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Abstract 
 

The coupling of volume and surface fields facilitated by two-dimensional (2D) 

periodic surface lattices (PSLs) of both cylindrical and planar topology is considered.  

All the PSLs presented in this work have shallow corrugation allowing the lattice to 

be described as an effective metadielectric.  An analytical dispersion equation 

describing the hybrid eigenfield of a PSL based on a cylindrical waveguide is derived.  

The cylindrical structures are designed to have a large diameter, enhancing their 

potential for use as the interaction region of an active device when combined with 

an appropriate electron beam.  Due to the structure’s large diameter, a theoretical 

model describing some of the possible scattering processes, is developed for planar 

geometry. Coupled wave equations and an analytical expression for the coupling 

coefficient are presented.  A dispersion study, based on this theory, shows that the 

properties of the structure are tailored by varying the lattice parameters, and the 

PSL’s capability of supporting a Cherenkov interaction is demonstrated.   

Experimental measurements of planar PSLs resembling mesh structures, carried out 

at 140-220 GHz, show sharp resonances corresponding to the PSL’s surface field. 

When mounted on a suitable metal-backed dielectric substrate, the PSLs exhibit 

coherent cavity eigenmode formation. The individual lattice elements are coherently 

synchronised by the surface field and volume field confined within the dielectric, 

demonstrating the principle of mode selection.  Measurements of a planar PSL 

designed to operate at the 325-500 GHz frequency band are presented, 

demonstrating the scalability of the PSLs.  Dispersion plots, obtained by modelling 

the planar PSLs using CST Microwave Studio, indicate the frequency positions of the 

expected cavity eigenmodes.  When compared to the experimental results and 

theoretical dispersions, some correlation is observed. 
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Chapter 1- Introduction and Background Theory 
 

1.1 Introduction 
In 1913, Sir William Henry Bragg and Sir William Laurence Bragg demonstrated the 

periodicity of crystals by successfully diffracting X-rays off a crystal lattice.  Similar 

diffraction behaviour was subsequently observed at microwave frequencies 

through the use of periodic lattices, sometimes known as Bragg structures.  The 

idea of using a structure with one-dimensional (1D) periodic corrugations to achieve 

mode transformation at microwave frequencies was first proposed by Kovalev et al. 

(Kovalev, Orlova et al. 1972). More recently, both 1D and 2D lattices were used to 

provide distributed feedback in the interaction region of lasers (Kogelnik and Shank 

1972, Yariv and Nakamura 1977) and masers (Bratman, Denisov et al. 1983, 

Ginzburg, Peskov et al. 1999, Konoplev, Cross et al. 2000, Cross, Konoplev et al. 

2002). 

The electromagnetic (EM) field excitation and evolution inside and on the surface of 

periodic structures has led to breakthroughs in plasma physics and vacuum 

electronic sources (Glass 1987, Booske, Dobbs et al. 2001, Sirigiri, Kreischer et al. 

2003, Korbly, Kesar et al. 2005), as well as optics and photonics (Pendry, Holden et 

al. 1996, Worthing and Barnes 2001, Barnes, Dereux et al. 2003, Bergman and 

Stockman 2003, Maier, Andrews et al. 2006, Renger, Grafström et al., 2007 Ishizaki 

and Noda 2009, Urzhumov and Smith 2010), where the lattices are known as 

photonic band-gap (PBG) structures, first described by (Yablonovitch, Gmitter 

1991). Research relating to particle acceleration (Smirnova, Kesar et al. 2005, 

Mizrahi and Schächter 2006, Shapiro, Samokhvalova et al. 2008, York, Milchberg et 

al. 2008) has also benefited from the use of periodic structures. 

In recent years, studies of periodic lattices involving both volume and surface fields 

have been carried out.  However, the localised surface fields which exist in such 

structures are detrimental to the efficient operation of many conventional active 

and passive devices due to their rapid exponential decay from the surface.  This 
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strong localisation can result in weak coupling with active media, leading to large 

thermal losses, signal distortion and heating of the device.  In spite of this, it has 

been suggested that surface fields can be used to drive certain high-power active 

devices (Konoplev, Fisher et al. 2010, Ginzburg, Zaslavskii et al. 2012, Ginzburg, 

Malkin et al. 2013) or nano-oscillators(Luo, Ibanescu et al. 2003,Noginov, Zhu et al. 

2009) which can now be developed due to modern manufacturing capabilities. The 

utilisation and understanding of surface fields is necessary for the realisation of 

compact sources of coherent radiation (CSCR) such as the surface plasmon amplifier 

(SPASAR) (Bergman and Stockman 2003, Stockman 2008, Noginov Zhu et al. 2009, 

Stockman 2010).  This area of research is driven by a desire to bridge the terahertz 

(THz) gap and achieve high power sources operating in the GHz-THz(Schächter and 

Ron 1989) and x-ray frequency ranges.  Surface fields have been further exploited 

as a means of profiling femtosecond electron bunches (Doucas, Blackmore et al. 

2006) using a slow-wave structure (SWS). 

Slow wave (periodic) structures are suitable for use as the interaction region of a 

high power Cherenkov device (Konoplev, Cross et al 2000, Cook, Tikhoplav et al. 

2009, Ginzburg, Zaslavskii et al. 2011). Difficulties (including manufacturing 

challenges and limited output power) may arise when attempting to increase the 

operating frequency, thereby reducing the interaction region’s size. Another 

problem associated with the structure’s small size is the build-up of charge density, 

leading to breakdown of the electron beam inside the interaction area. 

Overcoming these issues by scaling up the dimensions of the interaction region 

(such that it becomes oversized in comparison with the operating wavelength) may 

disrupt the spatial and temporal coherence of the radiation (Konoplev 2001).  For 

this reason, structures are typically designed with their transverse dimensions 

comparable to the operating wavelength.  A method of resolving this problem (for 

structures with large 𝐷𝐷𝑤𝑤𝑤𝑤 𝜆𝜆⁄ ) involves providing feedback in an arrangement similar 

to a Fabry-Perot cavity with a periodic surface lattice (PSL) acting as one of the 

mirrors (Bratman, Dumesh et al. 2010)).  This provides synchronisation of the 

individual scatterers that form the lattice.   
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Theoretical and experimental studies of Cherenkov oscillators with 2D distributed 

feedback are the subject of ongoing research (Ginzburg, Malkin et al. 2013, 

Ginzburg, Malkin et al. 2014, MacLachlan, Phipps et al. 2015) The synchronisation 

and coupling of fields inside 2D PSLs in a large area (𝑉𝑉𝑉𝑉𝑉𝑉 ≫ 𝜆𝜆3) structure is 

discussed in this work. 

Attaining synchronisation in an oversized structure is particularly important for 

applications where high power, coherent radiation is required for example in 

communications (Lier, Werner et al. 2011) security, devices for monitoring pollution 

(atmospheric dust clouds and space debris) and the quality control of 

pharmaceutical products.  Techniques in spectroscopy (Benabid, Knight et al. 2002, 

Grishin, Fuchs et al. 2004) and THz imaging (Carr et al. 2002) including the study of 

historical artefacts (Seco-Martorell et al. 2013, Abraham et al. 2009) also rely on the 

development of coherent sources, capable of producing multi-watt output power at 

high frequencies. 

Another challenge associated with having large 𝐷𝐷𝑤𝑤𝑤𝑤 𝜆𝜆⁄  is achieving mode selection 

in the oversized structure to avoid the decrease in efficiency that usually comes 

with multi-mode operation. The method proposed in this work entails coupling the 

volume and surface fields to form a cavity eigenmode at a desired frequency, 

determined by the parameters of the structure.  When studying the eigenmodes of 

the structure with a shallow corrugation, it is convenient to describe the lattice in 

terms of an effective metadielectric (or high impedance surface)(Sievenpiper, Zhang 

et al. 1999). 

An EM metamaterial, described by an effective permittivity and permeability, is 

created by introducing a periodic topological defect at a metal surface (such as an 

array of holes, perturbations or dipoles) which are very small in comparison to the 

operating wavelength.  The observation of a high impedance surface 

(metadielectric) consisting of a periodic arrangement of metal plates was 

demonstrated by Sievenpiper (Sievenpiper, Zhang et al., 1999) while numerical 

modelling has reported close agreement between a wire grid mesh and an 
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equivalent homogeneous effective dielectric(Lier, Werner et al. 2011).  Other 

examples of EM metamaterials include split ring resonators (Fedatov, Rose et al. 

2007) which can exhibit an effective negative permittivity (Shelby, Smith et al. 

2001) or nanoparticles covered with dielectrics, while  metamaterials based on a 

fishnet-like structure (Shchegolkov, Azad et al. 2010) have been previously designed 

for use as terahertz absorbers.  Although the study of metamaterials is a relatively 

new field of research, boosted by recent advances in nanofabrication, related work 

has been carried out as early as the 1940s, when artificial dielectrics constructed 

from metals were used to construct lightweight microwave components.  

The properties of a metamaterial are defined by its subwavelength structure rather 

than its chemical composition, allowing the material to be tailored to suit a specific 

purpose (Mittleman 2008, Shen, Catrysse et al. 2005).  Metamaterials are designed 

to exhibit properties which are rare, or do not occur in nature (for example negative 

refractive index (Shelby, Smith et al. 2001, Pendry, Holden et al. 1998 ) or negative 

permeability (Grigorenko, Geim et al. 2005) and have led to the realisation of new 

phenomena including perfect lensing (Pendry 2000) and cloaking (Schurig, Mock et 

al. 2006). Negative phase and group velocity has also been reported (Dolling, 

Enkrich et al. 2006) at optical frequencies.  Another attractive feature of 

metamaterials is their scalability, and all the theory developed in this thesis is 

applicable over a broad range of frequencies. 

Although the PSLs considered in this work do not fit the true definition of a 

metadielectric (in that their period is comparable with the operating wavelength) 

they can still be described as effective metadielectrics in the plane of incidence, 

whilst appearing more like diffractive surfaces in the transverse plane.  Previous 

research at Strathclyde has laid the foundations for this work.  A Free Electron 

Maser (FEM) experiment with 2D distributed feedback, capable of producing up to 

65MW of pulsed output power (Konoplev, Cross et al. 2008) at a frequency of 

37.2GHz was successfully demonstrated. At the present stage, experiments 

involving a W-band Cherenkov Maser (incorporating a cylindrical 2D PSL) are 

underway.  
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This chapter begins with a description of the cylindrical 2D PSLs previously designed 

at Strathclyde and a brief overview of how these structures have been fabricated.  

The individual volume and surface fields, which exist inside the structures and 

provide synchronisation of the individual cells, are discussed.  Following from this, 

the necessary conditions for resonant coupling between the volume and surface 

fields are provided, and the appearance of transmission and reflection zones 

associated with cavity eigenmode formation is demonstrated via the use of Brillouin 

diagrams.  An introduction to the planar PSLs considered in this work is then given, 

noting that these structures can be converted to cylindrical geometry using 

conformal mapping.  Finally, the structure’s interaction with an electron beam 

leading to the realisation of a Cherenkov device is discussed before stating the 

layout of this thesis. 

1.2 Cylindrical 2D Periodic Surface Lattices 
The two-dimensional (2D) PSL of cylindrical topology can be obtained by 

introducing shallow periodic perturbations at the inner wall of a cylindrical 

waveguide.  The 2D corrugation at the waveguide surface is defined by: 

 𝑟𝑟 = 𝑟𝑟0 + ∆𝑟𝑟𝑟𝑟𝑉𝑉𝑟𝑟(𝑘𝑘�𝑧𝑧𝑧𝑧) 𝑟𝑟𝑉𝑉𝑟𝑟(𝑚𝑚�𝜑𝜑)  

where 𝑟𝑟0 is the mean radius of the unperturbed cylindrical waveguide, ∆𝑟𝑟 is the 

amplitude of the perturbations, 𝑚𝑚�  is the number of lattice azimuthal variations and 

 𝑘𝑘�𝑧𝑧 = 2𝜋𝜋 𝑑𝑑𝑧𝑧⁄  is the longitudinal wavenumber of the lattice with longitudinal period, 

𝑑𝑑𝑧𝑧.  The cylindrical PSL pictured in figure 1.2.1a (Konoplev, Fisher et al. 2010) was 

obtained through a process of electroforming involving copper deposition on an 

aluminium mandrel with a 2D sinusoidal corrugation on its outer surface.  The 

aluminium former was later dissolved to give the cylindrical PSL with the lattice 

corrugation on its inner wall.  The Ka-band structure (figure 1.2.1.a) has an 

operating frequency of approximately 37.6 GHz and has the following parameters: 

𝑟𝑟0 =39.5mm, ∆𝑟𝑟 =1mm, 𝑚𝑚� = 28 and 𝑑𝑑𝑧𝑧 = 8mm 

Figure 1.2.1b shows a smaller, W-band structure with 𝑟𝑟0= 10mm, fabricated using 

the same electroforming technique as figure 1.2.1.a, and designed to operate at 



6 
 

95GHz.  The parameters of the W-band structure photographed in figure 1.2.1b are: 

𝑟𝑟0 =10mm, ∆𝑟𝑟 =0.6mm, 𝑚𝑚� = 20 and 𝑑𝑑𝑧𝑧 = 3mm. 

The dimensions of these structures (figure 1.2.1a,b) are such that the near cut-off 

volume field (of the unperturbed waveguide) has a longitudinal wavelength close to 

the structure’s length 𝐿𝐿, and much greater than 𝑑𝑑𝑧𝑧 (𝜆𝜆𝑧𝑧~𝐿𝐿,  𝜆𝜆𝑧𝑧 ≫ 𝑑𝑑𝑧𝑧).  This means 

that, despite 𝑑𝑑𝑧𝑧 being comparable with the structure’s operating wavelength 𝜆𝜆𝑜𝑜𝑜𝑜, 

the volume field is unable to propagate through the lattice, thereby allowing a 

modal approximation to be made – where it is assumed that the transverse 

structure of the excited eigenfield is a superposition of the transverse structures of 

the eigenmodes that exist inside a smooth waveguide lined with an effective 

metadielectric (or high-impedance surface).    

 

 

Figure 1.2.1.a (left) Photograph of Ka-band copper cylindrical 2D PSL with an 
operating frequency of ~37.6 GHz, obtained by copper deposition on an aluminium 
mandrel.  The parameters of the structure are as follows: 𝑟𝑟0=39.5mm, ∆𝑟𝑟 =1mm, 𝑚𝑚�  
=28 and 𝑑𝑑𝑧𝑧 =8mm 

Figure 1.2.1.b (right) Photograph of W-band copper cylindrical 2D PSL with an 
operating frequency of ~95 GHz, obtained by copper deposition on an aluminium 
mandrel.  The parameters of the structure are as follows: 𝑟𝑟0=10mm, ∆𝑟𝑟 =0.6mm, 𝑚𝑚�  
=20 and 𝑑𝑑𝑧𝑧 =3mm 

More recently, silver alloy cylindrical PSLs were constructed for use as the 

interaction region of the Cherenkov Maser built at Strathclyde(Phipps, MacLachlan 

et al. 2014).  The PSLs were manufactured via high resolution 3D printing 

technology, using a silver (92.5%) – chromium (7.5%) alloy material which has the 

advantage of being stronger than pure silver, whilst still maintaining excellent 
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conductivity.  Due to experimental constraints, the structure photographed in 

figure 1.2.2 has a reduced 𝐷𝐷𝑤𝑤𝑤𝑤 𝜆𝜆⁄  compared to figures 1.2.1a,b and increased 

corrugation depth which should lead to stronger coupling between fields.  The 

dispersion of this structure is studied analytically in chapter 3 of this thesis.  All the 

photographed structures are capable of supporting both volume and surface fields. 

Figure 1.2.2. Photograph of W-band silver (92.5%) – chromium (7.5%) alloy PSL 
obtained using high resolution 3D printing. 

1.3 Surface and Volume Waves 
The 2D PSLs are known to support both volume and surface fields at the corrugated 

boundary. The volume field occupies the bulk of the structure and is described by 

the relation:  

(𝑘𝑘𝑣𝑣)2 = (𝑘𝑘⊥𝑣𝑣)2 + (𝑘𝑘𝑧𝑧𝑣𝑣)2 

(1.3.1) 

Surface waves are propagating EM waves that are bound to the surface of any 

metal.  If the metal is smooth and flat, then the surface fields will not couple with 

external fields.  However, if scattered by discontinuities, bends or a surface 

corrugation, the surface fields will radiate allowing, the possibility for coupling with 

a suitable volume wave.  If the longitudinal wavelength of the surface field 𝜆𝜆𝑧𝑧𝑠𝑠  is 

much longer than the lattice period 𝜆𝜆𝑧𝑧𝑠𝑠 ≫ 𝑑𝑑𝑧𝑧 then the surface waves are not 

affected by the corrugation.  In certain cases, it is advantageous to suppress the 

propagation of surface fields (or surface plasmons at optical frequencies (Barnes, 

Priest et al. 1966, Kitson, Barnes et al. 1996)) which can be achieved by choosing 
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the lattice period such that 𝑑𝑑𝑧𝑧 ≈ 𝜆𝜆𝑧𝑧𝑠𝑠 2⁄  and creating a surface wave band-gap 

through destructive interference (Sievenpiper 1999).   

The properties of surface waves are partly determined by their frequency.  For 

example, at optical frequencies, surface plasmons are tightly bound to the 

dielectric-metal interface, whereas at microwave or radio frequencies (where they 

are widely known as surface currents) the EM fields extend many wavelengths into 

the surrounding space.  One of the defining characteristics of a surface field, is its 

rapid exponential decay, resulting in an imaginary transverse wavenumber.  The 

volume wave expression of equation (1.3.1) is adapted to take this property into 

account 

(𝑘𝑘𝑠𝑠)2 = (𝑖𝑖𝑘𝑘⊥𝑠𝑠 )2 + (𝑘𝑘𝑧𝑧𝑠𝑠)2 

The dispersion of a surface wave is therefore defined: 

(𝑘𝑘𝑠𝑠)2 = (𝑘𝑘𝑧𝑧𝑠𝑠)2 − (𝑘𝑘⊥𝑠𝑠)2 

(1.3.2) 

The difference between volume and surface fields is observed by plotting their 

fundamental dispersions using equations (1.3.1) and (1.3.2).  A dispersion relation 

(describing the wave propagation 𝑘𝑘𝑧𝑧 with varying angular frequency 𝜔𝜔) for the 

uncoupled volume and surface waves in an unperturbed, cylindrical waveguide is 

presented in figure 1.3.1. 
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Figure 1.3.1 Schematic dispersion diagram illustrating volume (green) and surface 
(red) wave propagation through an unperturbed, hollow cylindrical waveguide.  The 
dispersion of a wave propagating through free space (blue dashed line) has been 
included for comparison. 

It can be noted that the volume wave has a parabolic dispersion while the surface 

field exhibits hyperbolic behaviour. Both dispersion curves tend asymptotically 

towards the dispersion of an electromagnetic wave propagating through free space. 

For this reason, it becomes difficult to distinguish between the different fields far 

above the cut-off frequency of the volume wave. Although the surface field does 

not have a cut-off frequency, it will not exist if |𝑘𝑘𝑧𝑧| < |𝑘𝑘⊥|. 

Both the volume and surface fields are important for providing synchronisation of 

the oversized PSL.  Each fundamental cell of the lattice acts as an individual 

scatterer that supports its own localised surface field.  When these individual lattice 

elements are synchronised, the oversized structure (with area 𝑆𝑆 = 2𝜋𝜋𝑟𝑟0𝐿𝐿 ≫ 𝜆𝜆2) 

behaves like a single cavity.  This occurs on the condition that the PSL is irradiated 

with an azimuthally symmetric, near-cut-off volume field.  When a volume field of 

this description is launched through the structure, it will oscillate back and forth 
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between the walls of the structure, inducing a surface current at the edges of each 

scatterer.   

Previous experimental findings (Konoplev, Fisher et al. 2010) have shown that the 

oversized cylindrical structure photographed in figure 1.2.1.a is not synchronised 

when the volume field is above the cut-off frequency, and propagates through the 

structure.  Mutual resonant scattering will occur between the volume and surface 

fields, only in the presence of the near cut-off volume field, which couples to the 

localised surface field at the corrugated boundary, and acts as a "global oscillator", 

synchronising all the cells throughout the structure.  The surface current, which 

flows around the edges of each cell, allows “cross-talk” between neighbouring cells, 

providing the role of a “local oscillator”.     

For the cylindrical PSLs, the desired coupling takes place between the hybrid 𝐻𝐻𝐻𝐻𝑚𝑚� ,1 

surface field and the 𝑇𝑇𝑇𝑇0,𝑇𝑇 volume field, where 𝑇𝑇 denotes the radial index 

corresponding to the near cut-off mode.  Since this work is related to the 

construction of a Cherenkov device, only 𝑇𝑇𝑇𝑇 volume modes, which have a 

longitudinal electric field, are of interest.  The eigenfield inside the lattice can be 

written as a superposition of partial volume and surface fields 𝐻𝐻 = 𝐴𝐴𝑣𝑣 + 𝐵𝐵𝑠𝑠 only if 

the individual scatterers are synchronised and providing the Bragg resonance 

conditions are satisfied. 

1.4 Bragg Scattering in 2D PSLs 
Only waves which satisfy the Bragg resonance conditions (Cross, Konoplev et al. 

2003, Burt, Samsonov et al. 2004) can be effectively coupled at the corrugated 

surface.  The Bragg conditions in the azimuthal (1.4.1a) and longitudinal (1.4.1b) 

directions for a PSL of cylindrical topology are as follows: 

𝑚𝑚 = 𝑚𝑚𝑣𝑣 + 𝑚𝑚𝑠𝑠 
(1.4.1a) 

𝑘𝑘𝑧𝑧 = 𝑘𝑘𝑧𝑧𝑠𝑠 − 𝑘𝑘𝑧𝑧𝑣𝑣 

(1.4.1.b) 
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where 𝑘𝑘𝑧𝑧 is the longitudinal lattice wavenumber and 𝑚𝑚𝑣𝑣,𝑠𝑠 is the azimuthal number 

of the volume and surface fields respectively.  Coupling is possible in the case 

where 𝑚𝑚𝑣𝑣 = 0 and 𝑚𝑚 = 𝑚𝑚𝑠𝑠 as discussed in chapter 2.   The coupling coefficient is 

proportional to the corrugation depth ∆𝑟𝑟 and no coupling exists when ∆𝑟𝑟 → 0.  

Increasing the corrugation height results in strong coupling which causes the 

structure’s dispersion to split into separate branches at the points where the fields 

intersect.  This can sometimes lead to the formation of a band gap (reflection zone).  

The resonant Bragg scattering, which facilitates coupling between the otherwise 

independent fields, can be illustrated using Brillouin diagrams.   

Figures 1.4.1.a,b show the simplest case of coupling between volume fields.  The 

harmonics of the volume field are shifted along the 𝑘𝑘𝑧𝑧 coordinate by 𝑘𝑘𝑗𝑗 =

2𝜋𝜋𝜋𝜋 𝑑𝑑𝑧𝑧⁄  where 𝜋𝜋 is an integer.  The Brillouin diagram in figure 1.4.1.a shows the case 

where the corrugation height tends to zero, and the volume field harmonics do not 

interact with each other.  Increasing the corrugation leads to strong coupling 

between the harmonics (figure 1.4.1.b) at the points of intersection, resulting in the 

appearance of transmission and reflection zones (band gap).  In these regions, the 

coupled harmonics cannot propagate through the structure and are said to be 

evanescent.  The width of the band gap is directly related to the strength of the 

coupling between the harmonics. 
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Figure 1.4.1.a.Brillouin diagram illustrating that when the corrugation height tends 
to zero, coupling of modes does not take place. 

Figure 1.4.1.b Brillouin diagram illustrating mode coupling for a finite corrugation. 
The coupled mode regions are highlighted by the blue dashed circle  

Similar behaviour occurs in the more complicated case of coupling between volume 

and surface fields.  Dispersion diagrams presented in chapter 3, demonstrate the 
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coupled and uncoupled volume and surface field dispersions, and illustrate splitting 

at the points where the fields intersect, in a structure with finite corrugation. 

