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Abstract

In this thesis the evolution of sessile droplets in different modes of evaporation

and their lifetimes are investigated. The thesis focuses on situations in which the

diffusion of vapour into the surrounding atmosphere is the rate-limiting mechanism

of evaporation.

First, we describe the evolution of droplets evaporating in the two extreme

modes, namely the constant contact radius mode, in which the contact line of

the droplet is always pinned, and the constant contact angle mode, in which the

contact line of the droplet is always de-pinned. In particular, we demonstrate how

these two modes converge on strongly hydrophobic substrates.

Next we study the evolution of droplets evaporating in the stick-slide mode, in

which the contact line is initially pinned and the contact angle decreases to the

receding contact angle, but thereafter the contact line is de-pinned and the contact

radius decreases to zero. The lifetimes of droplets evaporating in the stick-slide

mode are investigated in two situations, namely when the initial and receding

contact angles are independent and when there is a simple relationship between

them based on the assumption of a constant maximum pinning force. In particular,

it is shown that the lifetimes of droplets evaporating in this mode may be longer

than those of initially identical droplets evaporating in the two extreme modes.

Finally, we develop a model for the evolution of droplets evaporating in a stick-

jump mode, in which the contact line pins, de-pins and re-pins multiple times. It
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is shown that the lifetimes of droplets evaporating in this mode may be longer or

shorter than those of initially identical droplets evaporating in the two extreme

modes.

Good agreement is found between the predicted lifetimes of droplets in both

the stick-slide and the stick-jump modes and the lifetimes of droplets determined

from relevant experiments in the literature.
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Chapter 1

Introduction

1.1 The Importance of Droplet Evaporation

This thesis concerns the evaporation of sessile fluid droplets. When a sessile fluid

droplet (a droplet of fluid that is deposited onto a substrate) evaporates, fluid

molecules escape from the free surface of the droplet, even though some may re-

condense on the surface, some will escape from the region of the droplet (see, for

example, Deegan et al. [53]), so that the amount of fluid in the droplet decreases

but the amount of vapour, i.e. the amount of the fluid molecules in the atmosphere,

increases.

Studying the evaporation of sessile fluid droplets is important for several rea-

sons, this introduction presents four. Firstly, the evaporation of sessile fluid

droplets occurs in many everyday situations, such as rainfall onto windows, wa-

tering plants, applying hairspray, and droplets left on a plastic container in a

dishwasher after a wash cycle. Examples of sessile water droplets are shown in fig-

ure 1.1. Secondly, and perhaps more significantly, the importance of this problem

is due to the fact that it is crucial in a vast range of industrial applications, such

1



Chapter 1 2

(a) (b)

(c) (d)

Figure 1.1: Examples of water sessile droplets: (a) Sessile droplets on a leaf with
a chrysanthemum refracted through a pendent droplet. Reprinted with kind per-
mission from Brian Valentine [236]. (b) Sessile droplet on a Lady’s Mantle (Al-
chemilla). Reprinted with permission from Shirtcliffe et al. [209]. Copyright 2009
American Chemical Society. (c) Sessile droplets on Fuji apples [14]. (d) Droplets
of rain on a window [238].

as ink-jet printing, spray cooling, production of fine powders and fuel, humidifica-

tion and drying of air in air-conditioning systems, fire extinguishing, the efficient

operation of heat exchangers, the production of thin film coatings, deposition of

pesticides, deposition of DNA micro-arrays, and the construction of new optical

and electronic materials (see Semenov et al. [191] and Erbil [71] and the references

therein). Thirdly, studying the evaporation of sessile droplets opens up new pos-

sibilities for patterning a substrate. When a sessile droplet of a suspension, i.e. a

fluid droplet which contains suspended particles, is left to evaporate, the complex

interaction between the suspension and the substrate, and the flow of the suspen-
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sion inside the droplet which occurs due to evaporation, lead to a large variety

of deposition patterns. Examples of different deposition patterns such as single

and multiple rings, fractal and branched deposit patterns, and three-dimensional

structures such as columns, conical structures, spheres, annuli, domes, and disks

are shown in figure 1.2 and listed in table 1.1. In particular, as described above,

the evaporation of sessile droplets is the escape of fluid from the free surface of the

droplet into the atmosphere. This results in a local evaporative flux, i.e. the mass

of fluid escaping into the atmosphere per unit area per unit time and in a total

evaporative flux, which is the surface integral of the local evaporative flux, i.e. the

mass of fluid escaping into the atmosphere per unit time. In the case when the

local evaporative flux is largest at a pinned contact line, i.e. the stationary three-

phase line where the substrate, fluid, and atmosphere are all in contact, a radial

flow towards the contact line leads to the deposition of particles at the contact

line, so that after the fluid has completely evaporated from the droplets ring-like

stain patterns are formed. These ring-like stain patterns will be discussed further

in section 1.5.1, while the wide variety of deposition patterns in general will not be

discussed further in this thesis. Fourthly, the evaporation of sessile droplets is of

fundamental scientific interest as, for example, the recent review articles by Caz-

abat and Guéna [37], Erbil [71], Attinger et al. [9], Eral et al. [68], Bormashenko

[23], Larson [118], Kovalchuk et al. [115], and Semenov et al. [195] demonstrate.

Specifically, the study of the evaporation of free droplets, i.e. droplets that are

suspended in the atmosphere, focuses on the interaction between the fluid and

the surrounding atmosphere (see, for example, the review article by Cazabat and

Guéna [37]). On the other hand, the study of the evaporation of sessile droplets

has additional complications, as it has to take into account all of the interactions

between the substrate, the fluid and the atmosphere.



Chapter 1 4

(a) (b)

(c) (d)

(e) (f)

Figure 1.2: Examples of different deposition patterns after complete evaporation
of the fluid from droplets of various suspensions (a) A watercolour stain [35]. (b)
A coffee stain [110]. (c) A ring stain, reprinted figure with permission from Deegan
[52]. Copyright 2000 by the American Physical Society. (d) A stain with multiple
rings, reproduced from Askounis et al. [5] with permission of The Royal Society
of Chemistry. (e) A branched deposition pattern, reprinted with permission from
Crivoi and Duan [44]. Copyright 2013 American Chemical Society. (f) A stain of
dried blood serum, reprinted from Sefiane [188]. Copyright 2010, with permission
from Elsevier.
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For these reasons evaporation has been the focus of extensive theoretical and

experimental investigations by many research groups in many countries in recent

years.

In this chapter we shall first describe experimental investigations of the evap-

oration of sessile fluid droplets in section 1.2. The effects of properties of the

substrate on sessile fluid droplets, specifically on the contact angles of sessile fluid

droplets, where the contact angle is the angle between the tangent to the solid

substrate and the tangent to the free surface measured through the fluid at the

contact line, are described in section 1.3. The effects of properties of the substrate

on the evaporation of these droplets, resulting in various modes of evaporation,

are described in section 1.4. The following sections will focus on modelling the

evaporation of sessile fluid droplets in cases when the evaporation of droplets is

controlled by the diffusion of vapour into the surrounding atmosphere. In partic-

ular, the local evaporative flux and the total evaporative flux will be modelled in

subsection 1.5.1. The validity of this model and other effects that may influence

the evaporation of a droplet are addressed in subsection 1.5.2. The time at which

a droplet evaporates completely, i.e. the lifetime of the droplet when all the fluid

has escaped from the droplet by converting into vapour, is discussed in section 1.6.

1.2 Experimental Investigations of the Evapora-

tion of Sessile Droplets

Many authors have investigated the evaporation of sessile droplets experimentally.

Sessile droplets are usually formed using a micro-syringe, whose needle is perpen-

dicular to the substrate. Alternative ways of forming a sessile droplet include using

a piezo-electric print head (see Lim et al. [128] and Talbot et al. [228]) or pumping
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Figure 1.3: Schematic sketch of a typical experimental set-up, including the droplet
that is deposited onto the substrate, the syringe, the video camera that is connected
to a computer, by Dunn et al. [60]. Reproduced with permission from Dunn et al.
[60]. Copyright 2009 by the Cambridge University Press.

fluid from a reservoir below the substrate through a micro-channel in the substrate

(Gleason and Putnam [84]). Once the droplet is formed and left to evaporate a

video camera with a suitable magnifying lens connected to a computer is typically

used to acquire the evolution of the droplet profile. A schematic sketch of a typical

experimental set-up is given by Dunn et al. [60] in figure 1.3. With the help of

appropriate computer algorithms, which fit the contour of the droplet profile, the

droplet profile is processed to determine the contact radius, i.e. the distance be-

tween the centre of the droplet on the substrate and the contact line, and contact

angle [239, pp. 115–116]. Note, however, that because of the fitting and because

sessile droplets are not necessarily axisymmetric, errors in the measurements for

the contact angle and the contact radius inevitably occur. Furthermore, in extreme

cases it is difficult to make exact measurements; in particular, when contact angles

are larger than 175◦ they can scarcely be distinguished from 180◦, and when they
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are smaller than 5◦, they can scarcely be distinguished from 0◦ (see Wakeham et

al. [239, p. 117]). Therefore, as the droplet evaporates and its volume decreases,

it becomes increasingly difficult to make exact measurements of the droplet pro-

file. It is, therefore, usually not possible to determine accurately the lifetime of a

droplet in experiments. Even though errors in the measurements are inevitable,

they are usually small, so that the above described method is the most commonly

used method to investigate the evaporation of sessile droplets experimentally.

In experiments a wide range of fluids have been used, most often water and al-

cohol (both with and without suspended particles), but liquid crystals (see Poulard

and Cazabat [169]), ceramic suspensions (see Zhang et al. [252]), binary fluids (see

Sefiane et al. [180], Sefiane [182], Christy et al. [41]), and biological fluids (see

Sobac and Brutin [217]) have also been used.

Besides using different fluids and suspensions, various experiments have been

undertaken in which droplets were left to evaporate in different conditions, such as

in a saturated atmosphere (see Shanahan [202]), in a reduced pressure atmosphere

(see Sefiane [181] and Sefiane et al. [187]), when the droplet is confined by a sector-

shaped boundary (see Popov and Witten [164, 165]), or between two sometimes

parallel plates, (see Han and Lin [93]), and in an electric field (see Annapragada

et al. [4], Orejon et al. [154], and Vancauwenberghe et al. [237]).

A considerable number of investigations have focused on various types of sub-

strates onto which droplets are deposited and left to evaporate. Most commonly,

droplets are left to evaporate on solid substrates, such as silicon, metals, and plas-

tics, which may be coated, so that substrates are usually rigid, impermeable and

insoluble. However, other types of substrates have been used. For example, the

substrates can be soluble (see Dupas et al. [63]), soft but incompressible (see Limat

et al. [129]), covered with a liquid layer (see Gelderblom et al. [80]), or made of gel
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(see Kajiya et al. [107, 108]). The effect of thermal conductivity of the substrate

on the evaporation of sessile droplets has been studied by, for example, Dunn et

al. [59, 60, 61, 62] and Semonov et al. [190].

Although droplets on un-heated substrates can evaporate (i.e. substrates that

are at ambient temperature) the effect of heating the substrate on the evaporation

of droplets has been studied both experimentally and theoretically by, for example,

Burelbach et al. [30], Girard et al. [82, 83], Sefiane [184], Sefiane and Bennacer

[186], Benselama et al. [15, 16], Brutin et al. [27], Karapetsas et al. [109], Putnam

et al. [170], Sobac and Brutin [215, 216], Herbert et al. [95], Korenchenko and

Beskachko [114], Dash and Garimella [50], Gleason and Putnam [84], and Parsa et

al. [158].

The effects of properties of the substrate, such as the roughness and the chemi-

cal heterogeneity of the substrate, on the evaporation of a sessile fluid droplet will

be discussed in the next section.

1.3 Determining the Contact Angle of a Sessile

Droplet

When a fluid droplet is deposited onto a solid substrate the fluid may wet the

substrate either completely or only partially (see de Gennes [81, pp. 16–17]).

If a fluid wets the substrate completely, the droplet forms a film of nanometre

height and a zero contact angle. (For experimental examples of completely wetting

fluids see, for example, Cachile et al. [31, 32], Poulard et al. [168], and Guéna et al.

[88, 89], and for theoretical investigations of completely wetting fluids see Eggers

and Pismen [65]). However, in this thesis only partially wetting fluids will be

considered in cases in which surface-tension effects dominate gravitational and
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viscous effects.

We consider situations in which both the Bond number, Bo = ρGV
2/3
0 /γ,

representing the ratio of gravitational and surface-tension effects, and the Capillary

number, Ca = µU/γ, representing the ratio of viscous and surface-tension effects,

are small; here ρ denotes the density of the fluid, G denotes the gravitational

constant, V0 is the initial volume of the droplet, γ is the interfacial tension of the

fluid–atmosphere interface, µ denotes the viscosity of the fluid, and U denotes the

typical flow velocity. For example, in experiments conducted by Hu and Larson

[96] Bo is of the order 10−1 and Ca is of the order 10−8 for water droplets with

a volume of approximately 1.45 µl.1 In the limit of small Bond and Capillary

numbers, i.e. for Bo, Ca → 0, the equations for the shape of the free surface of

the droplet and the flow inside the droplet decouple. Referred to a cylindrical

polar coordinate (r, z) system with origin on the horizontal substrate at the centre

of the axisymmetric droplet, the droplet always has the shape of a spherical cap

(shown in figure 1.4) with radius R = R(t) (R ≥ R), contact radius R = R(t)

(R ≥ 0), and contact angle θ = θ(t) (0 ≤ θ ≤ π), and its free surface, denoted by

z = h(r, t), is given by

h = −R cos θ ±
√
R2 − r2, where R =

R

sin θ
, (1.1)

where t denotes time. Note that the physically relevant (i.e. the non-negative)

part of h given by (1.1) is a single-valued function of r for 0 ≤ r ≤ R when

0 ≤ θ ≤ π/2 and for 0 ≤ r < R when π/2 < θ ≤ π (in which case only the

“+” sign is relevant), but a double-valued function of r for R ≤ r < R when

1Note, Hu and Larson [96] actually report Bo to be of the order 10−2. The difference in the
values of Bo comes from the fact that Hu and Larson [96] use a slightly different definition of
Bo, namely Bo = ρGRh0/γ, where R is the contact radius of the pinned droplet and h0 is the
initial height of the droplet measured at the centre of the droplet.
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z

r
(0, 0)

Free Surface
z = h

R

θ

R
Substrate

Fluid

Evaporative Flux J

Atmosphere and Vapour

Figure 1.4: Geometry of the mathematical model. The free surface of the drop,
z = h, is a spherical cap with radius R, contact radius R, and contact angle θ
(drawn for θ < π/2). The arrows indicate the local evaporative flux, J , which will
be modelled in subsection 1.5.1.

π/2 < θ ≤ π (in which case the “+” and “−” signs correspond to the upper and

lower hemispheres, respectively). The volume of the droplet, V = V (t), is given

by

V = 2π

∫ R

0

h r dr =
πR3

3

sin θ(2 + cos θ)

(1 + cos θ)2
, (1.2)

and so, in particular, the initial volume, V0, is given by

V0 =
πR3

0

3

sin θ0(2 + cos θ0)

(1 + cos θ0)2
. (1.3)

Using a horizontal force balance at the contact line, Young [248] showed that

when a sessile fluid droplet is in equilibrium on an ideal substrate, i.e. a perfectly

smooth, chemically homogeneous, rigid, impermeable, and insoluble substrate (see,

for example, Wakeham et al. [239, pp. 106–118]), then the equilibrium contact
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Ideal Substrate

Fluid
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Figure 1.5: Sketch of the region near the contact line of a droplet deposited onto
an ideal substrate whose equilibrium contact angle θY can be determined by the
classical Young–Laplace law (1.4).

angle of the droplet θ = θY can be determined by the classical Young–Laplace law

γ cos θY = γSA − γSF, (1.4)

where γ, γSA and γSF are the interfacial tensions of the fluid–atmosphere, substrate–

atmosphere and substrate–fluid interfaces, respectively, as sketched in figure 1.5.

In particular, equation (1.4) shows that for a droplet deposited onto an ideal sub-

strate, the equilibrium contact angle θY is unique.

However, in practice, substrates are not ideal, but are to some extent rough

and/or chemically heterogeneous. Evaporation on such substrates has been studied

both theoretically and experimentally by many authors, including Cazabat and

Stuart [36], Shanahan [198, 199, 200], Wakeham et al. [239], Diehl [55], and Jansen

et al. [101]. In particular, Wakeham et al. [239, pp. 106–118], for example, state

that for a droplet deposited onto a rough substrate it is necessary to differentiate

between the actual contact angle, which is the angle between the tangent to the free

surface and the tangent to the actual/local substrate and which is the equilibrium
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Figure 1.6: Sketch of the actual contact angle, θY , and the apparent contact
angle, θA, which is measured in experiments, for a droplet deposited onto a rough
substrate.

contact angle, θY , given by equation (1.4), and the apparent contact angle, θA,

which is the angle between the tangent to the free surface and the tangent to

the nominal substrate, measured macroscopically. In practice only the apparent

contact angle, θA, is measured in experiments, and it can be very different from

θY (see figure 1.6). In the present work the contact angle always refers to the

apparent contact angle, i.e. θ := θA, unless specified differently.

Furthermore, when a droplet is deposited onto a real substrate, the contact an-

gle may not be unique, since θA can achieve a range of stable equilibrium values,

because the contact line is pinned by surface roughness and/or chemical hetero-

geneities. The largest possible equilibrium contact angle is called the advancing

contact angle, θadv (with θA ≤ θadv), since for contact angles larger than this an-

gle the contact line advances, and the smallest possible equilibrium contact angle,

θrec (with θA ≥ θrec), is called the receding contact angle, since for contact angles

smaller than this angle the contact line recedes (see, for example, Wakeham et

al. [239]). The difference between θadv and θrec is called contact angle hysteresis
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and has been studied by many authors such as Adam and Jessop [2], Good [85],

Johnson and Dettre [103, 104], Joanny and de Gennes [102], Erbil et al. [69], de

Gennes et al. [81], McHale et al. [141], Tadmor [227], Ramos and Tanguy [172],

Wakeham et al. [239], Eral et al. [68], and Pittoni et al. [162].

When a droplet is deposited onto a real substrate and left to evaporate, it

rapidly achieves a quasi-steady initial equilibrium shape with initial radius R0,

initial contact angle θ0, and initial contact radius R0 after an unsteady adjustment

phase. However, this adjustment phase is usually on a much shorter timescale

than the timescale for the complete evaporation process, and therefore it will be

neglected for the remainder of this thesis. Note that on a real substrate θ0 is in the

range θrec ≤ θ0 ≤ θadv, but is not necessarily equal to θY . When the initial contact

angle of a sessile droplet is smaller than 90◦ or larger than 90◦, the substrate is

hydrophilic or hydrophobic, respectively. In cases when the initial contact angle

of a sessile droplet is larger than 150◦, the substrate is superhydrophobic.

1.4 Modes of Evaporation

As we have seen in the previous section, the properties of the substrate can cause

the droplet that is deposited onto it to achieve a range of stable equilibrium values

of the contact angle θ due to the pinning or de-pinning of the contact line. This

results in a variety of modes of evaporation, some of which will be described in

this section.

1.4.1 Extreme Modes of Evaporation

Picknett and Bexon [160] identified two “extreme” modes of evaporation, namely

the constant contact angle (CA) mode and the constant contact radius (CR) mode,
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(a)

(b)

Figure 1.7: Sketches of sessile droplets evaporating (a) in the constant contact
angle (CA) mode, with R = R(t) decreasing from R0 to zero and θ = θ0 remain-
ing constant, and (b) in the constant contact radius (CR) mode, with R = R0

remaining constant and θ = θ(t) decreasing from θ0 to zero.

which are sketched in figure 1.7.

In particular, they concluded that on an ideal substrate with θrec = θ0 = θadv

a droplet evaporates in the CA mode, in which the contact line is always receding

(i.e. the contact radius R = R(t) decreases with time t from R0 to zero, whence

it has evaporated completely) and the contact angle θ = θ0 remains constant.

Note that, as shown in the previous section, for a droplet deposited onto an ideal

substrate the equilibrium contact angle is unique and therefore θ0 = θY .

The other extreme mode of evaporation is the CR mode, in which the contact

line is always pinned (i.e. the contact radius R = R0 is constant) and the contact

angle θ = θ(t) decreases with time t from θ0 to zero, whence it has evaporated

completely. A droplet deposited onto a real substrate with θrec = 0 evaporates

in a CR mode. As shown in the previous section, on a real substrate the contact

angle θ can achieve a range of stable equilibrium values given by θrec ≤ θ ≤ θadv

(and hence θrec ≤ θ ≤ θ0), because the contact line is pinned by surface roughness

and/or chemical heterogeneities; therefore, for a droplet deposited onto a real
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substrate with θrec = 0 the contact line is always pinned, so that the droplet

evaporates in the CR mode.

Picknett and Bexon [160] and many subsequent authors (for example, Coutant

and Penski [42], Birdi et al. [20], Birdi and Vu [21], Parisse and Allain [157], Erbil

et al. [70], Poulard et al. [167], Bhardwaj et al. [19], Kulinich and Farzaneh [116],

Shin et al. [205, 206], Sobac and Brutin [214, 215, 216], Song et al. [218], Weon et

al. [242], Gelderblom et al. [78], Shanahan et al. [204], Lim et al. [128], Talbot et al.

[228], Bou Zeid and Brutin [24], Pittoni et al. [161, 162], Dash and Garimella [50],

and Gatapova et al. [77]) have shown that in experiments droplets often evaporate

with a constant contact radius or a constant contact angle for most or all of their

lifetimes.

In Chapter 2 we will discuss the evolution of droplets in the extreme modes in

greater detail.

1.4.2 Stick-Slide Mode of Evaporation

While the extreme modes can be observed, Picknett and Bexon [160] also showed

that in practice a sessile droplet may not necessarily evaporate in one of the two

extreme modes, but it can evaporate in a variety of modes. Perhaps the most com-

monly reported mode of evaporation is a stick-slide (SS) mode, which comprises

one or more “stick” phases, in which the contact line is pinned, and one or more

“slide” phases, in which the contact line is receding.

Various types of SS modes have been observed experimentally. For example,

SS modes consisting of a first stick phase, during which the contact radius R is

constant, followed by a slide phase, during which the contact angle θ is constant,

followed by a second stick phase, and which might be followed by another slide

phase during which both R and θ decrease, have been observed experimentally by,
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for example, Grandas et al. [86] and Nguyen et al. [151].

A different type of SS mode was observed by Bourgès-Monnier and Shanahan

[26] in the case of water droplets evaporating on a polished epoxy substrate; their

results are reproduced in figure 1.8, where in stage I the air is saturated and so

negligible evaporation occurs, in stage II the droplet evaporates in a stick phase,

in which the contact line is pinned, in stage III the droplet evaporates in a first

slide phase, in which the contact line is receding and θ is constant, and in stage

IV the droplet evaporates in a second slide phase, in which the contact line is

receding and θ decreases. In other words this SS mode consists of a single stick

phase (corresponding to stage II) (rather than the two stick phases observed by

Grandas et al. [86] and Nguyen et al. [151]), which is followed by a first slide phase

in which R is decreasing but θ is constant (corresponding to stage III), which in

turn is followed by a second slide phase in which both R and θ are decreasing

(corresponding to stage IV). This SS mode has subsequently been reported by a

large number of authors (for example, McHale et al. [140], Uno et al. [235], Erbil

et al. [69], Mollaret et al. [145], Fang et al. [73], Soolaman and Yu [219], Fukai et

al. [76], Anantharaju et al. [3], Bhardwaj et al. [19], Kajiya et al. [106], Li et al.

[126], Shin et al. [205, 206], Dhavaleswarapu et al. [54], Dash et al. [48], Doganci

et al. [57], Semenov et al. [191, 192, 194], Song et al. [218], Lee et al. [122], Lim et

al. [128], Nguyen et al. [147], Nguyen and Nguyen [149], Yu et al. [249, 250], Dash

and Garimella [49], Pittoni et al. [161, 162], and Trybala et al. [233]).

As this SS mode (which consists of a single stick phase and two slide phases) is

perhaps the most commonly reported SS mode, Nguyen and Nguyen [150, 149] and

Dash and Garimella [49] constructed a simple yet effective model for this mode

of evaporation. In this model the second slide phase is neglected as it is often

of relatively short duration compared with the stick and the first slide phases.
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Figure 1.8: Evolutions of the contact diameter (2R), height and contact angle θ
of an evaporating 4µl sessile water droplet on a polished epoxy substrate taken
from Bourgès-Monnier and Shanahan [26]. In stage I the air is saturated and so
negligible evaporation occurs, in stage II the droplet evaporates in a stick phase,
in which the contact radius is pinned, in stage III the droplet evaporates in a first
slide phase, in which the contact line is receding and θ is constant, and in stage IV
the droplet evaporates in a second slide phase, in which the contact line is receding
and θ decreases. Reprinted with permission from Bourgès-Monnier and Shanahan
[26]. Copyright 1995 American Chemical Society.
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Therefore, the droplet initially evaporates in a CR phase with R = R0 and with

θ = θ(t) decreasing from θ = θ0 to the receding contact angle θ = θrec := θ∗, after

which the droplet evaporates in a CA phase with θ = θrec := θ∗ and with R = R(t)

decreasing from R0 to zero. This model will be used in Chapters 3 and 4 to give

a complete description of the lifetimes of droplets evaporating in this SS mode.

While many situations are well described by the SS mode, there are other

situations in which the receding of the contact line is not continuous as observed

in the SS mode. One of these is the stick-jump mode (SJ) mode described in the

next subsection.

1.4.3 Stick-Jump Mode of Evaporation

Table 1.2 lists examples of previously reported situations, such as droplets with

suspended particles (including nanoparticles, i.e. particles with a diameter be-

tween 1–100 nm [29], and DNA) on solid substrates, or pure droplets on pillared

substrates (i.e. substrates that are patterned with a grid of pillars), chemically

patterned substrates (i.e. substrates that are patterned to have a varying chem-

ical heterogeneity), heated substrates, or polymer substrates, in which droplets

evaporate in what we term a stick-jump (SJ) mode. The SJ mode comprises a

number of stick phases, in which the contact line is pinned, and a number of rapid

“jump” phases, in which the contact line recedes and the contact angle increases.

