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Abstract 

 

A new approach of electrocardiography (ECG) analysis system is developed to process 

noisy ECG signals leading for improved arrhythmia detection. The system employs two 

processing units comprising a novel noise reduction unit and a novel pattern recognition 

unit. Each unit incorporates numbers of processing techniques. In the noise reduction unit, 

the ECG signal is denoised before proceeding to the next stage. Four main noises 

contaminating the ECG signal are considered that includes baseline wander (BW), 

powerline interference (PLI), electromyogram (EMG) and motion artifact (MA). For BW 

and MA noise reduction, a novel Sqtwolog Threshold and High/Low pass (STHL) wavelet 

based filter is used. An Improved Proportionate Normalised Least Mean Square (IPNLMS) 

adaptive filter is used to the effects of EMG noise and a bandstop notch filter is used to cope 

with PLI.  

 

The pattern recognition unit comprises feature extraction process and classification 

process. In this research, some features from ECG signals are extracted to be used as the 

input vector for classification stage. A new Rectangular Pulse Domain (RPD), feature 

extraction technique is proposed that operates by taking the amplitude of intersection 

between filtered ECG signal and rectangular pulses. The signal is divided according to R to 

R peak interval (RRI) before superimposing with the rectangular pulses. The research also 

investigates the use of the P to T peak interval (PTI) as the signal limiter as an alternative to 

RRI approach and has shown encouraging performance. The classification process is 

performed to identify the signal whether it belongs to Atrial Fibrillation (AF) or vice-versa. 

The extracted features are used as the input vectors to the classifier.  

 

Two novel classifiers are designed which are the Cascade Hybrid Multilayer 

Perceptron (CHMLP) and the Multi-Classify Hybrid Multilayer Perceptron (MCHMLP) 

networks which improved version of Hybrid Multilayer Perceptron (HMLP) neural network. 

The MCHMLP network performs a multiple classification by doing the second classification 

after the first classification has achieved the optimal point. Compare with the CHMLP 

network, however, performs the second classification process after the first classification 

has been done at each iteration and stops after it reaches the optimal structure. Both networks 
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provide better results than the conventional HMLP network but the CHMLP network gives 

better accuracy and standard deviation results than the MCHMLP network. 

 

The combination of both the novel noise reduction and the novel pattern recognition 

units are used to develop the new approach of ECG analysis system in identifying the AF 

signal.  The performance of the new ECG analysis has been tested using the MIT-BIH ECG 

database. 
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Chapter 1 

 

Introduction 

 

 

1.1 Overview 

 

Atrial fibrillation (AF) is an arrhythmia which can progress to a chronic condition. AF 

treatment could be enhanced if better prediction methods were available. The factors which 

contribute to the risk of AF include hypertension, myocardial infarction, congestive heart 

failure, as well as increasing age. The number of cases of AF increases with age and 

approximately 10% of people aged over 80 are diagnosed with AF [1]. Some reports [2] 

state that the mortality rates recorded for AF patients are higher than those diagnosed as 

having a normal sinus rhythm (NSR). More accurate AF prediction would lead to a faster 

initiation of treatment that could save lives.  AF is often asymptomatic, thus is not suspected 

by the patient by any sensation of irregular heartbeat or pulse. AF episodes occurring 

intermittently, known as paroxysmal AF also contribute to making an AF diagnosis 

particularly challenging [3]. 

 

For AF early detection, a new electrocardiography (ECG) analysis system is 

developed to obtain the preliminary information before the results are transmitted to the 

local hospital for further analysis. The system involves two processing units (Noise 

Reduction and Pattern Recognition) before the detection results can be obtained. In the first 

unit the ECG signals are collected from patients. Before the ECG signals being proceeded 

to the pattern recognition unit the noise contaminating in the ECG signals are removed by 

using several noise cancellation techniques since the ECG contained with number of noises. 
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In the pattern recognition stage the filtered ECG signals are processed and several features 

are extracted from the signal. The features are then fed to the classifier as the input vector 

before the AF or non-AF episode could be detected.    

 

 

1.2 Research Motivation 

 

In this study noise reduction techniques for removing the unwanted noise from ECG 

signals are investigated. Noise in the ECG signal can be divided broadly into two groups 

which are correlated and uncorrelated noise [4, 5]. In uncorrelated noise, the noise 

frequencies are not correlated with ECG signal, and can be got rid of easily (i.e. baseline 

wander (BW) and powerline interference (PLI)). The BW and PLI noises are comes from 

medical equipment and power supply which easily can be identified and removed [6, 7]. The 

electromyogram (EMG) is the electric activity in muscle [8]. The electrical impulse activity 

from muscle is needed to be measured and used as reference signal for denoising techniques. 

In the case of correlated noise, the motion artifact (MA) is contributed by the movement of 

patient’s body and difficult to be identified[9, 10]. The MA noise frequency is completely 

overlapped and correlated with the ECG signal. In MA denoising works, a signal/model of 

MA noise has to be identified before the MA noise in the ECG signal could been reduced. 

The model of the MA signal is hard to be identified since a lot of muscle movement in 

patient’s body in one time. In this study, we attempt to minimise the noise in the ECG signal 

by developing a novel ECG denoising unit.         

 

The feature extraction is the main process before any classification is performed. In 

AF pattern recognition, numbers of techniques have been used in the detection as summarize 

by Larburu in [11]. In previous researches, characteristic waveform based features are 

widely used for extracting each ECG complex. Most of them used the amplitude of the P, 

QRS and T peaks and the durations of segmentation as the detection indicator. However, the 

results provided in [11] still leaves room for improvement to be made. On the other hands, 

most of ECG data is taken from stationary patient (at rest) or while performing a constant 

movement (i.e. while on the treadmill with constant velocity). ECG data collection on the 

non-stationary patient is performed at minimum frequencies whilst overlooks the high 

mortality rate during having sport or active activities [11]. In this research we are 
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investigating the best technique to extract the ECG features and try to solve the non-

stationary issue.   

 

A lot of classifiers are available to be used in the AF pattern recognition process [11]. 

The capability of classifiers to give high accuracy depends on how the classifier is trained. 

The matched selection of the classifier structure and training algorithm also allow good 

classification results to be produced [12] and the suitability of input vector also contributes 

to the performance of classifier. The hybrid multilayer perceptron (HMLP) neural network 

has shown the ability to perform good classification [12]. However, the network has its own 

limitations and fails to converge once reaching the highest optimum point. In this research, 

we attempt to improve the classification ability of the HMLP network by extending the 

network’s optimum point.    

 

 

1.3 Summary of Original Contributions 

 

Several novel contributions are identified in the research work. The contributions 

comprise two units that include a noise reduction unit and a pattern recognition unit that are 

utilised to form a new ECG Analysis system that is used for AF detection. 

 

1) Noise Reduction Unit 

 

Novel ECG denoising methods have been proposed in filtering the unwanted noises. 

The new technique employed is the improved proportionate normalized least mean square 

(IPNLMS) adaptive filter for removing the EMG effect. The IPNLMS adaptive filter has 

been used before in echo cancellation and limited uses of medical signal. The EMG noise 

can be measured from standard ECG lead system as the reference. The normalized least 

mean square (NLMS) based adaptive filters have the capability to reduce the EMG noise 

from both stationary and non-stationary conditions. The IPNLMS provides significant result 

to be compared with other NLMS based adaptive filter and other filtering techniques. 

 

Novel wavelet based filters in reducing the BW and MA noise signals also has been 

designed by combining two wavelet based filters. The novel Sqtwolog Threshold & 

High/Low pass (STHL) wavelet based filters is used to reduce the effect of BW and MA 
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noises without using any model/pattern signal as the references. Both BW and the MA noises 

are non-stationary and immeasurable signals, so application of wavelet threshold techniques 

and wavelet high-pass/low-pass filter are used to reduce the BW and the MA effects. The 

performance of new filters (IPNLMS and STHL) have been tested by datasets (ECG signals 

and noises) taken from Massachusetts Institute of Technology Beth Israel Hospital (MIT-

BIH) database with encouraging results. 

 

2) Pattern Recognition Unit 

 

A novel feature extraction process is presented that uses the rectangular pulse domain 

(RPD) approach. Differ from conventional feature which are based on duration and 

amplitude of P, QRS and T peaks, the RPD try to extract information from others point. The 

RPD use several rectangular pulses that are superimposed with an ECG complex. The 

intersection points between RPD and ECG complex are extracted and used as the input 

vectors to the classifier. In this research, the R to R peak interval (RRI) and P to T peak 

interval (PTI) morphologies are used to segregate each complex of ECG signal. A 

comparative performance study is conducted and demonstrated the RPD extracted feature 

capable to perform well by using HMLP network for RRI and PTI morphology compare to 

others classifier. In the other hands, the PTI morphology is important for the non-stationary 

cases since the different of the rest time happen for each non-stationary subjects. Information 

from P to T peak for each ECG complex are used for PTI morphology, leaving the rest time 

behind.  

 

In the part of classification, improvement to the HMLP network is done by performing 

multi-classify (first and second classify) of classification process. The novel multi-classify 

hybrid multilayer perceptron (MCHMLP) network doing the first stage classification until 

achieved the optimal point, then starts the second classification process. Here, the output of 

the first HMLP network will be fed as the input of the second HMLP network. In the other 

hand, a new arrangement on second classification of MCHMLP network gave better 

classification results, and known as cascade hybrid multilayer perceptron (CHMLP) 

network. In CHMLP network, the second classification starts after the first HMLP network 

is done at each iteration. A comparative study of the classifier performance is conducted, 

both MCHMLP and CHMLP networks gives high accuracy results. However, the CHMLP 

network provides better accuracy and faster to reach the optimal point than MCHMLP 
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network. In order to investigate the performance of MCHMLP and CHMLP networks, 

several samples are taken from the machine learning repository, University of California - 

Irvine (UCI) [13] (Pima Indian Diabetes , Iris, Glass, Lung Cancer, Ionosphere and Hayes-

Roth) and  used to test the network’s classification ability. 

 

3) ECG Analysis System for AF Detection 

 

The study developed a new ECG analysis system, the complete combination of the 

noise reduction unit (to perform filtering of the ECG signal) and the pattern recognition unit 

(to recognize features and perform the classification). The system is able to identify the 

presence of AF or non-AF with high accuracy and at the same time false positive occurrence 

can be reduced. Several datasets are taken from MIT-BIH database to test the capability of 

the system. It is shown that the occurrence of AF and non-AF are identified correctly by the 

system with a superior accuracy compared to conventional approaches.  

 

 

1.4 Thesis Organization 

 

The thesis is organised as follows. Chapter 1 provides an introduction to this research. 

The chapter covers the research motivation and introduces the novel techniques which are 

presented in the following chapters. A summary of the original contributions is also 

provided.  

 

Chapter 2 reviews cardiac rhythm abnormalities with a brief description of each 

condition. The chapter also highlights the importance AF, with in-depth explanation of this 

condition. The development of the Holter monitoring system is explained. The development 

of Holter monitor components that have been used and ECG acquisition method need to be 

understood completely since the aim of the study is to develop an intelligent Holter 

monitoring system. In this study, AF activity is chosen to be detected and classified. A 

detailed discussion on the characteristic, the classification, the symptoms and the diagnosis 

of AF are being done in Chapter 2. 

 

Chapter 3 reviews the approach used in processing the raw signal until the AF is 

identified. First of all, the source of datasets and unwanted noises to be filtered are clarified. 
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Techniques such as digital filters, adaptive filters and wavelet transform used to reduce 

contaminating noise in the signal, are explained. In performing the feature extraction 

process, the characteristic and waveform based features are discussed. Some review of 

previous researches on AF detection is done in Chapter 3. The neural network pattern 

recognition technique in doing the classification process is also reviewed in the chapter.   

 

Chapter 4 introduces the novel ECG denoising technique which is applied to reduce 

the EMG, BW and MA noise from the ECG signals. The IPNLMS adaptive filter is used for 

filtering the EMG noise while wavelet based filters are used for reducing the effect of BW 

and MA noise. In removing the PLI noise, a bandstop notch filter is designed. The evaluation 

processes are done by comparing the techniques used with others filter.    

 

Chapter 5 reveals the performance of RPD feature extraction technique which is able 

to provide significant information to the classifier. This study also proposes the use of PTI 

morphology as an alternative to RRI morphology in AF detection. Chapter 5 also shows the 

performance of two modified HMLP networks (MCHMLP and CHMLP) as useful 

classifiers. Both networks are shown to be able to obtain high accuracy results during the 

classification process with CHMLP network doing better classification than the MCHMLP 

network. 

 

Chapter 6 present a new ECG analysis system which start by injecting ECG signal to 

the system and end after AF or non-AF have been detected. The system includes the noise 

reducing process, the feature extraction phase and last but not least the classification stage. 

The system attempted to reduce as much as possible the noises contaminating the ECG 

signals. The system then extracted the filtered signal and the extracted features are used to 

be the input vectors to the classifier in identifying AF.  

 

Chapter 7 concludes the thesis along with discussion and some future works. Some 

suggestions in improving the reliability of the system are made since the system is still at 

the initial stage and has scope for improvement.  
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Chapter 2 

 

ECG Acquisition 

 

 

2.1 Introduction 

 

AF is an abnormality of cardiac rhythm, detected by ECG. The cardiac structure, 

anatomy and physiology, and associated abnormalities have to be understood before the 

arising of AF can be detected.  Detailed explanation of electrocardiography and the use of 

the ECG in detecting and diagnosing cardiac rhythm abnormalities are presented. The use 

of the Holter monitor allows continuous detection and recording of cardiac rhythm for 

several days. A review of Holter monitor development and its use in medical practice today 

is provided. The latest technology used in the development of the Holter monitor in 

accordance with present modernization is also discussed. 

 

 

2.2 Cardiac Rhythm Abnormality 

 

Cardiac rhythm abnormality refers to a large group of conditions where the electrical 

activity in the heart is abnormal. Abnormality of rhythm may be regular or irregular, fast or 

slow, or combinations of these[14-16]. The spectrum of abnormality of rhythm ranges from 

asymptomatic innocent criteria such as isolated irregular beats, to conditions causing major 

symptoms such as breathlessness, blackouts, and even sudden death. 
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There are four chambers of human heart: right atrium, left atrium, right ventricle and 

left ventricle [17-19]. The heart functions as two parallel pumps; both ventricles contract 

simultaneously, the right ventricle pumps de-oxygenated blood to the lungs while the left 

ventricle pumps oxygenated blood to the rest of the body. The atria also contract 

simultaneously; they function mainly as collecting chambers, and contract to fill their 

respective ventricle; the sequence and timing of all this is controlled by an electrical 

conducting system running throughout the heart 

 

 

 

Figure 2.1: The basic human heart anatomy [17]. 

 

 

2.2.1 Types of Cardiac Abnormality 

 

The cardiac abnormality, known as arrhythmia, is an irregular heartbeat. Arrhythmia 

involves the abnormal electrical activity in the heart. The heart beat may be too fast or too 

slow, and may be regular or irregular. If the acceleration of the heart rate is too high this is 

known as tachycardia while if the heartbeat is too slow it is known as bradycardia [20, 21]. 

Several life-threatening arrhythmias can cause heart attacks. In fact, sudden cardiac 

arrhythmias are among the most common causes of death. 
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Generally, for an adult, the normal heart rate during rest time is 60-80 beats per minute. 

The bradycardia is a slow heart rate of less than 60 beats per minute while the heart rate at 

rest is 100-120 beats per minute, then this is labelled as tachycardia [21, 22]. The fibrillation 

occurs when the abnormal activity of electrical impulses in the entire chamber of the heart 

chamber. Fibrillation could be life-threatening and when it affects the function of the atria 

is known as AF [23-25]. AF may be caused by a serious medical condition that underlies 

and should be evaluated by a doctor. 

 

 

2.3 Electrocardiography (ECG) 

 

ECG is an interpretation of the electrical signal of the heart and recorded using 

electrodes that are attached to the skin [14, 15, 26]. The recording phase is obtained by using 

an electrocardiographic device. The ECG detects and amplifies the small electrical changes 

which occur when the heart conducting tissue and muscle depolarises and repolarises. 

Electric charge crosses the cell membrane during the depolarisation and repolarisation 

process. A small change in voltage between two electrodes is displayed as a wave on a screen 

or paper [14, 27, 28] as shown in Figure 2.2.      

 

 

Figure 2.2: ECG output with cardiac activities [14]. 
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2.3.1 Electrical Conductivity of the Heart 

 

The spread of electrical impulses in the heart begins when the impulses arise in the 

sinoatrial (SA) node before spreading to both atria. After that, the electrical impulses arrive 

at the atrioventricular (AV) node. The electrical impulses from the AV node are directed to 

the ventricles via the Bundle of His. The arrival of the electrical signal at the individual cells 

of the myocardium allows them to contract in unison, thus allowing the ventricles to 

contract, producing a systemic circulation via left ventricle and a pulmonary circulation via 

the right ventricle [29-31]. Figure 2.3 shows the electrical conduction system throughout the 

heart. 

 

 

Figure 2.3: The electric impulses movement in the heart [30]. 

 

In normal condition, the electrical impulses in the heart are spontaneously generated 

at SA node which acts as a physiological pacemaker. Each electrical impulse is transmitted 

through the left atrium to the right atria passing through the Bachmann bundle (right and left 

bundle branch). This electrical activity stimulates the atria to contract. The movement of 

electrical impulses from the left atrium into the right atria is observed in the peak P of the 

ECG signals as in Figure 2.4. The intermodal tracts are a specific pathway of electrical 

impulses throughout the atria - the motion is from the SA node to the AV node. 

 

The AV node serves as a regulator to delay the conduction of electrical impulses into 

the ventricle. The AV node controls the contraction of the heart thus making sure no 

simultaneous contraction occurs between the atria and the ventricles. The activity carried 
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out by the AV node is observed by the P-R segment in the ECG signal. The P-R segment 

also reflects repolarization activity in the atria. The electrical impulses at AV node spread 

to the ventricles through the Purkinje fibres and finally stimulate the ventricular 

myocardium. The stimulation of ventricular myocardium produces the QRS complex of the 

ECG, representing complete depolarisation of the ventricles. The T peak (and sometimes U) 

represents repolarisation of the myocardium and is influenced by the nervous system that is 

driven by an integrated brainstem [31]. 

 

 

2.3.2 ECG Signal Morphology 

 

A healthy individual with a normal heart cycle is capable of displaying an ECG 

complex that consists of three main waves P, QRS and T. Put simply, the P wave 

corresponds to atrial contraction, the QRS wave corresponds to the electrical signal 

travelling through the ventricular muscle which causes ventricles contraction, and the T 

wave corresponds to repolarisation of the ventricles. In AF, the electrical actually through 

the atria is disorganized. Therefore, the two atria do not contract in unison; therefore, there 

is no P wave on the ECG. Figure 2.4 shows the ECG signal morphology that occurs in the 

heart. 
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Wave Start Peak End 

P Ps : Starting point of 

P wave 

P :  Peak of P wave Pe: Ending point of P 

wave 

QRS Qs: Starting point of 

Q wave 

R : Peak of R wave Se : Ending point of S 

wave 

T Ts: Starting point of 

T wave 

T  : Peak of T wave Te: Ending point of T 

wave 

Figure 2.4: ECG signal complex. 