1.5 2D PSL of Planar Topology 
To understand the possible scattering mechanisms and coupling that can occur 

inside the cylindrical PSL, the structure is unfolded to study a PSL with planar 

geometry.  The planar PSL can be converted to cylindrical coordinates via conformal 

mapping (see figure 1.5.1).  Due to its geometry, the planar structure is easier to 

tailor and provides a more convenient means of studying the complex EM 

behaviour at higher frequencies.  Although it is possible to combine a planar PSL 

with a sheet beam to obtain a novel high power source (Ginzburg, Peskov et al. 

1999), the purpose of this study is to gain greater insight into the coupling of 

volume and surface fields which can be applied to the ongoing research into 

sources using the cylindrical PSL cavity with an appropriate electron beam, at the 

University of Strathclyde. 

Figure 1.5.1. Schematic showing a planar Fabry-Perot like cavity with one of the 
mirrors having a high-impedance surface which allows coupling of surface fields and 
volume fields. The arrows indicate the mathematical steps required to move from 
planar geometry to a cylindrical cavity with a high-impedance surface similar to a 
dielectric layer. 

The planar PSL with shallow corrugation is arranged in a set-up similar to a Fabry-

Perot cavity with the PSL acting as one of the mirrors.  The mirrors are separated by 
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a dielectric substrate as shown in figure 1.5.2 which helps to confine the volume 

field and facilitate coupling at the lattice-dielectric interface.  The structures studied 

in this thesis were made using chemical etching techniques, described in chapter 4.   

 

Figure 1.5.2.  Schematic diagram illustrating the 2D PSL of planar geometry.  The 
PSL is arranged on a dielectric substrate of thickness t with the copper backing 
acting as a second mirror, in a set-up similar to a Fabry-Perot cavity. Lattice 
synchronisation is achieved by standing wave formation within the dielectric. 

The standing wave formed inside the dielectric fulfils the role of “global oscillator” 

(similar to the near cut off wave of the cylindrical structure) while the induced 

surface current synchronises adjacent cells.  In addition to a volume mode (which is 

less well defined than in the cylindrical structure) the planar PSL can support a TEM 

mode.  The Bragg conditions which must be satisfied for resonant coupling between 

the volume and surface fields to take place are: 

�𝑘𝑘⊥�
2

= (𝑘𝑘⊥𝑣𝑣)2 + (𝑘𝑘⊥𝑠𝑠)2 

          (1.5.1.a) 

𝑘𝑘𝑧𝑧 = 𝑘𝑘𝑧𝑧𝑠𝑠 − 𝑘𝑘𝑧𝑧𝑣𝑣 
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          (1.5.1.b) 

For the planar PSLs with a chessboard corrugation, 𝑘𝑘𝑧𝑧 = 𝑘𝑘⊥.  Assuming that 

coupling between the volume and surface fields occurs in the region where 

𝑘𝑘⊥𝑣𝑣 ≅ 𝑘𝑘⊥𝑠𝑠 , and provided the volume field is behaving like a standing wave (𝑘𝑘𝑧𝑧𝑣𝑣 ≅ 0), 

the Bragg conditions can be expressed in the form: 

  

𝑘𝑘𝑧𝑧 ≅ √2𝑘𝑘⊥𝑣𝑣  

          (1.5.2.a) 

𝑘𝑘𝑧𝑧 ≅ 𝑘𝑘𝑧𝑧𝑠𝑠 

.            (1.5.2.b) 

Note that equations (1.5.2a) and (1.5.2b) are approximations since, in practice, 

some detuning will exist between the uncoupled volume and surface fields. 

 

1.6 Interaction with an Electron Beam 
A high power source can be generated by transferring energy from an electron 

beam to the EM field inside the 2D PSL. The frequency and spatial distribution of 

the cavity eigenmode can be tailored by varying the structure’s parameters. Wave-

beam interactions occur only when the appropriate synchronism conditions are 

satisfied at the points where the dispersion of the beam and EM field intersect.  

Taking into account the phase velocity 𝑣𝑣𝑜𝑜ℎ = 𝜔𝜔 𝑘𝑘⁄ , the EM field dispersion is 

written: 

 𝜔𝜔 = 𝑣𝑣𝑜𝑜ℎ�𝑘𝑘𝑧𝑧2 + 𝑘𝑘⊥2  (1.6.1) 

and the dispersion of the electron beam is expressed: 

 𝜔𝜔 =  𝑘𝑘𝑧𝑧𝑣𝑣𝑧𝑧 ±
𝜔𝜔𝑏𝑏

𝛾𝛾0
    (1.6.2) 
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where 𝑣𝑣𝑧𝑧 is the longitudinal beam velocity, 𝜔𝜔𝑏𝑏 is the plasma frequency  of the 

electron beam, 𝑘𝑘𝑧𝑧 is the longitudinal wavenumber and 𝛾𝛾0 is the relativistic factor, 

defined as: 

𝛾𝛾0 =  (1 − 𝑣𝑣𝑧𝑧2 𝑟𝑟2⁄ )−1 2⁄  

It is important to note that the phase velocity of the wave (𝑣𝑣𝑜𝑜ℎ) always exceeds 𝑟𝑟 

(the speed of light in vacuum) in an unperturbed waveguide.  However, when a 

corrugation is introduced at the inner wall, or in the presence of a dielectric lining, 

𝑣𝑣𝑜𝑜ℎ < 𝑟𝑟.  This forms the basis of slow wave structures (SWS) which are known to 

facilitate Cherenkov interactions. The interaction points of equations (1.6.1) and 

(1.6.2) are illustrated schematically in figure 1.6.1 below. 

 

Figure 1.6.1. Schematic of the synchronisation condition, illustrating an interaction 
between an electron beam and a waveguide cavity mode. 

Cherenkov radiation occurs when electrons move in a medium which has a 

refractive index (𝑛𝑛�) greater than 1 and 𝑣𝑣𝑧𝑧 ≥ 𝑣𝑣𝑜𝑜ℎ where 𝑣𝑣𝑜𝑜ℎ = 𝑟𝑟 𝑛𝑛�⁄ .  Assuming 𝑛𝑛� is 

sufficiently large (such that 𝑣𝑣𝑧𝑧 > 𝑣𝑣𝑜𝑜ℎ ) resonant energy exchange from the 

electrons to the wave can occur.  An electron beam can interact with the partial 

𝜔𝜔 =  𝑘𝑘𝑧𝑧𝑣𝑣𝑧𝑧 ±
𝜔𝜔𝑏𝑏

𝛾𝛾0
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surface field of the localised cavity eigenmode when the following condition is 

satisified: 

 𝜔𝜔 = 𝑘𝑘𝑧𝑧𝑣𝑣𝑧𝑧 +
2𝜋𝜋
𝑑𝑑𝑧𝑧

𝑣𝑣𝑧𝑧 (1.6.3) 

 

where 𝑑𝑑𝑧𝑧 is the longitudinal lattice period.  The 𝑘𝑘𝑧𝑧𝑣𝑣𝑧𝑧  term describes the Doppler 

shift associated with the moving beam while the oscillation induced in the electrons 

by the surface field (when 𝑘𝑘𝑧𝑧𝑠𝑠 = 𝑘𝑘𝑧𝑧) is described by 2𝜋𝜋
𝑑𝑑𝑧𝑧
𝑣𝑣𝑧𝑧.  Taking into account that 

the electrons interact with the localised eigenmode (𝑘𝑘𝑧𝑧 ≅ 0) equation (1.6.3) is 

written 

𝑓𝑓 =
𝑣𝑣𝑧𝑧
𝑑𝑑𝑧𝑧

=
𝑟𝑟
𝑑𝑑𝑧𝑧
𝑣𝑣𝑧𝑧
𝑟𝑟

 

The definition of 𝛾𝛾0 is rearranged to give  𝑣𝑣𝑧𝑧
𝑐𝑐

= �1 − 𝛾𝛾0−2 and when 𝑘𝑘𝑧𝑧 ≅ 0 

equation (1.6.3) becomes 

 𝑓𝑓 =
𝑟𝑟
𝑑𝑑𝑧𝑧
�1 − 𝛾𝛾0−2 (1.6.4) 

The relativistic Lorentz factor can then be expressed in terms of the electron beam 

accelerating voltage, 𝑈𝑈: 

 𝛾𝛾0 = 1 +
𝑒𝑒𝑈𝑈
𝑚𝑚0𝑟𝑟2

≅ 1 +
𝑊𝑊(𝑘𝑘𝑒𝑒𝑉𝑉)

511(𝑘𝑘𝑒𝑒𝑉𝑉)
 (1.6.5) 

An equation relating 𝑈𝑈 and 𝑑𝑑𝑧𝑧 to the operating wavelength of the structure can be 

obtained by rearranging (1.6.5) (Konoplev, MacLachlan et al. 2011). 

 𝑈𝑈(𝑘𝑘𝑉𝑉) ≅ 511(𝑘𝑘𝑉𝑉) �
𝜆𝜆

�𝜆𝜆2 − 𝑑𝑑𝑧𝑧2
− 1�  (1.6.6) 

In order to achieve an interaction between an electron beam and the eigenmode of 

a PSL, the electron beam must be located outside the lattice to avoid its 

interception with the structure, whilst still remaining inside the strong EM field 
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region. If a metamaterial model is considered, the beam must pass close to the 

effective dielectric and couple to the decaying EM surface field as shown (figure 

1.6.2.). 

 

Figure 1.6.2. Schematic diagram showing coupling between an electron beam and 
the surface field in a slow-wave structure, lined with dielectric. 

 

1.7 Aims and Layout of Thesis 
The background theory and concepts behind this work have been introduced in 

chapter 1.  A theoretical study of the 2D PSL of cylindrical topology is presented in 

chapter 2, where the PSL is described as a metadielectric with an effective 

refractive index.  The field structure within the PSL is defined analytically by 

matching known boundary conditions at the air-dielectric interface.  A second 

approach, where the lattice corrugation is mathematically approximated to an 

equivalent magnetic surface current, is carried out in order to obtain coupled wave 

equations.   

Chapter 3 is devoted to the study of the structure’s dispersion using an analytical 

expression derived from the coupled wave equations of chapter 2.  It is shown that 

the electromagnetic characteristics of the structure are tailored by varying the 

lattice parameters.  For the different lattice parameters, dispersion diagrams 

relating to the cases of strong and weak coupling are presented, and under certain 

conditions, the PSL’s ability to support a Cherenkov instability when coupled with a 

suitable electron beam, is demonstrated.   
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Chapter 4 concerns the fabrication and experimental set-up of the planar PSLs, 

constructed from printed circuit board (PCB) using chemical etching techniques. 

High resolution images are provided using a 3D imager and the experimental 

equipment used in the measurements of the PSLs is discussed.  Also in this chapter, 

the refractive index of the PCB dielectric (FR-4) has been measured for the different 

samples.   

Experimental results are provided in chapter 5 where it is demonstrated that the 

results are dependent on factors such as the lattice period, the refractive index and 

thickness of the dielectric substrate, and whether or not the PSL and substrate are 

assembled with a copper backing, which enhances the synchronisation of the 

structure.  Mode selection due to the coupling of volume and surface fields is 

observed when suitable parameter values are chosen. 

The complex EM behaviour observed in chapter 5 is analysed in greater depth in 

chapter 6, where theoretical and numerical models are used to interpret the 

experimental findings.  Dispersion relations for the planar PSLs, obtained using the 

Eigenmode solver of CST Microwave Studio, are discussed and compared with the 

analytical, cylindrical PSL dispersion diagrams of chapter 3.  Finally, the key results 

and conclusions of this work, as well as possible topics of future work, are 

summarised in chapter 7. 
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Chapter 2- Theoretical Study of the 2D PSLs of 

Cylindrical Geometry 
 

2.1. Introduction 
Two separate ways of describing the eigenfield formed by the coupling of volume 

and surface fields are presented in this chapter.  In §2.2, the field structure inside the 

cylindrical PSL is described by substituting the lattice at the inner wall with an 

effective metadielectric, while in the second method detailed in (§2.3), the 

corrugation is replaced with an equivalent magnetic surface current acting as an 

excitation source for the allowed waveguide modes.  Using the magnetic surface 

current method leads to an expression defining the coupling between the volume 

and surface fields.  The coupled wave equations derived in this approach are used 

later in Chapter 3 to obtain a dispersion relation and study the EM properties of the 

structure. Both techniques discussed in this chapter are valid only under the 

assumption of shallow corrugation.  The conclusions of this theoretical study are 

summarised in §2.4.   

2.2. Surface Field inside Smooth Cylindrical 

Waveguide Lined with an Effective Metadielectric 
In this section, the effective metadielectric approximation is used to describe the 

field structure within the cylindrical 2D PSL.  The corrugated inner waveguide wall is 

substituted with a thin dielectric layer, or high impedance surface, allowing the 

structure to be described as a regular cylindrical waveguide with a partial dielectric 

load (Sievenpiper, Zhang et al. 1999, Lier, Werner et al. 2011).  The field structure is 

derived by defining the field in each distinct region and applying known boundary 

conditions at the air-dielectric interface.  This approximation is only valid under the 

assumption of shallow corrugation, and the smaller the perturbation depth, the more 

reliable this method becomes (Clarricoats, Oliver 1984).  The cylindrical PSLs 

considered in this work have been designed such that ∆𝑟 ≪ 𝐷𝑤𝑔 (where 𝐷𝑤𝑔 is the 



21 
 

diameter of the cylindrical waveguide) and likewise, the planar PSLs which are the 

focus of chapters 4, 5 and 6, have ∆𝑟 ≪ 𝜆𝑜𝑝. 

The accuracy of this approach may be affected to some extent by the PSL not entirely 

satisfying the metamaterial criteria (on account of its period being comparable with 

the intended operating wavelength, 𝜆𝑜𝑝 ≈ 𝑑𝑧). However, for the near cut-off volume 

waves, 𝜆𝑧~𝐿 (where L is the length of the lattice) and therefore 𝜆𝑧 ≫ 𝑑𝑧.  The 

transverse field structure of the near cut-off volume field is therefore unaffected by 

the thin dielectric insert, or lattice corrugation.  When an azimuthally symmetric 

(𝑚 = 0), near-cut off mode is launched into the structure, the cylindrical dielectric-

lined waveguide’s hybrid EH eigenmode is similar to the TM mode of a regular 

cylindrical waveguide (∆𝑟 = 0).   

It is important to note that the effective dielectric boundary does not coincide with 

the mean radius of the perturbed structure (Konoplev, MacLachlan et al. 2011).  The 

effective boundary has a smaller inner radius than that of the lattice corrugation, 

enhancing the structure’s suitability for use as the interaction region of an active 

device.  When combined in a suitable configuration with an electron beam, the 

structure’s eigenfield outside the corrugation should be sufficient to facilitate 

coupling with the beam, avoiding damage to the inner wall of the structure through 

over-heating, which may occur in a regular waveguide lined with dielectric (Cook, 

Tikhoplav et al. 2009). 

The cylindrical waveguide lined with a high-impedance dielectric layer, defined by its 

effective refractive index,  �̃�  and inner and outer radii 𝑎 and 𝑏 respectively, is 

illustrated schematically in figure 2.2.1. The surface field is localised inside the 

dielectric (𝑟 ≥ 𝑎) where it has a real wavenumber, and decays outside the dielectric 

(𝑟 ≤ 𝑎) towards the centre of the waveguide. 



22 
 

 

Figure 2.2.1 .  Schematic of cylindrical waveguide, partially loaded with an effective 
meta-dielectric, or high-impedance surface.  The blue region is the dielectric with 
refractive index �̃� = √𝜀𝜇 and the white area in the centre of the waveguide 
represents vacuum with �̃� = √𝜀𝜇 = 1  

Let us consider the stationary regime (i.e. when the cavity’s eigenmode is 

established).  In this case, the azimuthally nonsymmetric (𝑚𝑠 ≠ 0)  EH surface field 

can be described as a superposition of the E and H modes of the dielectric-lined 

cylindrical waveguide. More specifically, in the present study, the cavity eigenmode 

is described as a superposition of the partial volume(𝑇𝑀0,𝑇) and surface (𝐸𝐻�̅�,1) 

fields (where 𝑇 is chosen to ensure a near cut-off wave and the surface field has just 

one radial variation).  By taking into account the periodicities along the azimuthal (𝜑) 

and longitudinal (z) coordinates, the Fourier decomposition of the surface field can 

be applied to describe its 𝐸𝑧 and 𝐻𝑧 components. These longitudinal field 

components are written in terms of a “slow” wave envelope 𝐶𝑗
𝑒,ℎ  (filled with a fast 

varying term) and a cylindrical function  𝐹𝑚𝑠
𝑒,ℎ of order 𝑚𝑠 describing the field 

oscillation in the transverse directions. The longitudinal 𝐸𝑧 and 𝐻𝑧 field components 

describing the hybrid surface field are written: 

 𝐸𝑧 = ∑ 𝐹𝑚𝑠
𝑒

∞

𝑚𝑠=0

(𝑘⊥(𝑠)𝑟) sin𝑚𝑠 𝜑 ∑ 𝐶𝑗
𝑒

∞

𝑗=−∞

(𝑧)𝑒𝑖𝑗�̅�𝑧𝑧 (2.2.1a) 

 𝐻𝑧 = ∑ 𝐹𝑚𝑠
ℎ

∞

𝑚𝑠=0

(𝑘⊥(𝑠)𝑟) cos𝑚𝑠 𝜑 ∑ 𝐶𝑗
ℎ

∞

𝑗=−∞

(𝑧)𝑒𝑖𝑗�̅�𝑧𝑧 (2.2.1b) 
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where j  is the integer spatial harmonic number and 𝐶𝑗
𝑒 , 𝐶𝑗

ℎ are the slowly varying 

amplitudes of the field harmonics.  In the present study, coupling of the fundamental 

volume field harmonic with the surface field’s ±1 spatial harmonics is of interest.  

For simplicity, the treatment of higher order harmonics is ignored in this analysis, 

which focuses solely on the case where 𝑗 = ±1 and 𝑚𝑠 = �̅�.   The requirement that 

𝑚𝑠 = �̅�  originates from the Bragg resonance condition, and is justified 

mathematically in §2.3.  To further reduce the complexity of the problem, the study 

has been simplified to assume an infinite structure, allowing the slowly changing 

amplitudes of the finite structure to be treated as constants.  This, along with the 

requirements that 𝑗 = 1 and 𝑚𝑠 = �̅� reduces Eq.(2.2.1a,b) to the form: 

 
𝐸𝑧 = 𝐹�̅�(𝑘⊥(𝑠)𝑟)𝐸(𝑧) cos �̅�𝑧𝑧 sin �̅�𝜑 

 

(2.2.2a) 

 𝐻𝑧 = 𝐹�̅�(𝑘⊥(𝑠)𝑟)𝐻(𝑧) cos �̅�𝑧𝑧 cos �̅�𝜑 (2.2.2b) 

Using this approximation, the 𝐸𝑧 and 𝐻𝑧 components of the hybrid surface field of 

the infinite cylindrical PSL (or effective metadielectric) are defined separately in the 

two distinct regions (inside and outside the effective dielectric) using the vector 

potentials F𝑧
𝑒,ℎ and G𝑧

𝑒,ℎ for the dielectric and vacuum regions respectively.  

Starting with the dielectric region, we can write: 

 𝐸𝑧 = (
𝜕2

𝜕𝑧2
+ 𝑘2𝜀𝜇)F𝑧

𝑒        (2.2.3a) 

 𝐻𝑧 = (
𝜕2

𝜕𝑧2
+ 𝑘2𝜀𝜇)F𝑧

ℎ         (2.2.3b) 

It is well known (Jackson 1999) that the vector potential of an EM field inside a 

cylindrical waveguide is defined in terms of Bessel functions of the first (𝐽�̅�(𝑔𝑟)) and 

second kind (𝑁�̅�(𝑔𝑟)) Bessel functions of the second kind, alternatively known as 

Neumann functions, are infinite at the centre of the waveguide (𝑟 = 0) and thus 

neglected when dealing with a uniform waveguide.  However, since we are 
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concentrating only on the dielectric insert around the circumference of the 

waveguide, and in this instance ignoring 𝑟 = 0, the Neumann function must be 

included for a complete description of the field structure in this region.  The vector 

potential must also have a sine or cosine dependence to define the electric and 

magnetic fields along the azimuthal direction.  The vector potentials for the 

longitudinal electric (F𝑧
𝑒) and magnetic (F𝑧

ℎ) fields can be expressed in the form: 

 F𝑧
𝑒 = [𝐴1

𝑒 𝐽�̅�(𝑔𝑟) + 𝐴2
𝑒  𝑁�̅�(𝑔𝑟)] sin �̅�𝜑 𝑒

𝑖�̅�𝑧𝑧 (2.2.4a) 

   

 F𝑧
ℎ = [𝐴1

ℎ 𝐽�̅�(𝑔𝑟) + 𝐴2
ℎ  𝑁�̅�(𝑔𝑟)] cos �̅�𝜑 𝑒

𝑖�̅�𝑧𝑧   (2.2.4b) 

where 𝐴1
𝑒, 𝐴2

𝑒 , 𝐴1
ℎ and 𝐴2

ℎ are  constants associated with the electric (superscript e) 

and magnetic field (superscript h) components respectively and 𝑔 = √𝑘2�̃�2 − �̅�𝑧2 is 

the real transverse wavenumber for the field inside the dielectric.  As with the case 

of a hollow cylindrical waveguide, the longitudinal electric field 𝐸𝑧 must vanish at the 

metal wall (𝑟 = 𝑏),forcing F𝑧
𝑒 to zero. 

 𝐴1
𝑒 𝐽�̅�(𝑔𝑏) + 𝐴2

𝑒  𝑁�̅�(𝑔𝑏) = 0        (2.2.5) 

Eq.(2.2.5) is then be rearranged to define the constant,  𝐴1
𝑒 . 

 𝐴1
𝑒 = −𝐴2

𝑒
𝑁�̅�(𝑔𝑏)

𝐽�̅�(𝑔𝑏)
          (2.2.6) 

Substituting the current definition of  𝐴1
𝑒 back into the original expression (Eq. 2.2.4a) 

gives a more precise description of the electric vector potential, F𝑧
𝑒 . 

 

F𝑧
𝑒 = [−𝐴2

𝑒
𝑁�̅�(𝑔𝑏)

𝐽�̅�(𝑔𝑏)
  𝐽�̅�(𝑔𝑟)

+ 𝐴2
𝑒  𝑁�̅�(𝑔𝑟)] sin �̅�𝜑 𝑒

𝑖�̅�𝑧𝑧 

   (2.2.7) 

This can be written in a more convenient form by taking the factor −𝐴2
𝑒 𝐽�̅�(𝑔𝑏)⁄  

outside the brackets, and introducing a new constant, 𝐴. 
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 F𝑧
𝑒 =

−𝐴2
𝑒

𝐽�̅�(𝑔𝑏)
[𝑁�̅�(𝑔𝑏)  𝐽�̅�(𝑔𝑟) − 𝐽�̅�(𝑔𝑏) 𝑁�̅�(𝑔𝑟)] sin �̅�𝜑 𝑒

𝑖�̅�𝑧𝑧  

 = 𝐴Υ(𝑔𝑟) sin �̅�𝜑 𝑒𝑖�̅�𝑧𝑧  (2.2.8) 

Here,  𝐴 = −𝐴2
𝑒 𝐽�̅�(𝑔𝑏)⁄  and  Υ = 𝑁�̅�(𝑔𝑏)  𝐽�̅�(𝑔𝑟) − 𝐽�̅�(𝑔𝑏) 𝑁�̅�(𝑔𝑟) .  A similar 

approach is used to derive an expression for the magnetic vector potential inside the 

dielectric.  Enforcing the boundary constraint at the metal wall such that: 

 𝜕𝐻𝑧
𝜕𝑟

= 0  ⇒   
𝜕𝐴𝑧

ℎ

𝜕𝑟
|
𝑟=𝑏

= 0   (2.2.9) 

leads to the following expression: 

 𝐴1
ℎ 𝐽′�̅�(𝑔𝑏) + 𝐴2

ℎ 𝑁′�̅�(𝑔𝑏) = 0    (2.2.10) 

where 𝐽′�̅�(𝑔𝑏) and 𝑁′�̅�(𝑔𝑏) are the derivatives of the ordinary and Neumann Bessel 

functions with respect to their arguments.  In this case, the constant 𝐴1
ℎ is described 

by: 

 𝐴1
ℎ = −𝐴2

ℎ
𝑁′�̅�(𝑔𝑏)

𝐽�̅�(𝑔𝑏)
    (2.2.11) 

The magnetic vector potential inside the dielectric region is therefore written in the 

form below: 

 F𝑧
ℎ = 𝐵Ψ(𝑔𝑟) cos �̅�𝜑 𝑒𝑖�̅�𝑧𝑧     (2.2.12) 

where 𝐵 = −𝐴2
ℎ 𝐽′�̅�(𝑔𝑏)⁄  and Ψ = [𝑁′�̅�(𝑔𝑏)  𝐽�̅�(𝑔𝑟) − 𝐽′�̅�(𝑔𝑏) 𝑁�̅�(𝑔𝑟)].  

