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Abstract 

Disease of the vascular system is often treated by ‘minimally invasive’ endovascular 

methods, which are less traumatic than conventional ‘open surgery’.  The endovascular 

treatments, including implants, are delivered to the target area by catheter devices.  The 

aorta, the largest artery in the body which stems from the heart, is susceptible to 

aneurysms and dissection of the arterial wall layers, which can both be fatal if left 

untreated.  These specific conditions are often treated with endovascular stent-graft 

implants: flexible polymer conduits supported by metallic structures.  Vascutek, a company 

based near Glasgow, is unique in designing and producing stent-grafts based on the ‘ring-

stent’ technology: the structural annular components being formed of multiple turns of a 

superelastic alloy called Nitinol.  Competitors in the stent-graft market mainly implement 

the more common ‘Z-stent’ structure, also usually with Nitinol. 

The work of this thesis addresses the requirement of Vascutek to have advanced methods 

of analysing the mechanical performance of ring-stents in terms of: the loading which they 

apply to vessels; their fatigue performance in the pulsatile environment of the cardiac 

cycle, and the ability to compact into small diameter delivery systems without incurring 

detrimental levels of material strain. 

Building on previous efforts at The University of Strathclyde, the work presented here 

represents the first complete development, and thorough validation, of a Finite Element 

simulation methodology which captures the ‘bundle’ geometry and mechanical response of 

the multiple-strand ring-stent technology.  A unique method has been devised to capture 

and simulate the non-linear response of human aortic tissue, specific to thoracic or 

abdominal locations and for a range of patient ages.  Currently, there exists no standard 

approach in the industry to mechanically represent artery, partly due to the variability and 

difficulty of obtaining data. 

The bespoke Finite Element Analysis capabilities have provided the first quantification of 

the ‘radial strength’ of ring-stents, and knowledge of how the radial force is distributed on 

the artery wall.  This includes evidence that if devices are implanted at high ‘oversize’, 

distribution is less uniform and there is no significant increase in total radial force.  

Furthermore; the first reliable simulation of the ring-stents interacting with the non-linear 

arterial response has been executed; the results showing a significant reduction to the 
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vessels’ physiological motion and a corresponding increase in factor of safety when 

compared to assessments made assuming linear elastic artery.  The latter goes beyond 

current standard practice for fatigue, and will allow justification of design of new products 

which are in development.  An understanding, and verification, of how classic beam theory 

can be used to inform ring-stent design has also been provided. 

The methodology devised here has also been used to inform and analyse a component level 

Nitinol wire fatigue-to-failure test programme required to attain the strain based limits, 

against which the device simulations are assessed.  This combined work (empirical side 

undertaken by colleagues at Vascutek) is a unique study, which successfully defines the 

fatigue strength of Nitinol wire at multiple ‘non-zero’ mean-strain states. 

Regarding the analysis on compaction of ring-stents, geometric mathematical tools and 

Micro Computed Tomography X-Ray imaging have been implemented in the design process, 

providing fidelity in measuring strain levels and insight to optimise the designs to allow the 

highly desirable reduction in catheter profile.  To truly optimise the profile of delivery 

systems, a more complete understanding of the effects of straining Nitinol to high levels is 

required, which is ongoing in further research collaborations with The University of 

Strathclyde. 
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1  
Introduction 
1.1 Background and Context 

The Aorta is the largest artery in the body, taking oxygenated blood from the heart, and 

distributing it to peripheral arteries which supply the whole body.  Figure 1 (A) depicts the 

full aorta which stems from the top of the heart, turns in the ‘aortic arch’, and then 

descends through the chest and abdomen close to the spine.  The aorta bifurcates into the 

iliac arteries which supply the lower body.  In contrast to the smaller peripheral arteries, 

which often suffer from blockages caused by atherosclerosis, vascular disease in the aorta 

Figure 1 - A depiction of the healthy human aorta (A), and diseased states 
in the insets of a thoracic and abdominal aortic aneurysms in (B) and (C) 
respectively.  Used with additional annotation from: National Institutes of 
Health (public domain), via Wikimedia Commons. 

Aortic arch 
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can manifest as an aneurysm: a ballooning of the vessel wall which can ultimately rupture if 

left untreated.  The condition represents a prevalent health issue in modern society, 

particularly for males: ruptured aneurysms are the 10th most common cause of death in 

elderly men in the United States [1].  The three broad classifications of aneurysms in the 

aorta are: the Thoracic Aortic Aneurysm (TAA) (Figure 1 (B)), Abdominal Aortic Aneurysm 

(AAA) (Figure 1 (C)) and the Thoraco-Abdominal Aortic Aneurysm (TAAA) if extending from 

chest to abdomen.  Each type represents a different clinical challenge in order to be 

treated.  Another common vascular disease condition in the aorta is ‘dissection’, where the 

inner most layer of tissue has tears, allowing blood to flow behind, opening up a ‘false 

lumen’ between layers. 

Both aneurysms and dissections of the aorta can be fatal if left untreated and allowed to 

develop.  Conventional treatment for severely diseased aorta is by ‘open repair’ surgery, in 

which the diseased length of aorta is removed and replaced with a prosthetic tubular fabric 

graft.  While these surgeries provide a very robust repair of the aorta, the procedure is 

highly invasive and for some elderly or frail patients it is either too risky or not an option at 

all.  The alternative ‘minimally invasive’ technique is to implant stent-grafts by endovascular 

(through the vessel) delivery, using X-ray fluoroscopy to visualise the position of the 

devices. 

The stent-grafts for treating the aorta are usually fundamentally constructed from tubular 

fabric graft with a ‘self-expanding’ metallic stent structure.  They are compacted into small 

diameter, catheter-like systems for delivery via an access point, often at the femoral artery 

near the hip.  Once the endovascular stent-graft has been deployed and positioned within 

the artery it is designed to act as a conduit for blood flow between the healthy artery above 

the aneurysm to healthy artery below, thus excluding the aneurysm from the cyclic blood 

pressure loading and reducing the risk of the aneurysm rupturing.  The ability of the device 

to seal with the vessel at either end is provided by the outward ‘radial force’ of the stent 

components.  

Numerous stent-grafts have been developed and are commercially available; however the 

work of this thesis is solely focused on analysing the unique ‘ring-stent’ technology of 

Vascutek Ltd. (a manufacturer and developer of vascular prosthetics based in Renfrewshire, 

Scotland). 
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The concept of using a multi-strand ‘ring-stent’ in treating vascular disease was successfully 

commercialised by Vascutek Ltd. in 2005 when the Anaconda Stent Graft System was CE 

marked.  Product development had started in 1997 and clinical trials for two early design 

generations had been underway since 1999.  The modular system comprises a polyester 

fabric graft supported primarily by the ring-stent wire structures, which are constructed 

from multiple turns of Nitinol wire.  The three modular parts of a current generation 

‘Anaconda One-Lok’ product are shown in Figure 2, and will be introduced further in 

Chapter 2. 

Nitinol, a Nickel-Titanium alloy, is a complex material which exhibits both ‘superelastic’ and 

‘shape-memory’ behaviour, excellent biocompatibility and fatigue resistance [2].  The 

superelastic property refers to the material’s ability to undergo and recover from large 

deformations, enabled by transformation of the molecular lattice structure, and is what 

enables devices such as the Anaconda to treat diseased aorta in a ‘minimally-invasive’ 

manner.  The ‘minimally-invasive’ procedure is endovascular: a stent-graft, compacted into 

a small diameter sheath during manufacture, can be passed through the vascular system to 

Anaconda One-Lok 
body device 

Straight leg 
device Flared leg 

device 

Figure 2 - The Anaconda One-Lok body device docked with 
straight and flared leg devices. 
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the aorta on a catheter by an incision into the iliac artery, at a location where it is relatively 

near the surface in the groin region. 

A stent-graft in the aorta will experience high cyclic loading during its lifetime as it interacts 

with the compliant wall of the aorta during the pulsatile blood pressure load applied from 

each heartbeat.  These devices must therefore be designed with fatigue resistance as a 

primary requirement, and indeed as the international standards on medical devices 

demand [3], [4]. 

The non-linear material, high levels of deformation and interaction between metal 

structure and compliant artery lead to a complex structural problem, hence the 

requirement for Finite Element Analysis (FEA) as will be described in this thesis. 

1.2 Project Objectives 

Considering the fundamental structural system to be the superelastic ring-stent in 

interaction with the human aortic artery, there is a requirement to understand and quantify 

the radial loading applied by a Nitinol ring on the vessel.  The radial force behaviour is non-

trivial due to the complexity of the Nitinol stress-strain relation, and the large deflections 

which the ring structures are subjected to, as will be explored in the following chapters. 

Subsequent to considering the structural loading of a Nitinol ring component in a 

hypothetically static situation, analysis of cyclic motion will be considered, with a new 

approach to take account of the non-linear elastic behaviour of human aorta.  This will be 

predominantly to analyse the fatigue resistance of the Nitinol rings from a cyclic strain 

amplitude perspective.  The fatigue safety case needs to be updated from the current 

approach, based mainly on classic mechanics, to an FEA informed approach to allow 

product development of ring-stents to continue with confidence and also to satisfy future 

regulatory requirements. 

The compaction of a ring-stent device into a delivery system subjects the Nitinol ring to 

significant bending at four points in the circumference which induces high material strains 

and challenges the recoverability of the superelastic Nitinol on deployment.  There is a 

requirement to quantify the strain levels in compaction to enable future development 

iterations to optimise the design for compaction in terms of both ring configuration and 

sheath size.  Smaller sheath sizes will provide significant clinical benefits and competitive 

advantage over alternative stent-grafts. 
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The objectives are to provide new knowledge in the areas outlined above, but also to 

provide the tools, to be used in product development, to assess and optimise new ring-

stent devices for radial strength, fatigue resistance and compaction. 

1.3 Thesis Outline 

The preceding work to this thesis included different approaches to theoretically analyse the 

stress-strain state of Nitinol rings: from a classic structural mechanics approach [5], to the 

development of FE methods using the commercial packages ANSYS [6], and Abaqus more 

recently [7]. 

This thesis describes how the initial methodology devised by van Zyl [7] has been 

progressed to simulate and validate multi-strand Nitinol ring models.  The complexity of 

artery modelling required has been investigated, resulting in a solution which is a 

compromise between modelling the detail of artery construct and achieving a practical 

method which is able to capture the overall non-linear arterial response.  Combining the 

multi-strand ring modelling with artery representation now allows the radial strength and 

fatigue life of these devices to be analysed and quantified for the safety case and future 

product development. 

Through experimental investigation, scanning sample devices using Micro Computed 

Tomography X-Ray imaging (abbreviated to ‘Micro CT’), the levels of deformation due to 

device compaction, and the resulting material strain levels, have been investigated.  A 

theoretical approach using ‘circle packing theory’ (see 4.2.8) has also been developed to 

optimise the wire diameter and number of turns of a ring-stent for minimal compaction 

strain. 

The objectives and approaches discussed above are outlined in this thesis’ chapters as 

follows: 

• Chapter 2 – Literature Review and Technology Background: an introduction to the 

Nitinol ring-stent and the products thereof; a literature review of Nitinol’s 

behaviour and fatigue characteristics, an overview of aortic tissue structure and 

literature on its mechanical characterisation; and an overview of the preceding 

work to this thesis carried out at the University of Strathclyde. 
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• Chapter 3 – Nitinol Material Constitutive Modelling: Description and 

implementation of a constitutive model for the specific grade of Nitinol used in the 

ring-stents of Vascutek devices. 

• Chapter 4 – Simulation Methodology Development and Validation: Description 

and rationale of the methodologies developed to simulate Nitinol ring-stents, aortic 

artery, and their interaction. 

• Chapter 5 – Ring-Stent Mechanics: Investigating the radial force and strain states of 

rings through parametric studies. 

• Chapter 6 – FEA for Ring Fatigue Testing:  Simulation and strain analysis of the ring 

component fatigue tests to define new strain-life fatigue limits. 

• Chapter 7 – Anaconda Ring-Stent in Langewouters’ Artery Simulations: Combining 

the ring-stent and artery modelling methodologies into an interactive system 

simulation to provide findings on the mechanical interaction and fatigue capability 

of the ring-stent in the aortic environment. 

• Chapter 8 – Investigating Compaction Strain: A geometric analysis of ring-stent 

compaction feasibility and empirical analysis with Micro CT to investigate the true 

deformation and therefore strain levels in the compacted ring-stent devices. 

• Chapter 9 – Conclusions and Future Recommendations  
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2  
Technology Background 
and Literature Review 
2.1 Foreword on Vascutek-University of Strathclyde Collaboration 

The history of the University of Strathclyde collaborating with Vascutek goes back to the 

development of the initial enabling technology on which the company was formed: a 

bespoke knitted textile manufacturing method for medical graft products.  The University 

has also been involved in developing the gelatin graft coatings in the late 80’s. 

Relevant to this thesis, the Mechanical and Aerospace Department have provided 

consultation and two previous PhD projects providing analysis on fatigue resistance, Nitinol 

wire characterisation, initial development of FEA methodology and a bespoke empirical 

approach to validate ring-artery interaction with cadaveric testing.  These pieces of work 

will be reviewed at the end of this chapter (section 2.5), however findings from the 

literature review of the first PhD project of McCummiskey [6] will be included in the Nitinol 

literature review here in section 2.3. 

2.2 Ring-Stent Technology 

While Vascutek are the only company implementing ring-stent technology in the form of 

multiple-strand bundles of fine Nitinol wire (owning the intellectual property to do so), 

there are a number of competitors utilising Nitinol in a ‘Z-stent’ configuration.  Of which the 

most prominent competitors to the Anaconda device are Cook Medical’s ‘Zenith’ [8], 

GORE’s ‘Excluder’ [9] and Medtronic’s ‘Endurant’ [10] devices. 

The Anaconda product is a modular system comprising a main body device in a range of 

sizes and a range of leg devices which connect, or ‘dock’, with the main body.  Each device 

is essentially comprised of the metal stent structure supporting a polyester woven graft.  An 
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example system is depicted in Figure 3 treating aneurysmal abdominal aorta and iliac 

arteries.  The device is delivered by endovascular deployment: the stent-graft is compacted 

into the end of a flexible tubular delivery system (see Figure 4), which can be introduced 

into the femoral artery in the groin and guided through the arterial system to the section of 

aorta to be treated.  The procedure initially requires temporary guidewires to be steered 

into the body, which can be ‘tracked over’ by the endovascular devices to the target site.  In 

Figure 3 - A depiction of the Anaconda stent graft system treating aneurysmal 
abdominal aorta and iliac vessels.  The left iliac (right on image) is treated with a 
so-called flared leg with larger rings distally. 
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Straight leg 
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device 

Figure 4 – An Anaconda delivery system with an unsheathed Anaconda body device still connected 
to system. 
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the region of the device, the delivery system has a ‘central core’ which houses control wires 

and provides a central lumen for the passing of a guidewire.  The introduction, deployment, 

positioning and monitoring of performance of such devices is all carried out by careful 

intermittent use of radiographic imaging. 

The functional requirement of the Anaconda device is to provide a new sealed conduit for 

blood to flow from the healthy artery upstream (proximally) relative to the aneurysm, 

through the aneurysm sac, to the healthy artery downstream (distally).  When the device is 

‘unsheathed’ from the deployment system inside the artery the superelasticity in the 

Nitinol structure allows it to ‘self-expand’ towards its original shape; applying enough 

outward radial pressure to create a seal at the proximal and distal regions either end of the 

aneurysm.  The outward radial load is also required for embedding the proximal hooks into 

the vessel wall, which are designed to prevent device ‘migration’ through the vessel.  

Figure 5 - Illustration of the Thoraflex™ Hybrid system treating the thoracic arch and descending 
aorta 
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Planning of the operation includes the clinical team assessing 3D X-Ray CT (Computed 

Tomography) scans, making key geometric measurements of the aorta, and ‘oversizing’ the 

device accordingly.  The ‘oversize’ is the percentage by which the device is larger than the 

vessel lumen in terms of diameter.  The Anaconda sizing chart (Appendix A) recommends 

minimum and maximum vessel sizes for each device size, which correspond to 

approximately oversizes of 20% and 10% respectively. 

More recently the Ring-Stent technology has been applied to the Thoraflex™ Hybrid device 

which is an innovative product used to treat arterial disease in the thoracic aorta 

(illustrated in Figure 5).   The product was termed ‘hybrid’ due to half of the device being a 

conventional graft, while the distal end is a stent-graft referred to in the industry as a 

‘frozen elephant trunk’.  Open surgery is required to implant the device, however the 

stented section can be advanced into the descending aorta in an atraumatic manner, 

causing minimal tissue damage.  The conventional graft part is then used to reconstruct the 

aortic arch and its connections to the ‘great vessels’ which supply blood to the head and 

arms.  As well as the treatment of aneurysmal aorta in the Thoracic region, the Thoraflex™ 

Hybrid device is used to treat the condition known as ‘dissection’ in which the layers of the 

artery wall become separated.  

The ring-stent components are manufactured from a single Nitinol wire, turned multiple 

times to create a ‘bundle’ of wires, with the two ends of the wire joined with a tantalum 

crimp. The wire diameters used range from 0.10 to 0.24mm across different devices.  A 

manufactured ring-stent with four temporary suture ties is shown in Figure 6 (left) with a 

close-up (right) in which the individual strands in the bundle can be seen.  The positioning 

Figure 6 - A manufactured stent ring consisting of multiple turns of fine Nitinol 
wire as seen in close-up on right 
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of the wires in the bundle cross-section is dependent on how they settle and are held by 

the temporary sutures when the ring is removed from the tooling used to wrap the turns 

(essentially two mandrels at a set separation dependent on desired ring diameter).  By 

visual inspection, all turns appear to remain parallel with the general ring circumference, 

i.e. the bundle does not appear to twist in the fashion of a cable.  The assumption on wire 

positioning in the bundle will be addressed in section 4.2.7.2. 

The deformation life-cycle of a ring-stent includes the wire being formed into a ring, 

compaction into a delivery sheath once sewn onto a device, deployment to engage with 

artery, and pulsatile motion due to the cardiac cycle.  Figure 7 depicts a ring-stent in its 

manufactured (‘flat ring’) position (A), compacted state approximation (B) and a typical in-

vivo ‘saddle shape’ deformation (C) 

The various diameters of the manufactured ‘flat ring’, which will be discussed in this work, 

are defined in the schematic image of a manufactured ring in Figure 8. 

Figure 7 – A Computer generated graphic of a ring-stent in manufactured ‘flat ring’ position (A), 
compacted in a sheath (B) and a typical ‘saddle shape’ in-vivo deformation. 

Figure 8 - Diagram of a manufactured flat ring-stent (not to typical scale), defining the diameters of 
interest 
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2.2.1 Finite Element Modelling of Ring-Stents 

The most applicable preceding work on modelling the ring-stent technology is that of two 

previous PhDs carried out at the University of Strathclyde, as will be discussed in section 

2.5.  However, the recent work of Perrin et al [11] (at Ecole Nationale Supérieure des 

Mines, Saint-Etienne, France) has developed methodology, using Abaqus, to model full 

Anaconda devices with fabric represented but simplified linear-elastic, single-turn rings.  

The objective of the work of Perrin et al is to capture full device deformation, not to assess 

stress/strain or radial loading. 

2.3 Nitinol 

2.3.1 General Characteristics and Application to Stents 

Nitinol is a Nickel-Titanium metal alloy.  The Nickel (Ni) and Titanium (Ti) atoms are bound 

in a crystal lattice structure and represent approximately 55% to 45% atomic weight 

respectively (see Chapter 3 for more detail).  A phase transformation of the molecular 

structure enables the superelasticity: Nitinol initially in an Austenite phase will ‘dislocate’ to 

a martensitic arrangement under a certain load.  This is known as ‘stress induced 

martensite’, and allows the metal alloy to extend to levels of recoverable strain as high as 

10% [12]  through a non-linear stress-strain relation.  The general form of this behaviour is 

shown in Figure 9 in which a sample is loaded to a strain of 8%, unloaded to zero stress and 

then reloaded to failure at approximately 17% in this case.  The austenite and martensite 

Figure 9 - A typical tensile stress-strain relation for superelastic Nitinol loaded to 8% 
nominal strain, unloaded to zero stress and then loaded to failure.  The insert depicts 
the change in molecular lattice structure from austenite to martensite. 
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moduli are shown as EA and EM respectively and the inset in Figure 9 depicts the change in 

molecular lattice structure.  Once the initiation of transformation from austenite to 

martensite has begun, it takes relatively little further load to progress the transformation, 

i.e. a plateau in the stress-strain relation occurs between the austenite and martensite 

moduli.  If the stress is reduced, the strain will recover with the lattice structure returning 

to its Austenite phase.  However, on recovery, the unloading plateau occurs at a lower level 

of stress: this is known as elastic hysteresis where some strain energy has been dissipated 

as heat.  Comparatively, the recoverable strain levels are much greater than in other metals 

commonly used for structural purpose which are limited to around 1% [13].   

As shown in Figure 10, there is asymmetry between tension and compression of the stress-

strain curves.  This is mainly observed in terms of the plateaus being shorter, not as flat and 

existing at higher magnitude stress levels for the compressive state [12], [14]–[16].  

It is important to note that the described superelastic behaviour only exists within a certain 

temperature range, or ‘superelastic window’: at lower temperatures the material already 

exists as martensite in stress free condition, and at higher temperatures plastic 

Figure 10 - Schematic of typical asymmetry of superelastic Nitinol stress-strain relation in tension 
and compression from uni-axial testing. 
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deformation of austenite occurs rather than transformation to martensite.  The 

temperature above which the alloy remains Austenite in stress free condition and therefore 

has the potential to be superelastically loaded to a ‘stress induced martensite’ phase is the 

‘Af (austenite finish) temperature’.  The thermo-mechanical process of the alloy during 

manufacture determines the important Af temperature.  The ‘superelastic window’ is only 

available between the Af and Af+50˚C [6], and the stress-strain response is sensitive to 

temperature even within this range.  To take advantage of the superelastic characteristic in 

medical implants the operating temperature, i.e. 37°C, must lie in the ‘superelastic 

window’. 

Nitinol is also well known for its ‘shape-memory’ behaviour which involves taking 

advantages of the described molecular structure changes through heating and cooling.  

Essentially if a Nitinol component in a stress-free martensitic state is then plastically 

deformed, the original undeformed shape can be recovered to by heating to Austenite, 

above the Af temperature.  However this phenomenon is not directly relevant to the ring-

stents which are designed to operate within the ‘superelastic window’. 

The sensitivity of the plateau stress levels within the ‘superelastic window’ is shown in 

Figure 11, from the work of Pelton et al. [17], in which Nitinol wire with an Af temperature 

of 11°C is strained to 6%, unloaded to zero stress, and subsequently loaded to failure at 

various temperatures.   It is clearly important to understand the behaviour of the specific 

grade of Nitinol in question and the implications to the design application. 

In the literature review of the work of McCummiskey [6], she identified this requirement to 

characterise the specific grade of wire being implemented before developing an FE 

Figure 11 - Nitinol wire with an Af temperature of 11°C loaded to 6%, unloaded to zero stress, 
and loaded then loaded to failure at 10°C, 22°C and 40°C 
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approach for analysis.  McCummiskey identified the following factors which were 

subsequently addressed in testing as will be described in 2.5: 

• The stress-strain response in bending does not correlate with the tensile stress-

strain response, and that this was due to the asymmetry in tensile/compressive 

behaviour. [14], [18]–[21] 

• The plateau levels reduce and the residual strain levels increase when subject to  

repeated cyclic loading [21] 

• The sensitivity of the stress-strain curve to temperature with regards to both 

processing treatments and testing temperature [22] 

• The strain rate dependency of the  stress-strain behaviour in testing [23]–[25] 

These findings and the testing carried out by McCummiskey (see 2.5) have provided 

experience to the recent efforts to fully characterise the current grade of Nitinol wire 

(Vascutek have changed supplier since the thesis of McCummiskey) by Brodie [26], which 

has run in parallel with the work of this thesis.  The results of Brodie’s work are used to 

define a material model for simulation as described in Chapter 3. 

Regarding the deterioration of plateau levels and increased residual strain due to cyclic 

loading; this is representative of high strain range testing (0-6% was applied by 

McCummiskey and the testing of Siddons & Moon which she referenced [21]), however this 

Figure 12 – A Force-Diameter plot for a Nitinol self-expanding stent 
subject to crimping, deployment and cyclic loading.  Reproduced from 
Robertson et al [12]. 
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is not necessarily relevant to the mechanical life of a stent as will now be considered. 

Nitinol stents are termed ‘self-expanding’ because they use the superelastic phenomenon 

to recover from the highly deformed compacted position.  Significant recovery of the 

deformation occurs on deployment in vivo, with areas of the structure that underwent the 

superelastic transformation recovering strain to some point along the unload plateau [2], 

[13].  Indeed, the force-displacement relationship of a Nitinol stent being compacted (or 

‘crimped’) and then deployed, is analogous to the uniaxial stress-strain behaviour of Nitinol, 

as shown in Figure 12 from Robertson et al [12], with an example Force-Diameter plot for a 

Cordis SMART stent.  The ‘2%’ and ‘10%’ marked in Figure 12 are indicating the maximum 

strain levels in the device at ~9mm and ~3mm diameter respectively. 

The gradient of Force to Diameter in Figure 12 during the pulsatile cycling stage is similar to 

the initial loading gradient, which is reflective of the uni-axial cyclic testing of Nitinol at low 

level strain amplitudes [12], [27] (0.25%, 0.20% strain amplitude respectively) as depicted in 

Figure 13.  The literature [12], [27] and the parallel work of Brodie [26] have found that the 

stress-strain gradient through low level strain amplitude testing is stable but dependent on 

the mean-strain: the modulus reducing from the austenitic level to the martensitic as 

mean-strain is increased. 

Gaining evidence of the percentage change in diameter of a stent, referred to as ‘pulsatility’ 

herein, in the in-vivo condition, is perhaps the most challenging aspect which is required to 

understand the relevant levels of strain amplitudes.  A method which has been used by 

Vascutek, and is believed to be common to the industry, is to measure the pulsatility of 

Figure 13 - Typical Stress-Strain behaviour of Nitinol loaded, 
unloaded to a strain level on lower plateau and subsequently 
loaded with ‘low amplitude’ cyclic strains. 
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devices deployed into a silicone tube of known compliance, loaded with a worst-case 

systolic-diastolic blood pressure range [28], [29].  Silicone tubes however, do not behave in 

the non-linear fashion of human artery, which is investigated and discussed in section 2.4. 

2.3.2 Nitinol Fatigue Analysis 

Any endovascular stent device designed to be used in the aorta will be subject to pulsatile 

loading from the cardiac cycle as blood pressure ranges from diastolic to systolic pressure 

with every beat.   

Typically, the fatigue performance of an engineering alloy is assessed considering cyclic 

stress amplitudes and how it relates to number of cycles to failure (S-N graphs).  Due to the 

very non-linear behaviour of Nitinol, ‘strain-life’ analysis, as opposed to ‘stress-life’, is  the 

industry standard approach [12] constant amplitude strain cycles are used to define fatigue 

limits Nitinol material over a range of mean-strain levels. 

As specified by international standards [3], [4]; endovascular stent-grafts are required to 

prove (through in vitro testing) fatigue resistance to survive at least 10 years of a heart 

beating, which is equated to approximately 380 million cycles.  Cyclic durability testing of 

full devices must be carried out, but also there is a requirement to characterise the material 

fatigue performance through component level testing.  The Nitinol wire used to construct 

the ring-stent has been subject to ‘rotary bend fatigue’ testing by the wire supplier, and 

recent individual ring fatigue testing at Vascutek in a manner which attempts to replicate 

the type of loading applied to the components in vivo.   

Rotary bend fatigue testing involves the wire being spun on its own axis while bent to a 

measured curvature.  This produces stress-strain amplitudes, highest at the surface, which 

oscillate about a zero mean-strain.  The strain amplitude is dependent on the radius of 

curvature of the wire.  This testing carried out by Vascutek was purely to compare wire 

from different manufacturers.  The comparative benchmark which was used as a Pass/Fail 

criteria for wire samples was to survive 0.7% strain amplitude for 100M cycles [30].  The 

Fort Wayne Metals wire had the highest pass rate of samples, outperforming two 

alternatives. 

The component level testing of ring-stents, addressed in Chapter 6 applies stress-strain 

amplitudes about a non-zero mean strain level.  The magnitude of the mean strain depends 
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on the location on the ring, and the level of deformation.  The strained shape which a ring-

stent takes in vivo, when exerting an outward force against the vessel, depicted in Figure 

14, will be referred to as a ‘saddle shape’.  The ‘peaks’ (most proximal) and ‘valleys’ (most 

distal) are of particular focus because they exhibit the highest mean-strain and delta-strain 

(2×strain amplitude) levels in vivo and are the point which deform the most during 

compaction, as will be discussed in Chapters 5-8. 

The actual fatigue performance of a Nitinol wire is dependent on many factors: the precise 

chemical composition of the batch; the shape and size of microscopic inclusions; the 

transformation temperature of the melt ingot, the annealing temperature, the amount of 

cold work performed and the surface finish of the wire [31]–[35].  

A thorough review of Nitinol fatigue studies was carried out in 2012 by Robertson et al. [12] 

(part of the ‘Nitinol Devices and Components’ group (now ‘Confluent Inc.’) [36] who have 

been the most prominent research group in the community).  Their literature review on the 

strain-life approach provides the following notable conclusions: 

• “The overwhelming conclusion from these recent studies is that fatigue life for 

superelastic Nitinol is driven by strain amplitude rather than mean-strain or peak 

strain” 

However, they note that the mean-strain does still have a noticeable effect; 

peaks 

valleys 

Figure 14 - A computer generated image of a multi strand ring-stent in the in vivo 'saddle shape' 
position with peaks and valleys annotated. 
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• “Fatigue life is increased with increasing mean-strain up to the end of the phase 

transformation plateau” 

The latter conclusion could be attributed to a lower modulus due to a greater portion of 

martensite, which therefore results in lower cyclic stress amplitude for a given change in 

strain.  However, a closer look at the data reviewed by Robertson et al. [12] show that this 

increase in fatigue life is only clear up to 3% mean-strain.  Beyond which, one of the studies 

reviewed in the paper shows a reduction in delta-strain limit, and for another study there 

“are insufficient data for a complete analysis” between 3% and 7% mean-strain.  What is 

clear from the review paper is that beyond the superelastic transformation, i.e. 

approximately >7% mean-strain, the delta-strain limit for fatigue reduces, presumably 

related to the higher stress levels in the fully transformed stress-induced martensite. 

It has been identified in preceding work, and re-iterated in the above relatively recent 

review by Robertson et al. [12], the importance to carry out bespoke fatigue testing to 

determine a fatigue limit for the specific grade of Nitinol as well as the specific loading 

condition the component may be subject to. 

The literature review undertaken by Robertson et al. [12] on the strain-life testing was 

mainly on ‘diamond stent’ sub components as opposed to wire.  Regarding fatigue testing 

on Nitinol wire, there are published studies which use rotary bend testing [35], [37], [38], 

however this method implies a zero mean-strain condition which is not applicable to the 

ring-stent loading condition in vivo.  There are no known publications on the fatigue testing 

of Nitinol wire at non-zero mean-strain levels. 

2.4 Human Artery, Characterisation and Modelling 

The aorta itself is naturally designed to have compliance which acts to dampen the pulsatile 

pressure wave from the heart [39].  Compliance is greatest in the thoracic region which is 

most proximal to the heart, and decreases distally through the arterial system.   

Human artery is a complex bio-mechanical construct, with three main layers: the inner 

most intima; the middle media layer; and the outer most adventitia layer as shown in 

Figure 15.  These key structural layers consist of vascular smooth muscle, elastin and 

helically arranged collagen fibres [40] which characterise the resulting non-linear 

anisotropic mechanical responses.  Layers are separated by thin ‘elastic lamina’ and a single 

layer of endothelial cells line the innermost Intima layer.  
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There have been various attempts to characterise and mathematically define the 

mechanical response of arteries from animal tissue as well as human cadaveric samples.  

The level of characterisation has varied from purely capturing the change in vessel volume 

with pressure increase, to more recent histological examinations with efforts to 

phenomenologically capture the behaviour of each layer and their composite structures 

(i.e. smooth muscle, elastin and collagen fibres). 

The non-linearity in the stiffness of arteries was first described by Roy in 1881 [41] with a 

series of pressurisation tests on animal and human arteries.  This early historical 

experiment is depicted by the neat sketches reproduced in Figure 16.  Roy found that 

arteries are ‘most elastic at pressures corresponding, more or less exactly, to their normal 

blood pressure’ and that artery response is to stiffen at higher pressures.  In the proceeding 

century a number of similar studies characterising the overall response of artery to 

Figure 15 - A schematic of the construct of health human artery wall.  The main structural layers 
are the Intima, Media and Adventitia.  (Reproduced from [56], with permission from publisher The 
Royal Society Interface) 
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pressure, as well as longitudinal stiffness, have been produced: Hallock and Benson in 1937 

[42] and Hass in 1942 [43] studied 18 and 21 human aortas respectively of various ages for 

volume change with pressure; in 1961 the first use of ‘photo-electric’ micrometer type 

equipment was used for both static and dynamic vessel diametric response on extracted 

dog arteries by Bergel [44]; in 1966 Learoyd and Taylor [45] used a similar optical method 

to measure the outer diameter change of 59 segments (thoracic, abdominal, iliac, femoral, 

carotid) from 12 human cadavers ranging in age from 11 to 52 years; and in 1971 

Nakashima and Taniwaka [46] reverted to measuring volume change to measure artery 

‘distensibility’ of 114 human aortas. 

Figure 16 - A sketch of the experimental setup used by Roy in 1881 to investigate the loading 
response of artery (Reproduced with permission from publisher John Wiley and Sons)  
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The earlier papers (1961 and before) do not attempt to calculate elastic modulus values for 

arterial wall: reporting the general stiffening in terms of rate of change of volume with 

pressure, as well as focusing on calculating ‘pulse wave velocities’ related to the vessel 

viscosity.  However Learoyd and Taylor [45] report incremental elastic modulus, for which it 

is necessary to make measurements or assumptions on the thickness of the artery wall, and 

collated the results into young (<35 year) and old (>35 year) data sets.  For example, they 

calculate the elastic modulus from the ‘old’ abdominal aortic data to range on average from 

~0.3MPa at 0mmHgh to ~3MPa at 160mmHg.  Nakashima and Taniwaka [46], mentioned 

above, provided further segregation into numerous age ranges, indicating clearly that that 

arteries stiffen with age (see Figure 17). 

In 1984 another extensive pressure-diameter characterisation study on human aortic 

samples was carried out by Langewouters et al [47] in which 45 thoracic and 20 abdominal 

cadaveric samples with an age range of 30-88 years were analysed.  Further to previous 

studies, a mathematical expression was introduced to describe the mechanical response; 

Figure 17 - Wall stress plotted against circumferential increase from empirical testing 
of aortic samples, showing variation in stiffness with age, as produced by Nakashima 
and Taniwaka [46] (Reproduced with permission from publisher SAGE Publications) 
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relating pressure to the increase in vessel internal cross-sectional area with two parameters 

defined to accommodate variability (discussed further in 4.3.1). 

Ultrasound has been used to assess aortic diameter and compliance within living patients 

by a group in Sweden; Lanne, Sonesson et al with publications from 1992 to 1994 [48], [49], 

[50].  As well as the stiffening with age relation described above, they show that the mean 

diameter of human abdominal aorta increases through adult life: a 30% increase in the 

average male aorta from age 25 to 71 years.  The cardiac phased ultrasound method is 

consistent with previous testing in finding a stiffening Pressure-Diameter relationship; 

however this can only be extracted over the patient’s operating blood pressure range of 

course – which is a limitation to characterising material stiffness for the purpose of 

modelling.  This ultrasound work does however provide the first real proof of the reduction 

of aortic compliance with age, from live patients, which can be used to benchmark and 

compare against cadaver based testing.  It is also the most complete source of data on in-

situ ‘diametric strain’, 휀𝑑 for the abdominal aorta, defined as the fraction of change in 

vessel internal diameter (Eq. 2.1).  This diametric strain data has been extracted from their 

initial study on 76 healthy males and plotted in Figure 18, which shows the significant 

decrease in diametric strain with age. 

 휀𝑑 =
𝐷𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐 − 𝐷𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐

𝐷𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐
 

(Eq. 2.1) 

 

 
Figure 18 – Diametric strain of abdominal aorta for males of various age, assessed by 
ultrasound, data extracted from Lanne, Sonesson et al [48].  Error bars are showing 
±S.D.=1 
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Many of the papers described do not reach the point of being able to provide measures of 

material stiffness for arterial wall because a measurement or assumption on wall thickness, 

which is required to deduce stress and therefore stiffness in the material, has not been 

acquired.  An alternative ‘pressure-strain elastic modulus’, Ep was defined by Peterson [51] 

(another study on dog artery compliance in 1960) as (Eq. 2.2): 

 
𝐸𝑝 =

𝑃𝑠 − 𝑃𝑑

(𝑑𝑠 − 𝑑𝑑)/𝑑𝑑
 

(Eq. 2.2) 

 

where P is pressure, d is diameter and subscript s and d refer to systole and diastole.  Care 

must be taken when papers are reporting this modulus which is a ‘structural stiffness’ as 

opposed to a material stiffness quantification, however it can be converted to material 

elastic modulus (E) if wall thickness (h) is assumed as described in Biomechanics and 

Mechanobiology of Aneurysms [1]: 

 𝐸 =
𝑑𝑑

2ℎ
𝐸𝑝 

(Eq. 2.3) 

 

To gain an appreciation of the approximate levels of material stiffness which human aortic 

artery may experience, Table 1 compares such data which is collated from the Learoyd & 

Taylor [45] and Langewouters [47] papers. 

It should be noted that the material stiffness decreasing distally in the Learoyd and Taylor 

results is misleading: the consensus of literature agrees that the compliance of artery 

decreases distally through the aorta, i.e. becoming stiffer from Thoracic to Abdominal.  

However, the above apparent contradiction can be explained by considering that Learoyd & 

Taylor also found that the wall thickness increases distally in the >35 cohort assessed: the 

Table 1 - Comparison of the elastic modulus of human aorta at 100mmHg reported in two separate 
publications 

Publication Elastic Modulus at 
100mmHg 

Comments 

Learoyd & Taylor 
[45] 

~2MPa for Upper Thoracic 
~1.5MPa for Lower Thoracic 
~1.2MPa for Abdominal 

Read from graph value; average 
from cadaveric samples of age 
>35 (1 male, 5 female) 

Langewouter [47] Range of values: 
0.36-4.09MPa for Thoracic 
0.39-2.52MPa for Abdominal 

Age range of 30-78 for Abdominal 
(n=20); 30-88 for Thoracic values 
(n=45).  Male/Female ratio not 
specified. 
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abdominal artery could have a lower material stiffness but a higher structural stiffness due 

to thicker wall layer when compared to thoracic. 

More recently, in publications since 2000, perhaps the most active group researching the 

mechanical characteristics and mathematical modelling of aortic tissue has been the 

Institute of Biomechanics at the Technische Universität Graz, Austria which is headed by 

Gerhard A. Holzapfel [52].  The Holzapfel group collaborate with Raymond Ogden of 

University of Glasgow, who has an extensive publication history in the field of modelling the 

non-linear response of elastomers and rubbers [53], [54] as well as biomechanics 

applications.  Both Ogden and Holzapfel have their names associated with two separate 

‘hyperelastic’ constitutive material models which have been implemented within Abaqus 

software1.  The Ogden model is a more generic isotropic hyperelastic model capable of 

curve-fitting various non-linear elastomer-like responses, while the Holzapfel model 

implementation in Abaqus is more specifically dedicated to representing arterial tissue.   

The ‘Holzapfel-Gasser-Ogden’ (HGO) model embedded in the Abaqus software is based on 

an initial paper in 2000 [55], and enhanced by a follow-up paper in 2006 [56].  The first 

paper provides a “new constitutive framework for the description of the (passive) 

mechanical response of arterial tissue” which assumes that each artery layer is a composite 

reinforced by (collagen) fibres arranged in two symmetrically opposed helical directions, as 

depicted in Figure 19.  The governing equation is a ‘strain energy function’ with two 

contributory terms: one representing the isotropic response associated with the elastin, 

and a second representing the anisotropic contribution from the collagen fibres.   This 

model has four parameters which allow different artery types to be fitted to the 

constitutive equation.  The helical angle of the collagen fibres is represented by one 

parameter, γ, however the latter paper [56] added to the description of orientation with a 

new ‘dispersion’ parameter which quantifies the distribution of fibre angles away from the 

mean helical angle.  The main motivation being the relatively high levels of dispersion found 

in the adventitia and intima, and a finding that a continuum model without the ability to 

account for the dispersion (e.g. the earlier model) would not capture the stress-strain 

response accurately. 

                                                           
1 There is a focus on the material models available in Abaqus FEA software since a decision was made 
early in the project to use Abaqus primarily because the work herein was adopting and building on 
methodologies already developed using the software by parallel work at the University of 
Strathclyde as described in [7]. 
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Early artery mechanical characterisation work from this group focused on biaxial testing 

and histological studies of the anisotropic structure of tissue from iliac and coronary 

arteries [57], [58] as well as other tissue such as atherosclerotic plaque [59].  Since 2007 

their vascular characterisation work has shifted towards the aorta, providing information 

on the fibre orientations (described above) as well as the pre-stressed states of the aortic 

wall layers in situ [60], [61].  The aorta is under permanent tension in the body, with an 

axial strain of 20% on average, while the layers (intima, media, adventitia) have significantly 

varying degrees of residual stress in the circumferential curvature.  The media most so: 

cylindrical samples of media cut in the axial direction, would ‘spring open’ with the 

curvature actually inverting slightly [60].  These residual stresses clearly add an extra level 

of complexity to modelling the mechanical response of the aorta, and seem logically 

necessary if the effort to include the detailed ‘composite structure’ representation in the 

mathematical expression is to be worthwhile.  A demonstration of modelling such 

phenomenon in FEA was provided [62].  The most comprehensive data set of constitutive 

model parameters provided by the Holzapfel group, for abdominal and thoracic aorta, is 

from testing of 16 cadaveric samples in 2012[63].  However, values for some of the 

Figure 19 - Schematic from the Holzapfel-Gasser-Ogden 
model [55], [56] showing the mean fibre angle, from 
the circumferential axis, which collagen fibres are 
dispersed about. (Reproduced from Gasser et al [56]) 
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parameters vary significantly; by orders of magnitude, making it difficult to determine a 

representative model for a certain age for example. 

Prof. J.D.Humphrey at the Department of Biomedical Engineering and Vascular Biology and 

Therapeutics Program, Yale University is another key publisher in the field of vascular 

mechanics.   Publications which he has been involved in include investigating the origin of 

the residual stresses described above and their biological purpose [64], [65], but there is 

more so a focus on the mathematical modelling of the evolution of arterial tissue through 

aging, stress induced growth, and deterioration of an artery towards aneurysmal state [66]–

[68].  Indeed, there exists significant effort in the literature from others to understand the 

mechanics of the Abdominal Aneurysm itself (e.g. [69]–[73]), however the application of 

this is beyond the aims of the work of this thesis. 

Prior to the ‘Holzapfel model’ and also available within Abaqus is the ‘Generalised Fung 

type’ hyperelastic model based on the two-dimensional strain energy function provided by 

Fung et al [74], and ‘generalised’ to arbitrary three dimensional states from the proposal of 

Humphrey [75].  Other notable mathematical models providing hyperelastic strain energy 

functions for representing arterial tissue are that proposed by Raghavan & Vorp in 2000 

[76], and Vande Geest et al in 2006 [77].  The latter also provides significant bi-axial testing 

data, and parameters to fit the provided equations, from 26 abdominal aortic aneurysms 

plus 8 non-aneurysmal tissue samples.  However, these studies are also more focused on 

providing models to simulate the aneurysmal mechanical response, which as mentioned is 

not within the scope of the current work. 

2.5 Preceding Work by the University of Strathclyde 

The initial consultancy mentioned earlier provided an approach in 2001, implemented by 

Dempster and Forbes [78], to mathematically represent the ring-stent and artery 

interaction using classic structural mechanics and artery stiffness information from 

Langewouters [79].  A precursory task to this thesis was to assess the accuracy and 

limitations of this model.  The approach considered the ‘saddle shaped’ ring to comprise of 

four identical arcs each on separate planes (see Figure 20 which highlights one of the 

mentioned arcs).  The load-deflection behaviours of bending in the plane of the arc and 

bending perpendicular to the plane were modelled using formulae from Roark’s Formulas 

for Stress and Strain [5] for curved beams.  The main limitation identified was that the 

mechanical approximation of the ring-stent had not been validated in isolation, and the 
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load-deflection response was highly sensitive to key assumptions in the detail of the 

calculations.  A comparison of the load-deflection response of a ring with early FEA results 

implemented here (Chapter 5) showed a complete contrast in the shape of the curve.  

Suggestions on how to improve the mathematical modelling of the ring-stent were 

identified [80], however it was decided to concentrate efforts on the FEA approach with the 

aim of achieving a better accuracy of the mechanical strength, compared to what would be 

achievable with structural mechanics calculations. 

The PhD work of McCummiskey [6] in 2008 included a comprehensive literature review 

discussing the advantages and disadvantages of endovascular treatment compared with 

conventional ‘open repair’, a thorough review of Nitinol characterisation work at the time 

as well as a summary of FE methodologies employed to simulate other types of stent 

devices.   

The initial work carried out by McCummiskey [6] involved sensitivity studies on the 

properties of the Nitinol wire followed by uniaxial characterisation of the wire used at the 

time.  The sensitivity studies focused on assessing the influence of strain rate, temperature 

dependence, and low level cyclic effects on the stress-strain response of the Nitinol wire 

through a strain range of zero to approximately 6%: 

Figure 20 - The arc beam in bold blue, on local plane v-u, represents quarter of a saddle shaped 
ring-stent in the approach implemented by Dempster and Forbes [76]. 
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• It was reported from testing on 2.4mm diameter Nitinol wire that even the lowest 

strain rates tested of 0.1mm/min caused sample temperatures to rise to 7˚C higher 

than ambient room temperature, while the highest rate of 50mm/min caused 22˚C 

rise over ambient.  The actual effect on the stress-strain response was not as severe 

as the temperature variance, especially in loading.  The resulting decision was to 

run further tests on fine wire (0.1-0.3mm diameter) at 5mm/min for single cycle 

tests and 50mm/min for multiple cycle tests, noting that the effect would be 

significantly less severe on fine wire diameter (greater ratio of surface are to 

volume).  It was not possible to use fine wire for the strain rate test because of 

requirements to weld a thermocouple to a more significant diameter sample.  The 

decision on strain rates made in units of mm/min would only be applicable to the 

specific sample lengths tested, which was not specified. 

• Repetitive cyclic loading testing involving 100 tensile loading cycles from 0% to 6% 

showed significant reduction in stress-strain plateau levels and a development of 

residual strain to a maximum of approximately 1%.  Considering device life, cycling 

Nitinol through the full phase transformation to 6% repeatedly is only relevant to 

the potential case of multiple compactions to a ring-stent; not the in vivo cyclic 

loading due to pulsatile blood pressure which will impose much smaller cyclic 

deformations. 

• The effect of varying temperature, within the superelastic window, was 

investigated by tensile loading at 20˚C, 30˚C and 40˚C above the Af point.  Increased 

temperature had the effect of increasing the modulus and loading plateau levels, 

which highlighted the requirement for further testing to be tightly temperature 

controlled and the need for Vascutek to tighten the specification on the Af 

temperature of supplied wire. 

Subsequent to the above sensitivity studies, the wire was characterised in uniaxial tension 

and compression for the purpose of implementing within a material model for FEA.  The 

compressive testing involved development of a bespoke jig for testing short samples (21.5-

48.5mm) of Nitinol wire/rod of 1.0, 1.8 and 2.4mm diameter.  The compressive testing 

indicated a ‘start of transformation in loading’ stress value of 853MPa, compared to 

645MPa in tension. 
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The thesis of McCummiskey [6] also included work on developing an FE approach to model 

a Nitinol ring, focusing on the Anaconda device proximal ring, using the commercially 

available ANSYS package.  A simulation methodology was achieved for a single turn, quarter 

ring model (symmetry can be used as will be discussed in Chapter 4) subject to the 

manufacture deformation, partial compaction and release into a linear elastic tube (the 

limitations of which are discussed in section 4.2.7.1).  Progress was also made with a 

method to model a three-strand bundle, however it was not fully validated and issues with 

computational expense were mentioned in her conclusions.  Strain analysis carried out on a 

number of single turn ring models provided data which was implemented to improve the 

mathematical model produced by Dempster and Forbes [81].  In addition to the modelling, 

McCummiskey also devised a ring fatigue test program that ran at Vascutek to determine a 

fatigue limit in terms of strain amplitude for the Nitinol wire in a loading representative of 

in vivo.  Unfortunately, significant deviations exist in the maintenance of the testing, carried 

out by Vascutek personnel, resulting in incomplete data for defining a strain based fatigue 

limit reliably. 

