the cloud. Finally,
point values are interpolated into each tetrahedron of the resulting Delaunay
mesh, creating a volumetric field.

The resulting connectivity information is quite simplistic and mostly results in
interpolations in the direction normal to the surface of the vehicle. Connectivity
along Mach waves would be more theoretically sound but it is unclear how, if
possible, this implementation could be carried out. Even with this limitation,
however, the resulting flow fields are quite accurate (in the context of low order
modelling).

The procedure is exemplified by a blunted tangent ogive at Mach 9. The es-
timated flow field is compared with a CFD simulation on the same domain. A
qualitative comparison for pressure values is shown in figure 70.

The overall solution is quite satisfactory, with both fields showing similar struc-
ture and pressure values. T and U fields show similar behaviour.

A quantitative comparison (figure 73) shows mean relative error1 for pressure
between CFD and estimated flow field around 20%, with a 40% maximum value.
Two zones are important to highlight. The first one is the subsonic zone around
the nose, where the error is quite small (below 10%). The other is the high error
line around the shock, due to the different position between estimated and actual
shock.

shock impingement

An important shock-related phenomenon is that of shock impingement. When a
shock impinges on the surface of the vehicle, a zone of extremely high tempera-
ture and pressure is generated. This has two important effects. First, the thermal
protection system has to be carefully designed for this situation, otherwise the

1 abs
(
CFD−Estimation

CFD

)



Figure 70: Comparison for pressure between CFD solution (top) and estimated flow
field (bottom)



Figure 71: Comparison for temperature between CFD solution (top) and estimated flow
field (bottom)



Figure 72: Comparison for velocity magnitude between CFD solution (top) and esti-
mated flow field (bottom)



Figure 73: Relative error for pressure between CFD and estimated flow field

survivability of the vehicle could be compromised. Second, the peak pressure
has to be accounted for when estimating the forces over the vehicle, as ignoring
this effect could affect its controllability.

As both shock and geometry are described by triangular meshes, the problem
of detecting impingement is equivalent to the problem of detecting intersections
between these meshes.

Computing pairwise intersection for all triangles is computationally expen-
sive. In order to speed up this process, axis aligned bounding boxes are created
around each triangle of the geometry and the shock. These boxes are then tested
against each other (a much easier operation than with triangles) and only if an
intersection is detected here the underlying triangles are tested. This algorithm
is implemented using the Intersecting Sequences of dD Iso-oriented Boxes[24]
package of CGAL.

It is important to note that the shocks are considered transparent. That is,
the shocks pass through each other as there is no interaction computed between
them.



Figure 74: Shock structure around a aircraft-like vehicle

The procedure is illustrated with the synthetic example of an aircraft-like ge-
ometry. The shock structure obtained by the estimation method, for the vehicle
at Mach 9 and zero angle of attack, is shown in figure 74.

From the figure, it can readily be seen that the shock generated at the nose of
the vehicle impacts somewhere on the wing. The exact location of the impinge-
ment can be detected by the procedure described before.

Figure 75 shows the triangles of the aircraft-like geometry impinged by one of
the shocks of the estimated shock structure. Two zones stand out, the impinge-
ment of the nose shock over the wing and the impingement of the wing shock
over the fuselage. Along with this two zones, the attachment line on the wing
leading edge and the attachment point at the nose of the vehicle can be seen.
This is due to the fact that the stagnation points are part of the shock and lay on
the geometry. These faces could be filtered out by not using the shock triangles
that contain stagnation points in the impingement detection.

While this synthetic example might be ill designed for the flight conditions
considered, shock impingement is a problem in real vehicles. One well studied
case is that of Skylon. This vehicle is an SSTO design used Reaction Engines Ltd.
to showcase their combined cycle air-breathing engine (SABRE).



Figure 75: Impinged triangles of the aircraft-like vehicle

Figure 76: Skylon geometry



Figure 77: Shock structure around the Skylon vehicle

The shock structure in this case is much more complicated due to its multiple
control surfaces and the presence of the engine nacelles. Figure 77 shows the
estimated shock structure for the vehicle at Mach 9 and zero angle of attack.

Both the shock from the nose and the shock from the nacelles impact the wing.
The detection procedure captures this situation, as shown in figure 78.

The nacelle-wing shock-shock interaction has been explored by Eggers[14].
This impingement might require the use of active cooling to protect the struc-
ture of the vehicle.