 

2.3.3 Fiducial Point Detection 

 

A fiducial point is a point corresponding to the peak or a location of the three main 

waves in an ECG complex, which can be used as a reference point. In an ideal complex, 

there are at least nine fiducial points which can be identified. However, the boundaries of 

each wave cannot be distinguished by the human eye and therefore no clear definition can 

be given regarding the beginning or end of each of the main waves. Pan and Tompkins in 

[32] proposed a technique to detect the locations of the three major waves in the ECG signal 

by calculating the signal amplitude and width as well as the slope. Boulgouris et al. [33] also 

proposed tracking the local maximum and minimum radius of curvature. The combination 

of these two methods is able to improve the sensitivity and accuracy of ECG wave detection. 
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Many manufacturers of ECG recording equipment apply a combination of these techniques 

into their devices. 

 

 

Figure 2.5: The fiducial points taken from a complex ECG signal. 

 

Figure 2.5 shows the identified fiducial points of a complex of ECG signal. These 

fiducial points are often used in classifying cardiac abnormalities including PR interval, i.e. 

the distance measured from beginning of point P to peak R. The PR segment is measured 

starting at endpoint of P to the starting point of Q. The QRS interval is measured starting at 

point Q up to end of point S. Next, the QT interval and the ST intervals are measured based 

on the distances from beginning of point Q to end of point T and from end of point S to end 

of point T, respectively. The ST segment is measured from the endpoint of S to the start 

point of T. The RR interval is measured from the R peak to the next R peak. In addition, the 

amplitudes of the P, QRS and T peaks also contribute to the fiducial points. 
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2.3.4 ECG Lead Configuration   

 

In activity related to ECG, in this thesis the terms of ‘lead’ and ‘Lead’ define two 

different meanings. The ‘lead’ is defined as a cable or wire connecting the 

electrocardiograph machine with surface electrode to the user. On the other hand, the ‘Lead’ 

is defined as the potential difference between two points on the human body. There are two 

types of Lead configurations: bipolar (two electrodes with opposite polarity) and unipolar 

(combination of several electrodes with an electrode as the reference point) [34]. 

 

 

Limb leads Chest leads 

RA: Right Arm V1: Fourth intercostals space at the right border of the sternum 

LA: Left Arm V2: Fourth intercostal space at the left border of the sternum 

RL: Right Leg V3: Midway between location V2 and V4 

LL: Left Leg V4: At the mid-clavicular line in the fifth  intercostal space 

 V5: At the anterior axillary line on the same horizontal level as 

V4 

 V6: At the mid-axillary line on the same horizontal level as V4 

and V5 

Figure 2.6: The placement of 10 leads in the standard 12 Leads configuration. 

 

Figure 2.6 shows the common used standard, the 12 Leads surface ECG which consists of 

ten leads with four leads connected to the limb (both hands and legs) and while another six 

leads connected to the chest [34]. 
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Bipolar Leads Unipolar Leads 

Lead I = LA – RA 
aVR = RA -  

1

2
(LA+LL) 

Lead II = LL – RA 
aVL = LA -  

1

2
(RA+LL) 

Lead III = LL – LA 
aVF = RA -  

1

2
(RA+LA) 

Figure 2.7: The Einthoven’s triangle configuration setting at the limb [35]. 

 

Figure 2.7 shows the Einthoven setting configuration. Three bipolar configuration generates 

Lead I, Lead II and Lead III while the three unipolar configuration generates Lead 

augmented vector foot (aVf), Lead augmented vector left (aVl) and Lead augmented vector 

right (aVr) [35].  

 

 

2.4 Holter Monitor  

 

A Holter monitor is a portable device for continuous monitoring of electrical activity 

of the cardiovascular system for up to 48 hours.  Its continuously recording period is very 

useful for detecting occasional or short episodes of cardiac arrhythmia [16, 36, 37]. 
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2.4.1 History of Development 

 

The Holter monitor was invented by Dr. Norman J. Holter. Cardiac telemetric 

monitoring was invented in 1949 but clinical use only started in the early 1960s [36, 37]. 

Holter monitor records electrical changes from the heart through a series of electrodes which 

attached to the body. Electrodes are located over bones to minimise interference from muscle 

activity when breathing. Attachment locations and number of electrodes differ depending 

on the model. Commonly, though, most Holter monitors employ between three and eight 

electrodes [15, 38]. Being a small piece of equipment, it is usually attached to the patient’s 

belt or it is hung around the neck. This equipment is connected to electrodes and works as a 

log keeper of the heart’s electrical activities. Previous devices used reel tapes which ran at a 

1.7mm or 2mm/s speed to record the electrical activity. When the recording was completed, 

it could be played back and analysed at 60x speed. Thus 24 hours of recording can be 

analysed in 24 minutes. The latest technology allows modern recorders to record the cardiac 

activities onto digital flash memory devices. Data from flash memory is downloaded to a 

computer and analysed. Cardiac activity is processed automatically by counting the number 

of ECG complexes, computing heart rate, P, Q, R, S and T peak’s location, PR interval, QRS 

complexes and etc. Figure 2.8 shows a Holter monitoring system. 

 

 

Figure 2.8: The Holter monitoring system [39].  
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2.4.2 Components of Holter Monitor  

 

Each Holter system consists of two main parts, namely hardware which consists of a 

monitor and recorder and software to analyse the recorded signals. The latest Holter 

recorders are able to display signals and at the same time check the quality of the signal and 

perform analysis on the signal, whilst they also record the signal for future use. The Holter 

system is designed with patient operated buttons. Patients push the button when feeling ill, 

before going to sleep, or while taking medication, for example, because heart rate may 

change from the normal situation. The Holter system was designed to identify any changes 

of the signal and facilitate the task of the doctor or technicians to determine key areas to 

analyse. 

 

 

2.4.2.1 ECG Recorder 

 

Recorders have different sizes depending on the requirements and the manufacturers. 

The average dimensions of the device on the market are about 110mm x 70mm x 30mm. 

Most of the devices operate using a direct connection from a source of electricity or by using 

the battery according to the needs and circumstances. Most Holter monitors have two to 

three channels depending on the model from the manufacturer. The system to monitor ECGs 

and perform calculations may differ between models depending on the indicators set by the 

manufacturer and also the implementation in the Holter system. Nowadays, most of the 

Holter systems are designed with the comfort of the wearer in mind, so as to ensure the 

recorded ECG signal is free of any noise caused by movement due to discomfort. Due to 

technological progress, the Holter systems have more channels now compared to the 

conventional Holter system originally developed.  

 

Although the classical Mason-Likar lead system is still used, a better system has been 

designed in order to represent ECG signals. By using the new system, the recorded ECG 

signal is able to represent a similar signal during rest time or under stress. Figure 2.9 shows 

the portable Holter monitor system currently on the market. 
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Figure 2.9: The Holter system used to record ECG signals [39]. 

 

A Holter system is able to detect whether the patient is standing, walking or is in bed by 

adding a triaxial sensor into the system. The software available at the Holter system will 

activate the mode whether it is standing, walking or sleeping on the recommendation 

provided by the sensors. This invention could help cardiologists in collecting ECG analysis 

with records recorded in a patient’s diary. The recording device can be worn on the belt or 

the strap across the chest. Patients being monitored do not need to limit the normal daily 

activities. The device should be stored in a dry place and activities involving water whilst 

wearing the device should be avoided (i.e. bathing or swimming). The monitor’s battery can 

be removed for a few minutes without affecting the data signal collector and be replaced if 

long term monitoring is needed. Figure 2.10 shows the Holter monitor attached to the human 

body. 

 

 

Figure 2.10: Holter monitor in use [40]. 
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2.4.2.2 ECG Analysis Software 

 

The recording of ECG signals usually lasts between 24 to 48 hours. However, the 

long term monitoring required encourages human errors during analysis. Therefore, an 

integrated automatic analyser which is available in the Holter software system 

automatically determines the various patterns of heart rate, heart rhythm and other 

parameters. Good signal quality is needed to determine an accurate automated analysis. The 

attachment of electrodes to the patient’s body affects the quality of the recorded signal. In 

addition, strong limb movement also causes more noise to the recorded signal and the 

resulting signal is very difficult to process. Automated analysis is usually compiled in the 

Holter system and capable of giving information on heartbeat ECG morphology, beat 

interval measurement, heart rate variability, rhythm overview which may be corrected with 

the patient diary. Thus, the cardiologists are able to receive on analysis quickly and 

accurately. In addition, the system detects and analyses pacemakers. This process is useful 

for checking the correct function of pacemakers (automatic calibration) [41, 42]. Figure 

2.11 shows a screenshot of the Holter ECG analyser. 

 

 

Figure 2.11: A screenshot of the Holter ECG [41]. 
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A lot of information about the patient is available from the screenshot above. The 

ECG signal is recorded based on the peak R to R approach and it is taken from a Lead I 

channel. The duration for each frame is 10 seconds and the measurement of the heart rate 

is 81 beats per minute, which is normal. The duration of the monitoring process is about 24 

hours and the mean heart rate is 79 beats per minute. The slowest heart rate is 57 beats per 

minute occurs about two and half hours after monitoring started, while the fastest heart rate 

of 136 beats per minute occurs 16 hours after monitoring started.    

 

 

2.5 Atrial Fibrillation (AF) 

 

AF is a leading cause of heart arrhythmia (irregular heartbeat). AF often does not show 

any obvious symptoms [43]. However, the present of AF can increase a patient's risk of 

stroke up to seven times compared to patients who do not suffer from AF. An examination 

of the patient's pulse is enough to detect the presence of AF. Clinically, the absence of P 

waves in ECG signals followed by an irregular heartrate confirms the diagnosis of AF. The 

absence of P wave becomes the best indicator of AF episode, however, in a lot of cases AF 

comes with rapid and irregular beating. Patients with AF occasionally feel chest pain, 

fainting, heart palpitation or short of breath [44, 45].  

 

 

2.5.1 AF Diagnosis 

 

The evaluation of AF involves various processes including diagnosis, research on the 

cause of the arrhythmia and classification of the arrhythmia. Some assessment also may be 

made of the patient’s health records, the patient's physical condition and ECG [46]. In 

specific cases, the patient's blood sample will be taken before being sent to the laboratory 

for further analysis [47]. If a patient is identified as having AF symptoms, the attack should 

be stopped immediately as it could be life-threatening. In these situations, most patients are 

placed on continuous cardio respiratory monitoring with ECG monitoring the progress of 

the patient's heart activity. Normally, the cardiologist will try to identify the root cause of 

the cardiac abnormality [48]. 
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The ECG is used for the diagnosis of AF and detected by the absence of P waves or 

the demonstrable presence of totally irregular RR interval. This situation occurs because the 

electrical impulse activity in the atria ventricle is disorganized, so the rate at which AV node 

conductivity is totally irregular [46, 48]. Figure 2.12 illustrates the AF signal taken from 

Massachusetts Institute of Technology Beth Israel Hospital (MIT-BIH) database (afdb 

04015). The figure shows the ECG signal without significant P wave and irregularity of the 

RR interval. The use of ambulatory Holter monitor is needed for the AF detection and 

recording. Figure 2.13 shows the normal ECG signal also taken from MIT-BIH database 

(nsrdb 16265). From both figures it can be illustrates the differences between AF and normal 

ECG signal. From the figures, normal signal has a regular rhythm and clearly shows the P, 

QRS and T peaks compares with AF signal, it has an irregular rhythm and unable to present 

the P, QRS and T peaks clearly. The AF signal also labelled as tachycardia type abnormality 

which the heart rate at the rest time more than 100 per minute.      

 

 

Figure 2.12: The AF ECG signal in the heart. 
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Figure 2.13: The normal ECG signal in the heart. 

 

 

2.6 Conclusion 

 

This chapter discussed cardiac rhythm abnormality, the ECG concept, the Holter 

monitor application for the recording of ECG activity and some information on AF 

abnormality. The Holter monitor acquires the ECG signal from patient’s heart processes and 

analyses it to allow AF activity to be detected. Chapter 3 will review techniques used in 

ECG denoising. The filtered signal will be extract and the features will be tested in order to 

measure the significant and the suitability before being used as the indicator to the AF 

activity.   



24 
 

 

 

 

Chapter 3 

 

ECG Analysis 

 

 

3.1 Introduction 

 

The filtering, the feature extraction and the pattern recognition; those stages are 

normally used in analysing the ECG signals. In this chapter, an overview of several 

techniques used by researches will be discussed in order to enhance the knowledge on ECG 

signal processing. A lot of techniques have been used for filtering the ECG signal. There are 

several types of noise contaminating in ECG signal such as BW, PLI, EMG and MA. In 

eliminating ECG noises, techniques such as active filter, adaptive filter and wavelet 

transform have been used. The process of information extraction from the filtered signal is 

subsequently carried out. Characteristics such as amplitude, duration and slope usually can 

be indicators of heart disorder. The last stage is to recognize the pattern of the signal. The 

extracted features parameter will be feed to the classifier in order to identify the group or 

the pattern of the signal.  

 

 

3.2 ECG Database 

 

The American Heart Association (AHA), the European Society of Cardiology (ESC) 

and the MIT-BIH database are some of the bodies which gathered arrhythmia signals in 

Physionet [49] database. Those databases are widely used in research based ECG signal and 

its applications. All databases are a standardized, quantitative, automated and taken directly 
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from patients. In this research the normal and AF datasets are taken from MIT-BIH 

databases and used to measure the ability of the designed units.      

 

 

3.3 ECG Filtering 

 

The removal of noise contained in the ECG signal is an important early step in ECG 

signal processing. The noise in the signal should be minimized for a low SNR reading. The 

noise removal step should be done carefully since the next step process is rely on the current 

results. In general, there are a variety of noises contained in the ECG signal. In [50, 51], they 

have outlined four important noises that should be removed from the ECG signal. Various 

techniques have been used in reducing the noise from the ECG signal. Table 3.1 shows some 

summary of the contaminating noises in the ECG signal while Figure 3.1 shows the normal 

ECG signal and noises are taken from MIT-BIH database. 

 

Table 3.1: Summary of contaminating noises in ECG signal. 

Noise Source Description 

BW Measurement equipment. 0 to 0.5 Hz [10, 52]. 

PLI Power line supply. 50 Hz or 60Hz, depending on the power 

supply of each country [50, 51]. 

EMG Muscle. Electric activity in muscle [8, 53]. 

MA Body movement. Muscle interaction in human body [10]. 
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Figure 3.1(a): Normal ECG signal. 

 

 

Figure 3.1(b): BW noise. 
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Figure 3.1(c): PLI noise. 

 

 

Figure 3.1(d): EMG noise. 
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Figure 3.1(e): MA noise. 

 

 

Figure 3.1(f): Corrupted normal ECG with BW, PLI, EMG and MA noises. 
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The BW is the noise caused by the ECG measuring equipment. Usually, the noise is 

in the range of 0 to 0.5 Hz [10, 52]. The PLI is the noise occurring in the power line source. 

Typically, this noise frequency is about 50 Hz or 60Hz depends on the power supply of each 

country [50, 51]. The EMG noise could occur by the electrodes placement on several parts 

of the body. As the electrode is placed in several different sections, the EMG noise that 

occurs around the respective electrode is different and uncorrelated [27, 54]. The EMG noise 

is also known as skin effect noise [8, 53].The MA noise, which is caused by patient 

movement is the most difficult noise to remove since its spectrum overlaps with the actual 

ECG signal [55, 56]. The MA noise produces a different reading on every single movement 

of the body. They suggested that the ECG signal is recorded while the patient is jogging, 

which allows a constant movement to occur [10]. However, in the most of cases the ECG 

readings are recorded during patients at rest and treated as free from MA noise. 

 

 

3.4 Noise Reduction Methods 

 

The noise reduction process is a preliminary step in the signal processing. The noise 

contaminating a signal should be minimized because processing signals with noise will 

result in less accurate results. Sometimes there is an overlap between the signal frequency 

and the noise signal [27, 36, 54, 57, 58]. Therefore, it is difficult to distinguish the 

information contained in the signal. If the noise removal process is not done cautiously then 

the information contained in the signal will be removed along with the noise. Nowadays, 

there are various techniques available for removing the noise present in the signal. There are 

many methods or techniques which are often used in removing the noise from ECG signal. 

However, this study only concentrated on the infinite impulse response (IIR)/finite impulse 

response (FIR) filter, the adaptive filter and the wavelet transform techniques. 

 

 

 

3.4.1 IIR and FIR Filters 

 

Noise filtering by using IIR and FIR filters have been by numbers of researcher. Some 

summaries of noises reduction of ECG signal by using IIR/ FIR shows in Table 3.2. 
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Table 3.2: Summary of ECG noise reduction using IIR/FIR. 

Reference Noise Technique 

Van Alste and Schilder [52] BW/PLI Notch filter. 

Thakor and Zhu [10] BW Notch filter. 

Min and Shi-Liu [59] BW Modified moving average filter. 

Ling et al. [60] BW Combinations of high-pass filter with 

Savitzky Golay (SG) filter. 

Kim et al. [61] PLI Notch filter. 

Zhu et al. [62] PLI Discrete Fourier transform (DFT). 

Ferdjallah and Barr [63] PLI DFT arrays and Constrained Least Mean 

Square (CLMS) adaptive filter. 

Piskorowski [64] PLI Notch filter. 

Panda and Pati [65] EMG Window approaches. 

Jeyarani and Singh [66] EMG Low-pass filter. 

 

The IIR/FIR filter is also widely used in reducing noise in the ECG signal before 

further processing is done.  Van Alste and Schilder [52] use a notch filter in removing BW 

noise. However, the use of notch filters requires the BW noise frequency is identified before 

the notch filter is developed. Notch filter needs to be designed again if the BW noise 

contained in the ECG signal are changes. In other studies, Thakor and Zhu [10] also use a 

notch filter to reduce the effect of BW noise. Moving average filtering can also be used to 

reduce the effects of BW noise. Min and Shi-Liu [59] used a modified moving average filter 

to eliminate the BW noise. By taking into account the interval between the sampling data, 

the useful information from the ECG signal may be retained during the moving average 

calculation. Unfortunately the approach did not accommodate fast baseline changes. In 

another study, Ling et al. [60] stated that the use of a high-pass filter alone is unable to 

eliminate the effect of BW noise adequately. In order to overcome this problem, they have 

proposed a combination of a high pass filter with polynomial SG filter [60].The filter 

processed the low frequency signals while the SG polynomial filter smoothed the remaining 

signal. The filter needs to be re-designed for different BW noise contaminating ECG signals. 

 

A notch filter has been used to reduce PLI. Van Alste and Schilder suggested the use 

of notch filters in removing PLI noise [52]. The use of notch filter is seen as an efficient way 

to reducing the PLI impact since a fixed 50/60 Hz interference is produced by the PLI. Zhu 
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et al. [62] have proposed the use of DFT in eliminating PLI noise. They designed a narrow 

band frequency filter using a sliding DFT processor array. The approach is ineffective since 

40 arrays of DFTs are needed to reduce the PLI noise. The removal of PLI was also 

attempted by Ferdjallah and Barr [63]. Firstly, a notch filter is used to detect any changes to 

the centre frequency variation. Then the poles and zeroes of the system are adjusted in 

reaching the optimum bandwidth, consequently the noise is removed. Both poles and zeroes 

adjusted for detecting the changes in the centre frequency of the optimal bandwidth. The 

CLMS algorithm is used to adapt both the poles and zeroes of the system. However, the 

work is not really compatible since PLI is a simple noise for the complicated technique but 

useful to be used for other noises. Piskorowski [64] proposed the use of notch filters to 

remove the PLI in ECG signal by reducing the transient response of the system. In 

Piskorowski’s work, the PLI noise can be reduced as early as the ECG signal is processed. 

A non-zero initial condition must be identified in the first place before the transient response 

of the system is reduced by the notch filter. However, the approach is suitable for short 

signals only but not practical to be used for long signals since the PLI noise is constant. 

