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Abstract

Variability in the patterns of ocean colour is frequently observed in shelf seas,

where a combination of phytoplankton cells, mineral particles and coloured dis-

solved organic matter are driving the optical properties of the water column.

Understanding the contributions of each material to the total optical properties

is essential for understanding and monitoring the processes which affect shelf sea

ecosystems. Lee et al. (2002, 2005b, 2007, 2009, 2013) developed a method for

the recovery of the absorption, backscattering and mean diffuse attenuation co-

efficients and the euphotic depth from the remote sensing reflectance. Using the

Irish Sea as a study site, the procedure of Lee et al. and two empirical meth-

ods for recovering the euphotic depth (Cunningham et al., 2013 and Zhao et al.,

2013), were evaluated. The methods were initially adjusted based on a regional

bio-optical model, then validated against field data with excellent recoveries of

all parameters. By considering the backscattering to absorption ratios of phyto-

plankton and mineral particles, a new method for separating the total absorption

coefficient recovered by the quasi-analytical algorithm into the phytoplankton and

mineral components was developed. Application of this method to the bio-optical

model created for the Irish Sea recovered phytoplankton and mineral absorption

coefficients which were well correlated with the modelled values. The sensitivity

of the absorption partitioning procedure to the assumption made about CDOM

variability was evaluated, demonstrating the phytoplankton and mineral absorp-

tion coefficients could be recovered within the Irish Sea with root mean square

errors of 0.02 m−1 and 0.009 m−1 respectively. The inversion methods developed
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and validated were applied to eight years of MODIS data. This showed both spa-

tial and temporal variability for all parameters, which corresponded to different

mixing regimes and were explained in terms of phytoplankton cells and mineral

particles. The results obtained from the satellite imagery have demonstrated that

optical remote sensing can be used to provide an insight into shelf sea ecosystems.
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1. Introduction

Background

Shelf seas and shallower coastal waters are highly productive regions, provid-

ing approximately 90% of the global fish catch and 25% of the marine primary

production (Robinson et al., 2008). With over half the population living within

the coastal zone, shelf seas provide a major resource for fisheries, recreation and

tourism. However, the proximity of shelf seas to the land leads to increased pres-

sures on the marine environments and these are consequently among the most

endangered areas. Pressures include, land use and river run-off altering mineral

and nutrient levels which can affect biogeochemical cycles (Tang et al., 2005; Chen

et al., 2007), the resuspension of sediments into the surface layer due to coastal

developments (Song and Wang, 2013) and eutrophication of the water column

(Druon et al., 2004). Therefore, understanding and monitoring these processes is

important for predicting how the marine ecosystems will be affected and respond

to external impacts, and for the conservation and management of the coastal zone

which is important for the human population.

The sun provides energy to marine ecosystems, sustaining phytoplankton, the

first link in the oceanic food web. The solar radiation which reaches the earth is

mainly in the visible and infrared regions of the electromagnetic spectrum. How-

ever, as water is nearly opaque to infrared radiation, it is the visible wavelengths

which are important for marine photosynthesis (Bisset et al., 2001). As light

propagates through the water, it is absorbed and scattered by phytoplankton

and other microscopic material present, altering the underwater light field and
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Introduction

the colour of the water (Yentsch, 1960; Morel and Prieur, 1977; Gordon et al.,

1988). Therefore measurements of the spectral shape of the light which has been

scattered out of the water column can provide an insight into the materials present

in the water. The measurement of the emergent light, or the colour of the water,

can be done using remote platforms such as aircrafts or satellites and is known

as ocean colour remote sensing (IOCCG, 2000, 2008).

One of the major advantages of using satellites to monitor ocean colour is

that they provide almost daily coverage of the planet, allowing variability in

ocean colour to be measured at high temporal and spatial scales compared to

field campaigns aboard ships. The first satellite launched for the purpose of mon-

itoring ocean colour was the Coastal Zone Color Scanner (CZCS), in 1978. This

was a “proof-of-concept” mission, the main objective of which was to determine

if different organic and non-organic materials could be identified and quantified

using ocean colour (NASA, 1996). Due to the success of this mission and the

early studies and algorithms developed to interpret the satellite imagery, further

missions were launched (Mitchell, 1994) providing constant coverage since the

launch of NASA’s SeaWiFS in 1997. Currently, both ESA and NASA have mis-

sions in planning, with ESA’s Sentinel-3 due to be launched in 2015, which are

set to provide ocean colour data for the foreseeable future.

The initial movement in ocean colour research was aimed at measuring chloro-

phyll concentrations as an indicator of phytoplankton biomass in the open oceans

(Smith and Baker, 1982; Feldman et al., 1984). This soon expanded into the

estimation of different biogeochemical and optical properties, linking these to so-

lar heating (Lewis et al., 1990) and primary production (Sathyendranath et al.,

1991b) in the oceans. These ocean basin waters, where all the optically signifi-

cant materials present co-vary with phytoplankton, are known as Case-1 waters
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(Morel and Prieur, 1977) and the algorithms developed to interpret the signals

measured via satellite were based on this assumption of co-variance (Morel, 1980;

Gordon et al., 1988; Sathyendranath et al., 1989a). However, shelf sea waters are

optically complex and classified as Case-2 due to the presence of material and

sediments which do not co-vary with the phytoplankton biomass. These addi-

tional materials significantly alter the optical signals from those typically found

in open oceans, causing large variability in the optical properties of the water col-

umn (Babin et al., 2003; McKee and Cunningham, 2006; Oubelkheir et al., 2006;

Aurin et al., 2010). Due to these optical complexities, the traditional algorithms

developed for Case-1 waters tend to fail when applied to Case-2 waters (Morel,

1980; Carder et al., 1991).

Much progress has been made in the development of different methods for the

analysis of ocean colour in Case-2 waters (Roesler et al., 1989; Garver and Siegel,

1997; Carder et al., 1999; Maritorena et al., 2002; Lee et al., 2002). However, even

with this improvement, the accurate retrieval of the concentrations of suspended

mineral particles, phytoplankton and coloured dissolved organic matter is still

a major problem in coastal waters (Aurin and Dierssen, 2012; Odermatt et al.,

2012). The alternative approach of retrieving the optical properties of the water

column, which are dependent on the material concentrations, has therefore gained

more focus. Optical properties can be used to provide valuable insights into

marine environments, including:

i) The derivation of further properties of the water column, including the depth

of penetration of light which is available for photosynthesis (Cunningham

et al., 2013),

ii) Estimations of phytoplankton concentrations in regions where mineral par-
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ticles degrade the traditional algorithms (Tilstone et al., 2012),

iii) Derivations of phytoplankton absorption for primary production calculations

(Barnes et al., 2014),

iv) Estimations of the contribution of individual materials to the optical prop-

erties (Le et al., 2013),

v) The effect of freshwater mixing on underwater light distributions in coastal

waters (Cherukuru et al., 2014).

Thesis Aims

The aim of this thesis is to interpret ocean colour signals in optically complex

environments, with the Irish Sea and surrounding waters chosen as a study site.

This study will concentrate on the retrieval of inherent and apparent optical

properties of the water column rather than the retrieval of the concentrations

of the main optically significant materials. In particular, the following questions

will be addressed:

1. Can ocean colour remote sensing be used in Case-2 shelf seas to quantita-

tively measure the optical properties of the water column?

2. Can methods for identifying different particle types, such as suspended

minerals and phytoplankton cells, be developed?

3. Can the role of different types of particle on the attenuation of light in the

water column be determined?

4. Can ocean colour data be used to determine the temporal and spatial vari-

ability of optical properties in shelf seas, providing insights into the under-

lying physical dynamics of the region?
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The Irish Sea

The Irish Sea is a semi-enclosed sea on the European shelf bounded by Great

Britain to the east, Ireland to the west and the Celtic Sea to the south (Figure

1.1). A deep trench runs approximately north to south, from the North Channel,

west of the Isle of Man, through the St George’s Channel towards the Celtic

Sea, with a depth of approximately 100 m. The eastern Irish Sea is shallower,

with depths generally less than 50 m. These shallower eastern waters receive

the majority of the freshwater river input from Liverpool and Morecambe Bays,

and consequently are the waters with lowest salinity (Bowers et al., 2013; Gowen

et al., 2008).

The Irish Sea is generally well-mixed through the winter by wind and tidal

stirring (Bowers, 2003) with regions of seasonal stratification forming over the

summer (Simpson and Hunter, 1974). In the deep channel west of the Isle of

Man, the tidal flows are weakest across the whole region and thermal stratification

occurs typically from late April/early May for approximately four to five months

(Gowen et al., 1995), with the transition from the stratified to the fully mixed

waters marked by a front (Simpson and Hunter, 1974). In the eastern Irish

Sea, Simpson (1997) observed intermittent freshwater-induced stratification. The

Celtic Sea stratifies over the summer months and the boundary between the

southern Irish Sea and northern Celtic Sea is indicated by a prominent front

across St George’s Channel (Simpson and Bowers, 1981).

Gowen et al. (1995) studied the effect of the different mixing regimes in the

Irish Sea on phytoplankton growth, demonstrating the effects of a fully mixed wa-

ter column and a stratified water column on the production season of phytoplank-

ton. In particular, they noted nutrient availability, rather than light availability

5



Introduction

Figure 1.1: The Irish Sea and surrounding waters. Image courtesy of NERC Satel-
lite Receiving Station, Dundee University, Scotland, http://www.sat.dundee.
ac.uk/.
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limits phytoplankton growth in the summer stratified regions.

Satellite imagery of the Irish Sea has revealed three patches which have consis-

tently higher reflectance than neighbouring regions (Weeks and Simpson, 1991;

Bowers et al., 1998, 2005). Ship based surveys have shown that the high re-

flectance patches correspond to elevated levels of suspended particulate matter

throughout the year, with suspended particulate matter concentrations reaching

2 to 3 times the concentrations observed in the rest of the Irish Sea during the

winter months (Bowers et al., 2002). The locations of the turbidity maxima corre-

spond to the areas of highest tidal currents: off the north west coast of Anglesey,

the eastern Irish coast at Wicklow Head, and the south-west tip of Wales at St

David’s Head. There is no source of fine sediment near Anglesey to keep up a

continual supply of suspended particles. However, Bowers et al. (2005) postu-

lated the net movement of finer particles out of the turbidity maxima, and larger

aggregated particles into the region. These aggregated particles, or flocs, are

groups of mineral sediments held together by organic material. Flocs can form

when particles are brought together in relatively low levels of turbulence, how-

ever as the turbulence increases, the flocs break-up. Modelling studies of Bowers

et al. (2005) and Ellis et al. (2008) demonstrated how the high tidal currents in

these regions can break-up the aggregates which are brought into these regions,

potentially providing the source of fine sediment causing the turbidity maxima.

Changes in the optical properties of the Irish Sea are driven predominately

by phytoplankton and mineral particles and coloured dissolved organic matter

(CDOM). Gowen et al. (2008) observed concentrations of phytoplankton chloro-

phyll ranging from <0.1 mg m−3 to approximately 16 mg m−3 with means of 3.4

mg m−3 in western coastal waters, 2.2 mg m−3 in western offshore waters and 1.8

mg m−3 in eastern offshore waters. These findings were consistent with McKee
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and Cunningham (2006) who found relatively low levels of phytoplankton dur-

ing extensive sampling of mostly offshore waters, with 90% of their chlorophyll

samples below 2 mg m−3. However, during the spring bloom, the concentra-

tions of chlorophyll inshore does reach significantly higher levels, often reaching

approximately 30 mg m−3 in Liverpool Bay (Gowen et al., 2008).

The measurements of McKee and Cunningham (2006) also showed the con-

centration of suspended mineral solids to be generally below 14 g m−3, with the

most observations < 4 g m−3, and the absorption of CDOM at 440 nm to be no

higher than 0.25 m−1, with the most occurrences in the range of 0.1 - 0.15 m−1.

This is slightly lower than Bowers et al. (2013), who found the mean absorption

of CDOM at 440 nm in the Irish Sea to be 0.17 m−1 with a standard deviation

of 0.02 m−1.

Due to the range of optical and hydrological properties, including concentra-

tions of phytoplankton and the seasonal patterns of mixing and stratification, the

Irish Sea is an ideal study site for testing remote sensing methods in shelf seas.

Thesis Structure

Chapter 2 gives an overview of the relevant optical theory, covering three main

areas. The first is a discussion on the optical properties of the water column and

how these affect the underwater light field. The second is an overview of satellite

remote sensing. Finally, different inversion methods are reviewed, with particular

focus on the quasi-analytical approach of Lee et al. (2002, 2005b, 2007, 2009).

Chapter 3 introduces the main methods used throughout this study. The first

part of this Chapter focuses on the acquisition of field data and the processing

required to obtain the relevant properties. This is followed by a discussion on how
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the inherent optical properties and resultant light fields are modelled for algorithm

validation and development. The programs and methods used to process and

analyse satellite data are covered in the last part of the Chapter.

In Chapter 4, the quasi-analytical algorithm of Lee et al. (2002, 2009), which

aims to retrieve the spectral absorption and backscattering coefficients from the

remote sensing reflectance, is evaluated on a bio-optical model of the Irish Sea.

The algorithms are adjusted to improve performance in the Irish Sea and these

new versions are validated against field data. Three semi-analytical algorithms

which recover the diffuse attenuation coefficient, and three algorithms which es-

timate the euphotic depth, are also validated using the Irish Sea field data.

A method for estimating the absorption coefficient for phytoplankton cells

and mineral particles from the total absorption and backscattering coefficients

is developed in Chapter 5. Using these inherent optical properties as a starting

point allows this procedure to be appended to the quasi-analytical algorithm,

ultimately estimating the separate particulate contributions to the total absorp-

tion coefficient from remote sensing. The procedure is initially tested on modelled

data and the procedure’s sensitivity to the assumptions made in its development

are evaluated. The inherent optical properties derived from satellite data for the

Irish Sea are examined and the absorption partitioning technique is applied to

investigate the temporal variability observed in the total absorption of the water

column.

In Chapter 6, the inversion methods developed and validated in Chapters 4

and 5 are applied to eight years of satellite acquired remote sensing reflectance

data from the Irish Sea. Furthermore, these methods are extended to estimate the

contribution of phytoplankton and mineral particles to the attenuation of light

in the water column. The time series at three different locations are considered
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to investigate the temporal variability and seasonality of the different parameters

and particle classes. Monthly composite maps of the whole region are determined

to show the spatial variability, and how this can change for different months.

Finally, Chapter 7 outlines the main conclusions drawn from this investigation,

with suggestions of future work.

All symbols and terms frequently used throughout this thesis are listed in

Table 1.1.

Symbol Definition Units
a(λ) absorption coefficient at wavelength λ m−1

aCDOM(λ) absorption coefficient for CDOM at wave-
length λ

m−1

aCHL(λ) absorption coefficient for phytoplankton cells
at wavelength λ

m−1

aMSS(λ) absorption coefficient for mineral particles at
wavelength λ

m−1

a∗CDOM(λ) mass specific absorption coefficient for
CDOM at wavelength λ

dimensionless

a∗CHL(λ) mass specific absorption coefficient for phy-
toplankton cells at wavelength λ

m2 mg−1

a∗MSS(λ) mass specific absorption coefficient for min-
eral particles at wavelength λ

m2 g−1

anw(λ) non-water absorption coefficient at wave-
length λ

m−1

aw(λ) absorption coefficient for water at wave-
length λ

m−1

AOP apparent optical property -
b(λ) scattering coefficient at wavelength λ m−1

bf (λ) forward scattering coefficient at wavelength
λ

m−1

bb(λ) backscattering coefficient at wavelength λ m−1

bbCHL(λ) backscattering coefficient for phytoplankton
cells at wavelength λ

m−1

Table 1.1: Definitions of the symbols and terms used throughout this thesis.
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Symbol Definition Units
bbMSS(λ) backscattering coefficient for mineral parti-

cles at wavelength λ
m−1

b∗bCHL(λ) mass specific backscattering coefficient for
phytoplankton cells at wavelength λ

m2 mg−1

b∗bMSS(λ) mass specific backscattering coefficient for
mineral particles at wavelength λ

m2 g−1

bbp(λ) particulate backscattering coefficient at
wavelength λ

m−1

bbw(λ) backscattering coefficient for water at wave-
length λ

m−1

c(λ) attenuation coefficient at wavelength λ m−1

[CDOM] concentration of coloured dissolved organic
matter (CDOM) at a(440)

m−1

[CHL] concentration of chlorophyll-a mg m−3

Ed(λ, z) downwelling planar irradiance at wavelength
λ and depth z

Wm−2 nm−1

Eu(λ, z) upwelling planar irradiance at wavelength λ
and depth z

Wm−2 nm−1

IOP inherent optical property -
Kd(λ, z) the diffuse attenuation coefficient for the

downwelling planar irradiance at wavelength
λ and depth z

m−1

Kd(λ, z1 ↔ z2) the mean (or depth-averaged) diffuse atten-
uation coefficient for the downwelling planar
irradiance between depths z1 and z2 at wave-
length λ

m−1

L(λ, z, θ, φ) radiance at wavelength λ, depth z, zenith an-
gle θ and azimuthal angle φ

Wm−2 sr−1 nm−1

Lu(λ) below surface upward radiance at wavelength
λ

Wm−2 sr−1 nm−1

Lw(λ) water leaving radiance at wavelength λ Wm−2 sr−1 nm−1

[MSS] concentration of mineral suspended solids g m−3

PAR photosynthetically available radiation photons m−2 s−1

Table 1.1 (Continued): Definitions of the symbols and terms used throughout
this thesis.
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Symbol Definition Units
R(z, λ) irradiance reflectance = Eu(z, λ)/Ed(z, λ) dimensionless
Rrs(λ) above surface remote sensing reflectance =

Lw(λ)/Ed(λ)
sr−1

rrs(λ) subsurface remote sensing reflectance =
Lu(λ)/Ed(λ)

sr−1

Zeu euphotic depth = depth at which PAR falls
to 1% of its surface value

m

κCHL fractional contribution of phytoplankton
cells to the mean diffuse attenuation coeffi-
cient

dimensionless

κMSS fractional contribution of mineral particles to
the mean diffuse attenuation coefficient

dimensionless

ρ1(λ) the ratio of the backscattering to absorp-
tion coefficients for mineral particles at wave-
length λ

dimensionless

ρ2(λ) the ratio of the backscattering to absorption
coefficients for phytoplankton cells at wave-
length λ

dimensionless

Table 1.1 (Continued): Definitions of the symbols and terms used throughout
this thesis.
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2. Optical Theory

2.1 Basic Principles

Ocean colour remote sensing involves inferring information about the com-

position of the water column from the light leaving the water body, relying on

knowledge of radiative transfer processes in the water column. Radiative transfer

theory describes how the composition of a medium affects the propagation of light

through the medium. Hence an understanding of both the optical properties of

water and the geometric nature of light itself is needed. Natural waters contain a

mix of dissolved and particulate matter, which can have a significant effect on the

underwater light field. These materials, known as optically significant materials,

effect the bulk optical properties of the water column, which are grouped into

two classes: the inherent and apparent optical properties (Preisendorfer, 1976).