We introduce the term “stick-jump” mode (also adopted by Dietrich et al. [56])

rather than “stick-slip” mode introduced by Shanahan [201] to emphasise that

the time in which the contact line recedes is very short compared to the time in

which the contact line is pinned. The SJ mode is different from the SS mode

in two respects. Firstly, a slide phase in the SS mode may be of a comparable

duration to a stick phase, while a jump phase in the SJ mode is of a very short
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Occurrence of SJ mode Reference
Droplets with suspended particles Adachi et al. [1]

Shmuylovich et al. [210]
Droplets with suspended nanoparticles Deegan et al. [52]

Moffat et al. [144]
Askounis et al. [5, 6, 7]
Li et al. [127]
Orejon et al. [153]

Droplets with suspended nanoparticles Parsa et al. [158]
on heated substrates
Droplets with suspended DNA Maheshwari et al. [132]
Droplets on pillared substrates McHale et al. [142]

Kusumaatmaja and Yeomans [117]
Xu et al. [245]

Droplets on chemically patterned Kusumaatmaja and Yeomans [117]
substrates
Droplets on heated substrates Shanahan and Sefiane [203]

Putnam et al. [170]
Droplets on polymer substrates Bormashenko et al. [22]

Table 1.2: References reporting the occurrence of the stick-jump (SJ) mode

duration compared to the stick phases. Secondly, and more importantly, during a

slide phase in the SS mode the R and θ remain constant or decrease, while during

the rapid jump phase in the SJ mode θ jumps to a higher value and R jumps to

a lower value. Figure 1.9 shows examples of droplets evaporating in a SJ mode

in the experiments by Orejon et al. [153], in which water droplets with various

concentrations of TiO2 nanoparticles (namely, 0.1%, 0.05%, 0.025% and 0.01%)

were left to evaporates on CYTOP under ambient conditions. In particular, fig-

ure 1.9 shows that the higher the concentration of TiO2 nanoparticles, the more

pronounced is the SJ mode, i.e. during a stick phase R has a smaller drift and

the jumps in the values for θ during the jump phases are more significant. It also

shows that for a higher concentration of TiO2 nanoparticles, there are fewer jump

phases. Thus, the presence of nanoparticles significantly influences the pinning,

de-pinning and re-pinning of the contact line.
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Figure 1.9: Evolutions of the contact radius, R, and contact angle, θ, of 3µl
sessile water droplets with various concentrations of TiO2 nanoparticles (namely,
0.1%, 0.05%, 0.025% and 0.01%) on CYTOP evaporate in a SJ mode with different
numbers of stick and jump phases measured by Orejon et al. [153]. Reprinted with
permission from Orejon et al. [153]. Copyright 2011 American Chemical Society.
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Various authors have investigated both theoretically and experimentally the

pinning, de-pinning, and re-pinning of the contact line of a droplet. Adachi et al.

[1] developed a model for de-pinning and re-pinning of the contact line of a water

droplet with suspended particles and concluded that the SJ mode results from

a competition between the surface tensions and the friction force at the contact

line. Sefiane and Tadrist [183] investigated experimentally the de-pinning of the

contact line of a volatile droplet on a rough substrate by considering the influence of

a reduced atmospheric pressure, various substrate temperatures, and the presence

of surfactants. Rio et al. [174] and Berteloot et al. [18] observed de-pinning and

re-pinning of the contact line of droplets with suspended nanoparticles when the

droplets are deposited onto a moving substrate and pushed against a fixed wall;

by considering the trajectories of the suspended particles near the contact line

they modelled the size of the region of deposition of particles. Frastia et al. [75]

modelled the de-pinning and re-pinning of a contact line through the dependence

of the viscosity of the fluid on the particle concentration, and determined how the

deposition patterns depend on the evaporation rate and the particle concentration.

Recently, Tsoumpas et al. [234] considered theoretically and experimentally the

pinning and de-pinning of the contact line of a completely wetting fluid droplet at

a sharp edge.

While the models described above focus on the behaviour near the contact line,

other models consider the droplet as a whole during the pinning, de-pinning, and

re-pinning of the contact line. By comparing the droplet before a jump phase and

after a jump phase Shanahan [201] developed a simple model for the pinning and

de-pinning of the contact line using a Gibbs free energy argument. In particular,

he described the change in R during a jump phase and obtained a criterion that

determines when the contact line de-pins. Bhardwaj et al. [19] proposed criteria
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for the de-pinning of the contact line of a droplet with suspended particles and

numerically solved the Navier-Stokes equation inside the droplet, and heat and

mass transport equations for the fluid flow, the local evaporative flux, and the

transport of particles. Matar et al. [139] and Craster et al. [43] developed a model

for thin droplets with suspended particles using lubrication theory and numerically

computed the particle concentration and the droplet thickness as functions of

time. Recently, Dietrich et al. [56] modelled the dissolution of sessile alcohol

droplets in water by considering the mathematically equivalent problem of an

evaporating sessile droplet. In particular, they developed a model for a droplet

evaporating in the SJ mode, in which the contact line de-pins once a certain

contact angle is achieved and instantaneously jumps and re-pins with a larger

contact angle. These models can often be very complex, such that they can be

solved only numerically, and/or are valid only in particular circumstances, such as

for thin droplets. Therefore, a simple model for the SJ mode, which is very similar

to but more general than the model recently derived by Dietrich et al. [56], will

be derived in Chapter 5 of this thesis, which is used in Chapter 6 to describe the

lifetime of a droplet evaporating in the SJ mode.

In the next section we shall describe the mathematical model for the local

evaporative flux and the total evaporative flux in cases when the evaporation

is controlled by the diffusion of vapour into the surrounding atmosphere, which

will be used in the following chapters to describe the evolution of droplets in the

extreme modes, the SS mode, and the SJ mode.
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1.5 The Diffusion-Limited Model

1.5.1 Modelling the Evaporative Flux

Picknett and Bexon [160] not only contributed substantially to the understanding

of various modes of evaporation, but also pioneered the modelling of the evapora-

tion of sessile droplets in a still atmosphere, where the diffusion of vapour is the

rate-limiting mechanism. In general, the evaporative flux depends on both the

transfer rate of the liquid across the free surface of the droplet and the diffusion of

the vapour away from the free surface into the surrounding atmosphere. However,

it can be shown that when a droplet evaporates in a still atmosphere the transfer

rate across the free surface is typically much faster than the diffusion of vapour into

the surrounding atmosphere. For example, the timescale for the transfer across

the free surface is usually of the order 10−10 s (see, for example, Popov [166]),

whereas the timescale for the diffusion of vapour is of the order R2/D, where D

is the diffusion coefficient of vapour in the atmosphere, which, for example, for

the vapour of evaporating sessile water droplets is usually of the order of seconds

(see, for example, [51, 53, 96, 166]). Thus, in these situations the diffusion of the

vapour into the surrounding atmosphere is the rate-limiting mechanism. Note that

the opposite extreme case, in which the transfer rate of the liquid across the free

surface of the droplet is the rate-limiting mechanism, is described by the so-called

“one-sided” model (see, for example, Burelbach et al. [30] and Espin and Kumar

[72]), which only accounts for the liquid in the droplet, but not for the vapour in

the atmosphere.

Moreover, for sessile droplets evaporating in a still atmosphere, the diffusion

of the vapour into the surrounding atmosphere is typically on a much shorter

timescale than the adjustment of the shape of the droplet due to evaporation, so
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that the evaporation process may be considered to be quasi-steady. For example,

the non-dimensional ratio of the timescale for the diffusion of vapour (R2/D)

to timescale for the lifetime of a droplet, is of the order (csat − c∞)/ρ, csat is

the saturation vapour concentration, and c∞ (with 0 ≤ c∞ ≤ csat) is the vapour

concentration far away from the interface, which is of the order of 10−5 for a sessile

water droplet (see, for example, [51, 53, 96, 166]).

Picknett and Bexon [160], and many subsequent authors including Deegan et

al. [51, 53], Hu and Larson [96], and Popov [166] showed that when the diffusion

of vapour is the rate-limiting mechanism and the evaporation process may be

considered to be quasi-steady, the vapour concentration in the atmosphere, c =

c(r, z, t), satisfies Laplace’s equation

∇2c = 0, (1.5)

subject to the boundary conditions that at the free surface of the droplet the

atmosphere is saturated with vapour and so c takes its saturation value, csat, that

far away from the droplet c takes its constant ambient value, c∞, and that the

vapour cannot penetrate the substrate (i.e. ∂c/∂z = 0 on z = 0 for r > R). In

the simplest and most widely-used version of the model, csat, c∞, D, and ρ are

all constant, which, as will be shown in section 1.5.2, describes many physical

situations very well, but may need to be extended in some situations to account

for the temperature dependence of csat.

Deegan et al. [51, 53] first reported that the solution for c when csat is constant

was obtained by Lebedev [119], who solved the mathematically equivalent electro-

statics problem to (1.5), which they used to elucidate the occurrence of ring-like

stains after the evaporation of droplets containing suspended particles, so-called

“coffee-ring stains”. In particular, the local evaporative flux from the free surface
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of the droplet, J = J(r, t), defined by J = −Dn · ∇c, where n is the unit outward

normal to the free surface, is given by

J =
D(csat − c∞)

R

[

1

2
sin θ +

√
2(cosh α + cos θ)3/2

×
∫

∞

0

τ cosh θτ

cosh πτ
tanh [τ(π − θ)]P−1/2+iτ (cosh α) dτ

]

, (1.6)

where P−1/2+iτ (cosh α) denotes the Legendre function of the first kind of degree

−1/2 + iτ and argument

cosh α =
r2 cos θ ± R

√

R2 − r2 sin2 θ

R2 − r2
, (1.7)

where again the “+” and “−” signs correspond to the upper and lower hemispheres,

respectively, when π/2 < θ ≤ π. Note, Deegan et al. [53] also developed an

approximation for the local evaporative flux given in equation (1.6), namely

J(r, t) ≈ J̄(R, θ)

(

1 − r2

R2

)BD(θ)

, (1.8)

where J̄(R, θ) is determined in principle from equation (1.6) and the function

BD = BD(θ) is given by

BD(θ) =
2θ − π

2π − 2θ
. (1.9)

In order to describe the occurrence of ring-like stains Deegan et al. [51, 53] consid-

ered the contact line r = R and z = 0 to be pinned for the complete lifetime of the

droplet and focussed on the local evaporative flux near the contact line, namely

J ∝ (R − r)BD(θ) , (1.10)

which they derived from (1.8). Equation (1.10) shows that the behaviour of the flux
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near the contact line depends quantitatively (rather than just qualitatively) on the

value of the contact angle. Specifically, when 0 ≤ θ < π/2 then −1/2 ≤ BD(θ) < 0

and so the flux is (integrably) singular at the contact line, when θ = π/2 then

BD(θ) = 0 and so the flux is finite at the contact line, and when π/2 < θ ≤

π then BD(θ) > 0 and so the flux is zero at the contact line. Deegan et al.

[51, 53] concluded that for a droplet with contact angle θ in the interval 0 ≤

θ < π/2 a radial flow from the centre of the droplet towards the contact line

is necessary to compensate for the theoretically singular (in practice, very large)

local evaporative flux in order for the contact line to remain pinned. Suspended

particles are carried with this radial flow towards the contact line, leaving a ring-

like stain after the droplet has completely evaporated. Since the work of Deegan

et al. [51] (which has over 2100 citations on the Web of Science on 7th April 2015)

many authors have observed these ring-like stains (see table 1.1) and modelled

them mathematically, including Popov [166], Lebedev-Stephanov and Vlasov [120],

Tarasevich et al. [231], Espin and Kumar [72], and Crivoi and Duan [47]. The work

of Deegan et al. [51, 53] also lead to further investigations into the suppression of

ring-like stains by, for example, Eral et al. [66, 67], Sempels et al. [196], Talbot et al.

[229], and Wray et al. [244], and into the flow inside an evaporating droplet by, for

example, Deegan [52], Fischer [74], Ruiz and Black [176], Hu and Larson [97, 98],

Tarasevich [230], Sefiane and Cameron [185], Ristenpart et al. [175], Berteloot

et al. [17], Petsi and Burganos [159], Bhardwaj et al. [19], Masoud and Felske

[137, 138], Hamamoto et al. [91], Li et al. [127], Maŕın et al. [135], Gelderblom et

al. [79], He and Duan [94], Manukyan et al. [134], Talbot et al. [229], Thokchom et

al. [232], Zhang et al. [255], Barash [13], and Huang et al. [100]. As we have shown

in section 1.3 for droplets for which surface-tension effects dominate gravitational

and viscous effects, the equations for the shape of the free surface of the droplet
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and the flow inside the droplet decouple, and the droplet always has the shape

of a spherical cap independent of the flow inside the droplet, which will not be

discussed further in this thesis.

Hu and Larson [96] developed another approximation for the local evaporative

flux that is similar to the approximate expression (1.8) given by Deegan et al. [53],

namely

J(r, t) ≈ J̄(R, θ)

(

1 − r2

R2

)BHL(θ)

, (1.11)

where J̄(R, θ) is determined from equation (1.6) and the function BHL = BHL(θ)

is given by

BHL(θ) =
θ

π
− 1

2
. (1.12)

Note that the small angle expansion of BHL(θ) is at leading order, but not at

first order, the same as the small angle expansion of BD, namely BD = −1/2 +

θ/2π + O(θ2) as θ → 0+. Hu and Larson [96] compared their approximation for

the local evaporative flux (1.11) with the exact solution (1.6) and found good

agreement between them. (Note that their actual equation for the exact solution

has a typographical error as it is missing a factor of
√

2; see Nguyen and Nguyen

[148].) Hu and Larson [96] considered the local evaporative flux J as given by

equation (1.6) in the special cases when the contact angle approaches zero or

is equal to π/2 (i.e. θ → 0+ and θ = π/2). At leading order in the limit of

small contact angle, θ → 0+, the free surface of the droplet is a parabola, namely

h = θ(R2 − r2)/(2R), and the local evaporative flux is given by

J =
2

π

D(csat − c∞)√
R2 − r2

, (1.13)

so that J̄ in equation (1.8) is given by J̄ → 2D(csat − c∞)/πR. In the special case

θ = π/2 the free surface of the droplet is a hemisphere with radius R = R, namely
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h =
√

R2 − r2, and the local evaporative flux is uniform and given by

J =
D(csat − c∞)

R
, (1.14)

so that J̄ in equation (1.8) is given by J̄ = D(csat − c∞)/R.

In the special case θ = π the free surface of the droplet is a complete sphere

of radius R (R ≥ 0) with zero contact radius, R = 0, namely h = R±
√
R2 − r2,

and the expression for the flux (1.6) requires careful interpretation. It is, therefore,

more convenient to use Smith and Barakat’s [212] solution for the mathematically

equivalent electrostatics problem to obtain (after some simplification)

J =
D(csat − c∞)

2R

[

1 +

(

2R
h

)3/2 ∫ ∞

0

q tanh q J0

(rq

h

)

exp(−q) dq

]

, (1.15)

where J0(·) denotes the Bessel function of the first kind of order zero. In particular,

the flux at the apex of the droplet, r = 0, is given by

J =
D(csat − c∞)

R Catalan, (1.16)

where Catalan ≃ 0.9160 is Catalan’s constant.

Figure 1.10 shows scaled plots of four droplets given by (1.1) each with the

same volume V but different contact angles, namely θ = π/18 = 10◦ (typical of

0 ≤ θ < π/2), θ = π/2 = 90◦, θ = 17π/18 = 170◦ (typical of π/2 < θ < π),

and θ = π = 180◦, and different scaled contact radii, R/V 1/3, together with the

corresponding scaled local evaporative flux at the free surface, JV 1/3/(D(csat −

c∞)), given by (1.6) or, in the special case θ = π, by (1.15), shown by the arrows.

In particular, figure 1.10 clearly illustrates the qualitatively different behaviour of

the flux near the contact line (observed by Deegan et al. [51, 53]) in the cases
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(c) θ = 17π/18 = 170◦
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(d) θ = π = 180◦

Figure 1.10: Scaled plots of four droplets given by (1.1) each with the same volume
V but different contact angles, namely (a) θ = π/18 = 10◦, (b) θ = π/2 = 90◦,
(c) θ = 17π/18 = 170◦, and (d) θ = π = 180◦, and different scaled contact radii,
R/V 1/3, together with the corresponding scaled local evaporative flux at the free
surface, JV 1/3/(D(csat − c∞)), given by (1.6) or, in the special case θ = π, by
(1.15), shown by the arrows. Note that the length of the arrows is proportional to
the magnitude of JV 1/3/(D(csat − c∞)), with the length of the reference arrow in
part (d) corresponding to JV 1/3/(D(csat − c∞)) = 1.
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0 ≤ θ < π/2, θ = π/2 and π/2 < θ ≤ π described above. Specifically, figure 1.10

shows that the diffusion-limited model predicts that when 0 ≤ θ < π/2 the flux

is largest (theoretically infinite) at the contact line and smallest at the apex of

the droplet (i.e. at r = 0), when θ = π/2 the flux is uniform and given by (1.14),

and when π/2 < θ ≤ π the flux is largest at the apex of the droplet and smallest

(theoretically zero) at the contact line.

Snow [213], who considered the mathematically equivalent electrostatics prob-

lem, first gave a series solution for the total evaporative flux from the droplet at

any instant. Over fifty years later, Popov [166] integrated the flux J given by

(1.6) over the free surface of the droplet, and was able to give an exact expres-

sion (not involving any series) for the total evaporative flux from the droplet at

any instant, from which the rate of change of the volume of the droplet dV /dt is

derived, namely

dV

dt
=

1

ρ

∫

A

JdA = −πRD(csat − c∞)

ρ

g(θ)

(1 + cos θ)2
, (1.17)

where A is the surface of the droplet, V is given in terms of R and θ by (1.2), and

the function g = g(θ) is defined by

g(θ) = (1 + cos θ)2

{

tan
θ

2
+ 8

∫

∞

0

cosh2 θτ

sinh 2πτ
tanh [τ(π − θ)] dτ

}

, (1.18)

and is plotted in figure 1.11. In particular, the function g satisfies g(0) = 16/π,

g(π/2) = 2, and g ∼ (π − θ)3 log 2 → 0+ as θ → π−. Moreover, Popov [166]

confirmed the asymptotic results for the local evaporative flux (1.13) and (1.14)

given by Hu and Larson [96]. He then used these expressions to predict the height

and width of the ring-like stain of the deposited particles.

There are several approximations for rate of change of the volume of the droplet,
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Figure 1.11: The function g = g(θ) as a function of the contact angle θ, as given
by equation (1.18).

dV /dt. In this thesis we shall describe two of them in more detail, namely the

ones by Picknett and Bexon [160] and by Hu and Larson [96]. Picknett and Bexon

[160] fitted Snow’s series solution [213] for dV /dt to develop an approximation for

dV /dt, namely

dV

dt
= −2πD(csat − c∞)R

ρ
f(θ), (1.19)

where the function f = f(θ) is given by

f(θ) =























0.6366θ + 0.09591θ2 − 0.06144θ3 for 0 ≤ θ < 0.175,

8.957 × 10−5 + 0.6333θ + 0.1160θ2

−0.08878θ3 + 0.01033θ4 for 0.175 ≤ θ ≤ π.

They then used this approximation to predict the evolution of the contact angle θ

in the CR mode as well as the loss of mass of the droplet over time, and the lifetimes

and half-lives (that is, the time taken for a droplet to evaporate to half of its initial

volume) as functions of the initial contact angle θ0 in the two extreme modes, as

shown in figure 1.12. Furthermore, they compared the predicted scaled half-lives
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Figure 1.12: Theoretically predicted lifetimes and half-lives of 1 mg methylacetate
droplets evaporating in the CR mode (denoted by “constant area” mode) and in
the CA mode (denoted by “constant angle” mode) as functions of the initial contact
angle calculated by Picknett and Bexon [160]. Note, the curves representing the
lifetimes of droplets evaporating in the extreme modes are not drawn for small
contact angles. Reprinted from Picknett and Bexon [160]. Copyright 1977, with
permission from Elsevier.



Chapter 1 34

with their experimental data for droplets with initial contact angles in the range

30◦–70◦ evaporating in the two extreme modes and found good agreement between

them (with percentage errors between the model predictions and the experimental

results smaller than 18%).

On the other hand Hu and Larson [96] used their approximation for the local

evaporative flux (1.11) to obtain an approximation for dV /dt, namely

dV

dt
= −πD(csat − c∞)R

ρ
(0.27θ2 + 1.30). (1.20)

Note that this approximation is valid only for 0 ≤ θ ≤ π/2 (see [96, 148, 228]). Hu

and Larson [96] compared their approximation for dV /dt with the approximation

(1.19) given by Picknett and Bexon [160] and with experimental data for a water

droplet evaporating on a glass substrate with θ0 ≈ 0.73 ≃ 41.8◦, and found good

agreement between them all.

Figure 1.13 gives the error (in %) between the approximations for dV/dt as

functions of the contact angle θ given by Picknett and Bexon [160], namely equa-

tion (1.19), and Hu and Larson [96], namely equation (1.20), and the exact solu-

tion for dV/dt as given by Popov [166], namely equation (1.17). In particular, it

shows that the approximation by Hu and Larson [96], given by equation (1.20),

is indeed a good approximation for contact angles in the range 0 ≤ θ ≤ π/2,

with absolute percentage errors smaller than 2.4%; however, for contact angles

2.29 ≃ 131.3◦ . θ ≤ π the percentage error between the approximation and the

exact solution is larger than 20%. Figure 1.13 also shows that the approximation

by Picknett and Bexon [160], given by equation (1.19), is an excellent approxima-

tion for all contact angles, i.e. 0 ≤ θ ≤ π, with absolute percentage errors smaller

than 0.15%. However, the approximation by Picknett and Bexon [160] has the

slight disadvantage that it is piecewise defined, which makes computations more
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Figure 1.13: The error (in %) between the approximations for dV/dt as functions
of the contact angle θ, given by Picknett and Bexon [160], namely equation (1.19),
and Hu and Larson [96], namely equation (1.20), and the exact solution for dV/dt
as given by Popov [166], namely equation (1.17).
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inconvenient. Therefore henceforth only the exact solution for the rate of change

of the volume of the droplet, dV /dt, derived by Popov [166] and given by equation

(1.17) will be used.

1.5.2 Validation and Extensions of the Diffusion-Limited

Model

Since Picknett and Bexon [160] first described the diffusion-limited model for evap-

orating droplets in a still atmosphere, many authors have shown that many sit-

uations are well described by this model, but also that sometimes it needs to be

modified and extended in order to include other physical effects, such as evapo-

rative cooling that occurs because latent heat (the energy required for the phase

change of fluid into vapour) is obtained from the thermal energy of the droplet,

substrate, and the atmosphere and/or the convection of vapour in the atmosphere.

Table 1.3 gives a list of authors who compared experimental results with the

prediction of the simplest version of the diffusion-limited model, in which csat (as

well as c∞, D, ρ) is assumed to be constant, for droplets in the CA, CR, and SS

modes with contact angles ranging from approximately zero to approximately 150◦

and concluded that there is good agreement between them. This good agreement

between experimental results and the model predictions has led to wide usage of

the simplest version of the diffusion-limited model.

Table 1.3 also shows that Gelderblom et al. [78] and Talbot et al. [228], who

reported the evaporation of water droplets on carbon nanofibre on silicon sub-

strates and on silicon substrates, respectively, with initial contact angles of up to

θ0 ≃ 150◦, found good agreement between the predictions of the simplest version

of the model and their experiments and concluded that the effect of evaporative

cooling is negligible in these experiments. On the other hand, Dash and Garimella
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Reference Mode of Range of
Evaporation Contact Angle θ

Coutant and Penski [42] CA mode 40◦–100◦

Erbil et al. [70] CA mode 35◦–45◦

Bhardwaj et al. [19] CR mode 0◦–20◦

SS mode 15◦–30◦

Shin et al. [205] CR mode 0◦–60◦

Doganci et al. [57] SS mode 30◦–100◦

Gelderblom et al. [78] CR mode 10◦–150◦

Semenov et al. [191] SS mode 20◦–90◦

Sobac and Brutin [214] CR mode 20◦–135◦

Song et al. [218] CR mode 15◦–60◦

SS mode 25◦–100◦

Lim et al. [128] CR mode 5◦–50◦

SS mode 35◦–65◦

Nguyen et al. [147] SS mode 25◦–110◦

Sobac and Brutin [216] CR mode 5◦–70◦

Semenov et al. [193] SS mode 20◦–85◦

Talbot et al. [228] CA mode 10◦–100◦

CR mode 20◦–150◦

Bou Zeid and Brutin [24] CR mode 5◦–15◦

Dash and Garimella [49] SS mode 40◦–120◦

Semenov et al. [194] SS mode 20◦–85◦

Singh et al. [211] CR mode 10◦–45◦

Trybala et al. [233] CR mode 15◦–115◦

SS mode 80◦–115◦

Dash and Garimella [50] CA mode 30◦–120◦

Table 1.3: Details of experimental results that are well predicted by the simplest
version of the diffusion-limited model, in which csat is assumed to be constant.
In particular, the mode in which the droplets evaporated as well as the range of
contact angles that are reported during the evaporation process are listed.
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[49, 50] investigated experimentally the evaporation of water droplets with differ-

ent volumes on (sometimes heated) hydrophobic and (sometimes heated) super-

hydrophobic substrates. In particular, they observed that water droplets on the

superhydrophobic substrate with θ0 ≈ 160◦ evaporate always in the CA mode (irre-

spective of the temperature of the substrate). They found poor agreement between

the theoretical predictions of the simplest version of the model and experimental

results. They attributed this poor agreement to the fact that the simplest ver-

sion of the model does not account for the significant evaporative cooling, which

they computed for droplets with θ0 ≈ 160◦. This discrepancy in the literature

suggests that further experiments are necessary to determine if and under what

conditions the simplest version of the model is valid for droplets evaporating on

superhydrophobic substrates.

In order to account for this significant effect of evaporative cooling Dash and

Garimella [49] proposed an ad hoc modification of the simplest version of the

model (namely reducing the theoretical prediction of the total evaporative flux by

an empirically determined factor of 20%). Following, for example, Dunn et al.

