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Abstract	  

The depth information in a scene for a stereo image is used in many image analysis and 

3D video processing applications. Novel view synthesis draws a significant research 

interest because it can drive future 3DTV and free viewpoint video applications, which 

allows a viewer to perceive 3D depth scenery without wearing any special glasses. The 

main objective of the multi-view video system is to create another dimension to the 

viewer and provide 3D information such as depth. This thesis describes new approaches 

and methods for stereo matching and inter-view synthesis algorithms with application 

for 3D and free-viewpoint. A Depth Image Layers Separation (DILS) algorithm is 

proposed to efficiently synthesize the inter-view image based on layered disparity depth 

map representation through stereo matching and inter-view interpolation. The main idea 

of this approach is to separate the depth map into several layers of depth based on the 

disparity distance of the corresponding points. This technique is used to synthesize 

novel inter-view images based on disparity depth map layers representation. Simulation 

results show that the concept of depth layers separation is able to create inter-view 

images and can be integrated with other technique such as the disparity depth 

refinement and occlusion handlings processes. The DILS algorithm can be performed 

from a simple to sophisticated stereo matching techniques to synthesize the inter-view 

images. This technique leads to the second novelty method, Depth Layer Refinement 

(DLR) that uses the disparity depth layers to refine the disparity map. The main aim of 

this algorithm is to improve the raw disparity maps in the disparity refinement stage 

with a basic similarity metric of SAD in the stereo matching algorithm. The edge 

boundaries and discontinuities region are significantly improved with the proposed 

techniques compared to the state-of-the-art stereo matching algorithms. The third 

novelty proposed in the multi-view camera applications known as Multi-Level View 

Synthesis (MLVS). In this technique, the multi-view synthesis created based on a 

limited number of cameras to create dense images. The new structures and design are 

shown to offer improved performance and provide additional views with fewer cameras 

arrangement compared to the conventional high volume camera configurations for free-

viewpoint video acquisition.  
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 Chapter	  1 
 

Introduction 

1.1 Preface	  

Three-Dimensional (3D) video and imaging technologies is an emerging trend in the 

development of digital video systems. It has witnessed the appearance of 3D displays, 

coding systems and 3D camera setups by many global research groups [1]. Three-

dimensional multi-view video is typically obtained from a set of synchronized cameras, 

which are capturing the same scene from different viewpoints. This technique enables 

applications such as free viewpoint video or 3DTV. Free viewpoint video applications 

provide the ability to the user to select any viewpoint in the video scene interactively. A 

3D scene is obtained if the data representation and display enable to distinguish the 

depth within the scene. With 3DTV, the depth of the scene can be perceived using a 

multi-view display that renders simultaneously several views of the same scene through 

the special 3D glasses transmitter. There is a demand for 3D vision and multi-view 

application from small applications such as stereo-video acquisition, robotic navigation 

and video surveillance to highly sophisticated systems in entertainment and post-

production works in video games and film industry. With a large amount of data, issues 

such as complexity, reliability and usability have become very important. In order to 

deal with this growing demand, research and development has been carried out in 

academic and commercial environments to find improvements or new solutions in 

signal processing, communications, computer vision and system engineering. 

The numbers of cameras required are quite high to create dense immersive multi-view 

application. Therefore, an efficient transmission and compression is necessary to render 

multiple views on a remote display. However, one major problem of multi-view video is 

the large amount of data to be compressed, decompressed and rendered. The obstacles 

can be overcome with an efficient and flexible multi-view video system. The inter-view 

image synthesis can reduce the complexity of multi-camera configuration and number 
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of cameras through composing virtual views between the camera viewpoints. The 

algorithm developed for acquiring the depth signal from a multi-view video should be 

capable to obtain satisfactory and reliable new virtual synthesis images with a small 

number of cameras in the multi-view system. Research in academia is more focused to 

explore and improve multimedia signal processing tasks by generating more accurate, 

and robust algorithms in multi-view capturing, 3D representation, multi-view video 

compression and transmission, image-based rendering, multi-view image synthesis and 

multi-view display [2]. Additionally, research carried out is based on the study of 

exploiting structure in multi-view imaging system [3]. The creation of a high-quality 

reconstruction based on real-world scenes from a sparse set of multi-view video streams 

is also an active area of research [4, 5]. Realistic rendering for dynamic shape and 

motion, as well as the dynamic appearance and material properties of a real-world 

scene, are challenging engineering and algorithmic problems.  

The 3D visual content representation is one of the fundamental challenges in the area of 

3D signal processing. Various representations of 3D contents such as Lightfield [6], 

multi-view representation [7], 2D images with depth [8] and volumetric [9] requires 

particular and efficient compression techniques [10, 11]. The standard for the multi-

view video compression developed by the Joint Video Team (JVT) in the Multi-view 

Video Coding (MVC) standard [12]. The description of the standard can be found in the 

Joint Draft 8.0 on Multi-view Video Coding [13]. The main challenge of the MVC 

standard is to define the efficient codec tools for the multi-view video due to the huge 

amount of data to be stored. As the multi-view video becoming the new generation of 

the interactive multimedia, it serves a wide variety of applications. The technologies 

and challenges for 3D video attracting much interest while it could provide not only a 

new viewing but also additional information such as depth. The development of signal 

processing algorithms for multi-view displays is also an active research field [14, 15], 

such as in the new 3D displays offer viewing of high-resolution stereoscopic images 

without glasses and volumetric displays [16] that provide new viewing experience to 

viewers. Volumetric displays produce volume-filling 3D imagery, where each volume 

element or voxel in a 3D scene emits visible light from the region in which it appears. 

Given their ability to project volume-filling autostereoscopic imagery, these displays are 

being adopted in fields as diverse as medical imaging, mechanical computer-aided 

design and military visualization [17]. 
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This thesis is intended to cover tasks of image processing for multi-view and free 

viewpoint video systems and will be equally beneficial to commercial and academic 

researchers involved in developing techniques for the efficient utilization of multi-view 

images and video data. It focuses on the stereo matching and virtual view synthesis with 

application to 3D and free-viewpoint video. 

 

1.2 Research	  Motivations	  

Due to the reducing cost of digital cameras, multi-view imaging has attracted attention. 

This opens a wide variety of interesting new research topics and applications, such as 

virtual view synthesis, high performance imaging, environmental surveillance, 

industrial inspection, remote education, entertainment, 3DTV and free-viewpoint video. 

Some of these tasks can be handled with conventional single view video. However, 

using multiple views of the scene significantly broadens the field of applications and at 

the same time enhances the visual performance and user experience.  

The 3D films become as a new trend in the market for the past few years. James 

Cameron’s ‘Avatar’ set new benchmarks on how the future of 3D films would look like. 

The film industry became particularly interested the 3D format since it could return 

huge profits compared to the standard format, which results in most of the new 

animation and Computer Graphic Images (CGI) films represented in 3D format.  In 

addition, multi-view imaging has gained popularity among filmmakers with the unique 

views displayed in the action captured by the multi-camera in the film like ‘The 

Matrix’. The freeze-effect shown in the film provides a new sense of viewing. Multiple 

cameras offer additional information to the viewer and can be used in 3D video and 

free-viewpoint video.  

The positive responses on the 3D film from the audience provide a platform for the 

manufacturer to introduce the 3DTV to the public. The demand for multi-view video 

coding and free-viewpoint video is also driven by the development in new 3D display 

technologies and the growing use of multi-camera arrays. A variety of companies is 

starting to produce 3D display technologies that do not require glasses and can be 

viewed by multiple people simultaneously. This technology provides a good platform 

for new applications to emerge such as 3D scene communication [18]. This new 

application will adapt the multi-view video as the next generation high performance 
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video. Furthermore, even with 2D displays, multi-camera arrays are increasingly being 

used to capture a scene from many angles. The resulting multi-view data sets allow the 

viewer to observe a scene from any viewpoint and serve as another application of multi-

view video compression. However, depending on the system, the number of cameras is 

limited and it can only describe 3D scenes from specific visual angles. 

Autostereoscopic displays provide a platform for the future 3D technology. These 

displays spatially multiplex many views onto a screen that will give immersive 

experience by enabling users to look around the virtual scene from different angles. A 

parallax barrier that physically occludes certain pixels or a lenticular sheet that 

distributes light in different directions is fixed to the screen to ensure that each eye 

perceives pixels from two different views without the need of wearing 3D glasses [19]. 

For 3DTV and free-viewpoint video to become practical and acceptable on a wide scale, 

the added realism must outweigh any required increases in processing and system 

complexity. The stereoscopic information must be comfortable to view. Both of these 

goals can be achieved if the inter-views of the scene are available. 

Multi-view screens commonly display a small number of images, such as nine views in 

Philips multi-view display [20] and it will increase with the development in the display 

technology. However, the main task for multi-view imagery is to capture content from 

many cameras. The camera configuration and density (number of cameras) impose 

practical limitations on navigation and quality of rendered views at a certain virtual 

position. Therefore, there is a classical trade-off to consider between costs and quality. 

Generally, the denser capturing of multi-view images with a larger number of cameras 

provides a more precise 3D representation resulting in higher quality views through the 

rendering and display processes. However, it also requires a higher compression rate in 

the coding process. The multi-camera arrays configuration is complicated and 

expensive, which requires bulky equipment, well-planned setup, camera calibration and 

rectification. Capturing imagery from two cameras for instance is much simpler and can 

be done with a low cost implementation than multiple cameras. Thus, the complexity of 

multi-camera configuration can be reduced if we can generate many views from a stereo 

image pair. This is the goal of view synthesis. The intermediate view synthesis 

composes an image that locates in the virtual viewpoint between source image 

viewpoints [21].  
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Binocular stereo is one of the most significant and active areas in the field of computer 

vision. Existing intermediate view synthesis algorithms emphasize mostly in disparity 

estimation [8] in the stereo matching algorithms. Recently, the number of publications 

on stereo is increasing due to the Middlebury Stereo Vision Page by Scharstein and 

Szelinski [22] with their taxonomy of stereo matching algorithms development. The 

Middlebury page provides some common benchmark datasets and evaluation systems 

that all researchers can utilize to examine their proposed methods objectively and 

universally.	  Based on the rank given by the website, the common techniques can be 

found and adopted in many sophisticated algorithms. The post-processing step for the 

stereo matching algorithm is the disparity refinement has received a lot of attention in 

recent years. In this step, raw disparity maps computed by correspondence algorithms 

contain outliers that must be identified and corrected. Several approaches aimed at 

improving the raw disparity maps computed by stereo correspondence algorithms such 

as sub-pixel interpolation [23], image filtering techniques, Bidirectional Matching [24] 

and Single Matching Phase [25]. Even though the proposed algorithm provides 

exceptional accurate disparity depth map, it has high complexity for the implementation 

particularly for real-time applications.  

One of the main objectives of the multi-view video system is to create another 

dimension to the viewer and provide 3D information such as depth. Normally, the depth 

information of the scene can be obtained through stereo matching algorithms. Another 

depth acquisition method is based on the active range sensor that uses special equipment 

for measuring range of a scene, such as well-known time-of-flight (TOF) depth cameras 

[26-28]. The TOF depth camera emits light signals itself and then measuring the 

arriving back time of the signals to obtain the range data. However, in spite of its high 

price, it merely yields small spatial resolution images with noise. Another popular effort 

to obtain the depth map is by using the Kinect sensor by Microsoft, which consists of a 

projector-camera pair as the depth sensor that measure per pixel disparity. The Kinect 

sensor has gained much popularity in the scientific and the entertainment community 

lately [29]. Although it could produce good results on the depth, it is not flexible for 

multi-view camera arrays configuration to create dense image based rendering. 

Researchers in academia and industry realize the need to perform efficient 3D video 

processing that includes not only for the computer-based visual effects but also for the 

real video and images captured by the multiple cameras. It also includes the entire 
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processing chain including camera configurations, acquisition, 3D content, processing, 

editing, coding, transmission, rendering and display that requires consideration [2]. 

There are correlations between all of the process involved. There are a number of efforts 

being made to perform particular block of processing in the multi-view video coding 

and step towards to create 3D video [11, 13]. This thesis serves the objective of bringing 

the gap between development of an efficient algorithm and practical implementation, by 

highlighting the problem issues in the stereo matching and image synthesis algorithm as 

the main interest in this research.  

Due to the increased demand of efficient multi-view video for 3D and free-viewpoint 

video, the novel view synthesis is really important to provide additional view between 

the multiple cameras. This will reduce the number of cameras used to obtain the multi-

view images and videos. To achieve multi-view video system, it is essential that 

algorithms executed with multi-camera arrays, which starting from the stereo. Stereo 

imaging is more intuitive and general because it is similar to human eyes system. 

However, when the application requires multiple camera array configurations, the 

cameras will not be fitted in stereo. For example, in dense camera and free-viewpoint 

television system, the cameras can be arranged in many directions. There are a number 

of sophisticated algorithms developed in recent years, but some of them need high 

computational demand for computer graphics [2, 30, 31]. The work presented in this 

thesis is part of an effort to develop efficient novel inter-view synthesis for a multi-

camera system configuration. The new structures and design are shown to offer 

improved performance with fewer camera density compared with the conventional high 

volume camera configuration for multi-view and free-viewpoint applications.  

 

1.3 Summary	  of	  Original	  Contributions	  

The major contributions of this work are in the field of image and video processing, 

specifically the development of new inter-view synthesis algorithms for 3D vision and 

free-viewpoint video applications. One of the main objectives in this research is to 

create inter-view image that locates in the virtual viewpoint between source image 

viewpoints based on the disparity depth map obtained from the stereo matching 

algorithms. The proposed techniques create the new virtual image through layered 

disparity depth map representation. Secondly, the refined disparity depth map image is 
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reproduced from the raw disparity map by using the depth image layers separation and 

refinement adaptation techniques. The focus of this research is to yield disparity depth 

map with low complexity and computation time with simple stereo correspondence 

matching algorithms. Lastly, the research is to develop novel multi-view synthesis for a 

limited number of cameras to produce arrays of multi-image for free-viewpoint 

applications such as in light field imaging. In the pursuit to this aim, three novel 

techniques are noted. 

1. Depth Image Layers Separation (DILS) algorithms for layered depth image-

based synthesis and rendering. The first novel technique is referred to as the 

Depth Image Layers Separation (DILS) algorithm. This technique is used to 

synthesize novel inter-view images based on disparity depth map layers 

representation. The depth layers are identified through histogram distribution 

and separated into several clusters of layer. Each layer is extracted with inter-

view interpolation to create objects based on location and depth. DILS features a 

new paradigm that is not just a method to select interesting locations in the 

image based on the depth; it also produces a new image representation that 

allows objects or parts of the image to be described without the need of 

segmentation and identification. The image view synthesis can reduce the 

complexity of multi-camera array configuration for 3D imagery and free-

viewpoint applications. It makes use of a disparity depth map layer separation 

for image based synthesis and rendering through multi-layer and overlapping 

techniques. With the selected layer of depth, disparity depth map can be refined 

independently and the layer can be composed onto different 3D scene. By 

exploiting the disparity depth information, it is possible to discriminate some 

background or foreground objects. This is useful for intelligent video tracking 

and image based rendering. The simulation results show that the concept of 

depth layers separation is able to create inter-view images integrated with other 

technique such as occlusion handling processes. The DILS algorithms can be 

performed from a simple to sophisticated stereo matching techniques to 

synthesize the inter-view images. 

2. Depth Layers Refinement (DLR) for the disparity map with DILS algorithm. 

The second contribution is the development of a new disparity refinement of the 

disparity depth map based on the DILS algorithm, known as Depth Layers 
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Refinement (DLR). The core of the algorithm relies on a layer separation 

process based on different disparity range and the mapping between the layer 

and the segmented reference image. Each disparity layer and segmented 

reference image morphologically processed based on cross-path points from the 

mapping procedure. With this approach, the uniform areas and repetitive 

patterns can be grouped in a single layer of depth. The depth discontinuities can 

be improved significantly compared with the conventional block-based 

matching technique. A comparative analysis of existing stereo matching 

algorithms with the proposed algorithm is conducted based on the common 

benchmark datasets and evaluation system in the Middlebury Stereo Vision 

Page. The algorithm is shown to efficiently refine the disparity depth maps and 

improves the pixels matching between the two images with a basic similarity 

metric. The main difference between this algorithm and the sophisticated 

algorithms is that this approach refines the disparity map and detects the depth 

discontinuities based on the layers separation.  

3. Multi-Level View Synthesis (MLVS) with DILS algorithm for sparse multi-

view camera arrays. The third novelty is the multi-view synthesis for 3D vision 

and free viewpoint video applications. This method exploits the advantage of the 

new inter-view interpolation algorithms based on DILS algorithm by extending 

the stereo to multiple camera configurations. In this technique, novel multi-view 

synthesis created based on a limited number of cameras for a sparse camera 

arrays, for example four cameras used to create nine view images. This will 

reduce the camera usage required to create dense image. This method is known 

as the Multi-Level View Synthesis (MLVS), which finds the pixel matching 

correspondences and synthesis through three stages (levels) of process. The first 

stage identifies the pixel correspondences and view synthesis based on the left-

right image pair. Meanwhile, the view synthesis image in the second stage is 

based on the upper-lower image pairs through vertical matching. The third stage 

will use the obtained output in the first or second stage for the new inter-view 

synthesis to create full virtual multi-camera array image views. The new 

structures and design are shown to offer improved performance and provide 

additional views with fewer cameras arrangement compared to the conventional 

high volume camera configurations for free-viewpoint video acquisition. 
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1.4 Thesis	  Organization	  

This thesis is organised into seven chapters. Chapter 1 provides an introduction of the 

research work presented in this thesis. Along with this introduction, this chapter also 

describes in brief the main research contributions of the thesis. Besides the introduction 

and conclusion chapters (Chapter 1 and Chapter 7), the core part of this thesis is divided 

into five chapters. Each individual chapter focuses on a sub-system of the 3D video and 

the proposed multi-view depth synthesis system. Figure 1.1 shows the proposed system 

architecture, which is composed of acquisition of 3D video system, calibration and 

rectification (reviewed and discussed in Chapter 2), stereo matching algorithm with 

post-processing and view synthesis based on disparity depth map (Chapter 3), depth 

layers extraction and novel inter-view synthesis rendering based on layers 

representation (Chapter 4), disparity refinement based on depth layers (Chapter 5) and 

lastly on multi-view synthesis (Chapter 6) and compression sub-system. In the 

following, we outline each of these sub-systems (chapters). 

 
Figure 1.1: Overview of the proposed multi-view depth synthesis system that includes the 

acquisition of 3D video, calibration and rectification, stereo matching, view synthesis, layer 
based rendering, multi-view synthesis and compression sub-system 

Chapter 2 contains introductory material and a review of the research work in the field 

of multi-view imaging starting from stereo to multi-view vision. This chapter presents 

the basic fundamental of stereo vision, which is the projective to the two-view 

geometry. It serves as the mathematical framework for the multi-view imaging and 3D 

vision. This chapter also surveys the multi-view imaging applications such as 

stereoscopic displays, free-viewpoint video applications and video editing and special 

effects. It will describe the overview of the well-known techniques and algorithms 

developed in the 3D video system and its main component, which includes the 
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acquisition, compression and rendering. Efficient compression algorithm is important in 

the multi-view video due to the huge amount of data for storage and transmission. 

Therefore, this chapter will also discuss the multi-view video coding algorithms. The 

redundancies between the camera views (inter-view) and temporal correlation exploited 

with the existing standards such as MPEG-2 and H.264/AVC.  

Chapter 3 describes the fundamentals of the core components used in the development 

of multi-view and depth synthesis techniques. This chapter showcases the two main 

features that are stereo matching algorithms and view synthesis algorithms. It will 

describe the main building blocks of matching engine that is stereo matching 

classification and trends in finding the pixels correspondence between the stereo 

images. The evolution of stereo matching algorithms is described. From the stereo 

matching, the disparity depth map can be measured and used as the next stage of 3D 

image and video processing, which is the inter-view synthesis algorithm. The 3D scene 

representation discussed in this chapter will lead to the image synthesis and rendering 

algorithm. The related research works on layered depth image based rendering are also 

presented. 

Chapter 4 presents the Depth Image Layers Separation (DILS) algorithm used to 

synthesize the virtual inter-view images based on layers representation. The main idea 

of this approach is to separate the depth map into several layers of depth based on the 

disparity distance of the corresponding points of the stereo pair images. The overall 

framework of the system design and algorithm presented in this chapter consist two 

main stages: matching algorithm and intermediate view synthesis. The novel view 

synthesis interpolated independently to each layer of depth from the left and right 

through masking the particular depth layer. The advantages of this approach are that any 

particular depth can be treated independently to make it more robust and accurate. The 

performance evaluation in terms of results and quality also presented in this chapter by 

using Middlebury datasets [32]. 

The Depth Layers Refinement (DLR) algorithm is presented in Chapter 5. The main 

objective of this algorithm is to improve the disparity maps in the disparity refinement 

stage for the stereo matching algorithms. This chapter provides an overview of the 

system design and also outlines the main features of the model that consist two main 

modules: stereo matching algorithm and disparity refinement module. It also covers the 

proposed algorithm for the disparity refinement by adapting the DILS algorithm that 
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presented in Chapter 4, to accomplish the objectives of this research work. The results 

and performance are discussed in this chapter by comparing the proposed algorithm 

with the state-of-the-art stereo matching algorithm in the Middlebury Ranking Stereo 

Page [22, 32].  

Chapter 6 describes a new technique of obtaining dense camera array images by using a 

limited number of cameras. This method exploits the advantage of the inter-view 

interpolation technique presented in Chapter 4 to create novel view synthesis footage 

through multi-layer and depth synthesis algorithms by extending stereo to multiple 

camera configurations. The third novelty presented in this Chapter is known as the 

Multi-Level View Synthesis (MLVS) algorithm, which finds the pixel correspondences 

and syntheses through three levels of matching and synthesis processes. This chapter 

provides an overview of the proposed system design architecture and the MLVS 

algorithm. The experimental results and the parameters used in the algorithm will be 

reviewed by using the multi-camera datasets provided by Stanford University [33, 34]. 

Some essentials analysis of the selected multi-camera datasets and algorithm 

implementation issues are also discussed in this chapter. 

Finally, Chapter 7 provides conclusions of the research in this thesis and outlines some 

future work directions. 
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 Chapter	  2 
 

Fundamentals of Multi-View Imaging 
and 3D Video 

2.1 Introduction	  

Recently, Multi-View Imaging (MVI) has attracted attention due to its increasingly 

wide range of applications and decreasing cost of digital cameras. This provides many 

opportunities to new and interesting research topics and applications, such as virtual 

view synthesis for 3DTV and free-viewpoint TV [35, 36], high performance imaging, 

video processing and analysis for surveillance, distance learning, industry inspection 

and so on. The availability of multiple views of a scene makes possible new and 

exciting applications ranging from 3D and free-viewpoint TV to robust scene 

interpretation and object tracking. The hardware for multi-camera systems is developing 

fast and is already being deployed for multimedia, security and industrial applications. 

However, there are still some challenging issues in terms of processing, primarily due to 

the sheer amount of data involved when the number of cameras becomes very large. 

Therefore, it is important to understand how the stereo and multi-view information is 

structured and how to take advantage of the inherent redundancy that results when the 

cameras capture the same scene. 

This chapter will start by providing an insight on the nature of data in multi-view 

imaging systems and the fundamentals of the three-dimensional (3D) starting from 

stereo to multi-view. Then the basic fundamental of stereo vision presented in Section 

2.3, which serves as the mathematical framework for the multi-view imaging and 3D 

graphics with the relationship of the 3D world and its corresponding position in 2D 

image. Section 2.4 surveys the multi-view imaging applications such as 3D television 

and free viewpoint video applications. 3D video systems and its main component are 

covered in Section 2.5, which includes the acquisition, compression and rendering. By 

using the basic structure of stereo, a multidimensional framework for the multi-view 
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video coding is derived. An efficient compression algorithm is important in the multi-

view video due to the huge amount of data for storage and transmission. Section 2.6 will 

discuss the multi-view video coding algorithms. The redundancies between the camera 

views (inter-view) and temporal correlation exploited with the existing standards such 

as MPEG-2 and H.264/AVC. This includes overview of multi-view compression 

algorithms such as the conventional stereo video coding, video plus depth data and 

multi-view video coding. And finally the conclusion described in Section 2.7. 

 

2.2 Stereo	  Vision	  to	  Multi-view	  

The word ‘stereo’ derived from Greek and can be interpreted as ‘solid’ and ‘hard’. This 

term gradually evolved in French as ‘stere de bois’, which corresponds to a volumetric 

unit for a pile of wood. Meanwhile, ‘stereo visualization’ refers to the visual perception 

of the solid three-dimensional (3D) properties of some objects [37]. Since its initiation 

in 1838 by Sir Charles Wheatstone, stereoscopy has been widely used in photography 

and the film making industry. In stereo visualization, the binocular vision relates to the 

interpretation of two slightly different views of the same object seen by both human 

eyes. It is the ability of the human brain to process subtle differences between the 

images that are presented to the left and right eyes to perceive 3D outside world. Hence, 

stereo vision is the ability of the human brain to analyse the differences between the left 

and right eye views, determining whether objects are closer or further to the observer. 

The subtle difference between the left and right eye views is called disparity and is 

processed by the brain to yield three-dimensional perception of the scene being viewed. 

The concept has been illustrated with a device known as ‘stereoscope’, which paints 

two different images of the same object directly onto the reviewer retina. This early 

development in stereoscopic visualization leads to the invention of photography. 

An artificially produced pair of so-called stereo images corresponding to the same scene 

seen by slightly different perspectives can be presented to an observer in a way so that 

the right image is seen by the right eye and the left image to be seen by the left eye. 

Then the human observer perceives the scene in depth by processing the relative 

difference between two images. This idea leads to the technique aimed at inferring 

depth using two or more cameras. There are wide research topics in computer vision 

that includes binocular stereo vision systems, dense stereo algorithms and stereo vision 
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application. Two separate cameras or binocular stereo camera can be used to obtain the 

stereo image and video. Although the basic principle of stereoscopic image acquisition 

seems simple, many pitfalls exist that can make editing of stereoscopic material a 

tedious task. 

The principle that relates two 2D images to a 3D representation of an object can be 

extended to multi-view configurations. The 3D description of the object can be obtained 

accurately with more than two images, which is through the multiple views. Therefore, 

stereoscopic 3D properties of a scene can be derived from multiple views or multi-view 

images captured by a set of multiple cameras. For example, the background and 

foreground orientation and the relative positions of objects in the 3D scene can be 

extracted by analyzing the multi-view images. Research in multi-view camera systems 

from image processing point of view, means more dimensions are able to be visualized. 

The fundamental structure and coherent in multi-view images has been summarized by 

Berent in [3]. The number of dimensions goes up to seven when all the degrees of 

freedom are taken into account. The visual information captured depends on the 

viewing position (Vx, Vy, Vz), the viewing direction (θ,φ) or (x, y), the wavelength λ and 

the time t if dynamic scenes are considered. Adelson and Bergen [38] gather all these 

parameters into a single function called as plenoptic function and can be represented as: 

� 

P = P7(x,y,λ,t,Vx,Vy,Vz)                            (2.1) 

where x and y are analogous to the Cartesian coordinates on the image plane.  

Usually the wavelength is omitted by considering separate channels for colour images 

or one channel for greyscale images.  

  
 

 
(a) 2D (x, y) (b) 3D (x, y, t) (c) 3D (x, y, Vx) (d) 4D (x, y, Vx, Vy) 

Figure 2.1: Capturing the plenoptic function from the still image camera to the video camera or 
multi-view imaging systems [3] 

There are many different ways to capture the plenoptic function and most of the popular 

sensing devices do not necessarily sample all the dimensions. Figure 2.1 [3] illustrates a 

few techniques to capture the plenoptic function. For instance, the still image camera 
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fixes the viewing point and time. Only (x, y) dimensions remain. The video camera is 

able to capture images at different times and therefore captures the (x, y, t) dimensions. 

Another case of a three-dimensional plenoptic function can be obtained by giving one 

degree of freedom to the camera location such that (x, y, Vx) is sampled. Higher 

dimensional cases add more degrees of freedom to the viewing position such that (x, y, 

Vx, Vy) or even (x, y, Vx, Vy, Vz) can be captured. 

Berent [3] introduced the concept of plenoptic manifolds, where the extraction of the 

plenoptic function in all dimensions can be very useful in numerous multi-view imaging 

applications such as layer-based representations [39], object based coding, disparity 

compensated [40], shape adaptive wavelet coding [41] and image based rendering (IBR) 

[42]. It also includes the case of occlusions, large depth variations, scene interpretation 

and understanding. With this fundamental concept, several applications for multi-view 

images can be outline such as the 3DTV and free-viewpoint video. 

3D and free-viewpoint video are new types of natural video media that expand the 

user’s experience far beyond what is offered by traditional media. The first offers a 3D 

depth impression of the observed scenery, while the second allows for interactive 

selection of viewpoint and direction within a certain operating range as known from 

computer graphics applications. Applications of stereo vision include robotics, 

automatic navigation systems, entertainment and machine aided surgery. From this 

range of applications, it is apparent that the output of a stereoscopic system might be 

viewed by a human being or taken as an input to a computer algorithm for further 

processing. Therefore, not all stereo pairs used to be viewed by human beings. As a 

result, several aspects of acquiring, processing and displaying stereo pairs to be viewed 

by human beings are determined by the limitation of the human visual system. 

These applications are enabled through convergence of technologies from computer 

graphics, computer vision, multimedia and related fields. It also visualised by the rapid 

progress in research covered from the whole processing: acquisition, signal processing, 

data representation, compression, transmission, display and interaction. Some of these 

applications maybe based on particular systems, for example, in the post production of 

films and TV content [43]. The applications on multi-view imaging presented in the 

Section 2.4. The next section will describe the mathematical framework for the multi-

view imaging system. 
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2.3 Camera	  Projective	  to	  Two-View	  Geometry	  

Projective geometry serves as a mathematical framework for 3D multi-view imaging 

and 3D graphics. It is used to model the image formation process, generate synthetic 

images or reconstruct 3D objects from multiple images. Besides the projective 

geometry, the Euclidean geometry also can be used to model lines, planes of points in a 

3D space. However, the Euclidean geometry cannot model points at infinity. It is 

considered as a special case and this can be illustrated using a perspective drawing of 

two parallel lines. In perspective, two parallel lines such as a highway road, meet at 

infinity at the vanishing point. The intersection of the parallel lines at infinity is hard to 

model by the Euclidean geometry. Due to that, the projective geometry offers a 

solution. 

The relation that maps the points Qi in the physical world with coordinates (Xi, Yi, Zi) to 

the points on the projection screen with coordinates (xi, yi) is called the projective 

transform. When working with such transforms, it is convenient to use homogeneous 

coordinates. The homogeneous coordinates associated with a point in a projective space 

of dimension n are typically expressed as an (n+1)-dimensional vector (for example x, 

y, z becomes x, y, z, w), with additional restriction that any two points whose values are 

proportional are equivalent. 

In Euclidean space, a point defined in 3D is represented by a 3-element vector (X, Y, 

Z)T. In the projective space, the same point is described using a 4-element vector 

(X1,X2,X3,X4)T such that [37], 

� 

X =
X1
X4
, Y =

X2

X4
, Z =

X3

X4
      (2.2)  

where X4 ≠ 0.  

Usually, the coordinates (X, Y, Z)T and (X1, X2, X3, X4)T are called inhomogeneous 

coordinates and homogeneous coordinates, respectively. As a generalization, the 

mapping from a point in the n-dimensional Euclidean space to an (n+1)-dimensional 

projective space can be written as [37]: 

                         

� 

(X1,X2,...,Xn )
T

Euclidean space
       → (λX1,λX2,...,λXn,λ)

T

projective space
                               (2.3) 

where λ ≠ 0 corresponds to a free scaling parameter.  
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This free scaling parameter λ is used for the pinhole camera model.                                                                                                                                                               

 

Figure 2.2: Pinhole camera model [44] 

The basics of an image acquisition process start from the pinhole camera model. The 

model integrates with the internal (intrinsic) camera parameters, such as the focal 

length, CCD dimensions and the lens distortion. It also linked to the external (extrinsic) 

camera parameters corresponding to the position and orientation of the camera. The 

pinhole camera model is the simplest model of a camera as illustrated in Figure 2.2 [44]. 

In this model, light is envisioned as entering from the object but only a single ray enters 

from any particular point. In a physical pinhole camera, this point is then projected onto 

an imaging surface. As a result, the image on this image plane is always in focus, and 

the size of the image relative to the distance object is given by a single parameter of the 

camera, that is its focal length. For ideal pinhole camera, the distance from the pinhole 

aperture to the screen is precisely the focal length. In the actual image plane, the scene 

appears inverted. As shown in Figure 2.2, where f is the focal length of the camera, Z is 

the distance from the camera to the object, X is the length of the object, and x is the 

object’s image on the imaging plane. In the figure, the similar triangles can be seen as  

-x/f = X/Z. 

The pinhole camera model from Figure 2.2 is rearranged to an equivalent representation 

shown in Figure 2.3 [44, 45]. The main difference is that the object now appears right-

side up. The new image plane is also known as the virtual image. The point in the 

pinhole is reinterpreted as the centre of projection, which is known as the optical centre 

or camera centre. The point at the intersection of the image plane and the optical axis is 

referred to as the principal point. On the new frontal image plane, the image of the 

distant object is exactly the same size as it was on the image plane in Figure 2.2.  
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Figure 2.3: Rearranged pinhole camera model [44, 45] 

The pinhole camera model as shown in Figure 2.3 defines the geometric relationship 

between a 3D point Q=(X,Y,Z) and its 2D corresponding projection q=(x, y) onto the 

virtual image plane. The geometric mapping from 3D to 2D is called a perspective 

projection. The image is generated by intersecting these rays with the image plane, 

which happens to be exactly a distance f from the centre of projection. This makes the 

similar triangles relationship x/f=X/Z more directly evident than before and the point q 

can be simplified through rescaling as [44, 46], 

� 

q = f X
Z
, f Y
Z
, f⎛ 

⎝ 
⎞ 
⎠                         (2.4) 

Consider a camera with the optical axis being collinear to the Z-axis and the optical 

centre being located at the origin of a 3D coordinate system as shown in the pixel 

position q=(x, y). Therefore, the 2D coordinate of point q in the virtual image plane is 

given by [44], 

� 

(x,y) = f X
Z
, f Y
Z

⎛ 
⎝ 

⎞ 
⎠                     (2.5) 

where the image centre is (0, 0) and f denotes the focal length.  

This formula can be transformed to the projective geometry framework as [37], 

� 

(λx,λy,λ)T = (Xf ,Yf ,Z)T                             (2.6) 

This relation can be expressed in matrix form as [37], 
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� 

λ
x
y
1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=
f 0 0 0
0 f 0 0
0 0 1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

X
Y
Z
1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

                        (2.7) 

where λ=Z is the homogeneous scaling factor.  

Homogeneous coordinates are the key to all computer graphics and vision system. All 

standard transformations (rotation, translation, scaling) can be implemented by matrix 

multiplications with 4x4 matrices [37]. The projection can be implemented by 

multiplication with 3x4 matrices.  

2.3.1 Homography	  

 

Figure 2.4: Converting from object to camera coordinate systems [37, 44] 

In computer vision, planar homography can be defined as a projective mapping from 

one plane to another. Thus, the mapping of points on a two-dimensional planar surface 

to the imager of the camera is an example of planar homography. It is possible to 

express this mapping in terms of matrix multiplication if the homogeneous coordinates 

are used to express both the viewed point Q and the point q on the image plane to which 

Q is mapped [37, 44] (as illustrated in Figure 2.4). If we define, 

� 

˜ Q = X Y Z 1[ ]T

˜ q = x y 1[ ]T                    (2.8) 

Then we can express the action of the homography as [37]: 

� 

˜ q = sH ˜ Q                     (2.9) 

The parameter s is an arbitrary scaling factor. The transformation matrix can be solved 
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with some geometric and matrix algebra. The most important part is that H has two 

parts: the physical transformation, which essentially locates the object plane, and the 

projection, which introduces the camera intrinsics matrix. The physical transformation 

part is the sum of the effects of some rotation R and translation T that relate the plane 

viewed to the image plane. Due to homogeneous coordinates, the information of 

physical transformation can be combined within a single matrix as follows [37, 44]: 

� 

W = R T[ ]                   (2.10) 

The action of the camera matrix M in projective coordinate is multiplied by 

� 

W ˜ Q  that 

yields [37]: 

� 

˜ q = sMW ˜ Q , where M =
f 0 cx

0 f cy

0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
               (2.11) 

where cx and cy are possible displacement of the centre of coordinates parameter. 

Without loss of generality, the object plane can be defined so that Z=0. Therefore, the 

rotation matrix can be described into three 3-by-1 columns [37]. 

� 

x
y
1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

= sM r1 r2 r3 t[ ]
X
Y
0
1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

= sM r1 r2 t[ ]
X
Y
1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
              (2.12) 

The homography matrix H that maps a planar object’s points onto the image plane is 

then described completely by [37], 

� 

H = sM r1 r2 t[ ] where, ˜ q = sH ˜ Q               (2.13) 

2.3.2 Two-View	  Geometry	  

Although the search for corresponding points in stereo imaging can be computationally 

expensive, the knowledge on the geometry of the system can be used to narrow down 

the search space as much as possible. In practice, stereo imaging involves four steps 

when using two cameras, and it can be described as follows: 

i. Mathematically remove radial and tangential lens distortion (described in 

Appendix A). The outputs of this step are undistorted images.  
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ii. Adjust for the angles and distances between cameras, a process called 

rectification. The outputs of this step are images that are row-aligned and 

rectified. 

iii. Find the same features in the left and right camera views, a process known as 

correspondence. The output of this step is a disparity map, where the disparities 

are the differences in x-coordinates on the image planes of the same feature 

viewed in the left and right cameras. 

iv. With the known geometric arrangement of the cameras, the disparity map can be 

turned into distances by triangulation. This step is called reprojection. 

The geometry of the two cameras relates to the respective position and orientation and 

internal geometry of each individual camera. The underlying geometry that describes 

the relationship between both cameras is known as the epipolar geometry. The epipolar 

geometry addresses the following two aspects [37]: 

 Geometry of point-correspondence: considering a point in an image, the epipolar 

geometry provides a constraint on the position of the corresponding point. 

 Scene geometry: given point-correspondences and the epipolar geometry of both 

cameras, a description of the scene structure can be recovered. 

 

  
(a) (b) 

 
Figure 2.5: Epipolar geometry [37] 

Figure 2.5 [37] shows epipolar geometry, which is defined by the point P and the two 

camera centres, C1 and C2. The 3D point P is projected through the camera centres C1 

and C2 onto two images at pixel positions p1 and p2, respectively. Clearly, the 3D points 

P, C1, C2 and the projected points p1 and p2 are all located within one common plane. 

This common plane denoted by π, is known as the epipolar plane. 
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The epipolar plane is fully determined by the back-projected ray going through C1 and 

p1 also with the camera centre C2. The property that the previously specified points 

belong to the epipolar plane provides a constraint for searching point correspondences. 

Considering the image point p1, a point p2 lies on the intersection of the plane π with the 

second image plane within I2 in Figure 2.5(a). The intersection of both planes 

corresponds to a line known as the epipolar line. Therefore, the search of point-

correspondences can be limited to a search along the epipolar line, instead of an 

exhaustive search in the image. Additionally, it is interesting to note that this constraint 

is independent of the scene structure and uniquely relies on the epipolar geometry. 

The terminology related to the epipolar geometry based on Figure 2.5(b) can be 

summarized [37] as,  

i. The epipolar plane is the plane defined by a 3D point and the two cameras 

centres. 

ii. The epipolar line is the line determined by the intersection of the image plane 

with the epipolar plane. 

iii. The baseline is the line going through the two cameras centres. 

iv. The epipole is the image point determined by the intersection of the image plane 

with the baseline. Also, the epipole corresponds to the projection of the first 

camera centre (C1) onto the second image plane (like I2), or vice versa. 

The 3D structure can be extracted by determining the correspondences in the two-views 

and that point-correspondences can be searched along the epipolar line only. In this 

case, the search of point-correspondences can be performed along the horizontal raster 

lines of both images.  

However, it is difficult to accurately align and orient the two cameras such that epipolar 

lines are parallel and horizontal. Instead, an alternative approach is to capture two views 

(without alignment and orientation constraints) and transform both images to synthesize 

two novel views with parallel and horizontal epipolar lines. This procedure is called 

image rectification. 

Image rectification is the process of transforming two images I1 and I2 so that their 

epipolar lines are horizontal and parallel. This procedure is useful for depth estimation 
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algorithms because the search correspondences can be performed along horizontal raster 

image lines. Practically, the image rectification operation corresponds to a virtual 

rotation of two cameras so that it would become aligned. 

2.3.3 Triangulation	  

 
Figure 2.6: Two-camera views based on pinhole camera model [46] 

In order to describe the relationship between two-view geometry is by referring to 

Figure 2.6 [46] that is derived from the pinhole camera model in the Figure 2.3, where 

OL is the reference camera centre point (or the left camera), and OR is the target camera 

centre point. The implementation of this system is based on parallel cameras, which are 

shifted along the same horizontal line or x-coordinate, known as the epipolar line. And 

therefore, vL = vR. The symbol f is the focal length of each camera’s lens (the distance 

from camera centre point to the image plane) and B is the baseline distance (distance 

between the two optical centres, OL and OR). The points of the images can be described 

as the follows [46]: 

� 

(uL ,vL ) = f X
Z
, f Y
Z

⎛ 
⎝ 

⎞ 
⎠        (2.14) 

                 

� 

(uR ,vR ) = f X − B
Z

, f Y
Z

⎛ 
⎝ 

⎞ 
⎠                                          (2.15) 

The disparity of the stereo images is obtained as the difference between the two 

corresponding points, UL and UR [46]: 

             

� 

disparity, d = uL − uR = f X
Z
− f X − B

Z
⎛ 
⎝ 

⎞ 
⎠ 	   	   	  	  	                       (2.16) 

The location of correct projections of the same point PL on the two image planes can 

determine the exact depth of PL in the real world. From equation (2.16), the depth Z is 
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defined as [44-46]: 

� 

depth, Z =
fB
d

                   (2.17) 

The equations used to calculate the exact location of PL(X,Y,Z) for the 3D points are 

[44-46]: 

� 

X =
BxL
d
, Y =

ByL
d
, Z =

Bf
d

               (2.18) 

The next section will discuss the applications of multi-view imaging based on 

technology and applications. 