It was realised and noted in the recommendations of McCummiskey [6] that ANSYS had 

limitations compared to the FE package ABAQUS in terms of the implemented Nitinol 

model.  The succeeding PhD work of van Zyl [7] developed a more computationally efficient 

method of modelling single strand Nitinol rings using ABAQUS, before proceeding to 

investigate the mechanical behaviour and constitutive modelling of human aorta.  The 

initial FE work of van Zyl has been adopted and progressed in the work described in this 

thesis (see 4.2).  In parallel to the development of the full-bundle model in the work of this 

thesis, van Zyl also proposed an alternative ‘bi-element’ method to capture the mechanical 

response of the ring-stent: overlaying a number of beam element strands, and joining them 

to one continuum element ring.  The load-deflection response of this ‘bi-element’ approach 

was qualitatively compared to the empirical results of one ring configuration, showing an 

improvement over using a single turn of ‘equivalent ‘I’ value’ (discussed later in 4.2.7.1). 

The full-bundle ring-stent modelling methodology devised in this thesis will be 

quantitatively validated against various ring configurations in representative cyclic loading 

positions, in Chapter 4 of this thesis.  Furthermore, the objectives of the ring simulations 

devised by both McCummiskey and van Zyl were focused on the stress/strain and 
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deformation analysis of the Nitinol wire; a method to assess the radial loading, between 

ring-stents and artery, had not been addressed. 

2.6 Summary of Chapter Two 

The ring-stent components of Vascutek’s stent-grafts are required to ‘self-expand’ from the 

delivery sheath, provide sufficient radial force for hook engagement and sealing, and 

survive the cyclic loading of pulsatile blood pressure.  The load-deflection response of 

Nitinol stent being compacted and deployed will display non-linearity and hysteresis 

analogous to the stress-strain relation of Nitinol.  In cyclic loading, the Nitinol material will 

display a stable stiffness so-long as the strain amplitudes are considered low, which was 

defined as <0.25% by Robertson et al. [12]. 

The fatigue life of Nitinol is highly dependent on the manufacturing process, material 

composition and inclusion size of trace elements/residual contaminants.  Such sensitivity 

leads to the necessity to carry out fatigue testing on any Nitinol components which have 

unique manufacture or application.  Vascutek have changed grade of wire since the work of 

McCummiskey [6], and therefore the need is apparent to define a new fatigue limit based 

on the ‘strain-life’ approach, which is still considered most appropriate according to the 

review by Robertson et al. [12].  The work herein will inform the setup, and analyse the 

results of a new empirical fatigue test program to achieve a reliable strain-life fatigue 

characterisation of current wire, specifically for the ring-stent application (see Chapter 6). 

Mechanical characterisation of the human aorta has sporadically progressed through 

various studies: from first identifying the ‘stiffening’ response, progressing to giving some 

estimates of the range of elastic modulus of the wall (see Table 1), to more recent detailed 

histological assessments into the composite structure including the influential collagen fibre 

distribution.  Mathematical expressions have been provided in an attempt to 

phenomenologically capture the described behaviours at each stage of understanding.  

However, partly due to the difficulty in acquiring significant sample numbers of cadaveric 

tissue for testing, and also due to the natural variability from one person’s aorta to the 

next, there is still no significantly comprehensive database which can easily provide 

mechanical parameters to represent a certain demographic.   

Efforts towards this thesis assessed the feasibility of implementing the more complex 

Holzapfel constitutive model in detail, however a simpler method based on the work of 
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Langewouters [47], capturing the global pressure-diameter response of artery, has been 

proposed and implemented as will be detailed in section 4.3.  In parallel to this, van Zyl 

worked to mechanically characterise the response of three cadaveric human aortas, 

acquiring parameters for the Holzapfel model. 

The previous work of McCummiskey [6] has provided a clear insight into the behaviours of 

Nitinol which must be appreciated and accounted for in the characterisation and 

constitutive modelling of the superelastic material.  Namely; how the strain rate, 

temperature dependence, and low-level cyclic fatigue influences the stress-strain 

behaviour.  An important first attempt at quantifying the asymmetry of Nitinol’s stress-

strain response was also provided.   The follow on and complimentary work of van Zyl [7] 

provides a neat and computationally efficient methodology to model the pre-strain and 

partial compaction of a single-turn quarter Nitinol ring-stent.  This has been adopted and 

progressed herein to achieve and validate a more mechanically and geometrically accurate 

‘full-bundle’ model of the Nitinol ring-stent, enabling the fatigue and radial force analysis 

objectives to be achieved. 
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3  
Nitinol Material 
Constitutive Modelling 
3.1 The Nitinol Wire Grade 

The characteristics of Nitinol are significantly dependent on the material processing as 

discussed in 2.3.  As such, in the parallel work of Brodie [26], a significant effort has been 

placed on characterising and modelling the current grade of Nitinol wire used in the 

manufacture of ring-stent grafts.  The current wire used to manufacture the Nitinol rings is 

‘medical grade’, supplied by Fort Wayne Metals and identified as ‘Nitinol #1 Super-Elastic 

Straight Annealed’.   

The wire undergoes a cold work and heat treatment process which may involve being 

drawn numerous times through a die to reduce diameter as depicted in Figure 21.  

Figure 21 - Depiction of wire being drawn to a 
smaller diameter through a die. 1: wire pre-
drawn, 2: the die workpiece, 3: the reduced 
diameter drawn wire (Image credit: 
www.manufacturingguide.com) 
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Annealing between draws and after final draw relieves the effect of cold work on the micro 

grain structure.  The exact details of the cold working and heat treatment process are not 

disclosed by the wire supplier.  A chemical etch finish is applied to remove any oxide layer 

and to leave a relatively smooth surface.  The range of Nitinol wire currently used in 

devices, which are analysed herein, vary in diameter and specified tolerance as shown in 

Table 2. 

Table 2 - Nitinol wire diameter and design specification tolerances as used by Vascutek 

Wire diameter (mm) 0.12 0.13 0.14 0.15 0.16 0.18 0.20 0.22 0.24 

Design specification tolerance 
(µm) 

±2.5 ±5.0 ±5.0 ±5.0 ±5.0 ±5.0 ±5.0 ±7.5 ±7.5 

The chemical composition of the wire is stated to meet or exceed that set out by ASTM 

F2063 [82] such that the percentage of Nickel in the alloy (per weight) is between 54.5% to 

57.0%, other impurities are lower than stated in Table 3, while Titanium content comprises 

the remaining balance. 

Table 3 - Chemical composition of Nitinol as per ASTM F2063 

Element weight % 

Nickel 54.5 to 57.0 (Reference) 

Titanium Balance 

Carbon < 0.05 

Cobalt < 0.05 

Copper < 0.01 

Chromium < 0.01 

Hydrogen < 0.005 

Iron < 0.05 

Niobium < 0.025 

Nitrogen plus Oxygen < 0.05 

Any Single Trace Element < 0.1 

Total Trace Elements < 0.25 

The Nitinol must be in the ‘superelastic window’ austenitic state, discussed in 2.3.1, at 

room temperature as well as at body temperature (37˚C).  To ensure this the ‘Af (austenite 

finish) temperature’ is specified to be slightly lower than the operating range: 12˚C < Af < 

18˚C. 

A number of characteristics of the tensile stress-strain curve are specified as basic 

requirements by Vascutek: loading plateau >560MPa; unload plateau >250MPa; permanent 

set after 8% strain <0.5%; elongation to failure >10%; ultimate tensile strength >1300MPa.  

However, the behaviour needs to be assessed further to fully define the parameters for the 
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numerical constitutive model.  A typical stress-strain plot of the above-mentioned grade of 

wire from Fort Wayne Metals is plotted in Figure 22 from data provided by the supplier.  

This sample was loaded to 8% nominal strain (7.70% true strain), unloaded to zero stress, 

and then loaded to failure which occurs beyond 16% true strain. 

Figure 22 - Example Nitinol stress-strain plot from data provided by Vascutek's wire supplier Fort 
Wayne Metals.  The wire was strained to 8% engineering strain, unloaded to zero stress, and then 
loaded to failure. 

The unsmooth, jagged plateau paths (particularly in loading) observed in Figure 22 often 

occur in testing of Nitinol.  It was suggested by McCummiskey that this “saw-tooth” effect is 

due to localised nucleations of martensite.  However, more recent testing carried out at 

Vascutek [83], using different equipment, produces stress-strain responses with smooth 

plateaus in the transition zone, suggesting that the effect could be largely method 

dependent. 

3.2 Constitutive Model 

The constitutive model available in Abaqus for superelastic materials is described as 

‘phenomenological’ meaning in this case that it mathematically describes the macro 

physical behaviour of a superelastic material observed empirically, but it does not achieve 

this by representing any crystallographic or molecular level structural phenomena.  It is 

based on the work of Auricchio and Taylor [84], [85] who adopted the ‘generalised 

plasticity’ modelling approach of Lubliner [86] to develop a mathematical framework 

specific for superelastic-shapememory alloys.  The model assumes isotropic and rate-
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independent behaviour and it decomposes the calculation of recoverable strain into two 

separate parts: elastic strain and transformation strain.  The transformation is modelled 

with a ‘Drucker-Prager’ type function which is a theory for calculating yield criterion which 

accounts for hydrostatic pressure stress in addition to the deviatoric part of the stress.  This 

facilitates, to some degree, the modelling of asymmetric behaviour between tension and 

compression. 

The mentioned constitutive model is implemented in Abaqus as a ‘user material model’, or 

‘UMAT’, which is a type of sub-routine to the main software package, written in FORTRAN 

programming language.  The basic information sheet for the model, provided by Dassault 

Systèmes (Abaqus provider), is attached as Appendix B.  The basic ‘UMAT for Superelasticity 

and Plasticity of Shape Memory Alloys’ can model the observed uni-axial behaviour 

including: the separate austenite and martensite moduli, the superelastic transition, the 

stress variance in loading and unloading (hysteresis) and allows for some degree of 

asymmetry between tensile and compressive behaviour.  It also provides for variance in 

stress levels due to temperature to be specified, however for the modelling herein, 

parameters will be kept constant, taken from characterisation tests performed at 37°C.  The 

model also facilitates for a plasticity curve in the martensite phase to be defined by a 

number of coordinate sets, however this also will not be considered for the work herein as 

the ring-stents are designed to operate in the recoverable strain range. 

A schematic from the information sheet (Appendix B) showing some of the 15 parameters 

which are required to define the superelastic stress-strain curve is shown in Figure 23.  The 

austenite and martensite moduli are denoted by EA and EM respectively.  The superelastic 

loading plateau is defined by stress point 𝜎𝑡𝐿
𝑆  and 𝜎𝑡𝐿

𝐸  at the start and end of the plateau 

respectively (superscript S and E refer to start and end, and subscript tL refers to 

transformation in loading).  Likewise the unloading plateau is defined by stress points 𝜎𝑡𝑈
𝑆  

and 𝜎𝑡𝑈
𝐸  (tU refers to transformation in unloading).  The strains at which transformation in 

loading will complete is not defined directly: it is dependent on the transformation strain 

(εL), martensite modulus (EM), and the end of transition in loading stress point (𝜎𝑡𝐿
𝐸 ).  As 

depicted in Figure 23, the transformation strain (εL) is the point at which the martensite 

modulus crosses the strain axis.  On the compressive side the ‘start of transformation in 

loading stress’ (𝜎𝑐𝐿
𝑆 ) can be defined if asymmetric response is desired and the data 

available.  This stress point on the compressive side, along with a value entered for 
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‘volumetric transformation strain’ (휀𝑉
𝐿) defines the full compressive behaviour of the model.  

Volumetric strain is the change in volume due to an applied hydrostatic pressure.  As a 

volumetric strain over the transformation was not known, and not easily attainable, 휀𝑉
𝐿 was 

set to a value equal to the transformation strain, εL, which instructs the sub-routine to re-

calculate 휀𝑉
𝐿  based on σL

S and σCL
S .  This allows for some of the effect of asymmetry to be 

accounted for, meaning the overall model is more accurate in bending than if a symmetric 

model is assumed, however there is still susceptibility to inaccuracies in the slope and 

length of the compressive transformation plateaus in particular.  The parallel work of 

Brodie [26] has justified the most appropriate parameters to use, taking account of the 

tensile, compressive and bending behaviour of the wire. 

The coordinates (𝜎1
𝑃 , 휀1) and (𝜎𝑖

𝑃 , 휀𝑖) in Figure 23 are stress-strain points on the yield curve 

beyond the superelastic transition.  As mentioned above, considering plastic deformation of 

Nitinol is out-with the scope of work covered herein.  If no yield points are defined the 

model assumes the linear martensite modulus EM beyond the transition in loading, and also 

in unloading until the ‘start of transformation in unloading’ stress level is met. 

Figure 23 - The diagram from the information sheet (Appendix B) of the ‘UMAT for Superelasticity 
and Plasticity of Shape Memory Alloys’, annotating parameters associated with stress-strain 
relationship at a single temperature point. 
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A Poisson’s ratio for the austenite and martensite phases must also be specified, and two 

thermal parameters which dictate the change in both plateau levels per degree Celcius 

temperature change.  All of the parameters discussed in this section are outlined in Table 4. 

3.3 Model Parameters Implemented 

Two different sets of Nitinol modelling parameters have been implemented in the 

simulations of the work herein.  A provisional material model was used for the work in 

Table 4 – The parameters of the 'UMAT for Superelasticity and Plasticity of Shape Memory Alloys' 

Constitutive Model Parameter Provisional 

Model 

Parameters 

Improved 

Model 

Parameters 

of [26] No. Symbol Description (from Dassault Systemes) Units 

1 𝐸𝐴 Austenite elasticity MPa 64000 61000 

2 𝜐𝐴 Austenite Poisson’s ratio N/A 0.435 0.45 

3 𝐸𝑀 Martensite elasticity MPa 40000 32500 

4 𝜐𝑀 Martensite Poisson’s ratio N/A 0.435 0.45 

5 휀𝐿 Transformation strain N/A 0.06 0.05 

6 
𝛿𝜎

𝛿𝑇
 

𝛿𝜎

𝛿𝑇
 loading MPa/⁰C 4.30 7.1 

7 𝜎𝑡𝐿
𝑆  Start of transformation loading MPa 660 680 

8 𝜎𝑡𝐿
𝐸  End of transformation loading MPa 680 710 

9 𝑇𝑂 Reference temperature ⁰C 0 0 

10 (
𝛿𝜎

𝛿𝑇
)

𝑈
 

𝛿𝜎

𝛿𝑇
 unloading MPa/⁰C 5.03 7.1 

11 𝜎𝑡𝑈
𝑆  Start of transformation unloading MPa 400 380 

12 𝜎𝑡𝑈
𝐸  End of transformation unloading MPa 350 350 

13 𝜎𝐶𝐿
𝑆  

Start of transformation stress during 
loading in compression, as a positive 
value 

MPa 1100 965 

14 휀𝑉
𝐿 

Volumetric transformation strain. If  

휀𝑉
𝐿 = 휀𝐿, an associated flow algorithm 

is used, with 휀𝑉
𝐿 computed based on 𝜎𝐿

𝑆 
and 𝜎𝐶𝐿

𝑆 .  For all other cases, a non-
associated flow algorithm is used, 
which produces an unsymmetric 
Jacobian matrix. The USYMM 
parameter is thus required on the 
*USER MATERIAL keyword 

N/A 0.06 0.05 

15 NA Number  of anneals to be performed 
during analysis 

N/A 0 0 
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Chapter 5, which was derived from uniaxial testing data available early in the project, plus 

an initial attempt at compressive uni-axial testing.  An improved, more accurate and 

thoroughly validated model was developed in the parallel work of Brodie [26].  This model 

was implemented in the component level validations described later in section 4.5, and was 

applied to all further analyses which are reported in Chapters 6-8.  Both sets of parameters 

are shown and can be compared in Table 4. 

The improved model of the work of Brodie [26] was derived from uni-axial tensile and 

compressive tests and validated with ‘three point bend’ load-deflection tests as well as 

Digital Image Correlation (DIC) verification of surface strain levels. 

3.4 Summary of Chapter Three 

Prior to the work of this thesis, sufficient characterisation had been accomplished at 

Vascutek and by McCummiskey to implement a provisional model of Nitinol in the ‘user 

subroutine’ constitutive model for superelastic materials within Abaqus with confidence 

that meaningful results will be produced.  The investigations and work of Brodie [26] have 

significantly furthered the confidence in the ability to model the current grade of Nitinol 

wire now used by Vascutek to manufacture ring-stents.  However, there are still limitations 

which bring sources of error to the accuracy of the material modelling, particularly with 

respect to modelling the asymmetry of compression versus tension, which can be partially 

taken account of but not defined with the fidelity of the options for the tensile side. 

The constitutive model available in Abaqus based on Auricchio and Taylor [84], [85] 

certainly provides adequate flexibility to justify progressing with development of a 

methodology to simulate and analyse the ring-stents’ mechanical performance.  However, 

the limitations of the model will also be researched parallel to this work. 
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4  
Simulation Methodology 
Development and 
Validation 
The use of numerical modelling such as FEA is becoming more common in the development 

of medical devices [87].  The most relevant international standards to stent-graft design are 

ISO 25539 part 1 and 2 [3], [4], which recommends using tools such as FEA for stress/strain 

analysis of implants. 

The problem presented - of analysing the structural state of a ring-stent through its typical 

lifecycle - is highly non-linear.  As discussed in Chapter 2, the constitutive material models 

themselves have non-linear stress-strain relationships.  The ‘large deflections’ of the ring-

stents also contribute to non-linear effects in terms of the load-displacement response.  

The complexity of modelling contact between stent and artery is a ‘boundary non-linearity’ 

which adds to the mathematical complexity required within the FE solver. 

Commercially established FEA packages are available with ‘tried-and-tested’ solving 

methods with non-linear capabilities for common industrial applications.  Constitutive 

material models are included in many of these software packages, providing a flexible 

mathematical construct which can be adapted, to some degree, to represent the non-linear 

response of specific materials such as Nitinol as has been described in Chapter 3. 

The Abaqus documentation provides example models which validate the accuracy of the 

solvers against industry standard ‘benchmark’ problems.  However, it is an important 

practice to validate as far as possible the specific scenario and methodology which has been 

developed, in this case bespoke modelling of ring-stents and aortic artery. 
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This chapter will present the general mathematical theory of the relevant Abaqus solvers, 

the modelling methodologies developed to represent the ring-stent and stiffness of artery, 

and the validation work carried out. 

4.1 Software, Governing Equations, Solution and Control 

4.1.1 Chosen Software Package 

Abaqus FEA software (versions 6.11 – 6.14) has been used for all the simulation work 

described herein.  This program was selected primarily because of the initial methodology 

which was adopted from the preceding work of van Zyl as will be described in 4.2.1, but 

also it is noted that Abaqus provides some dedicated ‘add-ons’ for stent simulation and is 

used widely by the stent simulation community. 

‘Abaqus Standard’ which is the conventional implicit FEA solver has been used with ‘general 

static’ simulation steps for the simulations described herein, unless otherwise stated.  The 

‘general static’ solver breaks highly non-linear simulation steps into smaller increments 

which are solved to approximate static-equilibrium using the Newton-Raphson method.  

The scenario of a stent pulsating in an aorta is indeed not static, but quite a dynamic 

problem in which the inertia and interaction of stent, artery and blood will, together, 

influence the deflections involved.  To include the mass and haemodynamics of blood in a 

simulation would require the investment in a computational fluid dynamics (CFD) approach 

coupled with the FEA (recently known as Fluid-Structure Interaction (FSI)), however the 

current body of work is focused purely on the initial challenge: being able to simulate the 

superelastic ring-stent and its interaction in an aorta under pulsatile internal pressure, 

approximating static equilibrium at any solution point, to provide validated input for fatigue 

resistant design. 

4.1.2 Governing Equations 

In the following explanation, the key mathematical principals and equations are outlined 

but are not fully derived.  Derivation is lengthy, usually described with the use of examples, 

and can be found in literature on the Finite Element Method [88]–[90].  Abaqus standard 

uses the common approach of the ‘virtual work principle’ and ‘minimum total potential 

energy principle’ as a basis from which to formulate the system of equations which relate a 

finite element body’s deformation to the applied loads and boundary conditions.  The 
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principle of virtual work (Eq. 4.1) essentially states that the total work done by external 

forces on a body (left side of equation) is equal to the increase in internal elastic strain 

energy in the volume of the body (right side of the equation) for some infinitesimally small 

‘virtual displacement’: 

 
∑{𝑃𝑖}𝑇{𝛿𝑠𝑖}

𝑛

𝑖=1

= ∫ {𝜎}𝑇{𝛿휀}𝑑𝑉𝑜𝑙
𝑉𝑜𝑙

 
(Eq. 4.1) 

 

where {𝑃𝑖} and {𝛿𝑠𝑖} are vectors of force and ‘virtual displacement’ respectively for node 𝑖.  

On the right-hand side of the equation, the ‘virtual work’ done, {𝜎}𝑇{𝛿휀} is integrated over 

the volume where 𝜎 and 𝛿휀 are stress and virtual strain components respectively. 

The ‘minimum total potential energy principle’ builds on the above by stating that if Π is 

the total potential energy of the system, then for a stable equilibrium state, the change in 

that energy, 𝑑Π over a ‘virtual displacement’ is a minimum as mathematically implied by 

(Eq. 4.2): 

 
𝑑Π = ∫ {𝜎}𝑇{𝛿휀}𝑑𝑉𝑜𝑙

𝑉𝑜𝑙

− ∑{𝑃𝑖}𝑇{𝛿𝑠𝑖}

𝑛

𝑖=1

= 0 
(Eq. 4.2) 

 

The principle of ‘minimum total potential energy’ allows the ‘element stiffness matrix’, [𝐾]𝑒 

to be derived in terms of the strain displacement matrix, [𝐵] and the elasticity matrix [𝐷] as 

an integral over the volume (Eq. 4.3).  Again, derivation of these new terms will not be 

provided here, but can be found with examples in Finite Element Method texts such as 

[88]–[90].  However; in short these matrices represent the following: 

• [𝐵] is the strain displacement matrix which relates strain to displacement for each 

element such that {휀} = [𝐵]{𝛿}𝑒, where {휀} is the strain vector, and {𝛿}𝑒 is the 

nodal displacement vector for an element, e. 

• [𝐷] is the elasticity matrix which relates an element’s strain vector to stress vector 

via Young’s modulus and Poisson’s ratio (for a linear elastic material). 

• [𝐾]𝑒 is the element stiffness matrix, which relates the nodal displacements to the 

applied loads: {𝐹}𝑒 = [𝐾]𝑒{𝛿}, where {𝐹}𝑒 is the vector of force on an element’s 

nodes. 
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 [𝐾]𝑒 = ∫ [𝐵]𝑇[𝐷][𝐵]
𝑉𝑜𝑙

𝑑𝑉𝑜𝑙 
(Eq. 4.3) 

 

To be able to incorporate mathematically the rotation of a body relative to the global 

coordinate system the ‘Jacobian’ matrix is introduced which relates the transformed local 

coordinate axes to the global coordinate axis through the use of ‘shape functions’. 

 
𝑑𝑉𝑜𝑙 = 𝑑𝑥𝑑𝑦𝑑𝑧 = |𝐽|𝑑𝜉𝑑𝜂𝑑𝜍 

(Eq. 4.4) 

 

where 𝜉, 𝜂, 𝜍 are the local Cartesian axes and |𝐽|is the determinate of the Jacobian.  The 

stiffness matrix including the Jacobian: 

 
[𝐾]𝑒 = ∫ ∫ ∫ [𝐵]𝑇[𝐷][𝐵]

1

−1

|𝐽|
1

−1

1

−1

𝑑𝜉𝑑𝜂𝑑𝜍 
(Eq. 4.5) 

 

The stiffness matrices for every element in the system are combined to create the global 

stiffness matrix [𝐾]𝐺, which along with the global force vector, {𝑓}𝐺 and global nodal 

displacement vector, {𝑢}𝐺 define the system of non-linear differential equations to be 

solved.  The number of equations to be solved in each increment of a solution is equal to 

the number of nodal degrees of freedom in the system. 

 
{𝑓}𝐺 = [𝐾]𝐺{𝑢}𝐺 

(Eq. 4.6) 

 

4.1.3 Solution 

The ring-stent simulations required are highly non-linear in terms of the structure’s 

deformation; let-alone non-linear material response and contact complexities once artery 

interactions are introduced.  Any highly non-linear ‘step’ of the simulation requires to be 

split into smaller increments which may require several iterations to solve to sufficient 

accuracy.  The Newton-Raphson method is the iterative procedure which is applied with an 

aim to converge a solution for each increment.  Reviewing the method briefly; suppose that 

a non-linear simulation step applying a final loading of, 𝑃 is attempting an increment in 

which a portion of the loading, 𝛥𝑃 is applied.  The stiffness of the system first assumed, K0 

is the stiffness instantaneously at the start of the increment, or otherwise known as the 

‘tangent stiffness’ (see Figure 24) at 𝑢0.  The principle of minimum total potential energy 
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essentially stated that the external loading 𝑃 , must equal the internal loading, 𝐼  for 

equilibrium as per (Eq. 4.7). 

 
𝑃 − 𝐼 = 0 (Eq. 4.7) 

An initial displacement correction 𝑐𝑎 is calculated and subsequently the associated internal 

forces 𝐼𝑎 in the ‘updated configuration’ of the system.  The residual forces, 𝑅𝑎 for every 

node can then be calculated which are used as a convergence check.  The default criteria is 

that every residual force is less than 0.5% of an average nodal force in the structure.  A 

second convergence check is that 𝑐𝑎 is less than a fraction, 1% by default, of the total 

incremental displacement, 𝑢𝑎.  If both convergence checks are satisfied, the system is 

Figure 25 - Graphical explanation of the second increment of the Newton-Raphson 
method (Reproduced from Abaqus Documentation) 

Figure 24 - Graphical explanation of the first increment of the Newton-Raphson 
method (Reproduced from Abaqus Documentation [91]) 
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considered in approximate equilibrium, and the next increment of loading can be 

commenced. 

If however, the iteration described above has not converged to acceptable tolerances, then 

a new increment is started in which first a new stiffness matrix, 𝐾1 is computed from the 

most recent displacement position, 𝑢𝑎 (see Figure 25).  If the solution is converging, then 

the new residual force, 𝑅𝑏 and the new displacement correction, 𝑐𝑏 will have reduced, and 

if they are now within the acceptance criteria then the increment is assumed converged. 

4.1.4 Automatic Incrementation Control 

The size of increments in any given step can either be fixed, or varied automatically as the 

solution requires: smaller increments if the solution becomes more non-linear, and vice-

versa.  In cases in which the non-linearity of a problem is expected to vary throughout the 

step, it is usually most efficient to allow automatic control of the increment size, rather 

than fixed.  Controls for the initial, minimum and maximum increment size can still be 

specified as guidance.   

The ring-stent simulation steps can have sudden changes in linearity mainly due to the 

stiffness of the material, and therefore the structure, changing dramatically, or the 

initiation or changing of a contact interaction status when surfaces meet, come apart or 

move relative to one another.  The former can be dealt with automatically as ‘equilibrium 

iterations’ and the latter as a ‘severe discontinuity iterations’ which will be outlined in the 

following (4.1.4.1 and 4.1.4.2). 

4.1.4.1 Equilibrium Iterations 

For the convergence of the ‘static general’ solution described in 4.1.3, the default rules 

applied by Abaqus governing the automatic increase or decrease of increment size 

throughout a step are as follows: 

An increment is abandoned, and re-attempted at 25% of the size if any of the following 

criteria are triggered during equilibrium iterations:  

• After the first four iterations of an increment a check begins to ensure that the 

largest residuals are decreasing.  If they fail to decrease over two consecutive 

iterations, the increment is abandoned, deemed as diverging. 
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• After eight iterations of an increment, a check is introduced to ensure that the rate 

of convergence is following a logarithmic trend.  If not, the increment is 

abandoned. 

• After 16 equilibrium iterations have taken place and the residuals are still not 

within the tolerances, the increment is abandoned. 

• If Abaqus has trouble with calculations because of excessive distortion in any 

element, the increment is abandoned.  (This could be caused by non-linear material 

elements transitioning to a significantly different stiffness over the period of an 

increment.) 

If a successful increment required more than 10 iterations to converge, the next increment 

size will be reduced to 75% of the previous. 

The increment size is increased by 50% if two consecutive increments converge in less than 

five iterations. 

4.1.4.2 Severe Discontinuity Iterations 

If contact interactions are being used, the solver also needs to run severe discontinuity 

iterations to deal with abrupt changes in the stiffness due to slave surface nodes either 

coming into contact (closing), or separating (opening) from the master surface.  If a severe 

discontinuity is detected, an iteration is forced in which loads representing contact 

pressures will either be applied, according to the specified pressure-overclosure 

relationship, or removed if the overclosure becomes negative (a clearance).  Severe 

discontinuity iterations will continue until discontinuities are sufficiently small, or do not 

exist.  Overclosure discontinuities are judged sufficiently small by assessing the ‘penetration 

error’ and ‘estimated contact force error’.  The penetration error is defined as the 

difference between the initial overclosure and the overclosure once the contact pressure-

overclose load has been applied.  The ‘estimated contact force error’ is obtained by 

multiplying the initial overclosure by the effective contact stiffness.   

To be deemed sufficiently small, the ‘penetration error’ must be smaller than the ‘contact 

and slip compatibility tolerance’, Tcont, multiplied by the nodal incremental displacement.  

By default Tcont is 0.005.  Likewise, the ‘estimated contact force error’ must be less than the 

‘contact force error tolerance’, Tcfe, multiplied by the average nodal force.  By default Tcfe is 

1. 
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In cases where ‘soft contact’ is used, the ‘contact and slip compatibility tolerance’, Tcont is 

replaced by ‘soft contact compatibility tolerance’, Tsoft which by default is 0.1. 

In the case of a contact opening, when a contact force is removed from a node, this force 

discontinuity will cause force residuals which are checked to be sufficiently small relative to 

the average nodal force, in the same manner as described in 4.1.3. 

4.1.5 Automatic Damping Stabilisation 

Abaqus has ‘automatic stabilisation’ capability for the ‘static general’ solver, which is 

suitable for solving local instabilities in static problems.  Damping forces, proportional to 

the local nodal velocities and a damping factor, are added to the global equilibrium 

equations.  The damping factor can be applied as a constant value or it can be varied 

‘adaptively’; specified by algorithm based on the complexity of convergence of a previous 

increment.  The automatic stabilisation is detailed further in section 7.1.1 of Abaqus 

Analysis User’s Manual [91].  If stabilisation is used in any step of an analysis it is 

recommended to check that the energy dissipated against viscous damping forces is 

relatively small compared to the internal strain energy: a ratio of 0.05 is suggested and this 

was adopted as a check in simulations in this work. 

Automatic Stabilisation has only been used in steps of analysis which were proving to have 

local instabilities.  For the analyses presented later in this thesis, it has been specified when 

it was necessary to apply stabilisation. 

4.1.6 Summary of Numerical Implementation 

The decision to use the Abaqus software package is justifiable not only because of the 

preceding methodology development by van Zyl, but it also has: a proven robust numerical 

approach, based on the commonly used Newton-Raphson method, suitable for the solution 

of non-linear problems; some stent specific add-on tools; and is known to be widely used in 

the medical device industry. 

The flexibility of the automatic incrementation control allows different steps in the ring-

stent simulations to be configured individually to optimise the cost of analysis. 

4.2 Ring Modelling Methodology 

This section describes the single-turn ring model method which was adopted from the 

previous work of van Zyl [7], how it has been progressed, the methods added to radially 
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load rings, and the justification on mesh structure and element choice.  Subsequently the 

approach to model multiple turn ‘full bundle’ rings is covered. 

For both the single-turn and ‘full bundle’ methods, the approach to simulate only a quarter 

of a ring, taking advantage of symmetry, has been implemented to reduce computational 

expense.  This is valid for the case that a ring-stent is aligned perfectly (as opposed to rings 

being lopsided) and in idealised straight vessel.  The symmetry planes of this approach are 

shown in Figure 26 with one quarter of a ring highlighted. 

The validation of the ring modelling methods is covered later in section 4.5. 

4.2.1 Adopted Quarter Turn Method 

As discussed in 2.5, the preceding work at the University of Strathclyde on the modelling of 

Nitinol rings was most recently progressed as part of the work by van Zyl [7].  As was 

recommended by the earlier work of McCummiskey [6], van Zyl decided to use the Abaqus 

FE package to develop a methodology of modelling the ring-stent, as well as assess the 

capability of in-built arterial tissue constitutive models.  An efficient method of simulating 

the initial bending (during manufacture) and semi-compaction of a single strand, quarter 

Figure 26 – A computationally generated graphic of a ring-stent depicted with the symmetry 
planes assumed and a quarter ring between peak and valley highlighted 
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Nitinol ring was developed by van Zyl and adopted as a fundamental method to be built 

upon for the work herein. 

The method was developed using Python scripting to instruct the Abaqus CAE pre-

processing interface. This allows a user to rapidly generate any model configuration by 

altering the key geometric parameters in the script, e.g. ring diameter and wire diameter, 

prior to the script being read by Abaqus CAE.  The modelling method, implemented through 

the Python script includes the following features: 

• Creating a quarter-circumference length of wire and partitioning the cross-section 

through the whole length to enforce an axially symmetrical mesh of continuum 

‘brick’ elements. 

• Generation of a structured hexahedral mesh with control over the number of 

elements in the cross section, and longitudinal direction. 

• The simulation was implemented using ‘static general’ steps which use the 

governing equations and solution method described above in 4.1. 

• C3D20R (20 node quadratic elements with reduced integration) were used to 

model the wire. 

The first step, in which the straight wire is formed into a quarter ring, is achieved by 

applying a unique linear displacement condition for every node on the end faces of the 

quarter wire.  These boundary conditions force the faces to displace and rotate onto the 

Figure 27 - LEFT: The undeformed (transparent) and deformed (green) position of a quarter turn 
wire after initial ring forming simulation step. RIGHT: Close-up of the wire end face (undeformed 
position) with unique linear displacements applied to each node. 
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global Y-Z and X-Z planes respectively as depicted in Figure 27.  The wire’s initial position is 

at 45° from the planes stated, with the central mid-point node of the wire located at a 

distance equal to the ring radius from the global origin.  The unique displacement condition 

for each node on the end faces was achieved by scripting a loop in Python which, for each 

of these nodes, first of all queries its position relative to the Y-Z or X-Z plane and 

subsequently applies the necessary displacement required to move the node to the plane.  

This initial step is defined to complete in twenty increments of the ‘static-general’ solver 

with ‘large displacement formulation’ active to account for non-linearities. The 

displacement boundary conditions applied to each node on the end faces are propagated 

for all subsequent steps.   

The linear displacement boundary conditions which are applied to the nodes are clearly 

sufficient to enforce the desired angular displacement of the faces, however there is 

potential for a slight inaccuracy of local strain levels due to being unable to apply rotational 

constraints to the individual nodes.  Ideal symmetry modelling would constrain the rotation 

of nodes about the axes which lie on the plane of symmetry, however the Abaqus 

formulation does not allow rotational boundary conditions at nodes of continuum element 

Figure 28 - The undeformed (translucent) and deformed (green) 
position of a quarter turn wire after a second step to simply load 
the ring into a 'saddle shape'. 
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models.  This potential inaccuracy was investigated and negated, in the work of this thesis, 

by comparison with a half ring model (see sections 4.2.5 and 4.2.6). 

The second step which loads a ring into some level of ‘saddle shape’ is enforced by simply 

applying user specified displacement boundary conditions to the central node on each end 

face in opposing directions along the Z-axis.  The resulting deformation of a quarter turn 

after this second step is shown in Figure 28. 

The capability to deploy the ring from a semi-compacted ‘saddle shape’ position into a 

vessel was demonstrated using default ‘hard contact’ interaction definition between the 

wire and relatively rigid tube (compared to modulus of artery). 

The modelling methodology was adopted at the stage of development described here, and 

progressed further as will be described in 4.2.2-4.2.7.  In the additional work of van Zyl, 

which focused on empirical testing and simulation of artery tissue modelling, the ring-stent 

methodology was also developed further in-parallel to the work herein, but with slightly 

different approaches. 

Beam elements to represent the wire was an approach also investigated by van Zyl, 

however, for the work herein it was decided to focus on the continuum element approach 

described above because the continuum elements provide greater fidelity in analysing the 

state of the material through the cross section of the wire, and there were concerns over 

the accuracy of beam elements in high bending. 

4.2.2 Fundamental Advancements to the Quarter Turn Method 

The adopted quarter ring model was first improved by resolving an instability issue, adding 

new loading methods and running a mesh convergence study to define a suitable choice of 

element and mesh density. 

In terms of stability, it was realised that the quarter turn model was essentially torsionally 

unrestricted causing what could perhaps be called a rotational ‘chattering’ in which the 

wire was displacing about its axis back-and-forth by some angle every increment.  This 

artificial movement in the static-solver model was causing the automatic incrementation to 

reduce to extremely small levels, and sometimes requiring automatic damping stabilisation 

(see 4.1.5) to solve.  Resolving this, by adding an equation constraint at two axially-opposed 

nodes at the longitudinal mid-point of the wire, essentially restricted free rotation at that 
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point, stabilises the model, and vastly reduces computational expense:  an example single-

turn ring model being formed and pulled into an arbitrary saddle-shape showed a 77% 

reduction in processing time, and the saddle loading step solution required 49 increments 

without damping stabilisation, compared to 280 increments with damping stabilisation. 

Regarding the basic loading of a ring into a ‘saddle shape’, it is more convenient to be able 

to apply concentrated force rather than displacement boundary conditions to the quarter 

wire ends.  To stop rigid body motion along the same axis as the loading, partitioning was 

changed to allow a central node to be selected and pinned in that direction. 

4.2.3 Radial Compression Methods 

Three different methods of radial loading have been implemented in order to analyse 

Nitinol rings at various levels of loading or to approximate the deformation which 

compaction enforces.  The methods are listed below in chronological order of 

implementation (4.2.3.1-4.2.3.3): 

4.2.3.1 Uniform Radial Force Application 

A script was developed in Python (Appendix C) which distributes a desired radial force over 

all the nodes which lie on the central axis of the single turn quarter ring.  The script uses 

‘for loops’ to query the position of nodes longitudinally on the wire and subsequently 

applies a radial load to each node (except the central nodes on the end faces) in the form of 

appropriate Cartesian components.  Figure 29 shows a ring loaded with the uniform radial 

force (depicted by the red force vector arrows from every central node) along a quarter 

Figure 29 - A single turn quarter ring model loaded 
with the 'uniform radial force' and a small axial 
loading.  The geometry only, not the loading, is 
mirrored to show the full ring being represented. 
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length of the ring.  The geometry is mirrored on the assumed planes of symmetry to show a 

representation of a full ring.  A small axial load has also been applied in this case which is 

necessary to initiate the bending of a flat ring.  

This application of a ‘uniform radial force’ was used as an early method of investigating the 

radial force-displacement characteristic of a ring-stent, as well as used in combination with 

axial loads to enforce a deformation similar to that in compaction, prior to being unloaded 

into a vessel (section 5.4). 

4.2.3.2 Adjustable Rigid Torus (ART) Abaqus Extension 

The ART Extension in Abaqus is a stent simulation dedicated plug-in for the Abaqus 

graphical user interface (Abaqus/CAE), which drives a user-subroutine called ‘RSURFU’, to 

define a rigid contact surface in the shape of a torus or cylinder.  The implementation of 

this ‘RSURFU’ user-subroutine, is essentially a bespoke definition of an ‘analytical contact 

surface’ in Abaqus.  ‘Analytical contact surfaces’ define surfaces mathematically by straight 

and curved lines and do not need to be discretised into elements.  An advantage is that the 

geometry of curved surfaces are represented exactly, which is not achieved in the case of a 

contact surface being defined by linear elements. 

The ART plug-in automatically creates a contact behaviour assuming an exponential 

pressure-overclosure relationship to be applied between the contact surface and stent.  

However, this interaction rule was found to be not as robust, causing convergence issues, 

so a simpler ‘hard contact’ definition using the penalty method with default parameters 

was implemented. 

NOTE: To be compatible with the ART extension, the adopted quarter turn method (4.2.1) 

had to be re-orientated to take account of the orientation of the ‘adjustable rigid torus’. 

4.2.3.3 Rigid Cylinder with Variable Diameter 

A simpler method of creating a variable diameter cylindrical contact surface (only a quarter 

cylinder is required if the quarter ring model is implemented), without the need of the ART 

extension, is to define a cylindrical ‘3D deformable’ shell part, and discretise it into surface 

elements.  Surface elements have no inherent stiffness but one of their uses is in defining 

rigid contact surfaces either by fully controlling their position with boundary conditions or 

embedding them in a host element.  In this case the former: using a cylindrical coordinate 

system the quarter cylindrical surface is fully fixed in the angular and axial directions, and 



70 
 

varied in the radial direction to force the diameter change during a step, as shown in Figure 

30.  These boundary conditions can be applied either as displacement or velocity 

conditions.  Regarding the element choice, 8-node quadratic elements were used in order 

to capture the curvature of the geometry. 

4.2.4 Radial Force from Circumferential Force 

In some early studies contributing to Chapter 5, an approximation of radial force was 

extracted by applying a factor of 2π to the circumferential compression load experienced by 

the ring.  This is equal and opposite to the circumferential tensile load which a ring exerts 

on a vessel.  This approach is derived from thin walled vessel theory which states that the 

stress in the wall of an open ended cylindrical vessel is given by: 

 𝜎𝑐𝑖𝑟𝑐 =
𝑃𝑑

2𝑡
 

(Eq. 4.8) 

 

The circumferential wall stress can be considered as the circumferential force, Fcirc over the 

wall cross section area (thickness, t × length, L): 

 𝜎𝑐𝑖𝑟𝑐 =
𝐹𝑐𝑖𝑟𝑐

𝐿𝑡
 

(Eq. 4.9) 

 

and the internal pressure can be considered as the total outward radial force over the 

internal surface area (πd×L): 

 𝑃 =
𝐹𝑟𝑎𝑑𝑖𝑎𝑙

𝜋𝑑𝐿
 (Eq. 4.10) 

Figure 30 - An image from Abaqus showing the cylinder of surface elements reducing in diameter 
to compact a ring-stent. 
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Substituting (Eq. 4.9) and (Eq. 4.10) into (Eq. 4.8) gives: 

 
𝐹𝑐𝑖𝑟𝑐

𝐿𝑡
=

𝐹𝑟𝑎𝑑𝑖𝑎𝑙

𝜋𝑑𝐿
∙

𝑑

2𝑡
 

(Eq. 4.11) 

 

which simplifies to: 

 
𝐹𝑟𝑎𝑑𝑖𝑎𝑙 = 2𝜋 × 𝐹𝑐𝑖𝑟𝑐 

(Eq. 4.12) 

 

The radial force from a ring-stent is not a uniformly distributed load (i.e. an internal 

pressure), however it still ultimately results in circumferential load in the vessel wall, and 

therefore the radial force from a ring can be calculated using (Eq. 4.12), if the internal 

tensile circumferential force is known.  This was taken a step further to consider that the 

internal compressive circumferential force through a loaded ring-stent would give the same 

value.  The internal compressive load in a ring was verified to be equal to the internal 

tensile load it exerts on a vessel in a test simulation with no friction.  The method as a 

whole was also compared to the later analysis method of directly calculating the radial 

force by totalling all nodal contact forces in the radial direction, which was developed for 

post processing of full ring-artery simulations (see 7.2.1).  The ‘radial force from 

circumferential force’ was 3.09% greater than that summed from radial contact forces for a 

OLB28 R1 ring. 

During the work of this thesis, a similar calculation to acquire the radial force from the 

measured force from a ‘sling type’ radial force tester, (see Figure 31) was published in 

ASTM (American Society for Testing and Materials) standard F3067-14 [92].  The ‘sling type’ 

apparatus implements a flexible sheet material to wrap around a stent and tightens by 

being pulled through a restriction which is connected to a tensile tester.  As per the 

standard, the radial force is calculated by πFL, where FL is the linear force measured by 

tensile tester machine which is attached to the tester apparatus.  This differs from (Eq. 

4.12) by a factor of 2 because the circumferential force is being applied to the tensile tester 

from both ends of the sling material.  This physical method of measuring radial force of 

stents is being implemented and refined at Vascutek at the time of writing but was not 

used for the work herein. 
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4.2.5 Half Ring Model 

A half-ring model was developed firstly to probe the accuracy of the symmetry 

approximation applied to the quarter model (discussed in 4.2.1), and secondly to provide 

the ability to simulate rings deployed in a tilted orientation relative to a vessel axis.  The 

general approach is the same as the quarter ring method above; in that a Python script is 

used to apply unique displacement boundary conditions to the end face nodes to enforce 

the initial ring formation step.  An example Python script is found in Appendix D.  In this 

case however, the straight wire is initially orientated parallel to the Z axis, the central node 

pinned at a radius distance from the origin, and the unique nodal displacement conditions 

force the end faces onto the X-Z plane, forming the half ring, as depicted in Figure 32. 

Figure 31 - Diagram of the 'sling type' radial force tester apparatus from ASTM F3067-14[92] 
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4.2.6 Ring Mesh Convergence Study 

A mesh convergence study was undertaken to assess the influence of mesh density and 

element type on the resulting radial strength and strain amplitudes of the ring subject to 

cyclic loading in a typical ‘saddle shape’.  The study involved both the quarter-ring and half-

ring single strand models to represent an average turn from the proximal ring of a 28mm 

Anaconda ONE-LOK device.  The central core of the delivery system was included as a rigid 

contact surface, because it has an effect on the resulting deformed position of the 

compacted ring.  The simulation steps in the study include: the appropriate initial ring 

forming; a step to pull the ring into an arbitrary initial saddle shape; a compaction 

approximation using the ART extension to radially compress the ring to a diameter of 6mm; 

an expansion of the rigid cylinder to a position typical of deployment and subsequent radial 

cyclic loading using the ART extension.  The initial steps, prior to cycling, for a half-ring 

simulation are shown in Figure 33.  During the cycling, the cylinder diameter was varied by 

5% and ten cycles were applied to converge any initial variance in results due to the 

material model hysteresis (discussed further in 4.5.3).  A ‘hard’ contact pressure-

overclosure relationship was applied using the default ‘penalty enforcement method’ 

settings.  

Figure 32 - The initial state of a half turn wire, with displacement boundary conditions indicated.  
INSET: Detail of the wire end with individual boundary conditions applied to each node. 

 



74 
 

4.2.6.1 Elements 

Fully integrated, second-order (quadratic), quadrilateral elements (C3D20) were used as the 

datum to which to compare, with a goal to find an acceptably accurate, less 

computationally expensive solution with linear elements.  Fully integrated linear elements 

(C3D8) and their slightly enhanced ‘incompatible modes’ version (C3D8I) were compared 

Figure 33 –Abaqus images from a half-ring mesh convergence simulation: a) initial position of 
straight wire and central core; b) formed half-ring; c) forces at peak and valley pull ring into a 
saddle shape; d) initial compaction using the ART extension; e) final compaction state; f) unloading 
to the diameter at which cyclic loading will commence in further steps. 

a) b) 

c) d) 

e) f) 
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with the datum case.  The least expensive, linear reduced integration elements (C3D8R) 

were rejected because they are inconvenient to use with the superelastic material model as 

it does not automatically calculate the required ‘hourglass control parameters’.   

