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Abstract

We find a procedure to asymptotically enumerate monotone grid classes of permuta-

tions. This is then applied to compute the asymptotic number of permutations in any

connected one-corner L-shaped, T-shaped, and X-shaped class. We start by looking

at the simplest case of the skinny classes with a single row or column.

Finding the exact enumeration of grid classes is hard, so our goal is to find the

asymptotic enumeration. Our strategy consists of enumerating the gridded permu-

tations, finding the asymptotic distribution of points between the cells in a typical

large gridded permutation, and determining in detail the ways in which a typical

large M-gridded permutation must be structured so that its underlying permutation

σ has exactly ℓ distinct M-griddings. We then combine the previous steps to calculate

for each ℓ ≥ 1, the asymptotic probability that σ has exactly ℓ distinct M-griddings.

Then we deduce the asymptotic enumeration of the number of permutations in the

class.
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Table of notation

Symbol Meaning

σ a permutation

Grid(M) the monotone grid class with gridding matrix M

Gridn(M) the set of permutations of length n in Grid(M)

Grid#(M) the gridded class of M-gridded permutations

gr
(
Grid(M)

)
the growth rate of Grid(M)

Pℓ limn→∞ P
[
σ has ℓ M-griddings : σ# ∈ Grid#

n(M)
]
.

θ#(n) the subexponential term in the asymptotics
of a gridded class

θ(n) the subexponential term in the asymptotics
of a grid class

σ# a gridded permutation

κM the correction factor for Grid(M)

g the exponential growth rate of the class

Λ a peak

p the number of non-corner peaks in a grid class

Grid#
A(M) the set of gridded permutations in Grid#(M) in which

the number of points in each cell is specified by matrix A

Γ = (γi,j) an M-distribution matrix

ΓM the unique maximal M-distribution matrix

Γσ# the M-distribution matrix recording
the proportion of the points of σ# in each cell.
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Table of notation continued

Symbol Meaning

c + 1, r + 1 the number of columns and the number of rows
in a connected one-corner class

α the proportion of points in the corner cell of
a connected one-corner class

β the proportion of points in a row cell of
a connected one-corner class

γ the proportion of points in a column cell of
a connected one-corner class

λ
β

α+cβ = γ
α+rγ

q
√
(r + c + 1)2 − 4cr

τ a corner type

κ(τ) the correction factor for the corner type τ

τR a 90◦ rotation of corner type τ

C, CR, CB the corner cell, the cell to the right of it,
and the cell below it, respectively

x the letter representing a point in the corner cell

y the letter representing a point in CR

z the letter representing a point in any row cell except CR
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Chapter 1

Introduction

In this chapter we give the main definitions we need. So, in Section 1.1 we define the

basics like a permutation and a grid class. In Section 1.2 we briefly consider previous

work on grid classes, and in the last section, Section 1.3 we define our goal which is

determining the asymptotic enumeration of a monotone grid class.

1.1 Definitions

In this section we define permutations, monotone grid classes, M-griddings, and

gridded classes.

1.1.1 Permutations

A permutation σ of length n is an arrangement of the numbers 1, 2, ..., n for some

positive n. Usually, permutations can be considered graphically. In the Euclidean

plane a permutation σ = σ1...σn can be plotted by the set of ordered pairs (i, σi). For

example Figure 1.1 shows the plot of the permutation 573614892.

Figure 1.1: The plot of the permutation 573614892
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Chapter 1. Introduction

For standard definitions concerning permutations, see [9].

1.1.2 Permutation classes

A permutation τ is said to be contained in another permutation σ if σ has a subse-

quence (not necessarily contiguous) whose terms have the same relative order as τ.

From the graphical perspective, σ contains τ if the plot of τ results from erasing zero

or more points from the plot of σ and then rescaling the axes appropriately. For

example, 573614892 contains 1324 because the subsequence 3649 (among others) is

ordered in the same way as 1324. See Figure 1.1.

If σ does not contain τ, we say that σ avoids τ. For example, 573614892 avoids

1423 since it has no subsequence ordered in the same way as 1423.

A permutation class is a set of permutations closed under the containment relation.

That is, C is a permutation class if and only if σ ∈ C implies that τ ∈ C for every

permutation τ contained in σ. Any permutation class can be defined by the minimal

set of permutations that it avoids. For a thorough introduction to permutation classes,

see [19].

In this thesis we investigate a special family of permutation classes called mono-

tone grid classes.

1.1.3 Grid(M) and M-gridding

The monotone grid class Grid(M) is defined by a matrix M, all of whose entries are in

{0, 1,−1}. This gridding matrix specifies the permitted shape for plots of permutations

in the class. Each entry of M corresponds to a cell in a gridding of a permutation. The

cells of the matrix M can be displayed easily by sloping lines which create the cell

diagram like , , or . With a minor abuse of terminology, we often refer to the

matrix entries themselves as cells. For example, Figure 1.2 shows the representation

of the same class by a cell diagram and a matrix.

Sometimes, a permutation in a class can be gridded in more than one way. For

example, in Figure 1.3 the permutation 843256179 has seven different griddings in

the class .

4



Chapter 1. Introduction

Grid

0 −1 0
1 1 −1
0 1 0


Figure 1.2: The cell diagram and the matrix representation of a class

Figure 1.3: The seven -griddings of 843256179

To define an M-gridding formally we index matrices starting from the left lower

corner, with the order reversed from what it usually is. For example, M3,1 represents

the entry located in the third column from left and in the bottom row of M.

Let M be a gridding matrix with s columns and t rows. Suppose σ is a per-

mutation with length n, then an M-gridding of σ is a pair of integer sequences,

the column dividers 1 = c1 ≤ c2 ≤ c3 ≤ ... ≤ cs+1 = n + 1, and the row dividers

1 = r1 ≤ r2 ≤ r3... ≤ rt+1 = n + 1 such that for all i ∈ {1, ..., s} and j ∈ {1, ..., t},

the subsequence of σ with indices in [ci, ci+1) and values in [rj, rj+1) is increasing if

Mi,j = , decreasing if Mi,j = , and empty if Mi,j = . Note that, the content

of a cell may be empty even if it is marked like or . To illustrate, in the

rightmost gridding in Figure 1.3, notice that c2 = 5 and r2 = 2. Note that we only

index matrices this way in the definition of M-gridding, and not anywhere else. In

particular, the normal indexing convention (left-to-right and top-to-bottom) is used

for all the matrices in Chapters 3, 4, and 5.

Sometimes, it is more practical to consider the assignment of points to cells in-

duced by a specific M-gridding. In the M-gridding, the column and row dividers are

vertical and horizontal lines which split the permutation into blank cells if the entries

look like , and non-blank cells if they look like or .
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Chapter 1. Introduction

1.1.4 Grid(M) vs Grid#(M)

The set of permutations that have at least one M-gridding is called the grid class

Grid(M). We also use Gridn(M) for the set of permutations of length n in Grid(M).

An M-gridded permutation is considered to be a permutation itself together with

an M-gridding. We call the set of all M-gridded permutations the gridded class and it

is denoted by Grid#(M).

The exponential growth rate of Grid(M) is given by the formula:

gr
(
Grid(M)

)
:= lim

n→∞

∣∣Gridn(M)
∣∣1/n.

This limit is guaranteed to exist as a result of Bevan’s Theorem [7], which we discuss

in Section 1.3. As there are only n + 1 possible positions for each row and column

divider in the gridding matrix M, for a matrix with dimensions s × t an upper bound

on the number of M-griddings of a permutation of length n is (n + 1)s+t−2. It is

obvious that this is a polynomial in n and hence the exponential growth rate of the

gridded class is the same as that of the class itself [18, Proposition 2.1].

Suppose two grid classes Grid(M1) and Grid(M2) are such that M2 can be obtained

from M1 by a series of reflections and rotations, then, for each n, the number of n-

permutations in the two classes is the same, so they have the same enumeration. The

same is true for gridded classes. For example, each of the following eight classes has

the same enumeration.

Thus we only need to consider one of the possible orientations of a class when enu-

merating.

1.1.5 Probability

Much of our analysis is based on probabilistic calculations. In particular, we often

consider properties of M-gridded n-permutations drawn uniformly from Grid#(M).

6



Chapter 1. Introduction

If Q is a property of M-gridded permutations, then we write

P
[
σ# satisfies Q : σ# ∈ Grid#

n(M)
]

to denote the probability that an n-permutation drawn uniformly from Grid#(M) has

the property Q.

The asymptotic probability that Q holds is the following limit, if it exists:

lim
n→∞

P
[
σ# satisfies Q : σ# ∈ Grid#

n(M)
]
.

As usual, given two events A and B, we say that A and B are independent if and

only if P
[
A ∧ B

]
= P

[
A
]
P
[
B
]
. For example, let σ# be a gridded n-permutation

drawn uniformly from Grid#
n( ). Let A be the event that there is at least one

point of σ# in the first two cells and that the topmost of these points is in the first

cell. Similarly, let B be the event that there is at least one point of σ# in the last two

cells and that the topmost of these points is in the last cell. Then events A and B are

independent.

Often, we are only interested in independence “in the limit”. Given two sequences

of events (Ai)
∞
i=1 and (Bi)

∞
i=1, we say that they are asymptotically independent if

lim
n→∞

P
[
A ∧ B

]
P
[
A
]
P
[
B
] = 1.

For example, let σ# be as above. If C is the event that there is at least one point of σ#

in the middle two cells and the bottommost of these points is in the second cell, then

it can be shown that A and C are asymptotically independent.

1.1.6 Generating functions

At certain points in the analysis we make use of generating functions. Wilf describes

a generating function in this way: “A generating function is a clothesline on which

we hang up a sequence of numbers for display” [20]. A generating function is a

formal power series. For example, the generating function of the Fibonacci sequence

7



Chapter 1. Introduction

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . is given by

F(z) = ∑
n⩾0

Fnzn =
z

1 − z − z2 = 0 + z + z2 + 2z3 + 3z4 + 5z5 + 8z6 + . . .

This function compactly encodes the Fibonacci recurrence relation, where each term

is the sum of the two previous terms. The notation [zn] f (z) extracts the coefficient of

zn from the generating function f (z). Thus [zn]F(z) is the nth Fibonacci number Fn.

Given a gridded class Grid#(M), the coefficient of zn in its generating function

F#
M(z) is the number of M-gridded permutations of length n:

F#
M(z) = ∑

n⩾0

∣∣Grid#
n(M)

∣∣ zn = ∑
σ#∈Grid#(M)

z|σ
#|.

A contribution of z|σ
#| is made for each σ# in the gridded class.

Sometimes we want to record additional information about the objects we are

considering. For this we can use a bivariate generating function. For example, let C

be a specific cell of gridded class Grid#(M), and let Grid#
n,k(M) be the set consisting of

those M-gridded n-permutations with k points in C. Then,

F#
M(z, x) = ∑

n⩾0

∣∣Grid#
n,k(M)

∣∣ znxk

is the bivariate generating function for Grid#(M) in which the variable x is used to

mark the points in C.

Further information concerning generating functions is introduced later when

needed.

1.2 Previous work

In this section we summarise the history of grid classes of permutations. We focus

on exact enumeration results.

The study of individual grid classes can be traced back to the work of Atkin-

son [4] and Stankova [16] in the final decade of the 20th century on the skew-merged

8



Chapter 1. Introduction

permutations. However, the study of monotone grid classes was first formally

presented by Murphy and Vatter [15]. Murphy and Vatter refer to them as “profile

classes” in their work. Huczynska and Vatter [14] were the first to adopt the term

grid classes for the monotone grid classes and use the notation Grid(M).

The study of the exact enumeration of monotone grid classes is rare as there are

few individual classes which have been enumerated, and only two general results

that have been found. An individual class example is the generating function for the

skew-merged permutations Grid
( )

which was determined by Atkinson [4].

The first general result is related to skinny grid classes, which are classes with

one row. Their gridding matrix is a vector over { , }. An iterative procedure is

presented by Bevan [8], which gives the generating function of any skinny monotone

grid class. Moreover, Brignall and Sliačan in [11] generalised Bevan’s result to include

skinny classes which have a single cell that may be non-monotone.

The second general result covers the polynomial grid classes, which are classes

with growth rate equal to 1. The monotone grid class Grid(M) is polynomial if M

has at most one or in any row or column. An algorithm was described by

Homberger and Vatter [13] which can enumerate any permutation class with poly-

nomial enumeration from a structural description of the class. It is a big challange to

extend any of the previous results.