The inherent optical properties are those which depend solely on the composition

of the water body, whereas the apparent optical properties depend on both the

water body composition and the light field.

The theory outlined in the next few sections follows that of Mobley (1994),

unless otherwise stated.

Radiometery

In optical oceanography, the radiance is a fundamental parameter for describ-

ing the light field. The amount of radiant energy (Q), per unit area (A), per unit
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solid angle (Ω), within a water body is defined as the radiance,

L(λ, z, θ, φ) =
d3Q

dAdΩdλ
(2.1)

Units : Wm−2sr−1nm−1

for a particular wavelength (λ), depth (z), and zenith (θ) and azimuthal (φ)

angles of the incoming light. The downwelling (Ed(λ, z)) and upwelling (Eu(λ, z))

irradiance are then defined as the light from all angles travelling in the downward

or upward direction respectively, per unit area:

Ed(λ, z) =

∫ 2π

φ=0

∫ π/2

θ=0

L(λ, z, θ, φ) cosθ sin θ dθdφ (2.2)

Eu(λ, z) =

∫ 2π

φ=0

∫ π

θ=π/2

L(λ, z, θ, φ) cosθ sin θ dθdφ (2.3)

Units : Wm−2nm−1

The cos θ term arises from the cosine law for irradiance, which states that a

beam of photons hitting a plane surface produces an irradiance that is propor-

tional to the cosine of the angle between the photon direction and the normal to

the surface.

Inherent Optical Properties (IOPs)

As light travels through a small volume of water, some of the incident radiant

power (Φi) is absorbed within the volume of water (Φa) and some is scattered out

of the beam path (Φb), leaving any remaining power to be transmitted through

the sample. The absorption coefficient is defined as the limit of the fraction of

incident power which is absorbed within the water volume as the thickness of the
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sample (i.e. the length of the beam path, ∆r) approaches zero,

a(λ) = lim
∆r→0

Φa/Φi

∆r
(2.4)

Units : m−1

The scattering coefficient is similarly defined:

b(λ) = lim
∆r→0

Φb/Φi

∆r
(2.5)

Units : m−1

with the attenuation coefficient the sum of the two,

c(λ) = a(λ) + b(λ). (2.6)

By considering the angular distribution of the scattered radiant power in the

water volume, another inherent optical property can be defined: the volume

scattering function. For the fraction of incident power which was scattered out of

the beam path at an angle of (θ, φ), into a solid angle, ∆Ω, the volume scattering

function is expressed as,

β(θ, φ, λ) = lim
∆r→0

lim
∆Ω→0

Φb/Φi

∆r∆Ω
(2.7)

Units : m−1sr−1

Therefore, by integrating β(θ, φ, λ) over all directions (all solid angles), we obtain

the scattering coefficient, which can be expressed as

b(λ) =

∫
Ξ

β(θ, φ, λ) dΩ(θ, φ) = 2π

∫ π

0

β(θ, φ, λ) sin θ dθ. (2.8)
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It is often useful to think of the scattered light in terms of the overall direction

in which it was scattered, allowing the scattering coefficient to be split into two

parts, the forward scattering coefficient (bf (λ)) and the backward scattering (or

backscattering) coefficient (bb(λ)),

bf (λ) = 2π

∫ π/2

0

β(θ, φ, λ) sin θ dθ (2.9)

bb(λ) = 2π

∫ π

π/2

β(θ, φ, λ) sin θ dθ. (2.10)

These bulk inherent optical properties (IOPs) describe the combined effects

of the water and all the individual constituents present in the water column. The

particulate material can either be phytoplankton cells, inorganic suspended sed-

iments or non-phytoplankton organic particles. The phytoplankton component

consists of all the different species, with the main pigment, chlorophyll-a, used as

an indicator to phytoplankton biomass. Sediments suspended in the surface layer

of the water column can be fine mineral particles such as slit and clay, or larger

groups known as flocs, which consist of inorganic particles bound together by

organic material. Previous studies have shown, compared to the phytoplankton

cells and inorganic sediments, the non-phytoplankton organic materials may have

a negligible effect on the total absorption and scattering in shelf seas (Bowers and

Mitchelson-Jacob, 1996). In addition to the marine particles, dissolved particles

affect the water colour. In particular, coloured dissolved organic matter origi-

nating from decaying phytoplankton and terrestrial sources can make the water

yellow in colour. Hence, the main optically significant materials can be classified

into these three main sources (IOCCG, 2000)

1. phytoplankton, conventionally as chlorophyll-a concentration (CHL),

2. mineral suspended solids (MSS), and
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3. coloured dissolved organic matter (CDOM).

Each of theses materials absorb and scatter light in a different manner. Phy-

toplankton are strong absorbers of light, particularly in the blue and red wave-

lengths, and weakly scatter light. Whereas, suspended sediment particles are

strong scatterers of light but do absorb, particularly in the blue. CDOM is dis-

solved in the water column and is a strong absorber, especially in the shorter

wavelengths, however the scattering due to CDOM is a small proportion of the

total scattering in coastal waters and is often taken as negligible (Kirk, 1994;

Mobley, 1994).

The bulk IOPs are simply the sum of the contributions from all the different

optically significant materials and water itself:

a(λ) = aw(λ) + aCHL(λ) + aMSS(λ) + aCDOM, (2.11)

b(λ) = bw(λ) + bCHL(λ) + bMSS(λ), (2.12)

bb(λ) = bbw(λ) + bbCHL(λ) + bbMSS(λ), (2.13)

where the subscripts CHL, MSS and CDOM represent the IOP for each con-

stituent, and w represents the water component.

Apparent Optical Properties (AOPs)

Reflectances

Reflectances are useful apparent optical properties in ocean colour remote

sensing as they provides a measure of how much of the downwelling light even-

tually leaves the water surface. The irradiance reflectance is defined as the ratio
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of upwelling to downwelling planar irradiances,

R(z, λ) =
Eu(z, λ)

Ed(z, λ)
. (2.14)

The irradiance reflectance is often determined just below the surface, whereas a

second ratio, remote sensing reflectance (Rrs), is usually evaluated just above the

water surface. The remote sensing reflectance is defined as the ratio of water-

leaving radiance (the radiance emerging from the water surface in a particular

direction) to the downwelling planar irradiance,

Rrs(θ, φ, λ) =
Lw(0+, θ, φ, λ)

Ed(0+, λ)
, (2.15)

Units : sr−1

where 0+ represents the position just above the surface. The remote sensing

reflectance can also be considered just beneath the water’s surface, at depth

z = 0−, and in this case is denoted rrs to distinguish it from Rrs. The two ratios,

R and Rrs, are related by the factor Q, which is the ratio of the water-leaving

radiance to the upwelling planar irradiance. Taking both just above the surface

(z = 0+) and dropping the z argument for brevity,

Rrs(λ) = Q(λ)R(λ) =
Lw(λ)

Eu(λ)

Eu(λ)

Ed(λ)
. (2.16)

Diffuse Attenuation Coefficients

The diffuse attenuation coefficients describe how light in the water column de-

creases with depth. Typically, the downward radiances and irradiances decrease

exponentially with depth, and each has a diffuse attenuation coefficient asso-
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ciated with it, for example, the diffuse attenuation coefficient for downwelling

planar irradiance, Kd(z, λ) and the diffuse attenuation coefficient for radiance,

K(z, λ, θ, φ). The diffuse attenuation coefficient for, say the downwelling planar

irradiance Kd(z, λ), at depth z from the surface, is defined as

Kd(z, λ) = −d(lnEd(z, λ))

dz
= − 1

Ed(z, λ)

dEd(z, λ)

dz
. (2.17)

However, obtaining a value for Kd(z, λ) at a specific depth requires Ed(z, λ) to be

measured at infinitesimal differences in depth. This has led to the introduction

of an alternative quantity, Kd(z1 ↔ z2, λ) (Lee et al., 2005b),

Kd(z1 ↔ z2, λ) =
1

z2 − z1

ln

(
Ed(z1, λ)

Ed(z2, λ)

)
, (2.18)

which is the diffuse attenuation coefficient averaged between two depths, z1 and

z2. All other diffuse attenuation coefficients can be similarly defined.

Typically, z1 is taken at the surface, with z1 = 0. The depth selected for

z2 varies across the literature, with Lee et al. (2005b) using the depth at which

the downwelling irradiance has fallen to 10% of its surface value, and Mueller

(2000) using the depth at which the downwelling irradiance has fallen to 1/e of

its surface value.

Radiative Transfer Theory

The way in which the optical properties of the water column effect the under-

water radiance distribution is described through radiative transfer theory and the

radiative transfer equation. Consider a beam of light entering a volume of water

from the direction (θ, φ), then the number of photons in the beam will change

19



Optical Theory

due to absorption and scattering processes occurring along the path through the

sample. Photons will either be scattered, elastically or inelastically, into and

out of the beam path, absorbed as they travel along the beam path or emitted

through processes such as bioluminescence (see Figure 2.1).

Gain by
scattering

Loss by scattering
and emission

Loss by
absorption

Incident
beam

Figure 2.1: The processes which modify the radiance of a beam along a path
though a water volume.

The radiative transfer equation for unpolarised, monochromatic radiation can

be stated as: the rate of change of radiance along a path is equal to the sum of the

increases and decreases in radiance from all the different sources. Mathematically,

for radiance L(z, θ, φ, λ) along a path of distance r,

dL(z, θ, φ, λ)

dr
= −c(λ)L(z, θ, φ, λ) + LE∗ (z, θ, φ, λ) + LI∗(z, θ, φ, λ) + LS∗ (z, θ, φ, λ),

(2.19)

where c(λ) is the attenuation coefficient and LE∗ (z, θ, φ, λ), LI∗(z, θ, φ, λ), LS∗ (z, θ, φ, λ)

are the path functions for elastic scattering, inelastic scattering and emission.

The path functions are radiances generated per unit distance along a path in

the direction defined by (θ, φ) and the scattering path functions will be propor-

tional to the incident radiance and a function of the scattering angle, which can
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be described by the volume scattering function (Eq. (2.7)). Whereas, the emis-

sion path function will be different for each emission process, but generally will

be proportional to the radiant power of the source (S0(θ, φ)) and its directional

distribution (β̃s(θ, φ)). Therefore the path functions take the following forms:

LE∗ (z, θ, φ, λ) =

∫
Ξ

L(z, θ′, φ′)β(z, θ′, φ′ → z, θ, φ) dΩ(θ′, φ′) (2.20)

LI∗(z, θ, φ, λ) =

∫
Ξ

∫
Λ

L(z, θ′, φ′, λ′)β(z, θ′, φ′, λ′ → z, θ, φ, λ) dλ′dΩ(θ′, φ′) (2.21)

LS∗ (z, θ, φ, λ) = S0(λ, z)β̃s(θ, φ), (2.22)

where the prime (′) indicates the original direction and wavelength before scatter-

ing and the arrow denotes the change due to the scattering events. It is convenient

to combine the path functions due to inelastic scattering and emission into one

term, the effective source function, S(z, θ, φ, λ). Assuming the water body is hor-

izontally homogeneous and considering the change in radiance as a function of

depth, z, then

dL

dr
= cos θ

dL

dz
, (2.23)

and the radiative transfer equation can be expressed as,

cos θ
dL(z, θ, φ, λ)

dz
= −c(λ)L(z, θ, φ, λ) +∫
Ξ

L(z, θ′, φ′)β(z, θ′, φ′ → z, θ, φ) dΩ(θ′, φ′) + S(z, θ, φ, λ).

(2.24)

The radiative transfer equation is a linear integrodifferential equation as it

involves both an integral and a derivative of the radiance. Hence there are no

fully analytical solutions, except for special cases such as non-scattering waters.
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Solutions to the full equation can be derived through various numerical methods,

such as invariant imbedding methods or Monte Carlo methods.

Relationship Between IOPs and AOPs

Early studies of radiative transfer theory using Monte Carlo numerical meth-

ods led to two approximate relationships between the reflectance and the absorp-

tion and backscattering coefficients.

Gordon (1973) used the quasi-single-scattering approximation to simplify the

radiative transfer equation. This approximation modifies the phase function so

that all of the scattering from particles in the forward direction is concentrated

into one beam along the direction of propagation, as if there was no forward scat-

tering at all. Using the single-scattering approximation and a modification to the

beam attenuation coefficient, an exact, but complex, expression for the irradiance

reflectance can be derived from the radiative transfer equation. This expression

is difficult to simplify analytically, but it is proportional to the backscattering

fraction. Gordon et al. (1975) used Monte Carlo simulations to model radiance

distributions for a range of inherent optical properties and demonstrated

R(0−, λ) ∝ bb(λ)

a(λ) + bb(λ)
. (2.25)

In 1988, Gordon et al. showed that for a range of different solar zenith angles,

the relationship between the subsurface remote sensing reflectance, a(λ) and bb(λ)

can be approximated by

rrs(λ) = g0
bb(λ)

a(λ) + bb(λ)
+ g1

(
bb(λ)

a(λ) + bb(λ)

)2

. (2.26)
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The coefficients g0 and g1 are variable, but can be taken as constants under certain

conditions, with g0 = 0.0949, and g1 = 0.0794 for solar zenith angles greater than

20◦.

An alternative approach combines the analysis of the two-flow equations,

which are a simplified form of the radiative transfer equation dealing with ir-

radiance transfer, with the Preisendorfer (1976) 1-D model for undecomposed

irradiance fields, leading to the following expression for the irradiance reflectance:

R(0−, λ) ∝
1
2
bb(λ)
a(λ)

1 + 1
2
bb(λ)
a(λ)

. (2.27)

Morel and Prieur (1977) used modelling results for radiative transfer calculations

to demonstrate that this could be simplified to

R(0−, λ) =
f

Q

bb(λ)

a(λ)
. (2.28)

The f/Q term is variable, but Morel and Prieur (1977) found it to be 0.33 from

the successive order scattering method, with variations in its value less than 5%,

without specifying the solar angles considered.

The variability in g0, g1, and f/Q has been shown to depend on the solar

angle, radiance distribution, the volume scattering function and other water char-

acteristics such as the single-scattering albedo and the backscattering efficiency.

Equations (2.26) and (2.28) are both used in ocean colour remote sensing

as the foundation of many algorithms because of high solar and viewing angles

accompanying satellite observations.
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2.2 Satellite Imagery and Remote Sensing

Methods

Backscattering events in the water column result in part of the underwa-

ter light field propagating back towards the surface and emerging from the water

body. This emergent light can be measured by sensors, placed on satellites, which

are directed towards a point on the Earth’s surface. The sensors have a narrow

field of view, typically covering an area of 1 km2 of the surface. However, instru-

ments which incorporate rotating mirrors scan perpendicularly to the direction

of the satellite orbit, ending up with total swath widths ranging between 1000 -

3000 km for different sensors.

There has been a series of ocean colour sensors launched, starting with the

Coastal Zone Colour Scanner (CZCS) in 1978. Currently, NASA have two oper-

ational sensors: the Moderate Resolution Imaging Spectroradiometer (MODIS)

and the Visible and Infrared Imager/Radiometer Suite (VIIRS), with all satellite

data for this study taken by MODIS.

MODIS was launched in 2002 aboard the Aqua satellite, which orbits the

Earth every 99 minutes, covering the whole of the planet every 1-2 days. The orbit

of the satellite is sun-synchronous, meaning it is operating during the daylight

and it crosses the equator south to north in the early afternoon. The satellite is

at an altitude of 705 km and with a scanning mirror rotating ±55◦, the resultant

swath width is 2330 km. MODIS is a multispectral sensor, with 36 spectral bands,

9 of which are used for ocean colour imaging at a 1 km resolution (see Table 2.1,

however note that the 551 nm waveband has drifted and the central wavelength

is actually 547 nm (Bailey, 2009)).
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Central
Bandwidth (nm)

Wavelength (nm)
412.5 405− 420
443 438− 448
488 483− 493
531 526− 536
551∗ 546− 556
667 662− 672
678 673− 683
748 743− 753
867 862− 877

Table 2.1: The MODIS wavebands which are used for ocean colour imagery. The
asterisk denotes that the 551 nm waveband has drifted and the central wavelength
is 547 nm for that band.