 

The IIR/FIR filter also can be used in filtering the EMG noise. The FIR filter is 

generally implemented in a non-recursive way which guarantees a stable filter. Panda and 

Pati [65], used the window based FIR filtering which are rectangular, Hanning, Hamming 

and Blackman windows to do the noise filtering. Those windows are uncomplicated and 

capable to produce good results. The filtering process by using rectangular window based 

FIR has a sharp attenuation in the stop band and the filter has been stable during the pass 

band than others window. Jeyarani and Singh [66] used a low pass filter in order to remove 

the EMG noise of more than 100Hz. However, the electrical impulses represented by EMG 

noise are variable depending on the movement of the body. The development of a permanent 

filter is unable to filter the noise comprehensively. The problem will arise if the designed 

filter is not universal enough to accommodate all signals. Most of the FIR/IIR filters are 

unable to provide good MA noise reduction [10]. The problem occurs since spectrum of the 

signal and MA noise are overlapped. However, there are techniques available to filter the 

MA noise such as adaptive filter techniques and wavelets.   
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3.4.2 Adaptive Filter  

 

 The adaptive filter is a unique filter which adjusts its transfer function based on an 

optimizing algorithm [67]. Figure 3.2 show the block set design of an adaptive filter.  

 

 

Figure 3.2: Adaptive filter block set. 

 

The input signal of the system is 𝑥𝑘 while 𝑑𝑘 is the reference signal of the system. The input 

signal of this system will convolute with filter coefficient, 𝑤and then the result will be 

compared with the reference signal. The difference between the desired signal and the filter 

output is noted as error, 𝑒𝑘 and the system will be used to update the filter coefficient. The 

process continues until the end of the signal. The ∆𝐖 is the correction factor for filter 

coefficients. The least mean square (LMS) is an example of updating correction factor 

algorithm. Figure 3.2 shows the structure of a length 𝐿 LMS update algorithm consist with 

system input 𝑥𝑘, input reference 𝑑𝑘, error of the system 𝑒𝑘 and filter coefficient 𝐖𝑘+1 

updated according to [68, 69]:  

 

𝐖𝑘+1 = 𝐖𝑘 + 𝜇𝑿𝑘𝑒𝑘                                                                                                      (3.1) 

 

The updated filter coefficient is predicted one step ahead by summing current filter 

coefficient with the multiplication of 𝜇, system input 𝑥𝑘 and error of the system 𝑒𝑘. 

Parameter 𝜇 is the step size which selected to control the convergence rate of the system. 

Adaptive filters have been applied to signal processing [69], feedback cancellation [70], 

echo cancellation [71] and noise cancellation [72]. The summaries of noises reduction in 

ECG signal by using adaptive filter shows in Table 3.3. 
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Table 3.3: Summary of ECG noise reduction using adaptive filter. 

Reference Noise Technique 

Pandey [73] BW Stochastic gradient algorithm. 

Paul and Mythili[74] BW Genetic algorithm (GA) and sign-data least mean 

square (SD-LMS). 

Rahman et al. [75] BW/PLI Constrained stability least mean squares 

(CSLMS). 

Ferdjallah and Barr [63] PLI Adaptive notch filter. 

Thakor and Zhu [10] PLI/EMG Reference signal (signal from leg) and LMS. 

Zhao and Ma [76] PLI EMD and adaptive filter. 

Rahman et al. [5] EMG/MA Normalised sign regressor least mean square 

(NSRLMS). 

Abbaspour et al. [77] EMG Adaptive neuro-fuzzy interference system 

(ANFIS). 

Raya and Sison [72] MA LMS and RLS. 

 

Adaptive filtering applications in noise cancellation are widely used and many 

modifications have been done to the original design by improving the system ability to 

perform better filtrations. Pandey [73] used an adaptive filter to remove the BW noise from 

ECG signals obtained from a Holter monitor. In his work, the primary signal was taken 

directly from an ECG Holter monitor while he added an absolute power spectrum of 3-

channel accelerometer output as the reference signal. The stochastic gradient algorithm is 

used as the adaption method. The use of the LMS adaptive filter in the study gave 

encouraging result.  

 

Paul and Mythili [74] used a combination of GA and SD-LMS algorithm to filter the 

BW noise. During the work, a SD-LMS adaptive filter was used to tune the GA to ensure 

that the BW noise in ECG signal is at a minimum. In the work, the ECG signals represented 

by 1 if a signal is greater than 0 and by -1 for a signal lower than 0. Although less complexity 

on calculation was made during the weight updating process but inaccurate result was 

obtained for the case of unbalanced signed signal. Rahman [75] used the constrained least 

mean squares (CSLMS) adaptive filter to remove the BW and PLI noises. The CSLMS is 

minimizing the squared Euclidean norm of the difference weight vector while the time-
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varying step-size of the CSLMS algorithm is inversely proportional to the squared norm of 

the difference. However, they only used CSLMS to remove the BW and PLI noises. 

 

Ferdjallah and Barr [63] used adapted notch filters to eliminate the effect of PLI. The 

adaptive notch filter is used to find the changes of the frequency variation. The poles and 

zeroes of the system are adjusted in order to reach the optimum bandwidth and to remove 

the noise. The poles and zeroes are adapted for detecting the changes in the centre frequency 

of the optimal bandwidth. The technique became an alternative method to recognize the 

actual PLI rather than using the fixed 50/60 Hz PLI. Thakor and Zhu [10] used the reference 

signal (signal from the leg) to identify the real PLI. Both detection techniques used are 

capable of identifying the PLI but the filtering approaches used are no better than the 

normalised least mean square (NLMS) adaptive filter.  

 

Zhao and Ma [76] proposed that the PLI is removed by using a series of EMD and the 

adaptive filter. The EMD technique is a data-driven technique used to decompose the ECG 

signal into a series of intrinsic mode functions (IMFs) [78]. An IMF represents an oscillatory 

mode as a part of a harmonic function. The IMF contains the same number of zero crossings 

and extrema and its envelopes are being symmetric with respect to zero. The ECG signal is 

filtered by using an adaptive filter based on the reference signal generated by the IMFs 

selected. In this research, the LMS adaptive filter was chosen to filter the IMFs. Again, the 

LMS adaptive filter is unable to better the NLMS adaptive filter result [69]. Unlike the 

wavelet technique, the EMD unable to promise the same number of IMF (subband) for both 

primary and reference signal.   

 

Rahman et al. used the NSRLMS adaptive filter to reduce the EMG noise in ECG 

signals [5]. In the study, the signed input signal used may increase the performance of the 

NSRMLS filter. Here the error of the system was represented by 1 if the signals are greater 

than 0 and by -1 for signals lower than 0. The signed action on the error will result in an 

imbalance of data distribution if clustered directly to one group only. Abbaspour et al. [77] 

found that EMG noise removal from ECG signals is difficult because of overlap frequency 

content. Therefore, they proposed the use of an ANFIS and compared it with the realtime 

data. The implementation of this method is evaluated using several criteria including power 

spectrum density and coherence, signal to noise ratio (SNR), relative error and cross 
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correlation. The use of a neural network requires a long training process to ensure the neural 

network is trained and capable to identify multiple types of EMG noises. 

 

Thakor & Zhu [10] used an LMS adaptive filter for removing the EMG noise. This 

approach can be applied since the electrodes are placed in several different parts as 

illustrated in Figure 2.7. They used the unipolar ‘Leads’ in generating the primary and 

reference signal from human body. The placement of electrodes in several places may 

present the uncorrelated signals. They used the different voltage between the aVr and aVl, 

and signal at aVf electrode as the reference and primary signals, respectively. The approach 

used in this work has become a main reference to current research in identifying EMG noise 

in ECG signals. However, the recent use of the adaptive filter (NLMS) is able to provide 

results with even better noise removal than the LMS filter used in this work. 

 

Raya and Sison [72] used an accelerometer to reduce the MA noise of ECG signals. 

The primary input has been collected from patient body and the accelerometer has been used 

as the input reference. As a result, the approach shows a good performance but filtering 

using LMS and RLS filters is unable to provide acceptable results. In Rahman et al.[5]used 

a NSRLMS algorithm to deal with the MA noise and enhance the results. However, the 

usage of adaptive filters requires a good reference signal. MA noise is difficult to detect 

since every muscle movement is different for each person. The use of adaptive filter in noise 

removal needs a good reference signal to perform the filtering process. Moreover, the 

properties of MA which overlap with ECG signals make the MA identification more 

difficult. The physical properties of the individual have the diversity of the possible 

movement which produces varying MA noises. As the result, the MA noise is hard to be 

observed, or to be used as a reference signal. 

 

 

3.4.3 Wavelet Transform  

 

Wavelets represent a mathematical approach that can serve as a tool to extract 

information from a variety of data types, not limited to data from image or audio signals 

only [79, 80]. In order to extract information from a given data, wavelet sets require that the 

data is fully analysed first. A reversible mathematical process is used to produce a 

complementary set of wavelets which will get the data without gaps or overlaps [81, 82]. 
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The discrete wavelet transform (DWT) is a function of wavelet transform and widely used 

in denoising ECG signal. In numerical analysis and functional analysis, a DWT is 

any wavelet transform for which the wavelets are discretely sampled. As with other wavelet 

transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures 

both frequency and location information (location in time). 

 

The first DWT was invented by Hungarian mathematician Alfred Haar [83]. For an 

input represented by a list of 2𝑛 numbers, the Haar wavelet transform may be considered to 

pair up input values, storing the difference and passing the sum. This process is repeated 

recursively, pairing up the sums to provide the next scale, which leads to 2𝑛-1 differences 

and a final sum. The most commonly used set of DWT was formulated by the Belgian 

mathematician Ingrid Daubechies in 1988 [84]. This formulation is based on the use of 

recurrence relations to generate progressively finer discrete samplings of an implicit mother 

wavelet function; each resolution is twice that of the previous scale. In her seminal paper, 

Daubechies derives a family of wavelets, the first of which is the Haar wavelet. Interest in 

this field has exploded since then, and many variations of Daubechies' original wavelets 

were developed.  

 

The DWT of a signal 𝑥 is calculated by passing it through a series of filters. First the 

samples are passed through a low pass filter with impulse response 𝑔[𝑛] resulting in a 

convolution of the two: 

 

𝑦[𝑛] = 𝑥[𝑛] ∗ 𝑔[𝑛] = ∑ 𝑥[𝑘]𝑔[𝑛 − 𝑘]                                                                 (3.2)

∞

𝑘=−∞

 

 

The signal is also decomposed simultaneously using a high-pass filter. The outputs giving 

the detail coefficients (from the high-pass filter) and approximation coefficients (from the 

low-pass). It is important that the two filters are related to each other. However, since half 

the frequencies of the signal have now been removed, half the samples can be discarded. 

The filter outputs are then subsampled by 2 with 𝑔[𝑛] denote as low-pass filter and ℎ[n] 

denote as high-pass filter, as is Mallat's and the common notation [85].   
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𝑦𝑙𝑜𝑤[𝑛] = ∑ 𝑥[𝑘]𝑔[𝑛 − 𝑘]

∞

𝑘=−∞

                                                                                      (3.3) 

 

𝑦ℎ𝑖𝑔ℎ[𝑛] = ∑ 𝑥[𝑘]ℎ[𝑛 − 𝑘]                                                                                     (3.4)

∞

𝑘=−∞

 

 

This decomposition has halved the time resolution since only half of each filter output 

characterises the signal. However, each output has half the frequency band of the input so 

the frequency resolution has been doubled, with the subsampling operator ↓.  

 

 

Figure 3.3: Block diagram of filter analysis. 

 

The decomposition process is repeated to further increase the frequency resolution 

and the approximation coefficients, decomposed with low and high pass filters and then 

down-sampled. This is represented as a binary tree with nodes representing a sub-space with 

a different time-frequency localisation. The tree is known as a filter bank. 
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Figure 3.4: A 3 level filter bank. 

 

At each level in the above diagram the signal is decomposed into low and high frequencies. 

Due to the decomposition process the input signal must be a multiple of 2𝑛 where 𝑛 is the 

number of levels. Numbers of mother wavelets used to decompose the signal such as 

Daubechies, Harr, biorthogonal, Mexican hat and others. However, in ECG signal 

processing, most of the researches are using the Daubechies as the mother wavelet since it 

is identical with the P, QRS and T complex [86, 87].  

 

Several wavelet threshold methods can be used in removing the noise from signal 

based on two major threshold scheme which are hard thresholding and soft thresholding. 

The hard threshold can be illustrated as the process of setting to zero the elements whose 

absolute values are lower than the threshold. The soft threshold is an extension of hard 

threshold, first setting to zero the elements whose absolute values are lower than the 

threshold, and then shrinking the nonzero coefficients toward zero [88]. In signal denoising 

wavelet based threshold method often be used such as adaptive threshold selection using the 

principle of Stein's Unbiased Risk Estimate (rigrsure),  fixed threshold methods √2𝑙𝑜𝑔(𝑥), 

(sqtwolog), fixed threshold heuristic variant of the first option (heursure) and fixed threshold 

minimax (minimax) [89, 90].  

 

The minimax method uses a selected fixed threshold that can produce minimax 

performance of the mean squared error compared to the ideal procedure. Therefore, this 
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minimax principle can be used to design estimators for statistical applications. The minimax 

estimator is being used since it is able to obtain the minimum and maximum mean square 

error (MSE). The technique used in rigrsure is using a soft threshold estimator as threshold 

selection for the rules which are made on the basis of Stein's Unbiased Risk Estimate. The 

technique is able to estimate the risk and simultaneously minimize the risk in setting the 

threshold. The sqtwolog estimator applies a fixed-form threshold technique in order to 

deliver minimax results and has been multiplied with a small factor proportional to log 

(length (signal)). The heursure estimator is a combination between the sqtwolog and rigrsure 

estimators. Heursure depends on the value of the SNR, where very small SNR indicates the 

occurrence of the very noisy condition. If this situation is detected, a fixed form threshold is 

used to remove the noise [91-93]. 

 

Table 3.4: Summary of ECG noise reduction using wavelet. 

Reference Noise Technique 

Arvinti [94] BW Stationary wavelet transform (SWT) with 

Daubechies 2 as mother wavelet at level 8. 

Zhe et al. [95]  BW Wavelet, fast Fourier transforms (FFT) and 

Bayesian filter with Coiflet 5 mother wavelet. 

Patil  and Chavan [96] PLI Decomposition tree at level 5 using Daubechies, 

Symmlet and biorthogonal mother wavelet. 

Weidong and Gotman [97] EMG Wavelet threshold denoising and independent 

component analysis (ICA). 

Seung-Min et al. [98] MA Capacitive coupled with Daubechies 4 mother 

wavelet. 

Strasser et al. [99] MA SWT. 

 

Table 3.4 provides a summary of noise reduction methods using wavelet techniques. 

Arvinti et al. [94] in his study used a method based on stationary wavelet approximation in 

reducing the BW noise effect. In their study, the method used is non-supervised which is the 

main advantage compared to other techniques by allowing an automatic analysis of ECG. 

By using the proposed method, an accurate result is given in eliminating BW noise. Arvinti 

et al. [94] used the SWT approach based on Daubechies type 2 at level 8. The selection of 

Daubechies as the mother wavelet is capable to provide good results. In the work, 

Daubechies type 2 approaches used but the use of Daubechies type 4 were seen to be more 
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similar with the ECG signal shape. The similarity between mother wavelet and ECG signal 

allows maintaining the originality of signals during the noise filtering process. Zhe et al. 

[95] have been using a combination of wavelet denoising, a FFT bandpass filter and a 

Bayesian filter in filtering the BW and the results are compared with conventional ECG 

denoising approaches. In the study, they used Coiflet type 5 as the mother wavelet but this 

was no better than Daubechies mother wavelet. Here, the similarity between mother wavelet 

and ECG signal plays a big role to maintain the initial signal.  

 

Patil and Chavan [96] found that wavelet is a good tool to analyse the non-stationary 

signals. The ECG signal corrupted with PLI and then denoised the signal by using a 

decomposition tree at level 5. They have done a comparison between the use of Daubechies, 

Symlet and Biorthogonal in reducing the impact of PLI. Although the fixed 50 Hz noise 

signal is used, results show the different performance by each mother wavelet. It was shown 

that the similarity between mother wavelet and ECG signal is capable to give good filtered 

signals. Weidong and Gotman [97] have introduced the use of wavelet threshold denoising 

and ICA techniques in getting rid of EMG noise in ECG signals. The ICA is a processing 

technique based on second order statistic that separate the independent components from 

main signals. The proposed extended ICA algorithm has been done and as a result, a higher 

order statistic calculation is not always necessary. In addition, the speed of the convergence 

is increased and able to be used in separating the subgaussian and supergaussian from the 

main sources. Compared with adaptive filters, the use of wavelet in reducing the effects of 

EMG do not need the noise to be identified as the reference signal in advance. In this study, 

the results given by the wavelet approach reduced the effects of EMG noise. However, the 

noises are still contaminating filtered signal. By applying the ICA technique to the filtered 

signals better results can be obtained. From the results, it is shown that the wavelet approach 

is unable to filter the EMG noise very well unless the wavelet is supported by other filtering 

techniques.  

 

The capacitive coupled ECG is a new ECG measurement approach which detects the 

ECGs although others material are attached with body (i.e. cloth or electrode) 

[93].Capacitive coupled ECG is known as non-invasive measurement technology and using 

displacement current rather than conduction current for many conventional ECG 

measurement equipment. However, the capacitive coupled ECG is unable to satisfactorily 

remove MA noise. The MA noises have different frequency ranges although many studies 
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indicate that MA noise occurs at signal frequency of less than 0.8Hz [10, 72]. Therefore, 

wavelet with the Daubechies type 4 as the mother wavelet is capable of reducing the noise. 

Although a small portion of the original ECG signal is eliminated together with the MA 

noise signal quality can still be maintained for long-term measurement. 

 

Portable devices nowadays are capable to record the ECG activity. Normally, the 

device includes a transmitter that is capable of providing information of the patient. 

However, the devices are unable to prevent the MA noise from contaminating ECG signals. 

Various efforts had been made to address the problem. In order to solve the problem, Strasser 

et al. [99] used SWT to reduce the effects of MA noise in the ECG signal. The SWT offers 

an automatic multi-resolution thresholding scheme for the filtering process. The MA is the 

most difficult noise to remove because its spectrum overlaps with the actual ECG signal 

[10]. At the same time, the MA noise may contain both high and low frequency and 

stationary or non-stationary signals. The filtering process has to be done carefully to 

maintain the originality of the signal and to reduce the maximum amount of MA noise.  

 

 

3.5 ECG Feature Extraction 

 

Normally, ECG feature extraction is based on the characteristic of ECG complex and 

ECG waveform. The features extraction using characteristics of ECG signal are often 

characterized by amplitude, duration and slope of each peak in the ECG complex [2, 53]. In 

contrast, extraction by using the ECG waveform is usually performed by observation of the 

correlation coefficient, Fourier coefficient, form factor, wavelet coefficient and others [10, 

100, 101]. For the analysis conducted to AF, the features extracted most are the RRI [40, 

102, 103] and atrial activity (AA) [104, 105]. In addition, there are also studies done by 

combining both RRI and AA approaches [3, 106, 107]. 
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3.5.1 Characteristic Based Feature 

 

In ECG feature extraction, the detection of P, QRS and T complexes needs to be done 

before heart disorder can be detected. Table 3.5 illustrates the characteristic and technique 

used by researchers in detecting the characteristics of ECG peaks. 

 

Table 3.5: Summary of ECG characteristic detection techniques. 

Reference Technique 

Rincon and Fernandez [108] Estimation and proportion of time 

duration. 

Mukhopadhy et al. [109] Hilbert transform. 