At this point, the present code only computes the impingement locations. An
important improvement would be the inclusion of a model to estimate overpres-
sures and increased heat transfer rates from the impingement detection. This
addition would allow for studies such as the one of Eggers fully in the context
of low order modelling.

Along with the high pressure peak at the impingement zone, shock impinge-
ment has an additional effect on the pressure distribution over the vehicle. The
part of the vehicle enclosed downwind of a shock is immersed in a perturbed
flow, with flow conditions different from those of the free stream. To accurately



Figure 78: Impinged triangles of the Skylon vehicle

predict the forces over the vehicle using local inclination methods, this situation
has to be taken into account.

The shock estimation procedure described in the present work can be coupled
with HyFlow to estimate the forces over the vehicle in the presence of shock
interference. Once a shock structure is estimated, the triangles of the geometry
of the vehicle which fall inside each shock are computed. For those triangles,
the flow conditions used to estimate pressures are the ones after the enclosing
shock.

The shock is described as a triangular mesh. The flow conditions after it are
computed using the oblique shock relations on each triangle. A single value
for the whole shock is extracted by computing the area averaged supersonic
conditions, disregarding the subsonic part in the case of a detached shock. This
is a simplistic approach, but it produces reasonable results.

The detection of the enclosed triangles is done using the Polygon Mesh Pro-
cessing package[29] of CGAL. As this algorithm requires a closed mesh against
which to perform queries, the convex hull of the shock is computed and the ve-
hicle is tested against it. The convex hull calculations are also helped by CGAL,
using the 3D convex hull package[22].

An interesting case where this situation appears is in the presence of inter-
ference from proximal bodies, for example in the stage separation of a TSTO
vehicle. This is a time dependant problem with a broad parameter space describ-



(a) Front view (b) Side view

Figure 79: TSTO configuration

ing all the possible separation strategies. A fast approximate method would be
an interesting tool to study the problem.

The case shown in Bordelon et al[8] is analysed here. It consists of a TSTO
configuration with an orbiter and a booster of identical shape mated in a belly-
to-belly bimese arrangement. The shape of the stages is that of the Langley-
Glide-Back Boster (LGBB), a generic wing-body vehicle developed for system
analysis studies. Front and side views of this bimese configuration are shown in
figures 79a and 79b.

Murphy et al[33] explored the possibility of using APAS to address this same
separation problem. The APAS code, however, does not implement any shock
estimation procedures, and therefore the shock structure has to be provided ex-
ternally. With HyFlow and the present shock estimation method, the problem
can be rapidly analysed using exclusively low order methods.

The surface pressure field of the orbiter is computed taking into account that a
zone of it is immersed in the after shock conditions from the booster. From this
pressure distribution, the forces and moments on the orbiter are computed.

For a separation purely in the z direction, figure 80 shows the aerodynamic
force on the orbit in the z direction as a function of the separation. Figure 81

shows the same result but for the aerodynamic moment in the y direction.
While this is the same separation trajectory analysed by Murphy with APAS, it

is impossible to perform a meaningful comparison with wind tunnel data due to
the uncertainty in the geometry. The mesh for this test case has been recreated for
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Figure 80: Aerodynamic force along the z axis as a function of the separation distance
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Figure 81: Aerodynamic moment along the y axis as a function of the separation dis-
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Figure 82: Shock interference from booster to orbiter and resulting pressure field

the present work using the figures of the paper as reference. While the overall
shape is captured, there is not enough information to model all details of the
geometry.

The speed of the presented method also allows for efficient parametric studies.
Instead of analysing a single separation trajectory, it is possible to compute forces
an moments for a whole matrix of orbiter positions. The analysis is similar to
the one performed by Buning [9], although using low order methods instead of
inviscid CFD.

Figure 83 shows the aerodynamic force on the orbiter along the z axis as a
function of ∆x and ∆z. It can be seen that the orbiter leaves influence of the
shock of the booster at ∆Z ' 3.0.

Similarly, figure 84 shows the aerodynamic moment on the orbiter along the y
axis as a function of ∆x and ∆z.
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Figure 83: Aerodynamic force along the z axis as a function of ∆x and ∆z
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5 APPL ICAT IONS : INFORM ING H IGH
F IDEL I TY TOOLS

In the context of high fidelity tools, the method shows great promise in informing
meshing for CFD in supersonic and hypersonic conditions. It can also be used
to provide suitable initial conditions to CFD simulations.

cfd meshing

CFD in supersonic flows has the particularity of having to deal with shocks.
These present themselves as real discontinuities in flow properties in the case of
Euler equations or strong gradients in zones of finite but very small thickness in
the viscous case.