The sensors on board satellites can receive light from three sources: emergent

light from the water column, light which has been scattered in the atmosphere

and light reflected off the water’s surface. Satellites are angled so as to avoid the

majority of the surface reflections, however there is no way to avoid light from

atmospheric scattering. The contribution of the atmosphere to the upwelling light

must be corrected for as it can account for more than 80 % of the signal received

by the satellite (Morel, 1980). Both air molecules and aerosol particles scatter

light in the atmosphere, and several atmospheric correction techniques have been

developed to remove the light which reaches the satellite that has its origin in the

atmosphere (Gordon and Wang, 1994; Stumpf et al., 2003; Ruddick et al., 2000).

The satellite data has to be processed from the raw photon counts measured

by the satellite sensors to the products required by the end-user, such as the

remote sensing reflectance or water-leaving radiance. This is done in multiple

steps, hence various levels of data are available:
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Level 0: unprocessed data at full resolution.

Level 1A: time-referenced, unprocessed data at full resolution with radiometric

and geometric calibration coefficients and georeferencing parameters ap-

pended.

Level 1B: the Level 1A data with the radiometric and geometric calibrations

applied.

Level 2: geophysical variables, known as products, with atmospheric corrections

applied, at the same resolution as the Level 1 data (e.g. Rrs(λ)).

Level 3: geophysical variables/products that have been aggregated or projected

over a set time period, for example a monthly composite of a product

mapped across a region of interest.

2.3 Inversion Methods

The theory outlined in Section 2.1 demonstrates how with a priori knowledge

of the system and the composition of the water column, the resultant light fields

and reflectances can be modelled. However, the satellites have no a priori knowl-

edge of the system, and the difficulty in ocean colour remote sensing arises in

the so-called “inverse problem”: attempting to infer information about the wa-

ter column from the measured light signals (IOCCG, 2006). Various algorithms

have been developed to estimate different quantities from the signals received by

the satellites. Initially, work focussed on the open ocean, Case-1 waters, where

phytoplankton were the main contributor to the optical properties and simple

empirical band-ratio algorithms were found to work fairly well. However, in the
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shelf sea, coastal, Case-2 regions, where minerals and CDOM play a major role

in the attenuation of light, these empirical algorithms tend to fail (Aurin and

Dierssen, 2012; Odermatt et al., 2012).

For the Case-2 waters, this has led to a movement away from the empirical

methods toward model-based approaches (IOCCG, 2000), some of which are listed

below:

Non-linear optimisation: A forward model is used to created radiances for a

particular water composition and then by minimising the differences be-

tween the measured and modelled radiances, the composition of the water

column is adjusted until the best match is obtained. This approach is expen-

sive in terms of computational time, however it does retrieve concentrations

of all the optically significant materials simultaneously.

Principal component analysis: Estimation functions for different parameters

are generated from multi-dimensional analysis on a dataset with known

constituents, IOPs and radiances. Then, by applying the estimation func-

tions to radiances, the resultant parameters can be obtained. Deriving the

estimation functions is initially computationally expensive, but once they

have been derived the application of them to radiances is very quick, and

one of the major advantages is the top-of-atmosphere radiance can be used

as a starting point, removing the need for performing an atmospheric cor-

rection. The estimation functions are linear in nature, but the relationships

between the concentrations of optically significant materials and the resul-

tant radiances are actually non-linear, and so the analysis may not capture

all of the variability of the data.
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Neural networks: These are used to perform multiple non-linear regressions

between reflectances in different spectral bands and the concentrations of

the main constituents in the water column. The neural network needs to be

initially trained on a dataset to obtain coefficients which can be used to de-

scribe the non-linear relationships between the different inputs and outputs.

As with principle components analysis, the initial training of the neural net-

work can be very time-consuming, however with the correct training, the

neural network is a very powerful tool for retrieving the water constituents.

Semi-analytical methods: These use known optical properties and theoretical

models to derive relationships between the IOPs and AOPs but require

some empirical approximations to simplify solutions to the radiative transfer

equation. Due to the fact that radiative transfer theory is used as the

starting point and the algorithms are generally simple to understand and

quick to implement, these methods have become popular in the field.

The focus of this thesis is on the use of semi-analytical algorithms for re-

covering both inherent and apparent optical properties, in particular the quasi-

analytical approach of Lee et al. (2002, 2005b, 2007, 2009) and Lee (2012), which

is outlined below.
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The Quasi-Analytical Algorithm, QAA

Lee et al. (2002) presented an algorithm for retrieving the spectral absorption

and backscattering coefficients from the remote sensing reflectance, known as

the quasi-analytical algorithm or QAA. Over the years, this algorithm has been

updated, however, the basic structure is still the same:

1. Estimation of the absorption coefficient at a particular wavelength a(λ0)

from remote sensing reflectance spectra (details given on the following page,

specifically Eqs. (2.32) and (2.33)).

2. bb(λ0) is then estimated from the Gordon et al. (1988) relationship:

rrs(λ) = g0
bb(λ)

a(λ) + bb(λ)
+ g1

(
bb(λ)

a(λ) + bb(λ)

)2

(2.26)

where, g0 and g1 are 0.0895 and 0.01249 respectively, which are the average

of the values found by Gordon et al. (1988) and Lee et al. (1999).

3. The backscattering coefficient is then extrapolated spectrally via

bb(λ) = bbw(λ) + bbp(λ0)

(
λ0

λ

)η
, (2.29)

where

η = 2

(
1− 1.2 exp

(
−0.9

rrs(443)

rrs(λ0)

))
. (2.30)

4. Finally, the spectral bb values can be used to evaluate a spectrally by Eq.

(2.26) again.

Note the use of rrs, the subsurface remote sensing reflectance, rather than Rrs in
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the QAA. The two quantities can be related by (Lee et al., 2002),

rrs(λ) =
Rrs(λ)

0.52 + 1.7Rrs(λ)
. (2.31)

The value of λ0 in the initial estimation of the absorption coefficient is usually

a green wavelength dependent on the waveband of the sensor and is 547 nm for

MODIS. It is this estimation which has been updated, as well as the inclusion of

a switch in λ0 to a longer wavelength for more turbid waters. The current version

of the QAA is QAAv6, which uses the same equation to estimate the a(λ0) in the

green as the previous version, QAAv5, but includes a switch in λ0 to 667 nm for

Rrs(667) > 0.0015 sr−1. For λ0 = 547 nm (Lee et al., 2009),

a(λ0) = aw(λ0) + 10p1+p2χ+p3χ2

where χ = log

(
rrs(443) + rrs(488)

rrs(λ0) + 5 rrs(667)
rrs(488)

rrs(667)

)
.

(2.32)

The coefficients of χ, (p1, p2, p3), have numerical values of (-1.146, -1.366, -0.469),

which were derived for the IOCCG synthetic dataset, a dataset created to test

algorithms for the remote sensing of IOPs (IOCCG, 2006). The argument of the

logarithm in the calculation of χ takes that specific form as it provides a smooth

transition from open oceans to coastal waters (Lee et al., 2007). For λ0 = 667

nm, Eq. (2.32) is replaced with (Lee, 2012)

a(667) = aw(667) + q1

(
Rrs(667)

Rrs(443)

)q2
, (2.33)

where q1 = 0.07 and q2 = 1.1. The remaining steps are implemented as described

above.
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Diffuse Attenuation Coefficient, KdLee

Lee et al. (2005b) presented an algorithm, known as KdLee, to estimate the

average diffuse attenuation coefficient for downwelling planar irradiance over the

depth at which Ed(λ) falls to 10% of its surface value, z10%, which is the midpoint

of the euphotic zone. For brevity, this will be referred to as the mean, or depth-

averaged, diffuse attenuation coefficient and denoted Kd(λ). The first step in

the algorithm is to estimate a(λ) and bb(λ) from QAA. Then a semianalytical

expression is used to obtain Kd(λ),

Kd(λ) = (1 + 0.005θa)a(λ) +m1(1−m2e
−m3a(λ))bb(λ), (2.34)

where θa is the above surface solar zenith angle, m1 = 4.18, m2 = 0.52 and

m3 = 10.8. Lee et al. (2005b) simplified this expression to

Kd(λ) = (1 + 0.005θa)a(λ) + 3.47bb(λ), (2.35)

which matches the form of earlier studies (Gordon, 1989; Sathyendranath and

Platt, 1988). The original KdLee expression (Eq. (2.34)) was later updated to

include the effect of changing scattering agents (Lee et al., 2013)

Kd(λ) = (1 + 0.005θa)a(λ) + (1− γηw(λ))m1(1−m2e
−m3a(λ))bb(λ), (2.36)

where γ is a model parameter taking the value 0.265 and ηw(λ) is defined as

ηw(λ) =
bbw(λ)

bb(λ)
, (2.37)
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with bbw(λ) representing the backscattering coefficient for pure seawater. There-

fore, ηw(λ) provides a measure of the contribution of the molecular backscattering

to the total backscattering.

Euphotic Depth

The euphotic depth, Zeu, is conventionally defined as the depth at which

photosynthetically available radiation (PAR) is 1% of its surface value (Kirk,

1994). The Lee et al. (2007) method for estimating the euphotic depth inititally

considers the downwelling irradiance in the visible domain:

EVIS(z) = EVIS(0)e−KVIS(z)z, (2.38)

where KVIS(z) is the diffuse attenuation coefficient of EVIS and is a function of

both z and the IOPs (Lee et al., 2005c),

KVIS = K1 +
K2

(1 + z)0.5
, (2.39)

with

K1 =
[
χ0 + χ1(a(490))0.5 + χ2bb(490)

]
(1 + α0 sin(θa)),

K2 = [ζ0 + ζ1a(490) + ζ2bb(490)] (α1 + α2 cos(θa)),

(2.40)

where a(490) and bb(490) are the absorption and backscattering coefficients at

490 nm respectively, and the χ, ζ and α terms are model constants (Lee et al.,

2005c).

The optical depth, τE for EVIS is defined as

KVIS(z)z = τE. (2.41)
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Since the vertical distribution of EVIS(z) is nearly identical to that of PAR(z),

the euphotic depth occurs for τE = − ln(0.01) = 4.605 (from Eqs. (2.38) and

(2.41)). Combining Eqs. (2.39) and (2.41) gives

z3 + y1z
2 + y2z + y3 = 0, (2.42)

where

y1 =
K2

1 −K2
2 − 2τEK1

K2
1

,

y2 =
τ 2
E − 2τEK1

K2
1

,

y3 =
τ 2
E

K2
1

.

(2.43)

There are three possible solutions to Eq. (2.42), but it is the smaller, positive

solution which agrees with radiative transfer theory (Lee et al., 2007). Hence to

determine the euphotic depth via this method, the solar zenith angle and the

absorption and backscattering coefficients must be known.

Zhao et al. (2013) Algorithm

Zhao et al. (2013) proposed a hyperbolic relationship between the euphotic

depth and the diffuse attenuation coefficient at 490 nm, from a study based in

the south Florida coastal waters and the Caribbean Sea,

Zeu = 0.28 +
395.92× 0.0092

0.0092 +Kd(490)
. (2.44)

Cunningham et al. (2013) Algorithm

Cunningham et al. (2013) observed a power law relationship between the

euphotic depth and the diffuse attenuation coefficient at 490 nm in the Irish Sea

33



Optical Theory

which takes the following form (for constants n1 and n2),

Zeu = n1Kd(490)n2 . (2.45)

2.4 Summary

The main optical theory used in this study has been reviewed in this Chap-

ter. The relevant inherent and apparent optical properties of the water column

were defined and used to show how radiance distributions are generated through

radiative transfer theory. Additionally, the theory behind two approximate rela-

tionships between the inherent and apparent optical properties, which are impor-

tant in many remote sensing algorithms, was explained. The discussion was then

extended to cover the use of satellites in measuring ocean colour and some of the

difficulties encountered, such as signals originating in the atmosphere rather than

from the water column. Finally, the inverse problem of retrieving the optical

properties of the water column from the signals detected by satellites was dis-

cussed, with a detailed overview of some algorithms developed for this purpose.
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3.1 In Situ Observations

Data used in this study were acquired from 7 research cruises in the Irish Sea

and the adjacent waters of the Firth of Clyde and Bristol Channel between 2001

and 2006 (Figure 3.1). On these field campaigns both inherent optical properties

and radiometric quantities were determined, providing an ideal dataset for remote

sensing algorithm validation and development.

Radiometry

The radiometry measurements were made with a Satlantic SeaWiFS Profiling

Multichannel Radiometer (SPMR). Vertical upwelling radiance (Lu(λ, z)) and

downward planar irradiance (Ed(λ, z)) profiles were determined for 1 m depth

bins using the software provided by the manufacturer (ProSoft 7.7) in the instru-

ment’s 10 nm full width half maximum wavebands which are centred on 412, 443,

490, 510, 555, 667 and 700 nm. The ProSoft software processes the raw data col-

lected by the instrument to different levels and ultimately to radiometric products

including Lu(λ, z), Ed(λ, z), diffuse attenuation coefficients and reflectances.

In this study, only the profiles of Lu(λ, z) and Ed(λ, z) were obtained using

the ProSoft software. Additional quantities including remote sensing reflectances,

depth-averaged diffuse attenuation coefficients and the euphotic depths were de-

rived from these profiles. For all these quantities, the subsurface downward planar
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Figure 3.1: Map of stations from cruises in the Irish Sea and surrounding waters
with coincident IOP and radiometry measurements collected during 2001-2006.

irradiance, Ed(λ, 0
−), needed to be calculated due to practical difficulties in mea-

suring the subsurface values with the SPMR. The downward planar irradiance

was assumed to decrease exponentially with depth,

Ed(λ, z) = Ed(λ, 0
−)e−Kd(λ,z)z (3.1)

therefore, from a least-squares fit between the top 5 depths and the logarithm of

Ed(λ, z), the y-intercept was taken as the surface value. Only stations for which

there were at least 10 depths within the profile were included in the analysis to

avoid artefacts at the bottom of the casts. The subsurface value of the upwelling

radiance, Lu(λ, 0
−), was determined by the same procedure and the ratio of these
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two values gave the subsurface remote sensing reflectance,

rrs(λ) =
Lu(λ, 0

−)

Ed(λ, 0−)
. (3.2)

The depth-averaged diffuse attenuation coefficient was calculated over the depth

at which Ed(λ, z) falls to 10% of its surface value (Lee et al., 2005b). This depth,

z10%, was determined from the profiles and then Kd(λ) was obtained from,

Kd(λ) =
1

z10%

log

(
Ed(λ, 0

−)

Ed(λ, z10%)

)
. (3.3)

The euphotic depth is defined as the depth at which the surface photosyntheti-

cally available radiation (PAR) has fallen to 1% of its surface value (Kirk, 1994)

hence Ed(λ, z) was converted to PAR for the SPMR profiles by converting the

SPMR data to quantum units and carrying out spectral integration. Then from

examining each profile, the euphotic depth at a given station was determined.

Absorption and Attenuation Coefficients

The non-water absorption and attenuation coefficients were measured in nine

wavebands (centred on 412, 440, 488, 510, 532, 555, 650, 676, 715 nm) using a

WETLabs absorption and attenuation meter (both an ac-9 and an ac-9 plus were

deployed on different research cruises). This instrument consists of a dual path

optical configuration, where, in each, a light source passes through a flow tube

containing a water sample (WetLabs, 2006). In the attenuation path, the internal

wall of the flow tube is black, so any scattered photons that hit the tube walls are

absorbed, leaving the light which is transmitted through the flow tube to have

been subject to absorption and scattering by the water sample. Conversely, the
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flow tube of the absorption path has reflective walls, therefore any light passing

through the tube is absorbed by the water sample. The collection optics for each

path also differ, with the attenuation path containing a lens and receiver and the

absorption tube containing a diffuse collector. In practise, the attenuation sensor

fails to exclude all scattered photons and the absorption sensor fails to collect all

scattered photons, so these scattering errors need to be corrected for (Zaneveld

et al., 1994; Stramski and Piskozub, 2003; Piskozub et al., 2004; McKee et al.,

2008).

The measured coefficients were corrected for the temperature and salinity of

the seawater using data from the CTD profiles which were obtained at the same

time as the ac-9 deployments, with coefficients from Sullivan et al. (2006). The

absorption measurements were scattering corrected using the method of Zaneveld

et al. (1994) to retain consistency with previous work even though the validity of

the negligible near-IR absorption by particles, which is assumed in this method,

has been challenged (McKee et al., 2013). From anw(λ) and cnw(λ) the non-water

scattering coefficients were determined. By adding water absorption data from

Pope and Fry (1997), the total absorption coefficients were obtained.

Backscattering Coefficients

Measurements of the backscattering coefficients in two wavebands, centred on

470 and 676 nm, were carried out using a HOBI Labs HydroScat-2 Backscattering

and fluorescence Sensor (hs-2). The instrument contains two channels, each with

a separate LED source and receiver. In each channel, the light beam enters the

water approximately 20◦ from the normal and the receiver field-of-view is angled

towards the source beam by a prism (HOBILabs, 2008). The geometry of the
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HydroScat results in measurements centred on a scattering angle of 140◦, from

which the backscattering coefficient is estimated using the method of Maffione

and Dana (1997).

The backscattering coefficients were corrected for absorption and scattering

effects in the water sample using the sigma correction method recommended by

the manufacturer, which incorporates the ac-9 measurements of anw and bnw.