A family of permutation classes that are closely related to monotone grid classes

are the geometric grid classes, introduced and studied in [2] and [6]. Given a gridding

matrix M, the geometric grid class Geom(M) consists of those permutations whose

points can be plotted on the sloping lines of the cell diagram of M. Each permutation

in Geom(M) is also a permutation in Grid(M), so Geom(M) ⊆ Grid(M). Indeed,

Geom(M) = Grid(M) if and only if the cell graph of M is acyclic (see Section 3.3

below for a definition of the cell graph of a gridding matrix).

All the monotone grid classes that are considered in this thesis have acyclic cell

graphs, so our results also apply to the corresponding geometric grid classes. How-

ever, we do not concern ourselves further with geometric grid classes; see [2] for more

9



Chapter 1. Introduction

on their properties.

1.3 Asymptotic enumeration

In this section we introduce the aim of this thesis which is the asymptotic enumera-

tion of monotone grid classes. We also present our strategy to achieve this aim.

Given the difficulty of exact enumeration we aim to determine the asymptotic

enumeration of monotone grid classes instead. Bevan proves in [7] that the exponen-

tial growth rate of Grid(M) exists and is equal to the square of the spectral radius of a

certain graph associated with M.

For a more general version of Bevan’s Theorem, a simpler proof was later given

by Albert and Vatter in [1]. Thus we know that

∣∣Gridn(M)
∣∣ ∼ θ(n) gn,

where g is the growth rate of the class and θ(n) is subexponential; that is, we have

limn→∞ θ(n)1/n = 1. We write f (n) ∼ g(n) to denote that limn→∞ f (n)/g(n) = 1.

Our strategy for the asymptotic enumeration of Grid(M) consists of the following

five steps:

1. Find the proportion of points that occur in each cell in a typical large M-gridded

permutation.

2. Determine the asymptotic enumeration of the corresponding gridded class:

∣∣Grid#
n(M)

∣∣ ∼ θ#(n) gn,

where g is the exponential growth rate of the class, and θ#(n) is subexponential.

3. Determine, for each ℓ ≥ 1, how a typical large M-gridded permutation σ# must

be structured so that its underlying permutation σ has exactly ℓ distinct M-

griddings.

10



Chapter 1. Introduction

4. By combining steps 1 and 3, calculate, for each ℓ ≥ 1, the asymptotic probability

Pℓ := lim
n→∞

P[σ has exactly ℓ distinct M-griddings : σ# ∈ Grid#
n(M)].

5. Let

κM = ∑
ℓ≥1

Pℓ/ℓ = lim
n→∞

∣∣Gridn(M)|∣∣Grid#
n(M)|

.

Then
∣∣Gridn(M)

∣∣ ∼ κM θ#(n) gn.

11



Chapter 2

Skinny Classes

In this chapter we find the asymtotic enumeration of the number of permutations in

skinny grid classes. In Section 2.1 we define both peaks and peak points in skinny

classes. In Section 2.2 we prove that if Grid(M) is a k-cell skinny grid class with p

peaks, then
∣∣Gridn(M)

∣∣ ∼ 2−pkn.

We say that Grid(M) is skinny if M is simply a / vector. For example, the

figure below shows the permutation 472598361 plotted in the skinny class .

Figure 2.1: The permutation 472598361 plotted in the skinny class

Although, as mentioned earlier, a method is known which provides the generat-

ing function of any skinny class, this would be an extremely inefficient way of finding

their asymptotic enumeration.

7→

Figure 2.2: The three ways of adding a new maximum point to a gridded permu-
tation in the skinny class Grid#( )

For skinny classes, each of the five steps in the asymptotic enumeration analysis

12



Chapter 2. Skinny Classes

is easy.

The start point is to begin with the exact enumeration of the skinny gridded classes.

Proposition 2.1. If Grid(M) is a k-cell skinny grid class, then
∣∣Grid#

n(M)
∣∣ = kn.

Proof. Any M-gridded permutation can be uniquely constructed from the empty M-

gridded permutation by repeatedly adding a new maximum point. This point may

be placed in any one of the k cells. Moreover, there is only one way of adding a max-

imum to any particular cell, because of the monotonicity constraints. See Figure 2.2

for an illustration.

2.1 Peaks and peak points

In this section we define both peaks and the peak point in skinny classes.

To analyse how permutations can be gridded requires some additional concepts,

so we begin with some basic definitions. First, given a skinny grid class Grid(M),

where M is the / vector (m1, ..., mk), a peak is formed by a pair (mi, mi+1) of ad-

jacent cells if mi ̸= mi+1. That is, a peak either looks like , which we say points up,

or else looks like or , which we say points down. For example, Grid( )

has five peaks, three pointing up and two pointing down.

Second, suppose we have a skinny grid class Grid(M) with a peak Λ, and that

σ# is an M-gridded permutation with at least two points in each cell, witnessing the

orientation of the cell. Then the peak point of Λ is the highest of the points of σ# in

the two cells of Λ if Λ points up, and is the lowest of the points of σ# in Λ if Λ points

down. For example, in the rightmost two gridded permutations in Figure 2.2, the

peak point (of the only peak in the class) is circled.

It should be noted that this use of the term “peak” is atypical, differing from

its standard use to denote a consecutive 132 or 231 pattern in a permutation. We

consider a peak to be part of a gridding matrix. In contrast, a peak point is the central

point of either a peak or valley (in the traditional sense) in a gridded permutation. For

example, the circled points in Figure 2.3 are the two peak points in a permutation in

the skinny grid class .

13



Chapter 2. Skinny Classes

Figure 2.3: The two peak points in a permutation in the skinny class
Grid( )

We generalise these concepts in Section 4.3 below when taking into account non-

skinny classes.

2.2 Dancing and constrained gridded permutations

In this section we start with the definitions of dancing and of a constrained gridded

permutation. Then we give two propositions concerning constrained gridded per-

mutations. We then prove that almost all gridded permutations in a skinny class are

constrained. Finally, we prove Theorem 2.5 which says that if Grid(M) is a k-cell

skinny grid class with p peaks, then
∣∣Gridn(M)

∣∣ ∼ 2−pkn using Propositions 2.1, 2.2,

and 2.4.

Figure 2.4: The four distinct griddings of a permutation in Grid( ); points
which can dance are circled

Suppose Grid(M) is skinny and σ# ∈ Grid#(M). If Q is a peak point of σ#, then Q

is immediately adjacent to a column divider. That is, there is no other point between

Q and the divider. The movement of this divider to the other side of Q results in

another valid M-gridding of σ. We say that Q can dance and that this new gridded

permutation is the result of Q dancing.

We imagine that Q dances from one cell to an adjacent one. (However actually it

is the divider rather than the point that moves). For an illustration see Figure 2.4. We

14



Chapter 2. Skinny Classes

generalise the notion of dancing later in Section 4.3, when considering non-skinny

classes.

The key behind the approach taken in this thesis is the fact that the gridding pos-

sibilities are heavily restricted for most permutations. To formalise this observation,

we direct our focus to specific well-behaved gridded permutations in which only

peak points can dance. In general, different ways of creating griddings are possible.

See the unconstrained gridded permutations in Figure 2.5.

Figure 2.5: One constrained and two non-constrained gridded permutations in
Grid#( )

Suppose Grid(M) is skinny and σ# ∈ Grid#(M). We say that σ# is M-constrained

(or just constrained) if

a) every M-gridding of its underlying permutation σ is the result of zero or more

peak points of σ# dancing, and

b) in every M-gridding of σ, each cell contains at least two points.

Counting possible griddings becomes easy when dealing with constrained grid-

ded permutations.

Proposition 2.2. If Grid(M) is a skinny grid class with p peaks, and σ# ∈ Grid#(M) is

M-constrained, then σ has exactly 2p distinct M-griddings.

Proof. Since σ# is constrained, every M-gridding of σ is the result of zero or more

peak points of σ# dancing. Since each cell of σ# contains at least two points, σ# has

p distinct peak points (one for each peak), which can dance independently. For each

peak point of σ#, we can choose whether it dances or not, yielding a total of 2p distinct

M-griddings for σ.

The following proposition gives sufficient conditions for a gridded permutation

in a skinny class to be constrained:
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Chapter 2. Skinny Classes

Proposition 2.3. Suppose Grid(M) is skinny and σ# ∈ Grid#(M) is such that each cell

contains at least four points and there are no two adjacent cells whose contents together form

an increasing or decreasing sequence. Then σ# is M-constrained.

Proof. The contents of each cell of σ# consists of an increasing or decreasing sequence

of points. However, there is no pair of adjacent cells whose contents together form

an increasing or decreasing sequence.

Thus, in any M-gridding of σ, by the monotonicity constraints, there must be a

divider between each pair of adjacent cells of σ# that have the same orientation and

also a divider adjacent to each peak point of σ#. So any M-gridding of σ can be

formed from σ# by zero or more of its peak points dancing.

Moreover, in any M-gridding of σ, at most two points from any cell of σ# (the

first and the last) can be gridded in another cell. So each cell of any M-gridding of σ

contains at least two points.

The reason behind our interest in constrained gridded permutations is not only

because it is easy to count their griddings, but in addition because almost all gridded

permutations are constrained.

Proposition 2.4. If Grid(M) is skinny, then almost all M-gridded permutations are M-

constrained:

lim
n→∞

P[σ# is M-constrained : σ# ∈ Grid#
n(M)] = 1.

Proof. Suppose M has k cells. The number of n-point M-gridded permutations with

exactly m points in a given cell equals

(
n
m

)
(k − 1)n−m < nm(k − 1)n.

Here, (n
m) is the number of ways of choosing the points in the given cell, and

(k − 1)n−m is the number of ways of distributing the remaining points. So the total

number of n-point M-gridded permutations with fewer than four points in some cell

is less than 4kn3(k − 1)n, there being four choices for the value of m, and k choices of

cell.
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Chapter 2. Skinny Classes

Similarly, the number of n-point M-gridded permutations with a given pair of

adjacent cells forming an increasing or decreasing sequence of length m is less than

(m + 1)(k − 1)n < (n + 1)(k − 1)n.

Here, (k− 1)n is an upper bound on the number of ways of distributing the points

if we consider the pair of adjacent cells merged to form a single “super cell”, and the

factor m+ 1 is the number of choices for the position of the divider that splits the pair

of cells. So the total number of n-point M-gridded permutations with two adjacent

cells forming an increasing or decreasing sequence is less than (n + 1)2(k − 1)n+1,

there being n + 1 choices for the value of m, and k − 1 choices for the pair of cells.

Thus, by Propositions 2.1 and 2.3, the proportion of n-point M-gridded permuta-

tions which are not constrained is less than

4kn3(k − 1)n + (n + 1)2(k − 1)n+1

kn < 5k(n + 1)3
(

1 − 1
k

)n
,

which converges to zero as n tends to infinity.

We can then deduce the asymptotic enumeration of skinny grid classes directly

from Propositions 2.1, 2.2, and 2.4.

Theorem 2.5. If Grid(M) is a k-cell skinny grid class with p peaks, then
∣∣Gridn(M)

∣∣ ∼
2−pkn.

Proof. For almost all of the kn distinct M-gridded permutations, the underlying per-

mutation has exactly 2p M-griddings.
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The distribution of points between

cells

In this chapter we introduce in Section 3.1 some special types of matrices and use

them for recording the number of points or the proportion of points in each cell.

We then determine in Section 3.2 the asymptotic number of gridded permutations

with a given distribution. In Section 3.3 we consider maximal distributions, with the

greatest growth rate. In Section 3.4 we establish that the distribution of points in

almost all gridded permutations is close to the maximal distribution.

As we have previously observed, depending only on the number of peaks, almost

every large permutation in a given skinny class has the same number of griddings.

However, the situation is not the same in non-skinny classes, because the structure of

a permutation may affect the number of its griddings.

In this chapter we determine the asymptotic probability of a permutation having

a specific number of griddings. To do this, we need to know the proportion of points

that occur in each cell in a typical large gridded permutation.

In Bevan’s PhD thesis [8, Chapter 6], and in Albert and Vatter [1] much of the

required analysis can be found. However, neither reference has all that we require.

This chapter uses a combination of the approaches in both of these sources.
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Chapter 3. The distribution of points between cells

3.1 M-admissible and M-distribution matrices

In this section we define some matrices which we use to record the number or pro-

portion of points in each cell.

Given a gridding matrix M, we say that a nonnegative real matrix A = (ai,j) of

the same dimensions as M is M-admissible if ai,j is zero whenever Mi,j is blank. We

refer to the sum of the entries of such a matrix as its weight.