Following the same steps outlined above, expressions for the electric and magnetic 

vector potentials inside the vacuum region, G𝑧
𝑒; G𝑧

ℎ  are obtained.  Starting with the 

fundamental definition of the vector potential, we can write: 

 (𝐸𝑧; 𝐻𝑧) = (
𝜕2

𝜕𝑧2
+ 𝑘2𝜀𝜇) (G𝑧

𝑒; G𝑧
ℎ) (2.2.13) 
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Outside the dielectric (in the vacuum region) the transverse wavenumber (𝑝) is 

purely imaginary i.e. 𝑘2 = �̅�𝑧
2 + (𝑖𝑝)2 = �̅�𝑧

2 − 𝑝2 where 𝑝 = √�̅�𝑧2 − 𝑘2.  Modified

Bessel functions are required to describe the exponentially decaying surface field in 

this region.  Since this area encompasses the centre of the waveguide where 𝑟 = 0, 

the field structure is solely dependent on a modified Bessel function of the first kind 

(𝐼�̅�(𝑝𝑟)) with no the need to include the Neumann function as before.  The vector 

potentials for the longitudinal electric (G𝑧
𝑒) and magnetic (G𝑧

ℎ)  fields in vacuum are:

G𝑧
𝑒 = 𝑋Υ̂(pr) sin �̅�𝜑 𝑒𝑖�̅�𝑧𝑧 (2.2.14a) 

G𝑧
ℎ = 𝑌Ψ̂(pr) cos �̅�𝜑 𝑒𝑖�̅�𝑧𝑧 (2.2.14b) 

where 𝑋 and 𝑌 are amplitude constants and Υ̂ = Ψ̂ =  𝐼�̅�(𝑝𝑟) 

At the current stage, general equations describing the 𝐸𝜑 and 𝐻𝜑 tangential field 

components applicable to both (dielectric and vacuum) regions are obtained by 

employing Maxwell’s curl equations for a source-free waveguide, ∇ × �̅� =

−𝑖𝜔𝜇�̅� and ∇ × �̅� = 𝑖𝜔𝜀�̅�.  Taking the curl of the electric and magnetic fields, and 

solving for the transverse field components using the method detailed in (Pozar, 

2007) yields:  

𝐸𝜑 =
−𝑖

𝑘⊥
2 (
�̅�𝑧
𝑟

𝜕𝐸𝑧
𝜕𝜑

−  𝜔𝜇
𝜕𝐻𝑧
𝜕𝑟
) 

 (2.2.15a) 

𝐻𝜑 =
−𝑖

𝑘⊥
2 (𝜔𝜀

𝜕𝐸𝑧
𝜕𝑟

+
�̅�𝑧
𝑟

𝜕𝐻𝑧
𝜕𝜑
) 

 (2.2.15b) 

Equations (2.2.15a,b) can be expressed in terms of the vector potentials in the 

dielectric and vacuum regions. Starting with the dielectric region, we substitute the 

electric and magnetic vector potentials of Eq. (2.2.8) and Eq. (2.2.12) into the general 
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expressions provided in Eq. (2.2.3a,b). Evaluating the second order partial differential 

of Eq.(2.2.3.a,b) gives 

 
𝜕2

𝜕𝑧2
 F𝑧
𝑒,ℎ = −�̅�𝑧

2F𝑧
𝑒,ℎ (2.2.16) 

which, when substituted back into Eq.(2.1.3a,b), leads to 

𝐸𝑧 = (𝑘
2�̃�2 − �̅�𝑧

2)F𝑧
𝑒 

𝐻𝑧 = (𝑘
2�̃�2 − �̅�𝑧

2)F𝑧
ℎ 

assuming 𝜇 = 1 and �̃�2 = 𝜀𝜇 = 𝜀.  Within the dielectric region, the transverse 

wavenumber 𝑔 is defined as 𝑔2 = 𝑘2𝑛2 − �̅�𝑧
2  and from this it follows that: 

(𝐸𝑧; 𝐻𝑧) = 𝑔
2(F𝑧

𝑒; F𝑧
ℎ) 

Substituting (𝐸𝑧; 𝐻𝑧) = 𝑔
2(F𝑧

𝑒; F𝑧
ℎ) into the tangential field component of Eq. 

(2.2.15a) gives 

𝐸𝜑 = −𝑖
�̅�𝑧
𝑟

𝜕F𝑧
𝑒

𝜕𝜑
+  𝑖𝜔𝜇

𝜕F𝑧
ℎ

𝜕𝑟
 

The first order partial differential 𝑖�̅�𝑧F𝑧
𝑒 =

𝜕

𝜕𝑧
F𝑧
𝑒 is used to obtain 

𝐸𝜑 = −
1

𝑟

𝜕2

𝜕𝜑𝜕𝑧
F𝑧
𝑒 +  𝑖𝜔𝜇

𝜕F𝑧
ℎ

𝜕𝑟
 

          (2.2.17a) 

which defines the 𝐸𝜑 tangential field component.  The 𝐻𝜑 tangential field component 

is written in the same way. 

 𝐻𝜑 = −𝑖𝜔𝜀 
𝜕F𝑧

𝑒

𝜕𝑟
−
1

𝑟
 
𝜕2F𝑧

ℎ

𝜕𝜑𝜕𝑧
 (2.2.17b) 

Deriving the tangential field components laid out in Eq.(2.2.17a) and (2.2.1.7.b) 

involves evaluating the partial derivatives using the definitions of F𝑧
𝑒 and F𝑧

ℎ  provided 

in Eq. (2.2.8) and Eq.(2.2.12).  This leads to the following equations, defining the 
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tangential electric and magnetic field components within the effective dielectric 

region: 

 𝐸𝜑 = 𝑖 cos �̅�𝜑 𝑒
𝑖�̅�𝑧𝑧 (𝜔𝜇𝑔𝐵 Ψ′(𝑔𝑟) −

�̅�𝑧�̅�𝐴

𝑟
 Υ(𝑔𝑟)) (2.2.18a) 

 𝐻𝜑 = 𝑖 sin �̅�𝜑 𝑒
𝑖�̅�𝑧𝑧 (𝜔𝑔𝜀𝐴 Υ′(𝑔𝑟) − 

�̅�𝑧�̅�𝐵

𝑟
Ψ(𝑔𝑟))   (2.2.18b) 

Similarly, the longitudinal electric and magnetic fields outside the dielectric (in the 

vacuum region) where 𝑘⊥
𝑠 = 𝑝  and (𝐸𝑧; 𝐻𝑧) = −𝑝

2(G𝑧
𝑒; G𝑧

ℎ), are described below.  

 𝐸𝑧 = −𝑝
2𝑋𝐼�̅�(𝑝𝑟) sin �̅�𝜑 𝑒

𝑖�̅�𝑧𝑧 (2.2.19a) 

 𝐻𝑧 = −𝑝
2𝑌𝐼�̅�(𝑝𝑟) cos �̅�𝜑 𝑒

𝑖�̅�𝑧𝑧 (2.2.19b) 

Once again, the tangential field components are determined. The azimuthal surface 

fields 𝐸𝜑 and 𝐻𝜑 within the vacuum are given by: 

 𝐸𝜑 =
1

𝑟
 
𝜕2G𝑧

𝑒

𝜕𝜑𝜕𝑧
− 𝑖𝜔𝜇 

𝜕G𝑧
ℎ

𝜕𝑟
 (2.2.20a) 

   

 𝐻𝜑 = 𝑖𝜔𝜀 
𝜕G𝑧

𝑒

𝜕𝑟
+
1

𝑟
 
𝜕2G𝑧

ℎ

𝜕𝜑𝜕𝑧
 (2.2.40b) 

 

which corresponds to the following results: 

 

 𝐸𝜑 = (
�̅��̅�𝑧
𝑟
𝑋𝐼�̅�(𝑝𝑟) − 𝜔𝑝𝑌𝐼′�̅�(𝑝𝑟))  𝑖 cos �̅�𝜑  𝑒

𝑖�̅�𝑧𝑧 (2.2.41a) 

 𝐻𝜑 = (𝜔𝑝 𝑋𝐼′�̅�(𝑝𝑟) −
�̅��̅�𝑧
𝑟
𝑌𝐼�̅�(𝑝𝑟)) 𝑖 𝑠𝑖𝑛 �̅�𝜑  𝑒

𝑖�̅�𝑧𝑧 (2.2.41b) 
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To ensure continuity of the tangential field components and impedance matching at 

the dielectric-vacuum interface (where 𝑟 = 𝑟𝑑 = 𝑎) the following boundary 

conditions must be satisfied: 

 𝐸𝑧
𝑉 = 𝐸𝑧

𝐷 (2.2.22a) 

 𝐸𝜑
𝑉 = 𝐸𝜑

𝐷 (2.2.22b) 

 𝐻𝑧
𝑉 = 𝐻𝑧

𝐷 (2.2.22c) 

 𝐻𝜑
𝑉 = 𝐻𝜑

𝐷 (2.2.22d) 

where the superscripts 𝑉 and 𝐷 denote the field in a vacuum region and dielectric 

medium respectively.  Applying these four boundary conditions leads to the following 

set of equations: 

 𝑔2𝐴Υ(𝑔𝑎) =  −𝑝2𝑋 𝐼�̅�(𝑝𝑎) (2.2.23a) 

 𝜇𝜔𝑔𝑎𝐵Ψ′(𝑔𝑎) − �̅��̅�𝑧𝐴Υ(𝑔𝑎) = �̅��̅�𝑧𝑋 𝐼�̅�(𝑝𝑎) − 𝑌𝜔𝑝𝑎 𝐼′�̅�(𝑝𝑎) (2.2.23b) 

 𝑔2𝐵Ψ(𝑔𝑎) =  −𝑝2𝑌𝐼�̅�(𝑝𝑎) (2.2.23c) 

 𝜀𝜔𝑔𝑎𝐴Υ′(𝑔𝑎) − �̅��̅�𝑧𝐵Ψ(𝑔𝑎) = 𝜔𝑝𝑎𝑋𝐼
′
�̅�(𝑝𝑎) − �̅��̅�𝑧𝑌𝐼�̅�(𝑝𝑎) (2.2.23d) 

Constants 𝐴 and 𝐵 can be expressed in terms of 𝑋 and 𝑌 from equations (2.2.23a) 

and (2.2.23c).  Equations (2.2.23b) and (2.2.23d) become: 

𝑋 (
�̅��̅�𝑧𝑝

2𝐼�̅�(𝑝𝑎)

𝑔2Υ(𝑔𝑎)
− �̅��̅�𝑧𝐼�̅�(𝑝𝑎)) =  𝑌 (𝜇𝜔𝑔𝑎

𝑝2𝐼�̅�(𝑝𝑎)

𝑔2Ψ(𝑔𝑎)
Ψ′(𝑔𝑎) − 𝜔𝑝𝑎𝐼′�̅�(𝑝𝑎)) 

  (2.2.24a) 

−𝑋(
𝜀𝜔𝑎 𝑝2𝐼�̅�(𝑝𝑎)

𝑔Υ(𝑔𝑎)
Υ′(𝑔𝑎) + 𝜔𝑝𝑎 𝐼′�̅�(𝑝𝑎))

= −𝑌(�̅��̅�𝑧
𝑝2𝐼�̅�(𝑝𝑎)

𝑔2
+ �̅��̅�𝑧𝐼′�̅�(𝑝𝑎)) 

  (2.2.24b) 



30 
 

At this stage, constants 𝑋 and 𝑌 are eliminated by dividing (2.2.24a) by (2.2.24b).  

Finally, by rearranging and introducing functions 𝑓𝑒 , 𝑓ℎ and 𝑓, the dispersion equation 

describing the hybrid surface field is obtained (Konoplev, MacLachlan et al. 2011).   

 𝑝4𝑘4�̃�4(𝜀𝑓𝑒 − 𝑓)(𝑓ℎ − 𝑓) = �̅�
2�̅�𝑧
2𝑘2(𝜀 − 1)2 (2.2.25) 

where �̃� is the coupling coefficient describing the coupling between the volume and 

surface fields.  The cylindrical functions 𝑓, 𝑓𝑒 and 𝑓ℎ are defined below. 

𝑓 = −
𝐼′�̅�(𝑝𝑎)

𝑝𝑎 𝐼�̅�(𝑝𝑎)
 

𝑓𝑒 =
1

𝑔𝑎
 
𝐽′�̅�(𝑔𝑎)𝑁�̅�(𝑔𝑏) − 𝐽�̅�(𝑔𝑏)𝑁

′
�̅�(𝑔𝑎)

𝐽�̅�(𝑔𝑎)𝑁�̅�(𝑔𝑏) − 𝐽�̅�(𝑔𝑏)𝑁�̅�(𝑔𝑎)
         

𝑓ℎ =
1

𝑔𝑎
 
𝐽′�̅�(𝑔𝑎)𝑁′�̅�(𝑔𝑏) − 𝐽′�̅�(𝑔𝑏)𝑁

′
�̅�(𝑔𝑎)

𝐽�̅�(𝑔𝑎)𝑁′�̅�(𝑔𝑏) − 𝐽′�̅�(𝑔𝑏)𝑁�̅�(𝑔𝑎)
         

 

The dispersion relation provided in Eq.(2.2.25) confirms that the surface field with 

𝑚𝑠 = �̅�  has both 𝐸𝑧 and 𝐻𝑧 components (defined implicitly by the 𝑓𝑒 and 𝑓ℎ 

cylindrical functions) as characteristic of a hybrid mode. The eigenfield dispersion 

theoretically proves that, for the case of an azimuthally symmetric surface field 

(𝑚𝑠 = 0), Eq. (2.2.25) reduces to give:  (𝜀𝑓𝑒 − 𝑓) = 0 or (𝑓ℎ − 𝑓) = 0 and 

consequently, 𝐸𝑧 = 0 or 𝐻𝑧 = 0  corresponding to either TE or TM waves. 

Throughout this derivation it was assumed that 𝜇 =  1 and �̃�2 = 𝜀𝜇 =  𝜀 for the 

effective metadielectric layer.  At frequencies far from the PSL’s resonant frequency, 

the electromagnetic field is unaffected by the presence of the metadielectric (or 

lattice) and no interaction will occur.  At such frequencies, the refractive index is 

effectively �̃� = 1 and the structure is equivalent to a hollow, unperturbed, cylindrical 

waveguide.  As expected, when  �̃�2 = 1 is substituted into Eq. (2.2.25), the right-hand 

side term goes to zero, indicating that either TE or TM waves will propagate, instead 

of the hybrid cavity eigenmode.   
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On the other hand, the metadielectric’s effective refractive index close to the Bragg 

resonance frequency �̃�𝐵, where the PSL can facilitate the mutual resonant scattering 

of volume and surface fields, can be defined in terms of �̅�𝑧 and 𝑘 by phase-matching 

the coupled volume and surface fields constituting the cavity eigenmode.  Within the 

effective dielectric region, the transverse surface field wavenumber  (𝑔) must equal 

the volume field’s transverse wavenumber (𝑘⊥𝑣) i.e. 𝑘⊥𝑣 ≅ 𝑔.  For the near cut-off 

volume mode, 𝑘⊥𝑣 ≅ 𝑘 and hence 𝑔 ≅ 𝑘. Taking into account that 𝑘2�̃�2 = 𝑔2 +

 (𝑗�̅�𝑧)
2  where 𝑗 is the spatial harmonic of the surface field we obtain the expression: 

 𝑘2�̃�2 = 𝑘2 + (𝑗�̅�𝑧)
2 (2.2.26) 

Which, in the case of coupling with the 𝑗 = ±1 surface field harmonics, reduces to: 

 
𝑘2�̃�𝐵

2 = 𝑘2 + �̅�𝑧
2
 

(2.2.27) 

Finally, rearranging for  �̃�𝐵 gives: 

 
�̃�𝐵 = √1 +

�̅�𝑧2

𝑘2
 

(2.2.28) 

 

The metadielectric’s effective refractive index �̃�𝐵 when the Bragg resonance 

conditions are met determines the effective inner dielectric radius (Konoplev, 

MacLachlan et al. 2011).  This is important when considering the structure’s 

interaction with an electron beam which should intercept the metadielectric region 

whilst avoiding the PSL at the waveguide’s inner wall. 

Finally, impedance matching at the air-dielectric boundary is considered. According 

to the two-stage scattering model, the incident TM0,T wave (with 𝐸𝑧 and 𝐻𝜑 

components) excites a surface current (stage 1)  which in turn excites the secondary, 

scattered 𝐸𝐻�̅�,1 wave (stage 2).  As this is a reversible process (𝑇𝑀 ⟷ 𝐸𝐻) the 

incident and scattered waves excite the same surface currents and consequently 

their impedances at the boundary must be equal.  To satisfy this impedance matching 

condition, the following relationship must hold true: 
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 𝐸𝑧
𝐻𝜑
(𝐸𝐻�̅�,1)  =

𝐸𝑧
𝐻𝜑
(𝑇𝑀0,𝑇)  

Therefore, at the dielectric boundary 

 

 𝑝 
𝐼𝑚(𝑝𝑎)

𝐼′𝑚(𝑝𝑎)
= 𝑘⊥

𝑣  
𝐽0(𝑘⊥

𝑣𝑎)

𝐽′0(𝑘⊥
𝑣𝑎)

  

 

In the next section, the eigenfield inside a PSL of finite length is described by 

considering a fictitious magnetic surface current to describe the lattice corrugation. 

 

2.3-Derivation of Coupling Coefficient by Magnetic 

Surface Current Method 
 

In this section an analytical model of the PSL’s possible scattering mechanisms is 

presented.  Using coupled wave equations derived from Maxwell’s equations, a  

definition of the coupling coefficient 𝛼 determining the strength of the coupling 

between volume and surface fields is established by the method of fictitious 

magnetic sources (Kogelnik and Shank 1972, Kovalev, Orlova et al. 1972, Cooke and 

Denisov 1998).  This provides analytic expressions assuming the corrugation at the 

inner wall is shallow.  It is shown that the extent of the coupling depends on 

parameters such as the corrugation depth, and the structure’s mean radius and 

operating frequency.  Evaluation of the coupling coefficient 𝛼 involves solving an 

integral mode coupling calculation which is a topic of possible future work.  Although 

this study is pertinent to the case of a finite, cylindrical structure, it is also relevant 

when studying an equivalent PSL with planar geometry, due to the assumption that 

𝑟0 ≫ 𝜆 which has been made throughout this analysis.  As mentioned earlier in this 

work, it is possible to convert between planar and cylindrical geometries through a 

process of conformal mapping. 
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2.3.1. Derivation of the Wave Equation for Volume and 

Surface Modes 
The PSL of cylindrical topology can be simplified by instead considering a regular 

cylindrical waveguide with an equivalent (fictitious) magnetic surface current 

induced in its walls to account for the corrugation. To begin this theoretical study, a 

wave equation defining the transmitted power of the cylindrical waveguide modes, 

is derived from Maxwell’s curl equations (where an 𝑒𝑖𝜔𝑡dependence has been 

assumed). 

∇̅ × �̅� = −
𝜕�̅�

𝜕𝑡
− 𝑗�̅� = −𝑖𝜔𝜇�̅� − 𝑗�̅� 

(2.3.1) 

∇̅ × 𝐻 = −
𝜕�̅�

𝜕𝑡
− 𝑗�̅� = 𝑖𝜔𝜀�̅� 

          (2.3.2) 

The (fictitious) magnetic surface current, required to describe the coupled modes, is 

denoted by 𝑗�̅�.  Though both magnetic and electric surface currents are introduced 

in place of the lattice corrugation, the electric surface currents (𝑗�̅�)  are effectively 

short circuited at the metal wall, and are therefore neglected in this analysis. Let us 

begin by taking the curl of Eq.(2.3.2). 

∇̅ × (∇̅ × 𝐻) = 𝑖𝜔𝜀(∇̅ × �̅�) = 𝑖𝜔𝜀(−𝑖𝜔𝜇�̅� − 𝑗�̅�)     (2.3.3) 

Applying the vector identity ∇̅ × (∇̅ × �̅�) = −∇̅2�̅�  then gives  

∇̅2�̅� = −𝜔2𝜀𝜇 �̅� + 𝑖𝜔𝜀𝑗�̅�       (2.3.4) 

The ∇̅2 operator is the gradient defined in Cartesian coordinates: ∇̅2= �̅�0∇𝑥 +

�̅�0∇𝑦 + 𝑧0̅∇𝑧 .  This approximation is valid for a cylindrical waveguide when the radius 

is large in comparison to the operating wavelength (𝑟0 ≫ 𝜆𝑜𝑝). Provided the lattice 

corrugation is shallow (Δ𝑟 ≪ 𝜆) the field inside the structure can be described by a 

superposition of the eigenmodes inside an unperturbed cylindrical waveguide 

(where the volume and surface modes have real and imaginary transverse 
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wavenumbers respectively).  This involves defining an arbitrary field distribution over 

the cross-section of the cylinder. The transverse electric and magnetic fields when 

𝑧 > 0 are expanded as a sum of the allowed waveguide modes (Mahmoud 1991). In 

this approach, we are describing the field inside the cylindrical structure of finite 

length as a slow wave envelope, filled with fast varying terms.  Using 𝐶𝑞(𝑧) to denote 

the slowly varying amplitude describing the field evolution along the 𝑧 coordinate, 

the transverse magnetic and electric fields are written: 

�̅� = ∑ 𝐶𝑞(𝑧)�̅�𝑞𝑞   

�̅� = ∑ 𝐶𝑞(𝑧)�̅�𝑞𝑞 .   