Alhady et al. [53] Multiple radial basis function (MRBF). 

Mazomeous et al. [110] Time domain morphology and gradient 

(TDMG). 

 

Rincon and Fernandez [108] found that the R wave can be detected with high precision 

by using a wavelets approach. Once the R wave is found, then the other ECG features are 

extracted using a waveform segmentation approach. They described that the quality of PQS 

detection is highly dependent on the accuracy of the R wave. They use a wavelet-based 

algorithm to identify the wave R -the R to R interval can be determined after the R wave is 

detected accurately. The S wave represents the offset of the QRS complex corresponding to 

the depolarization ventricular. The range of the S wave location is detected after the R peak 

is discovered and mitigated by the addition of 6 units. The S wave estimated range is between 

0.016 to 0.036 seconds after the R peak. The Q wave represents the beginning of the QRS 

complex. The Q peak is located within a period of 0.02 to 0.06 seconds before the peak R is 

found. The proportional calculation can be used to detect a wider QRS complex. The P wave 

represents the auricular depolarization of the heartbeat. Since this wave can be located near 

or far from the Q wave, so the proportion of the R to R interval is used to find the exact P 

point. The P to R interval duration is between 0.09 and 0.19 seconds depending on the R to 

R interval. In the proportional aspect, the limit is 14% to 22% of the R to R interval, 

respectively. However, the algorithm is valid for a specific area only and limited to minimum 

and maximum search. 
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Mukhopadhy et al. [109] suggested a detection technique of ECG features such as 

QRS duration, R peak amplitude, onset / offset / amplitude of the T peak, duration of S to T 

and Q to T. The technique used has been tested using data derived from Physikalisch 

Technische Bundesanstalt Diagnostic (PTB) database. In this study, an ECG signal was 

filtered to obtain a smooth signal before the Hilbert transform is used for derivatives to make 

sure the R peak region is easy to locate. The identified zero slopes at the beginning of the Q 

peak and at the ending of the S peak will be known as the QRS onset and the QRS offset, 

respectively. In order to detect the T peak, the same approach used to detect the R peak is 

also deployed. The T onset and T offset are detected by the approach used to detect the QRS 

onset and QRS offset, respectively. The amplitude of the R and T peaks, and the duration of 

QRS, QT and ST segmentation are measured using the average error. Algorithm 

performance is highly dependent on the selection of the threshold value.  

 

Alhady et al. [53] also use some features in identifying the real peaks of P, QRS and 

T. The study identified numbers of features; amplitude and duration, pre-gradient and post-

gradient and degree of each of the P, Q, R, S and T peaks. In this study the multiple radial 

basis function (MRBF) network is proposed to identify each of the P, Q, R, S and T peaks. 

The network is trained to identify by using five features as the input vector. A trained 

multiple radial basis function (MRBF) network identifies the peaks which are present in the 

ECG signal. Each peak is named as P1, P2, P3, …., Pn until the end of the ECG signal is 

reached.  From the extracted features for each peak the MRBF network decides that the peak 

is P, Q, R, S or T. Overall accuracy only occur with 86.53% accuracy and better prediction 

techniques need to be tested in order to provide high accuracy results. 

 

Mazomenos et al. [110] used the time domain morphology and gradient (TDMG) 

based algorithm for extracting all fiducial time which are present in the PQRST complex. 

Then, the estimation on the characteristics were done and used to identify the temporal ECG 

parameters. The combination of extrema detection technique and slope information is used 

with adaptive threshold in order to achieve the extraction of time instances. At the beginning, 

the location of the R peak and QRS complex boundaries can be determined by observations 

on time scale. Then, the observation of the QRS complex can determine the peaks Q and S, 

as preceding and succeeding the QRS complex, respectively. The P and T peaks are 

estimated from the remaining fiducial points of the PQRST complex, at the left and right of 

the QRS complex, respectively. The approach used is based on Pan and Tompkins [32] work 
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in estimating the boundary of each peak. However, the ECG signals must be filtered 

correctly before the boundary of each peak is estimated. 

 

 

3.5.2 Waveform Based Feature  

 

Table 3.6 shows a summary of approaches used to detect ECG signal by using 

waveform based feature.  

 

Table 3.6: Summary of waveform based feature detection techniques. 

Reference Technique 

Kumar et al. [111] Curve mapping/matching. 

Ge [112] Linear approximate data transfer (LADT). 

Sutar et al. [113] Designed low cost cum computing device (LCAD). 

Safie et al. [108] Pulse active ratio (PAR) based PWM. 

 

Kumar et al. [111] suggest an approach which is able to determine the amplitude of the P, 

QRS and T followed by period intervals (PR, RR, QRS, and QT). The features obtained are 

used to determine whether heart operation is a normal or not. Any changes to the heart's 

activity can be identified to facilitate cardiologists to recommend a total dose required. In 

their study, a curve mapping (CM) technique based curve slope method has been proposed 

to track the ECG signals. They also proposed the use of pattern matching between the 

healthy and diseased signals. Once these patterns are identified, they are used to apply the 

slope based point computation to recognise the various up and down sets. The CM technique 

is capable to match for regular ECG however, difficult to match the irregular ECG signal. 

 

Ge [112], in the research used wavelet based filter (average filter and Mexican Hat 

mother wavelet) to reduce the noise effect in the ECG signals. Feature such as premature 

ventricular contraction (PVC) and NSR, taken from the MIT-BIH database, are extracted 

for a possible discrimination process. Then, the filtered signal is compressed by using the 

linear approximation data transfer (LADT) algorithm. Beats which have been identified are 

segmented by using a Hanning window with 200ms range before the QRS points (better 

known as the peak R) and 400ms after the QRS points. The Hanning window ensures that 



45 
 

each end of the signal becomes zero and then decomposes the signal by using Daubechies 

mother wavelet. The technique extracts three main features from an ECG signal which are 

the variance, the energy and the consecutive ratio of the R to R peak. However, the peak 

estimation based on the boundaries of time is less suitable for irregular ECG signals. 

 

In Sutar et al. [113] an intelligent diagnostic medical system was developed, using a 

LCAD to extract the ECG signal. Some significant features are extracted using the LCAD 

system. The use of time domain and frequency domain allows accurate detection of the QRS 

complex, and the ECG signal extraction is done correctly. The DWT is used to decompose 

the ECG signals for up to level 4. The R peak detection process uses a threshold value of 

75% from the maximum value of the selected sample. The maximum absolute value of the 

sample will allow the R peak detection. The QRS complex is determined based on the 

location of the detected P peak. The Q and S peaks are below the baseline on the left and 

right of the reference R peak. The P peak detection is done by identifying the positive slope 

followed by the negative slope. The amplitude of the two slopes must be greater than 

0.004mV/s. Based on the QRS complex, the T peak was determined based on probabilities. 

First, if the R to R interval is more than 0.7s, then the set of T starts and ends at 0.08s and 

0.44s, respectively after the QRS complex. The second probability is if the PR interval is 

less than 0.7s, then the set of T starts at 0.04s after the end of the QRS complex and ends 

using the calculation ((0.7 * RR interval) - 0.06) after the end of the QRS complex.  

 

Safie et al. [114] proposed a new feature extraction technique known as PAR 

implemented in the ECG signals for biometric authentication. The PAR development is 

based on the principle of PWM, which is widely used in other fields. A segmentation of the 

ECG signal is taken into account by taking a complete ECG complex, the P, QRS and T 

peaks as shown in Figure 3.5. A periodic triangular waveform segmentation which is 

superimposed with the ECG signal is used. 
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Figure 3.5: PAR pulse generation [114]. 

 

The features extracted are the pulse durations generated from the intersection points 

between the ECG complex and the periodic triangle waveform as shown in Figure 3.5. The 

first intersection point was selected from a positive slope and the last intersection point was 

selected from a negative slope. This technique was developed in order to extract time 

durations occurring from the intersection of the ECG signal with the periodic triangle 

waveform. Thus, time duration is longer for the horizontal part of the signal (i.e. S to Tonset), 

while the time duration is shorter at the peaks of the ECG signal. However, the PAR in using 

the triangular waveform leaves small parts of the ECG signal at the beginning and the ending 

of each complex. In addition, the PAR interest with the duration at the intersection points 

between the positive and negative slope at each triangular waveform. 

 

 

3.5.3 AF Detection Algorithms 

  

There are two main features allowing AF identification based on ECG signals: the 

electrical discharge from atria to the ventricles and the irregular electrical of AA [11]. The 

electrical discharges from the atria to the ventricles can cause irregular heart rate. AF is easy 

to be detect from an ECG signal with RRI and the absence of a P wave [2]. The AA can be 

analysed using either time or frequency domain approaches [2]. In [115] the signals were 

analysed based on the absence of P waves and using frequency spectrum analysis (FSA), 
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which consists of the cancellation of ventricular activity (QRS complex and T wave), 

followed by the spectral calculation of the remaining atrial signal spectrum.  

 

Table 3.7 shows the comparative results of AF classification which use the RRI, AA 

and a combination of RRI and AA methods. The comparative results of each technique is 

measured on the accuracy, sensitivity and specificity of predictions made. By assuming there 

are two class of datasets (A and B), the accuracy, sensitivity and specificity are calculates 

by: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝐴 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝐵

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵
                                      (3.5) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝐴

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴
                                                                            (3.6) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑡𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝐵

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵
                                                                             (3.7) 

 

Table 3.7: The comparative results of AF classification using various techniques. 

 

Technique 

Result (%) 

Method Accuracy Sensitivity Specificity 

Colloca [102] et al.  RRI 97.63 96.35 98.91 

Maji et al. [103]  RRI 96.00 96.00 96.00 

Andersson et al. [116]  RRI 95.35 94.90 95.80 

Escalona and Reina [40] RRI 95.00 93.00 97.00 

Ladavich and Ghoraani [117]  AA 94.75 99.28 90.21 

Hayes and Teal [104] RRI 93.62 94.76 92.48 

Lee et al. [105] AA 92.55 94.70 90.40 

Lian et al. [118] RRI 91.60 95.80 96.40 

Babaezaideh et al. [3] RRI/AA 91.37 87.27 95.47 

Dash et al. [2] RRI 90.50 90.00 91.00 

Kostka and Tkacz [119] RRI 88.50 90.00 87.00 

Helfenbein et al. [107] RRI/AA 84.00 71.00 97.00 



48 
 

In Hayes and Teal [104], a study was performed to check the feasibility of low-power 

ECG monitor to detect AF in real time. In the study, five beat and five rhythm detectors 

were constructed and the regression values of each were passed onto two further classifiers 

for AF detection. Power consumption was measured at 30mW giving 96 hours of continuous 

operation. The computation time for the signal sub-band filtering and heart beat interval 

calculations was measured at 2.1ms per 8ms intervals, and the heart beat classification at 

10.2ms per classifier per beat detected. Low power consumption is needed in AF detection 

meaning that the low-power ECG monitor can only provide up to 96 hours of continuous 

operation even though AF episodes can last up to seven days.   

 

The Dash et al. method combines three approaches for AF identification [2]. The first 

approach is to identify the variance of the RRI, which provides a good AF indicator. The 

second approach is the study of the QRS complex morphology to allow accurate calculation 

of RRI and, the final approach, is the use of the QRS spike features for AF identification 

since it is least influenced by muscle noise. In the research, the developed algorithm is able 

to detect the presence of AF by only analysing the RRI. However, problems can arise if the 

irregular signal occurs when the algorithm has already specified the coefficients.  

 

Kostka & Tkacz [119] developed a system of biomedical signal classifiers, with a 

preliminary feature extraction stage, based on matched wavelets analysis and used neural 

networks and support vector machines as the classifiers. They tried to study some extraction 

algorithm rules in order to supply input vectors to the classifiers. The extracted features are 

gathered in Black Box parameters and used for testing purpose on 20 AF subjects and 20 

control group subjects taken from the MIT-BIH database. The classification results showed 

that the use of selected significant features increased the generalization ability and gave 

better results for sensitivity and specificity measurement. However, the used Mallat mother 

wavelet is no better than the Daubechies mother wavelet since the Daubechies mother 

wavelet mimics the QRS wave better than the Mallat mother wavelet.  

 

Escalona and Reina [40] in their research tried to detect abnormal heart rhythm by 

comparing the R to R peak interval with the difference between successive R to R peak 

intervals (ΔRR).  In the research, a decision rule for identifying AF arrhythmic patterns has 

been derived from RR-intervals analysis. It was generated by using recorded ECG before, 

during and after the AF episodes. In this work, the time series were generated by measuring 
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time differences (ΔRR) between the consecutive RR intervals. Similar to others approaches, 

this technique are placing emphasis on the R peak (duration) rather than other fiducial points.     

 

Colloca et al. [102] investigated the dynamics of R to R peak interval series from NSR 

and AF episodes. The study focused on AF detection algorithms appropriate for a screening 

application which would allow for mass screening and address the under-estimation problem 

of AF. Again, RR analysis-based features were chosen. They used nine AF predictors in an 

SVM, allowing the predictive power of each published algorithm to be combined. Ten R-

peak related features were taken from the ECG complex and the classification performance 

was assessed both univariate and when combined using a SVM. Out-of-sample test 

performance has been done by using MIT-BIH AFDB dataset. Although the approach is 

capable of producing high accuracy results, long window beats are needed.  

 

A map of  the R to R peak interval versus the change of the R to R peak interval has 

been plotted by Lian et al. [118]. The map was arranged in a grid with 25ms resolution in 2 

axes and the non-empty cells are counted to classify the AF and non-AF episodes. The 

mapping is performed for each window and classification results are compared to the 

reference results. However, this method is unable to detect AF very well during the regular 

signal analysis and it also gives false alarms in non-AF occurrences during the irregularity 

signal analysis. Maji et al. in their study proposed a new technique based on phase rectified 

signal averaging (PRSA) in classifying the AF rhythm [103]. The performance of the 

approach is tested by using MIT-BIH arrhythmia dataset. In this study, R to R segment are 

processed by using PRSA principle, based on lining up few sections of the signal by centring 

at selected points called anchor point followed by a signal averaging.    

 

A real-time detector for AF episodes is fabricated based on three parameters for 

characterizing the RR interval series, i.e., turning point ratio, root mean square of successive 

differences, and Shannon entropy. Andersson et al. in their study had developed hardware 

with ultra-low voltage operation which suitable for implantable loop recorders with ultra-

low energy requirements [116]. Algorithmic and architectural optimizations are designed to 

minimize area and energy dissipation. The design is fabricated in 65-nm complementary 

metal-oxide semiconductor (CMOS) low-leakage high-threshold technology. Again the 

method has been tested using MIT-BIH AF dataset can capable to perform 94.90% and 95.80 

for sensitivity and specificity, respectively. 
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Using the AA [11], the information is extracted on the amplitude of the P, R and T 

peaks and several time durations are associated with each ECG complex. Usually, the P-

waves are not always present in AF signals and are replaced by fibrillatory waves. The AA 

can be analysed using time domain and frequency domain methods. The time domain will 

detect the absence of a P-wave whilst analysis using frequency domain will cancel the 

ventricular activity (QRS complex and T wave). Fourier analysis is used to balance the 

remaining signal.  Lee et al. [105] introduced a novel method for the automatic detection of 

AF using time-varying coherence functions (TVCF). In the research, TVCF is estimated by 

the multiplication of two time-varying transfer functions (TVTFs). The two TVTFs are 

obtained using two adjacent data segments with one data segment as the input signal and the 

other data segment as the output to produce the first TVTF; the second TVTF is produced 

by reversing the input and output signals. We found that the resultant TVCF between two 

adjacent NSR segments shows high coherence values (near 1) throughout the entire 

frequency range. Detection results vary depending on the number of beats used during the 

classification process. In general, longer beats can produce more accurate predictions and 

vice versa.  

 

Babaeizadeh et al. developed a real-time AF monitoring algorithm to eliminate false-

positive AF alarms [3]. The algorithm uses RRI as the indicator and it is modelled by a 

Markov model to calculate the RR Markov score. This score reflects the relative likelihood 

of observation of RRI in AF episodes versus the observation outside the AF episodes. 

However, the episodes of AF are sometimes misclassified as non-AF and vice versa. 

Furthermore, the P wave detection is difficult in the presence of high frequency noise. The 

AF classification is achieved by adding the AA analysis; the PR interval variability and P 

wave morphology similarity to the Markov model.  

 

Helfenbein et al. stated that RR interval variation can no longer be the main feature 

for AF detection [107]. The power spectrum and autocorrelation of the atrial signal provide 

good discrimination. They used Philips DXL algorithm which detected the AF in the 

presence of paced rhythms and provides interpretations for both rhythms. The algorithm 

uses QRST subtraction with frequency domain analysis of the residual. For classification, a 

decision tree classifier used power spectrum as the features as well as irregularity of non-

paced beats. On a testing set of 1,057 paced ECGs with 194 AF cases, the algorithm had 

sensitivity of 71% and specificity of 97%. From the result, it was shown that the 
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generalization process was not performing well during training phase since the gap between 

sensitivity and specificity results was too large.  

 

Ladavich and Ghoraani applied Expectation-Maximization algorithm to train and 

create a multivariate Gaussian Mixture Model (GMM) of the feature space [117]. In their 

research, they applied the model for identifying P-wave absence (PWA) and, in turn, AF. 

This novel atrial activity based method detects the absence of NSR P-waves from the surface 

ECG. The proposed model extracts nine features from P-waves during SR and develops a 

statistical model to describe the distribution of the features. The algorithm was tested on 20 

records in the MIT-BIH dataset. The classification process combined with seven beats and 

shows 99.28% on sensitivity and 90.21% on specificity. 

 

 

3.6 ECG Pattern Recognition using Neural Network 

 

Artificial neural network (ANN) is a branch of artificial intelligence as it based on 

brain function. Based on the principles of brain, the artificial neural network designed to 

resemble a brain operation such as structure building, learning techniques and operating 

techniques [120]. Figure 3.7 shows diagram of the nonlinear neuron model. 

 

 

Figure 3.6: Nonlinear neuron model [121]. 
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Based on the Figure 3.6 essential components of a neuron formation is a set of 

synapses or network connection, a sum and an activation function. Each synapse of neuron 

is given a weighting value. By assuming the neuron has 𝑘 number of synapses, consequently 

it has 𝑘 input. (𝑥1, 𝑥2, . . , 𝑥𝑘) are the input at each synapse while the [𝑤1, 𝑤2, . . , 𝑤𝑘𝑛] are the 

weight at each synapse and 𝝏(∙) is the activation function of the model. Input 𝑥𝑗 at the input 

synapses connected to the neuron will be multiplied by the value of the 𝑘𝑡ℎ synapse weights 

[𝑤𝑘] influence the weight value for the processing of the synapses to the output of the 

neuron. A sum process adds all the multiplied signals or input and bias, and the result are 

sent to the activation function. The mathematical modelling of neurons based on Figure 3.6 

can be defined based by the following two equations: 

  

𝑣𝑘 = ∑ 𝑤𝑘𝑗𝑥𝑗 + 𝑤𝑘0𝑥0

𝑛

𝑗=1

                                                                                                (3.8) 

and 

  𝑦𝑘 = 𝝏(𝑣𝑘)                                                                                                                   (3.9) 

 

In (3.8) and (3.9), 𝑣𝑘  is the summing output, 𝑥𝑗  is the input signal of the 𝑘𝑡ℎ data or 

synapse, 𝑤𝑘 is the weights to the 𝑘𝑡ℎ synapse of neuron and 𝝏(∙) is the activation function, 

and 𝑦𝑘 is the output product. There are several types of activation functions often used; 

namely, the fixed limiter function, the piecewise linear function, the sigmoid function and 

the linear function [121]. 