We use integer M-admissible matrices to record the number of points in each cell

of a gridded permutation. Suppose A = (ai,j) is an integer M-admissible matrix of

weight n. Then Grid#
A(M) denotes the subset of Grid#

n(M) consisting of those M-

gridded permutations with ai,j points in cell (i, j), for each (i, j). For an illustration,

the gridded permutation in Figure 3.1 below is an element of

Grid#(
2 3 3
1 0 0

)( )
.

Figure 3.1: A gridding of the permutation 318652479 in Grid#( )
,

Thus Grid#
n(M) can be partitioned into subsets as follows:

Grid#
n(M) =

⊎
∥A∥=n

Grid#
A(M),

where the disjoint union is over all integer M-admissible matrices of weight n. The

number of gridded permutations in one of these subsets is given by the following

product of multinomial coefficients.

Proposition 3.1. Suppose A = (ai,j) is an integer M-admissible matrix with dimensions
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Chapter 3. The distribution of points between cells

r × s (r rows and s columns). Then,

∣∣Grid#
A(M)

∣∣ = r

∏
i=1

(
∑s

j=1 ai,j

ai,1, ai,2, . . . , ai,s

)
×

s

∏
j=1

(
∑r

i=1 ai,j

a1,j, a2,j, . . . , ar,j

)
.

Proof. The ordering of points (increasing or decreasing) within a particular cell is

fixed by the corresponding entry of M. However, the interleaving of points in distinct

cells in the same row or column can be chosen arbitrarily and independently. The

multinomial coefficient in the first product counts the number of ways of vertically

interleaving the points in the cells in row i. Similarly, the term in the second product

counts the number of ways of horizontally interleaving the points in the cells in

column j.

For example, by applying Proposition 3.1 the exact number of gridded permuta-

tions in

Grid#(
0 2 3 1
2 0 1 0

)( )
is:

∣∣Grid#(
0 2 3 1
2 0 1 0

)( )∣∣ = ( 6
3, 2, 1

)(
3
2

)(
4
3

)
= 720,

where the first multinomial coefficient comes from row 1, the second comes from row

2, and the third comes from column 3.

In order to record the proportion of points in each cell, we use M-admissible ma-

trices of weight one. We call such matrices M-distribution matrices. To avoid having

to be concerned with rounding the number of points in each cell to an integer, we

make use of Baranyai’s Rounding Lemma [5] as a consequence of which we have the

following result.

Proposition 3.2. Suppose Γ = (γi,j) is an M-distribution matrix, and n is any positive

integer. Then there exists an integer M-admissible matrix A = (ai,j) of weight n such that,

for each i, j, we have |ai,j − nγi,j| < 1.

In consideration of this, if Γ = (γi,j) is an M-distribution matrix and n a positive

integer, we use Grid#
Γn(M) to denote Grid#

A(M), where A is an integer M-admissible
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Chapter 3. The distribution of points between cells

matrix of weight n each of whose entries differs from the corresponding entry of nΓ

by less than one, the existence of such an A being guaranteed by Proposition 3.2. The

exact choice of A is of no consequence to our arguments. Note that in any gridded

permutation in Grid#
Γn(M) the proportion of points in cell (i, j) differs from γi,j by less

than 1/n.

3.2 Asymptotics of gridded permutations with a given distri-

bution

In this section we use Stirling’s approximation and Proposition 3.1 to get the asymp-

totic number of gridded permutations with a given distribution.

Suppose τ = γ1 + γ2 + . . .+ γk, where each γi > 0. Then Stirling’s approximation

gives the following asymptotic form for a multinomial coefficient.

(
τn

γ1n, γ2n, . . . , γkn

)
∼
√

τ

(2π)k−1 γ1 γ2 . . . γk
n−(k−1)/2

(
ττ

γ
γ1
1 γ

γ2
2 . . . γ

γk
k

)n

.

Therefore, by Proposition 3.1, the asymptotic enumeration of Grid#
Γn(M) is as fol-

lows.

Proposition 3.3. If Γ = (γi,j) is an M-distribution matrix with row sums ρi = ∑j γi,j and

column sums κj = ∑i γi,j, then

∣∣Grid#
Γn(M)

∣∣ ∼ Cnβ gn,

where

g = g(Γ) := ∏
i

ρ
ρi
i

∏j γ
γi,j
i,j

× ∏
j

κ
κj
j

∏i γ
γi,j
i,j

,

and C and β are constants that only depend on Γ.

Proof. Suppose Γ has dimensions r × s, and A = (aij) is as given in the definition of
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Grid#
Γn(M). Then,

∣∣Grid#
Γn(M)

∣∣ =
r

∏
i=1

(
∑s

j=1 ai,j

ai,1, ai,2, . . . , ai,s

)
×

s

∏
j=1

(
∑r

i=1 ai,j

a1,j, a2,j, . . . , ar,j

)

∼
r

∏
i=1

√
ρi

(2π)s−1γi,1γi,2 . . . γi,s
n−(s−1)/2

(
ρi

ρi

γ
γi,1
i,1 γ

γi,2
i,2 . . . γ

γi,s
i,s

)n

×
s

∏
j=1

√
κj

(2π)r−1γ1,jγ2,j . . . γr,j
n−(r−1)/2

 κj
κj

γ
γ1,j
1,j γ

γ2,j
2,j . . . γ

γr,j
r,j

n

.

Observe that the exponential growth rate of those M-gridded permutations whose

points are distributed between the cells in the proportions specified by Γ is g(Γ) =

lim
n→∞

∣∣Grid#
Γn(M)

∣∣1/n.

To avoid problems below, we restrict the products in the denominators of the

expression for g(Γ) to nonzero entries of Γ only.

3.3 Growth rate

In this section we state two results from [1] and [3], concerning maximal M-

distribution matrices.

Given a grid class Grid(M), an M-distribution matrix Γ = (γi,j) is a maximal M-

distribution matrix if the growth rate g(Γ) is greatest.

The entries of such a matrix must satisfy specific equations that are shown in the

following proposition 3.4.

The requirement is to determine which choices of values for the γi,j maximise

g(Γ), subject to the requirement that ∑ γi,j = 1. This is a constrained optimisation

problem, which can be solved using the method of Lagrange multiplier

Proposition 3.4 (see [1, Section 5] and [3, Proposition 3.4]). Suppose Γ = (γi,j) is a

maximal M-distribution matrix. Then there exists a constant λ such that, for each nonzero

entry γi,j of Γ, we have
γ2

i,j

ρi κj
= λ,
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where ρi = ∑
j

γi,j and κj = ∑
i

γi,j are the row and column sums of Γ.

Grid(M) may have several maximal M-distribution matrices. Restricting the con-

sidered classes allows us to ensure uniqueness.

Given a gridding matrix M, its cell graph is the graph whose vertices are its non-

blank cells, and in which two vertices are adjacent if they share a row or a column

and all the cells between them are blank.

For example, the cell graph of is .

If the cell graph of a gridding matrix is connected, then we also say that the matrix

and the corresponding grid class are connected. A connected grid class has a unique

maximal distribution matrix.

Proposition 3.5 (see [3, Proposition 3.7]). If Grid(M) is a connected grid class, then it has

a unique maximal M-distribution matrix Γ = (γi,j). Moreover, γi,j is positive if and only if

Mi,j is not blank.

The proof of Proposition 3.5 makes use of a characterisation by Albert and Vatter

in [1] of maximal M-distribution matrices in terms of singular value decompositions,

together with an application of the Perron–Frobenius Theorem.

Note that, for a grid class to have a unique maximal M-distribution matrix the

connectivity is a sufficient condition. We use ΓM to denote the unique maximal M-

distribution matrix for a connected matrix M.

3.4 The distribution of points in a typical gridded permuta-

tion

In this section we state the results from [3] that the distribution of points in almost all

gridded permutations in a connected grid class is close to the maximal distribution.

Given any σ# ∈ Grid#
n(M), let σ#

(i,j) denote the number of points of σ# in cell (i, j),

and let Γσ# =
(
σ#
(i,j)/n

)
be the M-distribution matrix recording the proportion of the

points of σ# in each cell.
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Theorem 3.6 (see [3, Theorem 3.8]). If Grid(M) is connected and ΓM = (γi,j) is the unique

maximal M-distribution matrix, then for any ε > 0,

lim
n→∞

P
[

max
i,j

∣∣σ#
(i,j)/n − γi,j

∣∣ ⩽ ε : σ# ∈ Grid#
n(M)

]
= 1.

We now know that, if Grid(M) is connected, then the distribution of points be-

tween cells in almost all M-gridded permutations is close to that specified by ΓM.
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Connected classes with one corner

In this chapter we analyse connected one-corner classes. In Section 4.1, we use Theo-

rem 3.6 to determine the asymptotic distribution of points between cells in connected

one-corner classes. In Section 4.2 we then use generating functions to establish the

asymptotics of the number of gridded permutations in such a class. In Section 4.3

we generalise our notion of a peak and investigate the ways in which points can

dance between the cells in a peak in connected one-corner classes. In Section 4.4 we

investigate the ways in which points can dance between the cells in diagonals and

tees in connected one-corner classes. In Section 4.5 we generalise the definition of a

constrained gridded permutation from skinny classes to M-gridded permutations in

connected one-corner classes.

We say that a cell C of a gridding matrix is a corner cell or just a corner, if there is

both another non-blank cell in the same row as C and also another non-blank cell in

the same column as C. A cell that is not a corner is a non-corner cell.

For example, has five corners, three in the top row and two in the bottom

row.

The focus in the remaining chapters is on connected monotone grid classes that

have a single corner. These classes are either L-shaped, T-shaped or X-shaped. See

Figure 4.1 for an illustration of each type of class. L-shaped and T-shaped classes

come in four different orientations.

The main row is the row that contains the corner cell, and the main column is the
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Chapter 4. Connected classes with one corner

Figure 4.1: An L-shaped class, a T-shaped class, and an X-shaped class

column that contains the corner cell. For conciseness, we say that the row cells are the

non-corner cells in the main row, and column cells are the non-corner cells in the main

column. Hence each L, T or X-shaped class includes a corner cell, some row cells and

some column cells.

During this and the remaining chapters we assume that Grid(M) is a connected

one-corner class with dimensions (r + 1)× (c + 1). Hence M has r + c + 1 non-blank

cells: the corner, r column cells, and c row cells. As an example, for the T-shaped

class in Figure 4.1, we have r = 3 and c = 4.

4.1 The distribution of points between cells

In this section, we use Theorem 3.6 to determine the asymptotic distribution of points

between cells in connected one-corner classes.

We can determine the asymptotic distribution of points between the cells in a

typical M-gridded permutation by using Theorem 3.6 and Proposition 3.4. In a one-

corner class the same equations are satisfied for the asymptotic proportion of points

in each row cell and thus these proportions are all equal. For the column cells the

same holds true. That is because according to 3.4 for each nonzero entry γi,j of Γ, we

have have
γ2

i,j
ρi κj

= λ, where ρi = ∑
j

γi,j and κj = ∑
i

γi,j are the row and column sums

of Γ. So, if we have two nonzero entries γ1, γ2 that are in the same row but not the

corner cell then this means: γ2
1

γ1ρi
=

γ2
2

γ2ρi
=⇒ γ1

ρi
= γ2

ρi
=⇒ γ1 = γ2. The same holds

for columns.

We use α for the proportion of points in the corner cell, β for the proportion

in each of the row cells, and γ for the proportion in each of the column cells. So,

for illustration, the unique maximal distribution matrix for the T-shaped class in
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Figure 4.1 can be presented as (
β β α β β
0 0 γ 0 0
0 0 γ 0 0
0 0 γ 0 0

)
.

Then, by Theorem 3.6 and Proposition 3.4, we know that α, β and γ are the unique

positive solutions to the equations

α + cβ + rγ = 1 and
α2

(α + cβ)(α + rγ)
=

β

α + cβ
=

γ

α + rγ
.

Solving these then yields

α =
1
q

, β =
c − r + q − 1

2cq
, γ =

r − c + q − 1
2rq

, (4.1)

where

q =
√
(r + c + 1)2 − 4cr. (4.2)

Note that in the only other solution to these equations, α = −1/q < 0, so there is a

unique solution with α, β and γ all positive.

Note that

λ =
β

α + cβ
=

γ

α + rγ
=

α2

(α + cβ)(α + rγ)
=

r + c + 1 − q
2rc

(4.3)

is the common value of the ratios from Proposition 3.4.

For example, if r = 3 and c = 4 then we have q = 4, α = 1
4 , β = 1

8 , γ = 1
12 and

λ = 1
6 .

4.2 The asymptotics of gridded classes

In this section we determine the generating function for a connected one-corner grid-

ded class. We then extract the asymptotic growth of the number of gridded permu-

tations from the generating function.