 

2.4 Applications	  of	  Multi-view	  Imaging	  

In this section, stereoscopic displays will be described as a technology to enable several 

specific applications. Then, some applications to a free-viewpoint video system are 

provided. Lastly, the usefulness of multi-view images for video editing will be 

illustrated. 

2.4.1 Stereoscopic	  Displays	  

3DTV is becoming increasingly popular due to the rise of popular 3D feature films. 

Major television manufacturers began developing 3D home television technology in 

2009. There are several methods that these manufacturers use to create 3D images on an 

LCD television; some are more expensive than others, and some are more feasible than 

others. In general, there are three primary methods of 3D home theatre technology: 

lenticular viewing, passive glass systems and active glass systems. 

Stereoscopic displays allow the viewer to perceive the depth of the scene. It can be 

achieved by displaying a left and right image or view, as if it was individually seen by 

the left and right eyes. To obtain this result, several display technologies has been 

developed, which include the polarized displays, parallax barrier displays and lenticular 

displays. Stereoscopic lenticular displays or known as multi-view lenticular displays are 

based on a lenticular sheet, which is precisely positioned onto an LCD as shown in 

Figure 2.7(a). A lenticular sheet consists of an array of micro-lenses that directs the 

light of the underlying pixels in specific directions [20]. Consequently, the viewing 



Chapter 2 

 

 
25	  

space in front of the display is divided into separate viewing zones, each of them 

showing a different view of the scene. Therefore, the perception of depth will be 

received by the viewer. This technology is different from the 3DTV displays that 

required viewer to wear special glasses to watch the 3D scene. The lenticular viewing 

technology has been pioneered by Philips [20].   

  
(a) (b) 

Figure 2.7: Stereoscopic lenticular display [15]. (a) A lenticular display sheet precisely 
positioned onto an LCD. (b) Multi-view lenticular display with three pixels/views covered by 

micro-lens  

Figure 2.7(b) shows a three-view lenticular display that projects the light of three 

different pixels into three different viewing zones (two zones are drawn in the figure) 

[15]. Each view is projected into specific directions by the micro-lens, so that the left 

and the right eye see two different views. This method is quite different from the 3DTV 

aided by special transmitter glasses to view the 3D depth. Nine-view lenticular displays 

have been introduced to enable the viewer to watch the video scene from various 

viewpoints [9]. There exists a trade-off between the number of views supported by the 

display and the resolution of the image, where increasing the number of views involves 

a loss of image resolution. In the short term, two-view displays for stereo vision have 

gained strong popularity for 3D games and an early introduction to the 3DTV market. 

However, with this technology, the viewer must sit in a very specific spot in front of the 

TV. This means that only a couple of people would be able to watch the TV 

comfortably at once due to its small viewing angle. 

Some manufacturers developed a passive glass system of LCD monitor that will allow 

both 2D and 3D images to be viewed. In order to watch the 3D images, viewers will 

need to wear the traditional glasses in order to watch 3D media. This technology is 

similar to watching 3D films in the cinema. The TV has two overlapping images and the 

glasses have polarized lenses. Each lens is polarized so that it can see only one of the 

two overlapping images.  
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The latest 3DTV technology uses active glass systems. Currently this is the dominant 

approach used by the manufacturers. The system is very similar to the passive glass 

system except that, rather than the TV doing all the work, the glasses do it instead 

(known as the active shutter glasses). The glasses synchronize with the refresh rate of 

the TV, and then alternate the polarization of each lens, making the wearers of the 

glasses see 3D images. With this technology, people could be watching a 2D or 3D 

movie comfortably. However, it requires the costly active shutter glasses to watch the 

3D scene. 

In term of applications, the stereoscopic display is well known for 3DTV as home 

entertainment. The 3DTV is expected to be the next revolution in television and display 

technology. It will become a key application of stereoscopic displays by providing the 

viewer with a new viewing experience to watch the 3D scene without wearing any 

special glasses. Besides that, the stereoscopic display will greatly enhance the gaming 

realism by showing a 3D representation of the virtual scene and characters in the video 

games. One main feature of video games is that a 3D description of the scene is 

provided by the game.  

Another application for stereoscopic displays is the training and serious gaming systems 

[37]. The usage of stereoscopic displays simplifies the teaching of several important 

subjects, such as surgery to junior medical doctors. Junior surgeons are able to perceive 

the depth as seen by the senior operating surgeon. The stereoscopic displays can be 

employed as a generic medium or simulation tools for training junior professionals such 

as medical doctors, pilots, engineers or in military.  

2.4.2 Free-Viewpoint	  Video	  

Free-Viewpoint Video (FVV) applications provide the ability for users to select and 

control a viewpoint of the video scene interactively. FVV offers the same functionality 

that is known from 3D computer graphics [47]. The user can choose their own 

viewpoint and viewing direction within a visual scene, meaning interactive free 

navigation [48]. In contrast to pure computer graphics applications, FVV targets real 

world scenes as captured by real cameras. It can be performed by capturing the video 

scene from multiple viewpoints. The target applications of FVV include broadcast 

television and other forms of video entertainment, as well as surveillance. These 

applications are enabled through convergence of technologies from computer graphics, 



Chapter 2 

 

 
27	  

computer vision, multimedia and related fields with rapid progress in research covering 

the whole processing chains from capturing, signal processing, data representation, 

compression, transmission, display and interaction. 

A FVV system not only shows an event from the existing camera viewpoint, but it also 

allows free navigation within the 3D scene. The ability to generate an arbitrary 

viewpoint for a particular scene provides an attractive scheme to the free-viewpoint 

video. Some interesting applications include the selection of arbitrary viewpoint for 

visualizing and analyzing sports or dynamic scenes or actions [49]. For example, in a 

football match, it is often required for the referee to know the position of the players to 

ensure fair play. By rendering an appropriate viewpoint of the playing field, the player 

positions can be derived and illustrated using the virtual view [37]. It is also fascinating 

for user applications like in the opera or concert where the user can freely choose the 

viewpoint, as well as for post-production. Systems for the post-production are already 

being used for sports and movies. Free-viewpoint video technologies also simplify 

video training activities. For example, the training of dynamic activities such as martial 

arts and dancing can be simplified by allowing the trainee to select a viewpoint of the 

scene.  

Tanimoto [35, 36] developed a new type of display named as FTV (Free-Viewpoint 

TV). It is known as an innovative visual media that enables the viewer to view a 3D 

scene by freely changing their viewpoints to any virtual view perspective. It is easy to 

realize the free viewpoint for virtual scenes made by computer graphics. However, it is 

quite challenging for the real scenes. The concept and idea has been proposed and 

implemented on a single PC and a mobile player [35]. FTV is closely related to 3DTV. 

While 2DTV generates a single view and 3DTV generates 2 or more views for display, 

FTV generates infinite number of views since the viewpoint can be placed anywhere. 

FTV captures and transmits the information of all rays in a 3D scene. It is also regarded 

as a natural interface between human and environment as well as an innovative tool to 

create new types of content and art. 

MPEG regarded FTV as the most challenging 3D media and started the international 

standardization activities for FTV. The first phase of FTV was MVC (Multi-View 

Video Coding), which enables the efficient coding of multiple camera views. MVC was 

completed in May 2009. The second phase of FTV is 3DV (3D Video), which is a 

standard that targets serving a variety of 3D displays. 
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2.4.3 Video	  Editing	  and	  Special	  Effects	  

In traditional 3D computer graphics (CG), artists create 3D models of a scene, animate 

it and render the 3D scene into a 2D image. It is a 3D-to-2D process where the artists 

have full control of how the scene should look like and how the characters should move 

[50]. Unfortunately, it is also a labour intensive and costly procedure. In computer 

vision, scientists deduce 3D information of a scene using 2D image or images. The 

processes of real-life image acquisition and 3D reconstruction are cheaper than 

acquiring the real-life 3D model, but the reconstructed model contains noise and is 

complicated. 

For the past decade, a new field between computer vision and computer graphics has 

emerged, known as Image-Based Modelling and Rendering (IBMR) [51, 52]. It is a 

field that utilizes computer vision techniques to render graphics directly from images. 

Instead of going through the manual intensive 3D modelling, animating and 

computationally expensive 3D to 2D rendering processes, IBMR starts with 2D images, 

calculates the underlying 3D structure of the scene and renders new views of the scene 

as 2D images. It is a 2D-to-2D process with some knowledge of the 3D structure. The 

result is a faster rendering processes but with larger data sets. Depending on the 

application, IBMR is a powerful alternative to a traditional computer graphics (CG) 

approach. 

Video-Based Rendering (VBR) is a sub category of IBMR that takes IBMR further into 

the temporal domain for the video editing and production [53-55], which supports the 

traditional CG animation. It has the advantages that IBMR offer; that is faster rendering 

for complex scene, reduced labour in animation and modelling. However, the 

disadvantages of this approach which include a lower degree of freedom in animation 

and a larger dataset are also inherited. Whether they come from the computer graphics 

or computer vision in the video editing and production, the multi-view images provide a 

good platform to utilize both fields for 3D video and free-viewpoint applications. 

The viewpoint of the multi-view images can be manipulated in time and place, which 

can be done by the professional video editors. The multi-view image technology 

simplifies the production of special effects such as the ‘freeze’ effect that can be seen in 

the film of The Matrix. This effect provides the illusion to the viewer of freezing the 

time and gradually modifying the viewpoint of the scene. By exploiting the 3D 
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information, it is possible to discriminate some background or foreground objects. The 

video objects can be easily removed and reinserted into the video elsewhere by using 

the 3D information. It is also possible to insert synthetic 3D objects in the scene to 

obtain an augmented reality video scene. 

 

2.5 3D	  Video	  System	  

All the applications presented in the previous section rely on multiple views of the 

scene. Therefore 3D video technologies enabling these various applications do not 

exclude each other and can be integrated into a single 3D video system. Several 3D 

video systems have been introduced to enable the 3DTV and free-viewpoint video 

applications. They can be classified into three types with respect to the amount of 

employed 3D geometry: N-texture representation format, partial 3D representation of 

the scene (depth map) and hybrid between N-texture with depth map. 

The first type of 3D video system is based on multiple texture views of the video scene 

or known as N-texture representation format. The N-texture representation format 

become the basic for the Multi-view Video Coding (MVC) standard developed by the 

Joint Video Team (JVT) [12]. The description of the standard can be found in the Joint 

Draft 8.0 on Multi-view Video Coding [13]. The main challenge of the MVC standard 

is to define the efficient codec tools for the multi-view video due to the huge amount of 

data to be stored. A first coding tool exploits the similarities between the views by 

multiplexing the captured views and encoding with the H.264/AVC standard. A second 

coding tool equalizes the inter-view illumination to compensate for mismatches across 

the views captured by different cameras. 

The second type of 3D video system relies on a partial 3D geometric description of the 

scene. The scene geometry described by a depth map or depth image, which specifies 

the distance between a point in the 3D world and the camera. Normally, a depth image 

is estimated from two images by identifying matched pixels in the multiple views, or 

known point-correspondence that represents the same 3D scene point. With the depth 

map, the new views can be rendered by using Depth Image Based Rendering (DIBR) 

algorithms. The DIBR corresponds to a class of rendering algorithms that use depth and 

texture images simultaneously to synthesize virtual images. Consider a 3DTV 

application, where it is assumed that the scene is observed from a narrow field of view 
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(short baseline distance between cameras). As a result, the combination of only one 

texture and one depth video sequence is sufficient to provide appropriate rendering 

quality (1-depth/1-texture). The 1-depth/1-texture approach is standardized through Part 

3 of the MPEG-C Video.  

The last type of 3D video system addresses the occlusion problem by combining the 

depth image and texture image, N-depth/N-texture. The problem of occluded regions 

can be addressed by combining multiple reference images that cover all regions seen by 

the virtual camera. The N-depth/N-texture representation format is compatible with 

different types of multi-view displays supporting a variable number of views. 

 

Figure 2.8: Overview of stereo video system [56]  

In multi-view system, multiple cameras capture the same scene. For stereo system, two 

cameras will be used for the acquisition. Figure 2.8 [56] shows the overview of a stereo 

vision system. This section will describe the overview of stereo video system that 

consists of calibration, rectification, stereo matching, triangulation, coding and 

rendering.  

2.5.1 Camera	  Acquisition,	  Calibration	  and	  Rectification	  

One of the problems dealing with multiple camera views is the signal ambiguity while 

identifying the correspondence points. With multiple cameras, the internal settings like 

the contrast setting can vary, which may results dissimilar intensity values at the 

correspondence points. This will contribute to an unreliable identification of the point-

correspondences and thus inaccurate depth values. Light reflection on the surface in 

different directions with varying intensity might occur, known as specular reflection 

phenomenon. As results, object surfaces appear differently depending on the viewpoint. 

Such surface identified as a non-Lambertian surface. Therefore, camera calibration is 

quite important, which includes special methods for calculating the internal and external 

parameters. Internal parameters describe the perspective projection, the lens and sensor 
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(chip) distortion and the digitization process. External parameters describe the rigid-

body transformations between the main camera frame and the world frame, such as 

rotations and translations. A detailed description of calibration can be found in [45, 57] 

and Appendix A.  

Camera calibration is a necessary step in 3D computer vision in order to extract metric 

information from 2D images. The purpose of the calibration is to establish the 

relationship between 3D-world coordinates and their corresponding 2D image 

coordinates. Once this relationship is established, 3D information can be inferred from 

2D information and vice versa. In an application involving multiple cameras, this step is 

necessary to guarantee geometric consistency across different terminals. Calibration is 

carried out by acquiring and processing more than 10 stereo pairs of a known pattern, 

typically a checkerboard. The calibration procedure is available in OpenCV [44] and 

Matlab [58].  

Rectification is a process used to facilitate the analysis of a stereo pair of images by 

making it simple to enforce the two-view geometric constraint as discussed in Section 

2.3.2. This procedure is particularly useful for depth-estimation algorithms because the 

search for point correspondences can be performed along horizontal raster image lines. 

Many stereo algorithms assume this simplified form because subsequent processing 

becomes much easier if differences between matched points in one direction only. 

Practically, the image-rectification operation corresponds to a virtual rotation of two 

cameras, so that they would become aligned. By using the output of calibration, lens 

distortions can be removed and turns the stereo pair in standard form as shown in Figure 

2.9. The rectified images can be often regarded as acquired by cameras rotated with 

respect to the original ones or images of these cameras projected onto the same plane. 

 
Figure 2.9: Rectification of stereo camera to standard form [37] 
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2.5.2 Stereo	  Correspondence	  and	  Depth	  Map	  

Stereo correspondence or stereo view matching is the fundamental problem of 

determining which parts of two images (views) are projections of the same scene 

element. The main aim of stereo matching algorithms is to find homologous points in 

the stereo pair. The output is a disparity map for each pair of cameras, giving the 

relative displacement (disparity) of corresponding image elements. Disparity maps 

allow estimating the 3D structure of the scene and the geometry of the cameras in space. 

The search for matches between two images is simplified and speed up if the two 

images are warped in such a way that correspondence points lie on the same scan line in 

both images based on the rectification process.  

Scharstein and Szelinski [22] provided a valuable taxonomy and evaluation of dense 

stereo matching algorithms for rectified image pairs, arguing that most algorithms 

perform four steps: matching cost computation, cost aggregation, disparity 

computation/optimization and disparity refinement. The topic will be extensively 

discussed in Chapter 3. With the given disparity map, baseline and focal length from 

calibration, the position of the correspondence in the 3D space can be computed. This 

process is known as triangulation. 

Generally the depth information of the scene can be obtained through stereo matching 

algorithms. However, the depth can also be obtained with a different depth acquisition 

method that is based on the active range sensor. This uses special equipment for 

measuring range of a scene, such as well-known Time-Of-Flight (TOF) depth cameras 

[26-28, 59]. The TOF depth camera emits light signals itself and then measuring the 

arriving back time of the signals to obtain the range data. In spite of its high price, it 

merely yields small spatial resolution images with noise. Zhu [26] describes a method 

for fusing depth from stereo cameras and TOF cameras. The performance review of 3D 

TOF system in comparison to stereo vision with the system has been discussed by 

Hussman [60]. The major advantage of the TOF technology is the delivery of an evenly 

distributed range and intensity images because each pixel calculates a range and 

intensity value. Hence the correspondence problem of conventional stereo vision system 

does not exist. However, the range resolution depends on the chosen modulation 

frequency and the power rating of the used illumination source.  
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Another popular effort to obtain the depth map is by using the Kinect sensor by 

Microsoft, which consists of a projector-camera pair as the depth sensor that measures 

per pixel disparity. Lately, the Kinect sensor has gained much popularity in the 

scientific and the entertainment community [61]. There are so many existing and on-

going project using the Kinect as the framework to obtain the depth maps and used in 

many applications [29]. Although it could produce good results on the depth, the system 

is not flexible for multi-view systems due to the sensor interference problem when 

interacting with multiple Kinect sensors.  

2.5.3 Multi-view	  Compression	  

Multi-view video requires a large amount of data for storage and transmission. 

Therefore, an efficient compression algorithm is vital. Each of the camera views can be 

coded independently with the state-of-the-art H.264/AVC standard [11]. However, it 

does not exploit the redundancies between the camera views. The correlation between 

the camera views is usually referred to as inter-view correlation. The correlation exists 

both for texture and depth signals. For each view, the succeeding frames have a 

correlation over time, i.e. a temporal correlation. This correlation is similar with the 

normal single view video signals. The temporal correlation within a single view is 

already exploited by the existing standards such as MPEG-2 and H.264/AVC by 

employing motion compensated transform coding. 

The inter-view correlation can be exploited for compression, such as with predictive 

coding technique since the neighbouring views show most of the similar scene from a 

different viewpoint. The description of multi-view video coding will be discussed in 

Section 2.6. 

2.5.4 Rendering	  for	  3D	  

In general, rendering involves the read-out and presentation process of images. In a 

multi-view coding system, image rendering refers to the process of generating synthetic 

images. Synthetic images can be rendered by combining the multiple texture images 

with their corresponding depth maps. Significant progress in the field of image 

rendering for multimedia applications has been achieved over the past few years [52]. 
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There are two aspects for rendering: visualization and compression. Both aspects can be 

simultaneously addressed when aiming at high quality rendering using algorithms such 

as 3D image warping [62, 63] and mesh-based rendering [64] techniques. Each of these 

two techniques suffers from either low image rendering quality or high computational 

complexity. An alternative formula proposed by Morvan [65] shows an improvement in 

rendering quality with a relief texture algorithm and an inverse mapping rendering 

technique. Chapter 3 will discuss the rendering algorithms in detail, which include the 

model-based rendering, image-based rendering and layered image based rendering. 

 

2.6 Multi-view	  Video	  Coding	  Algorithms	  

Many 3DTV systems are based on scenarios, where a 3D scene is captured by a number 

of cameras. The simplest case is stereo video with two videos. For more advanced 

systems, it could apply 8, 16 or more cameras. Some systems traditionally apply per 

sample depth data that can also be treated as video signals. This section gives an 

overview of compression algorithms and standards for such data, which includes the 

conventional stereo video coding, video plus depth data and multi-view video coding. 

Overview of this field can be found in Shum [30]. Depending on the degree of common 

content, shared by a subset of the cameras, a coding gain can be achieved in comparison 

to single-view coding. In multi-view coding, correlations between adjacent cameras are 

exploited in addition to temporal correlations within each sequence in the inter-view 

direction. 

2.6.1 Conventional	  Stereo	  Video	  Coding	  

A conventional stereo pair consists of two images showing the same scene from two 

slightly different viewpoints corresponding to distance of human eyes [66], which is the 

basic case for multi-view system. The images are in general very similar, which makes 

them well suited for compression, where one image predicts the other. For instance, one 

of them can be predicted from the already encoded one, just like temporally related 

images that can be motion compensated in video compression. 

The displacement or disparity of each sample in one image with respect to the other is 

equivalent to a dense motion field in between two consecutive images of a video 

sequence. Therefore, it is justified to use the same principles of motion estimation and 
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compensation for disparity estimation and compensation. The prediction error or 

residual error will be then encoded. Smolic [67] states that some specific differences 

between motion compensation and disparity compensation need to be considered. The 

statistics of disparity vector fields is different from the motion vector fields. Disparities 

are biased and relatively large. Zero disparity means a very large depth of the 

corresponding point in 3D, while 3D points close to the camera may have a very large 

disparity value. In general, temporally adjacent images of a video sequence tend to be 

more similar than views of a stereo pair at practical frame rates. Some other differences 

are caused by the disocclusion effects, where the content that is visible in one image is 

occluded in the other and cannot be predicted. The incorrect white and colour balance 

between the stereo pair caused by the scene lighting and surface reflectance effects also 

contributes to the differences.  

 

Figure 2.10:  Prediction in H.262/MPEG 2 video multi-view profile [68] 

The combination of inter-view and temporal prediction is the basic principle for 

efficient compression of conventional stereo videos. A corresponding standard 

specification has been defined in ISO/IEC Technical Report [68]. The multi-view 

Profile Standard is shown in Figure 2.10, where I is the intra-coded pictures and P or B 

are the inter-coded pictures. The left view is encoded without reference to the right view 

by using the standard MPEG 2 to ensure the compatibility with Main Profile of 

H.262/MPEG 2 Video. For the right view, inter-view prediction is allowed in addition 

to temporal prediction. A significant increment of compression efficiency is achieved 

with the inter-view prediction in H.262/MPEG 2 multi-view video coding. Research on 

compression of conventional stereo video has continued into several directions, 

including designing better and efficient inter-view prediction structures. Algorithms 

have been designed on current video codec such as H.264/AVC. 
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2.6.2 Video	  Plus	  Depth	  Data	  

Another option to classical stereo video is to transmit a video signal and a per sample 

depth map. From the video and depth information, a stereo pair can be rendered at the 

decoder [69]. The functionality can be extended since it enables head motion parallax 

viewing if the user’s head motion is tracked. Furthermore, this format is interesting 

from the compression efficiency point of view. Per sample depth data can be regarded 

as monochromatic and luminance video signal. 

 
Figure 2.11: 3D data representation format consisting of regular 2D colour video and 8-bit 

depth images [43] 

Figure 2.11 illustrates the video plus depth format with an image and its associated per 

sample depth map [43].  The depth is restricted to a range between two extremes Znear 

and Zfar indicating the minimum and maximum distance of the corresponding 3D point 

from the camera respectively. The depth range is linearly quantized with 8-bit, with the 

value of 255 for the closest point and the value of 0 for the most distant point. With that, 

the depth map in the right of Figure 2.11 is specified, resulting in a grey scale image. 

These grey scale images can be converted into either YUV 4:0:0 format video signal or 

YUV 4:2:0 format, where the luminance component corresponds to the grey scale depth 

values and the chrominance is set to a constant value. The resulting standard video 

signal can then be processed by any state-of-the-art video codec. Results from the 

European Advanced Three-Dimensional Television System Technologies (ATTEST) 

project [69] have shown that depth data can be very efficiently compressed with several 

video codecs like MPEG 2, MPEG 4 and H.264/AVC.  

A common problem of the video plus depth format is content creation known as the 

generation of depth information. Cameras that automatically capture per pixel depth 

with the video are available and are being further enhanced. However, the current 

quality of the captured depth fields is still limited. Algorithms for depth and disparity 
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estimation have gained research interest in computer vision literature and powerful 

solutions are needed. A fully automatic, accurate and reliable depth capturing system is 

still to be developed.  

2.6.3 Multi-view	  Video	  Coding	  

 
Figure 2.12: Temporal/inter-view prediction structure for MVC [11] 

Multi-view video compression algorithms should reduce redundancy in information 

from multiple views as much as possible to provide a high degree of compression. As 

the multi-view video captures the same dynamic 3D scene, the similarities or 

redundancies exist among the images within temporal and inter-view video images. 

Exploiting redundancies among the multi-view video images is the key for efficient 

compression. The redundancy in multi-view video streams consists of inter-view 

redundancy (between adjacent camera views) and temporal redundancy between 

temporally successive images of each video [11]. These redundancies can be exploited 

for combined temporal/inter-view prediction as shown in Figure 2.12. Images are not 

only predicted from temporally neighbouring images, but also from corresponding 

images in adjacent views. Other type of redundancies includes the transform 

redundancy and the redundancy of the human visual system [1]. The temporal 

redundancies can be exploited with motion compensated techniques like a normal one 

view video streams such as block matching, adaptive block size and bidirectional 

predicted picture techniques.  

A simpler version of temporal and inter-view prediction structure is shown in Figure 

2.13. The classification of the redundancies is based on the normal arrangement of 

multi-view video images into a Matrix of Pictures (MOP) [70]. Each row holds 
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temporally successive pictures of one view, and each column consists of spatially 

neighbouring views captured at the same time. It depicts a matrix of pictures for N=4 

image sequences, each composed of K=4 temporally successive pictures. N=4 views 

form a Group of Views (GOV), and K=4 temporally successive pictures form a 

temporal Group of Pictures (GOP). For example, the images of the first view sequence 

are denoted by x1,k with k =1, 2,…, K.  

 
Figure 2.13: Matrix of Pictures (MOP) for N=4 image sequences, each comprising K=4 

temporally successive pictures [11] 

Encoding and decoding each view of a multi-view video data separately, referred to as 

simulcast coding; can be done with any existing standard, such as H.264/AVC, where 

each camera view of the sequence is coded independently like a normal video stream 

[43, 71-73]. The process of simulcast coding can be illustrated from Figure 2.13. The 

first frame of each view is coded as an I-frame, while the remaining frames are 

predicted as P-frames. This would be a simple, but inefficient way to compress multi-

view video sequences, due to not exploiting the inter-view redundancies.  

Disparity compensation is the most popular approach and the most straightforward 

extension of general single view video coding. In this approach, pictures of other views 

are treated in the same way with encoding target view, used as reference pictures for 

predictive coding. The difference in terms of motion compensation is only the domain 

treated; motion is handled in the temporal domain whilst disparity is handled in the 

inter-view domain. Therefore, in this approach, disparity information like motion 

vectors and prediction error, are encoded and transmitted to the decoder side. Many 

prediction structures have been proposed such as a group of GOP prediction schemes, 

hierarchical B pictures, checkerboard decomposition, sequential view prediction and so 

on [13]. Some of the predictive coding is presented in Appendix B. 
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The simplest approach to disparity compensation is the use of block matching 

algorithms similar to those for motion compensation. These techniques offer the 

advantage of not requiring knowledge of the geometry of the underlying 3D objects. 

However, this approach fails to compensate correctly if the cameras are sparsely 

distributed. More advanced approaches to disparity compensation are Depth Image 

Based Rendering (DIBR) algorithms [74]. With this technique, the given viewpoint 

image is compensated more accurately even when the cameras are sparsely distributed. 

These techniques rely on accurate depth images. The hybrid techniques that combine 

the advantages of both approaches are effectively exploiting inter-view redundancies 

[75]. 

2.6.4 MVC	  Test	  and	  Analysis	  

In this section, a multi-view video coding simulation based on H.264/AVC will be 

presented. The coding scheme processed the frames of sequences captured by multiple 

cameras from a scene. The codec is based on the JM H.264/AVC Version 10 [12], 

which is the reference software for MVC. It uses prediction structure of hierarchical B 

pictures for each view in the temporal direction as shown in Appendix B. The simulcast 

coding is achieved by coding each view sequence separately using H.264/AVC 

standard. The multi-view video coding is based on five modes of operation in MMRG 

H.264 Multi-view Extension [76] (described in Appendix B).  

In order to evaluate the performance of the coding schemes, the multi-view video 

sequences were captured using four cameras positioned in a regularly spaced linear 

array. It contains four views of 50 frames each at 15 fps. The sequences were set to 

produce CIF size sequences. The quality of the encoded sequences was measured by the 

average PSNR of their frames. 

The parameters set for the encoding process are shown in Table 2.1. The results based 

on simulcast coding are given in Table 2.2. Meanwhile, Table 2.3 provides the 

simulation results by using different reference modes of the multi-view video coding 

H.264/AVC. The multi-view images with YUV 4:2:0 formats are coded with the 

parameter of macroblock search range 16 and the total number of frames is 200. From 

the results, it shows that the different reference mode produced a difference in 

performance. The bit rate for Mode 4 is higher compared to the remaining modes even 

though the SNR of each mode is almost similar. The total encoding time for the Mode 5 
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gives faster encoding time, which is 9 fps.  The total bits for the simulcast coding seem 

to be smaller compared to the output in inter-view coding because it was only for a 

single sequence. The total number of bits will increase due to the summation of all the 

compressed data 4 views to transmit or store. This is an inefficient way to compress the 

multi-view video because it does not exploit the redundancies between the multiple 

views. Based on this test evaluation, it is shown that the MVC outperforms the 

simulcast coding while maintaining the quality of the reconstructed pictures. The 

performance of a new H.264/AVC based multi-view video coding scheme with 

different four modes of operation also has been presented by Akbari [77], where the 

experimental results have been shown that the proposed coding scheme outperforms the 

simulcast H.264/AVC coding. 

Table 2.1: Input Parameter of the H.264/AVC codec 

Parameter Input 
Image format 352 x 288 
Search range 16 

Sequence type IPPP 
Motion Estimation Scheme Search Full 

Search range restrictions None 
 

Table 2.2: Simulation results for simulcast coding 

Camera Views View 1 View 2 View 3 View 4 
Total encoding time (fps) 15 15 15 14 

Total ME time for sequence (sec) 737.63 750.38 764.66 705.77 
SNR Y (dB) 39.82 40.75 41.14 41.66 

Total bits 325,192 211,160 187,752 150,312 
Bit rate (kbit/s) 195.12 126.70 112.65 90.19 

 

Table 2.3: Simulation results for the multi-view coding 

Reference Mode Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 
Total encoding time (fps) 7 3 4 4 9 

Total ME time for sequence (sec) 1343.47 549.73 807.38 698.49 1768.55 
SNR Y (dB) 40.53 40.51 40.50 40.92 40.49 

Total bits 905,528 939,104 936,696 1,140,888 937,120 
Bit rate (kbit/s) 135.83 140.87 140.50 171.13 140.57 
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2.7 Conclusion	  

This chapter has introduced the multi-view imaging from the basic stereo point of view. 

Stereoscopy concepts define two images corresponding to the same scene with slightly 

different perspectives. The subtle differences between the left and right images known 

as disparity, perceived by the human brain as the three-dimensional view of the scene. 

This idea leads to the technique of inferring depth by using two or more cameras that 

include the stereo vision, dense stereo algorithms and stereo vision applications. The 

principle that relates two 2D images to a 3D representation can be extended to multiple 

views.  

Then the basic fundamental of stereo vision serves as the mathematical framework for 

the multi-view imaging and 3D graphics with the relationship to the 3D world and its 

corresponding position in a 2D image. The pinhole camera model provides the platform 

for a camera calibration process to determine the internal and external camera 

parameters that are useful in camera rectification and triangulation processes.  

The applications of multi-view imaging include the stereoscopic displays, free-

viewpoint video, video editing and special effects. Stereoscopic display allows the 

viewer to perceive the depth of the scene. Several display technologies has been 

developed including the polarized displays, parallax barrier displays and lenticular 

displays. Current 3DTV enables the viewer to watch the 3D scene by using an active 

glass system. Meanwhile, the free-viewpoint video application provides the ability for 

users to select and control any viewpoint of the video scene interactively. It offers the 

same functionality that is known in the 3D computer graphics but targeted on real world 

scenes as captured by real cameras.  

The 3D video technologies enable various applications that can be integrated into a 

single 3D video system. Several 3D video systems have been introduced to enable the 

3DTV and free-viewpoint video applications. The 3D video system consisted of several 

components includes the camera acquisition, calibration, rectification, stereo 

correspondence, compression and rendering. Camera calibration used to establish the 

relationship between 3D-world coordinates and their corresponding 2D image 

coordinates by defining the external and internal camera parameters. The rectification is 

a process to facilitate the analysis of a stereo pair of images by removing the lens 

distortion and turns the stereo pair in standard form. This process is useful for disparity 
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and depth estimation process in the stereo matching algorithm.  

An efficient compression algorithm is important in the multi-view video due to the huge 

amount of data for storage and transmission. This chapter has discussed an overview of 

multi-view compression algorithms, which includes the conventional stereo video 

coding, video plus depth data and multi-view video coding. Multi-view video 

compression algorithms should reduce redundancy in information from multiple views 

as much as possible to provide a high degree of compression. As the multi-view video 

captures the same dynamic 3D scene, the similarities or redundancies existed among the 

images. The redundancy in multi-view video streams consists of inter-view redundancy 

(between adjacent camera views) and temporal redundancy between temporally 

successive images of each video. The redundancies between the camera views (inter-

view) and temporal correlation exploited with the existing standards such as MPEG-2 

and H.264/AVC. 

In the next chapter, stereo matching and view synthesis algorithms will be reviewed. 

From the stereo matching, the disparity depth map can be measured and used as the next 

stage of 3D image and video processing, which is the inter-view synthesis algorithm. 

The inter-view synthesis refers to the generation of a view of a scene from an arbitrary 

or novel viewpoint. 
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 Chapter	  3 
 

Stereo Matching and View Synthesis 
Algorithms 

3.1 Introduction	  

In the state-of-the-art research in 3D vision, stereoscopy is one of the most significant 

and active research areas and has been widely used in photography and the film making 

industry [37]. Recently, it has received more attention because the necessary technology 

has matured significantly, allowing both stereoscopic recording and playback within 

reasonable constraints. Disparity estimation in the stereo matching can be used in the 

intermediate view synthesis algorithms implementation. The view synthesis composes a 

new image located in the virtual viewpoint between the stereo image pairs. The chapter 

describes the related research works and current trends in stereo matching and view 

synthesis algorithms. Also in here we will cover in detail the main building blocks of 

the algorithms, which includes cost computation, cost aggregation, intermediate view 

synthesis and rendering that will be used in layered depth map in the next chapter. 

This chapter is divided into two main parts: stereo matching algorithms and novel view 

synthesis algorithms, which are organized in seven sections. In Section 3.2, an 

introduction to the fundamentals of the three-dimensional (3D) images based on the 

stereo matching algorithms will be described. It presents the stereo matching 

classification to obtain the stereo correspondence pixels between the stereo images 

based on the sparse or dense disparities techniques. The stereo matching system and its 

main components will be introduced through stereo disparity estimation computation. 

From the stereo matching, the disparity depth map can be measured and used as the next 

stage of the 3D image and video processing, such as in the inter-view synthesis 

algorithm.  
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Section 3.3 surveys the stereoscopic creations that are differentiated by the underlying 

models of the 3D scene representation, where two major groups can be identified: based 

on a geometric scene representation and image-based systems. Between the two major 

groups, there is a range of methods with varying proportions of geometric and image 

information such as the layered depth image-based representations. View synthesis 

algorithms are discussed in Section 3.4. Section 3.5 covers the image-based rendering 

algorithm to generate new views of scenes from an arbitrary or novel viewpoint. The 

layered image-based rendering will be discussed in Section 3.6. Section 3.7 provides the 

performance evaluation used for the image view synthesis and finally Section 3.8 

concludes the chapter.    

       
 

3.2 Stereo	  Matching	  Algorithms	  

The main aim of stereo matching algorithms is to find homologous points in the stereo 

pair [46]. It is concerned with the matching of points between a pair of pictures of the 

same scene. The matching points reside on corresponding horizontal lines upon 

calibrated stereo setup. The disparity is calculated as the distance of these points when 

one of the two images is projected onto the other. The disparity values for all the image 

pixels comprise the disparity map. Once the stereo correspondence problem is solved, 

the depth of the scenery can be estimated. The disparity and depth are required in 

applications such as 3D reconstruction, virtual reality, robot navigation and many other 

aspects of production, security, defence, exploration and entertainment. 

Matching methods can be classified into two approaches: sparse and dense. The sparse 

outputs can be obtained with feature based matching methods, which are matching the 

two images based on matching segments or edges. The disadvantage of this approach is 

counterbalanced by the accuracy and speed obtained. In feature based matching, the 

algorithms select feature points independently in the two images, then match them using 

tree searching, relaxation, maximal detection or string matching [78]. Template 

matching also provides a sparse output, which selects templates in one image, usually 

patches with some texture information and then searches for corresponding points in the 

other image using some similarity measure. The algorithms in this class tend to be 

slower as the search is less constrained. The search can be simplified with the 

rectification process when the images are rotated and projected onto the same plane.  
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In order to categorize and evaluate the stereo correspondence algorithms that produce 

dense output, a taxonomy and evaluation has been proposed by Scharstein and Szeliski 

[22]. In general, the stereo matching algorithms consist of four steps, which are (a) 

matching cost computation, (b) cost aggregation, (c) disparity computation or 

optimization and (d) disparity refinement, which can be summarized in Table 3.1. 

However, not all stereo algorithms take all four steps depending on individual 

implementation and requirements. With respect to the combination of these steps, stereo 

algorithms that generate dense depth measurements can be divided into two classes, 

namely global and local algorithms. 

Table 3.1: Stereo Matching Algorithm Components 

Step Components 
a Matching cost computation 
b Cost aggregation 
c Disparity computation or optimization 
d Disparity refinement 

  

A global algorithm (energy-based) determines the optimal disparity map by minimizing 

a global energy function defined by pixel matching and a smoothness constraint. Global 

algorithms rely on iterative schemes that carry out disparity assignments on the basis of 

the minimization of a global cost function [25]. Many algorithms in this category 

consist of steps (a), (c) and (d). In order to solve the optimization problem, many 

algorithms adopt Graph Cuts [79], Belief Propagation [80, 81] and Dynamic 

Programming [82-84]. Since the energy function is defined on all the pixels of the 

image, global methods are less sensitive to local ambiguities (occlusions, textures) than 

local methods. Although these algorithms yield accurate and dense disparity 

measurements, they exhibit very high computational and time costs, which render them 

unsuitable to real-time applications.  

On the other hand, local algorithms, also known as area-based algorithms [85] are 

typically faster than the global approaches and have a lower memory footprint. 

However, they also have reduced accuracy compared to global state-of-the-art 

algorithms. The local methods calculate the disparity at each pixel on the basis of the 

photometric properties of the neighbouring pixels. This approach utilizes the window 

matching techniques to determine the optimal disparity map [32, 86, 87]. In local 

methods, the correspondence of a pixel is decided by the relationships between the 
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pixels in its neighbourhood (usually defined as a rectangular window) and those in the 

neighbourhood of the corresponding pixel in the other image.  

Typically, the area-approach based algorithms have all four steps. The disparity 

computation at a given point depends only on intensity values within a finite window. 

The disadvantage of this method is that it easily affected by local ambiguous regions 

such as occlusions, textures and homogenous regions. Compared to global algorithms, 

local algorithms yield significantly less accurate disparity maps but can run fast enough 

to be deployed in many real-time applications [85]. The summary of matching 

algorithms can be illustrated in Figure 3.1. 

 

Figure 3.1: Classification of matching algorithms 

There are many other methods that do not fall under these categories, such as the depth 

disparity estimation through wavelet transform [88], neural networks and cellular 

automata. Most of the work done involves a theoretical description of the algorithm, a 

software development stage and finally the testing of the algorithm with the use of a 

general-purpose personal computer. This methodology results in considerable running 

ties. However, this is not the case when the objective is the development of 

Simultaneous Localization Automatic Mapping (SLAM) or virtual reality systems. Such 

tasks require real-time, efficient performance and demand dedicated hardware and 

consequently specially developed and optimized algorithms.  

The Scale-Invariant Feature Transform (SIFT) [89] and Speeded-Up Robust Features 

(SURF) [90] operators also has been used to find the point correspondences between 

two images of the same scene or object [91]. For example, a novel framework for 

matching video sequences using the spatiotemporal segmentation of videos is presented 

by Basharat [92], where the point trajectories are computed using the SIFT operator. In 

radiometric applications as presented by [93], the mutual information and SIFT 



Chapter 3 

 

 
47	  

descriptor are combined to devise a robust and accurate stereo system. Due to the ability 

of SIFT to extract feature points, it has been used in the stereo vision by using two 

Point-Tilt-Zoom (PTZ) cameras system [94] to obtain multi-view angle and multi-

resolution information. The calibration and configuration are really complicated and 

require further research to improve the depth map estimation in the system. 

Meanwhile, the SURF operators present a novel scale and rotation invariant detector 

and descriptor, which not only can be very efficiently computed but also has 

comparable performance compared to other existing schemes with respect to 

repeatability, distinctiveness, and robustness. The framework is tested in two 

challenging applications: camera calibration treated as a special case of image 

registration and object recognition. However, the length of the descriptor is a major 

obstacle for real-time applications and mobile platforms where the computation time 

and storage capacity is limited. It has also been shown that the high dimensional SIFT 

and SURF descriptors suffer from a numerical instability known as the curse of 

dimensionality [95]. SURF can be computed efficiently at every pixel but introduce 

artefacts that degrade the matching performance [96].  