 

 

3.6.1 Hybrid Multilayer Perceptron (HMLP) 

 

There have been several modified versions based on conventional MLP networks, 

such as the addition of a linear connection directly from the input layer to the output layer 

to form a new network known as HMLP network. Mashor [12] showed that HMLP networks 

can improve the accuracy of results compared to conventional MLP networks. The ability 

of ANNs to make good predictions is highly dependent on the training algorithms used and 

the design of the structure [122]. The direct linear connection between the input and the 

output layers has been applied in an effort to improve the efficiency and generalization of 

conventional nonlinear neural networks [118, 120-121], resulting in the HMLP network. 
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Naturally, improved training algorithms were also sought to deal further improves 

performance.  

 

An MLP neural network is a highly nonlinear functional structure that can be trained 

to implement a desired input-output mapping [123, 124]. They also stated that using a 

nonlinear network, such as MLP to model a linear system will not produce an accurate 

prediction. In order to do that, HMLP network does cope well with linear systems owing to 

the direct input to output connections, represented by the dashed line in Figure 3.7. The 

figure consists of a set of an input layer, a single hidden layer and an output layer. The MLP 

network with one hidden layer is enough to give good prediction results as shown by 

Funashashi [125] and Cybenko [126]. Therefore, further discussion in this thesis only 

involves neural networks with one hidden layer.    
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Figure 3.7: A schematic diagram of a HMLP network with one hidden layer. 

 

The output of the network is given by:  

�̂�𝑘(𝑡) =  ∑ 𝑤𝑗𝑘
2  𝜕 (∑ 𝑤𝑖𝑗

1 𝑥𝑖
0(𝑡) + 𝑤𝑘0

1 𝑥0
1

𝑛𝑖

𝑖=1

) + ∑ 𝑤𝑖𝑘
3 𝑥𝑖

0(𝑡)

𝑛𝑖

𝑖=1

𝑛ℎ

𝑗=1

                            (3.10) 

 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑛ℎ and 1 ≤ 𝑘 ≤ 𝑚 

 

where 𝑤𝑖𝑘
3  represents the weight of the additional linear connection between the input and 

output layers, 𝑛𝑖 and 𝑛ℎ  are the number of input nodes hidden nodes, respectively. 𝝏(∙) is 

the activation function with the sigmoid activation function chosen to activate the HMLP 

network. The weights 𝑤𝑖𝑗
1 , 𝑤𝑗𝑘

2 , and 𝑤𝑖𝑘
3  are unknown variables and they need to converge 

to optimum values in order to minimize the prediction error defined as: 

 

𝑒𝑘(𝑡) = 𝑦𝑘(𝑡) − �̂�𝑘(𝑡)                                                                                                  (3.11) 

 

with 𝑦𝑘(𝑡) being the actual output from the system while �̂�𝑘(𝑡) is the predicted output. 
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3.6.2 Training Process 

 

The learning period is an important process in a neural network. The process ensures 

that the neural network is able to meet its intended design functionality. There are two types 

of learning paradigms often applied: supervised learning and non-supervised learning [121]. 

Datasets will be divided into two parts: training dataset and testing dataset which will be 

used in the training and the testing phases respectively [12, 127]. By using supervised 

learning, the learning process is able to form a set of functions based on the training data. 

The training dataset contains a pair of input and output parameters. The supervised learning 

task is to predict the values of the function for each input data input based on the observation 

of the training datasets (pairs of input and target output). Supervised learning can produce a 

global model that will map the input to the desired output. However, in other cases it will 

implement mapping conducted as a set of local models as nearest neighbours’ algorithm 

(nearest neighbourhood). 

 

On the other hand, unsupervised learning methods require established training models 

to do the estimation. The learning process is different from supervised learning because the 

process has no output target. In unsupervised learning, a set of input data will be collected 

and it is assumed that the input data is a set of random variables. A density model will be 

developed based on the datasets and unsupervised learning will be based on past experience. 

In other words, the learning process does not have any targets to guide it and relies only on 

experience from the past [128]. Unsupervised learning is very useful for data compression. 

All compression algorithms depend on the probability distribution of each input dataset.  
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3.7 Conclusion 

 

This chapter reviewed the entire process of determining the abnormality of AF from 

an ECG signal. The ECG signal processing engaged with the noise filtering stage, the feature 

extraction process and classification works in order to determine the AF. Significant 

research has been conducted in removing noise contaminants in ECG signal. Many 

approaches have been put forward in order to extract features from clean ECG signals and a 

number of classification techniques have been developed for classifying the clean ECG 

signal by using the extracted features. In Chapter 4, novel noise reduction unit which 

consists: i) bandstop notch filter to eliminate PLI noise, ii) LMS based adaptive filter in 

removing EMG noise and iii) wavelet based filters in reducing BW and MA noise.  
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Chapter 4 

 

Novel ECG Noise Reduction Unit 

 

4.1 Introduction 

 

In the previous chapter, researches on noise filtering techniques, feature extraction 

processes and classification based ECG signals have been reviewed. In this chapter, a novel 

noise reduction unit is presented in order to reduce the effect of BW, PLI, EMG and MA 

noises that contaminate the ECG signal. The unit incorporates three approaches. In the first, 

a bandstop notch filter is used in eliminating the PLI noise. The second component uses an 

IPNLMS adaptive filter which is shown to provide good filtering results in removing the 

EMG effect. The third component involves a combination of STHL wavelet based filters 

have been applied in the unit to reduce denoise the effect of BW and MA noise. Comparative 

studies have been done to measure the capability of IPNLMS adaptive filter and STHL filter. 

These show that those filtering techniques outperform other techniques with significant 

results. All the designed filters have been tested by using datasets taken from MIT-BIH 

database for both signals and noises. 

 

 

4.2 Noise Reduction Unit 

 

The notch filter is capable to provide significant results and used again to complete 

the noise reduction unit.  Figure 4.1 shows the noise reduction unit structure. 
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Figure 4.1: The novel noise reduction unit with different filters of each noise. 

 

As indicated in Figure 4.1, the noisy ECG signal is input to the noise reduction unit. Figure 

4.1 shows the denosing process of the noisy signal by using three different filters. Each noise 

uses an individual filter to reduce the noise effects.  

 

 

4.2.1 Bandstop Notch Filter in Eliminating PLI Noise 

 

The first filter to be used in the novel noise reduction unit is bandstop notch filter 

which is designed to eliminate the 50/60 Hz PLI in ECG signals. The elimination process is 

accomplished by using the bandstop notch filter since the EMG noise is characterized by a 

unit gain at all frequencies except the sinusoidal frequencies at the zero gain. The notch filter 

is setup with two different settings for countries which used 50 Hz in the power lines and 

for countries which used 60 Hz for power lines. In this study, IIR bandstop notch filter has 

been designed using Filter Design and Analysis Tool (fdatool) which is at 50 Hz. The signal 

with 50 Hz is rejected while other frequency of the signal is passed. In the process, the PLI 

noise signal which is 50 Hz is rejected from ECG signal. Detail on IIR notch filter design is 

discussed in section 4.3.1. 

 

 

4.2.2 LMS based Adaptive Filter in Removing EMG Noise 

 

The second filter to be presented in the novel noise reduction unit is an LMS based 

adaptive filter to be used in removing the EMG noise in ECG signals. The LMS adaptive 

filter was discussed in detail in subchapter 3.4.2. However, the LMS adaptive filter 

inadequate to process stationary and non-stationary signal simultaneously. Beginning with 
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the NLMS for both stationary and non-stationary signal a new improved algorithm is 

developed. 

 

 

Figure 4.2: Adaptive filter structure. 

 

The NLMS adaptive filter is used to normalize the step size parameter in the adaptive 

filter that was discussed in Section 3.4.2. As a result, an improvement of the stability and 

convergence rate of the filter output compared to the basic LMS adaptive filter [69]. The 

filter coefficient updates related to the NLMS adaptive filter algorithm with 𝐿 length is given 

by: 

 

𝑾𝑘+1 = 𝑾𝑘 +
𝜇𝑥𝑘𝑒𝑘

𝑥𝑘
𝑇𝑥𝑘

                                                                                                      (4.1) 

 

where 𝑾𝑘 is the filter coefficient, 𝑾𝑘+1 is the updated filter coefficient, 𝑥𝑘
𝑇𝑥𝑘 is the 

normalized factor,  𝑒𝑘 is the error of the system and 𝜇 is the fixed step size used  to control 

maladjustment.   

 

Although the NLMS adaptive filter have been used in many ECG studies and is 

capable to process both static and dynamic signal but the speed of convergence is not 

guaranteed [129]. The proportionate normalised least mean square (PNLMS) adaptive filter 

has the capability to converge faster than the NLMS algorithm. PNLMS adaptive filter is 

widely used in echo cancellation field but not used in processing the medical signal such as 

ECG. In PNLMS adaptive filter, each gain is approximately proportional at each position to 

the current tap filter coefficient. The filter coefficient of the PNLMS adaptive filter is 

updated with the extra step-size update 𝑸𝑘 [129] as follows: 

- 

+ 
𝑒𝑘 𝑑𝑘 = 𝐸𝐶𝐺 + 𝐸𝑀𝐺 

𝑥𝑘 = 𝐸𝑀𝐺 

𝑾 
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𝑾𝑘+1 = 𝑾𝑘 +
𝜇𝑸𝑘𝑥𝑘𝑒𝑘

𝑥𝑘
𝑇𝑸𝑘𝑥𝑘

                                                                                                 (4.2) 

 

where the diagonal matrix of the gain is [129]: 

 

𝑸𝑘 = 𝑑𝑖𝑎𝑔[𝑞0, ⋯ , 𝑞𝐿−1]                                                                                                  (4.3) 

 

and the gain can be computed as [129]:  

 

𝑞𝑙 =
𝛾𝑙

∑ 𝛾𝑖
𝐿−1
𝑖=0

, 0 ≤ 𝑙 ≤ 𝐿 − 1                                                                                 (4.4) 

 

with the impulse response as [129]: 

 

𝛾𝑙 = 𝑚𝑎𝑥{𝜌 ∗ 𝑚𝑎𝑥[𝛿𝑝, |𝑤0|, … . , |𝑤𝐿−1|]|𝑤𝑙|}                                                         (4.5) 

 

where parameters 𝜌 and 𝛿𝑝 have typical values of 5/L and 0.01, respectively, and 𝛿𝑝 is a 

small positive number used to avoid overflow [130]. The 𝜌 is selected so as to avoid 𝛾 

becoming very small, while the constant 𝛿𝑝 is important at the beginning when all 

coefficients are 0. The initial convergence slows down when 𝜌 and 𝛿𝑝 is too large.  

 

During the implementation of PNLMS adaptive filter in echo cancellation, the 

performance of the PNLMS was seen by Benesty and Gay [130] to be no better than NLMS 

adaptive filter when the impulse response is scattered. In order to improve the situation, they 

[130] proposed an improved version of PNLMS, IPNLMS adaptive filter to overcome the 

disadvantages inherent in the PNLMS. The IPNLMS adaptive filter employs a combination 

of proportionate (PNLMS) and non-proportionate (NLMS) in the updating the filter 

coefficients.  

 

The weight updating algorithm and diagonal matrix which relates to IPNLMS is same 

as in (4.4) and (4.5), respectively. However, the estimated gain for IPNLMS, given by 

[130], is: 
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𝑞𝑙 =
1 − 𝛼

2𝐿
+ (1 + 𝛼)

|𝑤𝑙|

2|𝑾|
 ,      0 ≤ 𝑙 ≤ 𝐿 − 1                                                        (4.6) 

 

The updated filter coefficients are controlled by a factor of 𝛼. Note that when 𝛼 = −1 then 

the second term in (4.6) becomes zero and thus behaves as a conventional NLMS adaptive 

filter. The IPNLMS will functions as PNLMS adaptive filter when𝛼in first term in (4.6) is 

unity. 

 

Deng and Doroslovacki [131] capable to overcome the slow convergence of PNLMS 

adaptive filter in their study. An additional 𝜇-law is applied during updating the filter 

coefficient of PNLMS (micro proportionate normalised least mean square, (MPNLMS)). 

The MPLNMS adaptive filter provides better performance than the conventional PNLMS 

adaptive filter. Deng and Doroslovacki [131] stated by lowering the computational burden 

on PNLMS adaptive filter may reduce the computational complexity which inherent from 

the PNLMS. The process is increased the convergent speed and a faster outcome could be 

performed.  

 

The same procedure as in (4.2) and (4.3) are used by MPNLMS in updating the filter 

coefficient and diagonal matrix, respectively. A 𝜇-law has been added to filter coefficient of 

the PNLMS adaptive filter with: 

 

𝐹(|𝑤𝑙|) =
ln(1 + 𝑣|𝑤𝑙|)

ln(1 + 𝑣)
, |𝑤𝑙| ≤ 1,        0 ≤ 𝑙 ≤ 𝐿 − 1                                           (4.7) 

 

the impulse response of PNLMS in (4.6) is changed to: 

 

𝛾𝑙 = 𝑚𝑎𝑥{𝜌 ∗ 𝑚𝑎𝑥[𝛿𝑝, 𝐹(|𝑤0|), … . , 𝐹(|𝑤𝐿−1|), 𝐹(|𝑤𝑙|)]}                                    (4.8) 

 

The gain is estimated based on (4.6). The constant 1 used in (4.7) is to avoid negative 

infinity at the initial stage when |𝑤𝑙| = 0. The denominator ln(1 + 𝑣) normalizes the 

𝐹(|𝑤𝑙|) to be in the range of 0 to 1. 𝑣 = 1/ε with variable ε is a small positive number 

chosen based on the EMG noise level. The 𝜀 is chosen based on the SNR of the signal used. 

In this study, the NLMS, PNLMS, IPNLMS and MPNLMS are used to denoise the EMG 

noise from the ECG signal.  
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4.2.3 Wavelet based Filter in Reducing BW and MA Noise 

 

The third filter to be applied in the novel noise reduction unit is wavelet based filters 

to be used in reducing the BW and MA noises in ECG signals. This filtering process is 

represented by Figure 4.3. In this study a combination of two wavelets based filter is used 

to denoise the BW and MA noises which comprises two stages. Figure 4.3 shows the way 

of BW and MA noises are reduced, with 𝑥(𝑛) is the corrupted ECG signal with BW and 

MA noises and 𝑦(𝑛) the filtered signal. 

 

 

Figure 4.3: Block diagram for the filtering process of BW and MA noises. 

 

The filter is designed to be able to remove both low and high noise frequency from the 

ECG signal. At the first stage, the wavelet denoising techniques with several threshold 

methods (sqtwolog, heursure, rigrsure, minimax) as discussed in section 3.4.3 and are 

employed to remove the high frequency noise. In this stage, the high frequency MA noise 

signal is reduced from the ECG signal. After the high frequency is removed, the second 

stage is taken place to reduce low frequency noise signal from BW and MA by using high-

pass/low-pass filter. For both stages, the Daubechies type 4 (Db4) has been chosen as the 

mother wavelet and for the decomposition process, the high/low pass has been made up to 

level 7. The filtered signal, 𝑦(𝑛) is provides after the wavelet transform signal is inversed 

from the frequency domain to the time domain signal.  
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4.3 Experimental Results 

 

In this section, the denoising results of the PLI, EMG, BW and MA from the normal 

ECG signal are presented. The developed filters as discussed in subchapters 4.2.1, 4.2.2 and 

4.2.3 have been used in reducing the effects of those noises. In measuring the capability of 

the filters, three different ECG signal condition taken from MIT-BIH database are used as 

comparative study with normal (nsrdb 16265) and AF (afdb 04015) ECG signals. The SNR 

reading of the filtered signal is used to show the filter performance. SNR can be calculate 

by:    

 

𝑆𝑁𝑅𝑑𝐵 = 10 𝑙𝑜𝑔10

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟 𝑜𝑓 𝐸𝐶𝐺 𝑠𝑖𝑔𝑛𝑎𝑙

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟 𝑜𝑓 𝑁𝑜𝑖𝑠𝑒
                                            (4.9) 

 

 

4.3.1 PLI Elimination 

 

The notch filter for eliminating is setup by using fdatool toolbox. The notching 

response type is selected and IIR design method with a single notch filter is chose. 

Frequency sample of the ECG signal is 500 per second and frequency notch is set at 50 Hz 

by assuming the power supply is 50 Hz.  The SNR reading of the signals corrupted by PLI 

noise is measured and compared to the signals which been filtered by the bandstop notch 

filter. The results, tabulated in Table 4.1, show the performance of the bandstop notch filter 

in order to eliminate the PLI noise in the ECG signal. Each signal has been added with 50 

Hz (assuming the power line is 50 Hz) of PLI and the notch filter has been designed to 

remove the noise. 

 

Table 4.1: PLI removal from normal and AF signal. 

 SNR Reading, (dB) 

Normal AF 

Corrupted Signal 5.15 6.91 

After Filtering  12.16 15.06 
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The results tabulated in Table 4.1 shows significant improvements between the corrupted 

and filtered signal for the normal and AF signals. The bandstop notch filter is capable to 

reject the 50 Hz of PLI noise. The signals itself have a range of frequency however, the 50 

Hz of PLI noise made the eliminating process easily be done and resulting some significant 

results.  

 

Figures 4.4 and 4.5 show the signal performance before and after the filtering process 

for each condition. Better signals have been obtained after the signals were filtered by a 

notch filter. The comparison between the corrupted signals and the filtered signals by the 

notch filter is shown in the figures. Figures 4.4 and 4.5 show the performance of the notch 

filter; (a) corrupted signal and (b) signal after PLI removal. The 50 Hz of PLI contaminating 

in the signals can readily be removed by a notch filter. Since the PLI is known in advance, 

the notch filter is designed based on the specification of the PLI noise. From the results, it 

shows that the notch filter is capable to reduce the PLI effect from normal and AF signals. 

A notch at 50 Hz is designed since the PLI is fix at 50 Hz frequency. Most of the PLI effects 

are removed by the filter since the frequency of ECG signal (normal and AF) and PLI 

frequency totally different and not overlapped. Normal ECG signal always doing 80 beats 

per minute which are 1.2 Hz while AF which is tachycardia condition at rest are 120 beats 

per minute, which are around 2 Hz. The main idea in designing the notch filter at 50 Hz is 

to cut-off the 50 Hz signal and release the rest signal behind as the filtered signal.        
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Figure 4.4(a): Normal signal with PLI noise. 

 

 
Figure 4.4(b): Result after PLI noise removal from normal signal. 
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Figure 4.5(a): AF signal with PLI noise. 

 

 
Figure 4.5(b): Result after PLI noise removal from AF signal. 
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4.3.2 EMG Removal  

 

Several LMS based adaptive filters were used to filter on subjects with normal, AF 

and LVE signals. The approach involved the denoising of EMG noise using the NLMS, 

PNLMS, IPNLMS and MPNLMS adaptive filters as described in section 4.2.2. In this study, 

the fixed step size, 𝜇 = 0.01 is used with initial 100 taps are selected of each adaptive filter 

(NLMS, PNLMS, IPNLMS and MPNLMS) in order to find the simplest filter structure 

which capable to obtain the smallest MSE results.  Figure 4.7 and 4.8 shows the adaptive 

filters performance for each signal. For normal signal, the most complex structure is given 

by NMLS adaptive filter with 23 taps while AF signal only need 8 taps to comply as the 

simplest structure with MPNLMS give the largest calculation complexity. Figure 4.6 and 

4.7 shows the adaptive filter (NLMS, PNLMS, IPNLMS and MPNLMS) performance for 

each signal. In order to optimum the performance of the adaptive filter (NLMS, PNLMS, 

IPNLMS and MPNLMS), its designed with 23 taps for normal signal and 8 taps for AF 

signal, respectively.  