The exact enumeration of the gridded permutations of skinny monotone grid

classes is not difficult, because by Proposition 2.1 we know that for a k-cell skinny
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grid class there are exactly kn gridded n-permutations. However, for non-skinny

classes, things are not as simple.

For connected one-corner classes, we determine the generating function for the

gridded class using a technique which was first described in [8, Chapter 4]. Then

using methods from analytic combinatorics we find the asymptotic growth of the

number of gridded permutations.

To determine the generating function for the gridded permutations in an L-

shaped, T-shaped or X-shaped class we tie together two skinny classes, formed by

the main row and the main column that intersect at the corner cell.

The bivariate generating function for the (c + 1)-cell horizontal skinny gridded

class H# formed from the main row is given by the following formula where x marks

the points in the corner cell.

H#(z, x) =
1

1 − cz − zx
.

Similarly, the bivariate generating function for the (r+ 1)-cell vertical skinny grid-

ded class V# formed from the main column, in which y is used to mark the points in

the corner cell, is

V#(z, y) =
1

1 − rz − zy
.

Thus, the set of pairs (σ#
h , σ#

v ), consisting of an H-gridded permutation σ#
h and a V-

gridded permutation σ#
v , is enumerated by the product of the generating functions of

the two skinny classes:

P#(z, x, y) = H#(z, x)V#(z, y) =
1

(1 − cz − zx)(1 − rz − zy)
.

To count M-gridded permutations, we are only interested in pairs (σ#
h , σ#

v ) where

the number of points of σ#
h in the corner cell equals the number of points of σ#

v in the

corner cell.

As seen in Figure 4.2, each M-gridded permutation can be broken down into

such a pair, and can be combined uniquely to form an M-gridded permutation.
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+ =

Figure 4.2: Tying together a -gridded permutation and a -gridded per-

mutation to create a -gridded permutation

We extract the x and y terms with the same exponent from the generating function

P#(z, x, y). However, we must avoid double-counting the points in the corner cell.

Hence we need

∑
m⩾0

[
xmym]P#(z, x/

√
z, y/

√
z).

By dividing by
√

z for both arguments x and y we guarantee that for each point in

the corner we decrease the exponent of z by one.

We let y = x−1 in order to extract the terms where x and y have the same expo-

nent. This results in a Laurent series in x (a Laurent series is a power series in which

terms of negative degree are permitted). In this series the difference between the

number of points of σ#
h in the corner and the number of points of σ#

v in the corner

is recorded in the exponent of x. The constant term is all that we want, when this

difference is zero; [
x0]P#(z, x/

√
z, x−1/

√
z).

Using the result below we extract this constant term.

Proposition 4.1 (Stanley [17, Section 6.3]). If f (x) = f (z, x) is a Laurent series, then the

constant term [x0] f (x) is given by the sum of the residues1 of x−1 f (x) at those poles α(z) of

f (x) for which lim
z→0

α(z) = 0. These are known as the small poles.

1The residue of h(x) at x = α is the coefficient of (x − α)−1 in the Laurent expansion of h(x) around
x = α. If α is a simple pole, then this is just the value of yh(y + α) at y = 0.
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For our case we get,

x−1 P#(z, x/
√

z, x−1/
√

z) =
1

(1 − cz − x
√

z)(x − rzx −
√

z)
.

There are two poles, at x1(z) = (1 − cz)/
√

z, and at x2(z) =
√

z/(1 − rz).

As x2(z) is the only small pole, the residue at x = x2(z) is all that we require. We

then find that this implies the generating function for M-gridded permutations in a

connected class with one corner is as follows :

F#
M(z) = ∑

n⩾0
|Grid#

n(M)| zn =
1

1 − (r + c + 1)z + rcz2 .

Therefore, from this generating function and, by using the following standard

result we extract the asymptotic growth of the number of gridded permutations.

Proposition 4.2 (see [12, Theorems IV.10 and VI.1]). Suppose F(z) is the ordinary gener-

ating function of a combinatorial class C. Let ρ be the least singularity of F(z) on the positive

real axis. If there are no other singularities on the radius of convergence and ρ is a pole of

order r, then

|Cn| ∼ cρ−n nr−1 where c =
ρ−r

(r − 1)!
lim
z→ρ

(ρ − z)r F(z).

In the case that F(z) is a rational function with a denominator Q(z) of degree

d, the greatest root of the polynomial zdQ(z−1) is the exponential growth rate ρ−1.

Therefore, the growth rate of Grid#(M) is the larger of the two roots of the quadratic

equation z2 − (r + c + 1)z + rc = 0. Hence, by the observation in Section 1.1.4, this is

also the growth rate of Grid(M). Thus,

gM = gr(Grid(M)) = 1
2 (r + c + 1 + q),

where q =
√
(r + c + 1)2 − 4cr . Since z = g−1

M is a simple pole of F#
M(z) the subexpo-

nential term is a constant:

θ#
M(n) = (r + c + 1 + q)/2q = gM/q.
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Therefore, the following proposition gives the asymptotic growth of the number of

gridded permutations in a connected one-corner class.

Proposition 4.3. If M is connected with one corner and has dimensions (r + 1)× (c + 1),

then

∣∣Grid#
n(M)

∣∣ ∼ θ#gn, where θ# =
r + c + q + 1

2q
and g =

r + c + q + 1
2

,

with q =
√
(r + c + 1)2 − 4rc.

For example, if M has dimensions 3 × 3 (r = 2 and c = 2), then
∣∣Grid#

n(M)
∣∣ ∼

4
3 × 4n.

4.3 Dancing: peaks

In this section we generalise our notion of a peak and investigate the ways in which

points can dance between the cells in a peak in connected one-corner classes.

To generalise our definition of a peak for skinny classes, two non-blank horizon-

tally or vertically adjacent cells in a gridding matrix form a peak if they alternate: that

is, if one of them is increasing ( ) and the other is decreasing ( ). Therefore, besides

peaks that point up or point down , there are also peaks that point left ( )

and point right ( ). For example, in Figure 4.3 there is a peak that points up in the

main row, and there is a peak that points right in the main column.

Figure 4.3: A gridding of the permutation 467918523 in Grid#( )
Let σ# be a gridded permutation with at least two points in each cell in a gridded

class with a peak Λ that points left or right. Then, the peak point of Λ is the leftmost

of the points of σ# in the two cells of Λ if Λ points left, and is the rightmost of the

points of σ# in the two cells of Λ if Λ points right. For example, the rightmost circled
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point in the gridded permutation 467918523 in Figure 4.3 is the peak point of a peak

that points right.

To generalise the notation of dancing that we introduced in Section 2.2, we say

that a peak point Q can dance if it is the closest point to the row or column divider

that separates the two cells of the peak. Another valid gridding results from the

movement of this divider to the other side of Q.

Only a single point is involved in the dancing of a peak point which we now call

peak dancing or dancing at a peak.

We say that a peak is a corner peak if one of its two cells is a corner cell, and that it

is a non-corner peak otherwise. For example, the L-shaped class in Figure 4.4 has one

corner peak and five non-corner peaks.

Figure 4.4: An L-shaped class that has one corner peak and five non-corner peaks

4.4 Dancing: diagonals and tees

In this section we investigate the ways in which points can dance between the cells

in diagonals and tees in connected one-corner classes.

Figure 4.5: Griddings of permutations in Grid#( )
, and in Grid#( )

In this section we consider shapes found in corners beside peaks. For one-corner

classes, in addition to peaks, we also need to take into account two other structures,

both of which contain a diagonally adjacent pair of cells oriented either or .

In one-corner classes, these can only occur adjacent to the corner.

If the corner is oriented in the same direction as its two neighbours, then they
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form a diagonal, seen in one of the four rotations of . For example, the class at the

left of Figure 4.5 has two diagonals, and the class at the right has only one diagonal.

On the other hand, if the corner is oriented in the opposite direction from its

two neighbours, then the three cells form a tee: one of the four rotations of . For

example, in Figure 4.6 the L-shaped class has a tee.

Figure 4.6: An L-shaped class with a tee

In connected one-corner classes unlike the situation for peaks, diagonals and tees

only occur at corners. That is because, diagonals can only be formed by two cells

which are adjacent to a corner, and tees can only be formed by a corner cell and two

of its neighbours.

We know that peak dancing or dancing at a peak involves only one single point to

dance. However, in a diagonal or tee there are new possible ways for points to dance.

Figure 4.7: The five -griddings of 618234579; the four circled points can dance
diagonally

Assume that M is a gridding matrix with a diagonal formed from two cells sep-

arated by a row and column divider. Suppose that Q is a point of an M-gridded

permutation σ# that is located in one of the two cells of the diagonal. We say that Q

can dance diagonally if it can jump diagonally to the other cell of the two diagonal cells

giving a new valid gridding. As mentioned earlier in Section 2.2 it is the dividers

that move, but we imagine that the point dances by jumping. For an example, see

Figure 4.7.

Observe that points that lie both horizontally and vertically between Q and the

intersection of the dividers are able to dance. This implies a monotone sequence of

dancers.
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For the tee shape it is similar. Suppose that M is a gridding matrix, with a tee

formed from a corner cell and two other cells, C1 and C2 say, separated by a row

divider and a column divider. Suppose that Q is a point of an M-gridded permuta-

tion σ# in one of the three cells of the tee. Q can dance through the tee if there is an

alternating sequence of one-step moves of the two dividers which leaves one of them

at least immediately the other side of Q and results in another valid M-gridding of σ.

For an example, see Figure 4.8.

Again, any points that lie between the intersection of the dividers and Q can also

dance, yielding a monotone sequence of points that can dance. Note however, that

the first (or last) point in this sequence, lying in C1 say, may only be able to dance into

the corner, and not be able to dance through to C2. For example, the circled point to

the right in the gridded permutations in Figure 4.8 cannot dance into the cell below

the corner.

Figure 4.8: The four -griddings of 816245973; the two circled points can
dance through the tee.

4.5 Constrained gridded permutations

In this section we give two conditions to generalise the definition of a constrained

gridded permutation from skinny classes to M-gridded permutations in connected

one-corner classes.

For almost all permutations in the classes we consider, the valid griddings are

restricted to those that can be obtained through peak dancing, diagonal dancing

and tee dancing. So, generalising the definition for skinny classes, if Grid(M) is a

connected one-corner class we say that an M-gridded permutation σ# is M-constrained

(or just constrained) if

(a) every M-gridding of its underlying permutation σ is the result of zero or more
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points of σ# dancing at a peak or diagonally or through a tee, and

(b) in every M-gridding of σ, each non-blank cell contains at least two points.

We delay further analysis and a proof that most M-gridded permutations are con-

strained until Section 5.4, after we discuss the different types of corner.
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Counting griddings

In this chapter we complete our computation of the asymptotic growth for the con-

nected one-corner classes. We start by determining how the structure of a constrained

M-gridded permutation σ# affects the number of griddings that its given underlying

permutation σ has. This relies on whether the corner cell is oriented in an increasing

or decreasing direction, along with the orientation of each of its non-blank neigh-

bouring cells. In L-shaped classes, there are 8 distinct ways to orient the corner cell

and the two non-blank cells adjacent to it. In T-shaped classes, there are 16 distinct

ways to orient the corner cell and the three non-blank cells adjacent to it. And, in

X-shaped classes, there are 32 distinct ways to orient the corner cell and the four

non-blank cells adjacent to it. These are all illustrated in Figure 5.1. We call these the

corner types.

We find the correction factors for each of the eleven corner types of the L, T,

and X-shaped connected one-corner classes. In Section 5.1 we examine corner types

with peaks. In Section 5.2 we analyse corner types with diagonals. In Section 5.3

we present a detailed examination of corner types with tees. At the end of each

section we find the asymptotic number of permutations in a 3 × 3 class with the

specified corner type. In Section 5.4 we conclude by proving that almost all gridded

permutations are constrained.