In large baseline matching, the algorithms generate significantly different images. It is 

quite challenging to determine correspondences between different images because the 

cameras’ relative displacement or rotation is large. As a consequence of the significant 

differences between the images, direct correlation-based matching fails at many more 

locations than in small-baseline stereo. The images of large baseline stereo pair lead to 

significant disparities and tend to present considerable amounts of relative distortions 

and occlusions. The next sections (Section 3.2.1, 3.2.2 and 3.2.3) will discuss each step 

of the stereo matching algorithm in detail. 

3.2.1 Matching	  Cost	  Computation	  and	  Aggregation	  

Cost computation or depth estimation aims at calculating the structure and depth of 

objects in a scene from a set of multiple views or images [37]. The main challenge is to 

localize corresponding pixels or the point-correspondences in the multiple views that 

identify the same 3D scene point. The most common pixel-based matching costs include 

Absolute intensity Differences (AD) and Square intensity Differences (SD). In the video 

processing community, these matching criteria are referred to as the Mean Absolute 

Difference (MAD) and Mean Squared Error (MSE) measures [22]. The pixel-based 
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matching costs for AD and SD are given by the following equations [97, 98] 

respectively: 

  

� 

AD = e(x,y,d) = IR (x,y) − IT (x + d,y)                 (3.1) 

  

� 

SD = e(x,y,d) = IR (x,y) − IT (x + d,y)( )2                 (3.2) 

where IR and IT are the reference and target images respectively for the location of x and 

y, and d is the disparity. 

Other conventional matching costs, also known as the area-based matching are 

determined based on matching windows of pixels by using similarity metrics such as the 

Sum of Absolute Differences (SAD), Sum of Square Differences (SSD) or normalized 

correlation techniques. In order to determine the correspondence of a pixel in the left 

image using a similarity metric function, the window costs are computed for all 

candidate pixels in the right image within the search range. The pixel in the right image 

that gives the minimum window cost is the corresponding pixel of the left image. Local 

and window-based methods aggregate the matching cost by summing or averaging over 

a support region in the Disparity Space Image (DSI) [22]. 

 
Figure 3.2: The disparity estimated by searching the most similar block along the horizontal 

epipolar line [37] 

A simple disparity estimation algorithm can be described as follows. Consider a left and 

right rectified image denoted by I1 and I2 respectively. In order to perform disparity 

estimation, it is necessary to establish the point-correspondences (p1, p2) for each pixel. 

By selecting the pixel p1 as a reference, a straightforward strategy consists of searching 

for the pixel p2 that corresponds to pixel p1 along the epipolar line. The searching 

process is simplified because the images are rectified and the search for the point-

correspondence is only along the horizontal raster scanlines. In order to limit the search 

area, a maximum disparity value dmax is defined. The similarity between pixels p1 and p2 
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is measured using a matching block (window) W surrounding the pixels as illustrated in 

Figure 3.2. By employing a similarity measure like SAD for block comparison, the 

disparity d of a pixel at position (x, y) in view I1 can be written as [99]: 

  

� 

d(x,y) = arg min
dmin ≤d ≤dmax

I1(x + i,y + j) − I2(x + i − d,y + j)
( i, j )∈W
∑               (3.3) 

The previous operation is repeated for each pixel so that a dense disparity map is 

obtained. The main attraction of this approach is its computational simplicity since the 

technique relies on a block matching procedure. However, this simple technique results 

in inaccurately estimated disparity values. For example, a change of illumination across 

the views introduces ambiguities. The problem of depth estimation has been intensively 

investigated in the computer vision research community [22]. Some approaches to 

overcome this problem will be discussed in Section 3.2.2 through different component 

of stereo matching algorithms. In general, the basic stereo matching algorithm can be 

summarized in the following steps: 

 For each epipolar line 
       For each pixel in the left image 
  - compare with every pixel on the same epipolar line in the right 
  - find pixel with minimum match cost 

In brief, the matching process involves computation of the similarity measures for each 

disparity value, followed by an aggregation and optimization step. The images can be 

matched by taking either left image as the reference (left-to-right matching, also known 

as direct matching) or right image as the reference (right-to-left matching, also known 

as reverse matching) [22]. The computation of window cost is given by the following 

equation [98, 100, 101]: 

Sum of Absolute Differences (SAD) 

� 

= I1(x,y) − I2(x + i,y + j)( )
(i, j )∈W
∑     (3.4) 

Sum of Squared Differences (SSD) 

� 

= I1(x,y) − I2(x + i,y + j)( )2
(i, j )∈W
∑      (3.5) 

Normalized Cross Correlation (NCC) 

� 

=
I1(x,y) ⋅ I2(x + i,y + j)

( i, j )∈W
∑
I1
2(x,y) ⋅ I2

2(x + i,y + j)
( i, j )∈W
∑

(i, j )∈W
∑

   
(3.6)

 

Sum of Hamming Distances (SHD) 

� 

= I1(i, j) bitwise XOR I2(x + i,y + j)
(i, j )∈W
∑            (3.7) 
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SAD is one of the simplest of the similarity measures which is calculated by subtracting 

pixels within a square neighbourhood between the reference image I1 and the target 

image I2 followed by the aggregation of absolute differences within the square window, 

and optimization with the Winner-Take-All (WTA) strategy [102]. If the left and right 

images exactly match, the resultant will be zero. 

In SSD, the differences are squared and aggregated within a square window and later 

optimized by WTA strategy. This measure has a higher computational complexity 

compared to SAD algorithm as it involves numerous multiplication operations. 

Normalized Cross Correlation is even more complex to both SAD and SSD algorithms 

as it involves numerous multiplication, division and square root operations. SHD is 

normally employed for matching census-transformed images (can be used on images 

that have not been census transformed) by computing bitwise-XOR of the values in the 

left and right images, within a square window. This step is usually followed by a bit-

counting operation, which results in the final Hamming distance score.  

The pixel in the right image that gives the best window cost that is the minimum SSD or 

SAD value or the maximum correlation value indicates the corresponding pixel of the 

pixel in the left image. In this research, window cost calculation is performed based on 

SAD and SSD algorithm. In direct search, it requires to compute the window costs, with 

the SAD or SSD values for all candidate pixels within the search range, -dmax to +dmax. 

Another matching costs including non-parametric [103] and Mutual Information (MI).  

If the correlation is separable in x and y, with all pixels within the correlation window 

equally weighted, an efficient implementation is possible. The Sum of Absolute 

Differences (SAD) is chosen because it performs better than the sum of squared 

differences in the presence of outliers and it has a smaller computational complexity 

than normalized correlation measures [104]. In this application, the exposure and white 

balance of the cameras is controlled to minimize the difference of brightness and 

contrast between the images.  

Correlation based matching typically produces dense depth maps by calculating the 

disparity at each pixel within a neighbourhood. This is achieved by taking a square 

window of a certain size around the pixel of interest in the reference image and finding 

the homologous pixel within the window in the target image, while moving along the 

corresponding scanline. The goal is to find the corresponding (correlated) pixel within a 
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certain disparity range d that minimizes the associated error and maximizes the 

similarity.  

Window-based stereo matching technique is widely used due to its efficiency and ease 

of implementation. The simplest cost aggregation method is by using Fixed Window 

(FW). However, Barnard and Fischler [105] point out a problem in the selection of a 

window with fixed size and shape. The fixed window cost aggregation method ignores 

the depth discontinuities and does not deal with uniform areas and repetitive patterns. 

The bigger the window size, the higher the chance for a correct match but with a 

drawback of quality loss at disparity discontinuities such as object borders (borders 

become broader). Small windows increase the quality at borders and the localizing of 

matches is more accurate, but they can cause more false matches at difficult areas. 

Many researchers proposed adaptive window methods using windows of different 

shapes and size depending on local variations of intensity and disparity [106]. However 

in adaptive window algorithms, the computation time is relatively higher than the fixed 

window algorithms. To overcome this problem and to achieve high gain in accuracy 

with less computation time, Chowdhury [107] proposed an average disparity estimation 

method.  

Several cost aggregation methods aimed at improving the robustness of stereo 

correspondence within local and global algorithms have been proposed. In [108], the 

classification and evaluation of cost aggregation strategies for stereo correspondence 

has been presented. Most of the techniques compute the stereo matching pixels based on 

position, shape and weights strategy. The evaluation comprises fixed window, shiftable 

window [22], multiple window, variable window [109], adaptive weights, bilateral 

filtering and segmentation-based [110] strategy. From the qualitative evaluation, it 

shows that the segmentation-based cost aggregation strategy adapts very well as it 
supports along depth borders as well as in presence of low-textured regions.  

In spite of its limitation, fixed window cost aggregation is widely adopted in practice for 

real time applications. According to Mattoccia [23], the fixed window is easy to 

implement, faster execution, runs in real-time on standard processors [97], has limited 

memory requirements and low power consumption in hardware implementation. The 

fast stereo matching using general purpose processor by Stefano [25] was performed 

and developed by using SAD computational optimization. Stefano outlines the 

optimization techniques to avoid redundant calculations. The computation scheme can 
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be used in any similarity metric functions such as SSD and NCC. Therefore, the basic 

fixed window-based similarity metric matching cost is the best approach for faster 

execution and it can be easily adapted in parallel processor instruction technology for 

future implementation. 

3.2.2 Disparity	  Computation	  and	  Optimization	  

In local methods, the emphasis is on the matching cost computation and on the cost 

aggregation steps [22]. In order to compute the final disparity one chooses at each pixel 

the disparity associated with the minimum cost value. The most popular disparity 

optimization is the simple Winner-Take-All (WTA) strategy. It is normally 

implemented by using a window-based cost computation and aggregation method such 

as SAD. A limitation of this approach is that uniqueness of matches is only enforced for 

one image (the reference image), while points in the other image might get matched to 

multiple points [22]. 

In contrast, global methods perform almost all of their work during the disparity 

computation phase and often skip the aggregation step [22]. Many global methods are 

formulated in an energy minimization framework. The objective is to find a disparity 

function d that minimizes a global energy. Typically, the cost function takes the 

following form [22, 98]: 

  

� 

E(d) = Edata (d) + λEsmooth (d)                   (3.8) 

The first term is the data term, Edata(d) which evaluates the pixel matching with 

disparity configuration d and λ is a parameter that adjusts smoothness of the result. By 

using the disparity space formulation [22, 98]: 

  

� 

Edata (d) = C x,y,d(x,y)( )
(x,y )
∑                   (3.9) 

where C is the initial or aggregated matching cost Disparity Space Image (DSI).  

The second term in (3.8), Esmooth(d) is the smoothness term that takes a low value when 

the disparity value at a pixel is similar to those of its neighbours. The term can be 

defined as follows [22, 98]: 

  

� 

Esmooth (d) = ρ d(x,y) − d(x +1,y)( ) + ρ d(x,y) − d(x,y +1)( )
(x,y )
∑          (3.10) 
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where ρ is some monotonically increasing function of disparity difference.  

In regularization-based vision ρ is also defined as a quadratic function, which makes d 

smooth everywhere and may produce poor results at object boundaries. The terms in 

Esmooth can also be made to depend on the intensity differences as defined in the 

following [22]: 

� 

ρd d(x,y) − d(x +1,y)( ) ⋅ ρI I(x,y) − I(x +1,y)( )               (3.11) 

where ρI is some monotonically decreasing function of intensity differences that lowers 

smoothness costs at high intensity gradients.  

This idea encourages disparity discontinuities to coincide with intensity or colour edges 

and appears to account for some of the good performance of global optimization 

approaches. 

Some relevant approaches in the disparity computation and optimization are Graph Cuts 

[111], Belief Propagation [81] and Cooperative Optimization [112]. A detailed 

comparison of relevant energy minimization methods can be found in [113]. Finding 

stereo correspondence with Graph Cuts formulates the correspondence problem as the 

search for the maximum flow of a weighted graph. This graph has two special vertices, 

the source and the sink. Between those are nodes, which are connected by weighted 

edges. Each node represents a pixel at disparity level and is associated with the 

according matching costs. Each edge has an associated flow capacity that is defined as a 

function of the costs of the node it connects. This capacity defines the amount of flow 

that can be sent from source to sink. The maximum flow is comparable to the optimal 

path along a scanline in dynamic programming, with the difference that it is consistent 

in three dimensions. The computation of the maximum flow is extensive and cannot be 

used for real time applications.  

Another global disparity optimization approach is Belief Propagation [80, 81, 113-115]. 

This iterative strategy uses rectangular Markov random fields for assigning the best 

matching disparities to the pixels. Each node is assigned to a disparity level and holds 

its matching costs. The belief (probability) that this disparity is the optimum arises from 

the matching costs and the belief values from the neighbouring pixels. At every iteration 

cycle, each node sends its belief value to all four connected nodes. The belief value is 

the sum of the matching costs and the received belief values. The new belief value, 
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which is the sum of the actual and the received values, is saved for each direction 

separately. This is done for each disparity level. Finally, the best match is the one with 

the lowest belief values defined by a sum over all four directions.   

A different class of global optimization algorithms is that based on Dynamic 

Programming (DP) [82-84]. Dynamic programming was first used for stereo vision in 

sparse and edge-based methods. The approaches expanded on the dense scanline 

optimization problem. The strategy of DP is to find the optimal path (minimum cost 

path) through all possible matching costs between two corresponding scanlines. The 

ordering constraint, which means that pixels in the reference image have the same order 

as their correspondences in the matching image, specifies the possible predecessors of 

all matches. The path with the lowest matching and joining costs is chosen recursively. 

This leads to a path through the possible matches that implies a left/right consistency 

check. Partial occlusion is handled explicitly by assigning a group of pixels in one 

image to a single pixel in the other image. The problem with DP includes the selection 

of the right cost for occluded pixels and the difficulty of enforcing inter-scanline 

consistency. The main drawback of dynamic programming is that it only considers 

horizontal smoothness constraints. Therefore, the disparity maps obtained based on DP 

suffer from horizontal streaking artefacts but they are computationally inexpensive. 

3.2.3 Disparity	  Refinement	  

The post-processing step for the stereo matching algorithm is the disparity refinement 

has received a lot of attention in recent years. Most global-based matching algorithms 

compute disparities as integer values and need to be refined. In this step, raw disparity 

maps computed by correspondence algorithms contain outliers that must be identified 

and corrected. Moreover, if the disparity maps computed at discrete pixel level, 

disparity refinement step is necessary to remove errors in the disparity maps. Several 

approaches aimed at improving the raw disparity maps computed by stereo 

correspondence algorithms such as sub-pixel interpolation [116], image-filtering 

techniques [117], Bidirectional Matching (BM) [24] and Single Matching Phase (SMP) 

[85]. Sub-pixel disparity is obtained by interpolating the three matching costs with a 

parabolic function. This technique is reasonably accurate but computationally expensive 

if performed directly at matching cost computation stage. The disparity map can be 

simply refined by means of image filtering techniques without explicitly enforcing any 
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constraint about the underlining disparity maps. The common image filtering operators 

are median filtering, morphological operators and bilateral filtering [117]. 

Bidirectional matching [24] is widely used to detect outliers in stereo based on local or 

global approaches. It is also known as the Left-Right Consistency Check (LRCC). The 

correspondence problem is solved in two steps: firstly, by assuming left image as 

reference, dLR(x, y) and secondly by assuming right image as reference, dRL(x, y). The 

disparity values that are not consistent between the two maps are classified as outliers 

enforcing, with threshold T typically set to 1 in the following equation [24, 104]: 

  

� 

dLR (x,y) − dRL (x + dLR (x,y),y) < T                (3.12) 

The advantages of LRCC are that it is useful for detecting occlusions, preserves depth 

discontinuities and also effective for detecting outliers in ambiguous regions. However, 

this approach is computationally expensive because of two matching phases required. 

The Single Matching Phase (SMP) approach [85] aims at detecting unreliable disparity 

assignments using a more computationally efficient technique. It uses a single matching 

phase that explicitly enforces the uniqueness constraint. The algorithm dynamically 

updates the disparity map when the uniqueness constraint is violated. Therefore, it is 

quite effective compared to the LRCC and suitable for efficient real-time standard 

processor implementation. Even though the proposed algorithm provides exceptional 

accurate disparity depth map, some of it suffered with complexity for the 

implementation particularly for real-time implementation. 

Middlebury Stereo Evaluation Page developed by Scharstein and Szelinski [22] 

provides some common benchmark datasets and evaluation systems for all the 

researchers to analyze and examine their methods objectively with a standard 

parameters. Based on the Middlebury ranking, it shows that many stereo algorithms 

adopt the segment-based method [81, 118-120]. Segment-based methods are widely 

accepted for effectiveness of disparity map refinement. Two fundamental assumptions 

for segmentation-based outliers identification and replacement are that the disparity 

within each segment varies smoothly and that each segment can be approximated with a 

plane. The robust plane fitting of disparity measurements can be performed within a 

global energy minimization framework, such as by using Random Sample Consensus 

(RANSAC) [121] and histogram voting [112]. Almost all stereo algorithms adopt a 

Mean-Shift [110] method as their colour segmentation strategy.  
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Other methods of disparity refinement to remove large errors and to enforce local 

consistency in the disparity results are the Intensity Consistent (IC) and Locally 

Consistent (LC) [122] disparity selection techniques. The IC technique relies on 

segmentation and is particularly effective to solve the problem of propagation of 

disparities from textured foregrounds to non-textured regions, one of the major 

problems in local stereo matching algorithms. The locally consistent disparity selection 

technique, by enforcing local consistency between neighbouring points, has proven to 

be effective in recovering wrong disparity assignments in uniform regions as well near 

depth discontinuities. Nevertheless, this technique is unable to recover from large 

erroneous areas. The erroneous patches are typically caused by homogeneous regions in 

the stereo pair.  

Therefore, we propose a disparity refinement pipeline in which the resulting disparity 

maps of local-based stereo matching are refined with the colour segmentation method 

and morphological techniques to solve large erroneous areas and typically enforcing 

local consistency by mean of morphological. A detailed description of the proposed 

disparity refinement technique is described in Chapter 5. 

3.2.4 Summary	  of	  Stereo	  Matching	  Algorithms	  

In this section, a summary of the stereo matching algorithms is presented. Researchers 

are making efforts in all fields of stereo and image view synthesis that include stereo 

correspondence matching, 3D scene representation and rendering. Beside the taxonomy 

and evaluation proposed by Scharstein and Szelinski [22], the image matching 

algorithms has also been discussed intensively by Cyganek [98]. The compilation of the 

research works in this field indicates the important and necessities of stereo matching in 

the image processing and 3D vision.  

Currently, the proposed stereo matching methods in the Middlebury Stereo Page 

contains more than a hundred submissions. The list is updated constantly and provides 

the state-of-the-art on the latest algorithm on the stereo matching. It is hard to select and 

define which is the best algorithm since each algorithm is developed for a particular 

application with a trade-off between accuracy and speed. Therefore, the selected 

approaches presented in Table 3.2 are based on some representative stereo matching 

algorithm and their corresponding taxonomy: the matching cost, aggregation, 

optimization and refinement techniques used. Not all the presented algorithms take all 
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four stereo matching components (given in Table 3.1, Section 3.2). As discussed in 

Section 3.2, the selection of steps determines the class of dense disparities either locally 

or globally. For example, many algorithms classified into global-based methods, do not 

contain the cost aggregation step.  

Table 3.2: Summary of Stereo Matching Algorithms 

Method Matching cost Aggregation Optimization Refinement 
SAD,  
SSD 

Squared 
difference Square window WTA Any approaches 

Non-Parametric, Zabih 
[103] Rank transform Square window WTA None 

Pixel-to-pixel Stereo, 
Birchfield [123] 

Shifted absolute 
difference None DP None 

Locally adaptive, 
Kanade [87] 

Squared 
difference 

Adaptive 
window WTA None 

Cooperative algorithm, 
Zitnick Kanade [106] 

Squared 
difference 

Iterative 
aggregation WTA None 

Maximum likelihood,  
Cox [124] 

Squared 
difference None DP None 

Graph cut,  
Boykov [79] 

Squared 
difference None Graph cut None 

SMP,  
Stefano [85] 

Squared 
difference Square window LC Subpixel 

interpolation 
Fast correlation-based, 
Yoon [99] 

Squared 
difference Square window WTA LRCC 

Multiple windowing, 
Fusiello [125] 

Squared 
difference 

Multiple 
windowing WTA LRCC 

Segment-based GC, 
Hong [119] 

Absolute 
difference 

Colour 
segmentation Graph cut Segment plane 

Anisotropic diffusion, 
Banno [126] 

Mutual 
information None Belief 

propagation 
Anisotropic 
diffusion 

Linear stereo 
matching, De-Maezto 
[127] 

Absolute 
difference or 
Mutual 
information 

Adaptive weight WTA IC-LC 

Layered,  
Bleyer [118] 

Absolute 
difference 

Colour 
segmentation 

Graph cuts and 
Plane None 

Segment-based BP, 
Klaus [81] 

Squared 
difference and 
gradient 

Square window 
& segmentation 

WTA & Belief 
propagation LRCC 

Sliding window, 
Muhlmann [104] 

Squared 
difference Sliding window WTA Subpixel and 

filtering 
Fast stereo matching, 
Humenberger [100] 

Census 
transform Square window WTA LRCC 

MEVSV, 
Khaleghi [128] 

Census 
transform Square window WTA LRCC and 

intensity 
Fast Bilateral Stereo 
(FBS), Mattoccia [117] 

Absolute 
difference 

Adaptive weight 
bilateral filtering WTA None 

Different Array (DA), 
Zhang [129] 

Absolute 
difference 

Colour 
segmentation Gaussian None 

AD-Census,  
Mei [130] 

Absolute 
difference & 
Census 

Cross-based 
aggregation  

Scanline 
optimization 

Multi-step and 
sub-pixel 
interpolation 
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The squared and absolute differences are common methods of selecting a matching cost 

step, where the latter is usually used in the global-based approach. The cost aggregation 

in Table 3.2 comprises various techniques such as square window, adaptive window, 

multiple window, adaptive weight and colour segmentation. In the optimization and 

refinement disparity stage of Table 3.2, some of the proposed algorithms use Winner-

Take-All (WTA) to cater the window-based approaches in a cost aggregation step. 

Other methods include Dynamic Programming (DP), Graph Cuts, Locally Consistent 

(LC), Belief Propagation, filtering and Left-Right Consistency Check (LRCC). From 

this table, it is obvious that there is a quite large subset of possible algorithm design 

spaces that have been explored over the years.  

In the state-of-the-art research of 3D vision, most image processing and stereo vision 

based approaches use image pairs captured by left-to-right within the horizontal of the 

epipolar line. The image pairs will be rectified before being processed with stereo 

matching algorithms to obtain the disparity depth map and matching correspondence 

pixels. As described in the Table 3.2, almost all the represented stereo matching in this 

table are left-to-right matching. Computational approaches to stereo matching have 

often taken advantage of geometric constraints which state that matching elements in 

the left and right eyes are on the epipolar lines. However, experiments with dynamic 

random element stereogram carried out by Stevenson [131] revealed that human 

stereopsis can detect and identify the depth of matches over the range of both vertical 

and horizontal disparities.  

Most of the stereo matching algorithms presented in the Middlebury Stereo Ranking 

[22] mainly focus on finding the matching between stereo pair based on the left-right 

scene. Not many submissions have been done to find the corresponding pixels points for 

the scene captured based on vertical disparity although the concept is similar for the 

top-down (upper-lower) camera configuration. Normally, this type of matching is 

implemented for a specific type of application, such as vertical stereo system for range-

finding for vehicles system by Miyazaki [132]. The stereo matching for this system is 

calculated based on characteristic features of horizontal lines in the upper and lower 

images. A mobile robot for localization and mapping developed by Caron [133] uses an 

omnidirectional stereo vision sensor. It uses four parabolic mirrors and orthographic 

camera to produce four images of the same scene. Neither of the systems adapt any 

stereo matching algorithms proposed in [22], nor create any virtual view synthesis 
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images based on the disparity depth map. Although Yang [134] presented a stereo 

matching algorithm utilizing vertical disparity based on neural networks, analysis and 

performance are mainly for left-right image pairs.  

The system developed by Yang [135] for video conferencing employs the matching for 

vertical disparity based on upper and lower images. The system synthesizes virtual 

views for eye gaze correction with correlation-based stereo feature and template 

matching of a human face. This system was designed specifically for video 

conferencing by utilizing two cameras mounted vertically and limited by one virtual 

view synthesis only. It also works only for faces and not for dense stereo camera 

configurations. Therefore in Chapter 6, this thesis proposes an image view synthesis 

framework based on multi-view camera arrays configuration by matching and 

synthesizing inter-view images algorithms horizontally and vertically. The Section 3.3 

will discuss the 3D scene representation that will lead to the novel view synthesis 

implementation.  

 

3.3 3D	  Scene	  Representation	  

In computer graphics literature, the 3D scene representation can be classified as a 

continuum between two extremes. The one extreme is represented by classical 3D 

computer graphics, which is also known as the geometry-based modelling. The opposite 

of this extreme is called image-based modelling and does not use any 3D geometry at 

all. In between the two extremes, there are a number of methods that make more or less 

use of both approaches and combined their advantages in some way. The choice of a 

certain 3D scene representation format is of central importance for the design of any 3D 

video and free-viewpoint system [2]. On the one side, it sets the requirements for 

acquisition and multi-view signal processing. For instance using an image-based 

representation implies using a dense camera setting. A relatively sparse camera setting 

would only give poor rendering results of virtual views. In contrast, using a geometry-

based representation implies the need for sophisticated and error prone image 

processing algorithms such as object segmentation and 3D geometry reconstruction. 

The other side of the 3D scene representation determines the rendering algorithms 

interactivity, as well as compression and transmission if necessary. The 3D scene 

representations of this two approaches are illustrated in Figure 3.3 [136].   
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In a geometry-based approach, multi-view videos are acquired from randomly 

distributed network of cameras and then a 3D model is extracted based on the captured 

images. The images will be rendered with new views using advanced rendering 

techniques. This approach is also called model-based technique. In most cases, scene 

geometry is described on the basis of 3D meshes. Real world objects are reproduced 

using geometric 3D surfaces with an associated texture mapped onto them. More 

sophisticated attributes can be assigned as well. For instance, appearance properties 

such as opacity and reflectance can enhance the realism of the models significantly.  

 
Figure 3.3: Scene representation categories [136] 

Geometry-based modelling is used in applications such as games, graphic design and 

movies. The technology for both production and rendering has been optimized over the 

last few years, especially in the case of common 3D mesh representations. Typically, 

the scenes of purely computer generated with these models performed very well in 

comparison to the image-based approach. In addition, the state-of-the-art PC graphic 

cards are able to render highly complex scenes with an impressive quality in terms of 

refresh rate, levels of detail, spatial resolution, reproduction of motion and accuracy of 

textures [2]. 

Despite the advances in 3D reconstruction algorithms, reliable computation of 3D scene 

models remains difficult with most of existing systems are restricted to foreground 

objects only [4, 137, 138]. Furthermore, volumetric representations such as voxels 

(from volume elements) can be used instead of a complete 3D mesh model to describe 

3D geometry. Prior knowledge of the object model can be used to improve the 

reconstruction quality such as in voxel based representations, where the human body is 

the object of interest in the scene [139]. It can easily integrate information from multiple 

cameras but it is limited in resolution. The work of Vedula [139] is based on the explicit 

recovery of the 3D scene properties that uses the voxel colouring algorithm to recover a 

3D voxel model of the scene at each time instant, and 3D scene flow algorithms to 
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obtain the 3D non-rigid motion of the scene between consecutive time instants. The 

voxel models and scene flow become inputs to a spatio-temporal view interpolation 

algorithm. Some research mainly focused on the human object because of the scenes 

involving humans are amongst difficult tasks to reconstruct into the 3D model. A 

triangle mesh representation is employed in the work of Carranza [137] and Theobalt 

[4] because it offers a closed and detailed surface representation. It composed of 

multiple rigid body parts that are linked by a kinematic chain through geometry model 

of a human body.  

The model-based approach has the advantage of reducing the acquisition cost by using 

fewer cameras. However, a drawback of this approach is the typical high cost and 

human assistance required for 3D content creation. The algorithmic complexity 

increases in order to capture the real-world scene models in real-time processing [48]. 

The 3D scene and object modelling are often complex and time consuming, and it will 

become even more complex when dynamically changing scenes are considered. 

Furthermore, an automatic 3D object and scene reconstruction implies an estimation of 

camera geometry, depth structures and 3D shapes. With some possibility, all these 

estimation processes generate errors in the geometric model. These errors then have an 

impact on the rendered images. Therefore, high-quality production of geometry models 

is typically user assisted, for example in film productions.  

Another known technique is the image-based approach. This uses a densely distributed 

network of cameras to acquire high-resolution light fields and then uses image-based 

rendering algorithms to generate images at the new view-points. The image-based 

approach has the advantage of reconstructing new views without the need of a 3D scene 

model. It has the potential to produce high quality of virtual view synthesis images 

without any 3D scene reconstruction through dense sampling of the real world with a 

sufficiently large number of natural camera view images [2]. In general, the synthesis 

quality increases with the number of available views. Hence, typically a large number of 

cameras have to be set up to achieve high performance rendering with a huge amount of 

image data needs to be processed. If the number of used cameras is too low, 

interpolation and occlusion artefacts will appear in the synthesized images, which 

affecting the image quality.  The image-based method also demands more storage and 

transmission bandwidth for video data [140]. One of the challenges for the image-based 

approach is to capture and transmit dense light field in a cost-effective way. 
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Some examples of image-based representations are ray space or Light Field [6, 141], 

Lumigraph [142, 143] and panoramic configurations, including concentric and 

cylindrical mosaics [144]. The basic idea in these methods is capturing the complete 

flow of light in a region of the environment. Such a flow is described by a plenoptic 

function. The plenoptic function was introduced by Adelson and Bergen [38] in order to 

describe the visual information available from any point space and has been introduced 

in the Section 2.2. It is characterized by seven dimensions, namely the viewing position 

(Vx, Vy, Vz), the viewing direction (θ, φ) or (x, y) in Cartesian coordinates, the time and 

the wavelength for dynamic scene. It can be summarized as P=P7(Vx, Vy, Vz, θ, φ, λ, t). 

The image-based representation stage is a sampling stage, where the samples are taken 

from the plenoptic function for representation and storage [145].  

Research on image-based modelling is mostly on how to make reasonable assumptions 

to reduce the sample data size while keeping the rendering quality [78]. One of the main 

strategies to reduce the data size is to restrain the viewing space of the viewers. By 

ignoring the wavelength and time dimensions, McMillan and Bishop [146] introduced 

plenoptic modelling in 5D function, which is P=P5(Vx, Vy, Vz, θ, φ). A static scene 

recorded by positioning cameras in the 3D viewing space, each on tripod capable of 

continuous panning. At each position, a cylindrical projected image was composed from 

the captured images during the panning. This forms a 5D image-based representation: 

3D for the camera position and 2D for the cylindrical image. In order to render a novel 

view from the 5D representation, the nearby cylindrical projected images are warped to 

the viewing position based on their epipolar relationship and visibility tests [145].  

The Light Field and Lumigraph image-based representations ignored the wavelength 

and time dimensions with the assumption the radiance does not change along a line in 

free space. Both approaches parameterized the space of oriented lines with the light rays 

recorded by their intersections with two planes. One of the planes is indexed with 

coordinate (u, v) and the other with (s, t). Figure 3.4(a) [78] shows an example where 

the two planes, camera plane and focal plane are parallel. An example of light ray is 

shown and indexed as (u0, v0, s0, t0). The two planes are then discretized so that a finite 

number of light rays are recorded. If all the discretized points from the focal plane are 

connected to one discretized point on the camera plane, an image for 2D array of light 

rays is obtained. Therefore, the 4D representation is also a 2D image array as shown in 

Figure 3.4(b) [78].  
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(a) (b) 

Figure 3.4: Light Field image based representation [78]: (a) One parameterization of the Light 
Field. (b) A sample Light Field image array  

The difference between Light Field and Lumigraph is that the Light Field assumes no 

knowledge about the scene geometry. As a result, the number of sample images 

required in the light field for capturing a normal scene is huge. On the other hand, 

Lumigraph reconstructs a rough geometry for the scene to facilitate the rendering with a 

small amount of images. For this reason, Lumigraph is also classified as a hybrid and 

not a pure image-based modelling technique.  

Between these two extremes lies a range of methods with varying proportions of 

geometric and image input information that has been explored, for example in [147]. 

Using a complete 3D model allows freedom in the final rendering but requires more 

computation and often creates noticeably artificial output images. In contrast, the 

Image-Based Rendering (IBR) approach requires little geometric information and can 

give potentially photo-realistic results but requires many more input images. A layer-

based representation of the scene geometry [39, 148] represents a compromise that has 

low geometric complexity, while allowing view synthesis from a moderate number of 

input images [149]. 

Other representations do not use explicit 3D models but they use depth or disparity 

maps. Such maps assign a depth value to each sample of an image. The original 2D 

image can be combined with the depth map to build a 3D-like representation, also 

known as 2.5D [69]. This can be extended to layered depth images, where multiple 

colour and depth values are stored in consecutively ordered depth layers. A different 

extension is to use multi-view video plus depth, where multiple depth maps are assigned 

to the multiple colour images [8, 150], whereas the Advanced Three-Dimensional 

Television System Technology (ATTEST) [69] project proposal is based on the 

distribution of video-plus-depth data corresponding to a single central viewing position. 

Some of the algorithms will be discussed again in Section 3.4 and 3.5 since they are 



Chapter 3 

 

 
64	  

related to the view synthesis and image based rendering algorithms. 

 

3.4 View	  Synthesis	  Algorithms	  

Stereo images provide simple means of perceiving the relative depth information in a 

real world scene. However, 3D television, which probably uses stereoscopic videos, 

leads to increase visual strain because of imbalance between accommodation and 

convergence of the eyes. The view synthesis technique can be used to overcome this 

problem [151]. The look-around capability of the view synthesis makes viewers 

comfortable and produces photo-realistic images [152].   

Novel view synthesis covers a broad set of computer vision techniques which have been 

developed to solve the problem of generating a novel view from a set of measurements 

of a scene (typically a set of images). It is concerned with two things: determining 

correspondences between images and interpolating or extrapolating from these 

correspondences to form a new image. A typical solution to the problem of free 

viewpoint video is to capture a set of video sequences instead of single images and then 

apply novel view synthesis algorithms on a frame-by-frame basis. Another approach is 

to capture the same scene with a number of synchronized cameras (such as stereo). 

The basic underlying principle in novel view synthesis algorithms are based on the 

plenoptic function, introduced in the commonly seen 5-dimensional form by McMillan 

and Bishop [146], also as 7-dimensional by Adelson and Bergen [38]. This states that a 

single function in terms of a position in (Vx, Vy, Vz) and a direction with azimuth and 

elevation (θ, φ) can describe all possible images of a scene. An image is then a discrete 

sample of the plenoptic function, with each pixel being an integration over a small range 

of 0 and φ. The problem of novel view synthesis can then be expressed as an attempt to 

generate a continuous representation of an entire plenoptic function given a small set of 

discrete samples. 

A second principle that is often relied upon is that images are formed by objects, 

specifically that a region of an image is formed by light reflecting off a patch s on a 

surface S as shown in Figure 3.5 [49]. By determining the properties of s, and with a 

knowledge of the camera calibration and geometry, the pixels relating to s can be 

determined across a set of images M. S is often referred to as the ‘scene geometry’ [49]. 
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As illustrated in Figure 3.5, p is a real pixel on real image I and p’ is a synthesized pixel 

on synthetic image I’. M is the set of real images. 

 

Figure 3.5: A set of related pixels measured by a patch s on surface S [49] 

There are generally two main categories of view synthesis algorithms: reconstruction-

based methods and interpolation-based methods [153]. Reconstruction-based methods 

use explicit or implicit 3D structures of the scene to synthesize new views through a 

fundamental matrix or a trilinear tensor. However, interpolation-based methods do not 

require 3D structures or camera parameters. The interpolation-based methods are able to 

generate smooth transitions between reference images by simple interpolation from two 

stereoscopic images. In considering of compression for multi-view image sequences, 

whichever approach we choose, we must consider coding efficiency, computational 

complexity and ease of generating the intermediate-view images. In most cases, the 

view interpolation can be divided into two processes: disparity estimation and 

intermediate-view generation. 

The view interpolation of the stereo images may be thought of the extended version of 

the motion estimation/compensation problem since the disparity of the stereo images 

can be considered as the motion vector of the monocular moving pictures. Therefore, 

the motion estimation algorithm of two successive frames in the monocular video could 

also be applicable to finding disparity values of two stereo images [154]. Those 

approaches of various motion estimation methods can be directly applied to stereo 

image coding since their main focus is to minimize coded bits and prediction errors. 

However, the approaches of minimizing prediction errors have limitations in generating 

intermediate view images, and the interpolated images usually have visible artefacts 

since those are mainly focused on coding. Therefore, finding exact disparities of stereo 

images is an important work in view interpolation. Stereo image pairs are obtained 

using simultaneously recording a scene with two cameras at different positions. The 
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relative position, orientation, and some additional parameters of the cameras generate 

the disparity vectors of the stereo image pairs [154]. When two pinhole cameras are 

placed with equal orientation while their positions differ only in the direction of the 

scan line, it is called parallel setup of stereo cameras. This case makes the disparity 

vector a one-dimensional value. Therefore, finding disparity vector in stereo image pair 

is different from finding motion vector in monocular video sequences according to the 

camera setup.  

Fan and Ngan [155] proposed a coding method of disparity map based on adaptive 

triangular surface modelling. This algorithm consists of two stages: to find a smooth 

disparity map using block-based hierarchical disparity estimation and to model the 

acquired disparity map by Delaunay triangulation on a set of nodes [152]. It compresses 

the set of nodes with disparities by the differential pulse coded modulation and variable 

length coding. Because the disparity map is modelled by a finite number of nodes, the 

acquired disparity map must be smooth so that the disparity error can be neglected. If 

the disparity map is not smooth enough, i.e., there exist some disparity discontinuities; 

large number of triangulation nodes must be placed very heavily around the 

discontinuity or noisy area to reduce the disparity error. 

Sethuraman [156] proposed a compression method of multi-view image sequences 

using a generalized quad-tree. By partitioning a reference image successively by the 

generalized quad-tree decomposition and finding a disparity value for the partitioned 

rectangular patch, he achieved very high compression efficiency. However, the 

drawback of this algorithm stems from having only one disparity value on every 

rectangular patch. If input stereo images have a continuously varying disparity map, the 

strategy of just one disparity value per rectangular patch makes the disparity error large. 

Wang and Wang proposed mesh-based analysis and coding of multi-view video 

sequence [157]. In their work, disparity estimation and compensation were performed in 

such a way that the compensation error of full frame should be minimized. Node points 

were iteratively moved in the direction of minimizing the prediction error. They 

proposed a full search method and computationally efficient fast search method. 

However, the computational complexity is high because of the iterative procedure. In 

addition, they did not consider the occlusion problem. 
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Hong Park [152] proposed a new view interpolation method for stereoscopic images 

that bring together computational efficiency and high PSNR of the intermediate-view 

image compared to the previous view interpolation methods. In spite of this, the 

proposed algorithm contains high complexity in the implementation point of view. 

Further description on the image view synthesis described in Section 3.5 on image 

based rendering. 

 

3.5 Image	  Based	  Rendering	  

Virtual view synthesis refers to the generation of a view of a scene from an arbitrary or 

novel viewpoint. Image Based Rendering (IBR) techniques generate a novel view from 

a set of available images or key views. Unlike traditional 3D computer graphics, in 

which 3D geometry of the scene is known, IBR techniques render novel views directly 

from input images [30]. Figure 3.6 illustrates this idea [158]. Camera number 1 and 

camera number 2 are real cameras that capture the same scene from different 

viewpoints. Also shown, is a virtual camera placed at a viewpoint, which is between the 

two real cameras. The goal is to render a novel view observed by this virtual camera. 

 
Figure 3.6: Virtual view synthesis [158] 

In general, new views of scene are reconstructed in the rendering stage. There is a 

spectrum of rendering techniques depending on the functionality and technologies 

required in the system, due to the amount of geometry information of the scenes/objects 

being used. A survey of IBR techniques is presented by Shum [30]. This survey 

classifies IBR techniques into three categories according to how much geometric 

information is used based on the scene representation illustrated in Figure 3.7 [78]: 

 Rendering with explicit geometry (either with approximate or accurate 

geometry). 
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 Rendering with implicit geometry (with correspondence). 

 Rendering without geometry. 

Based on Figure 3.7, at one end of the spectrum, there are very accurate geometric 

models of the scenes and objects, for instance generated by animation techniques with 

only a few images required to generate the textures. Novel views can be rendered using 

conventional graphic techniques with given 3D models. Interactive rendering with 

movable objects and light sources can be supported using advanced graphics hardware. 

 
Figure 3.7: Spectrum of rendering representations [78] 

At the other extreme, Light Field [7] or Lumigraph [8] rendering relies on dense 

sampling by capturing more images with very small geometry information for 

rendering. The advantage of this approach is its superior image quality compared with 

3D model for complicated real-world scenes. It also requires less computational 

resources for rendering regardless of the scene complexity because of most of the 

quantities involved are pre-computed. The description of the IBR classification is 

discussed in Section 3.5.1 to 3.5.3. 

3.5.1 Rendering	  With	  Explicit	  Geometry	  

This category is represented by techniques such as 3D warping, Layered Depth Image 

(LDI) rendering and view-dependent texture mapping. The 3D warping [62, 63] 

assumes that the depth information is available for every point in one or more images. 