Two main families of methods have been used to deal with these disconti-
nuities, namely shock-fitting and shock-capturing techniques. Shock-fitting ex-
plicitly treats the shock as an actual discontinuity, tracking it separately from
the underlying mesh and imposing the jump of flow properties according to
Rankine-Hugoniot equations as boundary conditions for the rest of the solution.
These methods are algorithmically complex to implement and its use is nowa-
days limited. The other family is that of shock-capturing techniques. Here, the
shock is not explicitly treated, arising as part of the solution. Numerical dissipa-
tion is introduced to limit high frequency oscillations in the shock front. This is
the most commonly used method and is the one implemented in OpenFOAM,
the solver selected for the present work. A more detailed overview of these
methods can be found in Pirozzoli[36].

As the shock is not explicitly treated in shock-capturing codes, the suitability
of the mesh with respect to the solution is paramount. Mesh refinement and
alignment around shock surfaces is required in order to capture sharp shocks
and avoid oscillations. The position of the shocks, however, is only known after
the simulation is completed. It is therefore necessary to perform a preliminary
simulation to guide meshing for a second more detailed one or to use adap-
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Figure 85: Uniform mesh

tive mesh refinement (AMR) to compute the solution and optimized mesh in an
coupled manner.

The shock estimation procedure presented here can, however, potentially pro-
vide the shock structure directly from the geometry and the flow conditions.
That would allow for adapted meshing without the need of preliminary simula-
tions to precompute the shock structure or the use of AMR.

A two dimensional supersonic wedge will be used as a proof of concept for
the procedure. The wedge has a 20 degree semi-angle and it is immersed in
a Mach 5 free stream. The solution field for this problem is well known. It
corresponds to an oblique shock with 29.8 degree inclination 1. The meshing
has been performed using gmsh[17]. Two unstructured meshes, with similar
number of cells have been produced. The first one has uniform sizing, while the
second one has the cell size linked to the distance to the shock (that, in this case,
is known before the simulation). The meshes are quad dominant, produced
by recombining a Delaunay triangular mesh. OpenFOAM is cell centred, it is
therefore the cell number what sets the degrees of freedom. The cell counts of
the uniform and non-uniform meshes are 2522 and 2476 respectively.

Figure 87 shows converged the solution for Mach number on the uniform
mesh, while figure 88 shows the same field for the non-uniform one.

1 As computed by:

tan θ = 2 cotβ M2
1 sin2β−1

M2
1(γ+cos2β)+2



Figure 86: Non-uniform mesh

From a qualitatively point of view, the solution for the mesh that takes into
account the shock position looks markedly better. This is apparent in this case
due to the a priori knowledge of the correct solution. In general, the solution will
not be known before the simulation, so a different strategy is needed to compare
the quality of the meshes.

This problem is similar to that present in adaptive mesh refinement (AMR).
Here, an estimation of the local error is used in order to evaluate the necessity of
local refinement or coarsening. The mesh is then optimized towards an uniform
distribution of the error, coarsening the zones of low error while refining the
high error zones.

The error evaluated with these estimators is that of interpolation of a particular
physical property. It arises due to the representation of the continuous physical
solution onto the discrete mesh and is a function of the position and the direction.
Crucially, it can be seen as a metric tensor of a Riemann geometry. An isotropic
mesh in this geometry would have uniform error, while being anisotropic in Eu-
clidean space. It has been shown that this metric tensor is the Hessian matrix of
some flow variable [13]. In these supersonic simulations, the Mach number has
been selected as the relevant fluid property from which to compute the Hessian.



Figure 87: Mach number field for the uniform mesh

Figure 88: Mach number field for the non-uniform mesh



When applied to AMR[10], the metric tensor is first computed as

M = R

|λ1| 0 0

0 |λ2| 0

0 0 |λ3|

R−1 (30)

where λi and R are the eigenvalues and a matrix composed from the eigenvec-
tors of the Hessian matrix respectively. The lengths of segments in this metric
are then calculated as

l =
2

3

l20 + l0l1 + l
2
1

l0 + l1
(31)

with li =
√

(γ ′)tMγ ′, where γ ′ is the derivative of the parametrization of
the segment. If the segment is parametrized with s as x = x0 + s(x1 − x0),
γ ′ = x1 − x0 is readily obtained.