We then combine this analysis of the permutation structure with the asymptotic

distribution of points between cells from Section 4.1 to calculate the asymptotic prob-
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L0 L1 L2 ∼= L1 L3 L4 L5 ∼= L1 L6 ∼= L1 L7

T0 ∼= L7 T1
∼= L1 T2 T3 ∼= L3 T4 T5 T6 ∼= L3 T7 ∼= T2

T8 ∼= L1 T9 ∼= L4 T10
∼= T5 T11

∼= T4 T12
∼= L4 T13

∼= L1 T14
∼= L1 T15

∼= L7

X0 X1
∼= L1 X2 ∼= L1 X3 ∼= L3 X4 X5 ∼= T4 X6 ∼= T4 X7

X8 ∼= L1 X9 ∼= X7 X10
∼= T5 X11

∼= T4 X12
∼= T4 X13

∼= L3 X14
∼= T5 X15

∼= L1

X16
∼= L1 X17

∼= T5 X18
∼= X7 X19

∼= T4 X20 ∼= T4 X21
∼= T5 X22 ∼= L3 X23 ∼= L1

X24
∼= L3 X25 ∼= T4 X26 ∼= T4 X27 ∼= X4 X28 ∼= X7 X29 ∼= L1 X30 ∼= L1 X31

∼= X0

Figure 5.1: The corner types

ability for each ℓ ⩾ 1. Let

Pℓ = lim
n→∞

P
[
σ has exactly ℓ distinct M-griddings : σ# ∈ Grid#

n(M)
]
.

Next, we let

κM = ∑
ℓ⩾1

Pℓ/ℓ = lim
n→∞

∣∣Gridn(M)|∣∣Grid#
n(M)|

be the correction factor for the class. We then conclude that
∣∣Gridn(M)

∣∣ ∼ κM θ# gn,

where θ# and g are as mentioned previously in (step 2);

θ# =
r + c + q + 1

2q
, g =

r + c + q + 1
2

, where q =
√
(r + c + 1)2 − 4rc.

We make repeated use of the following observation, recalling the common ratio

λ from (equation (4.3)) on page 27 for the determination of the probabilities.

Given a gridded class Grid#(M) and a property Q of M-gridded permutations,
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the asymptotic probability that Q holds is the following limit, if it exists:

lim
n→∞

P
[
σ# satisfies Q : σ# ∈ Grid#

n(M)
]
.

Observation 5.1. Suppose Grid(M) is a connected one-corner class with dimensions (r +

1) × (c + 1), and let α, β and γ be the asymptotic proportion of points of an M-gridded

permutation in the corner cell, in any row cell, and in any column cell, respectively.

Then, in an M-gridded permutation, for each k ⩾ 1, the asymptotic probability that

the kth point from the top (or bottom) in the main row occurs in any given row cell equals

λ = β/(α + cβ). Similarly, the asymptotic probability that the kth point from the left (or

right) in the main column occurs in any given column cell also equals λ = γ/(α + rγ).

Moreover, for j ̸= k, the events that the jth and kth points from the top or bottom in the

main row occur in specific cells are asymptotically independent. And analogously for points

in the main column.

This observation follows from Theorem 3.6, and the fact that the interleaving

of points in distinct cells in the same row or column can be chosen arbitrarily and

independently.

It is important to notice that we can multiply corresponding correction factors

when dancing can occur asymptotically independently in more than one location.

This is based on the following arithmetic observation.

Observation 5.2. Given real sequences (P′
i )i⩾1 and (P′′

j )j⩾1, let κ′ = ∑
i⩾1

P′
i /i and κ′′ =

∑
j⩾1

P′′
j /j. Suppose Pℓ = ∑

ij=ℓ
P′

i P′′
j . Then,

∑
ℓ⩾1

Pℓ/ℓ = κ′ κ′′.

Proof.

κ′ κ′′ = ∑
i⩾1

P′
i
i ∑

j⩾1

P′′
j

j
= ∑

i,j⩾1

P′
i P′′

j

ij
= ∑

ℓ⩾1

1
ℓ ∑

ij=ℓ

P′
i P′′

j = ∑
ℓ⩾1

Pℓ
ℓ

.
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Non-corner peaks

Before looking at the corner types, we consider the effect of non-corner peaks. From

the definition of the peak point in any constrained M-gridded permutation at each

non-corner peak of M there is one point that dances. Therefore, if M has p non-

corner peaks, these give a factor of 2p to the number of possible M-griddings, in a

similar way to skinny classes (Proposition 2.2). Hence, the asymptotic enumeration

of L, T and X-shaped classes can be given by the result in Theorem 5.3 as almost all

M-gridded permutations are M-constrained (see Theorem 5.5 below).

Theorem 5.3. Suppose Grid(M) is a connected one-corner class with corner type τ, and p

non-corner peaks, then ∣∣Gridn(M)
∣∣ ∼ 2−p κ(τ) θ# gn,

where κ(τ) is the correction factor for a gridding matrix with the same corner type and

dimensions as M but with no non-corner peaks, and θ# and g are as given by Proposition 4.3.

Note that κM = 2−p κ(τ) is the correction factor for the class.

Worked example

Before proceeding to calculate the correction factors for each corner type, we briefly

show our method with an example, by determining the asymptotic enumeration of

the L-shaped class from Figure 4.1:

ML = .

Firstly, from Proposition 4.3, since r = 4 and c = 6, we have
∣∣Grid#

n(ML)
∣∣ ∼ 8

5 × 8n.

Secondly, ML has six non-corner peaks and has corner type L7 see table 5.1. Now,

κ(L7) = 1 − λ, and from equation (4.3) we know that λ = 1
8 .

Thus, by Theorem 5.3, we have

∣∣Gridn(ML)
∣∣ ∼ 2−6 ×

( 7
8

)
× 8

5 × 8n = 7
320 × 8n.
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Correction factors for corner types

We find the correction factor by calculating κ(τ) for each corner type τ. All of our

results are summarised in Table 5.1.

We determine the subscripts used for corner type names by reading the non-blank

cells in normal reading order (left-to-right and top-to-bottom) and creating a binary

number by treating as 1 and as 0. For example, X7 is since 7 = 001112.

Two corner types, τ1 and τ2, are equivalent (denoted τ1
∼= τ2 in Figure 5.1) if τ2

can be obtained from τ1 by rotation or reflection and/or by the addition or deletion

of non-blank cells without creating or removing any peaks, diagonals or tees. For

example, the following corner types are equivalent:

L1

∼=
T1

∼=
T14

∼=
L6

∼=
L5

.

Specifically, L1
∼= T1 by the addition of a decreasing cell at the left, T1

∼= T14 by

reflection about a vertical axis, T14
∼= L6 by the deletion of an increasing cell from the

left, and L6 ∼= L5 by reflection about a diagonal axis. The analysis of two equivalent

corner types is the same. As seen from Figure 5.1, there are eleven inequivalent

corner types to consider. Of equivalent corner types, we choose the one with the

least subscript as the representative.

In the analysis of a corner type, what is important is the number of peaks, diag-

onals and tees that make it up, and how these are combined. Note that both L4 and

T5 consist of two peaks, but their correction factors differ.

From now on, we use dots as an indicator of where there may be additional row

and column cells if they don’t create additional peaks, diagonals or tees.

We begin with L0 the simplest of the corner types.
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τ Cell diagram of the corner type P D T κ(τ)

L0 0 0 0 1

L1 1 0 0 1
2

(
1 + cαλ

α+γ

)
L3 0 0 1

λ (1−λ)
(1−(c−1)λ) (1−(r−1)λ)

L4 2 0 0 1
4

(
1 + rαλ

α+β

)(
1 + cαλ

α+γ

)
L7 0 1 0 1 − λ

T2 1 1 0 1
2

(
1 + rαλ

α+β

)
(1 − λ)

T4 1 0 1 1
2

(
1 + rαλ

α+β

) λ (1−λ)
(1−(c−1)λ) (1−(r−1)λ)

T5 2 0 0 1
4

(
1 + rαλ

α+β

)2

X0 0 2 0 (1 − λ)2

X4 0 0 2
(

λ (1−λ)
(1−(c−1)λ) (1−(r−1)λ)

)2

X7 2 1 0 1
4

(
1 + rαλ

α+β

)(
1 + cαλ

α+γ

)
(1 − λ)

Table 5.1: The correction factors and the number of peaks (P), diagonals (D) and
tees (T) for each of the eleven corner types.

Corner type L0

In this corner type there are no peaks, diagonals or tees. This corner type cannot

occur in a T-shaped or X-shaped class 5.1. There is no possibility for dancing in a

constrained gridded permutation in this class, therefore the underlying permutation

has a single gridding. So, P1 = 1, and Pℓ = 0 if ℓ > 1. Hence κ(L0) = 1.

Worked example

We now briefly apply our method to an example, by determining the asymptotic

enumeration of the following class with corner type L0 with a 3 × 3 gridding matrix:

ML0 = .
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Firstly, from Proposition 4.3 we have:
∣∣Grid#

n(ML0)
∣∣ ∼ θ#gn, where θ# =

r+c+q+1
2q and g = r+c+q+1

2 , with q =
√
(r + c + 1)2 − 4rc. Since r = 2 and c = 2,

then we have q = 3, so
∣∣Grid#

n(L0)
∣∣ ∼ 4

3 × 4n.

Secondly, ML0 has only one non-corner peak. We know that κ(L0) = 1.

Thus, by Theorem 5.3, we have

∣∣Gridn(ML0)
∣∣ ∼ 2−p κ(τ) θ# gn = 2−1 × 1 × 4

3 × 4n = 2
3 × 4n.

5.1 Corners with peaks

In this section we examine corner types with peaks. We find the correction factor for

corner types L1, L4, and T5. We then find the asymptotic number of permutations in

a 3 × 3 class with the specified corner type.

Corner type L1

In this corner type there is one peak. This corner type cannot occur in an X-shaped

class. From the figures, we can see that the peak may be orientated in different ways

with respect to the other cells adjacent to the corner. However, this does not change

the analysis, so this is considered to be a single corner type.

Given a constrained gridded permutation, let Q be the peak point, and let R be

the lowest point in any of the row cells. The only point that may be able to dance is

the peak point Q. It can dance if it is the closest point to the row divider. So, there

are two cases in which Q can dance: if it is below R, either in the corner cell or in

the cell below the corner. On the other hand Q cannot dance when it is above R in

the corner cell. Since R controls whether Q can dance or not, we call it the controller.

Figure 5.2 shows an illustration of the three cases.

Since the peak point, Q, is either in the corner or in the cell immediately below

the corner, the asymptotic probability that Q is in the corner equals α/(α + γ). Fur-
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Q
R

Q

R Q
R

Figure 5.2: Three -gridded permutations; the peak point is circled if it can
dance

thermore, the asymptotic probability that the lowest point in the main row is not in

the corner equals cβ/(α + cβ). These events are asymptotically independent, so

P
[
Q can’t dance

]
∼ P1 =

α

α + γ
× cβ

α + cβ
=

cαλ

α + γ
and P2 = 1 − P1.

So,

κ(L1) = P1 +
1
2 P2 =

1
2

(
1 +

cαλ

α + γ

)
=

2r
3r − c + q − 1

.

Worked example

We briefly apply our method to an example, by determining the asymptotic enumer-

ation of the following class:

ML1 = .

Since for a connected one-corner class the number of gridded permutations de-

pends only on the number of columns and rows, then for ML1 we have
∣∣Grid#

n(ML1)
∣∣ ∼

4
3 × 4n.

ML1 has two non-corner peaks. We know that κ(L1) = 2r
3r−c+q−1 = 2

3 for a 3 × 3

matrix.

Thus, by Theorem 5.3, we have

∣∣Gridn(ML1)
∣∣ ∼ 2−2 × 2

3 ×
4
3 × 4n = 2

9 × 4n.

Corner type L4
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In this corner type there are two peaks. This corner type cannot occur in an X-

shaped class. Given a constrained gridded permutation, let Q1 be the peak point at

the left and Q2 be the peak point at the top. For each peak, the analysis is the same

as for L1, so it gives

P
[
Q1 can’t dance

]
∼ cαλ

α + γ
, P

[
Q2 can’t dance

]
∼ rαλ

α + β
.

Whether Q1 can dance or not depends on the points adjacent to the row divider

below the corner. Similarly, whether Q2 can dance or not depends on the points

adjacent to the column divider to the right of the corner. Since these events are

asymptotically independent, by Observation 5.2, we have

κ(L4) = κ(L1) κ(LR
1) =

1
4

(
1 +

cαλ

α + γ

)(
1 +

rαλ

α + β

)
=

4rc
(3r − c + q − 1)(3c − r + q − 1)

.

Worked example

We briefly apply our method to an example, by determining the asymptotic enumer-

ation of the following class:

ML4 = .

Since for a connected one-corner class the number of gridded permutations de-

pends only on the number of columns and rows, then for ML4 we have
∣∣Grid#

n(ML4)
∣∣ ∼

4
3 × 4n.

ML4 has only one non-corner peak. We know for a 3 × 3 matrix that κ(L4) =

4rc
(3r−c+q−1)(3c−r+q−1) =

4
9 .