[59, 60, 61, 62], and Sefiane et al. [187] who first incorporated the temperature

dependence of csat, i.e. csat = csat(T ), where T is the temperature of the fluid, in

the simplest version of the model to account for the effect of evaporative cooling of

droplets evaporating on substrates of low conductivity and in a reduced pressure

atmosphere, Dash and Garimella [50] and Pan et al. [155, 156] incorporated csat =

csat(T ) in subsequent publications to account for the observed significant effect

of evaporative cooling of droplets on superhydrophobic substrates. In particular,

Pan et al. [155] compared the predictions of the diffusion-limited model taking

csat = csat(T ) into account and those of the simplest version of the model with

the experimental data of Dash and Garimella [49]. They found good agreement
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with experimental data for the predictions of the diffusion-limited model taking

csat = csat(T ) into account but not for the simplest version of the model. Since

Dunn et al. [59, 60, 61, 62], and Sefiane et al. [187] the diffusion-limited model

taking csat = csat(T ) into account was also used by, for example, Sefiane and

Bennacer [189], Lopes et al. [131], Saada et al. [178], and Gatapova et al. [77] to

account for the effect of evaporative cooling of droplets evaporating on substrates

of low conductivity, on thick substrates, or on heated substrates, respectively, and

by Sefiane and Bennacer [189], to account for the effect of evaporative cooling of

droplets evaporating in a reduced pressure atmosphere or of evaporating droplets

with a high thermal resistance. Recently Gleason and Putnam [84] proposed a

different ad hoc modification of the simplest version of the model to account for

the evaporative cooling of a droplet on a heated substrate, namely incorporating

a prescribed temperature distribution of the free surface of the droplet.

Guéna et al. [87], Shahidzadeh-Bonn et al. [197], Dunn et al. [60], Weon et

al. [242], Sobac et al. [216], and Kelly-Zion et al. [113], highlighted the possi-

ble importance of incorporating the convection of vapour in the atmosphere into

the diffusion-limited model for heptane droplets towards the end of their lifetime,

for water droplets, nanosized droplets, droplets on heated substrates, and hex-

ane droplets, respectively. This has lead to the development of extensions of the

simplest version of the model, which incorporate the convection of vapour by, for

example, Dunn et al. [60], Saada et al. [177], Kelly-Zion et al. [111, 112], and Carle

et al. [33] have proposed and analysed extensions of the diffusion-limited model

which also includes the effects of the convection of the vapour. In particular,

they found that the simplest version of the model underestimates the evapora-

tion rate compared to their extensions of the model. Kelly-Zion et al. [111, 112],

who considered four droplets of hydrocarbons (namely, 3-methylpentane, hexane,
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cyclohexane, heptane) and eight droplets of hydrocarbons (namely, acetone, 3-

methylpentane, hexane, methanol, cyclohexane, isooctane, heptane, and octane),

respectively, evaporating on aluminium, and Carle et al. [33], who considered

ethanol droplets evaporating on heated aluminium, found good agreement between

the predictions of the extensions of the diffusion-limited model and experimental

results.

Another extension of the simplest version of the model was studied by Lopes

et al. [131], who assumed that evaporation is not quasi-steady.

Since the simplest version of the model is applicable in many situations (see

table 1.3) and it does not require numerical computations to determine the evap-

orative flux, as most of the previously mentioned extensions (with the exception

of that by Dash and Garimella [49]), it is used in this thesis. In particular, the

simplest version of the model is used to determine the evolution of an evaporating

droplet, and therefore, the lifetime of a droplet.

1.6 Lifetimes of Droplets

In many practical situations being able to predict and influence the lifetime of an

evaporating droplet could lead to considerable economic efficiencies. For example,

minimising the lifetime of droplets in cooling applications (for example, the cool-

ing of electronics) could lead to a faster cooling process, leading to a reduction

in production and energy costs; as another example optimising the lifetimes of

droplets containing pesticides could lead to an optimised usage of pesticides with

economic as well as environmental benefits. Similarly, optimising the lifetimes of

droplets in ink-jet printing applications could lead to faster printing speeds which

could increase production speed and hence profits.
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As we have already mentioned, Picknett and Bexon [160] were the first to con-

sider the lifetimes (and half-lives) of sessile droplets in the extreme modes of evap-

oration using an approximate solution for the rate of change of the volume (1.19).

In particular, they obtained theoretically predicted lifetimes of 1 mg methylacetate

droplets as a function of the initial contact angle, shown in figure 1.12. Picknett

and Bexon [160] did not compute the curves representing the lifetimes of droplets

evaporating in the extreme modes for small contact angles in figure 1.12, but they

showed that for initial contact angles θ0 satisfying 0 . θ0 . 140◦, the lifetime of a

droplet evaporating in the CR mode is significantly shorter than the lifetime of an

initially identical droplet evaporating in the CA mode. They also showed that this

is no longer true for initial contact angles θ0 satisfying 140◦ . θ0 ≤ 180◦, when

the lifetime of a droplet in the CR mode is slightly longer than the lifetime of a

droplet in the CA mode.

Thirty years after the pioneering work of Picknett and Bexon [160], Schönfeld

et al. [179] used an approximation to Picknett and Bexon’s [160] approximate

solution for the the rate of change of the volume of the droplet (1.19) that is valid

for 0 ≤ θ0 ≤ π/2 to determine the lifetime of a droplet evaporating in the CR

mode. In particular, they found that just as in the CA mode the lifetime of a

droplet evaporating in the CR mode is proportional to the initial volume V
2/3
0

given in equation (1.3).

As mentioned in section 1.4.3, Bhardwaj et al. [19] solved numerically the

Navier-Stokes equation inside the droplet, and heat and mass transport equations

for the local evaporative flux and the evolution of the droplet, from which they

predicted lifetime of a droplet in the CR and the SS mode, which they compared

to their experimentally determined lifetimes and found good agreement between

them.
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A different approximation from that of Schönfeld et al. [179] was derived by

Shanahan et al. [204] who investigated experimentally and theoretically the life-

times of droplets with small initial contact angles (0 ≤ θ0 . 65◦) evaporating in

the two extreme modes. However, rather than using the asymptotic result for the

local evaporative flux in the limit of small contact angle given by equation (1.13),

they used Hu and Larson’s [96] approximate solution for the local evaporative flux

(1.11) with the additional assumption that J̄ is constant in both the CR and the

CA mode. Furthermore, they determined the lifetimes of droplets that evaporate

in either the CR or the CA mode for most of their lifetime from their experiments

[204], or the lifetime of droplets that evaporate in the SJ mode for most of their

lifetime, from the experiments by Moffat et al. [144] by extrapolating V linearly

in t to V = 0 (see Nguyen and Nguyen [148]). The comparison between their

approximate solutions for the lifetimes of droplets evaporating in the two extreme

modes as functions of the initial contact angle and their experimentally deter-

mined lifetimes is shown in figure 1.14. In particular, they claimed that the curve

representing the approximate lifetime of a droplet evaporating in the CR mode is

applicable for initial contact angles in the range 0 ≤ θ0 . 20◦, while the curve

representing the approximate lifetime of a droplet evaporating in the CA mode is

applicable for initial contact angles in the range 45◦ . θ0 . 65◦. Furthermore they

hypothesised the existence of a sigmoidal transition curve connecting these two

curves, representing the lifetimes of droplets evaporating in the SS mode, in which

the droplet first evaporates with a pinned contact line but later with a de-pinned

contact line.

In contrast to the approximations derived by Shanahan et al. [204], Nguyen

and Nguyen [148] developed theoretical predictions for the lifetimes of droplets

evaporating in the extreme modes that are based on the exact solution of the
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Figure 1.14: Approximate lifetimes of droplets in the extreme modes of evapo-
ration as a function of the initial contact angle (where the solid lines denote the
range of validity of the approximations) together with a hypothesised sigmoidal
transition curve between them and experimentally determined lifetimes obtained
by Shanahan et al. [204] and Moffat et al. [144]. Reprinted with permission from
Shanahan et al. [204]. Copyright 2011 American Chemical Society.

diffusion-limited model (see subsection 1.5.1). Their predictions [148, Figure 5] are

qualitatively similar to the approximate results reported by Picknett and Bexon

[160], which are shown in figure 1.12, but also show that the curves representing

the lifetimes of droplets evaporating in the CR and the CA mode coincide at the

origin for θ0 = 0. In order to determine the lifetimes of droplets investigated in

experiments by Erbil et al. [70], Kulinich and Farzaneh [116], Shin et al. [205],

and Shanahan et al. [204], Nguyen and Nguyen [148] extrapolated V 2/3 linearly

in t to V = 0 (as they had proposed in a previous publication [147]). They

compared these experimentally determined droplet lifetimes with the predicted

lifetimes based on the diffusion-limited model and with the predicted lifetimes

based on the approximations derived by Shanahan et al. [204]. This comparison

shows that the extrapolated droplet lifetimes are predicted well by the diffusion-
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limited model, but not by the approximations derived by Shanahan et al. [204].

Just like Nguyen and Nguyen [148], Talbot et al. [228] used the diffusion-limited

model described in section 1.5.1 to predict the lifetimes of droplets in the extreme

modes. Their experimental data concern picolitre droplets with a large range of

initial contact angles, 10◦ . θ0 . 150◦, evaporating in both the CA and the CR

mode. They did not specify how the experimentally determined lifetimes were

calculated, but concluded that for picolitre droplets the diffusion-limited model

predicts the experimentally determined lifetimes very well.

In a second publication Nguyen and Nguyen [149] focused on the hypothesised

sigmoidal transition curve between the curves representing the lifetimes of droplets

in the extreme modes proposed by Shanahan [204]. To this end they developed

the simple model for a droplet evaporating in the SS mode described in section

1.4.2, which they used to determine the lifetime of a droplet in this mode. Nguyen

and Nguyen [149] state that “[t]he lifetime of the combined mode of evaporation

[the SS mode] is constrained by those of the two single modes of evaporation [the

extreme modes],” and write (expressed in their notation in their equation (5)) that

the lifetime of a droplet evaporating in the CA mode is always longer than or equal

to that of a droplet with the same initial shape and volume evaporating in the SS

mode, which is itself always longer than that of a droplet with the same initial

shape and volume evaporating in the CR mode. Evidently this cannot be true for

all values of θ0, since, as we have already seen, Picknett and Bexon [160] showed

that the lifetime of a droplet in the CR mode is slightly longer than the lifetime

of a droplet in the CA mode for 140◦ . θ0 < 180◦. Notwithstanding this, Nguyen

and Nguyen [149] used a rational approximation to the function g(θ), given in

(1.18), to compute the lifetimes of droplets in the CR mode and the CA mode

as functions of the initial contact angle θ0 together with lifetimes of droplets in
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Figure 1.15: Lifetimes of droplets in the CR mode (denoted by “single pinned
mode”) and the CA mode (denoted by “single receding mode”) as functions of the
initial contact angle θ0 together with lifetimes of droplets in the SS mode (denoted
by “combined mode”) as a function of the receding contact angle, θ∗, where the
blue and red dashed lines represent the lifetime of droplets in the SS mode with
initial angles θ0 < 90◦ and θ0 > 90◦, respectively, obtained by Nguyen and Nguyen
[149]. Reprinted with permission from Nguyen and Nguyen [149]. Copyright 2012
American Chemical Society.

the SS mode as a function of the receding contact angle, θ∗, which are shown

in figure 1.15. They observed that figure 1.15 shows that “the lifetime of the

combined pinned-receding mode [SS mode] is located outside the confined area

between the two limit lines [corresponding to the lifetimes of droplets in the CR

mode and the CA mode]” and that their results “do not support the controversial

hypothesis in the literature [due to Shanahan et al. [204]] that there would be a

“sigmoidal” transition line for the droplet lifetime of the combined pinned-receding

mode [SS mode] and that the sigmoidal transition line linking the two modes [i.e.

the CR and CA modes] would be located within the confined area between the

limit lines”, both of which statements appear to contradict their earlier statement
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Figure 1.16: Lifetimes of droplets in the CR mode (denoted by tCR) and the
CA mode (denoted by tCA) together with lifetimes of droplets in the SS mode
for various values of 0 < θ∗ < π/2 as functions of the initial contact angle θ0

obtained by Stauber et al. [220]. Reprinted with permission from Stauber et al.
[220]. Copyright 2013 American Chemical Society.

that the lifetime of a droplet evaporating in the CA mode is always longer than

or equal to that of a droplet evaporating in the SS mode, which is itself always

longer than that of a droplet evaporating in the CR mode.

We have shown in our recent comment on their work (Stauber et al. [220])

that the apparent contradiction between their statements arises because in figure

1.15, Nguyen and Nguyen [149] plotted the lifetimes of droplets evaporating in the

extreme modes as functions of the initial contact angle θ0 but plotted the lifetime

of droplets evaporating in the SS mode as a function of the receding contact angle

θ∗ for several values of θ0. To this end we gave in figure 1.16, the lifetimes of

droplets evaporating in the CR, CA, and SS mode are all plotted as functions of

the initial contact angle θ0 for 0 ≤ θ0 ≤ π/2, the latter for several values of the

receding contact angle θ∗. In particular, figure 1.16 shows that for every value of
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θ∗ in the range 0 ≤ θ∗ ≤ π/2, the lifetime of a droplet in the SS mode is equal

to the lifetime of a droplet in the CA mode for 0 ≤ θ0 ≤ θ∗ and the lifetime of a

droplet in the CR mode is shorter than the lifetime of a droplet in the SS mode,

which is shorter than the lifetime of a droplet in the CA mode. In other words,

at least for 0 ≤ θ0 ≤ π/2, the curve corresponding to the lifetime of a droplet

in the SS mode always lies inside the “limit lines” corresponding to lifetime of a

droplet in the extreme modes (and not “outside the confined area between the two

limit lines” as Nguyen and Nguyen [149] stated), and so the curve representing

the lifetime of a droplet in the SS mode always lies above the curve representing

the lifetime of a droplet in the CR mode and below the curve representing the

lifetime of a droplet in the CA mode (and not “above the lifetime line of the single

receding mode” as Nguyen and Nguyen [149] stated). However, it is important

to note that figure 1.16 confirms the key conclusions of Nguyen and Nguyen [149]

that “there are many “transition” lines for the combined mode” and that they

have a qualitatively different shape from that tentatively suggested by Shanahan

et al. [204].

In subsequent publications (Stauber et al. [223], Stauber et al. [225]) we gave a

complete description of the lifetime of a droplet evaporating in the SS mode, and

this work will be described in detail in Chapters 3 and 4.

Dash and Garimella [49, 50] investigated experimentally and theoretically the

lifetimes of droplets evaporating on a (sometimes heated) hydrophobic and a

(sometimes heated) superhydrophobic substrates. As mentioned previously, they

found good agreement between the experimentally determined lifetimes of droplets

evaporating on the hydrophobic substrate and the predicted lifetimes of droplets

in the CA mode (see table 1.3), they found poor agreement between the exper-

imentally determined lifetimes of droplets evaporating on the superhydrophobic
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substrate and the predicted lifetimes of droplets in the CA mode irrespective of

the substrate temperature and proposed the extension for the simple version of

the diffusion-limited model previously discussed in section 1.5.2. Note, however,

that Dash and Garimella [49, 50] did not specify how the lifetimes were obtained

in their experiments.

1.7 Overview of the Thesis

The main focus of this thesis is to investigate the evolution of sessile droplets in

different modes of evaporation and, in particular, their lifetimes.

Before considering the SS and SJ modes, Chapter 2 briefly addresses the evap-

oration of droplets in the extreme modes. In particular, Chapter 2 describes

the manner in which the extreme modes of evaporation become indistinguishable

on strongly hydrophobic substrates. Simple asymptotic expressions are obtained

which provide good approximations to the evolutions of the contact radius, the

contact angle, and the volume of droplets evaporating in the extreme modes for a

wide range of hydrophobic substrates.

Chapter 3 focuses on the lifetime of a droplet in the SS mode, and the unex-

pectedly subtle relationship between the lifetime of such a droplet and those of

initially identical droplets evaporating in the extreme modes is described. In par-

ticular, it is shown that the lifetime of a droplet in the SS mode is not, in general,

constrained by the lifetimes of a droplet in the extreme modes. Furthermore, good

agreement is found between the predicted lifetimes and lifetimes determined from

experiments reported in the literature.

In Chapter 4 we propose a simple relationship between the initial and receding

contact angles based on the assumption of a constant maximum pinning force.
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This relationship is then used to give a complete description of the lifetime of a

droplet in the SS mode. In particular, it is shown that the dependence of the

lifetime on the initial contact angle is qualitatively different from that in the case

when the initial and receding angles are independent parameters, as studied in

Chapter 3. Furthermore, both the proposed relationship and the theoretically

predicted lifetimes calculated using it are found to agree surprisingly well with

experimental results obtained by previous authors.

Chapters 5 and 6 focus on droplets evaporating in the SJ mode of evaporation.

In particular, in Chapter 5 a simple model for the SJ mode is developed, and it

is shown that in appropriate special cases the model for the SJ mode reduces to

models for the CR, CA, and SS modes. Additionally, it is shown that the model for

the SJ mode quantitatively predicts the experimental results obtained by previous

authors.

In Chapter 6 the lifetime of a droplet in the SJ mode is considered. It is

shown that the model derived in Chapter 5 predicts the experimentally determined

lifetimes of droplets in the SJ mode obtained by previous authors surprisingly well,

despite the fact that it predicts an infinite number of stick and jump phases. The

rather complicated behaviour of the lifetime of a droplet in the SJ mode is analysed

and it is demonstrated that under special conditions the lifetime of a droplet in

the SJ mode can be approximated by the lifetime of a droplet in the CA mode.

In Chapter 7 some conclusions are drawn, and open questions and possible

directions for further developments are discussed.
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1.8 Publications and Presentations

Some aspects of the work in Chapter 1 have been published in Langmuir (Stauber

et al. [220, 224]) and in the Proceedings of the 13th UK National Heat Transfer

Conference, 2nd–3rd September 2013, London (Stauber et al. [221]).

The work in Chapter 2 has recently been published in Langmuir (Stauber et

al. [224]).

The work in Chapter 3 has been published in the Journal of Fluid Mechanics

(Stauber et al. [223]) and (as of 1st April 2015) has already been cited 14 times by

other researchers [38, 72, 84, 121, 152, 156, 101, 130, 143, 208, 226, 247, 246, 256] .

Furthermore, aspects of the work in Chapter 3 were also published as an extended

abstract in the Proceedings of the 10th European Coating Symposium (ECS 13),

11th–13th September 2013, Mons, Belgium (Stauber et al. [222]). Various aspects

of this work have been presented by me at the 55th British Applied Mathematics

Colloquium at the University of Leeds in April 2013, the 26th Scottish Fluid Me-

chanics Meeting at the University of Aberdeen in May 2013, the 10th European

Coating Symposium in Mons, Belgium in September 2013, a Continuum Mechan-

ics and Industrial Mathematics Research Group Seminar within the Department of

Mathematics and Statistics at the University of Strathclyde in December 2013, and

the British Society of Rheology Midwinter Meeting at the University of Cambridge

in December 2013.

The work in Chapter 4 has recently been submitted for publication (Stauber

et al. [225]), and various aspects of this work have been presented by me at the

56th British Applied Mathematics Colloquium at Cardiff University in April 2014,

the 27th Scottish Fluid Mechanics Meeting at the University of St. Andrews in

May 2014, and the Institute of Physics (IoP) Science of Inkjet and Printed Drops

Meeting in London in November 2014.
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Furthermore, aspects of the work in Chapters 3 and 4 have been presented

by my primary supervisor Prof. Stephen K. Wilson at the workshop on Drying

Droplets at Durham University in March 2013, the 13th UK Heat Transfer Con-

ference in London in September 2013, the IoP Science of Inkjet and Printed Drops

Meeting in London in November 2013, the 66th APS Division of Fluid Dynam-

ics Annual Meeting in Pittsburgh, USA in November 2013, the 1st International

Conference on Micro and Nanofluidics in Twente, The Netherlands in May 2014,

the 67th APS Division of Fluid Dynamics Annual Meeting in San Francisco, USA

in November 2014, and the British Society of Rheology Midwinter Meeting at

Durham University in December 2014. In addition, our collaborator Prof. Khellil

Sefiane recently presented aspects of the work in Chapter 3 as part of an invited

talk at the Smart and Green Interfaces Conference in Belgrade, Serbia in March

2015.

Aspects of the work in Chapters 5 and 6 are currently in preparation for pub-

lication, and will be presented by Prof. Stephen K. Wilson as part of an invited

talk at Droplets 2015 to be held in Twente, The Netherlands in October 2015.
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Droplets in the Extreme Modes

As understanding the extreme modes of evaporation remains a key part of under-

standing the evaporation of droplets we shall first briefly consider the evaporation

of droplets in the extreme modes before investigating the evaporation of droplets

in the SS and SJ modes. In particular, the diffusion-limited model described in

section 1.5.1 is used to discuss the evolution of droplets in the extreme modes in

section 2.1 and to show how the extreme modes converge as the value of the initial

contact angle θ0 increases towards π, and so, in particular, to describe the man-

ner in which they become indistinguishable on strongly hydrophobic substrates in

section 2.2.

2.1 Evaporation of Droplets in the Extreme Modes

The evolution of the volume of the droplet V , the contact radius R and the contact

angle θ as the droplet evaporates and hence, in particular, the lifetime of the

droplet (i.e. the time it takes for R and/or θ and hence for V to reach zero), are

determined by the rate of change of the volume of the droplet, dV /dt, given by

equation (1.17).

52
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As several previous authors have described, for a droplet evaporating in the

CR mode, R = R0 is constant, and so (1.17) becomes an equation for θ = θ(t),

namely

dθ

dt
= −D(csat − c∞)

ρR2
0

g(θ) (2.1)

which has the implicit solution

t =
ρR2

0

D(csat − c∞)

∫ θ0

θ

dθ

g(θ)
, (2.2)

while for a droplet evaporating in the CA mode, θ = θ0 is constant, and so (1.17)

becomes an equation for R = R(t), namely

dR

dt
= −D(csat − c∞)

ρR

g(θ0)

sin θ0(2 + cos θ0)
(2.3)

which has the exact solution

R2 = R2
0 −

2D(csat − c∞)

ρ

g(θ0)

sin θ0(2 + cos θ0)
t (2.4)

and hence

V =
π

3

sin θ0(2 + cos θ0)

(1 + cos θ0)2

[

R2
0 −

2D(csat − c∞)

ρ

g(θ0)

sin θ0(2 + cos θ0)
t

]3/2

. (2.5)

A key observation is that in the special case θ0 = π (i.e. for a perfectly hy-

drophobic substrate) the CR and CA modes coincide at all times t. In this case

the free surface of the droplet is a complete sphere of radius R = R(t) (R ≥ 0)

touching the substrate at the single point r = 0 with constant contact radius

R ≡ R0 = 0 and constant contact angle θ ≡ θ0 = π throughout its entire life-

time, i.e. in this case (and only in this case) the CR and CA modes are identical
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throughout their entire lifetimes. For clarity it might be better to refer to them as

a constant contact radius and constant contact angle mode in this special limit.

Integrating the expression for the flux J in this special case given by (1.15) over

the free surface of the droplet yields an equation for R = R(t), namely

dR
dt

= − log 2
D(csat − c∞)

ρR (2.6)

which has the exact solution

R2 = R2
0 − log 2

2D(csat − c∞)

ρ
t, (2.7)

where R0 = R(0) is the initial radius of the sphere, and hence

V =
4πR3

3
=

4π

3

[

R2
0 − log 2

2D(csat − c∞)

ρ
t

]3/2

. (2.8)

To simplify the subsequent presentation in this chapter it is convenient to scale

time t with the maximum lifetime of a droplet evaporating in the CA mode (which

occurs for θ0 = π/2), namely

T =
ρ

2D(csat − c∞)

(

3V0

2π

)2/3

=
ρR2

0

2D(csat − c∞)

(

sin θ0(2 + cos θ0)

2(1 + cos θ0)2

)2/3

. (2.9)

Setting θ = 0 in (2.2) yields an expression for the scaled lifetime of a droplet

evaporating in the CR mode, denoted by tCR = tCR(θ0), namely

tCR =

(

2(1 + cos θ0)
2

sin θ0(2 + cos θ0)

)2/3 ∫ θ0

0

2 dθ

g(θ)
, (2.10)

and setting R = 0 in (2.4) or V = 0 in (2.5) yields an expression for the scaled

lifetime of a droplet evaporating in the CA mode, denoted by tCA = tCA(θ0),
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namely

tCA =

(

2(1 + cos θ0)
2

sin θ0(2 + cos θ0)

)2/3
sin θ0(2 + cos θ0)

g(θ0)
. (2.11)

Setting R = 0 in (2.7) or V = 0 in (2.8) (or, equivalently, taking the limit θ0 → π−

in (2.10) or (2.11)) yields an expression for the scaled lifetime of both modes when

θ0 = π, namely tCA = tCR = tπ, where

tπ =
1

41/3 log 2
≃ 0.9088. (2.12)

Figure 2.1 shows the evolutions of θ, R/V
1/3
0 , and V/V0 plotted as functions

of t/T for droplets with different initial contact angles, namely θ0 = π/18 = 10◦,

θ0 = π/2 = 90◦, θ0 = θcrit ≃ 2.5830 ≃ 148◦, and θ0 = 17π/18 = 170◦, evaporating

in the CR and CA modes. In particular, figure 2.1 shows that in the special

case θ0 = θcrit (first identified approximately by Picknett and Bexon [160] to be

approximately 140◦, see section 1.6), the values of tCR and tCA coincide (specifically,

tCR = tCA = tcrit ≃ 0.9354), but the evolutions of R, θ and V for the two modes

are very different. Note that this behaviour is qualitatively different from that

when θ0 = π described previously for which the two modes are identical for their

entire lifetimes.

Figure 2.2(a) shows the scaled lifetimes of droplets evaporating in the CR mode,

tCR, given by (2.10), and in the CA mode, tCA, given by (2.11), plotted as functions

of the initial contact angle θ0. In particular, figure 2.2(a) is qualitatively similar

to figure 1.12 obtained by Picknett and Bexon [160] and Nguyen and Nguyen

[148, Figure 5]. Just like figure 1.12 and figure 5 by Nguyen and Nguyen [148]

it illustrates the sometimes overlooked fact that the lifetime of the CR mode is

(slightly) longer than that of the CA mode when θcrit < θ0 < π, and shows that

both tCR and tCA approach tπ from above as θ0 → π−. Note, however, like figure 5
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Figure 2.1: Evolutions of (a) the contact angle θ, (b) the scaled contact radius

R/V
1/3
0 , and (c)–(f) the scaled volume V/V0, plotted as functions of scaled time

t/T for droplets with different initial contact angles, namely θ0 = π/18 = 10◦,
θ0 = π/2 = 90◦, θ0 = θcrit ≃ 2.5830 ≃ 148◦, and θ0 = 17π/18 = 170◦, evaporating
in the CR and CA modes, shown by solid and dashed lines, respectively.
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Figure 2.2: (a) Scaled lifetimes of droplets evaporating in the CR mode, tCR, given
by (2.10) and shown with a solid line, and in the CA mode, tCA, given by (2.11)
and shown with a dashed line, plotted as functions of the initial contact angle θ0.
(b) An enlargement of (a) near θ0 = π also showing the asymptotic expressions
for tCR and tCA in the limit θ0 → π− given by (2.13) and (2.14), respectively.
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by Nguyen and Nguyen [148], but unlike figure 1.12, figure 2.2(a) shows that the

diffusion-limited model predicts the tCR and tCA curves coincide at the origin for

θ0 = 0. Figure 2.2(a) shows the maximum value of tCR = tcrit occurs at θ0 = θcrit,

and the maximum value of tCA = 1 occurs at θ0 = π/2. In fact, analysis of the

expressions for tCR and tCA given by (2.10) and (2.11), respectively, in the limit

θ0 → π− reveals that

tCR = tπ

[

1 − 4 log 2 − 1

12 log 2
(π − θ0)

2 log(π − θ0)

]

+ O (π − θ0)
2 (2.13)

and

tCA = tπ

[

1 +
4 log 2 − 1

24 log 2
(π − θ0)

2

]

+ O (π − θ0)
4 , (2.14)

and in the limit of small initial contact angle, θ0 → 0+, reveals that

tCR =

(

1

3

)2/3
π

2
θ

1/3
0 + O

(

θ
4/3
0

)

(2.15)

and

tCA =

(

1

3

)2/3
3π

4
θ

1/3
0 + O

(

θ
4/3
0

)

(2.16)

(and hence tCA = 3tCR/2 at leading order in this limit).