This description of the transverse magnetic field is then substituted into Eq.(2.3.4) to 

give the full and orthogonal set of eigenmodes: 

�̅� = ∑ ∇̅2(𝐶𝑞(𝑧)�̅�𝑞𝑞 ) = −𝜔2𝜀𝜇 ∑ 𝐶𝑞(𝑧)�̅�𝑞𝑞 + 𝑖𝜔𝜀𝑗�̅�      

         (2.3.5) 

When a waveguide is excited by an external source (in this case the magnetic surface 

current) (Jackson 1999) the total power transmitted through the structure is given by 

integrating the Poynting vector 1 2⁄ (𝐸𝑡 × 𝐻𝑡
∗) over the waveguide aperture (in this 

case the cylindrical cross section). This treatment is restricted to consider only the 

near cut-off volume mode (𝜔 ≈ 𝜔0
𝑣) for which 𝑘𝑧 → 0 and 𝜆𝑧 → ∞, ensuring a 

uniform field along the length of the cylindrical waveguide and allowing the PSL to 

be described as a single cavity.  In practice, however, some detuning from the ideal 

situation where 𝜔 = 𝜔0
𝑣 will arise due to the structure’s finite length, resulting in the 

slowly varying amplitude term 𝐶𝑞(𝑧). The magnetic surface current (𝑗�̅�) determines 

the transverse electric field (�̅�) allowing 𝐸𝑡 × 𝐻𝑡
∗ to be implicitly expressed by 

multiplying both sides of Eq.(2.3.5) by the complex conjugate of the transverse 

magnetic cut-off mode ( �̅�𝑞′
∗ ) and rearranging to obtain: 

�̅�𝑞′
∗ ∇̅2∑𝐶𝑞(𝑧)�̅�𝑞

𝑞

+ 𝜔2�̅�𝑞′
∗ ∑𝐶𝑞(𝑧)�̅�𝑞

𝑞

=  𝑖𝜔𝜀𝑗�̅��̅�𝑞′
∗  

          (2.3.6) 
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Separating the gradient operator ∇̅2 into its transverse and longitudinal components 

gives the following result: 

�̅�𝑞′
∗ ∇̅𝑧

2∑𝐶𝑞(𝑧)�̅�𝑞
𝑞

+ �̅�𝑞′
∗ ∇̅⊥

2∑𝐶𝑞(𝑧)�̅�𝑞
𝑞

+ 𝜔2�̅�𝑞′
∗ ∑𝐶𝑞(𝑧)�̅�𝑞

𝑞

= 𝑖𝜔𝜀𝑗�̅��̅�𝑞′
∗  

          (2.3.7) 

The localised volume and surface modes with angular cut-off frequency 𝜔0
𝑞 are 

described by the Helmholtz equation ∇̅⊥
2 �̅�𝑞 ±

(𝜔0
𝑞
)
2

𝑐2
�̅�𝑞 = 0 where “+” corresponds 

to the volume modes and “−” corresponds to the surface modes. This sign difference 

comes from the fact that the surface field is defined by an imaginary transverse 

wavenumber (𝑖𝑘⊥) i.e. 𝑘𝑧,𝑠
2 = 𝑘2 + 𝑘⊥,𝑠

2 . 

For the near-cut off volume mode, where 𝜔𝑞′
0 = 𝜔0

𝑣 ≅ 𝜔0
𝑠 = 𝜔0 (and 𝜔0 is the 

angular cut-off frequency of the structure’s cavity eigenmode) the Helmholtz 

equation ∇̅⊥
2 �̅�𝑞′ +

𝜔0
2

𝑐2
�̅�𝑞′ = 0 is rearranged and substituted into the second term of 

Eq.(2.3.7) which then becomes 

−
𝜔0

2

𝑐2
�̅�𝑞′
∗ ∑𝐶𝑞(𝑧)�̅�𝑞

𝑞

 

Eq.(2.3.7) is brought to the form: 

�̅�𝑞′
∗ ∑∇̅𝑧

2𝐶𝑞(𝑧)�̅�𝑞
𝑞

+ �̅�𝑞′
∗ ∑𝐶𝑞(𝑧) (−

𝜔0
2

𝑐2
) �̅�𝑞

𝑞

+ 𝜔2�̅�𝑞′
∗ �̅�𝑞 = 𝑄𝑗�̅��̅�𝑞′

∗  

          (2.3.8) 

where 𝑄 is a constant, defined as 𝑄 = 𝑖𝜔𝜀.  Eq.(2.3.8) is then rearranged and written 

in the form below, where 
(𝑐2𝜔2−𝜔0

2)

𝑐2
  describes the detuning between the angular cut-

off frequency of the volume mode and the cavity eigenmode’s angular frequency. 

�̅�𝑞′
∗ ∑∇̅𝑧

2𝐶𝑞(𝑧)�̅�𝑞
𝑞

+ �̅�𝑞′
∗ ∑𝐶𝑞(𝑧)

𝑞

(𝑐2𝜔2 − 𝜔0
2)

𝑐2
  �̅�𝑞 = 𝑄𝑗�̅��̅�𝑞′

∗  
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          (2.3.9) 

The wave equation defining the average power flow along the structure is obtained 

by integrating Eq.(2.3.9) around the azimuthal cross-section of the waveguide.  At 

this stage, the orthogonality condition is considered. 

∫ �̅�𝑞�̅�𝑞′
∗

𝑆⊥=𝜑
= 0 if 𝑞 ≠ 𝑞′ 

When the orthogonality of modes is taken into account, the left-hand side of 

Eq.(2.3.9) is reduced to describe the field amplitude .  Both sides of this expression 

are then divided by �̅�𝑞
2
 to obtain the final normalised wave equation. 

∇̅𝑧
2𝐶𝑞(𝑧) +

(𝑐2𝜔2 ∓ 𝜔0
2)

𝑐2
𝐶𝑞(𝑧) = 𝑁∮ 𝑗�̅��̅�𝑞′

∗ 𝑑𝜎 

          (2.3.10) 

The wave norm 𝑁 is defined: 

 

𝑁 =
𝑖𝜔𝜀

∮ �̅�𝑞�̅�𝑞′
∗

𝑆⊥
𝑑𝜑

 

where ∮ �̅�𝑞�̅�𝑞′
∗

𝑆⊥
 is the surface integral of the waveguide modes around the 

perturbed cylindrical waveguide.  It is important to note that the derived wave 

equation is applicable to both volume and surface fields depending on the ∓  sign 

variation, where " − " corresponds to the volume waves and " + " is used to describe 

the localised surface waves.  We can therefore separate Eq.(2.3.10) into its individual 

volume and surface wave components where 𝑁𝑣 and 𝑁𝑠 correspond to the wave 

norms for the volume and surface waves respectively. 

Volume Field: 

∇̅𝑧
2𝐶𝑞

𝑣(𝑧) +
(𝑐2𝜔2 − (𝜔0

𝑣)2)

𝑐2
𝐶𝑞
𝑣(𝑧) = 𝑁𝑣∮𝑗�̅��̅�𝑞′

∗ 𝑑𝜎 

          (2.3.10a) 
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Surface Field: 

∇̅𝑧
2𝐶𝑞

𝑠 (𝑧) +
(𝑐2𝜔2 + (𝜔0

𝑠)2)

𝑐2
𝐶𝑞
𝑠(𝑧) = 𝑁𝑠∮𝑗�̅��̅�𝑞′

∗ 𝑑𝜎 

          (2.3.10b) 

2.3.2- Detuning of Bragg Resonance 
In §(2.3.1), the detuning between the cut-off frequency of the volume field and 

operating frequency of the structure  
(𝑐2𝜔2−(𝜔0

𝑣)2)

𝑐2
  was introduced.  Here, this 

concept is extended to account for the detuning between the Bragg frequency 𝜔𝐵 

and the cut-off frequency of the surface field 𝜔0
𝑠.  An additional detuning parameter 

(∆= 𝜔0
𝑣 −𝜔0

𝑠 where 𝑘𝑧
𝑣 ≅ ∆  and ∆∝ 𝜋 𝐿)⁄   comes from the assumption that 𝜔0

𝑣 ≅

𝜔0
𝑠 when the volume and surface fields are coupled.   For simplicity, it has been 

assumed that ∆= 0 for the theory presented in this work. 

To achieve mode selection by coupling volume and surface fields, it is essential that 

the Bragg resonance conditions are met.  The longitudinal condition states that: �̅�𝑧 =

𝑘𝑧
𝑠 − 𝑘𝑧

𝑣  and since we are dealing with the case where 𝑘𝑧
𝑣 ≅ 0 it is required that 

𝜔𝐵 = 𝜔0
𝑠.  From this it is evident that the Bragg frequency defines the scattering of 

the surface field.   

Possible sources of detuning of the surface field from the Bragg frequency include 

small ohmic and radiation losses in the cavity.  In the slow-varying amplitude 

description, boundary conditions impose that 𝐸𝑧 = 0 at both ends of the structure 

(𝑧 = 0, 𝐿) and enforcing these constraints will predict the location of the cavity 

eigenmodes.  However, this is only true for an ideal cavity, and in practice some 

radiation is leaked out the ends, mostly due to diffraction.  In the derivation of the 

coupled mode equations, it is assumed that the diffractive and ohmic losses are very 

small, and will be accounted for by the structure’s detuning. 

To consider the detuning caused by these factors, we define the Bragg detuning 𝛿 for 

both the volume and surface fields in terms of the mean angular cut-off frequency, 

�̅�0 where: 
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�̅�0 =
𝜔0
𝑣 + 𝜔0

𝑠

2
 

𝛿 =
𝑐2𝜔𝐵 − �̅�0

𝑐2
 

Using this notation, for the specific case of the fundamental harmonic of the near 

cut-off volume field which is of particular interest in this work, the slowly varying 

amplitude 𝐶𝑞
𝑣(𝑧)  is written in the form 𝐶𝑞

𝑣(𝑧) = 𝐴+𝑒
−𝑖�̂�𝑧 + 𝐴−𝑒

+𝑖�̂�𝑧  where 𝐴+,− 

represents the amplitudes of the forwards and backwards scattered volume waves.  

From this point onwards, 𝐴(𝑧) and 𝐵(𝑧) (which differ from the constants introduced 

in §2.2) are used in various notations to denote the volume and surface field 

amplitudes respectively. Eq.(2.3.10) can now be revised to include the Bragg 

detuning parameter.  Under the assumption that 𝜔0
𝑣 ≅ 𝜔0

𝑠  we can write: 

(𝜔0
𝑣)2 + (𝜔0

𝑠)2

2𝑐2
≅
(𝜔0

𝑣)2

𝑐2
 

(𝜔0
𝑣)2 − (𝜔0

𝑠)2

2𝑐2
≅ 0 

and the detuning term of the volume field is expressed: 

(𝑐2𝜔2 − (𝜔0
𝑣)2)

𝑐2
= 𝜔2 −

(𝜔0
𝑣)2

𝑐2
= 𝜔2 − [(

(𝜔0
𝑣)2 + (𝜔0

𝑠)2

2𝑐2
) − (

(𝜔0
𝑣)2 − (𝜔0

𝑠)2

2𝑐2
)]

= [𝜔2 − (
(𝜔0

𝑣)2 + (𝜔0
𝑠)2

2𝑐2
)]+(

(𝜔0
𝑣)2 − (𝜔0

𝑠)2

2𝑐2
) 

This can be written in terms of the mean angular cut-off frequency �̅�0 and detuning 

parameters 𝛿 and ∆ where 𝜔2 − (
(𝜔0

𝑣)2+(𝜔0
𝑠)2

2𝑐2
) ≅

𝜔�̂�

𝑐
  and (

(𝜔0
𝑣)2−(𝜔0

𝑠)2

2𝑐2
) ≅

�̅�0∆

𝑐2
 

provided that the detuning is small. 

(𝑐2𝜔2 − (𝜔0
𝑣)2)

𝑐2
≅
𝜔𝛿

𝑐
+
�̅�0∆

𝑐2
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Similarly, for the surface field: 

(𝑐2𝜔2 + (𝜔0
𝑠)2)

𝑐2
≅
�̅�0∆

𝑐2
−
𝜔𝛿

𝑐
 

Substituting these results into equations (2.3.10a) and (2.3.10b) gives the following 

volume and surface wave equations: 

∇̅𝑧
2𝐶𝑞

𝑣(𝑧) +
𝜔𝛿

𝑐
𝐶𝑞
𝑣(𝑧) +

�̅�0∆

𝑐2
𝐶𝑞
𝑣(𝑧) = 𝑁𝑣∮𝑗�̅��̅�𝑞′

∗ 𝑑𝜎 

          (2.3.11a) 

∇̅𝑧
2𝐶𝑞

𝑠 (𝑧) −
𝜔𝛿

𝑐
𝐶𝑞
𝑠(𝑧) +

�̅�0∆

𝑐2
𝐶𝑞
𝑠(𝑧) = 𝑁𝑠∮𝑗�̅��̅�𝑞′

∗ 𝑑𝜎 

          (2.3.11b) 

Having defined the detuning parameter 𝛿, the next step in the derivation of the 

coupled mode equations involves giving consideration to the longitudinal Laplacian 

operator, ∇̅𝑧
2. 

2.3.3 Descriptions of Volume and Surface Fields using 

Fourier Expansions 
When considering the fundamental harmonic of the volume field, the first term of 

Eq.(2.3.11a) can be expressed in the form: ∇̅𝑧
2(𝐴±(𝑧)𝑒

∓𝑖�̂�𝑧).  Partially differentiating 

with respect to 𝑧  gives the result 

𝜕

𝜕𝑧
(∓𝑖𝛿𝐴±(𝑧)𝑒

∓𝑖�̂�𝑧 + 𝑒∓𝑖�̂�𝑧
𝜕𝐴±
𝜕𝑧
) 

and taking the second order differential yields: 

−�̂�2𝐴±(𝑧)𝑒
∓𝑖�̂�𝑧 ∓ 2𝑖𝛿𝑒∓𝑖�̂�𝑧

𝜕𝐴±
𝜕𝑧

+ 𝑒∓𝑖�̂�𝑧
𝜕2𝐴±
𝜕𝑧2

 

          (2.3.12) 

A similar approach is used to study the surface field excited at the periodic boundary 

along 𝑧.  Since any periodic function can be expanded into a Fourier series, it is 
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possible to express the slowly varying 𝐶𝑞
𝑠(𝑧) term of Eq.(2.3.11b) as a sum of sine and 

cosine functions using a complex Fourier series of the general form (Riley 2006) 

𝑓(𝑥) = ∑ 𝑐𝑤𝑒𝑥𝑝 (
2𝜋𝑖𝑤𝑥

𝐿𝑥
)

𝑟=∞

𝑟=−∞

 

Where 𝑤 is an integer number which corresponds to the harmonic number of the 

surface field, 𝑛𝑠. The arbitrary periodic function 𝐿𝑥 is replaced with the lattice period, 

𝑑𝑧 where �̅�𝑧 = 2𝜋 𝑑𝑧⁄ . Following on from this, the harmonic expansion of the slowly 

varying surface field along the z-coordinate is presented in the form 

𝐶𝑞
𝑠(𝑧) = ∑ 𝐵𝑛𝑠(𝑧)𝑒

𝑖𝑛𝑠�̅�𝑧𝑧

∞

𝑛𝑠=−∞

 

          (2.3.13) 

where 𝐵𝑛𝑠  is the Fourier coefficient determined by the amplitude of the surface field 

with harmonic 𝑛𝑠 and is used throughout this analysis to represent the surface field.  

The wave equation for the surface field is expanded by implementing Eq.(2.3.13) 

 

∇̅𝑧
2 (∑𝐵𝑛(𝑧)

𝑛

𝑒𝑖𝑛�̅�𝑧𝑧) −
𝜔𝛿

𝑐
(∑𝐵𝑛(𝑧)

𝑛

𝑒𝑖𝑛�̅�𝑧𝑧) +
�̅�0∆

𝑐2
(∑𝐵𝑛(𝑧)𝑒

𝑖𝑛�̅�𝑧𝑧

𝑛

)

= 𝑁𝑠∮𝑗�̅��̅�𝑞
∗ 𝑑𝜎 

          (2.3.14) 

Taking the second order partial differential, the first term of Eq.(2.3.14) becomes 

∇̅𝑧
2 (∑𝐵𝑛(𝑧)

𝑛

𝑒𝑖𝑛�̅�𝑧𝑧) =∑
𝜕

𝜕𝑧
(𝑖𝑛�̅�𝑧𝐵𝑛(𝑧)𝑒

𝑖𝑛�̅�𝑧𝑧 + 𝑒𝑖𝑛�̅�𝑧𝑧
𝜕𝐵𝑛(𝑧)

𝜕𝑧
)

𝑛

 

=∑(2𝑖𝑛�̅�𝑧𝑒
𝑖𝑛�̅�𝑧𝑧

𝜕𝐵𝑛(𝑧)

𝜕𝑧
− 𝑛2�̅�𝑧

2
𝐵𝑛(𝑧)𝑒

𝑖𝑛�̅�𝑧𝑧 + 𝑒𝑖𝑛�̅�𝑧𝑧
𝜕2𝐵𝑛(𝑧)

𝜕𝑧2
)

𝑛

 

          (2.3.15) 
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Finally, substituting Eq.(2.3.12) into Eq.(2.3.11a) and Eq.(2.3.15) into Eq.(2.3.11b) 

yields expressions describing the volume and surface fields. 

Volume field: 

(−�̂�2𝐴±(𝑧)𝑒
∓𝑖�̂�𝑧 ∓ 2𝑖𝛿𝑒∓𝑖�̂�𝑧

𝜕𝐴±
𝜕𝑧

+ 𝑒∓𝑖�̂�𝑧
𝜕2𝐴±
𝜕𝑧2

) 

+
𝜔𝛿

𝑐
(�̅�+(𝑧)𝑒

−𝑖�̂�𝑧 + �̅�−(𝑧)𝑒
+𝑖�̂�𝑧)

�̅�0∆

𝑐2
(�̅�+(𝑧)𝑒

−𝑖�̂�𝑧 + �̅�−(𝑧)𝑒
+𝑖�̂�𝑧)

= 𝑁𝑣∮𝑗�̅��̅�𝑞
∗ 𝑑𝜎 

          (2.3.16) 

Eq.(2.3.16) describes the volume field in terms of the detuning parameter, 𝛿, and 

only considers the forwards and backwards scattered volume wave. The slowly 

varying amplitude term 𝐶𝑞
𝑣(𝑧) of Eq.(2.3.10a) may also be expressed as a complex 

Fourier expansion, similar to that of the surface field, by taking the periodicity of the 

structure into account and making the approximation that 𝑘𝑧,𝑣 = �̅�𝑧 = 2𝜋 𝑑𝑧⁄ .  

Under this assumption the volume field’s longitudinal wavenumber is equivalent to 

that of the structure, corresponding to the case of coherent, coupled eigenmode 

formation in the presence of minimal detuning. 

𝐶𝑞
𝑣(𝑧) = ∑ 𝐴𝑛𝑣(𝑧)𝑒

𝑖𝑛𝑣�̅�𝑧𝑧

∞

𝑛𝑣=−∞

 

          (2.3.17) 

 Eq.(2.3.17) can be written in terms of 𝑛𝑣 and �̅�𝑧  where 𝐴𝑛𝑣(𝑧) is the Fourier 

coefficient. 
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∑(𝑒𝑖𝑛𝑣�̅�𝑧𝑧
𝜕2𝐴𝑛𝑣(𝑧)

𝜕𝑧2
− 2𝑖𝑛𝑣�̅�𝑧𝑒

𝑖𝑛𝑣�̅�𝑧𝑧
𝜕𝐴𝑛𝑣(𝑧)

𝜕𝑧
− 𝑛𝑣

2�̅�𝑧
2
𝐴𝑛𝑣(𝑧)𝑒

𝑖𝑛𝑣�̅�𝑧𝑧)

𝑛𝑣

+
𝜔𝛿

𝑐
(∑𝐴𝑛𝑣(𝑧)

𝑛𝑣

𝑒𝑖𝑛𝑣�̅�𝑧𝑧)
�̅�0∆

𝑐2
(∑𝐴𝑛𝑣(𝑧)𝑒

𝑖𝑛𝑣�̅�𝑧𝑧

𝑛𝑣

)

= 𝑁𝑣∮𝑗�̅��̅�𝑞
∗ 𝑑𝜎 

          (2.3.18) 

The surface field is written in the same form. 

Surface Field: 

∑(2𝑖𝑛�̅�𝑧𝑒
𝑖𝑛�̅�𝑧𝑧

𝜕𝐵𝑛(𝑧)

𝜕𝑧
− 𝑛2�̅�𝑧

2
𝐵𝑛(𝑧)𝑒

𝑖𝑛�̅�𝑧𝑧 + 𝑒𝑖𝑛�̅�𝑧𝑧
𝜕2𝐵𝑛(𝑧)

𝜕𝑧2
)

𝑛

−
𝜔𝛿

𝑐
(∑𝐵𝑛(𝑧)

𝑛

𝑒𝑖𝑛�̅�𝑧𝑧) +
�̅�0∆

𝑐2
(∑𝐵𝑛(𝑧)𝑒

𝑖𝑛�̅�𝑧𝑧

𝑛

) = 𝑁𝑠∮𝑗�̅��̅�𝑞
∗ 𝑑𝜎 

          (2.3.19) 

2.3.4 The Magnetic Surface Current Boundary Condition  
To evaluate the right-hand side of the wave-equation we must first define the term 

𝑗�̅��̅�𝑞′
∗ .  Provided the corrugation depth is suitably shallow (∆𝑟 ≪ 𝜆) the perturbed 

waveguide wall can be described as a smooth cylindrical surface with mean radius 𝑟0 

subject to the boundary condition (Kovalev, Orlova et al. 1972, Katsenelenbaum 

1998, Cross, Konoplev et al. 2003, Burt, Samsonov et al. 2004, Ginzburg, Malkin et al. 

2009)i:  

𝑗�̅� = �̅� × [∇̅(𝑙�̅��̅�) + 𝑖𝜔𝑙[�̅� × H̅]] 

          (2.3.20) 

where �̅�  is the unit vector of the normal to the unperturbed waveguide wall and 

�̅��̅� = 𝐸𝑛 is the electric field component normal to the waveguide wall.  The shallow, 

sinusoidal corrugation on the inner surface of the waveguide is described by the 

function, 𝑙.   
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𝑗�̅� = �̅� × (∇̅(𝑙�̅��̅�)) + 𝑖𝜔𝑙�̅� × [�̅� × H̅] = 𝐼1 + 𝐼2 

          (2.3.21) 

In order to solve the wave equation, it is convenient to separate  𝑗�̅� into two 

components  𝐼1 = �̅� × (∇̅(𝑙�̅��̅�)) and 𝐼2 =  𝑖𝜔𝑙�̅� × [�̅� × H̅] which can be integrated 

independently.  Multiplying the first term by �̅�𝑞
∗ yields the following expression: 

 

�̅�𝑞
∗𝐼1 = [�̅� × (∇̅(𝑙�̅��̅�))]�̅�𝑞

∗ = [�̅�𝑞
∗ × (∇̅(𝑙𝐸𝑛))]�̅� 

          (2.3.22) 

By rearranging the vector identity ∇̅ × (𝑓�̅�) = (∇̅𝑓 × �̅�) + 𝑓 ∙ (∇̅ × �̅�) such that �̅� ×

∇̅𝑓 = 𝑓 ∙ (∇̅ × �̅�) − ∇̅ × (𝑓�̅�) and substituting �̅� = �̅�𝑞
∗ and 𝑓 = 𝑙�̅��̅� we find that: 

�̅�𝑞
∗ × ∇̅(𝑙�̅��̅�) = 𝑙𝐸𝑛(∇̅ × �̅�𝑞

∗) − ∇̅ × ((𝑙𝐸𝑛)�̅�𝑞
∗) 

          (2.3.23) 

The complex conjugate of the electric field, �̅�𝑞
∗ is introduced by considering the 

relation ∇̅ × �̅�𝑞
∗ = 𝑖𝜔𝜀�̅�𝑞

∗ which comes from Eq.(2.3.2). 

�̅�𝑞
∗ × ∇̅(𝑙𝐸𝑛) = 𝑖𝜔𝜀𝑙𝐸𝑛�̅�𝑞

∗ − ∇̅ × (𝑙𝐸𝑛�̅�𝑞
∗) 

          (2.3.24) 

Assuming that 𝜀 = 1 inside the cylindrical waveguide and taking equations (2.3.22) 

and (2.3.24) into account gives the following result. 

�̅�𝑞
∗𝐼1 = 𝑖𝜔𝑙𝐸𝑛(�̅�𝑞

∗�̅�) − ∇̅ × (𝑙𝐸𝑛�̅�𝑞
∗)�̅� 

          (2.3.25) 

This is simplified by neglecting the ∇̅ × (𝑙𝐸𝑛�̅�𝑞
∗)�̅� term since ∇̅ × 𝐸𝑛�̅� = 0.  

�̅�𝑞
∗𝐼1 = 𝑖𝜔𝑙𝐸𝑛(�̅�𝑞

∗�̅�) 

          (2.3.26) 
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Similarly, for �̅�𝑞
∗𝐼2 we can write: 

�̅�𝑞
∗𝐼2 = 𝑖𝜔𝑙�̅� × [�̅� × �̅�]�̅�𝑞

∗ = 𝑖𝜔𝑙�̅�𝜏�̅�𝑞,𝜏
∗  

          (2.3.27) 

where �̅�𝜏 is the tangential magnetic field component, which comes from taking the 

cross product of the normal unit vector �̅� and �̅� × �̅� such that �̅� × [�̅� × �̅�] = �̅�𝜏. 