Thus, by Theorem 5.3, we have

∣∣Gridn(ML4)
∣∣ ∼ 2−1 × 4

9 ×
4
3 × 4n = 8

27 × 4n.
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Corner type T5

In this corner type there are also two peaks. This corner type cannot occur in an

L-shaped class. Given a constrained gridded permutation, let Q1 and Q2 be the two

peak points. Each peak takes the same analysis as for L1 which implies

P
[
Q1 cannot dance

]
∼ P

[
Q2 cannot dance

]
∼ rαλ

α + β
.

Whether one of the peak points can dance or not depends on the points adjacent to

the column divider to the left of the corner, whereas whether the other peak point

can dance or not depends on the points adjacent to the column divider to the right

of the corner. So, these events are asymptotically independent. Therefore, by Obser-

vation 5.2, we have

κ(T5) = κ(LR
1)

2 =
1
4

(
1 +

rαλ

α + β

)2

=
4c2

(3c − r + q − 1)2 .

Worked example

We determine the asymptotic enumeration of the following class:

MT5 = .

As before,
∣∣Grid#

n(MT5)
∣∣ ∼ 4

3 × 4n. MT5 has only one non-corner peak. We know for a

3 × 3 matrix that κ(T5) =
4c2

(3c−r+q−1)2 = 4
9 .

Thus, by Theorem 5.3, we have

∣∣Gridn(MT5)
∣∣ ∼ 2−1 × 4

9 ×
4
3 × 4n = 8

27 × 4n.

Note that, if r = c then κ(L4) = κ(T5). This is because both corner types have two

independent corner peaks. If r = c, their different orientations do not affect the final
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result specifically, if r = c then

κ(L4) = κ(T5) =
4c2

(2c + q − 1)2 .

5.2 Corners with diagonals

In this section we present a detailed examination of each corner type with diagonals.

We find the correction factor for corner types L7, T2, X0 and X7. We then find the

asymptotic number of permutations in a 3 × 3 class with the specified corner type.

Corner type L7

In this corner type there is one diagonal. This corner type cannot occur in an

X-shaped class. Let us call the cell immediately to the right of the corner CR, and call

the cell immediately below the corner CB.

Given a constrained gridded permutation, let Q1 be the lowest point that is in

the main row but is not in CR. Notice that Q1 may be in the corner cell. Let k1

be the number of points in CR that lie below Q1. Similarly, let Q2 be the rightmost

point that is in the main column but is not in CB (Q2 could also be in the corner

cell), and let k2 be the number of points in CB that lie to the right of Q2. These k1

and k2 points can dance diagonally. They give k1 + k2 + 1 distinct griddings of the

underlying permutation. Note that, each of k1 and k2 may be zero. Any point above

Q1 or to the left of Q2 cannot dance. We call Q1 and Q2 the controllers as they control

which points can dance. For an illustration, see the following Figure 5.3.
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CR

CB

Q1

Q2

Figure 5.3: A -gridded permutation; the six circled points, below Q1 and to

the right of Q2, can dance; k1 = 1 and k2 = 5

Applying Observation 5.1, for each i ⩾ 0, we have

P
[
k1 = i

]
∼ λi(1 − λ) and also P

[
k2 = i

]
∼ λi(1 − λ).

Since the value of k1 is asymptotically independent of the value of k2, for each ℓ ⩾ 1,

the asymptotic probability of having exactly ℓ griddings is

P
[
k1 + k2 + 1 = ℓ

]
=

ℓ−1

∑
k1=0

P
[
k1 = i

]
P
[
k2 = ℓ− 1 − i

]
∼ ℓ λℓ−1(1 − λ)2.

Hence,

κ(L7) =
∞

∑
ℓ=1

λℓ−1(1 − λ)2 = 1 − λ = 1 − r + c + 1 − q
2rc

.

Worked example

We determine the asymptotic enumeration of the following class:

ML7 = .

As before,
∣∣Grid#

n(ML7)
∣∣ ∼ 4

3 × 4n. ML7 has two non-corner peaks. We know for a

3 × 3 matrix that κ(L7) = 1 − r+c+1−q
2rc = 3

4 .

Thus, by Theorem 5.3, we have

∣∣Gridn(ML7)
∣∣ ∼ 2−2 × 3

4 ×
4
3 × 4n = 1

4 × 4n.
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Note that, for an L-shaped or T-shaped class with a 3 × 3 matrix, κ(L7) is equal

to the inverse of the subexponential term θ#. So, for this special case the asymptotic

number of permutations in this class is simply 2−pgn, where p is the number of

non-corner peaks, and g is the growth rate.

Corner type T2

In this corner type there is one peak and one diagonal. This corner type cannot

occur in an L-shaped class.

The peak dancing depends on the points that are in any cell adjacent to the col-

umn divider to the right of the corner, while the diagonal dancing depends on the

points that are adjacent to the column divider to the left of the corner and points

that are adjacent to the row divider below the corner. These sources of dancing

are asymptotically independent. Therefore, from the L1 and L7 analysis, and using

Observation 5.2, we get

κ(T2) = κ(LR
1) κ(L7) =

1
2

(
1 +

rαλ

α + β

)
(1 − λ).

Worked example

We determine the asymptotic enumeration of the following class:

MT2 = .

As before,
∣∣Grid#

n(MT2)
∣∣ ∼ 4

3 × 4n. MT2 has zero non-corner peaks. From equations

4.1, 4.2, and 4.3 we find q = 3, α = 1
3 , β = γ = 1

6 , and λ = α2

(α+cβ)(α+rγ)
= r+c+1−q

2rc = 1
4 .

We know for a 3 × 3 matrix that κ(T2) =
1
2

(
1 + rαλ

α+β

)
(1 − λ) = 1

2 .

Thus, by Theorem 5.3, we have

∣∣Gridn(MT2)
∣∣ ∼ 20 × 1

2 ×
4
3 × 4n = 2

3 × 4n.
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Corner type X0

In this corner type there are two diagonals. This corner type cannot occur in an

L-shaped or T-shaped class.

Dancing here comes from the two diagonals. For one of them dancing depends

on the points adjacent to the row divider below the corner and points adjacent to the

column divider to the left of the corner. Dancing on the other diagonal depends on

the points adjacent to the row divider above the corner and points adjacent to the

column divider to the right of the corner. Thus, these two kinds of diagonal dancing

are asymptotically independent. So, by using the analysis for L7, and Observation 5.2,

we have

κ(X0) = κ(L7)
2 = (1 − λ)2.

Worked example

We determine the asymptotic enumeration of the following class:

MX0 = .

As before,
∣∣Grid#

n(MX0)
∣∣ ∼ 4

3 × 4n. MX0 has zero non-corner peaks. We know for a

3 × 3 matrix that κ(X0) = (1 − λ)2 = 9
16 .

Thus, by Theorem 5.3, we have

∣∣Gridn(MX0)
∣∣ ∼ 20 × 9

16 ×
4
3 × 4n = 3

4 × 4n.
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Corner type X7

In this corner type there are two peaks and one diagonal. This corner type cannot

occur in an L-shaped or T-shaped class.

Dancing here comes from the two peaks and the diagonal. Dancing through

one of the peaks depends on points adjacent to the row divider above the corner

and points adjacent to the column divider to the left of the corner. Dancing on the

diagonal depends on the points adjacent to the row divider below the corner and

points adjacent to the column divider to the right of the corner. Thus these types of

dancing are asymptotically independent of each other. So, using the analysis for L4

and L7, with Observation 5.2, we have

κ(X7) = κ(L4) κ(L7) =
1
4

(
1 +

rαλ

α + β

)(
1 +

cαλ

α + γ

)
(1 − λ).

Worked example

We determine the asymptotic enumeration of the following class:

MX7 = .

As before,
∣∣Grid#

n(MX7)
∣∣ ∼ 4

3 × 4n. MX7 has zero non-corner peaks. We know for a

3 × 3 matrix that κ(X7) = κ(L4) κ(L7) =
1
3

Thus, by Theorem 5.3, we have

∣∣Gridn(MX7)
∣∣ ∼ 20 × 1

3 ×
4
3 × 4n = 4

9 × 4n.

5.3 Corners with tees

In this section we present a detailed examination of corner types with tees. We find

the correction factor for corner types L3, T4, and X4. We then find the asymptotic

number of permutations in a 3 × 3 class with the specified corner type.
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Corner type L3

In this corner type there is one tee. This corner type is the only type of corner

that can occur in L, T and X-shaped classes.

This corner type is more complex than any of the types discussed before. That is

because the analysis needs more details and points to consider. We start by analysing

the main row by reading its points from the bottom. We also do the same for the

main column by reading its points from the right. Let C denote the corner cell, and

let CR and CB be the cell immediately to the right of C, and the cell immediately

below C, respectively.

5.3.1 Sequences of points

Let us consider the main row, and represent the points in this row by words over

the alphabet {x, y, z}. We start reading from the bottom. Let us use x to represent

a point in the corner cell C, y to represent a point in CR, and z to represent a point

in any other cell of the main row. To identify any specific points we use subscripts.

For example, suppose Q is a point in the cell CR then yQ is the representation of the

occurrence of point Q in CR. For example, the sequence of points in the main row of

the gridded permutation at the right of Figure 5.4 on page 53 is represented by the

word xQ yy zS z yU y xR x y z z.

We use simple regular expressions for denoting specific sets giving the possible

ordering of the initial points. We use a∗ to denote a sequence of zero or more copies

of letter a in the regular expressions. For example, z∗xQ consists of arrangements of

points in the main row where Q is the lowest point in the corner cell (xQ being the

first occurrence of x) and Q is below any points in CR (there being no y in the word).

The occurrence of any points below Q can only be elsewhere and is represented

by z∗. Note that there is permission for any ordering of points after the initial points

specified by the regular expression.
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Using Observation 5.1, associated with x, y and z we have the following asymp-

totic probabilities:

px = 1 − cλ, py = λ, pz = (c − 1)λ.

We know that λ = β
α+cβ is the probability that a point is in CR so py = λ. Then, for

the corner cell, because we have c + 1 columns, px = 1− cλ. As the probabilities sum

up to 1, then we have pz = (c − 1)λ, which is the probability of a point being in a cell

represented by z.

By symmetry for the location of points in the main column, when read from the

right, the same approach implies the following asymptotic probabilities:

qx = 1 − rλ, qy = λ, qz = (r − 1)λ.

To find the asymptotic probability that the points in the main row are in (the set

represented by) some regular expression we take the product after replacing each x,

y, z, x∗, y∗ and z∗ by by px, py, pz, 1/(1− px), 1/(1− py) and 1/(1− pz), respectively.

For example, the asymptotic probability that the arrangement of points in the main

row is in xQy
∗ equals px/(1 − py).

5.3.2 The number of griddings

We recall from the introduction to tee dancing from page 34, that there is a mono-

tone sequence of points which can dance. Except for the end points, the first and

last points of the sequence these can always dance between CR and CB through C .

However, the end points may only be able to dance between CB and C or between CR

and C, but not from CR to CB.

As a result we find that each point which can dance between CR and CB con-

tributes two to the number of griddings. However, a point that can only dance be-

tween CB and C or between CR and C contributes only one additional gridding. For

the analysis below, we consider the contribution to the number of griddings from

points in the main row to be m1, and we consider the contribution to the number of

52



Chapter 5. Counting griddings

griddings from points in the main column to be m2. We must include the original

gridding, so we get m1 + m2 + 1 for the total number of distinct griddings.

5.3.3 Labelled points

Given a constrained gridded permutation, let Q be the lowest point in the corner

cell C. The analysis here depends on whether Q is the peak point of each of the two

peaks that come from the tee or not.

If c > 1 (which means there are more than two columns), then let S be the lowest

point in the main row which is in any cell other than C or CR. Similarly, if r > 1, then

let T be the rightmost point in the main column that is in any other cell than C or CR.

There are three cases to consider. First, Q is the peak point of both of the tee

peaks. Second, Q is not the peak point of either of the tee peaks. Finally, in the third

case, Q is the peak point of only one of the two tee peaks.

C CR

CB

Q
R

S

T

1a (k1 = 1) and 1a (k2 = 2)
9 griddings

C CR

CB

Q

R

S

T

U

1b (k1 = 2) and 1c (k2 = 0)
7 griddings

Figure 5.4: L3 Case 1: -gridded permutations; the circled points can dance.

Case 1: Q is the peak point of both peaks that form the tee

In Case 1, from our assumption above that Q is the peak point for both peaks, then

Q is lower than every point in CR and to the right of every point in CB.

If S is above Q, then Q is adjacent to the row divider below C and can dance

vertically into CB, contributing one to the number of griddings. Similarly, if T is to

the left of Q, then Q is adjacent to the column divider to the right of C and can dance
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horizontally into CR, again contributing one to the number of griddings.