 

 
Figure 4.6: The MSE performances for normal signal. 
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Figure 4.7: The MSE performances for AF signal. 

 

Each adaptive filter (NLMS, PNLMS, IPNMLS and MPNLMS) have their own 

advantages and disadvantages. For NLMS adaptive filter, the filter capable to converge 

faster than other adaptive filters but the MSE is larger than other filters. Table 4.2 shows the 

EMG noise elimination performance of each filter. The best overall performance in reducing 

EMG noise was obtained by using the IPNLMS algorithm as the adaptive filter.  

 

Table 4.2: EMG removal from normal and AF signal. 

 SNR Reading, (dB) 

Normal AF 

Corrupted Signal 12.95 7.47 

  

Filtering Technique Normal AF 

IPNLMS 15.04 9.86 

PNLMS 14.87 9.12 

MPNLMS 13.67 9.11 

NLMS 13.67 8.63 
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Table 4.2 shows that all denoising techniques (NLMS, PNLMS, IPNLMS and 

MPNLMS) yield better results compared to the corrupted signals. Hence, IPNLMS 

produced good results compared to others filter in reducing EMG noise from those normal 

and AF signals. The PNLMS adaptive filter also provided better results than MPNLMS but 

no better than the IPNLMS adaptive filter. The NLMS adaptive filter is also able to reduce 

the effect of EMG noise but modified versions of the NLMS adaptive filters (PNLMS, 

IPNLMS and MPNLMS) are able to process the signal in a better way. In Figures 4.8 and 

4.9 the outputs of the NLMS, PNLMS, IPNLMS and MPNLMS adaptive filters are 

compared for signals from normal and AF signal against the corresponding noise free 

signals in each case. All (a) figure shows the filtering result by using NLMS, (b) shows the 

filtering results by using PNLMS, (c) shows the filtering results by using IPNLMS and (d) 

shows the filtering results by using MPNLMS adaptive filters.  

 

 

Figure 4.8(a): Result of EMG noise removal from normal signal filtered by NLMS. 
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Figure 4.8(b): Result of EMG noise removal from normal signal filtered by PNLMS. 

 

 

Figure 4.8(c): Result of EMG noise removal from normal signal filtered by IPNLMS. 
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Figure 4.8(d): Result of EMG noise removal from normal signal filtered by MPNLMS. 

 

Figure 4.8 shows the results for the noise removal process from subjects with normal 

ECG signals. The ability of the four different adaptive filters to reduce the effects of the 

EMG noise has been tested. Table 4.2 shows that the IPNLMS adaptive filter is the best 

overall filter. From the results, it shows that the all adaptive filters (NLMS, PNLMS, 

IPNLMS and MPNLMS) capable to provide better results than corrupted signal. The signals 

are recorded by two different accelerator which perceiving ECG signal with EMG noise at 

an accelerator and EMG noise alone at another accelerator. The normal signal have the same 

pattern of complex. The distance between R to R peaks almost regular. The characteristic of 

the complex ECG itself make the adaption of the adaptive filter becomes easier and capable 

to provide better filtering results. The result shows IPNMLS shows the best results among 

other since the pattern of the ECG complex itself may results the IPNLMS adaptation 

process doing better than others filter.    

 

Filtered signal 

Noise free signal 
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Figure 4.9(a): Result of EMG noise removal from AF signal filtered by NLMS.  

 

 
Figure 4.9(b): Result of EMG noise removal from AF signal filtered by PNLMS.  
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Figure 4.9(c): Result of EMG noise removal from AF signal filtered by IPNLMS.  

 

 
Figure 4.9(d): Result of EMG noise removal from AF signal filtered by MPNLMS.  

 

 

Filtered signal 

Noise free signal 

Filtered signal 

Noise free signal 



74 
 

Figure 4.9 shows the results for the EMG noise removal from subjects with AF signal. 

Once again the ability of the four different adaptive filters to reduce the effects of the EMG 

noise has been tested. Based on Table 4.2 again, the IPNLMS is doing better filtering process 

than other adaptive filters (NLMS, PNLMS, IPNLMS and MPNLMS). The same recorded 

process were done by recording ECG (AF) signal and EMG signal at an accelerator and 

EMG signal alone at another accelerator. Compare with normal signal, the AF signal do not 

have equal pattern of ECG complex and the R to R peaks are irregular. The characteristic of 

the AF signal make the adaptive process of adaptive filters more difficult than normal signal. 

The result shows that IPNMLS again gives the better results than others adaptive filters.  

 

 Based on Figure 4.8 and 4.9 it can be seen that the addition of proportional gain 

(PNLMS) is insufficient to obtain the optimum results. The merger of PNLMS and NLMS, 

producing IPNLMS is capable of improving the filter performance. This combination is 

necessary to overcome the scattered response signal faced by PNLMS. Other improvement 

has been made in improving the PNLMS performance by adding the 𝜇-law during weight 

updating process, producing the MPNLMS. However, the MPNLMS is no better than 

IPNLMS to tackle the scatter current impulse response problem. The IPNLMS adaptive 

filter which provides the best results, it is used to be compared with other techniques.  

 

Table 4.3: The comparative study on denoising the EMG noise from ECG signals. 

 SNR Reading, (dB) 

Normal AF 

Corrupted Signal 12.95 7.01 

  

Filtering Technique Normal AF 

IPNLMS 15.04 9.86 

DWT 9.37 13.25 

EMD 8.19 12.95 

NSRLMS 11.14 7.97 

CSLMS 13.86 9.75 
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The results given by the DWT and EMD approaches are shown in Table 4.3. 

Compared with adaptive filters technique, DWT and EMD approaches do not need any 

pattern/model as the reference. The EMG noise is an uncorrelated noise, it can be recorded 

and removed moved since the frequency and spectrum of the EMG itself is not overlapped 

with the ECG signal. The results tabulated in Table 4.3 indicate that the DWT and EMD are 

only slightly superior to the IPNLMS on AF subjects but the IPNLMS provide significantly 

superior results for normal signal. The results shows that IPNLMS adaptive filter have the 

advantage and their disadvantage. The IPNLMS capable to provided better results for same 

and regular pattern of ECG but DWT and EMD provides better performance for irregular 

pattern. Notes that the results given by the NSRLMS and CSLMS adaptive filters are also 

included. No better than IPNLMS, the adaptation process done by IPNLMS filter shows 

better results than NSRLMS and CSLMS. The IPNLMS capable to adapt the EMG noise 

and results more EMG noises contaminating in the ECG signal might be reduce.  

 

 

4.3.3 BW and MA Denoising 

 

The denoising process uses the wavelet based denoise threshold methods (Sqtwolog, 

Rigrsure, Heursure and Minimax) as discussed in section 3.4.3 and high-pass/low-pass filter. 

Since the MA noise occurring in the ECG signal was unpredictable, the combination of 

denoise threshold at first stage and followed by the high-pass/low-pass filter is used to cancel 

both high and low frequency noise which including the MA and BW noises. The results of 

all methods used are shown in Tables 4.4 for normal and AF signals. From Table 4.4, on 

average, both sets of signals show the best results when using the STHL technique compared 

to the other methods. The results show that the combination of wavelet based denoising 

threshold techniques with the high-pass/low-pass filters yields a better outcome compared 

to filtering by using threshold methods alone. Based on Table 4.4, the denoising techniques 

(ST, RT, HT and MT) also yield better results compared to the corrupted signals. However, 

better results are obtained by filtering the outcomes of ST, RT, HT and MT using high-

pass/low-pass filter. The results show good improvement compared to the corrupted signals 

and the results using just the denoise threshold.  
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Table 4.4: BW and MA removal from normal and AF signals. 

Technique SNR Reading, (dB) 

Normal AF 

Corrupted Signal 5.12 0.25 

 

Filtering Technique Normal AF 

Sqtwolog Threshold & High/Low Pass (STHL) 18.75 10.22 

Rigrsure Threshold & High/Low Pass (RTHL) 17.57 8.93 

HeursureThreshold & High/Low Pass (HTHL) 17.56 8.93 

Minimax Threshold & High/Low Pass (MTHL) 16.98 9.64 

Sqtwolog Threshold (ST) 8.12 1.17 

Rigrsure Threshold (RT) 7.85 0.51 

HeursureThreshold (HT) 7.83 0.52 

Minimax Threshold (MT) 6.98 0.91 

 

The denoising techniques alone unable to obtain good performance since it is cannot 

remove the low frequency noise (from BW and MA) from the ECG signals. In order to 

overcome this problem, the proposed approach, serial combination of denoise threshold and 

high-pass/low-pass filter have been used since it attempts to remove both low and high 

frequency noise. The MA noise is an unpredictable signal so it is difficult to provide a pattern 

or model of the noise. In order to filter the noise, wavelet based denoise technique among 

the best technique to do the filtration of ECG signal with Daubechies as the mother wavelet 

since it is mimic to the ECG complex. Figures 4.10 and 4.11 show the results filtering 

process of the ST and STHL proposed technique in removing both high and low frequency 

noises, respectively as the technique capable to obtain better performance than others.  
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Figure 4.10(a): Normal signal with BW and MA noises. 

 

 

Figure 4.10(b): Result of MA noise removal from normal signal after ST is applied. 
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Figure 4.10(c): Result of MA and BW noises removal from normal signal after STHL is 

used. 

 

Figure 4.10 shows the comparison between the noise removal techniques and its 

performance. Figure 4.10(a) shows the signal containing low and high frequency noise. The 

ST denoising technique is applied to the signal and it has significantly removed the high 

frequency noise, leaving the low frequency noise and original ECG signal as shown in 

Figure 4.10(b). Figure 4.10(c) shows the result of STHL denoising technique in removing 

both low and high frequency noise, leaving the ECG signal behind. However, the ECG 

signal is not totally clean because there is still some noise in the signal with most of the 

important information of the signal yet to be processed. The BW noise is a low frequency 

signal while MA is an unpredictable noise which contained both low and high frequency 

signal. The signal becomes worse since the spectrum and frequency of the noise is 

overlapped with ECG signal. Figure 4.10(b) and 4.10(c) shows the filtering processes to 

reduce the effect of BW and MA noises in ECG signal. However, Figure 4.10(c) shows the 

ECG signal still contaminated with noises, whilst to avoid information from ECG signal is 

removed along with noise signal.  
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Figure 4.11(a): AF signal with BW and MA noises. 

 

 

Figure 4.11(b): Result of MA noise removal from AF signal after ST is applied. 
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Figure 4.11(c): Result of MA and BW noises removal from AF signal after STHL is used. 

 

A similar experiment to that shown in Figure 4.10 was repeated with different ECG 

signals as shown in Figures 4.11 for subject with AF. The corruption by BW and MA made 

the ECG signal become as shows in Figure 4.11(a). Figure 4.11(b) shows the result after ST 

denoise threshold takes place and remove the high frequency noise from the ECG signal. By 

using the STHL denoise approach, both the high and low frequency signal are ridded off 

form the ECG signal as shows in Figure 4.11(c). Most of the important information is still 

present although some noise still corrupts the signal since the spectrum of the noise 

overlapped with the ECG signal. Again, both low frequency and high frequency noise from 

BW and MA signals. Figure 4.11(b) shows the high frequency noise has been rid-off from 

the ECG signal. Figure 4.11(c) shows the filtered ECG signal but still contaminated with 

noises, in order to maintain the original signal. However, most of important information 

could be collected from the signal such as the duration and the amplitude of the P, QRS and 

T peaks.  
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Table 4.5: The comparative study on denoising the BW and MA noises from ECG signals. 

 SNR Reading, (dB) 

Normal AF 

Corrupted Signal 6.58 2.73 

 

Filtering Technique Normal AF 

STHL 12.75 8.29 

EMD 10.83 6.51 

DWT 9.86 7.54 

NSRLMS 10.85 7.71 

CSLMS 9.98 7.91 

 

Table 4.5 tabulated the comparative study between STHL denoising technique and 

other techniques such as EMD, DWT and adaptive filters (NSRLMS and CSLMS).  The 

STHL denoise technique which provides the best filtering results among other wavelet 

denosing technique is used to be compared with other techniques. From Table 4.5, it shows 

the STHL is superior to overcome three others approach in denoising the signals. The EMD 

technique capable to provide better result but no better than STHL technique. The DWT 

technique is good to reduce the low frequency effect but unable to reduce the high frequency 

noise effect effectively from ECG signal. For both NSRLMS and CSLMS adaptive filters, 

the performance are based on the effective noises are recorded since the unpredictable 

movement of human body may result the recording of the noises are not doing well. The 

performance of NSRLMS and CSLMS are measured on how far the adaptive filters could 

adapted with the noises. Table 4.5 shows the adaptive filters no better than STHL technique, 

and also no better than DWT and EMD technique. In overall, all techniques capable to 

denoise the corrupted signals in with better SNR results compared to the corrupted signal. 

The removal technique performed by adaptive filters easily could reduce the noise effects 

since it is concentrates on time domain with respects to the accuracy of the accelerometer. 

The STHL, DWT and EMD performed the denoising process in the transform domain. 

Denoising process by using frequency domain is more preferable in denoising the MA and 

BW noise since directly denoise rather than need to identify the reference of adaptive filter 

at the first place before doing the filtration.  
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4.4 Discussion 

 

In the ECG noise reduction unit, the bandstop notch filter has been designed in order 

to eliminate the PLI. Some previous study stated that the notch filter is widely used and 

capable to perform significant result in PLI elimination. The bandstop notch filter is 

designed by notching at 50 Hz, which remove the signal with 50 Hz from the ECG signal. 

The filter will be block the 50 Hz signal while release the rest of the signal behind. The LMS 

based adaptive filters are used and shown to be capable of producing superior results in 

removing EMG noise from the ECG signal. The NLMS, PNLMS, IPNLMS and MPNLSM 

adaptive filters are used in the ECG filtering process. The outputs show the capability of the 

proposed method to reduce the effect of EMG noise and leave behind the important 

information from the original signal. From the result, the IPNLMS adaptive filter gives the 

best performance than other adaptive filter and in some comparative study, the IPNLMS 

adaptive filter capable to overcome others filter used. The outputs show the capability of the 

proposed method to reduce the effect of EMG noise and leave behind the important 

information from the original signal. The modified adaptive filters (PNLMS, IPNLMS and 

MPNLMS) which are used extensively in the communication fields were shown to be 

capable of mitigating the effects of ECG signals that are contaminated with EMG noise.  

 

The noise reduction unit also consist with combination of wavelet denoise threshold 

and wavelet high-pass/low-pass filter (STHL, RTHL, HTHL and MTHL) which are capable 

to produce better results compared to wavelet denoising threshold methods applied on their 

own (ST, RT, HT and MT). The experimental results also show the capability of the 

proposed method to denoise both the low frequency and high frequency noise leaving behind 

the important information of the original signal. In the study, the STHL technique has been 

identified to be able to produce best performance than other filter. A comparative study have 

been done to inspect the STHL filter performance. By comparing with other selected filters, 

the STHL filter has outperformed other filter and gives significant results.  
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4.5 Conclusion 

 

This chapter presented a novel ECG noise reduction unit in denosing the 

contaminating noises in ECG signal. In this study, four types of noises; the BW, PLI, EMG 

and MA noises in the ECG signal have been identified and numbers of filter are used and 

designed in order to remove those noises. In the novel ECG noise reduction unit, the 

bandstop notch filter has been designed to eliminate the PLI. The IPNLMS adaptive filter 

has been selected to remove the EMG noise and wavelet based STHL technique has been 

identified to be able to reduce the effect of BW and MA. In the noise reduction unit, all 

filtering process is done individually and no the interconnection between each filter. 

However, the process is linked together and discusses in Chapter 6, which is the 

development of a new approach of the ECG analysis system. In the next chapter, a novel 

pattern recognition unit is developed which consist of feature extraction process and 

classification process. A novel feature extraction has been introduced in providing more 

significant feature and a development of a novel classification network proven to obtain high 

accuracy performances. 
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Chapter 5 

 

Novel Pattern Recognition Unit 

  

 

5.1 Introduction 

 

In the previous chapter, the noise reduction unit has been used in reducing the 

contaminating noise in the ECG signal. Techniques used were shown to provide significant 

improvement. In this chapter, the feature extraction and classification processes are been 

formed as pattern recognition unit in recognising the best feature, and use it as the indicator 

to perform the classification process. In this study, a novel RPD is used to obtain the feature 

extraction of the normal (Normal Sinus Rhythm, number: 16272, 16483, 16539, 16786, 

17453 and 18177) and AF (Atrial Fibrillation, number: 04048, 04746, 04908, 04936, 05091, 

06453, 06995, 07162, 07879 and 07910) ECG signal which taken from MIT-BIH database. 

In this study, ECG signals from 16 subjects The RPD is a new approach in extracting the 

amplitude of the signal. Instead the used of the RRI as the morphology is isolating the signal 

to beat by beat, the PTI has been introduced. The use of PTI morphology enables to 

compensate the lack of RRI in processing the signal from moving subject. Moreover, the 

results given by PTI could be used to double check the RRI performance.  

 

The classification process is taking place after the significant feature is extracted to be 

the input vector. In this thesis, HMLP network is used as the classifier for measuring the 

suitability of the RRI’s and PTI’s extracted features to be used as the input vector. In 

performing the classification, improvement on HMLP network in subchapter 3.6.1 has been 

done and significant improvement of accuracy results is shown. By doing a multi-stage 

classification using the HMLP network (MCHMLP) may improve the performance of the 
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conventional HMLP network. An improvement also is done to the current MCHMLP 

network. The CHMLP is developed by rearrange the sequence of second classification done 

by MCHMLP network. Better results are shown to prove the ability of CHMLP network in 

doing the classification process. Several samples are taken from the machine learning 

repository UCI [14] (Pima Indians Diabetes, Iris, Glass, Wine, Lung Cancer, Ionosphere and 

Hayes-Roth) are used to test the ability of the MCHMLP and CHMLP in doing the 

classification.  

 

 

5.2 Pattern Recognition Unit 

 

In this study, an approach used for ECG signal detection is presented by using the RRI 

morphology in extracting the feature and use them as input vector for the classification 

process. Instead of using the RRI morphology, this study also suggests the extraction of 

feature from the PTI to be used in complementing to lack of RRI. Some improvements of 

the conventional classification technique, the HMLP network are developed in order to 

perform high accuracy results. Figure 5.1 shows summary the pattern recognition unit. 

 

 

Figure 5.1: The pattern recognition unit; (a) extraction feature process by using RRI and 

PTI morphology and (b) classification process using MCHMLP and CHMLP networks. 

 

Figure 5.1 shows the pattern recognition unit, which comprises of feature extraction process 

and classification process. The feature extraction process is done by using RPD technique 

with both the RRI and PTI morphologies. The intersection points between each ECG 

complex and RPD are used as the input vector to the MCHMLP and CHMLP. The 

characteristic of the input vector are being the indicator to classify the signal, either belong 

to normal group or AF family.   
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5.2.1 Rectangular Pulse Domain (RPD) Feature Extraction Process 

 

Figure 5.2 shows the flowchart of the RPD development. In this study, an approach 

used for AF detection is presented by using RRI morphology. A novel pulse domain 

technique, the RPD technique is developed and performed to extract required features. The 

new method uses rectangular pulses to obtain the amplitude of the intersection points 

(between the pulses and the ECG signal).  