Solution and mesh adaptation are calculated together in an iterative manner.
Once the solution is computed on the initial mesh, the metric tensor is calculated
from that solution using a relevant physical property. In this defined metric, the
lengths of the segments of the mesh would be uniformed by refinement and
coarsening, equidistributing the error. In a vertex centred code, these segments
would be the edges of the triangulation, while in a cell centred one, this segments
would be edges of the dual mesh. The solution is then interpolated into this new
mesh and the computation continues.

The use of the a posteriori error estimator is somewhat similar in the context of
mesh comparison. Here, two meshes and two solution fields are available. The
goal is to compare the error distribution of the two solutions on the two meshes.
Four mesh-solution pairs are created, namely (mesh a - solution a), (mesh b -
interpolated solution a), (mesh a - interpolated solution b) and finally (mesh b -
solution b). In the case presented here, one mesh would be the one with uniform
sizing while the other would be the shock refined one.

A metric tensor is derived from each solution. Then, the lengths of the inter-
cell segments (edges of the dual mesh) on each mesh are computed in this metric
and stored on cell faces. Finally, cell values are computed by averaging cell face
values. The error distribution is quantified by the standard deviation of these
cell errors.

For a given solution, a smaller standard deviation is expected for the shock
refined mesh with respect to the one with uniform sizing. And this is indeed the



Table 1: Standard deviations of error distribution

mesh A mesh B

solution A 0.4435 0.3418

solution B 1.3832 0.6281

Figure 89: Missile geometry

case, as shown in the table (mesh A is the uniformly sized mesh and solution A
is its resulting field).

The error is more uniformly distributed (smaller standard deviation) on the
shock aware mesh (B).

In order to compare the meshes on the same metric, interpolating the solution
fields between meshes is required. Therefore an additional interpolation error
is introduced. Comparing both meshes on both metrics, which requires A-¿B
interpolation and the reciprocal B-¿A, mitigates this effect.

With the concept demonstrated, the procedure will be applied to relevant engi-
neering cases. The first one is a missile flying at Mach 6 and zero angle of attack.
The missile geometry shown in figure 89.

The shock structure is estimated and then used to guide the meshing for the
CFD simulation. Gmsh has again been the tool selected to create the meshes.
They have been generated as non structured tetrahedral and then dualized into
polyhedral meshes to reduce skewness in OpenFOAM cell centered code.

Figure 90 shows the CFD domain and the estimated shock structure.



Figure 90: CFD domain and estimated shock

Figure 91 shows the non uniform mesh of 1505938 cells. The cell sizing takes
into account the distance to the shock structure as well as the distance from the
nose of the missile. This is done to address the increasing error of the shock
estimation in the stream wise direction.

Figure 92 shows the uniformly sized mesh of 1503465 cells.
Overall, the converged the solutions for Mach number on both meshes look

markedly similar, with the non-uniform one showing slightly better shock def-
inition. It is in the details, however, where the adapted solution shows its po-
tential. Zones like the nose, the wing-body shock interaction or the domain exit
plane are much better resolved in this adapted mesh. Figures 93 and 94 show
the solution for Mach number on the whole domain. Figures 95 to 97 show a
side by side comparison of certain zones of the simulations.

The shock around the nose, shown in figure 95, is much better defined in the
non-uniform case. This is important, as differences here will propagate down-
stream affecting the shock structure.

Figure 96 shows the shock interaction at the wing root. On this figure, the
color map has been squeezed to highlight this interaction. Care must be taken
in this zone during design, as the impinging shock may generate pressure and
heat transfer peaks over the body. While both meshes show this interaction, the
result looks smeared on the uniform mesh as compared with the shock aware
one.



Figure 91: Non-uniform mesh

Figure 92: Uniform mesh



Figure 93: Mach number field for the non-uniform mesh

Figure 94: Mach number field for the uniform mesh



Figure 95: Comparison of the nose zone on uniform (left) and non-uniform (right)
meshes

Figure 96: Comparison of the wing-body shock interaction on uniform (left) and non-
uniform (right) meshes



Figure 97: Comparison of domain exit plane on uniform (left) and non-uniform (right)
meshes

Table 2: Standard deviations of error distribution

mesh A mesh B

solution A 0.7067 0.6383

solution B 0.8988 0.8553

Finally, figure 97 shows the exit plane of the CFD domain. The interacting
wing shock structure as well as the shock and wake structure from the tail fins
can be seen in the plot. Again, while overall similar, the smeared result on the
uniform mesh is quite noticeable.