‘Incompatible mode’ elements in Abaqus have an addition to the formulation which 

enhances the elements’ degrees of freedom, allowing the ‘deformation gradient’ to be 

linearly variable rather than constant.  This is an enhancement which overcomes the ‘shear 

locking’ limitation of fully integrated, first order elements and provides an option to 

simulate bending more accurately with a small cost to computational time.  (Discussed in 

more detail in the following sections of [91]: Getting Started with Abaqus: Interactive 

Edition 4.1.3 and Abaqus Analysis User’s Guide 28.1.1) 

4.2.6.2 Mesh Structure 

The applied methodology partitions the wire such that there are four quarters in the 

circular cross section which are sufficient to enforce a structured, symmetrical mesh of 

hexahedral elements.  The number of elements in the cross-section can be varied by 

changing the seeding size along the cross-section partition edges.  The element length (in 

the wire longitudinal direction) can be separately controlled with seed sizing along edges in 

that direction.  Three different cross-section mesh densities with a count of 20,32 and 60 

were applied as can be seen in Figure 34. 

In the case of the 32 and 60 element version, the longitudinal seeding was applied such that 

the element length to width ratio would be approximately 3:1.  In the case of the 20 

element version the element length was defined as half the wire diameter. 

Figure 34 - From left to right: a 20, 32 and 60 element cross-section mesh of hexahedral elements 
applied to the wire. 
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4.2.6.1 Mesh Study Results 

The details of the six configurations studied, as well as the strain and force results are 

shown in Table 5 in order of computational expense (highest at top).  In the case of the half 

model, strain results were extracted from the peak/valley at the middle of the wire length, 

i.e. negating the potential effect of imperfect symmetry boundary conditions discussed 

above. 

The percentage variance in radial force and delta-strain results are also plotted in Figure 35 

(all shown as positive in magnitude).  It was decided to proceed with the quarter model, 32 

element cross-section, linear ‘incompatible mode’ C3D8I elements version (model no. 3) 

Table 5 - Ring mesh study details and results 

Model 
No. 

Quarter 
model 

OR 

Half model 

No. of 
elements 
in cross-
section 

No. of 
elements 
in wire 

Element 
Type 

Delta-
strain % 
variance 
from 
datum 

Radial 
Force % 
variance 
from 
datum 

Percent 
reduction in 
computation 
cost relative 
to datum 

1 
(datum) 

Half 60 30,720 C3D20 0% 0% 0.0% 

2 Half 32 12,288 C3D8I 2.50% -4.12% 93.2% 

3 Quarter 32 6,144 C3D8I 2.47% -4.22% 93.8% 

4 Quarter 32 6,144 C3D8 4.88% 8.09% 96.7% 

5 Quarter 20 3,840 C3D8I 1.78% -7.29% 97.6% 

6 Quarter 20 3,840 C3D8 7.76% 5.56% 97.9% 

Figure 35 - Mesh convergence study: radial force and delta-strain results 
for a single strand model 
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which shows acceptably low variance of 2.47% and -4.22% for delta-strain and radial force 

respectively.  The negligibly small difference in results between the half model and quarter 

model with the same mesh specification (model no. 2 and 3 respectively) is also a 

reassuring result giving confidence in using the quarter model.  

The chosen configuration (model no. 3) provides a 94% improvement on computational 

cost relative to the datum model.  The datum model took 95.6 hours to solve on a single 

3.47GHz processing core, with sufficient RAM (random access memory) available.  The lack 

of computational difference between the quarter and half model for the same mesh 

specification was due to the quarter model having more instability in torsion, which had not 

been resolved at the time of this study (see 4.2.2 for discussion on the torsional instability).  

Automatic stabilisation with a specified damping factor of 0.0002 was used to stabilise all 

the above mesh study models.  Although this has been resolved and stabilisation is not 

required in further modelling, the strain and force results from this study were still 

regarded as a valid justification of the model no. 3 mesh configuration to be applied to 

further ring modelling. 

4.2.7 Full Bundle Modelling 

In reality, each individual ring-stent is a multiple winding of a single strand of Nitinol wire, 

the ends connected with a tantalum crimp at a position between peak and valley position.  

The turns of the ring are also held together temporarily with four simple thread ties when 

manufactured, before being sewn onto the fabric of the full stent device with threading 

spacing of approximately 1mm.  Other than the crimp and suturing the turns are not 

bonded or connected further.  Collectively the multiple strands held together will be 

referred to as the ‘bundle’.  The manufactured rings have minimal twisting of the bundle 

along its axis, i.e. they could not be classified as a cable structure in which there is some 

twisting, braiding and/or bonding of strands.  Therefore, for modelling purpose it has been 

assumed that the strands of the bundle run relatively parallel to each other as well as the 

axis of the bundle as a whole.  Longitudinal sliding of one turn relative to another during 

large deflection of the ring is possible with the main resistance being friction which is likely 

to be dependent on tightness of suturing. 
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4.2.7.1 Considering the ‘Equivalent I value’ method 

In the preceding work of McCummiskey [6] a model of three interconnected strands was 

demonstrated, however the methodology was not developed further to simulate the 

greater number of strands existing in the physical rings.  Prior to this demonstration, 

structural approximations had been suggested based on assuming an ‘equivalent ‘I’ value’ 

of the bundle of strands.  Symbol ‘I’ being the ‘second moment of area’ of a beam cross-

section.  There are two theoretical options on how to apply this assumption: 

1) The ‘I’ value of individual strands are simply added to give a total ‘I’ value.  A single 

‘equivalent’ diameter for this total ‘I’ value is modelled. 

2)  The strands are assumed bonded longitudinally and therefore the ‘I’ value of the 

more complex bundle shape is calculated with a reference to one neutral axis.  This 

greater second moment of area is then assumed to calculate an ‘equivalent’ single 

strand diameter as above. 

The former could provide an equivalent stiffness of the structure for low-deflection 

applications in which the material behaves within a linear elastic range.  Indeed, 

McCummiskey did show reasonable accuracy (maximum variation of 13% between FE and 

empirical) in validation of a ring being loaded in moderate bending (for comparison: the 

saddle height was extended to 25% of ring ID).  The validation work herein (4.5.1) is more 

thorough in that various rings are tested and loaded to a ‘high’, semi-compacted, saddle 

state (55%-62% saddle height relative to ring ID) and then unloaded and cycled at saddle 

shapes deemed to be representative of in-vivo deformation (averaging between 37% and 

42% saddle height relative to ring ID).  Irrespectively, the major drawbacks of this 

equivalent ‘I’ approach are: 

• Firstly; the strain levels in an equivalent (larger diameter) strand in bending are 

false: exaggerated to a level proportional to the difference in diameters (between 

equivalent single strand and real strand diameter). 

• Subsequently; an equivalent diameter ring would start transition to a martensitic 

state earlier than the real strands in loading because of the higher strain levels 

explained in the previous point.  This leads to underestimation of the structural 

stiffness. 
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McCummiskey overcame the first of these limitations by an additional step in her 

simulation methodology; deploying a ring of the true wire diameter into the exported 

geometry of a vessel which had been deformed by the ‘equivalent’ ring.  However the 

methodology was not extended to enable the true wire diameter ring model to follow the 

deformation of the equivalent diameter ring through the simulation, which would enable 

the stress and strains during cyclic motion to be analysed. 

To generate a methodology which can provide accurate strain assessment for fatigue 

analysis as well as a sound structural representation it was deemed not an option to use an 

‘equivalent ‘I’ approach’. 

4.2.7.2 Bundle Configuration 

As per the visual observation mentioned in 2.2, it is assumed that in the flat ring position, 

there is no twisting of the bundle.  In the quarter model methodology developed the 

strands are modelled as separate parts with slightly varying ring radii. 

When a ring is in place, connected to a full device, the bundle is generally held together 

with polyester fabric and suture.  It is assumed that the flexible nature of these materials 

allow the bundle to settle into an arrangement which is fairly circular, since a circular shape 

is optimal in terms of increased area for a given perimeter.  For the purpose of practicality 

the turns are assumed to fall into a triangular lattice, keeping the same relative distances 

from the centre of one turn to an adjacent.  These two assumptions have been used to 

create the arrangements shown in Figure 36 for strand counts of 3 to 14, where the 

centreline shown represents the ring’s mean radius.  The strands have been distributed in 

Figure 36 - Assumed bundle configurations for multiple turn modelling.  The centrelines represent 
the mean radius of the ring. 
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as circular a layout as possible while using the hexagonal lattice pattern, with distribution 

symmetrical about the mean radius line for all cases except n=6,11,13 where this was not 

possible.  These inaccuracies are deemed acceptable because moving the position of a 

single turn, from the inner side of a bundle to outer say, would have negligible effect on the 

mean diameter of the ring, and therefore negligible impact on radial strength or reported 

strain levels. 

4.2.7.3 Turn to Turn Connectivity 

Adjacent turns are connected to each other at multiple points along their axes using ‘wire 

features’ in Abaqus, which are assigned specific properties through defining and assigning 

them a ‘connector section’.  These wire features are essentially linear elements which can 

be given a range of mechanical characteristics.  The connector elements at the end of an 

undeformed (straight wire) quarter Anaconda OLB32 R1 ring are shown in Figure 37, in 

which the differing strand lengths can also be observed.  The intent has been to avoid using 

a contact interaction which could add considerable expense to the simulation and possibly 

cause instabilities.  However, a ‘soft contact’ interaction was found to be necessary during 

compaction to avoid wires becoming tangled for some ring configurations – see 4.2.7.5. 

The connectivity approach was iteratively refined during repeated sensitivity studies carried 

out to assess the dependence of results on methodology options in general.  It was found 

that nine connectors were required down the length of the quarter ring in order to avoid 

some artificially induced strains around the connector locations.  Regarding the properties 

Figure 37 - The end of an OLB32 R1 wire bundle in initial 
undeformed condition.  Connector elements are shown 
in yellow. 
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of the ‘connector section’ which was applied to the wire features, the following approach 

was finalised on: 

• The connector section type was assigned as ‘axial’, which means that it will simply 

act as a linear spring with pin-joint like connections to nodes on either end, i.e. no 

moments are transferred.  

• A ‘reference length’ equal to one wire diameter was applied.  This is the natural 

unstrained length of the connector. 

• A minimum ‘stop’ length condition of 99% of one wire diameter was applied at 

which point the connectors become completely resistant to further compression.  

This length is slightly different to the ‘reference length’ to avoid discontinuity 

instabilities 

• Regarding the stiffness of the connector elements, which is defined in terms of 

force per unit extension, a specific sensitivity study was run to investigate the 

influence on mechanical behaviour (see ‘Connector Stiffness Assessment’ below).   

• A small damping coefficient, specified to be equal in value to the applied stiffness, 

was assigned in the connector property.  The purpose of this is to reduce potential 

severe discontinuities in the solution caused by connectors switching suddenly 

between a compressive state, to tensile. 

4.2.7.4 Connector Stiffness Assessment 

Firstly, and perhaps counter intuitively, it was found that connector stiffness had a 

negligible influence on the stiffness of the ring when pulled and cycled in the saddle shape 

as per the validation tests which are outlined in 4.5.   This stands even when the connectors 

were defined to be completely rigid in linear stiffness.  This case can be explained by 

considering that although points on the axes of the turns are held firmly at a ‘reference 

length’ apart, the connectors can still pivot away from the wire axis perpendicular, allowing 

the turns to slide relative to each other and overlap somewhat in space.  This can be 

appreciated in Figure 38 in which the HY28-01 (HY denotes Thoraflex Hybrid device) ring 

model is fully extended in the validation test. 
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Satisfied that the choice of connector stiffness does not influence the structural strength of 

the ring, the influence on fatigue strain analysis had to be assessed.  The connector stiffness 

was normalised in the Python script to be proportional to the strength of a turn on the ring 

it would be applied to.  This is based on the ‘ring strength’ theory derived later in section 

5.4.2.1, such that the connectors are specified a stiffness (in N per mm extension) according 

to (Eq. 4.13): 

 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 = 𝐶 × 847870 ×
𝑑4

𝐷2
 (Eq. 4.13) 

Figure 38 - Quarter ring bundle model pulled into a high saddle shape during a validation test.  Turns 
are shown with translucency.  The non-perpendicular connector elements are due to turns moving 
longitudinally (relative to each other) and overlapping somewhat 
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where C was introduced as a coefficient to probe the effect of changing the relative 

stiffness.  The initial stiffness, when C=1.0, refers to 2.5N/mm on an experimental ring 

(approximately the OLB30 R1) which was used to probe the stiffness at which bundles are 

held in their cross-section geometric arrangement without splaying apart when contacting 

a vessel model (as per methodology described which will be described in section 4.4).  This 

was used as an arbitrary point from which to probe the sensitivity of delta strain to 

connector stiffness as described below. 

The connector stiffness coefficient, C, was probed over a range: from a low value at which 

the turns of the bundle splay apart excessively, to a high value at which they are held at the 

‘reference length’ firmly.  Referring to Figure 39, it was found that the stiffness did not have 

a considerable effect on the resulting delta-strain except over a small range of values, 

peaking at C=0.1, at which the delta-strain results were artificially raised due to some 

adjacent turns rolling or pivoting about each other, in a manner judged to be unrealistic.  

This motion is depicted for one turn in particular in the red bordered inset of Figure 39.  

The same relative motion was observed on other rings tested with the same relative 

connector stiffness.   

Figure 39 - Investigating the sensitivity of delta-strain to connector stiffness.  The relatively elevated 
results were due to a turn having exaggerated movement, pivoting relative to adjacent turns.  This 
was not observed at lower or higher connection stiffness. 
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The values probed below C=0.1 were ruled out because the bundles are not held together 

tightly as is observed in reality.  The coefficient was chosen to be kept as 1.0, which is high 

enough to stop the artificial relative motion and is conservative considering that raising the 

stiffness reduces delta strain results slightly. 

4.2.7.5 Additional Turn to Turn Interaction 

It was found that during simulation of full compaction some ring models had turns which 

were tangled within the bundle and on release from compaction they would exist in an 

artificially twisted position, penetrating other turns completely.  A ‘soft contact’ interaction 

was created to restrict adjacent turns from being able to fully penetrate each other in the 

highly deformed compacted state.  A ‘tabular’ pressure-overclosure relation was specified 

to have zero pressure until an overclosure of 5% of the wire diameter, increasing to a 

pressure of 10N/mm2 at an overclosure of half the wire diameter.  To aid stability, an 

arbitrary tangential resistance of 0.1 friction coefficient was assumed.  This soft contact 

definition was found sufficient to stop wires completely passing through each other during 

compaction, for a range of ring configurations.  The interaction is deactivated once the 

deployment into an artery is achieved to avoid any potential effects on results. 

4.2.8 A Method to Estimate Bundle Diameter 

A method to approximate the bundle diameter is required to calculate the mean flat ring 

diameter of a ring-stent, given the manufactured inner diameter; which is what the rings 

are specified to for production.  The mean ring diameter information has been applied, for 

example, as follows: 

• To single turn FE models to represent a turn in the centre of the bundle 

• As the datum point from which to configure the bundle in as circular an 

arrangement as possible (see 4.2.7.2) 

• To calculate a ‘ring strength coefficient’ as will be described in 5.4.2.1. 

• In geometric compaction calculations which will be described in Chapter 8 

Coefficients from ‘Circle Packing Theory’ have been used to approximate the bundle 

diameters, based on assuming the bundles of strands arrange in as circular a fashion as 

possible.  ‘Circle Packing Theory’ is a branch of maths which deals with optimally arranging 

a maximum number of circles in various shapes.  The detailed ‘optimal arrangements’ are 
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not important here, but the data from ‘circles in circles’ analysis can be used as a valid 

estimate of bundle diameter.   

Bundle diameter, Dbundle can be calculated given the number of turns, n and the wire 

diameter dwire reference of a circle-packing coefficient, c which simply represents the ratio 

of bundle diameter to wire diameter ( c = Dbundle / dwire,) - see Figure 40. 

The coefficient values up to n=40 have been extracted from the work of Graham et al. [93], 

which is the most thorough summary publication found on the matter.  There are also a 

number of preceding publications [94]–[96] which contributed to the data presented by 

Graham et al  [93].  The values of c are not tabulated by Graham et al., however they are 

easily calculated from an alternative optimisation parameter, using an equation provided in 

the paper.  The packing arrangements and respective coefficients are shown in Figure 41 

for integer values up to n=20. 

As an example, to calculate the bundle diameter of 12 turns of 0.22mm wire, the coefficient 

c=4.030 is relevant, and the bundle diameter would be calculated to be 0.89mm (4.030 × 

0.22mm). 

Figure 40 – Circle packing theory provides 
coefficients which have been used to 
estimate the bundle diameter, given the 
number for turns and wire diameter.  (Un-
annotated image from Graham et al. [93]) 

c = Dbundle / dwire 
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Figure 41 - Circle packing theory optimal arrangements for up to n=20, with respective 
coefficients for the ratio of bundle diameter to wire diameter. (Images from Graham et al. [93]) 
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4.2.9 Summary of Ring Modelling Methodology 

A single-turn modelling approach has been adopted and advanced, and will be used in 

Chapter 5, with the methods of applying a uniform radial force as well as the ART user 

subroutine, to investigate the load-deflection response and strain state of a Nitinol ring 

acting as a radial spring.  Analysis using single-turn simulations are also implemented for 

Chapters 6 & 8: on ring fatigue test analysis and compaction strain analysis respectively.  

The full bundle modelling method does not account for contact between wires, but 

implements a simplified interaction with connector elements.  This is a bespoke solution 

which captures the geometry of the bundle as well as the mechanical stiffness of a full ring.  

The accuracy of the structural representation is assessed in 4.5. 

4.3 Artery Model Implementation 

The aim of the work herein is to produce a representative and effective method to simulate 

the basic mechanical response of healthy aortic tissue, as opposed to diseased tissue. 

Human artery is a complex bio-mechanical construct, primarily composed of three layers 

each containing different proportions of vascular smooth muscle, elastin and collagen fibres 

as discussed in 2.4. 

The literature studies on mathematically capturing the mechanics of human aorta were 

discussed in detail section 2.4, but will be briefly revisited here, from a perspective of 

availability of use within Abaqus.  The elastic response of human aorta is known to 

generally increase in stiffness with pressure, as well as significantly reduce in elasticity with 

age [45]–[48].  Section 2.4 also covered the numerous studies aimed at capturing the 

stiffening ‘pressure-diameter’ behaviour from cadaveric samples [42], [43], [45]–[47], the 

use of ultrasound to assess the compliance within living patients [48]–[50] and the more 

recent work at the Institute of Biomechanics, Technische Universität Graz (Austria) which is 

headed by Gerhard A. Holzapfel [52].  Holzapfel has worked with Raymond Ogden of 

Glasgow University, who has an extensive publication history in the field of modelling the 

non-linear response of elastomers and rubbers [53], [54] as well as biomechanics.  Both 

Ogden and Holzapfel have their names associated with ‘hyperelastic’ constitutive material 

models available within Abaqus software.  The former being a more generic isotropic 

hyperelastic model capable of curve-fitting various non-linear elastomer-like responses, 
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while the ‘Holzapfel’ model in Abaqus is specifically designed to represent arterial tissue at 

a more detailed level (See papers [55], [56]). 

The experimental work on tissue carried out by the Holzapfel group aims to capture the 

detailed mechanical behaviour through bi-axial testing and histological examination of the 

anisotropic tissue composition [60], [61].  The most comprehensive data set of constitutive 

model parameters provided by the Holzapfel group, for abdominal and thoracic aorta, is 

from testing of 16 cadaveric samples in 2012 [63].   However, the range of values provided 

for certain parameters have very high variation, making it impossible to determine a 

representative model with statistical confidence. 

Prior to the ‘Holzapfel model’ and also available within Abaqus is the ‘Generalised Fung 

type’ hyperelastic model based on the two-dimensional strain energy function provided by 

Fung et al [74], and ‘generalised’ to arbitrary three dimensional states from the proposal of 

Humphrey [75].  Other notable mathematical models providing hyperelastic strain energy 

function for representing arterial tissue are that proposed by Raghavan & Vorp in 2000 [76], 

and Vande Geest et al in 2006 [77].  The latter also provides significant bi-axial testing data, 

and parameters to fit the provided equations, from 26 abdominal aortic aneurysms plus 8 

non-aneurysmal tissue samples.  However, these channels of work are more focused on 

providing models to simulate the aneurysmal mechanical response, which is not within the 

scope of the work described here. 

Although there are the mentioned dedicated constitutive models for mathematically 

representing artery tissue, the data required to inform the choice of parameters for the 

models is not substantial enough to be able to determine representative models for specific 

age groups.  Therefore, a simpler method is proposed here in which the more basic 

‘pressure-diameter’ response from the characterisation work of Langewouters [47] is 

modelled.  The Langewouters’ paper provides the most extensive dataset for this purpose 

(45 thoracic and 20 abdominal samples) found, and a proposed 2-parameter mathematical 

expression which can be used to create age-representative curves. 

4.3.1 The Langewouters’ Equation 

The aortic characterisation work of Langewouters et al. [47] has been selected as the most 

appropriate data from which to develop an isotropic artery material model due to its 

adequacy in terms of: sample size; age range; availability of raw data in the publication; and 
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the fact that all of the data has been correlated to a mathematical expression which can be 

easily adopted. 

The work of Langewouters involves pressure-diameter testing of human aorta segments 

stretched longitudinally to a level of pre-strain measured in-situ (at autopsy).  

Measurements were taken from zero pressure to 180mmHg, at 20mmHg intervals.  It was 

stated that all of the sample measurements can be mathematically described by the 

following formula to an accuracy value of >99% (based on the coefficient of determination, 

r2 being >0.991 when comparing with linear regression of the calculated maximal area to 

the measured maximal area). 

 𝐴(𝑝) = 𝐴𝑚(
1

2
+ tan−1(

(𝑝 − 𝑝0)𝑝1

𝜋
)) (Eq. 4.14) 

where A(p), the cross-sectional area of the artery is a function of pressure, p in mmHg.  

Parameter Am is the theoretical ‘maximal area’ of the artery lumen cross-section which A(p) 

tends towards with increasing pressure, p.  Parameters p0 and p1 are pressure unit 

constants which are calculated specifically for each sample tested. 

Parameter p0 is described as the pressure at which artery compliance is maximal, however 

for many test results in the Langewouter paper the value is mathematically determined to 

be beyond the pressure range tested.  Parameter p1 is related to the ‘steepness of rise of 

the curve’, or can be described as the difference in pressure (from p0) at which the 

compliance has reduced to half its maximum value. 

The p0 and p1 are the only parameters required to define a curve of pressure against 

diameter change for each case, as will be described in the following.  Assessing the trend of 

p0 and p1 against the age of samples allows an averagely representative pressure-diameter 

curve to be produced for any specific age.  The values reported in the paper of p0 and p1 

and age are provided in Appendix E for both abdominal and thoracic cases. 

The following is a mathematical explanation of how a pressure vs. diameter change curve 

can be determined using only p0 and p1.  The diameter change will be provided in terms of 

percentage increase in diameter, d%increase. 

First, (Eq. 4.14) is arranged as a ratio of Area, A(p) to Maximal Area, Am: 
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𝐴(𝑝)

𝐴𝑚
= (

1

2
+ tan−1(

(𝑝 − 𝑝0)𝑝1

𝜋
)) (Eq. 4.15) 

Area, A(p) and Maximal Area, Am relate to diameter, d(p) and maximal diameter dm as per 

(Eq. 4.16) and (Eq. 4.17): 

 𝐴(𝑝) =
𝜋[𝑑(𝑝)]2

4
 (Eq. 4.16) 

 𝐴𝑚 =
𝜋𝑑𝑚

2

4
 

(Eq. 4.17) 

where d(p) and dm are ‘diameter (as a function of p)’ and ‘maximal diameter’ respectively 

Rearranging (Eq. 4.16) and (Eq. 4.17): 

 
𝑑(𝑝)

𝑑𝑚
= √

𝐴(𝑝)

𝐴𝑚
 (Eq. 4.18) 

Therefore: 

 
𝑑(𝑝)

𝑑𝑚
= √(

1

2
+ tan−1(

(𝑝 − 𝑝0)𝑝1

𝜋
)) 

(Eq. 4.19) 

When p = 0mmHg the ratio of unpressurised vessel diameter to maximal pressure diameter 

is given by: 

 
𝑑(0)

𝑑𝑚
= √(

1

2
+ tan−1(

(−𝑝0)𝑝1

𝜋
)) 

(Eq. 4.20) 

In order to define the vessel response in terms of the percentage increase (d%increase) relative 

to the zero pressure state, then for some pressure, p: 

 𝑑%𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒(𝑝) =
𝑑(𝑝) − 𝑑(0)

𝑑(0)
× 100% (Eq. 4.21) 

Therefore: 

 𝑑%𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒(𝑝) =

𝑑(𝑝)
𝑑𝑚

−
𝑑(0)
𝑑𝑚

𝑑(0)
𝑑𝑚

× 100% (Eq. 4.22) 

 

This allows (Eq. 4.19) and (Eq. 4.20) to be used to relate d%increase to pressure, given the two 

constants p0 and p1: 
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 𝑑%𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒(𝑝) =
√(

1
2 + tan−1(

(𝑝 − 𝑝0)𝑝1
𝜋 )) − √(

1
2 + tan−1(

(−𝑝0)𝑝1
𝜋 ))

√(
1
2 + tan−1(

(−𝑝0)𝑝1
𝜋 ))

× 100% 
(Eq. 
4.23) 

4.3.2 Abdominal Aortic Data 

Taking the values of p0 and p1 derived for each abdominal sample during the work of 

Langewouters (provided in Appendix E) and implementing (Eq. 4.23) results in the pressure-

diameter relationships plotted in Figure 42 (age indicated by colour assignment).  The 

general trend of stiffening with age can be appreciated, however the natural scatter of this 

relationship is also evident (for example the oldest sample is not the most rigid, but third 

most).  It is also observed that samples which have very similar overall deformation values 

(at 200mmHg) can have variation in linearity. 

The definition of each unique curve in Figure 42 is purely dependent on the parameters p0 

and p1.  The spread of these parameters as well as correlation with age can be assessed in 

order to define most representative, or worst-case curves for a specific age value of 

Figure 42 - Pressure-Diameter relationships of individual abdominal aortic samples from 
Langewouters, using the specific parameters for each case with the mathematical relation 
presented in the paper. 
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interest.  All values of p0 and p1 have been plotted in Figure 43 for the abdominal cases. 

There is a clear trend of p0 decreasing with age, therefore the equation of the linear 

approximation shown in Figure 43 has been used to define the most representative p0 value 

for any given age.  No trend appears to exist for p1 values relative to age.  Excluding the 

youngest age point of 30 (because it is much lower than the age range considered for 

endovascular treatment of abdominal aneurysms) p1 values range from 20mmHg to 

34mmHg, with a mean of 26.3mmHg. 

 

Age-independent variability has been removed by assuming the linear approximation for p0 

values plus for p1 either: 

1) a mean value of 26.3mmHg for p1, or; 

2) a worst-case value chosen to be 35mmHg 

According to the relevant post-market registry [97], the average age of patients treated 

with the Anaconda device is 76 years, with a standard deviation of 8 years.  The resulting 

‘age representative’ curves for 76, 68, 60 and 52 years have been plotted in Figure 44 

representing a range from average (76 years) to -3 standard deviations (52 years).  The 

consistent and most significant effect of raising p1 to a worst-case value is the increased 

linearity of the overall curve, which leads to greater diametric strain over typical diastolic-

systolic blood pressure ranges.  This is reflected in the diametric strain results shown in 

Figure 43 - The Langewouters parameters of p0 and p1 from abdominal 
cases, plotted against age. 
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Table 6 for two hypothetical cases: a ‘healthy’ blood pressure range of 80-120mmHg and a 

hypertensive blood pressure range of 80-160mmHg. 

Assuming the higher value for p1 parameter causes an increase in diametric strain of 

31%±2% for all the age and pressure scenarios outlined in Table 6. 

 

Table 6 – Calculated abdominal aortic diametric strains for Langewouters' based 'Pressure-
Diameter Change' curves, assuming example blood pressure ranges of 80-120mmHg and 80-
160mmHg 

Age Vessel Diametric Strain for 80-
120mmHg 

Vessel Diametric Strain for 80-
160mmHg 

Assuming 
average p1 value 

Assuming high p1 
value 

Assuming 
average p1 value 

Assuming high p1 
value 

52 2.16% 2.79% 3.20% 4.18% 

60 1.77% 2.31% 2.68% 3.52% 

68 1.48% 1.94% 2.28% 3.00% 

76 1.26% 1.65% 1.98% 2.59% 

Figure 44 - Age representative 'Pressure-Diameter Change' curves produced from 
Langewouters’ data for the Abdominal Aorta using a linear correlation for p0 parameter and 
either an average (solid lines) or worst case (dashed lines) for p1 parameter. 
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4.3.3 Thoracic Aortic Data 

Repeating the above process for the thoracic data provided in the Langewouters paper, the 

values of p0 and p1 are plotted in Figure 45.  The magnitudes of both parameters are shown 

to decrease with age for the thoracic data.  Therefore, the linear approximations of these 

trends (shown in Figure 45) have been assumed for extracting age specific values to 

construct the ‘age representative’ pressure vs diameter-change curves. 

 

The resulting ‘age representative’ curves for ages 30 through 80 years (increments of 10 

years) are plotted in Figure 46.  This larger age range represents the relatively broad 

demographics of patients implanted with Vascutek’s Thoraflex Hybrid device: mean age of 

61 years with a standard deviation of 12 years (from 152 patients in the study)[98]. 

The extracted vessel diametric strain values from curves in Figure 46 are shown in Table 7 

for the hypothetical healthy and hypertensive blood pressure ranges of 80-120mmHg and 

80-160mmHg. 

 

Figure 45 - The Langewouters parameters of p0 and p1 from thoracic cases, 
plotted against age. 
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4.3.4 Modelling the ‘Pressure-Diameter’ Curves 

To simulate the aorta’s non-linear response to pressure which has been defined above, 

‘hyperelastic’ material models have been utilised: converting the ‘pressure-diameter’ 

behaviour to the fundamental uni-axial stress-strain material response.  A single layer 

isotropic material has therefore been assumed with an objective of simply capturing the 

global arterial pressure-diameter curve. 

Table 7 - Calculated thoracic aortic diametric strains for Langewouters' 
based 'Pressure-Diameter Change' curves, assuming example blood 
pressure ranges of 80-120mmHg and 80-160mmHg 

Age 
Vessel Diametric Strain 
for 80-120mmHg 

Vessel Diametric Strain 
for 80-160mmHg 

30 8.21% 11.65% 

40 6.15% 8.77% 

50 4.50% 6.48% 

60 3.24% 4.71% 

70 2.28% 3.37% 

80 1.58% 2.37% 

Figure 46 - Age representative 'Pressure-Diameter Change' curves produced from 
Langewouters’ data for the Thoracic Aorta using a linear correlation for p0 and p1 
parameters. 
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4.3.4.1 Choice of Hyperelastic Model 

Hyperelastic material models are designed to provide the ability to simulate rubber-like 

materials which have non-linear elastic properties over a large strain range.  These models 

use ‘strain energy potentials’ rather than Young’s modulus and Poisson’s ratio to relate 

stress to strain.  Of the various ‘strain energy potentials’ available within Abaqus, the 

Marlow model [99] was used because it is recommended for cases in which only one set of 

test data, such as uni-axial, can be provided.  The Marlow strain energy per unit volume is 

split into a ‘deviatoric’ part and a volumetric part.  The former must be defined by uni-axial, 

or biaxial data and the latter using volumetric test data or simply a Poisson’s ratio value if 

compressibility is deemed to be significant. 

The ‘deviatoric’ part of the Marlow model will be defined using stress and strain points of 

the incrementally increasing modulus, derived from the pressure vs diameter-change 

curves, of abdominal aorta, which have been produced in section 4.3.2. 

4.3.4.2 Defining the Uni-Axial Data 

The ‘Pressure-Diameter’ responses defined in 4.3.2 are here related to the material stress-

strain state through thin walled cylinder mechanical theory.  Stress-strain transformation 

equations analogous to those describing planar behaviour are assumed for the 

circumferential and longitudinal cylindrical directions.   

Thin walled cylinder theory is proven to be accurate for vessels with a wall thickness less 

than 1/10th of the vessel radius [100], beyond this, accuracy depreciates.  In the current 

application the vessel wall thickness implemented is slightly thicker than 1/10th (see below 

1.4mm for 12mm radius), however this is not of concern because the equations are only 

used as a method to develop a structural response which is ultimately verified for accuracy 

at the end of the process anyway.  To allow the use of the same material model across 

various vessel sizes, a constant ‘wall thickness’ to ‘inner vessel diameter’ ratio was assumed 

for all abdominal aortic models.  The average vessel thickness found by measurement of 

cadaveric tissue samples by Schriefl et al was 1.39mm [61] for both Abdominal and 

Thoracic.  (Other studies have returned similar results with average thicknesses ranging 

from 1.25mm to 1.63mm [60], [101], [102]).  The abdominal ratio was based on assuming 

an initial average vessel thickness of 1.4mm (rounded from Schriefl et al [61]) to a vessel 

with inner diameter of 24mm at 100mmHg which is approximately mid—range of treatable 

aortic ‘landing-zone’ diameters for the Anaconda ONE-LOK device (the recommended range 
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being 17.5 - 31.0mm according to the sizing chart (Appendix A)).  This ratio (1.4:24) is 

maintained for models by varying the wall thickness dependent on the specified inner 

vessel diameter at 100mmHg (assumed to be mid systolic-diastolic pressure).  The vessel 

thickness, and therefore choice of discussed ratio, was proven through a sensitivity study to 

not affect the final strain amplitude results of the ring-artery simulations and is therefore 

relatively arbitrary.  Using this approach, the initial diameter d(0) of the vessel must be 

calculated by first gaining the theoretical maximal diameter dm: by rearranging (Eq. 4.19) 

and entering d(100) = 24mm:  

 
𝑑𝑚 =

𝑑(100)

√
1
2

+
1
𝜋

tan−1 (
𝑝 − 𝑝0

𝑝1
)

⁄
 (Eq. 4.24) 

Subsequently the initial diameter, d(0) can be calculated through (Eq. 4.20). 

While in vivo human aorta is under some longitudinal strain [60], the relevant influence of 

this is highly dependent on the anisotropic mechanical characteristics of the tissue.  Since 

this is not being modelled (isotropy assumed), it is unnecessary to axially ‘pre-strain’ the 

artery.  However, it was deemed that fixing the axial displacement of the vessel model ends 

is more realistic than allowing contraction due to Poisson’s ratio upon pressurisation.  In 

the literature, it is widely assumed that arterial tissue is nearly incompressible [56], [103].  

However, on applying a nearly incompressible material (Poisson’s ratio near 0.5) in the 

method described here, modelling stability issues were experienced.  Considering that the 

key aim of this isotropic implementation was to purely replicate the pressure-diameter 

curve, an arbitrary Poisson’s ratio of 0.3 was applied to the method described in the 

following.  It was also found that using such a ratio resulted in a closer match of pressure-

diameter, than compared to using a near incompressible case.  

Stress-strain transformation equations for planar bi-axial loading (i.e. in x and y Cartesian 

directions) can be applied analogously to the circumferential and axial directions of thin 

walled cylindrical vessels, loaded with uniform internal pressure, such that for the case of 

axial strain being zero, the modulus, E can be shown to be: 

 
𝐸 =  

𝜎𝑐𝑖𝑟𝑐

휀𝑐𝑖𝑟𝑐

(1 − 𝜈2) (Eq. 4.25)  

where σcirc and εcirc are the stress and strain in the circumferential direction respectively. 
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For Hyperelastic materials the uni-axial data must be entered in Abaqus in nominal stress 

and nominal strain form, as opposed to true stress and strain.  The nominal stress in the 

circumferential direction, σcirc of a thin walled cylinder of wall thickness t and inner 

diameter d, due to internal pressure p, is given by: 

 𝜎𝑐𝑖𝑟𝑐(𝑝) =
𝑝 × 𝑑(𝑝)

2𝑡
 (Eq. 4.26) 

Nominal circumferential stress values have been calculated at increments of 10mmHg 

(1.333×10-3 MPa) in pressure, assuming the initial thickness value of t=1.4mm.  The varying 

value of inner diameter, d must be taken account of here, even for nominal stress, because 

the circumferential load increases due to the pressure acting on an increasing internal area.  

Therefore; at each pressure increment the inner diameter, d is calculated using (Eq. 4.27) 

(where d%increase was derived in (Eq. 4.23) in section 4.3.1: 

 
𝑑(𝑝) = 𝑑(0) × (1 + 𝑑%𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒(𝑝)) (Eq. 4.27) 

The strain in the circumferential direction of a thin walled cylinder is assumed equal to the 

percentage change in the mid-plane diameter (between inner and outer diameter) of the 

vessel.  While the pressure-diameter curves are describing the change in inner diameter of 

the vessel, the mid-plane diameter has been calculated at each pressure increment by 

adding the wall thickness to the inner diameter.   The change in thickness due to Poisson’s 

effect for the case that the vessel ends are fixed can be shown, through transformation 

equations, to be: 

 
𝑡(𝑝) = 𝑡0 − (

𝜈 × 𝑑%𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒(𝑝) × (1 − 𝜈)

(1 − 𝜈2)
) (Eq. 4.28) 

Where t0 is the initial thickness and ν is Poisson’s ratio.  The mid-plane diameter can 

therefore be calculated for any pressure: 

 
𝑑𝑚𝑖𝑑−𝑝𝑙𝑎𝑛𝑒(𝑝) = 𝑑(𝑝) + 𝑡(𝑝) (Eq. 4.29) 

Subsequently the circumferential strain as calculated from the mid-plane diameter is 

provided by: 

 
휀𝑐𝑖𝑟𝑐(𝑝) =

𝑑𝑚𝑖𝑑−𝑝𝑙𝑎𝑛𝑒(𝑝) − 𝑑𝑚𝑖𝑑−𝑝𝑙𝑎𝑛𝑒(0)

𝑑𝑚𝑖𝑑−𝑝𝑙𝑎𝑛𝑒(0)
 (Eq. 4.30) 
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The nominal stress and strain in the circumferential direction are therefore obtainable 

using (Eq. 4.26) and (Eq. 4.30) respectively.  Now; referring to (Eq. 4.25), rather than 

defining the Hyperelastic Marlow model with nominal stress and strain points from a 

uniaxial scenario, the points have been input as 𝜎𝑐𝑖𝑟𝑐 and 휀𝑐𝑖𝑟𝑐/(1 − 𝜈2) which are a ratio 

equal to Young’s modulus, E. 

This method has been used to define the material for multiple artery pressure-diameter 

curves, for example those shown in Figure 44.  Every curve has been defined at increments 

of 10mmHg up to a pressure of 250mmHg, after which the Marlow model assumes a linear 

response equal to that of the last portion of the curve defined (240-250mmHg).  This was 

considered a conservative method, from a fatigue point of view, as the alternative of using 

the Langewouters’ equation to define the pressure-diameter curve at higher pressures 

(beyond those tested) results in continuously increasing artery stiffness. 

The abdominal aorta is the focus of the current work, with the multiple age-representative 

samples modelled, calibrated and verified in section 4.3.4.3. 

4.3.4.3 Application to FE Model with Calibration and Verification 

To verify that the method of modelling a specific pressure-diameter curve has acceptable 

accuracy, simple 10mm length quarter vessel sections were modelled with 20 elements in 

the axial direction, 50 in the circumferential and 4 through the thickness.  The vessel end 

faces were constrained from motion in the axial direction and the symmetry faces were 

fixed from motion in their respective normal direction, as depicted in Figure 47. 

As discussed in 4.3.4.2, for abdominal aorta, an initial wall thickness of 1.4mm has been 

assumed for a vessel of 24mm diameter at 100mmHg.  The verification model has a 

thickness of 1.4mm, and the initial diameter (at 0mmHg) was calculated for each curve as 

described in 4.3.4.2.  Stress-strain points defining the Marlow Hyperelastic material model 

were specified as described in 4.3.4.2. 

For each abdominal case, an initial model and a calibrated model has been produced.  The 

calibrated model simply has a ratio applied to change the initial internal diameter, such that 

the target diameter at 100mmHg is matched.  The material parameters and the thickness to 

diameter ratio are kept the same as the initial model so that the percentage change in 

diameter with pressure increase is not altered. 
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The target and modelled behaviour in terms of percentage diameter change are plotted in 

Figure 48.  The general shape of the curves match well, with slightly increased strain 

observed with the FEA modelled cases.  The calibrated models are created by reducing the 

initial internal diameter by a ratio determined by the discrepancy of the initial model 

Figure 48 - Comparing the Target Langewouters and Modelled P-D curves for chosen abdominal 
ages. 

Figure 47 - Simple vessel quarter model used to verify the application of pressure-diameter 
responses.  Boundary conditions and pressure load depicted by the orange and pink arrows 
respectively. 
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diameter at 100mmHg.  The result of the calibrated 52-year-old vessel is shown in Figure 

49, in terms of actual diameter change, to demonstrate the ability to match diameter at 

100mmHg. 

The accuracy of the calibrated models has been assessed in terms of actual inner diameter 

as well as the diametric strain over ranges of 80-120mmHg and 80-160mmHg.  The inner 

diameters of the modelled vessels have a worst-case discrepancy of 0.26% which was on 

the 52-year-old case.  This was assessed over the exaggerated operating range of 60-

250mmHg.  The discrepancy in diametric strain for blood pressure ranges 80-120mmHg and 

80-160mmHg are summarised in Table 8, showing the highest error for the 52-year-old 

case: the model resulting in 2.58% compared to the 2.79% targeted. 

The overall characteristic of the pressure diameter curves has been well matched, however 

the discrepancy in diametric strain over specific ranges will require to be considered if 

targeting specific vessel motions for ring-in-artery studies.  A specific diametric strain can 

be matched by altering the diastolic-systolic pressure range. 

Figure 49 - Target and Modelled Pressure - Diameter curve for the 52 year old abdominal case, 
with initial diameter corrected to ensure the target diameter at 100mmHg is matched 
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The same method as described above has been demonstrated for the 30-year-old thoracic 

curve displayed in Figure 46, which results in a maximum error of 0.74% on diameter over 

the 60-250mmHg range and variance of -5.02% and -3.70% to the diametric strain for 80-

120mmHg and 80-160mmHg ranges respectively. 

4.3.5 Summary of Artery Model Implementation 

A novel method of averaging data from the Langewouters study to create age-averaged 

Pressure-Diameter curves has been shown for both Abdominal and Thoracic aortic artery.  

Subsequently these Pressure-Diameter responses have been implemented into a quarter 

vessel model and verified to have reasonable accuracy.  The age specific diametric strain 

values are an addition to knowledge which is sparse in the literature, and the above 

provides a comparison between abdominal and thoracic vessel elasticity.  The abdominal 

vessel models will be implemented in Chapter 7. 

4.4 Implementing ‘Ring in Artery’ Simulation 

The methodologies developed and described in the sections above for finite element 

mechanical simulation of a ring-stent (section 4.2) and aortic artery (section 4.3) have been 

combined such that the interaction of a ring-stent in an artery can be analysed.  The 

simulation steps, boundary conditions and interaction properties implemented to achieve 

the ring-in-artery simulation are described in this section.  Studies on the Anaconda 

proximal rings, using the methodology described here are documented in Chapter 7. 

 

Table 8 - Target and resulting diametric strain values for modelled abdominal vessels over the 
blood pressure ranges of 80-120mmHg and 80-160mmHg 

Age 

Vessel Diametric Strain for 80-
120mmHg 
 

Vessel Diametric Strain for 80-
160mmHg 
 

Langewouters 
derived 
(assuming 
high p1 value) 

Model 
result 

Error 

Langewouters 
derived 
(assuming 
high p1 value) 

Model 
result 

Error 

52 2.79% 2.58% -7.45% 4.18% 4.07% -2.74% 

60 2.31% 2.23% -3.61% 3.52% 3.55% 0.98% 

68 1.94% 1.93% -0.73% 3.00% 3.13% 4.19% 

76 1.65% 1.66% 1.16% 2.59% 2.77% 6.67% 
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4.4.1 Purpose and Rational 

The methodology was developed for two main purposes: 

1) Strain based fatigue analysis of the Nitinol ring-stents in the non-linear vessel under 

pulsatile cardiac pressure loading.  This provides a more advanced assessment than 

using a simple linear elastic vessel with the same diametric strain because the 

‘damping’ effect of the ring’s radial force on the overall motion will be included.  

The resulting ring motion and ‘damping’ phenomenon can be quantified.  It should 

be noted that the true dynamic motion of the interacting ring and artery due to the 

haemodynamic blood pressure wave is dependent on: the wave profile of the 

cardiac cycle; the active viscoelastic response of artery wall, and the inertia 

associated with the mass of the blood, stent, artery and other perivascular tissue.  

As these factors cannot be modelled in this level of simulation, attempting a 

dynamic solution would be irrelevant, and therefore the general-static solver is 

assumed. 

2) The radial force applied by the ring on the vessel will be quantified in terms of total 

magnitude as well as distribution.  This can be carried out at diastolic, systolic or 

any incremental solution time point at which the simulation successfully solved. 

4.4.2 Components of the model 

Each ring-in-artery model is generated in Abaqus CAE via a Python script according to the 

user specified parameters in the script.  The top-level structure of this script is provided in 

flow-chart form in Appendix F.  Each model consists of the ring, a length of vessel, an inner 

cylinder representing the delivery system central core and a movable quarter cylindrical 

surface for compacting the ring, as shown in Figure 50.  The multi-turn ring is constructed 

exactly as described in section 4.2. 

The artery length modelled is programmed to be 1.9 times the length of the ring diameter.  

This was justified from a brief study to assess the proximity at which the radial strength of 

the ring has negligible effect on the dilation of the vessel.  A worst-case ring in terms of high 

relative strength was used for this assessment.  The script includes various artery 

definitions which have been defined from Langewouters’ data as described in section 4.3.  

The meshing approach applies 5 elements through the wall thickness, a concentration 

centrally with near equilateral cuboids, and longer elements at the vessel ends where ring 
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interaction will not occur (see Figure 50).  All elements in the vessel are specified to be 

linear with the ‘incompatible modes’ enhancement which improves prediction of bending 

behaviour. 

The inner cylinder is modelled as an ‘analytical rigid surface’ which does not require to be 

meshed. 

The quarter-cylinder compaction surface is a shell part discretised into 30 quadrilateral 

surface elements (SFM3D8R) in the circumferential direction.  This structure has no 

modelled stiffness, and its diameter can be varied throughout the simulation. 

The various loads and boundary conditions throughout the simulation on each component 

of the model are described in the following section (4.4.3). 

4.4.3 Simulation Steps and Boundary Conditions 

The simulation steps are outlined, with a summary of the applied boundary conditions and 

interaction states, in Table 9.  See Figure 51 for images of the first 8 steps.  All steps are  

‘Static, General’ and use an arbitrary step time of one second.  A description of the 

governing equations for this simulation type, as well as the settings chosen for solution and 

incrementation control were outlined in section 4.1.  The first cyclic systolic and diastolic 

steps are notated S1 and D1 with subsequent nth cycles defined Sn and Dn.  The purpose of 

repeating the systolic and diastolic steps is to ensure that the ring-artery interaction has 

settled to a repeatable motion.  Small variation in the first few cycles can be observed as 

Figure 50 - Example ring-in-artery model generated in Abaqus CAE, consisting of the quarter ring, 
vessel, compaction surface and a central core. 
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the global stress-strain field of the simulated ring-stent settles.  The default number of 

cycles performed has been set to 10, which was found to reduce variance to negligible 

levels.  

Table 9 - Summary of ring-vessel simulation steps and the associated boundary conditions and 
loads 

Step Boundary Conditions and Interactions Summary 

Initial 
State 

Vessel – the vessel’s end faces are constrained in the axial direction and 
symmetry faces constrained in their respective normal directions.  These 
constraints are maintained through all steps. 
Ring – The node at the mid-point of ‘Turn2’ is held in the axial direction to 
prevent rigid body motion.  This is maintained until the ‘S1’ step. 
Compaction Surface – whole surface fully fixed in the radial, theta and axial 
cylindrical directions.  Initial diameter is equal to the ring’s flat mean diameter. 

Ring Forming of the ring from straight wire 
Ring – displacement conditions are applied to each node on the end surfaces of 
the wires to form the quarter ring, as described in 4.2.1. 