Figure 2.2(b) is an enlargement of Figure 2.2(a) near θ0 = π also showing

the asymptotic expressions (2.13) and (2.14), and illustrates that both asymptotic

expressions, but particularly that for tCA, provide good approximations to the

exact values of tCR and tCA for a reasonably wide range of values of θ0 near π.
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2.2 The Convergence of the Extreme Modes on

Strongly Hydrophobic Substrates

The evolutions of θ and R/V
1/3
0 plotted in Figures 2.1 (a) and (b) show that as

the value of the initial contact angle θ0 increases towards π both the value of the

(varying) contact angle θ in the CR mode and the value of the (varying) contact

radius R in the CA mode stay increasingly close to their initial values θ0 and R0,

respectively. In other words, the extreme modes of droplet evaporation converge

as the value of θ0 increases towards π, and so, in particular, the extreme modes

become indistinguishable on strongly hydrophobic substrates.

This behaviour might have been expected for the CA mode, for which θ ≡ θ0 ≈

π necessarily remains close to π and R decreases by a small amount from its small

initial value of R0 ≈ 0 to zero, and hence necessarily remains close to its value

R ≡ 0 in the special case θ0 = π, during its evolution. Indeed, analysis of (2.3)

or (2.4) reveals that for a droplet evaporating in the CA mode, the asymptotic

expression for the contact radius R is given by

R =

(

3V0

4π

)1/3(

1 − t

tπ

)1/2

(π − θ0) + O(π − θ0)
3 (2.17)

in the limit θ0 → π−, which remains close to R = 0 for the entire lifetime of the

droplet (i.e. until t = tπ at leading order).

However, this behaviour is not so immediately obvious for the CR mode, for

which R ≡ R0 ≈ 0 necessarily remains small but θ decreases by a non-small amount

from its initial value of θ0 ≈ π to zero during its evolution. However, analysis

of (2.1) reveals that for a droplet evaporating in the CR mode, the asymptotic
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expression for the contact angle θ is given by

θ = π −
(

1 − t

tπ

)

−1/2

(π − θ0) + O(π − θ0)
3 (2.18)

in the limit θ0 → π−, which indeed remains close to θ = π until near to the end of

its lifetime (i.e. until near to t = tπ at leading order).

Furthermore, as the evolution of V in the case θ0 = 17π/18 = 170◦ shown in

Figure 2.1(c) shows, V decreases from V0 to zero in a very similar manner for both

extreme modes, and indeed for this value of θ0 they are virtually indistinguish-

able. Specifically, (2.17) and (2.18) reveal that, whichever mode the droplet is

evaporating in, the asymptotic expression for the volume of the droplet V is given

by

V = V0

(

1 − t

tπ

)3/2

+ O(π − θ0)
2 (2.19)

in the limit θ0 → π−.

The increasing accuracy of the asymptotic expressions (2.17)–(2.19) as θ0 in-

creases towards π is illustrated in Figure 2.3, which shows the evolutions of θ and

V/V0 for a droplet evaporating in the CR mode, and the evolutions of R/V
1/3
0

and V/V0 for a droplet evaporating in the CA mode, plotted as functions of

t/T for droplets on hydrophobic substrates with different initial contact angles,

namely θ0 = 11π/18 = 110◦, θ0 = 13π/18 = 130◦, θ0 = 5π/6 = 150◦, and

θ0 = 17π/18 = 170◦, together with the corresponding asymptotic expressions in

the limit θ0 → π− given by (2.17)–(2.19). In particular, Figures 2.3 (a) and (c)

show that the asymptotic expressions (2.18) and (2.17) provide good approxima-

tions to the evolutions of θ and R, respectively, when θ0 is greater than about 150◦,

and Figures 2.3 (b) and (d) show that the asymptotic expression (2.19) provides

a good approximation to the evolutions of V in both modes for all of the values of



Chapter 2 61

t/T

θ
θ0 = 170◦

θ0 = 150◦

θ0 = 130◦

θ0 = 110◦

0.0 0.2 0.4 0.6 0.8 1.0
0

π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

(a)

t/T

V/V0

θ0 = 170◦

θ0 = 150◦

θ0 = 130◦

θ0 = 110◦

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b)

t/T

R/V
1/3
0

θ0 = 170◦

θ0 = 150◦

θ0 = 130◦

θ0 = 110◦

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c)

t/T

V/V0

θ0 = 170◦

θ0 = 150◦

θ0 = 130◦

θ0 = 110◦

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(d)

Figure 2.3: Evolutions of (a) the contact angle θ and (b) the scaled volume V/V0

for a droplet evaporating in the CR mode, and evolutions of (c) the scaled contact

radius R/V
1/3
0 and (d) the scaled volume V/V0 for a droplet evaporating in the

CA mode, plotted as functions of scaled time t/T for droplets on hydrophobic
substrates with different initial contact angles, namely θ0 = 11π/18 = 110◦, θ0 =
13π/18 = 130◦, θ0 = 5π/6 = 150◦, and θ0 = 17π/18 = 170◦, together with the
corresponding asymptotic expressions in the limit θ0 → π− given by (2.17)–(2.19)
shown with dashed lines.
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θ0 shown.

One important consequence of the convergence of the extreme modes is that

using the exact solution for the evolution of V in the CA mode given by (2.5),

which predicts the so-called “2/3 power law” that (V/V0)
2/3 varies linearly with t,

to extrapolate experimental data for V to estimate the lifetime of a droplet is also

valid for the CR mode provided that θ0 is sufficiently close to π. This conclusion is

entirely consistent with the recent work of Nguyen and Nguyen [152], who found

that evolution of V in the CR mode is well approximated by the 2/3 power law

when θ0 is sufficiently close to π.

2.3 Summary

In this chapter we have described the manner in which the extreme modes of

droplet evaporation become indistinguishable on strongly hydrophobic substrates.

In particular, we obtained simple asymptotic expressions (2.17)–(2.19) which pro-

vide good approximations to the evolutions of R, θ, and V , respectively, for a

wide range of hydrophobic substrates. As a consequence, on strongly hydrophobic

substrates it is appropriate to use the 2/3 power law to extrapolate the lifetimes

of droplets evaporating in the CR mode as well as in the CA mode.

Thus having described the evolution of droplets in the extreme modes of evap-

oration we shall now give complete descriptions of the evolutions and the lifetimes

of droplets evaporating in the SS mode and the SJ mode in the following chapters.
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Droplets in the Stick-Slide Mode

In this chapter a complete description of the lifetime of a droplet in the stick-slide

(SS) mode is given. In section 3.1 we describe the evolution of a droplet in the

SS mode. The predicted lifetimes of a droplet in the SS mode derived in section

3.2 are found to be in good agreement with lifetimes determined from experiments

reported in the literature, as shown in section 3.3. Furthermore, the unexpectedly

subtle relationship between the lifetime of a droplet in the SS mode and those of

initially identical droplets evaporating in the extreme modes is described in section

3.4. In particular, it is shown that the lifetime of a droplet in the SS mode is not,

in general, constrained by the lifetimes of a droplet in the extreme modes.

3.1 The Evolution of Droplets in the Stick-Slide

Mode

We use the model for the SS mode mentioned in section 1.4.2 (as discussed by,

for example, Nguyen and Nguyen [149], and Dash and Garimella [49]), which is

sketched in figure 3.1. In this model initially the droplet evaporates in a CR phase

63
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0
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0
0

θ θ∗

θ0

V

V0

t

t

t

tSS

tSS

tSS

CR phase CA phase

Figure 3.1: Sketch of the stick-slide (SS) mode studied in the present work in
which initially the droplet evaporates in a CR phase in which R = R0 and θ(t)
and V (t) decrease until θ(t) reaches the receding contact angle θ∗ (0 ≤ θ∗ ≤ θ0),
at which the contact line de-pins and subsequently the droplet evaporates in a CA
phase in which θ(t) = θ∗ and R(t) and V (t) decrease to zero at time t = tSS.

with R = R0 and with θ = θ(t) decreasing from θ = θ0 (0 ≤ θ0 ≤ π) to the

receding contact angle θ = θ∗ (referred to as the “transition contact angle” by

[149]) (0 ≤ θ∗ ≤ π), after which the droplet evaporates in a CA phase with θ = θ∗

and with R = R(t) decreasing from R0 to zero. Note that we use θ∗ instead of θrec

to be consistent with the notation by Nguyen and Nguyen [149]. The initial CR

phase occurs only if θ0 > θ∗; otherwise the contact line is always de-pinned and

the droplet simply evaporates in the CA mode.

For a droplet evaporating in the SS mode, the droplet evaporates in a CR phase



Chapter 3 65

with R = R0 constant and so (1.17) becomes an equation for θ = θ(t) given by

equation (2.1) and in a CA phase with θ = θ∗ constant and so (1.17) becomes an

equation for R = R(t), namely

dR

dt
= −D(csat − c∞)

ρR

g(θ∗)

sin θ∗(2 + cos θ∗)
(3.1)

which has the exact solution

R2 = R2
0 −

2D(csat − c∞)

ρ

g(θ∗)

sin θ∗(2 + cos θ∗)

(

t − ρR2
0

D(csat − c∞)

∫ θ0

θ∗

dθ

g(θ)

)

, (3.2)

and hence

V =
π

3

sin θ∗(2 + cos θ∗)

(1 + cos θ∗)2

[

R2
0

−2D(csat − c∞)

ρ

g(θ∗)

sin θ∗(2 + cos θ∗)

(

t − ρR2
0

D(csat − c∞)

∫ θ0

θ∗

dθ

g(θ)

)]3/2

. (3.3)

Like figure 2.1 figure 3.2 shows the evolutions of θ, R/V
1/3
0 , and V/V0 plotted

as functions of t/T for droplets with different initial contact angles, namely θ0 =

π/18 = 10◦, θ0 = π/2 = 90◦, and θ0 = 17π/18 = 170◦, evaporating in the extreme

modes. However, unlike figure 2.1, figure 3.2 does not show the evolutions for

droplets with initial contact angles θ0 = θcrit ≃ 2.5830 ≃ 148◦ evaporating in

the extreme modes, but instead it shows shows the evolutions of θ, R/V
1/3
0 , and

V/V0 plotted as functions of t/T for initially identical droplets evaporating in the

SS mode with θ0 = π/18 and θ∗ = 0, θ0 = π/2 and θ∗ = 1.3694 ≈ 78◦, and

θ0 = 17π/18 and θ∗ = 2.4732 ≈ 142◦. Note, figure 3.2 shows in the case of the

droplet evaporating in the SS mode with θ0 = π/18 and θ∗ = 0 the contact line

never de-pins, and, therefore, the evolutions of θ, R/V
1/3
0 , and V/V0 are identical to

the evolutions of a droplet in the CR mode. However, figure 3.2 also shows in the
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Figure 3.2: Evolutions of (a) the contact angle θ, (b) the scaled contact radius

R/V
1/3
0 , and (c)–(e) the scaled volume V/V0, plotted as functions of scaled time

t/T for droplets with different initial contact angles, namely θ0 = π/18 = 10◦,
θ0 = π/2 = 90◦, and θ0 = 17π/18 = 170◦, evaporating in the CR, CA, and SS
modes, the latter with θ∗ = 0, θ∗ = 1.3694 ≈ 78◦, and θ∗ = 2.4732 ≈ 142◦,
respectively, shown by solid, dashed, and dot-dashed lines, respectively.
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cases of the droplets evaporating in the SS modes with θ0 = π/2 and θ∗ = 1.3694,

and θ0 = 17π/18 and θ∗ = 2.4732 the evolutions of θ, R/V
1/3
0 , and V/V0 are only

identical to the evolutions of an initially identical droplet in the CR mode, while

the droplet evaporates in the CR phase, i.e. until θ = θ∗. Note, for the droplet

evaporating in the SS mode with θ0 = π/2 = 90◦ and θ∗ = 1.3694 ≈ 78◦, it is

in the CA phase for most of its lifetime, whereas for the droplet in the SS mode

with θ0 = 17π/18 and θ∗ = 2.4732 it is in the CR phase for most of its lifetime.

In the previous chapter it was shown that on strongly hydrophobic substrates the

extreme modes become indistinguishable; figure 3.2 shows that the extreme modes

and the SS mode become indistinguishable for strongly hydrophobic substrates.

Thus having described the evolution of a droplet in the SS mode, we can

determine the lifetime of a droplet, which as we have seen in the previous section,

is the time it takes for R and/or θ and hence for V to reach zero.

3.2 Theoretical Predictions for the Lifetimes of

Droplets in the Stick-Slide Mode

Just as in the previous chapter we scale time t with the maximum lifetime of a

droplet evaporating in the CA mode (which occurs for θ0 = π/2), namely T given

in equation (2.9), for the remainder of this chapter. Thus as described in the

previous chapter, the lifetime of a droplet evaporating in the CR mode, denoted

by tCR = tCR(θ0), is given by (2.10) and the lifetime of a droplet evaporating in

the CA mode, denoted by tCA = tCA(θ0), is given by (2.11).

The lifetime of a droplet evaporating in the SS mode is denoted by tSS =

tSS(θ0, θ
∗), and unlike tCR and tCA, is, in general, a function of the receding contact

angle θ∗ as well as of the initial contact angle θ0, and will not, in general, be equal
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to either tCR or tCA when θ0 > θ∗. Specifically, for 0 ≤ θ0 ≤ θ∗ the droplet simply

evaporates in the CA mode, and hence we have tSS = tCA, where tCA is given

by (2.11), but for θ0 ≥ θ∗ initially the droplet evaporates in a CR phase until θ

reaches θ∗ after which it evaporates in a CA phase until R reaches zero, and hence

we have

tSS =

(

2(1 + cos θ0)
2

sin θ0(2 + cos θ0)

)2/3 [∫ θ0

θ∗

2 dθ

g(θ)
+

sin θ∗(2 + cos θ∗)

g(θ∗)

]

, (3.4)

where the first term on the right-hand side of (3.4) represents the duration of the

CR phase and the second term represents the duration of the CA phase.

3.3 Experimental Validation of the Model

Before analysing the theoretically predicted lifetime of an evaporating droplet,

tSS, given by (3.4), the model is verified by comparison with the results of rel-

evant physical experiments in the literature for which all of the necessary data

are available. In particular, we use the 29 sets of experimental results for droplets

evaporating in a SS mode obtained by Bourgès-Monnier and Shanahan [26], Uno et

al. [235], Fukai et al. [76], Li et al. [126], Song et al. [218], Nguyen et al. [147], Lim

et al. [128], Yu et al. [249], and Dash and Garimella [49] for which the duration of

the second slide phase was at most 10% of the lifetime of the droplet, so that the

present idealised SS mode is likely to be an appropriate description of their be-

haviour. An example of one of these 29 sets, whose details are given in table 3.1, is

given in figure 3.3. In particular, figure 3.3 shows the evolution of a water droplet

evaporating on silicon coated with a 3-mercaptopropyltrimethoxysilane monolayer

in the SS mode, as observed by Fukai et al. [76, Figure 3]. In particular, figure

3.3 shows the droplet initially evaporates in a CR phase in which R is approxi-
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Figure 3.3: Experimental data for the evolution of R, θ, and V of a
water droplet evaporating in the SS mode on silicon coated with a 3-
mercaptopropyltrimethoxysilane monolayer observed by Fukai et al. [76, Figure
3]. In particular, the droplet initially evaporates in a CR phase in which R is
approximately constant and θ and V decrease until θ = θ∗ ≈ 0.56 ≃ 32◦ and
thereafter it evaporates in a CA phase in which θ is approximately constant and R
and V decrease. Note that the interpolated time at which θ = θ∗ is denoted by a
dashed line and that the second slide phase is negligible for this set of experimental
results.

mately constant and θ and V decrease until θ = θ∗ ≈ 0.56 ≃ 32◦ and thereafter

it evaporates in a CA phase in which θ is approximately constant and R and V

decrease.

For each of these sets of experimental results the experimentally determined

lifetime of the droplet, denoted by texp, was obtained by fitting the experimental
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Figure 3.4: The theoretically predicted lifetimes of evaporating droplets, tSS, cal-
culated numerically from (3.4) using the experimentally determined values of θ0

and θ∗ plotted as a function of the corresponding experimentally determined val-
ues, texp, together with a solid line showing tSS = texp and dashed lines showing
5% and 10% deviations from tSS = texp.

data for V 2/3 as a linear function of t and extrapolating to V = 0 (which is, of

course, exact only for the CA mode as shown in the previous chapter) as proposed

by, for example, Nguyen et al. [147] and Nguyen and Nguyen [148], see section 1.6.

Figure 3.4 shows tSS calculated numerically from (3.4) using the experimentally

determined values of θ0 and θ∗ plotted as a function of the corresponding values

of texp together with a solid line showing tSS = texp and dashed lines showing

5% and 10% deviations from tSS = texp. In particular, figure 3.4 shows that the

theoretically predicted values are in excellent agreement with the experimentally

determined values, with all of the values of tSS lying within 10% of texp and 26 of

the 29 values lying within 5%.
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3.4 The Lifetimes of Evaporating Droplets

Figures 3.5 and 3.6 show the lifetime of a droplet evaporating in the SS mode, tSS,

given by (3.4), together with the lifetimes of initially identical droplets evaporating

in the CR and CA modes, tCR and tCA, given by (2.10) and (2.11), plotted as

functions of θ0 for various values of θ∗ in the ranges 0 < θ∗ ≤ π/2 and π/2 ≤ θ∗ < π,

respectively. Figures 3.5 and 3.6 show that tCR = tCA = tSS = 0 at θ0 = 0, and

that for strongly hydrophobic substrates all three modes considered in the present

chapter become indistinguishable, as tCR = tCA = tSS = tπ = (41/3 log 2)−1 ≃

0.9088 at θ0 = π. As we have seen in section 2.1 the maximum value of tCR = tcrit

occurs at θ0 = θcrit, and the maximum value of tCA = 1 occurs at θ0 = π/2. The

maximum value of tSS depends on the value of θ∗: when 0 ≤ θ∗ ≤ π/2 it occurs at

θ0 = θ̂0, where θ̂0 = θ̂0(θ
∗) is the unique value of θ0 in the range π/2 ≤ θ0 ≤ θcrit at

which tSS = tCA indicated with solid dots in figure 3.5(b), but when π/2 ≤ θ∗ ≤ π

it always occurs at θ0 = π/2 at which tSS = tCA = 1.

Since the SS mode is a simple combination of the extreme modes one might as-

sume, as some previous authors (such as, for example, Nguyen and Nguyen [149])

have done, that the lifetime of a droplet evaporating in this mode is always con-

strained by the lifetimes of initially identical droplets evaporating in the extreme

modes. However, while figures 3.5 and 3.6 show that when 0 < θ0 ≤ π/2 shown

previously in figure 1.16 (and, in particular, in the thin-film limit θ0 → 0+) it

is indeed correct that tSS lies between tCR and tCA, they also show that when

π/2 < θ0 < π not shown previously in figure 1.16 this result is not, in general,

correct. Specifically, figures 3.5 and 3.6 show that tSS > max(tCR, tCA) when θ0

lies in the range θ̂0 < θ0 < π in the case 0 < θ∗ ≤ π/2 and when θ0 lies in the

range θ∗ < θ0 < π in the case π/2 ≤ θ∗ < θcrit. In other words, when 0 < θ∗ < θcrit

(but not otherwise) the lifetime of a droplet evaporating in the SS mode is longer
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Figure 3.5: The lifetime of a droplet evaporating in the SS mode, tSS, given by
(3.4), plotted as a function of the initial contact angle θ0 for various receding
contact angles in the range 0 < θ∗ ≤ π/2, namely θ∗ = π/64, π/16, π/8, 3π/16,
π/4, 5π/16, 3π/8, 7π/16, π/2, together with the lifetimes of initially identical
droplets evaporating in the CR and CA modes, tCR and tCA, given by (2.10) and
(2.11), respectively. in which the values of θ0 = θ̂0 at which the maximum value
of tSS occurs are indicated with solid dots.
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Figure 3.6: As figure 3.5, except for various receding contact angles in the range
π/2 ≤ θ∗ < π, namely θ∗ = π/2, 9π/16, 5π/8, 11π/16, 3π/4, 13π/16 (< θcrit ≃
2.5830), 7π/8 (> θcrit), 15π/16. For clarity, only the behaviour in the range π/2 ≤
θ0 ≤ π is shown.

than those of initially identical droplets evaporating in the extreme modes for suf-

ficiently large values of θ0. Furthermore, figures 3.5 and 3.6 also show that, for any

value of θ∗, tCR, tCA, tSS ≤ tCA(π/2) = 1, i.e. the longest lifetime of any droplet

evaporating in any of the three modes for all possible values of θ0 and θ∗ is that of

a droplet with initial contact angle θ0 = π/2 evaporating in the CA mode. Note

that the behaviour of the curves corresponding to tSS is qualitatively different from

that tentatively suggested by Shanahan et al. [204] (see figure 1.14). Details of

the behaviour of tCR, tCA and tSS in appropriate asymptotic limits are given in the

next subsection.

3.4.1 Asymptotic Behaviour of tSS

As figures 3.5 and 3.6 show, for all values of θ∗ the curves corresponding to tSS

depart from the curve corresponding to tCA at θ0 = θ∗ with zero slope according
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to

tSS = tCA(θ∗) + A(θ∗)(θ0 − θ∗)2 + O (θ0 − θ∗)3 , (3.5)

in the limit θ0 → θ∗+, where the coefficient A = A(θ∗) is given by

A(θ∗) =

(

2(1 + cos θ∗)2

sin θ∗(2 + cos θ∗)

)2/3

×(2 cos2 θ∗ + 2 cos θ∗ − 3)g(θ∗) − sin θ∗(2 + cos θ∗)g′(θ∗)

sin θ∗(2 + cos θ∗)g(θ∗)2
, (3.6)

where a dash (′) denotes differentiation with respect to argument. In particular,

since A > 0 for 0 < θ∗ < π/2 but A < 0 for π/2 < θ∗ < π, the curves corresponding

to tSS have a local minimum at θ0 = θ∗ for 0 < θ∗ < π/2 as shown in figure

3.5(a), but a local maximum at θ0 = θ∗ for π/2 < θ∗ < π as shown in figure

3.6. Furthermore, in the limit of large initial contact angle, θ0 → π−, the curves

corresponding to tSS approach the value tπ given in equation (2.12) with zero slope

according to (2.13) to the order of accuracy shown.

As figure 3.5 shows, in the limit of small receding contact angle, θ∗ → 0+, the

curves corresponding to tSS approach the curve corresponding to tCR from above

for all values of θ0 according to

tSS = tCR(θ0) +

(

2(1 + cos θ0)
2

sin θ0(2 + cos θ0)

)2/3
π

16
θ∗ + O

(

θ∗2
)

. (3.7)

As figure 3.6 shows, in the limit of large receding contact angle, θ∗ → π−, the

curves corresponding to tSS approach the curve corresponding to tCA from above

for all values of θ0 in the vanishingly small range θ∗ < θ0 < π according to

tSS = tπ

[

1 +
4 log 2 − 1

24 log 2
(π − θ0)

2

{

1 − 2 log

(

π − θ0

π − θ∗

)}]

+ O (π − θ0)
4 . (3.8)
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Figure 3.7: Master diagram showing how the θ0–θ
∗ parameter plane is divided up

into regions in which the six possible orderings of the lifetimes of initially identical
droplets evaporating in the CR, CA and SS modes occur. Region I corresponds
to tCR < tSS < tCA, region II to tCR < tCA < tSS, region III to tCA < tCR < tSS,
region IV to tCA < tSS < tCR, region V to tSS = tCA < tCR, and region VI to
tCR < tSS = tCA. In particular, note that tSS > max(tCR, tCA) in regions II and III.
For each set of experimental results the appropriate point is denoted by a solid
circle if the experimentally determined lifetime of the droplet, texp, is correctly
ordered with respect to the theoretically predicted values of tCR and tCA, and by
an open circle if it is not.

3.4.2 Master Diagram

The relationship between the lifetimes of initially identical droplets evaporating

in the three different modes is summarised in the master diagram presented in

figure 3.7, which shows how the θ0–θ
∗ parameter plane is divided up into regions

in which the six possible orderings of tCR, tCA and tSS occur. Specifically, in figure

3.7 region I corresponds to tCR < tSS < tCA, region II to tCR < tCA < tSS, region

III to tCA < tCR < tSS, region IV to tCA < tSS < tCR, region V to tSS = tCA < tCR,

and region VI to tCR < tSS = tCA. In particular, figure 3.7 shows that these are

the only possible orderings that can occur. For example, there are no parameter

values for which tSS < min(tCR, tCA), i.e. the lifetime of a droplet evaporating in the
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SS mode can never be less than both of the lifetimes of initially identical droplets

evaporating in the extreme modes. The upper left-hand half of the parameter plane

(i.e. regions V and VI), θ0 > θ∗, corresponds to situations in which the SS and CA

modes coincide, and so, in particular, the behaviour in it is independent of θ∗. The

most interesting behaviour occurs in the lower right-hand half of the parameter

plane (i.e. regions I–IV), θ0 < θ∗, in which the SS mode has both a CR and a CA

phase. In particular, approximately 53% of it is occupied by regions II and III in

which tSS > max(tCR, tCA), i.e. in which the lifetime of a droplet evaporating in

the SS mode is longer than the lifetimes of initially identical droplets evaporating

in the extreme modes.