Having defined 𝐼1 and 𝐼2, the 𝑗�̅��̅�𝑞
∗ term of the right-hand side of the wave equation 

is brought to the form: 

𝑗�̅��̅�𝑞
∗ = �̅�𝑞

∗𝐼1 + �̅�𝑞
∗𝐼2 = 𝑖𝜔𝑙(𝑧, 𝜑)(𝐸𝑞,𝑛�̅�𝑞,𝑛

∗ + �̅�𝑞,𝜏�̅�𝑞,𝜏
∗ ) 

          (2.3.28) 

where �̅�𝑞,𝑛
∗  is the complex conjugate structure of the normal electric field and  �̅�𝑞,𝜏

∗  

is the complex conjugate of the tangential electric field, both for a given mode, 𝑞 .  

The components 𝐸𝑞,𝑛 and �̅�𝑞,𝜏 are the normal electric and tangential magnetic fields 

of the near-cut off (𝑞𝑡ℎ) mode incident at the corrugated surface, 𝑙, where  𝑙(𝑧, 𝜑) 

describes the lattice corrugation in the 𝑧 and 𝜑 directions.  Expanding Eq.(2.3.28) to 

encompass the full set of eigenmodes gives: 

𝑗�̅��̅�𝑞
∗ =  𝑖𝜔𝑙(𝑧, 𝜑)(∑𝐶𝑞(𝑧)

𝑞

𝐸𝑞,𝑛�̅�𝑞,𝑛
∗ +∑𝐶𝑞(𝑧)

𝑞

�̅�𝑞,𝜏�̅�𝑞,𝜏
∗ ) 

          (2.3.29) 

However, the 𝑇𝑀0,𝑇 near cut-off volume mode, providing synchronisation of the 

individual lattice perturbations and coupling with the localised surface field at the 

corrugated boundary, has no normal electric field component (𝑘𝑧 ≅ 0) thus reducing 

Eq.(2.3.29) to give the following result: 

𝑗�̅��̅�𝑞
∗ =  𝑖𝜔𝑙(𝑧, 𝜑)∑𝐶𝑞(𝑧)

𝑞

�̅�𝑞,𝜏�̅�𝑞,𝜏
∗  

          (2.3.30) 
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The next stage in defining 𝑗�̅��̅�𝑞
∗ involves considering the two-dimensional lattice 

corrugation, 𝑙(𝑧, 𝜑). 

2.3.5 Description of 2D Lattice Corrugation  
It is evident from the previous expression Eq.(2.3.30) that the  lattice corrugation 𝑙 is 

required to evaluate the right-hand side of the wave equation and thus determine 

the coupling coefficient.  The two-dimensional lattice perturbations are defined by 

cosine functions along the azimuthal and radial directions: 

𝑙(𝑧, 𝜑) = 𝑟0 + ∆𝑟𝑐𝑜𝑠�̅�𝜑𝑐𝑜𝑠�̅�𝑧𝑧 

          (2.3.31) 

where 𝑟0 is the mean radius of the cylinder, ∆𝑟 is the perturbation height and �̅� is 

the number of azimuthal variations of the perturbed structure. Using the 

trigonometric identity 𝑐𝑜𝑠�̅�𝜑 =
1

2
(𝑒𝑖�̅�𝜑 + 𝑒−𝑖�̅�𝜑), we can express the corrugation 

in the following form: 

𝑙(𝑧, 𝜑) = 𝑟0 +
∆𝑟

4
(𝑒𝑖�̅�𝜑 + 𝑒−𝑖�̅�𝜑)(𝑒𝑖�̅�𝑧𝑧 + 𝑒−𝑖�̅�𝑧𝑧) 

          (2.3.32) 

Referring back to Eq.(2.3.28) it is observed that, in addition to 𝑙, the tangential 

magnetic field component (�̅�𝑞,𝜏) is fundamental to evaluating the right-hand side 

term,  𝑗�̅��̅�𝑞
∗. The component �̅�𝑞,𝜏 is the superposition of all the allowed eigenmodes’ 

tangential magnetic fields, and can thus be separated into its tangential magnetic 

volume and surface field components in the following way: 

�̅�𝑞,𝜏 = �̅�𝑞,𝜏
𝑣 (𝑟, 𝜑) + �̅�𝑞,𝜏

𝑠 (𝑟, 𝜑) 

We can then write: 

�̅�𝑞,𝜏 = 𝐻𝑞,𝜏
𝑣 (𝑟)𝐶𝑞

𝑣(𝑧) + 𝐻𝑞,𝜏
𝑠 (𝑟, 𝜑)𝐶𝑞

𝑠(𝑧) 

          (2.3.33) 
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Substituting in the fundamental volume field description for 𝐶𝑞
𝑣(𝑧) (considering only 

the forwards and backwards scattered waves since 𝑛 = 0) and surface field 

expansion for 𝐶𝑞
𝑠(𝑧) yields: 

�̅�𝑞,𝜏 = 𝐻𝑞,𝜏
𝑣 (𝑟)(𝐴+(𝑧)𝑒

−𝑖�̂�𝑧 + 𝐴−(𝑧)𝑒
+𝑖�̂�𝑧) + 𝐻𝑞,𝜏

𝑠 (𝑟)𝑐𝑜𝑠(𝑚𝑠𝜑)∑𝐵𝑛𝑠(𝑧)𝑒
𝑖𝑛𝑠�̅�𝑧𝑧

𝑛𝑠

 

          (2.3.34) 

As the structure is behaving like a Fabry-Perot cavity, standing wave formation 

resulting from the the incident and reflected travelling waves, is considered.  When 

these two waves interfere with one another, the volume field is said to be coupled 

into itself.  For completeness, the theory developed in this section considers not only 

the coupling between volume and surface fields, but also the “self-scattering” of 

volume and surface fields.  Due to the fact that the near cut-off volume mode is 

reflected between the walls of the structure i.e. non-propagating, the fast oscillation 

terms  𝑒−𝑖�̂�𝑧 and 𝑒+𝑖�̂�𝑧associated with the volume field’s evolution along 𝑧 disappear.  

The previous result is now reduced to the form: 

�̅�𝑞,𝜏 = 𝐻𝑞,𝜏
𝑣 (𝑟)∑𝐶𝑞

𝑣

2

(𝑧) + 𝐻𝑞,𝜏
𝑠 (𝑟)𝑐𝑜𝑠𝑚𝑠𝜑∑𝐵𝑛(𝑧)𝑒

𝑖𝑛�̅�𝑧𝑧

𝑛

 

          (2.3.35) 

Expanding Eq.(2.3.30) to incorporate the sinusoidal corrugation of the lattice 

(defined in Eq.(2.3.31)) as well as the most recent definition of �̅�𝑞,𝜏 (provided in 

Eq.(2.3.34)) gives: 

𝑗�̅��̅�𝑞
∗ = 𝑖𝜔 [𝑟0 +

∆𝑟

4
(𝑒𝑖�̅�𝜑 + 𝑒−𝑖�̅�𝜑)(𝑒𝑖�̅�𝑧𝑧 + 𝑒−𝑖�̅�𝑧𝑧)] �̅�𝑞,𝜏

∗,𝑣 (𝐻𝑞,𝜏
𝑣 (𝑟)∑𝐶𝑞

𝑣

2

(𝑧)

+ 𝐻𝑞,𝜏
𝑠 (𝑟)𝑐𝑜𝑠𝑚𝑠𝜑∑𝐵𝑛(𝑧)𝑒

𝑖𝑛�̅�𝑧𝑧

𝑛

) 

          (2.3.36) 



47 

Finally, the evaluation of 𝑗�̅��̅�𝑞
∗ requires taking the contour integral over the 

cylindrical cross section 𝑑𝜎 illustrated schematically in figure 2.3.5.1. 

Figure 2.3.5.1 Schematic diagram of integration surfaces of cylinder. 

The closed surface integral taken over the full circumference of the cross section 

(from 0 to 2𝜋) is defined below.  The integrand (𝑈) is the wave equation’s right-hand 

term i.e. 𝑈 = 𝑗�̅��̅�𝑞
∗ and 𝜑 represents the azimuthal coordinate.

∮𝑈(𝑟, 𝜑)𝑑 𝜎 = ∫ 𝑟𝑈(𝑟, 𝜑)
2𝜋

0

𝑑𝜑 

This leads to a general expression for the right-hand side of the wave equation which 

is adapted to describe the volume (superscript 𝑣) or surface (superscript 𝑠) fields by 

multiplying by the complex conjugate of the specified field, �̅�𝑞,𝜏
∗(𝑣,𝑠)

.

𝑁𝑣,𝑠
′ ∮𝑗�̅��̅�𝑞

∗ 𝑑𝜎 = ∫ 𝑟(𝑗�̅��̅�𝑞
∗)|

𝑟=𝑟0
𝑑𝜑

2𝜋

0

 

leads to the expression: 
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𝑁𝑣,𝑠
′ ∫ 𝑟

2𝜋

0

[𝑟0 +
∆𝑟

4
(𝑒𝑖�̅�𝜑 + 𝑒−𝑖�̅�𝜑)(𝑒𝑖�̅�𝑧𝑧

+ 𝑒−𝑖�̅�𝑧𝑧)] �̅�𝑞,𝜏
∗(𝑣,𝑠)

(𝑟, 𝜑)(𝐻𝑞,𝜏
𝑣 (𝑟)∑𝐶𝑞

𝑣

2

(𝑧)

+ 𝐻𝑞,𝜏
𝑠 (𝑟)𝑐𝑜𝑠𝑚𝑠𝜑∑𝐵𝑛𝑠(𝑧)𝑒

𝑖𝑛𝑠�̅�𝑧𝑧

𝑛𝑠

)|

𝑟=𝑟0

𝑑𝜑 

(2.3.37) 

The updated wave norms 𝑁𝑣
′ and 𝑁′𝑠 are defined below:

𝑁𝑣
′ = 𝑖𝜔𝑁𝑣 = 𝑖𝜔

𝑖𝜔𝜀

∮ �̅�𝑞,𝑣�̅�𝑞,𝑣
∗

𝑆⊥
𝑑𝜑

=
−𝜔2𝜀

∮ �̅�𝑞,𝑣�̅�𝑞,𝑣
∗

𝑆⊥
𝑑𝜑

𝑁′𝑠 =
−𝜔2𝜀

∮ �̅�𝑞,𝑠�̅�𝑞,𝑠∗𝑆⊥
𝑑𝜑

Having obtained a suitable integral equation for the volume and surface fields, we 

must now average over the period of fast oscillations to reach a non-trivial solution 

for ∮ 𝑗�̅��̅�𝑞
∗ 𝑑𝜎.

2.3.6- Averaging over Fast Oscillation Terms  
One of the requirements for coupling between the volume and surface fields is that 

the right-hand side of equations (2.3.16) and (2.3.19) must be non-zero, i.e. 

𝑁𝑣,𝑠 ∮ 𝑗�̅��̅�𝑞
∗ 𝑑𝜎 ≠ 0. Satisfying this condition involves averaging over the period of

fast oscillations from 0 to 2𝜋, in order to neglect the exponential terms that would 

otherwise integrate to zero.  This section is devoted to the description of the 

fundamental harmonics of the individual volume (§2.3.6.1) and surface fields 

(§2.3.6.2).  The analysis will later be extended to consider some of the higher order 



49 

harmonics (§2.3.7) although a full description requires carrying out a Bloch expansion 

which is beyond the scope of this study. 

2.3.6.1. Fundamental Harmonic of Volume Field 
To begin, the brackets of Eq.(2.3.37) are  expanded to describe the volume field. 

𝑁𝑣
′∫ 𝑟

2𝜋

0

(𝑟0�̅�𝑞,𝜏
∗𝑣 (𝑟)𝐻𝑞,𝜏

𝑣 (𝑟)∑𝐶𝑞
𝑣

2

(𝑧)

+ 𝑟0�̅�𝑞,𝜏
∗𝑣𝐻𝑞,𝜏

𝑠 (𝑟)𝑐𝑜𝑠𝑚𝑠𝜑∑𝐵𝑛𝑠(𝑧)𝑒
𝑖𝑛𝑠�̅�𝑧𝑧

𝑛𝑠

+
∆𝑟

4
(𝑒𝑖�̅�𝜑 + 𝑒−𝑖�̅�𝜑) (𝑒𝑖�̅�𝑧𝑧 + 𝑒−𝑖�̅�𝑧𝑧)�̅�𝑞,𝜏

∗𝑣𝐻𝑞,𝜏
𝑣 (𝑟)∑𝐶𝑞

𝑣

2

(𝑧)

+
∆𝑟

4
(𝑒𝑖�̅�𝜑 + 𝑒−𝑖�̅�𝜑)(𝑒𝑖�̅�𝑧𝑧

+ 𝑒−𝑖�̅�𝑧𝑧)�̅�𝑞,𝜏
∗𝑣𝐻𝑞,𝜏

𝑠 (𝑟)𝑐𝑜𝑠𝑚𝑠𝜑∑𝐵𝑛𝑠(𝑧)𝑒
𝑖𝑛𝑠�̅�𝑧𝑧

𝑛𝑠

)|

𝑟=𝑟0

𝑑𝜑 

(2.3.38) 

For clarity, the four terms inside the brackets of Eq.(2.3.38) are labelled as follows: 

𝑟0�̅�𝑞,𝜏
∗𝑣 (𝑟)𝐻𝑞,𝜏

𝑣 (𝑟)∑𝐶𝑞
𝑣

2

(𝑧) 

(term 1) 

𝑟0�̅�𝑞,𝜏
∗𝑣𝐻𝑞,𝜏

𝑠 (𝑟)𝑐𝑜𝑠𝑚𝑠𝜑∑𝐵𝑛𝑠(𝑧)𝑒
𝑖𝑛𝑠�̅�𝑧𝑧

𝑛𝑠

(term 2) 

∆𝑟

4
(𝑒𝑖�̅�𝜑 + 𝑒−𝑖�̅�𝜑)(𝑒𝑖�̅�𝑧𝑧 + 𝑒−𝑖�̅�𝑧𝑧)�̅�𝑞,𝜏

∗𝑣𝐻𝑞,𝜏
𝑣 (𝑟)∑𝐶𝑞

𝑣

2

(𝑧) 

(term 3) 



50 

∆𝑟

4
(𝑒𝑖�̅�𝜑 + 𝑒−𝑖�̅�𝜑)(𝑒𝑖�̅�𝑧𝑧 + 𝑒−𝑖�̅�𝑧𝑧)�̅�𝑞,𝜏

∗𝑣𝐻𝑞,𝜏
𝑠 (𝑟)𝑐𝑜𝑠𝑚𝑠𝜑∑𝐵𝑛𝑠(𝑧)𝑒

𝑖𝑛𝑠�̅�𝑧𝑧

𝑛𝑠

(term 4) 

Considering these individual terms, it is observed that 1 and 3 describe the situation 

where the volume field is coupled into itself, whilst 2 and 4 demonstrate scattering 

and potential coupling between the volume and surface fields. This section deals with 

the fundamental volume field harmonic (𝑛𝑣 = 0) and assumes that for the surface 

field (𝑛𝑠 ≠ 0). On closer inspection it is therefore noted that terms 2 and 3 will 

integrate to zero and can be ignored.  This is based on the fact that the 𝑒𝑖𝑛𝑠�̅�𝑧𝑧 fast 

oscillation component of term 2, cannot be discarded simply by setting 𝑛𝑠 = 0. Also, 

the 
∆𝑟

4
 parameter depends on the corrugation depth (∆𝑟) thus requiring a surface

field to give a non-trivial result.  Term 3, which contains only volume field terms, is 

neglected to give: 

𝑗�̅��̅�𝑞
∗ = 𝑁′

𝑣
∫ 𝑟
2𝜋

0

(𝑟0𝐻𝑞,𝜏
∗𝑣𝐻𝑞,𝜏

𝑣 (𝑟)∑𝐶𝑞
𝑣

2

(𝑧)

+
∆𝑟

4
(𝑒𝑖�̅�𝜑 + 𝑒−𝑖�̅�𝜑)(𝑒𝑖�̅�𝑧𝑧

+ 𝑒−𝑖�̅�𝑧𝑧)𝐻𝑞,𝜏
∗𝑣𝐻𝑞,𝜏

𝑠 (𝑟)𝑐𝑜𝑠𝑚𝑠𝜑∑𝐵𝑛𝑠(𝑧)𝑒
𝑖𝑛𝑠�̅�𝑧𝑧

𝑛𝑠

)|

𝑟=𝑟0

𝑑𝜑 

(2.3.39) 

We can now rewrite 𝑐𝑜𝑠𝑚𝑠𝜑 as 1 2⁄ (𝑒𝑖𝑚𝑠𝜑 + 𝑒−𝑖𝑚𝑠𝜑) and take out the common

factor, 𝑟0 to obtain: 



51 

𝑗�̅��̅�𝑞
∗ = 𝑁′

𝑣
𝑟0
2∫ (𝐻𝑞,𝜏

∗𝑣 (𝑟0)𝐻𝑞,𝜏
𝑣 (𝑟0)∑𝐶𝑞

𝑣

2

(𝑧) +
∆𝑟

8𝑟0
𝐻𝑞,𝜏
∗𝑣 (𝑟0)𝐻𝑞,𝜏

𝑠 (𝑟0)
2𝜋

0

(𝑒𝑖�̅�𝑧𝑧

+ 𝑒−𝑖�̅�𝑧𝑧)(𝑒𝑖�̅�𝜑 + 𝑒−𝑖�̅�𝜑)(𝑒𝑖𝑚𝑠𝜑

+ 𝑒−𝑖𝑚𝑠𝜑)∑𝐵𝑛𝑠(𝑧)𝑒
𝑖𝑛𝑠�̅�𝑧𝑧

𝑛𝑠

)|

𝑟=𝑟0

𝑑𝜑 

(2.3.40) 

In order to have a non-zero expression describing the coupling between volume and 

surface fields, the fast oscillations (𝑒𝑖�̅�𝜑 + 𝑒−𝑖�̅�𝜑) and (𝑒𝑖𝑚𝑠𝜑 + 𝑒−𝑖𝑚𝑠𝜑)  must 

vanish.  Multiplying out the brackets, we find that a non-zero result is achieved by 

setting 𝑚𝑠 = �̅�. 

Expanding the brackets 

(𝑒𝑖�̅�𝜑 + 𝑒−𝑖�̅�𝜑)(𝑒𝑖𝑚𝑠𝜑 + 𝑒−𝑖𝑚𝑠𝜑)

= 𝑒𝑖�̅�𝜑+𝑖𝑚𝑠𝜑 + 𝑒𝑖�̅�𝜑−𝑖𝑚𝑠𝜑 + 𝑒−𝑖�̅�𝜑+𝑖𝑚𝑠𝜑 + 𝑒−𝑖�̅�𝜑−𝑖𝑚𝑠𝜑 

and setting 𝑚𝑠 = �̅� gives the result: 

(𝑒𝑖�̅�𝜑 + 𝑒−𝑖�̅�𝜑)(𝑒𝑖𝑚𝑠𝜑 + 𝑒−𝑖𝑚𝑠𝜑) = 𝑒−2𝑖�̅�𝜑 + 2 

The remaining exponential term 𝑒−2𝑖�̅�𝜑  will then integrate to zero, giving a final 

result of 2.  It has been mathematically proven that the fundamental volume field 

harmonic can participate in coupling only on the condition that 𝑚𝑠 = �̅�.  Otherwise, 

the coupled eigenfield cannot be defined.  Consequently, from the Bragg resonance 

condition (�̅� = 𝑚𝑣 +𝑚𝑠) we find that 𝑚𝑣 = 0.  This is one of the necessary criteria 

which must be satisifed to ensure coupling between the volume and surface fields, 

and supports the reasoning behind launching an azimuthally symmetric volume field 

into the structure.   

Another important aspect of Eq. (2.3.40) is the presence of the geometric parameter 

∆𝑟

𝑟0
 which is closely linked to the coupling coefficient.  For coupling to take place, both 

volume and surface field components must exist giving a non-zero expression when 
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multiplied by this term.  In other words, “self-scattering” of either field cannot be 

defined by  
∆𝑟

𝑟0
.  Taking this into account, when 𝑚𝑠 = �̅�, Eq.(2.3.40) is shortened to:

𝑗�̅��̅�𝑞
∗ = 𝑁𝑣

′𝑟0
2∫ (𝐻𝑞,𝜏

∗𝑣 (𝑟0)𝐻𝑞,𝜏
𝑣 (𝑟0)∑𝐶𝑞

𝑣

2

(𝑧) +
∆𝑟

4𝑟0
𝐻𝑞,𝜏
∗𝑣 (𝑟0)𝐻𝑞,𝜏

𝑠 (𝑟0)
2𝜋

0

(𝑒𝑖�̅�𝑧𝑧

+ 𝑒−𝑖�̅�𝑧𝑧)∑𝑛𝑠(𝑧)𝑒
𝑖𝑛𝑠�̅�𝑧𝑧

𝑛𝑠

)|

𝑟=𝑟0

𝑑𝜑 

(2.3.41) 

The remaining fast oscillations in the longitudinal direction are eliminated by 

multiplying the 𝑒±𝑖�̅�𝑧𝑧 and 𝑒𝑖𝑛𝑠�̅�𝑧𝑧  components together and setting  𝑛𝑠 ± 1.

∫𝑒𝑖𝑛�̅�𝑧𝑧(𝑒𝑖�̅�𝑧𝑧 + 𝑒−𝑖�̅�𝑧𝑧)𝑑𝜑 = ∫(𝑒𝑖�̅�𝑧𝑧(1+𝑛𝑠) + 𝑒𝑖�̅�𝑧𝑧(𝑛𝑠−1)) 𝑑𝜑

= ∫(1 + 𝑒±2𝑖�̅�𝑧𝑧)𝑑𝜑 = 1 

The expression defining 𝑗�̅��̅�𝑞
∗ in the case of coupling involving the fundamental 

volume field harmonic is now further reduced to give: 

𝑁′𝑣𝑟0
2∫

(

 
 
𝐻𝑞,𝜏
∗𝑣 (𝑟0)𝐻𝑞,𝜏

𝑣 (𝑟0)∑𝐶𝑞
𝑣

2

(𝑧)
2𝜋

0

+
∆𝑟

4𝑟0
𝐻𝑞,𝜏
∗𝑣 (𝑟0)𝐻𝑞,𝜏

𝑠 (𝑟0) ∑ 𝐵𝑛𝑠(𝑧)

1

𝑛𝑠=−1
𝑛𝑠≠0

||

𝑟=𝑟0)

 
 
𝑑𝜑 

(2.3.42) 

Finally, we take 𝐻𝑞,𝜏
∗𝑣 (𝑟0), 𝐻𝑞,𝜏

𝑣 (𝑟0),𝐻𝑞,𝜏
𝑠 (𝑟0),𝐶𝑞

𝑣(𝑧) and 𝐵𝑛(𝑧) terms outside the

integral since all these terms are functions of 𝑟0 (or 𝑧 in the case of 𝐶𝑞
𝑣(𝑧)) and

𝐵𝑛(𝑧)) and have no 𝜑 dependence. 
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𝑁′𝑣𝑟0
2(𝐻𝑞,𝜏

∗𝑣 (𝑟0)𝐻𝑞,𝜏
𝑣 (𝑟0)∑𝐶𝑞

𝑣

2

(𝑧)∫ 𝑑𝜑
2𝜋

0

+
∆𝑟

4𝑟0
𝐻𝑞,𝜏
∗𝑣 (𝑟0)𝐻𝑞,𝜏

𝑠 (𝑟0) ∑ 𝐵𝑛(𝑧)∫ 𝑑𝜑
2𝜋

0

1

𝑛=−1
𝑛≠0

) 

(2.3.43) 

In Eq. (2.3.44) 𝐶𝑞
𝑣(𝑧) is replaced with amplitude �̃�𝑞(𝑧) to remain consistent with the

rest of this analytical study where 𝐴 is used to denote the amplitude of the volume 

field.    The accent indicates that �̃�𝑞 is different from the amplitudes 𝐴𝑛 and 

𝐴± introduced earlier in this work. 