Pull Ring pulled into a saddle shape 
Ring – opposing loads are applied to central nodes of each wire end in order to 
pull the quarter ring into the ‘saddle shape’.  The magnitude of the force has been 
normalised to pull every ring to approximately the same level of saddle shape.  
The loads are maintained until ‘Compact2’ step. 
Interactions – The turn-to-turn contact interaction is activated 

Compact1 Initial Compaction 
Compaction Surface – the radial position of the compaction surface is reduced 
such that the compaction is 90% complete 
Interactions – the contact interactions are activated between: 1) ring and 
compaction surface; 2) ring and internal central core 

Compact2 Final Compaction  
Compaction Surface - the radial position of the compaction surface is further 
reduced such that the specified inner sheath diameter has been reached.  
Ring – the loads applied to pull the ring into a saddle shape are deactivated over 
the course of this step. 

Pressure Initial diastolic pressure applied to the internal surface 
Vessel – the specified diastolic pressure is applied to the internal surface of the 
vessel 

Release Ring is deployed into the vessel 
Compaction Surface – the radial position of the compaction surface is increased 
to diameter larger than that of the ring in its flat position. 
Interactions – the contact interaction between ring and vessel is activated. 

Steps 
S1…Sn 

Systolic blood pressure step 
Vessel – the specified systolic pressure is applied to the internal surface of the 
vessel 
Ring – the node at the mid-point of ‘Turn2’ which was preventing rigid body 
motion in the axial direction is released. 
Interactions – the contact interactions are deactivated between: 1) ring and 
compaction surface; 2) ring and internal central core; and 3) ring turn-to-turn 

D1…Dn Diastolic blood pressure step 
Vessel – the specified diastolic pressure is applied to the internal surface of the 
vessel 
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Figure 51 - Depicting the first 8 steps of a ring-artery interaction simulation 
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Simulating the compaction of the ring-stent is not intended to provide accurate stress-

strain estimations of the compacted ring, but is more intended to approximate the 

superelastic strain levels at this stage prior to ring deployment.  This is necessary because 

the final stress-strain field of a Nitinol structure is dependent on the ‘strain history’.  This is 

an effect of hysteresis. 

As an example of the computational cost of these ‘ring in Langewouters artery’ models, the 

OLB28 R1 and R2 rings simulated separately, with twenty systolic to diastolic cycles, took 

26.9 and 14.4 hours respectively on a 6-core Intel® Xeon® 3.47GHz processor with 24 GB of 

RAM (random access memory) available. 

4.4.4 Interactions, Constraints and Cardiac Cycle Application 

4.4.4.1 Interactions 

There are four distinct contact interactions defined in the model which are summarised 

below: 

Ring – Compaction Surface 

A linear contact ‘pressure-overclosure’ relationship has been defined which initiates 

interaction at 0.03mm clearance and applies an increasing pressure to 25MPa at zero 

clearance.  The default constraint enforcement method is used.  An arbitrary friction 

coefficient of 0.1 is applied in the tangential direction. 

Ring – Central Core 

The same interaction definition as above (Ring -Compaction Surface) is implemented. 

Ring – Vessel 

A basic ‘hard contact’ pressure-overclosure using the ‘Penalty method’ for constraint 

enforcement has been applied.   This allows Abaqus to determine a highly stiff linear 

contact condition based on the stiffness of the materials.  A very low friction coefficient of 

0.01 is applied in the tangential direction as the result of a sensitivity study which indicated 

higher strain amplitudes with lower friction values.   

The maximum degree of master surface smoothing (of a:l = 0.5, see Figure 52) is applied to 

the vessel.  This ensures that turns of the ring do not embed within artificial channels 

caused by discontinuous transitions of surface angle at the nodes between linear elements.  
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Ring Turn-to-Turn Contact (during compaction) 
A ‘soft’ contact between adjacent turns was introduced as an additional modelling 

requirement due to what can be described as an unrealistic tangling of wires during 

compaction when only the turn-to-turn connecters were used.  As mentioned in 4.4.3 the 

simulation of the compaction is acknowledged to be very approximate.  A linear pressure-

overclosure relationship which prevents the tangling mechanism and does not cause 

solution issues was arrived upon which initiates the contact at an overclosure of 5% the 

wire thickness, and increases to a pressure of 10MPa at overclosure of 50% wire diameter.  

This allows adjacent turns to overlap, however with a repelling pressure which increases 

with level of overlap.  An arbitrary friction coefficient of 0.1 is applied.  

4.4.4.2 Constraints 

The centre of each turn is constrained from freely rotating by apply an ‘equation 

constraint’, relating motion of two opposing nodes on the surface.  This is the same method 

as described in 4.2.2, and does not add stiffness to the structure. 

4.5 Validation of Models 

4.5.1 Physical Load-Deflection Testing 

Empirical load-deflection testing of various Nitinol multi-strand rings was carried out at 

Vascutek using a Tinius Olsen tensile tester (Vascutek machine ID 293) with a 50N load cell 

and heated chamber at 37˚C.  This setup is calibrated in the range of 0.5-50N and had a 

resolution of 0.002N.  The rings were loaded into a ‘saddle shape’ position, as depicted in 

Figure 53, pulled to a maximum deflection before being partially unloaded to an in-vivo 

representative saddle shape position from which they are cycled 100 times over a relatively 

large deflection (more than would be seen in-vivo).  The connections between ring and the 

Figure 52 - Illustration from Abaqus documentation [91] explaining 
the degree of master surface smoothing for linear elements. 
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fixation points on the tensile tester were provided by single large loops of high stiffness 

polyethylene braided fibre strings (designed for fishing). 

The five different ring designs (4 from the Thoraflex Hybrid device denoted HY, and one 

from the Anaconda denoted OLB) which have been tested in the manner described are 

outlined below in Table 10, along with the deflections applied.  The deflection levels vary 

due to the rings being different diameters.  Three samples were tested for each case. 

Table 10 - Overview of Nitinol rings in load-deflection empirical testing 

Ring 
Flat Ring Mean 
Diameter 
(mm) 

Wire 
Diameter 
(mm) × No. 
turns 

Maximum 
Displacement 
(mm) 

Cycling 
Displacement 
Range (mm) 

HY28-01 27.09 0.18 × 10 16.0 10.0-11.5 

HY28-02 33.43 0.16 × 8 18.0 12.0-13.0 

HY40-01 39.35 0.22 × 14 21.0 13.75-17.0 

HY40-02 48.32 0.20 × 9 26.0 19.5-21.0 

OLB28-R1 26.56 0.22 × 11 16.0 8.5-12.0 

Figure 53 - A Nitinol ring load-deflection test showing unloaded and fully loaded 
positions 
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Three 100mm samples of the polyethylene connection lines were tensile tested at 37˚C to 

establish a stiffness which could be applied to the FEA model (see Appendix G).  The 

stiffness of the lines is fairly constant after initial stiffening which is believed to be 

associated with taking slack out of the twisted braid pattern.  It was therefore this ‘settled’ 

stiffness value of 0.395N/mm which was assumed for modelling (further discussed in 

Appendix H).  

An example plot of load-deflection for the HY28-01 samples is provided Figure 54 in which 

it can be see that there is some variation in force levels between the three samples.  Some 

hysteresis is observed in each sample: slightly lower unloading load level due to some 

material being strained into Nitinol’s superelastic transformation zone. 

Each empirical data set of three samples has been averaged to provide a single curve for 

comparison with FEA, however the deviation of the physical data will be considered in the 

comparison. 

Figure 54 – Load-Deflection raw data plots for three T28-01 rings 
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4.5.2 Considering the Connection Friction 

The setup described above (4.5.1) is relatively simple, however the detail of the interaction 

between the connector lines and the ring requires some consideration because the way in 

which it can be modelled has a considerable effect on the overall stiffness of the system.  

The connector lines are simply looped around the ring bundle as can be seen in Figure 53.  

Considering that the load in the system increases with increased extension, any friction 

between the connection loop and the bundle will also increase.  The rotation of a connector 

line (in a global sense) is negligible compared to the tendency of the peaks/valley cross-

section to rotate (about an axis normal to the cross-section) as the ring is pulled into a 

‘saddle shape’.  Therefore, the increasing friction will cause some level of varying resistance 

to the rotation of the bundle at the connection points. 

Quantifying the described resistance and replicating it within the model would be 

challenging, therefore it was decided to take the approach of modelling both extremes: 

allowing free rotation or constraining rotation completely at the peak and valleys.  Both 

extremes have been modelled and are assessed for both a single ring and full bundle 

models below (4.5.3 - 4.5.4).  

4.5.3 Single Turn Ring Model Validation Results 

A single-strand quarter model was used, as described in 4.2, with linear stiffness connectors 

between the mid-node on each end face to the lower fixed point and upper loading point 

respectively (see Figure 55).  The results here are specific for the ‘improved’ material model 

described in section 3.3.  The connectors were applied a stiffness of 0.395N/mm as defined 

in 4.5.1.  Velocity/displacement boundary conditions were applied to the load point to 

replicate the relevant load, unload and cyclic loading applied in empirical testing as outlined 

in Table 10.  After load, and unload steps the simulation model was cycled only 10 times (as 

opposed to 99 of the empirical) because the load-displacement output had settled to 

negligible variation.  From a modelling theoretical point of view: there exists some initial 

‘settling’ or converging of force values in the first few cycles of the simulation due to the 

global stress-strain state in the ring varying slightly in these cycles, which is directly related 

to the hysteresis behaviour defined in the material model.  If the whole model was linear 

elastic there would be no gap between load and unload, no variation in the first few cycles, 

and the cyclic load-deflection response would lie on the initial load-unload stiffness line.  
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Furthermore, the constitutive superelastic model does not simulate any type of ‘low-cycle 

fatigue’, i.e. a change in properties during cyclic loading. 

As discussed in 4.5.2, two modelling options will be compared to empirical results for each 

ring configuration: 

• Case A - allowing free rotation of the wire at the peak and valley and; 

• Case B -constraining rotation completely at the peak and valley 

Each load-displacement response is extracted from the upper loading point of the 

simulation, and the load values are multiplied by 4×number of turns (by 4 because it is only 

a quarter model and by the number of turns based on the assumption that turns are 

working primarily as individual entities). 

Figure 55 - Single-turn quarter ring model of HY28-01 in cyclic position of 
validation load-deflection test 
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The full load-deflection response for simulation Case A and Case B are plotted along with 

empirical data for comparison in Figure 56 and Figure 57 respectively.  These plots include 

data from the load, unload, first cycle and 99th cycle from the physical test, while all steps 

from the simulation are plotted as one continuous line.  To quantify the validation, forces 

from the 99th cycle of empirical data will be used to compare with simulation results later. 

 

Figure 56 - Single-turn quarter model load deflection validation for 'Case A: rotation at peak and 
valley allowed' 

Figure 57 - Single-turn quarter model load deflection validation for 'Case B: rotation at peak and 
valley constrained' 
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Briefly first considering the averaged empirical data plots (dotted lines) repeated in Figure 

56 & Figure 57; the difference between load and unload force levels in the system, or 

‘global hysteresis’, is more evident the stiffer the ring.  This can be explained considering 

that the stronger rings, which are composed of thicker wire, have more material being 

loaded to a superelastic plateau level, i.e. in the hysteresis zone of the material.  The 

constitutive model used (detailed in 0) has start of transformation strain of 1.11%.  The 

simulations showing no hysteresis; HY28-02 and HY40-02, have not exceeded this strain 

level in the initial loading step at any node (0.97% and 0.87% maximum respectively for 

‘Case B’ which has slightly higher max strain values than ‘Case A’).   HY40-01 fractionally 

exceeds the start of transformation for the ‘Case B’ but not for ‘Case A’ (1.16% and 1.08% 

respectively) which explains the slight hysteresis seen in Figure 57 for this ring.  The OLB28-

R1 and HY28-01 simulations, which show considerable hysteresis in the structural load-

deflection response had maximum strains of 2.98% and 2.25% respectively (‘case B’): some 

significant transformation occurring in the initial load step. 

A slight drop in load levels is observed for the empirical results between 1st and 99th cycles, 

again more apparent for the stronger rings.  This does not occur in simulation: in fact a very 

slight increase in the cyclic force values occurs during the settling.  The slight decrease in 

reality could be due to a slackening in the system occurring over cycling which is not 

captured in simulation. 

All ‘Case A’ (rotation allowed) simulations (Figure 56) under-predict force levels and 

stiffness.  The ‘Case B’ (rotation constrained) simulations (Figure 57) appear to provide a 

much-improved overall agreement relative to ‘Case A’ for the load-unload as well as cyclic 

steps.  The most significant discrepancy for ‘Case B’ appears to be the unloading of OLB28-

R1, however the cyclic load levels are in reasonable agreement. 

In order to quantify the comparison, the ‘low force’ and ‘high force’ values have been 

extracted from the respective final cycles of both the empirical averaged results as well as 

the simulations (‘case A’ and ‘case B’).  The cyclic loading steps have been used as they 

were intended to be representative of a ring’s final deployed position; considered the most 

important from an analysis point of view.  These force values are provided in Table 11 along 

with the standard deviation of empirical results and the discrepancy of the simulated 

results relative to the empirical.  A colour scale has been used to visually emphasise the 
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discrepancy results: from red for the highest value tending to green as discrepancy results 

approach zero. 

It is immediately clear from Table 11 that simulation ‘Case B’ has lower discrepancy relative 

to the empirical data.  ‘Case A’, applying no rotational constraint, under-predicts force 

levels in every ring, while in ‘Case B’ the majority show a slight over-prediction of force 

values, with the exception of the OLB28-R1 ring and the high value for HY28-02 having 

slight under-predictions.  In light of this result and for the purpose of quantifying the 

validation it has been assumed that the empirical setup behaves more closely to that of 

simulation ‘Case B’.  It should be noted that most of the discrepancy values for ‘Case B’ are 

actually less than the respective standard deviation associated with the empirical results.  

However ultimately from this study, it can be stated that the structural strength of a ring in 

a typical in-situ position (extrapolated by multiplication of a result from a single turn 

simulation model) has an accuracy range of ±6.4%. 

4.5.4 Full Bundle Model Validation 

The full bundle model to be validated is as described in 4.2.7 in which there are multiple 

turns with axial connectors joining nodes at the wire centreline at nine equally spaced 

intervals along the length of the quarter ring.  For the purpose of the validation, linear-

stiffness axial elements were connected from the mid node at the end of each turn to the 

loading points (see Figure 58).  The connectors were applied a stiffness of 0.395N/mm as 

defined in 4.5.1.  The boundary conditions to load the quarter ring model were applied to 

Table 11 - Single Turn Ring Model Validation Accuracy Assessment: comparison of low and high force 
values from the final cycle.  Colour scale indicates severity of discrepancy in the simulation results 
(red=highest; green=lowest). S.D. = Standard Deviation. 

 

Force 

(N)

S.D.

 (%)

Force 

(N)

S.D.

 (%)

Force 

(N) % disc.

Force 

(N) % disc.

Force 

(N) % disc.

Force 

(N) % disc.

HY28-01 1.27 4.61% 1.62 3.51% 1.16 -8.5% 1.47 -9.2% 1.34 5.7% 1.71 5.1%

HY28-02 0.47 2.50% 0.55 2.71% 0.40 -13.6% 0.45 -16.9% 0.48 2.4% 0.54 -1.6%

HY40-01 1.92 3.14% 2.72 2.68% 1.67 -12.7% 2.32 -14.9% 1.97 2.9% 2.73 0.1%

HY40-02 0.69 3.15% 0.80 3.63% 0.60 -13.7% 0.67 -16.1% 0.71 3.2% 0.80 0.3%

OLB28-R1 2.71 5.06% 4.64 4.28% 2.19 -19.2% 3.85 -17.0% 2.54 -6.4% 4.51 -2.8%

final cycle highfinal cycle highRing final cycle low final cycle high

Empirical

Simulation - Single Turn

Case A - rotation allowed Case B - rotation constrained

final cycle low final cycle low
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the top loading point in exactly the same manner as was described for the single ring 

validation in 4.5.3. 

As with the validation study of the single ring, and discussed in 4.5.2, the same two 

constraint configurations have been investigated: 

• Case A - allowing free rotation of the wire at the peak and valley and; 

• Case B -constraining rotation completely at the peak and valley 

The results of the simulated ‘Case A’ and ‘Case B’ are plotted with the empirical average 

data in Figure 59 and Figure 60.  The general analysis of the empirical force-displacement 

trends was discussed in the section above (4.5.3). 

 

In general, the results are very similar to the single ring validation, and the discussion in 

4.5.3 is relevant for the full bundle validation.  The simulation of ‘Case A’, in which no 

rotational constraint is applied, the force levels are under-predicted as with the single turn 

study.  Again ‘Case B’, with rotation constrained, provided a much-improved overall 

agreement with the key discrepancy again being the unload curve of OLB28-R1. 

Figure 58 - Full-bundle quarter ring model of HY28-01 in cyclic position of validation load-deflection test 
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The low force value and high force value from the final cyclic step have been tabulated for 

comparison in Table 12 with the same colour scale for clarity as described in 4.5.3.  As is 

expected from analysing the load-deflection plots, the results again are much better 

Figure 59 - Full-bundle quarter model load deflection validation for 'Case A: rotation at peak and 
valley free' 

Figure 60 - Full-bundle quarter model load deflection validation for 'Case B: rotation at peak and 
valley constrained' 
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agreement with empirical testing for ‘Case B’.  The discrepancy values are very similar to 

those for the single ring analysis in Table 11.  However, there is slight increase in the 

highest discrepancies meaning that for the full-bundle modelling approach it can be stated 

that the structural strength of a ring in a typical in-situ position has an accuracy range of 

±6.9%. 

 

4.6 Summary of Chapter 4 

Bespoke FEA methodologies have been developed to mechanically simulate ring-stents 

being subject to the high deformations which are part of their life-cycle.  A new method to 

capture the stiffening pressure-diameter response of human aortic artery has been devised 

based on one of the most thorough cadaveric tests available from the literature 

(Langewouters et al [47]).  The methods have been scripted in Python language so that any 

ring configuration and vessel size can be rapidly modelled with desired loading applied. 

The ring methodology has been validated against ‘saddle pull tests’ as described in the 

section 4.5 and the artery models’ pressure-diameter response has been verified as 

described in 4.3.4.3.  The structural representation of both entities is unchanged when they 

are combined as described in section 4.4, however ideally a validation of the full system 

would be carried out.  This would aim to confirm the deformed geometry of ring-in-artery 

and the combined pulsatile motion for fatigue analysis.  In the absence of this full system 

validation, efforts have been made to ensure that the worst-case assumptions are specified 

for parameters such as friction. 

Force 

(N)

S.D.

 (%)

Force 

(N)

S.D.

 (%)

Force 

(N) % disc.

Force 

(N) % disc.

Force 

(N) % disc.

Force 

(N) % disc.

HY28-01 1.27 4.61% 1.62 3.51% 1.16 -8.4% 1.48 -9.1% 1.34 5.8% 1.71 5.3%

HY28-02 0.47 2.50% 0.55 2.71% 0.40 -13.4% 0.46 -16.7% 0.48 2.6% 0.54 -1.4%

HY40-01 1.92 3.14% 2.72 2.68% 1.68 -12.5% 2.32 -14.7% 1.98 3.2% 2.73 0.3%

HY40-02 0.69 3.15% 0.80 3.63% 0.60 -13.3% 0.68 -15.6% 0.71 3.4% 0.81 0.4%

OLB28-R1 2.71 5.06% 4.64 4.28% 2.19 -19.2% 3.85 -17.0% 2.52 -6.9% 4.48 -3.5%

Ring final cycle high final cycle highfinal cycle low final cycle high

Empirical

final cycle low

Simulation - Full Bundle

Case A - rotation allowed Case B - rotation constrained

final cycle low

Table 12 - Full Bundle Ring Model Validation Accuracy Assessment: comparison of low and high force 
values from the final cycle.  Colour scale indicates severity of discrepancy in the simulation results 
(red=highest; green=lowest). S.D. = Standard Deviation. 
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5  
Ring-Stent Mechanics 
This chapter details the early studies aimed at gaining a fundamental understanding of how 

the Nitinol ring acts as a radial spring structure and gives insights to the general strain state 

of the wire through a ring-stent’s life-cycle.  The studies described in this chapter 

implement the initial basic single-strand quarter ring methodology described in 4.2.1-4.2.2. 

5.1 Definitions 

For the purpose of the studies in this chapter, the deformation of a ring in isolation will be 

defined as per (Eq. 5.1) where D0 is the mean (centreline) diameter of the flat ring and D is 

the diameter of the deformed ring in a ‘saddle shape’ position. 

 
𝑟𝑖𝑛𝑔 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 =

𝐷0 − 𝐷

𝐷0
× 100% (Eq. 5.1) 

In the studies which deploy a single strand into a simple elastic tube the diameter of the 

ring measured at the peaks is slightly less than measured at the mid-point (between peak 

and valley), therefore the measurement of D is taken as an average of the peak and mid-

point positions. 

5% ring deformation 
15% ring deformation 

30% ring deformation 

Figure 61 - Ring deformation of 5%,15% and 30% 
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To give a visual indication of the level of deformation being referred to, the ring 

deformations of 5%, 15% and 30% are shown in Figure 61. 

The cyclic deflection of a ring will also be referred to in this study, where ‘pulsatility’ is the 

magnitude change in diameter between an upper and lower measurement, (i.e. Dupper – 

Dlower), and the ‘percentage pulsatility’ will be defined as the change in magnitude relative 

to the smaller diameter measurement, Dlower: 

 
 %_𝑃𝑢𝑙𝑠𝑎𝑡𝑖𝑙𝑖𝑡𝑦 =

𝐷𝑢𝑝𝑝𝑒𝑟 − 𝐷𝑙𝑜𝑤𝑒𝑟

𝐷𝑙𝑜𝑤𝑒𝑟
 (Eq. 5.2) 

In vivo the Dupper would typically occur at systolic pressure and Dlower typically at diastolic, 

assuming the ring is following the compliant movement of the vessel responding to blood 

pressure (this is not always observed as will be discussed in Chapter 7).  It is useful to 

understand the relationship between ‘Pulsatility’ and ‘Delta-strain’ for fatigue analysis 

purposes which will be addressed in 5.4.1. 

5.2 Nitinol Ring as a Radial Spring 

A fine wire Nitinol ring deformed to a sufficient ‘saddle’ position is predominantly 

experiencing bending deformation; shear loading from torsion and direct 

tension/compression loading are less significant in magnitude.  However, a ring at a low 

enough ‘saddle shape’, practically flat, will experience mainly direct compressive force 

when radially loaded.  For the purpose of this study, it is assumed that the rings are in a 

saddle shape in which bending is the main mode of mechanical deformation.  

A ‘saddle shape’ deformed ring within a cylindrical vessel will inherently be applying an 

outward force on the vessel, which the vessel opposes with an equal inward force.  

Considering the simplified case in which 1) the cylindrical vessel remains perfectly 

cylindrical; 2) the ring is in contact with the cylinder along its full length; 3) there is no 

friction - then the normal force between ring and vessel will always be in the radial 

direction along the length of the ring. 

Of course, in reality there is friction involved and a flexible vessel wall into which ring-stents 

may imbed to some degree.  These factors will allow some component of the overall force 

transferred between ring and vessel to be non-radial: in the axial and circumferential 

direction when considering a cylindrical coordinate system. 
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It should also be noted that the force exerted between ring and vessel will not be totally 

uniform along the length of the ring.  The radial force distribution along the length has been 

analysed in Chapter 7. 

For the purpose of the studies herein, the assumption is made that the problem is 

dominated by radial force and the overall force measured via the total hoop force (as 

described in 4.2.4) is purely radial. 

The radial stiffness of a Nitinol ring is not constant.  That is to say: as a ring is compressed 

radially, the force required to progressively deform it does not keep increasing linearly with 

radial deflection.  In fact, for some rings the load required to compact it further may even 

decrease after some point– i.e. a negative stiffness. 

The Adjustable Rigid Torus (ART) extension tool for Abaqus, described in 4.2.3.2, has been 

used to apply a radial loading and unloading of a turn of an Anaconda OLB28 R1 ring for 

both the true Nitinol material, and of a hypothetical linear elastic material for comparison.  

The hypothetical linear elastic material has the same modulus as that of the initial austenite 

modulus of the Nitinol model used.  The load-deflection in terms of Radial Force vs. Ring 

Deformation for both cases are plotted in Figure 62.  The simulation investigates the radial 

loading over a ring-deformation of approximately 2% - 50%.  At some point below 2% 

Figure 62 - Comparing radial force from Nitinol and linear elastic rings deformed to a 
compacted state and then unloaded 
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deformation, the problem would become a compression problem rather than bending 

dominated problem.  

It can be seen that for both cases, even at the low ring deformation of around 2%, there is a 

significant load required to hold a ring in a saddle shape.  For the case displayed, it can be 

seen that a hypothetical linear elastic ring maintains a positive stiffness through the range 

investigated.  However, the Nitinol case appears to plateau in terms of load value which is 

partly synonymous with Nitinol’s uniaxial stress-strain behaviour plateauing as phase 

change occurs, although only a small region of material in the ring in this case is at a level of 

strain which would exhibit phase change.  As would be expected with a Nitinol structure 

reaching some superelastic level, there is a degree of hysteresis in the global response for 

loading and unloading.   

5.3 Global Hysteresis 

Nitinol exhibits hysteresis in simple uniaxial tensile testing, in the form of higher stress 

values in loading than in unloading as some of the energy input is lost to heat dissipation.  

Any Nitinol structure being loaded which has part of its material reach superelastic (phase 

change) state will also exhibit hysteresis when unloaded.  The Nitinol rings being deformed 

into a ‘saddle shape’ have varying strain states throughout the length of the wire, with 

Figure 63 - Load-Deflection plot for a Nitinol ring in saddle shape loaded to various levels of 
deformation 
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significant levels of both compression and tension because of the dominant loading 

behaviour being bending.  The ‘peaks’ and ‘valleys’ are the areas which first reach 

superelastic levels of strain at ~1.03% (for the constitutive model with the ‘provisional 

model parameters’ defined in 3.3) and not much of the wire between peak and valley will 

reach superelastic state even when a ring is compacted down to a level representative of a 

compacted device. 

The described ‘global hysteresis’ of a Nitinol structure is the behaviour responsible for ‘load 

history dependency’: the reaction force of a component at some level of deformation is 

dependent on what deformation it has been through to get there.  In this case the 

unloading force-deflection path depends on how far the structure was deformed.  This is 

shown for the Nitinol ring application in Figure 63, where the different unload paths are 

shown for a ring which has been loaded to different levels of deformation. 

As mentioned above only part of the volume of material of a deformed Nitinol ring’s wire is 

actually in a superelastic state.  To appreciate this, a significantly deformed Nitinol ring 

model is displayed in Figure 64 with a contour plot of ‘fraction of martensite’, which is an 

output provided as part of the superelastic material constitutive model in Abaqus.  Fully 

transformed martensite is represented by the red end of the scale, while material 

remaining purely austenitic (<~1.03% strain) is at the blue end of the colour contour scale 

(misleadingly the scale in the figure suggests some material has a fraction greater than 1; 

this is due to values being exaggerated when the visualisation algorithm extrapolates this 

Figure 64 - A highly deformed ring with a contour plot of 'fraction of martensite'.  Fully austenitic 
material is represented by the blue end of the scale and full martensitic by the red. 
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output from integration point values to nodal values on the surface.  The values calculated 

at the integration points do not exceed 1).  Only the areas near the peaks and valleys of the 

Nitinol are actually experiencing superelastic strain levels.  Most of the length of wire 

between peak and valley is still linear elastic austenite. 

5.4 Single Turn Parametric Study 

Parametric studies have been carried out using the single turn modelling methodology to 

investigate strain and radial force levels experienced in a Nitinol ring at levels of ring 

deformation which would be typically experienced in-vivo.  A turn from the proximal R1 

ring of the OLB28 device has been simulated through ring forming and a compaction 

approximation before deployment into a simple linear elastic tube model with one element 

through the wall thickness.  The resulting position of the single-strand model in a thin tube 

model (at ~15% device oversize) is shown in Figure 65.  Various elastic tube diameters were 

simulated (separate simulations) to provide comparison at a range of ring deformation 

levels from 7.8%-21.9% which correspond to device oversize levels of approximately 10%-

30% for this case (Anaconda 28mm device).  Each of these simulations loads a ring through 

an approximate compaction deformation by the combined uniform radial loading and axial 

loading technique as described in 4.2.3.1.  This is to approximate the true load history, the 

importance of which was described in section 5.3. 

Figure 65 - Simple single-strand model in linear elastic tube used to probe the 
mechanical characteristics of the ring-stent. 
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The thin walled linear elastic tube models were cyclically loaded with internal pressures to 

enforce a diametric strain and therefore a pulsatility on the ring.  For the case of 

approximately 14% device oversize, the effect of varying the magnitude of pulsatility has 

been investigated in separate models.   

A further two studies using single turn modelling were carried out: investigating correlation 

with wire diameter and ring diameter on the strain levels and radial force independently.  

The methodology here was slightly different in that the ART add-on (4.2.3.2) was used to 

load the rings through compaction approximation, unloading and cyclic loading – no linear 

elastic simple tube model was implemented. 

The strain levels analysed in the following results are always the maximum strains in the 

single turn ring.  The maximum strain result in these simulations is always at some point on 

the outer surface at the peak/valley position. 

5.4.1 Strain Analysis 

The plot in Figure 66 shows the simulated maximum strain levels for a turn of an OLB28 R1 

ring going through typical lifecycle stages of: forming in manufacture, compaction, 

deployment and cycling in vivo at four different levels of resulting pulsatility.  Through the 

manufacture step the maximum strain increases to the ring’s ‘pre-strain’ state as the wire is 

formed into a circle.  The ‘pre-strain’, ε0 in a flat ring can be calculated accurately from 

simple beam bending theory as long as Nitinol material is still in initial linear-elastic 

Austenite phase (a very thick wire/small ring diameter ring would be highly strained in 

manufacture).  Simple theory of elastic bending states (Eq. 5.3): 

 

𝜎

𝑦
=

𝐸

𝑅
 (Eq. 5.3) 

Where E is Young’s modulus, R is radius of curvature of the beam’s neutral axis, and σ is the 

stress at a distance y from the neutral axis.  Rearranging and substituting σ/E for strain, 

then the strain at the outer surface (y = wire radius) of a formed wire ring is given by (Eq. 

5.4): 

 휀0 =
𝑦

𝑅
=

𝑑

𝐷
 (Eq. 5.4) 

where d is the wire diameter and D is the flat ring mean diameter. 
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As the ring is compacted from a flat ring position to the approximate shape within the 

diameter of a sheath, the strain concentrations appear at the peaks and valleys, where the 

highest level of bending occurs.  The exact location of maximum strain on the outer surface 

of the cross section will not remain constant: to some degree this point moves around the 

circumference of the wire as the ring is deformed.  As expected, Figure 66 shows the 

maximum strain level reducing significantly in deployment as the ring is expanded.   

The cycling phase of the simulation displays some settling effect over the ten cycles which 

were applied in this case.  The settling in these FEA simulations is due to the hysteresis 

incorporated in the material model as the global stress-strain state narrows to a cyclic 

routine.  The constitutive material model does not incorporate ‘low cycle fatigue’ effects 

such as the modulus changing over a relatively low level of cycles. 

It is observed from the inset plot in Figure 66 that the mean-strain in cycling reduces slightly 

from 1.9% to 1.72% with increased pulsatility.  This does make logical sense when 

considering that the initial unload from compaction is reducing in strain rapidly along the 

unload plateau before cycling occurs on a modulus closer to that of the Austenite state – 

the higher pulsatility cases drop slightly further down the unload plateau, because of the 

Figure 66 - A plot of typical maximum strain through a ring's lifecycle: ring forming, compaction, 
release to a deployed position and ten pulsatile loading cycles.  Various levels of pulsatility show 
the effect on strain amplitudes. 
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specified higher amplitude, before cycling which leads to the slightly lower mean-strain.  

The mean-strains at various levels of oversize are considered below. 

Analysis from the parametric studies on the OLB28 R1 strand shows the relation of both 

mean-strain and delta-strain with ring deformation in Figure 67 for a ring percentage 

pulsatility of 5%.  As mentioned above; this range of ring deformation relates to 

approximately 10%-30% oversize for the device.  (Anaconda devices are recommended to 

be implanted at 10%-20% oversize, and 15%-25% for fenestrated cases.)  The mean-strain 

relates fairly linearly with the ring deformation however the delta-strain drops slightly with 

increased deformation.  This is consistent with that found in Chapters 6 and 7, where it is 

discussed further. 

 
The simulations varying ring pulsatility (at the same level of average deformation of ~12%), 

introduced in Figure 66, confirm that there is a linear relationship between percentage 

pulsatility and delta-strain as plotted in Figure 68. 

The further studies which investigate the influence of wire diameter and ring diameter in 

isolation provide the results which are plotted in Figure 69.  

 

Figure 67 - Mean-Strain and Delta-Strain relation with the ring deformation level 
for a OLB28 R1 ring. 
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Figure 68 - The linear relationship between delta-strain and 
ring percentage pulsatility according to the simulation results 
of single strand OLB28 R1 
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Figure 69 - Results from parametric study showing strain relations: a) mean-strain vs wire diameter; b) 
delta-strain vs wire diameter; c) mean-strain vs 1/D; d) delta-strain vs 1/D, where D is flat ring mean 
diameter. 
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For clarity: during the parametric study in which the ring diameter was increased, the other 

parameters of wire diameter, ring deformation and pulsatility were all kept constant as 

normal.  Keeping ring deformation constant actually requires the vessel size to increase 

proportionally with ring diameter. 

Considering fundamental beam bending theory the mean-strain levels are expected to be 

proportional to wire diameter and inversely proportional to the diameter of curvature.  

Since the latter is proportional to the ring diameter being modelled, then mean-strain is 

expected to be inversely proportional to ring diameter.  The simulation results in Figure 69 

are consistent with this for mean-strain and this is also reflected for delta-strain.  

5.4.2 Radial Strength Analysis 

Radial force is a quantification of the load applied by a stent on a vessel in the outward 

radial direction.  It is an important indication of the ‘strength’ of a stent device and there 

are efforts in the industry to standardise the way in which it can be measured empirically 

[92].  In the case of linear springs, the force exerted is proportional to the deflection the 

spring is loaded to, and the ‘spring stiffness’.  However as shown in 5.2, the Nitinol ring-

stent does not behave like a linear spring and has varying stiffness depending not only on 

deflection, but the loading history.  The term ‘strength’ will be used herein primarily to 

mean the radial force which a ring-stent exerts on a vessel, when loaded to a degree of 

‘saddle shape’ position, however stiffness will also be considered.  

Vascutek have historically used a formula to comparatively assess the radial strength of 

their ring-stents (Eq. 5.5) based on number of turns, n, wire diameter, d, and ring diameter, 

D.  Referred to in the previous work as the ‘Lutz Strength’ (after the inventor of the ring-

stent), this formula provides a comparative coefficient, however the workings behind the 

derivation of the formula were not fully explained. 

 𝐿𝑢𝑡𝑧 𝑅𝑖𝑛𝑔 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 𝑛 ×
𝑑4

𝐷3
× 106 (Eq. 5.5) 

As part of the work herein, a proposed derivation of the coefficient is provided from beam 

bending theory in the following section (5.4.2.1).  This will be compared for validity with the 

Finite Element parametric study on the effect of wire diameter and ring diameter in 5.4.2.4.  
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The radial force has been measured from the same set of parametric studies used to 

produce the results investigating strain above (5.4.1), using the method of measuring radial 

force described in 4.2.4.  The radial force values from the single turn analyses are multiplied 

by 11, the number of turns in a OLB28 R1 ring, to give approximate total force of the 

bundle.  (This approach has been validated in 4.5) 

5.4.2.1 A Derivation of the ‘Lutz Ring Strength Coefficient’ 

Beam bending theory is used to estimate the static behaviour of many applications which 

can be approximated as simple beam structures.  The theory is accurate for linear 

problems: low deflections with linear elastic materials.  The case of a Nitinol ring deformed 

to a ‘saddle shape’ is far from this linear assumption, however the fundamental 

relationships which beam theory is based on may still be the best way to swiftly estimate 

the strength of a Nitinol ring.  

The aim is to relate ‘Ring Strength’ (the loading applied by a ring upon a vessel) to ring 

diameter, D and wire diameter, d. 

Consider the ring-stent approximated as a simply supported circular beam with an evenly 

distributed load, W, as depicted in Figure 70.  Where D is the length of the beam (or 

diameter of the ring), d is the cross-section diameter and δ is the linear deflection at the 

beam centre. 

From beam bending theory [104], the deflection of the beam in Figure 70 is given by (Eq. 

5.6): 

 𝛿 =
5𝑊𝐷3

384𝐸𝐼
 (Eq. 5.6) 

where E = Young’s Modulus of Elasticity 
 I = Second Moment of Area 

 

 

W 

δ 
D 

d 

Figure 70 - A simply supported beam of length D, cross-section dimension d 
and distributed load W.  The deflected position is shown by the dashed 
line. δ represents the linear deflection. 
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Therefore, allowing the modulus to be assumed constant, the deflection is related to load, 

diameter and second moment of area as per (Eq. 5.7): 

 𝛿 ∝
𝑊𝐷3

𝐼
 (Eq. 5.7) 

The above relation (Eq. 5.7) actually stands for all the loading and support configurations 

for a beam in bending given in [104], meaning that the specific configuration chosen to best 

approximate the ring (Eq. 5.6) is not important. 

For a circular cross-section of diameter, d: 

 𝐼 =
𝜋𝑑4

64
 (Eq. 5.8) 

Therefore: 

 𝛿 ∝
𝑊𝐷3

𝑑4
 (Eq. 5.9) 

To consider how the ‘ring strength’ varies with ring diameter and wire diameter, a constant 

level of ring deformation should be considered, i.e. the same level of saddle shape.  Let ring 

deformation be defined as: 

 𝛽 =
𝛿

𝐷
 (Eq. 5.10) 

Now considering ‘ring strength’ as that resisting the total applied load, W and rearranging 

(Eq. 5.9) with (Eq. 5.10) for W: 

 𝛽 ∝
𝑊𝐷2

𝑑4
 (Eq. 5.11) 

 𝑊 ∝
𝛽𝑑4

𝐷2
 (Eq. 5.12) 

Considering a constant arbitrary saddle height (β=const.), the absolute force applied by a 

ring of n turns can be theoretically related to ring diameter, D and wire diameter, d as: 

 𝑭𝒂𝒃𝒔𝒐𝒍𝒖𝒕𝒆 ∝
𝒅𝟒

𝑫𝟐
× 𝒏 (Eq. 5.13) 
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However, if we assume that larger ring-stents are to treat larger vessels, and that larger 

vessels will require a greater absolute force, proportional to their diameter, then the force 

of a ring relative to its own diameter would be an appropriate way to standardise ‘ring 

strength’ independent of size (Eq. 5.14): 

 𝑭𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆 ∝
𝒅𝟒

𝑫𝟑
× 𝒏 (Eq. 5.14) 

The relation for a relative radial force given in (Eq. 5.14) is used in the ‘Lutz Ring Strength 

Coefficient’ (Eq. 5.5).  It is the relative force rather than the absolute force which is most 

useful for comparing the strength of stent-graft devices of various designed diameters. 

5.4.2.2 Considering the Ring Strength Calculation for Stiffness 

Aiming for a constant ‘relative radial force’, Frelative to design ring-stents for a product range 

with various sizes implies that the force required to load a ring to a certain ring deformation 

(Eq. 5.1), or ‘saddle shape’, is proportional to the ring’s flat diameter, and that the radial 

force applied to the vessel should be proportional to the vessel diameter.  However, if the 

‘stiffness’ of such ring-stents is defined as the force applied per unit change of diameter 

(i.e. N/mm), then rings designed with this theory will have a constant ring stiffness because 

the change in diameter for the given ‘saddle shape’ is also proportional to the ring’s flat 

diameter.  In other words; the absolute stiffness, kabsolute is proportional to Frelative and 

therefore d4 and 1/D3: 

 𝒌𝒂𝒃𝒔𝒐𝒍𝒖𝒕𝒆 ∝ 𝑭𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆 ∝
𝒅𝟒

𝑫𝟑
× 𝒏 (Eq. 5.15) 

This has been verified against FEA results in section 5.4.2.5. 

Considering the structure of artery subject to an internal pressure; if proportions of wall 

thickness to diameter are assumed constant, then larger arteries will be stiffer than smaller 

arteries.  They will result in the same diametric strain because they are exerted to greater 

haemodynamic loading due to greater inner surface area, but the larger arteries are 

fundamentally greater in stiffness under the assumption of geometric proportionality.  This 

raises the question: should ring-stents be designed for their radial stiffness, rather than 

radial force, to be proportional to their size?  This will be considered with the findings in 

section 7.4. 
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5.4.2.3 Radial Force vs Oversize 

As a Nitinol ring is cycled in a calibrated elastic vessel with pressures representing diastolic-

systolic loading, the force exerted on the vessel by the ring varies.  Figure 71 shows radial 

force vs time plots for the cycling phase of the parametric study with various device 

oversize levels (approximately 10% to 30%).  The variance in radial force amplitude in 

cycling from a low oversize to a high oversize is observed, however interestingly the mean 

radial force for the individual tests does not significantly vary.  There is a slight settling 

effect over the ten simulated cycles, comparable to the settling strains seen in 5.4.1 due to 

the global hysteresis. 

 
As with the strain levels analysis, it is more convenient to consider the radial force plotted 

against the ring deformation, which is related to device oversize as discussed previously.  

The radial force variance in cycling an OLB28 R1 ring at five different levels of device 

oversize, can be seen in Figure 72.  As the pressure increases from diastolic to systolic the 

vessel size increases, ring deformation decreases and the force during this phase is 

considered the ‘chronic outward force’.  As the pressure decreases from systolic to 

diastolic, the vessel size decreases, ring oversize increases and the force is considered the 

‘radial resistive force’.  The modelling technique for the parametric studies investigating 

Figure 71 - Radial Force vs Time from the single turn OLB28 R1 simulations at various oversize. (The 
force values are representative of the full ring’s 11 turns).  
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varying oversize and pulsatility used simple elastic compliant vessels as part of the 

modelling method.  An arbitrary low friction coefficient of 0.01 was used for this study. 

Referring again to Figure 72 the mean of systolic and diastolic radial force, annotated by the 

red broken line, is almost constant for all levels of ring deformation, decreasing slightly 

from 8.57N to 8.55N as ring deformation is increased.  Using the methodology described, 

only the OLB28 R1 ring was investigated in this way, and other ring configurations could 

behave differently.  However, the simpler ‘uniform radial loading’ technique described in 

4.2.3.1 was used as an early attempt to assess the loading curve of single turns of various 

wire diameter.  The results of using this ‘uniform radial loading’ to investigate the radial 

force-oversize relation are plotted in Figure 73.  A very small ‘pull force’ (1/1000th of the 

total radial force) was applied to ensure the problem being modelled was not a buckling 

scenario.  Using this method, there is a very clear minimum force value needed before any 

significant increase in deformation from the flat ring position.  All of the rings of various 

wire diameters show a relatively flat force level thereafter, with the thicker rings actually 

tending to reduce in force (negative stiffness).  Although it is unclear from the plot, the 

rings of wire diameter <0.20mm have slight continuous increasing level of force as oversize 

is increased for the range investigated.  However, the significance of this test is that over a 

range of ‘wire diameter’ to ‘ring diameter’ ratios which covers the range in use, the general 

Figure 72 - Radial Force vs Ring Deformation from single turn analysis at various levels of mean 
deformation/oversize.  (The force values are representative of the full ring’s 11 turns). 
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trend of radial force vs oversize is relatively flat, when a ring is initially compacted with the 

method described.  This method does not represent the force levels of full bundle rings in 

deployed positions. 

5.4.2.4 Radial Force vs Wire Diameter or Ring Diameter 

Parametric study simulations varying wire diameter and ring diameter separately were used 

to investigate the effect on strain in 5.4.1.  Data extracted from the same single-strand 

simulations are used here to assess the relationship of these parameters on the absolute 

radial force. 

As was described in 5.4.2.1, simple beam bending theory suggests that the absolute radial 

force of a turn would be proportional to d4
 and inversely proportional to D2 (see (Eq. 5.13)).  

The simplification of using beam bending equations assumes that the beam is only subject 

to small deflections and that the material is linear elastic – both not true for the case of the 

superelastic ring-stent.  Therefore, the accuracy of these relations will be assessed here 

against the FE calculations which do take account of the non-linear effects.  In all 

simulations in this study the rings were cyclically loaded to approximately 6% pulsatility, all 

at the same level of average ring deflection of ~12%. 

Figure 73 - Results from early simulations using the 'uniform radial loading' method to investigate 
radial force of single turn rings at various oversize levels across a range of wire diameters. 
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The radial force from the single turn parametric study simulations are plotted against d4 and 

1/D2 in Figure 74 a) and b) respectively and compared with a linear trend line.  For the study 

on wire diameter the OLB28 R1 ring diameter was applied while d was varied from 0.1mm 

to 0.31mm.  The results in Figure 74 a) show that the linear approximation over this range is 

reasonable (coefficient of determination, r2 = 0.976), however there is a slight decreasing 

gradient which would apparently become lower with increased d. 

The study on ring diameter used a constant wire diameter (0.22mm) and varied the flat ring 

mean diameter from 25mm to 50mm.  The results in Figure 74 b) also show a reasonable 

correlation with the linear approximation (r2 = 0.921), again however there is a slight 

reducing in gradient as 1/D2 increases.  As with the wire diameter study this suggests that 

using the simple beam bending theory may become inaccurate outside the range tested.  

Using the beam bending theory will over-predict radial force for small rings of relatively 

thick wire diameter. 

5.4.2.5  Radial Stiffness vs Wire Diameter or Ring Diameter 

As discussed in section 5.4.2.2, the ‘absolute radial stiffness’, kabsolute is theoretically 

proportional to the ‘relative radial force’, Frelative and therefore proportional to d4 and 1/D3 

(Eq. 5.15).  In the same manner as above for radial force, the FE simulation data will be 

used to verify these relations for kabsolute.  As defined in 5.4.2.2, stiffness is considered the 

‘force applied per unit change of diameter’ (i.e. N/mm), therefore this was extracted from 

the simulation as: 

Figure 74 – Absolute Radial Force from FE parametric studies plotted against d4 and 1/D2, where d 
is wire diameter and D is ring diameter. 
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 𝑘𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 =
𝐹𝑑𝑖𝑎 − 𝐹𝑠𝑦𝑠

∆𝐷
 (Eq. 5.16) 

Where Fdia and Fsys are the absolute radial forces measured at diastolic and systolic position 

respectively, and ∆D is the change in diameter of the ring.  The relation of kabsolute to d4 and 

1/D3 is confirmed in Figure 75 to be linear, with coefficient of determination values r2=0.997 

and r2=0.982 respectively.  The variance of these stiffness results is lower than that of the 

absolute radial force (Figure 74), because the results are extracted from the difference in 

state from diastolic to systolic, which is much less non-linear than the full deformation of 

the ring from the flat position. 

5.5 Summary of Chapter 5 

Nitinol rings experience high levels of strain, and exhibit superelasticity at the peaks and 

valleys of the ring when radially deformed into a saddle shape.  Much of the wire between 

peak and valley remains at low strains, in the Austenite phase.  The use of the 

superelasticity to allow high deformation inherently means that a ‘global hysteresis’ is 

observed in terms of radial force and strain levels, and it is therefore important to consider 

the full load history which a Nitinol ring experiences to some degree of accuracy. 

The investigations into the radial force vs oversize relationship of a Nitinol ring being 

initially deformed radially suggests that the radial force which a ring will exert is relatively 

Figure 75 – Radial Stiffness from FE parametric studies plotted against d4 and 1/D3, where d is wire 
diameter and D is ring diameter. 
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constant once in a saddle shape.  The study on cycling a OLB28 R1 ring at different levels of 

oversize after compaction agreed with this. 

The ‘Lutz’ ring strength coefficient based on simple beam bending theory has been verified 

to be in reasonable agreement with FEA simulations as an effective method of 

comparatively estimating the ‘relative radial strength’ of rings, for the ring proportions 

simulated.  The ‘absolute radial stiffness’ of a ring has been shown to be directly 

proportional to the ‘relative radial force’. 

In terms of maximum material strain levels imposed on the rings in cycling, the following 

trends have been found from the FEA analysis: 

• The mean-strain at the peak of a wire tends to increase linearly from pre-strain 

value as oversize is increased.  

• The delta-strain is linearly related to the pulsatility of the ring. 

• As the ratio of ‘wire diameter’ to ‘ring diameter’ is increased, mean-strains and 

delta-strains in cycling increase proportionally.  