3.2 Radiative Transfer Modelling

Inherent Optical Properties (IOPs)

Total IOPs were assumed to be functions of three main optically significant

constituents: phytoplankton (measured as chlorophyll-a (CHL)), mineral sus-

pended solids (MSS) and coloured dissolved organic matter (CDOM). The IOPs

of each constituent are often modelled assuming linear relationships between the

constituent concentration and specific inherent optical properties (SIOPs), for

example:

aMSS(λ) = [MSS]× a∗MSS(λ), bMSS(λ) = [MSS]× b∗MSS(λ)

and bbMSS(λ) = [MSS]× b∗bMSS(λ)

(3.4)

where the square brackets denote constituent concentration and the asterisks

represent the specific inherent optical property. However, Bricaud et al. (1995)

observed a power law relationship between phytoplankton absorption and [CHL].

This is due to the package effect, which tends to increase from oligotrophic to

eutrophic waters (Kirk, 1994). When comparing the absorption of a suspension of

phytoplankton cells with that of a solution which contains a uniform distribution
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of photosynthesising pigments, the suspension absorbs less than the solution, as

the pigments in suspension are packaged together within the phytoplankton cells.

This effect becomes more pronounced as the density of pigment molecules within

the cells increases, and the peaks of the phytoplankton absorption spectra flatten

and the specific absorption coefficient decreases (Kirk, 1975a,b). In this case

aCHL(λ) can be modelled by:

aCHL(λ) = aCHL(440)
a∗CHL(λ)

a∗CHL(440)
(3.5)

where aCHL(440) is obtained from the following power law (Bricaud et al., 1995):

aCHL(440) = A[CHL]B. (3.6)

Initially, Bricaud et al. determined A = 0.0403 and B = 0.668, but these were

later updated to include more data samples, resulting in A = 0.0378 and B =

0.627 (Bricaud et al., 1998). The IOCCG created a synthetic dataset for algorithm

development and validation, in which A = 0.05 and B = 0.626, to generate a

reasonable range of aCHL(440) values (IOCCG, 2006).

For low concentrations of chlorophyll-a, the resultant absorption is similar

when using either the power law (Eqs (3.5) and (3.6)) or a linear relationship

between concentration and the SIOP (Eq (3.4)). For increasing concentrations

of chlorophyll-a, the resultant absorption coefficient estimated by both methods

deviates rapidly due to the nature of the power law.

Typical values of SIOPs for the Irish Sea were derived from the field mea-

surements described by Neil et al. (2011), but with two modifications from their

methodology. First, the absorption coefficients were linearly interpolated to in-
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clude the MODIS wavebands, see Table 3.1. Second, the wavelength dependence

of the particulate backscattering coefficients were assumed to have the form (Lee

et al., 2002; Smith and Baker, 1981)

bbp(λ) = bbp(λ0)

(
λ0

λ

)η
. (3.7)

For the interpolations of bb(λ) between the wavebands measured by the Hydroscat

2 to the MODIS and SPMR wavebands, λ0 was taken to be 470 nm and

η =
log(bbp(676)/bbp(470))

log(470/676)
.

λ (nm)
a∗CHL(λ) a∗MSS(λ) a∗CDOM(λ) b∗CHL(λ) b∗MSS(λ) b∗bCHL(λ) b∗bMSS(λ)

(m2 mg−1) (m2 g−1) (none) (m2 mg−1) (m2 g−1) (m2 mg−1) (m2 g−1)
412 0.061 0.071 1.39 0.12 0.4 0.0017 0.0163
440 0.077 0.054 1.00 0.12 0.4 0.00160 0.0160
443 0.075 0.052 0.95 0.12 0.4 0.00159 0.0159
488 0.057 0.034 0.57 0.12 0.4 0.00149 0.0155
510 0.041 0.028 0.44 0.12 0.4 0.00144 0.0152
531 0.031 0.022 0.34 0.12 0.4 0.00140 0.0150
547 0.023 0.019 0.28 0.12 0.4 0.00138 0.0149
555 0.019 0.018 0.25 0.12 0.4 0.00136 0.0148
667 0.038 0.0060 0.067 0.12 0.4 0.00119 0.0140

Table 3.1: Specific inherent optical properties used in radiative transfer modelling

The range of concentrations assumed for the optically significant materials

were based on previous studies of the region as discussed in Chapter 1 (Bowers

et al., 2013; Gowen et al., 2008; McKee and Cunningham, 2006).

HydroLight and EcoLight

HydroLight and EcoLight (Sequoia Scientific Inc.) are numerical radiative

transfer models which solve different versions of the radiative transfer equation to

obtain the light field (and associated quantities such as remote sensing reflectance)
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within and leaving any plane-parallel water body (Mobley and Sundman, 2008).

EcoLight solves the azimuthally-averaged radiative transfer equation, rather than

for the full radiance distribution, which saves computational time if the outputs

required are remote sensing reflectance and other quantities that do not require

the full radiance distribution. A full description of the numerical methods used

to solve the models is provided by Mobley (1994). Both models require similar

inputs including

1. The inherent optical properties of the water body, which can either be

provided directly or determined using the bio-optical models within the

software.

2. The nature of the wind-blown sea surface, which is modelled using Cox-

Munk capillary-gravity wave-slope statistics and hence requires the wind

speed and refractive index of water.

3. The radiance distribution incident on the water surface due to the sun

and sky conditions. This can be provided directly from measurements,

determined from semi-empirical models within the software or from a user-

supplied model. The inbuilt semi-empirical model requires the user to pro-

vide the position of the sun and cloud cover.

4. The nature of the bottom boundary, that is, if there is reflectance off the

bottom of the sea-bed, and if there is, how to treat the nature of the surface

(Lambertian or from a user-supplied bi-directional reflectance distribution

function).

For this study, the light fields generated by the modelled IOPs were estimated

using EcoLight (version 5) with the following set-up:

1. User-supplied IOPs (absorption, attenuation and backscattering), with Fourier-
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Forand scattering phase functions selected using the backscatter fraction of

the provided IOPs,

2. No inelastic scatter,

3. Solar angle = 45◦,

4. Cloud free sky,

5. Wind speed = 5 ms−1,

6. Infinitely deep water column (no bottom reflectance)

7. Eight output wavebands, with a bandwidth of 10 nm, centred on:

412, 443, 488, 510, 531, 547, 555 and 667 nm.

The remote sensing reflectance spectra generated by EcoLight were then used for

evaluating inversion algorithms in the Irish Sea.

3.3 Satellite Imagery Processing

SeaDAS Processing

Ocean colour satellite data from current and historic missions are distributed

by NASA’s Goddard Space Flight Centre Ocean Biology Processing Group via

the OceanColor Web, a website which serves as the data access portal (http:

//oceancolor.gsfc.nasa.gov/). Data are available from point-and-click visual

browsers and by direct access for bulk download orders. NASA have developed an

image processing, analysis and visualisation package, the SeaWiFS Data Analysis

System (SeaDAS), for working with the satellite data. The software has in-built

programs for processing data through all the various levels, for different satellite

missions. The visualisation software was originally developed on an IDL-based

interface, however in 2013 this was transitioned to a Java based interface, ESA’s
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BEAM (Basic ENVISAT Toolbox for (A)ATSR and MERIS). The data processing

code was unchanged in this update, but BEAM was extended to include an

interface to allow access to these processing programs.

In this study, level 1A data covering the Irish Sea over an eight year time

period (2005 - 2012) were downloaded. Initially only partially cloud-free images

were manually selected and downloaded from the online browser, however this

dataset was later extended by ordering all available data within the time period,

irrespective of the cloud cover, increasing the data coverage from 322 images

to 4782 images. The ordered level 1A satellite files were downloaded from the

NASA distribution server and processed to level 2 data files, at 1 km resolution,

in SeaDAS version 6.4 using the default two-band aerosol model with an iterative

near infra-red correction (Gordon and Wang, 1994; Stumpf et al., 2003). The

level 2 products, listed in Table 3.2, were mapped using a Mercator projection

and then output as HDF files for further processing and analysis in MATLAB. For

Level 2 Product Description

Rrs(λ)
Remote sensing reflectance (units:
sr−1) in the following wavebands:
412, 443, 488, 531, 547 and 667 nm

solz the solar zenith angle (units: ◦)
sst the sea surface temperature (units: ◦C)

Table 3.2: Level 2 products used in this study

handling such large quantities of data, a series of scripts which incorporated the

relevant SeaDAS processing commands were written to automate the downloading

and processing of level 1A data files to the mapped HDF files. The following

summarises the scripts which were written:

download untar: Downloads the data files which have been bundled into tar
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files from the NASA distribution server and unpacks them into all the in-

dividual, zipped level 1A files.

unzipping sorting: Unzips the individual level 1A files and then sorts each one

into its own directory.

TimeSeriesL1AtoHDF: Processes each level 1A file to a mapped HDF file.

This script calls the SeaDAS processing functions, initially processing the

level 1A file to level 1B, then the level 1B file to level 2. A separate script

is called which contains the commands for the final processing to a mapped

HDF file.

OutputMappedHDF: Maps the level 2 data and outputs it in an HDF format.

This script is called in the TimeSeriesL1AtoHDF script.

MATLAB Processing

All the mapped data were cleaned in MATLAB, first by identifying the pixels

which were land or masked by cloud, and excluding these from further analysis.

Additionally, only sea surface temperature pixels where there was a coincident

remote sensing reflectance value were included in analysis as there were often

erroneous SST values associated with the presence of thin cloud. Pixels from

the Solway Firth, Morecambe Bay and the Bristol Channel were excluded due to

their close proximity to land and the high turbidity of these regions. The northern

limit of the region was taken as the North Channel (see Figure 3.2). The valid

data were grouped by month and year and saved in individual MATLAB data

files (known as mat files) for analysis.

Throughout this study, inversion algorithms were applied to the satellite data

via the mat files, with the resultant products saved in a separate mat file, again
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grouped by month and year. Therefore all the data for analysis, both level 2 prod-

ucts and inversion products, were saved within 192 individual mat files. Figure

3.3 shows a flow chart which summarises the processing steps.

Time Series Data

Analysis of the full time series required both temporal and spatial averaging

of the dataset. When examining the full time series at a particular location,

spatially averaging a patch of data reduced any features caused by erroneous

pixels. Hence, for an 11 x 11 patch of data, if over half the patch contained valid

pixels on a given day, the mean was used as a representative value, otherwise, no

value was taken for that day.

Due to the relatively sparse coverage, particularly over the winter months, it

was useful to consider a mean annual cycle for the various products. These were

obtained by grouping all the observations at a given pixel or patch into a specified

time interval (weekly, fortnightly or monthly) and taking the average value for

that pixel. If there were more than 5 observations for a pixel, then the standard

deviation was also calculated.

Data Visualisation

All data visualisation was done in MATLAB, including the mapping and gen-

eration of images of the Irish Sea. The mapping toolbox used was the freely

available M Map package from the University of Columbia Earth Observation

Sciences Group (http://www.eos.ubc.ca/~rich/map.html).
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Figure 3.2: A quasi-true colour MODIS image of the Irish Sea and surrounding
waters on the 26th March 2012. The red lines indicate the boundaries of the region
considered for time series analysis. (Image Credit: NERC Satellite Receiving
Station, Dundee University, Scotland, http://www.sat.dundee.ac.uk/)
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HDF to matfile

FlaggedtoNaNs

InversionCalculations

Imports each level 2 product from the individual mapped
HDF satellite data files and collates the data by month and

year, with each group of data saved as a mat file.

Imports the data from each mat file and changes all the land,
cloud and SST pixels where there is no coincident Rrs value
to not-a-number. This script also deletes any scenes which

contain no data.

Imports the data from each mat file and performs the required
inversion calculations. The inversion results are then saved in

separate mat files, again collated by month and year.

Figure 3.3: The MATLAB processing procedure.
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Summary

The methods discussed in this chapter, cover three main areas:

1. In Situ Observations - an overview of the instruments used and details of

the data processing.

2. Radiative Transfer Modelling - details of modelling the inherent optical

properties and the method used to model the resultant light fields.

3. Satellite Imagery Processing - a discussion of the programs used and the

methods applied for the processing and analysis of satellite data.
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4. Evaluation of a

Quasi-Analytical Approach to

Remote Sensing of Optical

Properties

In this chapter the absorption, backscattering and depth-averaged diffuse at-

tenuation coefficients are estimated by the quasi-analytical approach of Lee et al.

(2002, 2005b, 2007, 2009) and Lee (2012) and the resultant coefficients were used

to estimate the euphotic depth by three different methods. The approach of Lee

et al. has been modified over the years and the procedure evaluated here employs

the following steps:

1. QAAv6 (the quasi-analytical algorithm version 6 (Lee, 2012)), to recover

a(λ) and bb(λ) from Rrs(λ).

2. Three different versions of the Lee et al. (2005b) algorithm to recover Kd(λ)

from a(λ) and bb(λ) and the solar zenith angle

i) the original KdLee (Eq. (2.34)),

ii) KdLee simp, the simplified version of KdLee (Eq. (2.35)),

iii) KdLee 2013, the updated version of KdLee (Eq. (2.36)).

3. Three different algorithms to recover the euphotic depth, Zeu, from a(490),

bb(490) and Kd(490)
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i) Z Lee (the algorithm of Lee et al. (2007)), to recover the euphotic

depth from a(490) and bb(490),

ii) Z Zhao (the algorithm of Zhao et al. (2013)), to recover the euphotic

depth from Kd(490) using a hyperbolic function,

iii) Z Cunningham (the algorithm of Cunningham et al. (2013)), to recover

the euphotic depth from Kd(490) using a power law.

The performance of QAAv6 was initially evaluated on a bio-optical model of

the Irish Sea, and adjusted to optimise its performance (see the following section).

The regionally tuned QAA and the Kd(λ) and Zeu algorithms were all tested and

validated with field data from the Irish Sea.

4.1 Bio-optical Model of the Irish Sea

As discussed in Section 2.3, QAAv6 follows QAAv5, but includes a change in

reference wavelength to 667 nm for more turbid waters. QAAv5 was developed

using the IOCCG synthetic dataset (IOCCG, 2006), which was generated to cover

a wide range of both Case-1 and Case-2 waters, providing a dataset for algorithm

development and validation. However, a few assumptions were made in creating

the IOCCG dataset:

1. CDOM was modelled to co-vary with CHL.

2. The detritus particulate component was restricted so that there were no

large mineral contributions when the phytoplankton contribution was low.

3. Phytoplankton absorption was assumed to have a power law relationship

with CHL concentration (Bricaud et al., 1995).

4. A 1% bb/b Fournier-Forand phase function was used for phytoplankton.

51



Evaluation of a Quasi-Analytical Approach to Remote Sensing of
Optical Properties

5. The Petzold average phase function was used for the mineral component.

6. The backscattering coefficients for both phytoplankton and mineral par-

ticles were restricted to vary with CHL concentration but in a random

fashion.

In the Irish Sea, these assumptions are not all valid:

1. There are CDOM rich estuaries feeding the Irish Sea, hence CDOM does

not always co-vary with CHL (Tilstone et al., 2005).

2. The optical properties of much of the Irish Sea are driven by mineral par-

ticles in the surface layer in the winter and phytoplankton particles in the

summer, therefore often a high mineral contribution coincides with a low

phytoplankton contribution (Fig. 2 of Neil et al. 2011).

3. McKee and Cunningham (2006) observed the backscattering ratio of phy-

toplankton particles to be approximately 0.014 at 488 nm, which is slightly

higher than the 1% assumed in the IOCCG synthetic dataset.

4. McKee and Cunningham (2006) observed the backscattering ratio of min-

eral particles to be approximately 0.04 at 488 nm, which is significantly

higher than 0.0183, which is the value used for the Petzold average phase

function.

It was necessary, therefore to use a specially constructed bio-optical model of

the region to generate synthetic datasets to evaluate the inversion procedure for

the Irish Sea. By randomly sampling concentrations of the optically significant

materials (OSMs) from within typical ranges, the full gamut of possible combi-

nations in the region could be covered. This allowed the extreme ranges of the

constituent concentrations to be tested, but it produced distributions that were

approximately uniform across the full range of available concentrations, which
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does not represent in situ measurements. It could be argued that, characterising

constituent concentrations with log-normal distributions is more representative

of field observations.

One important assumption made in the IOCCG synthetic dataset is that

phytoplankton absorption has a power law relationship with [CHL]. This effect

has been well documented for oceanic waters, but coastal waters have received

a less thorough examination. As part of an extensive study of light absorption

in coastal waters Babin et al. (2003) investigated the power law relationship for

phytoplankton absorption, finding significant variability and differences among

the regions observed. In fact, Babin et al. advise against indiscriminate use of

the power law relationship for phytoplankton absorption in coastal regions.

For these reasons, it was decided to create two modelled datasets specifically

to test the validity of the products generated by QAAv6. Both datasets were

generated as described in Section 3.2 using regional SIOPs but different distri-

butions of optically significant materials. Additionally, each dataset modelled

phytoplankton absorption differently, one using the power law of Bricaud et al.

(1995) and one assuming a linear relationship between the CHL concentration

and a∗CHL(λ). The differences between the two synthetic datasets are outlined

below:

IS-1 (Irish Sea Model 1): OSMs randomly sampled within the following ranges

[CHL]: 0 - 10 mg m−3

[MSS]: 0 - 15 g m−3

[CDOM]: 0 - 0.5 m−1 a(440),

and phytoplankton absorption was assumed to follow the same power law

as the IOCCG synthetic dataset (Eqs. (3.5) and (3.6)).
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IS-2 (Irish Sea Model 2): OSMs were randomly sampled from the log-normal

distributions (see Figure 4.1) described by the parameters in Table 4.1 and

phytoplankton absorption was assumed to have a linear relationship with

CHL concentration.