𝑗�̅��̅�𝑞
∗ = 2𝜋𝑁′

𝑣
𝑟0
2(𝐻𝑞,𝜏

∗𝑣 (𝑟0)𝐻𝑞,𝜏
𝑣 (𝑟0)∑ �̃�𝑞

2

𝑞=1

(𝑧)

+
∆𝑟

4𝑟0
�̅�𝑞,𝜏
∗𝑣 (𝑟0)𝐻𝑞,𝜏

𝑠 (𝑟0) ∑ 𝐵𝑛𝑠(𝑧)

1

𝑛=−1
𝑛≠0

) 

(2.3.44) 

In this final expression, the first term describes the situation where the volume field 

scatters into itself, while the second defines inductive coupling between the volume 

and surface fields when the appropriate conditions are met. This section relates to 

the specific case where only the fundamental harmonic of the volume field (defined 

by a forwards and backwards scattered wave) is taken into consideration.  In §2.4.7, 

we take a more general approach to include some of the higher order volume field 

harmonics, and mathematically explore the possible scattering mechanisms in the 

cases where either 𝑛𝑣 = 0 or 𝑛𝑠 = 0, using a similar method as presented in this 

section.  First, however, we repeat the analysis for the fundamental harmonic (𝑛𝑠 =

0) of the surface field, whilst limiting the volume field harmonics such that 𝑛𝑣 = ±1.
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2.3.6.2 Fundamental Harmonic of Surface Field 
In this section, we consider the case where 𝑛𝑠 = 0 (with 𝑛𝑣 = ±1).The general 

integral expression defining the right-hand side of the wave equation was given in 

Eq. (2.3.3.7) of §2.3.5.  Expressing this equation in terms of the surface field we can 

write: 

𝑗�̅��̅�𝑞
∗ = 𝑁′𝑠∫ 𝑟

2𝜋

0

[𝑟0 +
∆𝑟

4
(𝑒𝑖�̅�𝜑 + 𝑒−𝑖�̅�𝜑)(𝑒𝑖�̅�𝑧𝑧 + 𝑒−𝑖�̅�𝑧𝑧)] �̅�𝑞,𝜏

∗,𝑠(𝑟, 𝜑) 

(𝐻𝑞,𝜏
𝑣 (𝑟)∑𝐶𝑞

𝑣

2

(𝑧) + 𝐻𝑞,𝜏
𝑠 (𝑟)𝑐𝑜𝑠𝑚𝑠𝜑∑𝐵𝑛𝑠(𝑧)𝑒

𝑖𝑛𝑠�̅�𝑧𝑧

𝑛𝑠

)|

𝑟=𝑟0

𝑑𝜑 

(2.3.45) 

Recalling that 𝐻𝑞,𝜏
∗,𝑠(𝑟, 𝜑) = �̅�𝑞,𝜏

∗,𝑠(𝑟)𝑐𝑜𝑠�̅�𝜑 and expanding yields:

𝑗�̅��̅�𝑞
∗ = 𝑁′𝑠𝑟0

2∫ 𝐻𝑞,𝜏
∗,𝑠(𝑟0)𝑐𝑜𝑠�̅�𝜑 𝐻𝑞,𝜏

𝑣 (𝑟0)∑𝐶𝑞
𝑣

2

(𝑧)
2𝜋

0

+ 𝐻𝑞,𝜏
∗,𝑠(𝑟0)𝑐𝑜𝑠�̅�𝜑 𝐻𝑞,𝜏

𝑠 (𝑟0)𝑐𝑜𝑠�̅�𝜑∑𝐵𝑛𝑠(𝑧)𝑒
𝑖𝑛�̅�𝑧𝑧

𝑛𝑠

+
∆𝑟

4𝑟0
(𝑒𝑖�̅�𝜑

+ 𝑒−𝑖�̅�𝜑)(𝑒𝑖�̅�𝑧𝑧 + 𝑒−𝑖�̅�𝑧𝑧)𝐻𝑞,𝜏
∗,𝑠(𝑟0)𝑐𝑜𝑠�̅�𝜑 𝐻𝑞,𝜏

𝑣 (𝑟0)∑𝐶𝑞
𝑣

2

(𝑧)

+
∆𝑟

4𝑟0
(𝑒𝑖�̅�𝜑 + 𝑒−𝑖�̅�𝜑)(𝑒𝑖�̅�𝑧𝑧

+ 𝑒−𝑖�̅�𝑧𝑧)𝐻𝑞,𝜏
∗,𝑠(𝑟0)𝑐𝑜𝑠�̅�𝜑 𝐻𝑞,𝜏

𝑠 (𝑟0)𝑐𝑜𝑠𝑚𝑠𝜑∑𝐵𝑛𝑠(𝑧)𝑒
𝑖𝑛𝑠�̅�𝑧𝑧

𝑛𝑠

|

𝑟=𝑟0

𝑑𝜑 

(2.3.46) 

The terms inside the brackets of Eq.(2.3.46) are listed below: 

𝐻𝑞,𝜏
∗,𝑠(𝑟0)𝑐𝑜𝑠�̅�𝜑 𝐻𝑞,𝜏

𝑣 (𝑟0)∑𝐶𝑞
𝑣

2

(𝑧) 

[term 1] 
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𝐻𝑞,𝜏
∗,𝑠(𝑟0)𝑐𝑜𝑠�̅�𝜑 𝐻𝑞,𝜏

𝑠 (𝑟0)𝑐𝑜𝑠�̅�𝜑∑𝐵𝑛𝑠(𝑧)𝑒
𝑖𝑛𝑠�̅�𝑧𝑧

𝑛𝑠

[term 2] 

∆𝑟

4𝑟0
(𝑒𝑖�̅�𝜑 + 𝑒−𝑖�̅�𝜑)(𝑒𝑖�̅�𝑧𝑧 + 𝑒−𝑖�̅�𝑧𝑧)𝐻𝑞,𝜏

∗,𝑠(𝑟0)𝑐𝑜𝑠�̅�𝜑 𝐻𝑞,𝜏
𝑣 (𝑟0)∑𝐶𝑞

𝑣

2

(𝑧) 

[term 3] 

∆𝑟

4𝑟0
(𝑒𝑖�̅�𝜑 + 𝑒−𝑖�̅�𝜑)(𝑒𝑖�̅�𝑧𝑧

+ 𝑒−𝑖�̅�𝑧𝑧)𝐻𝑞,𝜏
∗,𝑠(𝑟0)𝑐𝑜𝑠�̅�𝜑 𝐻𝑞,𝜏

𝑠 (𝑟0)𝑐𝑜𝑠𝑚𝑠𝜑∑𝐵𝑛𝑠(𝑧)𝑒
𝑖𝑛𝑠�̅�𝑧𝑧

𝑛𝑠

[term 4] 

It is evident from Eq.(2.3.46) that term 4 must be discarded since only expressions 

with both surface and volume field components may include the 
∆𝑟

4𝑟0
geometric 

coupling parameter.  Term 4 is also excluded on the basis that, for 𝑛𝑠 = 0, the 

exponential term 𝑒𝑖𝑛𝑠�̅�𝑧𝑧 = 1 and thus multiplication with (𝑒𝑖�̅�𝑧𝑧 + 𝑒−𝑖�̅�𝑧𝑧) cannot 

eliminate the remaining fast oscillation terms.  Equation (2.3.4.6) is further reduced 

by neglecting term 1 since no apparent means of cancelling out the cosine 

component describing the field structure around the azimuth exists. Eq.(2.2.46) is 

therefore simplified to give: 

𝑁′𝑠𝑟0
2∫ 𝐻𝑞,𝜏

∗,𝑠(𝑟0)𝑐𝑜𝑠�̅�𝜑 𝐻𝑞,𝜏
𝑠 (𝑟0)𝑐𝑜𝑠�̅�𝜑∑𝐵𝑛(𝑧)𝑒

𝑖𝑛�̅�𝑧𝑧

𝑛

+
∆𝑟

4𝑟0
(𝑒𝑖�̅�𝜑

2𝜋

0

+ 𝑒−𝑖�̅�𝜑)(𝑒𝑖�̅�𝑧𝑧

+ 𝑒−𝑖�̅�𝑧𝑧)𝐻𝑞,𝜏
∗,𝑠(𝑟0)𝑐𝑜𝑠�̅�𝜑 𝐻𝑞,𝜏

𝑣 (𝑟0)∑𝐶𝑞
𝑣

2

(𝑧)|

𝑟=𝑟0

𝑑𝜑 

(2.3.47) 

Substituting the Fourier expansion of the volume field harmonics in place of 𝐶𝑞
𝑣(𝑧)

allows for the 𝑒±𝑖�̅�𝑧𝑧 terms associated with scattering in the longitudinal direction to 
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be eliminated.   This result is further reduced and re-written by employing the 

identity (𝑒𝑖�̅�𝜑 + 𝑒−𝑖�̅�𝜑) = 2𝑐𝑜𝑠�̅�𝜑. 

𝑁′𝑠𝑟0
2 (𝐻𝑞,𝜏

∗,𝑠(𝑟0)𝐻𝑞,𝜏
𝑠 (𝑟0)𝐵0(𝑧)∫ (

1

2
+
1

2
𝑐𝑜𝑠�̅�𝜑)  𝑑𝜑

2𝜋

0

+∫ (
∆𝑟

2𝑟0

2𝜋

0

(𝑒𝑖�̅�𝑧𝑧

+ 𝑒−𝑖�̅�𝑧𝑧)𝑐𝑜𝑠�̅�𝜑𝐻𝑞,𝜏
∗,𝑠(𝑟0)𝑐𝑜𝑠�̅�𝜑 𝐻𝑞,𝜏

𝑣 (𝑟0)∑𝐴𝑛𝑣(𝑧)𝑒
𝑖𝑛𝑣�̅�𝑧𝑧

𝑛𝑣

)𝑑𝜑) 

          (2.3.48) 

The remaining stage involves eliminating the leftover fast oscillation terms.  This is 

achieved simply by setting 𝑛𝑣 = ±1 and substituting 𝐴±𝑛𝑣(𝑒
𝑖�̅�𝑧𝑧(±𝑛𝑣+1) +

𝑒𝑖�̅�𝑧𝑧(±𝑛𝑣−1)).  It is shown in section §6.3.7.2 that this is a valid coupling mechanism.  

However, the main focus of this work is the interaction between the 𝑛𝑣 = 0 and 𝑛𝑠 =

±1 harmonics.  The final expression, describing scattering from the fundamental 

𝑛𝑠 = 0 surface field into the 𝑛𝑣 = ±1 volume field harmonics is presented below. 

𝜋𝑁𝑠
′𝑟0

2

(

 𝐻𝑞,𝜏
∗,𝑠(𝑟0)𝐻𝑞,𝜏

𝑠 (𝑟0)𝐵0(𝑧) +
∆𝑟

2𝑟0
𝐻𝑞,𝜏
∗,𝑠(𝑟0) 𝐻𝑞,𝜏

𝑣 (𝑟0) ∑ 𝐴𝑛𝑣(𝑧)

𝑛𝑣=1

𝑛𝑣=−1
𝑛𝑣≠0 )

  

          (2.3.49) 

This expression is comprised of 2 parts describing the accumulation of a localised 

surface field (which has no contribution to the coupling between the volume and 

surface fields) and the scattering of the surface field into the volume field. 

2.3.7- Coupled Wave Equations  
Thus far, we have considered only the fundamental harmonics of the two fields.  For 

completeness, and to provide a more thorough mathematical description of the 

possible scattering processes, the Fourier expansion of both fields is included, 

allowing different values of 𝑛𝑣 and 𝑛𝑠 to be explored.  We follow the same procedure 
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as outlined above except in this case, multiplying 𝑗�̅��̅�𝑞
∗ by 𝑒−𝑖�̅�𝑧𝑧𝑛𝑣  or 𝑒−𝑖�̅�𝑧𝑧𝑛𝑠, 

depending on whether the volume or surface field is studied.  For a full solution to 

this problem, rather than the approximation presented in this work, it is necessary 

to carry out a Bloch expansion over the full set of modes (McIver 2007, Tymis and 

Thompson 2014). This is ongoing research and a potential subject of future work.  

The present study gives an insight into possible coupling between the 𝑛𝑣,𝑠 = 0 and 

𝑛𝑣,𝑠 = ±1,2  volume and surface fields’ spatial harmonics and is separated into two 

parts.  The first (§2.3.7.1) describes scattering of the 𝑛𝑣 = 0 volume field into the 

surface field while the second part (§2.3.7.1) is dedicated to the scattering of the 

𝑛𝑠 = 0 surface field into the volume field.  

2.3.7.1 Scattering of the Fundamental Volume Field 

into the Surface Field 
Through substitution of the identity (𝑒𝑖�̅�𝜑 + 𝑒−𝑖�̅�𝜑) = 2𝑐𝑜𝑠�̅�𝜑 into Eq.(2.3.37) 

and by multiplying the right-hand-side of the volume field expression Eq.(2.3.26) by 

𝑒−𝑖�̅�𝑧𝑧𝑛𝑣  we can write 

𝑁𝑣
′∫ 𝑟

2𝜋

0

[𝑟0 +
∆𝑟

2
𝑐𝑜𝑠�̅�𝜑(𝑒𝑖�̅�𝑧𝑧

+ 𝑒−𝑖�̅�𝑧𝑧)]𝐻𝑞,𝜏
∗,𝑣(𝑟)𝑒−𝑖�̅�𝑧𝑧𝑛𝑣 (𝐻𝑞,𝜏

𝑣 (𝑟)∑𝐴𝑛𝑣
𝑛𝑣

(𝑧)𝑒𝑖�̅�𝑧𝑧𝑛𝑣

+ 𝐻𝑞,𝜏
𝑠 (𝑟)𝑐𝑜𝑠�̅�𝜑∑𝐵𝑛𝑠(𝑧)𝑒

𝑖𝑛𝑠�̅�𝑧𝑧

𝑛𝑠

)|

𝑟=𝑟0

𝑑𝜑 

          (2.3.50) 

By multiplying the radial exponential terms associated with the volume field, 

Eq.(2.3.50) is brought to the form: 
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𝑁′𝑣𝑟0
2∫ [𝐻𝑞,𝜏

∗,𝑣(𝑟0)𝑒
−𝑖�̅�𝑧𝑧𝑛𝑣

2𝜋

0

+
∆𝑟

2𝑟0
(𝑒𝑖�̅�𝑧𝑧−𝑖�̅�𝑧𝑧𝑛𝑣

+ 𝑒−𝑖�̅�𝑧𝑧−𝑖�̅�𝑧𝑧𝑛𝑣)𝐻𝑞,𝜏
∗,𝑣(𝑟0)𝑐𝑜𝑠�̅�𝜑](𝐻𝑞,𝜏

𝑣 (𝑟0)∑𝐴𝑛𝑣
𝑛𝑣

(𝑧)𝑒𝑖�̅�𝑧𝑧𝑛𝑣

+ 𝐻𝑞,𝜏
𝑠 (𝑟0)𝑐𝑜𝑠�̅�𝜑∑𝐵𝑛𝑠(𝑧)𝑒

𝑖𝑛𝑠�̅�𝑧𝑧

𝑛𝑠

)|

𝑟=𝑟0

𝑑𝜑 

          (2.3.51) 

and neglecting the same terms as before yields the following result 

𝑁′𝑣𝑟0
2∫ (𝐻𝑞,𝜏

∗,𝑣(𝑟0)𝑒
−𝑖�̅�𝑧𝑧𝑛𝑣𝐻𝑞,𝜏

𝑣 (𝑟0)∑𝐴𝑛𝑣
𝑛𝑣

(𝑧)𝑒𝑖�̅�𝑧𝑧𝑛𝑣
2𝜋

0

+
∆𝑟

2𝑟0
(𝑒𝑖�̅�𝑧𝑧(1−𝑛𝑣)

+ 𝑒−𝑖�̅�𝑧𝑧(1+𝑛𝑣))𝐻𝑞,𝜏
∗,𝑣(𝑟0)𝑐𝑜𝑠�̅�𝜑𝐻𝑞,𝜏

𝑠 (𝑟0)𝑐𝑜𝑠�̅�𝜑∑𝐵𝑛𝑠(𝑧)𝑒
𝑖𝑛𝑠�̅�𝑧𝑧

𝑛𝑠

)|

𝑟=𝑟0

𝑑𝜑 

          (2.3.52) 

Employing the trigonometric identity 𝑐𝑜𝑠2(�̅�𝜑) =
1

2
+
1

2
𝑐𝑜𝑠�̅�𝜑 and integrating: 

2𝜋𝑟0
2𝑁𝑣

′ (𝐻𝑞,𝜏
∗,𝑣(𝑟0)𝐻𝑞,𝜏

𝑣 (𝑟0)∑𝐴𝑛𝑣
𝑛𝑣

(𝑧)𝑒𝑖�̅�𝑧𝑧𝑛𝑣−𝑖�̅�𝑧𝑧𝑛𝑣

+
∆𝑟

4𝑟0
𝐻𝑞,𝜏
∗,𝑣(𝑟0)𝐻𝑞,𝜏

𝑠 ∑𝐵𝑛𝑠(𝑧)(𝑒
𝑖�̅�𝑧𝑧(1−𝑛𝑣+𝑛𝑠) + 𝑒𝑖�̅�𝑧𝑧(−1−𝑛𝑣+𝑛𝑠))

𝑛𝑠

) 

          (2.3.53) 

where the fast oscillation term associated with the volume field disappears to give 

the final result below. 
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2𝜋𝑟0
2𝑁𝑣

′ (𝐻𝑞,𝜏
∗,𝑣(𝑟0)𝐻𝑞,𝜏

𝑣 (𝑟0)∑𝐴𝑛𝑣
𝑛𝑣

(𝑧)

+
∆𝑟

4𝑟0
𝐻𝑞,𝜏
∗,𝑣(𝑟0)𝐻𝑞,𝜏

𝑠 ∑𝐵𝑛𝑠(𝑧)(𝑒
𝑖�̅�𝑧𝑧(1−𝑛𝑣+𝑛𝑠) + 𝑒𝑖�̅�𝑧𝑧(−1−𝑛𝑣+𝑛𝑠))

𝑛𝑠

) 

          (2.3.54) 

For a non-zero result after integrating, we must have 1 − 𝑛𝑣 + 𝑛𝑠 = 0 and −1 −

𝑛𝑣 + 𝑛𝑠 = 0.  We split 𝑛𝑠 into its 2 harmonic components, 𝑛𝑠
1 = 𝑛𝑣 − 1 and 𝑛𝑠

2 =

𝑛𝑣 + 1.   Setting 𝑛𝑣 = 0 and 𝑛𝑣 = ±1 we find: 

 If 𝑛𝑣 = 0, 𝑛𝑠
1 = −1; 𝑛𝑠

2 = 1; 𝑛𝑠
1,2 = ±1 

 If 𝑛𝑣 = 1, 𝑛𝑠
1 = 0; 𝑛𝑠

2 = 2; 

 If 𝑛𝑣 = −1, 𝑛𝑠
1 = −2; 𝑛𝑠

2 = 0; 

This serves as mathematical validation that the fundamental volume field harmonic  

𝑛𝑣 = 0 couples with the 𝑛𝑠 ± 1 harmonics as anticipated.  It has also been 

established that the 𝑛𝑣 = 1 harmonic can potentially couple with the 𝑛𝑠 = 0, 2 

surface field harmonics, and likewise, scattering is expected to occur between the 

𝑛𝑣 = −1 and 𝑛𝑠 = 0,−2 harmonics. 

Referring back to the volume field description (Eq.2.3.18) we can write: 

 

∇̅𝑧
2 (∑𝐴𝑛(𝑧)𝑒

𝑖𝑛�̅�𝑧𝑧) +
𝜔𝛿

𝑐
(∑𝐴𝑛(𝑧)𝑒

𝑖𝑛�̅�𝑧𝑧) +
�̅�0∆

𝑐2
(∑𝐴𝑛(𝑧)𝑒

𝑖𝑛�̅�𝑧𝑧)

= 𝑁𝑣
′ ∮𝑗�̅��̅�𝑞

∗ 𝑑𝜎 
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Following from this, coupled wave equations are obtained by introducing a 

coefficient 𝛼𝑣,𝑠 defining the coupling from the volume field to the surface field.  

Expressions for the specific cases where 𝑛𝑣 = 0 and 𝑛𝑣 = ±1 are provided below. 

For  𝑛𝑣 = 0,   

(
𝜕2𝐴0
𝜕𝑧2

) +
𝜔𝛿

𝑐
(𝐴0(𝑧)) +

�̅�0∆

𝑐2
(𝐴0(𝑧)) = 𝛼𝑣,𝑠(𝐵+1(𝑧) + 𝐵−1(𝑧)) 

For 𝑛𝑣 = 1, 

(
𝜕2𝐴+(𝑧)

𝜕𝑧2
− 2𝑖�̅�𝑧

𝜕𝐴+(𝑧)

𝜕𝑧
−�̅�𝑧𝐴+(𝑧)) +

𝜔𝛿

𝑐
(𝐴+(𝑧)) +

�̅�0∆

𝑐2
(𝐴+(𝑧))

= 𝛼𝑣,𝑠(𝐵0(𝑧) + 𝐵−2(𝑧)) 

For 𝑛𝑣 = −1, 

(
𝜕2𝐴−(𝑧)

𝜕𝑧2
+ 2𝑖�̅�𝑧

𝜕𝐴−(𝑧)

𝜕𝑧
−�̅�𝑧𝐴−(𝑧)) +

𝜔𝛿

𝑐
(𝐴+(𝑧)) +

�̅�0∆

𝑐2
(𝐴+(𝑧))

= 𝛼𝑣,𝑠(𝐵0(𝑧) + 𝐵+2(𝑧)) 

 

The coupling coefficient 𝛼𝑣,𝑠 is expressed: 

𝛼𝑣,𝑠 = 𝜋𝑟0𝑁𝑣
′
∆𝑟

2
𝐻𝑞,𝜏
∗,𝑣(𝑟0)𝐻𝑞,𝜏

𝑠  
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2.3.7.2. Scattering of the Fundamental Surface 

Field into the Volume Field 
The scattering of the surface field into the volume field is investigated in a similar 

manner, in order to define the coupling coefficient 𝛼𝑠,𝑣 by multiplying the surface 

field component of Eq.(2.3.37) by 𝑒−𝑖�̅�𝑧𝑧𝑛𝑠. 