Let R be the second lowest point in the corner cell C. That is, R is the point

immediately above Q in the corner cell. Points R, S and T are the controllers, because

they control which points can dance.

Let k1 be the number of points in CR below both R and S (if c > 1). These k1

points are above Q, and thus can all dance through the tee to CB, each contributing

2 to the number of griddings. Similarly, let k2 be the number of points in CB to the

right of both R and T (if r > 1). These k2 points are to the right of Q, and can also

all dance through to CR, again each contributing 2 to the number of griddings. Note

that k1 and k2 may be zero. See Figure 5.4 for two gridded permutations satisfying

the conditions of Case 1.

In Case 1, the possible ordering of the points in the main row, reading from the

bottom, is given by the regular expression z∗xQ, the only points below Q (if any)

being in cells other than C and CR. So, the asymptotic probability that the points in

the main row of a gridded permutation satisfy the conditions of Case 1 is given by

p1 := P
[
Case 1

]
=

px
1 − pz

=
1 − cλ

1 − (c − 1)λ
.

An analogous result applies for the main column.

For both the main row and the main column, we have three subcases. We analyse

the main row, reading its points from the bottom. The analysis of the main column

is analogous (reading its points from the right). The three subcases are as follows:

1a. S, if it exists, is above Q, which is the lowest point in the main row. S (if it

exists) may be above or below R. There is no point in CR that is above S and

below R. See the left of Figure 5.4 for examples in both the main row and the

main column. The analysis of Case 1a is as follows:

Q can dance vertically into CB. Hence k1 points can dance from CR to CB via C.

Thus m1 = 2k1 + 1.

The possible ordering of the points in the main row, reading from the bottom,
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is given by the regular expression xQy
∗z∗xR. So, for each i ⩾ 0, we have

p1a(i) := P
[
Case 1a and k1 = i

]
=

p2
x pi

y

1 − pz
=

(1 − cλ)2 λi

1 − (c − 1)λ
.

1b. S is above Q and below R, and at least one point in CR is above S and below R.

Again, Q is the lowest point in the main row. Let U be the lowest of these points

(the points that are in CR located above S and below R). Note that U is not one

of the k1 points in CR below both R and S. Other points not in C or CR may lie

below U. See the right of Figure 5.4 for an example.

Q can dance vertically into CB, contributing one to the number of griddings.

And U can dance horizontally into the corner cell, but not from the corner

into CB, so this contributes another gridding. Thus m1 = 2k1 + 2.

The possible ordering of the points in the main row, reading from the bottom,

is given by the regular expression xQy
∗zSz

∗yU . So, for each i ⩾ 0, we have

p1b(i) := P
[
Case 1b and k1 = i

]
=

px pi+1
y pz

1 − pz
=

(1 − cλ) λi+1 (c − 1)λ
1 − (c − 1)λ

.

1c. S is below Q. So Q cannot dance vertically into CB, and k1 = 0, since every

point in CR is above Q and hence also above S. Thus m1 = 0. See the right of

Figure 5.4 for an example of this in the main column, in which the controller T

is to the right of Q, so Q can’t dance horizontally into CR, and m2 = k2 = 0.

The possible ordering of the points in the main row, reading from the bottom,

is given by the regular expression zSz
∗xQ. Thus,

p1c := P
[
Case 1c and k1 = 0

]
=

px pz
1 − pz

=
(1 − cλ) (c − 1)λ

1 − (c − 1)λ
.

Table 5.2 gives the total number of griddings for each possibility in Case 1.
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Main row 1a Main row 1b Main row 1c
m1 = 2k1 + 1 m1 = 2k1 + 2 m1 = 0

Main column 1a m2 = 2k2 + 1 2k1 + 2k2 + 3 2k1 + 2k2 + 4 2k2 + 2

Main column 1b m2 = 2k2 + 2 2k1 + 2k2 + 4 2k1 + 2k2 + 5 2k2 + 3

Main column 1c m2 = 0 2k1 + 2 2k1 + 3 1

Table 5.2: The number of griddings for each combination of subcases in Case 1

We now calculate, for each ℓ ⩾ 1, the probability P1(ℓ) :=

P
[
Case 1 and ℓ griddings

]
.

Let q1a(i), q1b(i) and q1c be the subcase probabilities for the main column, formed

from p1a(i), p1b(i) and p1c by replacing px, py, pz with qx, qy, qz, respectively.

Then, from Table 5.2, we have

P1(1) = p1c q1c,

P1(2) = p1a(0) q1c + p1c q1a(0),

P1(3) = p1a(0) q1a(0) + p1b(0) q1c + p1c q1b(0),

P1(ℓ) = p1a
(
ℓ−2

2

)
q1c + p1c q1a

(
ℓ−2

2

)
+

(ℓ−4)/2

∑
i=0

(
p1a(i) q1b

(
ℓ−4

2 − i
)
+ p1b

(
ℓ−4

2 − i
)

q1a(i)
)

, ℓ ⩾ 4, even,

P1(ℓ) = p1b
(
ℓ−3

2

)
q1c + p1c q1b

(
ℓ−3

2

)
+

(ℓ−3)/2

∑
i=0

p1a(i) q1a(
ℓ−3

2 − i) +
(ℓ−5)/2

∑
i=0

p1b(i) q1b(
ℓ−5

2 − i), ℓ ⩾ 5, odd.

After simplification, facilitated by using a computer algebra system [21] to evaluate

the sums and confirm that the probabilities for small values of ℓ are not anomalous

yields,

P1(ℓ) =


λ(ℓ−3)/2 px qx

(
(ℓ− 1) px qx + (ℓ+ 1) λ pz qz

)
2 (1 − pz) (1 − qz)

, ℓ ⩾ 1, odd,

ℓ λ(ℓ−2)/2 px qx (px qz + pz qx)
2 (1 − pz) (1 − qz)

, ℓ ⩾ 2, even.
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Case 2: Q is not the peak point of either of the peaks that form the tee

In Case 2, there is a point in CR below Q and a point in CB to the right of Q. So Q

can’t dance into either CB or CR. Points Q, S and T are the controllers, controlling

which points can dance.

Let k1 be the number of points in CR below both Q and S (if c > 1). These k1

points can all dance through the tee to CB, each contributing 2 to the number of

griddings. Similarly, let k2 be the number of points in CB to the right of both Q and T

(if r > 1). These k2 points can also all dance through to CR, again each contributing 2

to the number of griddings. See Figure 5.5 for a gridded permutation satisfying the

conditions of Case 2. Again, k1 and k2 may be zero.

C CR

CB

Q

S

T
2a (k1 = 2) and 2b (k2 = 2)

10 griddings

Figure 5.5: L3 Case 2: a -gridded permutation; the circled points can dance

For both the main row and the main column, we have two subcases. We analyse

the main row, the analysis of the main column being analogous.

2a. There is no point in CR above S and below Q. S may be above or below Q, or S

may not exist. Since there is a point in CR below Q (by the definition of Case 2),

in this subcase (only) we know that k1 > 0.

The k1 points in CR below both Q and S (if it exists) can all dance through to CB.

Thus m1 = 2k1.

The possible ordering of the points in the main row, reading from the bottom,
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is given by the regular expression yy∗z∗xQ. So, for each i ⩾ 1, we have

p2a(i) := P
[
Case 2a and k1 = i

]
=

px pi
y

1 − pz
=

(1 − cλ) λi

1 − (c − 1)λ
.

2b. S is below Q with at least one point in CR above S and below Q. Let U be the

lowest of these points. Note that U is not one of the k1 points in CR that are

below both Q and S. Other points not in C or CR may lie below U.

U can dance horizontally into the corner cell, but not from the corner into CB.

Thus m1 = 2k1 + 1.

The possible ordering of the points in the main row, reading from the bottom,

is given by the regular expression y∗zSz
∗yU . So, for each i ⩾ 0, we have

p2b(i) := P
[
Case 2b and k1 = i

]
=

pi+1
y pz

1 − pz
=

λi+1 (c − 1)λ
1 − (c − 1)λ

.

Table 5.3 gives the total number of griddings for each possibility in Case 2.

Main row 2a Main row 2b
m1 = 2k1 m1 = 2k1 + 1

Main column 2a m2 = 2k2 2k1 + 2k2 + 1 2k1 + 2k2 + 2

Main column 2b m2 = 2k2 + 1 2k1 + 2k2 + 2 2k1 + 2k2 + 3

Table 5.3: The number of griddings for each combination of subcases in Case 2

We now calculate, for each ℓ ⩾ 1, the probability P2(ℓ) =

P
[
Case 2 and ℓ griddings

]
.

Let q2a(i) and q2b(i) be the subcase probabilities for the main column, formed

from p2a(i) and p2b(i) by replacing px, py, pz with qx, qy, qz, respectively.
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Then, from Table 5.3, we have

P2(3) = p2b(0) q2b(0),

P2(ℓ) =
(ℓ−2)/2

∑
i=1

(
p2a(i) q2b

(
ℓ−2

2 − i
)
+ p2b

(
ℓ−2

2 − i
)

q2a(i)
)

, ℓ ⩾ 4, even,

P2(ℓ)
(ℓ−1)/2−1

∑
i=1

p2a(i) q2a(
ℓ−1

2 − i) +
(ℓ−3)/2

∑
i=0

p2b(i) q2b(
ℓ−3

2 − i), ℓ ⩾ 5, odd.

After simplification, this yields

P2(ℓ) =



0, ℓ = 1,

(ℓ− 2) λℓ/2 (px qz + pz qx)
2 (1 − pz) (1 − qz)

, ℓ ⩾ 2, even,

λ(ℓ−1)/2 ((ℓ− 3) px qx + (ℓ− 1) λ pz qz
)

2 (1 − pz) (1 − qz)
, ℓ ⩾ 3, odd.

Case 3: Q is the peak point of just one of the two peaks that form the tee

Case 3 combines Case 1 for the main row and Case 2 for the main column, or vice

versa.

Suppose the main row satisfies Case 1 and the main column satisfies Case 2, as in

Figure 5.6. Then Q cannot dance into either CR or CB because of the points to its left

in CB. Neither can the points in CR dance, because Q is below them. So m1 = 0. On

the other hand, the Case 2 analysis of the main column is still valid, the k2 points in

CB to the right of Q being able to dance through to CR.

The situation is analogous if the main row satisfies Case 2 and the main column

satisfies Case 1. Table 5.4 gives the total number of griddings for each possibility in

Case 3.

Thus, for each ℓ ⩾ 1, the probability P3(ℓ) = P
[
Case 3 and ℓ griddings

]
is given
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C CR

CB

Q
S

T
1 (k1 = 0) and 2a (k2 = 2)

5 griddings

Figure 5.6: L3 Case 3: a -gridded permutation; the circled points can dance

Main row 1 Main row 2a Main row 2b
m1 = 0 m1 = 2k1 m1 = 2k1 + 1

Main column 1 m2 = 0 2k1 + 1 2k1 + 2

Main column 2a m2 = 2k2 2k2 + 1

Main column 2b m2 = 2k2 + 1 2k2 + 2

Table 5.4: The number of griddings for each combination of subcases in Case 3

by

P3(ℓ) =



0, ℓ = 1,

p2b(
ℓ−2

2 ) q1 + p1 q2b(
ℓ−2

2 ) =
λℓ/2 (px qz + pz qx)
(1 − pz) (1 − qz)

, ℓ ⩾ 2, even,

p2a(
ℓ−1

2 ) q1 + p1 q2a(
ℓ−1

2 ) =
2 λ(ℓ−1)/2 px qx
(1 − pz) (1 − qz)

, ℓ ⩾ 3, odd,

where q1 is the probability that the main column satisfies Case 1, formed from p1 by

replacing px and pz with qx and qz, respectively.

We can now combine the three cases. The asymptotic probability that the under-

lying permutation of a gridded permutation has exactly ℓ griddings is

Pℓ = P1(ℓ) + P2(ℓ) + P3(ℓ).

After considerable simplification, facilitated by using a computer algebra system, we
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have

Pℓ =



px pz qx qz
(1 − pz) (1 − qz)

, ℓ = 1,

ℓ λ(ℓ−2)/2 (λ + px qx) (px qz + pz qx)
2 (1 − pz) (1 − qz)

, ℓ ⩾ 2, even,

ℓ λ(ℓ−3)/2 (λ + px qx) (px qx + λ pz qz)
2 (1 − pz) (1 − qz)

, ℓ ⩾ 3, odd.