Figure 3.7 also includes points corresponding to the 29 sets of experimental

results shown previously in figure 3.4. Note that since all of these sets of experi-

mental results include the initial CR phase they all have θ0 > θ∗, and hence all of

the points lie in the lower right-hand half of the parameter plane. In particular,

for each set of experimental results the appropriate point in the θ0–θ
∗ parameter

plane is denoted by a solid circle if the experimentally determined lifetime of the

droplet, texp, is correctly ordered with respect to the theoretically predicted values

of tCR and tCA, and by an open circle if it is not. As figure 3.7 shows, all of the

points are in regions I and II, and 23 of the 29 sets of experimental results are

correctly ordered, providing encouraging support for the present model. However,

note that, since all of the sets of experimental results shown correspond to values

of θ0 satisfying θ0 < θcrit, there are no points in regions III and IV, and so testing

the present model for superhydrophobic droplets with θ0 > θcrit remains an open

challenge.
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3.5 Summary

In the present chapter we obtained a complete description of the unexpectedly sub-

tle relationship between the lifetime of a droplet on a solid substrate evaporating

in a SS mode and those of initially identical droplets evaporating in the extreme

modes which is summarised in the master diagram presented in figure 3.7. In

particular, we showed that the lifetime of a droplet is not, in general, constrained

by those of the extreme modes.
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Droplets in the Stick-Slide Mode

with Related Initial and Receding

Contact Angles

In the previous chapter we provided a complete description of the lifetime of a

droplet evaporating in the SS mode and, in particular, showed that its lifetime is

not always constrained to lie between the lifetimes of the extreme (i.e. the CR

and CA) modes, as might have been naively assumed. We also showed that these

theoretical predictions are in rather good agreement with the lifetimes measured

experimentally by previous authors. In our analysis θ0 and θ∗ were assumed to be

independent parameters, and the values of θ0 and θ∗ for each droplet were taken

directly from the experimental measurements. In this chapter the consequences

of a relationship between θ0 and θ∗ are investigated. Specifically, in section 4.1

we propose a simple relationship between θ0 and θ∗ based on the assumption of a

constant maximum pinning force. In section 4.2 we use this relationship to give

a complete description of the lifetime of a droplet evaporating in the idealised SS

79
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mode, and in section 4.3 we compare this relationship with the experimentally

determined values of θ0 and θ∗ and the theoretically predicted lifetimes calculated

using it with the experimentally determined lifetimes.

4.1 A Relationship Between θ0 and θ∗

In this section we propose a simple relationship between θ0 and θ∗ based on the

assumption of a constant maximum pinning force.

As mentioned in the previous chapter, if the initial contact angle is equal to the

receding contact angle, i.e. if θ0 = θ∗, then the contact line immediately de-pins

and thereafter the droplet simply evaporates in the CA mode with θ = θ0 = θ∗

constant and R decreasing. However, if the initial contact angle is greater than the

receding contact angle, i.e. if θ0 > θ∗, then, as sketched in figure 4.1, the contact

line is pinned by a pinning force per unit length Fp = Fp(t) due to surface roughness

and/or chemical heterogeneities of the substrate which opposes the unbalanced

Young force, and the droplet begins to evaporate in a CR phase with R = R0

constant and θ decreasing. Specifically, the horizontal force balance at the contact

line reveals that Fp is given by

Fp(t) = γ cos(θ(t)) + γSF − γSA, (4.1)

where γ, γSA and γSF are the interfacial tensions of the fluid–atmosphere, substrate–

atmosphere and substrate–fluid interfaces, respectively (see section 1.3). Note that

in the special case of an ideal substrate with no pinning force, i.e. in the special

case Fp = 0, equation (4.1) reduces to the well-known Young–Laplace equation,

(1.4), for θ = θ0. As the droplet continues to evaporate, θ decreases and hence

Fp increases until it reaches its maximum possible value, denoted by Fp max, when



Chapter 4 81

Fp(t)

γSA γSF

γ

θ0
θ(t) θ∗

Substrate

Fluid
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Figure 4.1: Sketch of the contact line of an evaporating droplet with contact angle
θ(t) showing the pinning force Fp(t). The dashed lines show the initial contact
angle θ0 and the receding contact angle θ∗ when θ0 > θ∗.

θ = θ∗, at which instant the contact line de-pins and subsequently the droplet

evaporates in a CA phase with θ = θ∗ constant and R decreasing. Subtracting

the expression for the initial pinning force, Fp(0) = γ cos θ0 + γSF − γSA, from that

for the maximum pinning force, Fp max = γ cos θ∗ + γSF − γSA, gives a relationship

between θ0 and θ∗, namely

cos θ∗ − cos θ0 = fp, (4.2)

where

fp =
Fp max − Fp(0)

γ
(4.3)

is the scaled difference between the maximum pinning force and the initial pinning

force (hereafter simply referred to as the “maximum pinning force” for brevity).

Note that, from (4.2), physically realisable values of fp lie in the range 0 ≤ fp ≤ 2,

with the extreme values fp = 0 and fp = 2 corresponding to the case θ0 = θ∗ and

to the case θ0 = π and θ∗ = 0, respectively.
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Figure 4.2: The receding contact angle θ∗ (0 ≤ θ∗ ≤ θ0) given by (4.4) plotted as a
function of the initial contact angle θ0 for various values of the maximum pinning
force fp spanning the full range of physically realisable values, 0 ≤ fp ≤ 2, namely
fp = 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, and 2.

In general, the value of fp will depend on the nature of the substrate, the fluid

and the atmosphere as well as on some or all of the other parameters in the problem

(including θ0 and/or θ∗). In the present work we make the modelling assumption

(whose validity will be tested by comparison with experimental results in section

4.3) that the maximum pinning force fp is constant (i.e. independent of all of the

other parameters in the problem and, in particular, independent of θ0 and θ∗) and

so (4.2) provides a simple expression for θ∗ in terms of θ0 and fp, namely

θ∗ = max(0, arccos(fp + cos θ0)). (4.4)

This relationship between θ0 and θ∗ is crucial to all of the results presented in the

remainder of the present work, and so figure 4.2 shows θ∗ given by (4.4) plotted

as a function of θ0 for various values of fp spanning the full range of physically



Chapter 4 83

realisable values, 0 ≤ fp ≤ 2. For each value of fp, the corresponding curve is

symmetric about the line θ∗ = π − θ0, and intersects the θ0-axis at the point

(θ0,0, 0) and the line θ0 = π at the point (π, π − θ0,0), where θ0,0 = arccos(1 − fp).

For values of θ0 smaller than θ0,0 (i.e. when 0 ≤ θ0 ≤ θ0,0) then (4.4) yields θ∗ = 0,

so that the contact line never de-pins and the droplet evaporates in the CR mode,

while for values of θ0 larger than θ0,0 (i.e. when θ0,0 < θ0 ≤ π) then (4.4) yields

θ∗ = arccos(fp + cos θ0) (0 < θ∗ ≤ π − θ0,0), and the droplet evaporates in the SS

mode.

4.2 Theoretical Predictions for the Lifetime of

a Droplet in the Stick-Slide Mode with Re-

lated Initial and Receding Contact Angles

In this section, we describe the consequences of the relationship between θ0 and

θ∗ given by (4.4) on how tSS depends on θ0 and fp. In particular, we compare tSS

with the lifetimes of initially identical droplets (i.e. droplets with the same values

of R0 and θ0, and hence of V0) evaporating in the extreme modes for the full range

of all possible initial contact angles, i.e. for 0 ≤ θ0 ≤ π.

As we have seen in the previous chapter the lifetimes of droplets evaporating

in the extreme modes given by (2.10) and (2.11) are, by definition, independent

of θ∗ and hence of fp. However, as we have already seen, the lifetime of a droplet

evaporating in the SS mode with θ∗ given by (4.4) depends, in general, on fp as

well as on θ0, i.e. tSS = tSS(θ0, fp).

If 0 ≤ θ0 ≤ θ0,0, where θ0,0 = arccos(1 − fp), then θ∗ = 0, so that the droplet

evaporates in the CR mode, and hence its lifetime is simply given by tSS = tCR(θ0),
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where tCR is given by (2.10).

If θ0,0 < θ0 ≤ π then the droplet evaporates in the SS mode with θ∗ =

arccos(fp + cos θ0), and hence its lifetime is the sum of the duration of the CR

phase (i.e. the time it takes for θ to decrease from θ0 to θ∗ with R = R0) and the

duration of the CA phase (i.e. the time it takes for R to decrease from R = R0 to

R = 0 with θ = θ∗), and is given by (3.4) in the previous chapter. Note that (3.4)

reduces to tSS = tCR when θ∗ = 0, and so it is, in fact, valid for all values of θ0.

Figure 4.3(a) shows tSS given by (3.4) plotted as a function of θ0 (0 ≤ θ0 ≤

π) for a range of values of fp, together with the lifetimes of initially identical

droplets evaporating in the extreme modes, tCR and tCA, given by (2.10) and

(2.11), respectively. For clarity, figure 4.3(b) shows the behaviour in the range

π/2 ≤ θ0 ≤ π in greater detail.

The most striking feature of figure 4.3 is that the shapes of the curves repre-

senting tSS are qualitatively different from those obtained in the previous chapter

(figures 3.5 and 3.6) in the case when θ0 and θ∗ are independent parameters.

Specifically, as figure 4.3 shows, whatever the value of fp, the curves representing

tSS coincide with the curve representing tCR for 0 ≤ θ0 ≤ θ0,0, depart from it with

vertical slope at θ0 = θ0,0 according to

tSS = tCR +
21/6π(2 − fp)

5/4

8f
1/12
p (3 − fp)2/3

√

θ0 − θ0,0 + O (θ0 − θ0,0) (4.5)

as θ0 → θ0,0
+, increase to a local maximum at a value of θ0 in the range π/2 ≤

θ0 ≤ π (marked with a solid dot in figure 4.3(b)) and then decrease, ultimately

reaching the value tSS = tπ with zero slope at θ0 = π. For contrast, recall that,

unlike the present curves, the corresponding curves in figures 3.5 and 3.6 coincide

with the curve representing tCA (not tCR) when 0 ≤ θ0 ≤ θ∗ and depart from
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Figure 4.3: (a) The lifetime of a droplet evaporating in the SS mode, tSS, given
by (3.4) plotted as a function of the initial contact angle θ0 (0 ≤ θ0 ≤ π) for a
range of values of the maximum pinning force, fp, namely fp = 0.05, 0.1, 0.2, 0.4,
0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 1.9 and 1.95, together with the lifetimes of initially
identical droplets evaporating in the extreme modes, tCR and tCA, given by (2.10)
and (2.11), respectively. Part (b) shows the behaviour in the range π/2 ≤ θ0 ≤ π
in greater detail. Note that tSS = tCR(θ0) when 0 ≤ θ0 ≤ θ0,0, and that tCR =
tCA = tcrit ≃ 0.9354 at θ0 = θcrit ≃ 2.5830 and tSS = tCR = tCA = tπ ≃ 0.9088 at
θ0 = π. In part (b) the local maximum of tSS, which occurs at a value of θ0 in the
range π/2 ≤ θ0 ≤ π and is also the global maximum of tSS except when fp lies in
the range 1.9046 ≤ fp ≤ 2, is marked with a solid dot (•).
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it with zero (not vertical) slope at θ0 = θ∗. However, also recall that, like the

present curves, the corresponding curves in figures 3.5 and 3.6 always lie below

tCA(π/2) = 1 and always lie on or above the minimum of the two extreme modes

(i.e. tSS ≥ min(tCR, tCA) for 0 ≤ θ0 ≤ π), but may lie above the maximum of

the two extreme modes when π/2 < θ0 < π. Moreover, the total envelope of the

present curves as fp varies between 0 and 2 is the same as the total envelope of

the curves in figures 3.5 and 3.6 as θ∗ varies between 0 and π.

As figure 4.3 illustrates, in the limit fp → 0+ then θ0,0 → 0+ and the curve

representing tSS approaches that representing tCA from below for 0 < θ0 ≤ π/2

and from above for π/2 < θ0 < π according to

tSS = tCA +

(

2(1 + cos θ0)
2

sin θ0(2 + cos θ0)

)2/3

×
(

3 − 2 cos θ0 − 2 cos2 θ0

g(θ0) sin θ0
+

g′(θ0)(2 + cos θ0)

g2(θ0)

)

fp + O
(

f 2
p

)

. (4.6)

Furthermore, as figure 4.3 also illustrates, in the limit fp → 2− then θ0,0 → π−

and the curve representing tSS converges to that representing tCR from above in

the vanishingly small range θ0,0 < θ0 < π. In addition, as figure 4.3(b) illustrates,

for most values of fp the local maximum of tSS is also its global maximum, but

for values of fp sufficiently close to 2 (specifically, for values of fp in the range

1.9046 ≤ fp ≤ 2) the global maximum of tSS is tSS = tCR = tCA = tcrit at θ0 = θcrit.

As figure 4.3(b) also illustrates, for most values of fp the curves representing tSS

lie above the curve representing tCR near θ0 = π, but for values of fp in the range

0 ≤ fp ≤ fp π, where fp π ≃ 0.1520, they lie below it (but still above the curve

representing tCA).

In summary, figure 4.3 shows that for sufficiently small values of θ0 (i.e. for

values in the range 0 ≤ θ0 ≤ θ0,0) the droplet evaporates in the CR mode and
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has lifetime tSS = tCR(θ0), while for larger values of θ0 (i.e. for values in the

range θ0,0 < θ0 ≤ π) the droplet evaporates in the SS mode and has lifetime

tSS = tSS(θ0, fp) which is never less than both tCR and tCA.

Note that the present curves are qualitatively much more similar to (but still

not identical to) that tentatively suggested by Shanahan et al. [204] (shown in

figure 1.14) than those obtained in figures 3.5 and 3.6. In particular, Shanahan

et al. [204] hypothesised the existence of a sigmoidal curve representing “a transi-

tion between the two [extreme] regimes over a range of intermediate values of θ0

[approximately 20◦ ≤ θ0 ≤ 45◦], corresponding to the change between pinning and

(virtually) continuous triple line [i.e. contact line] recession” but that “its position,

however, is not known”. In particular, while the present curves depart from the

curve representing tCR at θ0 = θ0,0 and cross the curve representing tCA (albeit

always at a value of θ0 in the range π/2 < θ0 < π), they are not sigmoidal and

have a more complicated structure than that envisaged in figure 1.14.

Since the results presented in figure 4.3 are fairly complicated, we follow the

approach taken in the previous chapter and summarise all of the possible relation-

ships between the lifetimes of initially identical droplets evaporating in the CR,

CA and SS modes in the master diagram shown in figure 4.4, which shows how the

θ0–fp parameter plane is divided up into regions in which the six possible orderings

of tCR, tCA and tSS occur. Four of these six regions, namely region I, which corre-

sponds to tCR < tSS < tCA, region II, which corresponds to tCR < tCA < tSS, region

III, which corresponds to tCA < tCR < tSS, and region IV, which corresponds to

tCA < tSS < tCR, appear in the corresponding diagram, figure 3.7, in the previous

chapter, and so are labelled in the same way. The other two regions, namely region

VII, which corresponds to tCA < tSS = tCR, and region VIII, which corresponds

to tSS = tCR < tCA, correspond to θ∗ = 0 and hence collapse onto the θ0-axis in
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Figure 4.4: Master diagram showing how the θ0–fp parameter plane is divided up
into regions in which the six possible orderings of the lifetimes of initially identical
droplets evaporating in the CR, CA and SS modes occur. Region I corresponds
to tCR < tSS < tCA, region II to tCR < tCA < tSS, region III to tCA < tCR < tSS,
region IV to tCA < tSS < tCR, region VII to tCA < tSS = tCR, and region VIII to
tSS = tCR < tCA. In particular, note that tSS > max(tCR, tCA) in regions II and III.
Note that regions I–IV, but not regions VII and VIII, appear in the corresponding
diagram, figure 3.7 in the previous chapter, and that regions V and VI in figure
3.7 do not appear here.

the corresponding diagram, figure 3.7, and so appear here for the first time. Sim-

ilarly, two additional regions in figure 3.7, namely region V, which corresponds to

tSS = tCA < tCR, and region VI which corresponds to tCR < tSS = tCA, correspond

to fp = 0 and hence collapse onto the θ0-axis in figure 4.4 and so do not appear

here. As figure 4.4 shows, as fp increases from 0 to 2, region IV disappears as fp

passes through the critical value fp π ≃ 0.1520, and regions I and II disappear and

region VII appears as fp passes through the critical value fp crit, where fp crit is the

value of fp at which θ0,0 = θcrit, i.e. fp crit = 1 − cos(θcrit) ≃ 1.8480. In particular,

figure 4.4 confirms that tSS is never less than both tCR and tCA, and shows that

regions I and IV (i.e. the regions in which tSS lies between tCR and tCA), regions
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II and III (i.e. the regions in which tSS is greater than both tCR and tCA), and

regions VII and VIII (i.e. the regions in which tSS = tCA) all occupy substantial

proportions of parameter space.

4.3 Comparison with Experimental Results

In figure 3.4 in the previous chapter we showed that the theoretical predictions of

the present model are in rather good agreement with the lifetimes obtained from

29 sets of experimental data for droplets evaporating in an SS mode in which the

second slide phase is smaller than 10% of the lifetime of the droplet obtained by

previous authors. However, in order to make this comparison, the values of θ0

and θ∗ of these data sets, which are given in table 4.1 for reference, were taken

directly from the experimental measurements. In particular, in the context of the

present work, this is equivalent to determining the value of fp for each experiment

directly from the experimental measurements, and these values of fp (calculated

from the corresponding values of θ0 and θ∗ using (4.2)) are also given in table

4.1. The open question here is therefore to determine how well the relationship

(4.4) using only a single value of fp for all of the experiments agrees with the

experimentally determined values of θ0 and θ∗, and how well the theoretically

predicted lifetimes calculated using this relationship agree with the experimentally

determined lifetimes.

Figure 4.5 (a) shows fp as a function of θ0, while figure 4.5 (b) shows θ∗ plotted

as a function of θ0 obtained from the 29 sets of experimental data listed in table

4.1. Figure 4.5 also includes a solid curve showing the value of fp that best fits all

29 sets of experimental data, namely fp = 0.2005 in part (a) and the relationship

(4.4) with this value of fp in part (b). In figure 4.5 (b) the corresponding value of
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Reference Fluid Substrate θ0 θ∗ fp

Bourgès-Monnier Water Polished epoxy resin 0.97 0.44 0.34
and Shanahan [201] Water Polished epoxy resin 1.04 0.26 0.46
Uno et al. [235] Latex ODTES100 on glass 1.83 1.66 0.17

dispersion
Fukai et al. [76] Water SO3H on silicon 0.87 0.56 0.20

Water SO3H on silicon 0.85 0.52 0.21
Xylene Rf on silicon 1.19 1.10 0.08

Li et al. [126] Water Dialkyl disulfides on 1.80 1.72 0.08
gold-covered mica 1.44 1.31 0.13

1.55 1.30 0.25
1.31 1.20 0.11
1.21 0.95 0.23
1.14 0.95 0.17
0.93 0.66 0.19
0.78 0.57 0.13
0.61 0.21 0.16

Song et al. [218] Water Platinum 1.61 1.41 0.20
Nguyen et al. [147] Water Oct-silicon 0.93 0.53 0.27

0.93 0.57 0.25
0.95 0.55 0.28
0.92 0.56 0.24

Water Oct-silicon 0.96 0.65 0.23
Water OTS-silicon 1.81 1.64 0.16
Water Teflon 1.88 1.61 0.27

Lim et al. [128] Water Pyrex glass 1.14 0.67 0.36
Diethylene Pyrex glass 0.68 0.37 0.15
glycol with
coffee particles

Yu et al. [249] Water Teflon on PDMS 2.01 1.90 0.10
on glass

Dash and Water Teflon on silicon 2.14 1.99 0.13
Garimella [49] 2.12 1.96 0.14

2.08 1.93 0.14

Table 4.1: Details of the 29 sets of experimental data for droplets used in Chapter
3 and which will be used in figures 4.5 and 4.6. The values of θ0 and θ∗ were taken
directly from the experimental measurements and the values of fp were calculated
from them using (4.2). The expressions for the abbreviations in the “Substrate”
column can be found in table 3.1.
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Figure 4.5: (a) The maximum pinning force fp plotted as a function of the initial
contact angle θ0 and (b) the receding contact angle θ∗ plotted as a function of the
initial contact angle θ0 obtained from the 29 sets of experimental data listed in
table 4.1. The values from the two experiments by Bourgès-Monnier and Shanahan
[201] are denoted by inverted triangles (H) rather than by squares (�). The solid
curve shows the value of fp that best fits all 29 sets of experimental data, namely
fp = 0.2005 in part (a) and the relationship (4.4) with this value of fp in part (b).
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θ0,0 is θ0,0 ≃ 0.6443 ≃ 37◦, and hence the corresponding values of θ∗ vary between

θ∗ = 0 and θ∗ = π − θ0,0 ≃ 2.4973 ≃ 143◦.

As we have already described in section 4.1, in general, the value of fp will

depend on the nature of the substrate, the fluid and the atmosphere and so will,

in general, be different for each of the different experiments, and this is confirmed

by the range of values of fp given in table 4.1. In so far as the previous authors

listed in table 4.1 discuss the chemical composition of the substrates used in their

experiments, they believe them to be chemically homogeneous, although Nguyen

et al. [147] state that “the origin of the large CAH [contact angle hysteresis] on

Oct-silicon may reflect surface chemical heterogeneity”.

However, there is certainly considerable variation in the surface roughness of

the substrates used in the different experiments. Probably the two most common

methods of describing the roughness of the surface of a real substrate are the

arithmetic average roughness, Ra, and the root mean square roughness, Rq, given

by

Ra =
1

n

n
∑

i=1

|z(xi)|, (4.7)

and

Rq =

√

√

√

√

1

n

n
∑

i=1

z2(xi), (4.8)

respectively, where z(x) is the deviation of the substrate height from the mean

height measured for a number, n, of equally spaced points x, denoted by xi with

1 ≤ i ≤ n. Note that these parameters provide a means to quantify surface

roughness, but they are not able to completely characterise the topography of a

substrate (see, for example, Ramiasa et al. [171]). Of those authors who quantify

the roughness of their substrates, Bourgès-Monnier and Shanahan [201] give an

Ra value of around 0.1 mm, Li et al. [126] give an Rq value of around 1 nm, and
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Nguyen et al. [147] give Rq values of around 0.1 nm (modified silicon) and 10 nm

(Teflon). In the light of all this, what is most immediately striking about the results

presented in figure 4.5 is, despite the fact that they are from different experiments

by different authors on a variety of substrates with a range of surface roughnesses

and chemical heterogeneities using several fluids, how surprisingly close most of

them lie to the relationship (4.4) with fp = 0.2005, i.e. how surprisingly well the

relationship (4.4) with this single value of fp holds for all 29 sets of experimental

data. The quality of the fit is confirmed by an R2 value of R2 = 0.9676, and

by the fact that even if the two experiments by Bourgès-Monnier and Shanahan

[201] with the largest known roughness values and two of the three largest values

of fp in table 4.1 (denoted by inverted triangles rather than by squares in figure

4.5) are excluded, then the value of fp that best fits all of the remaining 27 sets

of experimental data decreases only slightly to 0.1858 and the corresponding R2

value rises only slightly to R2 = 0.9800.

Figure 4.6 shows the lifetimes of the droplets obtained from the 29 sets of

experimental data listed in table 4.1 plotted as a function of θ0. Also shown are the

theoretical predictions for the lifetimes of initially identical droplets evaporating

in the CR, CA and SS modes, tCR, tCA and tSS, the latter calculated using fp =

0.2005. In particular, figure 4.6 shows that, while, as expected, the agreement is

by no means perfect, the theoretical prediction for tSS using this single value of fp

is reasonably close to all 29 of the experimentally determined lifetimes (even those

from the two experiments by Bourgès-Monnier and Shanahan [201]), and that it

captures the qualitative behaviour of the experimental results surprisingly well.
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Figure 4.6: The lifetimes of the droplets obtained from the 29 sets of experimental
data listed in table 4.1 plotted as a function of the initial contact angle θ0. The
lifetimes from the two experiments by Bourgès-Monnier and Shanahan [201] are
denoted by inverted triangles (H) rather than by squares (�). Also shown are the
theoretical predictions for the lifetimes of initially identical droplets evaporating
in the CR, CA and SS modes, tCR, tCA and tSS, the latter calculated using fp =
0.2005.

4.4 Summary

We proposed the simple relationship (4.4) between the initial contact angle θ0 and

the receding contact angle θ∗ based on the assumption of a constant maximum

pinning force fp, and used this relationship to give a complete description of how

the lifetime of a droplet evaporating in the idealised SS mode tSS depends on θ0

and fp. In particular, we showed that the dependence of tSS on θ0 is qualitatively

different from that described in the previous chapter in the case when θ0 and θ∗ are

independent parameters, and is qualitatively much more similar to (but still not

identical to) that tentatively suggested by Shanahan et al. [204] (see figure 1.14).

Furthermore, we also showed that both the relationship (4.4) using only a single

value of fp for all of the experiments and the theoretically predicted lifetimes cal-
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culated using it agree surprisingly well with the experimentally determined values

of θ0 and θ∗, and the experimentally determined lifetimes, respectively. Despite

this impressive level of agreement, we do not, of course, seek to claim that the

present model using a single value of fp is the universal model for droplet evapo-

ration. Rather, we simply wish to point out that, since the present model yields

theoretically predicted lifetimes that are in surprisingly good agreement with all of

the experimentally determined lifetimes obtained from all 29 sets of experimental

data listed in table 4.1, it it likely to be a useful description of droplet evaporation

in a wide range of situations.



Chapter 5

Droplets in the Stick-Jump Mode

Whereas in the previous two chapters we focused on the evaporation of droplets

evaporating in the SS mode, the following two chapters focus on droplets evapo-

rating in the stick-jump (SJ) mode, which comprises a number of stick phases in

which the contact radius R is constant and θ decreases, and a number of rapid

jump phases, in which the contact angle θ jumps to a higher value and R jumps

to a lower value (see Chapter 1). A simple model for a droplet in the SJ mode

is proposed in section 5.1; this model does not attempt to resolve the details of

the local behaviour at the contact line, but captures the global behaviour of the

droplet. The model is used to give a complete description of the evolution of a

droplet in the SJ mode in section 5.2, and in the limit of small contact angles in

section 5.3. Furthermore, we show in section 5.4 that in appropriate special cases

the proposed model of the SJ mode reduces to models for previously discussed

simpler modes of evaporation. In section 5.5 we discuss the model for the SJ mode

developed in the recent publication by Dietrich et al. [56] and compare it with

our proposed model. In section 5.6 we test the validity of assumptions made in

the model by comparison with experimental results available in the literature and,

96
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finally, in section 5.7 we compare experimentally determined values of both the

change in contact radius during a jump phase and the duration of a stick phase

with the theoretically predicted values. Then in Chapter 6 we use the proposed

model to describe the lifetime of a droplet evaporating in the SJ mode.