While the work of this Chapter provides some insight into the general behaviour of a ring-

stent, and some strain relevant trends which are useful to know from a design perspective, 

the more advanced modelling of Chapter 7 is required to assess the true loading applied to 

artery and the magnitudes of cyclic motion experienced by rings. 
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6  
FEA for Ring Fatigue 
Testing 
The purpose of physical fatigue testing on Nitinol ring components is to characterise the 

fatigue resistance of Nitinol wire specifically under the type of loading experienced in situ, 

so the data can therefore be used in predictive design to develop fatigue resistant devices.  

The nature of response of a ring whilst in the deployed ‘saddle shape’ in a vessel is primarily 

bending as opposed to uniaxial or shearing for example.  As well as other factors discussed 

in section 2.3, the high cycle fatigue life of a material is dependent on the surface finish of 

the material because imperfections local to the surface are a primary source of fatigue 

crack nucleation.  A chemically etched surface finish on the current ring wire has been 

found through rotary bend testing [31] to provide the superior fatigue life capability in 

comparison to other treatments.  The limitation of rotary bend fatigue testing is that the 

applied strain amplitudes oscillate about a zero mean-strain, i.e. a point on the surface of 

the wire from which a fatigue crack may develop is cycling between tension and 

compression.  In contrast, the most fatigue susceptible zones of the Nitinol rings (peaks and 

valleys) are at significant levels of mean-strain, often in the superelastic region (>~1.1% for 

the constitutive model with ‘improved parameters’ specified in 3.3), as has been found in 

section 5.4.1.  It is therefore necessary to carry out cyclic fatigue testing on rings in a 

representative loading which implies non-zero mean-strain levels to the ring.  A range of 

mean-strain and delta-strains should be investigated, aiming to find the limits at which the 

Nitinol wire will survive the cyclic loading.  It is also important that the typical stent ring 

history is considered and applied to the empirical test ring, most notably: the high 

compaction strains and any heat cycles in manufacture. 



140 
 

A finite element simulation allows accurate assessment of the material strain condition, 

and will be used to determine the mean-strain levels and delta-strain levels of rings being 

fatigue tested at various level of ‘saddle shape’ deformation and pulsatile motion. 

The physical ring fatigue test programme, described in 6.1, was run at Vascutek in 2015.  

The study design, protocol development and results analysis were overseen by R.Brodie 

and are documented internally at the company [105], [106].  The output from the finite 

element analysis, described in 6.2 and 6.3, was used to define the rings’ target levels of 

‘saddle shape’ and cyclic deformations, and then to assess the strains as a result of the 

actual levels (deviation from target specifications could occur during running of the tests).  

The ultimate output from the combined physical testing and FEA was a fatigue limit defined 

in terms of a ‘constant-life’ diagram as discussed later in 6.4, fully reported at Vascutek 

[106]. 

6.1 The Nitinol Ring Physical Fatigue Test 

The method used by Vascutek to fatigue test a ring involves deploying from a compacted 

state (see Figure 76) to a ‘saddle shape’ held by polyethylene fibre lines, connected to an 

electromagnetically driven vibrator head at the top and a fixed connection at the bottom 

(see Figure 77).  It is acknowledged that this setup does not apply a predominantly radial 

Figure 76 - Fatigue sample in compacted state 
prior to deployment 
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loading to the ring, as experienced from the interaction with the vessel in situ, however as 

explained above it is deemed appropriate as the geometric position and the predominant 

loading mechanism are consistent. 

The test method for each test sample, fully described by protocol [105], involves the 

following aspects: 

• Compaction of the ring into a PTFE clear sheath three times to represent the worst-

case number of compactions which can be applied to a device during manufacture. 

• Subjecting the compacted ring to three thermal cycles from room temperature to 

55˚C to replicate worst case sterilisation heat cycles. 

• A fatigue ring sample is attached to the vibrator setup in the sheathed position, 

released from the sheath and adjusted to the desired ‘saddle height’ for targeting a 

specific mean-strain level.  

• The vibrator heads’ frequency is dictated by the mains supply frequency which is 

maintained to a long-term nominal value of 50Hz [107].  Variable transformers 

Figure 77 - A Nitinol ring in a saddle shape in fatigue test rig 
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control the input voltage load which subsequently governs the amplitude of the 

displacement on the suspended ring. 

• The vibrating rings are submerged in water throughout for the main purpose of 

controlling temperature to be 37˚C. 

• The motion of the ring is measured using a high-speed camera, running at 500 FPS.  

The most practical measurement with the equipment is the determination of the 

change in diameter of the ring from peak to peak, and valley to valley.  The delta 

diameter is related to the delta-strain levels by assessing the FE data. 

• Scheduled monitoring was carried out and failures (individual strand or full bundle) 

were recorded. 

• Tests which successfully withstood the target 400 million cycles were stopped, and 

deemed as a ‘pass’. 

The inherent variability of fatigue life under constant conditions requires multiple samples 

per strain condition.  The strain condition is composed of the ‘mean-strain’ and ‘delta-

strain’ as described above.  Numerous levels of both mean and delta-strain are required to 

properly characterise the strain based fatigue life of Nitinol wire in the described loading 

condition. 

The particular ring which has been used by Vascutek for physical fatigue test is the OLB30 

R1 ring: a twelve turn, 0.22mm wire manufactured to an inner diameter of 27.7mm. 

The deformation and motion of a fatigue test is measured from individual frames captured 

on a high speed camera (approx. 500 FPS) using the appropriate software which can make a 

linear measurement calibrated against a pin gauge which is placed in the central axis of the 

test [105] (see Figure 78).  The key measurements recorded are the diameters from peak-

to-peak, and valley-to-valley.  The protocol specifies capturing the minimum and maximum 

diameters from 5 consecutive cycles captured by the high speed camera.  During setup and 

checking of samples, the minimum and maximum diameters could be specified to a 

tolerance of ±0.1mm.  A test method validation, including a repeatability and 

reproducibility was carried out on the first 20 samples. 
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6.2 Simulation Method 

The same type of static Newton-Raphson-method solver within ‘Abaqus Standard’ as 

described in section 4.1.3, was used to simulate the motion of a single turn of the ring 

through the compaction and ten fatigue test cycles.  As described previously, using a static 

analysis method assumes that the motion due to inertia can be ignored and the state of the 

structure is solved to be in approximate equilibrium at every incremental solution point.  

The stress-strain cyclic state (in simulation) due to global hysteresis is shown to have 

sufficiently converged from the effect of compaction after ten cycles so that subsequent 

cycles are not necessary.  The convergence is demonstrated in Figure 79 which shows the 

strain at maximum extension of each cycle, from the node which is showing highest delta-

strain, on a simulation from the study.  The calculated delta-strain output converges to a 

negligible variance from previous cycle. 

A sensitivity study was conducted to understand the effect of variations in both the physical 

setup, and simulation strategies.  Subsequently, after deciding the most appropriate 

modelling strategy, numerous simulations of the OLB30 proximal ring were run to capture 

the range of possible setup configurations in terms of saddle height (analogous to mean-

strain). 

 

 
Figure 78 - The outer diameter, peak to peak, being measured with image measuring software.  
The image was captured as a single frame from high speed camera. 
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The following are key assumptions for modelling of the ring fatigue test:  

• Simulations have been run with a single strand of wire rather than the whole 

bundle because the single strand will still deform to the desired saddle shape and 

the effect of strand position in the bundle has been determined from a sensitivity 

study described in 6.3.3. 

• The dynamic inertia effects of the oscillating system will have a negligible effect on 

the resulting delta-strains.  Therefore, the deformation steps have been simulated 

using static analysis steps, approximating equilibrium at solution points. 

• The long-term material cyclic state is assumed constant, i.e. there is no ‘functional 

fatigue’, and it is therefore valid to use the constitutive model for Nitinol which 

does not vary with the number of cycles.  (Variation in global response is seen over 

a small number of initial cycles due to the hysteresis behaviour.) 

• The polyethylene fibre lines are approximated as simple rigid connector elements 

only translating forces in the axial direction of the connection. 

The details of the analysis are outlined in the following sections (6.2.1-6.2.6): 

6.2.1 Model Configuration and Steps 

The quarter turn method described in 4.2 for a single turn of Nitinol wire has been utilised 

to represent a single turn of the OLB30 R1.  As with the previously described methodology 

the first step is to form the ring from straight wire.  The central node of the wire model is 

pinned in the X-direction to prevent rigid body motion during this initial step.  The 

Figure 79 - Strain level convergence for the node with highest delta 
strain, from one fatigue simulation.  Strain values are from maximum 
extension on each cycle. 
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polyethylene lines connecting the ring to the vibrator are modelled as two connector 

elements with negligible axial flexibility: the first between the quarter turn valley and a 

fixed point representing the bottom attachment point (see ‘Fixed Point’ in Figure 80) and 

the second between the quarter ring peak and the vibrator head connection point (see ‘Pull 

Point’ in Figure 80).  The displacement during cycling has been enforced to the top ‘Pull 

Point’.  The ‘Fixed Point’ and ‘Pull Point’ are at a distance of 6.25mm from the X-axis in the 

Z and Y directions respectively, which represents the radius of the vibrator head cylinder 

which the connector lines are threaded through.  

Prior to the cycling steps, an approximation of the compaction state is applied to the single 

turn ring using the ‘Adjustable Rigid Torus’ (ART) add-on described in 4.2.3.  To ensure that 

the compacted state of the quarter turn model is resembled properly; two artificial contact 

surfaces require to be employed to act as the plane at which the two peaks or two valleys 

would contact each other (had a full ring been modelled).  The connector lines in the model 

are only activated at the end of the compaction step. 

The steps of the simulation are summarised in the following: 

• Step 1:  The quarter ring model is formed from straight Nitinol wire 

Figure 80 - a) Fatigue model quarter turn setup including wire, pull points, connectors and contact 
surfaces b) A deformed position of quarter turn   c) Visualisation mirrors enabled to view full turn 
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• Step 2:  Opposing forces at peak and valley are applied (X-axis direction) to pull the 

ring into a saddle shape 

• Step 3:  Compaction step with ‘ART’ Add-on 

• Step 4:  Release compaction and activate connector elements to hold ring between 

the ‘pull point’ and the ‘fixed point’ 

• Step 5:  Move the ‘Pull-Point’ to initial cycling position 

• Step 6-15: Cyclic steps: the pull point is controlled to oscillate over a 3mm range 

which would capture a large enough delta-strain value for each configuration 

The application and status of boundary conditions throughout the above steps are 

described in 6.2.3.  

6.2.2 Material Properties 

The Nitinol ring wire properties were modelled using the UMAT constitutive model with the 

model parameters of the ‘improved model’ as specified in 3.3. 

6.2.3 Loads and Boundary Conditions (initial and through each step) 

The status of loads, boundary conditions and the ‘ART’ add-on, throughout the simulation 

steps, are provided in Table 13. 

6.2.4 Discretization (meshing) 

Initially the same 32 element cross-section mesh was used as described in 4.2.2.  However, 

a slightly finer mesh (in cross-section) was applied later, increasing the number of cross-

sectional elements from 32 to 60.  This was deemed necessary after full analysis of various 

configurations with the 32 element model revealed that while the mesh is refined enough 

for delta-strains, the mean-strain value at the node with highest delta-strain may not be 

accurate with a less refined mesh (the change in delta-strain from the node of focus to 

adjacent was small, however the mean-strain change was significant).  The sensitivity study 

was carried out with the 32 element version. 

6.2.5 Numerical Implementation (Solution Technique and Controls) 

A multistep, incremental ‘static general’ structural analysis in Abaqus Standard (6.13-4) was 

implemented with ‘large displacement formulation’ active to account for non-linearities.  

The ‘ART’ subroutine was used to provide the cylindrical, variable diameter, contact surface 
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for the compaction simulation.  Solution was achieved using the direct Newton-Raphson 

method for each increment, with unsymmetrical matrix storage to accommodate the 

asymmetry of Nitinol’s stiffness.  The default arbitrary step time of one second was applied 

for each step, during which loads are applied linearly.  Automatic incrementation was 

applied with controls on the initial, minimum and maximum increment size tailored for 

each step.   

The convergence criteria for each equilibrium iteration are kept to the default as follows: 

• the residual force at all nodes must be less than 0.005 of the time-average nodal 

force in the model 

• each nodal displacement correction of an iteration must be <1% of the incremental 

displacement, except in the case that the increment has been linear (defined by the 

residual force < 10-8 of the time-averaged nodal force) 

Table 13 - A summary of the status of each boundary condition through the ring fatigue simulation 

Step Boundary Condition Status 

-Central node 
of the Nitinol 
wire pinned 
in X-direction  

-‘Pull point’ is 
held in Y and 
Z directions.  
-The ‘Fixed 
Point’ is held 
in all 
directions  
 

-Displacement 
conditions 
applied to the 
wire end faces’ 
nodes to form 
quarter ring 

-‘Pull Point’ 
displacement/ 
velocity 
boundary 
condition in X 
direction 

The ‘ART’ 
add-on is 
used to 
compact the 
ring 

Initial State Applied Applied Inactive Fixed Inactive 

Step1: Form 
Ring 
 

Propagated Propagated Applied Propagated Inactive 

Step2: Pull ring 
into ‘saddle 
shape’ 

Propagated Propagated Propagated Propagated Inactive 

Step3: 
Compaction 
 

Inactive Propagated Propagated Propagated Applied 

Step4: Release 
to hold rings 
with ‘Pull 
Point’ and 
‘Fixed Point’ 

Inactive Propagated Propagated Propagated Released 

Step5:  Move 
‘Pull Point’ to 
initial position 

Inactive Propagated Propagated Displaced to 
initial cyclic 
position 

Inactive 

Step6-15: 
Cyclic motion 
 

Inactive Propagated Propagated Displacement 
cycled 

Inactive 
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6.2.6 Validation 

The validation of modelling Nitinol wire in bending is covered in the parallel work of Brodie 

[26] in which the load-displacement response as well as surface strain levels are validated.  

At the higher ‘full system’ level of validation: the cyclic loading of a single turn Nitinol ring 

into a saddle shape has been covered in 4.5.3. 

6.3 FE Simulation Results 

6.3.1 General Strain Location Analysis 

When loaded as described into the ‘saddle shape’ the areas of the ring with highest strain 

are at the ‘peaks’ and ‘valleys’.  These zones of highest strains may not necessarily 

correspond to the highest delta-strains when subject to the cyclic loading.  Therefore, it was 

necessary to conduct an initial analysis in order to understand where delta-strain results 

should be extracted from for all fatigue simulation cases.   The variation of delta-strain in 

the proximity of the peak/valley was assessed in both the circumferential direction as well 

as along the wire surface longitudinally.  The mean-strain and corresponding delta-strain 

results are assessed at individual nodal positions along a circumferential ‘path’ at the 

peak/valley as well as a longitudinal path which originated at the node with highest mean-

strain: shown in Figure 81. 

This initial analysis was carried out for three different fatigue test configurations: from a flat 

ring with low maximum mean-strain of ~1% to a high saddle shape ring with a maximum 

Figure 81 - Left: Peak/valley of fatigue ring with circumferential node path assessed for strain analysis. Right: 
peak/valley of fatigue ring with the longitudinal node path highlighted, which originates at the highest 
mean-strain. 
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mean-strain of ~6% and an average configuration with a maximum mean-strain of ~3.4%, as 

shown in Figure 82.  

For the average case (mean-strain of ~3.4%), the mean-strain and delta-strain values for 

individual nodes have been co-plotted against circumferential position and longitudinal 

position in Figure 83 and Figure 84 respectively.  Both plots suggest that the nodes with the 

highest mean-strain also experience the highest delta-strain.  This result was also observed 

for the ‘high saddle-shape’ case (~6% mean-strain). 

a) b) c) 

Figure 82 - Single strand ring fatigue models at various level of saddle height, mid-cycle.  The highest 
strain levels at the positions shown are approximately: 6%, 3.4% and 1% for a), b) and c) respectively. 

Figure 83 - Plot of mean-strain and delta-strain levels against the 
circumferential position around wire at peak/valley - ~3.4% mean-strain 
position 
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However, for the low saddle-shape ring (~1% mean-strain) the above simple relationship 

only stood in the longitudinal plot: the circumferential results for the low saddle-shape 

show that the highest mean-strain and delta-strain do not occur at the same nodal position 

as displayed in Figure 85.  This result differing from the higher saddle-shape configurations 

is logically acceptable: in the low saddle-shape, the plane on which the peak/valley has 

experienced the most bending resulting in the highest mean-strain is not the same plane at 

Figure 84 - Plot of mean-strain and delta-strain at peak/valley circumferential 
nodes for the low saddle-shape (~1% mean-strain) configuration.  Delta-strain 
can be seen to be ‘out-of-phase’ with mean-strain. 

Figure 85 - Plot of mean-strain and delta-strain at peak/valley 
circumferential nodes for the low saddle-shape (~1% mean-strain) 
configuration.  Delta-strain can be seen to be ‘out-of-phase’ with mean-
strain 
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which bending due to cyclic loading from the connector strings occurs.  Essentially; for low 

saddle-shape fatigue simulations it cannot be assumed that the highest delta-strain due to 

cyclic loading occurs at the node with the highest mean-strain.  The results have suggested 

that delta-strain levels do reduce with distance from peak/valley in the longitudinal 

direction.  For the final fatigue simulations, described in 6.3.4, a Python script was 

developed to assess the mean-strain and delta-strains at all nodes on the surface of the ring 

model.   

6.3.2 Initial Analysis of Strain through the Simulation 

Due to the fatigue ring being loaded essentially in the ‘axial direction’, which is the axis on 

which ‘ring saddle height’ would be measured; it is logical to initially consider the 

component strain levels against this dimension.  The maximum strain in the ring is plotted 

against ring height for the loading, compaction, release and unloading steps in Figure 86 

(black line/black dashed line).  The maximum delta-strains are also plotted (red lines) from 

the cyclic loading at various saddle heights.  The cyclic loading results were extracted from 

separate simulations which were all commenced from the same compacted state.  As 

depicted by the separation between black and red lines: it is only at low levels of mean-

strain (low saddle-shape) that the high delta-strains occur below the maximum strain in the 

model (as was found in section 6.3.1). 

 
Figure 86 – Plot of strain varying with the position of the 'pull point' from FE simulation of ring fatigue 
test carried out at numerous levels of mean-strain 
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There is a significant level of hysteresis in the system; due not only to the stress-strain 

behaviour of Nitinol, but also the difference in the loading and unloading method: unload 

from compaction was not simply a reversal of the loading method. 

Concentrating on the various cyclic loading simulations it can be seen that the gradient of 

strain-to-displacement varies slightly; tending to increase with higher ring saddle height.  

With the exception of the cyclic simulations at the highest mean-strain, the strain-

displacement relation for each individual simulation is relatively linear without hysteresis.  

The reason for hysteresis occurring at the highest mean-strain levels can be explained by 

considering the fundamental stress-strain relation of Nitinol: the change in strain is large 

enough to span from lower plateau to upper plateau, at which point subsequent straining 

will initiate a hysteresis material response at that position as well as a global load-deflection 

hysteresis in the model.  The level of delta-strain which would cause hysteresis in the 

material model varies from 0.54% assuming the austenite modulus, to 1.02% assuming the 

Martensite modulus.  The lower mean-strain cyclic simulations do not span a large enough 

strain to initiate a hysteretic response.  It should be noted however, that the levels of 

deflection applied to the ring in these simulations induce higher than required delta-strains.  

The final simulation (section 6.3.4), post sensitivity study (section 6.3.3), for determining 

fatigue life  does not show hysteresis in the cyclic phases as the study was limited to a more 

representative range of mean-strains (<4%). 

6.3.3 Sensitivity Studies 

Variations in the physical setup as well as in the modelling assumptions were reason 

enough to warrant a sensitivity study to assess the potential effect on the results.  The sole 

output from the modelling which will be used is the maximum rate of change of strain with 

respect to the diameter of the ring measured peak-to-peak as described in 6.1.  This rate of 

change will be referred to as the ‘strain gradient’ in the following, and is the key measure of 

variability in the sensitivity studies. 

6.3.3.1 Rotational Constraint Sensitivity 

The combination of tension in the connection lines with a level of friction between line and 

ring will provide some level of constraint on the rotation of the bundle in these zones.  The 

two extremes have been probed: no torsional constraint and full torsional constraint (at the 

peak and valley of the quarter wire strand) have been modelled.  Constraining torsion at 
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the peak and valley of quarter wire induces significantly greater delta-strains or ‘strain 

gradient’ (40% greater).  The torsional constraint will not be used: wire ends will be free to 

rotate as this is the conservative approach for developing a delta-strain limit from this 

perspective. 

6.3.3.2 Connector Line Length Sensitivity 

The connector lengths are variable on the physical samples due to the intricacy of manually 

tying the rings to the vibrator head cylinders, resulting in differing levels of slack when the 

compacted ring is connected.  Once the sheath is removed the separation of the top and 

bottom vibrator heads are adjusted to attain the desired initial ring diameter.  This ‘cylinder 

spacing’ between top and bottom has been measured from the initial round of testing to 

vary by 31-66mm for low saddle shape tests, 37-66mm for intermediate saddle shape tests 

and 42-67mm for high saddle shape tests. 

The above extremes of connector line length, simulated for three saddle shape heights, to 

investigate the effect on strain gradient, resulted in higher values for the longer connector 

lines in all cases by 2.6%, 4.4% and 17.8% (low to high saddle respectively).  

Modelling the shorter line length extreme will be conservative in this case because it will 

result in: lower strain gradients; therefore lower delta-strains for a given movement; and 

subsequently a lower determined delta-strain limit from the fatigue testing. 

6.3.3.3 Connector Line Asymmetry Sensitivity 

For the same reason as given in 6.3.3.2 the length of connector lines can vary above and 

below the ring.  Analysing line length measurements of 48 samples found a maximum 

discrepancy of 58% between top and bottom connector.  This ratio of asymmetry was 

applied to simulations at a low, medium and high saddle shapes to assess the potential 

effect on predicting delta-strain levels from change in diameter.  It should be noted that the 

overall distance between the bottom and top connection point was constant: defined to be 

equal to the worst case ‘shorter length’ found in 6.3.3.2. 

The asymmetric connector lines have the following affects: 

• A difference in the angle of the resulting load applied to the peaks/valleys 

• Asymmetrical ring in terms of average peak-peak and average valley-valley 

distances 
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• Asymmetry in terms of the diameter change in a cycle measured at peak-peak or 

valley-valley 

• Slight asymmetry in delta-strain from peak to valley 

For each of these asymmetric cases, two ‘strain gradients’ must be considered: one derived 

from the diameter measures at peak and one from measures at valley.  The delta-strain is 

taken from the single node with the highest result in the whole quarter model, as with 

previous studies.  The resulting strain gradients are compared in Table 14. 

Considering that using the lowest strain gradient is the ‘worst case’ for defining a delta-

strain limit – the above results suggest that at worst the low saddle height case with 

extreme asymmetry would result in a lower delta-strain by -5.6%.  As this will only be for a 

few extremely asymmetric cases at low saddle shape, it was decided to assume 

symmetrical line lengths for the further fatigue test simulations.  The measured outer 

diameters covered by this specific sensitivity study range from 16.34 – 28.46mm.  Extreme 

cases which fall out with this category can be assessed on an individual basis if necessary. 

6.3.3.4 Inner-Outer Strand Sensitivity and Effect of Manufacturing 

Tolerance 

The design specification inner diameter, which is the key manufacturing parameter, for the 

OLB30 ring is 27.7mm.  Using the ‘circle packing’ assumption a bundle diameter of 0.89mm 

is approximated, which subsequently results in a mean ring diameter of 28.59mm and 

outer diameter of 29.48mm.  The diameter of the Nitinol wire used in the subject rings is 

0.22mm which means an inner, mean or outer turn in the bundle would have a centre line 

at 27.92mm, 28.59 and 29.26mm respectively (which assumes no twist in the bundle 

through the circumferential length).  Simulations with these three centreline diameters 

lead to strain gradients of: 0.1202%/mm, 0.1123%/mm and 0.1053%/mm respectively and 

mean-strain varies from 1.53%, 1.56% to 1.58% respectively. 

Table 14 - Sensitivity results from asymmetric connector line study 

Saddle Height Symmetrical S.Grad  Asymmetrical S.Grad 
valleys | % var. from 
Symm 

Asymmetrical S.Grad 
peaks| % var. from 
Symm 

Low 0.172 0.178 | +3.8% 0.162 | -5.6% 

Medium 0.110 0.115 | +4.6% 0.122 | +10.7% 

High 0.112 0.107 | -4.5% 0.121 | +7.5% 
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The manufacturing tolerance on the ID of the ring bundle is defined as +/-0.3mm.  The 

effect of this tolerance was simulated by applying the extremes to the mean strand in the 

bundle; i.e. 28.29mm and 28.89mm which yield delta-strain gradient results of 

0.1157%/mm and 0.1090%/mm respectively.  This represents a variation of +/-3.0% to 

delta-strain gradient and therefore delta-strain result. 

As expected, a turn simulated at inner diameter yields higher delta-strain, however 

whether these delta-strains occur in the physical sample depends on the assumption that 

there is no twist within the bundle, i.e. turns moving from inner to outer position along the 

quarter length.  On the contrary, using the OD strand to extract results was judged as too 

conservative because it is a certainty that there are wire strands in the bundle which do not 

occur at the outer extreme.  It was therefore decided to simulate the full range of fatigue 

testing using a strand at mean diameter. 

6.3.3.5 Location of Tie Connection to Ring 

The polyethylene connector lines are wrapped around the ‘eyelet’ components at the 

peak/valley of the ring in a manner which results in the loading points being located slightly 

off-set from the apex of the peak/valley.  This off-set was measured from 4 peak / valley 

samples to be approximately 0.85mm.  Simulating a ring using these off-set positions as 

connector points (see Figure 87) decreases the delta-strain gradient from 0.1194%/mm to 

0.1097%/mm: a relative decrease of 8.07%.  As a result the methodology using an ‘off-set’ 

connection point will be used as it is the conservative approach from this perspective as 

well as considered to be a better assumption of the true loading. 

 
Figure 87 - Imaging showing the offset connection point of line to ring: a) the simulated quarter b) 
visualisation mirrors enabled to show full turn 
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6.3.3.6 Compaction Level Sensitivity 

The diameter of sheath used empirically was 14Fr (‘French, Fr’ is a unit of length used in 

medicine. 1mm = 3Fr) which equates to 4.67mm.  Considering the ring bundle in this 

compacted diameter; some turns will essentially be compacted to a smaller diameter.  

Diameters of 3.34mm and 4.00mm respectively represent a theoretical worst-case and an 

intermediate compaction which could be considered representative for the ‘mean strand’ 

in the bundle. 

Despite the variation in maximum compaction strain simulated (8.22%, 8.71% and 9.40%), 

the effect on ‘strain gradient’ is small: 0.1206%/mm, 0.1194%/mm, 0.1184%/mm.  This 

represents a percentage variance on final delta-strain values of +/- <1% from the mean case 

of compacting to 4.00mm diameter.  Interestingly the final mean-strain value is affected 

considerably by the compaction level simulated; smaller compaction diameter results in 

higher mean-strain.  The mean-strain levels from completion of the final cycle were 1.86%, 

1.95% and 2.07% from high compaction diameter to low.   

The average 4.00mm compaction diameter will be used in further studies as it is delta-

strain which is of main focus, as opposed to mean-strain. 

A further sensitivity on the compaction simulation method was carried out to assess the 

impact of the level of ‘saddle pull’ applied to the ring prior to full compaction.  The process 

of compaction is substantially approximated in simulation such that; rather than the ring 

being pulled into a tube, the ring is initially folded to an arbitrary level of saddle shape 

before being compacted using the ‘ART’ user subroutine rigid surface.  The sensitivity of 

strain results to the initial arbitrary level of saddle shape was probed by comparing results 

from two cases of initial (pre-compaction) saddle heights of 10mm and 15mm.  The effect 

on ‘strain gradient’ was negligible: 0.2% variance. 

6.3.3.7 Summary of Sensitivity Studies 

As a result of the above sensitivity studies (6.3.3.1-6.3.3.6) the main fatigue simulations at 

various levels of saddle shape will use the following approach: 

• A torsional constraint on quarter turn ends will not be used. 

• Modelling connection lines at the short extreme was shown to be conservative, and 

is directly related to the measured ‘cylinder spacing’.  The shortest cylinder spacing 
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measured varied from 31mm to 42mm for low to high saddle shapes respectively.  

The value assumed will be calculated by linear interpolation between these values. 

• Line lengths will be assumed symmetrical above and below the ring (same length). 

• The bundle mean diameter strand will be simulated. 

• The connection lines simulated will connect with the ring at 0.85mm from the 

peak/valley apex. 

• The average compaction diameter (on a strand in the bundle) of 4.00mm will be 

used, as the variance was negligible. 

• Initial saddle pull of 15mm will be used as this reduced the number of analysis 

increments slightly compared to 10mm, while having no significant impact on 

results. 

6.3.4 Final Delta-Strain vs Ring Diameter Analysis 

As described in 6.1 the most practical method of measuring the deformation of the ring in 

the empirical fatigue test is to measure the peak-to-peak diameter using a digital high-

speed camera linked to a computer with imaging measurement software.  The ultimate 

purpose of this fatigue simulation is to provide the relation between the peak-peak 

diameter measurements and the delta-strain state in the ring.  Thus, the cyclic strain values 

will now be plotted against the outer ring diameter.  As the FE model only represents a 

mean turn in the ring bundle, for the purpose of measuring the empirical test, the outer 

diameter is estimated by adding the value of the theoretical bundle diameter (a radius on 

each side). 

It was found in 6.3.1 that the delta-strains tend to a higher value towards the peaks and the 

valleys but do not necessarily occur at the node with the highest mean-strain value.  Also, 

from the sensitivity study investigating the point of connection to the ring (6.3.3.5) it was 

decided to simulate tests with the connection lines joining the ring turn at slight offset 

distance from the apex; this can shift the location of highest delta-strain to a node offset 

from the apex as well.  For both reasons mentioned it was required to assess all surface 

nodes in the peak/valley region to identify the highest delta-strain.  A Python script was 

created for post-processing which would calculate the delta-strain and mean-strain for 

every node and report the highest of both cases – not necessarily the same node. 
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The resulting strain vs diameter information, extracted from cyclic simulations at various 

mean-strains is plotted in Figure 88.  Strain values are plotted from two nodes for each 

cyclic simulation: the node experiencing the highest delta-strain and the node experiencing 

the highest mean-strain.  For most cases the strain gradient is very similar for both nodes, 

however at the low ‘saddle shape’ the node with highest mean-strain clearly has a lower 

gradient.   

The linear gradients (change in strain relative to diameter) which best represent the data 

plotted have been extracted from the raw data and are used to relate ring movement to 

delta-strain.  These gradients are only valid for changes in ring diameter equal or smaller 

than those simulated.  However, the simulations covered a range adequate for the ring 

fatigue test plan. 

Associating these ‘strain-gradients’ with the ring’s initial, or ‘open’, outer diameter (before 

it is contracted in the first cycle) allows the strain state of any physical fatigue configuration 

to be calculated within the ranges analysed.  This fundamentally required data has been 

extracted and is illustrated in the form of ‘strain-gradient’ against ‘Initial/Open OD’ in 

Figure 89.  Noting that the ‘strain-gradient’ data values are negative, the plot reveals that 

the delta-strain per millimetre change in ring diameter is greatest for the flattest ring (high 

Figure 88 - Final Strain vs Diameter plot relating the delta-strain to change in diameter for various 
mean-strain levels for the ‘B30R1’ fatigue test ring 
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OD), and will be minimal at OD value of approximately 21mm, before increasing again 

slightly for higher saddle shape (low OD) configurations. 

For a given initial ring OD, a specific ‘strain-gradient’ can be interpolated from the data 

acquired and multiplied by the cyclic change in diameter to estimate the strain amplitude 

or ‘delta-strain’ at the peak/valley.  A spreadsheet based calculation tool has been 

produced which can give the strain state of a ring given the upper and lower diameters, or 

vice versa: to provide the diameters for the desired strain state. 

As an example: the diameters defining the pulsatile motion of the ring required for specific 

mean-strains of 1%,2%,3% and delta-strains of 0.1%,0.2%,0.3% have been calculated using 

the spreadsheet tool and are shown in Table 15. 

Table 15 - Diameters defining the pulsatile motion required for a range of strain conditions for 
fatigue testing of an OLB30 R1 ring, calculated using a numerical tool based on FEA analysis of a 
range of setup conditions 

 Diameter Range (Peak-Peak/Valley-Valley) for various strain states 
for OLB30 R1 fatigue ring (mm) 

ΔƐ = 0.1% ΔƐ = 0.2% ΔƐ = 0.3% 

mean Ɛ = 1% 26.61 – 27.37 26.12 – 27.57 25.69 – 27.78 

mean Ɛ = 2% 23.50 – 24.46 22.68 – 24.60 21.88 – 24.75 

mean Ɛ = 3% 20.89 – 21.81 20.08 – 21.94 19.25 – 22.06 

Figure 89 - Plot showing the variation of 'Strain Gradient' with initial ring 
outer diameter.  'Strain Gradient' can be used to calculate the maximum 
strain amplitudes in the empirical ring fatigue testing. 
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The FE analysis described here was used to provide target ring deflections to the empirical 

testing [105].  The ring motions during the testing were monitored on regular basis, as they 

were prone to gradually acquiring some difference from the target.  Hence, the FE analysis 

and spreadsheet tool mentioned was also used post-testing to calculate the average delta-

strains of each ring sample during the tests.  The resulting delta-strain fatigue limit results 

reported (in [106]) are shown below (section 6.4). 

6.4 The ‘Strain-Life’ Fatigue Limit 

The number of cycles defined as a fatigue limit ‘pass’ in the physical testing was 400M, 

which is slightly more than the 380M defined in standards as discussed in 2.3.2.  The ring 

fatigue tests carried out at Vascutek by Brodie [105], [106] were setup at three levels of 

mean-strain and six levels of delta-strain, as shown in Figure 90.  The number of repeat 

samples per strain condition varied because it was dependent on the progress of the 

testing, with the aim to focus on the delta-strain levels around the failure limit.  (Once a 

high delta-strain sample had failed before reaching the target number of cycles, there 

would be no purpose in repeating it.)  The protocol involved attaining a sample size of 5 for 

the delta-strain levels focused on the fatigue failure limit, at each mean-strain level.  The 

number of test samples achieved per mean-strain exceeded the minimum requirement for 

Figure 90 - Sample plan from Vascutek Report: RD 1601R Nitinol Ring Fatigue Material 
Characterisation Testing Report [106]. 
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‘exploratory research’ of 15, based on a statistical justification following guidelines of BS 

ISO 12107 [108].  Ring samples were constructed from three different batches of wire, 

indicated by the ‘GRN number’ in Figure 90, and it was an aim that all the key strain 

configurations had at least one sample from each wire batch. 

The ‘pass’ and ‘fail’ results of individual ring fatigue tests are depicted in Figure 91 by 

square and cross symbols respectively.  The dashed line represents the constant amplitude 

‘strain-life’ fatigue limit: all ring fatigue tests on and below this line passed the 400M cycles 

target.  Linear interpolation was assumed for the limit between the ‘low’, ’medium’ and 

‘high’ mean-strain levels.  This fatigue limit can be used with FEA to assess the safety of 

ring-stents under in-vivo cyclic motion by comparing the output delta-strains from such 

simulations with the delta-strain limit defined in Figure 91. 

 

6.5 Summary of Chapter 6 

The current ring fatigue test, used to define ‘strain-life’ based fatigue limits, has been 

modelled using the single-turn approach.  A thorough sensitivity study was conducted to 

assess the influence of the following modelling assumptions on the levels of delta-strain: 

Figure 91 - The 'Constant-Life' fatigue limit diagram defined from a programme of physical ring-fatigue 
testing with FEA of strain levels, reproduced from [106]. 
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rotational constraints, connector line length, asymmetry in connector lines, position of the 

strand in bundle and ring diameter tolerance, location of tie connectors and level of 

compaction.  However, the overall result of applying the worst-case scenario for most of 

these options could be an overly conservative result, i.e. the delta-strain limits could 

perhaps be increased with more detailed modelling.  Nevertheless, the above simulation 

strategy has been successfully applied to the physical ring fatigue testing to define the 

strain-life limit presented in Figure 91, which can be used to assess the fatigue safety of 

ring-stent devices under cyclic motion in vessel. 
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7  
Anaconda Ring-Stent in 
Langewouters’ Artery 
Simulations  
The work in this chapter applies the methodology described in 4.4 to study the ‘full bundle’ 

ring-stent interacting with the non-linear aortic vessel model under pulsatile pressure for 

the Anaconda proximal rings (R1 and R2) from all device sizes.  The purpose is to assess the 

cyclic ring motion and delta-strains for fatigue assessment, the magnitudes and distribution 

of the radial loading applied to the vessel, and how these factors vary with device oversize.  

Prior to this work, the strengths of ring-stents were not quantified in terms of units of force 

in the radial direction.  Quantifying the radial force of Anaconda rings will allow comparison 

with some competitor devices and set a benchmark for future development.  The non-

linear mechanical response of aortic tissue has been modelled using data from 

Langewouters [47], as described in 4.3, which leads to levels of motion ‘damping’ as the 

load from the ring shifts the vessel to a stiffer zone of its pressure-diameter response curve.  

A comparison with a linear vessel is made to confirm that the damping is due to the non-

linearity of the vessel’s stiffness. 

A sensitivity study on the assumptions associated with the modelling methodology has 

been carried out on the OLB25 R2 ring specification (section 7.3).  The main study has been 

conducted at three oversize levels and three blood pressure ranges for each ring, and 

assuming a worst-case 52 year old abdominal aortic vessel model.  The details of the main 

study design are described in 7.4. 

Further parametric studies have been carried out on the mid-sized OLB28 rings to confirm 

the effect of artery age and also to probe the variation of delta-strains and radial force at 
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device oversize levels exaggerated beyond those recommended in Anaconda sizing chart 

(Appendix A), because it is known that this happens in practice [109]. 

7.1 Methodology and Model Definitions 

The modelling methodology employed is exactly as described in section 4.4 with the 

addition of further cyclic loading steps to allow different blood pressure ranges, 

representing different classifications of hypertension, to be probed.  The first blood 

pressure range is repeated for 10 cycles, as discussed in 4.4.3, with two subsequent 

pressure ranges repeated for 5 cycles each to ensure a settled result.   

Automatic stabilisation has been implemented in the compaction steps, the release step, 

and the first systolic and diastolic steps with a specified stabilisation damping factor of 

0.0001 (see 4.1.5) because the first two of these steps can exhibit local instabilities, 

generally due to change in contact statuses, for which the solver may not converge on a 

solution.  If the damping forces were significant in the solution of the last increment of the 

release step, the subsequent step (first systolic) could be initially unstable if the 

stabilisation was turned off abruptly, and therefore the stabilisation was continued for the 

first systolic and diastolic step, after which the solution is stable and linear enough to turn 

damping off. 

The ring specifications used to define each model (wire diameter, mean ring diameter and 

number of turns) are listed in Appendix I.  For each ring, three separate models were 

created with different nominal vessel diameters representing the lower, upper and the 

mean of the recommended vessel sizes per the sizing guide (Appendix A).  This was to 

probe the behaviour over the said recommended range.  The vessel models are designed to 

be at the nominally specified inner diameters at 100mmHg pressure.  The OLB21 and OLB23 

models are compacted to an inner sheath diameter of 6.2mm while the rest are 6.7mm. 

7.2 Post Processing Methodology 

The post-processing capabilities inbuilt within Abaqus include the ability to view deformed 

geometry at any simulation time point at which data was written to the ODB (output 

database) file, and contour plotting of requested measurables such as stress or strain.  

However Python scripts have been developed in order to analyse the multiple simulations, 

and the ring-stent specific measurables, in a quick and consistent manner.  The scripts are 

executed through Abaqus to open and read the ODB files, however output data can be 
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written to spreadsheet files (or other standard information formats).  For clarity of how the 

output measurables have been defined, the methodology of each post-processing script is 

described in the following: 

7.2.1 Radial Force Output 

For the relevant frame of the step at which radial force is to be calculated, the ‘contact 

normal force’ (CNORMF) field is extracted from the vessel nodes only.  The Cartesian results 

of this output parameter are converted to cylindrical system components (R,θ,Z), and all 

results in the radial direction are summed.  A post-processing script which executes this is 

provided in Appendix J. 

7.2.2 Ring Deformation and Pulsatility 

Cylindrical coordinates for every turn in a ring are extracted from the last frame of the 

relevant diastolic and systolic loading steps for peak, valley and mid-point of the quarter 

ring bundle (see Figure 92), by post processing Python script (Appendix K).  The ODB 

displacement data needs to be converted from Cartesian to cylindrical as above.   

Firstly, the ‘flat ring’ mean diameter of the ring is calculated by averaging flat ring mean 

diameter of all turns (refer to Figure 8).  The calculated flat ring mean diameter can be 

slightly different to the input mean diameter for the bundle with a turn count which could 

not be arranged perfectly symmetrically about that input mean diameter.  It was necessary 

Z 

R 

valley dia. 

peak dia. 

mid-point 
dia. 

Figure 92 - Depiction of a quarter ring model in deformed saddle 
shape position, showing peak, mid-point and valley diameters. 
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to calculate the exact flat ring mean diameter for comparison with deformed (saddle-

shape) diameters. 

At the end of systolic and diastolic steps of interest, nodes on the centreline of each turn at 

the peak and valley positions were queried for Z and R axis coordinates.  The mid-points of 

each turn were queried for R axis coordinate only.  At each of the quarter ring positions 

(peak, valley and mid-point) the nodal coordinates of the individual strands are averaged to 

give the full ring coordinates.  The average ring radius in the saddle-shape is collected for 

the peak, valley and mid-point.  The ring height (by centre of bundle) is calculated by 

subtracting the Z position of the valley from that of the peak.  The results from systolic and 

diastolic steps of interest are then used to calculate pulsatility. 

7.2.3 Delta-Strain Calculation 

As per fundamental Finite Element methodology; the strains in an element are calculated at 

the ‘integration points’, not at the surface or nodes.  Interpolation is used by Abaqus post-

processing to estimate strains at the nodes, however when calculating the principal strains 

a choice is presented in the order of calculation which can have small implication on the 

result of subsequent delta-strain calculation.  The approach implemented here was to 

extrapolate the strain data in vector form from the integration points to the nodes before 

calculating the maximum principal strain invariant from the three Cartesian components.  

The delta-strain state of a node was then calculated by subtracting the defined maximum 

principal strain at systolic from that at diastolic.  The ‘mean-strain’ was calculated by 

averaging these values.  This calculation was carried out on the full field of results (every 

node in each turn).  Subsequently, the Python algorithm (Appendix L) searches all nodes’ 

delta-strain results to find the highest absolute value (it could be negative), the mean-strain 

of that node, and also the node with the highest mean-strain in the ring. 

7.2.4 Radial Distribution 

To analyse the radial distribution, a Python script was created which extracts the 

components of CNORMF in cylindrical coordinate system for every node on the vessel 

surface which had a non-zero result (Appendix M).  The coordinates of these nodes are also 

extracted.  The radial contact forces could then be summed over specific zones.  The radial 

contact forces were summed over consecutive 10° segments in the quarter cylindrical 

volume.  The length of outer ring circumference in contact in each 10° segment was 
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calculated by assuming that the path of the ring in the circumferential direction follows a 

cosine wave of amplitude and wavelength specific to each case - both extracted from the 

simulation.  Mathcad 15.0 [110] was used to calculate the arc-length of the segments 

accordingly (Appendix N). 

7.3 Sensitivity Studies 

Sensitivity studies have been carried out to assess the sensitivity of analysis outputs to the 

following modelling assumptions and scenarios: 

• Level of coefficient of friction between ring and artery 

• Vessel thickness (keeping overall artery stiffness constant) 

• Sensitivity to the wire diameter specification tolerance 

• The effect of compaction on the resulting in vivo behaviour 

• The effect of constraining wire ends as was applied to represent the validation test 

An OLB25 R2 ring has been used for this study in a 23mm (at 100mmHg) diameter vessel 

with a blood pressure range of 70-130mmHg.  As described in 4.3, a worst-case 52-year-old 

vessel model has been implemented, assuming the worst case ‘high’ value of parameter p1.  

The datum vessel wall thickness modelled (undeformed state) is 1.4mm as per justification 

in 4.3.  The strain and radial force results of each sensitivity study are presented and 

discussed in the following (7.3.1-7.3.5). 

7.3.1 Coefficient of Friction (CoF) 

With a lack of definitive knowledge on the coefficient of friction between stent-graft 

(Nitinol or polymer graft material) and arterial tissue, it was decided to assess the 

sensitivity and adopt a worst-case approach for further analyses.  The coefficient of friction 

has been probed from an almost negligible value of 0.01, to a relatively high value of 0.40.  

A completely frictionless simulation was not probed because it can be more susceptible to 

instabilities. 

The results in Figure 93 for the OLB25 R2 ring, show that the resulting delta-strain value is 

highest at the lowest CoF value (∆ε = 0.0314% at CoF=0.01), reduces to a minimum for the 

case of CoF=0.2, before increasing to 0.0303% at the highest CoF value probed.  The 

maximum strain (taken at mid cycle) in the ring had negligible variance between cases. 
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The radial force exerted on the vessel at diastole and systole (70-130mmHg) are plotted 

with the average of these values in Figure 94.  With a very low coefficient of friction there is 

minimal difference in radial force between diastolic and systolic, whereas this rapidly 

increases to be significant for the higher friction values.  This gap essentially represents the 

frictional work in the interaction between ring and vessel between diastolic and systolic 

position.  The average radial force decreases slightly as CoF is increased which can 

theoretically be attributed to a portion of the strain energy in the ring being exerted against 

friction in the in longitudinal and circumferential directions. 

 

Figure 93 - Variation of delta-strain and maximum strain with the coefficient of 
friction implemented 

Figure 94 - Variation of radial force reading with value of coefficient of friction 
implemented 
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As a result of this sensitivity study, it was decided to apply the worst-case CoF for delta-

strain results, which was the lowest friction of CoF=0.01, for later studies (7.4 and 7.5). 

7.3.2 Vessel Wall Thickness 

Multiple vessel models were created, through the process described in 4.3, with wall 

thicknesses of 0.4,0.9,1.4,1.9,2.4mm.  These separate models will have differing material 

properties such that the same pressure-diameter response was achieved (i.e. the thickest 

vessel is modelled with least stiff material properties, and thinnest with the stiffest 

material). 

Mesh density was kept roughly the same level across the study, meaning that the thicker 

vessels had a greater number of elements through the wall. 

Results for both delta-strain and the maximum strain mid cycle are plotted in Figure 95.  

The maximum strain raises slightly, indicating that the ring does not result in precisely the 

same shape for the different vessel thicknesses, however the difference in strain levels are 

relatively negligible.  The variance in delta-strain is slightly greater than in mean-strain, 

ranging from 0.051% to 0.058% at 1.9mm and 0.4mm vessel thicknesses respectively.  The 

datum 1.4mm vessel which was the average found in literature resulted in 0.055% delta-

strain. 

Figure 95 - Variation of delta-strain and maximum strain with vessel thickness implemented 
(constant compliance) 
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This sensitivity study shows that there is relatively little change in strain result dependent 

on the assumption of vessel thickness applied to the modelling approach.  As a result it has 

been judged reasonable to assume the average vessel thickness of 1.4mm found in 

literature as reported in 4.3.4.2. 

The vessel thickness modelled had negligible effect on the radial force results as expected. 

7.3.3 Wire Diameter 

The tolerance on the diameter of Nitinol wire ranges from ±0.0025mm for 0.10mm and 

0.12mm wire, ±0.005mm for 0.13mm – 0.20mm wire, and ±0.0075mm for 0.22mm and 

0.24mm wire [111]. 

It was found that for the OLB25 R2 ring, which is comprised of 0.20mm wire, reducing the 

diameter down to the tolerance minimum of 0.195mm raised the delta-strain result by a 

considerable 8.4%.  While a finer wire bending the same degree as a thicker wire produces 

a lower delta-strain, this is countered and exceeded by the fact that the ring is significantly 

weaker, leading to less damping of the vessel’s compliance and therefore more motion and 

higher delta-strains.  Considering beam bending theory for circular section: the stiffness is 

related to the diameter raised to the 4th exponential.  This beam bending rule suggests that 

0.195mm wire would be 9.6% less stiff than 0.20mm wire.  For the non-linear ring-stent 

case, the FE sensitivity study results in the 0.195mm wire ring producing 8.1% less radial 

force than 0.20mm wire (on average in the deployed position) which leads to 33% more 

diametric motion, hence the increase in delta-strain reports above, of 8.4%. 