Constituent Mean Mode
Standard Coefficient
Deviation of Variation

CHL (mg m−3) 2.4 1.9 1.3 0.54
MSS (g m−3) 2.7 2.2 1.4 0.52
CDOM (m−1) 0.13 0.12 0.03 0.23

Table 4.1: Descriptive statistics for the distributions of the constituent concen-
trations in dataset IS-2.
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Figure 4.1: Distributions of the optically significant material concentrations used
in dataset IS-2.

All versions of the QAA rely on the relationship of Gordon et al. (1988),

rrs(λ) = g0
bb(λ)

a(λ) + bb(λ)
+ g1

(
bb(λ)

a(λ) + bb(λ)

)2

, (2.26)

hence the rrs(λ) values derived through EcoLight for IS-1 were compared with

those derived using Eq. (2.26), with g0 = 0.0895 and g1 = 0.01249. Additional

EcoLight runs were included to investigate the effect of varying solar angles and

level of cloud cover on this relationship. For both IS-1 and the data from the

additional EcoLight runs, the rrs(λ) values calculated using Eq. (2.26) were highly

correlated with those from EcoLight, with a linear regression giving a gradient
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of 1. Hence, to save computational time, the rrs(λ) values for IS-2 were derived

using the Gordon et al. (1988) relationship.

4.2 Performance of QAAv6 when Applied to

Synthetic Dataset IS-1

QAA begins with an estimation of the absorption coefficient at a particular

wavelength, and for QAAv6 this is either a sensor-dependent green wavelength,

λ0, (547 nm for MODIS) or 667 nm, with the following equations for the estima-

tions (see Section 2.3 for full details):

a(λ0) = aw(λ0) + 10p1+p2χ+p3χ2

where χ = log

(
rrs(443) + rrs(488)

rrs(λ0) + 5 rrs(667)
rrs(488)

rrs(667)

)
,

(4.1)

and

a(667) = aw(667) + q1

(
Rrs(667)

Rrs(443)

)q2
, (4.2)

When QAAv6 was applied to IS-1 both a(λ) and bb(λ) were underestimated

(see Table 4.2). The coefficients (p1, p2, p3, q1 and q2) can all be optimised for

the Irish Sea by performing a least squares fit to the synthetic dataset, IS-1, using

the Levenberg-Marquardt technique. Table 4.3 shows the original and optimised

coefficients.

The Irish Sea optimised QAAv6 was applied to IS-1 with the performance

for the first 6 SPMR wavebands shown in Figures 4.2 and 4.3. Two additional

wavebands matching the remaining MODIS wavebands (531 and 547 nm) were

included in the analysis, with regression results for all eight wavelengths given in

Table 4.2. The coefficients of determination, R2, and root mean square errors,
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RMSE, were similar for both the original and optimised algorithms, however the

mean percentage errors (MPE) significantly reduced and the gradients of the

regressions were closer to unity when applying the Irish Sea optimised QAAv6.

Parameter
Original Algorithm Optimised Algorithm

gradient R2 RMSE (m−1) MPE gradient R2 RMSE (m−1) MPE

a(412) 0.97 0.98 0.055 -4.2 1.02 0.98 0.058 2.5
a(443) 0.95 0.98 0.041 -5.7 1.00 0.98 0.043 1.1
a(488) 0.93 0.97 0.026 -7.2 0.98 0.98 0.027 -0.5
a(510) 0.93 0.97 0.022 -7.6 0.98 0.97 0.023 -1.0
a(531) 0.93 0.97 0.018 -8.0 0.99 0.97 0.019 -1.4
a(547) 0.94 0.97 0.016 -8.3 1.00 0.97 0.017 -1.7
a(555) 0.94 0.97 0.015 -8.6 1.00 0.97 0.016 -1.9
a(667) 0.52 0.37 0.023 -6.8 0.54 0.44 0.023 0.0
bb(412) 0.95 0.99 0.007 -7.3 1.01 0.99 0.008 -0.8
bb(443) 0.94 0.99 0.007 -7.9 1.01 0.99 0.007 -1.3
bb(488) 0.94 0.99 0.006 -7.9 1.00 0.99 0.006 -1.3
bb(510) 0.94 0.99 0.006 -7.8 1.01 0.99 0.006 -1.2
bb(531) 0.94 0.99 0.006 -7.8 1.01 0.99 0.006 -1.0
bb(547) 0.94 0.99 0.005 -7.7 1.01 0.99 0.006 -1.0
bb(555) 0.94 0.99 0.005 -7.8 1.01 0.99 0.006 -1.1
bb(667) 0.94 0.99 0.005 -7.8 1.01 0.99 0.005 -1.0

Table 4.2: Regression results for QAAv6 with the original and optimised coeffi-
cients on synthetic dataset IS-1

Algorithm p1 p2 p3 q1 q2

Original -1.146 -1.366 -0.469 0.07 1.10
Optimised -1.122 -1.338 -0.533 0.11 0.69

Table 4.3: Coefficients for the absorption estimation for the original and optimised
QAAv6.
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Figure 4.2: The performance of QAAv6 with coefficients optimised for the Irish
Sea in recovering a(λ) from remote sensing reflectance for IS-1. The dashed lines
are one-to-one lines.
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Figure 4.3: The performance of QAAv6 with coefficients optimised for the Irish
Sea in recovering bb(λ) from remote sensing reflectance for IS-1. The dashed lines
are one-to-one lines.
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4.3 Performance of QAAv5 and QAAv6 when

Applied to Synthetic Dataset IS-2

When the QAAv6 was applied to IS-2, the resultant recovery of a(488) is

shown in Figure 4.4 (a). The main aspects of the recovery were similar for all

the wavelengths examined. For this dataset, the spread in the a(488) recovery

was a lot larger than for IS-1, particularly at the higher absorption values. On

examining this result, it was found that the points which were obtained from

an initial estimation of the absorption coefficient at the ‘switched’ waveband of

667 nm, rather than 555 nm, were the points which were under-performing. The

estimation of a(667) uses a simple band ratio which was tuned on the synthetic

dataset created by Lee et al. (2002) in the initial QAA paper. This dataset

was generated in a similar manner to the IOCCG synthetic dataset, with the

same assumptions of covariance between [CHL] and both gelbstoff and detritus

absorption. However, in the Irish Sea, high incidences of minerals tend to coincide

with low levels of phytoplankton and vice versa. Therefore the dataset of Lee et al.

(2002) does not fully capture the variability of the IOPs in the Irish Sea, and the

empirical a(667) estimation does not work when applied to this region.

QAAv5, which was tuned on the IOCCG synthetic dataset, only estimates the

absorption at 555 nm (or a close green wavelength) and relies on a more complex

combination of five different Rrs wavebands. The complex form of this estimation

provides a more seamless transition between different water types and captures

the variability seen in the Irish Sea more closely than a simple band ratio. Hence,

QAAv5 was then applied to IS-2, again with the result for a(488) shown in Figure

4.4 (b). This version of the algorithm significantly reduced the spread of the
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Figure 4.4: The performance of (a) QAAv6, (b) QAAv5 and (c) QAAv5 with a
linearisation step, in recovering a(488) from remote sensing reflectance for IS-2.
The dashed lines are one-to-one lines.
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recovery. However at the higher absorption values the algorithm began to saturate

as the non-water term dominated the a(555) estimation. Therefore, by applying

a linearisation step to QAAv5 recovered absorption values, the saturation effect

was removed (Figure 4.4 (c)). The linearisation step involved applying a cubic

polynomials of the form

a(λ) = k1aQAA(λ) + k2aQAA(λ)2 + k3aQAA(λ)3, (4.3)

to QAAv5 recovered a(λ) values. The coefficients were determined from a least

squares fit to the IS-2 dataset and are listed in Table 4.4. Regression results for

QAAv5 plus subsequent linearisation are shown for a(λ) and bb(λ) in Table 4.5.

Wavelength (nm) k1 k2 k3

412 0.88 0.22 -0.05
443 0.98 -0.15 0.32
488 1.06 -0.53 0.98
510 1.07 -0.72 1.57
531 1.09 -0.97 2.38
547 1.06 -0.93 3.03
555 1.10 -1.13 3.32
667 2.39 -4.75 4.06

Table 4.4: The coefficients of the cubic polynomials (Eq. 4.3) for linearising
QAAv5 absorption coefficient recoveries.
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Parameter gradient R2 RMSE (m−1) MPE
a(412) 1.03 0.99 0.014 3.1
a(443) 1.04 1.00 0.009 1.9
a(488) 1.05 1.00 0.005 3.1
a(510) 1.05 1.00 0.004 3.1
a(531) 1.05 1.00 0.004 3.0
a(547) 1.08 0.99 0.003 2.9
a(555) 1.04 0.99 0.003 3.8
a(667) 1.20 0.98 0.008 3.3
bb(412) 1.00 1.00 0.001 4.3
bb(443) 1.00 1.00 0.001 3.1
bb(488) 1.00 1.00 0.001 2.8
bb(510) 1.00 1.00 0.001 3.0
bb(531) 1.00 1.00 0.0009 2.7
bb(547) 0.99 1.00 0.0009 2.5
bb(555) 0.99 1.00 0.0009 2.4
bb(667) 0.99 1.00 0.0009 1.4

Table 4.5: Regression results for QAAv5 plus linearisation on synthetic dataset
IS-2

4.4 Validation of QAAv5 with Linearisation

and QAAv6 with Optimised Coefficients on Field

Data

When validating the algorithms on the field data, QAA versions were applied

to the SPMR measured Rrs(λ) values and the resultant estimates of a(λ) and

bb(λ) were compared with the ac-9 and hs-2 measurements. Hence, not only were

we testing the performance of an algorithm, but also the performance of three

different instruments at measuring closely related properties, each with slightly

different wavebands. It is worth noting that the centre of most wavebands only
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differ by 3 nm or less, however the red wavebands differ by 9 nm (667 nm for the

SPMR and 676 nm for the ac-9). To check the closure between the instruments,

the relationship between rrs(λ) and bb/(a+bb) for the field data was investigated.

Figure 4.5 shows rrs(λ) plotted against bb/(a+bb) for both the field and modelled

data together, with the theoretical curve of Gordon et al. (1988) (Eq. (2.26)).

For bb/(a+ bb) < 0.15 m−1 the field data followed the theoretical curve. However

above this limit, the field data significantly deviated from the theory. The stations

which fell below the curve are the most turbid stations, located in the Bristol

Channel. For turbid stations, standard scattering corrections of IOPs are subject

to higher errors due to non-negligible absorption in the near-IR. In addition, the

extrapolation of SPMR profiles to the surface is more challenging when the optical

depth is so shallow, resulting in only a few data points for the extrapolation.

Furthermore, the difficulty in obtaining optical closure between radiometric and

inherent optical property measurements has been documented across the field

for both modelling work and field data, with suggestions that further studies are

required to understand the variability observed (Chang et al., 2007; Chang and

Whitmire, 2009; Brewin et al., 2013).
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Absorption and Backscattering Coefficients

The two adjusted versions of the QAA, (i) QAAv5 with subsequent lineari-

sation and (ii) QAAv6 with optimised coefficients, were applied to field data

collected in the Irish Sea and surrounding waters. Details of the methods used to

collect and analyse the field data are given in Section 3.1. The regression results

for a(λ) and bb(λ) are given in Table 4.6 and shown (for 488 nm) in Figure 4.6.
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Parameter Algorithm gradient y-intercept (m−1) R2 RMSE (m−1)

a(412)
QAAv5 + lin 1.94 -0.08 0.70 0.22
QAAv6 opt 1.94 -0.055 0.75 0.19

bb(412)
QAAv5 + lin 1.03 0.003 0.94 0.003
QAAv6 opt 1.09 0.002 0.89 0.005

a(443)
QAAv5 + lin 1.09 0.017 0.80 0.08
QAAv6 opt 1.18 0.021 0.86 0.068

bb(443)
QAAv5 + lin 1.01 0.002 0.94 0.003
QAAv6 opt 1.09 0.002 0.90 0.004

a(488)
QAAv5 + lin 1.03 0.022 0.84 0.043
QAAv6 opt 1.16 0.013 0.87 0.042

bb(488)
QAAv5 + lin 1.00 0.002 0.94 0.003
QAAv6 opt 1.08 0.002 0.90 0.004

a(510)
QAAv5 + lin 0.90 0.027 0.82 0.035
QAAv6 opt 1.04 0.017 0.85 0.037

bb(510)
QAAv5 + lin 1.00 0.002 0.93 0.003
QAAv6 opt 1.08 0.002 0.90 0.004

a(555)
QAAv5 + lin 0.91 0.021 0.84 0.022
QAAv6 opt 1.06 0.008 0.85 0.025

bb(555)
QAAv5 + lin 0.99 0.002 0.93 0.003
QAAv6 opt 1.07 0.002 0.90 0.004

a(667)
QAAv5 + lin 0.65 0.22 0.057 0.10
QAAv6 opt 0.75 0.17 0.15 0.068

bb(667)
QAAv5 + lin 0.95 0.002 0.93 0.0029
QAAv6 opt 1.02 0.002 0.91 0.004

Table 4.6: The regression results for QAAv5 with linearisation and the optimised
QAAv6 for a(λ) and bb(λ). The regression results for bb(λ) are determined for in
situ values with bb(λ) smaller than 0.05 m−1 .
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Figure 4.6: The performance of QAAv5 with linearisation and the optimised
QAAv6 on in situ data, shown for 488 nm. The dashed lines are one-to-one lines.

The performance of the two different algorithms were very similar for the

absorption coefficients. Generally, a(λ) tended to be overestimated, however the

gradients were close to unity for all wavebands except at 412 nm and 667 nm, and

the R2 and RMSE values were similar. The performance in the 412 nm waveband

was poor, probably indicating a problem with the 412 nm channel in the SPMR

instrument rather than a failure of the algorithm itself. The recovered values of

a(667) were also poor, partly because there was a mis-match in the wavelengths

being compared (667 nm with 676 nm), and partly because QAA doesn’t work for
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wavelengths longer than the one that was initially used to estimate the absorption

coefficient (Brewin et al., 2013). For the field data, 68 out of the 146 stations

were determined from an absorption estimation at 667 nm, leaving 78 stations

with an initial estimation of a(555), hence recovered absorption coefficients at

wavelengths longer than 555 nm for these stations cannot be trusted.

The recovered backscattering coefficients below 0.05 m−1 were well correlated

with those measured in situ. However, for bb(λ) > 0.05 m−1, both versions of QAA

significantly underestimated bb(λ). These underestimated stations are the turbid

Bristol Channel stations, previously identified in Figure 4.5, for which there is not

full closure between the optical and radiometry measurements. The regression

results for the stations with bb(λ) < 0.05 m−1 are given in Table 4.6, showing the

gradients were consistently closer to unity for QAAv5 plus linearisation, however,

the R2 and RMSE values were very similar for both versions of the algorithm.

Overall, the performance of the adjusted QAAv5 and QAAv6 in the recovery

of the absorption and backscattering coefficients in the Irish Sea were very similar.

However, the QAAv5 plus linearisation did consistently perform marginally better

across the majority of wavelengths when considering both the modelled datasets

and the field data, and hence was selected for use in future analysis.

Mean Diffuse Attenuation Coefficients

The three different versions of the KdLee algorithm outlined at the start of this

chapter were tested on the field data, by applying QAAv5 plus linearisation to

SPMR calculated Rrs(λ) and using the resultant a(λ) and bb(λ) values to estimate

Kd(λ). In this case, the algorithm validation is done using only one instrument

(the SPMR), avoiding errors arising from closure between instruments. The three
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algorithms performed similarly across all wavebands, with regression results given

in Table 4.7 and recoveries plotted for the 490 nm waveband in Figure 4.7. The

original (Lee et al., 2005b) and updated (Lee et al., 2013) algorithms produced

a very similar performance, but the updated algorithm gave gradients closer to

unity, except in the 412 nm waveband. On the other hand, the form of the

simplified algorithm is suitable for examining the separate effects of absorption

and scattering on the resultant light attenuation. Therefore, depending on the

application, either of the three algorithms can be used without losing much in

terms of accuracy of recovery.

Wavelength Algorithm gradient y-intercept (m−1) R2 RMSE (m−1)

412
KdLee 1.49 -0.11 0.89 0.18

KdLee simp 1.44 -0.10 0.89 0.18
KdLee 2013 1.50 -0.11 0.90 0.18

443
KdLee 0.97 0.03 0.89 0.11

KdLee simp 0.91 0.04 0.87 0.11
KdLee 2013 0.98 0.03 0.89 0.11

490
KdLee 0.88 0.03 0.94 0.06

KdLee simp 0.81 0.05 0.92 0.06
KdLee 2013 0.89 0.03 0.94 0.06

510
KdLee 0.82 0.03 0.95 0.05

KdLee simp 0.74 0.05 0.94 0.05
KdLee 2013 0.83 0.03 0.95 0.05

555
KdLee 0.77 0.03 0.96 0.03

KdLee simp 0.70 0.05 0.96 0.03
KdLee 2013 0.78 0.03 0.96 0.03

667
KdLee 0.41 0.50 0.24 0.1

KdLee simp 0.33 0.54 0.17 0.14
KdLee 2013 0.42 0.50 0.25 0.14

Table 4.7: The regression results for the three different versions of the KdLee
algorithm on the field data.
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Euphotic Depth Algorithm Comparisons with Field Data

The three different euphotic depth algorithms outlined at the start of this

chapter were tested on the field data. First, QAAv5 with linearisation was ap-

plied to the Rrs(λ), then Kd(490) was estimated using the updated KdLee algo-

rithm, and the resultant a(490), bb(490) and Kd(490) were used to determine the

euphotic depths. The Cunningham et al. (2013) algorithm was slightly adjusted

to obtain new coefficients based on the modelled dataset, IS-1:

z = 5.52Kd(490)−0.86. (4.4)

The algorithms all gave similar results (Table 4.8 and Figure 4.8), but the

algorithm of Cunningham et al. (2013) gave a gradient closest to unity and so

was selected to use for all the subsequent analysis.