LDI rendering [39] is an improvement over 3D warping since it treats the disocclusion 

artefacts in 3D warping. LDI rendering, however, assumes the knowledge of what is 

behind the visible surface. The texture maps generated by applying computer vision 

techniques to capture images. View-dependent texture mapping [57] blends the textures 

from different viewpoints after warping them all to a common surface.  
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3.5.2 Rendering	  With	  Implicit	  Geometry	  

In this category, the techniques rely on positional correspondences across a small 

number of images to render new views [30]. Typically, the positional correspondences 

are generated from the input images by the user. This class of rendering has the term 

implicit to express the fact that geometry is not directly available [52]. However, the 3D 

information is computed using the usual projection calculations. Methods in this 

category rely on positional correspondences across a small number of images to render 

new views.  

A classical approach for generating a synthetic view is image view interpolation [151, 

152]. View interpolation uses general dense optic flow to generate the intermediate 

views directly. Hence, the intermediate view may not necessarily be geometrically 

correct. The drawback of this method is that it can only produce images that are 

intermediate views between two original images, where the virtual camera lies on the 

baseline between the two real cameras. Another representatives of this category is view 

morphing [52], a special version of view interpolation. In this method, the interpolated 

views are always geometrically correct. 

3.5.3 Rendering	  Without	  Geometry	  

Light Field rendering [6, 159] and Lumigraph systems [142] are the main techniques in 

this category. These techniques do not rely on any geometric information, but they rely 

on oversampling to counter undesirable aliasing effects in the output display. The 

purpose of this research is to come up with a rendering technique that requires depth 

information based on the correspondence input and works well when the disparity 

between two adjacent views is not too high. These two key images depict the same 

objects from slightly different view-points. The computational complexity is bounded 

by the image resolution (spatial size of the image), rather than the scene complexity. 

The viewpoint for the novel view can be anywhere on the line joining the two camera 

centres. 

The IBR technique can then be used to generate a video of viewpoint traversal in a 

static natural scene. The effect of inserting novel views on the viewing experience will 

then be observed. One of the examples on viewpoint traversal is from the film ‘The 

Matrix’, where the actor, ducks to avoid bullets. At this instant, the video freezes in 
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time, so that the dynamic scene becomes static, and then the viewpoint is changed 

smoothly to a completely different angle. Once the viewpoint is changed, the scene 

becomes dynamic in time again.  

As described earlier, there are several methods for generating an arbitrary new view of a 

scene from a set of existing views. One approach is to create a textured 3D model of the 

entire scene and to use this for synthesizing new views through model-based rendering. 

Meanwhile, in Image Based Rendering (IBR), the new images are generated by 

combining the individual pixels with a densely sample set of input images.  

IBR is a technique for generating arbitrary views or synthesizing free-viewpoint images 

of a scene that differs from the conventional computer graphic approach. It is an 

interesting alternative for generating novel views compared to model based rendering 

due to its lower complexity and can produce photo-realistic images. Instead of rendering 

views of 3D scenes by projecting objects and their textures, new views are rendered by 

interpolating available nearby images. The scene is not represented by its objects but it 

is represented by the light rays that are captured by the cameras, for example in the 

Light Field [6] and Lumigraph [142]. New views are simply generated by interpolating 

the sampled light rays. The advantage of such a method is that little or no geometry of 

the scene is required, as opposed to a full geometric model, which can be very difficult 

to obtain for natural images [42]. In addition, the rendering algorithms produce 

convincing photorealistic results since the interpolated viewpoints are generated by 

combining real images. Due to this advantage, IBR is expected to become a 

fundamental technology in many applications, such as 3D content production, 

telecommunications and virtual reality systems [160]. The main drawback of such a 

representation is the fact that huge amounts of data (typically hundreds of thousands of 

images) need to be captured, stored and transmitted. 

IBR can be defined as a sampling and interpolation problem. Thus, it is interesting to 

study this problem in a traditional sampling and interpolation framework. That is, to 

estimate the spectrum of the signal at hand and determine the sampling frequency 

necessary for an aliasing free reconstruction. All the visual information can be 

characterized with a single seven dimensional function called the plenoptic function. In 

the research work by Chai et. al. [147], the authors showed that the spectrum of the 

plenoptic function is approximately band limited by the maximum and minimum depths 

of the scene and has a distinctive bow-tie shape. From this spectrum, the authors are 
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able to deduce the number of samples (images) is required for an aliasing-free 

rendering. They also showed that the interpolation filter can be steered with an angle 

that depends on the depth of the scene in order to reduce aliasing. Therefore, there is a 

clear trade-off between the number of images, the number of layers and the depth 

variation. 

 

3.6 Layered	  Image	  Based	  Rendering	  

Layers have been used for many applications in multi-view images. Several layer based 

representation techniques have been proposed such as the layer depth images [39]. They 

have been successfully used in free-viewpoint video [8] as well. However, these 

methods are designed to produce an accurate depth map of the scene. New views of the 

scene are rendered through warping of the layers. These techniques are very sensitive to 

errors in the depth reconstruction [42]. 

Several other layer based representation techniques are designed for image based 

rendering such as the coherent layers in Pop-up Light Field [148] and plenoptic layers 

[3]. These representation techniques are based on approximate geometry rather than 

exact depth. In [147], Chai has shown that a certain number of layers are optimal for a 

given scene and number of cameras. Therefore, extracting more layers is unnecessary. 

Some scenes do not require advanced layer extraction methods. In fact, the layer 

extraction should be tailored to the scene and samples of the light field in an adaptive 

manner. That is, there is a relation between the complexity of the scene (depth variation, 

occlusion and non-Lambertian) and the layer extraction.  

A simple scene with small depth variation only requires very few depth layers, which 

can be extracted very quickly, for example, two different depths. A scene with large 

depth variations requires many different rendering depths and therefore, the layer 

extraction must be tested for more depths. Following this analysis, Li [161] and 

Takahashi [160] reconstructed an approximate depth map with different constant depth 

filters and fusing in-focus regions. In [148], the user manually extracts layers until 

becomes satisfy with the rendered result. Table 3.3 summarizes the selected layer based 

image techniques for the image based rendering. Most of the featured techniques in 

Table 3.3 deal with the layers using a different approach. In order to render an image, 

some of the techniques require a known geometry [42, 147], user interaction [148, 160] 
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and multiple image views [149]. In addition, some of the algorithms are restricted on a 

limited number of layers [162, 163], high computational requirements [8, 118] and do 

not take occlusion into consideration in rendering process [160, 161].  

One of the main advantages of layer based representation is that the method enables to 

extract a 3D object or layers from one real scene and to superimpose it onto another 3D, 

either real or computer graphic scene. Since the composition of the layer is obtained in a 

view-dependent way, both the object and new background move naturally along with 

the viewpoint changes as if they existed together in the same space. The experimental 

results on the object and layer superimposition onto different images, which have 

presented by Ishii [163] show the effectiveness of this scheme.  

The layer based representation techniques are mostly based on planar disparity, 

foreground/background layers and colour segmentation. Bleyer in [118] proposed a 

technique that divides one single surface that contains texture into several segments 

using a colour segmentation algorithm. In general, the concept of layers and planar 

presented by the algorithms in Table 3.3 are similar, but their main differences are on 

the way the layers are assigned and extracted from their disparity map. The basic idea 

behind this is that if the disparity map is correct, then the synthesis image is very similar 

to the real image from that viewpoint. Therefore, the quality of the reconstructed image 

through layers depends on the stereo matching algorithms. Sjostrom [164] outlined that 

possible errors occurring in 3D image synthesis for a layered Depth Image Based 

Rendering (DIBR) algorithm such as empty cracks, translucent cracks, corona-like 

effects, unnatural contours and empty regions. The quality analysis of inter-view images 

including the layer based image technique will be described in Section 3.7.  
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Table 3.3: Summary of Layered Image Techniques 

Publication Techniques Features Comments 

Shade et. al., 
1998 [39] 

Layered Depth 
Images (LDI) 

IBR with smooth varying 
surface with depth. 
Contains complex 
geometries for LDI. 

Combine traditional graphics 
elements and planar sprites for 3D 
computer graphics modelling. Use 
only single input camera and not 
stereo images. 

Chai et. al., 
2000 [147] 

Plenoptic 
Sampling 

Based on sampling rate 
light field rendering  Assume known geometry. 

Shum et. al., 
2004 [148] 

Pop-up Light Field 
rendering 

User interaction that 
specifies how many 
coherent layers needed 

Representations are based on 
approximate geometry rather than 
exact depth. Require user 
interactions.  

Zitnick et. al., 
2004 [8] 

High quality video 
view interpolation 

Video based rendering of 
dynamic scenes using 
multiple video streams 
combined with Image 
Based Modelling Rendering 
(IBMR) algorithms. 

Applying colour segmentation to 
generate high quality photo 
consistent correspondences across 
all cameras. High complexity 
technique and computational 
demanding. 

Li et. al., 2003 
[161] 1D Light Field Rendering driven depth 

recovery. 

Block-based multi-layer depth 
representation. Does not take 
occlusions and yields artefacts in 
the boundaries of layers. 

Bleyer and 
Gelautz, 2005 
[118] 

Layer stereo 
matching with 
image 
segmentation and 
global visibility 

Global stereo matching 
with collection of planar 
layers based on colour 
segmentation and layer 
assignment. 

Image segmentation with window-
based approach that exploits the 
result of segmentation. Addresses 
the problems of non-textured 
regions and occlusions. High 
computational requirements. 

Takahashi and 
Naemura, 
2006 [160] 

Layered Light 
Field rendering 

Focus on measurement 
scheme. 

Does not take into account 
occlusions and relies on the user 
for the number of layers. 

Smolic et. al., 
2008 [162] 

Intermediate view 
interpolation based 
on multi-view 
video plus depth 

Two boundary layers and 
one reliable layer are used 
(separate foreground and 
background boundary 
layers). 

Does not rely on 3D graphics 
support but uses image-based 3D 
warping. Suitable for advanced 3D 
video system but restricted into 
two layers only. 

Berent et. al., 
2009 [42] 

Adaptive layer 
extraction for IBR 

Automatically adapts the 
number of depth layers to 
extract the scene itself and 
the spacing between the 
sample views.  

Extracting depth layers in the 
presence of occlusions for IBR 
based on the spectral analysis of 
the plenoptic function. Require 
geometrical information. 

Pearson et. al., 
2011 [149] 

Accurate non-
iterative depth 
layer extraction 

Fast-unsupervised method 
for synthesizing viewpoints 
of a scene with hierarchical 
approach to assign depths. 

Includes optimising placement of 
the depth layers. Building 
geometric model maximise its 
accuracy. Requires multiple image 
views. 

Ishii et. al., 
2010 [163] 

Joint rendering and 
segmentation 

Robust methods that share a 
calculation process between 
the synthesis and 
segmentation. 

Exploits the segmentation and 
graph cut to extract layers. The 
algorithm assumes no other object 
around the depth of the target 
object. 
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3.7 Performance	  Evaluation	  

In this research, both subjective and objective quality measurements are used to 

evaluate the quality of the synthesized images, which are based on the Peak Signal to 

Noise Ratio (PSNR) and Structural SIMilarity (SSIM) Index.  

3.7.1 Peak	  Signal-to-Noise	  Ratio	  (PSNR)	  

Subjective approaches to evaluate the quality of the inter-view synthesized images are 

too general (either good or bad), which do not define the image diagnosis reliability 

with the original image. Mean Squared Error (MSE) and PSNR are widely used for the 

objective quality measurement of the images. However, MSE and PSNR do not 

correspond well with the subjective visual quality. The failure of the MSE is partially 

due to the following: spatial relationships between the samples of the signal, and the 

relationships between the original and the distorted image are ignored [165]. So, which 

quality measurement should be used that best corresponds to the visual and diagnostic 

quality? 

The MSE is the cumulative squared error between the synthesis image g(i, j), and the 

original image f(i, j), which can be described in the following equation: 

� 

MSE( f ,g) =
1
MN

f (i, j) − g(i, j)( )2
j=1

N

∑
i=1

M

∑                 (3.13)
 
 

where M and N are the size of the image.  

The Peak Signal-to-Noise Ratio (PSNR) is calculated and derived from the MSE using 

the following equation: 

� 

PSNR( f ,g) = 10log10
R2

MSE( f ,g)
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟               (3.14) 

where R is the dynamic range of the pixels. 

 As described earlier, the problem of MSE is that it is independent of temporal or spatial 

relationships between pixels and it ignores the correlation error between the 

reconstructed and the original signals. All signal samples (structured and smooth areas) 

are treated equally. 
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3.7.2 Structural	  SIMilarity	  (SSIM)	  Index	  

A newer image fidelity measure called the Structural SIMilarity (SSIM) index, 

introduced by Wang and Bovik [166], assumes that images are highly structured and 

there exist strong neighbouring dependencies among the pixels. The human visual 

system is highly sensitive to structural information or distortions in an image and SSIM 

is automatically adjusted to mark the non-structural ones. The SSIM index measures the 

differences and similarities between two images by combining three components of the 

human visual system, which are luminance, contrast and structure. The local SSIM 

index is computed within a sliding window of mxn neighbourhood pixels. The resulting 

quality map SSIM reveals local image quality. The total SSIM score is computed by 

averaging the local SSIM values. 

The SSIM index proposed by Wang [165, 166] measures the distance between two 

images f and g, by combining three components of the human visual system (HVS), 

which are luminance, contrast and structure.  

The luminance l(f, g), is estimated using the following equation: 

           

� 

µ f =
1
mn

f (i, j)
j=1

m

∑
i=1

n

∑                                          (3.15) 

The contrast c(f, g) can be measured by variance, as follows: 

� 

σ f
2 =

1
(mn −1)

f (i, j) − µ f( )2
j=1

m

∑
i=1

n

∑                           (3.16) 

The final component, structure s(f, g), is measured by covariance using the following 

equation: 

� 

σ fg =
1

(mn −1)
f (i, j) − µ f( )

j=1

m

∑
i=1

n

∑ g(i, j) − µg( )              (3.17) 

The three components are finally combined to calculate the SSIM Index between the 

two image f and g, using the following equation: 

  

� 

SSIM( f ,g) =
2µ f µg + C1

µ f
2 + µg

2 + C1

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
2σ fσ g + C2

σ f
2 + σ g

2 + C2

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
σ fg + C3

σ fσ g + C3

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟               (3.18) 

over mxn neighbourhood pixels. The notations µf and µg are (local) sample means of f 
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and g respectively, σf and σg are (local) sample standard deviations of f and g 

correspondingly, and σfg is the (local) sample correlation coefficient between f and g. 

The items C1, C2, and C3 are small positive constants that stabilize each term, so that 

near zero sample means, variances, or correlations do not lead to a numerical instability. 

In [166], the SSIM index is computed using an 11x11 sliding windows of circular-

symmetric Gaussian weighting function. The constants chosen for the SSIM evaluation 

are defined as C1 = (K1L)2, C2 = (K2L)2 and C3 = C2/2, where L is the dynamic range of 

the pixel values (255 for 8-bit greyscale images) with K1 = 0.01 and K2 = 0.03. The 

SSIM evaluations in this research computed based on these parameters. 

Figure 3.8 shows samples of evaluation using both PSNR and SSIM indices. The 

original image of ‘Najla’ has been contaminated with ‘salt and pepper’ noise with 0.001 

noise density as shown in the Figure 3.8(b). The noise is not noticeable in the image, but 

the SSIM map image reveals the errors contained in the image Figure 3.8(c) with 

random dot regions. The PSNR of this image is 56.74 dB, with the SSIM index at 0.97. 

The higher SSIM index indicates the better quality of the image. The noise density of 

the ‘salt and pepper’ was increased to 0.02 and the new image can be seen in Figure 

3.8(d). The errors between this image and the original image are relatively huge 

compared to the previous example, where the PSNR is 44.01 dB, and the SSIM index is 

0.68. The dark regions in the SSIM image map show the errors created by the added-

noise (Figure 3.8(e)).  

Lastly, the image is sharpened by contrast enhancement Laplacian filter as shown in 

Figure 3.8(f). Subjectively, the sharpened image quality is better in the human visual 

system compared to the previous noise-added images. However, the PSNR indicates 

differently with the computed PSNR of 32.96 dB, which is lower compared to the 

previous example. The SSIM index provides the additional measurement with the SSIM 

index calculated as 0.92. The SSIM quality map image in Figure 3.8(g) signifies the 

degradation occurs rather uniformly on the objects regions (the girl). The grey regions 

show that there are differences in the pixel values of the image in term of contrast and 

luminance but these differences do not affect the quality of the tested image. Therefore, 

the SSIM index provides additional quality measurement for the new synthesis images 

along with the PSNR and MSE. 
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(a) Original image ‘Najla’ 

 

 

 

→  

 
(b) Image with 0.001 noise density;  

PSNR = 56.74 dB 
 (c) SSIM map image with SSIM =0.97  

 

 
 
 

→  

 
(d) Image with 0.02 noise density; 

PSNR = 44.01 dB 
 (e) SSIM map image with SSIM=0.68 

 

 
 
 

→  

 
(f) Image sharpened; PSNR = 32.96 dB  (g) SSIM map image with SSIM=0.92 

Figure 3.8: Sample of results comparison on PSNR and SSIM between the original image, 
images with noise and sharpened. The respective SSIM maps obtained and evaluated based on 

the standard parameters proposed by Wang [166]. 
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3.8 Conclusion	  

This chapter provided the core of the stereo matching and novel view synthesis 

algorithms. The fundamentals of stereo matching algorithms were described for sparse 

and dense disparities maps, which may contain matching cost computation, cost 

aggregation, disparity computation or optimization and lastly disparity refinement 

components. Depending on the implementation and requirement, not all stereo 

algorithms take all four components steps. The review of selected algorithms and 

approaches were discussed in this chapter. The compilation of the research works in 

stereo matching algorithms provided in the Middlebury Stereo Page. For the stereo 

matching, the disparity depth map can be measured and used as the next stage of the 3D 

image and video processing, such as the inter-view synthesis algorithm. 

This chapter also described the stereoscopic creations that differentiated by the 

underlying models of the 3D scene representation, where two major groups can be 

identified: based on the geometry scene representation and image-based systems. 

Between these two major groups, there is a range of methods with varying proportions 

of geometry and image information such as the layer depth image-based 

representations. The view synthesis algorithms are discussed. Virtual view synthesis 

refers to the generation of a view of a scene from an arbitrary or novel viewpoint. Image 

Based Rendering (IBR) techniques generate a novel view from a set of available images 

or key views. IBR techniques render novel views directly from the input images 

contrarily to traditional 3D computer graphics, in which 3D geometry of the scene is 

known. 

Finally, the chapter also outlined the image-based rendering algorithm to generate new 

views of the scenes from an arbitrary or novel viewpoint including the layered image-

based rendering. A layer-based representation of the scene geometry represents a 

compromise that has low geometry complexity, while allowing view synthesis from a 

moderate number of input images. Several layered representation techniques have been 

proposed and implemented in free-viewpoint video applications. However, most of the 

methods are designed to produce an accurate depth map of the scene and new views of 

the scene are rendered through warping of layers, which are very sensitive to errors in 

the depth reconstruction.  
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In the next chapter, we will present the development of a novel Depth Image Layers 

Separation (DILS) method that is based on the stereo matching and image view 

synthesis algorithms. 
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 Chapter	  4 
 

Virtual View Synthesis Based on Depth 
Image Layers Separation (DILS) 

4.1 Introduction	  

This chapter presents a novel method for virtual view image synthesis referred to as the 

Depth Image Layers Separation (DILS). This technique is used to synthesize novel 

inter-view images based on disparity depth map layers representation. The depth layers 

are identified by using histogram distribution and separated into several clusters of 

layers. Each layer is extracted with inter-view interpolation to create objects based on 

location and depth. DILS features a new paradigm that is not just a method to select 

interesting locations in the image based on the depth, but it is also a new image 

representation that allows the description of the objects or parts of the image without the 

need of segmentation and identification. The image view synthesis can reduce the 

complexity of multi-camera array configuration for 3D imagery, free-viewpoint 

applications and light fields imaging. It makes use of a disparity depth map layer 

separation for image based synthesis and rendering through multi-layer and overlapping 

techniques. With the selected layer of depth, disparity depth map can be refined 

independently and the layer can be composed onto different 3D scenes. By exploiting 

the 3D information, it is possible to discriminate some background or foreground 

objects of the scene. This is useful for intelligent video tracking and image based 

rendering. The DILS algorithm can be performed from a simple to sophisticated stereo 

matching techniques to synthesize the inter-view images. 

The rendering system presented in this research contains novelty with respect to Chai 

[147], Li [161], Takahashi [160], Shum [148] and Berent [42] in several ways. First, 

any known geometry is not assumed as in Chai [147]. Second, user interaction is not 

required as in Shum [148]. Third, the depth estimation in Li [161] is block-based which 

may cause reconstruction artefacts in the boundaries of layers and does not take into 
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account occlusions. Fourth, Takahashi [160] does not take into account occlusions and 

relies on the user for the number of layers. Finally, the proposed method of image 

rendering process does not require geometrical information as in Berent [42]. In 

contrast, in the proposed method, both the depth estimation and interpolation are taking 

occlusions into account and the number of layers is estimated based on the histogram 

distribution.  

The chapter is organized into five sections. Section 4.2 provides the background and 

idea of the layers representation for this research. In Section 4.3, the overall framework 

of the system design and algorithm is presented that consists of two main stages: 

matching algorithm and intermediate view synthesis. Section 4.3.1 and 4.3.2 describe 

the two respective stages in detail. Section 4.4 provides test results for the algorithm and 

lastly concluding remarks are given in Section 4.5.  

 

4.2 Depth	  Map	  Layers	  Representation	  

4.2.1 Depth	  Map	  

The basic concept of view synthesis with stereo matching data is to use pairs of 

neighbouring original camera views in order to create and render arbitrary virtual views 

on a specified camera path between them. Instead of transforming with the Image Based 

Rendering (IBR) geometry technique, this approach will use the basic idea of range 

field (horopter) from the stereo rig of the camera. In order to calculate the 3D location 

or the range field of the scene, basic geometry rules are used. The projection of a 3D 

physical point on the two image planes requires finding the exact location of the object 

as described in Chapter 2. The simplest geometry of a stereo system formed by two 

parallel cameras with horizontal displacement is shown in Figure 4.1, which is derived 

from the pinhole camera model [44]. The disparity can be determined by finding the 

difference between the x coordinate of two correspondence points.  

Assume a perfectly undistorted, aligned and measured stereo rig is obtained as shown in 

Figure 4.1, where two camera image planes are exactly coplanar with each other, and 

their optical axes are exactly parallel. The optical axis is the ray from the centre of 

projection O through the principal point C is also known as the principal ray that is 

known distance apart, with equal focal length fL = fR. Also assume that the principal 
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points CL and CR have been calibrated to have the same pixel coordinates in their 

respective left and right images. The principal point is where the principal ray intersects 

the imaging plane. This intersection depends on the optical axis of the lens.  

 
Figure 4.1: Aligned stereo rig and known correspondence [44] 

Another assumption is that the images are row-aligned (every pixel row of one camera 

aligns exactly with the corresponding row in the other camera). This camera 

arrangement is known as the frontal parallel. A point P in 3D world mapped in the left 

and the right image views at points PL and PR will have the respective horizontal 

coordinates XL and XR. 

In this simplified case, XL and XR are the horizontal positions of the points in the left and 

right images, respectively. This allows us to show that the depth is inversely 

proportional to the disparity between these two views, where the disparity is simply 

defined by d = XL - XR. This situation is shown in Figure 4.1, where using the similar 

triangles (POLOR and PPLPR) the depth, Z, can be derived as follows[44]: 

� 

B − (XL − XR )
Z − f

=
B
Z

⇒ Z =
fB

XL − XR

=
fB
d

               (4.1) 

Since depth is inversely proportional to disparity, there is obviously a nonlinear 

relationship between these two terms. When disparity is near to 0, small disparity 

differences represent depth differences. When disparity is large, small disparity 

differences do not change the depth that much. The consequence is that stereo vision 

systems have high depth resolution only for objects relatively near the camera, as 

clearly shown in Figure 4.2. 
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Figure 4.2: Relationship of depth and disparity [44] 

The disparity is higher for points closer to the cameras. The disparity varies for objects 

at different depths and distances. The range field of the system is constrained by the 

disparity range [dmin, dmax] with the baseline B and focal length f. The depth measured 

by a stereo vision system is discretized into parallel planes or layers (one for each 

disparity value). A better virtual discretization can be achieved with subpixel 

techniques.  

  
(a) (b) 

Figure 4.3: Disparity range and parallel planes (layers). (a) Disparity is higher for points 
closer to the camera. (b) Different disparity levels for disparity map. 

The range field for different disparity and depth is shown in Figure 4.3(a). Based on the 

different layers of depth, the layers can be separated to focus on particular points or 

objects in the scene. The layers of disparity through the disparity range are shown in 

Figure 4.3(b), where the disparity depth map consists of three layers. Layer 1 in Figure 

4.3(b) represents the range field of the scene that is the nearest to the camera that is with 

(Bf)/dmax. Meanwhile, Layer 3 is the farthest object from the camera with (Bf)/dmin and 

Layer 2 lies between the two layers. With the disparity depth information, the new view 

synthesis based on layered representation can be performed as would be described in the 

next section. Disparity information plays an important role in synthesizing intermediate 

views from stereo images. The synthesized view quality depends mainly on the 

accuracy of disparity map. In this research, area-based method is used because disparity 
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information for every pixel is required.  

4.2.2 Layers	  Based	  Disparity	  Depth	  Map	  Separation	  

Image Based Rendering (IBR) is known as an efficient way of generating novel views 

of real and synthetic objects [39]. Layered depth image is one of the scene 

representation categories from the geometry-based to more image-based approaches for 

the IBR. Table 3.3 in Section 3.6 summarizes the selected layered depth image 

techniques for the image-based rendering.  

The layer extraction depends on the complexity of the scene that is related to the Light 

Field rendering. There is a relation between the complexity of the scene and the layer 

extraction. The complexity includes the variation, textures and occlusions. A simple 

scene with small depth variation only requires very few depth layers, which can be 

extracted very quickly, for example, testing for two different depths only. A scene with 

large depth variations requires more different rendering depths and therefore the layer 

extraction must test more depths layers.  

4.2.3 Inter-view	  Synthesis	  Based	  on	  Disparity	  Depth	  Map	  

  
(a)    (b) 

Figure 4.4:  Inter-view synthesis: (a) The virtual camera view placed between camera 1 and 2. 
(b) Geometric stereoscopic camera model [167]  

The main idea of view synthesis algorithm is to obtain the inter-view synthesis as 

shown in Figure 4.4(a) by using the disparity depth map layers representation. The 

virtual camera view for the image scene synthesized to be located between camera 1 and 

camera 2. The geometry model is shown in Figure 4.4(b), where two identical cameras 
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CL and CR on the same parallel coordinates are used and their image planes are coplanar 

[167, 168]. Let B denote the baseline distance and f denote the focal length. In this 

model, a 3D object point is simultaneously captured on both left and right viewing 

planes. 

Disparity estimation should satisfy epipolar geometry constraint, for parallel camera 

configuration, the vertical component is equal to zero, so that only a one-dimensional 

search along the scan line is necessary. Assume that the scene point P from Figure 

4.4(b) is projected into the left and right image planes at points PL and PR respectively. 

The disparity from left to right, where left image is the reference image, is given by: 

� 

dLR = XL − XR =
Bf
Z

                           (4.2) 

where Z denotes the depth of point P. Now assume that the virtual camera CV, 

corresponds to the intermediate camera, which is located between the left and right 

cameras and is related to the left camera by a distance of k. The disparity from left to 

intermediate is given by [167]: 

� 

dLV = XL − XV =
kf
Z

=
k
B

⎛ 
⎝ 

⎞ 
⎠ dLR = βdLR                         (4.3) 

where β=k/B, 

� 

0 ≤ β ≤ 1, indicates the baseline ratio between the left and right cameras. 

If the virtual camera CV is assumed to be located in the exact middle of left and right 

image, then the value of β is 0.5. The CV can be created along the disparity range 

position. In this chapter, the disparity that will be used is dLRC, which is the disparity 

from left to right with the left as the reference and has been processed with left-right 

consistency check to determine the unmatched pixels. 

Based on the calculated disparity maps over stereo image sequences, virtual views can 

be synthesized at any virtual camera position that is represented by the ratio of a 

baseline, β, which is the distance between the left and right cameras. The most popular 

method is Linear Interpolation (LI) [169-171], which can be written as [169]: 

� 

I'(x') = (1− β)IL (x + βd) + βIR x + (1− β)d( )            (4.4) 

where I’ is the virtual view image, IL and IR are the left and right images respectively, x 

and x’ are pixel positions, d is disparity vector, and β was defined in Equation (4.3). 
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This method has been adapted into several view synthesis systems proposed by Lu [167, 

168], Wang [21] and Jain [158]. A new virtual view synthesis method is proposed in the 

DILS algorithm, which will be described in the following section.  

 

4.3 System	  Design	  Architecture	  

In this section, a novel intermediate view synthesis method based on disparity 

estimation depth map layers is presented. It contains two stages: stereo matching engine 

and a view synthesis module. In the first stage, disparity estimation, through area-based 

stereo matching algorithm, is used to obtain the disparity depth map. However, the 

stereo matching engine can be replaced by any stereo matching algorithms. Then, it will 

undergo the stereo matching computation and disparity refinement process. In the 

second stage, a new strategy for view synthesis is presented. It separates the depth layer 

of the disparity depth map based on the disparity range. The layers are divided into two 

main regions: non-occluded and occluded regions using their image histogram 

distribution. The non-occluded regions contain several layers depending on the 

complexity of the disparity depth map. Linear interpolation is used on the regions in 

different modes according to the characteristics of each region. After each of the layers 

has been interpolated, the layers are flattened into single novel view images.  

 
Figure 4.5: Block diagram of the proposed novel view synthesis based on depth map layers 

representation 

One of the main advantages of the Depth Image Layers Separation (DILS) algorithm is 

that it can be performed with different stereo matching algorithms. In practice, view 

synthesis performed using a better disparity depth map. The proposed system design for 

matching and view synthesis is shown in Figure 4.5. It consists of two modules, which 

are the stereo matching engine and view synthesis modules. The system requires a 
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stereo pair using two synchronized cameras to acquire images or videos. Equivalent 

stereo imaging system may be built on two relatively inexpensive digital cameras 

provided with an external trigger capability and connected to a PC through a high-speed 

digital interface. The algorithm requires pairs of rectified images, so that corresponding 

epipolar lines are horizontal and on the same height.  

The view synthesis module in Figure 4.5 consists of two main phases for the DILS 

algorithm; the depth layer separation and the intermediate view interpolation. In the first 

phase, the depth layer separation involves the histogram distribution, layers 

identification and layer separation. For the second phase of the DILS algorithm, the 

intermediate view interpolation synthesis includes the layer translation, mask layers, 

intermediate view interpolation and view synthesis. The stereo matching engine and 

view synthesis module will be described in Section 4.3.1 and 4.3.2, respectively. 

4.3.1 Stereo	  Matching	  Engine	  

This section will discuss the stereo matching engine proposed in the novel views 

synthesis system architecture. It consists of two main stages: stereo matching and 

disparity refinement process. The main aim of stereo matching algorithms is to find 

homologous points in the stereo pair [46]. In stereo correspondence matching, the two 

images of the same scene are taken from slightly different viewpoints using two 

cameras that placed in the same lateral plane.  

The matching pixels can be found by searching the element in the right image according 

to the similarity metric to a given element in the left image (a point, region or generic 

feature). In order to determine the correspondence of a pixel in the left image using a 

similarity metric, the window costs are computed for all candidate pixels in the right 

image within the search range. The pixel in the right image that gives the best window 

cost is the corresponding pixel of the left image. In this research, the SAD metric is 

selected for faster execution and low consumption. SAD metric also requires simpler 

arithmetic operation and performs better than the SSD approach in the presence of 

outliers [104]. 

Disparity information plays a crucial role in synthesizing intermediate views from 

stereoscopic images. The synthesized view quality depends mainly on the accuracy of 

disparity estimation [125]. The area-based method for disparity estimation is selected 
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because the disparity information for every pixel is required to synthesize the new 

virtual view. The block matching is applied where correspondence analysis is carried 

out on squared blocks of pixels. The disparity estimation process based on SAD 

correlation, left-right consistency check and the disparity refinement is described in 

Section 4.3.1.1 and 4.3.1.2. 

4.3.1.1 Stereo	  Disparity	  Estimation	  

Assuming the stereo pair is in the same epipolar line, the disparity estimation is 

performed by using a fixed-size window. The SAD function is defined as follows:  

� 

SAD(x,y,d) = IR (x + i,y + j) − IT (x + d + i,y + j)
i, j=−n

n

∑                (4.5) 

where IR(x, y) and IT(x, y) are the gray-level intensities of the reference (left) and target 

(right) image respectively, window size of nxn, and d is the disparity.  

The best disparity value is determined using the minimum SAD value. The conventional 

way to calculate the matching correspondence point is to fix a point and vary d in the 

disparity range to calculate the matching costs. Then simply select d with the smallest 

matching cost as the final disparity at this point. This method is also known as Winner-

Take-All (WTA).  

 
Figure 4.6: Matching costs computation based on window size, nxn, and disparity range, d, 

with left image as the reference and right as the target image 

As illustrated in Figure 4.6, the algorithm firstly sets one particular fixed value for d for 

all the points, and the matching costs are calculated for each image row. Then by 

varying d, the process is repeated until the value of d has iterated through the complete 

disparity range. Consequently a two-dimensional matrix containing the SAD values for 

each image row is obtained. The width of the matrix is the same as the length of image 

row, and the height of the matrix is the disparity range. The disparity value at (x, y), 
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d(x, y) is the point where the correlation value of SAD is the smallest. Therefore, the 

disparity value may be expressed as follows: 

� 

d(x,y) = arg min
dmin ≤d ≤dmax

SAD(x,y,d)                              (4.6) 

To ensure the consistency and accuracy of the disparity map, the matching process is 

performed in both directions. At the first stage, the left image is selected as the 

reference image and the right image as the target. The disparity map for this matching 

referred to as left to right disparity map, dLR. A similar process is performed by having 

the right image as the reference, and the left image as the target image, to obtain the 

disparity map, dRL. The result from both matching will be used for the next stage in the 

left-right consistency check. 

4.3.1.2 Stereo	  Disparity	  Refinement	  

After the first stage in the stereo matching engine, the disparity map obtained through 

the stereo disparity estimation contains occlusions. Occlusions can create points that do 

not belong to any corresponding pixels. In many cases occlusions occur at depth 

discontinuities, where the occlusions on one image correspond to disparity jumps on the 

other. In the human visual system occlusions can help to detect object boundaries. 

However in computational stereo processing it is a major source of errors.  

A typical method to deal with occlusions is Bidirectional Matching (BM) [106]. We 

apply a Left-Right Consistency Check (LRCC) proposed by Fua [24] based on two 

disparity maps that are created relative to each image: one for left-to-right (dLR) and 

another for right-to-left (dRL), as described previously. A valid correspondence should 

match in both directions. This operation is executed by taking the computed disparity 

value in one image and re-projecting it on the other image. The dLR(x, y) and dRL(x, y) 

disparities should satisfy Equation (4.7). If this is not satisfied, the dRL(x, y) is invalid 

and assigned the value of -1. 

� 

dRL x + dLR (x,y),y( ) = −dLR (x,y)                  (4.7) 

The LRCC operation can be illustrated in Figure 4.7 [125]. When searching for 

conjugate pairs, only the visible points on the image are matched. If the role of left and 

right images is reversed, new conjugate pairs can be found. The LRCC states that 

feasible conjugate pairs are those found with both direct and reverse matching. In 
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reverse matching, the conjugate pairs are equivalent to the uniqueness constraint, which 

states that each point on one image can match at most one point on the other image. 

Consider for instance an occluded point B, in the left image of Figure 4.7. Although it 

has no corresponding point in the right image, the matching cost minimization matches 

it to some point C’. With reverse matching, it corresponds to a different point in the left 

image. However, this information is available only when searching from right to left.  

 
Figure 4.7: Occlusions in the left and right image. 

Although the disparity map has been improved with the LRCC operation, it still suffers 

from noises. The disparity maps can be refined using image filtering techniques without 

explicitly enforcing any constraint about the underlining disparity maps. A common 

image filtering operator used is the median filter due to the fact that it preserves edges 

whilst removing noise [104]. The filtering of the disparity map can improve the results 

in weakly textured regions, where the signal to noise ratio is low and often some pixels 

are rejected although the disparity can correctly be estimated in the neighbourhood. The 

filtering significantly reduces the disparity depth map noise while it smooths the depth 

map. In this research, the median filter parameter used is 11x11. The resulting disparity 

depth map is known as the dLRC, and is used to generate the novel view synthesis in 

Section 4.3.2.   

4.3.2 Inter-View	  Synthesis	  with	  DILS	  

The main idea of inter-view synthesis is to separate the depth map into several layers of 

depth based on the disparity distance of the corresponding points. The new view 

synthesis is interpolated independently for each layer of depth from the left and right 

part of the image by masking the particular depth layer. The separation process of the 

layers is carried out after identifying the number of depth layers on the disparity depth 

map. By having the result in the image form, the subject can be easily known through 

different tones of greyscale or colours. The disparity distribution is obtained using the 

histogram plot.  
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A block diagram of the Depth Image Layers Separation (DILS) is illustrated in Figure 

4.8. It consists of several important steps to obtain the inter-view synthesis of the stereo 

images. In the stereo matching engine, the raw disparity depth map is obtained from the 

stereo matching algorithm processes with the stereo disparity refinement. In this stage, 

the depth map addresses the presence of occlusions through left-right consistency to 

compute disparity and its associated uncertainty to eliminate false matches. A fast 

median filter was applied to the resulting map to further remove outliers and produce a 

smooth depth map. After this stage, the disparity depth map, defined as dLRC, which 

signifies the left-right consistency check is based on the left image as the reference. The 

dLRC is the main input for the DILS algorithm as shown in Figure 4.8. 

 
Figure 4.8:  Depth Image Layers Separation (DILS) algorithm on the view synthesis module 

The view synthesis module consists of two main phases: depth layer separation and 

intermediate view interpolation synthesis. In the first phase, the disparity depth image 

map is divided into several layers depending on the complexity of the image pairs. It is 

essential to have a good and smooth disparity depth map where the layers of disparity 

depth map can be segmented into clusters. The numbers of matched pixels, p in each 

disparity levels (horopter) of the disparity depth map image, dLRC can be distinguished 

from the histogram distribution (refer to Figure 4.8). Each disparity levels, d quantized 

based on selected threshold to define and identify the layers from layer 0 to D.  
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In the second phase, each layer is masked based on whether they represent non-

occluded or occluded regions. This phase is defined in the iteration process for every 

layer that is identified in the DILS algorithms as shown in Figure 4.8. The left and right 

images synthesized to produce the intermediate view interpolation for that particular 

layer, where the layer consists from 0 to D (D is the maximum layer for the stereo pair). 

The intermediate virtual view, Ii,VI(x, y) image is located between the left and right 

image for layer i. Therefore, the Ii,VI(x, y) is translated to the right by β.di(avg), where 

di(avg) is obtained through the layer identification process based on the minimum and 

maximum disparity value for the layer i. The value of β is obtained from Equation (4.3), 

where 

� 

0 ≤ β ≤ 1. Assuming the new intermediate view of layer i is exactly in the middle 

of the left and right images, then β is 0.5. To ensure consistency throughout the layers, 

the value of β remains the same for the translation after the intermediate view 

interpolation and synthesis operations. After all layers have been processed, the 

collection of layered image synthesis flattens into a single image as the inter-view 

image synthesis for the image pair, IVS(x, y). The hole and cracks in the final inter-view 

image will be corrected in the hole-fillings technique. The following section discusses 

the algorithm in detail with the mathematical framework for the DILS algorithms based 

on Figure 4.8. 

4.3.2.1 Histogram	  Distribution	  

Histogram distribution is used in the disparity depth map to distinguish the number of 

matched pixels in each disparity level. For simpler depth maps, it consists of a few 

numbers of matched pixels depending on the disparity levels. However, for complex 

depth maps, the distributions of matched pixels will be spread out along the disparity 

pixel values from minimum to the maximum value of the disparity.  

A histogram is a table that simply counts the number of times a value appears in the 

data set. In image processing, a histogram is a histogram of sample values [172]. For an 

8-bit image, there will be 256 possible values in the image and the histogram will 

simply count the number of times each value actually occurs in the image. 

Consider the disparity depth map as an N-bit for a WxH size greyscale image. There are 

d distinct sample values that could occur in the disparity depth map, depending on the 

disparity levels. The histogram of the disparity depth map image comprises a table of d 
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values (from dmin to dmax) in integer, where the kth entry in the histogram table contains 

the number of times a sample of value k occurs in the image map. If the image was not 

entirely matched, for example, the 0th entry in the table would contain a value of WxH 

and all other table entries would be zero. In general, for a WxH disparity depth image 

where the kth sample is known to occur nk times, the histogram h is formally defined by 

Equation (4.8), where dmax is the maximum disparity value:   

� 

h(k) = nk k ∈0,1,...,dmax                  (4.8) 

For the disparity depth map, the horizontal axis of the histogram refers to the disparity 

range levels and the vertical axis corresponds to the number of matched pixels count. 

The shape of a histogram does not convey much useful information but there are several 

key insights that can be gained. The spread of the histogram is directly related to the 

distribution of the disparity depth map levels, where close histogram distribution is a 

representative of complex stereo matched images and a wide distribution represents 

plain and simple stereo matched images.  

 
(a) Disparity depth map histogram for Tsukuba image 

 
(b) Disparity depth map and histogram for Map image 

Figure 4.9: Disparity depth map and the histogram distribution based on the ground truth 
image: (a) Disparity depth map and its corresponding histogram for Tsukuba image.  

(b) Disparity depth map and its corresponding histogram for Map image. 