These results are not negligible and for the case of fatigue, the worst-case wire diameter 

should be considered.   However, because a key aim of this study is to gain representative 

radial force magnitudes from each ring, the further studies have been specified with 

nominal wire diameters. 

7.3.4 Compaction 

The effects of not fully compacting the OLB25 R2 ring to the diameter of a sheath, instead 

only loading to a point adequate for releasing into vessel, were as follows: 

• an increase in radial force of 1.6% 

• increase in maximum strain from 1.40% to 1.47% 

• a 2% relative decrease in delta-strain result 
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Although these variances are relatively small, further models have been run with full 

compaction approximation included for accuracy and in aim to provide some indicative 

information on compacted state of the ring-stents. 

7.3.5 Torsional Constraint 

In section 4.5, the potential torsional constraint applied to the ring at peaks and valleys 

during the ‘saddle pull’ validation test has been discussed and probed.  A ring deployed in 

isolation within a vessel cannot be said to have distinct torsional constraints at peak and 

valley, however there is perhaps some argument for this in the case of Anaconda proximal 

rings being sutured to the hook components.   Therefore, an additional comparative 

simulation has been run with every turn torsionally constrained at both quarter ring ends.  

The addition of torsional constraints on the deployed OLB25 R2 ring produced the following 

results: 

• 24% reduction in highest delta-strain 

• Maximum strain in the ring (mid cycle) was raised by 15% (1.47%  1.68%) 

• 16% increase in radial force of the ring (averaged between systolic and diastolic) 

It was therefore decided not to torsionally constrain the ring in further modelling as this is 

worst-case for a delta-strain and fatigue assessment purpose. 

7.4 Anaconda Proximal Rings Study 

The purpose of this study is first to quantify the radial strength of all Anaconda proximal 

sealing rings while deployed in vessel, in terms of units of force.  Secondly, the new 

capability of modelling the non-linear behaviour of artery, based on Langewouters data, is 

incorporated and will give the first theoretical measure of ring pulsatility, and therefore 

fatigue relevant strain-amplitudes, in such an environment.   This will be compared to the 

result if a linear-elastic vessel with the same diametric strain is implemented with the same 

methodology.  Furthermore, an extended study with the mid-size OLB28 device will 

investigate the effect on pulsatility with varying patient age, and the sensitivity of delta 

strains to excessively high, or very low device oversizing.  The study on OLB28 rings also 

provides the first quantification of how radial force is distributed along the length 

circumference of the ring, and how this is sensitive to oversize.  This will inform future 

design of ring-stents particularly for sealing, and could be used to compare against the 

pressure distribution of competitor devices. 
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All Anaconda OLB proximal rings (R1 and R2), across the seven device sizes, have been 

modelled and simulated individually through ring forming, compaction approximation and 

deployment into Langewouters’ based artery models using the methodology described in 

4.4 and 7.1, with the modelling decisions applied from the sensitivity study in section 7.3.   

Three different artery sizes representing a lower, mean and upper recommended vessel 

oversizing (per the device sizing chart Appendix A) have been applied to distinct models for 

each ring; totalling 43 separate simulations.  In each simulation, the pulsatile ring-vessel 

interaction has been probed over three separate blood pressure ranges: 80-120mmHg, 60-

140mmHg, and 80-160mmHg which represent a normal healthy case, a worst-case treated 

hypertensive case and an untreated hypertensive case respectively.  These ranges are 

derived from considering the statistically average blood pressure ranges for males >50 

years from the US National Health Statistics report on blood pressure [112].  The 52 year 

old abdominal vessel with the worst case ‘high p1 value’ (see 4.3) has been applied to each 

model; this being three standard deviations below the average age of Anaconda patients, of 

76 years [97].  The mid-range OLB28 device’s proximal rings have been simulated over a 

range of ages (52, 60, 68 and 76 years) to confirm the effect of greater compliance in 

younger vessels.  Furthermore, the OLB28 rings have been simulated in an extended range 

of vessel diameters in order to probe the effect of extremely low or high oversize on the 

strain and radial force performance of the ring-stent. 

The post-processing and analysis considers: strain levels and cyclic amplitudes for fatigue 

analysis, the related pulsatile ring motion and the radial force levels being exerted on the 

vessel.  Python scripts have been developed to execute post processing on the output 

database files (.odb) in a consistent manner as described in 7.2. 

A summary of the key input parameters which define each model are provided in Appendix 

I.  Most of the results plotted here are from the 60-140mmHg because it produced the 

highest pulsatility for most rings.  Comparison with the other blood pressure ranges are 

discussed where appropriate. 

7.4.1 Radial Force 

The radial force results are shown in Figure 96 (averaged from systolic and diastolic) for 

each ring at approximate device oversize levels of 10%,15% and 20%.  The Anaconda R1 

rings are shown to exert between 4.7 – 7.9N, increasing from the smallest to largest device 
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with the exception of the OLB28 which is slightly stronger than the OLB30.  The slight 

anomaly of OLB28 was expected as it was designed with a higher ‘Lutz coefficient’ (see 

5.4.2.1) than other devices.  The same trend is observed for the R2 rings, which exert forces 

in the range 2.3 – 4.0N.  (The reasoning for this design choice is not explicitly known, 

however it is thought that it was to create a device considered ‘worst case’ relative to the 

other sizes, for some types of validation testing.)  The difference in radial force due to 

varying oversize (from 10 to 20%) is relatively small. 

It is important that the ring strength is also considered relative to the size of the device or 

the vessel to be treated.  The ‘Lutz coefficient’ equation (5.4.2.1) enabled the rings to be 

designed with similar radial strengths relative for each ring size, with the exception of 

OLB28 as discussed.  The ‘relative radial strength’ has been assessed in this case by 

quantifying radial strength per mm length of mean ring circumference, see Figure 97.  This 

reveals that the R1 rings exert in the range 0.068 – 0.086N/mm with the OLB25 and the 

OLB28 being relatively weakest and strongest respectively.  The trend repeats for the R2 

rings with a range of 0.035 – 0.049N/mm.  The 15% oversize results suggest that the 

Figure 96 - The radial force (average of systolic and diastolic) of Anaconda R1 and R2 rings at 
approximately 10,15,20% device oversize 
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relative force of R1s vary by ±13% (±7% if excluding OLB28) and R2s vary by ±21% (±8% if 

excluding OLB28). 

These results represent an estimation from FE simulations based on rings acting in isolation 

rather than part of the Anaconda proximal structure: R1 and R2 rings sutured to fabric and 

interconnecting Nitinol hooks.  The behaviour of this structure may affect the radial force 

levels in reality, however the rings are the key component providing radial force and 

therefore should be understood in isolation in the first instance.  It is also considered that 

the ring-hook-ring structure would add stiffness and therefore be less compliant, meaning 

that analysing rings in isolation is a worst-case for delta-strain. 

The radial force and relative radial force results are taken into consideration for the further 

analysis on ring motion and strain analysis.  The radial force is assessed over a larger 

oversize range for the OLB28 rings in section 7.5.2. 

7.4.2 Ring Deflection 

The diastolic and systolic positional data for peaks, valleys and the mid-points of the 

quarter ring models have been collated for all rings by the post-processing method 

described in 7.2.  This data on ring diameter and saddle height is subsequently used to 

Figure 97 - Relative Radial Force (per mm ring mean circumference) of Anaconda proximal rings 
at approximate 10,15,20% oversize 
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calculate the ‘pulsatility’ of the ring which in this context will be defined as the difference in 

diameter or height from systolic to diastolic state. 

The peak and valley location data, which vary very slightly due to differences in the bundle 

orientation at each end, have been averaged to provide a single value representing peak-

to-peak or valley-to-valley pulsatility. 

The peak-peak/valley-valley pulsatility results for all rings at 60-140mmHg are shown in 

Figure 98.  The R2 rings show greater motion than the R1s, and are consistently being 

radially compressed (at peak-peak/valley-valley) during transition from systolic to diastolic 

state.  The R1 rings, however, are not all showing a compressive movement over this blood 

pressure reduction: most results for the OLB21 to OLB30 at 15% and 20% (approx.) oversize 

result in small negative pulsatility values.  The general lower pulsatility of the R1 rings can 

be explained by the greater damping affect which a stronger radial spring would have on 

the non-linear artery: locally dilating the vessel further to the stiffer, less compliant portion 

of the pressure-diameter curve.  However, this does not explain the occurrence of negative 

pulsatility; increasing ring diameter with reducing blood pressure.  This appears to be due 

to longitudinal tension in the modelled vessel (due to Poisson’s effect) being reduced as 

pressure lowers, which in turn allows a strong ring to embed the artery wall further.   

Figure 98 - The peak-to-peak/valley-to-valley pulsatility of Anaconda rings simulated at 
approximately 10,15,20% oversize in 52-year Langewouters model at 60-140mmHg. 
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Regardless, the magnitudes of pulsatility of the R1s presented in Figure 98 are very small.  

The increasing pulsatility from small device to large is expected simply due to geometric 

scale.  Regarding the OLB28 results which result in a dip in the cross-device trend; this 

correlates with the fact that both OLB28 rings have the highest relative radial strength (see 

Figure 97), and are therefore imparting greater vessel motion ‘damping’.  This suggests that 

the OLB28 device, with greater relative force, will be less susceptible to fatigue failure. 

There is a clear and consistent trend of slightly reducing motion as the oversize is increased 

for any specific ring.  This may be due to a greater level of motion damping because the 

radial force of the ring is concentrated on a smaller vessel; meaning more load per vessel 

circumference than the same ring in larger vessel. 

The diametric pulsatility calculated from the quarter ring mid-points provide a very similar 

trend to that calculated from the peaks and valleys (Figure 98), however showing a lower 

magnitude in general: 28% lower on average. 

The ring height pulsatility results, shown in Figure 99, show a similar overall trend to that of 

the diameter pulsatility (Figure 98) with slightly greater magnitudes.  There is however a 

discrepancy with the OLB30 R1 and R2 rings at low oversize having significantly higher 

values than the general trend.  This is because the recommended upper vessel diameter of 

Figure 99 - Ring height pulsatility of Anaconda proximal rings at approximately 10,15,20% 
oversize in 52 year Langewouters model at 60-140mmHg 
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27.5mm for this device is proportionally the highest relative to the outer ring diameter, 

compared to the other devices (the 10%,15% and 20% oversizing are approximate, and the 

ring-to-device size ratios also have variability).  This leads to the OLB30 rings sitting in a 

slightly flatter position, which leads to exaggerated vertical pulsatility, and an impact on the 

strain amplitudes as discussed in the following (7.4.3).  The exaggerated height pulsatility is 

also, to a lesser degree, apparent for OLB21 rings at 10% oversize.  The OLB21 and OLB30 

having a flatter position is confirmed in Figure 100, in which ‘expansion’ has been 

calculated as a ring’s diameter peak-peak/valley-valley divided by its flat mean diameter 

(mid cycle).  

The ring diametric pulsatility plotted as a percentage of ring diameter (Figure 101) reveals 

that the larger device rings are resulting in the highest deflection proportionally.  The rings’ 

radial stiffness cannot be usefully compared from this study because of the ring motions 

being very small, sometimes negligible or even negative.  However, it was proven in section 

5.4.2 that absolute radial stiffness is proportional to ‘relative radial force’, i.e. the anaconda 

R1 rings will be of similar absolute stiffness.  The greater ‘percentage pulsatility’ results 

found for the larger device sizes in Figure 101 could be due to the stiffness not increasing 

for larger devices.  If the ring-stents were developed with a radial stiffness which increased 

linearly with device size, the resulting ‘percentage pulsatility’, may be more equal.  This 

would be a shift from the current design philosophy. 

Figure 100 - Ring expansion results of Anconda proximal rings at deployed in a 52yr vessel 
model at approximately 10,15,20% oversize in 52 year Langewouters model at 60-
140mmHg. 
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The above analysis is based on the 60-140mmHg blood pressure range as it produced the 

highest magnitude results.  The pulsatility results at the other blood pressures simulated 

(80-120mmHg and 80-160mmHg) show the same overall trends, but with lower 

magnitudes.  A comparison of the effect of the different blood pressure ranges is provided 

Figure 102 - Variation in peak-peak/valley-valley pulsatility at the three blood pressure ranges 
simulated: 80-120, 60-140, 80-160mmHg.  Results plotted are from the ~15% oversize simulations. 

Figure 101 - Percentage pulsatility (relative to rings' flat mean diameters) of Anaconda 
proximal rings at approximately 10,15,20% oversize in 52 year Langewouters model at 60-
140mmHg. 
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for the R2 rings at 15% oversize in Figure 102.  The 80-120mmHg range has the lowest 

pulsatility as expected, and the 80-160mmHg results in less motion than the 60-140mmHg 

due to operating at a stiffer section of the vessel’s pressure-diameter curve. 

7.4.3 Stress and Strain Analysis 

As discussed in 2.3.2 the standard way to assess the material fatigue resistance of Nitinol is 

to consider the local cyclic strain oscillation, and the associated mean-strain levels, rather 

than consider the cyclic stress amplitudes.  However, the stress distribution will be 

considered briefly first below (7.4.3.1). 

As described in 7.2, a post-processing script has been used to calculate the delta-strain for 

all nodes in the model before the highest value result is searched for and exported.  The 

mean-strain of this node is also extracted.  The trends of delta-strain with oversize and 

device size will be considered as well as comparing the values with fatigue limits.  The 

‘maximum strain’ value exported represents the node with the highest strain at the average 

of systolic and diastolic positions and will therefore be referred to as ‘maximum strain mid-

cycle’. 

7.4.3.1 Stress Distribution 

The stress and strain contour plots of OLB28 R1 ring simulations at approximately 10% and 

20% oversize are shown in Figure 103.  Both the stress and strain are plotted as ‘maximum 

absolute principal’ which shows the greatest in magnitude of maximum principal or 

minimum principal values, and negative results indicate material in compression.  The key 

observation is that the strain varies much more linearly through the wire section, from 

compression to tension, while the stress gradient is quite non-linear: particularly apparent 

in the ~20% oversize image much of the outer portion of the wire section appears at the 

same level of stress – i.e. these outer elements (in the bending plane) are on the Nitinol 

unloading plateau. 

The maximum stress levels are actually at locations closer to the mid-point between peak 

and valley.  These points while at higher stress than the maximum at the peak/valley are at 

lower strain levels than the peak.  Such a result is only possible with a material with a 

significant hysteresis loop such as Nitinol.  This demonstrates that the peaks/valleys have 

unloaded to the level of the unload plateau (350-380MPa), while central points on the wire 

which reached start of transformation stress levels in compaction, have only partially 
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unloaded towards the unload plateau.  In the ~20% oversize case a stress of 587MPa 

remains at a node near the mid-point of the wire. 

7.4.3.2 Maximum Strain 

Maximum strain values for the 60-140mmHg loading, plotted in Figure 104, are all in the 

range 1.0%-2.5% for the oversize levels probed and increase with oversize as expected.  The 

maximum strain is essentially dependent on the level of saddle shape imposed, and the 

wire diameter of the Nitinol which comprises the ring.  The wire diameter is predominantly 

responsible for the variation with device size, including the general trend of reducing max 

strain with increased device size: due to the wire being finer relative to ring diameter. 

Stress: maximum absolute 
principal stress (MPa) 
~20% oversize 

Stress: maximum absolute 
principal stress (MPa) 
~10% oversize 
 

Strain: maximum absolute 
principal strain 
~20% oversize 

Strain: maximum absolute 
principal strain 
~10% oversize 

Figure 103 - Contour plots of maximum absolute principal stress (top) and strain (bottom) of the 
OLB28R1 ring peak at approximately 20% (left) and 10% (right) oversize.  (Using the ‘maximum 
absolute principal’ plots the greatest in magnitude of Maximum/Minimum Principal value and 
negative results indicate material in compression.) 
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7.4.3.3 Delta-strain 

The delta-strain magnitudes are obtained from the simulations for comparison with delta-

strain limits.  The delta-strain limits represent a level of constant cyclic straining for which 

the Nitinol wire has shown to be resistant to over 400 million cycles, in a loading manner 

similar to that in vivo.  The delta-strain fatigue limits have been defined for three levels of 

mean-strain by the testing carried out at Vascutek [105], and analysis provided by the work 

of Chapter 6 of this thesis.  The limits defined are as follows; 

• 0.223% at a low mean-strain of ~0.85% 

• 0.179% at a medium mean-strain of ~1.85% 

• 0.165% at a high mean-strain of ~3.2% 

It is assumed that linear interpolation can be used with the above data to establish delta-

strain limits between the mean-strain values of 0.76% and 3.3% (this is the range of mean-

strain that samples in the fatigue test actually covered because testing practicalities caused 

variation from the target mean-strain values above.) 

Figure 104 - Maximum Strain (mid cycle) of Anaconda proximal rings at approximately 
10,15,20% oversize. 
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The delta-strain values are plotted for the 60-140mmHg blood pressure case in Figure 105 

a) and b) for R1s and R2 respectively.  All results for the other blood pressure ranges (80-

120mmHg and 80-160mmHg) can be found in Appendix O.  In correlation with the motion 

results generally the 60-140mmHg results have higher delta-strain results than 80-

160mmHg, with exceptions discussed below. 

The R1 delta-strain results, shown in Figure 105 a), range from 0.031% to 0.077% and do 

not show a consistent trend with oversize, which could be related to the motion results not 

showing consistency in values being negative or positive (Figure 101).  No trend with device 

size is apparent. 

The R2 delta-strain results (Figure 105 b)) range from 0.037% to 0.138% with values 

consistently decreasing with increased oversize.  This trend correlates to the finding on 

pulsatility, but there is even greater variance proportionally.  This is to say that the 

difference in motion is not purely responsible for the difference in delta-strain across the 

oversize range: the rings in a flatter position (low oversize) are liable to greater delta-strain 

per mm of diameter change, as was found in Chapter 6.  The highest delta-strain of 0.138% 

occurred at a node with very low mean-strain of 0.07%.  The delta-strain limit of 0.223% at 

mean-strain of ~0.85% is most relevant to compare and results in a factor of safety of 62%. 

Figure 105 - a) and b) - The delta-strain results for Anaconda R1 and R2 ((a) and b) respectively) 
from simulations in 52yr abdominal vessel model. 

a) b) 
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The spikes in the R2 10% results correlate to the ring height pulsatility (Figure 99), and the 

highest result of the OLB30 R2 at 10% will be due to the exaggerated motion which is 

discussed above. 

The locations of the maximum delta-strains are at, or very close to, the peak or valley of the 

ring in the cases of 36 out of 42 simulations.  The 6 remaining discrepancies always 

occurred within the range of R1 rings showing the lowest overall motion (OLB21-OLB30) 

but this was not consistent with the various oversize levels simulated.  For the 6 cases, the 

maximum delta stain levels were located at rings’ mid points between peak and valley. 

In terms of which turn within a bundle resulted in highest delta-strain (e.g. inner or outer 

lying turns); there appeared to be no consistency, which may partially be due to the 

significant variability in results across the wire strands.  Turn-to-turn variation was highest 

for the R1 rings which show the least overall motion, with a worst-case relative standard 

deviation (RSD) in delta-strain result of 32.6% for the OLB25 R1 at high oversize.  The 

average RSD for all R1s was 23.9%.  The R2 rings which displayed higher motion had lower 

relative variation between turns (RSD between 2.8% and 16%). 

The high turn-to-turn variability for rings at low pulsatility is judged to be partly due to the 

simplified modelling method for the turn-to-turn interaction: the lack of contact being 

modelled allowing some variable bending from one turn to the next.  This variation 

a) b) 

Figure 106 - a) and b) - Mean-strain of the nodes with highest delta-strain plotted for Anaconda R1 
and R2 rings, (a) and b), at approximately 10,15,20% oversize 
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becomes less significant as bending behaviour is dominated by the motion of the entire ring 

bundle for larger pulsatility results.  This modelling phenomenon is conservative from a 

fatigue prediction point of view, only increasing delta-strain result artificially if at all. 

The corresponding mean-strain levels of the nodes with highest delta-strains are plotted in 

Figure 106, again showing a more inconsistent trend with R1 regarding oversize.  The R1 

~20% oversize has two anomalies of relatively low mean-strain (OLB25 and OLB30): the 

location of the highest delta-strain in both these cases was mid-wire rather than the most 

common end of wire position, however they are not the only cases with this finding.  In 

general, for R1 and R2s, excluding the two mentioned anomalies, mean-strains of the ~20% 

oversize cases are closer to the maximum strains (Figure 104) in the ring than in the ~10% 

oversize cases.  This is due to the plane of bending during cyclic loading being unaligned 

with the general curve of the ring’s peak/valley for the lower oversize cases, as was found 

in Chapter 6. 

All delta-strain values are acceptably lower than the limits defined above, however it 

should be noted that some with very low mean-strain values are out-with the range of 

mean-strains defined in the ring fatigue testing. 

Regarding the comparison of 60-140mmHg against 80-160mmHg: three exceptions were 

the OLB21 R1 ring at 10% oversize, and the OLB30 R1 and R2 at 10% oversize which showed 

greater delta-strains at 80-160mmHg, the OLB30 R2 having the highest result of all: delta-

strain of 0.173% at a mean of 0.35%.  These are all cases which see inflections in ring height 

pulsatility results, and significant sliding of peak/valley relative to vessel wall, which are 

emphasised further at the 80-160mmHg blood pressure range.  This sliding behaviour, as 

the ring is close to becoming flat, is judged likely to be unrealistic: partly due to the worst-

case 0.01 friction coefficient implemented and potentially prevented in vivo by the hook 

engagement, global structural stiffening effects, and over time the addition of biological 

tissue engagement with stent-graft. 

7.4.3.4 Delta-Strain vs Age 

As defined in 4.3, the Langewouters’ based artery models (with high p1 value) representing 

patient ages of 52, 60, 68 and 76 have diametric strains of 4.18%, 3.52%, 3.00% and 2.59% 

respectively at 80-160mmHg blood pressure range.  Simulations of OLB28 R1 and R2 in the 

mentioned age representative artery models, at 80-160mmHg, and 15% (approximate) 
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device oversize confirm that the delta-strain values reduce with age, as plotted in Figure 

107.  The R1 showing lower delta strain relative to R2 is consistent with the general trend 

found earlier, which was related to the lower pulsatility of the R1. 

 

7.4.4 Comparison with Simulation in Linear Elastic Vessel 

The Langewouters [47] based vessel, applied to the study discussed above, has a diametric 

strain of 4.18% for a blood pressure range of 80-160mmHg.  A linear elastic vessel was 

calibrated to have this diametric strain over the same pressure range.  A thickness of 

1.4mm was applied to an initial diameter 19.31 (from a wall thickness to diameter ratio of 

0.0725 from [45]).  The calibrated vessel was then scaled to have a nominal inner diameter 

of 24mm which is ~15% oversize for OLB28 device.  The R1 and R2 of the OLB28 device 

were simulated separately in the linear vessel at blood pressure range of 80-160mmHg.  

The rest of the methodology was identical to that used in the Langewouters based models.  

The peak/valley percentage pulsatility for R1 and R2 in the linear vessel was 3.73% and 

3.90% respectively, which can be compared with -0.07% and 0.66% respectively for the 

Figure 107 - Delta-Strain vs age of artery modelled for OLB28 proximal rings at approximately 
~15% oversize. 

(years) 
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Langewouters model at 80-160mmHg.  The linear vessel results show how little the motion 

of the vessel is ‘dampened’ in comparison with the non-linear.  In fact, the diametric strain 

of the linear vessel with stent (averaged from contact points at rings’ peak/valley and mid-

point) was calculated to be 3.61% and 3.83% for R1 and R2 respectively, which when 

compared to the native 4.18% diametric strain, represent a reduction of 14% and 8% in 

magnitude respectively. 

The strain results of OLB28 R1 and R2 rings simulated in the linear elastic vessel with 

diametric strain of 4.18% were 0.18% at 1.25% and 0.19% at 1.51% (delta-strain @ mean-

strain) respectively.  This compares with 0.04% at 0.60% and 0.04% at 1.24% respectively. 

The stark contrast highlights how incorporating the non-linear biomechanical behaviour of 

aorta completely changes the fatigue safety case for ring-stents. 

7.5 Variation with Oversize – OLB28 

The product sizing chart (Appendix A), recommends oversizing the Anaconda between 10% 

and 20% however it is known that this guidance is sometimes ignored and oversizing 

beyond 30% is not uncommon [109].  The OLB28 R1 and R2 rings were simulated at an 

extended oversize range to probe the effect on delta-strain and radial force.  The resulting 

deformed shape of the ring from simulations of the R1 at device oversize of 10%, 22% and 

47% are shown in Figure 108. 

7.5.1 Delta-Strain vs Oversize 

The delta-strain results for OLB28 R1 and R2 simulations over an extended oversize range at 

60-140mmHg are shown in Figure 109.  All vessels have been modelled to have the same 

compliance, however since compliance, and diametric strain, are relative to the vessel’s 

nominal size it should be noted that the smaller vessels (higher oversize) are changing less 

in magnitude of diameter. 

A spike in delta-strain occurs at the simulation of 7.7% oversize (26.0mm nominal vessel 

ID): at this level the ring has relatively high level of ring height pulsatility in and the peak 

and valley are sliding considerably relative to the vessel wall.  In the 5% oversize simulations 

the rings have flattened, embedding the vessel wall, no longer in the saddle shape pulsatile 

loading condition, hence the reduced delta-strains.  
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The R2 has reduced to negligible delta-strains in this flat position.  However, the R1 is still 

registering a 0.03% delta-strain - this is not reflective of the rings overall movement: 

detailed analysis showed that the highest 0.03% delta-strains are occurring on the 

outermost strand, between the bundle connection points.  This suggests that the outer 

strand is bending between the connection points as the inward contact pressure from the 

vessel varies over the cycle.  This reaffirms that these low-level delta-strains on the R1 rings 

are somewhat artificial, not representative of the true pulsatile motion of the whole ring. 

10% 

22% 

47% 
Figure 108 - The resulting position of an OLB28 R1 deployed in a 
52yr vessel model at 10%,22% and 47% device oversize 
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As oversize is increased from 7.7% initially both rings show sharp reduction in delta strain, 

followed by continual gradual reduction for the R2 and a less consistent reduction for R1 

which has a second peak at ~22% oversize.  However, the R1 results are judged to have 

some error due to the ‘artificial’ noise due to the methodology as discussed above. 

7.5.2 Radial Force vs Oversize 

The radial force results from the extended oversize range for OLB28 R1 and R2, extracted at 

diastolic and systolic, for the 60-140mmHg case are shown in Figure 110.  Rings show slight 

force reductions of 14% and 17% respectively between a maximum in the 10-20% oversize 

window to the extremely high device 47% oversize.  It is perhaps counter intuitive that the 

radial force does not increase with increased deformation in this range, however these 

rings are essentially fine wire beams bending to very high deflections; well beyond the case 

being considered linear.  Moreover; the nonlinearity, and in particular the plateauing, of 

Nitinol’s stress-strain response contributes to the flat curve shown.  It should be noted that 

these results are FEA based approximations of ring-stents in isolation; the full proximal 

region of the Anaconda including hooks, fabric and suture may well influence the overall 

radial strength of the device.  Nevertheless, the highest radial force values clearly lying 

Figure 109 - Delta-strain vs. Oversize for the OLB28 proximal rings in 52yr vessel model at 
60-140mmHg blood pressure 
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within the 10-20% range in Figure 110 is a reinforcement of the evidence that this is the 

optimal range. 

The significant reduction in radial force at points below 10% oversize are partly due to the 

relatively flexible 52yr vessel model easily deforming locally to the ring, and indeed for this 

case the rings are flat at the 5% device oversize level.  When the R1 ring was simulated at 

5% device oversize in a vessel of the average patient age of 76-years, the vessel did not 

Figure 110 - Radial Force vs. Oversize for the OLB28 proximal rings in 52yr vessel models 

Figure 111 - The OLB28 R1 ring deployed at 5% oversize level for both a 76yr and 52yr vessel models 

76yr 52yr 
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locally deform as much to accommodate the ring flattening, and radial force levels did not 

drop as low (5.14N average compared to 3.12N of the 52yr vessel model).  The difference in 

resulting position of ring and level of embedding in the 76yr and 52yr vessel models at 5% 

oversize can be appreciated from Figure 111. 

7.5.3 Radial Force Distribution 

Contact pressure is an output parameter in Abaqus which could be used to quantify radial 

force distribution of the ring interacting with artery.  However, a brief study found that the 

contact pressure distribution and peak magnitudes are highly dependent on the stiffness 

and other parameters of the contact interaction implementation, as well as the vessel 

element size.  With a lack of confidence in the contact pressure output due to this finding 

and not being able to validate the results, a simpler quantification of ‘radial force per mm 

ring circumference’ has been used. 

The ‘radial force per mm ring circumference’ was calculated as described in 7.2.4 from the 

final diastolic step of each simulation (80mmHg), with the addition that differences 

between equivalent 10° segments above and below the mid-point were averaged. The 

results for various oversize simulations of OLB28 R1 are plotted in Figure 112. 

Figure 112 - Distribution of radial force of OLB28 R1 ring from peak to valley at various oversize 
levels.  All simulations are 52yr vessel model. 

Oversize 
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The ring at lowest oversize, i.e. flattest saddle shape, shows the most consistent 

distribution of radial force along the length with values in the range 0.066-0.080N/mm.  The 

ring at an excessive oversize of 47% shows significant variation in distribution with values 

ranging from 0.030N/mm at the peaks/valleys 0.141N/mm at the mid-point. 

This quantification of radial force distribution becoming highly uneven at excessive oversize 

levels is a valuable confirmation that the recommended oversize range of 10-20% could 

provide improved apposition and therefore endo-sealing of Anaconda stent grafts.  

7.6 Summary of Chapter 7 

This work in this chapter represents the first simulations of Nitinol ring-stents interacting 

with non-linear vessel models under cyclic blood pressure.  Due to the uniqueness of the 

modelling and the desired outputs, bespoke post-processing algorithms have been 

developed in Python script to assess strain state, ring motion and radial force and its 

distribution. 

The study carried out on Anaconda proximal rings from all device sizes has produced the 

following conclusions with regards to radial force: 

• The radial force of ring-stents simulated in isolation range from 4.7 – 7.9N for R1s 

and 2.3 – 4.0N for R2s, with negligible variance between the 10%, 15% and 20% 

approximate oversize levels. 

• Across the device sizes, the relative radial force of R1s across the size range vary by 

±13% (±7% if excluding OLB28) and R2s vary by ±21% (±8% if excluding OLB28). 

• Radial force reduced slightly for a reduction in oversize from 20% - 47% for the 

OLB28 rings. 

• Radial force dropped significantly for oversize below 10%, however this is partly 

dependent on the flexibility of the 52-year-old vessel model: an older, stiffer vessel 

model would not accommodate as much embedding and therefore the ring 

remains more deformed (at a higher saddle shape) and radial force levels remaining 

more intact. 

• Radial force distribution along the length of the ring becomes significantly varied at 

high oversize; being concentrated at the mid-point between peak and valley. 
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Regarding ring motion, the simulations in the non-linear vessel result in very low levels of 

pulsatility when compared to the same simulation in linear vessel of the same diametric 

strain for the OLB28.  This shows, theoretically, the significance of damping from the 

strength of the rings on the natural motion of the vessel.  The pulsatility analysis also found 

the following conclusions: 

• Ring pulsatility was higher for R2 rings than R1.  The strength of R1 rings overpower 

the vessel models’ natural motion, and in the case of the smaller R1s, the pulsatility 

in the simulations is actually showing the rings compressing slightly from diastolic 

to systolic – this is due to increased longitudinal tension at systolic in the vessel wall 

reducing the embedding of the ring. 

• The larger devices in the range are showing higher relative pulsatility. 

Regarding the strain state of the Anaconda rings from simulation in Langewouters arteries, 

the following conclusions can be made: 

• The maximum strain levels in rings in deployed position are between 1.0-2.5% 

(taken at average of diastolic and systolic) for the 10-20% oversize range. 

• Delta-strain levels for the R1 and R2 rings were in the ranges 0.031% to 0.077% and 

0.037% to 0.138% respectively for the 60-140mmHg blood pressure range tested 

which induces the highest vessel diametric strain.  These are below the current 

fatigue limits regardless of mean-strain level, with the highest 0.138% value having 

a factor of safety of 62%.   

• The 80-160mmHg results were generally slightly lower in delta-strain with some 

anomalies including the OLB30R2 at ~10% oversize which resulted in a delta-stain 

of 0.173% - however this is due to significant sliding of the ring in the vessel, as the 

ring is on the verge of flattening, and is judged to be subdued with a more realistic 

friction coefficient and other factors not included in simulation such as the support 

provided from connected components and hook-vessel engagement. 

• The delta-strain levels in R2 rings show clear reduction with increased oversize 

(from ~10% to ~20%).  The trend is not clear with R1s. 

• In the extended oversize simulations for OLB28 rings, the delta-strains have a spike 

in results between 10% oversize and 5% oversize (at which they reached a flat 

position), due to the exaggerated height pulsatility and sliding mentioned above. 
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Overall, the study provides a new strand of evidence that the 10-20% oversize range is 

optimal, and theoretically rings are fatigue safe considering that the vessels’ natural motion 

has been ‘dampened’ significantly.  However, the artery modelling is just one approach to 

capturing the tissue biomechanics and simplifies the vessel wall to be an isotropic structure.  

Further discussion on limitations and recommendations is provided in Chapter 9. 
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8  
Investigating 
Compaction Strain 
As was discussed in Chapter 2, endovascular stent-grafts such as the Anaconda are 

implanted using tubular catheter delivery systems.  The devices are compacted into the 

flexible cylindrical sheath during device manufacture.  As well as the device, the sheath 

must accommodate control linkage wires and a central core through which, in the case of 

Anaconda, some of the control wires are passed.  When a stent-graft is compacted into a 

delivery sheath, the stent components (i.e. ring-stents in this case) are forced into their 

highest deformed state, and are competing for space with the folding fabric and other 

components. 

 
Figure 113 - Comparison of a) the OLB34 device fully expanded with compaction samples of the 
same device, cut to length for Micro CT scanning in b) a clear model sheath and c) the true product 
sheath. 

a) 

b) 

c) 
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The Anaconda body devices are delivered in sheaths with an internal diameter of 6.2mm 

for the device sizes 23mm and below, and 6.7mm for the larger devices.  The leg 

components are compacted into sheaths of 5.3mm internal diameter.  The Thoraflex Hybrid 

device’s endovascular section is compacted into a less challenging 9.5mm.  All devices are 

compacted by being pulled through funnel type geometry on mechanised equipment which 

measures the forces applied. 

The compacted Anaconda OLB body devices, which are reduced to diameters as low as 20% 

of their nominal size, as can be seen in Figure 113.  Currently, there exists a clinical desire 

and a commercial competitive need to reduce further the delivery system sheath diameter 

on the Anaconda product.  Furthermore, the importance of compacting endovascular 

devices into as small a delivery system as possible is relevant for all future products being 

developed.  The clinical requirement for delivery systems to be as slender as possible stems 

from firstly; the challenge of treating cases with restricted access due to narrowed or 

tortuous arteries, and secondly; smaller delivery systems are less likely to cause damage to 

the patient during operation. 

The high stress/strain levels imposed on the Nitinol ring-stents is a key limitation to 

minimising the delivery sheath diameter.  Nitinol may be ‘superelastic’ compared to other 

metal alloys, but plasticity and therefore residual strains do begin to occur beyond the 

phase transformation, i.e. in the fully martensitic phase.  The highest deformation to the 

wire occurs at the peaks and valleys as the rings are essentially folded 180° into their 

compacted position.  Obviously imposing severe plasticity throughout the bundle of wires 

would cause the ring to be permanently deformed on deployment.  However, smaller levels 

of localised plasticity can go unnoticed when purely observing the deployed shape, but may 

still have implications on radial force and potentially fatigue durability due to the changed 

state of some of the material. 

The settled deformed position of compacted Anaconda devices is complicated, 

unpredictable and highly variable.  The competition for space between structural 

components, folding fabric, a central core and an ‘intrinsic guidewire’, as well as variations 

in the production process, results in random and differing compacted positions to some 

degree.  Clearly these complexities and variation would be very challenging to simulate 

computationally; involving highly non-linear modelling of all other components in the stent 

graft and their interaction with each other through the compaction process. 
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Vascutek’s previous comparative assessments on compaction have mainly focused on 

empirical measurement of the ‘compaction forces’: the axial pulling force required to 

compact devices into the sheaths.  Regarding the assessment of strain levels; some 

previous work has used digital image measuring methods to quantify the tightest inner 

curvature of ring bundles from photographs of devices compacted in model transparent 

sheaths.  However, the limitations of this method include not being able to identify 

individual strands, the rings themselves often being obscured by fabric, plus a risk of not 

measuring the curvature on the correct plane of curvature. 

The deformation and resulting strain levels in compacted ring-stents have been 

reconsidered herein with three separate phases of analysis contributing to an improved 

understanding, and tools for future product development.  Firstly, the fundamental 

problem of a ring compacted in a sheath with a central core will be considered from a 

geometric perspective, negating fabric and other components, and applying a simple beam 

bending calculation to estimate best case scenario strain levels.  Secondly, Micro Computed 

Tomography (Micro CT) X-Ray imaging has been implemented to provide broader, more 

accurate assessment of the deformation and therefore strain levels enforced on Vascutek’s 

ring-stents.  Thirdly, an FEA study has been conducted on a number of single turn models to 

verify whether beam bending calculations are appropriate, and also to estimate the level of 

asymmetry between the tensile and compressive sides.  

8.1 Simple Calculation of Beam Bending Strain and FE Verification 

The compaction limits, in terms of reducing sheath diameter, can be assessed for feasibility 

by combining geometric calculations with the beam bending approximation for maximum 

strain.  According to classical mechanics, for ‘small deflections’ [113], the maximum strain 

magnitude εmax (at the outer tensile and inner compressive surface) of a beam in pure 

bending can be estimated simply by (Eq. 8.1), where h is the half-thickness of the beam in 

the plane of bending, and R is the radius of curvature of the beam centreline. 

 
휀𝑚𝑎𝑥 = ℎ/𝑅 (Eq. 8.1) 

 
휀𝑚𝑎𝑥 = 𝑑/𝐷𝑐𝑢𝑟𝑣𝑒 (Eq. 8.2) 

In the case of round wire, this strain can therefore be more conveniently estimated by the 

ratio of wire diameter d to the centreline curvature of the deformed wire, as depicted by 
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Figure 114.  Of course, the case in question does not fall into the ‘small deflections’ criteria, 

and the strain estimations cannot be assumed accurate.  FEA, being able to take account of 

large deflections, will be used to assess the accuracy of the above calculation for the level 

of bending which ring-stent wires are subject to.  In addition, the FEA will take account of 

the tension-compression asymmetry of Nitinol and the multi-axial loading which is 

occurring.  A simple study using single strand rings of various wire diameters has been 

investigated as described in the following (8.1.1). 

8.1.1 FE Verification Study 

A simple FE study was designed to simulate Nitinol rings of various wire diameters each 

compacted to ten incremental sheath diameters between 12.0mm and 3.6mm.  The 

maximum tensile and compressive true strain values were extracted from the simulations, 

while the deformation (curvature at the peak/valley) was extracted by the same 

measurement method as used on the Micro CT scans as discussed below. 

Three single turn models with ring diameters representing the mean of the OLB28 R1, but 

with wire diameters of 0.16mm, 0.22mm and 0.28mm which broadly covers the spectrum 

of wire diameter to ring diameter ratio in the product range, were simulated through a 

compaction approximation.  The models were created using the half ring methodology 

described in 4.2.5, with the densest mesh arrangement that was used in the earlier 

convergence study (60 elements in cross section) in order to provide the most accurate 

results (see 4.2.6).  Other than the half ring, the Abaqus models consisted of a rigid surface 

representing a central core of 2.48mm (used on Anaconda ONE-LOK) and a cylindrical rigid 

Figure 114 - Diagram of wire diameter, d and 
diameter of curvature, Dcurve for a deformed wire 
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surface of variable diameter created using the ART user-subroutine (see 4.2.3.2).  The 

described components and the steps involved in each simulation are outlined in Figure 115. 

The four ‘general static’ steps of the simulations include: 1) the forming of the half ring 

from straight wire; 2) the initial load applied to enforce an arbitrary saddle position; 3) an 

initial reduction of the ART cylinder surface to 12.0mm; and 4) final incremental reduction 

of the cylinder to 3.6mm. 

The ‘improved’ Nitinol material constitutive model (see 3.3) was used for these simulations.  

The two contact interactions (ring to ART cylinder and ring to central core) were 

implemented assuming a ‘hard contact’ pressure-overclosure relationship using ‘penalty’ 

enforcement method, and a 0.1 friction coefficient applied in the tangential direction to aid 

stability. 

The typical distribution of strain is shown in Figure 116, which is an image of the 0.22mm 

wire model compacted to 5.28mm diameter with a contour plot of ‘LE, Max Principal (Abs)’ 

with default nodal averaging criteria.  The ‘LE, Max Principal (Abs)’ is a plot of the greater 

absolute magnitude of either the true (logarithmic) maximum principal strain, the true 

(logarithmic) minimum principal strain, i.e. the negative values plotted on the compressive 

side are ‘minimum principal strain’.  The larger absolute values on the tensile side (9.59% 

Figure 115 – Steps of single turn compaction study FE model: a) Initial straight wire and central 
core; b) Wire formed to half ring; c) Half ring pulled into saddle position; d) Initial compaction 
with 'ART' cylindrical contact surface; e) Final compaction position 
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compared to -8.50% in the case of Figure 116) is due to the asymmetric nitinol model: the 

compressive having a greater overall stiffness.  This asymmetry leads to the shift of the 

‘neutral axis’ away from the geometric beam centre, as has been thoroughly investigated in 

the parallel work of Brodie [26], however it is the maximum values of strain at the inner and 

outer surface which are of interest here. 

For the measurement of curvature, the deformed geometry of the wire surface mesh was 

exported from Abaqus in ‘STL’ format and measured in Creo Parametric 2.0 [114] in the 

same manner as the Micro CT files have been, as described in more detail in the following 

section 8.2.  From the measurement of curvature, the strain estimation 휀𝑚𝑎𝑥 = 𝑑/𝐷𝑐𝑢𝑟𝑣𝑒 

can be calculated (Eq. 8.2).  The FE calculated maximum strain values (tensile and 

compressive) are plotted against the d/Dcurve estimates in Figure 117.  The trend-lines 

through the three separate data sets (which represented three wire thicknesses) give an 

indication of the level of overall asymmetry and actual maximum tensile/compressive 

strains relative to the measured d/Dcurve estimate.  The level of discrepancy in the results 

from the trend lines can be expected due to the error in measuring the diameter of 

curvature from the exported geometry.  The region of most interest is really that beyond 

the superelastic transition (>~7% strain).  At these levels it can be seen from Figure 117 that 

using curvature measurements to estimate the strain is likely to overestimate compressive 

strain, and under estimate tensile strain.  However, the overarching conclusion from this 

study is that the d/Dcurve estimate is reasonable to use in knowledge that the tensile strains 

Figure 116 - A 0.22mm strand half ring model compacted to 5.28mm with a 2.48mm central core, 
with a contour plot of the ‘absolute’ maximum principal true strain. 
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could be underestimated by up to 0.8% in strain magnitude compared to the FE predicted 

results. 

8.1.2 Compaction Feasibility based on Geometric Calculations 

In the knowledge that measuring the curvature to predict strain is an acceptably accurate 

way to analyse the strain at the peaks and valleys in the compacted state, this geometric 

problem can be probed mathematically to understand what is feasibly possible.  A 

spreadsheet based model has been created which estimates strains in the inner turn of a 

bundle, taking account of the sheath diameter, ring bundle diameter and central core 

diameter.  The presence of a central core inhibits the bundle from using the full diameter of 

the sheath to turn, as can be appreciated in Figure 118 b).  Instead, the space which there is 

to turn can be estimated as ODcompaction shown in Figure 118 a).  Referring to Figure 119: the 

green right-angled triangle is used to approximate ODcompaction where a is the bundle radius 

plus the central core radius and ODcompaction, which is equivalent to 2b, is estimated by (Eq. 

8.3): 

Figure 117 - FE calculated maximum tensile and compressive strain vs. d/Dcurve estimate from 
curvature measurement of exported FE geometry. 
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 𝑂𝐷𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛 = 2√(
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 (Eq. 8.3) 

The bundle diameter, Dbundle is estimated by circle packing theory as described in section 

4.2.8.  This allows an approximation of IDcompaction and subsequently the centreline diameter 

of curvature of a worst-case inner strand in the bundle (assuming there is not a twist in the 

bundle at the peak which would allow strands to move from inner to outer position). 

This geometrical calculation to estimate the inner turn strain, has been combined with ring 

strength calculations (see 5.4.2.1), and expanded into a spreadsheet based tool which 

(given the ring diameter, ring strength, sheath and core diameters as inputs) can output a 

Figure 119 - Schematic of the geometric 
approximations used to estimate ODcompaction 

Figure 118 - a) cross-section diagram of compacted ring in sheath with a central core.  The dotted 
lines represent the space in which the peaks will 'fold'.  b) A cut view of the peaks of an OLB28 R1 
ring with central core graphically represented. 
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range of possible bundle configurations (number of turns; wire diameter) and the 

estimated compaction strain of each.  The accuracy of this method was compared to micro 

CT observations of the ODcurvature value and found to be overestimating, because in reality 

there is some level of intensified curvature focused towards the apex.  As such, a correction 

factor of 0.78 was implemented as an optional addition to the tool.  While this geometric 

calculation is quite approximate and has shown to have significant error, it has still proven 

useful in investigating the trends between ring configuration and compaction strain levels 

or sheath/core diameters. 

The most significant general finding which the above geometrical analysis has proved is that 

to reduce compaction strain, for most cases there exists an ‘optimal window’ of wire 

diameters: if the wire diameter is increased, less turns are required, however strain is 

directly proportional to wire diameter and increases due to this, and conversely if the wire 

diameter is reduced, a greater number of turns are required, the bundle diameter 

increases, in turn reducing IDcompaction to levels which increase strain.  An example of this 

trend, and the output of the spreadsheet tool is provided for the OLB32 R1 ring with 

current specification input parameters: 6.7mm sheath diameter and 2.48mm central core. 

 
Figure 120 - The output graph from the spreadsheet tool which calculates possible bundle 
configurations given a ring diameter and ring strength required.  Inputs: Ring ID = 29.7mm; Sheath 
ID = 6.7mm; Central Core D = 2.48mm; required ‘Lutz’ relative strength = 1.09. 
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To meet a 1.09 ‘lutz strength’, for a ring of 29.7mm ID, the possible bundle configurations 

are shown by the orange line in Figure 120.  For example 20 turns of 0.20mm or 10 turns of 

0.24mm would suffice from the strength perspective.  The geometrically estimated worst 

case (inner strand) compaction strains for a 6.7mm sheath and 2.48mm central core are 

given by the green line.  The exponential increase at the lower end of the wire diameter 

scale can be seen, and a more linear increase in strain is observed beyond 0.25mm.  For 

wire diameter values between 0.18 and 0.25mm, the curve is overall relatively flat 

representing the window of optimal wire diameters for this case. 

8.2 Micro CT 

Micro CT scanning was implemented primarily to assess the deformation and material 

strain levels in the Nitinol wire of the ring-stents as discussed above.  The aim of the 

scanning was therefore to detect the Nitinol rings with enough detail to be able to identify 

the individual strands, particularly those on the inside of the bundle at the peaks and 

valleys.  The scanning has also provided valuable information on hook deformation and 

insight to the general compaction patterns and the associated variability.  The focus in this 

section will be purely on quantifying the compaction strains on the Anaconda OLB proximal 

rings and the Thoraflex Hybrid rings. 

The Micro CT scanning was carried out by Inside Matters (Ghent, Belgium), a spin-out 

company from Ghent University, who develop bespoke imaging hardware and software 

(Inside Matters have now merged with company XRE).  The ‘HECTOR’ scanner [115] was 

used at a tube voltage of 180kV, total X-ray power of 20-25W, with a 0.5mm copper filter to 

reduce metal artefacts and beam hardening effects.  The raw 2D image ‘slices’ were 

reconstructed to a 3D volume using their proprietary Octopus software.  The resulting 

resolution was a voxel size of 253µm3.  Subsequently, a surface mesh (.STL) file would be 

determined using fixed value grey scale segmentation. 