Algorithm gradient y-intercept (m) R2 RMSE (m)
z Lee 0.80 2.27 0.88 2.7

z Zhao 0.91 -0.34 0.85 3.5
z Cunningham 1.05 0.92 0.85 3.9

Table 4.8: The regression results for three different euphotic depth algorithms on
the field data
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4.5 Discussion

The main conclusions from this chapter can be summarised as follows:

1. The quasi-analytical approach of Lee et al., with relatively small adjust-

ments, produced excellent results when applied to both modelled datasets

for the Irish Sea. The quality of the a(λ) and bb(λ) recoveries for the

field data was lower, but this may have been due to measurement difficul-

ties rather than the algorithm itself. QAAv5 with linearisation performed

marginally better across the majority of wavelengths when considering both

the absorption and backscattering coefficients, and hence this version was

selected for use inl subsequent analyses.

2. Three different versions of the Lee et al. (2005b) algorithm for recovering

Kd(λ) were evaluated: the original version, a simplified version (Lee et al.,

2005b) and an updated version (Lee et al., 2013). All three versions of

the algorithm recovered coefficients which were correlated with the field

measurements between 443 and 555 nm. This was particularly encouraging,

as a previous study in the Irish Sea (McKee et al., 2007) showed that the

empirical Kd(490) algorithm (Mueller, 2000) performed poorly.

3. Euphotic depths estimated by the Lee et al. (2007), Zhao et al. (2013) and

Cunningham et al. (2013) algorithms were well correlated with the field

measurements, with average percentage errors similar to those reported by

Lee et al. (2007). The Lee et al. (2007) algorithm had the highest coefficient

of determination and RMSE, but was computationally expensive. However,

both the Zhao et al. (2013) and Cunningham et al. (2013) algorithms have

a simpler form and recovered the euphotic depth to a similar accuracy, with
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the Cunningham et al. (2013) algorithm giving a gradient closest to one.

Hence, this algorithm was chosen for future use.
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5. Remote Sensing of Separate

Absorption Coefficients for

Phytoplankton Cells and

Mineral Particles

The aim of deriving concentrations of the optically significant materials present

in the water column directly from ocean colour imagery still poses significant

challenges, particularly in optically complex waters (Aurin and Dierssen, 2012;

Odermatt et al., 2012). However, the ability to quantify the contributions of

phytoplankton cells and mineral particles to the total absorption coefficient with-

out specifically deriving constituent concentrations has important potential ap-

plications. These include studies of the role of different particle classes on the

attenuation of light (Devlin et al., 2008) and the detection of chlorophyll in re-

gions where conventional algorithms are degraded by turbidity (Dall’Olmo and

Gitelson, 2005).

In this chapter, an approach for recovering phytoplankton and mineral absorp-

tion coefficients from the remote sensing reflectance, is presented. This absorption

partitioning procedure assumes CDOM has a relatively low and constant back-

ground influence on the total absorption, and phytoplankton and mineral particles

are the main contributors to the optical variability. This condition appears to be

met in many shelf sea areas including the Patagonian shelf (Ferreira et al., 2009),
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certain regions in the North Sea (Tilstone et al., 2012) and the Irish Sea (Bowers

et al., 2013)).

The absorption partitioning technique was initially developed using dataset

IS-2 which was derived from a bio-optical model of the Irish Sea (see Section 4.1

for a full description). Eight years of MODIS data for the Irish Sea obtained from

partially cloud-free images were then examined to investigate the variability in

the IOPs, with application of the absorption partitioning procedure to a patch

in the eastern Irish Sea to understand the observed patterns (see Section 3.3 for

full details on the satellite data processing).

5.1 Methods

The absorption partitioning procedure separates the contribution of phyto-

plankton and mineral particles to the total absorption coefficient by examining the

relationship between the particulate absorption and backscattering coefficients.

Following the evaluation of Chapter 4, the total absorption and backscattering

coefficients were derived from remote sensing reflectance using the QAAv5 with

linearisation (see Section 4.3 for a full description and evaluation).

Absorption Partitioning

If we assume the optical properties of the water column are due to the effects

of phytoplankton (CHL), suspended minerals (MSS) and CDOM, then

a(λ) = aw(λ) + aCHL(λ) + aMSS(λ) + aCDOM(λ), (5.1)

bb(λ) = bbw(λ) + bbCHL(λ) + bbMSS(λ). (5.2)
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The backscattering to absorption ratio for each particle class can be defined as,

ρ1(λ) =
bbMSS(λ)

aMSS(λ)
(5.3)

ρ2(λ) =
bbCHL(λ)

aCHL(λ)
. (5.4)

Therefore, by combining (5.2), (5.3) and (5.4), the particulate absorption and

backscattering coefficients can be expressed in terms of aCHL(λ) and aMSS(λ),

ap(λ) = a(λ)− aw(λ)−aCDOM(λ) = aMSS(λ) + aCHL(λ) (5.5)

bbp(λ) = bb(λ)− bbw(λ) = bbMSS(λ) + bbCHL(λ)

= ρ1(λ)aMSS(λ) + ρ2(λ)aCHL(λ). (5.6)

From (5.5) and (5.6), we can derive expressions for aCHL(λ) and aMSS(λ):

aCHL(λ) =
ρ1(λ)ap(λ)− bbp(λ)

ρ1(λ)− ρ2(λ)
, (5.7)

aMSS(λ) =
bbp(λ)− ρ2(λ)ap(λ)

ρ1(λ)− ρ2(λ)
. (5.8)

Hence for a given ap(λ) and bbp(λ), if the ratio of the backscattering to absorption

coefficients for each constituent is known, then the particulate absorption can be

decomposed into its contributions. Further, if the specific absorption coefficients

are known, the constituent concentrations can be estimated from their absorption

contributions.

A plot of the backscattering coefficient against the absorption coefficient at

one wavelength, λ0, for a group of observations has an upper and lower bound

(see Figure 5.1). These upper and lower bounds are the backscattering to ab-
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sorption ratios for MSS (ρ1) and CHL (ρ2) respectively. The presence of CDOM,

which is only an absorber, would shift a point along the absorption axis. Hence,

for a system with a relatively constant influence from CDOM, the whole data

cloud would be shifted along by approximately the same amount. Therefore from

the offset along the absorption axis we can gain an estimation of the CDOM

contribution, as shown in Figure 5.2. If we consider a point (A in Figure 5.2)

that contains MSS (in addition to this CDOM contribution), then this point will

lie on the ρ1 line. Similarly, a point (B) containing CHL (and the background

CDOM), will lie on the ρ2 line. Then point C, containing a combination of MSS,

CHL and CDOM, lies inbetween the two lines. This point can be thought of in

two ways: (1) having been pulled down from the ρ1 line because of the addition

of CHL, hence the vertical distance between the ρ1 line and C is proportional

to the amount of CHL added, or (2) being pulled up from the ρ2 line, with the

vertical distance it is pulled up attributed to the amount of MSS added. Hence

the form of Eqs. (5.7) and (5.8).

Determination of ρ1 , ρ2 and a0

Figures 5.1 and 5.2 show how, for a given set of shelf sea observations, the

backscattering to absorption ratios have upper and lower bounds. Hence, for

a given dataset, if the space is well-populated the backscattering to absorption

ratios for each particle class (ρ1 and ρ2) can be estimated from the data itself.

To determine ρ1 and ρ2 the first step is to obtain the particulate absorption

and backscattering coefficients. For the backscattering this is a straightforward

subtraction of the known water component (Smith and Baker, 1981) from the

total backscattering. However, for the absorption both the water component
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Figure 5.1: A plot of the particulate backscattering coefficient
against non-water absorption coefficient at 488 nm for modelled
dataset IS-2.
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Figure 5.2: The relationship between bbp(λ0) and anw(λ0) for a
given wavelength, λ0. The blue lines indicate the upper and lower
bounds (which have gradients ρ1 and ρ2 respectively) for any data
point. For the three points shown (A, B & C), CDOM = 0.1 m−1,
hence the offset from the origin is given by aCDOM. Point A also
has [MSS] = 5 g m−3, point B has [CHL] = 5 mg m−3 and point C
has both [MSS] = 5 g m−3 and [CHL] = 5 mg m−3. Therefore A
lies on the ρ1 line, point B lies on the ρ2 line and C is a distance,
ρ1ap− bbp, below the ρ1 line and a distance, bbp− ρ2ap, above the
ρ2 line.
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(Pope and Fry, 1997) and the CDOM component must be subtracted. Without

knowing the CDOM component a priori, a background estimate can be made from

the offset of the data cloud from the origin along the absorption axis, as long as

CDOM is relatively invariant. For a given set of observations the absorption

offset, a0 = aw + aCDOM, is estimated by incrementally increasing a0 from 0

to the minimum absorption value of the dataset. At each value of a0, ρ1 can

be estimated from the gradient of a line (forced through a0) which is fitted via

the least squares method to the largest 1% of the bbp/ap values. The sum of

the squared distances from every point to this least squares line, ε, is used as a

descriptor for the effectiveness of the fit of this line to the whole dataset. For a

given data point (ai, bbi), let di be the shortest distance of the point to the line

and (a, bb) be the point on the line at this shortest distance, then

ε =
n∑
i=1

d2
i =

n∑
i=1

(a− ai)2 + (bb − bbi)2 =
n∑
i=1

(bbi − ρ1ai + ρ1a0)2

ρ2
1 + 1

. (5.9)

The values of a0 and ρ1 selected to use are those from the iteration where this

descriptor is a minimum. Finally, ρ2 is determined from the gradient of a line,

forced through the chosen a0, fitted through the smallest 1% of the bbp/ap values.

5.2 Performance of the Absorption

Partitioning Method

When the procedure outlined in Section 5.1 was applied to IS-2, with λ0 =

488 nm, the derived parameters differed slightly from those used in creating the

dataset, with ρ1 = 0.432 (rather than 0.456), ρ2 = 0.057 (rather than 0.026) and

a0 = 0.082 (rather than 0.072). These differences arose mainly from the fact that
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the data cluster did not fully sample the available parameter space (Figure 5.3).

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

anw (488) : m−1

b b
p
(4
8
8
)
:
m

−
1

Figure 5.3: The QAA-derived particulate backscattering and non-water absorp-
tion for the modelled dataset, with the dashed lines indicating the boundaries
defined by the SIOPs and the solid lines indicating the boundaries derived from
the line fitting procedure described in the text.

Applying the absorption partitioning equations to the modelled dataset, with

the values of ρ1 , ρ2 and a0 obtained from the fitting procedure, aCHL(488) and

aMSS(488) were recovered with gradients of 1.11 and 1.06 respectively and coeffi-

cients of determination of 0.94 and 0.97 (Figure 5.4).

5.3 Sensitivity of Absorption Partitioning to

CDOM Variability

The absorption partitioning procedure was developed on the assumption that

CDOM was not highly variable. The effect of this assumption on the recoveries of
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aCHL(488) and aMSS(488) was investigated by altering the CDOM distributions

used in the modelled dataset. Five different modal values of CDOM were se-

lected, and in each case the coefficient of variation was varied. Figure 5.5 shows

the RMSEs for the recovered aCHL(488) and aMSS(488) when the different CDOM

distributions were used to generate the modelled dataset. For the CDOM distri-

bution that is representative of the Irish Sea (CDOM mode = 0.12 m−1, coefficient

of variation = 0.23, see Table 4.1), the RMSEs were 0.009 m−1 for aMSS(488) and

0.02 m−1 for aCHL(488).
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Figure 5.4: Recoveries of (a)
aCHL(488) and (b) aMSS(488) for
IS-2 using the absorption partition-
ing technique.
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5.4 Application of QAA and Absorption

Partitioning Procedure to Satellite Ocean

Colour Observations

The QAAv5 plus subsequent linearisation was applied to remote sensing re-

flectance data obtained from eight years of MODIS data covering the Irish Sea

and surrounding waters. Figure 5.6 shows the extent of the region considered.

The full time series at the indicated location (A) is examined using the absorption

partitioning procedure later in the chapter.

ρ1, ρ2 and a0 Derived from MODIS Data

The values of a(488) and bb(488) were determined using the QAAv5 with

linearisation for all available observations. By subtracting the known water con-

tributions, ρ1, ρ2 and a0 were determined for all the available satellite data, see

Figure 5.7. The value for ρ1 was determined to be 0.413, close to the value of

0.456 which was determined from the mean SIOPs (Table 3.1). On the other

hand, ρ2 was significantly lower than the SIOP value (0.007 from MODIS data,

0.026 from SIOPs). This difference could arise from the difficulty in measuring the

phytoplankton backscattering coefficients (McKee and Cunningham, 2006). The

absorption offset (a0) was lower from the MODIS data (0.024) than the modal

value used in the modelling (0.072), supporting the low CDOM assumption.
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Figure 5.6: A typical MODIS Rrs(488) image of the Irish Sea from 26th May
2012. The lines indicate areas indicate the boundaries of the region used in the
absorption partitioning analysis. Point A was used for time series analysis, see
later in text.

IOP Characteristics of the Irish Sea

By grouping all the bbp(488) and a(488) data into two-week intervals accord-

ing to the time of occurrence in the calendar year, the temporal variability in

backscattering to absorption ratios (an indicator of particle class) was examined.

Figure 5.8 shows plots of bbp(488) against a(488) for the whole region for two-

week intervals, with the boundary lines derived from the whole dataset. At the

start of the year, all the data were clustered near the upper boundary, indicating

the presence of mineral particles in the surface layer of the water column across
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Figure 5.7: A plot of bbp(488) against anw(488) for all the available MODIS ob-
servations within the region shown in Figure 5.6. The solid red lines indicate
the ρ1 and ρ2, as determined from the fitting procedure, which were used for the
absorption partitioning.

the region. During the spring a distinct separate group of points appeared close

to the lower (phytoplankton) boundary when the spring phytoplankton bloom

occurred. By late spring, when many of the mineral particles had dropped out

of the surface layer, the data cluster had moved away from the upper boundary.

During summer and into autumn, this process reversed, with points moving up

from the lower boundary tying in with the decline in the phytoplankton pop-

ulation, although a small reappearance was seen in September, coinciding with

the secondary phytoplankton bloom often observed in the autumn. Finally, at

the end of the year we have a moved in a full cycle, and the water column was

dominated by mineral particles in the surface layer.
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Figure 5.8: Fortnightly plots of bbp(488) against anw(488) for all the available
data within the region shown in Figure 5.6 between January 2005 and December
2012. The solid red lines are the ρ1 and ρ2 determined for all the data (see Figure
5.7), and the date is the start of each fortnight.
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Time Series of aCHL(488) and aMSS(488)

All the available MODIS observations of Rrs(488), and the QAA derived val-

ues of a(488) and bb(488) over the eight year period at location A are shown in

Figure 5.9. The variables all showed annual cycles, with Rrs(488) and bb(488)
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Figure 5.9: All the satellite observations available for Rrs(488), a(488) and bb(488)
over the eight year period for the location A.

peaking over the winter months, and having a minimum over the summer. This

is consistent with Bowers (2003) who showed wind-enhanced mixing brings min-
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eral particles to the surface of the water column during the winter. a(488) had

a pronounced peak in the early spring, coinciding with the minima in Rrs(488)

and bb(488) cycles.

The a(488) cycle can be examined in more detail by applying the absorption

partitioning procedure. Figure 5.10 shows the fractional contribution of aMSS(488)

and aCHL(488) to the total absorption coefficient at location A. These components

were in antiphase, with the mineral particles dominating the total absorption

during the winter months and conversely, phytoplankton particles dominating

the absorption over the summer.

Since the time series showed no significant long-term trends, the mean annual

cycle of the partitioned absorption coefficients was derived by averaging all the

available observations for each two-week interval in the calendar year (Figure

5.11). The contrasting cycles of each particle class is evident from Figure 5.11,

where the mineral absorption was at a maximum over the winter months and its

reduction in the spring coincided with an increase in phytoplankton absorption

during the spring bloom.
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Figure 5.10: The fractional contribution of CHL and MSS to the total absorption
coefficient for all the satellite observations from location A.
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Figure 5.11: Seasonal averages for location A, where the satellite observations
were binned by fortnight and the error bars are the standard deviations for each
fortnight (which were only calculated when there were 5 or more observations
within a given fortnight).

5.5 Discussion

The main points covered in this chapter can be summarised as follows:

1. The absorption partitioning procedure developed depends on two initial

assumptions. First, that the contribution of CDOM to the total absorption

coefficient is either low or constant, and second, that the remote sensing

observations fully fill the parameter space, allowing ρ1, ρ2 and a0 to be

determined from the data cluster. There are probably other shelf sea areas

where the influence of CDOM on total absorption may be similar to that

observed in the Irish Sea. Additionally, if the backscattering to absorption

ratios of the main particle classes are known a priori, the data coverage
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restriction can be relaxed.