𝑟0
2𝑁𝑠

′∫ [1 +
∆𝑟

2𝑟0
(𝑒𝑖�̅�𝑧𝑧 + 𝑒−𝑖�̅�𝑧𝑧)𝑐𝑜𝑠�̅�𝜑] 𝑒−𝑖𝑛𝑠�̅�𝑧𝑧

2𝜋

0

�̅�𝑞,𝜏
∗,𝑠(𝑟)𝑐𝑜𝑠�̅�𝜑 

 

(𝐻𝑞,𝜏
𝑣 (𝑟) ∑ 𝐴𝑛𝑣(𝑧)𝑒

𝑖𝑛𝑣�̅�𝑧𝑧

∞

𝑛𝑣=−∞

+ 𝐻𝑞,𝜏
𝑠 (𝑟)𝑐𝑜𝑠�̅�𝜑∑𝐵𝑛(𝑧)𝑒

𝑖𝑛�̅�𝑧𝑧

𝑛

)|

𝑟=𝑟0

𝑑𝜑 

          (2.3.55) 

Rearranging the first term  

𝑟0
2𝑁𝑠

′∫ �̅�𝑞,𝜏
∗,𝑠(𝑟0)𝑐𝑜𝑠�̅�𝜑

2𝜋

0

[𝑒−𝑖𝑛𝑠�̅�𝑧𝑧 +
∆𝑟

2𝑟0
𝑐𝑜𝑠�̅�𝜑(𝑒𝑖�̅�𝑧𝑧 + 𝑒−𝑖�̅�𝑧𝑧)𝑒−𝑖𝑛𝑠�̅�𝑧𝑧] 

(𝐻𝑞,𝜏
𝑣 (𝑟0) ∑ 𝐴𝑛𝑣(𝑧)𝑒

𝑖𝑛𝑣�̅�𝑧𝑧

∞

𝑛𝑣=−∞

+ 𝐻𝑞,𝜏
𝑠 (𝑟0)𝑐𝑜𝑠�̅�𝜑∑𝐵𝑛(𝑧)𝑒

𝑖𝑛�̅�𝑧𝑧

𝑛

)𝑑𝜑 

          (2.3.56) 

and multiplying the exponentials by 𝑒−𝑖𝑛𝑠�̅�𝑧𝑧 gives: 

𝑟0
2𝑁𝑠

′∫ �̅�𝑞,𝜏
∗,𝑠(𝑟0)𝑐𝑜𝑠�̅�𝜑

2𝜋

0

[𝑒−𝑖𝑛𝑠�̅�𝑧𝑧 +
∆𝑟

2𝑟0
𝑐𝑜𝑠�̅�𝜑(𝑒𝑖�̅�𝑧𝑧(1−𝑛𝑠) + 𝑒−𝑖�̅�𝑧𝑧(1+𝑛𝑠))] 

(𝐻𝑞,𝜏
𝑣 (𝑟0) ∑ 𝐴𝑛𝑣(𝑧)𝑒

𝑖𝑛𝑣�̅�𝑧𝑧

∞

𝑛𝑣=−∞

+ 𝐻𝑞,𝜏
𝑠 (𝑟0)𝑐𝑜𝑠�̅�𝜑∑𝐵𝑛𝑠(𝑧)𝑒

𝑖𝑛𝑠�̅�𝑧𝑧

𝑛𝑠

)𝑑𝜑 

          (2.3.57) 

Expanding and neglecting the same terms as before for the surface field leads to the 

expression 
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𝑟0
2𝑁𝑠

′∫ (
∆𝑟

2𝑟0
𝑐𝑜𝑠�̅�𝜑(𝑒𝑖�̅�𝑧𝑧(1−𝑛𝑠)

2𝜋

0

+ 𝑒−𝑖�̅�𝑧𝑧(1+𝑛𝑠))𝐻𝑞,𝜏
∗,𝑠(𝑟0)𝑐𝑜𝑠�̅�𝜑𝐻𝑞,𝜏

𝑣 (𝑟0) ∑ 𝐴𝑛𝑣(𝑧)𝑒
𝑖𝑛𝑣�̅�𝑧𝑧

∞

𝑛𝑣=−∞

+ �̅�𝑞,𝜏
∗,𝑠(𝑟0)𝑐𝑜𝑠�̅�𝜑𝑒

−𝑖𝑛𝑠�̅�𝑧𝑧𝐻𝑞,𝜏
𝑠 (𝑟0)𝑐𝑜𝑠�̅�𝜑∑𝐵𝑛𝑠(𝑧)𝑒

𝑖𝑛𝑠�̅�𝑧𝑧

𝑛𝑠

)𝑑𝜑 

          (2.3.58) 

And since 𝑒−𝑖𝑛𝑠�̅�𝑧𝑧𝑒𝑖𝑛𝑠�̅�𝑧𝑧 = 1, the previous result is shortened to 

𝑟0
2𝑁𝑠

′∫ (
∆𝑟

2𝑟0
𝑐𝑜𝑠�̅�𝜑(𝑒𝑖�̅�𝑧𝑧(1−𝑛𝑠)

2𝜋

0

+ 𝑒−𝑖�̅�𝑧𝑧(1+𝑛𝑠))𝑒𝑖𝑛𝑣�̅�𝑧𝑧𝐻𝑞,𝜏
∗,𝑠(𝑟0)𝑐𝑜𝑠�̅�𝜑𝐻𝑞,𝜏

𝑣 (𝑟0) ∑ 𝐴𝑛𝑣(𝑧)

∞

𝑛𝑣=−∞

+ �̅�𝑞,𝜏
∗,𝑠(𝑟0)𝑐𝑜𝑠�̅�𝜑𝐻𝑞,𝜏

𝑠 (𝑟0)𝑐𝑜𝑠�̅�𝜑∑𝐵𝑛𝑠(𝑧)

𝑛𝑠

)𝑑𝜑 

          (2.3.59) 

𝑟0
2𝑁𝑠

′∫ (
∆𝑟

2𝑟0
𝑐𝑜𝑠�̅�𝜑(𝑒𝑖�̅�𝑧𝑧(1−𝑛𝑠+𝑛𝑣)

2𝜋

0

+ 𝑒−𝑖�̅�𝑧𝑧(1+𝑛𝑠−𝑛𝑣))𝐻𝑞,𝜏
∗,𝑠(𝑟0)𝑐𝑜𝑠�̅�𝜑𝐻𝑞,𝜏

𝑣 (𝑟0) ∑ 𝐴𝑛𝑣(𝑧)

∞

𝑛𝑣=−∞

+ �̅�𝑞,𝜏
∗,𝑠(𝑟0)𝑐𝑜𝑠�̅�𝜑𝐻𝑞,𝜏

𝑠 (𝑟0)𝑐𝑜𝑠�̅�𝜑∑𝐵𝑛𝑠(𝑧)

𝑛𝑠

)𝑑𝜑 

          (2.3.60) 
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Bearing in mind that 𝑐𝑜𝑠2(�̅�𝜑) =
1

2
+
1

2
𝑐𝑜𝑠�̅�𝜑 we obtain an equivalent expression 

for Eq.(2.3.60) 

𝑟0
2𝑁𝑠

′∫ (
∆𝑟

2𝑟0
(
1

2
+
1

2
𝑐𝑜𝑠�̅�𝜑) (𝑒𝑖�̅�𝑧𝑧(1−𝑛𝑠+𝑛𝑣)

2𝜋

0

+ 𝑒−𝑖�̅�𝑧𝑧(1+𝑛𝑠−𝑛𝑣))𝐻𝑞,𝜏
∗,𝑠(𝑟0)𝐻𝑞,𝜏

𝑣 (𝑟0) ∑ 𝐴𝑛𝑣(𝑧)

∞

𝑛𝑣=−∞

+ �̅�𝑞,𝜏
∗,𝑠(𝑟0) (

1

2
+
1

2
𝑐𝑜𝑠�̅�𝜑)𝐻𝑞,𝜏

𝑠 (𝑟0)∑𝐵𝑛𝑠(𝑧)

𝑛𝑠

)𝑑𝜑 

(2.3.61) 

which, after integration, is brought to the form: 

2𝜋𝑟0
2𝑁𝑠

′ (
∆𝑟

4𝑟0
(𝑒𝑖�̅�𝑧𝑧(1−𝑛𝑠+𝑛𝑣) + 𝑒−𝑖�̅�𝑧𝑧(1+𝑛𝑠−𝑛𝑣))𝐻𝑞,𝜏

∗,𝑠(𝑟0)𝐻𝑞,𝜏
𝑣 (𝑟0) ∑ 𝐴𝑛𝑣(𝑧)

∞

𝑛𝑣=−∞

+
1

2
�̅�𝑞,𝜏
∗,𝑠(𝑟0)𝐻𝑞,𝜏

𝑠 (𝑟0)∑𝐵𝑛𝑠(𝑧)

𝑛𝑠

) 

(2.3.62) 

Once again, to get rid of exponential terms and obtain a non-zero result after 

integration, the following conditions must hold true: 1 − 𝑛𝑠 + 𝑛𝑣 = 0 and 1 +

𝑛𝑠−𝑛𝑣 = 0 such that 𝑛1,2𝑣 = 𝑛𝑠 ∓ 1.

 If 𝑛𝑠 = 0, 𝑛𝑣
1 = −1; 𝑛𝑣

2 = 1; 𝑛𝑣
1,2 = ∓1 

 If 𝑛𝑠 = 1, 𝑛𝑣
1 = 0; 𝑛𝑣

2 = 2;

 If 𝑛𝑠 = −1, 𝑛𝑣
1 = −2; 𝑛𝑣

2 = 0;

We observe that if we couple the fundamental harmonic 𝑛𝑠 = 0 it scatters into itself 

and the ∓1 harmonics of the volume field.  Introducing the coupling coefficient 𝛼𝑠,𝑣, 

describing scattering from the surface field into the volume field, leads to the 

following set of coupled equations from Eq. (2.3.19)  
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𝜕2𝐵0(𝑧)

𝜕𝑧2
−
𝜔𝛿

𝑐
𝐵0(𝑧) +

�̅�0∆

𝑐2
𝐵0(𝑧) = 𝛼𝑠,𝑣(𝐴+1(𝑧) + 𝐴−1(𝑧)) 

𝜕2𝐵+(𝑧)

𝜕𝑧2
+ 2𝑖�̅�𝑧

𝜕𝐵+(𝑧)

𝜕𝑧
− �̅�𝑧

2
𝐵+(𝑧) −

𝜔�̂�

𝑐
𝐵+(𝑧) + +

�̅�0∆

𝑐2
𝐵+(𝑧)

= 𝛼𝑠,𝑣(𝐴0(𝑧) + 𝐴−2(𝑧)) 

𝜕2𝐵+(𝑧)

𝜕𝑧2
+ 2𝑖�̅�𝑧

𝜕𝐵+(𝑧)

𝜕𝑧
− �̅�𝑧

2
𝐵+(𝑧) −

𝜔𝛿

𝑐
𝐵+(𝑧) +

�̅�0∆

𝑐2
𝐵+(𝑧)

= 𝛼𝑠,𝑣(𝐴0(𝑧) + 𝐴−2(𝑧)) 

where: 

𝛼𝑠,𝑣 = 𝜋𝑟0
2𝑁𝑠

′
∆𝑟

2𝑟0
𝐻𝑞,𝜏
∗,𝑠(𝑟0)𝐻𝑞,𝜏

𝑣 (𝑟0)

More generally, we can define the coupling coefficients 𝛼𝑠,𝑣 and 𝛼𝑣,𝑠 in the following 

way: 

∇̅𝑧
2𝐶𝑞

𝑠 (𝑧) −
𝜔𝛿

𝑐
𝐶𝑞
𝑠(𝑧) +

�̅�0∆

𝑐2
𝐶𝑞
𝑠(𝑧) = 𝑁𝑠∮𝑗�̅��̅�𝑞′

∗ 𝑑𝜎

𝜕2𝐴𝑛𝑣(𝑧)

𝜕𝑧2
− 2𝑖(𝑛𝑣)�̅�𝑧

𝜕𝐴𝑛𝑣(𝑧)

𝜕𝑧
− �̅�𝑧(𝑛𝑣)

2𝐴𝑛𝑣(𝑧) + (
𝜔𝛿

𝑐
+
�̅�0∆

𝑐2
)𝐴𝑛𝑣(𝑧)

= 𝛼𝑣,𝑠 (𝐵𝑛𝑣−1(𝑧) + 𝐵𝑛𝑣+1(𝑧))

(2.3.63a) 

𝜕2𝐵𝑛𝑠(𝑧)

𝜕𝑧2
+ 2𝑖�̅�𝑧

𝜕𝐵𝑛𝑠(𝑧)

𝜕𝑧
− �̅�𝑧

2
𝐵𝑛𝑠(𝑧) + (

�̅�0∆

𝑐2
−
𝜔𝛿

𝑐
)𝐵𝑛𝑠(𝑧)

= 𝛼𝑠,𝑣 (𝐴𝑛𝑠−1(𝑧) + 𝐴𝑛𝑠+1(𝑧))

(2.3.63b) 



65 

2.3.8. Coupling Coefficient of the PSL’s Cavity Eigemode 
To combine these coefficients into a single coupling parameter let us define 𝛼: 

𝛼 = √𝛼𝑣,𝑠𝛼𝑠,𝑣 

To express 𝛼𝑠,𝑣 and 𝛼𝑣,𝑠  in terms of 𝛼 

𝛼 =
𝛼𝑣,𝑠

√𝛼𝑣,𝑠
√𝛼𝑠,𝑣

𝛼 =
𝛼𝑠,𝑣

√𝛼𝑠,𝑣
√𝛼𝑣,𝑠

And hence we multiply Eq.(2.3.63a) by √𝛼𝑠,𝑣 𝛼𝑣,𝑠⁄  and Eq.(2.3.63b) by √𝛼𝑣,𝑠 𝛼𝑠,𝑣⁄  to 

renormalise : 

𝜕2(√𝛼𝑠,𝑣 √𝛼𝑣,𝑠⁄ 𝐴𝑛𝑣(𝑧))

𝜕𝑧2
− 2𝑖(𝑛𝑣)�̅�𝑧

𝜕(√𝛼𝑠,𝑣 √𝛼𝑣,𝑠⁄ 𝐴𝑛𝑣(𝑧))

𝜕𝑧

− �̅�𝑧(𝑛𝑣)
2(√𝛼𝑠,𝑣 √𝛼𝑣,𝑠⁄ )𝐴𝑛𝑣(𝑧)

+ (
𝜔𝛿

𝑐
+
�̅�0∆

𝑐2
) (√𝛼𝑠,𝑣 √𝛼𝑣,𝑠⁄ )𝐴𝑛𝑣(𝑧) = 𝛼 (𝐵𝑛𝑣−1(𝑧) + 𝐵𝑛𝑣+1(𝑧))

(2.3.64a) 

𝜕2(√𝛼𝑣,𝑠 √𝛼𝑠,𝑣⁄ )𝐵𝑛𝑠(𝑧)

𝜕𝑧2
+ 2𝑖�̅�𝑧

𝜕(√𝛼𝑣,𝑠 √𝛼𝑠,𝑣⁄ )𝐵𝑛𝑠(𝑧)

𝜕𝑧
− �̅�𝑧

2
(√𝛼𝑣,𝑠 √𝛼𝑠,𝑣⁄ )𝐵𝑛𝑠(𝑧)

+ (
�̅�0∆

𝑐2
−
𝜔𝛿

𝑐
) (√𝛼𝑣,𝑠 √𝛼𝑠,𝑣⁄ )𝐵𝑛𝑠(𝑧) = 𝛼 (𝐴𝑛𝑠−1(𝑧) + 𝐴𝑛𝑠+1(𝑧))

(2.3.64b) 

Introducing new amplitude constants �̃�𝑛𝑣(𝑧) = 𝐴𝑛𝑣(𝑧)√𝛼𝑠,𝑣 √𝛼𝑣,𝑠⁄ and �̃�𝑛𝑠(𝑧) =

𝐵𝑛𝑠(𝑧)√𝛼𝑣,𝑠 √𝛼𝑠,𝑣⁄  gives the final, normalised coupled wave equations:

𝜕2�̃�𝑛𝑣(𝑧)

𝜕𝑧2
− 2𝑖(𝑛𝑣)�̅�𝑧

𝜕�̃�𝑛𝑣(𝑧)

𝜕𝑧
− �̅�𝑧(𝑛𝑣)

2�̃�𝑛𝑣(𝑧) + (
𝜔𝛿

𝑐
+
�̅�0∆

𝑐2
) �̃�𝑛𝑣(𝑧)

= 𝛼 (𝐵𝑛𝑣−1(𝑧) + 𝐵𝑛𝑣+1(𝑧))
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(2.3.65a) 

𝜕2�̃�𝑛𝑠(𝑧)

𝜕𝑧2
+ 2𝑖�̅�𝑧

𝜕�̃�𝑛𝑠(𝑧)

𝜕𝑧
− �̅�𝑧

2
�̃�𝑛𝑠(𝑧) + (

�̅�0∆

𝑐2
−
𝜔𝛿

𝑐
) �̃�𝑛𝑠(𝑧)

= 𝛼 (𝐴𝑛𝑠−1(𝑧) + 𝐴𝑛𝑠+1(𝑧))

(2.3.65b) 

where the coupling coefficient is defined below: 

𝛼 =
𝜋𝑟0𝑁𝑣

′𝑁𝑠
′∆𝑟

2
√(𝐻𝑞,𝜏

∗,𝑣(𝑟0)𝐻𝑞,𝜏
𝑠 ) (𝐻𝑞,𝜏

∗,𝑠(𝑟0)𝐻𝑞,𝜏
𝑣 (𝑟0))

(2.3.66) 

The evaluation of this coupling coefficient involves performing an integral mode 

calculation around the cross section of the structure due to its dependence on the 

wave norms 𝑁𝑣
′  and 𝑁𝑠

′.

2.4. Chapter Conclusions 
The cavity eigenfield’s dispersion for the 2D PSL of cylindrical topology has been 

derived by substituting the lattice corrugation for a thin effective metadielectric (or 

high impedance layer) and taking into account the continuity conditions at the 

dielectric interface.  In this initial description, the approximation of an infinite 

structure was applied. The cavity eigenmode was shown to have a hybrid field 

structure, comprised of both 𝐸𝑧 and 𝐻𝑧 components. Far from the structure’s 

resonant frequency (i.e. �̃�𝐵 = 1) the dispersion was found to split, describing either 

TE or TM waves as expected.  On the other hand, in the vicinity of the resonant 

frequency, the refractive index of the metadielectric �̃�𝐵 is defined in terms of the 

eigenfield’s wavenumber 𝑘 and the longitudinal lattice wavenumber �̅�𝑧.  The PSL’s 

dispersive behaviour, when increasing �̃�𝐵 by tailoring the lattice parameters, is 

studied in the following chapter.   
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The dispersion relation, derived for the effective metadielectric based on the 

cylindrical waveguide, also showed that the cavity eigenmode is not formed in the 

case of an azimuthally symmetric surface field, proving that 𝑚𝑠 ≠ 0.  It was later 

confirmed via the magnetic surface current method that 𝑚𝑠 = �̅�, justifying the 

requirement that 𝑚𝑣 = 0.   

Coupled wave equations were derived by considering an effective magnetic surface 

current in place of the lattice corrugation.  In this theoretical model, a finite structure 

with slowly varying amplitude terms was considered.  Detuning from the resonant 

frequency, as well as the detuning between the volume and surface fields, was taken 

into account, while ohmic and diffractive losses were neglected to simplify the 

problem.  The scattering of the volume field into the surface field and vice versa was 

mathematically described for the fundamental harmonic of each field, and the 

accumulation of volume and surface fields associated with “self-scattering” was also 

demonstrated.  

Some of the possible scattering processes were presented and it was established that 

the fundamental volume field can couple with the ±1 surface field harmonics 

provided the necessary conditions are met.  This theory was developed under the 

assumption that 𝑟0 ≫ 𝜆 and therefore gives an approximate insight into coupling of 

volume and surface fields in the PSLs of planar topology. Finally, an analytical 

expression describing the coupling coefficient for the structure’s cavity eigenmode 

was presented in this chapter.  Evaluating this coupling coefficient by performing a 

contour integral calculation is a possible topic of future work. 
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Chapter 3 - Analytical Dispersion of Cylindrical PSLs 

3.1 Introduction 
An overview of waveguide behaviour, including the waveguide dispersions of 

uncoupled volume and surface fields, was given in Chapter 1. Schematic Brillouin 

diagrams, illustrating the coupling of neighbouring volume field space harmonics, 

and resultant band-gap formation, were previously shown. The possibility for 

interaction between a cavity mode and charged particle beam was also 

demonstrated schematically in Chapter 1.  In this chapter, an analytical dispersion 

equation, derived from the coupled wave equations of Chapter 2, is presented and 

solved to obtain analytical dispersion diagrams illustrating the coupling of volume 

and surface fields.  It is shown that the parameters of the structure can be tailored 

to observe different dispersive properties, and that under certain conditions, the 

structure can support a Cherenkov interaction when coupled with a suitable electron 

beam.    This chapter begins by introducing the coupled dispersion equation in §3.2. 

Dispersion plots, provided in §3.3, illustrate the EM behaviour of the PSL when the 

structure’s parameters are varied for the cases of strong and weak coupling.  Finally, 

the dispersion diagram of a W-band PSL, with the same parameters as that chosen 

for the Cherenkov maser experiment at Strathclyde, is presented in §3.4. The main 

results of this chapter are summarised in §3.5. 

3.2. Dispersion Equation for Cylindrical PSL 
A dispersion equation Eq.(2.1.45) describing the hybrid field structure of the cavity 

eigenmode was defined in Chapter 2.1 using the effective metadielectric model.  

Studying the dispersion characteristics of the structure using Eq.(2.1.45) proves 

problematic since the transverse wavenumber of the coupled surface field is 

unknown. Instead, the coupled mode equations Eq.(2.3.65a) and Eq.(2.3.65b) have 

been used to obtain a normalised dispersion relation. All parameters are 

renormalised by �̅�, where  �̅� = Ω 𝑐⁄   and Ω is defined below: 
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Ω = √
(𝜔0

𝑣)2 + (𝜔0
𝑠)2

2
 

          (3.2.1) 

Renormalising the coupled mode equations by �̅� and introducing the dimensionless 

detuning parameter Γ leads to the following dispersion equation (Konoplev, 

MacLachlan et al. 2012): 

(𝜔𝑒
2 − Λ2)[Λ4 − 2Λ2(2 + Γ2 + 𝜔𝑒

2) + (2 − Γ2 + 𝜔𝑒
2)2] = 2𝛼4(2 − Γ2 + 𝜔𝑒

2 − Λ2) 

          (3.2.2) 

In the present analytical dispersion study, the normalised coupling coefficient  𝛼  is 

treated as a variable parameter.  The normalised wave vector is denoted by Λ and 

𝜔𝑒 is a variable angular frequency defined by 

 𝜔𝑒 = √𝛿2 + 2𝛿 + Δ̃2 (3.2.3) 

 

where 𝛿 = (𝜔 − Ω) Ω⁄   and Δ̃ = Φ Ω⁄  are detuning parameters and Φ is defined 

below: 

Φ = √
(𝜔0

𝑠)2 − (𝜔0
𝑣)2

2
 

          (3.2.4)  

The parameters 𝛿 and Δ̃ are renormalised versions of 𝛿 and Δ (introduced in chapter 

2.2) and describe the detuning between the angular cut-off frequencies of the 

volume and surface fields.  Once again, it has been assumed that Δ̃ = 0, i.e. 𝜔0
𝑣 =

𝜔0
𝑠.  The overall detuning is described by the dimensionless parameter Γ which is 

defined: 

Γ = �̅�𝑧 �̅�⁄ = 2�̅�𝑧𝑐 ((𝜔0
𝑣)2 + (𝜔0

𝑠)2)⁄  

          (3.2.5) 
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The value of Γ determines the period and radius of the structure, and when the 

approximation Δ̃ = 0 is made,  Γ is written in the simplified form: 

 Γ =
�̅�𝑧𝑐

𝜔0
=

𝜆𝑐

𝑑𝑧
  (3.2.6) 

where 𝜆𝑐 is the cut-off wavelength of the volume field inside the cylindrical 

waveguide and 𝑑𝑧 is the longitudinal lattice period.   

Some similarities can be noted when comparing the dispersion equations Eq.(3.2.1) 

and Eq.(2.2.25).  For instance, the terms 𝜀 and �̅�  of Eq.(2.2.25) fulfil a similar role to 

the coupling coefficient 𝛼 of Eq.(3.2.2) ensuring that if no coupling takes place, the 

right-hand sides equal zero.  This splits the otherwise coupled equations into their 

uncoupled volume and surface field components. In the case of weak coupling when 

𝛼 ⟶ 0, the right hand side of Eq.(3.2.2) is neglected, and the dispersion separates 

into the following expressions. 

 (𝜔𝑒
2 − Λ2) = 0 (3.2.7a) 

 [Λ4 − 2Λ2(2 + Γ2 + 𝜔𝑒
2) + (2 − Γ2 + 𝜔𝑒

2)2] = 0 (3.2.7b) 

Eq.(3.2.7a) is the conventional dispersion of an uncoupled volume field propagating 

through a cylindrical waveguide and can be written in the form: 

 𝜒1,2 = ±𝜔𝑒 = ±√𝛿2 + 2𝛿 − Δ2 (3.2.8) 

where 𝜒1,2 represents the angular eigen-frequencies of the forwards and backwards 

scattered volume waves.  Eq. (3.2.7b) describes the dispersion of the ±1 spatial 

harmonics of the surface field.  This splits into two functions. 