This methodology was tuned to identify the Nitinol components, however some image 

artefact from highly radio opaque tantalum markers was unavoidable.  The stainless steel 

braid in the wall of the sheath is picked up as can be seen in the example Micro CT 

generated STL images shown in Figure 121.  The bottom image in Figure 121 is ‘view cut’ 

revealing the rings and other metallic components including hooks, release wires, tantalum 

markers/crimps, and the tip of the ‘intrinsic guide wire’. 
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A method was developed with Creo Parametric 2.0 software to measure the curvature of 

individual strands of wire at the peaks and valleys of compacted rings.  The procedure will 

not be fully detailed here but can be summarised as: 

1. The STL image is imported and view-cut to a convenient angle for the peak or 

valley to be measured. 

2. A plane was generated which cuts through the centre of the strand to be measured 

in the plane of curvature. 

3. A new view cut was created with the new plane and a circle sketch tool was used 

to estimate the inner curvature of a single strand. 

4. The centreline curvature of the strand is calculated by adding a wire diameter to 

the value gained in step above. 

An example measurement of inner curvature of a strand at the peak of an R1 ring  is shown 

in Figure 122, with a result of 2.43mm.  All inner strands suspected of being the ‘worst case’ 

were measured for each peak and valley location. 

In the initial Anaconda study, n=5 OLB23 and n=3 OLB34 devices were scanned because 

these are the largest devices, using the thickest wire, in the two respective sheath sizes 

(6.2mm and 6.7mm inner diameter).  All other OLB body devices had a single sample 

prepared and scanned.  The OLB23 was found to have higher strains than the OLB34, hence 

the increased sample size from 3 to 5. 

 
Figure 121 - An example STL image from Micro CT scan of a compacted OLB30 device in braided 
sheath.  Top is the full image and bottom is a view cut revealing more detail of the device 
components. 
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For validation of the scanning and image processing, two circular steel washers were both 

physically measured using calibrated pin gauges, and measured through the Micro-CT scan 

process.  The washers were measured physically to have inner diameters of 2.33±0.005mm 

and 4.43±0.005mm each.  Each washer was scanned once, converted to STL, and then 

measured 5 times.  The average error and relative standard deviations were acceptably low 

at -0.004mm ±0.23% and -0.018mm ±0.10% respectively.  The main source of variance is 

from the level of interpretation required at the step of measuring the inner curvature of a 

wire strand.  The repeatability of measurement was therefore assessed by measuring the 

peaks on one sample 5 times, and found to have a relative standard deviation (RSD) of 

2.95%.  This was lower than the sample RSD at common locations for both the OLB23 and 

OLB34 (those that had multiple samples), and therefore deemed acceptable. 

An example Micro CT measured set of strain results for the OLB25 device is shown in Figure 

123, where each bar on the graph represents the worst-case strand (highest strain 

measurement) from each peak or valley.  The full range of results, including one historic 

Figure 122 - An example measurement of inner strand diameter of curvature on a MicroCT 
generated STL image. 
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B19 (previous generation) device, are plotted in Appendix P.  One R1 valley result on the 

B19 and one R2 peak result on the OLB32 device are missing due to being obscured by 

artefact from the nearby tantalum markers.  Across the full range, the d/Dcurve results are in 

the range 4.9% – 11.4%.  The R1 valleys and the R2 peaks generally show the highest strain 

results which can be mainly attributed to the fact that rings are overlapping in these areas; 

more bulk causing the respective valley or peak to fold in a smaller diameter than would be 

available if there were no other components to contend with.  The OLB23, being the largest 

device in the 6.2mm sheath, produced the three highest strain results: 10.9%, 10.9% and 

11.4% all at an R1 valley locations.  Assessing all of the OLB23 R1 valley results provides an 

average 9.8% and 1.1% standard deviation.  It must be kept in mind that these represent 

the worst-case strand at each valley location.  A brief study comparing inner strands with 

outer strands at all locations on a single device found that outer strands were on average at 

28% reduced maximum strain level.  The OLB25 device appears to be under least strain, 

with a maximum d/Dcurve value of 8.3% which is consistent with the fact that the OLB25 is 

the smallest device in the larger sheath. 

Regarding the Thoraflex Hybrid device; the stent-graft portions are all delivered in the same 

9.5mm inner diameter sheath, and therefore it was decided to scan 3 of the largest 40mm 

devices and compare against the results of Anaconda.  The same methodology and 

Figure 123 - MicroCT measured strain estimations from the worst-case strands 
from peak and valleys of the OLB25 proximal rings 
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resulting resolution was applied to the distal sealing end of the Hybrid device, and three 

rings on each sample were measured (the Thoraflex Hybrid device is inserted pointing 

distally, or ‘downstream’ in the patients aorta, opposite to the Anaconda which is 

introduced pointing proximally).  The STL produced from one scan is shown in Figure 124.  

The results are plotted in Appendix Q.  The location of highest strain on average for the 

Hybrid devices was the R1 peaks with average of 10.0% and highest result of 10.2%.  This 

result is logical: the R1 having slightly thicker wire than the ‘mid rings’ (0.22mm compared 

to 0.20mm) and the peak being in a high bulk zone with all 3 rings overlapping. 

Considering the implications of the strain levels observed, the worst-case OLB23 R1 valley 

results was focused on.  The OLB23 R1 valley worst strain d/Dcurve measurements averaged 

at 9.8%±1.1% which lies in the fully martensitic phase, and if the results from the FE 

analysis (section 8.1.1), which were considering the effect of asymmetry, are taken into 

consideration this would suggest that the tensile strain could be exaggerated to 10.6% on 

average.  Again, this is only for the tightest turn in the bundle, and the outer strands may lie 

at an average of 7.6% tensile (based on 28% reduction discussed above) which is just past 

the end of transformation.  Small levels of residual strain have been observed when Nitinol 

has been initially strained to beyond ~7% in uniaxial loading, however the reverse 

transformation along the lowered plateaus is still clearly occurring.  Beyond ~12% strain 

there is a loss of reverse transformation and significant residual strain/permanent set, as 

found by testing carried out by the author on behalf of Vascutek [116].  The latter case is 

clearly completely undesirable, and while the former may cause slight permanent set to the 

wire, it may not impact radial force significantly. 

Nevertheless, this analysis would propose that the Anaconda body devices, particularly the 

OLB23 is fairly limited in potential for further compaction under the current configuration.   

As a result of the findings here, there has been ongoing work at Vascutek to empirically 

assess the effect of high bending strains on the recovery of Nitinol wire, and to better 

Figure 124 - An STL image from Micro CT scan of the distal end of a Thoraflex Hybrid (40mm 
stented section) device. 
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define the boundaries in which the ring-stents should operate.   Such information is crucial 

to further development with the aim of optimising delivery device sheath diameters. 

8.3 Summary of Chapter 8 

Beam bending theory has been introduced to estimate the maximum strain at the inner and 

outer surface of a strand, given the wire diameter and diameter of curvature.  An FEA study 

compacting single turns of various wire diameters to a range of compacted states was 

carried out to verify if beam bending theory is appropriate, and to assess the impact of the 

asymmetry of Nitinol’s stress-strain relation.  This found that the use of the beam bending 

equation is suitable for comparative analysis, however it could underestimate tensile strain 

by up to 0.8% strain magnitude. 

A useful geometric model has been created which proves theoretically that there is often 

an optimal range of wire diameter for compaction.  If the wire is very fine, the bundle 

becomes excessively large to the point that strains become high for inner turns, and in the 

opposite direction if the wire is very thick the strains will be increased simply due to the 

thickness of the beam. 

The Micro CT imaging has provided more precise measurements of compacted ring-stent 

deformations, and subsequent strain levels.  It has set a bench mark for comparative 

measure.  However, there is a requirement to better define the compaction limits in terms 

of material strain. 
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9  
Conclusions and Future 
Recommendations 
A range of novel analysis tools and methods have been developed for assessing and 

optimising the mechanical performance of ring-stents from the design perspectives of: 

radial loading on the vessel, fatigue resistance, and ability to compact into delivery sheaths.  

Vascutek’s flagship endovascular device, Anaconda One-Lok, has been focused on as a case 

study to provide new knowledge in these areas.  However, the tools and methods are also 

being used to optimise new products at the company. 

First of all, the FEA methods which have been developed will be reflected on here, followed 

by a summary of the knowledge gained and lastly the recommendations for improvements 

and further work. 

9.1 Methodologies Developed 

The single-turn approach of van Zyl [7] was adopted and progressed by solving instabilities, 

adding methods to radially load and fully compact a ring, verifying the accuracy of the 

quarter-ring symmetry conditions by comparing with a half-ring model and justifying an 

appropriate mesh and element type through a mesh convergence study.  Subsequently, a 

novel method of representing the ‘full bundle’ of the ring-stent has been developed which 

provides realistic geometry and mechanical stiffness using a simplification of the turn-to-

turn interaction instead of modelling contact between the wires.  The simplification, adding 

connector elements between the axes of adjacent wires, took significant iterative efforts to 

find the most appropriate solution in terms of connector element properties.  Early 

attempts caused issues with solution stability, and the bundle could become somewhat 

tangled through the compaction process.  A satisfactory solution was found through 

repeating sensitivity studies carried out on Anaconda OLB25 R2 ring simulations, however 
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the full study on all Anaconda proximal rings revealed that the method still has 

vulnerabilities.  Most significantly, at low levels of ring pulsatility, there was significant 

variation in the delta-strains in individual turns.  While these delta-strains were low in 

relation to the fatigue limit, they may be adding an artificial level of strain amplitude 

ultimately due to the turn-to-turn interaction simplification. 

A new method to model the non-linear stiffness of human aortic artery in FEA has been 

produced.  The most challenging part of this is finding data which can be applied to 

represent a specific age or location of artery with confidence.  The more complex artery 

structural models such as the Holzapfel-Gasser-Ogden (see section 2.4) do not currently 

have the level and consistency of data required to apply the model for product 

development.  Interpreting the Langewouters data to produce average or worst-case 

pressure-diameter curves for specific ages of abdominal or thoracic artery is the approach 

applied here, however it is only one solution and future efforts will need to be made to 

compare with other methods of modelling human aorta.   

The combination of the full bundle modelling and the Langewouters’ based artery 

definitions provides the first FEA simulations of ring-stents reducing the natural vessel 

motion due to the applied radial load stressing the vessel locally to stiffer regions of its 

pressure-displacement curve.  The method has also provided the first look at how radial 

force is distributed along the circumference of the ring. 

The application of ‘circle packing theory’ coefficients is an effective way to estimate bundle 

diameters given wire thickness and number of turns.  This has been implemented in the 

standard ring design tools at Vascutek to estimate ring mean diameter from manufactured 

inner diameter, from which the relative ring strength, or ‘Lutz value’, of rings are now 

calculated.  The ‘circle packing theory’ coefficients were also used in the spreadsheet based 

geometric model for compaction strain estimation, which itself has provided a method to 

quickly assess what ring configuration may be theoretically optimal to reduce compaction 

strains.  This tool lead to the realisation and quantification of how reducing the diameter of 

the delivery systems’ central core could reduce compaction strains, or allow for reduction 

of sheath diameter.  Implementation of a reduced core is underway at Vascutek as part of 

product development.  
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The ‘Lutz coefficient’, used to standardise the radial strength of rings, was provided to the 

company without a proper derivation when the intellectual property for the ring-stent was 

acquired.  A derivation from beam bending theory has been provided here, and the 

approach has been verified with FEA simulations, and therefore continues to be used. 

Due to the complexities and variability of ring-stent devices compacting, Micro CT imaging 

and measurement was introduced, as opposed to simulation, to assess deformation and 

therefore strain levels in the Nitinol wire.  This method has benchmarked the current 

devices in terms of worst-case compaction strain in rings, and is a standard part of the 

development process. 

9.2 Knowledge Gained 

Early simulations, using single-turn modelling, provided design relevant insight into trends 

of how mean-strain and delta-strain vary with oversize and pulsatility of a ring.  Regarding 

‘ring strength’, the beam bending equation based derivation of ‘absolute radial force’ and 

‘relative radial force’, have provided understanding and validation for applying the ‘Lutz 

value’ approach as mentioned above.  The relation of a ring-stent’s ‘radial stiffness’ to its 

wire diameter and ring diameter was also derived, which provides a new parameter by 

which to consider ring design.  The plateauing radial force vs. displacement behaviour was 

introduced and shown to be common for various ratios of wire diameter to ring diameter. 

The simulations of the physical ring fatigue tests were essential for creating the new ‘strain-

life’ fatigue limit for the current grade wire.  This collective work is ‘non- zero’ mean-strain 

material fatigue analysis on Nitinol wire, an example of which could not be found in 

literature.  It provides the basis on which the fatigue life of ring-stents deployed in vessel 

can be assessed, and has been necessary to update the fatigue safety case for current 

devices. 

The study involving ‘full bundle’ rings deployed in artery has provided evidence of optimal 

device oversizing, from radial force and distribution perspective.  The work of Chapter 7 

also provides a theoretical proof of the ‘damping’ behaviour and resulting low level delta-

strains, caused by the ring forcing the artery locally to the stiffer region of its pressure-

diameter curve.  This suggests fatigue safety for the Anaconda rings in the vessel age-range 

studied, however further validation is required, and comparison with other vessel 

biomechanical models would be recommended as they become available.  The artery 
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modelling method is an interpretation of ‘passive’ response observations from empirical 

testing; it does not consider the ‘active’ biological response, such as remodelling growth. 

The geometric calculation model of ring-stents in compacted positions has revealed that 

often there is an optimal range in terms of wire diameter: increasing wire thickness 

inherently increases strain, while conversely very fine wire results in excessive bundle 

diameter and inner turns which would theoretically have increased strain.  The FE study on 

single-turn models of various wire diameters being forced into various levels of compacted 

deformations provided evidence that using the ‘d/Dcurve’ measurement is a reasonable 

estimation of strain, however tensile strains could be underestimated by up to 0.8% in 

strain magnitude.  As mentioned above the Micro CT method introduced has provided 

benchmark data on worst-case compaction strain, and confirmation of which device sizes 

see the highest strain levels. 

9.3 Recommendations  

The quarter-ring approach, which assumes two planes of symmetry, is limited to simulating 

idealised circular vessels and assumes perfectly straight deployment, i.e. both peaks at an 

equal axial position in the vessel.  If the impacts of adverse factors such as lopsided 

deployment or elliptical vessel lumens are to be assessed, then the quarter-ring method is 

not applicable.  Half-ring or full-ring modelling would need to be implemented, which will 

clearly add to the computational expense.  The current full-bundle, ring-in-artery modelling 

is perhaps already at the limit of being convenient to run simulations on a desktop 

simulation computer within reasonable timescales (over 1 day for some rings).  

Furthermore, there is a desire to model full-device systems, i.e. multiple ring-stents 

interconnected with some representation of fabric, and interacting with other components.  

It is therefore a recommendation that a computationally lighter method be investigated, by 

implementing beam element theory, and comparing results with the continuum element 

approach presented here. 

Regarding validation of ring-stent models, it is recommended that radial force levels are 

compared with empirical results from known physical test methods such as the ‘segmented 

head’ testers or the ‘sling method’ described in 4.2.4.  The former can be outsourced at 

stent testing laboratories, and the latter is currently being developed at Vascutek. 
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While the results presented in Chapter 7 include the first quantification of how ring-stent 

loading varies circumferentially, it was beyond the scope of the project to acquire accurate 

contact pressures.  This is because the reported local contact pressures at the interaction 

between ring and vessel are sensitive to the mesh density and the specifics of the contact 

interaction properties implemented.  It is intended that a sensitivity study will be carried 

out to find an adequate mesh and contact properties to capture pressures accurately.  

Validation would also be possible by comparing with pressure sensor equipment, which is 

another test method being developed at Vascutek. 

It is recommended that as well as radial force, the rings’ radial stiffness should be 

considered in future design, and in particular whether the ‘absolute radial stiffness’ should 

be constant over a range of ring sizes, or vary in relation to the ring diameter. 

The strain state of a ring-stent depends on its geometric proportions (i.e. wire diameter and 

ring diameter), its deformed position, and to some degree the deformation history.  It is 

envisaged that a spreadsheet based tool could instantly provide the mean-strain and delta-

strain of any ring-stent give the above variables.  To enable this, a broad FE parametric 

study is intended to be carried out in order to populate the data field required. 

Regarding vessel modelling, it is suggested that the method presented here (from 

Langewouters data [47]) is compared and verified against other characterisations of human 

aortic artery which may be identified or become available.  As mentioned above, the 

Langewouters data is from cadaveric aortic samples taken out the body, and therefore does 

not take account of the structural stiffness added by surrounding tissue, organs and the 

spine.  The separate layers of the artery tissue are not modelled, nor are their complex 

composite structures, or the natural levels of residual strain which are known to exist in 

healthy human aorta.  This could affect the true ring-artery interaction and particularly the 

level of embedding which occurs.  Future modelling of the artery could attempt to take this 

into account if data is available. 

A realistic value of coefficient of friction between stent and vessel was not implemented 

here because of lack of data.  Instead, the worst-case condition of an extremely low 

coefficient of friction of 1% was implemented.  However, this caused significant sliding 

between ring and vessel for rings which were on the verge of flattening.  This was judged to 
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be unrealistic, and it is recommended that a more realistic coefficient of friction be 

implemented if it can be justified or gained through empirical testing. 

A possible route to validating the full-bundle, ring in artery methodology is by comparison 

with Dynamic Electrocardiogram gated (ECG) CT scanning.  A project nearing completion, 

led by the Univeristy of Twente in collaboration with Vascutek, is not only providing 

Dynamic CT 3D volume data averaged for 10 points in the cardiac cycle from numerous 

patients, but quantification of ring pulsatility levels at numerous time points post-

operation.  This data could be used to validate the motion of rings in simulations, and guide 

how remodelling of tissue should be taken account of, as rings are being observed generally 

flattening somewhat overtime, from results so far.  

Regarding Nitinol modelling, limitations of the constitutive model are being addressed by 

further research at the University of Strathclyde.  The most obvious addition which could 

provide another use to simulation would be the ability to accurately model the residual 

strain, and unload plateau reduction effects of high pre-strains (>~10%).  Implementing 

such would potentially allow the compaction to be optimised further by understanding 

whether small amounts of a ring-stent being exposed to high strains would be acceptable 

or completely detrimental to the rings’ recovery. 

A method to measure the compaction deformation and strain levels in individual strands 

has been developed, however the compaction strain limits need to be better defined.  The 

method of measuring Micro CT scans is vulnerable to variability caused by user 

interpretation.  If the procedure to measure curvature could be automated with an 

algorithm it would remove this risk. 
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Anaconda Sizing Chart 



 

              

Device Selection Procedure

1. SELECT THE BODY
  a.  Measure the native aortic maximum neck diameter * at the deployment site. D1
  b.  Select the appropriate size of bifurcate body from the Body Sizing Table (page 3).

2.  SELECT THE RIGHT LEG
  a.  Measure the right native iliac diameter 

† at the deployment site.     D5a
  b.  Measure the total device effective length needed  ie. the peak of the    L4a   
       bifurcate body proximal ring stent to the distal iliac leg deployment site.
  c.  Select the Catalogue Number(s) needed using the Leg Sizing Table (page 4). 

3.  SELECT THE LEFT LEG
  a.  Measure the left native iliac diameter 

† at the deployment site. D5b
  b.  Measure the total device effective length needed ie. the peak of the      L4b
        bifurcate body proximal ring stent to the distal iliac leg deployment site.
  c.  Select the Catalogue Number(s) needed using the Leg Sizing Table (page 4). 

Please Note: 
a)  All dimensions are based upon the internal vessel diameter.  If external diameters are used then an allowance must be made for 

the vessel wall thickness. 
b)  Other component combinations may be used for more complex anatomy. For advice please contact your AnacondaTM Clinical 

Support Specialist.
c) Where the maximum total device length needed is between those quoted in the leg sizing tables the shorter leg should be selected.
d) Minimum leg-to-leg overlap and length of deployment site 20mm.

 

-2-

* D1 - Maximum neck diameter at the 
deployment site.  

† Measurements highlighted in colour 
are needed for correct device selection.  
The other measurements shown should 
be considered at the patient pre-
operative assessment stage.  

Left sideRight side

D2

D5a D5b

D3

D4

D6a D6b

L3
L2

  D1
L1

L4a L4b

-3-

ONE-LOKTM Body Sizing Table

ONE-LOKTM Compatible Legs

Aortic Vessel 
Internal Diameter Range - 

D1 (mm)

17.5 - 19.5
19.5 - 21.0
21.0 - 23.0
23.0 - 25.0
25.0 - 27.5
26.5 - 29.0
28.5 - 31.0

 Catalogue 
Number

OLB21
OLB23
OLB25
OLB28
OLB30
OLB32
OLB34

Device Proximal 
Diameter 

(OD mm) A

21.5
23.5
25.5
28.0
30.5
32.0
34.0

Flared

   Peak to 
bifurcation
   40mm

Flare Length
    12mm

Docking zone overlap          
             25mm

10.5mm

A

Catalogue 
Number

L12x060
L12x080
L12x100
L12x120
L12x140
L12x160
L12x180

Diameter (mm)
       A            B

      12 12
      12 12
      12 12
      12 12
      12 12
      12   12
      12 12

Length L
(mm)

60
80
100
120
140
160
180

Catalogue 
Number

TL1210x080
TL1210x110
TL1210x130
TL1210x150
TL1210x170

Diameter (mm)
      A             B

    12 10
     12 10
     12 10
     12 10
     12 10

Length L
(mm)

80
110
130
150
170

Catalogue 
Number

FL1213x080
FL1213x110
FL1213x130
FL1213x150
FL1213x170
FL1215x080
FL1215x110
FL1215x130
FL1215x150
FL1215x170
FL1217x080
FL1217x110
FL1217x130
FL1217x150
FL1217x170

Diameter (mm)
      A            B

     12 13
     12 13
     12 13
     12 13
     12 13
     12 15
     12 15
     12 15
     12 15
     12 15
     12 17
     12 17
     12 17
     12 17
     12 17

Length L
(mm)

80
110
130
150
170
80
110
130
150
170
80
110
130
150
170

Catalogue 
Number

FL1219x085
FL1219x110
FL1219x130
FL1219x150
FL1219x170
FL1221x085
FL1221x110
FL1221x130
FL1221x150
FL1221x170
FL1223x090
FL1223x110
FL1223x130
FL1223x150
FL1223x170

Diameter (mm)
      A            B

    12 19
     12 19
     12 19
     12 19
     12 19
     12 21
     12 21
     12 21
     12 21
     12 21
     12 23
     12 23
     12 23
     12 23
     12 23

Length L
(mm)

85
110
130
150
170
85
110
130
150
170
90
110
130
150
170

TaperedStraight
A

B

L

Measure the 
Iliac Artery
Diameter 

(mm)
(D5a & D5b)

Determine the 
Total Device

Length Needed*
(mm)

(L4a & L4b)

Select 
Appropriate 
Catalogue
Number(s)

ONE-LOKTM Leg Sizing Table

* Peak of the bifurcate body proximal ring stent 
to the distal iliac leg deployment site-4-

       120mm TL1210X080
              150mm TL1210X110
      8.5 - 9.5mm      170mm TL1210X130
       190mm TL1210X150
       210mm TL1210X170

       100mm L12X060
       120mm L12X080
         140mm L12X100
   10.0 - 11.5mm      160mm L12X120
       180mm L12X140
       200mm L12X160
       220mm L12X180

       120mm FL1213X080
          150mm  FL1213X110  
   11.0 - 12.5mm      170mm  FL1213X130 
       190mm FL1213X150
       210mm FL1213X170

         120mm  FL1215X080 
         150mm FL1215X110
  12.5 - 14.0mm     170mm FL1215X130
      190mm  FL1215x150 
        210mm FL1215x170

       120mm FL1217X080
           150mm FL1217X110
   13.5 - 15.0mm      170mm FL1217X130
       190mm FL1217X150
       210mm FL1217X170

       125mm  FL1219X085 
       150mm FL1219X110
    15.5 - 17.0mm      170mm FL1219X130 

       190mm FL1219X150
       210mm FL1219X170              

       125mm FL1221X085
       150mm FL1221X110
   16.5 - 19.0mm      170mm FL1221X130
       190mm FL1221X150
       210mm FL1221X170

       130mm FL1223X090
          150mm FL1223X110
   18.5 - 21.0mm      170mm FL1223X130
       190mm FL1223X150
       210mm FL1223X170

A

B

L

A

B

L
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UMAT for Superelasticity and Plasticity of Shape Memory Alloys 
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UMAT for Superelasticity and Plasticity of Shape Memory Alloys 
 
Superelastic-plastic behavior is based on the 
uniaxial behavior shown here: 
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Usage 

 
Superelastic only behavior 
 
MATERIAL, NAME=name 
USER MATERIAL, CONSTANTS=15 + NA 
 

AE , Av , ME , Mv , L , 
L

T 










, S
L , E

L  

OT , 
U

T 










, S
U , E

U , S
CL , L

V , AN , S1N , SNA...N  

 

DEPVAR 
 24, 
 
 
 

Superelastic-plastic behavior 
 
MATERIAL, NAME=name 
USER MATERIAL, CONSTANTS=16 + NA + 2NP 

AE , Av , ME , Mv , L , 
L

T 










, S
L , E

L  

OT , 
U

T 










, S
U , E

U , S
CL , L

V , AN , S1N , SNA...N , PN , NP
P
NP1

P
1  ,...,  (8 values per line) 

 

DEPVAR 
 31, 
 
 

Note that for both the elastic and elastic-plastic behaviors, the name parameter on *MATERIAL must 
start with ABQ_SUPER_ELASTIC. 
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Input to Superelasticity UMAT  

AE   Austenite elasticity 

Av   Austenite Poisson’s ratio  

ME   Martensite elasticity 

Mv   Martensite Poisson’s ratio 

L   Transformation strain 

L
T 










  T loading 

S
L   Start of transformation loading 

E
L   End of transformation loading 

OT   Reference temperature 

U
T 










  T unloading 

S
U   Start of transformation unloading 

E
U   End of transformation unloading 

S
CL   Start of transformation stress during loading in compression, as a positive 

value 

L
V   Volumetric transformation strain. If L

V = L , an associated flow algorithm 

is used, with L
V  computed based on S

L  and S
CL . For all other cases, a 

nonassociated flow algorithm is used, which produces an unsymmetric 
Jacobian matrix.  The USYMM parameter is thus required on the *USER 
MATERIAL keyword 

AN   Number of annealings to be performed during the analysis 

S1N  - SNAN   Step numbers at which all state dependent variable are set to zero 

PN   Number of stress-strain pairs to define yield curve 

NP
P
NP1

P
1  ,...,    Stress-strain points in the yield curve 
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Output from Superelasticity UMAT  
 

SDV1 – 6 Linear elastic strains 

SDV7 – 12 Transformation strains 

SDV19 Equivalent transformation strain 

SDV20 Volumetric transformation strain 

SDV21 Fraction of Martensite 

SDV22 Equivalent uniaxial tensile stress 

SDV23 Equivalent uniaxial tensile transformation strain 

SDV24 Equivalent uniaxial tensile total strain 

SDV26 – 31 Plastic strains1 

SENER, ELSE, ALLSE Linear elastic strain energy variables2 

PENER, ELPD, ALLPD Transformation strain energy variables2 

 

 

1. Available for superelastic-plastic behavior 

2. See the Output Table in ABAQUS User’s Manual for definitions  



 

 

 

 

Appendix C 
 

PythonScript – Unifrom Radial Force Application 



Uniform Radial Force.py

### Apply the Uniform Radial Load with cartesian components

# Select the nodes in in centre of the wire
nodes=mdb.models[modelname].rootAssembly.instances['Wire-1'].edges[0].getNodes()
#set constants
c=0
Zpositionlist=[]
#Count the number of nodes
Nlength=len(nodes)
# Load on each node:
Fradialnode = F_Radial/(Nlength-2)
# Allows limits on the nodes selected, as a ratio of the length, from each end:
Zminratio=(0.0001)
Zmaxratio=(0.0001)
# loop over nodes for ratio calcs
for i in range(0,len(nodes)):
    Zpositionlist.append(nodes[i].coordinates[2])
    
Zpositionlist.sort()
z1=Zpositionlist[0]
z2=Zpositionlist[Nlength-1]
Zref=Zpositionlist[Nlength-1]-Zpositionlist[0]

#calculate placing of nodes'region based on ratios
Zmin=z1+Zminratio*Zref
Zmax=z2-Zmaxratio*Zref

# loop over nodes to apply bc 
for i in range(0,Nlength):
    c+=1
    b=i
    x=b+1
    node=nodes[(b):(x)]
    print node[0]
    noderegion = regionToolset.Region(nodes=node)
    nodecountstr=str(x)
    nodelabel="node"+nodecountstr
    if nodes[i].coordinates[2] >= Zmin:
        if nodes[i].coordinates[2] <= Zmax:
            Centerpinednode="node"+nodecountstr
            ratio=(z2-nodes[i].coordinates[2])/Zref
            BCz=-cos(ratio*pi/2)*Fradialnode
            BCy=-sin(ratio*pi/2)*Fradialnode
            #Apply force to node
            mdb.models[modelname].ConcentratedForce(amplitude=UNSET, 
createStepName=
                'Pull', localCsys=None,
                name=nodelabel, region=noderegion, cf1=UNSET, cf2=BCy,
                cf3=BCz)
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Appendix D 
 

PythonScript – Half Model Single Strand 



Half Model Single Strand.py
##Abaqus modules:
# -*- coding: mbcs -*-
from part import *
from material import *
from section import *
from assembly import *
from step import *
from interaction import *
from load import *
from mesh import *
from job import *
from sketch import *
from visualization import *
from connectorBehavior import *
import regionToolset
import math

# Define Wire Parameters
# rd = Ring Diameter, wd = wire diamter
#Base constants
rd = 26.74
wd = 0.22

#  Define Loads
#Axial Force on quarter wire
F_Axial = 0.2
#Total Uniform Radial Force on quater wire
F_Radial = 0.2

#calculated parameters
rr = rd/2
wr = wd/2
l = (pi)*(rr)

#Seeds in Quarter Circumference of cross section
Nseed = 6
#els in cross:
Xseed = 4
#Element Length
elSize = 0.375*wd

###Create Steps
##Ring Step
mdb.models['Model-1'].StaticStep(name='Ring', previous='Initial')
mdb.models['Model-1'].steps['Ring'].setValues(nlgeom=ON)
mdb.models['Model-1'].steps['Ring'].setValues(initialInc=0.05, 
    maxInc=0.05)
    
##Pull Step
mdb.models['Model-1'].StaticStep(name='Pull', previous= 'Ring')
mdb.models['Model-1'].steps['Pull'].setValues(initialInc=0.05, maxInc=
    0.05, maxNumInc=400, minInc=1e-07, stabilizationMagnitude=0.0002, 
        stabilizationMethod=DAMPING_FACTOR, continueDampingFactors=False, 
        adaptiveDampingRatio=None)

###Create Part
mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=200.0)
mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.
0, 0.0), point1=(0, wr))

mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Wire', type=
    DEFORMABLE_BODY)
mdb.models['Model-1'].parts['Wire'].BaseSolidExtrude(depth=l, sketch=
    mdb.models['Model-1'].sketches['__profile__'])
del mdb.models['Model-1'].sketches['__profile__']
#Create Datum
mdb.models['Model-1'].parts['Wire'].DatumPlaneByPrincipalPlane(offset=0.0, 
    principalPlane=XYPLANE) 
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Half Model Single Strand.py
mdb.models['Model-1'].parts['Wire'].DatumPlaneByPrincipalPlane(offset=0.0, 
    principalPlane=YZPLANE)
mdb.models['Model-1'].parts['Wire'].DatumPlaneByPrincipalPlane(offset=0.0, 
    principalPlane=XZPLANE)
# create partition
mdb.models['Model-1'].parts['Wire'].PartitionCellByDatumPlane(cells=
    mdb.models['Model-1'].parts['Wire'].cells.getSequenceFromMask(('[#1 ]', ), 
    ), datumPlane=mdb.models['Model-1'].parts['Wire'].datums[3])

mdb.models['Model-1'].parts['Wire'].PartitionCellByDatumPlane(cells=
    mdb.models['Model-1'].parts['Wire'].cells.getSequenceFromMask(('[#3 ]', ), 
    ), datumPlane=mdb.models['Model-1'].parts['Wire'].datums[4])

## Nitinol Create Material
mdb.models['Model-1'].Material(name='ABQ_SUPER_ELASTIC_1')
mdb.models['Model-1'].materials['ABQ_SUPER_ELASTIC_1'].Depvar(n=24)
mdb.models['Model-1'].materials['ABQ_SUPER_ELASTIC_1'].UserMaterial(
    mechanicalConstants=(64000.0, 0.435, 40000.0, 0.435, 0.06, 4.3, 660, 
   680, 0, 5.03, 400, 350, 1100, 0.06, 0.0))
# create section
mdb.models['Model-1'].HomogeneousSolidSection(material='ABQ_SUPER_ELASTIC_1', 
name=
    'wire', thickness=None)
# Assign section to part
mdb.models['Model-1'].parts['Wire'].SectionAssignment(offset=0.0, offsetField=
    '', offsetType=MIDDLE_SURFACE, region=Region(
    cells=mdb.models['Model-1'].parts['Wire'].cells.getSequenceFromMask(mask=(
    '[#f ]', ), )), sectionName='wire', thicknessAssignment=FROM_SECTION)

## Import of instance and meshing
mdb.models['Model-1'].rootAssembly.DatumCsysByDefault(CARTESIAN)
mdb.models['Model-1'].rootAssembly.Instance(dependent=OFF, name='Wire-1', part=
    mdb.models['Model-1'].parts['Wire'])
# Rotate and move instance
mdb.models['Model-1'].rootAssembly.translate(instanceList=('Wire-1', ), vector=
    (0.0, rr, 0.0))
mdb.models['Model-1'].rootAssembly.translate(instanceList=('Wire-1', ), vector=
    (0.0, 0.0, -l/2))
# Seed instance
mdb.models['Model-1'].rootAssembly.seedEdgeByNumber(constraint=FINER, edges=
    
mdb.models['Model-1'].rootAssembly.instances['Wire-1'].edges.getSequenceFromMask
(
    ('[#20418 ]', ), ), number=Xseed)
mdb.models['Model-1'].rootAssembly.seedEdgeByNumber(constraint=FINER, edges=
    
mdb.models['Model-1'].rootAssembly.instances['Wire-1'].edges.getSequenceFromMask
(
    ('[#101a00 ]', ), ), number=Nseed)
# Find and define the centre edge of the wire
centre_edge=mdb.models['Model-1'].rootAssembly.instances['Wire-1'].edges.findAt(
((0.,rr,0.),),)
# Create an edge set for that edge
mdb.models['Model-1'].rootAssembly.Set(name='CentreEdge', edges=centre_edge)
# Seed the central edge with an even number
n_els = (pi*rd/2)/elSize
# Round to an even number:
n_els_even = int(8*round(n_els/8))
#seed
mdb.models['Model-1'].rootAssembly.seedEdgeByNumber(constraint=FINER, 
edges=centre_edge, number=n_els_even)
#seed the other long edges (seems necessary in some cases)
a = mdb.models['Model-1'].rootAssembly
e1 = a.instances['Wire-1'].edges
pickedEdges = e1.getSequenceFromMask(mask=('[#100 ]', ), )
a.seedEdgeByNumber(edges=pickedEdges, number=n_els_even, constraint=FINER)
a = mdb.models['Model-1'].rootAssembly
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e1 = a.instances['Wire-1'].edges
pickedEdges = e1.getSequenceFromMask(mask=('[#20 ]', ), )
a.seedEdgeByNumber(edges=pickedEdges, number=n_els_even, constraint=FINER)
a = mdb.models['Model-1'].rootAssembly
e1 = a.instances['Wire-1'].edges
pickedEdges = e1.getSequenceFromMask(mask=('[#4 ]', ), )
a.seedEdgeByNumber(edges=pickedEdges, number=n_els_even, constraint=FINER)
a = mdb.models['Model-1'].rootAssembly
e1 = a.instances['Wire-1'].edges
pickedEdges = e1.getSequenceFromMask(mask=('[#40000 ]', ), )
a.seedEdgeByNumber(edges=pickedEdges, number=n_els_even, constraint=FINER)
#mesh instance
#Linear Elements selection
mdb.models['Model-1'].rootAssembly.setElementType(elemTypes=(ElemType(
    elemCode=C3D8, elemLibrary=STANDARD), ElemType(elemCode=C3D6, 
    elemLibrary=STANDARD), ElemType(elemCode=C3D4, elemLibrary=STANDARD)), 
    regions=(
    
mdb.models['Model-1'].rootAssembly.instances['Wire-1'].cells.getSequenceFromMask
(
    ('[#f ]', ), ), ))
#mesh    
mdb.models['Model-1'].rootAssembly.generateMesh(regions=(
    mdb.models['Model-1'].rootAssembly.instances['Wire-1'], ))

###Identify the Middle Node 1 and hold in X direction
# select all wire nodes
allWireNodes = mdb.models['Model-1'].rootAssembly.instances['Wire-1'].nodes 
#create a bounding box 
delta = 0.001
xmin = 0 - delta
ymin = rr - delta
zmin = l/4 - delta
xmax = 0 + delta
ymax = rr + delta
zmax = l/4 + delta

# Get nodes that lie inside the bounding box 
midnode1 = allWireNodes.getByBoundingBox(xmin, ymin, zmin, xmax, ymax, zmax)
#create node set for the node
mdb.models['Model-1'].rootAssembly.Set(name='MiddleNode1', nodes=midnode1)
# Pinning the middle node of the wire for all steps(after meshing)
# Pin the middle node in X-direction:
myRegion = regionToolset.Region(nodes=midnode1)
mdb.models['Model-1'].DisplacementBC(amplitude=UNSET, createStepName=
        'Initial', distributionType=UNIFORM, fieldName='', fixed=OFF, 
        localCsys=None, name="pinmiddle1", region=myRegion, u1=0.0, u2=UNSET, 
u3=UNSET, ur1=UNSET, ur2=UNSET,ur3=UNSET)

###Identify the Middle Node 2 and hold in X direction
# select all wire nodes
allWireNodes = mdb.models['Model-1'].rootAssembly.instances['Wire-1'].nodes 
#create a bounding box 
delta = 0.001
xmin = 0 - delta
ymin = rr - delta
zmin = -l/4 - delta
xmax = 0 + delta
ymax = rr + delta
zmax = -l/4 + delta
# Get nodes that lie inside the bounding box 
midnode2 = allWireNodes.getByBoundingBox(xmin, ymin, zmin, xmax, ymax, zmax)
#create node set for the node
mdb.models['Model-1'].rootAssembly.Set(name='MiddleNode2', nodes=midnode2)
# Pinning the middle node of the wire for all steps(after meshing)
# Pin the middle node in X-direction:
myRegion = regionToolset.Region(nodes=midnode2)
mdb.models['Model-1'].DisplacementBC(amplitude=UNSET, createStepName=
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        'Initial', distributionType=UNIFORM, fieldName='', fixed=OFF, 
        localCsys=None, name="pinmiddle2", region=myRegion, u1=0.0, u2=UNSET, 
u3=UNSET, ur1=UNSET, ur2=UNSET,ur3=UNSET)

#create a node set for the centre edge
mdb.models['Model-1'].rootAssembly.Set(name='CentreNodes', 
nodes=mdb.models['Model-1'].rootAssembly.sets['CentreEdge'].nodes)

###Identify the Top Node
# select all wire nodes
allWireNodes = mdb.models['Model-1'].rootAssembly.instances['Wire-1'].nodes 
#create a bounding box 
delta = 0.001
xmin = 0 - delta
ymin = rr - delta
zmin = 0 - delta
xmax = 0 + delta
ymax = rr + delta
zmax = 0 + delta

# Get nodes that lie inside the bounding box 
topnode = allWireNodes.getByBoundingBox(xmin, ymin, zmin, xmax, ymax, zmax)

#create node set for the node
mdb.models['Model-1'].rootAssembly.Set(name='PeakNode', nodes=topnode)

### Wire Surface:
# Create Wire Surface which will be used to define the contact interaction
mdb.models['Model-1'].parts['Wire'].Surface(name='WireSurf', side1Faces=
    mdb.models['Model-1'].parts['Wire'].faces.getSequenceFromMask(('[#3014 ]', 
    ), ))

# Create Wire Ends' surfaces for output analysis purpose
mdb.models['Model-1'].parts['Wire'].Surface(name='Wire_End_YZplane', side1Faces=
    mdb.models['Model-1'].parts['Wire'].faces.getSequenceFromMask(('[#4888 ]', 
    ), ))
mdb.models['Model-1'].parts['Wire'].Surface(name='Wire_End_XZplane', side1Faces=
    mdb.models['Model-1'].parts['Wire'].faces.getSequenceFromMask(('[#8460 ]', 
    ), ))

###Create a node set at the peak
# select all wire nodes
allWireNodes = mdb.models['Model-1'].rootAssembly.instances['Wire-1'].nodes 

# Get nodes that lie inside the bounding box 
boundrad = rr + delta
PeakNodes = 
allWireNodes.getByBoundingCylinder((0.0,rr,-delta),(0.0,rr,delta),boundrad)

#create node set for the node
mdb.models['Model-1'].rootAssembly.Set(name='Peak_Nodes', nodes=PeakNodes)

# Pin the Peak Node in the Z direction:
myRegion = regionToolset.Region(nodes=topnode)
mdb.models['Model-1'].DisplacementBC(amplitude=UNSET, createStepName=
        'Initial', distributionType=UNIFORM, fieldName='', fixed=OFF, 
        localCsys=None, name="PinTopZ", region=myRegion, u1=UNSET, u2=UNSET, 
u3=0.0, ur1=UNSET, ur2=UNSET,ur3=UNSET)

# Pin the peak node in the Y direction for Ring Step
mdb.models['Model-1'].DisplacementBC(amplitude=UNSET, createStepName=
        'Initial', distributionType=UNIFORM, fieldName='', fixed=OFF, 
        localCsys=None, name="HoldTopTemp", region=myRegion, u1=UNSET, u2=0.0, 
u3=UNSET, ur1=UNSET, ur2=UNSET,ur3=UNSET)
mdb.models['Model-1'].boundaryConditions['HoldTopTemp'].deactivate('Pull')

### Apply wire forming displacement BCs Y direction:
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#End 1
#select facenodes top end and create the region
facenodes1=mdb.models['Model-1'].rootAssembly.instances['Wire-1'].faces[11].getN
odes()
facenodes2=mdb.models['Model-1'].rootAssembly.instances['Wire-1'].faces[3].getNo
des()
facenodes3=mdb.models['Model-1'].rootAssembly.instances['Wire-1'].faces[14].getN
odes()
facenodes4=mdb.models['Model-1'].rootAssembly.instances['Wire-1'].faces[7].getNo
des()
facenodes=facenodes1+facenodes2+facenodes3+facenodes4

#set constants
c=0
Xpositionlist=[]
Nlenght=len(facenodes)
#Cycle over nodes
c=0
for i in range(0,Nlenght):
    c+=1
    b=i
    x=b+1
    node=facenodes[(b):(x)]
    print node[0]
    region = regionToolset.Region(nodes=node)
    nodecountstr=str(c)
    nodelabel="WireEnd1_"+nodecountstr
    BCy= -facenodes[i].coordinates[1]
    mdb.models['Model-1'].DisplacementBC(amplitude=UNSET, createStepName=
        'Ring', distributionType=UNIFORM, fieldName='', fixed=OFF, 
        localCsys=None, name=nodelabel, region=region, u1=UNSET, u2=BCy, 
u3=UNSET, ur1=UNSET, ur2=UNSET,ur3=UNSET)

#End 2
#select facenodes bottom end and create the region
facenodes1=mdb.models['Model-1'].rootAssembly.instances['Wire-1'].faces[15].getN
odes()
facenodes2=mdb.models['Model-1'].rootAssembly.instances['Wire-1'].faces[6].getNo
des()
facenodes3=mdb.models['Model-1'].rootAssembly.instances['Wire-1'].faces[10].getN
odes()
facenodes4=mdb.models['Model-1'].rootAssembly.instances['Wire-1'].faces[5].getNo
des()
facenodes=facenodes1+facenodes2+facenodes3+facenodes4
#set constants
c=0
Xpositionlist=[]
Nlenght=len(facenodes)
#Cycle over nodes
c=1000
for i in range(0,Nlenght):
    c+=1
    b=i
    x=b+1
    node=facenodes[(b):(x)]
    print node[0]
    region = regionToolset.Region(nodes=node)
    nodecountstr=str(c)
    nodelabel="WireEnd2"+nodecountstr
    BCy= -facenodes[i].coordinates[1]           
    mdb.models['Model-1'].DisplacementBC(amplitude=UNSET, createStepName=
        'Ring', distributionType=UNIFORM, fieldName='', fixed=OFF, 
        localCsys=None, name=nodelabel, region=region, u1=UNSET, u2=BCy, 
u3=UNSET, ur1=UNSET, ur2=UNSET,ur3=UNSET)

##Apply Linear Pull Load
a = mdb.models['Model-1'].rootAssembly
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v1 = a.instances['Wire-1'].vertices
verts1 = v1.getSequenceFromMask(mask=('[#3 ]', ), )
Ends = regionToolset.Region(vertices=verts1)
mdb.models['Model-1'].ConcentratedForce(name='PullLoad-1', 
createStepName='Pull', 
    region=Ends, cf1=-0.2, distributionType=UNIFORM, field='', 
    localCsys=None)

a = mdb.models['Model-1'].rootAssembly
Peak = a.sets['PeakNode']
mdb.models['Model-1'].ConcentratedForce(name='PullLoad-2', 
createStepName='Pull', 
    region=Peak, cf1=0.2, distributionType=UNIFORM, field='', 
    localCsys=None)

### Set output requests
mdb.models['Model-1'].fieldOutputRequests['F-Output-1'].setValues(variables=(
'S', 'MISES','E', 'NE', 'LE', 'U', 'RF', 'CF','VF', 'CSTRESS',
'CDISP','CFORCE', 'SDV'), timeInterval=1.0, timeMarks=OFF)
#Set output frequency
mdb.models['Model-1'].fieldOutputRequests['F-Output-1'].setValuesInStep(
        stepName='Pull', timeInterval=0.1)
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Appendix E 
 

Langewouters’ Parameters 



Parameters Extracted from Langewouters Paper 
The derivation and the use of the p0 and p1 parameters in this document are provided in the 

Langewouters paper.  The parameter values here, for the abdominal and thoracic regions, have been 

extracted directly from the paper. (Langewouters et al. 1984): 

Langewouters, G.J., Wesseling, K.H. & Goedhard, W.J., 1984. The static elastic properties of 45 
human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. Journal 
of biomechanics, 17(6), pp.425–35. Available at: 
http://www.sciencedirect.com/science/article/pii/0021929084900344 [Accessed July 5, 2012]. 

Abdominal Parameter Values 

Age P0 P1 

30 39.300 35.700 

39 21.5 27.400 

40 19 31.900 

46 11.7 26.100 

46 12.9 21.400 

50 9 29.100 

53 7.5 20.500 

54 8.6 29.300 

57 1.8 26.600 

58 -2 24.300 

59 -4.4 31.500 

63 -0.5 23.700 

64 8.1 25.000 

66 8.3 20.000 

70 -5.8 20.400 

73 -18.7 22.800 

75 -29.2 28.500 

76 -16.9 33.600 

76 -40.3 23.700 

78 -7.7 24.700 

 

  



Thoracic Parameter Values 

Age P0 P1 

30 50.400 42.300 

39 41.3 36.800 

45 36.5 36.000 

45 27.7 39.700 

46 24.9 41.000 

47 31.7 44.400 

50 38.5 45.700 

50 20.3 32.100 

50 26 29.600 

53 27.1 36.800 

54 23.9 29.400 

56 25.7 33.200 

57 29.5 28.800 

57 21.4 26.000 

58 21.1 31.500 

59 18.3 26.700 

60 21.2 29.500 

63 25.7 38.800 

64 12.7 28.000 

65 23.4 30.700 

66 12.2 22.200 

66 18.7 27.900 

66 19.6 30.100 

66 15.9 27.000 

68 20.3 35.000 

68 5.5 19.400 

71 16.4 27.100 

71 11.4 17.100 

72 12.6 23.100 

72 6.5 27.500 

73 11.6 26.000 

75 -1.3 13.100 

76 2.1 15.900 

76 2.1 29.600 

76 7.7 23.000 

79 -2.3 21.600 

80 -11.7 18.500 

81 3.7 18.900 

82 -14.4 20.700 

85 1.8 15.100 

85 10.8 26.300 

87 -0.4 20.700 

87 1.1 14.400 

88 -0.4 29.500 

88 1.3 23.100 

 



 

 

 

 

Appendix F 
 

Script Flow Diagram – Ring-in-Artery Model 



 Full-Bundle, Ring-in-Artery Script Top Level Flow Diagram 

Input parameters of the model are specified 

Get Langewouters based material 

data for chosen vessel from file 

Specify linear elastic material 

properties of vessel 

Initial steps are created; Ring, Pull, Compact, Compact2, Pressure, Release 

LOOP: Create the cyclic steps specified 

Wire positions and lengths are specified based on ring configuration input 

Nitinol material model is created 

LOOP: Each turn is created, partitioned, meshed, applied properties, imported 

and positioned in assembly, boundary conditions are applied to all end face 

nodes for the ring forming initial step, and a force is applied for the pull step 

to the central nodes on the end face. 