2. The absorption partitioning procedure proposed here was shown to work

well using a synthetic data set generated for the Irish Sea using locally deter-

mined specific inherent optical properties. When it was applied to MODIS

data, it recovered mineral and chlorophyll absorption coefficients which were

consistent with previously published studies of the region (Gowen et al.,

2008), and also revealed novel temporal relationships between the dynam-

ics of these two particle classes.
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6. Role of Different Particle

Classes in Determining the

Depth of Penetration of Solar

Radiation in the Irish Sea

The depth of penetration of solar radiation is an important property in aquatic

systems for both physical and biological processes (Bisset et al., 2001; Doron

et al., 2007). The diffuse attenuation coefficient provides a measure of penetration

depths and how these are affected by the presence of materials in the surface

layer (Lee et al., 2005b; Doron et al., 2007; Wang et al., 2009), which is critical

for determining heat budgets in the upper mixed regions of the oceans (Lewis

et al., 1990; Sathyendranath et al., 1991a), underwater visibility (Doron et al.,

2007) and photosynthesis (Platt et al., 1988; Sathyendranath et al., 1989b).

For growth and primary production, phytoplankton cells require adequate lev-

els of both light and nutrients (Peeters et al., 1993; Jin et al., 2013). Mixing of the

water column brings nutrients from deep in the water column to the surface layer

and circulates phytoplankton through the light field, hence playing an important

role in the growth cycle of phytoplankton (Bisset et al., 2001; Howarth et al.,

2002). In shelf seas, there are further factors which can affect the phytoplankton

growth, including the presence of suspended mineral particles and CDOM which

modify the underwater light field (Vantrepotte et al., 2007) and stratification of
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the water column which affects mixing (Peeters et al., 2013). The euphotic depth

gives a measure of the depth of penetration of light in the water column. Hence

studying the relationships between the euphotic depth, the diffuse attenuation

coefficient and the distributions of different particle types is important for under-

standing the factors which affect the penetration of light, phytoplankton growth

and primary production in shelf seas (Bisset et al., 2001; Capuzzo et al., 2013).

The previous two chapters demonstrated how, using remote sensing, the mean

diffuse attenuation coefficient, the euphotic depth and the absorption coefficients

of phytoplankton cells and mineral particles can be estimated for the Irish Sea.

The methods developed relied on the assumption that the optical properties of

the Irish Sea are driven by changes in the concentration of two particles classes,

phytoplankton cells and mineral sediments, with a relatively invariant background

level of CDOM. In this chapter, these methods are applied to satellite data to

1. Investigate the spatial and temporal variability of Kd(488), Zeu, aCHL(488)

and aMSS(488) over an 8 year period.

2. Determine how phytoplankton and mineral particles contribute to the at-

tenuation of light in the water column.

3. Investigate the relationships between phytoplankton and mineral absorption

and the euphotic depth.
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6.1 Methods

The inversion procedure outlined in Figure 6.1 was carried out on all avail-

able MODIS observations from the Irish Sea spanning 2005 - 2012 (which were

processed as described in Section 3.3).

The updated KdLee algorithm (Lee et al., 2013) was applied to the MODIS

data as an intermediate step in the estimation of the euphotic depth. The sim-

plified KdLee version (Lee et al., 2005b) was also considered, however, since it is

a linear combination of a(λ) and bb(λ),

Kd(λ) = r1a(λ) + r2bb(λ) (6.1)

where r1 is a function of the solar zenith angle, and r2 is a constant. Use of

Eq. (6.1) allows Kd(λ) to be partitioned into the contributions from the separate

particle classes since, dropping the λ argument for brevity:

Kd = r1a+ r2bb

= r1 (aw + aCHL + aMSS + aCDOM) + r2 (bbw + bbCHL + bbMSS)

= r1aw + r2bbw + r1aCHL + r2bbCHL + r1aMSS + r2bbMSS + r1aCDOM

= Kdw +KdCHL +KdMSS +KdCDOM. (6.2)

The absorption coefficients of phytoplankton and mineral particles can be deter-

mined, along with an estimation of the CDOM absorption, using the partitioning

procedure described in the previous Chapter. The backscattering coefficients of

the two particle classes can then be estimated from the partitioned absorption

coefficients and the backscattering to absorption ratios (ρ1, ρ2) which are derived
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QAAv5 plus
linearisation

absorption partitioningKdLee

z Cunningham
see text,

Eqs. (6.2)
& (6.3)

Remote sensing
reflectance, Rrs(λ)

Absorption, a(λ), and
backscattering, bb(λ),

coefficients

Mean diffuse
attenuation

coefficient, Kd(488)

Euphotic depth, Zeu

Phytoplankton, aCHL(488),
and mineral, aCHL(488),

absorption

Partitioned mean diffuse
attenuation coefficients

Figure 6.1: The inversion procedure applied to all available MODIS observations
between 2005-2012.
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as part of the partitioning method. Therefore, the fractional contribution of phy-

toplankton and mineral particles to the total mean diffuse attenuation coefficient

at 488 nm can be determined,

κCHL =
KdCHL

Kd

and κMSS =
KdMSS

Kd

. (6.3)

The euphotic depth can be estimated from Kd(488) using an empirically de-

rived power law (Cunningham et al., 2013) (see Chapter 4). However, due to the

non-linearity of this relationship, estimations of the individual contributions of

phytoplankton and mineral particles to the euphotic depth are difficult. Hence

the role each particle class plays on light attenuation was only considered in terms

of Kd(488) and the variability in the euphotic depth was compared with seasonal

variations of aCHL(488) and aMSS(488).

The temporal variability was studied at three contrasting locations within the

Irish Sea shown in Figure 6.2: A is in shallower waters off the coast of Angelsey

where there is strong tidal mixing and a patch of high turbidity (Bowers et al.,

2002; Ellis et al., 2008), B is in the central region which remains well mixed

throughout most of the year, and C is in the Celtic Sea, where the water column

stratifies during the summer. Monthly composites and a transect from north to

south across the whole region were used to examine the spatial variability. The

data were both temporally and spatially averaged as described in Section 3.3.
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Figure 6.2: Bathymetry map of the Irish Sea and surrounding waters, with the
3 locations used for time series analysis and the transect considered for spatial
variability indicated.
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6.2 Application of Inversion Procedure to

MODIS Data

Full Time Series for Three Contrasting Locations

The aCHL(488), aMSS(488), Kd(488), κCHL, κMSS and Zeu data derived from

the MODIS observations at each location are shown in Figures 6.3, 6.4 and 6.5,

in which marked annual variability is visible for all three variables.

The general cycle of aMSS(488) was similar at all three locations, peaking over

the winter months and decreasing during the summer when mineral particles

settle out of the surface layer. However, the amplitude and period of the annual

cycle at each location was different. The aMSS(488) values dropped earlier in

the year at C, but by mid-summer aMSS(488) < 0.05 m−1 at all 3 locations. The

highest values were observed at A, with a peak value of 0.29 m−1, which was more

than 5 times larger than the maximum value in the Celtic Sea at C (0.05 m−1).

At B, the amplitude was between that observed at A and C, with a maximum

peak value of 0.16 m−1.

The cycle of aCHL(488) was similar at locations A and B, with the lowest

observations during the winter months and a single peak occurring in the middle

of the summer. Contrastingly, aCHL(488) reached a maximum at C during the

spring and often a smaller, secondary, peak was observed towards the end of the

summer. The peaks of the phytoplankton cycles were significantly larger at C,

with a maximum value of 0.5 m−1, compared to B (0.13 m−1) and A (0.25 m−1).
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Figure 6.3: All the available MODIS observations at A during 2005 - 2012.
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Figure 6.4: All the available MODIS observations at B during 2005 - 2012.
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Figure 6.5: All the available MODIS observations at C during 2005 - 2012.
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The timing and amplitude of the aCHL(488) cycles appeared to vary more year on

year compared to the aMSS(488) cycles. This may be due to the irregular coverage

provided by MODIS because of clouds, hence short-lived phytoplankton blooms

may not be observed.

At location C, Kd(488) seemed to be correlated with aCHL(488), peaking once

in the spring and occasionally again in the autumn. Whereas, at A and B,

Kd(488) was more correlated with aMSS(488), reaching its maximum over the

winter months and minimum in the summer. These correlations were reinforced

by the fractional contributions of CHL and MSS to the total mean diffuse atten-

uation coefficient, κCHL and κMSS (see the bottom panel in Figures 6.3 - 6.5). At

location C, for most of the year κCHL was larger than κMSS , which only domi-

nated for a short period over the winter. In comparison, at A and B, the mineral

particles were attenuating the most light for the majority of the year, with κCHL

peaking above κMSS for a very short time over the summer.

The euphotic depths were generally lower in the winter and higher in the sum-

mer for all three locations. There was a fairly clear inverse relationship between

aMSS(488) and the euphotic depth at A and B, however this was less apparent at

C. The range of euphotic depths was larger at C (5 - 60 m) compared to A (10 -

40 m) and B (10 - 45 m), but the minimum euphotic depth at C usually occurred

during the spring, rather than the winter. By considering only one year of data,

the relationships between aCHL(488) and euphotic depth, particularly at location

C, was seen more clearly (Figure 6.6).
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Figure 6.6: aCHL(488) and euphotic depths at A, B and C during 2010.

Mean Annual Cycles at Three Contrasting Locations

Mean annual cycles for each variable were calculated at each location to em-

phasise any seasonality in the data.

Figure 6.7 shows the mean aMSS(488) annual cycles. It was evident that the

timing of mineral particles settling out of the surface layer was different at each

location, with aMSS(488) reaching its minimum summer value at C earlier than

at A and B. Additionally, aMSS(488) tended to stay at that minimum for a much

longer duration at C, approximately 30 weeks, compared to at A and B where it

remained at the minimum value for only 8 weeks.

The correlation between the aMSS(488) and Kd(488) at A and B was evident

from a comparison of the annual cycles (see Figures 6.7 and 6.8). At these

two locations, both aMSS(488) and Kd(488) were at a maximum over the winter

months and a minimum during the summer. Whereas, at C, Kd(488) deviated

from this general cycle. There were higher levels of Kd(488) over the winter
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months compared to the summer, as observed at A and B, but the maximum

Kd(488) values were observed during the spring and autumn while aMSS(488)

was low.

By considering the fractional contribution of CHL and MSS to total Kd(488)

(Figure 6.9), it was evident that phytoplankton cells contribute over half of the

Kd(488) term at C for most of the year, with mineral particles dominating briefly

over the winter months. Contrastingly, MSS played the most significant role in

the attenuation of light at 488 nm at A and B, apart from for a few weeks during

mid-summer.

The phenology of the phytoplankton growth cycle at C was clearly shown in

the mean annual cycle, with two pronounced peaks in the spring and autumn

(Figure 6.10). At A and B the cycle was not so pronounced, but small mid-

summer peaks in aCHL(488) were present. The reduction in amplitude of the

mean annual cycles at all three locations compared to the full time series may be

due to the fact that the mean cycles were determined using a two week interval,

while phytoplankton growth does not always happen at the exact same time every

year. Hence if the bloom occurs within a different fortnight from one year to the

next, the maximum value will be spread out.

The mean annual cycles of the euphotic depths are shown in Figure 6.10.

There were sharp reductions in Zeu at C coinciding with the peaks in phyto-

plankton absorption, but these were not visible at A and B (Figure 6.10). The

seasonality in Zeu at A and B was similar, with low winter values gradually in-

creasing to a maximum during the summer, before decreasing back to the winter

minimum.
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Figure 6.7: Mean annual cycles of aMSS(488) at A, B and C.
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Figure 6.8: Mean annual cycles of Kd(488) at A, B and C.
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Figure 6.9: Mean annual cycles of κCHL and κMSS at A, B and C.
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Figure 6.10: Mean annual cycles of aCHL(488) and Zeu at A, B and C.
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Monthly Composite Maps of Remotely Sensed Optical

Properties for the Irish Sea

Monthly averages for Zeu, aMSS(488), aCHL(488), Kd(488), κMSS and κMSS

were determined and mapped for January, April, July and October (Figures 6.11

- 6.16).

Figure 6.11 shows that the distribution of mineral absorption was broadly

related to the bathymetry, with higher values along the coasts and in the estuaries

and lower values in the deep central trough. Mineral absorption was highest

during the winter, and lowest in the summer across the whole region, with the

minimum occurring in the Celtic Sea during July.

The phytoplankton absorption maps are should be interpreted with care (Fig-

ure 6.12). The absorption partitioning procedure is sensitive to variable CDOM

concentrations (see Figure 5.5). Bowers et al. (2013) mapped CDOM concentra-

tions in the Irish Sea, demonstrating along the coastal regions that the CDOM

concentration is likely to exceed 0.2 m−1. Therefore the aCHL(488) values recov-

ered by the absorption partitioning procedure in these areas may be unreliable.

Furthermore, in the time series plots the periods of phytoplankton growth were

seen to be short-lived, and the large peak values of aCHL(488) were lost in the

monthly averaging process. However, a general pattern of phytoplankton growth

was still seen. An increase of aCHL(488) was observed during April in the stratified

regions to the south and north. By July, there were elevated levels of aCHL(488)

across the whole region, except in the south, where aCHL(488) had fallen from

the peak observed during the spring. In October, aCHL(488) had risen in the

south again, whereas it had begun to fall across the rest of the region, back to

the winter minimum.
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Figure 6.11: Monthly composites of aMSS(488) calculated for four months during
2005-2012.
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Figure 6.12: Monthly composites of aCHL(488) calculated for four months during
2005-2012.
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Figure 6.13: Monthly composites of Kd(488) calculated for four months during
2005-2012.
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Figure 6.14: Monthly composites of κMSS calculated for four months during 2005-
2012.
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Figure 6.15: Monthly composites of κCHL calculated for four months during 2005-
2012.
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Figure 6.16: Monthly composites of Zeu calculated for four months during 2005-
2012.
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Features from both the phytoplankton and mineral absorption maps were vis-

ible in the mean diffuse attenuation coefficient maps (Figure 6.13). There were

raised levels of Kd(488) during the winter which decreased over the summer, with

the highest values along the coast and in the estuaries, similar to the mineral ab-

sorption coefficient. However, in the regions which stratify in the north and south,

Kd(488) is consistent with the patterns observed for aCHL(488), with higher values

in the spring and autumn compared to mid-summer. The relationship between

Kd(488) and the absorption due to each particle class was emphasised in the maps

of κCHL and κMSS (Figures 6.14 and 6.15). In January, κMSS ≥ 0.5, therefore min-

eral particles are contributing the most to the total mean diffuse attenuation

coefficient across the whole region. The apparently large fractional contribution

of phytoplankton cells to Kd(488) in the estuaries is probably an artefact, due

to either the degrading effect of CDOM on the absorption partitioning procedure

(see Figure 5.5) or to levels of suspended sediments larger than those consid-

ered in the development of the procedure. In the spring and autumn, mineral

particles remained the main attenuators in the central mixed region, whereas to

the stratified north and south phytoplankton cells were contributing most of the

attenuation. During the summer, phytoplankton were attenuating the majority

of the light across the whole region, with κCHL ≥ 0.5, apart from in the regions

which were identified as turbidity maxima (Bowers et al., 2002; Ellis et al., 2008).

The euphotic depths in the monthly averaged maps seemed to be inversely

correlated with the mineral absorption coefficient (see Figures 6.11 and 6.16),

with the highest values in the central trough and Celtic Sea, and lowest values

occurring in coastal waters throughout the year. The euphotic zone deepened over

the spring and summer, reaching a maximum depth in July in the south-east. It

should be noted that the periods of sharp reductions in Zeu during phytoplankton
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blooms were not visible in the monthly averaged maps.

6.3 Spatial Variability of κCHL and κMSS and

Their Potential as an Indicator of Tidal Fronts

The spring and autumn monthly average maps of κCHL and κMSS showed

distinct boundaries between the two contrasting regimes of fully mixed water

where mineral particles dominated the attenuation of light and the stratified

waters where phytoplankton cells dominated the attenuation. The boundaries

between these regions are marked by fronts (Simpson and Hunter, 1974; Simpson

and Bowers, 1981), hence the fractional contribution of CHL and MSS to the

mean diffuse attenuation coefficient may act as a useful indicator to the frontal

positions.

In Figure 6.17, κCHL and κMSS are compared with SST and Rrs(667) along the

transect shown in Figure 6.2, for two clear days in the spring and autumn. Simp-

son and Hunter (1974) observed a sharp discontinuity in SST across the fronts in

the Irish Sea during the early summer, and Neil et al. (2012) demonstrated there

was a sharp change in Rrs(667) either side of the front in St George’s Channel

during the spring and autumn, with the waters being warmer and less reflective

in the stratified region. These steps in SST and Rrs(667) are visible in both the

spring and autumn remote sensing transects, indicating the position of the front

on those days. Additionally, there is a decrease in SST (and a corresponding

increase in Rrs(667)) at the start of the spring transect, although this change

occurs over a larger distance, perhaps suggesting a weaker front. The steps in

SST and Rrs(667) are coincident with a sharp change in the particle class which
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is attenuating the most light. In the fully mixed waters, κMSS was larger than

κCHL, but crossing the front the roles were reversed. The change in SST across the

front was rapid, but relatively small in magnitude (∼ 1.5◦C) and the change in

Rrs(667) was relatively large (∼ 0.0015 sr−1) but happens over a longer distance,

whereas the change κMSS and κCHL was both rapid and relatively large (∼ 0.4 for

both variables). Therefore, the fractional contribution of phytoplankton cells and

mineral particles to the total mean diffuse attenuation coefficient could be used

in the identification of the two contrasting regimes and possibly the position of

the fronts in the Irish Sea.
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Figure 6.17: κCHL, κMSS, SST and Rrs(667) along the transect shown in Figure
6.2, starting in the north, for 03-May-2007 (left hand side graphs) and 09-Oct-
2006 (right hand side graphs).
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6.4 Discussion

Three aims were outlined at the beginning of this Chapter, each of which is

discussed individually:

1. Investigate the spatial and temporal variability of Kd(488), Zeu, aCHL(488)

and aMSS(488) over an 8 year period.