5.1 Modelling the Stick-Jump Mode

As discussed in Chapter 1, surface roughness and/or chemical heterogeneity can

cause the pinning of the contact line of a droplet. The pinning and de-pinning of the

contact line was described in the previous chapter in terms of a maximum pinning

force. For a droplet evaporating in the SJ mode, in which the contact line pins,

de-pins and re-pins multiple times, the behaviour of the contact line can also be

described in terms of a minimum as well as a maximum pinning force. For droplets

with suspended particles this pinning, de-pinning and re-pinning of the contact line

is influenced by the deposition of particles and can lead to multiple ring deposition

patterns (see figure 1.2 (d)). However, in this thesis we will not attempt to model

the local behaviour at the contact line in detail, but only the global behaviour of

the droplet by describing the evolutions of R, θ, and hence V . Figure 5.1 gives an

example of the evolution of a water droplet with a 0.1% concentration of titanium

oxide particles evaporating on a CYTOP substrate showing three jump phases,

as observed in the experiments by Orejon et al. [153]. Two main observations

can be made from figure 5.1, and these will be used to develop a simple model

capturing the global behaviour of droplets evaporating in the SJ mode. Firstly,

figure 5.1 shows that the jump phases occur on a much shorter time scale than

the stick phases; this behaviour has also been observed by Moffat et al. [144],

Askounis et al. [5, 6, 7], McHale et al. [142], Xu et al. [245], and Kajiya et al.
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Figure 5.1: Evolution of the contact radius R, the contact angle θ, and volume V of
a droplet evaporating in the stick–jump (SJ) mode as observed in the experiment
by Orejon et al. [153] for a water droplet with 0.1% concentration of titanium
oxide particles evaporating on a CYTOP substrate.

[108]. For example, the typical duration of a jump phase is less than 8 s (which is

the interval at which the measurements were taken), while the average duration

of a stick phase is about 8 minutes for the data set of Orejon et al. [153] shown

in figure 5.1. Thus we assume that jump phases occur instantaneously in the

proposed model. Secondly, figure 5.1 shows that both the contact angles at which

the contact line de-pins and the contact angles at which the contact line re-pins

remain approximately constant throughout the entire evaporation process. Note

that, in general, these two contact angles may not always remain constant; for

example, in some circumstances inertial effects or the deposition of particles may

cause the contact angles at which the contact line de-pins and re-pins to vary.

Therefore, we assume in the proposed model that the contact angles at which

the contact line de-pins and re-pins, denoted by θmin and θmax, respectively, are
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constant throughout the entire evaporation process.

The proposed model for a droplet evaporating in the SJ mode comprises alter-

nating stick and jump phases. During the nth (n ≥ 1) stick phase, the contact line

is pinned and the contact radius R takes the constant value Rn, the contact angle

θ = θ(t) decreases non-linearly to θmin, the contact angle at which the contact line

de-pins, and the volume V decreases non-linearly. We denote the time of the end

of the nth stick phase by tn. During the nth jump phase, which occurs instan-

taneously at t = tn, R decreases discontinuously from Rn to a new value Rn+1

(≤ Rn), θ = θ(t) increases discontinuously from θmin to θmax (with θmin ≤ θmax),

and the volume V is constant. Note that the droplet always first evaporates in a

stick phase starting at t0 = 0 with θ = θ0 (≥ θmin), where again θ0 denotes the

initial contact angle. In particular, this means that for the first stick phase the

contact radius R1 is given by R1 ≡ R0, where again R0 denotes the initial contact

radius.

A sketch of a droplet evaporating in the simplified model for the SJ mode

considered in the present work is given in figure 5.2. In particular, part (a) shows

the evolution of the contact radius R, the contact angle θ, and volume V of a

droplet. Parts (b) and (c) show sketches of the change in the droplet profiles

during the nth stick phase and the nth jump phase, respectively.

As in the previous three chapters, we assume that the diffusion of vapour into

the surrounding air is the rate-limiting mechanism of evaporation (see section

1.5.1), so that the rate of change of the volume of the droplet, dV /dt, during the

nth stick phase is given by equation (1.17), where R = Rn is constant and θ = θ(t)

varies.

The present simple model will be used to describe the evolution of droplets

in the SJ mode, in particular, by describing the evolutions of R, θ and V as the



Chapter 5 100

(a)

// //

// //

// //

R

R1

R2

R3

Rn

0
0

0
0

0
0

θ θmin

θmax

θ0

V

V0

t

t

t1

t1

t1

t2

t2

t2

t3

t3

t3

tn−1

tn−1

tn−1

tn

tn

tn

tSJ

tSJ

tSJ

1st stick 2nd stick 3rd stick

nth stick

1st 2nd 3rd (n − 1)th nth

jumpjumpjumpjumpjump
phasephasephasephasephase

phase

phasephasephase

t

(b)

θmin

Rn

(c)

θminθmax

RnRn+1

Figure 5.2: Sketches of (a) the evolution of the contact radius R, the contact angle
θ, and volume V of a droplet evaporating in the stick–jump (SJ) mode considered
in the present work. During the nth stick phase, which occurs for time t in the
interval tn−1 < t < tn, the contact radius R = Rn is constant, the contact angle
θ(t) decreases non-linearly to a constant value θmin, and the volume V decreases
non-linearly, while during the nth jump phase, which occurs instantaneously at
t = tn, R decreases discontinuously from Rn to a new value Rn+1, θ increases
discontinuously to θmax, and V is constant. Parts (b) and (c) show sketches of the
change in the droplet profiles during the nth stick phase and the nth jump phase,
respectively.
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droplet evaporates, in the following section.

5.2 The Evolution of Droplets in the Stick-Jump

Mode

As we have described previously, during the nth jump phase R and θ are discon-

tinuous and V is constant. This has two important consequences for the evolution

of a droplet in the SJ mode. Firstly, the evolutions of R, θ, and hence V , are given

by piecewise functions. Specifically, R(t) is piecewise constant with discontinuous

jumps to lower values, θ(t) is piecewise non-linearly decreasing with discontinuous

jumps to higher values, and V (t) is non-linearly but continuously decreasing with

a discontinuous slope at each jump. Secondly, as V is constant during the nth in-

stantaneous jump phase, the volume at the end of the nth stick phase is the same

as the volume at the start of the (n + 1)th stick phase. Therefore, using equation

(1.2) we have

πR3
n

3

sin θmin(2 + cos θmin)

(1 + cos θmin)2
=

πR3
n+1

3

sin θmax(2 + cos θmax)

(1 + cos θmax)2
, (5.1)

where the left-hand and right-hand sides of the equation represent V just before the

nth jump phase and just after the nth jump phase, respectively. Thus, rearranging

(5.1) we obtain the following relationship between Rn and Rn+1:

Rn+1 = ΛRn = ΛnR1 ≡ ΛnR0, (5.2)

where Λ = Λ(θmin, θmax) is given by

Λ =
sin θmax

sin θmin

(

cos3 θmin − 3 cos θmin + 2

cos3 θmax − 3 cos θmax + 2

)1/3

< 1. (5.3)
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Thus R(t) is piecewise constant with R(t) = Rn = Λn−1R0 in the interval tn−1 <

t < tn. From equation (5.2) the change in the contact radius during the nth jump

phase, δRn = Rn − Rn+1, can be expressed as a function of Rn only, namely

δRn = (1 − Λ)Rn. (5.4)

Since R(t) is piecewise constant, equation (1.17) becomes an equation for θ =

θ(t), namely

dθ

dt
= −D(csat − c∞)

ρ

g(θ)

R2
n

, (5.5)

in the interval tn−1 < t < tn. Equation (5.5) can be solved numerically subject to

one of the following two initial conditions: for the first stick phase (n = 1) θ starts

from θ0, i.e. θ = θ0 at t = 0, and for all subsequent stick phases (n > 1) θ starts

from θmax, i.e. θ = θmax at t = tn−1.

Integrating equation (5.5) subject to the appropriate initial condition for tn−1 <

t < tn gives the entire evolution for θ = θ(t), and hence for V = V (t) and the

duration of the nth stick phase, denoted by δtn = tn − tn−1. In particular, since

t0 = 0, the duration of the first stick phase, δt1, is given by t1, the time at which

the first stick phase ends, namely

δt1 = t1 =
ρ

D(csat − c∞)
R2

0

∫ θ0

θmin

dθ

g(θ)
, (5.6)

or, equivalently,

δt1 = k0R
2
0, (5.7)

where the constant k0 is given by

k0 =
ρ

D(csat − c∞)

∫ θ0

θmin

dθ

g(θ)
. (5.8)
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Using equation (5.2) the duration of all subsequent stick phases (n > 1) is given

by

δtn =
ρ

D(csat − c∞)
Λ2(n−1)R2

0

∫ θmax

θmin

dθ

g(θ)
(5.9)

or, equivalently,

δtn = kR2
n, (5.10)

where the constant k is given by

k =
ρ

D(csat − c∞)

∫ θmax

θmin

dθ

g(θ)
. (5.11)

The time at which the nth stick phase ends, namely t = tn, is obtained by

adding the durations of all of the preceding stick phases, i.e.

tn = δt1 + δt2 + δt3 + ... + δtn =

n−1
∑

i=0

δti+1. (5.12)

Therefore, using equations (5.6) and (5.9) we obtain

tn =
ρ

D(csat − c∞)
R2

0

(

∫ θ0

θmax

dθ

g(θ)
+

n−1
∑

i=0

Λ2i

∫ θmax

θmin

dθ

g(θ)

)

(5.13)

and hence we obtain the following explicit expression for tn:

tn =
ρ

D(csat − c∞)
R2

0

(
∫ θ0

θmax

dθ

g(θ)
+

1 − Λ2n

1 − Λ2

∫ θmax

θmin

dθ

g(θ)

)

. (5.14)

As described previously, a droplet evaporates completely, i.e. V = 0, when R

and/or θ are equal to zero. However, in the present model θ is bounded below by

θmin, so that V = 0 if and only if R = 0. Equation (5.2) shows that R 6= 0 for finite

n, but that R → 0 as n → ∞. In other words, according to the present model

infinitely many stick and jump phases are required for the droplet to evaporate
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Figure 5.3: Theoretically predicted evolution of the contact radius R, the con-
tact angle θ, and volume V of a droplet evaporating in the SJ mode using the
experimentally determined values from the experiment by Orejon et al. [153] for
a water droplet with a 0.1% concentration of titanium oxide particles evaporating
θ0 = 1.91, θmin = 1.41, θmax = 1.64 and R0 = 0.93 × 10−3 m.

completely. Letting n → ∞ in equation (5.14) shows that this infinite number of

stick and jump phases occurs in a finite time (and not, as might have been naively

assumed, in an infinite time), denoted by tSJ. In the next chapter we shall analyse

the lifetime of a droplet in the SJ mode, tSJ, in greater detail.

Figure 5.3 shows the theoretically predicted evolution of R, θ and V of a droplet

evaporating in the SJ mode using the experimentally determined values from the

experiment by Orejon et al. [153] for a water droplet with a 0.1% concentration

of titanium oxide particles evaporating on a CYTOP substrate with θ0 = 1.91,

θmin = 1.41, θmax = 1.64 and R0 = 0.93×10−3 m. The means of determining these

values from experiments will be described in detail in section 5.6.

Equations (5.4), (5.6) and (5.10) show that δRn and δtn (n ≥ 1) can be ex-

pressed as a function of Rn only and, in particular, that δRn ∝ Rn and δtn ∝ R2
n.
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Thus the model predicts that, as the droplet evaporates Rn decreases and hence

the change in R during a jump phase as well as the duration of the stick phases

decrease (see figure 5.3). Also note that the present prediction δRn ∝ Rn is differ-

ent from the result derived by Shanahan [201], namely δRn ∝ √
Rn, whose model

of the pinning and de-pinning of the contact line is described in Chapter 1. This

difference comes from the fact that whereas in the present model δθ = θmax − θmin

is a prescribed constant, in the model described by Shanahan [201] δθ is not a

constant, but is determined using a Gibbs free energy argument. Thus in cases

when δθ is approximately constant, δRn ∝ Rn describes the relationship between

δRn and Rn more accurately than δRn ∝ √
Rn. Note that Shanahan [201] did not

give an explicit expression for the δtn.

In summary, we have developed a model that is based on the assumptions that

the jump phases occur instantaneously, that θmin and θmax are constant throughout

the entire evaporation process, and that during the nth stick phase the contact

radius is constant, which we used to describe the evolution of a droplet in the

SJ mode. Although in the present work we consider the whole range of contact

angles, 0 ≤ θ ≤ π, in the following section we investigate the present model in

the limit of small contact angles, which, as we shall show, leads to considerable

mathematical simplifications.

5.3 The Evolution of Droplets in the Stick-Jump

Mode in the Limit of Small Contact Angles

In the limit of small contact angles, i.e. θ → 0+, with, in particular, θ0, θmin and

θmax → 0+, the previously obtained results for the evaporation of a droplet in the

SJ mode simplify considerably.
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In the limit of small contact angles the expression for V , given by (1.2), reduces

to

V =
π

4
R3θ, (5.15)

so that, since V is constant during the nth jump phase, equation (5.1) reduces to

π

4
R3

nθmin =
π

4
R3

n+1θmax. (5.16)

Thus, the relationship between Rn and Rn+1 given by (5.2) reduces to

Rn+1 = λRn = λnR1 ≡ λnR0, (5.17)

where λ = λ(θmin, θmax) is the small angle limit of Λ given by (5.3), namely

λ =

(

θmin

θmax

)1/3

< 1, (5.18)

so that R(t) is piecewise constant with R(t) = Rn = λn−1R0 in the interval

tn−1 < t < tn.

As stated in section 1.5.1, g(0) = 16/π, so that using (5.17) the rate of change

of θ, given by (5.5), reduces to

dθ

dt
= −16D(csat − c∞)

πρλ2(n−1)R2
0

(5.19)

in the interval tn−1 < t < tn, subject to the appropriate initial condition discussed

in the previous section. Thus, the evolution of θ in the first stick phase is given by

θ(t) = θ0 −
16D(csat − c∞)

πρR2
0

t, (5.20)
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and in all subsequent stick phases (n > 1) is given by

θ(t) = θmax −
16D(csat − c∞)

πρλ2(n−1)R2
0

(t − tn−1) . (5.21)

Similarly, expressions for the duration of the first stick phase, δt1, given by

(5.6), and the duration of all subsequent stick phases (n > 1), δtn, given by (5.9),

reduce to

t1 =
πρ

16D(csat − c∞)
R2

0(θ0 − θmin) (5.22)

and

δtn =
πρ

16D(csat − c∞)
λ2(n−1)R2

0(θmax − θmin), (5.23)

respectively, and hence the time at which the nth stick phase ends, tn, reduces to

tn =
πρ

16D(csat − c∞)
R2

0

(

1 − λ2n

1 − λ2
(θmax − θmin) + θ0 − θmax

)

. (5.24)

Having described the evolution of droplets in the SJ mode in the limit of small

contact angles in this section, we shall continue to consider the whole range of

contact angle, i.e. 0 ≤ θ ≤ π, for the remainder of the present work. In the next

section we shall show that in appropriate special cases the present model for the

SJ mode reduces to previously discussed models for simpler modes of evaporation.

5.4 “Universality” of the Model

As described in Chapter 1, many different modes of evaporation including the

extreme (CR and CA) modes and the SS mode described in the previous chapters

have been observed experimentally. The present model of the SJ mode can be

considered a “universal” model in the sense that in appropriate special cases it
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reduces to models for all three of these simpler modes of evaporation. Specifically,

in the special case θmin = 0 the SJ mode comprises a single stick phase with R = R0

constant and θ decreasing from θ0 to θmin = 0, and so the CR mode is recovered.

In the special case θmin = θmax := θ∗ the SJ mode comprises a first stick phase

with R = R0 constant and θ decreasing from θ0 to θmin followed by an infinite

number of stick and jump phases in which θ = θmin = θmax = θ∗ is constant and R

decreases from R0 to zero, and so the SS mode described in Chapters 3 and 4 is

recovered. In the special case θ0 = θmin = θmax the SJ mode comprises an infinite

number of stick and jump phases in which θ = θ0 = θmin = θmax is constant and R

decreases from R0 to zero, and so the CA mode is recovered. In the special case

θ0 = θmax the simplified version of the model of the SJ mode recently proposed

by Dietrich et al. [56] is recovered; this model of the SJ mode will be discussed

further in the following section.

5.5 On the Recent Publication by Dietrich et al.

[56]

In a recent publication Dietrich et al. [56] modelled the dissolution of sessile al-

cohol droplets in water by considering the mathematically equivalent problem of

an evaporating sessile droplet. In particular, they developed a model for a droplet

evaporating in the SJ mode. As in the present model, Dietrich et al. [56] assumed

in their model that the jump phases occur instantaneously and that, in our nota-

tion, θmin and θmax remain constant throughout the entire evaporation process. In

particular, they used the fact that the volume is constant during the jump phases,

given by (5.1), to derive the same relationship between Rn and Rn+1, (5.2), and

described the duration of the nth stick phase, (5.9), and hence the lifetime of a
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droplet in the SJ mode. However, unlike the present model, in which θ0, θmin

and θmax are all independent parameters, Dietrich et al. [56] proposed a simplified

version of the model in which θ0 = θmax. In other words, unlike in the present

model in which the first stick phase is, in general, qualitatively different from all

of the subsequent stick phases (since θ decreases from θ0 and not from θmax), in the

model proposed by Dietrich et al. [56] the first stick phase is qualitatively the same

as all of the subsequent stick phases (since θ always decreases from θ0 = θmax).

However, Dietrich et al. [56] themselves, as well as, for example, Orejon et al.

[153] and Askounis et al. [6, 7], showed that in practice θ0 will not necessarily be

equal to θmax. The difference between θ0 and θmax reflects the different conditions

of the pinning of the contact line: when the droplet is first deposited onto the

substrate, the contact line is pinned on a dry substrate, whereas when the contact

line re-pins during a jump phase the contact line re-pins on a previously wetted

substrate. Thus, the present model, unlike the model developed by Dietrich et al.

[56], captures these different conditions of the pinning of the contact line. Despite

the fact that the present model is made more complicated by having an additional

parameter, we shall still be able to use it to describe the lifetime of a droplet in the

SJ mode in the next chapter. However, we first test the validity of the assumptions

built into the model by comparison with experimental results in the next section.

5.6 Comparisons between the Assumptions of the

Model and Experimental Results

As described previously, the present model is based on the assumptions that the

jump phases occur instantaneously, that θmin and θmax are constant throughout

the entire evaporation process, and that during the nth stick phase the contact
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radius is constant. The validity of these assumptions is tested by comparison with

the results of relevant physical experiments available in the literature.

In particular, we use the twelve data sets of experimental results for droplets

evaporating in the SJ mode obtained by Moffat et al. [144], Askounis et al. [5,

6, 7], and Orejon et al. [153]. These data sets involve water or ethanol droplets

with different concentrations of titanium oxide or silicon dioxide nanoparticles

evaporating on CYTOP, PTFE or silicon substrates, in either air or nitrogen

atmospheres. Details of these twelve data sets can be found in table 5.1 and the

parameters that characterise the evaporation of these droplet are given in table

5.2.

In these data sets we define a jump phase to occur when θ increases by at

least 1◦ for consecutive data points. The experimentally determined values of θ0

are defined to be the values of θ at t = 0. The experimentally measured values

of θ just before and just after the nth jump phase, denoted by θmin n and θmax n,

respectively, are averaged to obtain the experimentally determined values for θmin

and θmax, respectively. The experimentally determined values for θ0, θmin and

θmax, together with the number of jump phases for the twelve data sets considered

here, are given in table 5.3. The experimentally determined values for the contact

radius during the nth stick phase, Rn, are taken to be the values of R just before

the nth jump phase, and the experimentally determined values for the change in

the contact radius during the nth jump phase, δRn are obtained by calculating

the difference between R just before and just after the nth jump phase. The

experimentally determined values for the durations of the first stick phase, δt1,

are taken to be the times just before the first jump phase, and the durations of

all subsequent stick phases, δtn (n > 1), are obtained by calculating the difference

between t just before the (n + 1)th jump phase and just after the nth jump phase.
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Reference Substrate Concen- Number θ0 θmin θmax

tration of jump [rad] [rad] [rad]
phases

Orejon et al. [153] CYTOP 0.1% 3 1.91 1.41 1.64
Orejon et al. [153] CYTOP 0.05% 8 1.96 1.57 1.72
Orejon et al. [153] CYTOP 0.025% 10 1.93 1.75 1.83
Orejon et al. [153] CYTOP 0.01% 11 1.88 1.49 1.53
Orejon et al. [153] PTFE 0.1% 7 1.93 1.61 1.75
Orejon et al. [153] PTFE 0.05% 5 1.93 1.60 1.68
Orejon et al. [153] PTFE 0.025% 8 1.91 1.32 1.37
Orejon et al. [153] PTFE 0.01% 4 1.96 1.78 1.82
Moffat et al. [144] PTFE 0.1% 8 0.75 0.68 0.76
Askounis et al. [5] PTFE 0.1% 6 0.70 0.56 0.70
Askounis et al. [6] Silicon 0.125% 4 0.84 0.22 0.33
Askounis et al. [7] Silicon 0.125% 6 0.85 0.37 0.46

Table 5.3: Number of jump phases observed in the experiments, together with the
experimentally determined values for the initial contact angle, θ0, the contact angle
at which the contact line de-pins, θmin, the contact angle at which the contact line
re-pins, θmax, and the initial contact radius, R0, for the twelve data sets described
in table 5.1.

In all of the twelve data sets considered here the jump phases occur on a much

shorter time scale than the stick phases (see section 5.1), validating one of the

assumptions of the model.

In order to quantify the extent to which θmin and θmax are constant throughout

the entire evaporation process, we compare the experimentally measured values of

θ just before and just after every jump phase, θmin n and θmax n, with the corre-

sponding averaged values, namely θmin and θmax, respectively. This comparison is

shown in figure 5.4. In particular, figure 5.4 shows the measured values of θmin n

(grey) and θmax n (black) and the corresponding averaged values, namely θmin (grey)

and θmax (black), respectively, denoted by solid lines, as functions of Rn for the

twelve data sets considered here. Note that throughout this chapter a different

symbol is used to denote each of the twelve different data sets considered here. For

each data set, the smaller the differences are between θmin n and θmax n and θmin
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Figure 5.4: Experimentally measured values of θ just before and just after the
nth jump phase, θmin n (grey) and θmax n (black), and the corresponding averaged
values, namely θmin (grey) and θmax (black), respectively, denoted by solid lines,
as functions of Rn for the twelve data sets described in table 5.1.

and θmax, respectively, the better the data set satisfies the assumption that θmin

and θmax are constant throughout the entire evaporation process.

In order to quantify the extent to which R is constant during a stick phase,

we consider the maximum absolute change in R (in %) during the nth stick phase,

denoted by ∆Rn and given by

∆Rn = max

∣

∣

∣

∣

(Rn − R(t)) × 100

Rn

∣

∣

∣

∣

for tn−1 < t < tn, (5.25)

for all twelve sets of experimental data. Figure 5.5 shows the experimentally

determined values for ∆Rn, again denoted by a different symbol for each data set,

as functions of Rn for the twelve data sets considered here. For each data set, the

closer ∆Rn is to zero in figure 5.5, the better the data set satisfies the assumption
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Figure 5.5: Experimentally determined values of the maximum absolute change in
R (in %) during the nth stick phase, ∆Rn, given by (5.25), as functions of Rn for
the twelve data sets described in table 5.1.
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Reference Substrate Concen- ∆R ∆θmin ∆θmax

tration (in %) (in %) (in %)
Orejon et al. [153] CYTOP 0.1% 1.0 0.5 4.2
Orejon et al. [153] CYTOP 0.05% 3.3 5.9 6.4
Orejon et al. [153] CYTOP 0.025% 9.6 6.0 5.4
Orejon et al. [153] CYTOP 0.01% 19.2 42.6 41.3
Orejon et al. [153] PTFE 0.1% 1.8 8.5 7.4
Orejon et al. [153] PTFE 0.05% 4.1 13.8 11.2
Orejon et al. [153] PTFE 0.025% 18.9 33.2 32.1
Orejon et al. [153] PTFE 0.01% 9.0 4.8 5.0
Moffat et al. [144] PTFE 0.1% 7.2 16.3 7.5
Askounis et al. [5] PTFE 0.1% 11.6 15.0 11.3
Askounis et al. [6] Silicon 0.125% 16.9 32.4 26.8
Askounis et al. [7] Silicon 0.125% 13.9 37.9 34.0

Table 5.4: Experimentally determined maximum absolute changes in R, θmin and
θmax (in %) namely, ∆R, ∆θmin and ∆θmax, given by (5.26)–(5.28), for the twelve
data sets described in table 5.1.

that Rn is constant during a stick phase.

In order to summarise and analyse the results shown in figures 5.4 and 5.5, the

maximum absolute change in R (in %) for all stick phases, ∆R, namely,

∆R = max(∆Rn), (5.26)

and the maximum absolute change in θmin and θmax (in %) for all jump phases,

∆θmin and ∆θmax, namely,

∆θmin = max

∣

∣

∣

∣

(θmin − θmin n) × 100

θmin

∣

∣

∣

∣

(5.27)

and

∆θmax = max

∣

∣

∣

∣

(θmax − θmax n) × 100

θmax

∣

∣

∣

∣

, (5.28)

respectively, are given in table 5.4 for all twelve data sets. Table 5.4 shows that

for these data sets ∆R is always smaller than 20%, but that ∆θmin and ∆θmax
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can be up to 43%. In particular, table 5.4 shows that there are seven data sets,

namely Orejon et al. [153] (CYTOP 0.1%, 0.05%, 0.025%, and PTFE 0.1%, 0.05%,

0.01%), and Askounis et al. [5], for which ∆R, ∆θmin and ∆θmax are all less than

15%, so that for these seven data sets Rn, θmin and θmax can be considered to be

approximately constant. In particular, this means for these seven data sets the

three assumptions of the model are satisfied very well. However, table 5.4 also

shows that for the other five data sets, namely Orejon et al. [153] CYTOP 0.01%

and PTFE 0.025%, Moffat et al. [144], Askounis et al. [6, 7], at least one value of

∆R, ∆θmin and ∆θmax is larger than 15%, so that for these five data sets at least

one value of Rn, θmin and θmax cannot be considered to be approximately constant.