Finally, after further simplification, this gives us the correction factor for the L3

corner type:

κ(L3) = ∑
ℓ⩾1

Pℓ/ℓ =
λ (1 − λ)

(1 − pz) (1 − qz)
=

λ (1 − λ)

(1 − (c − 1)λ) (1 − (r − 1)λ)
.

Worked example

We determine the asymptotic enumeration of the following class:

ML3 = .

As before,
∣∣Grid#

n(ML3)
∣∣ ∼ 4

3 × 4n. ML3 has zero non-corner peaks. We know for a

3 × 3 matrix that κ(L3) =
λ (1−λ)

(1−(c−1)λ) (1−(r−1)λ) =
1
3 .

Thus, by Theorem 5.3, we have

∣∣Gridn(ML3)
∣∣ ∼ 20 × 1

3 ×
4
3 × 4n = 4

9 × 4n.

Corner type T4

In this corner type there is one peak and one tee. This corner type cannot occur

in an L-shaped class.

Dancing at the peak depends on the points adjacent to the column divider to

the right of the corner, whereas tee dancing depends on the points adjacent to the

column divider to the left of the corner and points adjacent to the row divider below
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the corner. So these are asymptotically independent. Thus, from the analysis for L1

and L3, and by Observation 5.2, we have

κ(T4) = κ(LR
1) κ(L3) =

1
2

(
1 +

rαλ

α + β

)
λ (1 − λ)

(1 − (c − 1)λ) (1 − (r − 1)λ)
.

Worked example

We determine the asymptotic enumeration of the following class:

MT4 = .

As before,
∣∣Grid#

n(MT4)
∣∣ ∼ 4

3 × 4n. MT4 has zero non-corner peaks. We know for a

3 × 3 matrix that κ(T4) = κ(LR
1) κ(L3) =

2
3 ×

1
3 = 2

9 .

Thus, by Theorem 5.3, we have

∣∣Gridn(MT4)
∣∣ ∼ 20 × 2

9 ×
4
3 × 4n = 8

27 × 4n.

Corner type X4

In this corner type there are two tees. This corner type cannot occur in an L-

shaped or T-shaped class.

Dancing at one of the tees depends on the points adjacent to the column divider

to the right of the corner and the row divider above the corner, whereas dancing

at the other tee depends on the points adjacent to the column divider to the left of

the corner and points adjacent to the row divider below the corner. So these are

asymptotically independent. Thus, from the analysis for L3, and by Observation 5.2,

we have

κ(X4) = κ(L3)
2 =

(
λ (1 − λ)

(1 − (c − 1)λ) (1 − (r − 1)λ)

)2

.
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Worked example

We determine the asymptotic enumeration of the following class:

MX4 = .

As before,
∣∣Grid#

n(MX4)
∣∣ ∼ 4

3 × 4n. MX4 has zero non-corner peaks. We know for a

3 × 3 matrix that κ(X4) = (κ(L3))2 = 1
9 .

Thus, by Theorem 5.3, we have

∣∣Gridn(MT4)
∣∣ ∼ 20 × 1

9 ×
4
3 × 4n = 4

27 × 4n.

5.4 Constrained gridded permutations

In this section we conclude by proving that almost all gridded permutations are

constrained.

Recall that, if Grid(M) is a connected one-corner class, then an M-gridded permu-

tation σ# is M-constrained if

(a) every M-gridding of its underlying permutation σ is the result of zero or more

points of σ# dancing at a peak or diagonally or through a tee, and

(b) in every M-gridding of σ, each non-blank cell contains at least two points.

Suppose a gridded permutation satisfies Part (a) of this definition. Then, in order

to satisfy Part (b), it is sufficient that, in each non-blank cell, there are at least two

points that cannot dance, since these points will be in the same cell in all griddings

of the underlying permutation.

Non-corner peak points can always dance. However, the set of points which can

dance at the corner is determined by the position of the controllers.

For peak dancing (L1) and diagonal dancing (L7), each controller is an extremal

(lowest, highest, leftmost or rightmost) point in one of the cells. For diagonal dancing,

the points which can dance are those that are in one of the cells adjacent to the corner

and lie between the relevant controller and cell divider.
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For tee dancing (L3), each controller is either an extremal point in a cell, or else

is the second lowest or second highest point in the corner cell. As with diagonal

dancing, points between a controller and the corresponding cell divider can dance.

However, there may also be a single point that is not between the controller and cell

divider that can dance. In addition, one or both of the extremal points in the corner

cell may also be able to dance.

Figure 5.7: A constrained -gridded permutation; the circled points can dance

See Figure 5.7 for an example of a gridded permutation in a class with L3 corner

type and a non-corner peak: in each non-blank cell there are at least two points that

can’t dance. Note that we may need four points in a cell above a controller in the

main row to guarantee two points that cannot dance, since one point just above the

controller may be able to dance, and the highest point may be a peak point that can

dance.

In this context, we make the following definition. Given a gridded permutation,

if C1 and C2 are two distinct cells in the same row, then they are interlocked if

• C1 contains at least four points above the second lowest point in C2,

• C2 contains at least four points above the second lowest point in C1,

• C1 contains at least four points below the second highest point in C2, and

• C2 contains at least four points below the second highest point in C1.

Similarly, if C1 and C2 are two distinct cells in the same column, then they are inter-

locked if

• C1 contains at least four points to the right of the second leftmost point in C2,

• C2 contains at least four points to the right of the second leftmost point in C1,
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• C1 contains at least four points to the left of the second rightmost point in C2,

and

• C2 contains at least four points to the left of the second rightmost point in C1.

Note that if two adjacent cells are interlocked, then their contents together do not

form an increasing or decreasing sequence.

The following proposition gives sufficient conditions for a gridded permutation

in a connected one-corner class to be constrained.

Proposition 5.4. Suppose Grid(M) is a connected one-corner class and σ# ∈ Grid#(M) is

such that each pair of cells in the main row is interlocked and each pair of cells in the main

column is interlocked. Then σ# is M-constrained.

Proof. We use an argument similar to that employed in the proof of Proposition 2.3

for skinny classes. The contents of each cell of σ# consists of an increasing or decreas-

ing sequence of points. However, there is no pair of adjacent cells whose contents

together form an increasing or decreasing sequence, since each pair of cells in the

main row and each pair of cells in the main column is interlocked.

Thus, in any M-gridding of σ, by the monotonicity constraints, there must be

a divider between each pair of adjacent non-corner cells of σ# that have the same

orientation and also a divider adjacent to each non-corner peak point of σ#. So the

only dancing possible across these dividers is by non-corner peak points.

What about the dividers adjacent to the corner cell? For this, we require a case

analysis of each corner type. But this is exactly what is presented in Sections 5.1

to 5.3. The definition of interlocking was chosen precisely so that the interlocking of

cells in σ# guarantees the existence of the controllers and that in each non-blank cell

there are at least two points that can’t dance.

By the interlocking of cells in σ#, every cell contains at least four points. Each con-

troller is either the first or second point in a cell, when considered in the appropriate

direction. Thus, in each case, the points which control the dancing at the corner are

present, and the only possibilities for dancing are those described above. Specifically,
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• If there is a corner peak (Section 5.1), then the controller is the first point in its

cell, and only the peak point (the first point in its cell) may be able to dance.

• If there is a diagonal (Section 5.2), then the only points that can dance are those

that precede one of the two controllers, each of which is the first point in its

cell.

• If there is a tee (Section 5.3), then each controller is either the first or second

point in its cell, and the only points that can dance either precede a controller

or immediately follow one.

Thus the possible griddings are restricted to those that result from zero or more

points of σ# dancing at a peak or diagonally or through a tee

The only points in a cell that may be able to dance are those that precede a

controller and the one that immediately follows it. The interlocking of cells in σ#

guarantees that there are at least four points in each cell following any controller, of

which at most two (the first and last) can dance. Thus each cell of any M-gridding of

σ contains at least two points.

Finally, we prove that almost all gridded permutations in a connected one-corner

class are constrained.

Proposition 5.5. If Grid(M) is a connected one-corner class, then almost all M-gridded

permutations are M-constrained:

lim
n→∞

P
[
σ# is M-constrained : σ# ∈ Grid#

n(M)
]
= 1.

Proof. It is sufficient to prove that almost all M-gridded permutations satisfy the

conditions of Proposition 5.4. By Theorem 3.6, we know that the number of points in

each non-blank cell of almost all n-point M-gridded permutations grows with n.

Suppose C1 and C2 are two cells in the same row, containing αn and βn points

respectively. Then the probability that C1 contains exactly k points above the second

lowest point in C2 equals

(αn − k)
(

βn + k − 2
k

)/(
(α + β)n

αn

)
.
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For fixed k, this tends to zero as n grows, since the numerator is polynomial in n,

whereas the denominator grows exponentially.

Thus, given any pair of cells in same row or column, the probability that they

are interlinked in an n-point M-gridded permutation converges to 1 as n tends to

infinity.
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Possible future work

In this chapter, we look at how our approach can be extended. So, beyond connected

one-corner classes we suggest some classes that have not been enumerated yet, such

as the connected two (or more) corner classes (Section 6.1), and disconnected classes

(Section 6.2).

First, for connected classes, we can establish the asymptotic distribution of points

between the cells in a typical gridded permutation by using the method presented

in Section 3. Second, for any connected class with a cell graph that is either acyclic

or unicyclic, the generating function approach in Section 4.2 can be extended to give

the asymptotic number of gridded permutations. Further details can be found in

[8, Theorems 4.3 and 4.5].

6.1 Connected classes

Extending our approach beyond L, T and X-shaped classes we first consider con-

nected classes without adjacent corners such as some connected 2-corner classes, and

some zigzag classes. Then, we consider connected classes with adjacent corners such

as semi-skinny classes, and some other zig zag classes. Finally, we consider connected

classes with more than two corners including cyclic classes.
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6.1.1 Connected classes without adjacent corners

Connected classes without adjacent corners such as some two connected corner

classes, and some zigzag classes do not support any new possibilities for dancing,

and are thus directly amenable to the analysis presented above.

2-corner classes

One family of connected classes without adjacent corners are those with two corners.

For example, in Figure 6.1 below there are three connected 2-corner classes with no

adjacent corner cells.

Figure 6.1: Connected 2-corner classes with no adjacent corners

Zigzag classes without adjacent corners

A zigzag class is a class in which the corner orientations are restricted to northeast

and southwest (or northwest and southeast). The class at the left of Figure 6.1 above

is a 2-corner zigzag class without adjacent corners. Zigzag classes can have more

than two corners. For example in Figure 6.2 there are two 4-corner zig zag classes

with no adjacent corners.

Figure 6.2: Four-corner zig zag classes with no adjacent corners

6.1.2 Connected classes with adjacent corners

Connected classes with corners in adjacent cells, such as the semi-skinny (two row)

classes, and other zig zag classes, may have non-corner diagonals. Dancing at non-

corner diagonals interacts with the dancing at the corners, so additional analysis

would be required.
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Semi skinny classes

Semi-skinny classes are those with two rows (or columns). Semi-skinny classes may

exhibit diagonally adjacent pairs of non-blank cells which are not at a corner. We

call these non-corner diagonals. Another possibility is the four-cell double-corner

with two diagonals. For examples of non-corner diagonals and a two-diagonal

double-corners, see Figure 6.3 below. Further analysis is required of the possibilities

for dancing in these structures.

Figure 6.3: Semi-skinny classes, with two adjacent corners showing non-corner
diagonals and a 2-diagonal double corner

Note that we are only considering two-corner classes here, so we are not allowing

cycles.

Zigzag classes with adjacent corners

The previous semi-skinny class with the four-cell double-corner with two diag-

onals is also a zigzag class. In zigzag classes we may also have longer diagonals such

as in . The possibilities of dancing in such classes needs more analysis.

6.1.3 Connected classes with more than two corners

With three or more corners, the general situation quickly gets more complicated.

With four or more corners, the cell graph may be unicyclic such as . We would

require additional analysis here. See [10] for a detailed investigation of the structural

complexity of unicyclic classes.

6.2 Disconnected classes

Generally, disconnected classes are not directly amenable to our approach. The reason

is that typical large gridded permutations in such classes may not be constrained. For

example, in , the asymptotic expected number of points in the non-blank cell at
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the lower left is finite. Furthermore, the asymptotic probability of that cell being

empty or containing just a single point is positive. Specifically, in this class there are

2n−k gridded n-permutations with k points in the lower left cell (for k = 0, . . . , n),

and therefore 2n+1 − 1 gridded n-permutations overall. So the asymptotic probability

of there being k points in the lower left cell is 2−(k+1), and the expected number of

points in the lower left cell asymptotically equals 1. We need additional analysis to

handle this sort of situation.
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