By considering all the available MODIS observations for three contrast-

ing sites within the Irish Sea, the temporal variability in Kd(488), Zeu,

aCHL(488) and aMSS(488) was examined, and mean annual cycles were cal-

culated to emphasise the seasonality of each parameter. There was marked

seasonality in all the parameters, but this differed by location. Generally,

Kd(488) and aMSS(488) peaked over the winter months, and were at a min-

imum during the summer, with Zeu and aCHL(488) following the inverse

of this cycle. In the southern stratified region, however, aCHL(488) peaked

during the spring and autumn, with a coincident increase in Kd(488) and

decrease in Zeu.

The spatial variability was examined by determining monthly composites

of the whole region for four months, which were selected to capture the

different seasons. These emphasised the patterns seen in the time series

data, showing that the seasonality of aCHL(488), Zeu and Kd(488) in all

stratified regions was similar to that observed at the southern location in

the Celtic Sea. Additionally, the annual cycle of minimum aCHL(488) and

Zeu in the winter with maximum values in the summer was observed in all

the regions which stay fully mixed throughout the year.
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2. Determine how phytoplankton and mineral particles contribute to the atten-

uation of light in the water column.

The contrasting dynamical behaviour of phytoplankton and mineral parti-

cles contributes to complex spatial and temporal variations in the depth of

penetration of solar radiation across the region. By considering the frac-

tional contribution of MSS and CHL to the mean diffuse attenuation coef-

ficient, the role of each particle class in determining the optical properties

of the water column and the attenuation of light becomes clearer. In the

central region which stays fully mixed throughout the year, mineral parti-

cles dominate light attenuation, apart from a brief spell during the summer.

Whereas, in the stratified regions, phytoplankton cells are the primary at-

tenuators from the spring through to the autumn. Maps of κCHL and κMSS

were correlated with the two different mixing systems, with distinct bound-

aries coinciding with front positions, suggesting these parameters can pro-

vide an insight into how the physical mixing processes can be linked to the

role each particle class plays in light attenuation.

3. Investigate the relationships between phytoplankton and mineral absorption

and euphotic depth.

From the MODIS observations it can be seen that mineral particles play

a major role in the attenuation of light in the water column, consequently

affecting the euphotic depth across the whole region throughout the year.

In the Irish Sea wind and tides drive mixing of the water column, with

increased mixing bringing mineral particles into the surface layer (Bowers,

2003; Neil et al., 2012). Therefore, the absorption due to mineral particles

can give insights into both the euphotic depth and vertical mixing.
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The time series data revealed differences in the relationship between the

euphotic depth and the absorption of phytoplankton cells in fully mixed

and seasonally stratified regimes. During periods of rapid phytoplankton

growth, light attenuation was significantly altered, reducing the depth which

light was available for photosynthesis. This was evident at location C (in the

seasonally stratified system) during the spring and autumn phytoplankton

blooms. Additionally at C, (1) aCHL(488) was low when the euphotic zone

was at its maximum depth in the middle of the summer, and (2) aMSS(488)

fell from its winter maximum in the early spring, remaining at a low level

until the late autumn. These two observations suggest that at the start

of the year whilst mineral particles were still present in the surface layer,

phytoplankton growth in the southern Irish Sea was limited by light avail-

ability, however by mid-summer a factor other than light is limiting growth,

potentially a depletion of nutrients after the spring bloom. On the other

hand, in the fully mixed regime (A and B), mineral particles only drop out

of the surface layer for a short period during the middle of the year. The

phytoplankton absorption and euphotic depth both peak in mid-summer,

suggesting light availability was inhibiting phytoplankton growth until later

in the year than at C. This is consistent with the observations of Gowen

et al. (1995).
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This project has focussed on the remote sensing of optical properties in op-

tically complex waters, applying the methods which have been developed to an

archive of satellite data for the Irish Sea in order to interpret the variability in

ocean colour found in shelf seas.

Initially, a bio-optical model of the Irish Sea was created using locally de-

termined SIOPs and concentrations of optically significant materials that were

typically observed in the region. The synthetic datasets produced were used

in the evaluation of the quasi-analytical algorithm of Lee et al. (2002, 2009),

which recovers both the absorption and backscattering coefficients from the re-

mote sensing reflectance. The two most recent versions of the algorithm were

tested, QAAv5 and QAAv6. These algorithms follow the same basic structure,

but QAAv6 includes a switch in the reference wavelength to 667 nm for higher

absorbing waters. Both versions required only slight adjustments for use in the

Irish Sea: for QAAv5 a linearisation step was applied to the recovered absorption

coefficients, while for the QAAv6 the coefficients of algorithm were optimised.

These tuned algorithms were applied to field data gathered across the region.

QAAv5 with linearisation provided the best performance, with gradients close to

1 and coefficients of determination above 0.8 for all wavelengths between 443 nm

and 555 nm, hence this version of the algorithm was used for all further analysis.

The method of Lee et al. (2005b) for recovering the mean diffuse attenuation

coefficient from the absorption and backscattering coefficients was evaluated on

the field data. For this purpose, the absorption and backscattering coefficients
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recovered from the QAAv5 with linearisation were used as inputs to three different

versions of the Lee algorithm (2005b; 2013). All three algorithms performed

similarly across all wavelengths, with the best recoveries between 443 nm and

555 nm, indicating that any of the algorithms could be used without much loss

in accuracy.

Finally, three different euphotic depth algorithms, which use either the ab-

sorption and backscattering coefficients or the mean diffuse attenuation coefficient

at 488 nm as inputs, were tested on the field data. The QAAv5 with linearisation

was used as a starting point to initially recover the absorption and backscattering

coefficients, and the mean diffuse attenuation coefficient was recovered using the

most recent version of the KdLee algorithm (Lee et al., 2013). All the algorithms

recovered euphotic depths which were well correlated with the field data, with

the algorithm of Cunningham et al. (2013) returning a gradient closest to unity.

Therefore this algorithm was used in subsequent chapters.

In Chapter 5, a method was developed to partition the total absorption coef-

ficient into the phytoplankton and mineral components for regimes where phyto-

plankton and mineral particles are the main drivers of the optical properties, with

a relatively low constant influence from CDOM. The method requires only four

parameters, the total particulate absorption and backscattering coefficients, and

the backscattering to absorption ratios for both phytoplankton and mineral par-

ticles. The QAA can be used to determine the total absorption and backscatter-

ing coefficients, then from a plot of the non-water absorption against particulate

backscattering, the CDOM absorption and backscattering to absorption ratios for

phytoplankton and mineral particles can be estimated. The partitioning method

was evaluated on the Irish Sea modelled data with recovered phytoplankton and

mineral absorption coefficients highly correlated with modelled values, with co-
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efficients of determination of 0.94 and 0.97 respectively. The sensitivity of the

method to variable CDOM absorption was evaluated, with the recovery of the

phytoplankton absorption coefficient rapidly degrading. However, for the Irish

Sea, the estimated root mean square errors were 0.009 m−1 for aMSS(488) and

0.02 m−1 for aCHL(488).

The backscattering and absorption coefficients for eight years of MODIS data

covering the Irish Sea and surrounding waters were determined from the remote

sensing reflectance using the QAAv5 with linearisation. Plots of the non-water

absorption against particulate backscattering coefficients for two-week intervals

showed the changes in particle types present in the surface layer of the water

column. The absorption partitioning procedure was then applied to a patch

in the eastern Irish Sea, showing the dominance of mineral particle absorption

during the winter months and the absorption of phytoplankton particles over the

summer.

In Chapter 6, the phytoplankton and mineral absorption coefficients, the mean

diffuse attenuation coefficients and the euphotic depths were determined from the

MODIS data for the Irish Sea. A method for partitioning the mean diffuse at-

tenuation coefficient into phytoplankton and mineral parts was developed. Three

contrasting locations were selected to investigate the temporal variability of the

parameters and monthly composite maps were generated to show the spatial vari-

ability across the whole region. From the partitioned absorption coefficients it

was seen that in the stratified waters phytoplankton growth occurred early in the

year, often with a second peak in the autumn, but was at a minimum during the

summer when the euphotic depth was at its maximum. Whereas in the regions

which stay fully mixed throughout the year, the phytoplankton growth occurred

later in the year, peaking in mid-summer. Initially, both the spatial and tempo-
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ral variability of the mean diffuse attenuation coefficient looks complex, but by

considering the fractional contribution of mineral and phytoplankton particles to

the total mean diffuse attenuation coefficient, it becomes clearer how the atten-

uation due to the two different particles contribute to light attenuation in the

water column. Additionally, the spatial variability of the fractional contributions

suggests these parameters could be used as an indicator to distinguish between

the two distinct mixing regimes.

Four main aims were stated in Chapter 1, each of which can now be addressed.

1. Can ocean colour remote sensing be used in Case-2 shelf seas to quantita-

tively measure the optical properties of the water column?

The semi-analytical methods of Lee et al. (2002, 2005b, 2007, 2009, 2013)

for deriving absorption, backscattering and depth-averaged diffuse attenua-

tion coefficients and the empirical relationships of Cunningham et al. (2013)

and Zhao et al. (2013) for the euphotic depth required little or no adjust-

ments to recover all the parameters within the Irish Sea and surrounding

waters. The adjusted QAA recovered the inherent optical properties with

percentage errors similar to those reported by Lee et al. (2002) for the origi-

nal QAA: a(440) and bb(555) were recovered with mean percentage errors of

(i) 14% and 19% respectively by Lee et al. (2002), (ii) 12% and 11% for the

Irish Sea field data using QAAv5 with linearisation and (iii) 14% and 12%

for the Irish Sea field data using the optimised QAAv6. Lee et al. (2005a)

tested the KdLee algorithm on the oceanic and coastal waters of the Gulf

of Mexico, the Arabian Sea and the Baltic Sea, recovering Kd(490) with

an average percentage difference of 14%. The three versions of the KdLee
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algorithm tested retrieved the mean diffuse attenuation coefficients at 490

nm to within a few percent of this value, with values of 12% for the original

and updated algorthims, and 14% for the simplified version. The empiri-

cally derived euphotic depths and those derived using the semi-analytical

method of Lee et al. (2007) were recovered for the Irish Sea field data with

average percentage errors of 14% - 20%, which are comparable to the 14%

found by Lee et al. (2007) for Monterey Bay, the Gulf of Mexico and the

Arabian Sea. The recoveries for the field data were not as accurate as for

the modelled data, but may partly be due to the difficulties in achieving

closure between the field IOP and radiometry measurements. Similar diffi-

culties were reported for the NOMAD dataset by Werdell et al. (2013), and

for Mie modelling by Chang and Whitmire (2009).

2. Can remote sensing be used to identify different particle classes?

The recovery of particle concentrations from ocean colour data still poses a

major challenge in optically complex waters, with most algorithms based on

empirical regressions. An alternative approach is to consider the contribu-

tions of different particle classes to inherent optical properties, in particular,

the absorption coefficients for phytoplankton and mineral particles. By sim-

plifying the problem to consider shelf seas where CDOM has a relatively

constant background influence on the optical properties of the water col-

umn, a method was developed to recover these absorption coefficients from

ocean colour data. On application to MODIS data, this method was seen to

effectively separate the contribution of the two particle types. This separa-

tion of phytoplankton and mineral particle absorption is important in shelf

seas where mineral particles affect the performance of chlorophyll-a algo-
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rithms so that reported phytoplankton concentrations are frequently higher

than are actually present. Additionally, the recovery of the phytoplankton

absorption coefficient is particularly useful for shelf sea primary production

estimations.

3. Can the role of different types of particle on the attenuation of light in the

water column be determined from ocean colour?

The mean diffuse attenuation coefficient can be estimated from the inher-

ent optical properties of the water column. Therefore, by combining the

method for recovering the absorption and backscattering coefficients with

the absorption partitioning technique, the contribution to the total depth-

averaged diffuse attenuation coefficient for each particle class can be deter-

mined. The fractional contribution of phytoplankton and mineral particles

to the total mean diffuse attenuation coefficient is then a useful indicator

of the role each particle plays in altering the depth of penetration of so-

lar radiation, which is important for understanding the factors affecting

both phytoplankton growth in shelf seas and heat transfer in the upper

layer of the water column. Additionally, the fractional contributions pro-

vide an insight into which particles are driving the optical properties of the

water column, potentially indicating different mixing dynamics and front

positions across a region. During the summer, fronts are areas of enhanced

primary production which influence the distribution of ichthyoplankton and

zooplankton, potentially creating foraging sites for larger marine mammals.

Additionally, frontal systems may have a significant role in determining cir-

culation in shelf seas, therefore detection of fronts is important for further

studies of these systems.
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4. Can ocean colour data be used to determine the temporal and spatial variabil-

ity of optical properties in shelf seas, providing insights into the underlying

physical dynamics of the region?

An archive of satellite data offers great potential for investigating the vari-

ability in ocean colour across shelf seas. In a region with a high incidence of

cloud cover, analysis of a time series of ocean colour data is often more useful

than studying single images. In this study, eight years of satellite data for

the Irish Sea revealed spatial and temporal patterns in ocean colour which

could be linked to changes in the optical properties of the water column.

By considering temporal and spatial averages of the optical properties and

subsequent parameters, the gaps in coverage due to clouds were minimised

and clear annual cycles in all the parameters were observed. The accurate

recovery of the optical properties of the water column and the identification

of particle class in shelf seas can potentially provide benefits to a wide range

of sectors. These include

i) Data for Modelling Studies - Many areas of oceanography rely on mod-

elling, including ecosystem and hydrodynamical modelling, to under-

stand complex system dynamics and predict how they will change due

to external impacts. The models need observations for validation and

assimilation, and ocean colour can provide almost daily data for most

of the world’s oceans.

ii) Monitoring Transient Events - Many transient events alter the colour

of the water, such as sediment plumes resulting from stormy condi-

tions and harmful algal blooms. Ocean colour data can be used to

monitor these changes and track the progress of these events. Cur-
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rently, the polar orbiting ocean-colour sensors don’t provide the high

temporal coverage and high spatial resolution required to track fast

moving, fine scale events, but they can provide information on larger-

scale events which are present for more than one day. Development

of new sensors and remotely piloted aircrafts is showing the potential

these new systems could have for monitoring hazards, particularly near

to the coast.

iii) Water Quality - The pressures put on marine systems by human ac-

tivities and changing climates may alter water quality. A set of water-

quality indicators have been identified, including turbidity, biomass

concentration, total suspended matter and primary production, many

of which can be determined either directly or indirectly from ocean

colour data. A major problem in coastal regions is eutrophication,

which is the increased growth of phytoplankton due to excess nutri-

ents enriching the water column. This growth in phytoplankton can

severely alter the levels of oxygen, ultimately impacting the whole of

the marine ecosystem. However, changes in the surface expression

of phytoplankton biomass can be detected using ocean colour, so eu-

trophication can be monitored.

iv) Physical and Biological Processes - The mixing processes in the ocean

transport phytoplankton and nutrients through the water column,

bringing both into the surface layer where light is available for pho-

tosynthesis. Under the correct conditions, phytoplankton will grow,

modifying the underwater light field and the rate of solar heating,

which affects the stability and mixing processes of the water column.

The feedback between the physical and biological processes can be
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studied using ocean colour data, investigating the links between mix-

ing and stratification on the phytoplankton spring bloom and phyto-

plankton phenology (Lee et al., 2010; Mahadevan et al., 2012; Racault

et al., 2012).
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Recommendations for Further Work

1. Extend the methods developed in this study to different geographical regions

and particle types.

The absorption partitioning procedure relies on the assumption that two

materials, with differing absorption to backscattering ratios, driving the

optical properties of the system. In this study, which focussed on the Irish

Sea, these two materials were taken as phytoplankton cells and suspended

mineral particles. However, there is scope for the identification of other

particle classes which have different backscattering to absorption ratios,

such as the highly scattering phytoplankton, coccolithophores. Application

of the absorption partitioning procedure to new regions could therefore

provide insights into the dynamics of multiple particle classes. In addition,

further studies into the backscattering to absorption ratios of aggregated

particles would be beneficial to investigate if these are distinguishable from

finer suspended particles.

2. Assimilation of satellite derived optical properties into shelf sea models.

As previously discussed, the assimilation of observational data into shelf

sea hydrodynamic and ecosystem models is important to accurately predict

and forecast the systems. Additionally, satellite derived properties could

be used to validate existing models, such as the Proudman Oceanographic

Laboratory Coastal Ocean Modelling System (POLCOMS) or NEMO, the

Nucleus for European Modelling of the Ocean which was designed as a

global ocean model.
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3. Investigation of the scope of these techniques when applied to planned hy-

perspectral satellite radiometers.

With the focus of future satellite missions on hyperspectral radiometers

(NASA’s Pre-Aerosol, Clouds and ocean Ecosystem, or PACE, mission),

understanding the adaptability of current remote sensing methods is im-

portant. Additionally, there are opportunities for the development of new

algorithms which make full use of the spectral information. The wavelength

considered in this study was restricted to 488 nm for two reasons, firstly

this waveband fell within the region of best performance of the QAA for the

Irish Sea and secondly, it could be used subsequently to derive the euphotic

depth. However, with hyperspectral radiometers there is potential for recov-

ering the full absorption spectra for phytoplankton and mineral absorption.

Additionally, the absorption partitioning procedure would benefit from ac-

curate estimations of CDOM concentrations via remote sensing. Therefore,

investigation of current CDOM algorithms and how these may be improved

with hyperspectral measurements would be advantageous.
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