As with the supersonic wedge case, the two meshes are quantitatively com-
pared by measuring the standard deviation of the error distribution. Table 2

shows the standard deviations, where A refers to the uniformly sized mesh and
B to the non-uniform one.

The shock aware mesh (B) shows a more uniform error distribution, that trans-
lates into a mesh closer to optimal. This can also be seen by plotting the his-
togram of the error for each solution on both meshes. Figure 98 shows this
comparison for solution A, while solution B is shown in 99

The X43 vehicle has been selected as the second engineering test case. This
is a hypersonic experimental craft developed by NASA for in-flight testing of
scramjet propulsion. An overview of the program can be found in Voland et
al.[43]

The vehicle has been simulated at Mach 6 in open cowl configuration. The ge-
ometry is shown in figure 100, while the CFD domain and the estimated shocks
are shown in figure 101.
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Figure 98: Histograms of cell error for solution A. Mesh B is shown in red with mesh A
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Figure 99: Histograms of cell error for solution B. Mesh B is shown in red with mesh A
appearing in blue

Figure 100: X43 geometry



Figure 101: CFD domain and estimated shock

Again, two meshes have been generated, a uniformly sized and a non-uniform,
shock aware one. The uniform mesh has 1522862 cells and is shown in figure
102. Figure 103 shows the non-uniform mesh, with a 1499886 cell count.

From a qualitative point of view, the Mach number field obtained from the
converged solution on the non-uniform mesh (figure 104) shows sharper shock
fronts as compared with the uniform mesh solution (figure 105). Otherwise the
results are very similar, as expected from two converged simulations of the same
test case.

Once again, it is in the details where the adapted mesh proves most useful.
This is explored by comparing side by side, the shock structure in front of the
ramjet, the fin-body shock interaction and the domain exit plane on both meshes.

The ramjet inlet conditions have an important effect in the performances of the
propulsive system. The X43 vehicle has two compression ramps that condition
this inlet flow. The first ramp produces a very weak shock, followed by a stronger
one produced over the second ramp. Figure 106 shows a side by side comparison
of this shock structure on both meshes. The uniform mesh shows a very diffuse,



Figure 102: Uniform mesh

Figure 103: Non-uniform mesh



Figure 104: Mach number field for the non-uniform mesh

Figure 105: Mach number field for the uniform mesh



Figure 106: Comparison of plane of symmetry on uniform (left) and non-uniform (right)
meshes

Figure 107: Comparison of the fin-body shock interaction (top side) on uniform (left)
and non-uniform (right) meshes

almost non existent, first shock in contrast with the more defined front of the
refined mesh. This, in turn, affects the second shock and the inlet conditions.

Another zone of interest lies in the interaction between the vertical fin shock
and the body. This interaction is present in both the top and bottom sides of the
geometry. The footprint of the shock impingement is much better resolved in the
non-uniform mesh, which makes its results more useful than the ones provided
by the uniform mesh when studying possible thermal issues.

Finally, a comparison of domain exit plane on both simulations is shown (fig-
ure 109). This presents a good overview of the effect of the non-uniformity of
the mesh on the solution. The fin wakes and the shock envelope are enhanced
by this meshing.

A quantitative comparison of the results is also performed, following the same
procedure as in the previous test case. The standard deviations of error distribu-
tion for both solutions on both meshes is shown in table 3. Again, A refers to the
uniformly sized mesh and B to the non-uniform one.



Figure 108: Comparison of the fin-body shock interaction (bottom side) on uniform (left)
and non-uniform (right) meshes

Figure 109: Comparison of domain exit plane on uniform (left) and non-uniform (right)
meshes

Table 3: Standard deviations of error distribution

mesh A mesh B

solution A 0.4148 0.3919

solution B 0.5946 0.5023
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Figure 110: Histograms of cell error for solution A. Mesh B is shown in red with mesh
A appearing in blue

The results here are closer than before, but the shock aware mesh (B) still
shows better optimality (through a more uniform error distribution). The error
histograms (figure 110 for solution A and figure 111 for solution B) indicate a
similar error distribution on solution A, with a more differentiated behaviour on
solution B. This can be attributed to the very low shock definition on solution A,
which partially defeats the advantage of a finer mesh around the shock.

flow field interpolation. generating initial con-
ditions

The procedure for flow field estimation showed in the previous chapter in the
context of low order modelling can also be applied to the generation of initial
conditions for CFD simulations. The application is illustrated with the same
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Figure 112: Comparison of convergence rates between uniformly initialized (blue) and
initialized from interpolated flow field (red)

blunted ogive case showed before. Convergence rates are compared between
a simulation initialized from uniform conditions (T=1,p=1,U=9) and one initial-
ized from interpolated flow field. The convergence is estimated by computing
a residual as the difference of the density field between two consequent time
steps and then obtaining the volumetric average of the absolute value of such
difference field (volAverage(abs(ρt+1 − ρt))).