Figure 4.9 shows the disparity depth maps and the histogram distributions for the two 

ground truth of the stereo pairs. The ground truth is a disparity map with accurate 

disparity values obtained, either by using the range sensor cameras, or which are 
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manually labelled and calculated based on piecewise planar surfaces, as given by 

Middlebury datasets [22]. Figure 4.9(a) presents a relatively complex disparity depth 

map image and its corresponding histogram. The disparity depth map consists of several 

objects through disparity planes based on the distance from the camera. The histogram 

is distributed unevenly based on the matching pixels and has a relatively close 

distribution since most of the samples are narrowly separated. Meanwhile Figure 4.9(b) 

gives a simpler disparity depth map image and its corresponding histogram with only 

few widely separated samples. Most of the matched pixels samples fall within the range 

of approximately 5 to 7, while relatively few of the matched pixels samples are between 

21 and 30. The main interest of the histogram distribution is that the matched pixels are 

close to the dmax. These are the closest objects to the camera that represents the 

foreground object. 

4.3.2.2 Layers	  Identification	  

The next step is to identify the layers on the disparity depth map as illustrated in Figure 

4.8. Basically, the layers can be recognized immediately with the disparity level values 

[dmin, dmax], also known as horopter on the stereo matching algorithms. The samples of 

the matched pixels can be grouped to clusters of layers according to the threshold 

histogram distribution. Figure 4.10 illustrates the example of histogram distribution for 

a disparity depth map that consists of the disparity range value levels, can take values 

between 1 and dmax, 30. The layer can be easily identified with the number of matched 

pixels, p, quantized according to the following equations: 

� 

p'(dk ) = 1, if p(dk ) > T k ∈0,1,...,dmax
p'(dk ) = 0, elsewhere

                          (4.9) 

where T is a threshold to set the minimum number of pixels to be selected as the 

matched corresponding points for the stereo pair. Otherwise, it will be set as occlusion. 

In this research, we set the T parameter as 20. The output from the quantization is 

shown in Figure 4.10. The threshold values that set the pixels of p’ to ‘1’ can be 

grouped as one layer with non-linear segment of d into D layers. The clustering process 

to identify the layers uses the algorithm that is similar to zero run-length in the image 

compression algorithms but with some modification required to accommodate the 

searching process of the first and the last ‘1’ in the layer or cluster.    
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In order to extract the layers the threshold matched pixels, p’ can be clustered and 

grouped as follows, 

 Group of continuous zeros are regarded as non-layers. 

 Group of continuous ones (including a single ‘1’) are regarded as layer. For 

example, layer 1 and 2 in Figure 4.10. 

 Isolated individual zero surrounded by 1’s in a group are regarded as layer in 

that group. For example, layer 3 and 4 in Figure 4.10. 

Here, we assumed that the isolated individual zero surrounded by 1’s in a group is not 

repetitively for the whole stream. 

 
Notation: 
i : refers to the number of layers index, 0:D 
d : disparity range levels, dmin:dmax 
k : refers to disparity range levels index 
p : number of matched pixels 
p’ : threshold matched pixels  

Figure 4.10: Histogram distribution of the disparity depth map and the matched pixels in binary 
after the quantization 

Basically, the layers can be grouped into two main regions: 

a) Non-occluded region. This layer is for the non-linear segment dk into (i:D) 

layers (clusters), where  and .  

b) Occluded region. For part complete and occluded disparity map, it will be 

labelled in layer 0.  
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With the layers identified, we can determine the minimum (di(min)) and the maximum 

(di(max)) disparity range levels for each layer. For example (taking the histogram 

distribution of depth map from Figure 4.10), the minimum and maximum disparity 

range for each layer can be defined as follows: 

Table 4.1: Sample of disparity range levels for different layers 

Layer (i) (di(min), di(max)) 
1 (4,5) 
2 (9, 12) 
3 (17, 21) 
4 (25, 30) 

The main objective of this algorithm is to find the group of ‘1’ in the threshold matched 

pixels data set. As described earlier, a string of ‘1’s separated by only a single ‘0’, 

considered as one layer or cluster. Otherwise, they will be identified as a different layer. 

Figure 4.11 shows an example of the indexes for the threshold matched pixels data, p’. 

The disparity range value shows the number of threshold data in array form, where k is 

the index of threshold matched pixels data, p’, and dmax is the maximum index or the 

maximum disparity in the case for the stereo pair. The iF denotes the index of the first 

‘1’ in the cluster or layer, while iL denotes the last index that signifies the last ‘1’ of the 

ith layer. The value of iF determine the di(min) and iL represents the value of di(max) for 

layer i. The data samples are the threshold matched pixels in binary, p’, with the index 

of disparity range levels (k,k+1,..,dmax). 

 

Figure 4.11: Identify the layer on the threshold data samples from index k to dmax 

Figure 4.12 illustrates the algorithm functionality to obtain the iF = di(min) and iL = di(max) 

for layer i. The entire index here is in integer value data type. As described earlier, the 

main purpose of iF is to find the first ‘1’ in the data sample. During the first stage, the iF 

is initialized to index 1 and iL to the next index, which is index 2. The iF checks the data 

value of index 1. If the data is ‘1’, then iF immediately halt on that index. The di(min) is 

now set as the iF, with the index 1. The objective of iL is to search the last ‘1’ occurrence 

in the data sample of p’. The starting point for iL is in index 2, just beside the index iF. 
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The iL checks the value in index 2 and also the next index (iL+1) to search for the next 

‘1’. If the data in the next index (iL+1) is also ‘1’, then the iL moves to the next index 

that is now in index 3, as shown in Figure 4.12(a). A similar process is carried out in 

this state, where the iL check the current data in p’[iL] and the data in the next index, 

p’[iL+1] until the data ‘0’ in p’ appears more than once. In this case, the iL stops at index 

4 when the remaining next two indexes are zero. For the example in Figure 4.12(a), the 

values obtained for layer i=1 are di(min)=iF=1 and di(max)=iL=4, where the data sample of 

p’ is grouped as layer 1 from index 2 to 4.  

In Figure 4.12(b), iF found the first ‘1’ in the index 2. The iL moves from index 3 to 4 

when the value in p’[4] is ‘1’. Since the remaining next two indexes are zero, iL stops at 

index 4. With this, the di(min) is set to 2 and di(max) is 4. The example in Figure 4.12(c) is 

almost similar to Figure 4.12(b). However, the iL continuously moving to the next index 

and stops at index 6 when the data in the remaining index 7 and 8 are ‘0’. Therefore, the 

values obtained in this case are di(min)=2 and di(max)=6.  

  
(a) (b) 

  
(c) (d) 

Figure 4.12: Finding the iF and iL to distinguish the layer i in the threshold data sample p’ 

For the example in Figure 4.12(d), the data of p’ contained the ‘0’ that appeared non-

continuously after the iF holds the first ‘1’ at index 2. The iL moves from index 3 to 4 

when the value of p’[4]=1. It cannot stop at index 4 as the last value of ‘1’ since the 

next two index contained ‘1’, which is in this case at index 6. Therefore the iL moves to 

index 6 as the last ‘1’ in the cluster when the remaining next two indexes do not contain 

any ‘1’ (at index 7 and 8). The di(min) and di(max) corresponds for the ith layer sample are 

iF=2 and iL=6 respectively.  
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The appearance of a single ‘0’ in the data sample is detected by the exclusive OR 

Boolean operations. This process will be done only when the iF has already detected the 

first ‘1’ in the data stream of p’ for layer i. The flag is defined to check any changes of 

data in the sample, where flag = p’[iL] ⊕ p’[iL+1]. If there is any change of data, the 

flag is set to 1 and it will signal the iL to increase by 1, which is to check the data is in 

the next index if it contains value of ‘1’. The iL keeps on moving to the next index until 

two consecutive pieces of data in the index (iL+1 and iL+2) contained the value of ‘0’. 

Then the flag is set to 0 and stops with di(max) = iL. With this case, the iteration process of 

finding iF and iL for layer i is stopped and moves to search for the next layer. The 

iteration to identify the layer i, di,min and di,max stopped when iL is more than the value of 

the maximum disparity levels for the stereo pair, dmax.  

 
Figure 4.13: The zero run-length algorithm to determine the non-linear segment layer d into D 

layers 
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The summary of the algorithm to segment the layer based on the zero run-length is 

given in Figure 4.13. The initialization value is set as layer, i=1, iF=1 and iL=2. When 

the first ‘1’ is found in the data, di(min) is given as di(min)=iF. Then, the algorithm looks for 

the last ‘1’ in the cluster searching throughout the data until the flag is nonzero. With 

that, di(max)=iL. The new search di(min) and di(max) for next layer starts again with the 

increment of layer, i by 1. The process ends when it reaches the end of the data stream 

with the index of dmax. 

Another approach to group the ‘1’ as a continuous stream is to search for a single 

occurrence of ‘0’ in data p’. When the single ‘0’ is found in the data sample, it will be 

change to ‘1’.  For example, when the data stream is ‘00110100’, it will be transformed 

to ‘00111100’. The single occurrence of ‘0’ after iF can be identified by the following 

equation: 

   

� 

p'[iL ] = p'[iL ]∨ p'[iL +1]∧ p'[iL −1]( )                          (4.10) 

where ∨ and ∧ symbolize OR and AND logical operation respectively. The continuous 

data stream of ‘1’ will be group as a single layer with the algorithm shown in Figure 

4.14.  

The algorithm in Figure 4.14 is the similar technique presented in Figure 4.13. The flag 

process has been eliminated since it is not required and the process has been done by 

Equation (4.10). However, this process is time consuming and not cost effective since it 

requires additional search runs to find a single ‘0’ in the data stream before the zero run-

length algorithms can be performed.  
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Figure 4.14: New zero run-length algorithm to determine the non-linear segment layer d into D 
layers for the data stream without single ‘0’ occurrence 

 

4.3.2.3 Layers	  Separation	  

During this stage, the number of layers has been identified with the maximum of D. As 

illustrated in Figure 4.8, this is a starting point for the iteration process to synthesize 

each layer. The disparity depth map separated to D layers based on the cluster of i, 

where i=1,2,.., D with the known di(min) and di(max) for the ith layer. As described earlier 

in previous section, there are two regions identified for the layers, which are the non-

occluded and occluded regions. The new mask, Mi(x, y) for the disparity depth map 

created for each layer with the disparity depth map, dLRC(x, y) based on the Equation 

(4.11) for non-occluded region. Basically, it is a binary mask layer created into a 

number of D layers.  
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a) Non-occluded region: 

� 

Mi(x,y) = 1 if (di(min) < dLRC (x,y) < di(max)) i ∈1,2,...,D
= 0 elsewhere         (4.11)

 

Equation (4.12) defined a special mask for layer 0, M0(x, y), which is known as the 

occlusion region. Any unmatched correspondence pixel points for the stereo matching 

algorithm will fall within this category.  

b) Occluded region: 

� 

M0(x,y) = 1 if [dLRC (x,y) = 0]
= 0 elsewhere                 (4.12) 

Figure 4.15 shows an example of the disparity depth map with only two layers, and no 

occluded region. With the separation layer process, there are two new binary mask 

layers created. The first layer defines with the smallest disparity d, which is the 

background of the depth map. The selected region is set to ‘1’, while the other region is 

set to ‘0’. Meanwhile, in layer 2, the foreground region is selected and the mask of the 

second layer is set to ‘1’ as shown in Figure 4.15. The number of binary layers is 

created based on the number of D layers identified that are dependent on the complexity 

of the obtained disparity depth map. It is important to yield the correct and smooth 

depth map in order to define the accurate layer masks since the algorithm depends on 

accuracy of the disparity depth map. 

   
(a) Disparity depth map (b) Binary mask of layer 1 

(background region) 
(c) Binary mask of layer 2 

(foreground region) 

Figure 4.15: Example of layer masks based on layer separation process 
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4.3.2.4 Image	  Translation	  (Left)	  

The original disparity depth map, dLRC is obtained with the left-right consistency check 

as illustrated in Figure 4.8. The L-R considers the left image as the reference and the 

right as the target image. Therefore, the right image requires to be translated to the left 

on horizontal plane only, which reflects disparity depth map, dLRC. The object region of 

the right image on the layer is positioned on the same location in the left image. When 

the same corresponding pixel points are located in the same position, the intermediate 

view interpolation can be easily obtained in the next stage. Before the image can be 

combined with the mask layer, the right image is translated horizontally to the left using 

on the following equations: 

� 

int di(avg )[ ] = di(min) + di(max)( ) /2                        (4.13) 

� 

Ii,L '(x,y) = Ii,L (x,y)                     (4.14) 

� 

Ii,R '(x,y) = Ii,R (x − di(avg ),y), i ∈0,1,...,D                (4.15) 

Since the left image is the reference image, it does not undergo the translation process 

as the right image. For each layer i, the proposed algorithm consists di(min) and di(max) 

which show the range of the pixel translation value for this translation. In this case, the 

average value di(avg), which is calculated di(min) and di(max) will be used to translate the 

right image to the left for the ith layer. The value of di(avg) in the form of integer data 

type is calculated using the range of di(min) and di(max) for the layer i. An example for this 

process is illustrated in Figure 4.16. The process is repeated for every layer from i to D, 

including the occlusion layer i=0. 

 

Figure 4.16: Translation process for right image to the left by d value 
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4.3.2.5 Mask	  Layers	  

After the left and right images for the disparity depth i have been located to the same 

pixel location as the mask region, we can then proceed to the next stage which is to 

mask the layers as indicated in Figure 4.8. The left and right images merge with the 

respective mask of the ith layer using Equation (4.14): 

� 

Ii,L (M)(x,y) = Ii,L '(x,y) ⋅Mi(x,y),
Ii,R (M)(x,y) = Ii,R '(x,y) ⋅Mi(x,y), i ∈0,1,...,D

             (4.16)
 

This stage will be iterated for every layer. The new image based on mask layers, 

Ii(M)(x, y) obtained for the left and right image. The mask region of ‘1’ will be replaced 

with the pixel values of image left and right corresponding to the pixel locations and the 

disparity depth. 

4.3.2.6 Synthesis:	  Intermediate	  View	  Interpolation	  

Now, two identical images have been obtained for a particular region of interest based 

on the disparity depth as illustrated in Figure 4.8. The new intermediate view, Ii,VI(x, y) 

is generated through the interpolation process using the left and right image masked 

layers (Ii,L(M)(x, y), Ii,R(M)(x, y)). The interpolation combines the pixel values for the left 

and right image mask layers. However, the summation of the pixel values could exceed 

the normal value, for example in greyscale if the left and right pixels both have the 

value 128, it could produce the new pixel value of 256, which is not the anticipated 

value for the pixel. The weighted element given in the intermediate view interpolation 

process known as alpha blending, α, can threshold the pixel value for the left and right 

images. With alpha blending the expected pixel values negotiated between the left and 

right image mask layers. Considering that the pixels for the left and right are almost 

similar, the value of the α can be set to 0.5, taking the nearest average pixel values 

between the stereo pair. The intermediate view Ii,VI(x, y) can be defined as follows: 

� 

Ii,VI (x,y) = αIi,L(M )(x,y) + (1−α)Ii,R(M )(x,y), i ∈0,1,...,D              (4.17) 

where 

� 

(0 ≤ α ≤ 1). 

The value of Ii,VI(x, y) is obtained for each layer of i through the iteration process. The 

sample of the intermediate view interpolation is shown in Figure 4.17, where the region 

is only interpolated based on the selected mask regions. 
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(a) Original left image of 

‘Tsukuba’ 
(b) Intermediate view 

interpolation of layer 5 for 
‘Tsukuba’ image. 

(c) Intermediate view 
interpolation of layer 4 for 

‘Tsukuba’ image. 
Figure 4.17: Sample of inter-view interpolation at different layers. 

4.3.2.7 Image	  Translation	  (Right)	  

As discussed earlier, the disparity depth map uses the left image as the reference. 

During the first translation stage, the right image has been translated to the left, which is 

reflected on the left image as the reference. Therefore, after the intermediate view 

interpolation process, the new image layer i, Ii,VI(x, y) undergo as the same translation 

process. In spite of translation of the image to the left, it will be translated to the right 

by di(avg) and limited by the camera baseline ratio of β as defined in Equation (4.3). If 

the new view synthesis is located exactly in the middle of left and right, then the β value 

is set to 0.5. The translation to right on horizontal is defined in the following: 

� 

Ii,VI '(x,y) = Ii,VI (x + βdi(avg ),y), i ∈0,1,...,D           (4.18) 

where 

� 

(0 ≤ β ≤ 1) . 

To ensure consistency throughout the layers, the value of β must be constant in every 

translation process from layer i to D after the intermediate view interpolation and 

synthesis operations. 

Figure 4.18 shows an example of the translation process for the view synthesis based on 

layer 2. The image view interpolation, I2,VI(x, y) is translated to the right by β.d2(avg). 

Assuming the value of d2(avg) for this layer is 7. In this example, the new inter-view 

image is translated to the middle (between the left and right image). Therefore, β is set 

to 0.5. The intermediate view interpolation of layer 2 is given by: 

� 

I2,VI '(x,y) = I2,VI (x + βdi(avg ),y)
= I2,VI (x + (0.5)(7),y)

                (4.19)  



Chapter 4 

 

 
105	  

 

Figure 4.18: The translation process to the right based on the disparity range value 

4.3.2.8 View	  Synthesis	  

At this stage, all of the layers have undergone the process of translation, masking and 

synthesis as shown in Figure 4.8. A number of image view interpolations, Ii,VI(x, y) is 

collected from i=0 to D. The final inter-view synthesis of the image pair can be 

generated when all the layers are flattened into a single layer based as follows: 

� 

IVS (x,y) = Ii,VI '(x,y), i ∈0,1,...,D
i=0

i=dmax

∑                (4.20)
 

To ensure the accuracy of inter-view images to be composed into a single layer, the 

value of β in the translation process should be consistent for all layers. One of the 

advantages of this approach is that, several number of view synthesis can be synthesized 

with different β values to corresponds the location of virtual views. Besides, the newly 

synthesized virtual view for each layer can be decomposed into a different image layers 

with the same image size.  

4.3.2.9 Hole-Filling	  	  

Holes and cracks between layers in the interpolated image may arise from layer image 

translation when mapping the layers into a single image as indicated in Figure 4.8. This 

case is shown in Figure 4.19, where the layers are flatten into a single virtual view 

image. The holes are identified by zero pixels (dark regions) in the image as shown in 

Figure 4.19(a). An efficient method to overcome this error is to fill the holes by the 

adjacent pixels or offset vectors through the horizontal plane. Although this approach is 

less accurate, the holes can be easily corrected without reducing the quality of the 

image. Figure 4.19(b) shows the results for applying the hole-fillings process to 

complete the whole image. Notice that with the hole-fillings technique, the new image 
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has been transformed significantly with the cracks and holes cleanly recovered.  

  
(a) The synthesis view image  

with holes 
(b) The synthesis view image  

with hole-fillings 
Figure 4.19: Holes in the final virtual view images. 

 

4.4 Results	  and	  Discussion	  

This section gives a detailed evaluation of the proposed algorithm in terms of results 

and quality. In order to validate the performance of the DILS framework, we performed 

the experiments with the Middlebury test scenes [22]. We use the following test data 

sets: ‘Teddy’ (450 x 375 pixels, search range: 60), ‘Venus’ (434 x 383 pixels, search 

range: 20), ‘Tsukuba’ (384 x 288 pixels, search range: 16) and ‘Cones’ (450 x 375 

pixels, search range: 60). The ‘Tsukuba’ image set contains five images (views 1-5), 

and the ‘Venus’, ‘Teddy’ and ‘Cones’ image sets contain nine images (views 0-8). The 

Middlebury image sets are performed with views 1 and 5 for the ‘Tsukuba’ image sets 

and views 2 and 6 for the ‘Venus’, ‘Teddy’ and ‘Cones’. The synthesized view images 

created for the camera baseline ratio β=0.25, 0.5 and 0.75 at the views (2, 3, 4) for 

‘Tsukuba’ and (3, 4, 5) for the remaining data sets. The samples of left images for the 

Middlebury data sets are shown in Figure 4.20. The left view images and their 

corresponding ground truth disparity maps are shown in Appendix C. 

    
(a) Teddy (b) Venus (c) Tsukuba (d) Cones 

Figure 4.20: Middlebury data sets for the left image 
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The proposed method was tested using the same parameters for all the test images. The 

weighted factor for alpha blending was α=0.5 in the intermediate view interpolation 

process. The sizes of the sets of neighbouring pixels in the window searching cost were 

21x21 (‘Cones’ and ‘Teddy’), 11x11 (‘Tsukuba’) and 25x25 (‘Venus’). In the first 

evaluation, the reconstructed virtual images were performed and synthesized by 

conventional inter-view interpolation and DILS algorithms. The quality of the 

synthesized novel views that were obtained by the virtual camera with these approaches 

were measured and analyzed using PSNR and SSIM index performance measurements. 

As described earlier, the DILS algorithm can be implemented and adapted to different 

stereo matching algorithms. In order to justify this statement, the second evaluation 

presented and analyzed with two disparity depth maps, which were obtained using a 

basic fixed-window similarity metric (SAD) and cross-based cost aggregation method. 

The selected stereo matching system in the cross-based cost aggregation method is 

known as AD-Census [130], which is the top performer in the Middlebury benchmark. 

The DILS algorithm reconstructs the novel views between the left and right images 

based on the disparity depth map yielded using SAD and AD-Census. The performance 

of the algorithms was compared in term of PSNR and SSIM index based on synthesized 

views. 

4.4.1 Performance	  Evaluation	  of	  Conventional	  Linear	  Interpolation	  

and	  DILS	  

The first evaluation is performed based on the conventional Linear Interpolation (LI) 

(from Equation (4.4)) and DILS algorithms. In this assessment, the reconstructed novel 

view images for the virtual camera views are compared with the original images 

captured by the camera of the same views. For example, the real camera views for 

‘Teddy’, ‘Venus’ and ‘Cones’ located at camera 2 to 6 and for ‘Tsukuba’ at 1 to 5. The 

results of PSNR and SSIM are calculated based on the conventional inter-view 

interpolation and DILS algorithms for each camera views.  

The ground truth of the Middlebury data sets is shown in Figure 4.21(a) for the ‘Teddy’, 

‘Venus’, ‘Tsukuba’ and ‘Cones’. The proposed method of the DILS algorithm matches 

the image stereo pairs based on SAD cost matching with Left-to-Right Consistency 

Check (LRCC). During the stereo matching process, the disparity depth maps are 

obtained using LRCC are shown in Figure 4.21(b). It contains holes and noises that can 
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be problematic in the image synthesis process. Therefore, the median filter (with the 

size of 11x11) is used to eliminate the noise and improve the disparity depth map 

obtained from the LRCC. The improved and smoother disparity depth maps after the 

filtering process is shown in Figure 4.21(c). The dark regions in the disparity depth 

maps indicated the unmatched pixels based on the LRCC operations. It is defined as the 

occlusion and edge-boundary regions. The ability of DILS to distinguish each disparity 

depth layers not only can be improved the reconstructed novel view images but also are 

able to remove the occlusion regions through hole-fillings and morphological process.  

The histogram distributions indicate the range of the disparity depth layers for the stereo 

pairs as revealed in Figure 4.22. The number of layers for the disparity depth maps can 

be identified based on a histogram distribution. The complexity of the images is known 

with the data distribution in the plot. Closely grouped data shows the image contained 

high texture information, for example in Figure 4.22(d) in the histogram distribution of 

‘Cones’. The layers for the disparity depth are estimated and separated based on the data 

allocation information in the histogram. Through a layer identification process, the 

layers were separated into six layers (for ‘Cones’, ‘Teddy’) and five layers (for 

‘Tsukuba’, ‘Venus’). The threshold T parameter for the layer identification step (in 

Section 4.3.2.2) has been set to 20. 
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(a) Ground truth (b) Disparity depth maps 

with LRCC 
(c) Disparity depth maps 

with filtered LRCC 

 Figure 4.21: Disparity depth maps for (from top to bottom) ‘Teddy, ‘Venus’, ‘Tsukuba’ and 
‘Cones’ image pairs based on the (a) Ground truth, (b) Left-to-right consistency check (LRCC) 

disparity maps and (c) Filtered LRCC disparity maps using 11x11 median filter 

 

 

 



Chapter 4 

 

 
110	  

  
(a) Histogram distribution of Teddy (b) Histogram distribution of Venus 

  
(c) Histogram distribution of Tsukuba (d) Histogram distribution of Cones 

Figure 4.22: Histogram distribution of the disparity depth map using the LRCC. 
(a) Teddy; (b) Venus; (c) Tsukuba; (d) Cones. 

Based on the stereo pair images in the Middlebury datasets, we synthesized the 

intermediate 3 views (with camera baseline ratio β=0.25, 0.5 and 0.75) and compared 

them against the original images provided in the datasets. Figure 4.23 shows the sample 

original image view of the data sets at camera baseline ratio 0.5. In these data sets, the 

real cameras are located at views 4 (‘Teddy’, ‘Venus’, ‘Cones’) and 3 (‘Tsukuba’). 

Figure 4.24 shows the results for the synthesized image view of the datasets at camera 

baseline ratio 0.5 through the conventional Linear Interpolation (LI) and DILS 

algorithms. It also illustrates the SSIM image map for each respective image view 

synthesis approaches. In general, both techniques produce good results on the synthesis 

images although the results based on LI consist with small holes. The quality of the 

synthesized images was satisfactory enough to provide users with natural free-view 

images and videos for 3DTV and free-viewpoints applications. However, when we 

compared them with the original images through SSIM image map, the DILS found to 

produce fewer errors when compared with LI as indicated in Figure 4.24(b) and (d). The 

SSIM map of LI consists with more dark regions compared with the SSIM map of 

DILS.  
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(a) Teddy (b) Venus (c) Tsukuba (d) Cones 

Figure 4.23: Original image view of the data sets at camera baseline ratio, β=0.5 

    

    

    

    
(a) Image synthesis 

view using LI 
(b) SSIM map for the 

LI 
(c) Image synthesis 

view using DILS 
(d) SSIM map for the 

DILS 

Figure 4.24: Image view synthesis of Middlebury datasets at camera baseline ratio, β=0.5 
obtained through (a) Conventional Linear Interpolation (LI) and (c) DILS algorithm; and SSIM 

map images respectively. 

For objective evaluation, we compared the PSNR and SSIM indices results for the 

reconstructed image LI and DILS as shown in Table 4.2 and Table 4.3 respectively. The 

standard SSIM parameters used are based on Wang [166] and have been described in 

Section 3.7.2. The DILS algorithm generally performs well compared to the LI, with an 

average PSNR of 33.52 dB and SSIM of 0.72. The LI and DILS have the best outcome 
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for ‘Venus’ dataset. However, the ‘Tsukuba’ gives the worst results in term of PSNR, 

MSE and SSIM. Most of the errors are due to the high texture background region of the 

‘Tsukuba’ image, which cannot be interpolated accurately between the left and right 

images. Subjectively, the quality of the synthesized image views for all the datasets are 

satisfactory for free-viewpoint applications. The PSNR and SSIM indices results of the 

LI and DILS can be plotted in the graph as shown in Figure 4.25. The performance of 

LI and DILS algorithm is equal for the ‘Venus’ and ‘Tsukuba’ datasets. Nevertheless, 

the DILS outperforms LI for the ‘Teddy’ and ‘Cones’ datasets.  

The overall performance of DILS algorithms for the Middlebury datasets is shown in 

Figure 4.26, indicates that the ‘Venus’ is the best results followed by ‘Cones’, ‘Teddy’ 

and ‘Tsukuba’. The next evaluation is based on the disparity depth map of AD-Census 

and fixed window SAD matching aggregation.  

Table 4.2: PSNR results of inter-view synthesis images based on conventional  
Linear Interpolation (LI) and DILS algorithms 

Teddy (dB) Venus (dB) Tsukuba (dB) Cones (dB) Baseline 
ratio LI DILS LI DILS LI DILS LI DILS 
0.25 31.1 32.3 36.83 37.41 29.64 30.36 30.44 32.93 
0.5 30.76 33.33 35.56 36.39 30.16 31.86 29.38 31.66 

0.75 29.94 33.42 34.87 35.8 31.34 33.12 29.84 33.68 
 

Table 4.3: SSIM index results of inter-view synthesis images based on conventional  
Linear Interpolation (LI) and DILS algorithms 

Baseline Teddy Venus Tsukuba Cones 
ratio LI DILS LI DILS LI DILS LI DILS 
0.25 0.61 0.73 0.88 0.91 0.41 0.45 0.43 0.72 
0.5 0.52 0.71 0.85 0.89 0.45 0.56 0.36 0.68 

0.75 0.44 0.72 0.83 0.87 0.57 0.67 0.35 0.71 
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(a) PSNR Teddy (b) SSIM index of Teddy 

  
(c) PSNR Venus (d) SSIM index of Venus 

  
(e) PSNR Tsukuba (f) SSIM index of Tsukuba 

  
(g) PSNR Cones (h) SSIM index of Cones 

Figure 4.25: PSNR and SSIM index of Middlebury datasets based on LI and DILS algorithms 
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(a) PSNR (b) SSIM index 

Figure 4.26: PSNR and SSIM index of Middlebury datasets based on DILS algorithm 

4.4.2 Performance	  Evaluation	  Based	  on	  AD-Census	  and	  SAD	  Disparity	  

Depth	  Map	  

In order to isolate the performance of the synthesis DILS algorithm, we use the disparity 

depth map obtained using AD-Census [130] and fixed-window SAD approaches. Each 

of the disparity depth maps were undergone the DILS process to separate the layers, 

view interpolation and flatten into a single synthesized view. Figure 4.27 shows the 

results for the reconstructed image view synthesis at the camera baseline ratio 0.5. The 

quality of the synthesized images was satisfactory between the AD-Census and SAD. 

The SSIM map indicates the mismatched pixels between the original images. These 

errors are not noticeable and not degrading the performance of the image quality for 

each approach. The error is typical for the data tested and much of the error is around 

object boundaries where the original disparity map values are not stable or are missing 

entirely. Even in images where there are many holes, the algorithm produces visually 

reasonable results due to the disparity and consistency constraints.  

We compared the objective evaluation of PSNR and SSIM indices between the AD-

Census and SAD disparity depth map results in Table 4.4 and Table 4.5 

correspondingly. The performance of DILS is improved by using the AD-Census 

disparity depth, with an average PSNR of 34.81 dB and SSIM index of 0.78.  

As predicted, the image view synthesis reconstruction with the AD-Census outperforms 

the disparity depth map obtained with the SAD cost matching. It signifies that the DILS 

performance will improve with better stereo matching algorithms that will give better 

results as shown in Figure 4.28. 
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(a) Image synthesis 

view using AD-
Census 

(b) SSIM map for the 
AD-Census 

(c) Image synthesis 
view using FW-SAD 

(d) SSIM map for the 
FW-SAD 

Figure 4.27: Image view synthesis of Middlebury datasets at camera baseline ratio, β=0.5 
through DILS algorithm based on disparity depth maps of (a) AD-Census and (c) Fixed Window 

(FW) SAD; and SSIM map images respectively. 

Table 4.4: PSNR results of inter-view synthesis images based on AD-Census and FW-SAD 
disparity depth map 

Baseline Teddy (dB) Venus (dB) Tsukuba (dB) Cones (dB) 
ratio ADCensus SAD ADCensus SAD ADCensus SAD ADCensus SAD 
0.25 32.8 32.3 38.1 37.41 32.49 30.36 34.3 32.93 
0.5 33.94 33.33 36.93 36.39 34.85 31.86 32.47 31.66 

0.75 34.02 33.42 36.24 35.8 36.93 33.12 34.67 33.68 
 

Table 4.5:  SSIM index results of inter-view synthesis images based on AD-Census and FW-SAD 
disparity depth map 

Baseline Teddy Venus Tsukuba Cones 
ratio ADCensus SAD ADCensus SAD ADCensus SAD ADCensus SAD 
0.25 0.77 0.73 0.93 0.91 0.55 0.45 0.81 0.72 
0.5 0.75 0.71 0.91 0.89 0.68 0.56 0.75 0.68 

0.75 0.76 0.72 0.89 0.87 0.8 0.67 0.78 0.71 
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(a) PSNR Teddy (b) SSIM index of Teddy 

  
(c) PSNR Venus (d) SSIM index of Venus 

  
(e) PSNR Tsukuba (f) SSIM index of Tsukuba 

  
(g) PSNR Cones (h) SSIM index of Cones 

Figure 4.28: PSNR and SSIM index of Middlebury datasets through DILS based on based on 
AD-Census and FW-SAD disparity depth map 
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4.5 Conclusion	  

Image view synthesis is a practical solution for generating content for autostereoscopic 

multi-view displays and free-viewpoint video applications. In addition, synthesizing 

views is essential for certain applications and future displays that will incorporate more 

views created. Image view from a stereo pair also has benefits when considering data 

transmission of multi-view imagery. In this chapter we have presented a novel 

algorithm for Depth Image Layers Separation (DILS) to synthesize novel inter-view 

images based on disparity map layers representation. The work presented exploits inter-

view correlation to generate intermediate view synthesis image that locates in the virtual 

viewpoint between source image viewpoints. DILS features a new paradigm that is not 

just a method to select interesting locations in the image based on the depth analysis. It 

is also a new image representation that allows the descriptions of the objects or parts of 

the image without the need of segmentation and identification. The image view 

synthesis can reduce the complexity of multi-camera array configuration for 3D 

imagery and free-viewpoint applications.  

The performance of the algorithm was tested on the Middlebury Database yielding high 

PSNR and SSIM index values. The quality of synthesized multi-view images is very 

impressive and satisfactory for free-viewpoint applications. The proposed method gives 

comparable performance to the conventional inter-view interpolation. In the 

experiments, it was demonstrated that it is possible to efficiently synthesize realistic 

new views even from inaccurate depth information through the DILS algorithm. DILS 

can be used with simple or sophisticated stereo matching techniques to synthesize better 

quality inter-view images. 

There are many possible extensions to this work. The layers of the disparity depth map 

from the DILS can be used to refine the disparity depth map from the stereo matching 

algorithm. In the next Chapter 5, a new algorithm to refine the disparity map based on 

the disparity layer refinement using the DILS will be developed. The DILS is expanded 

to generate dense multi-view images of multi-camera arrays configuration for free 

viewpoint video and light-field imaging applications in Chapter 6. 
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 Chapter	  5 
 

Depth Layer Refinement (DLR) Algorithm 
for Disparity Depth Map 

5.1 Introduction	  

In disparity refinement step, raw disparity maps were computed by correspondence 

matching algorithms containing outliers that must be identified and corrected. Several 

approaches aimed at improving the raw disparity maps computed by stereo 

correspondence algorithms such as sub-pixel interpolation [23], image filtering 

techniques, Bidirectional Matching [24] and Single Matching Phase [25]. Even though 

the proposed algorithms can provide accurate disparity depth map, they tend to suffer 

from significant complexity requirements, making them less suitable for real-time 

applications.  

In this chapter, a new algorithm is presented that improves the raw disparity maps in the 

disparity refinement stage with low complexity. The proposed algorithm uses a simple 

stereo matching correspondence algorithm with a basic similarity metric of SAD. The 

similarity metric finds the pixel points between the left and right images under the Fixed 

Window (FW) searching process. With this approach the raw disparity depth map 

obtained is not smooth and contains errors, particularly with the depth discontinuities, 

and it is unable to detect the uniform areas and repetitive patterns. The proposed 

algorithm uses the disparity depth map from the stereo matching algorithm as initial 

disparity depth output. The initial disparity depth will be used to identify the layers of 

disparity depth map since the depth consists of a range of disparities. This approach is 

adapted from the Depth Image Layers Separation (DILS) algorithm described in Section 

4.5 that separates the layers of depth based on disparity range. In general, each 

particular disparity depth map is distributed along the disparity range and can be divided 

into several segments, which are known as layers. Instead of using each layer to 
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synthesize inter-view images in the DILS, the layer will be mapped to segment 

reference image and to refine the disparity depth map. This method is defined as the 

Depth Layer Refinement (DLR).  

This chapter is organized in six sections. Section 5.2 provides an overview of the 

system design and also outlines the main features of the model that consist of two main 

modules: stereo matching algorithm and disparity refinement modules. Section 5.3 

covers the proposed algorithm for the disparity refinement by adapting the Depth Image 

Layers Separation (DILS) algorithm. In section 5.4, the performance evaluation for the 

disparity depth map is presented. The results and performance are discussed in Section 

5.5, which compares the proposed algorithm with the state-of-the-art stereo matching 

algorithm in the Middlebury Ranking Stereo Page. Section 5.6 presents some 

concluding remarks. 

 

5.2 Overview	  of	  System	  Design	  

The proposed DLR system design, shown in Figure 5.1, consists of two stages: a stereo 

matching engine and a disparity refinement module. The first stage of the DLR system 

comprises three main components: matching cost computation, cost aggregation and 

disparity computation/optimization. The matching cost computation step can be divided 

into two main categories; the pixel-based matching costs and the area-based matching 

costs. Some similarity metrics used in the matching are the Sum of Absolute 

Differences (SAD), Sum of Squared Differences (SSD) and Normalized Cross 

Correlation (NCC). The classification and evaluation of cost aggregation strategies for 

stereo correspondences [108] depends on the position, shape and weights.  

In this system design, the raw disparity depth map is obtained from the stereo matching 

based on left-to-right matching using a block-based fixed window similarity metric. In 

this case we are using the SAD metric that has been proven to be a trade-off between 

reliability and computational cost [97]. However, other similarity metrics can be used as 

well. Window-based methods implicitly make the assumption of continuity by assuming 

constant disparity for all pixels inside the matching window. This assumption is broken 

at depth boundaries where occluded regions lead to erroneous matches, resulting in a 

familiar foreground flattening effect. 
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Figure 5.1: Overview DLR system 

Generally, the choice of an appropriate window size is a crucial decision. Small 

windows do not capture enough intensity variation to give correct results in less-

textured regions. On the other hand, large windows tend to blur the depth boundaries 

and do not capture well small details and thin objects. This motivates the use of 

adaptive windows [87], shiftable windows [32],  multiple windows [116], variable 

windows [109], bilateral filtering [123] and adaptive weights [99]. The new algorithms 

adopt some of these approaches to improve the disparity depth map. In spite of its 

limitation, SAD with a Fixed Window (FW) is the most frequently used algorithm for 

real time applications due to having easy implementation, being fast and having limited 

memory requirements. Therefore, the fixed window similarity stereo matching 

technique is adequate when obtaining the estimated depth map. This configuration can 

be adapted for computation optimization in real-time hardware implementation [25]. 

The disparity computation or optimization step aims at finding the best disparity 

assignment that minimizes a cost function over the whole stereo pair. The relevant 

approaches are with the Graph Cuts [79], Belief Propagation [80, 81, 113-115] and 

Dynamic Programming [82-84]. The most common and effective method is a simple 

Winner-Takes-All (WTA) minimum or maximum search over all possible disparity 

levels. The matching can be done from right to left or vice versa (Bidirectional 

Matching), so occlusions and uncertain matches can be filtered out with a Left-to-Right 

Consistency Check (LRCC). This means only disparities with the same value (within a 

certain range) for both directions are accepted. In this case, only a single matching is 

needed for the DLR algorithm. The main reason of this is to use the depth layer and 
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edge maps to remove the uncertain matches. 

In the second stage, the disparity depth map is separated into a number of layers based 

on the disparity range of the stereo pair. The disparity depth map can be improved with 

some techniques such as sub-pixel interpolation [23], image filtering techniques, 

Bidirectional Matching [24] and Single Matching Phase [25]. Even though these 

algorithms provide exceptional accurate disparity depth map, extra iterations are also 

required to compute the mismatch between the uncertain pixels in a Bidirectional 

Matching and computational complexity within some of the proposed techniques for 

real-time and practical implementation. The proposed disparity refinement is developed 

through the layer extraction and separation process was implemented using the DILS 

algorithm. A new approach to refine the disparity image map is presented at this stage 

with boundaries identification, morphological and composition process, which are the 

DLR components. The layers are mapped and adaptively fused with a reference image 

to identify the edges, borders, depth discontinuities, uniform areas and repetitive 

patterns. The description of the disparity refinement module will be given in the next 

section. 

 

5.3 Disparity	  Layer	  Refinement	  

This section describes the proposed Disparity Layer Refinement (DLR) algorithm. The 

overall algorithm for DLR is based on the DILS algorithm and can be divided into four 

major steps that are summarized in Figure 5.2. These steps include the stereo matching 

and layers extraction (Part 1), boundaries and edges identification (Part 2), 

morphological process (Part 3) and, lastly, the layer composition stage (Part 4). The 

input to the matching engine comprises two stereo images in epipolar geometry.   

The first processing step is the stereo matching and layer extraction that will be 

described in Section 5.3.1. We calculate an initial disparity map using a fixed window-

based correlation technique. The DILS algorithm separates the disparity depth map into 

several numbers of layers depending on the complexity of the image pairs. The disparity 

levels and layers can be determined using a histogram distribution, which were 

described in the DILS algorithm. The number of layers is indexed by i, where i can be 

between 1 and the maximum D. The stereo matching and layer extraction were 

discussed in Section 4.3.1 and Section 4.3.2, respectively. The main difference in this 
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stage is that the stereo matching is done only for left-to-right matching and the left-right 

consistency will not be checked.  

 
Figure 5.2: Block diagram of the proposed algorithm on disparity refinement based on DILS 

Since the discontinuities in the disparity map are usually reflected by discontinuities in 

the edge and colour information, the borders of the segmented regions can be 

considered as a set of candidates for the boundaries of the disparity layers that we aim 

to compute and refine. For layers identification, the left image is selected as the 

reference image. This image undergoes the edge detection and colour segmentation 

process to obtain the edge and borders in the reference image. From this stage, the new 

edge map is obtained as the reference image is masked to create the edge boundaries of 

the layers. This process explained in more detail in Section 5.3.2.  