This means for these five data sets one or more of these three assumptions of the

model are not satisfied well. We therefore expect that the model will work very

well for the seven data sets, but less well for the other five data sets.

An interesting observation can be made regarding figure 5.4: there are four data

sets, namely Orejon et al. [153] CYTOP 0.01% and PTFE 0.05%, 0.025%, 0.01%,

for which as Rn increases, the experimentally measured values for θmin n and θmax n

also increase, and, more notably, that they increase approximately at the same

rate, so that δθn := θmax n − θmin n is approximately constant. Figure 5.6 shows the

experimentally measured values of δθn together with δθ := θmax − θmin calculated

using the experimentally determined values θmin and θmax as given in table 5.3,

denoted by solid lines, as a function of Rn for the twelve data sets considered

here. Note that it would be natural to assume that δθn is a good quantity to test

whether the assumptions of the model, namely that θmin and θmax are constant for

the entire evaporation process, are satisfied. However, this is not the case, since,

as we have already mentioned, as Rn increases, θminn and θmax n may increase at

the same rate, so that δθn is approximately constant, even though θmin n and θmax n
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Figure 5.6: Experimentally measured values of δθn := θmax n − θmin n together with
δθ := θmax − θmin calculated using the experimentally determined values of θmin

and θmax as given in table 5.3, denoted by solid lines, as functions of Rn for the
twelve data sets described in table 5.1.

themselves are not approximately constant (see, Orejon et al. [153] CYTOP 0.01%

and PTFE 0.025%). Figure 5.6 indicates that for the present twelve data sets

δθ is approximately constant, so that at least for these data sets δRn ∝ Rn (see

equation (5.4)) describes the relationship between δRn and Rn more accurately

than δRn ∝ √
Rn derived by Shanahan [201].

Thus we have shown that for seven data sets the assumptions of the model

are satisfied very well, but that at least one of them is not satisfied very well

for the other five data sets. In the following section, we compare the theoretical

predictions of the present model for both the change in the contact radius during

a jump phase and the duration of the stick phase with experimentally measured

values from all twelve data sets.
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5.7 Comparisons between the Theoretical Pre-

dictions of the Model and Experimental Re-

sults

As mentioned previously, for droplets with suspended particles the pinning, de-

pinning and re-pinning of the contact line is influenced by the deposition of par-

ticles. Since the suspended particles are never deposited in exactly the same way

in different experiments, the pinning, de-pinning and re-pinning of the contact

line is never exactly the same in different experiments, i.e. there is always some

stochastic variation in the experimental results. We shall show in this section that

although the present model does not capture this variation, it is nevertheless able

to predict the experimental data quantitatively. As the present model predicts an

infinite number of stick phases (see section 5.2), which, of course, is not possible

in practice, we shall test whether it is able to predict the evolution of R and θ

(and hence V ) during the finite number of stick and jump phases observed in ex-

periments. In particular, we compare the experimentally determined values of the

change in the contact radius during the nth jump phase, δRn, and the duration

of the nth stick phase, δtn, as functions of the contact radius during the nth stick

phase, Rn, as given by (5.4), (5.7) and (5.10), using the values of Λ, k0, and k

given in table 5.5 calculated from equations (5.2), (5.8) and (5.11), respectively,

with the theoretically predicted values. The results of this comparison have the

advantage over the results of the comparison between the theoretically predicted

and experimentally determined values of R(t) and θ(t) that the accumulation of

errors is reduced.
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Reference Substrate Concen- Λ k0 k
tration [s m−2] [s m−2]

Orejon et al. [153] CYTOP 0.1% 0.90 9.00×108 3.24×108

Orejon et al. [153] CYTOP 0.05% 0.92 8.32×108 2.53×108

Orejon et al. [153] CYTOP 0.025% 0.96 4.32×108 1.73×108

Orejon et al. [153] CYTOP 0.01% 0.98 7.20×108 5.47×107

Orejon et al. [153] PTFE 0.1% 0.93 7.70×108 4.00×108

Orejon et al. [153] PTFE 0.05% 0.96 6.97×108 1.28×108

Orejon et al. [153] PTFE 0.025% 0.98 1.00×109 5.53×107

Orejon et al. [153] PTFE 0.01% 0.98 4.59×108 8.81×107

Moffat et al. [144] PTFE 0.1% 0.96 7.45×106 8.54×106

Askounis et al. [5] PTFE 0.1% 0.92 1.44×107 1.44×107

Askounis et al. [6] Silicon 0.125% 0.83 3.85×108 6.39×107

Askounis et al. [7] Silicon 0.125% 0.92 4.07×108 7.12×107

Table 5.5: Values of Λ, k0 and k calculated from equations (5.2), (5.8), and (5.11),
respectively, using the experimentally determined values of θ0, θmin and θmax de-
scribed in table 5.3 for the twelve data sets described in table 5.1.

5.7.1 The Change in the Contact Radius During a Jump

Phase

Figure 5.7 (a) shows the theoretically predicted change in the contact radius during

the nth jump phase, δRn, as given in equation (5.4) using the values of Λ given in

table 5.5, denoted by a solid line, as well as the experimentally determined values

for δRn as functions of the contact radius during the nth stick phase, Rn, for all

twelve data sets. Note that a small number of the experimentally determined

values of δRn obtained by Askounis et al. [6, 7] are actually negative, which means

that the contact radius during the (n + 1)th stick phase, Rn+1, is actually larger

than the contact radius during the previous nth stick phase, Rn. This behaviour

cannot, of course, be captured by the present model.

Figure 5.7 (b) shows δRn/(1 − Λ) as a function of Rn for the seven data sets

which satisfy the assumptions of the model well (see table 5.4), namely Orejon

et al. [153] (CYTOP 0.1%, 0.05%, 0.025%, and PTFE 0.1%, 0.05%, 0.01%), and



Chapter 5 120

(a)

δR
n
×

10
−

3
[m

]
δR

n
×

10
−

3
[m

]
δR

n
×

10
−

3
[m

]

0.00.00.00.0

0.00.00.00.0

0.00.00.00.0

0.10.10.10.1

0.10.10.10.1

0.10.10.10.1

0.20.20.20.2

0.20.20.20.2

0.20.20.20.2

0.30.30.30.3

0.30.30.30.3

0.30.30.30.3

Rn × 10−3[m]Rn × 10−3[m]Rn × 10−3[m]Rn × 10−3[m]

Rn × 10−3[m]Rn × 10−3[m]Rn × 10−3[m]Rn × 10−3[m]

Rn × 10−3[m]Rn × 10−3[m]Rn × 10−3[m]Rn × 10−3[m]

0000

0000

0000

0.50.50.50.5

0.50.50.50.5

0.50.50.50.5

1111

1111

1111

1.51.51.51.5

1.51.51.51.5

1.51.51.51.5

Orejon et al. CYTOP 0.1% CYTOP 0.05% CYTOP 0.025% CYTOP 0.01%

Orejon et al. PTFE 0.1% PTFE 0.05% PTFE 0.025% PTFE 0.01%

Askounis et al. 2011 Askounis et al. 2013 Askounis et al. 2014Moffat et al.

(b)

δR
n
/(

1
−

Λ
)
×

10
−3

[m
]

0.0

0.5

0.5

1.0

1.5

1.5

Rn × 10−3[m]
0 1

Figure 5.7: Part (a) shows the theoretically predicted change in the contact radius
during the nth jump phase, δRn, denoted by solid lines, as given in equation (5.4)
and the experimentally determined values as a function of the contact radius during
the nth stick phase, Rn, for all twelve data sets described in table 5.1. The dashed
line denotes the axis δRn = 0. Part (b) shows δRn/(1−Λ) for the seven data sets
which satisfy the assumptions of the model well (see table 5.4), so that for these
data sets the theoretically predicted values collapse onto the single straight line
δRn/(1 − Λ) = δRn. Note that the same symbols are used for each data set in
both parts of the figure.
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Askounis et al. [5]. This means that the theoretically predicted values collapse

onto the single straight line δRn/(1 − Λ) = Rn, and comparisons between the

seven data sets can therefore be made readily.

Figure 5.7 shows that, despite the stochastic variation in the experimental

results, the agreement between the theoretical predictions for δRn and the ex-

perimentally determined values is reasonably good for all twelve data sets. In

particular, figure 5.7 (b) shows that the model quantitatively predicts δRn for the

seven data sets which satisfy the assumptions of the model well, since the points

representing the experimentally determined values are clustered closely around the

straight line representing the theoretical predictions.

Thus having compared the theoretically predicted values for δRn with the ex-

perimentally determined values, the next subsection focuses on the comparison

between the theoretically predicted duration of the stick phase and the experi-

mentally determined values.

5.7.2 The Duration of a Stick Phase

As described previously, in the present model the first stick phase is qualitatively

different from all of the other subsequent stick phases (see equations (5.7) and

(5.10)). Therefore, in order to compare the theoretically predicted durations of

all of the stick phases, i.e. δtn for any n ≥ 1, with the experimentally determined

values, we scale the duration of the first stick phase by k0 and the durations of all of

the subsequent stick phases by k, given by equations (5.8) and (5.11), respectively.

Figure 5.8 shows δt1/k0 and δtn/k (for n > 1), denoted by solid lines, as given

in equations (5.7) and (5.10) using the values for k0 and k as given in table 5.5,

respectively, and the experimental determined values as functions of Rn, for all

twelve data sets considered here. In particular, figure 5.8 (a) shows that, with the
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Figure 5.8: Part (a) shows the scaled theoretically predicted duration of the nth

stick phase, namely δt1/k0 and δtn/k (for n > 1), denoted by solid lines, as given
in equations (5.7) and (5.10), respectively, and the experimental determined values
for δt1/k0 and δtn/k as functions of Rn, for all twelve data sets described in table
5.1. The dashed lines represent a ±20% change in the value of D. Part (b) shows
the results of part (a) for the seven data sets which satisfy the assumptions of the
model well (see table 5.4) in a single figure. Note that the same symbols are used
for each data set in both parts of the figure.
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exception of the data set by Moffat et al. [144], since the data points with the

largest values of Rn are always very close to the predicted curves for all these data

sets, the model predicts the experimentally determined duration of the first stick

phase represented by the largest value of Rn very well.

Figure 5.8 shows that, despite the stochastic variation in the experimental

results, the agreement between the theoretical predictions for δtn and the exper-

imentally determined values is also reasonably good for all twelve data sets. In

particular, figure 5.8 (b) shows that the present model quantitatively predicts δtn

for the seven data sets which satisfy the assumptions of the model well. Thus the

experimentally determined values of both δtn and δRn, and therefore the evolution

of R and θ, are predicted very well only for the seven data sets for which all three

assumptions of the model are satisfied.

Since, according to Reid et al. [173], there can be differences of 18% between

the calculated values and the experimentally determined values of D, it is the least

certain value of the parameters in table 5.2, and so the effect of a ±20% change in

D (see, for example, Sefiane et al. [187]) is denoted by the dashed lines in figure 5.8.

However, this change in D does not significantly improve the agreement between

the model predictions and the experimental data.

5.8 Summary

In this chapter a simple model for a droplet evaporating in the SJ mode, which

does not attempt to resolve the details of the local behaviour near the contact line

but captures the global behaviour of the droplet, was developed and used to give a

complete description the evolution of R and θ, and hence V , and, in particular, the

duration of the nth stick phase, δtn, and the time at which the nth stick phase ends,
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tn. It was also shown that in appropriate special cases the present model reduces

to simpler models for previously discussed simpler modes of evaporation. Finally,

by comparing the theoretical predictions of the present model with experimental

results, it was shown that the present model is quantitatively able to predict the

experimental data, which satisfy the assumptions of the model well.
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The Lifetimes of Droplets in the

Stick-Jump Mode

In this chapter we use the model for a droplet evaporating in the SJ mode de-

scribed in the previous chapter to predict its lifetime. In particular, in section

6.1 we describe the theoretical predictions for the lifetimes of droplets in the SJ

mode, which we compare in section 6.2 to the lifetimes determined from the exper-

iments discussed in the previous chapter. In section 6.3 the relationship between

the lifetimes of droplets in the SJ mode and those of initially identical droplets

evaporating in the two extreme modes is described. In particular, we shall show

that there is a region in the parameter space in which the lifetime of droplets in

the SJ mode is shorter than the lifetimes of droplets evaporating in the extreme

modes. Furthermore, it will be shown that in appropriate special cases the life-

times of droplets in the SJ mode reduce to the lifetimes of droplets in previously

discussed simpler modes of evaporation. Finally, in section 6.4 simple approxima-

tions for the lifetimes of droplets in the SJ mode are suggested and compared with

the theoretical predictions for the lifetimes of droplets in the SJ mode as well as

125
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with experimentally determined lifetimes.

6.1 Theoretical Predictions for the Lifetimes of

Droplets in the Stick-Jump Mode

As we have described in section 5.2, the present model for the SJ mode predicts

that the droplet evaporates completely in a finite time after an infinite number of

stick and jump phases. Letting n → ∞ in the expression for the time at which the

nth stick phase ends, given by (5.14), and scaling time with T given in equation

(2.9), as in previous chapters, we find that the lifetime of a droplet in the SJ mode,

denoted by tSJ = tSJ(θ0, θmin, θmax), is given by

tSJ =

(

2(1 + cos θ0)
2

sin θ0(cos θ0 + 2)

)2/3 [∫ θ0

θmax

2 dθ

g(θ)
+

1

1 − Λ2

∫ θmax

θmin

2 dθ

g(θ)

]

, (6.1)

or, equivalently,

tSJ =

(

2(1 + cos θ0)
2

sin θ0(cos θ0 + 2)

)2/3 [∫ θ0

θmin

2 dθ

g(θ)
+

Λ2

1 − Λ2

∫ θmax

θmin

2 dθ

g(θ)

]

, (6.2)

where the first term on the right-hand side of (6.2) represents the duration of

the first stick phase and the second term represents the duration of all of the

subsequent stick phases. (The jump phases are all instantaneous and so, of course,

do not contribute directly to the right-hand side of (6.2).)

6.2 Experimental Validation of the Model

By comparing the finite number of stick and jump phases observed in experiments

with the corresponding finite number of the theoretically infinite number of stick
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and jump phases predicted by the present model, it has been shown in section 5.7

that the present model is able to predict the experimental data for change in the

contact radius, δRn, during the nth jump phase and the duration of the nth stick

phase, δtn, reasonably well. It is, however, not clear if the present model is able to

predict the lifetime of a droplet in the SJ mode accurately, since this aspect of the

model was not tested in the previous chapter. This will be done in this section by

comparing the predictions of the model with results of the experiments discussed

in the previous chapter.

We use the twelve data sets for droplets evaporating in the SJ mode obtained

by Moffat et al. [144], Askounis et al. [5, 6, 7], and Orejon et al. [153] discussed

in the previous chapter. Details of these data sets can be found in tables 5.1–

5.5. In particular, tables 5.3 and 5.5 show that for all of the data sets except

for that of Askounis et al. [6], the values for θmin and θmax are fairly similar and

hence the values for Λ are fairly close to 1. Furthermore, table 5.3 shows that the

max(θ0, θmax)/θmin & 0.7 for the data sets by Moffat et al. [144], Askounis et al.

[5], and Orejon et al. [153], but that max(θ0, θmax)/θmin ≃ 0.3 and 0.4 for the two

data sets by Askounis et al. [6, 7], respectively. These approximated values show

that, with the exception of the latter two data sets, the values of θ0, θmin and θmax

are all fairly similar, so that for these data sets the SJ mode is very similar the

CA mode (recall that in the special case θ0 = θmin = θmax the SJ mode reduces

to the CA mode, see section 5.4); therefore comparison with experimental results

in these cases is essentially a validation for the lifetime of a droplet in the CA

mode. Moreover, as already noted, for the two data sets of Askounis et al. [6, 7]

two of the three assumptions of the model, namely that θmin and θmax are constant

throughout the entire evaporation process and that R remains constant during

a stick phase, are not satisfied very well. Thus further experiments with small
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Reference Substrate Concentration tSJ texp Error (in %)
Orejon et al. [153] CYTOP 0.1% 0.9983 0.9878 −1.06
Orejon et al. [153] CYTOP 0.05% 0.9976 0.9836 −1.42
Orejon et al. [153] CYTOP 0.025% 0.9950 0.9860 −0.91
Orejon et al. [153] CYTOP 0.01% 0.9987 0.9909 −0.79
Orejon et al. [153] PTFE 0.1% 0.9975 0.9834 −1.43
Orejon et al. [153] PTFE 0.05% 0.9981 0.9844 −1.39
Orejon et al. [153] PTFE 0.025% 0.9955 0.9809 −1.49
Orejon et al. [153] PTFE 0.01% 0.9944 0.9810 −1.37
Moffat et al. [144] PTFE 0.1% 0.9042 0.8912 −1.46
Askounis et al. [5] PTFE 0.1% 0.8776 0.9035 2.87
Askounis et al. [6] Silicon 0.125% 0.7789 0.9429 17.39
Askounis et al. [7] Silicon 0.125% 0.8250 0.9437 12.58

Table 6.1: The theoretically predicted lifetimes of evaporating droplets, tSJ, cal-
culated numerically from (6.2) using the experimentally determined values for
θ0, θmin and θmax given in table 5.3 together with the experimentally determined
values, texp, and the percentage error between those two values (calculated from
(texp − tSJ) × 100/texp) for the twelve data sets described in table 5.1.

values of max(θ0, θmax)/θmin which satisfy the assumptions of the model better are

required to give a more convincing validation for the lifetime as predicted by the

present model. In the absence of such experiments we shall continue to consider

all twelve data sets in the present chapter.

For each of the twelve data sets described in table 5.1 the experimentally deter-

mined lifetime of the droplet, texp, was obtained by fitting V 2/3 as a linear function

of t and extrapolating to V = 0 as described in section 3.3. In table 6.1 and figure

6.1 we compare tSJ calculated numerically from (6.2) using the experimentally de-

termined values for θ0, θmin and θmax with texp. In particular, table 6.1 and figure

6.1 show that, with the exception of the two data sets by Askounis et al. [6, 7], the

agreement between the experimentally determined lifetimes and the theoretically

predicted lifetimes is excellent, with percentage errors smaller than 3%. However,

for these two data sets the model under-predicts the experimentally determined

lifetimes by approximately 17% and 13%, respectively. As mentioned previously,
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Figure 6.1: The theoretically predicted lifetimes of evaporating droplets, tSJ, calcu-
lated numerically from (6.2) using the experimentally determined values of θ0, θmin

and θmax, plotted as a function of the corresponding experimentally determined
values, texp, together with a solid line showing tSJ = texp and dashed lines showing
5% and 15% deviations from tSJ = texp. The values from the two experiments by
Askounis et al. [6, 7] are denoted by stars (⋆) rather than by dots (•); note, that
these two data sets have the largest errors, namely 17% and 13%, respectively.

these two data sets do not satisfy the assumptions of the model very well, and so

it is perhaps surprising that the error is not larger. Note that the present errors

are of the same order of magnitude as the errors reported by Dietrich et al. [56],

who found a maximum error of 20% between the predicted and the experimentally

determined lifetimes for dissolving droplets. These results show that the model

predicts the experimentally determined lifetimes well. Thus we shall analyse the

lifetimes of droplets in the SJ mode, and the relationship between them and the

lifetimes of initially identical droplets evaporating in the extreme modes in greater

detail in the next section.



Chapter 6 130

6.3 Analysis of the Lifetimes of Droplets in the

Stick-Jump Mode

The lifetimes of droplets in the extreme (CR and CA) modes, given by (2.10) and

(2.11), are, as we have shown in section 2.1, by definition dependent only on θ0,

whereas the lifetimes of droplets in the SJ mode given by (6.2) are dependent on

θmin and θmax as well as θ0. In order to compare the lifetimes of droplets in the two

extreme modes with the lifetime of droplets in the SJ mode, we shall plot them

all as functions of θ0.

In order to describe how different values of θmin and θmax affect tSJ given by

(6.2), we consider the θmin–θmax parameter plane, shown in figure 6.2 (a). Note

that, since by definition θmin ≤ θmax, only the upper triangle of the θmin–θmax

parameter plane is physically realisable. This upper triangle is divided into the

three regions A, C, and E, which are separated by the two curves B and D,

corresponding to different orderings of tCR, tCA and tSJ at θ0 = θmin. Specifically,

for values of θmin and θmax in region A tCR < tCA < tSJ at θ0 = θmin, on curve

B tCR < tCA = tSJ at θ0 = θmin, in region C tCR < tSJ < tCA at θ0 = θmin, on

curve D tCR = tSJ < tCA at θ0 = θmin, and in region E tSJ < min(tCR, tCA) at

θ0 = θmin. Three examples of transects through the θmin–θmax parameter plane,

namely θmin = π/16, θmax = θmin + π/4, and θmax = 7π/8, are given in figure 6.2

(a) and example values of θmin and θmax on these transects corresponding to the

points A–R are indicated. Specifically, on the first transect θmin is constant but

θmax varies, namely θmin = π/16 (example values of θmin and θmax on this transect

are denoted by A–G), on the second transect both θmin and θmax vary, namely

θmax = θmin + π/4 (example values of θmin and θmax on this transect are denoted

by H–M), and on the third transect θmin varies but θmax is constant, namely
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Figure 6.2: Part (a) shows how the θmin–θmax parameter plane is divided into
the three regions A, C, and E, which are separated by the two curves B and
D, according to the ordering of tCR, tCA and tSJ at θ0 = θmin. Specifically, for
values of θmin and θmax in region A tCR < tCA < tSJ at θ0 = θmin, on curve B
tCR < tCA = tSJ at θ0 = θmin, in region C tCR < tSJ < tCA at θ0 = θmin, on curve
D tCR = tSJ < tCA at θ0 = θmin, and in region E tSJ < min(tCR, tCA) at θ0 = θmin.
Note that, since by definition θmin ≤ θmax, only the upper triangle of the θmin–θmax

parameter plane is physically realisable. Parts (b)–(d) give examples of plots of the
lifetimes of droplets in the SJ mode, tSJ, as a function of θ0 given in equation (6.2)
given by the thick solid line for example values of θmin and θmax, denoted by A–R,
that are obtained by three different transects through the θmin–θmax parameter
plane, namely θmin = π/16, θmax = θmin + π/4, and θmax = 7π/8 together with
the lifetimes of droplets in the two extreme modes, tCR and tCA as functions of θ0

given in equations (2.10) and (2.11) and given by the solid and the dashed line,
respectively.
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θmax = 7π/8 (example values of θmin and θmax on this transect are denoted by N –

R). These example values of θmin and θmax (A–R) are used to plot the lifetimes

of a droplet in the SJ mode, tSJ, as given in equation (6.2), together with the

lifetimes of droplets in the two extreme modes, tCR and tCA, as given in equations

(2.10) and (2.11), respectively, as functions of θ0 in figure 6.2 (b)–(d). For each

curve shown in figure 6.2 (b)–(d), since θmin ≤ θ0, tSJ is defined only for θ0 in the

range θmin ≤ θ0 ≤ π. This is different from the lifetimes of droplets in the extreme

modes or the lifetimes of droplet in the SS mode described in Chapters 2–4, which

are defined for all values of θ0 in the range 0 ≤ θ0 ≤ π. Figure 6.2 (b)–(d) also

show that tSJ = tCR = tCA = tπ, given by (2.12), for θ0 = π, irrespective of the

values of θmin and θmax, and that in the limit θ0 → π− the curve representing tSJ

approaches tπ from above with zero slope, just like the curve representing tCR,

given in equation (2.13). However, in general, the curve representing tSJ is fairly

complicated and, especially for large contact angles, the tSJ curves become difficult

to distinguish in figure 6.2 (b)–(d). Therefore, in order to illustrate the behaviour

of the tSJ curves more clearly, figure 6.3 (b)–(f) show sketches of typical tSJ curves

corresponding to values of θmin and θmax in the regions/on the curves A–E in

figure 6.2 (a), which is re-drawn for clarity in figure 6.3 (a) without the transects,

together with sketches of the tCR and tCA curves.

Figure 6.3 (b) shows that for values of θmin and θmax in region A in figure 6.3

(a), the tSJ curve has a local minimum at θ0 = θ0,min (with θmin < θ0,min < π/2)

when tSJ = tCA, and a local maximum at θ0 = θ0,max (with π/2 < θ0,max < π)

when tSJ = tCA. Note that whereas the local maximum at θ0 = θ0,max is always a

global maximum, depending on the values of θmin and θmax, the local minimum at

θ0 = θ0,min may be a global minimum. In particular, if tSJ < tπ at θ0 = θ0,min then

the tSJ curve has a global minimum at θ0 = θ0,min, and if tSJ > tπ at θ0 = θ0,min
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Figure 6.3: Part (a) is the same as figure 6.2 (a) but without the transects. Parts
(b)–(f) shows sketches of typical lifetimes of a droplet in the SJ mode, tSJ, as a
function of θ0 for different values of θmin and θmax in the regions/on the curves
A–E, respectively, shown in part (a), together with sketches of the lifetimes of
droplets in the two extreme modes, tCR and tCA, as functions of θ0.
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then the tSJ curve has a global minimum at θ0 = π.

Figure 6.3 (c) shows that for values of θmin and θmax on the curve B in figure 6.3

(a) the tSJ curve departs from the tCA curve with zero slope at θ0 = θmin = θ0,min,

so that for values of θmin and θmax in the regions/on the curves B–E the local

minimum at θ0 = θ0,min disappears and the tSJ curve always has only a global

minimum at θ0 = π and a global maximum at θ0 = θ0,max.

Figure 6.3 (b)–(f) show that the position of the tSJ curve with respect to that

of the tCR curve changes. Whereas for values of θmin and θmax in the regions/on the

curves A–C we have tSJ ≥ tCR for θmin ≤ θ0 ≤ π, i.e. the lifetime of a droplet in the

SJ mode is larger than the lifetime of a droplet in the CR mode (see figure 6.3 (b)–

(d)), for values of θmin and θmax in region E we have tSJ ≤ tCR for θmin ≤ θ0 ≤ π,

i.e. the lifetime of a droplet in the SJ mode is smaller than the lifetime of a droplet

in the CR mode (see figure 6.3 (f)). In particular, figure 6.3 (f) shows that for

values of θmin and θmax in region E the tSJ curve can be lower than both the tCR

and tCA curves, i.e. tSJ ≤ min(tCR, tCA). For values of θmin and θmax on the curve

D we have tSJ = tCR for θmin ≤ θ0 ≤ π with θ0,max = θcrit where tSJ = tCR = tcrit,

i.e. the lifetime of a droplet in the SJ mode is equal to the lifetime of a droplet in

the CR mode (see 6.3 (e)) even though the evolutions of the droplets are different.