The results are shown in figure 112, where the simulation initialized from
interpolated flow field shows slightly better convergence behaviour.



6 CONCLUS IONS

summary of results

An approximate method for shock structure estimation in supersonic and hy-
personic vehicles has been presented. The procedure applies a combination of
supersonic flow theories over surface streamlines, generating local shocks. These
are then meshed together to obtain one or multiple global shocks, taking into ac-
count multiple origins through stagnation point clustering. Detached shocks are
addressed starting the procedure from an engineering correlation around the
stagnation point and correcting the expansion through a correction factor. The
method has been verified against CFD simulations, with each of the test cases
highlighting a different aspect of the estimation procedure. Overall, the approx-
imated shock structures show good agreement with the reference CFD results,
especially taking into account the speed with which those approximations were
generated. Higher error corresponds to three dimensional geometries, particu-
larly when shock detachment is present. The source of those errors has been
identified and could be addressed in future work to improve the accuracy of
the estimations. These sources are the elliptic cone perturbation solution, that
produces inaccurate results at low angles of incidence, and the curvature estima-
tion from the triangular surface mesh, that introduces noise in all steps of the
algorithm.

The procedure is novel in addressing two and three dimensional geometries
with attached and detached shocks as well as shock structures composed of mul-
tiple shocks in one cohesive methodology. Specifically, the treatment for de-
tached shocks with subsonic zone approximation patched to the attached shock
estimation method under a correction factor, the engineering formula for de-
tached shocks around general 3D stagnation points and the use of a clustering
algorithm for multi-shock reconstruction are all original contributions.
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impact

The impact of the present thesis is greater in the fields of MDO, improving low
order models, and MFDA, making the use of high fidelity tools more efficient
and streamlined.

In the context of MDO, the method is compatible with low order aero - ther-
modynamic models in both assumptions and execution speed and can be used
to improve the predictions of such models when shock related phenomena are
present. Three examples have been presented (flow field interpolation, shock
impingement detection and shock effects between proximal bodies due to per-
turbed flow conditions). Flow field interpolation produces a rough approxima-
tion of the flow around a supersonic vehicle. This approximation could be used
to analyse, in the context of low order models, some situations where off-body
conditions are important. An example of this could be the estimation of heat
fluxes on re-entry capsules, taking into account radiative fluxes from the shock.
The shock estimation procedure has also been used to detect shock impingement.
While this is already of interest, as it highlights problematic areas to analyse in
greater detail using higher fidelity models, a very important addition for the fu-
ture would be to estimate shock impingement effects in the context of low order
modelling. Finally, an example of proximal body interference has been shown. A
fast analysis of the separation of a two stage to orbit vehicle has been performed
using solely low order models.

In the context of MFDA, the method can be applied to inform the use of high
fidelity tools. This would allow for a more efficient and effective use of them.
Specifically, the estimation procedure shows great promise in informing mesh-
ing and initial conditions for supersonic and hypersonic simulations. The knowl-
edge of the shock position is necessary to obtain accurate results from CFD. The
shock estimation procedure can potentially provide the shock structure and flow
field approximation directly from the geometry and the flow conditions, allow-
ing for adapted meshing without the usual need of performing a preliminary
simulation to estimate the shock position and inform meshing or using adaptive
mesh refinement to compute mesh and solution in a coupled manner.

Overall, the present low order method for shock structure estimation shows
applicability in varied areas of aerospace vehicle design, and great potential to
be applied in other areas with focused future work.



avenues for future work

The future work should be directed to improve predictions of the method, and
expand its field of application. As noted earlier, the two main sources of error
are the elliptic cone perturbation solution and the surface curvature estimation.
Any improvement in those two topics would greatly increase the accuracy of
the method. The other big avenue for improvement would be to address shock
interference and reflection. This would allow the analysis of internal flows, with
very important application in propulsive analysis. And continuing in the expan-
sion of the field of application, a low order model for shock impingement effect
would be of great interest. Now that the shock position is known, this addition
would make the estimation much more useful in the context of vehicle design.
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