In Section 5.3.3, we create an initial representation for each extracted layer by 

separating the disparity depth that is obtained from the DILS in Part 1. The computed 

layer in Part 3 is obtained by fusing the disparity layer and edge map from Part 1 and 2 

respectively. The mapping process of the layer and edge map are used to create a new 

binary image mask layer that will be processed with the morphological operation. Each 

disparity depth map is refined individually through layer separation and mapping 

process. As described in the previous section, the disparity depth map is generated using 

the left-to-right matching algorithm. The raw disparity depth map consists of false 

matches and does not address any occlusions. Through individual layer refinement 

process, the noise and false matches can be removed without degrading the 

discontinuities in the edge map. 

The last block in the DLR module is the layer composition, which is explained in 

Section 5.3.4. During this stage, the final disparity map is composed by the extracted 

refined layers from Parts 2 and 3. The top layer is the closest object to the camera view. 

The layers under this layer are the layers identified by the disparity range in the DILS 

algorithm. All the layers are then combined in a single disparity depth map. The cracks 
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and holes are corrected with the hole filling techniques, described in Section 4.3.2.9. 

5.3.1 Stereo	  Matching	  and	  Layers	  Extraction	  

The stereo matching and layers extraction are based on the left-to-right image matching. 

For this implementation, the matching cost computation uses the basic similarity metric, 

SAD, that is a conventional approach for many stereo matching algorithms. As 

described earlier, any similarity metric and approaches can be selected to enhance the 

accuracy and reliability of the disparity map obtained from this process. The main idea 

for this implementation is to show that even by using a basic similarity metric, the 

disparity map can be improved significantly through the DLR algorithm. The matching 

process uses Equation (4.5), which was defined in the previous Chapter. 

The cost aggregation is done by summing matching costs over fixed square windows 

searching with constant disparity. The accuracy of the depth map can be increased using 

a larger window size. However, there is a trade-off between the accuracy and the depth 

discontinuities of the objects. Many methods have been proposed in the literature to 

improve the disparity map with efficient and robust approaches for the cost aggregation. 

As observed by Kanade and Okutomi [87], the correlation window which covers a 

region with non-constant disparity does not perform well and the error in the depth 

discontinuities grows with the window size. Reducing the window size makes the 

computed disparity more noise-sensitive. To overcome this problem, Kanade proposed 

an adaptive window, which can statistically select each pixel that minimizes the 

uncertainty of the disparity estimation. This approach has been improved by Fusiello 

[173] with the symmetric multi-window to provide efficient and robust disparity 

estimation in the present of occlusions. Although the presented cost aggregations in [87, 

125, 173] perform very well by improving the disparity map, the fixed square window 

is sufficient for basic area-based stereo matching. This provides faster implementation 

and low complexity. Furthermore, the configuration of the fixed square window can be 

adapted for computation optimization in the hardware parallel implementation that has 

been proposed by Stefano [25].   

The raw disparity map can be visualized by selecting the minimal aggregated value at 

each pixel. For applications such as robotic navigation or people tracking, the disparity 

map obtained from this stage may be perfectly adequate. However for image-based 

rendering, the raw disparity maps lead to errors and unappealing view synthesis results. 
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To enhance the performance for the DILS algorithm, the raw disparity map is filtered 

with a median filter, which cleans up mismatches, holes and noises. In our 

implementation, we are not performing bidirectional matching (LRCC) to calculate the 

occlusion since we want to measure the performance of the DILS and DLR algorithm 

components. Within this stage, we obtained two main results that are the raw disparity 

depth map and the layers of the disparity depth (from the DILS algorithm). 

5.3.2 Boundaries	  and	  Edges	  Identification	  

After the stereo matching and layer extraction processes, the boundaries and edges of 

the reference (left) image are identified. By assuming that for regions of homogeneous 

colour, the disparity varies smoothly and the depth discontinuities coincide with the 

boundaries of those regions, which is true for most natural scenes as described by 

Bleyer [118]. This assumption is incorporated, by applying colour segmentation, to the 

reference image and, by using a disparity layer, to represent the disparity inside the new 

layer segments. In addition to the colour segmentation, the reference image are derived 

the edge boundaries using the edge detection algorithms. In theory, any algorithm able 

to identify sharp edges and discontinuities in the edge detection can be used for the 

proposed boundaries and edge identification stage. Also, any algorithm that divides the 

reference image into regions of homogeneous colour can be used for this stage. In our 

implementation, we used the mean-shift colour segmentation algorithm proposed by 

Comaniciu [110] and incorporate edge information by using the Canny edge detection 

algorithm [174].  

The mean shift analysis approach is essentially defined as a gradient ascent search for 

maxima in a density function defined over a high dimensional feature space. The feature 

space includes a combination of the spatial coordinates and all its associated attributes 

that are considered during the analysis. The main advantage of the mean-shift approach 

is based on the fact that edge information is incorporated as well [81]. The Edge 

Detection and Image Segmentation (EDISON) system [175], developed by Rutgers 

University, provides a complete toolbox for discontinuity preserving filtering, colour 

segmentation and edge detection. This EDISON has also been used in our system. 

Edge detection refers to the process of identifying and locating sharp discontinuities in 

an image. The discontinuities are abrupt changes in pixel intensity, which characterize 

boundaries of objects in a scene. Classical methods of edge detection involve 
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convolving the image with an operator of a 2-D filter, which is constructed, to be 

sensitive to large gradients in the image while returning values of zero in uniform 

regions. There are an extremely large number of edge detection operators available. 

Each of them is designed to be sensitive to certain types of edges. Variables involved in 

the selection of an edge detection operator include orientation, noise environment and 

structure. In edge orientation, the geometry of the operator determines a directional 

characteristic in which it is most sensitive to edges. Operators can be optimized to look 

for horizontal, vertical, or diagonal edges. 

Edge detection is difficult in noisy images, since both the noise and the edges contain 

high-frequency components. Attempts to reduce the noise result in blurred and distorted 

edges. Operators used on noisy images are typically larger in scope, so they can average 

enough data to discount localized noisy pixels. This results in less accurate localization 

of the detected edges. In the edge structure, not all edges involve a step change in 

intensity. Effects such as refraction or poor focus can result in objects with boundaries 

defined by a gradual change in intensity. The operator needs to be chosen so as to be 

responsive to such gradual changes in these cases.  

The Canny edge detection algorithm is known as the optimal edge detector. It is 

important that edges occurring in images should not be missed and that there are no 

responses to non-edges. The second criterion is that the edge points should be well 

localized. In other words, the distance between the edge pixels as found by the detector 

and the actual edge has to be at a minimum. A third criterion is to have only one 

response to a single edge. This was implemented because the first 2 were not substantial 

enough to completely eliminate the possibility of multiple responses to an edge.  

Based on these criteria, the Canny edge detector firstly smooths the image to minimise 

the noise. It then finds the image gradient to highlight regions with high spatial 

derivatives. The algorithm then tracks along these regions and suppresses any pixel that 

is not at the maximum (non-maximum suppression). The gradient array is now further 

reduced by hysteresis. Hysteresis is used to track along the remaining pixels that have 

not been suppressed. Hysteresis uses two thresholds and if the magnitude is below the 

first threshold, it is set to zero (a non-edge). If the magnitude is above the high 

threshold, it is identified as an edge. And if the magnitude is between the 2 thresholds, 

then it is set to zero unless there is a path from this pixel to a pixel with a gradient above 

the threshold [174]. Therefore, the Canny edge detection is used along with the colour 
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mean-shift segmentation. 

The algorithm outlines Parts 1 and 2 are summarized in Figure 5.3, where the results of 

stereo matching and layer extraction in Part 1 and the edge map image obtained in Part 

2 are used in Part 3, which is the morphological process. The binary images from edge 

detection and colour image segmentation steps combined to create the edge map image 

using AND operator. The new segmented and edge map image is defined as IS. The 

segmented image IS will be mapped and fused together with the layer i. The fusion 

process of the disparity depth layer and edge map image is described in Section 5.3.3. 

 
Figure 5.3: Part 1 and 2 block diagram for the DLR that consist: a) stereo matching and layers 

extraction, and b) boundaries and edges identification 

Figure 5.4(c) shows the edge map constructed by the Canny edge detection. In this 

example, the image of ‘Teddy’ has been used, which contained high textured region. 

The original ‘Teddy’ image has been shown in Figure 5.4(a) and 5.4(b). The lines and 

edges in the result provide the boundary borders to separate the inner and outer region 

in the morphological process in Section 5.3.3. The reference left image has been 

processed by the colour image segmentation as illustrated in Figure 5.4(d). The 

additional information in the colour image segmentation enhances the boundaries and 

edges identification process. The result of edge detection map and colour segmentation 

map are combined with AND operator to create the new edge map image (Figure 
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5.4(e)), that can be translated in the binary image for the morphological process in Part 

3. The sample of raw disparity depth map as shown in Figure 5.4(f) extracted into 

several layers based on disparity range explained in the DILS algorithm.  

  
(a) Left image of ‘Teddy’ (b) Right image of ‘Teddy’ 

  
(c) Edge detection map (d) Colour image segmentation map 

  
(e) Combination of edge detection and  

colour segmentation map 
(f) Sample of raw disparity depth map  

Figure 5.4: Boundaries and edge detection example 

5.3.3 Morphological	  Process	  

The disparity depth map can be refined by a median filter approach, where the outliers 

and noise can be removed. However, some of the noises cannot be removed 

automatically without affecting the whole portion of the disparity depth map, which is 

obtained from the stereo matching algorithms. With disparity layer separation, 

particular noise can easily be removed while maintaining the quality in some of the 
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disparity layers. The accuracy of the disparity depth map can be enhanced with each 

layer is being processed with a morphological process. The unwanted pixels in the 

object mask layer can be removed using erosion and dilation processes.  

 
Figure 5.5: Part 3 block of the DLR algorithm, morphological process 

Figure 5.5 shows the block diagram of the Part 3 of the DLR algorithm, which takes as 

input the edge map image and the layer i (separated by the DILS algorithm). The 

combination of the input created a binary object map with AND operator that holds the 

boundary of the edge layers. Each layer will be mapped on the same segmented edge 

map image IS. Any edges and borders of the objects mapped and crossed with the same 

region on the layer i remain in the image, while the remaining is removed. The new-

segmented image is now fused with the same region of layer i. The edge on the 

segmented image will create a cross path along the layer i. The cross path is defined by 

the new boundary notated as br and illustrated in Figure 5.6(a), with the disparity depth 

map in Figure 5.6(b). 

  
(a) Cross path defined by the boundary (b) Sample of disparity depth map 

Figure 5.6: Sample of boundary path for layer i and the disparity depth map  
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The pixels in the object map are corrected by removing unwanted pixels. The technique 

used in this block is based on erosion process combined with the algorithm proposed by 

Fergusson [176]. After that, the object map pixel of the layer is connected with a convex 

hull, which creates the closed-loop boundary region. The boundary region will be filled 

to produce the binary object map image. 

During this stage, two regions of the disparity layer i can be distinguished based on the 

boundary created, which are the inner region and the outer region. The inner region is 

the disparity depth map that is contained inside the boundary. Any zero pixels on this 

region will be filled with the same value of layer i. The inner region is dilated until the 

boundary that is set as the threshold is reached.  Meanwhile, the outer region is for the 

disparity depth map that is beyond the boundary edge of the segmented image. Any 

outer region of the disparity map will be eliminated. As a result, the new disparity layer 

i is created adaptively based on the boundary of the object from the segmented 

reference image. This approach addresses the disparity depth discontinuities problems 

and is able to detect the uniform areas and repetitive patterns on the stereo pairs. The 

process is illustrated in Figure 5.7. The sample of output from the layer i and edge map 

image combination is shown in Figure 5.8(a). The object mask layer i is processed in 

the morphological stage that finally produces the new binary object mask layer i as 

illustrated in Figure 5.8(b). This process is iterated for all the layers of the disparity 

depth map before the layers can be composed as a single refined disparity depth map. 

 

Figure 5.7: Mapping and diffusing for layer i with the border set by the segmented reference 
image 
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(a) Object mask layer i (b) New object mask layer i 

Figure 5.8: Layer extraction with edge map image. (a) Raw object mask layer i;  
(b) Refined layer i through morphological process 

5.3.4 Layers	  Composition	  

Each layer of the disparity depth map undergoes the same process of mapping and 

fusing (diffusion) with the same reference segmented image. After all of the layers have 

been processed, the collection of layered disparity depth images merges into a new 

single refined disparity depth image. The final disparity map is combined all the layers 

according to the rank layer. The arrangements of the layers are as follows: the top layer 

is closest to the camera view (which is the highest number of layer i), then followed by 

the next layers according to layer i level values. Basically, the layers composition is 

similar to image layers view synthesis in DILS algorithm, where all the layers are 

flattened into a single layer. The process of the layer composition of the DLR algorithm 

can be summarized in Figure 5.9.  
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Figure 5.9: Part 4 block of DLR algorithm, layers composition 

 

5.4 Performance	  Evaluation	  

In this section, the quality metrics are described for evaluating the performance of the 

stereo correspondence algorithms based on the image data sets and ground truths 

according to the evaluation platform by Scharstein and Szelinski [22].  

5.4.1 Quality	  Metric	  

In order to evaluate the performance of a stereo algorithm, a quantitative way is needed 

to estimate the quality of the computed correspondences. Two general approaches to 

this are to compute error statistics with respect to some ground truth data and to 

evaluate the synthetic images obtained by the disparity depth map. Two quality 

measures based on known ground truth data provided by the Middlebury Vision Page 

are RMS (Root-Mean-Squared) error and percentage of bad matching pixels. RMS error 

is measured in disparity units between the computed disparity map dc(x, y) and the 

ground truth map dT(x, y) [22, 85]: 
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� 

RMS =
1
N

dC (x,y) − dT (x,y)
2

(x,y )
∑

 
               (5.1) 

where N is the total number of pixels. The percentage of Bad Matching Pixels, BMP is 

given by [22]: 

� 

BMP =
1
N

dC (x,y) − dT (x,y) > δd( )
(x,y )
∑               (5.2)

                                     
 

where 

� 

δd  is a disparity error tolerance. For the experiments and evaluations, the 

disparity error tolerance, 

� 

δd  is set to 1.0. In addition, to compute these statistics over the 

whole image, two different kinds of regions are evaluated which are the non-occluded 

and depth discontinuities regions. 

 

5.5 Results	  and	  Discussion	  

The results for the depth refinement algorithms are evaluated based on the performance 

evaluation with these two approaches. The first performance is tested based on different 

similarity metric for the cost aggregation. Although the selected similarity metric is 

SAD, the comparison with different approaches will also be shown. This includes the 

selection of window size for the correspondence matching. The second performance is 

based on the Middlebury Stereo Evaluation [177]. The evaluation platform provides 

stereo image datasets consisting of the stereo image pair and the ground truth image. 

The proposed algorithm evaluated by using the Middlebury datasets and is compared 

with results with many others through online. The online page is constantly updated and 

provides some common benchmark datasets and evaluation systems, where we can 

examine and analysis the proposed algorithm objectively and universally by using 

standard parameters.  

5.5.1 Performance	  Evaluation	  Based	  on	  Different	  Similarity	  Metric	  

This section gives a detailed evaluation of the proposed algorithm in terms of results, 

quality and processing time. The DLR algorithm can be used with any stereo matching 

algorithm since it was developed to refine the raw disparity map images (in the post-

processing stage). For this case, the evaluation has been made with Map (284x216 

pixels) and Tsukuba (384x288 pixels) image with different similarity metric including 
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SAD, SSD, SHD and NCC. The parameter of the stereo pair images set to 9x9 window 

size with maximum disparity 30 (Map) and 16 (Tsukuba). 

The results of stereo matching for Tsukuba image based on different similarity metrics 

are shown in Figure 5.10. The raw disparities based on the block-based window 

searching contained errors with unmatched pixels especially with the similarity metric 

SHD. For this sample, the disparity depth map has been mapped with colour to show the 

hotter the colour, the closer the object is to the camera. In this case, the red colour (the 

lamp) is the closest object. The output of the disparity depth maps can be improved with 

the post-processing stage by using a median filter to smooth the result. The bidirectional 

matching can be used to eliminate the unmatched pixels, which can produce accurate 

disparity depth maps. Based on the results as shown in Figure 5.10, the disparity depth 

maps produced using SAD and SSD similarity metrics are better and SHD is the worst. 

The errors and unmatched pixels in the disparity depth map generated by SHD are 

obvious in comparison with the SAD, SSD and NCC similarity metrics. 

    
(a) SAD (b) SSD (c) NCC (d) SHD 

Figure 5.10: Results of stereo matching based on different similarity metric 

The size of window for the block-based matching affects the performance of the 

matching algorithm as indicated in Figure 5.11(a), where the RMS errors are reduced 

accordingly when the window size is increased for the all-pixels evaluation. The non-

occluded pixel errors are not affected with different window size as shown in Figure 

5.11(b). The errors are significantly reduced when the disparity depth map is filtered (in 

this case by using 11x11 median filter).  
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(a) All pixels (b) Non-occluded pixels 

Figure 5.11: RMS error based on window size for all pixels and non-occluded pixels 

The performance of different similarity metrics is presented in Table 5.1 for Tsukuba 

and Map images. The table shows the statistics aimed at assessing the capability of the 

similarity metrics in term of processing time and RMS. The time is calculated in 

seconds for the processing time and the RMS in term of pixels. The stereo matching 

evaluated with Intel Quad CPU of 3.0 GHz, 3.25 GB of RAM. The comparison of 

similarity metrics with Bidirectional Matching (BM) is also included. It is worth 

noticing that with the Map stereo pair, the similarity metrics of SAD, SSD and NCC 

perform similarly and pretty well, with slightly better RMS yielded by BM. The BM 

shows the capability to deal with occlusions and uncorrected disparities. The similarity 

metric performs better with Map image pairs compared to the Tsukuba due to the 

complex objects at different depths generating several occlusions, as well as poorly 

textured regions in the background. Moreover, this stereo pair contains some specular 

regions (such as the face of statue and some regions of the lamp) that are quite difficult 

to deal with in the stereo matching process.     

Based on this evaluation, it shows that the similarity metric using SAD is satisfactory. 

Besides the simplicity, reliability and low computational cost, SAD has been adapted 

for real-time implementation. Faster execution can be implemented by using SAD 

through computational optimisation techniques, which has been proposed by Stefano 

[25, 85]. In the next section, the performance on DLR by using SAD similarity metric is 

presented with the Middlebury Stereo Evaluation. 
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Table 5.1: Processing time and RMS of Tsukuba and Map images 

Map image Tsukuba image Algorithms Time RMS Time RMS 
SAD 6.84 41.29 7.09 57.15 
SSD 6.07 42.48 6.54 56.86 
NCC 9.94 43.15 10.58 56.99 
SHD 38.37 43.85 41.58 58.58 

BM SAD 6.76 26.86 7.23 53.22 
BM SSD 6.05 28.95 6.59 52.75 
BM NCC 9.93 29.36 11.07 51.14 
BM SHD 41.98 37.17 41.16 50.55 

 

5.5.2 Performance	  Based	  on	  Middlebury	  Stereo	  Evaluation	  

Scharstein and Szelinski [22] have developed an online evaluation platform for the 

Middlebury Stereo Evaluation [177], which provides a large number of stereo image 

datasets consisting of the stereo image pair and the ground truth images. We evaluated 

our algorithm by using the Middlebury datasets and compared the results with many 

others online. The samples of these datasets are shown in the first row of Figure 5.12, 

which consist of ‘Tsukuba’, ‘Venus’, ‘Teddy’ and ‘Cones’ stereo pairs. Since this 

evaluation is very well known and state-of-the-art, the proposed algorithm in this work 

is also evaluated in this manner. In order to evaluate an algorithm on this website, the 

disparity maps of all four datasets have to be generated and uploaded online. The 

disparity maps have to correspond to the left stereo image and the disparities have to be 

scaled by a certain factor. The evaluation engine calculates the percentage of bad 

matched pixels within a certain error threshold by pixel-wise comparison with the 

ground truth image. This is done three times for each dataset. Firstly the disparity map 

image is evaluated for all pixels where a ground truth value is available. Secondly, it is 

evaluated for all non-occluded pixels. Lastly, the disparity map images are compared 

for all pixels at disparity discontinuities. Many researchers use this platform for 

evaluation and this gives a significant overview of how the developed algorithm 

performs in comparison to other algorithms. The platform is up-to-date and constantly 

updated.  
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(a) Tsukuba (b) Venus (c) Teddy (d) Cones 

Figure 5.12: Results of the proposed method by the Middlebury benchmark datasets. The first 
row images are the reference images of each set. The second row images are the ground truths. 

The third row images are the disparity maps by left-to-right matching using SAD metric. The 
fourth row images are the resulting disparity maps by DLR-SAD method 

Figure 5.12 shows the Middlebury evaluation datasets, the ground truths of four datasets 

and the resulting disparity maps estimated by SAD and DLR-SAD methods. The results 

based on the third row in Figure 5.12 used the fixed window SAD of 21x21 (‘Cones’ 

and ‘Teddy’), 11x11 (‘Tsukuba’) and 25x25 (‘Venus’). Additionally, an 11x11 median 

filter is applied as a post-processing step for the SAD. The selected parameters are 

chosen to achieve the best possible result for the disparity maps. The results based on 

SAD have been further enhanced and refined by using the proposed algorithm, DLR 

where every disparity depth layer has been separated. Through the DLR, the new 

disparity maps have been formed. The fourth row of Figure 5.12 indicates that disparity 

maps improved and removed the noise and errors in the basic SAD stereo matching. It 

is worth mentioning that several major occlusions and boundary discontinuities have 

been discarded. It shows the ability of DLR to deal with these problems. The 

morphological operation processed in separated layers enables the unwanted regions, 

errors and noise to be removed efficiently. Due to the erosion and dilation process in the 
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morphological operation, the final disparity map probably contained holes and cracks 

between the depth layers. Therefore, the missing values in the disparity maps have to be 

extrapolated with adjacent pixel values by using hole-filing techniques.       

Table 5.2 shows the performance of our method by the Middlebury ranking list [177] 

with the error threshold of 1 pixel. All values are given in percentages: for non-occluded 

regions (‘N-o’), all regions (‘All’) and discontinuities regions (‘Disc’). The last column 

in the table is the average percentage of bad pixels (‘Avg’) over all twelve columns. The 

main ranking published on the Middlebury Stereo Page [177] is ordered by the overall 

performance of the algorithms (notated as ‘Avg Rank’ in the Table 5.2) and described in 

Appendix C.2. During the algorithm submission to the Middlebury Stereo Page, the 

rank of Bipartite algorithm for Tsukuba datasets are given as 78 (‘N-o’), 89 (‘All’) and 

73 (‘Disc’); the RegionalSup placed at 96 (‘N-o’), 102 (‘All’) and 88 (‘Disc’); the 

STICA algorithm at 118 (‘N-o’), 119 (‘All’) and 117 (‘Disc’); and our method obtained 

at 100 (‘N-o’), 92 (‘All’) and 108 (‘Disc’) for the similar datasets. The average ranks 

(‘Avg Rank’) are obtained by calculating the total ranking for each datasets. Due to the 

frequent and up-to-date algorithms submission, the ranking list changes dynamically.  

At the time of writing this thesis, the main ranking consists of a total 120 algorithms.  

The basic Fixed-Window (FW) with SAD as cost aggregation methods is placed in the 

last ranking. It shows that the stereo matching by using the basic approach is not 

accurate and contains errors for all the regions, non-occluded and near depth 

discontinuities. However, after the FW-SAD is refined by using the proposed method of 

DLR, the results significantly improved and the new results moved up 13 places. 

As can be seen, the results in Table 5.2 indicate our algorithm is competitive with other 

existing algorithms. In contrast to others, the presented algorithms of DLR obtained by 

using a basic similarity metric. Therefore, the complexity of the algorithm is low and 

can be easily adapted with any stereo matching system. Our result is the best among all 

nominated algorithms for the non-occluded region in the Venus dataset, and the second 

for the Teddy dataset. The scenes of the Venus dataset consist of many textured 

surfaces, such as the background and printed document. With respect to the evaluations 

in ‘all’ sections, our results are moderate since the ‘all’ region includes occluded 

regions and the occluded regions mainly consist of planes of background. 
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Table 5.2: Middlebury dataset ranking with the 1 pixel threshold. These values indicate the 
percentage of bad pixels whose errors are more than 1 pixel, where ‘N-o’ (non-occluded 
regions), ‘All’ (for the all regions), ‘Disc’ (near depth discontinuities regions) and ‘Avg.’ 

(average percentage of bad pixels over all datasets). 

Tsukuba Venus Teddy Cones 
Algorithms Avg 

Rank N-o All Disc N-o All Disc N-o All Disc N-o All Disc 
Avg 
(%) 

2DPOC 101.4 2.88 4.8 10.5 6.55 7.8 17.4 14.4 22 27.9 15.2 23 24.5 14.7 

Bipartite 102.8 2.54 4.4 13.6 6.62 7.5 18.6 16.9 24 30.2 15.1 22 23 15.4 

SAD-DLR 106.3 4.22 5.1 19.5 2.5 3.2 18.3 18.2 19 37.2 18 21 32.9 16.5 

Phase-based 106.4 4.26 6.5 15.4 6.71 8.2 26.4 14.5 23 25.5 10.8 21 21.2 15.3 

RegionalSup 107.2 3.99 6.1 14.2 8.14 9.7 36.8 18.3 27 32.1 9.16 19 19.9 17 

BioDEM 107.4 6.57 8.4 28.1 3.61 4.8 33.7 13.2 21 34.5 6.84 16 19.8 16.4 

IMCT 107.5 4.54 5.9 19.8 3.16 3.8 23.2 18 23 35.3 12.7 19 27.9 16.3 

SSD+MF [79]  107.8 5.23 7.1 24.1 3.74 5.2 11.9 16.5 25 32.9 10.6 20 26.3 15.7 

SO [22] 109.5 5.08 7.2 12.2 9.44 11 21.9 19.9 28 26.3 13 23 22.3 16.6 

MI-nonpara 111.8 5.59 7.5 18.8 7.5 9 35 17.4 26 36.9 10.2 20 22.6 18 

PhaseDiff 112.7 4.89 7.1 16.3 8.34 9.8 26 20 28 29 19.8 29 27.5 18.8 

STICA 113.0 7.7 9.6 27.8 8.19 9.6 40.3 15.8 23 37.7 9.8 18 28.7 19.7 

Rank+ASW 113.0 6.51 8.4 19.7 10.5 12 32.7 15.7 24 32.8 14.1 23 21.7 18.4 

LCDM+AdaptWgt 113.3 5.98 7.8 22.2 14.5 15 35.9 20.8 27 38.3 8.9 17 20 19.5 

Infection 114.6 7.95 9.5 28.9 4.41 5.5 31.7 17.7 25 44.4 14.3 21 38 20.7 

FW-SAD 118.2 7.51 9.5 30 9.15 11 48.7 22 30 47.3 15.7 25 36.3 24.3 

* Note: The results based on submission on 27th February 2012 

Figure 5.13 shows the analysis and error evaluation for the non-occluded regions based 

on bad pixel with (absolute disparity error > 1). The first row of Figure 5.13 show the 

samples images for evaluation provided by Middlebury Stereo Page. The non-occluded 

regions visualized by the white areas while the occluded and border regions shown in 

black. The second row shows the errors for non-occluded regions based on FW-SAD. 

By comparing the non-occluded regions for the disparity depth map of the proposed 

algorithm, Figure 5.13 (in the third row) visually points where incorrect measurements 

are produced by the SAD-DLR. We can notice that the number of errors are low for the 

Tsukuba and Venus datasets. The incorrect disparities are higher for the Teddy and 

Cones datasets due to the complexity and texture regions. In general, the SAD-DLR has 

improved the disparity maps obtained from the FW-SAD where most of the sparse 

small black regions (in the second row of Figure 5.13) have been removed. One of the 

disadvantages of using the SAD metric is the incompetency of the similarity metric to 

calculate the discontinuity regions. This can be improved by selecting a different cost 

aggregation method.   
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(a) Tsukuba (b) Venus (c) Teddy (d) Cones 

Figure 5.13: Analysis for non-occluded region based on bad pixel (absolute disparity error > 
1). Non-occluded regions (white) with occluded and border regions (black) 

The analysis for the signed disparity error based on discontinuity and half-occluded 

regions are shown in Figure 5.14. The regions near depth discontinuities are indicated in 

white, occluded and unknown regions are shown in black and other regions in gray. The 

discontinuity and half-occluded errors by using the FW-SAD and SAD-DLR are shown 

in the second and third row respectively. From the results, the SAD-DLR method 

indicated to improve the discontinuity and half-occluded regions obtained from the FW-

SAD.    

The results obtained have been shown to be adequate for the DLR to improve the 

disparity depth map. Though the DLR does not deal with the cracks and holes due to the 

layer separations, the merging of disparity and edge boundaries regions change the new 

disparity maps significantly. The performance of the DLR can be improved by using 

advanced matching techniques such as graph cut, segmented-matching and dynamic 

programming, which can produce more accurate disparity depth maps. Furthermore, a 

more sophisticated cost aggregation strategy could lead to better results. However, 

based on the performance evaluation of DLR with SAD, the results are satisfactory in 

term of accuracy and quality of the disparity depth maps.  
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(a) Tsukuba (b) Venus (c) Teddy (d) Cones 

Figure 5.14: Analysis for signed disparity error based on discontinuity. Regions near depth 
discontinuities (white), occluded and unknown regions (black) and other regions (gray) 

 

5.6 Conclusion	  

The Depth Layer Refinement (DLR) module has been presented with the aim at 

improving the raw disparity maps in the post-processing stage. The proposed system 

takes advantage of the Depth Image Layers Separation (DILS) algorithm that separate 

the layers of depth based on disparity range. Each particular disparity depth map is 

distributed along with the disparity range and can be divided into several segments 

known as layers. Instead of using each layer to synthesize inter-view images in the 

DILS, the layer will be mapped to segment reference image to refine the disparity depth 

map. The algorithm has used a simple stereo matching correspondence algorithm with a 

basic similarity metric of SAD. The similarity metric will search the pixel points 

between the left and right images under the Fixed Window (FW) searching process. 

With this approach, the raw disparity depth map obtained is not smooth and contains 

errors particularly in the depth discontinuities, and was unable to detect the uniform 

areas and repetitive patterns. In spite of its limitation, SAD with FW is the most 

frequently used algorithm for real time applications due to it is easy at implementation, 

fast and has limited memory requirements. Therefore, the fixed window similarity 

stereo matching technique is adequate to obtain the estimated depth map. 
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We have analyzed the differences between the window size and similarity metric used 

for the stereo matching engine. The SAD selected as the main similarity metric in the 

cost aggregation due to its simplicity, reliability and low computational cost. The 

resulting disparity maps are evaluated on the Middlebury Stereo Vision website and 

perform well in comparison to other algorithms although it only uses the basic similarity 

metric of SAD. Qualitative and quantitative evaluation proved the satisfactory quality of 

the achieved matching results. The proposed method has improved by 13 places from 

the last place after the basic FW-SAD was refined by using DLR in the online 

evaluation in the Middlebury Stereo Vision website. We found that the proposed 

technique removes the noise and unmatched pixels on the fixed window searching SAD. 

It also improved the depth discontinuities of the disparity depth maps.  

The limitation of the presented approach lies on the assumption that the scene can be 

well approximated by a set of rectified images. In the future development, the system 

can be incorporated in real-time implementation, which can be used for the novel inter-

view synthesis algorithm for 3D video and free-viewpoint applications. The proposed 

algorithm is quite practical for applications such as robot navigation and autonomous 

operations. 
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 Chapter	  6 
 

Multi-Level View Synthesis (MLVS)  
based on DILS Algorithm for  

Multi-Camera Array 

6.1 Introduction	  

In 3D vision, most image processing and stereo vision based approaches use image 

pairs captured by left-to-right in the epipolar of horizontal line. The image pairs are 

rectified before being processed with stereo matching algorithms to obtain the disparity 

depth map and matching correspondence pixels. This is similar to the human visual 

system. However, when the application requires multiple camera arrays configuration, 

the cameras will not be fitted in stereo. For example, in the dense camera and free-

viewpoint television system, the cameras can be arranged in many locations. The main 

interest in this research is to create multi-perspective panoramas from the multiple 

cameras.  

This chapter describes a novel view synthesis in the multi-view for 3D vision and free 

viewpoint technique for video application such as in light field imaging. This method 

exploits the advantage of the new inter-view interpolation algorithms described in 

Section 4.5, by extending stereo to multiple camera configurations. In this technique, 

novel multi-view synthesis created based on a limited number of cameras for sparse 

camera arrays. This will reduce the camera usage required to create dense images. This 

method is known as the Multi-Level View Synthesis (MLVS), which finds the pixel 

correspondences and synthesis through three levels of matching and synthesis process. 

The first stage identifies the pixel correspondences and synthesis based on left-right 

image pairs, while the second stage is based on upper-lower image pairs. The third stage 

uses the output obtained in the first or second stage for the new inter-view synthesis to 

create full virtual multi-camera array image views. The new structures and design are 
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shown to offer improved performance and provide additional views with fewer cameras 

arrangements compared to the conventional high volume camera configurations for 

free-viewpoint video acquisition. 

The chapter is organized into eight sections. Section 6.2 describes the multi-camera 

array configuration and its applications. Section 6.3 provides an overview of the 

proposed system design architecture and the MLVS algorithm is described. The 

experimental results and the parameters used in the algorithm are described in Section 

6.4. The next three sections present some performance results and related discussion for 

the multi-camera datasets. Section 6.5 provides some essentials analysis of the first 

selected multi-camera dataset. Section 6.6 discusses the results of MLVS by 

incorporating it to different multi-camera datasets. The algorithm implementation issues 

are discussed in Section 6.7. Finally, Section 6.8 provides some concluding remarks. 

  

6.2 Multi-Camera	  Array	  Configuration	  and	  Applications	  

Multi-camera systems can function in many ways, depending on the arrangement of the 

cameras. The basic horizontal parallel camera arrangement has been used in the Free-

Viewpoint Video (FVV) capturing system for Free-viewpoint Television (FTV) has 

been developed by Nagoya University [35, 36]. FTV enables the viewer to view a 3D 

scene by selecting any viewpoints of the scenes. The standardization of FTV was due to 

Multi-view Video Coding (MVC), which enables the efficient coding of multiple 

camera views. The video acquisition of the system comprises 16 cameras, 16 clients and 

1 server that is connected to a Gigabit Ethernet. The system configuration has been 

developed with 100-camera system to capture larger space and can generate free-

viewpoint images. Most of the current techniques for FVV are designed around a multi-

camera studio environment with controlled lighting and well-calibrated static cameras 

to perform at an acceptable quality [49].  

A similar system with the multi-camera array configurations has also been developed 

for light field imaging, which rely solely on epipolar geometry. Light fields were 

introduced into computer graphics in 1996 by Marc Levoy and Pat Hanrahan [6]. The 

main proposed application of light fields was Image Based Rendering (IBR), which 

computes new views of a scene from pre-existing views without the need for scene 

geometry. It uses a geometric interpretation of the relationship between the source 
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images to obtain correspondence between pixels and does not contain any information 

about the specifics of the scene geometry. It depends on dense sampling and the 

synthetic views that can be produced are constrained to lie close to the original camera 

locations.  

The light field imaging system has been implemented with multi-camera array 

configuration by the Stanford Computer Graphic Laboratory in their project of the 

Stanford Multi-Camera Array, which is shown in Figure 6.1. In particular, if the 

cameras are packed close together, then the system effectively functions as a single-

centre-of-projection synthetic camera. It can be configured to provide unprecedented 

performance along one or more imaging dimensions, such as resolution, signal-to-noise 

ratio, dynamic range, depth of field, frame rate or spectral sensitivity. If the cameras are 

placed further apart, then the system functions as a multiple-centre-of-projection 

camera, and the data it captures is called a light field [6, 159]. The particular interests in 

their project are novel methods for estimating 3D scene geometry from the dense 

imagery captured by the array, and novel ways to construct multi-perspective 

panoramas from light fields. These techniques have potential applications in scientific 

imaging, remote sensing, underwater photography, surveillance and cinematic special 

effects.  

  
(a) The 128 video cameras are arranged 2 
inches apart to simulate a single camera  

with an aperture 3 feet wide. 

(b) The camera attached with telephoto 
lenses to create a very high-resolution 
video camera up to 6,000 pixels wide. 

Figure 6.1: Multi-camera array configuration by the Computer Graphic Laboratory, Stanford 
University 

The main interest in the multi-camera array configuration is increased with the reducing 

costs of the digital cameras. However, more cameras require complex camera 

calibration and configuration to ensure the cameras can be integrated and work 

seamlessly. The large number of cameras for multi-view imaging needs high 
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processing, bandwidth and storage requirements. This will increase the additional cost 

to the system. How to make the multi-camera affordable in typical environments? By 

using a small number of cameras, can we create a ‘virtual’ camera that can be viewed as 

if there is an extra camera attached to it? The cameras in the multi-camera system are 

arranged along the horizontal and vertical baselines as it has been specifically 

developed for dense imagery. Based on the example in FVV and light-field imaging, it 

clearly shows a high number of cameras required for the image and video acquisition 

for both of the system. Therefore, our research work is to provide a multi-camera 

system of sufficient images by reducing the number of cameras required for image 

acquisition, while maintaining the quality of the virtual view synthesis images. This is 

one of the main contributions in the MLVS algorithm by creating virtual multi-view 

images for a minimal number of multi-cameras array configurations.  

The basic 4D (x, y, Vx, Vy) multi-camera array configuration, arranged in horizontal and 

vertical baselines shown in Figure 6.2(a), consists of nine cameras that produce 3x3 

views. For this case, we will identify it as group of camera array (GCA). The MLVS 

algorithm will create the inter-view ‘virtual’ cameras for the similar camera array 

configuration as illustrated in Figure 6.2(b) to simulate the light-field imaging and FVV 

application. With this approach, only four cameras are required to capture the full nine 

views for the light field and FVV while maintaining the quality of the synthesis view 

images. The baseline camera ratio, β between the left-right and upper-lower camera 

pairs is used to create the virtual camera views location. Multiple views can be 

synthesized between the cameras to produce a 4D dense camera array configuration 

with less cost and required cameras.   

  
(a) Multi-camera array configuration with 9 

camera views. 
(b) Multi-camera array configuration of 4 

camera views and additional 5 virtual views. 

Figure 6.2: Sample of multi-camera configuration 
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6.3 System	  Design	  Architecture	  

The system architecture for MLVS can be divided into three main categories: Level 1 to 

synthesize an image based on the horizontal stereo matching, Level 2 is responsible for 

vertical stereo matching for upper and lower images to synthesize the virtual inter-view 

image and Level 3 to create the image synthesis by using the results obtained from 

either Level 1 or 2. The system design architecture for MLVS algorithm is shown in 

Figure 6.3, distinguishing the three levels of matching and synthesis. The image view 

synthesis module (in Figure 6.4) comprises the disparity refinement, DILS algorithms 

and hole-filling techniques as presented in the Chapter 4.  

 
Figure 6.3: System design architecture for MLVS algorithm 

The matching and synthesis of Level 1 and 2 in the MLVS algorithm determines the 

inter-view image synthesis between the left-right and upper-lower views, which is along 

the real cameras configuration as illustrated in Figure 6.2(b). Meanwhile, the middle 

image view synthesis of the multi-camera array configuration can be obtained through 

MLVS Level 3, where the image matching and synthesis is based on the result from 

Level 1 or 2. If the inputs are taken from Level 1, the vertical stereo matching will be 

processed in the entire Level 3. Otherwise, the horizontal stereo matching is used to 

synthesize the images obtained from Level 2. The comparative results are based on 

subjective and quantitative evaluation, between the image matching and synthesis on 

these two outcomes shown that there are no significant differences. 

 
Figure 6.4: Image view synthesis module of MLVS algorithm 
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The outcomes of MLVS for every level in the proposed system design are illustrated in 

Figure 6.5, where it shows the three levels of matching and synthesis. The inter-view 

synthesis image in MLVS Level 1 is obtained from the Left-to-Right (UL) matching 

and DILS synthesis. From the example, the upper images for the synthesis are upper-left 

(IU,L) and upper-right (IU,R) which will produce IU(LR). The lower image pair (IL,L and 

IL,R) is used to create the new synthesis image of IL(LR) in the Level 1 of MLVS. The 

synthesized images from the Level 1 will be used as the input for MLVS in Level 3 

based on upper-lower (vertical) stereo matching and DILS synthesis to create the 

middle novel view synthesis image, Ib(UL).  

In Level 2 of the MLVS system, the vertical stereo matching is applied on image pairs 

of upper and lower for the left and right section as shown in Figure 6.5, where the 

matching is performed between IU,L to IL,L and IU,R to IL,R. The resulting synthesis 

images through this level are called IL(UL) and IR(UL), where the UL notation indicates the 

vertical matching based on upper-lower. The results based on Level 2 are used for 

MLVS Level 3, wherein the matching and synthesis is done based on left-right 

(horizontal) stereo matching and DILS synthesis for the final image, Ib(UL). 

 
Figure 6.5: The image matching and synthesis based on the three different levels of MLVS 

All the synthesis images created from Level 1 to 3 comprise the full multi-view images 

in the group of camera arrays consisting of four original real views with five ‘virtual’ 

views. As described earlier, the number of ‘virtual’ views can be increased to a number 

of images by synthesizing the images based on camera baseline ratio, 0≤β≤1. The next 

section will discuss the MLVS algorithm for every level in detail.  