Note that the present SJ curves are qualitatively different from the curves

obtained in figures 3.5, 3.6 and 4.3 in Chapters 3 and 4, respectively, and different

from the curves obtained by Dietrich et al. [56], all of which represent special cases

of the present SJ mode. Specifically, in Chapters 3 and 4 we considered the lifetimes

of droplets in the SS mode, which corresponds to the special case θmin = θmax = θ∗

(see section 5.4), and Dietrich et al. [56] considered the lifetimes of droplets in a

SJ mode which corresponds to the special case θ0 = θmax (see section 5.5). The

tSJ curves obtained in figures 3.5, 3.6 and 4.3 and by Dietrich et al. [56] always
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depart from the curves representing the lifetime of droplets in the extreme modes.

In particular, the tSJ curves depart from the tCA curve in figures 3.5, 3.6 and in the

work by Dietrich et al. [56] and from the tCR curve in figure 4.3. This behaviour is

qualitatively different from the present tSJ curves, which, in general, do not depart

from the tCA or tCR curves. Note, however, that, like the present curves, the

corresponding curves obtained in Chapters 3 and 4 and the corresponding curves

obtained by Dietrich et al. [56] always lie below tCA(π/2) = 1, but that, unlike the

present curves, which may lie below the minimum of the two extreme modes (i.e.

tSJ ≤ min(tCR, tCA)), the corresponding curves obtained in Chapters 3 and 4 and

the corresponding curves obtained by Dietrich et al. [56] always lie on or above

the minimum of the two extreme modes (i.e. tSJ ≥ min(tCR, tCA)).

To summarise, the sketches in figure 6.3 (b)–(f) show that, depending on the

values of θmin and θmax, the tSJ curve has a global minimum either at θ0 = θ0,min

or θ0 = π, but it always has a global maximum at θ0 = θ0,max and that tSJ may be

smaller than min(tCR, tCA). This means that all six orderings of tCR, tCA and tSJ

can occur; this will be summarised and discussed in greater detail in the following

subsection.

6.3.1 Master Diagram

As the sketches in figure 6.3 (b)–(f) show, the ordering of the lifetimes of droplets

evaporating in the three modes, namely tSJ, tCR and tCA, depends on the three

parameters θ0, θmin and θmax. As in Chapters 3 and 4, we summarise the or-

derings of the lifetimes of droplets in the different modes in a master diagram.

As a three-dimensional parameter space is difficult to visualise, we shall consider

two-dimensional parameter planes for different ranges/values of the third parame-

ter. Specifically, we divide the θ0–θmin parameter plane for different ranges/values
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Figure 6.4: Parts (a)–(f) show how the θ0–θmin parameter plane is divided into
regions in which the six orderings of the lifetimes of initially identical droplets
evaporating in the CR, CA, and SJ modes, tCR, tCA and tSJ, occur for six different
ranges/values of θmax. Specifically, region 1 corresponds to tCR < tCA < tSJ, region
2 to tCR < tSJ < tCA, region 3 to tCA < tCR < tSJ, region 4 to tCA < tSJ < tCR,
region 5 to tSJ < tCA < tCR, and region 6 to tSJ < tCR < tCA. Since θmin ≤ θmax

and θmin ≤ θ0, only the trapezoidal region below θmin = θmax and to the right of
θ0 = θmin (denoted by the dashed lines) is physically realisable.
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of θmax according to the orderings of the lifetimes of initially identical droplets

evaporating in the CR, CA, and SJ modes, tCR, tCA and tSJ, as shown in fig-

ure 6.4. Region 1 corresponds to tCR < tCA < tSJ, region 2 corresponds to

tCR < tSJ < tCA, region 3 corresponds to tCA < tCR < tSJ, region 4 corresponds

to tCA < tSJ < tCR, region 5 corresponds to tSJ < tCA < tCR, and region 6 corre-

sponds to tSJ < tCR < tCA. Since θmin ≤ θmax and θmin ≤ θ0, only the trapezoidal

region below θmin = θmax and to the right of θ0 = θmin (denoted by the dashed lines

in figure 6.4) is physically realisable. As θmax increases this physically realisable

trapezoidal region θmin ≤ θmax and θmin ≤ θ0 increases, so that in the special case

θmax = π the complete lower triangle of the θ0–θmin parameter plane is physically

realisable (see figure 6.4 part (f)).

Figure 6.4 (a)–(d) show that for 0 < θmax ≤ θcrit ≃ 2.5830, regions 1–3 occupy

substantial portions of the physically realisable region of the θ0–θmin parameter

plane. Figure 6.4 (e) and (f) show that for θcrit < θmax ≤ π, additional regions,

namely regions 4–6, appear, which occupy increasingly larger portions of the phys-

ically realisable region of the θ0–θmin parameter plane for increasing θmax. In par-

ticular, figure 6.4 shows that all six orderings of tSJ, tCR and tCA are possible: tSJ

can be larger than both tCR and tCA, i.e. tSJ > max(tCR, tCA), as it is in regions 1

and 3, tSJ can be smaller than both tCR and tCA, i.e. tSJ < min(tCR, tCA), as it is

in regions 5 and 6, and tSJ can be bounded by tCR and tCA, i.e. tCR < tSJ < tCA

or tCA < tSJ < tCR, as it is in regions 2 and 4.

Of particular interest are regions 5 and 6, since in these two regions tSJ <

min(tCR, tCA), i.e. the lifetime of a droplet in the SJ mode is shorter than the

lifetimes of initially identical droplets evaporating in the two extreme modes. This

is, to the best of our knowledge, the first time that the lifetime of a droplet in a

mixed mode, i.e. in a mode of evaporation in which the droplet evaporates with a



Chapter 6 138

(a)

1

2

3

4

tSJ = tCA

tSJ = tCA

tCR = tCA

tSJ = tCR

θ0

0
π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

θmin = θmax

0

π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

θcrit

θcrit

(θcrit, θcrit)

(π/2, π/2)

(b)

1

2

3

4

tSJ = tCA

tSJ = tCA

tCR = tCA

tSJ = tCR

θ0 = θmax

0
π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

θmin

0

π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

θcrit

θcrit

(θcrit, θcrit)

(π/2, π/2)

(π,
2.1196)

Figure 6.5: Parts (a) and (b) show how the θmin–θ0 parameter plane is divided into
regions in which only four orderings of the lifetimes of initially identical droplets
evaporating the CR, CA, and SJ mode, tCR, tCA and tSJ, occur in the two special
cases θmin = θmax = θ∗ analysed in Chapter 3 and θ0 = θmax analysed by Dietrich
et al. [56], respectively. Specifically, region 1 corresponds to tCR < tCA < tSJ,
region 2 corresponds to tCR < tSJ < tCA, region 3 corresponds to tCA < tCR < tSJ,
and region 4 corresponds to tCA < tSJ < tCR. Since θmin < θ0 only the triangular
regions below θmin = θ0 (denoted by the dashed lines) are physically realisable.

pinned as well as with a de-pinned contact line, is reported to be shorter than the

lifetimes of initially identical droplets evaporating in the two extreme modes. For

comparison, figure 6.5 shows master diagrams of the orderings of the lifetimes of

droplets in the SJ mode for two special cases considered previously. Specifically,

figure 6.5 (a) reproduces the master diagram previously given in figure 3.7 (with the

notation of this chapter), which corresponds to the special case θmin = θmax = θ∗,

in which the SJ mode is equivalent to the SS mode, and figure 6.5 (b) shows the

master diagram resulting from the model of Dietrich et al. [56] (again, with the

notation of this chapter), which corresponds to the special case θmax = θ0; both

of these are qualitatively different from those shown in figure 6.4. Furthermore,

figure 6.5 shows that, unlike in the present model in which six different regions

representing six different orderings occur (see figure 6.4), in both of these two

special cases only four regions representing four different possible orderings occur.
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Note that an alternative presentation of the master diagram to the one shown

in figure 6.4 can be given, in which the θ0–θmax parameter plane (rather than the

θ0–θmin parameter plane) is divided for different ranges/values of θmin (rather than

θmax) according to the orderings of the lifetimes. This alternative presentation is

shown in figure 6.6, which shows again that all six orderings of tCR, tCA and tSJ

are possible and that tSJ can be smaller than both tCR and tCA.

6.3.2 Asymptotic behaviour of tSJ

We have shown in section 5.4 that the present model for the SJ mode can be

considered a universal model of evaporation in the sense that in appropriate special

cases it reduces to models for simpler modes of evaporation. In this subsection we

shall show how in these cases the lifetimes of droplets in the SJ mode reduce to

the lifetimes of droplets in these simpler modes of evaporation.

In the limit θmin → 0+ the tSJ curve approaches the tCR curve from above for

all values of θ0 ≥ θmin and θmax ≥ θmin according to

tSJ = tCR(θ0) + B(θ0, θmax)θmin
2/3 + O(θmin), (6.3)

where the function B = B(θ0, θmax) is given by

B(θ0, θmax) =

(

3(1 + cos θ0)
2

2 sin θ0(cos θ0 + 2)

)2/3

× sin2 θmax

[(cos θmax + 2)(cos θmax − 1)2]2/3

∫ θmax

0

2 dθ

g(θ)
. (6.4)

In the limit θmin → θmax
−, the tSJ curve approaches the tSS curve from below

for all values of 0 ≤ θmax < π/2 and from above for all values of π/2 ≤ θmax < π



Chapter 6 140

11 2 3

θ0

0
π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

θmax

0

π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

(θmin, θmin) (θcrit, θmin)

(θcrit, π)

0 < θmin = π/8 . 0.7366

11 2 3

θ0

0
π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

θmax

0

π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

(θmin, θmin) (θcrit, θmin)(2.2140, θmin)

(θcrit, π)(θmin, π) (2.2140, π)

θmin ≃ 0.7366

11 2 3

θ0

0
π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

θmax

0

π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

(θmin, θmin) (θcrit, θmin)

(θcrit, π)

(θmin, 2.2837)

0.7366 . θmin = 3π/8 <
π/2

12 3

θ0

0
π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

θmax

0

π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

(θmin, θmin) (θcrit, θmin)

(θcrit, π)(2.3710, π)

θmin = π/2

12 3

θ0

0
π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

θmax

0

π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

(θmin, θmin) (θcrit, θmin)

(θcrit, π)

π/2 < θmin = 9π/16 .

2.1196

12 3

θ0

0
π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

θmax

0

π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

(θmin, θmin)

(θmin, π)

(θcrit, θmin)

(θcrit, π) ( π, π)

θmin ≃ 2.1196

1

2

3

4
5

6

θ0

0
π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

θmax

0

π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

(θmin, θmin) (θcrit, θmin)

(θcrit, π)

2.1196 . θmin = 3π/4 <
θcrit

5 6

θ0

0
π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

θmax

0

π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

(θmin, θmin) (π, θmin)

(θmin, π)

(2.8144, π)

θmin = θcrit ≃ 2.5830

5
6

θ0

0
π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

θmax

0

π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

(θmin, θmin)

(π, π)

θcrit < θmin = 7π/8 < π

Figure 6.6: The θ0–θmax parameter plane is divided into regions in which the six
orderings of the lifetimes of initially identical droplets evaporating in the CR, CA,
and SJ modes, tCR, tCA and tSJ, occur for nine different ranges/values of θmin.
Specifically, region 1 corresponds to tCR < tCA < tSJ, region 2 to tCR < tSJ < tCA,
region 3 to tCA < tCR < tSJ, region 4 to tCA < tSJ < tCR, region 5 to tSJ < tCA <
tCR, and region 6 to tSJ < tCR < tCA. Since θmin ≤ θmax and θmin ≤ θ0, only the
square region above θmin = θmax and to the right of θ0 = θmin (denoted by the
dashed lines) is physically realisable.
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according to

tSJ = tSS(θ0, θmax) + C(θ0, θmax)(θmax − θmin) + O(θmax − θmin)
2, (6.5)

where tSS is given by equation (3.4) with θmax = θ∗ and the function C =

C(θ0, θmax) is given by

C(θ0, θmax) =

(

2(1 + cos θ0)
2

sin θ0(2 + cos θ0)

)2/3

×
[

sin θmax(cos θmax + 2)g′(θmax)

2g(θmax)2
− 2 cos2 θmax + 2 cos θmax − 3

2g(θmax)

]

. (6.6)

In the limit θmin → θmax and θ0 → θmin the tSJ curve approaches the tCA curve

from below for all values of 0 ≤ θmax < π/2 and from above for all values of

π/2 ≤ θmax < π according to

tSJ = tCA(θmax) + C(θmax, θmax)(θ0 − θmin) + O(θ0 − θmin)
2. (6.7)

The universality of the model for the SJ mode can also be observed in the

lifetime in the small angle limit, θ0 = O(θmax) = O(θmin) → 0+, in which

tSJ =

(

1

3

)2/3
π

2

1 + λ + βλ2

1 + λ
θ

1/3
0 + O

(

θ
4/3
0

)

, (6.8)

where λ = (θmin/θmax)
1/3 = O(1) (see equation (5.18)) and β = θmax/θ0 = O(1).

In the case θmin = 0, λ = 0 and so tSJ is identical to tCR given by (2.15), and in

the case θmin = θmax = θ0, λ = β = 1 and so tSJ is identical to tCA given by (2.16).



Chapter 6 142

Reference Substrate Concen- tSJ tCR tCA Error
tration between

tSJ & tCA

(in %)
Orejon et al. [153] CYTOP 0.1% 0.9983 0.8834 0.9898 0.85
Orejon et al. [153] CYTOP 0.05% 0.9976 0.8900 0.9869 1.07
Orejon et al. [153] CYTOP 0.025% 0.9950 0.8861 0.9887 0.63
Orejon et al. [153] CYTOP 0.01% 0.9987 0.8793 0.9915 0.72
Orejon et al. [153] PTFE 0.1% 0.9975 0.8861 0.9887 0.88
Orejon et al. [153] PTFE 0.05% 0.9981 0.8861 0.9887 0.94
Orejon et al. [153] PTFE 0.025% 0.9955 0.8834 0.9898 0.57
Orejon et al. [153] PTFE 0.01% 0.9944 0.8900 0.9869 0.75
Moffat et al. [144] PTFE 0.1% 0.9042 0.6590 0.9123 −0.90
Askounis et al. [5] PTFE 0.1% 0.8776 0.6451 0.8990 −2.43
Askounis et al. [6] Silicon 0.125% 0.7789 0.6826 0.9330 −19.78
Askounis et al. [7] Silicon 0.125% 0.8250 0.6851 0.9123 −10.58

Table 6.2: The theoretically predicted lifetimes of evaporating droplets, tSJ, as in
table 6.1 together with theoretically predicted lifetimes of evaporating droplets in
the extreme modes, tCR and tCA, using the experimentally determined values for
θ0, θmin and θmax given in table 5.3 and the error (in %) between tSJ and tCA,
calculated from (tSJ − tCA) × 100/tSJ for the twelve data sets described in table
5.1.

6.4 Simple Approximations for tSJ

As we have seen in the previous subsection, the lifetimes of droplets in the SJ mode

reduce to the lifetimes of droplets in simpler modes of evaporation in appropriate

special cases, and, in particular, in the limit θmin → θmax and θ0 → θmin we have

tSJ = tCA at leading order (see equation (6.7)). In section 6.2 we pointed out that,

with the exception of the two data sets by Askounis et al. [6, 7], the experimentally

determined values of θ0, θmin and θmax are fairly similar, so that for these data sets

we expect the values for tSJ to be similar to the values for tCA. Table 6.2 shows the

values for tSJ together with the values for tCR and tCA using the experimentally

determined values for θ0, θmin and θmax given in table 5.3 for all twelve data sets.

In particular, table 6.2 shows that the values for tSJ are always larger than the
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values for tCR for all twelve data sets considered here, and indeed that for all of

the data sets with the exception of those by Askounis et al. [6, 7] the values for

tSJ are all close to the values for tCA with an absolute average percentage error of

1%, so that these values for tSJ can be approximated by the values for tCA, i.e.

tSJ(θ0, θmin, θmax) ≈ tCA(θ0). (6.9)

However, for droplets in the SJ mode the contact angle θ is bounded by θmin ≤ θ ≤

θmax for most of their lifetimes. Therefore, we propose the following approximation

for tSJ, which we shall show is a better approximation than (6.9) for the twelve

data sets considered here:

tSJ(θ0, θmin, θmax) ≈ tCA(θav), (6.10)

where θav := (θmin + θmax)/2.

Table 6.3 gives a comparison between tSJ and the approximation tCA(θav) using

the experimentally determined values for θ0, θmin and θmax. It also reproduces the

values for the experimentally determined lifetimes, texp, given in section 6.2. Table

6.3 shows that tCA(θav) is a better approximation for tSJ than tCA(θ0), as the

average percentage error between the values for tSJ and tCA(θav) is 0.1%, whereas,

it is 1% between the values for tSJ and tCA(θ0) for all data sets except of those of

Askounis et al. [6, 7]. Table 6.3 also shows that for these data sets the agreement

between texp and tCA(θav) is excellent as the error between these two values is

smaller than 3%. However, as expected, when the values for θ0, θmin and θmax

are not similar, as in the cases of the two data sets of Askounis et al. [6, 7], the

approximation (6.10) is not good for either tSJ or texp, as the considerably larger

errors show.
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6.5 Summary

In this chapter we gave a complete description of the lifetime of a droplet in the SJ

mode and compared it with the lifetimes of droplets determined from twelve data

sets in the literature. Furthermore, we showed that the lifetime of a droplet in the

SJ mode may be shorter than the lifetimes of droplets in both extreme modes of

evaporation, and that the present tSJ curves are qualitatively different from those

obtained in Chapters 3 and 4 and by Dietrich et al. [56], which are special cases

of the present model. Finally, we gave simple approximations for tSJ given by

equations (6.9) and (6.10), which are appropriate in situations in which the values

of θ0, θmin and θmax are fairly similar.
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Conclusions

7.1 Summary

This thesis considered the evolution of sessile droplets in different modes of evap-

oration and, in particular, the lifetimes of such droplets.

In Chapter 2 we considered droplets evaporating in the two extreme modes

of evaporation, namely the CR and CA modes. In particular, we described the

manner in which the extreme modes of evaporation become indistinguishable on

strongly hydrophobic substrates. Furthermore, we obtained simple asymptotic

expressions that provide good approximations to the evolutions of R, θ, and V

for a wide range of hydrophobic substrates. As a consequence we showed that it

is appropriate to extrapolate the scaled volume (V/V0)
2/3 linearly with time t to

determine the lifetimes of droplets evaporating in the CR mode as well as in the

CA mode on superhydrophobic substrates.

Chapters 3 and 4 concerned the lifetimes of droplets in the SS mode. Chapter

3 gave a complete description of the unexpectedly subtle relationship between

the lifetime of a droplet evaporating in a SS mode and those of initially identical

146
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droplets evaporating in the extreme modes. It particular, we showed that for initial

contact angles in the range 0 ≤ θ0 < π/2 the lifetime of a droplet in the SS mode

is constrained by those of initially identical droplets evaporating in the extreme

modes, but that for initial contact angles in the range π/2 ≤ θ0 < π the lifetime

of a droplet in the SS mode is not, in general, constrained by those of initially

identical droplets evaporating in the extreme modes. We also showed that there

is good agreement between experimentally determined lifetimes from appropriate

data sets in the literature and predicted lifetimes of droplets in the SS mode.

Whereas in Chapter 3 the initial contact angle, θ0, and the receding contact an-

gle, θ∗, were considered to be independent of each other, in Chapter 4 we proposed

a simple relationship between θ0 and θ∗ based on the assumption of a constant max-

imum pinning force fp. We used this relationship to give a complete description of

how the lifetime of a droplet in the SS mode depends on θ0 and fp. In particular,

we showed that the dependence of tSS on θ0 is qualitatively different from that

described in Chapter 3 and that it is qualitatively much more similar to (but still

not identical to) that tentatively suggested by Shanahan et al. [204]. Furthermore,

both the proposed relationship as well as the predicted lifetimes using it were found

to agree surprisingly well with experimental results obtained from the literature.

Chapters 5 and 6 concerned droplets evaporating in the SJ mode. In Chapter 5

we developed a simple model for the SJ mode that does not resolve the details of the

local behaviour near the contact line but instead captures the global behaviour of

the droplet. This model was based on the assumptions that during a stick phase

the contact radius R is constant, that a jump phase is instantaneous, and that

the contact angle at which the contact line de-pins, θmin, and the contact angle

at which the contact line re-pins, θmax, remain constant throughout the entire

evaporation process. Furthermore, we showed that for experimental data sets in
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the literature that satisfy these assumptions there is excellent agreement between

both the theoretically predicted duration of the stick phase and the change of R

during a jump phase and the experimentally determined values. It was also shown

that in appropriate special cases the SJ mode reduces to the CR, CA or SS mode.

Whereas Chapter 5 concerned the evolution of a droplet in the SJ mode, Chap-

ter 6 focused on the lifetime of a droplet in this mode. In particular, it was

shown that, despite the model predicting an infinite number of stick and jump

phases, there was good agreement between the experimentally determined lifetime

of droplets in the literature and the (finite) theoretically predicted lifetimes. Fur-

thermore, a complete description of the rather complicated relationship between

the lifetime of a droplet in the SJ mode and those of initially identical droplets

in the extreme modes was given. In particular, we showed that the lifetime of

a droplet in the SJ mode may be shorter than the lifetime of initially identi-

cal droplets in the extreme modes. Finally, approximations to the lifetime of a

droplet in the SJ mode were proposed and were found to be good approximations

to the experimentally determined lifetimes in situations in which the values of θ0,

θmin and θmax are fairly similar.

7.2 Future Work

The results described in the present thesis suggest many possible directions for

future research.

In section 1.5.2 we described different investigations of the evaporation of

droplets of water on different superhydrophobic substrates that reached differ-

ent conclusions about the significance of evaporative cooling, and hence different

conclusions about the applicability of the simplest version of the diffusion-limited
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model. Further theoretical and experimental investigations could focus on deter-

mining precisely which factors lead to a significant effect of evaporative cooling on

droplets on superhydrophobic substrates observed by Dash and Garimella [49, 50],

but not by Gelderblom et al. [78] and Talbot et al. [228].

In Chapter 2 we described the manner in which the extreme modes of evapora-

tion become indistinguishable on strongly hydrophobic substrates in the simplest

version of the diffusion-limited model. Since the instantaneous evaporative cooling

depends only on the instantaneous geometry of the droplet, and hence its instan-

taneous effect will be the same on both extreme modes, we hypothesised that even

in situations such as those studied by Dash and Garimella [49, 50] in which evapo-

rative cooling is significant, the extreme modes will still become indistinguishable

on strongly hydrophobic substrates. However, further theoretical investigations

are needed to confirm or disprove this hypothesis.

All of the experimental data sets considered in Chapters 3–6 have initial contact

angles in the range 0.61 ≃ 35◦ . θ0 . 2.14 ≃ 123◦ (see tables 4.1 and 5.1). Thus

testing the present models for droplets on superhydrophobic substrates remains

an open challenge.

As pointed out in Chapter 4, the value of the maximum pinning force fp will

depend on the nature of the substrate (such as its surface roughness and chemical

heterogeneity), as well as on the fluid and the atmosphere, and so will, in general,

be different for different experiments. However, the unexpected insensitivity of the

lifetimes to the value of fp revealed in Chapter 4 reinforces the need for further

theoretical and experimental work on the nature of contact line pinning and de-

pinning on non-ideal substrates.

The model for the SJ mode described in Chapter 5 assumes that during a

stick phase the contact radius R is constant, that a jump phase is instantaneous,
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and that the contact angle at which the contact line de-pins, θmin, and the con-

tact angle at which the contact line re-pins, θmax, remain constant throughout the

entire evaporation process. Future work could focus on relaxing some or all of

these assumptions. For example, for an evaporating droplet containing suspended

nanoparticles, variation in R during the stick phase and in θmin and θmax through-

out the entire evaporation process could be included in the model, by, for example,

making R, θmin and θmax functions of the concentration of nanoparticles in such a

way that for high concentrations there is little variation in R, θmin and θmax, but

for low concentrations there is significant variation in them. This extended model

could also be used to describe how the SJ mode reduces to the CR or CA mode in

appropriate special limits. In particular, for very high concentrations the contact

line is pinned for most of its lifetime and the droplet evaporates in the CR mode,

for very low concentrations the contact line is de-pinned and the droplet evaporates

in the CA mode, and for intermediate concentrations of nanoparticles the contact

line is pinned, de-pins and re-pins multiple times and the droplet evaporates in

the SJ mode.

Orejon et al. [153] showed that for droplets with a 0.1% concentration of

nanoparticles evaporating on a CYTOP or PTFE substrate the contact line even-

tually ceases de-pinning, so that thereafter it evaporates in a stick phase for the

remainder of its lifetime (see figures 1.9 and 5.1). The model described in Chapter

5 could be extended to capture this effect by replacing the infinite stick and jump

phases with a final stick phase. This could be done by considering a maximum

pinning force like that in Chapter 4, as well as a minimum pinning force. Once

the pinning force remains below its maximum value, the contact line no longer

de-pins and thereafter the droplet evaporates in a stick phase for the remainder of

its lifetime.
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The present model assumes the jump phases are instantaneous; another possi-

ble extension could include a more detailed modelling of the rapid variation in the

droplet profile during the jump phases.

Models for other SJ modes could be developed in the future. For example, in the

model described in Chapter 5 it is assumed that θmin and θmax, and therefore δθ :=

θmax − θmin, are constant throughout the entire evaporation process. Replacing

these assumptions with the assumption that the change in R during each jump

phase is constant, i.e. δR := Rn+1 − Rn is a constant, describes a different SJ

mode, which has been observed by, for example, McHale et al. [142] and Xu et al.

[245] for droplets evaporating on pillared substrates, in which case δR represents,

for example, the width of a pillar plus the gap between two adjacent pillars.

Alternatively, the models for the SS and the SJ mode, described in Chapter

3 and Chapter 5, respectively, could be combined to describe a stick-jump-slide

(SJS) mode, as investigated by, for example, Kusumaatmaja and Yeomans [117].

We believe that the results described in the present thesis make a significant

contribution to the study of evaporating sessile droplets; nonetheless the previously

mentioned open challenges and possible extensions show that much research still

remains to be done before we can completely understand this fascinating and

important problem.
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