 

 

Figure 5.2: The flowchart of the RPD based feature extraction process. 
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This study is extended with the use of the PTI morphology in the approach to test the 

PTI as a means of detecting AF. The problem occurs when different activities were done 

such as stairs climbing or quick run, heart rate are varies based on the size of patient/people 

and varies speed the activities. Most heart rate readings are taken when the subject is at rest 

or walking on a treadmill with constant velocity which can be controlled. However, readings 

of the heart rate for nonstationary patient also capable to be analysis by removing the interval 

between complexes. This process will leave only complexes with duration from peak P to 

peak T. Instead the RRI, the region of PTI is taken at the highest point of the P peak to the 

highest point of the following P peak. Figure 5.2 shows the extraction process of PTI 

complexes. 

 

 

Figure 5.3: Extraction of irregularity of PTI and rest time removal. 

 

Figure 5.3 shows the flowchart of the RPD based feature extraction process. In the 

RPD technique, the process begins by reading signals from MIT-BIH database. Next, the 

contaminating noise in the signals is reduced. The filtered signal is separated into beat-by-

beat according to RRI morphology and PTI morphology, which generates two different 

datasets. Both the RRI and PTI morphology datasets, each beat is superimposed with 

numbers of rectangular pulses. This study considers the beat superimposed with one to ten 
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rectangular pulses. The amplitude of the intersection point between the beat and rectangular 

pulse/pulses are taken to be the input vector to the classifier. 

 

In this study, the ECG signals were taken from the MIT-BIH database are filtered in 

order to reduce noise effects. Two datasets (each one containing all the signals) were then 

formed from the signals one for RRI and one for PTI morphologies. Rectangular pulses are 

generated and superimposed on the RRI and PTI morphologies complexes. The amplitudes 

of each intersection point between the ECG and the pulses were used to form the input 

vectors for the neural network. The extracted feature at the intersection points between the 

complex ECG signal and the four rectangular pulses. Therefore, eight intersection points are 

taken as the input vector to be classifying by the HMLP network. Figures 5.4(a) and 5.4(b) 

shows the intersections of an AF complex with the rectangular pulses, while the intersections 

of a normal complex with rectangular pulses are shown in Figures 5.4(c) and 5.4(d). 

 

 

Figure 5.4(a): ECG Feature extraction based on RRI (AF signal). 

 



89 
 

 

Figure 5.4(b): ECG Feature extraction based on PTI (AF signal). 

 

Figure 5.4(c): Feature extraction based on RRI (Normal signal). 
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Figure 5.4(d): Feature extraction based on PTI (Normal signal). 

 

In the case of no P peak, the peak will be replaced by the fibrillatory wave as done by 

[46]. For the case of inverted T peak, the lowest point of the inverted T peak is selected as 

the ends of PTI morphology. Clearly, the use of just a few pulses would not generate enough 

features to achieve good classification. On the other hand, extracting too many features 

could be an unnecessary. A test is carried out to identify the optimum number of rectangular 

pulses for the highest possible accuracy as shown in Table 5.1 and 5.2. The accuracy of the 

HMLP classification is calculated as Equation 3.5.   

 

Table 5.1: The HMLP classification performance by using extracted features from RRI 

morphology as the input vector. 

 

Number 

of 

Hidden 

Node 

 

Number of Rectangular Pulse / Accuracy Result (%) 

 

1 2 3 4 5 6 7 8 9 10 

1 90.20 91.30 92.86 94.20 93.12 93.58 99.96 93.15 92.56 92.30 

2 91.65 91.89 93.05 94.95 93.56 93.60 93.05 93.05 92.70 92.55 

3 91.98 93.30 93.56 95.94 93.56 93.89 93.25 93.05 93.01 92.70 

4 92.36 93.30 93.56 95.94 93.56 93.89 93.25 93.05 93.01 92.71 



91 
 

Table 5.2: The HMLP classification performance by using extracted features from PTI 

morphology as the input vector. 

 

Number 

of 

Hidden 

Node 

 

Number of Rectangular Pulse / Accuracy Result (%) 

 

1 2 3 4 5 6 7 8 9 10 

1 91.18 93.01 93.69 95.20 94.69 94.69 93.98 92.96 92.56 92.25 

2 92.65 93.26 94.05 95.53 94.98 94.85 94.21 93.01 92.78 92.48 

3 93.01 93.26 94.56 95.53 94.98 94.85 94.56 93.46 92.78 92.70 

 

Table 5.1 and Table 5.2 shows the performance of HMLP network in doing the 

classification by using RRI and PTI morphology, respectively. From the tables it is seen the 

use of four rectangular pulses (eight intersections) is sufficient to produce the best 

classification. The HMLP is capable of providing 95.94% and 95.53% of accuracy for RRI 

and PTI, respectively. The highest accuracy performance on RRI and PTI morphologies 

were given by using 5 hidden nodes for RRI and 3 hidden nodes for PTI. Classification 

results are remain at 95.94% for RRI and 95.53% for PTI even the number of hidden node 

is increase. At this moment the HMLP network has reached its optimum level. The HMLP 

network needs sufficient dataset to provide high accuracy results but, a large dataset made 

the network become more complex and the network unable to classify well. 

 

 

5.2.2 Neural Network Classification 

 

In this study, an improvement version of the HMLP network is introduced, which is 

repeating the classification process at the second stage. The novel classification technique 

is known as MCHMLP. The proposed method is affected by adding another HMLP network 

to the output layer of the conventional HMLP network. These networks are in cascade so 

that the output of the first network is the input of the second network. Figure 5.5 shows the 

block diagram of the proposed method.  
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Figure 5.5: Block diagram of the proposed network architecture. 

 

By refer to the block diagram, the first HMLP network is fed with training input 

vectors, which consist of several parameters representing the input vector features. These 

features correspond to the various attributes used for the classification in each case. The 

network is trained in order to find the best performance of the classification process. It is 

considered that the best possible performance has been attained when the error of the 

network has reached a small value and remains constant even though the number of nodes 

increases. At this moment, it is considered that the network has obtained the highest level of 

convergence and reaching its optimum structure. Then, the output of the first HMLP network 

becomes as the input vector and fed to the second HMLP network. The same procedure will 

be performing as done in the first HMLP network to obtain the highest level of convergence 

and the optimum structure.  

 

Another improvement held in this study is by cascading two HMLP networks in series 

known as Cascade-HMLP (CHMLP) network. The CHMLP network is the improvement of 

the MCHMLP network. A new feeding arrangement to the second stage network makes a 

different between the MCHMLP network and the improvement network, the CHMLP. The 

improvement of the CHMLP network is shown in Figure 5.6. 
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Figure 5.6: A schematic diagram of CHMLP network with one hidden layer. 

 

In the MCHMLP network structure, the second HMLP network is fed with the input only 

after the first HMLP reaching its optimum structure. With the new arrangement, the CHMLP 

network performs the second classification process afterwards the first classification is done 

at each iteration and stop after obtaining the highest level of convergence and reaching its 

optimum structure at the second HMLP network. Equation 5.1 is the modified version of 

the conventional HMLP network output. Respect to the output of the HMLP network in 

Equation 3.8, the output is feeding to the second HMLP network as the input data. The 

cascading network is working in a similar way to the first HMLP network. The final output 

of the CHMLP network, �̂�𝑘𝐶 is shown as by respecting the output of HMLP network in: 

 

�̂�𝑘𝐶(𝑡) = ∑ 𝑤𝑗𝑘𝐶
2 𝐹𝐶

𝑛ℎ

𝑗=1

(∑ 𝑤𝑖𝑗𝐶
1 �̂�𝑘(𝑡) + 𝑤𝑘0𝐶

1 𝑥0𝐶
1

𝑛𝑖

𝑖=1

) + ∑ 𝑤𝑖𝑘𝐶
3 �̂�𝑘(𝑡)                                (5.1) 

𝑛𝑖

𝑖=1

 

                         𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑛ℎ , 1 ≤ 𝑘 ≤ 𝑚 
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where 𝑤𝑖𝑘𝐶
3  denotes the weights of the additional linear connection between the input and 

output for the second network but to the output layer for cascaded/second HMLP network. 

𝑛ℎis the number of hidden nodes while 𝑚 is the number of outputs of the network. The 

weights𝑤𝑖𝑗𝐶
1 , 𝑤𝑗𝑘𝐶

2  and 𝑤𝑖𝑘𝐶
3  need to converge to optimum values in order to minimize the 

prediction error. 𝐹𝐶 is the activation function, and a sigmoid function has been chosen for 

the HMLP network. Since the structure of the conventional HMLP network and the proposed 

CHMLP network are similar apart from the input vector. 

 

The objective of applying the multi-stage classification is to redo the classification that 

happens at the first stage network and provide the second stage network an opportunity to 

improve the overall result. Both the MCHMLP and CHMLP networks are operated with 

multi staging classification process. Each neural network has its own convergence 

limitations based on the structure of the network, type of training algorithm used and the 

size of the data available for training. If the accuracy of the network keeps giving the same 

results even when the number of iterations is increased, this means the network is near or at 

its highest convergence point. So, by using the output of the first stage as input for the second 

network we could improve on the convergence limitations of first HMLP network. The 

second stage network will re-classify the wrong classification held at the first stage network. 

Two improvement version of HMLP (MCHMLP and CHMLP) networks were tested its 

ability to identify patterns in the seven problems taken from machine learning repository 

UCI [14]. The selected datasets include a variety of different sizes and patterns as 

summarized in Table 5.3.  

 

Table 5.3: Dataset descriptions. 

Datasets Size of 

datasets 

Number of 

features 

Number of 

classes 

Pima Indian 768 8 2 

Iris 150 4 3 

Glass 214 9 6 

Wine 178 13 3 

Lung Cancer 32 30 3 

Ionosphere 351 34 2 

Hayes-Roth 132 4 3 
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5.2.3 Improvement on HMLP Network Performance 

 

First of all, the MCHMLP and CHMLP networks need to be tested their ability before 

used to detect AF activity. For all UCI datasets as tabulated in Table 5.3, each dataset is 

randomly divided into two subsets of 80% as a training sample and 20% as test sample to 

form a predictive test. This procedure is repeated until the smallest constant standard 

deviation is obtained. This study limits the number of hidden nodes to 10 for each classifier 

(CHMLP, MCHMLP, HMLP, MLP and RBF networks) and a maximum of 10 iterations for 

K-Mean. However, there are classifiers that are able to reach the point of convergence with 

less than 10 hidden nodes or iterations. Table 5.4 shows the classification performance of 

the CHMLP, the MCHMLP and other classifier for Pima Indian, Iris, Glass, Wine, Lung 

Cancer, Ionosphere and Hayes-Roth datasets. The performance of the classification 

techniques are measured by the accuracy of the prediction techniques which calculated as 

Equation 3.8 and the MSE. The MSE is calculated by: 

 

𝑀𝑆𝐸 = (∑(𝑦𝑘 − �̂�𝑘
2)

𝑛

𝑘=1

) 𝑛 ⁄                                                                                                        (5.2) 

                                    

with 𝑦𝑘 is the predicted output while �̂�𝑘 is the actual output. n  is the number of data used. 
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Table 5.4: Classification performance of the CHMLP, MCHMLP and other classifiers on 

several datasets. 

 

Dataset 

Classification Technique,  

Accuracy (%) / MSE 

CHMLP MCHMLP HMLP MLP RBF K-Mean 

Pima Indian 77.92 / 

4.12 

77.50 / 

9.36 

74.10 / 

15.84 

70.78 / 

28.52 

70.57 / 

26.94 

73.92 / 

8.82 

Iris 98.83 / 

1.19 

98.83 / 

3.88 

98.83 / 

4.16 

96.67 / 

5.11 

85.64 / 

28.84 

91.98 / 

8.70 

Glass 90.45 / 

3.69 

90.01 / 

6.40 

89.96 / 

8,41 

72.10 / 

32.49 

69.54 / 

28.62 

71.19 / 

16.97 

Wine 99.77 / 

0.67 

99.77 / 

1.15 

99.77 / 

3.42 

70.87 / 

42.38 

67.87 / 

26.63 

96.12 / 

5.34 

Lung 

Cancer 

92.31 / 

10.96 

89.92 / 

12.39 

88.76 / 

13.67 

50.00 / 

28.94 

65.70 / 

39.31 

70.57 / 

26.73 

Ionosphere 95.02 / 

2.19 

94.27 / 

3.57 

93.68 / 

4.67 

85.71 / 

13.10 

87.60 / 

29.70 

92.57 / 

6.00 

Hayes Roth 83.65 / 

18.58 

81.35 / 

9.67 

80.82 / 

15.68 

68.24 / 

16.56 

70.03 / 

31.58 

79.57 / 

15.92 

 

As tabulated in Table 5.4, the CHMLP network produces the highest testing accuracy 

for all the datasets and lowest MSE for all datasets with the exception on the Hayes Roth 

dataset where the MSE is slightly higher than obtained by HMLP. In the case of the Iris and 

Wine datasets, the accuracy performance is similar for the CHMLP, MCHMLP and HMLP 

networks. However, the MSE is significantly lower for the case of CHMLP network. In the 

case of Pima Indian Diabetes and Hayes Roth datasets, the CHMLP network unable to 

produce high accuracy results due to the problem with the large overlap between two groups 

in the datasets. The datasets are divided into different groups and parts of the data are subset 

of each group and create a difficulty to be classified since it is highly overlapped. As the 

conclusion, the CHMLP network is shown to be able to obtain the best classification results 

and better than others network. The result shows the CHMLP network has the capability to 

generalize the datasets in training phase and performs good results in testing phase. 

 

For MLP, RBF and K-Mean classification, results for all datasets are no better than 

HMLP, MCHMLP and CHMLP networks. The performance of these three classification are 

based on type of data and tabulation of data itself. For Pima Indian Diabetes, K-Mean 
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produce better result and follows with MLP and RBF. However, for the Iris and Glass 

datasets, MLP gives better results and follow with K-Mean and RBF.  Nevertheless, the 

MCHMLP also outperforms all the other networks (except the Cascade-HMLP network) in 

obtaining the highest overall accuracy for every dataset used. Sometime, the accuracy of 

MCHMLP and HMLP networks are equals but, the performance of standard deviation made 

the different between the networks. The problem occurs during the use of Pima Indian 

Diabetes and Hayes Roth. The high overlap databases during the classification process 

reduce the performance of the classifier. Although the MCHMLP results has been 

outperform by the Cascade-HMLP network, but the performance of the MCHMLP network 

is not far behind. The MCHMLP network is providing high accuracy classification with 

small standard deviation results. The MCHMLP network also capable to generalize the 

datasets in training phase, whilst performs good results in testing phase. 

 

Nevertheless, the MCHMLP network also outperform all the other classification 

technique (except for CHMLP) in obtaining the highest accuracy for every dataset. For 

several time, the accuracy performance for MCHMLP and HMLP are equals but, the 

performance on MSE made the different between the networks. The problem occurs during 

classification of Pima Indian Diabetes and Hayes Roth. The high overlap databases during 

the classification process reduce the performance of the classifier. Although the performance 

of MCHMLP no better than CHMLP network but the results is not far behind. The 

MCHMLP capable to provide high accuracy results and low MSE performance for each 

datasets. The MCHMLP network also capable to generalize the datasets during training, 

whilst performs good results in the testing phase. As the both Cascade-HMLP and 

MCHMLP networks are proven capable to generalize the datasets and provide high 

accuracy, then the extracted features of the normal and AF signal are fed to the networks. 

Table 5.5 shows the classification result given by the CHMLP and MCHMLP networks 

based on RPD feature extraction technique and use both the RRI and PTI morphologies.   
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5.3 Atrial Fibrillation Classification   

 

Some experiments involving feature extraction and classification will be obtained. The 

RPD feature extraction is use to extract feature from the ECG signal. The extracted features 

are obtained by using both RRI and proposed PTI morphologies. In other hands, the 

classification is done by the improvement version of the HMLP network, the MCHML and 

CHMLP networks. 

 

 

5.3.1 RPD Feature Extraction  

 

Normal and AF signals are taken from the MIT-BIH database and extracted using 

RPD. Then, the amplitude of the intersection of the rectangular pulses and the signal are fed 

to the classifiers for classification process. Results from the HMLP network are compared 

with ten other classifiers. Table 5.5 which are in order of decreasing accuracy shows the 

results of the AF classification using several techniques. The RRI method appears as the 

most important indicator for AF identification. The RRI method becomes the important 

indicator for AF identification. Several researchers also applied the AA technique as the 

features. The accuracy, sensitivity and specificity are calculated based on Equation 3.5, 3.6 

and 3.7. 
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Table 5.5: The comparative result of AF classification using various technique. 

 

Technique 

Result (%) 

Morphology  Accuracy Sensitivity Specificity 

CHMLP RRI 95.94 97.46 94.42 

CHMLP PTI 95.53 97.56 93.50 

MCHMLP RRI 93.64 91.20 96.08 

MCHMLP PTI  91.89 89.20 94.58 

HMLP RRI 91.60 95.80 96.40 

HMLP PTI 91.55 97.64 85.55 

MLP RRI 89.92 90.26 89.58 

RBF RRI 89.17 88.45 89.89 

K-Mean RRI 88.62 88.52 88.72 

K-Mean PTI 86.45 88.20 84.70 

MLP PTI 82.18 84.34 80.02 

RBF PTI 80.32 79.84 80.80 

 

 

The results show the CHMLP network is competence to produce the highest 

classification accuracy using the RPD based RRI morphology feature extraction. The 

CHMLP network is able to classify the AF dataset with 98.00%, 97.52% and 98.84% 

accuracy, sensitivity and specificity, respectively. The MCHMLP network comes second 

with 96.12%, 95.66% and 96.58% accuracy, sensitivity and specificity, respectively. The 

HMLP network enables to give good results with 95.94%, 97.45% and 94.42% for accuracy, 

sensitivity and specificity, respectively. The small margins which the CHMLP network 

outperforms the rest of the classification methods, in terms of accuracy, vary from 2% to 

15%. The results show the HMLP based structure capable to do the classification process 

accurately. The good result also reflected by the suitability between the feature parameter 

and classifiers used during the classifying process. The RRI morphology is allowed the 

classification of AF activity takes place whether the P peak is detected or not. As mentioned 

in the literature, the RRI morphology becomes an important information contributor in the 

classification of AF. The rest classifier (MLP, RBF and K-Mean) also gives better accuracy 

result but unable to outperform the classification performance of CHMLP, MCHMLP and 

HMLP networks. 
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The PTI morphology also capable to give high accuracy AF classification as the results 

illustrated in Table 5.5. The PTI morphology appears to be the best approach if no 

information is provided as to the condition under which the ECG signal is obtained. The 

CHMLP network is able to classify the AF dataset with 96.15%, 94.75% and 97.54% 

accuracy, sensitivity and specificity, respectively. The MCHMLP network also produced 

good results with 96.04%, 95.64% and 96.44% while HMLP network with 95.52%, 97.56% 

and 93.48% for the corresponding outputs. Clearly, a good combination of feature extraction 

and classifier facilitate PTI as a significant contributor to AF classification. The analysis of 

ECG signals with the extracted features taken from the PTI could be used to prevent the 

problems ECG signal analysis since most of the signals are taken during rest time rather than 

performing activities. The K-Mean, MLP and RBF also shows good classification results by 

using PTI morphology as the feature extraction technique. However, this classification 

technique unable to outperform the results given by CHMLP, MCHMLP and HMLP 

networks. The results show that the PTI morphology can offers a reliable input vector. The 

results tabulated in Table 5.5 shows the generalization of all the datasets based on the PTI 

morphology for classification.  