 



Chapter 6 

 

 
148	  

6.3.1 Multi-Level	  View	  Synthesis	  Algorithm	  	  

The main aim of this algorithm is to create multiple virtual camera views based on four 

basic camera arrangements as a single Group Camera Array (GCA) as illustrated in 

Figure 6.6. The upper row is divided into left and right image pairs, which are IU,L for 

the upper-left image and IU,R for the upper-right image respectively. Meanwhile the 

similar configuration of left and right image is for the lower row of the camera array, 

IL,L (lower-left image) and IL,R (lower-right image). This basic configuration can be 

expanded (by horizontal or vertical) into several groups of camera array for larger 

multi-image arrays. The MLVS algorithm consists of three different phases or levels, 

which represent the newly inter-view images obtained, either for horizontal, vertical or 

middle views. The images in the GCA are assumed to be calibrated and rectified 

accordingly to speed up the matching process, where the searching is along the epipolar 

line only. 

 
Figure 6.6: Basic arrangement for the group of camera array, which consists of four images, 

obtained from four cameras views 

The main differences between the levels are the matching and synthesis directions. The 

image view synthesis module is the same for each level that includes the disparity 

refinement, depth image layer separation and synthesis as depicted in Figure 6.4. The 

detail description of image view synthesis module will not be discussed in detail as it 

was explained in Section 4.3.2 of Chapter 4.  

In the first phase, the new inter-view images are synthesized based on the Left-to-Right 

(LR) matching as illustrated in Figure 6.7. Basically, the algorithm for the first level is 

similar to normal stereo matching and image view synthesis in the DILS algorithm. For 

the proposed implementation, the SAD function is used as the similarity metric between 

the left and right stereo pair (for upper and lower images) as defined in Equation (4.5) in 
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Section 4.3.1.1. This is the horizontal stereo matching, which has been implemented in 

almost every conventional approach for the stereo matching algorithms. The disparity 

depth map is calculated based on Bidirectional Matching (BM) that consist of the Left-

to-Right Consistency Check (LRCC) technique proposed by [24]. This approach 

eliminates the occlusion and discontinuity errors from the stereo matching algorithm.  

 
Figure 6.7: The matching and synthesis for the Level 1 of MLVS 

The resulting raw disparity depth map refined to make it smoother and remove the 

noises. For this case, the median filter with size of 11x11 will be used. In median 

filtering, the neighbouring pixels are ranked according to their brightness (intensity) and 

the median value becomes the new value for the central pixel. Median filters can do an 

excellent job to reject certain types of noises, in particular, ‘shot’ or impulse noise in 

which some individual pixels have extreme values.  

The resulting disparity depth map is then used to determine the virtual inter-view image. 

The DILS algorithm is used to divide the disparity depth map into several layers 

according to their depth and distances of the object. Each layer’s visual information is 

finally interpolated to create the new virtual inter-view images between the left and 

right cameras using Equation (4.17) in Section 4.3.2.6. The intermediate view image of 

layer i is then translated according to the camera baseline ratio β as defined by Equation 

(4.18) in Section 4.3.2.7.    

A number of inter-view images can be created and synthesized by defining the camera 

baseline ratio. For example, if the new image is synthesized in the middle of left and 

right, then the β will be 0.5. More inter-view images can be synthesized as long as it 

follows the limitation of the camera baseline ratio. Additional synthesized view images 

will create more ‘virtual’ views along the matching. This will enable multiple views 
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along the inter-view image pairs for upper and lower virtual camera views. The 

intermediate view for each layer will be compiled together as a single image view 

synthesis IVS(x, y) according to Equation (4.20) in Section 4.3.2.8. 

Based on the camera array illustrated in Figure 6.7, two image view synthesis are 

created for the upper and lower rows called, IVS(upper) and IVS(lower) in the first level of 

MLVS.  Since the image synthesized is through Left-to-Right (LR) matching, we denote 

this as IU(LR) and IL(LR) for image synthesis Left-to-Right (LR) upper and lower 

respectively to differentiate the image synthesis obtained from the second level of 

MLVS. The generated inter-view image synthesis will be corrected with hole-filling 

techniques to remove the hole and cracks caused by the occlusions and translation 

processes as discussed in Section 4.3.2.9.  

 
Figure 6.8: The matching and inter-view synthesis for the Level 2 of MLVS 

The second phase, known as the MLVS Level 2 is basically the same matching and 

synthesis as described in Level 1. However, instead of obtaining the inter-view image 

between the left and right image, Level 2 focuses on the image based on the upper and 

lower image, which is known as the vertical stereo matching. For this case, the 

matching correspondence pixels found within upper and lower images for left and right 

respectively are shown in Figure 6.8. Even though the process is similar to the Left-to-

Right (LR) matching, it still requires a different approach to finding the disparity range 

and depth. In left-to-right matching, the disparity depth map image is based on disparity 

range in the image columns. However, in the Upper-to-Lower (UL) matching, the 

disparity range for the matching pixel points is based on the image row through vertical 

matching as described as follows: 

� 

SAD(x,y,d) = IU (x + i,y + j) − IL (x + i,y + d + j)
i, j=−n

n

∑          (6.1) 
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where IU(x, y) and IL(x, y) are the gray-level intensities of the upper and lower image 

respectively, the window size is nxn, and d is the disparity. After the disparity depth 

map is obtained in the MLVS Level 2, it will be refined with ULCC (Upper-Lower 

Consistency Check) that works similarly with LRCC in order to remove the occlusion 

regions. The disparity depth maps are also smoothened out using a median filter. 

Through the image view synthesis module, two pairs of inter-view image synthesis are 

generated using the camera ratio baseline, β, as shown in the Figure 6.8. The inter-view 

image synthesis based on MLVS Level 2 can be notated as IL(UL) and IR(UL) for the left 

and right image synthesis within the same camera ratio baseline. In this example, the 

new virtual image is synthesized for only one camera ratio baseline. The virtual inter-

view images can be increased between the upper and lower images by including a series 

of camera baseline ratio between 0 and 1 to provide dense camera array along the 

vertical lines. 

By setting the camera baseline ratio to a single value as β=0.5 for the GCA of the basic 

four camera arrangements (in Figure 6.6). After the MLVS Level 1 and Level 2 process, 

four pairs of new ‘virtual’ inter-view images are created on β=0.5. From the MLVS 

Level 1, the new virtual inter-view images are IU(LR) and IL(LR), which are the upper and 

lower images based on the Left-to-Right (LR) matching. By using the same approach, 

the new virtual inter-view images in the MLVS Level 2 are IL(UL) and IR(UL) that  are the 

left and right images based on the Upper-to-Lower (UL) matching. 

The Level 3 of the MLVS algorithm is used to generate the middle image in the group 

camera array. In order to synthesize the image in Level 3, either the ‘virtual’ inter-view 

image obtained in Level 1 or 2 can be used. If the outputs based on the left-to-right 

matching in Level 1 (IU(LR) and IL(LR)) are used, then the Upper-to-Lower (UL) matching 

is selected in the MLVS Level 3 as shown in Figure 6.9(a). Otherwise, if the outputs 

based on the Upper-to-Lower (UL) matching in MLVS Level 2 (IL(UL) and IR(UL)) are 

used, the Left-to-Right (LR) matching is selected as illustrated in Figure 6.9(b). Based 

on the quantitative performance obtained through the experimentation, the results based 

on the LR and UL matching in MLVS Level 3 do not provide distinct differences 

between the two approaches.  
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(a) Upper-to-Lower (UL) matching (b) Left-to-Right (LR) matching 

Figure 6.9: Level 3 MLVS algorithm 

Based on the MLVS algorithms, new ‘virtual’ inter-view images are created based on 

four basic camera array configurations. In this example, another five virtual views have 

been synthesized in between the original camera views. By defining the camera baseline 

ratio into several points, more virtual inter-view images can be created. This will 

compose the multi-image into a light-field image rendering, which is useful for free-

viewpoint image and video applications. With this approach, a large number of cameras 

for multi-view camera application can be reduced, such as in the light field imaging 

system. This approach not only reduces the cost, it also eliminates the complexity of 

camera calibration and configuration. In addition, the compression can be done mainly 

for the real camera views by using Multi-view Video Coding (MVC).  

The basic group of camera array configurations shown in Figure 6.6 can be expanded 

into a bigger system with additional camera arrangements to the horizontal or vertical 

sections as shown in Figure 6.10. The new additions must be in the same epipolar lines 

to ensure the matching pixels between the images can be obtained through the matching 

algorithm. This can be done with the camera calibration configuration and rectification 

along the cameras through the horizontal and vertical lines. In GCA 1, the system 

consists of four cameras that are labelled as m_n, where m is for the row and n for the 

column in the camera arrays configuration. The similar size of GCA expands to the 

horizontal line as illustrated in Figure 6.11, where the new extension creates the GCA 

into several groups. The similar extension can be done along the vertical line. The 

framework of MLVS holds the basic structure for the multi-camera array configurations 

to create full dense multi-camera views. The analysis for this type of camera array 

configurations will be discussed in the results and performance analysis section.  
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Figure 6.10: The group of camera array can be expanded horizontally or vertically depending 

on the required number of virtual inter-view cameras 

 

 
Figure 6.11: Expansion of group of camera array (GCA) with additional camera configuration 

along the horizontal lines 

6.3.2 Multi-Camera	  Array	  Datasets	  

In this work, we are using the sample of multi-camera datasets provided by the Stanford 

Light field research group on their Light Field Multi-Camera Array [33, 34]. The 

proposed method in our research with MLVS is to create a complete view of the multi-

camera images for a sparsely cameras array to emulate the complete cameras array that 

are placed closely together. For the experimental test, the real cameras are selected from 

the Stanford multi-camera datasets that are placed at an intermediate spacing, such as 

from camera 1 to 5, 5 to 10, 10 to 15 and so on. As an example, the matching of the 

image pairs will be done along the camera 1 as the reference (left) and camera 5 as the 

target (right). The disparity depth map obtained with this pixel correspondence stereo 

matching is used in the DILS algorithm to create virtual inter-view images along camera 

1 to 5, which is the ‘new view’ for camera 2, 3 and 4. Similar procedure executed for 

camera pair 5-10, 10-15 and others along the horizontal and vertical arrays. The 

synthesized inter-view images created by the DILS algorithms are compared with the 
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original images in the multi-camera arrays data set using signal-to-noise ratio and 

Structural SIMilarity (SSIM) index [165]. 

Two data sets from the Stanford Multi-Camera Array are used to test the MLVS 

algorithm, which are Cookies (21x5 views) and Lego (17x17 views). The sample of 

image of their first camera is shown in Figure 6.12. 

  
(a) Cookies (b) Lego 

Figure 6.12: Sample of the first image camera from Stanford Multi-Camera Array 

 

6.4 Experimental	  Results	  

We evaluate our algorithm using the Stanford datasets to compare with conventional 

inter-view synthesis methods. For this evaluation, we used several β values in the DILS 

synthesis to create multiple virtual inter-view images along the horizontal and vertical 

lines of the multi-camera array. The parameters of the evaluation are tabulated in Table 

6.1 for Cookies and Lego datasets. The first level determines the disparity depth map 

between the left and right image based on the selected camera index, such as 1-6 for 

Cookies and 1-5 for Lego data. With this information, four newly virtual inter-view 

images are created along the horizontal line of Cookies data between camera 1 and 6. 

Meanwhile, three virtual inter-view images were synthesized for Lego in the first level. 

In the second level, the matching and synthesis were applied between the upper and 

lower image from the camera index 1 and 5. Three virtual inter-view cameras were 

synthesized using camera baseline ratio, β, of 0.25, 0.5 and 0.75 to allocate the inter-

view images at camera location 2, 3 and 4 respectively. 
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Table 6.1: Parameter of Cookies and Lego datasets for stereo matching and synthesis in DILS 
algorithm 

Parameter Cookies Lego 
Size 21x5 17x17 

Left Right Left Right 
Level 1: Horizontal 

1 6 1 5 
Disparity range 43 35 

β 0.2 0.4 0.6 0.8 0.25 0.5 0.75 
Inter-view camera  2 3 4 5 2 3 4 

Upper Lower Upper Lower Level 2: Vertical 
1 5 1 5 

Disparity range 30 34 
β 0.25 0.5 0.75 0.25 0.5 0.75 

Inter-view camera 2 3 4 2 3 4 

The full inter-view images were synthesized based on Level 1, 2 and 3 in the MLVS for 

Cookies datasets, as illustrated in Figure 6.13, for the Group of Camera Array (GCA) 1. 

During Level 1 matching and synthesis, the matching and synthesis is done for left-to-

right for the upper and lower rows, which are 1_1 (upper left, IUL) with 1_6 (upper right, 

IUR) and 5_1 (lower left, ILL) with 5_6 (lower right, ILR) respectively. The DILS 

algorithm along with this matching is composed of four inter-view images for each row 

based on camera baseline β at 0.2, 0.4, 0.6 and 0.8 respectively. The second level in the 

MLVS is to synthesize the inter-view image along the vertical line, where the disparity 

depth map and synthesis images are created with upper and lower images.  

 
Figure 6.13: Multi-level view synthesis (MLVS) for Group of Camera Array (GCA) 1 in Cookies 

datasets  
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As shown in Figure 6.13, Level 2 matching and synthesis are based on the images 

between 1_1 (upper left, IUL) with 5_1 (lower left, ILL) and 1_6 (upper right, IUR) with 

5_6 (lower right, ILR).  With the value of β set to 0.25, 0.5 and 0.75, three inter-view 

images are synthesized along the row lines between the upper and lower region. This 

inter-view images are known as IL(UL), β and IR(UL), β , where UL refers to the Upper-to-

Lower (UL) matching process for left and right images. The inter-view images based on 

the Left-to-Right (LR) matching are notated as IU(LR), β and IL(LR), β for the upper and 

lower inter-view images. The inter-view images obtained in Level 1 and 2 will be used 

to synthesize the images through Level 3 composition in the middle region for the group 

of the cameras array. 

To showcase the results of the MLVS algorithm, the section is divided into two main 

parts: Cookies and Lego datasets. The first data compilation is based on Cookies multi-

camera datasets, which consists of 21x5 views. For simplicity, the inter-view 

synthesized images shown in the results are taken from the first group of the camera 

array that is within 6x5 views starting from the first column of the camera arrays. The 

whole camera array will be synthesized for the next group of camera array by extending 

the MLVS into the next column of the camera array. The inter-view synthesized images 

in the MLVS are compared with the conventional interpolation view method. 

The second data is based on the Lego multi-camera datasets with 17x17 views. The 

evaluation for these dataset is based on the group of camera arrays of 5x5 and 9x9. The 

comparison of the different group displayed and analyzed using PSNR and SSIM 

metrics. 

 

6.5 Cookies	  Datasets	  Analysis	  

The first part of the analysis is based on the Cookies datasets originally with 21x5 

views. For the MLVS experimental, only 5x2 real camera views of this datasets are 

used to reproduce 21x5 views. The selected views along with the column are 1, 6, 11, 

16 and 21 for the first and last row in the camera arrays. 

6.5.1 MLVS:	  Level	  1	  

The MLVS of Level 1 is based on left-to-right matching between the reference and 
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target image pairs. Figure 6.14(a) and Figure 6.14(b) shows the original left image at 

camera 1 as the reference and right image at camera 6 as the target image in the first 

row of camera arrays. Based on the stereo matching with the image pairs, the disparity 

depth map obtained is shown in Figure 6.14(c). The histogram distribution of the 

disparity depth map is displayed in Figure 6.14(d) a large amount of low disparity 

values because of the dark background in the image, which do not have much texture 

information. 

  
(a) Original left image of camera 1_1 (b) Original right image of camera 1_6 

  
(c) Disparity depth map (d) Histogram distribution of the disparity 

depth map 

Figure 6.14: Cookies stereo image pair in the first row of the group camera array datasets. 

Figure 6.15(a) shows the sample of inter-view images obtained with the conventional 

interpolation method at β=0.4, which is located at camera 3 in the first row in the multi-

camera Cookies datasets.  The SSIM image map for this approach is shown in Figure 

6.15(b). The inter-view image at the same location is synthesized using MLVS at Level 

1 is shown in Figure 6.15(c) with the SSIM map in Figure 6.15(d). The higher index 

value of SSIM (as discussed in Section 3.7.2) indicates the higher interpolated image is 

similar to the original. In this result, the SSIM for MLVS at Level 1 is 0.93 compared to 

the conventional method, which is 0.85. Based on the subjective evaluation in the SSIM 

image map, the dark regions, which define the errors are appeared fewer in the MLVS 
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output (Figure 6.15(d)) compared with the conventional method (Figure 6.15(b)).  

 

 
 

→  

 

(a) Synthesized image using the 
conventional interpolation method of 

inter-view image at β=0.4 

 (b) SSIM map for conventional method 
(SSIM=0.85) 

 

 
 

→  

 

(c) Synthesized image using MLVS with 
DILS of inter-view image at β=0.4 

 (d) SSIM map for MLVS method 
(SSIM=0.93) 

Figure 6.15: The comparison of conventional interpolation and MLVS (Level 1) method. The 
sample of inter-view image synthesized at β=0.4 (camera 3) for the first row of Cookies 

datasets and the structural similarity index map. 

The full quantitative performance in PSNR and SSIM for the first level of MLVS is 

shown in Table 6.2. The value of β also indicates the camera location for the left-to-

right image pairs, which is between camera 1 and 6. The table shown is for the MLVS 

in Level 1, which is along the row at 1 and 5 for the Cookies multi-camera datasets. The 

PSNR and SSIM obtained for the MLVS method are higher compared to the 

conventional interpolation method. The mean squared error (MSE) is lower for every 

inter-view images location by using the MLVS. Full matching and synthesis for the 

whole group of camera arrays in Cookies dataset in Level 1 is shown in Figure 6.16, 

which shows the graph of PSNR along the first and fifth row. Figure 6.17 is the SSIM 

for the first row to compare the results on conventional interpolation and the MLVS 

method. The SSIM results generated by using MLVS constantly higher, which is more 

than 0.9. 
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Table 6.2: Comparison results for the conventional Linear Interpolation (LI) and the MLVS 
method (for Level 1) along the row 1 and 5 in a group of camera array. 

Original	  
image	  

Camera	  
ratio	  (β)	   2(0.2)	   3(0.4)	   4(0.6)	   5(0.8)	  

Left-‐to-‐
Right	  

Method	   LI	   MLVS	   LI	   MLVS	   LI	   MLVS	   LI	   MLVS	  

1_1	  to	  1_6	   PSNR	   35.94	   36.78	   35.88	   38.11	   35.79	   39.19	   35.73	   39.21	  

	   MSE	   16.55	   13.64	   16.77	   10.06	   17.13	   7.83	   17.37	   7.8	  

	   SSIM	   0.89	   0.93	   0.85	   0.93	   0.83	   0.92	   0.8	   0.91	  

5_1	  to	  5_6	   PSNR	   35.45	   36.14	   35.65	   38.11	   35.59	   38.98	   35.06	   37.82	  

	   MSE	   18.53	   15.83	   17.71	   10.05	   17.93	   8.22	   20.28	   10.74	  

	   SSIM	   0.88	   0.93	   0.84	   0.94	   0.82	   0.92	   0.79	   0.91	  

	  

	  

  
(a) PSNR of Row 1 (b) PSNR of Row 5 

Figure 6.16: PSNR results for the Level 1 of the MLVS using Left-to-Right (LR) matching DILS 
algorithm compared to the conventional inter-view interpolation for the first and fifth row of 

Cookies datasets. 

 

 
Figure 6.17: Comparison SSIM results for the Level 1 of the MLVS and the conventional inter-

view interpolation for the first row of Cookies datasets. 
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6.5.2 MLVS:	  Level	  2	  

The next results will be on the second level of the MLVS which is to find the pixel 

correspondence matching and the inter-view images along the column. MLVS Level 2 

is based on Upper-to-Lower (UL) matching between the reference and the target image 

pairs. Figure 6.18(a) and Figure 6.18(b) shows the original upper left image at camera 1 

as the reference and lower left image at camera 5 as the target image in the first column 

of camera arrays. Based on the Upper-Lower (UL) matching with the image pairs, the 

resulting disparity depth map is shown in Figure 6.18(c). The histogram distribution of 

the disparity depth map is displayed in Figure 6.18(d). 

  
(a) Original upper left image of camera 1_1 (b) Original lower left image of camera 5_1 

  
(c) Disparity depth map (d) Histogram distribution of the disparity 

depth map 

Figure 6.18: Cookies stereo image pair in the first column of the group camera array datasets. 

As described earlier, the matching is between the upper and lower images on camera 

location 1 (upper) and 5 (lower). Figure 6.19(a) shows the sample of inter-view images, 

which is obtained using conventional interpolation method at β=0.5, which is located at 

camera location3 in the first column in the multi-camera Cookies datasets.  The SSIM 

image map for this approach is shown in Figure 6.19(b). The inter-view image at the 

same location synthesized by using MLVS at Level 2 is shown in Figure 6.19(c) with 



Chapter 6 

 

 
161	  

the SSIM map in Figure 6.19(d). In the SSIM map obtained with a conventional 

interpolation method, the darker region appeared in the boundaries of the objects that 

are not similar to the original image. Therefore, the SSIM is quite lower at 0.87. 

Meanwhile, the SSIM map by using MLVS Level 2 through the DILS algorithm has 

shown that the inter-view image gives a white region in almost all areas. However, 

some border are slightly darker indicating some errors eventhough the SSIM=0.92, 

which is higher than the result obtained in the conventional inter-view interpolation 

method. These errors occurred due to the occlusion and mismatching on the 

interpolation. The errors can be corrected by replacing the basic upper-to-lower stereo 

correspondence pixel matching with a better approach of matching algorithms. As 

discussed in the previous chapter, the DILS algorithm, which was adapted in the 

MLVS, can be integrated to any stereo matching algorithms. 

 

 
 

→  

 
(a) Synthesized image using the 

conventional interpolation method of 
inter-view image at β=0.5 

 (b) SSIM map for conventional method 
(SSIM=0.87) 

 

 
 

→  

 
(a) Synthesized image using MLVS with 

DILS of inter-view image at β=0.5 
 (b) SSIM map for MLVS method 

(SSIM=0.92) 

Figure 6.19: The comparison of conventional interpolation and MLVS (Level 2) method. The 
sample of inter-view image synthesized at β=0.5 (camera 3 in column 1) for the third row of 

Cookies datasets and the structural similarity index map. 
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The full quantitave performance in PSNR and SSIM for the Level 2 of MLVS is shown 

in Table 6.3. The value of β also indicates the camera location between the upper-to-

lower images, which is between camera 1 and 5. The table shown is for the MLVS in 

Level 2, which is along the column 1 for the Cookies multi-camera datasets. The PSNR 

and SSIM obtained for the MLVS method are higher compared to the conventional 

interpolation method. The mean squared error (MSE) is lower for every inter-view 

image location by using the MLVS. The graphs of PSNR for the full group of camera 

arrays in Cookies dataset of Level 2  are shown in Figure 6.20. Based on the results, it is 

shown that the MLVS outperforms the conventional inter-view interpolation method, 

which could provide similar and good inter-view images when are compared with the 

original images. This is illustrated by the SSIM graphs in Figure 6.21.  

Table 6.3: Results comparison between conventional Linear Interpolation (LI) and MLVS 
method (for level 2) along the column 1 in a group of camera array. 

Original	  image	   Camera	  (β)	   2(0.25)	   3(0.5)	   4(0.75)	  

Upper-‐to-‐lower	   Method	   LI	   MLVS	   LI	   MLVS	   LI	   MLVS	  

1_1	  to	  5_1	   PSNR	   36.34	   38.65	   36.29	   38.76	   35.93	   39.43	  

	   MSE	   15.11	   8.87	   15.28	   8.66	   16.6	   7.42	  

	   SSIM	   0.89	   0.94	   0.87	   0.92	   0.85	   0.93	  

	  

 
Figure 6.20: PSNR results for the Level 2 MLVS using Upper-to-Lower (UL) Matching DILS 

compared to the conventional linear interpolation PSNR of Cookies datasets. 
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Figure 6.21: SSIM results of Level 2 MLVS compared with the SSIM results of the conventional 

linear interpolation for the first row of Cookies datasets. 

 

6.5.3 MLVS:	  Level	  3	  

The final stage of the MLVS is the level 3 matching and synthesis, which comprises the 

inter-view images in the middle of the group camera arrays. Level 3 of the MLVS 

algorithm, uses either of the image view synthesis obtained from Levels 1 or 2 in the 

previous stage. Table 6.4 shows results between the matching based on Left-to-Right 

(LR) and Upper-to-Lower (UL) of the Level 3 of the MLVS algorithm for the third row 

as shown in Figure 6.22. From the sample of results in the third row, it can be seen that 

the image view synthesis based on the left-to-right and upper-to-lower matching and 

synthesis do not show significant differences. However, the resulting PSNR and SSIM 

for the third level of MLVS are slightly lower compared to the results of Levels 1 or 2. 

This is expected since the inter-view image syntheses are generated using the synthesis 

image obtained from the Level 1 and 2. Given this fact, the inter-view image syntheses 

in Level 3 are showing acceptable quality, which do not contain too many pixel errors. 

The sample of image synthesis for the third row are obtained in Level 3 by using left-to-

right and upper-to-lower MLVS are shown in Figure 6.23, with the SSIM map images. 
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Figure 6.22: The inter-view image synthesis along the third row in the MLVS Level 3 for the 

Cookies multi-camera datasets (group camera array 1). 

Table 6.4: Comparison results between the use of Left-to-Right (LR) matching and the use of the 
Upper-to-Lower (UL) matching in the MLVS method (Level 3) for the row 3 in a group of 

camera array. 

Original	  image	   Camera	  (β)	   2(0.2)	   3(0.4)	   4(0.6)	   5(0.8)	  

Row	  3	   Method	   UL	   LR	   UL	   LR	   UL	   LR	   UL	   LR	  

GCA	  1	   PSNR	   35.53	   35.54	   36.42	   36.48	   37.38	   37.3	   37.1	   37.08	  

(3_1	  to	  3_6)	   MSE	   18.22	   18.17	   14.83	   14.61	   11.9	   12.11	   12.68	   12.75	  

Col:	  2-‐5	   SSIM	   0.86	   0.85	   0.86	   0.85	   0.84	   0.84	   0.83	   0.83	  

	  

 

 
 

→  

 
(a) MLVS Level 3 image view synthesis 

based on left-to-right (LR) matching 
 (b) SSIM map for the LR MLVS Level 3 

(SSIM=0.85) 

 

 
 

→  

 
(c) MLVS Level 3 image view synthesis 

based on upper-to-lower (UL) 
matching 

 (d) SSIM map for the UL MLVS Level 3 
(SSIM=0.86) 

Figure 6.23: The comparison of the MLVS (Level 3) algorithm by using Left-to-Right (LR) and 
Upper-to-Lower (UL) matching approaches. The sample images are for the third row and third 

column (3, 3) of the Cookies multi-camera datasets. 
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The PSNR results obtained in the Level 3 of MLVS based on the left-to-right and 

upper-to-lower view synthesis are plotted in Figure 6.24. The three different rows (2, 3 

and 4) are matched and synthesized by Left-to-Right (LR) or Upper-to-Lower (UL) 

images for the group of camera array 1 (based on the column 1 to 6). The PSNR and 

SSIM plots of MLVS for the whole range of row 3 in the Cookies multi-camera datasets 

are shown in Figure 6.25, which are compared to the conventional inter-view 

interpolation methods.  

 
Figure 6.24: The comparison of PSNR for the Level 3 of the MLVS by using Upper-to-Lower 

(UL) and Left-to-Right (LR) Matching in the group of array 1. 

 

  
(a) PSNR of inter-view synthesis image at 

Row 3 
(b) SSIM index of inter-view synthesis image 

at Row 3 for conventional linear 
interpolation and DILS algorithm 

Figure 6.25: Results on PSNR and SSIM for the MLVS at Level 3 compared with the 
conventional linear interpolation. The data sampled for the third row of Cookies multi-camera 

datasets. 
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6.6 Lego	  Datasets	  Analysis	  

The next algorithm evaluation is based on the Lego multi-camera datasets originally 

with 17x17 views. For the MLVS experiment, only 5x5 real camera views of this 

datasets are used to reproduce the 17x17 views. The selected views for matching and 

synthesis are 1, 5, 9, 13 and 17 along the rows and columns. For this datasets, the 

camera arrays are divided into several groups of camera arrays. In the first group, it 

consists of 5x5 views for the first block of camera arrays, which is selected from the 

camera views along with the row 1-5 and column 1-5.  

Figure 6.26(a) and Figure 6.26(b) show the original left image at camera 1 as the 

reference, and the right image at camera 5 as the target image in the first row of the 

camera arrays. Based on the stereo matching with the image pairs, the resulting 

disparity depth map is shown in Figure 6.26(c). The histogram distribution of the 

disparity depth map displayed in Figure 6.26(d) has a large amount for lower disparity 

range, because of the dark background in the disparity depth map and not much 

information on the texture. 

  
(a) Left image of Lego from camera 1_1 (b) Right image of Lego from camera 1_5 

  
(c) Disparity depth map (d) Histogram distribution of the disparity 

depth map 

Figure 6.26: Lego stereo image pair in the first row of the group camera array datasets. 
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The disparity depth map is obtained from the left-to-right matching used the DILS 

algorithm in order to separate the layers of depth individually based on the histogram 

distribution. Within each layer, the new view interpolation image is created based on the 

disparity level and camera baseline ratio between left and right image pairs. Finally, the 

layers are flattened into a single image.  

6.6.1 MLVS	  Level	  1	  

In the first phase of MLVS, the image synthesis view contains holes along the occluded 

and boundary regions as shown in Figure 6.27(a). The errors in the inter-view image 

can be seen by comparing them with the original image. With the structural similarity 

metric, the SSIM is 0.76 (Figure 6.27(b)). This affects the image structure and it is not 

reliable for the second level of MLVS. Therefore, it is necessary for the MLVS image 

synthesis to be processed with a hole-fillings algorithm. Any holes within the image 

will be filled with boundary values. The new MLVS inter-view image is shown in 

Figure 6.27(c). The hole-filling procedure efficiently improved the MLVS inter-view 

image to SSIM=0.97 as shown in Figure 6.27(d). 

 

 

→  

 
(a) MLVS image synthesis without hole-

fillings of inter-view image at β=0.5 
 (b) SSIM map for MLVS with hole 

(SSIM=0.76) 

 

 
 

→  

 
(c) MLVS image synthesis with hole-
fillings of inter-view image at β=0.5 

 (d) SSIM map for MLVS with hole-
fillings (SSIM=0.97) 

Figure 6.27: The comparison of MLVS (Level 1) without/with hole-filling algorithms. The 
sample of inter-view image and the structural similarity index map synthesized at β=0.5 

(camera in row 1 column 3) for the Lego datasets. 
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Table 6.5 contains a sample of the results for the group of camera array 1, which is 

along the first and fifth rows in the Lego multi-camera datasets. The MLVS Level 1 is 

based on the left-to-right matching and synthesis, which is 1-5 for this example. The 

new image synthesis created with camera baseline ratio β=0.25, 0.5, 0.75 that represent 

the original camera location at column 2, 3 and 4 respectively in the first and fifth rows. 

The data has been obtained with the expanded matching and synthesis for the whole 

Lego datasets. The results illustrated as the graphs in Figure 6.28 for the PSNR and 

SSIM along the row 1 and 5. 

The MLVS without the hole-filling techniques under-perform compared to the MLVS 

with the hole-filling in terms of the PSNR and the SSIM indices. While the MLVS 

without hole-filling fluctuates along the row, the improved version of MLVS with hole-

filling provides a constant and good performance of PSNR and SSIM. The next section 

will discuss the MLVS in Level 2, which is the matching for the upper and lower 

images (or views). 

Table 6.5: Comparison results of MLVS (Level 1) with and without using the hole-filling 
algorithms along the row 1 and 5 in a group of camera array.  

Original	  image	   Camera	  (β)	   2(0.25)	   3(0.5)	   4(0.75)	  

Left-‐to-‐right	   Method	   Hole	  
Hole-‐
filled	  

Hole	  
Hole-‐
filled	  

Hole	  
Hole-‐
filled	  

1_1	  to	  1_5	   PSNR	   36.27	   39.57	   35.2	   39.01	   34.19	   38.75	  

	   MSE	   15.36	   7.17	   19.67	   8.16	   24.8	   8.66	  

	   SSIM	   0.76	   0.97	   0.76	   0.97	   0.71	   0.96	  

5_1	  to	  5_5	   PSNR	   35.5	   38.46	   34.52	   38.15	   33.58	   37.93	  

	   MSE	   18.34	   9.28	   22.98	   9.96	   28.53	   10.48	  

	   SSIM	   0.74	   0.96	   0.74	   0.96	   0.69	   0.95	  
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(a) PSNR (b) SSIM 

Figure 6.28: PSNR and SSIM of MLVS (Level 1) without and with using hole-filling algorithm 
in the image view synthesis at row 1 and 5 for Lego multi-camera datasets. 

6.6.2 MLVS	  Level	  2	  

The MLVS Level 2 is based on upper-to-lower matching between the reference and 

target image pairs, where Figure 6.29(a) and Figure 6.29(b) are the original upper left 

image (camera 1 as the reference) and lower left image (camera 5 as the target image) 

respectively in the first column of camera arrays. The image pairs are matched with the 

upper-lower matching and the disparity depth map obtained is shown in Figure 6.29(c). 

The histogram distribution of the disparity depth map is displayed in Figure 6.29(d). 

Similar to the MLVS Level 1, the disparity depth map is separated into several layers 

via the DILS algorithm to synthesize the inter-view interpolation image within the 

layers. When all the layers have been interpolated, the layers are flattened into a single 

image as the new view synthesis image. The samples of inter-view image synthesis with 

β=0.5 are shown in Figure 6.30. The β=0.5 represents the original camera location at 

column 1, row 3 with the upper-to-lower matching (1-1 to 5-1).  In the matching and 

synthesis of (1-5 to 5-5), β=0.5 indicates the original camera location at the same row 

but different column, which is at 5. 

The inter-view image synthesis and SSIM in Figure 6.30(a) and Figure 6.30(b) shows 

that the image suffers with huge errors due to the holes. The holes appeared because of 

the occlusion and boundary region in the disparity depth map. The translation process of 

DILS also contributes to this hole. Therefore, the hole-fillings method is essential to 

improve the appearance of the image synthesis as shown in Figure 6.30(c). The new 

image provides a high SSIM index, which is 0.95 (in Figure 6.30(d)). 
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(a) Upper left image of Lego camera 1_1 (b) Lower left image of Lego camera 5_1 

  
(c) Disparity depth map (d) Histogram distribution of the disparity 

depth map 

Figure 6.29: Lego stereo image pair in the first column of the group camera array datasets 

Table 6.6 is almost similar to the results presented in Table 6.5. Instead of representing 

results for the left-to-right matching, this table is specifically for the matching between 

upper-to-lower images. The image matching is along the upper-left (1-1) and lower-left 

(5-1). It also provides the matching for the upper-right (1-5) and lower-right (5-5). This 

selection of data can be grouped as the group of camera array 1 in the Lego multi-

camera datasets. The new image syntheses created with β=0.25, 0.5 and 0.75 represent 

the original camera locations at rows 2, 3 and 4 respectively.  
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→  

 
(a) MLVS image synthesis without hole-

fillings of inter-view image at β=0.5 
 (b) SSIM map for MLVS without hole-

fillings (SSIM=0.81) 

 

 
→  

 
(c) MLVS image synthesis with hole-
fillings of inter-view image at β=0.5 

 (d) SSIM map for MLVS with hole-
fillings (SSIM) 

Figure 6.30: The comparison of MLVS (Level 2) with and without using the hole-filling method. 
The sample of inter-view image and the structural similarity index map synthesized at β=0.5 

(camera in row 3 of column 1) for the Lego datasets 

 

Table 6.6: Results comparison of MLVS (Level 2) with and without using the hole-filling 
methods along the column 1 and 5 in a group of camera array. 

Original	  image	   Camera	  (β)	   2(0.25)	   3(0.5)	   4(0.75)	  

Upper-‐to-‐lower	   Method	   Hole	  
Hole-‐
filled	  

Hole	  
Hole-‐
filled	  

Hole	  
Hole-‐
filled	  

1_1	  to	  5_1	   PSNR	   36.49	   37.59	   35.9	   38.11	   34.91	   37.38	  

	   MSE	   14.58	   11.33	   16.71	   10.04	   20.99	   11.89	  

	   SSIM	   0.84	   0.95	   0.81	   0.95	   0.77	   0.93	  

1_5	  to	  5_5	   PSNR	   36.17	   37.29	   35.54	   37.78	   34.75	   37.39	  

	   MSE	   15.7	   12.13	   18.15	   10.84	   21.8	   11.85	  

	   SSIM	   0.83	   0.95	   0.79	   0.94	   0.75	   0.92	  

	  

The full results along columns 1 and 5 for the Lego multi-camera datasets plotted in 

Figure 6.31 for the PSNR and SSIM. The graphs show the results between the MLVS 

with and without using the hole-filling technique. As illustrated in the graphs of the 

PSNRs and SSIMs, the results of MLVS with hole-filling outperform the image 

synthesized without the hole-filling techniques. In addition, the SSIM relatively 

constant more than 0.9 index, which indicates that the synthesized inter-view images are 
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similar to the original images.  The next part is on the MLVS Level 3, which concludes 

the whole algorithm by obtaining the image synthesis in the middle part of the group of 

camera array. 

  
(a) PSNR (b) SSIM 

Figure 6.31: PSNR and SSIM of MLVS (Level 2) without and with hole-fillings in the image 
view synthesis at column 1 and 5 for Lego multi-camera datasets. 

6.6.3 MLVS	  Level	  3	  

Level 3 is the final part of the MLVS algorithm that corresponds to the synthesis of the 

middle image between the upper-lower and left-right images. The image synthesis in 

Level 3 is created based on the results obtained either from Level 1 or 2. Since there is 

no significant difference within the image quality either by using Level 1 or 2 results, 

the MLVS in the Level 3 uses left-to-right matching and synthesis for the DILS 

implementation. Figure 6.32(a) shows the sample of image synthesis based on β=0.5 for 

the camera at row 7, column 3. The image contains errors (holes) due to the occlusion 

and translation along the layers in the DILS algorithm. The SSIM for this image is quite 

low, which is 0.72 (as shown in Figure 6.32(b)). The image improved with the hole-

filling technique as shown in Figure 6.32(c). Additionally, the SSIM index also 

increased to 0.92, which removes all the black regions as errors in the SSIM map 

(Figure 6.32(d)). 

Table 6.7 presents the details on every inter-view image synthesis for β=0.25, 0.5, 0.75 

(image that located in camera column 2, 3 and 4 respectively). The table shows a 

sample results for the synthesized images in rows 7 and 11. Generally, the error 

resulting from the MLVS without hole-filling techniques is high compared with the 

corrected images.  
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→  

 
(a) MLVS image synthesis without hole-

fillings of inter-view image at β=0.5 
 (b) SSIM map for MLVS without hole-

fillings (SSIM=0.72) 

 

 
→  

 
(c) MLVS image synthesis with hole-
fillings of inter-view image at β=0.5 

 (d) SSIM map for MLVS with hole-
fillings (SSIM=0.92) 

Figure 6.32: The comparison of MLVS (Level 3) with and without hole-fillings method. The 
sample of inter-view image and the structural similarity index map synthesized at (camera in 

row 7 of column 3) for the Lego datasets. 

 

Table 6.7: Results comparison of MLVS (Level 3) with and without the hole-filling methods 
along the row 7 and 11 in a group of camera array. 

Original	  image	   Camera	  (β)	   2(0.25)	   3(0.5)	   4(0.75)	  

Row	   Method	   Hole	  
Hole-‐
filled	  

Hole	  
Hole-‐
filled	  

Hole	  
Hole-‐
filled	  

7_1	  to	  7_17	   PSNR	   34.9	   37.17	   34.05	   36.89	   33.21	   36.81	  

	   MSE	   21.03	   12.46	   25.62	   13.3	   31.05	   13.55	  

	   SSIM	   0.72	   0.92	   0.72	   0.92	   0.67	   0.92	  

11_1	  to	  11_17	   PSNR	   34.82	   36.86	   34	   36.5	   33.28	   36.65	  

	   MSE	   21.45	   13.41	   25.9	   14.59	   30.53	   14.08	  

	   SSIM	   0.72	   0.91	   0.72	   0.91	   0.67	   0.91	  

	  

The full data of rows 7 and 11 for MLVS (Level 3) is plotted in the PSNR and SSIM 

graph as shown in Figure 6.33. It shows that the inter-view images corrected with hole-

filling techniques provide good results compared to the images without the hole-fillings. 

The PSNR and SSIM of the corrected inter-view images are consistently stable from 

virtual camera location 2 to the maximum, which is 17. Meanwhile, the inter-view 

image synthesis with holes and errors fluctuate along the horizontal multi-camera 

arrays. It signifies that the hole-filling method is necessary for the MLVS in each level 
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of the implementation.  

  
(a) PSNR (b) SSIM 

Figure 6.33: PSNR and SSIM of MLVS (Level 3) without and with using hole-filling algorithm 
in the image view synthesis at row 7 and 11 for Lego multi-camera datasets. 

 

6.7 Results	  Evaluation	  with	  Different	  Baseline	  Images	  

In this evaluation, the Lego data is compared with different groups of arrays. 

Previously, the group consists of 5x5 views for the first block of camera arrays. What 

happens if we increase the disparity baseline, from 1-to-5 to 1-to-9? For this case, we 

conduct another experiment based on a group of camera arrays for 9x9 views in the first 

block for the similar Lego multi-camera datasets.  