LOOP: Distance between pairs of wires are checked and if found to be 

adjacent then connector elements are created between and assigned 

properties.  The soft contact between wires is also implemented for adjacent 

turns 

Vessel model created, partitioned, meshed, material properties applied, 

imported and orientated in assembly, boundary conditions applied including 

cyclic blood pressures 

Compaction surface is created, meshed, imported into assembly and orientated. 

Boundary conditions applied based on input compaction diameter.  Inner central 

core created as an analytical surface, imported into assembly, orientated and 

fixed 

Interactions created between ring - compaction surface and ring – central core 

Job created, ready to submit model for solving 



 

 

 

 

Appendix G 
 

Powerpro Line Tensile Test Results 















 

 

 

 

Appendix H 
 

Connector Line Stiffness Assessment 



0.19mm ‘Power Pro ’ Line Stiffness Assessment 

Length of samples = 100mm 

Stiffness in terms of Newton Force per mm of extension for the 100mm samples ranges from 

2.33N/mm to 7.41N/mm, dependent on which part of the curve is used.  Values below were 

estimated from tensile plots (Appendix G). 

37C Tests, 100mm sample 
length 

Initial Elasticity (N/mm) Settled Elasticity (N/mm) 

Sample1 2.22 7.55 

Sample2 2.29 7.11 

Sample3 2.48 7.56 

Average 2.33 7.41 

 

The lines between the ring and pull point are approximately 170mm, which would give them a 

stiffness in the range of: 1.37N/mm – 4.35N/mm (from average above/1.7) 

There are 8 lines in the physical test attached to the ring.  Only quarter of the ring is being modelled, 

and likewise only 2 of the 8 lines are being modelled.  The stiffness of the modelled line for a full ring 

should be the same as above:  1.37N/mm – 4.35N/mm 

If a single line at peak and valley are used for each turn of the model is used as the method (for 

simplicity), then each line should have a stiffness value of 1/n of above value range, where n is the 

number of turns.  e.g. for B28R1 which has 11 turns:  0.125N/mm – 0.395N/mm 

It is decided that the best approach is to take the ‘settled modulus’ because it is thought that the 

slack in the weave of the line is taken out when force is applied to tie the knots.  Therefore, 

0.395N/mm should be applied in the model for each 170mm line between quarter ring peak/valley 

and a pull point. 



 

 

 

 

Appendix I 
 

Summary of Input Parameters for Anaconda Study 



Input Data for Anaconda Proximal Ring FEA Study

Device

Sheath 

ID 

(mm) Ring

Mean Ring 

Dia. (mm)

Wire 

diameter 

(mm) n turns

Ves. ID 

(mm) Mod. Name

17.50 OLB21_R1_52_V17-5_Comp_SUR

18.50 OLB21_R1_52_V18-5_Comp_SUR

19.50 OLB21_R1_52_V19-5_Comp_SUR

17.50 OLB21_R2_52_V17-5_Comp_SUR

18.50 OLB21_R2_52_V18-5_Comp_SUR

19.50 OLB21_R2_52_V19-5_Comp_SUR

19.50 OLB23_R1_52_V19-5_Comp_SUR

20.25 OLB23_R1_52_V20-25_Comp_SUR

21.00 OLB23_R1_52_V21-0_Comp_SUR

19.50 OLB23_R2_52_V19-5_Comp_SUR

20.25 OLB23_R2_52_V20-25_Comp_SUR

21.00 OLB23_R2_52_V21-0_Comp_SUR

21.00 OLB25_R1_52_V21-0_Comp_SUR

22.00 OLB25_R1_52_V22-0_Comp_SUR

23.00 OLB25_R1_52_V23-0_Comp_SUR

21.00 OLB25_R2_52_V21-0_Comp_SUR

22.00 OLB25_R2_52_V22-0_Comp_SUR

23.00 OLB25_R2_52_V23-0_Comp_SUR

23.00 OLB28_R1_52_V23-0_Comp_SUR

24.00 OLB28_R1_52_V24-0_Comp_SUR

25.00 OLB28_R1_52_V25-0_Comp_SUR

23.00 OLB28_R2_52_V23-0_Comp_SUR

24.00 OLB28_R2_52_V24-0_Comp_SUR

25.00 OLB28_R2_52_V25-0_Comp_SUR

25.00 OLB30_R1_52_V25-0_Comp_SUR

26.25 OLB30_R1_52_V26-25_Comp_SUR

27.50 OLB30_R1_52_V27-5_Comp_SUR

25.00 OLB30_R2_52_V25-0_Comp_SUR

26.25 OLB30_R2_52_V26-25_Comp_SUR

27.50 OLB30_R2_52_V27-5_Comp_SUR

26.50 OLB32_R1_52_V26-5_Comp_SUR

27.75 OLB32_R1_52_V27-75_Comp_SUR

29.00 OLB32_R1_52_V29-0_Comp_SUR

26.50 OLB32_R2_52_V26-5_Comp_SUR

27.75 OLB32_R2_52_V27-75_Comp_SUR

29.00 OLB32_R2_52_V29-0_Comp_SUR

28.50 OLB34_R1_52_V28-5_Comp_SUR

29.75 OLB34_R1_52_V29-75_Comp_SUR

31.00 OLB34_R1_52_V31-0_Comp_SUR

28.50 OLB34_R2_52_V28-5_Comp_SUR

29.75 OLB34_R2_52_V29-75_Comp_SUR

31.00 OLB34_R2_52_V31-0_Comp_SUR

12

6

6.7

11

6

12

6

14

7

0.24

0.24

32.67

32.42

26.56

26.36

28.59

10

5

12

6

10

5

0.22

0.22

0.22

0.22

0.20

0.22

0.22

0.18

0.18

0.18

0.18

0.20

28.36

30.65

30.36

20.39

20.19

22.43

22.24

24.46

24.24

OLB34

R1

R2

6.2

6.2

6.7

6.7

6.7

6.7

OLB30

R1

R2

OLB32

R1

R2

OLB25

R1

R2

OLB28

R1

R2

OLB21

R1

R2

OLB23

R1

R2



 

 

 

 

Appendix J 
 

PythonScript – Radial Force Post Processing 



Extract_Radial_Force.py
## Radial Force Extraction Script
from odbAccess import *
from abaqusConstants import *
import math
import os
import regionToolset
import csv

odbnamelist = ['model_name_1','model_name_2']

data = [["ODB_Name","BP_80-120 Dia","BP_80-120 Sys","BP_60-140 Dia","BP_60-140 
Sys","BP_80-160 Dia","BP_80-160 Sys"]]
writepath = "[Insert path to write outputs to here]"
os.chdir(writepath)
out_file = 'Radial_Force.csv'
with open(out_file, 'ab') as fp:
    a = csv.writer(fp, delimiter=',')
    a.writerows(data)

for odbname in odbnamelist:
    path = "[insert location of ODBs]"
    odbfile = path+ '\\'+ odbname+ '.odb'
    odb=openOdb(odbfile)
    ###Select a frame
    D10lastframe = odb.steps['D10'].frames[-1]
    S10lastframe = odb.steps['S10'].frames[-1]
    ###Field Output
    ContactForceD10 = D10lastframe.fieldOutputs['CNORMF']
    ContactForceS10 = S10lastframe.fieldOutputs['CNORMF']
    ## Region and subset:
    region = odb.rootAssembly.instances['VESSEL-1']
    fieldD10 = ContactForceD10.getSubset(region=region, position = NODAL)
    fieldS10 = ContactForceS10.getSubset(region=region, position = NODAL)
    ## Create Cylindrical Coordinate System
    scratchOdb = session.ScratchOdb(odb)
    scratchOdb.rootAssembly.DatumCsysByThreePoints(name='CSYS-1', 
        coordSysType=CYLINDRICAL, origin=(0.0, 0.0, 0.0), point1=(0.0, 1.0, 
        0.0), point2=(0.0, 0.0, 1.0))
    ##convert results:
    dtm = scratchOdb.rootAssembly.datumCsyses['CSYS-1']
    field_cylindircal_D10 = fieldD10.getTransformedField(datumCsys= dtm)
    field_cylindircal_S10 = fieldS10.getTransformedField(datumCsys= dtm)
    Vessel_CNORMF_Values_D10 = field_cylindircal_D10.values
    Vessel_CNORMF_Values_S10 = field_cylindircal_S10.values
    ##Cycle through to total the CNORMF magnitude
    ## and radial values (data[0])
    ##Contact_Magnitude = 0
    Contact_Radial_Total_D10 = 0
    Contact_Radial_Total_S10 = 0
    for x in Vessel_CNORMF_Values_D10:
        ##Contact_Magnitude = Contact_Magnitude + x.magnitude
        Contact_Radial_Total_D10 = Contact_Radial_Total_D10 + x.data[0]
    for x in Vessel_CNORMF_Values_S10:
        Contact_Radial_Total_S10 = Contact_Radial_Total_S10 + x.data[0]
    data = [[odbname, Contact_Radial_Total_D10, Contact_Radial_Total_S10]]
    ## Write Device and Contact Force Results to CSV format:
    ##Location for Result spreadsheet:
    os.chdir(writepath)
    with open(out_file, 'ab') as fp:
        a = csv.writer(fp, delimiter=',')
        a.writerows(data)
    session.odbs[odbfile].close()
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Appendix K 
 

PythonScript – Ring Motion Post Processing 



Extact_Ring_Motion_ver2.py
from odbAccess import *
from abaqusConstants import *
import math
import os
import csv
from odbAccess import *
from abaqusConstants import *
import math
import os
import regionToolset
import csv
from numpy import array

odbnamelist = ['model_name_1','model_name_2']

##Create a CSV file to collate data witha header:
data = [["ODB_Name","Initial Mean Diameter","PV Diameter @80","PV Diameter 
@120","PV Pulsatility 80-120",
         "MidPoint Diameter @80","MidPoint Diameter @120","MidPoint Pulsatility 
80-120",
         "Height @80","Height @120","Delta Height 80-120",
         "PV Diameter @60","PV Diameter @140","PV Pulsatility 60-140",
         "MidPoint Diameter @60","MidPoint Diameter @140","MidPoint Pulsatility 
60-140",
         "Height @60","Height @140","Delta Height 60-140",
         "PV Diameter @80","PV Diameter @160","PV Pulsatility 80-160",
         "MidPoint Diameter @80","MidPoint Diameter @160","MidPoint Pulsatility 
80-160",
         "Height @80","Height @160","Delta Height 80-160"]]
writepath = "[Insert path to write outputs to here]"
os.chdir(writepath)
out_file = 'Ring_Motion.csv'
with open(out_file, 'ab') as fp:
    a = csv.writer(fp, delimiter=',')
    a.writerows(data)

for odbname in odbnamelist:
    path = "[insert location of ODBs]"
    odbfile = path+ '\\'+ odbname+ '.odb'
    odb=openOdb(odbfile)
    TurnCount = 0
    # Find the number of turns
    for instanceName in odb.rootAssembly.instances.keys():
        if "TURN" in instanceName:
            TurnCount = TurnCount + 1
    ##Num of turns:
    n = TurnCount
    ###Create cylindrical coordinate system
    scratchOdb = session.ScratchOdb(odb)
    scratchOdb.rootAssembly.DatumCsysByThreePoints(name='CSYS-1', 
        coordSysType=CYLINDRICAL, origin=(0.0, 0.0, 0.0), point1=(0.0, 1.0, 
        0.0), point2=(0.0, 0.0, 1.0))
    dtm = scratchOdb.rootAssembly.datumCsyses['CSYS-1']
    #####End Nodes INITIAL Diameter ####
    frame = odb.steps['Ring'].frames[-1]
    U_fieldData = frame.fieldOutputs['U']
    ##U_fieldData_Cylindrical = U_fieldData.getTransformedField(datumCsys= dtm)
    Rad_End1_Initial_all = []
    Rad_End2_Initial_all = []
    for x in range(n):
        ###End1
        node = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_END1NODE']
        nodeSubset = U_fieldData.getSubset(region=node)
        Rad_Disp_Initial_node = nodeSubset.values[0].data[1]  ### data[1] is Y 
which is Radial for End1
        nodeNum = nodeSubset.values[0].nodeLabel
        initial = odb.rootAssembly.instances['TURN'+ 
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str(x+1)].nodes[nodeNum-1].coordinates[1]  ### data[1] is Y which is Radial for 
End1
        Rad_Pos_Initial_node = initial + Rad_Disp_Initial_node
        Rad_End1_Initial_all.append(Rad_Pos_Initial_node)
        ###End2
        node = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_END2NODE']
        nodeSubset = U_fieldData.getSubset(region=node)
        Rad_Disp_Initial_node = nodeSubset.values[0].data[2]### data[2] is Z 
which is Radial for End2
        nodeNum = nodeSubset.values[0].nodeLabel
        initial = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[2]  ### data[2] is Z which is Radial for 
End2
        Rad_Pos_Initial_node = initial + Rad_Disp_Initial_node
        Rad_End2_Initial_all.append(Rad_Pos_Initial_node)
    End1_Diameter_Initial = 
(sum(Rad_End1_Initial_all)/len(Rad_End1_Initial_all))*2
    End2_Diameter_Initial = 
(sum(Rad_End2_Initial_all)/len(Rad_End2_Initial_all))*2
    ########   S10   ######
    frame = odb.steps['S10'].frames[-1]
    U_fieldData = frame.fieldOutputs['U']
    U_fieldData_Cylindrical = U_fieldData.getTransformedField(datumCsys= dtm)
    Rad_End1_all = []
    Rad_End2_all = []
    MidNode_Rad_Disp_all = []
    Height_Disp_End1_all = []
    Height_Disp_End2_all = []
    for x in range(n):
        ###End1
        ###Radial
        node = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_END1NODE']
        nodeSubset = U_fieldData.getSubset(region=node)
        Rad_Disp_node = nodeSubset.values[0].data[1]### data[1] is Y which is 
Radial for End1
        nodeNum = nodeSubset.values[0].nodeLabel
        initial = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[1]  ### data[1] is Y which is Radial for 
End1
        Rad_Pos_node = initial + Rad_Disp_node
        Rad_End1_all.append(Rad_Pos_node)
        ###Ring Height Data
        X_Disp_node = nodeSubset.values[0].data[0]
        Node_initial_X = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[0]
        X_Position = X_Disp_node + Node_initial_X
        Height_Disp_End1_all.append(X_Position)
        ###End2
        ###Radial
        node = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_END2NODE']
        nodeSubset = U_fieldData.getSubset(region=node)
        Rad_Disp_node = nodeSubset.values[0].data[2]## data[2] is Z which is 
Radial for End2
        nodeNum = nodeSubset.values[0].nodeLabel
        initial = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[2] ## data[2] is Z which is Radial for 
End2
        Rad_Pos_node = initial + Rad_Disp_node
        Rad_End2_all.append(Rad_Pos_node)
        ###Ring Height Data
        X_Disp_node = nodeSubset.values[0].data[0]
        Node_initial_X = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[0]
        X_Position = X_Disp_node + Node_initial_X
        Height_Disp_End2_all.append(X_Position)
        ###MidNode
        node1 = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_MIDNODE_LOW']
        node2 = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_MIDNODE_HIGH']

Page 2



Extact_Ring_Motion_ver2.py
        nodeSubset1 = U_fieldData_Cylindrical.getSubset(region=node1)
        nodeSubset2 = U_fieldData_Cylindrical.getSubset(region=node2)
        Rad_Disp_node1 = nodeSubset1.values[0].data[0]
        Rad_Disp_node2 = nodeSubset2.values[0].data[0]
        MidNode_Rad_Disp = (Rad_Disp_node1+Rad_Disp_node2)/2
        MidNode_Rad_Disp_all.append(MidNode_Rad_Disp)
    End1_Diameter_S10 = (sum(Rad_End1_all)/n)*2
    End2_Diameter_S10 = (sum(Rad_End2_all)/n)*2
    All_MidNode_Rad_Pos_S10 = 
array(Rad_End1_Initial_all)+array(MidNode_Rad_Disp_all)
    MidNode_Diameter_S10 = (sum(All_MidNode_Rad_Pos_S10)/n)*2
    Height_S10 = ((sum(Height_Disp_End2_all)/n)-(sum(Height_Disp_End1_all)/n))
    ########   D10   ######
    frame = odb.steps['D10'].frames[-1]
    U_fieldData = frame.fieldOutputs['U']
    U_fieldData_Cylindrical = U_fieldData.getTransformedField(datumCsys= dtm)
    Rad_End1_all = []
    Rad_End2_all = []
    MidNode_Rad_Disp_all = []
    Height_Disp_End1_all = []
    Height_Disp_End2_all = []
    for x in range(n):
        ###End1
        ###Radial
        node = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_END1NODE']
        nodeSubset = U_fieldData.getSubset(region=node)
        Rad_Disp_node = nodeSubset.values[0].data[1]### data[1] is Y which is 
Radial for End1
        nodeNum = nodeSubset.values[0].nodeLabel
        initial = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[1]  ### data[1] is Y which is Radial for 
End1
        Rad_Pos_node = initial + Rad_Disp_node
        Rad_End1_all.append(Rad_Pos_node)
        ###Ring Height Data
        X_Disp_node = nodeSubset.values[0].data[0]
        Node_initial_X = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[0]
        X_Position = X_Disp_node + Node_initial_X
        Height_Disp_End1_all.append(X_Position)
        ###End2
        ###Radial
        node = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_END2NODE']
        nodeSubset = U_fieldData.getSubset(region=node)
        Rad_Disp_node = nodeSubset.values[0].data[2]## data[2] is Z which is 
Radial for End2
        nodeNum = nodeSubset.values[0].nodeLabel
        initial = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[2] ## data[2] is Z which is Radial for 
End2
        Rad_Pos_node = initial + Rad_Disp_node
        Rad_End2_all.append(Rad_Pos_node)
        ###Ring Height Data
        X_Disp_node = nodeSubset.values[0].data[0]
        Node_initial_X = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[0]
        X_Position = X_Disp_node + Node_initial_X
        Height_Disp_End2_all.append(X_Position)
        ###MidNode
        node1 = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_MIDNODE_LOW']
        node2 = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_MIDNODE_HIGH']
        nodeSubset1 = U_fieldData_Cylindrical.getSubset(region=node1)
        nodeSubset2 = U_fieldData_Cylindrical.getSubset(region=node2)
        Rad_Disp_node1 = nodeSubset1.values[0].data[0]
        Rad_Disp_node2 = nodeSubset2.values[0].data[0]
        MidNode_Rad_Disp = (Rad_Disp_node1+Rad_Disp_node2)/2
        MidNode_Rad_Disp_all.append(MidNode_Rad_Disp)
    End1_Diameter_D10 = (sum(Rad_End1_all)/n)*2
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    End2_Diameter_D10 = (sum(Rad_End2_all)/n)*2
    All_MidNode_Rad_Pos_D10 = 
array(Rad_End1_Initial_all)+array(MidNode_Rad_Disp_all)
    MidNode_Diameter_D10 = (sum(All_MidNode_Rad_Pos_D10)/n)*2
    Height_D10 = ((sum(Height_Disp_End2_all)/n)-(sum(Height_Disp_End1_all)/n))
    ########   S15   ######
    frame = odb.steps['S15'].frames[-1]
    U_fieldData = frame.fieldOutputs['U']
    U_fieldData_Cylindrical = U_fieldData.getTransformedField(datumCsys= dtm)
    Rad_End1_all = []
    Rad_End2_all = []
    MidNode_Rad_Disp_all = []
    Height_Disp_End1_all = []
    Height_Disp_End2_all = []
    for x in range(n):
        ###End1
        ###Radial
        node = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_END1NODE']
        nodeSubset = U_fieldData.getSubset(region=node)
        Rad_Disp_node = nodeSubset.values[0].data[1]### data[1] is Y which is 
Radial for End1
        nodeNum = nodeSubset.values[0].nodeLabel
        initial = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[1]  ### data[1] is Y which is Radial for 
End1
        Rad_Pos_node = initial + Rad_Disp_node
        Rad_End1_all.append(Rad_Pos_node)
        ###Ring Height Data
        X_Disp_node = nodeSubset.values[0].data[0]
        Node_initial_X = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[0]
        X_Position = X_Disp_node + Node_initial_X
        Height_Disp_End1_all.append(X_Position)
        ###End2
        ###Radial
        node = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_END2NODE']
        nodeSubset = U_fieldData.getSubset(region=node)
        Rad_Disp_node = nodeSubset.values[0].data[2]## data[2] is Z which is 
Radial for End2
        nodeNum = nodeSubset.values[0].nodeLabel
        initial = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[2] ## data[2] is Z which is Radial for 
End2
        Rad_Pos_node = initial + Rad_Disp_node
        Rad_End2_all.append(Rad_Pos_node)
        ###Ring Height Data
        X_Disp_node = nodeSubset.values[0].data[0]
        Node_initial_X = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[0]
        X_Position = X_Disp_node + Node_initial_X
        Height_Disp_End2_all.append(X_Position)
        ###MidNode
        node1 = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_MIDNODE_LOW']
        node2 = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_MIDNODE_HIGH']
        nodeSubset1 = U_fieldData_Cylindrical.getSubset(region=node1)
        nodeSubset2 = U_fieldData_Cylindrical.getSubset(region=node2)
        Rad_Disp_node1 = nodeSubset1.values[0].data[0]
        Rad_Disp_node2 = nodeSubset2.values[0].data[0]
        MidNode_Rad_Disp = (Rad_Disp_node1+Rad_Disp_node2)/2
        MidNode_Rad_Disp_all.append(MidNode_Rad_Disp)
    End1_Diameter_S15 = (sum(Rad_End1_all)/n)*2
    End2_Diameter_S15 = (sum(Rad_End2_all)/n)*2
    All_MidNode_Rad_Pos_S15 = 
array(Rad_End1_Initial_all)+array(MidNode_Rad_Disp_all)
    MidNode_Diameter_S15 = (sum(All_MidNode_Rad_Pos_S15)/n)*2
    Height_S15 = ((sum(Height_Disp_End2_all)/n)-(sum(Height_Disp_End1_all)/n))
    ########   D15   ######
    frame = odb.steps['D15'].frames[-1]
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    U_fieldData = frame.fieldOutputs['U']
    U_fieldData_Cylindrical = U_fieldData.getTransformedField(datumCsys= dtm)
    Rad_End1_all = []
    Rad_End2_all = []
    MidNode_Rad_Disp_all = []
    Height_Disp_End1_all = []
    Height_Disp_End2_all = []
    for x in range(n):
        ###End1
        ###Radial
        node = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_END1NODE']
        nodeSubset = U_fieldData.getSubset(region=node)
        Rad_Disp_node = nodeSubset.values[0].data[1]### data[1] is Y which is 
Radial for End1
        nodeNum = nodeSubset.values[0].nodeLabel
        initial = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[1]  ### data[1] is Y which is Radial for 
End1
        Rad_Pos_node = initial + Rad_Disp_node
        Rad_End1_all.append(Rad_Pos_node)
        ###Ring Height Data
        X_Disp_node = nodeSubset.values[0].data[0]
        Node_initial_X = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[0]
        X_Position = X_Disp_node + Node_initial_X
        Height_Disp_End1_all.append(X_Position)
        ###End2
        ###Radial
        node = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_END2NODE']
        nodeSubset = U_fieldData.getSubset(region=node)
        Rad_Disp_node = nodeSubset.values[0].data[2]## data[2] is Z which is 
Radial for End2
        nodeNum = nodeSubset.values[0].nodeLabel
        initial = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[2] ## data[2] is Z which is Radial for 
End2
        Rad_Pos_node = initial + Rad_Disp_node
        Rad_End2_all.append(Rad_Pos_node)
        ###Ring Height Data
        X_Disp_node = nodeSubset.values[0].data[0]
        Node_initial_X = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[0]
        X_Position = X_Disp_node + Node_initial_X
        Height_Disp_End2_all.append(X_Position)
        ###MidNode
        node1 = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_MIDNODE_LOW']
        node2 = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_MIDNODE_HIGH']
        nodeSubset1 = U_fieldData_Cylindrical.getSubset(region=node1)
        nodeSubset2 = U_fieldData_Cylindrical.getSubset(region=node2)
        Rad_Disp_node1 = nodeSubset1.values[0].data[0]
        Rad_Disp_node2 = nodeSubset2.values[0].data[0]
        MidNode_Rad_Disp = (Rad_Disp_node1+Rad_Disp_node2)/2
        MidNode_Rad_Disp_all.append(MidNode_Rad_Disp)
    End1_Diameter_D15 = (sum(Rad_End1_all)/n)*2
    End2_Diameter_D15 = (sum(Rad_End2_all)/n)*2
    All_MidNode_Rad_Pos_D15 = 
array(Rad_End1_Initial_all)+array(MidNode_Rad_Disp_all)
    MidNode_Diameter_D15 = (sum(All_MidNode_Rad_Pos_D15)/n)*2
    Height_D15 = ((sum(Height_Disp_End2_all)/n)-(sum(Height_Disp_End1_all)/n))
    ########   S20   ######
    frame = odb.steps['S20'].frames[-1]
    U_fieldData = frame.fieldOutputs['U']
    U_fieldData_Cylindrical = U_fieldData.getTransformedField(datumCsys= dtm)
    Rad_End1_all = []
    Rad_End2_all = []
    MidNode_Rad_Disp_all = []
    Height_Disp_End1_all = []
    Height_Disp_End2_all = []
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    for x in range(n):
        ###End1
        ###Radial
        node = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_END1NODE']
        nodeSubset = U_fieldData.getSubset(region=node)
        Rad_Disp_node = nodeSubset.values[0].data[1]### data[1] is Y which is 
Radial for End1
        nodeNum = nodeSubset.values[0].nodeLabel
        initial = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[1]  ### data[1] is Y which is Radial for 
End1
        Rad_Pos_node = initial + Rad_Disp_node
        Rad_End1_all.append(Rad_Pos_node)
        ###Ring Height Data
        X_Disp_node = nodeSubset.values[0].data[0]
        Node_initial_X = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[0]
        X_Position = X_Disp_node + Node_initial_X
        Height_Disp_End1_all.append(X_Position)
        ###End2
        ###Radial
        node = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_END2NODE']
        nodeSubset = U_fieldData.getSubset(region=node)
        Rad_Disp_node = nodeSubset.values[0].data[2]## data[2] is Z which is 
Radial for End2
        nodeNum = nodeSubset.values[0].nodeLabel
        initial = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[2] ## data[2] is Z which is Radial for 
End2
        Rad_Pos_node = initial + Rad_Disp_node
        Rad_End2_all.append(Rad_Pos_node)
        ###Ring Height Data
        X_Disp_node = nodeSubset.values[0].data[0]
        Node_initial_X = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[0]
        X_Position = X_Disp_node + Node_initial_X
        Height_Disp_End2_all.append(X_Position)
        ###MidNode
        node1 = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_MIDNODE_LOW']
        node2 = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_MIDNODE_HIGH']
        nodeSubset1 = U_fieldData_Cylindrical.getSubset(region=node1)
        nodeSubset2 = U_fieldData_Cylindrical.getSubset(region=node2)
        Rad_Disp_node1 = nodeSubset1.values[0].data[0]
        Rad_Disp_node2 = nodeSubset2.values[0].data[0]
        MidNode_Rad_Disp = (Rad_Disp_node1+Rad_Disp_node2)/2
        MidNode_Rad_Disp_all.append(MidNode_Rad_Disp)
    End1_Diameter_S20 = (sum(Rad_End1_all)/n)*2
    End2_Diameter_S20 = (sum(Rad_End2_all)/n)*2
    All_MidNode_Rad_Pos_S20 = 
array(Rad_End1_Initial_all)+array(MidNode_Rad_Disp_all)
    MidNode_Diameter_S20 = (sum(All_MidNode_Rad_Pos_S20)/n)*2
    Height_S20 = ((sum(Height_Disp_End2_all)/n)-(sum(Height_Disp_End1_all)/n))
    ########   D20   ######
    frame = odb.steps['D20'].frames[-1]
    U_fieldData = frame.fieldOutputs['U']
    U_fieldData_Cylindrical = U_fieldData.getTransformedField(datumCsys= dtm)
    Rad_End1_all = []
    Rad_End2_all = []
    MidNode_Rad_Disp_all = []
    Height_Disp_End1_all = []
    Height_Disp_End2_all = []
    for x in range(n):
        ###End1
        ###Radial
        node = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_END1NODE']
        nodeSubset = U_fieldData.getSubset(region=node)
        Rad_Disp_node = nodeSubset.values[0].data[1]### data[1] is Y which is 
Radial for End1
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        nodeNum = nodeSubset.values[0].nodeLabel
        initial = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[1]  ### data[1] is Y which is Radial for 
End1
        Rad_Pos_node = initial + Rad_Disp_node
        Rad_End1_all.append(Rad_Pos_node)
        ###Ring Height Data
        X_Disp_node = nodeSubset.values[0].data[0]
        Node_initial_X = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[0]
        X_Position = X_Disp_node + Node_initial_X
        Height_Disp_End1_all.append(X_Position)
        ###End2
        ###Radial
        node = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_END2NODE']
        nodeSubset = U_fieldData.getSubset(region=node)
        Rad_Disp_node = nodeSubset.values[0].data[2]## data[2] is Z which is 
Radial for End2
        nodeNum = nodeSubset.values[0].nodeLabel
        initial = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[2] ## data[2] is Z which is Radial for 
End2
        Rad_Pos_node = initial + Rad_Disp_node
        Rad_End2_all.append(Rad_Pos_node)
        ###Ring Height Data
        X_Disp_node = nodeSubset.values[0].data[0]
        Node_initial_X = odb.rootAssembly.instances['TURN'+ 
str(x+1)].nodes[nodeNum-1].coordinates[0]
        X_Position = X_Disp_node + Node_initial_X
        Height_Disp_End2_all.append(X_Position)
        ###MidNode
        node1 = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_MIDNODE_LOW']
        node2 = odb.rootAssembly.nodeSets['TURN'+ str(x+1)+ '_MIDNODE_HIGH']
        nodeSubset1 = U_fieldData_Cylindrical.getSubset(region=node1)
        nodeSubset2 = U_fieldData_Cylindrical.getSubset(region=node2)
        Rad_Disp_node1 = nodeSubset1.values[0].data[0]
        Rad_Disp_node2 = nodeSubset2.values[0].data[0]
        MidNode_Rad_Disp = (Rad_Disp_node1+Rad_Disp_node2)/2
        MidNode_Rad_Disp_all.append(MidNode_Rad_Disp)
    End1_Diameter_D20 = (sum(Rad_End1_all)/n)*2
    End2_Diameter_D20 = (sum(Rad_End2_all)/n)*2
    All_MidNode_Rad_Pos_D20 = 
array(Rad_End1_Initial_all)+array(MidNode_Rad_Disp_all)
    MidNode_Diameter_D20 = (sum(All_MidNode_Rad_Pos_D20)/n)*2
    Height_D20 = ((sum(Height_Disp_End2_all)/n)-(sum(Height_Disp_End1_all)/n))
    ####End 1 - Valley Calulations
    End1_Systolic_Diameters = array([End1_Diameter_S10, End1_Diameter_S15, 
End1_Diameter_S20])
    End1_Diastolic_Diameters = array([End1_Diameter_D10, End1_Diameter_D15, 
End1_Diameter_D20])
    Pulsatilities_End1 = End1_Systolic_Diameters - End1_Diastolic_Diameters
    ####End 2 - Valley Calulations
    End2_Systolic_Diameters = array([End2_Diameter_S10, End2_Diameter_S15, 
End2_Diameter_S20])
    End2_Diastolic_Diameters = array([End2_Diameter_D10, End2_Diameter_D15, 
End2_Diameter_D20])
    Pulsatilities_End2 = End2_Systolic_Diameters - End2_Diastolic_Diameters
    ##### Average End1,End2 (Valley,Peak) calcs:
    Average_ValleyPeak_Systolic_Diameters = (End1_Systolic_Diameters + 
End2_Systolic_Diameters)/2
    Average_ValleyPeak_Diastolic_Diameters = (End1_Diastolic_Diameters + 
End2_Diastolic_Diameters)/2
    Average_ValleyPeak_Pulsatility = (Pulsatilities_End1 + Pulsatilities_End2)/2
    ##### Mid Node Calculations
    Mid_Systolic_Diameters = array([MidNode_Diameter_S10, MidNode_Diameter_S15, 
MidNode_Diameter_S20])
    Mid_Diastolic_Diameters = array([MidNode_Diameter_D10, MidNode_Diameter_D15,
MidNode_Diameter_D20])

Page 7



Extact_Ring_Motion_ver2.py
    Pulsatilities_Mid = Mid_Systolic_Diameters - Mid_Diastolic_Diameters
    ###### Hieght Calulations
    Systolic_Heights = array([Height_S10, Height_S15, Height_S20])
    Diastolic_Heights = array([Height_D10, Height_D15, Height_D20])
    Delta_Heights = Diastolic_Heights - Systolic_Heights
    AllData = [[odbname, End1_Diameter_Initial, 
Average_ValleyPeak_Diastolic_Diameters[0],Average_ValleyPeak_Systolic_Diameters[
0],
               
Average_ValleyPeak_Pulsatility[0],Mid_Diastolic_Diameters[0],Mid_Systolic_Diamet
ers[0],
               
Pulsatilities_Mid[0],Diastolic_Heights[0],Systolic_Heights[0],Delta_Heights[0],
               
Average_ValleyPeak_Diastolic_Diameters[1],Average_ValleyPeak_Systolic_Diameters[
1],
               
Average_ValleyPeak_Pulsatility[1],Mid_Diastolic_Diameters[1],Mid_Systolic_Diamet
ers[1],
               
Pulsatilities_Mid[1],Diastolic_Heights[1],Systolic_Heights[1],Delta_Heights[1],
               
Average_ValleyPeak_Diastolic_Diameters[2],Average_ValleyPeak_Systolic_Diameters[
2],
               
Average_ValleyPeak_Pulsatility[2],Mid_Diastolic_Diameters[2],Mid_Systolic_Diamet
ers[2],
               
Pulsatilities_Mid[2],Diastolic_Heights[2],Systolic_Heights[2],Delta_Heights[2]]]
    ####Write results to spreadsheet:
    os.chdir(writepath)
    with open(out_file, 'ab') as fp:
        a = csv.writer(fp, delimiter=',')
        a.writerows(AllData)
    session.odbs[odbfile].close()
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PythonScript – Strain Analysis Post Processing 



Extract Delta Strain_ver5.py
### STRAIN ANALYSIS SCRIPT

from odbAccess import *
from abaqusConstants import *
import math
import os
import regionToolset
import csv
from numpy import array

odbnamelist = ['model_name_1','model_name_2']

####Create a CSV file to collate data witha header:
data = [["ODB_Name","Delta","@ Mean of:","Node","Turn","Max Strain Mid Cycle","@
Node","Turn"]]
writepath = "[Insert path to write outputs to here]"
os.chdir(writepath)
out_file = 'Strain_Analysis.csv'
with open(out_file, 'ab') as fp:
    a = csv.writer(fp, delimiter=',')
    a.writerows(data)

for odbname in odbnamelist:
    path = "[insert location of ODBs]"
    odbfile = path+ '\\'+ odbname+ '.odb'
    odb=openOdb(odbfile)
    TurnCount = 0
    # Find the number of turns
    for instanceName in odb.rootAssembly.instances.keys():
        if "TURN" in instanceName:
            TurnCount = TurnCount + 1
    high_Delta = 0
    high_MeanStrain = 0
    for x in range(TurnCount):
        ###Select a frame
        D10lastframe = odb.steps['D10'].frames[-1]
        S10lastframe = odb.steps['S10'].frames[-1]
        ############################################
        ####  Calculate delta strain
        StrainD10 = D10lastframe.fieldOutputs['LE']
        StrainS10 = S10lastframe.fieldOutputs['LE']
        region = odb.rootAssembly.instances['TURN'+ str(x+1)]
        ####Extrapolate Nodal Values from calculated integration point strains 
through the region
        #### (still in vector form)
        StrainD10subset = StrainD10.getSubset(region=region, position = 
ELEMENT_NODAL)
        StrainS10subset = StrainS10.getSubset(region=region, position = 
ELEMENT_NODAL)
        ##Get Scalars:
        MaxP_StrainD10subset = 
StrainD10subset.getScalarField(invariant=MAX_PRINCIPAL)
        MaxP_StrainS10subset = 
StrainS10subset.getScalarField(invariant=MAX_PRINCIPAL)
        ##Delta and Mean calc on each SCALAR:
        Delta_maxP = MaxP_StrainD10subset - MaxP_StrainS10subset
        Mean_maxP = (MaxP_StrainD10subset + MaxP_StrainS10subset)/2
        b = -1
        for a in Delta_maxP.values:
            ##count:
            b = b+1
            m = a.data
            if abs(m) > abs(high_Delta):
                high_Delta = m
                node = a.nodeLabel
                part = a.instance.name
                MeanStrain = Mean_maxP.values[b].data
        ## Find the highest mean strain, mid-cycle in ring:
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        for d in Mean_maxP.values:
            p = d.data
            if p > high_MeanStrain:
                high_MeanStrain = p
                HighMean_Node = d.nodeLabel
                HighMean_Part = d.instance.name
    print "Delta:",high_Delta,"@",MeanStrain,"mean strain, Loaction: 
Node",node,part
    print "Max Strain:",high_MeanStrain,"@ Node", HighMean_Node, HighMean_Part
    
#############################################################################
    high_Delta2 = 0
    high_MeanStrain2 = 0
    for x in range(TurnCount):
        ###Select a frame
        D15lastframe = odb.steps['D15'].frames[-1]
        S15lastframe = odb.steps['S15'].frames[-1]
        ############################################
        ####  Calculate delta strain
        StrainD15 = D15lastframe.fieldOutputs['LE']
        StrainS15 = S15lastframe.fieldOutputs['LE']
        region = odb.rootAssembly.instances['TURN'+ str(x+1)]
        ####Extrapolte Nodel Values from calculated integration point strains 
through the region
        #### (still in vector form)
        StrainD15subset = StrainD15.getSubset(region=region, position = 
ELEMENT_NODAL)
        StrainS15subset = StrainS15.getSubset(region=region, position = 
ELEMENT_NODAL)
        ##Get Scalars:
        MaxP_StrainD15subset = 
StrainD15subset.getScalarField(invariant=MAX_PRINCIPAL)
        MaxP_StrainS15subset = 
StrainS15subset.getScalarField(invariant=MAX_PRINCIPAL)
        ##Delta and Mean calc on each SCALAR:
        Delta_maxP = MaxP_StrainD15subset - MaxP_StrainS15subset
        Mean_maxP = (MaxP_StrainD15subset + MaxP_StrainS15subset)/2
        b = -1
        for a in Delta_maxP.values:
            ##count:
            b = b+1
            m = a.data
            if abs(m) > abs(high_Delta2):
                high_Delta2 = m
                node2 = a.nodeLabel
                part2 = a.instance.name
                MeanStrain2 = Mean_maxP.values[b].data
        ## Find the highest mean strain, mid-cycle in ring:
        for d in Mean_maxP.values:
            p = d.data
            if p > high_MeanStrain2:
                high_MeanStrain2 = p
                HighMean_Node2 = d.nodeLabel
                HighMean_Part2 = d.instance.name
    print "Delta:",high_Delta2,"@",MeanStrain2,"mean strain, Loaction: 
Node",node2,part2
    print "Max Strain:",high_MeanStrain2,"@ Node", HighMean_Node2, 
HighMean_Part2
##    ############################################
    high_Delta3 = 0
    high_MeanStrain3 = 0
    for x in range(TurnCount):
        ###Select a frame
        D20lastframe = odb.steps['D20'].frames[-1]
        S20lastframe = odb.steps['S20'].frames[-1]
        ############################################
        ####  Calculate delta strain
        StrainD20 = D20lastframe.fieldOutputs['LE']
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        StrainS20 = S20lastframe.fieldOutputs['LE']
        region = odb.rootAssembly.instances['TURN'+ str(x+1)]
        ####Extrapolte Nodel Values from calculated integration point strains 
through the region
        #### (still in vector form)
        StrainD20subset = StrainD20.getSubset(region=region, position = 
ELEMENT_NODAL)
        StrainS20subset = StrainS20.getSubset(region=region, position = 
ELEMENT_NODAL)
        ##Get Scalars:
        MaxP_StrainD20subset = 
StrainD20subset.getScalarField(invariant=MAX_PRINCIPAL)
        MaxP_StrainS20subset = 
StrainS20subset.getScalarField(invariant=MAX_PRINCIPAL)
        ##Delta and Mean calc on each SCALAR:
        Delta_maxP = MaxP_StrainD20subset - MaxP_StrainS20subset
        Mean_maxP = (MaxP_StrainD20subset + MaxP_StrainS20subset)/2
        b = -1
        for a in Delta_maxP.values:
            ##count:
            b = b+1
            m = a.data
            if abs(m) > abs(high_Delta3):
                high_Delta3 = m
                node3 = a.nodeLabel
                part3 = a.instance.name
                MeanStrain3 = Mean_maxP.values[b].data
        ## Find the highest mean strain, mid-cycle in ring:
        for d in Mean_maxP.values:
            p = d.data
            if p > high_MeanStrain3:
                high_MeanStrain3 = p
                HighMean_Node3 = d.nodeLabel
                HighMean_Part3 = d.instance.name
    print "Delta:",high_Delta3,"@",MeanStrain3,"mean strain, Loaction: 
Node",node3,part3
    print "Max Strain:",high_MeanStrain3,"@ Node", HighMean_Node3, 
HighMean_Part3
    ############    
    data = [[odbname, high_Delta, MeanStrain, node, part,
    high_MeanStrain, HighMean_Node, HighMean_Part, high_Delta2,
    MeanStrain2, node2, part2, high_MeanStrain2, HighMean_Node2,
    HighMean_Part2, high_Delta3, MeanStrain3, node3, part3, high_MeanStrain3,
    HighMean_Node3, HighMean_Part3]]
##    data = [[odbname, high_Delta, MeanStrain, node, part,
##    high_MeanStrain, HighMean_Node, HighMean_Part, high_Delta2,
##    MeanStrain2, node2, part2, high_MeanStrain2, HighMean_Node2,
##    HighMean_Part2]]
    with open(out_file, 'ab') as fp:
        a = csv.writer(fp, delimiter=',')
        a.writerows(data)
    session.odbs[odbfile].close()
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PythonScript – Radial Force Distribution Post Processing 



Extract_Radial_Force_Distribution_ver2.py
from odbAccess import *
from abaqusConstants import *
import math
import os
import regionToolset
import csv

odbname = 'model_name'

data = [["Node","R Coord","Theta Coord","Z Coord","R_Force","Force Mag"]]
writepath = "[Insert path to write outputs to here]"
os.chdir(writepath)
out_file = 'Radial_Dist.csv'
with open(out_file, 'ab') as fp:
    a = csv.writer(fp, delimiter=',')
    a.writerows(data)

path = "[insert location of ODBs]"
odbfile = path+ '\\'+ odbname+ '.odb'
odb=openOdb(odbfile)
###Select a frame
frame = odb.steps['D10'].frames[2]
###Field Output
ContactForceD10 = frame.fieldOutputs['CNORMF']
Coords = frame.fieldOutputs['COORD']
## Region and subset:
region = odb.rootAssembly.instances['VESSEL-1']
ContactSubset = ContactForceD10.getSubset(region=region, position = NODAL)
CoordsSubset = Coords.getSubset(region=region, position = NODAL)
CoordValues = CoordsSubset.values

## Create Cylindrical Coordinate System
scratchOdb = session.ScratchOdb(odb)
scratchOdb.rootAssembly.DatumCsysByThreePoints(name='CSYS-1', 
    coordSysType=CYLINDRICAL, origin=(0.0, 0.0, 0.0), point1=(0.0, 0.0, 
    1.0), point2=(0.0, 1.0, 0.0))
##convert results:
dtm = scratchOdb.rootAssembly.datumCsyses['CSYS-1']
Contact_Transfomed_Values = ContactSubset.getTransformedField(datumCsys= 
dtm).values
ContactForceList = []

a = 0
for a in Contact_Transfomed_Values:
    if a.data[0] != 0:
        nodeLabel = a.nodeLabel
        R_Force = a.data[0]
        Mag_Force = a.magnitude
        b = 0
        for b in CoordValues:
            if b.nodeLabel == nodeLabel:
                X_coord = b.data[0]
                Y_coord = b.data[1]
                Z_coord = b.data[2]
                R_coord = ((Y_coord**2)+(Z_coord**2))**0.5
                Theta_coord = atan(Z_coord/Y_coord)
                Z_cyl_coord = X_coord
                break
        ContactForceList.append((nodeLabel, R_coord, Theta_coord, Z_cyl_coord, 
R_Force, Mag_Force), )

# Write Device and Contact Force Results to CSV format:
##Location for Result spreadsheet:
os.chdir(writepath)
with open(out_file, 'ab') as fp:
    a = csv.writer(fp, delimiter=',')
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    a.writerows(ContactForceList)

session.odbs[odbfile].close()
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Appendix N 
 

Ring Contact Length Calculations (PDF of Mathcad file) 



Input the assumed ring radius and amplitude:

Radius 10.251 Amplitude a 6.51

Wavelength (half a ring) λ π Radius 32.20447

k
2π

λ
0.1951

If the ring shape is approximated by a cos wave of:  a cos (kx), the arc length of a
segment of that line from a to b in the wave length direction can be calculated by

a

b

x1 a k sin k x( )( )
2






d    which is derived from the standard arc length of a line

formula:  s=

a

b

x1
dy

dx






2







d

Define n number of segments in quarter ring:

n 9 L
λ

2
16.10223 L = quarter ring length

Define the a and b points for seperate calculations:

q
L

n

2L

n
 L

q
L

n


0

1.78914

3.57827

5.36741

7.15655

8.94569

10.73482

12.52396

14.3131


q

1.78914

3.57827

5.36741

7.15655

8.94569

10.73482

12.52396

14.3131

16.10223



Arc length equation: Quarter ring contact length:

s q( )

q
L

n


q

x1 a k sin k x( )( )
2







d
S

0

L

x1 a k sin k x( )( )
2






d 21.35952

Arc length results for each segment:
s q( )

1.84481

2.12299

2.49237

2.77801

2.88318

2.77801

2.49237

2.12299

1.84481



Quick Check with flat ring OD:

RingOD 27.43

ContactCirc RingODπ 86.17389

Compare with:
4S 85.43806

Error
ContactCirc 4 S( )

ContactCirc
0.85388 %
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FEA Delta Strain Results – Anaconda Study 



FEA Delta Strain Results from Anaconda Proximal Ring Study in 52yr Langewouters Vessel at 

various pressure ranges 

At 80-120mmHg 

 

 

At 60-140mmHg 

 

  



At 80-160mmHg 

 



 

 

 

 

Appendix P 
 

MicroCT based ring compaction strain measurements – Anaconda 
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Anaconda OLB Micro CT based ring compaction strain measurements: strain values are plotted for worst case 
strands from all peaks and valleys of the R1 and R2 rings.
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Appendix Q 
 

MicroCT based ring compaction strain measurements – Thoraflex Hybrid 
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Hybrid HY40 Micro CT bassed ring compaction strain measurements: strain values are plotted for 
worst case strands from all peaks and valleys of the R1 and two most distal mid rings.
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