 

 

5.4 Discussion 

 

In the ECG pattern recognition unit, the rectangular pulse domain (RPD) has been 

used to extract the information from filtered ECG signal. The ECG complexes are formed 

in RRI and PTI morphologies. Rectangular pulses are generated and superimposed on the 

RRI and PTI morphologies complexes. The amplitudes of each intersection point between 

the ECG and the pulses were used to form the input vectors for the neural network. From 

the study, four rectangular are gain seven input vector to the classier which proved by HMLP 

neural network classifier. By using four rectangular it will gain seven intersections which is 

just enough to perform high accuracy prediction. Too many intersections may let the classier 

become more complex but insufficient input vector let the network unable to generalize.  

 

From the HMLP classifier results, it has reach their optimum performance with 

95.94% based on RRI morphology and 95.53% based on PTI morphology. In this study, an 

improvement version of the HMLP network is introduced, which is repeating the 

classification process at the second stage, known as MCHMLP. The proposed method is 
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affected by adding another HMLP network to the output layer of the conventional HMLP 

network. These networks are in cascade so that the output of the first network is the input of 

the second network. Another improvement held in this study by cascading two HMLP 

networks in series known as Cascade-HMLP (CHMLP) network. The CHMLP network is 

the improvement of the MCHMLP network. A new feeding arrangement to the second stage 

network makes a different between the MCHMLP network and the improvement network, 

the CHMLP. The improvement of CHMLP and MCHMLP networks are shown by Table 

5.4 which CHMLP and MCHMLP networks shows significant improvement comparing 

with others classifier.   

 

The ability of CHMLP and MCHMLP in doing classification are be continues to 

classify the AF activities. Table 5.5 shows the performance CHMLP and MCHMLP network 

in doing AF classification by using feature extracted by using RPD technique. Both RRI and 

PTI morphologies are used as the input vector to the networks. From the results, it shows 

the CHMLP and MCHMLP outperforms others classifier in classify the AF activities. The 

network gain significant performance than original network (HMLP) with around 4% for 

CHMLP and 2% for MCHMLP, respectively based on RRI morphologies. Both networks 

are capable to produce significant improvement based on PTI morphologies. Based on PTI 

morphology performance, 2% and 0.5% improvement have been provided by CHMLP and 

MCHMLP networks, respectively.  

 

 

5.5 Conclusion 

 

This chapter presented novel pattern recognition in detecting the AF signal activity 

and developed some improved of the HMLP classification network. From this study, a novel 

PRD feature extraction technique has been used to feed the feature to the HMLP network. 

As the results, the HMLP network has granted better performance of AF detection.  Both 

the RRI and the suggested PTI morphologies are used for extracting the feature. This study 

also reveals the used of the PTI morphology is also successfully and accurately to be used 

for detecting AF when information on how the ECG was obtained is not available. The 

improvement of HMLP network, which are the CHMLP and MCHMLP networks are 

designed to implement multi-stage classification by using the output of the earlier stage 

results. Datasets from UCI machine learning repository database such as the Pima Indian 
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Diabetes, Iris, Glass, Wine, Lung Cancer, Ionosphere and Hayes-Roth have been used as 

benchmark data. A study has been done on the various classifiers and the same datasets are 

used in this study. The CHMLP and MCHMLP networks capabilities are compared with 

other classifiers to measure the ability of the network to produce a better outcome. Results 

show that overall the CHMLP and MCHMLP networks outperforms all other classifiers 

(HMLP, MLP, RBF and K-Mean) with better performances both on accuracy and MSE. 

Nevertheless, PTI morphology appears to be the best approach if no information is provided 

as to the condition under which the ECG signal is obtained. In Chapter 6, the system is 

developed and further discussions on the system are available.  
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Chapter 6 

 

ECG Analysis System 

 

 

6.1 Introduction 

 

In previous chapter, the feature extraction and classification processes are been formed 

as novel pattern recognition unit in recognising the best feature, and use it as the indicator 

to perform the classification process. In last chapter, the study produces a new PRD feature 

extracting method in extracting feature form ECG signal and novel development of 

MCHMLP and CHMLP networks for classification process to be obtained. In this chapter, 

both the novel noise reduction unit (Chapter 4) and the novel pattern recognition unit 

(Chapter 5) are combined together to develop a new approach of ECG analysis system in 

detecting the AF activity. The system starts by processing the ECG signal until the 

classification results either the signal is an AF or not is shown.   

 

 

6.2 ECG Analysis System 

 

The new approach of the ECG analysis system is developed to process the raw ECG 

signal which directly taken from the patient. Figure 6.1 shows the whole system been 

designed and works. 
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Figure 6.1: The flowcharts of the ECG analysis system. 

 

The system consists of two main units, which are the noise reduction unit and the pattern 

recognition unit. Each unit has its own responsibility to make sure all process are done 

properly since the results will be given is highly relates to the previous results. The noise 

reduction unit works to denoise all the contaminating noise is the ECG. The unit are 

including numbers of process. The pattern recognition unit is starts after the ECG signal is 

clean from noises. The unit requires the feature to be extracted and the classification is done 

by using the extracted feature as the input vector.  

 

Figure 6.1 shows the denoising of the noise contaminating process in the ECG signal 

is done in the noise reduction unit. At the early stage, an ECG signal is corrupted with BW, 

PLI, EMG and MA noises. In the first process, the PLI is eliminated from the initial signal. 

The 50 Hz noise is eliminated from signal by using the designed bandstop notch filter. The 

EMG noise in the PLI free signal then removed using the IPNLMS adaptive filter. Here, the 
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skin effect signal is removed from the ECG signal. Next, the filtered signal at this stage is 

filtered again in order to reduce the effect of the low and high frequency noises contributed 

by the BW and MA noises by using the STHL wavelet based filter. The clean signal obtained 

after the sequence of filters is used. The clean signal is then processed (extracted and 

classified) as done in the pattern recognition unit as shown in Figure 6.1.     

 

Figure 6.1 also shows the pattern recognition unit which consists of feature extraction 

and classification processes. The process starts by getting the clean signal form the noise 

reduction unit. The amplitude of signal then separated to the beat by beat according to RRI 

and PTI morphologies. The rectangular pulses are superimposed with the ECG complex 

then the intersection points between them are extracted to be the input vector of the 

classifier, the CHMLP and MCHMLP neural networks. The classifier then classified the 

signal whether it is belonging to the AF or not.  

 

 

6.3 System Performance  

 

The performance of the system starts with the noise reduction unit to eliminate the 

PLI, removing the EMG and reducing the impact of BW and MA noises. In this study, the 

goal of the system is detecting the presents of AF episode. So, signals from normal and AF 

subjects are taken from the MIT-BIH database. Table 6.1 shows the performance of each 

filter in denoising certain noise.  

 

Table 6.1: Performance of the noise reduction unit. 

Process SNR Reading, (dB) 

Normal AF 

Corrupted Signal 2.78 1.36 

After PLI Elimination 3.76 5.33 

After EMG Removal 7.25 6.78 

After BW and MA Reduction 12.38 15.92 
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Table 6.1 shows the noise reduction unit performance at each stage. The noises are 

highly corrupted to the ECG signal. At the beginning, the SNR reading is small but slowly 

increases at the PLI elimination stage. During PLI elimination stage, the 50 Hz of PLI from 

powerline source is eliminated.  The ratio between the signal and the noise is increased since 

PLI is eliminated for both normal and AF signals. For the normal signal, the increment up 

to 1.00 of SNR while up to 4.00 increment of SNR shows for the AF signal. Better signals 

are shown after the EMG; the skin effect signal is removed from the signals. The signal form 

the muscle is removed from the signals and the SNR reading for the normal signal is increase 

to 7.25 while the AF signal is increase to 6.78. The signals (signal free from PLI and EMG) 

then processed to ensure they are free from measurement equipment, respiration and body 

movement signals. Results tabulated in Table 6.1 shows the improvement on SNR for 

normal with 12.38 while the AF signal is improved to 15.92. Comparison between before 

and after the filtering is done; the corrupted signal is highly contaminated with noises. The 

filtering process must be performed before the following process to be done unless 

inaccurate results is produces and the condition of false positive or false negative will be 

happen. Figure 6.2 and Figure 6.3 shows the performance of the noise reduction unit in 

denoising the normal and AF signals. 
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Figure 6.2(a): Normal signal corrupted with BW, PLI, EMG and MA noises. 

 

 
Figure 6.2(b): Normal signal after PLI elimination. 
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Figure 6.2(c): Normal signal after EMG removal. 

 

 
Figure 6.2(d): A clean normal signal generated. 
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Figure 6.3(a): AF signal corrupted with BW, PLI, EMG and MA noises. 

 

 
Figure 6.3(b): AF signal after PLI elimination. 
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Figure 6.3(c): AF signal EMG removal. 

 

 
Figure 6.3(d): A clean AF signal generated after BW and MA reduction. 
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Figures 6.2 and 6.3 shows the results of noise filtering performed by a particular filter 

for a specific noise of both normal and AF signals. In contrast, the high frequency noise 

contributed by MA noise has the difficulty to be removed due to spectrum overlapped 

between the noise and the signals. The important information contained in the signal may 

be removed together with the noise if the filtering process is not properly done. The 

combined wavelet based filters (STHL) is used and capable to reduce the effects of MA 

noise in the signals. However, small amount of the MA noise are still contaminating in the 

signals (both Figures at (d)) but the information in the original signal is still be maintained. 

 

The filtered signals then are extracted by the RPD. Four rectangular pulses are used to 

extract eight intersection points (amplitudes) of each ECG complex. The extracted features 

are fed to the CHMLP network for classification. Table 6.2 exhibits the ability of the 

CHMLP network using PRD extraction feature to perform the classification for both RRI 

and PTI morphologies. 

 

Table 6.2: The results of AF classification using CHMLP and MCHMLP networks. 

 

Technique 

Result (%) 

Morphology  Accuracy Sensitivity Specificity 

CHMLP RRI 97.92 97.38 98.46 

CHMLP PTI 96.04 94.74 97.34 

MCHMLP RRI 95.46 94.12 96.80 

MCHMLP PTI  94.98 95.25 94.71 

 

Result shows that the CHMLP network has the capability to produce a better classification 

accuracy using the RPD based RRI morphology feature extraction. The CHMLP network is 

able to classify the AF dataset with 97.92%, 97.38% and 98.46% accuracy, sensitivity and 

specificity, respectively. The RPD based PTI is also capable to give better accuracy on AF 

classification as the results illustrated in Table 6.2. The PTI morphology identified to be an 

approach when no detail information about the ECG signals. The CHMLP network is able 

to classify the AF dataset with 96.04%, 94.74% and 97.34% accuracy, sensitivity and 

specificity, respectively. The PTI morphology can solved problem of the different between 

the rest and the moving ECG signals. The results show that the PTI morphology can offers 

a reliable input vector for the AF detection.  
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6.4 Discussion 

 

In the ECG analysis system, both noise reduction unit and pattern recognition unit are 

combined to develop a complete system. For noise reduction unit, the four major noises are 

filtered by a filter at each time. Firstly, the PLI noise is filtered from the signals and SNR 

for normal signal are increased from 2.78 dB to 3.76 dB and 1.36 dB to 5.33 dB for AF 

signal. The process follows by removing the EMG effects from the filtered PLI signals. 

From the results, the SNR is improved to 7.25 dB for normal signal while 6.78 dB for AF 

signal. Noise free signals are provided after STHL wavelet based filter are applied to the 

filtered (PLI and EMG) signals. A normal noise free signal is resulting with 12.38 dB while 

15.92 dB for the AF. The results are acquired at the noise reduction unit.  

 

In the pattern recognition unit, the noise free signal then is extracted and information 

from the signals is taken to be fed to the neural network. A new feature extraction method 

which is RPD technique is applied to the signals based on RRI and PTI morphologies. The 

features then are fed to CHMLP and MCHMLP networks to classify either the signal is 

categorizing as AF signal or normal signal. From Table 6.2, the result shows the CHMLP 

network with RRI morphology capable to give 97.92% on accuracy of the prediction, 

follows by 97.38% on sensitivity and 98.46% on specificity. The table also shows the 

CHMLP network with PTI morphology capable to produce 96.04% on accuracy and 94.74% 

and 97.34% on sensitivity and specificity, respectively.  For the MCHMLP network, it 

works well by using RRI morphology with 95.46% accuracy of prediction. The MCHMLP 

also giving a good result by using PTI morphology with 94.98% on accuracy of the 

prediction. Based on PTI morphology performance, 2% and 0.5% improvement have been 

provided by CHMLP and MCHMLP networks, respectively. The PTI morphology gives 

good results for both CHMLP and MCHMLP networks which can be used as indicator of 

AF occurrence if no information of signals is given. 
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6.5 Conclusion 

 

The ECG analysis system is used to detect the AF or non-AF (normal) episodes. The 

system capable to reduce the noise effects from contaminating in the ECG signal. At the 

same time, the originality of the signal is still remaining. The noises in both signals (normal 

and AF) such as BW, PLI, EMG and MA have been reduced by using bandstop notch filter, 

IPNLMS adaptive filter and STHL wavelet filter, respectively. However, some noises are 

still contained in the signals since the MA noise has the difficulty to be removed due to 

spectrum overlapped between the ECG signals and MA noise. The problem needs to be 

compromised since to remain the important information in the signals. The combination of 

the RPD as the feature extraction approach and the CHMLP and MCHMLP network as the 

classifier can provide better overall classification results in the detection of AF. For ECG 

analysis system, the CHMLP network is chosen as the classifier since it performs better than 

MCHMLP in AF detection. The results obtained using the RPD and CHMLP combination 

were compared, and found to be superior compared to the outcomes from other detection 

techniques. Both RRI and PTI morphologies were used for extracting feature parameters 

and in both cases the results of the RPD/CHMLP can offer good results. From the results, 

the complete technique package (CHMLP networks as the classifier, RRI/PTI signals 

morphology extracted by RPD feature extractor) is effective in AF detection and proven to 

provide better results. The PTI morphology extractions technique capable to offer good 

quality of feature since no information about the signal at the initial phase.   
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Chapter 7 

 

Conclusions and Future Work 

 

 

7.1 Conclusions 

 

In this study, a new approach of ECG analysis system is developed in identifying a 

cardiac abnormality. The development of the system is still in the initial stage and this study 

is focussing more on the detection of AF. There are numerous techniques have been 

developed to detect the presence of AF based in ECG signals. In the study, some novel 

techniques have been proposed to improve the detection performances and compare the 

results with previous approaches. 

 

The system consists of two main novel units; novel noise reduction and novel pattern 

recognition units. The system following with four major noises contained in the ECG signal; 

such as baseline wander (BW) powerline interference (PLI), electromyogram (EMG) and 

motion artifact (MA). Three different filters are used to ensure that the remaining noise in 

the filtered output signal is at a minimum level. During the noise reduction process, two 

novel techniques have been developed and used. The novel approach of IPNLMS adaptive 

filter is used to remove the EMG noise. Meanwhile, the IPNLMS adaptive filter are used in 

echo cancellation but never been used in removing noises in biomedical signal. The wavelet 

based filter (STHL) provides better results than other techniques in reducing the impact of 

BW and MA noises. Combination of these wavelet based filter capable to reduce both high 

frequency noise and low frequency noise. In addition, the bandstop notch filter has been 

designed in eliminating the effects of 50/60 Hz PLI. 
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In the pattern recognition unit, this study suggests the use of novel RPD as a technique 

to extract the information contained in the filtered signal. The extracted features (amplitudes 

of ECG) are fed to the classifier (neural network) as the input parameter. Each ECG complex 

is separated from each other with respect to two different morphologies; the R to R interval 

(RRI) and the P to T interval (PTI). The extracted features are classified by novel CHMLP 

network classifier for detection of AF activity. The CHMLP network capable to give a better 

accuracy results which tested with several datasets in order to prove the ability of the 

network to perform the classification. 

 

The ECG analysis system has been developed by combining together the noise 

reduction unit and the pattern recognition unit. The raw ECG signals will be filtered through 

the noise reduction unit then the filtered ECG signals will be extracted and classified to 

normal or AF signal. The system has been tested to perform the detection of AF activities 

and encouraging results are given. The high accuracy results are able to avoid false alarms 

from occurring as well as the potential to be applied in the medical field. However, although 

the developed system can offer a high accuracy result but the system only helps cardiologist 

to do the pre-screening process only.   

 

 

7.2 Future Work 

 

Based on the research conducted, some recommendations on the developed system 

need to be implemented. The improvement of the ECG analysis system could be perform as 

a small unit (noise reduction and pattern recognition) or as a whole ECG analysis system. 

In general, the development of the system is still in its initial stage and there are still some 

deficiencies at the noise reduction unit; as the noise cannot be reduced to the minimum level 

while the accuracy of classification accuracy unable to perform 100% as at the pattern 

recognition unit.  

 

Several improvements can be made at the noise reduction unit. The unit itself use three 

different filters in order to reduce the noises effect to the ECG. They used notch bandpass 

filter to remove the PLI effect. An adaptive filter is used to eliminate the EMG noise and 

wavelet based filters are used to reduce the BW and MA noises. The PLI noise capable to 

be remove to the minimum level since it has static frequency with 50/60 Hz depends on 
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power supply of the country. The notch bandpass is designed to remove the 50/60 Hz, but 

in real application the PLI not exactly 50/60 Hz. A study has to be done in order to identify 

the lowest and the highest frequencies of the 50/60 Hz PLI, so the notch bandpass filter can 

be designed on based on the study in order to remove the partial of PLI noise. The use of 

adaptive filter was unable to eliminated the EMG effect entirely. The adaptive filter needs 

longer time to reach the settling phase. The MA noise is found to be difficult to be reduced. 

The problem arises since the frequency of MA noise itself is overlapped with ECG signal. 

The signal may be remove along with the overlapped noise during the removing process if 

it is not done properly. Important information from the signal maybe get rid together. As the 

results, a better threshold need to be applied in order to distinguish the real high and low 

frequencies of MA noise and low frequency of BW noise. A research has to be conducted 

to use a single filter rather than three different filters. The range of ECG signal need to be 

identified before a filter is designed to remain the ECG signal while remove the noises 

contaminating in the signal. 

 

In the pattern recognition unit, numbers of improvement should be done. During 

feature extraction phase, the intersection points between filtered ECG signal and the 

rectangular pulse domain (RPD) are measured based on amplitude axes only. The 

intersection points are fed to the neural network as the input vectors. As the same time, in 

addition, the intersection points can be relied on the voltage reading (y-axis) and amplitude 

(x-axis) rather than the amplitude measurement only. However, the classification 

performance may increase due to more accurate features are extracted from the signal. The 

performance may also decrease since the additional of input vector can increase the 

complexity of the network. This study also suggests a development of a better classifier 

which capable to perform more accurate classification results. Based on the developed 

system, improvement on the classifier can be made to identify the cases of AF. If the 

classifier is trained to do the classification correctly, it may decrease the cases of false 

alarms. The cases of misdiagnosis will be decline for both patients with AF but diagnosed 

with non-AF and non-AF patient but diagnosed with AF. 

 

The ECG analysis system also can be improved by designing a hardware prototype of 

the system rather than on the software version. This prototype with multi-leads would be 

attached to the body of a patient and the ECG signals would be collected.  The processes 

such as noise removal, feature extraction and signal classification will be done on the built 
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in board. All information of all the processes would be stored in a memory card then the 

preliminary results are transmitted to the hospital for further analysis process remotely via 

wireless technology from computer network. The prototype can be designed as a small as 

could since design-on-chip technology has been implemented. However, more research on 

the design need to be started since the system is supported with a lot other element such as 

power supply to make sure the machine is in working mode, the load to carry the machine 

and the internet network to transmit the results.  

 

The successive episode shown of AF detection using the amplitude of the ECG signal 

becomes a benchmark to start the detection on others heart disorders. There are various cases 

of heart disorders that still need to be detected at the early stage, where the same procedure 

will be repeated as done for AF detection.  
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