6.7.1 MLVS	  Level	  1	  

Figure 6.34 presents the inter-view image syntheses between the matching of 1-to-5 and 

1-to-9 baseline matching. The synthesized images between the two approaches are quite 

similar. However, the SSIM map indicates the MLVS by 1-to-9 baseline matching 

contained errors (as highlighted in the dark regions) with SSIM=0.88. Similar inter-

view images synthesized by the 1-to-5 baseline matching yield better results, which is 

0.95 for the SSIM index. Table 6.8 comprised the differences on the PSNR, MSE and 

SSIM for the baselines 1-to-5 and 1-to-9 in rows 1 and 9. The comparison was made for 

three inter-view image cameras located at column 3, 7 and 9. Based on these results, it 

shows that the increment of baseline matching reduces the accuracy of the image 

synthesis.  
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→  

 
(a) MLVS image synthesis using the  

1-to-5 LR baseline matching 
 (b) SSIM map for MLVS using the  

1-to-5 LR baseline matching 
(SSIM=0.95) 

 

 
→  

 
(c) MLVS image synthesis using the  

1-to-9 LR baseline matching 
 (d) SSIM map for MLVS using the  

1-to-9 LR baseline matching 
(SSIM=0.88) 

Figure 6.34: The comparison of the MLVS (Level 1) using the 1-to-5 and 1-to-9 Left-Right (LR) 
baselines matching. The sample of inter-view image and the structural similarity index map 

synthesized at (camera in row 9 of column 3) for the Lego datasets. 

 

Table 6.8: Comparison results of MLVS (Level 1) using the 1-to-5 and 1-to-9 Left-Right (LR) 
baselines matching along the rows 1 and 9 

Original	  image	  
Camera	  
(Column)	  

3	   7	   9	  

Row	   Matching	   1-‐to-‐5	   1-‐to-‐9	   1-‐to-‐5	   1-‐to-‐9	   1-‐to-‐5	   1-‐to-‐9	  

1	   PSNR	   39.01	   36.18	   38.87	   36.09	   38.85	   35.75	  

	   MSE	   8.16	   15.66	   8.43	   16	   8.48	   17.31	  

	   SSIM	   0.97	   0.9	   0.96	   0.9	   0.96	   0.87	  

9	   PSNR	   37.81	   35.44	   38.07	   35.45	   38.06	   35.64	  

	   MSE	   10.77	   18.59	   10.15	   18.54	   10.15	   17.75	  

	   SSIM	   0.95	   0.88	   0.95	   0.87	   0.95	   0.86	  
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The complete results in the Lego multi-camera dataset for row 1, 9 and 17 plotted in the 

PSNR and SSIM graph (MLVS Level 1) are shown in Figure 6.35. This graph clearly 

indicates that the performance of the 1-to-9 baseline matching deteriorates in the PSNR 

compared to the 1-to-5 matching. With this PSNR output, the SSIM in the 1-to-5 

matching is expected to outperform the 1-to-9 baseline matching as shown in Figure 

6.35(b).   

  
(a) PSNR (b) SSIM 

Figure 6.35: Comparison PSNR and SSIM results of the MLVS (Level 1) using the  
1-to-5 and 1-to-9 Left-Right (LR) baselines matching in the image view synthesis at rows 1, 9 

and 17 for Lego multi-camera datasets. 

6.7.2 MLVS	  Level	  2	  

Figure 6.36(a) and Figure 6.36(c) show the image synthesis based on the upper-to-lower 

matching in MLVS Level 2 with the SSIM map images respectively (as shown in 

Figure 6.36(b) and Figure 6.36(d)). The inter-view image based on 1-to-9 matching 

consists of interpolation image errors in the upper part of the image. These errors are 

caused by the occlusion on the upper-to-lower matching by increasing the baseline. 

Moreover, the matching algorithm is based on fixed window area-matching which is 

unable to deal with the textureless region for the stereo pairs. The SSIM image map 

indicates the MLVS for baseline 1-to-9 in the Level 2 contained errors in the upper part 

of the image, with SSIM=0.84 (in Figure 6.36(d)). Table 6.9 shows the results based on 

the baseline matching of 1-to-5 and 1-to-9 for the upper-lower matching along columns 

of 1 and 9. 

The full results on the MLVS (Level 2) for the columns 1, 9 and 17 are plotted in the 

graph of PSNR and SSIM as shown in Figure 6.37. This graph shows that the smaller 

baseline clearly provides better results compare with bigger step of baseline (1-to-9). 
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→  

 
(a) MLVS image synthesis using the  

1-to-5 baseline UL matching 
 (b) SSIM map for MLVS using the  

1-to-5 UL baseline matching 
(SSIM=0.94) 

 

 
→  

 
(c) MLVS image synthes using the 

1-to-9 UL baseline matching 
 (d) SSIM map for MLVS using the  

1-to-9 UL baseline matching  
(SSIM=0.84) 

Figure 6.36: The comparison of the MLVS (Level 2) using the 1-to-5 and 1-to-9 Upper-Lower 
(UL) baselines matching. The sample of inter-view image and the structural similarity index 

map synthesized at (camera in row 7 of column 1) for the Lego datasets. 

 

Table 6.9: Comparison results of the MLVS (Level 2) using the 1-to-5 and 1-to-9 Upper-Lower 
(UL) baselines matching along the columns 1 and 9 

Original	  image	  
Camera	  
(Row)	  

3	   7	   9	  

Column	   Matching	   1-‐to-‐5	   1-‐to-‐9	   1-‐to-‐5	   1-‐to-‐9	   1-‐to-‐5	   1-‐to-‐9	  

1	   PSNR	   38.11	   35.56	   38.56	   35.64	   38.16	   36.91	  

	   MSE	   10.04	   18.09	   9.06	   17.74	   9.94	   13.25	  

	   SSIM	   0.95	   0.87	   0.95	   0.84	   0.95	   0.84	  

9	   PSNR	   37.71	   35.46	   38.31	   35.79	   37.74	   36.57	  

	   MSE	   11.01	   18.5	   9.58	   17.12	   10.94	   14.33	  

	   SSIM	   0.94	   0.87	   0.94	   0.84	   0.94	   0.84	  
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(a) PSNR (b) SSIM 

Figure 6.37: PSNR and SSIM results for the MLVS (Level 2) using the 1-to-5 and  
1-to-9 Upper-Lower (UL) baselines matching at columns 1, 9 and 17 for Lego multi-camera 

datasets. 

6.7.3 MLVS	  Level	  3	  

The final evaluation on the MLVS is based on the last stage, which is the Level 3.  As 

described earlier, the results obtained from Levels 1 and 2 will be used to synthesize the 

inter-view images in this level. If the created synthesis inter-view images contain errors, 

the new synthesis views in this level will suffer the same errors. For example, Figure 

6.38 shows the results based on the 1-to-5 and 1-to-9 baseline matching in MLVS Level 

3. While the image synthesis in 1-to-5 matching provide good results with SSIM=0.9, 

the image that synthesized in 1-to-9 suffers with several errors as shown in the SSIM 

map in Figure 6.38(d).  

The sample of PSNR, MSE and SSIM for row 7 and 11 presented in Table 6.10, which 

comprises a comparison with the original image at cameras located in columns 3, 7 and 

9. The complete results tabulated in the graphs of PSNR and SSIM are shown in Figure 

6.39. The figure suggested that the image synthesis through small baseline matching 

provide better results compared with a larger baseline matching. For this case, the 

smaller baseline matching requires more cameras needed to capture the scene while 

producing virtual inter-view images. By contrast, the bigger baseline matching needs 

fewer cameras to produce the light-field images rendering and free-viewpoint video 

applications.  
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→  

 
(a) MLVS image synthesis using the 

 1-to-5 LR baseline matching 
 (b) SSIM map for MLVS using the  

1-to-5 LR baseline matching 
(SSIM=0.9) 

 

 
→  

 
(c) MLVS image synthesis using the 

1-to-9 (LR) baseline matching 
 (d) SSIM map for MLVS using the  

1-to-9 (LR) baseline matching 
(SSIM=0.79) 

Figure 6.38: The comparison of the MLVS (Level 3) using the 1-to-5 and 1-to-9 Left-Right (LR) 
baselines matching. The sample of inter-view image and the structural similarity index map 

synthesized at (camera in row 11 of column 7) for the Lego datasets. 

 

Table 6.10: Results comparison of the MLVS (Level 3) using the 1-to-5 and 1-to-9 Left-Right 
(LR) baselines matching along the row 7 and 11 

Original	  image	  
Camera	  
(Column)	  

3	   7	   9	  

Row	   Matching	   1-‐to-‐5	   1-‐to-‐9	   1-‐to-‐5	   1-‐to-‐9	   1-‐to-‐5	   1-‐to-‐9	  

7_1	  to	  7_17	   PSNR	   36.89	   35.18	   36.51	   34.66	   36.83	   34.16	  

	   MSE	   13.3	   19.72	   14.53	   22.25	   13.51	   24.95	  

	   SSIM	   0.92	   0.78	   0.91	   0.76	   0.92	   0.74	  

11_1	  to	  11_17	   PSNR	   36.5	   33.76	   36.55	   33.66	   36.73	   33.47	  

	   MSE	   14.59	   27.37	   14.39	   28.02	   13.82	   29.24	  

	   SSIM	   0.91	   0.81	   0.9	   0.79	   0.91	   0.78	  
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(a) PSNR (b) SSIM 

Figure 6.39: PSNR and SSIM results of the MLVS (Level 3) by using 1-to-5 and 1-to-9 Left-
Right (LR) baselines matching in the image view synthesis at row 7 and 11 for Lego multi-

camera datasets. 

 

6.8 Conclusion	  

The aim of the MLVS algorithm is to create additional views along the camera arrays 

configuration in the light-field image rendering and free-viewpoint applications. With 

this approach, the number of used cameras can be reduced. The complexity of the 

handling multiple cameras, video storage, data compression and bandwidth can also be 

reduced. In this chapter we have presented a novel technique of inter-view synthesis 

based on the DILS algorithm for multi-camera array configurations. In this technique, 

novel multi-view syntheses were created based on a small number of cameras to create 

full dense multi-camera arrays. It reduces the number of required cameras to create 

dense images for FVV and light field imaging application. The principles of MLVS are 

to find the pixel correspondences and synthesis through three levels of matching and 

synthesis processes. This research also proposed an image view synthesis framework 

based on multi-view camera arrays configuration by matching and synthesizing inter-

view image algorithms horizontally and vertically. 

The first level of MLVS is to find the image synthesis through left-to-right matching 

along the horizontal plane. Second level of MLVS is to synthesis image based on upper-

to-lower matching in the vertical camera arrays configuration. And lastly, the Level 3 is 

to create the inter-view images in the middle of the cameras. Based on experimental 

results, the inter-view image synthesis through MLVS provides good results compared 

with conventional inter-view interpolation method. The additional hole-fillings 
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technique in the DILS algorithm is quite essential to remove errors in the inter-view 

image synthesis.  

The performance of the MLVS algorithm was tested on the Stanford Multi-Camera 

Array datasets and yielded high PSNR and SSIM index values. The quality of 

synthesized multi-view images is very impressive and satisfactory for free-viewpoint 

video and light-field imaging applications. The proposed method gives comparable 

performance to the conventional inter-view interpolation. In the experiments, it was 

demonstrated that it is possible to efficiently synthesize realistic new views even from 

bigger baseline matching that need fewer cameras. However, it can be performed with 

better results by using small baseline matching, where the reference and target image 

pair is not too far apart. The new structures and design are shown to offer improved 

performance and provide additional views with fewer cameras arrangement compared 

to the conventional high volume camera configurations for free-viewpoint video 

acquisition and light field imaging applications. 
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 Chapter	  7 
 

Conclusion and Summary 

7.1 Conclusions	  Overview	  

This thesis investigated image and video processing in multi-view image synthesis with 

applications to 3D vision and free-viewpoint video. The main focus of this work was to 

propose and create inter-view images that locate in the virtual viewpoints between 

source image viewpoints for 3D video systems. 

This thesis presented the evolution of multi-view systems that have been an active 

research area in the field of computer vision from the basic stereoscopy to multi-view 

imaging. The number of publications on stereo increased with the online submission 

state-of-the-art algorithm in Middlebury Stereo Page that provides some common 

benchmark datasets and evaluation systems. The researchers can utilize the datasets and 

examine their proposed methods objectively and universally. Most of the stereo 

algorithms aim to produce accurate disparity maps and faster executions. Existing inter-

view synthesis algorithms emphasize mostly in disparity estimation obtained from the 

stereo matching algorithms. The core components of stereo matching algorithms are 

highlighted and include matching cost computation, cost aggregation, disparity 

computation optimization and disparity refinement. The thesis investigated a few well-

known techniques and algorithm published around these components, highlights the 

challenges faced and proposed some solutions to these challenges.  

The development in display technology allows new applications to expand such as 

3DTV, free-viewpoint TV, multi-view display and so on. The 3D video technologies 

enable various applications that can be integrated into a single 3D video system. 

However, efficient data compression is important in the multi-view video due to the 

huge amount of data for storage and transmission. This thesis discussed multi-view 

video coding that exploits redundancies that exist among multi-view images. Multi-
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view imagery requires the contents to be captured by many cameras. The number of 

cameras or views on the multi-camera system can be reduced by the image view 

synthesis. Thus, the complexity of multi-camera configuration and high cost can be 

reduced with image view synthesis.  

To develop techniques for image view synthesis, the fundamental concepts of image 

geometry plays an important role. This thesis describes the concepts of a 3D scene 

representation, view synthesis algorithms and image-based rendering. Due to the 

complexity of image synthesis for real scenes, this thesis presents techniques based on 

layered depth map. 

A novel algorithm of Depth Image Layer Separation (DILS) algorithm was presented in 

this thesis. DILS focussed on image synthesis based on disparity depth map layers 

representation of stereo image pairs. The algorithm presented and exploited inter-view 

correlations to generate intermediate view synthesis images that locate in the virtual 

viewpoints between source image viewpoints. DILS featured a new paradigm that 

comprises a method to select interesting locations in the image based on depth analysis. 

It also represents a new image representation that allows description of the objects or 

parts of an image without the need of segmentation and identification. Image view 

synthesis can reduce the complexity of multi-camera array configuration for 3D 

imagery and free-viewpoint applications. The performance of the algorithm was tested 

on the Middlebury Database and yielded high PSNR and SSIM values. The quality of 

synthesized multi-view images is satisfactory for free-viewpoint applications. The 

proposed method gives comparable performance to the conventional inter-view 

interpolation. In the experiments, it was demonstrated that it is possible to synthesize 

realistic new views efficiently even from inaccurate depth information through the 

DILS algorithm. However, it can be performed using either simple or sophisticated 

stereo matching techniques to synthesize better quality inter-view images. 

This thesis presented another novel technique of a post-processing stereo matching 

algorithm, which is the disparity refinement based on the DILS algorithm, known as 

Depth Layers Refinement (DLR). The core of the algorithm relies on a layer separation 

process based on different disparity ranges and the mapping between the layers and the 

segmented reference image. Each disparity layer and segmented reference image 

undergo a morphological process based on cross-path points from the mapping 

procedure. With this approach, the uniform areas and repetitive patterns can be grouped 
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in a single layer of depth. A comparative analysis of existing stereo matching 

algorithms with the proposed algorithm is conducted based on the common benchmark 

datasets and evaluation system in the Middlebury Stereo Vision Page. The results 

shown validate the proposed algorithm, where the disparity map obtained by a fixed 

window SAD improved significantly after being processed with the DLR algorithm. 

The algorithm is shown to refine the disparity depth maps efficiently and improves the 

pixel matching between the two images with a basic similarity metric. The main 

difference between this algorithm and other sophisticated algorithms is that this 

approach refines the disparity map and detects the depth discontinuities based on the 

layers separation.  

Finally, this thesis presented a novel technique of image synthesis for multi-view 

images that can be used in 3D vision and free-viewpoint applications. This method is 

known as the Multi-Level View Synthesis (MLVS). MLVS exploits the advantage of 

the new inter-view interpolation algorithms based on the DILS algorithm by extending 

stereo to multiple camera configurations. In this technique, a novel multi-view synthesis 

is created based on a limited number of cameras for sparse camera arrays by finding the 

pixel matching correspondences and synthesis through three stages (levels) of 

processing. The first stage identifies the pixel correspondences and view synthesis 

based on the left-right image pair. Following this, the view synthesis image in the 

second stage is based on the upper-lower image pairs through vertical matching. The 

third stage used the obtained output in the first or second stages for the new inter-view 

synthesis to create full virtual multi-camera array image views. This approach reduces 

the number of cameras required to create dense images in the light field imaging 

applications. The new structures and design were shown to offer improved performance 

and provide additional views with fewer cameras in comparison to the conventional 

high volume camera configurations for free-viewpoint video acquisition.  

To conclude, this thesis presented a number of stereo matching and inter-view image 

synthesis techniques for 3D vision and free-viewpoint applications. The techniques 

intended to recreate the real scene images from the stereo pair and multi-camera arrays 

scenarios. Due to the demand of dense images to be used in multi-view imaging 

displays, huge amount of cameras are required to feed the content creation. With the 

proposed algorithms, the number of cameras used can be reduced, which can reduce the 

camera costs, multi-camera complexity configuration problems, large data storage and 
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transmission requirements. The thesis also bridges a gap between efficient algorithm 

and practical implementation by highlighting problem issues in the stereo matching and 

image synthesis algorithms.  

 

7.2 Future	  Work	  

The presented DILS was developed and tested with only static images, while in the 3D 

video and free-viewpoint environment most of the views involve motion. The DILS 

algorithm can be extended to cater for camera motions as well. To perform this task the 

disparity maps and interpolation of view synthesis for every frame are needed. In most 

of free-viewpoint video creations from multiple camera systems, cameras are assumed 

to be fixed. This is guaranteed by mounting the cameras on poles or tripods for the 

duration of capturing. The calibration is done only before the video acquisition starts. 

During video acquisition, cameras cannot be moved, zoomed or rotated. The field of 

view of each camera in these systems must be wide enough to cover the area in which 

the object moves. Therefore, the DILS could be adapted for synthesizing free-viewpoint 

videos in a natural scene from uncalibrated pure rotating and zooming cameras. The 

free-viewpoint video can be synthesized based on the reconstructed visual hull through 

DILS. The new view synthesis approach for a large baseline of DILS, where the 

cameras are separated sparsely is also an interesting field of research to be explored. 

The proposed techniques of realising virtual images prove the fundamental concept of 

using disparity maps from stereo matching for image synthesis algorithm. However to 

investigate the best suitable options in specific environments and 3D computer vision 

applications are left as future work. Another limitation of the presented DILS 

algorithms lies in the assumption that the scene can be approximated by a set of layers 

and that is limited by the baseline distance between the source images. The DILS also 

assumed layers can be identified where the depth of the objects are not closely located 

for the whole image pairs. A more sophisticated model to separate the layers and 

interpolation model remains a topic for further work. Furthermore, we plan to extend 

our layered approach from stereo images to stereo videos of moving scenes. This will 

explore possibilities to employ layer extraction, segmentation and composition for both 

stereo matching and inter-frame motion tracking in order to develop techniques for 

video synthesis based on combined depth and motion information. 
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Although the proposed inter-view image synthesis techniques performed well for 

datasets it is desired that these techniques should be ported onto some hardware 

platform for real-time implementation. It is suggested that the algorithm presented can 

be ported to general-purpose processor or DSP-based embedded platform. It is also 

anticipated that the algorithms presented are optimized for hardware implementation for 

faster execution and memory requirement as the basic stereo matching cost mainly on 

SAD similarity metric. As suggested and proved by Stefano [85], the fixed window 

computation can be optimized through memory iteration. 

The technique of refining the disparity map with DLR algorithm could be improved by 

selecting a better technique on the edge boundary, such as salient detection algorithm. 

The DLR and DILS can also be extended to include other motion and visual descriptors 

such as motion trajectory descriptor, camera motion descriptors and shape descriptors 

for video processing applications. The implementation of three proposed algorithms in 

this thesis is also recommended by using the TOF depth camera and Microsoft’s Kinect 

system as another possible implementation. 
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Appendix	  A:	  Camera	  Calibration	  

Camera calibration involves the estimation of both extrinsic and intrinsic camera 

parameters. The first stage of camera calibration procedure is to establish 

correspondences between 2D points in the image and the 3D points on the 

checkerboard, known as point-correspondences. The basic steps for camera calibration 

can be summarized as follows: 

i. Capture N (at least 3) images with the checkerboard pattern and estimate point-

correspondences. 

ii. Estimate and correct the radial lens distortion. 

iii. For each captured image, calculate the N homography transform. 

iv. Using the N homography transform, calculate the intrinsic and extrinsic 

parameters. 

v. Refine the calculated camera parameters. 

A.1	   Camera	  Parameters	  

A.1.1	   Internal	  Camera	  Parameters	  

  
(a) The image (x, y) and camera coordinate 

system 
(b) Non-ideal image sensor with skewed 

pixels 
Figure A.1: Pixel coordination system 

The internal camera parameters consist from the perspective projection of the camera, 

principal-point offset, image sensor characteristics, radial lens distortion and tangential 

lens distortion. For the principle-point offset, most of the current imaging systems 
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define the origin of the pixel coordinate system at the top-left pixel of the image. 

However, the origin of the pixel coordinate system corresponds to the principal point 

(cx, cy), located at the centre of the image as shown in Figure A.1(a) [37].  

Two new parameters, cx and cy, are introduced to model a possible displacement (away 

from the optic axis) of the centre of coordinates on the projection screen. The result is 

that a relatively simple model in which a point Q in the physical world, whose 

coordinates are (X,Y,Z), is projected onto the screen at some pixel location given by 

(xscreen, yscreen) in accordance with the following equations [37], 

� 

xscreen = f X
Z

⎛ 
⎝ 

⎞ 
⎠ + cx, yscreen = f Y

Z
⎛ 
⎝ 

⎞ 
⎠ + cy                (A.1) 

A necessary conversion of coordinates done by using homogeneous coordinates where 

the principal-point position can be integrated into the projection matrix. The perspective 

projection equation becomes as [37], 
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⎦ 

⎥ 
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⎢ 
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⎥ 
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⎥ 
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                  (A.2) 

In some particular cases, pixels of the image sensor are not square, which are skewed, 

depending on the camera manufacturer. The pixel grid may be skewed due to an 

inaccurate synchronization of the pixel-sampling process. The imperfection of the 

imaging system can be taken into account in the camera model, using the parameter η 

(pixel aspect ratio) and τ (skew of the pixels as shown in Figure A.1(b)). The projection 

mapping updated as [37], 

� 

λ
x
y
1
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⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=
f τ cx 0
0 ηf cy 0
0 0 1 0

⎡ 
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⎢ 
⎢ 
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⎥ 
⎥ 
⎥ 

X
Y
Z
1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

= K 03[ ]P                                       (A.3) 

with P = (X,Y,Z,1)T being a 3D point defined with homogeneous coordinates. In 

practice, with recent digital cameras, it can be assumed that the pixels are squared (η=1) 

and non-skewed (τ=0). The projection matrix that includes the intrinsic parameters is 

denoted as K. The all zero element vector is denoted by 03. In this case Equation (A.3) 
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will be used. 

As described earlier, the relation that maps to the points Qi in the physical world with 

coordinates (Xi, Yi, Zi) to the points on the projection screen with coordinates (xi, yi) 

known as the projective transform. In this case, the image plane is the projective space 

and it has two dimensions, therefore it can be represent the points on that plane as three-

dimensional vectors q = (q1, q2, q3). Recalling that all points having proportional values 

in the projective space are equivalent, the actual pixel coordinates can be recovered by 

dividing through by q3. This allows to arrange the parameters that define the camera (f, 

cx and cy) into a single 3-by-3 matrix, which known as the camera intrinsic matrix. The 

projection of the points in the physical world into the camera is now summarized by the 

following form [37], 

� 

q = MQ, where q =
x
y
w

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
, M =

f 0 cx
0 f cy
0 0 1
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⎥ 
⎥ 
⎥ 
, Q =

X
Y
Z
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⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
           (A.4) 

By multiplying this equation, w = Z. And since the point q is in homogenous 

coordinates, the equation divide through by w (or Z) in order to recover the earlier 

definitions. With the ideal pinhole, it is useful model for some of the three-dimensional 

geometry of vision. However, in practice such arrangement would make for very slow 

imaging. For a camera to form images at a faster rate, a lot of light over a wider area 

and focus that light to converge at the point of projection must be gathered. In order to 

accomplish this, a lens is used. A lens can focus a large amount of light on a point to 

provide fast imaging, but it comes with distortions. 

A.1.2	   Lens	  Distortion	  

Theoretically, it is possible to define a lens with no distortions. However, in practice no 

lens is perfect. During the manufacturing process, the lenses undergo spherical lens 

rather than ideal parabolic lens. It is also difficult to mechanically align the lens and 

imager exactly. In this section, two main lens distortions will be described that are 

radial and tangential distortions. Radial distortions arise as a result of the shape of lens, 

whereas tangential distortions arise from the assembly process of the camera as a whole.  

The lenses of real cameras often noticeably distort the location of pixels near the edges 

of the imager. This bulging phenomenon is the source of the barrel or fish-eye effect. 
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Figure A.2 [44] shows how radial distortion occurs. The radial lens distortion appears 

more visible at the image edges, where the radial distance is high. The rays further from 

the centre of the lens are bent too much compared to rays that pass closer to the centre. 

Thus, the sides of a square appear to bow out on the image plane and will caused the 

straight lines to be mapped curved lines. This is also known as barrel distortion. Barrel 

distortion is particularly noticeable in cheap web cameras but less apparent in high-end 

cameras, where a lot of effort is put into fancy lens systems that minimize radial 

distortion. 

 

Figure A.2: Radial distortion that causes straight lines to be bended 

For radial distortions, the distortion is 0 at the centre of the imager and increases as 

move toward the periphery. In practice, this distortion is small and can be characterized 

by the first few terms of a Taylor series expansion around r = 0. For cheap web 

cameras, generally the first two of such terms will be use; the first of which is 

conventionally called k1 and the second k2. For highly distorted cameras such as fish-

eye lenses, the third radial distortion term, k3 can be used. In general, the radial location 

of a point on the imager will be rescaled according to the following equations [44]: 

� 

xcorrected = x(1+ k1r
2 + k2r

4 + k3r
6)

ycorrected = y(1+ k1r
2 + k2r

4 + k3r
6)

                 (A.5) 

Here, (x, y) is the original location on the imager of the distorted point and (xcorrected, 

ycorrected) is the new location as a result of the correction.  

The second largest common distortion is tangential distortion. This distortion is due to 

manufacturing defects resulting from the lens not being exactly parallel to the imaging 

plane as illustrated in Figure A.3 [44]. Tangential distortion is minimally characterized 

by two additional parameters, p1 and p2, that derived from [44]: 

� 

xcorrected = x + [2p1y + p2(r
2 + 2x 2)]

ycorrected = y + [p1(r
2 + 2y 2) + 2p2x]

                 (A.6) 
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Figure A.3: Tangential camera lens distortion 

Thus, in total there are five distortion coefficients that required. Since all five are 

necessary in most of the calibration process and coding routines that use them, they are 

typically bundled into one distortion vector. This is just a 5-by-1 matrix containing k1, 

k2, p1, p2 and k3. Besides that, there are many other kinds of distortions that occur in 

imaging systems, but they are typically having lesser effects than radial and tangential 

distortions.  

A.1.3	   External	  Camera	  Parameters	  

The extrinsic parameters indicate the external position and orientation of the camera in 

the 3D world. For each image, the camera takes of a particular object, the pose of the 

object relative to the camera coordinate systems can be described in terms of a rotation 

and a translation as shown in Figure A.4 [37, 44, 45], which reproduced from Figure 2.4 

in Chapter 2.  

 

Figure A.4: Converting from object to camera coordinate systems 

In general, a rotation in any number of dimensions can be described in terms of 

multiplication of a coordinate vector by a square matrix of the appropriate size. A 

rotation is equivalent to introducing a new description of a point’s location in a different 

coordinate system. Rotating the coordinate system by an angle θ is equivalent to 

counter-rotating the target point around the origin of that coordinate system by the same 
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angle, θ. The representation of a two-dimensional rotation as matrix multiplication is 

shown in Figure A.5. Rotation in three-dimensions can be decomposed into a two-

dimensional rotation around the x, y and z axis in sequence with respective rotation 

angles ψ, ϕ and θ. The result is a total rotation matrix R that is given by the product of 

the three matrices 

� 

Rx (ψ ) , 

� 

Ry (ϕ)  and 

� 

Rz(θ)  [44], where 

� 

Rx (ψ ) =
1 0 0
0 cosψ sinψ
0 − sinψ cosψ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
                   (A.7) 

� 

Ry (ϕ) =
cosϕ 0 − sinϕ
0 1 0
sinϕ 0 cosϕ

⎡ 

⎣ 

⎢ 
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⎢ 
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⎦ 

⎥ 
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                  (A.8) 

� 

Rz(θ) =
cosθ sinθ 0
− sinθ cosθ 0
0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
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                  (A.9) 

Thus, 

� 

R = Rz(θ), Ry (ϕ), Rx (ψ ).  

 

Figure A.5: Rotating points by θ 

The rotation matrix R has the property that its inverse is its transpose: hence, 

� 

RTR = RRT = I , where I is the identity matrix consisting of 1s along the diagonal and 0s 

everywhere else. 
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The translation vector is how a shift can be represented from one coordinate system to 

another system whose origin is displaced to another location. The translation vector is 

just the offset from the origin of the first coordinate system to the origin of the second 

coordinate system. Thus, to shift from a coordinate system centred on an object to one 

centred at the camera, the appropriate translation vector is simply 

� 

T = originobject − origincamera . With reference to Figure A.5, a point in the object (or 

world) coordinate frame Po has coordinate Pc in the camera coordinate frame [44]: 

� 

Pc = R(Po − T)                             (A.10) 

Combining this equation for Pc above with the camera intrinsic corrections will form the 

basic system of equations to solve in the camera calibration parameters.  
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Appendix	  B:	  Predictive	  Coding	  

B.1	   Hierarchical	  Encoding	  

Two basic types of coded pictures are possible: intra and inter pictures. Intra pictures 

are coded independently of any other image. Meanwhile, inter pictures depend on one 

or more reference pictures that have been encoded previously. By design, an intra 

picture does not exploit the redundancies among the multi-view images. But an inter 

picture is able to make use of these redundancies by choosing one or more reference 

pictures and generating a motion and/or disparity compensated image for efficient 

predictive coding. The basic ideas of motion-compensated predictive coding are 

presented in [178] by Flierl. This technique can be expanded to hierarchical encoding 

which offers not only temporal multi-resolution representation but also high coding 

efficiency. 

 
Figure B.1:6Hierarchical encoding of a matrix of pictures (MOP) with bi-predictive pictures 

Figure B.1 depicts a possible hierarchical encoding of a MOP with N=4 image 

sequences, each compromising K=4 temporally successive pictures. Each MOP is 

encoded with one intra picture and NK-1 bi-predictive pictures. Each MOP is 

decomposed in view direction at the first time instant only. Therefore, the sequences 

have view decompositions at every Kth time instant. The intra picture I0 in each MOP 

represents the lowest view resolution. The next view resolution level is attained by 

including the bi-predictive picture B01. The highest view resolution is achieved with the 

bi-predictive B02. Then, the reconstructed N view images at every Kth time instant are 
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now used as reference for multi-resolution decompositions with bi-predictive pictures in 

temporal direction. The decomposition in view direction at every Kth time instant 

represents already the lowest temporal resolution level. The next temporal resolution 

level is attained by including the predictive picture B1. The highest temporal resolution 

is achieved with the predictive pictures B2. Thus, hierarchical encoding of each MOP 

with bi-predictive pictures generates a representation with multiple resolutions in time 

and view direction [70]. 

The concept of hierarchical B pictures was introduced by Schwarz [179]. A typical 

hierarchical prediction structure with three stages of a dyadic hierarchy is depicted in 

Figure B.2. The first picture of a video sequence is intra-coded as IDR picture and so-

called key pictures are coded in regular intervals. A key picture and all pictures that are 

temporally located between the key picture and the previous key picture are considered 

to build a group of pictures (GOP), as illustrated in Figure B.2 for a GOP of eight 

pictures. 

 
Figure B.2:7Hierarchical reference picture structure for temporal prediction 

The hierarchical B pictures can easily be applied to multi-view video sequences as 

illustrated in Figure B.3 for a sequence with 8 cameras and a GOP length of 8, where Sn 

denotes the individual view sequences and Tn the consecutive time-points. To allow 

synchronization and random access, all key pictures are coded in intra mode. Simulcast 

coding with hierarchical B pictures will be used as a reference to compare highly 

efficient temporal prediction structures with prediction structures that additionally use 

inter-view prediction. 

Video coding based in intra mode, where no reference pictures are available for 

prediction, results in considerable higher bit rates than in inter prediction. By replacing 

intra-coded (or I) pictures with inter-coded (P or B) pictures has the potential to achieve 

a substantial coding gain. Adapting this approach to the multi-view video example in 

Figure B.3 leads to the prediction scheme in Figure B.4.  
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Figure B.3:8Temporal prediction using hierarchical B pictures 

The prediction structure of the first view S0 remains the same and is called base view, as 

it is identical to the simulcast prediction structure with hierarchical B pictures for 

temporal prediction only. However, for the other views, all intra-coded key pictures are 

replaced by inter-coded pictures using inter-view prediction. For the remaining pictures 

of each GOP, the prediction structure does not change and remains to be temporal 

prediction with hierarchical B pictures. The analysis of temporal and inter-view 

prediction efficiency by Merkle [71] indicates that using temporal and inter-view 

reference frames at the same time improved the coding efficiency. In order to exploit all 

statistical dependencies within a multi-view test data set, inter-view prediction can be 

extended to non-key pictures. 

	  
Figure B.4:9IPP inter-view prediction for key pictures 
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Multi-view video coding is investigated by the Joint Video Team (JVT). The JVT is 

developing a Joint Multi-view Video Model (JMVM) [12] which is based on the video 

coding standard ITU-T Recommendation H.264-ISO/IEC 14496-10 AVC. The current 

JMVM proposes illumination change-adaptive motion compensation and prediction 

structures with hierarchical bi-predictive pictures. The JMVM uses the block-based 

coding techniques of H.264/AVC to exploit both temporal redundancies and view 

redundancies. The coding structure has been discussed in this part and investigated in 

[71]. The standard codec H.264/AVC is a hybrid video codec and incorporates an intra-

frame codec and a motion-compensated inter-frame predictor. A survey of coding 

algorithms and transport methods for 3DTV has been discussed by [66, 180].  

Predictive coding schemes are technologically well advanced and offer good quality at 

low bit rates, in particular with the advent of the latest standard H.264/AVC. However, 

these schemes required inherent constraint of sequential coding which affect the 

subsequent coding decisions. This affects overall coding efficiency and produces 

limited flexibility of the multi-view video coding.  

Besides the JMVM, the JVT also developing a Joint Scalable Video Model (JSVM) 

[181] that supports adaptive lifted wavelets. Subband coding schemes offer flexible 

representations for multi-view imagery. Further examples for multi-view wavelet video 

coding are given in [41]. However, decompositions of the motion and disparity 

compensated lifted wavelets usually suffer compensation mismatch through predict and 

update steps for multi-connected motion and disparity fields. This compensation 

mismatch alters properties that are offered by the corresponding non-adaptive wavelet 

transforms [178]. 

 

B.2	   H.264/AVC	  Different	  Modes	  of	  Operation	  

The multi-frame referencing is the key property of the H.264/AVC standard that enables 

prediction of blocks of a P-frame being coded using a previous I-frame of multiple 

previous coded P-frames. The fact that there are high correlations among different 

views of a multi-view sequence led the development of a H.264/AVC based on multi-

view video coding technique with 5 modes of operation by MMRG H.264 Multi-view 

Extension [76]. Five different mode of operation of the H.264/AVC based on multi-

view video coding scheme are explained in the following. 
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A block diagram of Mode 1 of operation is shown in Figure B.5(a), where the previous 

frames of closest camera sequence in addition to previous frames of the encoded camera 

sequence. Figure B.5(b) shows Mode 2 operation, where the latest frame from one 

nearby camera and latest frame from encoded camera sequence are used. For Figure 

B.5(c), the latest frames from two nearby cameras and latest frame from encoded 

camera sequence are used. Meanwhile Figure B.5(d) illustrates the only the previous 

frames of the encoded camera sequence are used in Mode 4. Lastly, in Mode 5, which is 

shown in Figure B.5(e), the latest frames from all the cameras in addition to one more 

frame from one of the closest cameras are used. 

 
(a) Mode 1 

 
(b) Mode 2 

 
(c) Mode 3 

 
(d) Mode 4 

 
(e) Mode 5 

Figure B.5:10Reference modes in H.264/AVC multi-view extension codec 

The parameters for multi-view video coding have been set in the encoder configuration 

file. The sample of the configuration displayed in the following is a part of the source 

code file shown in Figure B.6. The Multi View Coding parameter section in Figure B.6 
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defined the MultiViewCount that indicates the number of cameras in the multiview 

configuration. If it is 1 the encoder works exactly as the monoscopic case. Otherwise 

the input file names and reconstructed file names are configured by the entries 

“InputFileStructure” and “ReconFileStructure”.  

####################################################################### 
#  Files 
####################################################################### 
InputFile             = "book0.yuv" # Input sequence 
InputHeaderLength     = 0   # If the inputfile has a header 
StartFrame            = 0   # Start frame for encoding. (0-N) 
FramesToBeEncoded     = 50  # Number of frames to be coded 
FrameRate             = 15.0    # Frame Rate per second (0.1-100.0) 
SourceWidth           = 352     # Frame width 
SourceHeight          = 288     # Frame height 
TraceFile             = "trace_book.txt" 
ReconFile             = "outbook.yuv" 
OutputFile            = "avc_book.264" 
 
.. .. (other configurations) .. .. 
 
####################################################################### 
#   Multi View Coding 
####################################################################### 
 
MultiViewCount  =  4             # 1 monoscopic, else number of cameras 
InputFileStructure =  book%d.YUV    # overwrites inputFile - Starts   
                     # from 0 
ReconFileStructure =  outbook%d.YUV  # overwrites ReconFile - Starts   
                     # from 0 
ReferenceMode  =  2        # 1, 2, 3, 4, 5 
AnalyzeFile  = "analyze_book" 
StandardCompatible = 0 

Figure B.6:11Multi-view video coding parameter configuration file 

The InputFileStructure configures the file name structure of the input yuv sequences 

from the individual cameras. Input file structure should be in the form “input%nd.yuv” 

where n is the number of digits that indicates the camera number in the sequence. In this 

case, the “input” is the head of the input video files and named as “book”. This entry 

does not have any effect in the input file name if “MultiViewCount” is set to 1. The 

ReconFileStructure configures the reconstructed file names in the same way as the 

“InputFileStructure”. The ReferenceMode used to set the 5 reference modes in the 

MMRG H.264 Multiview Extension, which have been explained in Figure B.5. 

Different modes can be added in the later versions. 

Lastly, AnalyzeFile configures the name for the analyze files which are generated for all 

encoded sequences. These analyze files can be used with the MMRG H.264 Analyzer in 

order to view encoding information for each macroblock, whether it is intra coded, 

skipped or which camera sequence it is referred from. 
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Appendix	  C:	  Middlebury	  Stereo	  
Evaluation	  

C.1	   Middlebury	  Stereo	  Datasets	  

 
(a) Teddy left image  

(b) Teddy ground truth 

 
(c) Venus left image 

 
(d) Venus ground truth 

 
(e) Tsukuba left image 

 
(f) Tsukuba ground truth 

 
(g) Cones left image 

 
(h) Cones ground truth 

Figure C.1:12Middlebury stereo image pairs dataset for left images with their corresponding 
ground truth disparity maps [22] 
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C.2	   Middlebury	  Stereo	  Ranking	  System	  

The Middlebury Stereo Evaluation [177] rank is sorted based on which algorithms 

could give the smallest percentage value of bad pixels for each dataset. The sample of 

the screenshot for the results is given by C.2. The small blue numbers to the right of 

each result (e.g., in the first line, the number 15 to the right of 1.07) are the specific 

ranks for each algorithm for the given dataset. In this case for example it means that the 

ADCensus algorithm was ranked 15th best amongst all algorithms in the database when 

dealing with the ‘Tsukuba’ non-occlusion dataset. Similarly, the CoopRegion algorithm 

(2nd row) was ranked first for all regions in ‘Tsukuba’, as it produce the smallest 

percentage error of just 1.16 (shown in bold). However, this algorithm could not give 

the minimum percentage error in comparison with the other datasets and performance 

measures.  

 

Figure C.2:13Sample of Middlebury Stereo Evaluation Results, where ‘nonocc’ (for non-
occluded regions), ‘all’ (for all regions) and ‘disc’ (for discontinuities regions) 

For ‘Teddy’ dataset, the minimum percentage error for all regions and discontinuities 

obtained by the SurfaceStereo algorithm are 5.10 and 8.65 respectively, and therefore it 

was ranked first for this specific datasets. The average rank value (Avg. Rank) is 

calculated using the total specific ranks for each dataset (in all twelve columns shown). 

As shown in Figure C.2, first overall rank is given to ADCensus algorithm, average rank 

value of 8.3. This can is obtained the average of all the specific rank values in the 

twelve columns. The CoopRegion algorithm was 2nd with a 10.1 average rank value. We 

noticed that the SurfaceStereo algorithm is not first in the ranking even though it 

produced the smallest percentage bad pixels error in the ‘Teddy’ datasets. While the 

average rank provides a reasonable way of ordering the methods, the average error 
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visualized by the error bar shows just how close together the algorithms are in 

comparison. 
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