 𝜔𝑒
2 = (Λ − Γ)2 − 2 (3.2.9a) 

 𝜔𝑒
2 = (Λ + Γ)2 − 2 (3.2.9b) 

The points where these unperturbed volume and surface dispersions intersect are of 

interest when considering the eigenfield inside the structure.   
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The analytical dispersion study has been carried out by varying Γ (which controls the 

lattice parameters) and 𝛼  (which determines the strength of the coupling) and 

solving Eq. (3.2.1) using the mathematical software package MAPLE.  The equation 

was solved for Δ̃ = 0 (as stated previously) with specified values of  Γ and 𝛼. The 

unperturbed waveguide dimensions and Bessel roots were used to establish the cut-

off frequency of the near cut-off azimuthally symmetric volume field.   Provided with 

an initial value of 𝛿, the code loops over the chosen number of data points, increasing 

𝛿 in small increments 𝛿 = 𝛿 + ∆𝛿 and solving equations Eq.(3.2.7.b), Eq.(3.2.8) and 

Eq.(3.2.1) for Λ  at each value of 𝛿.  For every iteration 𝑘𝑧 and 𝜔 are evaluated from 

the relations 𝑘𝑧 = Λ�̅� and 𝜔 = 𝛿Ω + Ω.  Solutions are separated into their real and 

imaginary components, and used to plot the coupled and uncoupled field 

dispersions.  It should be noted that all the dispersion diagrams presented in this 

chapter are valid only in the case of coupling between the fundamental harmonic 

(𝑛 = 0) of the near cut-off, azimuthally symmetric volume field and the ±1 

harmonics of the surface field, as described in the previous chapter.  Later, in Chapter 

6, numerical dispersion plots for the 2D PSLs of planar topology will take into account 

the ±1 spatial harmonics of both the volume and surface fields. 
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3.3 Analytical Dispersion Plots for W-band Cylindrical 

PSLs 
Dispersion plots presented in figures (3.3.1.1-3.3.3.2) illustrate how the EM 

properties of the PSL can be controlled by varying the structure’s parameters.  In this 

section, the initial parameters were chosen to match those of the original 

electroformed, copper W-band structure (𝑟0 =10mm, 𝑑𝑧 =3.0mm, 𝑚=20) designed 

to operate with the near cut-off 𝑇𝑀0,7 volume mode (𝑓𝑐 =100.9 GHz). The 

corrugation height ∆𝑟 of the PSL is varied implicitly by changing 𝛼, while 𝑟0 and 𝑑𝑧 

are modified by Γ. The value of Γ is set to 1, √2 and 2.3 for values of 𝛼 corresponding 

to weak  and strong coupling.  As Γ is increased from 1 the structure becomes 

oversized, demonstrating the principle of mode-selection in a structure with large 

𝐷𝑤𝑔 𝜆⁄ , where 𝐷𝑤𝑔 is the diameter of the cylindrical waveguide. Increasing Γ is also 

equivalent to increasing the refractive index of the effective metadielectric, as shown 

in figure 3.3.3.2.  In the dispersion diagrams presented in this Chapter, the 

unperturbed volume and surface fields are represented by blue and green dashed 

lines respectively.  The PSL’s eigenmode, comprised of coupled 𝑇𝑀0,7 and 𝐸𝐻20,1 

modes, is illustrated by the solid red dispersion plots.  When 𝛼 is sufficiently large, 

more than one coupled dispersion branch is observed, and the maxima and minima 

of these branches which occur when the group velocity is zero (𝜕𝑓 𝜕𝑘𝑧⁄ = 0)  

indicate the locations of possible coupled eigenmodes.  It is expected that, when the 

structure is sufficiently synchronised, in this case by the near-cut-off volume field, 

coupling of volume and surface fields will take place at just one of these frequencies, 

leading to coherent eigenmode formation and demonstrating mode-selection in an 

over-sized structure. 

3.3.1 Dispersion Plots for W-band Cylindrical PSL with Γ = 1 
Figure 3.3.1.1 demonstrates the lattice dispersion when Γ = 1 for the case of 

weak (𝛼 = 0.1) coupling.  The coupled dispersion (solid red line) deviates from the 

uncoupled volume and surface field dispersions as it approaches the crossing points, 

where coupling is expected to occur.  
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Figure 3.3.1.1. Eigenfield dispersion when Γ = 1 and 𝛼 = 0.1 (solid red lines).  The 
dashed green lines are the ±1 harmonics of the surface field when 𝛼 = 0  and the 
blue dashed lines are the unperturbed dispersion of the TM0,7 volume field.  Splitting 
of the eigenfield’s dispersion is observed around the points where the unperturbed 
dispersions meet. 

The modification at these points of intersection is illustrated more closely in figure 

3.1.1.2 where it is observed that the gap between the branches is indicative of 

scattering and is not associated with the formation of a band-gap (which is often 

observed in periodic structures due to the scattering of waves off the perturbations, 

manifesting as a forbidden frequency zone).  It can also be noted that the scattering 

takes place at frequencies around 113 GHz, significantly higher than the cut-off 

frequency of the volume field, 𝑓𝑐 ≅101 GHz.  A dispersion diagram obtained using 

the same lattice parameters (Γ = 1)  for strong coupling (𝛼 = 1 )between the 

volume and surface fields is provided in figure 3.3.1.3.  In this case, the coupling 

affects the entire dispersion of the coupled eigenfield, with the upper branch 

occuring around 48 GHz higher than the cut-off frequency of the uncoupled volume 

mode. 
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Figure 3.3.1.2. Close up view of eigenfield dispersion when Γ = 1 and 𝛼 = 0.1(solid 
red lines) showing splitting at the points where the unperturbed volume (blue dashed 
lines) and surface (green dashed lines) fields cross.  This indicates scattering between 
the TM0,7 and EH20,1 fields and does not correspond to band gap formation. 

 

 

 



75 
 

 

Figure 3.3.1.3.  Eigenfield dispersion when Γ = 1 in the presence of strong coupling 
i.e. α = 1 (solid red lines).  The dashed green lines are the ±1 harmonics of the 
surface field when α = 0 and the blue dashed lines are the unperturbed dispersion 
of the TM0,7 volume field.   

3.3.2 Dispersion Plots for W-band Cylindrical PSL with Γ = √2 
In this section it is shown that the uncoupled surface field harmonics intersect at the 

cut-off frequency of the volume field (when 𝑘𝑧 = 0) when the lattice period is chosen 

to satisfy the condition �̅�𝑧
2 = (𝑘⊥

𝑣)2 + (𝑘⊥
𝑠 )2 ≅ √2𝑘⊥

𝑣 .  This unique situation, 

demonstrated in figures 3.3.2.1-3.3.2.3, is observed when Γ = √2 . In the previous 

example, where  Γ < √2 the surface field harmonics intersect one another at a low 

frequency (~0 GHz). On the other hand, it will be shown in the next section, that the 

surface field harmonics shift further apart and cross at higher frequencies (> 200 

GHz) when Γ > √2 (Konoplev, MacLachlan et al. 2011) 

The frequency at which the surface field harmonics cross one another, along with the 

frequency at which they intersect the unperturbed volume field, determines the 

dispersive properties of the structure and predicts the locations of possible coupled 

eigenmodes.  The dispersion plot for Γ = √2  in the presence of weak coupling 

(𝛼 =0.01) is shown in figure 3.3.2.1.  As expected, the eigenmode dispersion 
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coincides closely with the unperturbed volume and surface field dispersions, only 

deviating slightly from the uncoupled surface field harmonics with increasing 𝑘𝑧.  

Increasing the strength of the coupling to 𝛼 = 0.1 imposes a change in the coupled 

dispersion surrounding 𝑘𝑧 = 0 where the fields intersect.  As a consequence of the 

stronger coupling, the dispersion splits into 3 distinct branches, as shown in figure 

3.3.2.2.  However, the middle branch still overlays the uncoupled volume field 

dispersion. 

 

 

Figure 3.3.2.1 Eigenfield dispersion when Γ = √2 in the case of very weak coupling 
when 𝛼 = 0.01 (solid red lines).  The dashed green lines are the ±1 harmonics of the 
surface field when 𝛼 = 0  and the blue dashed lines are the unperturbed dispersion 
of the TM0,7 volume field.  In this case the unperturbed and coupled eigenfield 
dispersions meet at exactly the cut-off frequency of the TM0,7 volume field.  This is 

only observed in the case of weak coupling when Γ = √2 . 
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Figure 3.3.2.2.  Eigenfield dispersion when Γ = √2 for the case of weak coupling 
when 𝛼 = 0.1(solid red lines).  The dashed green lines are the ±1 harmonics of the 
surface field when 𝛼 = 0 and the blue dashed lines are the unperturbed dispersion 
of the TM0,7 volume field. 

Again, as the coupling is further increased, the entire eigenfield’s dispersion is 

affected leading to a greater frequency separation between the coupled branches.  

Only two coupled dispersion branches are evident in figure 3.3.2.3 for the cylindrical 

W-band PSL with Γ = √2 and 𝛼 = 1.  The uppermost branch is shifted beyond 150 

GHz, while the lowest branch has shifted below zero to give a non-real solution.  
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Figure 3.3.2.3. Eigenfield dispersion when Γ = √2 for the case of strong coupling 
when 𝛼 = 1 (solid red lines).  The dashed green lines are the ±1 harmonics of the 
surface field when 𝛼 = 0 and the blue dashed line is the fundamental harmonic of 
the unperturbed dispersion of the TM0,7 volume field. 

3.3.3 Dispersion Plots for W-band Cylindrical PSL with Γ = 2.3 
Further changes to the coupled eigenfield occur as Γ is increased beyond √2 and 

interesting behaviour is observed for the cylindrical PSLs with Γ = 2.3 as illustrated 

in figures 3.3.3.1 and 3.3.3.2.  Once again, when the volume and surface fields are 

weakly coupled (figure 3.3.3.1) the lower coupled dispersion branch overlays the 

dispersion curve of the unperturbed volume field.  The uncoupled surface field 

harmonics intersect this branch at 𝑘𝑧 ≅ 1.5  corresponding to a frequency of around 

125 GHz.  Though the surface field harmonics cross one another around 210 GHz, the 

weak coupling (𝛼 = 0.1) is not sufficient for the formation of an additional branch 

close to this frequency.  As the coupling is increased to 𝛼 = 1, however, the 

dispersion splits into three separate branches at the points of intersection, allowing 

for a potential interaction between the eigenfield and an electron beam at relatively 

low beam velocities.  The lower coupled branch is shifted down by around 32 GHz 
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from the unperturbed volume field, confirming that increasing Γ is equivalent to 

increasing the refractive index, �̃� of the effective metadielectric. 

 

 

Figure 3.3.3.1. Eigenmode dispersion when Γ = 2.3 and 𝛼 = 0.1  (solid red lines).  The 
dashed green lines are the ±1 harmonics of the surface field when 𝛼 = 0 and the 
blue dashed line is the fundamental harmonic of the unperturbed TM0,7 volume field.   

Figure 3.3.3.2 illustrates the potential to observe slow waves, since the requirement 

that 𝑓 𝑘𝑧 < 𝑐⁄  is satisfied.  In addition to the eigenfield’s phase velocity being less 

than 𝑐, the variation in the group velocity indicates the possibility of generating either 

forwards or backwards slow waves, thus demonstrating that the lattice can facilitate 

a forwards or backwards interaction with an appropriate electron beam. An example 

of a W-band cylindrical PSL dispersion plot with a suitable beam line is presented in 

the following section. 

 



80 
 

 

Figure 3.3.3.2. Eigenmode dispersion when Γ = 2.3 and 𝛼 = 1 (solid red lines).  The 
dashed green lines are the ±1 harmonics of the surface field when 𝛼 = 0 and the 
blue dashed line is the fundamental harmonic of the unperturbed TM0,7 volume field.   

 

3.4 Analytical Dispersion and Beam Interaction of 

Cylindrical PSL used in Experiment 
The dispersion study of §3.3 was carried out for a W-band structure originally 

designed for the Cherenkov Maser experiment at Strathclyde and cold-tested using 

the Anritsu VNA. Due to experimental constraints, the W-band PSL used as the 

interaction region was modified, with both its radius and period reduced. The 

corrugation height of the updated structure was also increased to enhance the 

coupling. The updated parameters of the W-band PSL (obtained via 3D printing) and 

incorporated in the Cherenkov maser experiment  (𝑟0 =4mm, 𝑑𝑧 =1.6mm, 𝑚 = 7 

and ∆𝑟 = 0.8mm) approximately correlate to Γ ≅1.81. Figure 3.4.1 shows the 

dispersion for the cylindrical W-band PSL with Γ =1.81 and α =1. However, in 

practice, some detuning will exist i.e. Δ̃ ≠ 0 and thus the dispersion with Γ ≅1.81 

provides only an approximate description of the structure’s behaviour.  



81 
 

 

Figure 3.4.1. Eigenmode dispersion for W-band structure with Γ = 1.81 and 𝛼 = 1 

(solid red lines).  The dashed green lines are the ±1 harmonics of the surface field 

when  𝛼 = 0 and the blue dashed line is the fundamental harmonic of the 

unperturbed volume field.   

3.5 Chapter Conclusions 
A coupled dispersion equation derived from the theory developed in Chapter 2 has 

been solved for different parameter values in order to carry out an analytical 

dispersion study of the coupled eigenfield inside a 2D cylindrical PSL.  The dispersion 

plots in this chapter, obtained for a W-band structure, are identical in appearance 

yet shifted up in frequency compared to earlier work carried out for a Ka-band 

structure (Konoplev, MacLachlan et al. 2011) and thus verify the scalability of this 

work.  It has been established that the dispersive properties of the structure’s 

eigenfield are determined by the strength of the coupling 𝛼 and Γ.  When Γ = √2 

the harmonics of the uncoupled surface field were shown to intersect precisely at 

the cut-off frequency of the volume field.  In the case of strong coupling, the 

dispersions were found to split, forming separate branches at the points where the 

uncoupled fields intersect.  The coupled dispersions’ maxima and minima indicate 

the positions of the cavity eigenmodes and are different from the unperturbed 
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waveguide cut-off frequencies when the coupling is strong.  When appropriate 

parameter values are chosen, the structure’s ability to support either forwards or 

backwards slow waves was demonstrated thus confirming that the PSL structures 

have the potential to provide effective interaction regions for novel, coherent 

sources or radiation when coupled with a suitable electron beam.   
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Chapter 4 - Experimental Method and 

Preliminary Measurements 

4.1 Introduction 
This chapter describes the experimental methods and preliminary measurements 

leading to the results presented in chapter 5. Descriptions of the different planar PSL 

structures and their fabrication processes are discussed in §4.2-4.4 and §4.6, while 

detailed images of some of these structures, obtained using a Hirox microscope, are 

provided in §4.5.   The experimental set-up involving the Vector Network Analyser 

and accompanying high frequency modules is detailed in §4.7 and §4.8. Preliminary 

measurements conducted to compare different waveguide horns and obtain output 

beam profiles for the chosen launching /receiving horns are presented in §4.9 and 

§4.10 respectively. §4.11 is dedicated to finding the refractive indices of the different

FR-4 substrates. Two separate methods were considered.  The first method sought 

to define the Brewster angle in the different dielectrics, while in the second 

technique, experiments measuring the phase in the dielectric were performed.  The 

refractive indices of all three substrates was established and used in subsequent 

analysis throughout this work.    

4.2 Planar PSLs without Substrates 
The simplest structures studied in this work, consisting of planar copper PSLs with no 

substrates, designed to study the surface field exclusively, were manufactured using 

a process of laser etching.  Four copper PSLs, each with a different periodicity, were 

fabricated by an external laser etching facility.  The structures, which all share the 

same thickness (0.3mm) have the following periodicities: 1.50mm, 1.62mm, 1.74mm 

and 1.94mm and are designed to operate at the 140-200 GHz frequency band.   As 

shown in the following chapter, these PSLs with no substrates share some similarities 

to inductive mesh structures (Ulrich, 1976) which have been well-documented for 

use as high band-pass filters. 
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4.3 Fabrication of Planar PSLs using Chemical Etching 
The planar PSL structures discussed in this thesis are based on printed circuit boards 

(PCBs) consisting of a 35𝜇m copper coating on either side of a fibreglass- epoxy 

composite (FR-4) substrate with an outer photoresist layer.  The etching process used 

to fabricate the planar PSLs is outlined as follows.  First, the lattice template, defining 

the period and intended operating wavelength of the structure, was designed and 

printed directly onto an acetate transparency sheet to form an etching mask. The 

resulting mask was positioned on top of the PCB, covering its outer photo-resistive 

layer. Prior to immersing the PCB in etching fluid, both the mask and PCB were 

irradiated by a UV source.  The photoresist and copper in the regions unshielded by 

the mask were dissolved by the etching fluid to expose the FR-4 forming the unit cells 

of the PSL.   Finally, the remaining photoresist was removed by submerging the 

etched PSLs into the fluid one last time. In half the samples, the copper backing of 

the PCB was left intact, whilst in the others, the copper was entirely dissolved.  It was 

hoped that the copper backing may improve the synchronisation of the lattice and 

facilitate the coupling of volume and surface fields. 

The etching process was carried out using four different masks corresponding to the 

same periodicities (1.50mm, 1.62mm, 1.74mm and 1.94mm) as the copper PSLs 

discussed in the proceeding section, each with a transverse size of 40 periods.  To 

further vary the structures’ properties, PCB samples of three different thicknesses 

were used. For each substrate and period, two structures (with and without the 

copper backing intact) were fabricated, resulting in a combination of 24 PSL 

structures, each with a unique set of parameters. The mean thicknesses of the 

stripped FR-4 samples were measured to be 0.41±0.005mm, 0.76±0.005mm and 

1.43±0.005mm and were found to differ from the quoted values of 0.4mm, 0.8mm 

and 1.6mm.  Examples of 1.62mm PSLs etched onto FR-4 substrates of different 

thicknesses are photographed in figure 4.3.1. 
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Figure 4.3.1.  Photograph of PSLs with dz= 1.62mm etched onto FR-4 substrates with 
thicknesses of 0.41mm, 0.76mm and 1.43mm (from left to right) manufactured using 
chemical etching facilities at Strathclyde. 

Due to the nature of the etching process, it was difficult to ensure uniform etching 

across each sample, leading to some areas of the lattices becoming over or under-

etched.  The PSL template’s susceptibility to being stretched in one direction when 

printed onto the acetate sheet, may also introduce some error in the structures’ 

periodicity.  To inspect the quality of the etching and measure the lattice cells, the 

PSLs were studied using a Hirox 3D Digital Microscope as discussed in §4.5.   

4.4 High Frequency Planar PSL Structure 
Since the theory presented in this work is scalable, a planar PSL structure composed 

of a 0.63mm PSL mounted on a 0.41mm copper-backed substrate was designed. The 

smaller dimensions of this structure are beyond the capabilities of the etching 

facilities available at Strathclyde and the structure was instead manufactured by a 

professional etching company.  The purpose of this structure was twofold; firstly to 

extend the research to higher frequencies and confirm the scalability of this work, 

and also to measure the structure, which is intended to operate at the 325-500 GHz 

frequency band, at the lower 140-220 GHz frequency band, where it may behave 

more like a conventional metamaterial rather than a photonic structure.  Detailed 

images of this high-frequency 0.63mm PSL are presented in the following section.  At 

the middle of the 140-220 GHz frequency band, the PSL has 𝜆 𝑑𝑧 =⁄ 2.65, justifying 

its use as a metamaterial. 
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4.5 Hirox 3D Digital Microscope Images 
The Hirox KH-7700 Digital Microscope consists of a 2 megapixel digital camera, light 

source, computer and software package that enable samples to be measured to a 

high precision and inspected for defects.  When examining the structures under the 

high magnification lens, examples of under and over-etching, leading to shorted cells 

and defects were found. Evidence of over-etching is photographed in figure 4.5.1.  

The darker squares correspond to the unit cells of the PSL, while the lighter regions 

are the copper scatterers.  As a consequence of over-etching, the copper regions are 

not joined, disrupting the synchronisation of the lattice.  The pictured cells are 

isolated, preventing the surface current from flowing around the neighbouring cells.  

Although this could lead to unwanted capacitive effects, this localised defect is 

unlikely to influence the overall behaviour of the structure which is determined by 

the collective properties of all the lattice cells. 

 

Figure 4.5.1. Localised over-etching observed in the 1.94mm PSL etched onto the 
0.76mm substrate and photographed using the Hirox imager.   

An example of under-etching is shown for the 1.50mm PSL mounted on the 0.41mm 

copper-backed substrate in figure 4.5.2.  In this case, each cell has a slightly rounded 

appearance, with large joins between the copper scatterers, facilitating 

synchronisation of the surface field.  Despite the under-etching, the mean lattice 

period was measured to be 1.503±0.034mm (table 4.5.1) in accordance with the 

intended 1.50mm period.  Further defects are evident in the 1.62mm PSL mounted 

on the 1.43mm copper-backed substrate and figure 4.5.3 illustrates a shorted cell. 

Isolated defects such as this are unlikely to significantly affect the PSLs studied in this 

work, where the number of lattice periods is sufficiently large.  
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Figure 4.5.2. Image obtained with the Hirox microscope showing under-etching in the 
1.50mm PSL mounted on the 0.41mm copper-backed substrate. 

Figure 4.5.3. Image obtained with the Hirox microscope showing defects in the 
1.62mm PSL mounted on the 1.43mm copper-backed substrate. 

Photographs of the 1.50mm PSL mounted on the 0.76mm substrate and the 1.62mm 

PSL mounted on the 1.43mm substrate, annotated with measuring lines, show well-

etched structures.  In both cases, the period measured in both directions, is close to 

the desired periods of 1.50mm and 1.62mm, and lie well within the calculated error 

margins (table 4.5.1).  
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Figure 4.5.4. Photograph of 1.50mm PSL etched onto the 0.76mm substrate, obtained 
using the Hirox microscope and annotated with measuring lines.  The measurements 
provided (1.5121mm in the horizontal direction and 1.5169mm in the vertical 
direction) show close agreement with each other and the expected lattice period 
(1.50mm).  

Figure 4.5.5.  Photograph of the 1.62mm PSL etched onto the 1.43mm substrate.  The 
measured dimensions (1.6431mm and 1.6312mm) are consistent in both directions 
and agree with the expected period (1.62mm). 

The professionally etched high frequency structure, photographed using the Hirox 

microscope and annotated with measuring lines, is presented in figure 4.5.6.  The 

measured period (0.638mm) is consistent in both directions and close to the 

anticipated value of 0.63mm.  Figure 4.5.7 demonstrates the overall appearance of 
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the high-frequency structure which appears uniformly etched with no apparent 

defects.  The 3D representation provided in figure 4.5.8 was obtained using the 

microscope’s inbuilt software and high magnification lens to focus on the dielectric 

and copper surfaces, scanning between the two to build up a 3D profile of the 

structure.  The scale on the right-hand side ranges from 0 to 35.805 𝜇m confirming 

that the corrugation depth of the PSLs is close to 35 𝜇m. 

 

Figure 4.5.6. Close up view of professionally etched structure with lattice period 
0.638mm, designed to operate in the 325-500 GHz frequency band.  The measuring 
lines show a period of 0.638mm in both directions. 

 

Figure 4.5.7. Hirox microscope photograph of the professionally etched structure with 
lattice period 0.638mm.   
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Figure 4.5.8. 3D representation of the professionally etched 0.638mm PSL obtained 
using the 3D profiling feature of the Hirox microscope.  The blue areas represent the 
unit cells and the copper corrugation has a depth of 35.805𝜇𝑚. 

The lattice dimensions of all the structures were measured in both directions at 

various points using the Hirox imager and a travelling microscope.  The mean periods 

and error margins are presented in tables 4.5.1 and 4.5.2 below.  Table 4.5.1 lists the 

measurements and uncertainties for the set of PSLs etched onto the copper-backed 

substrates, while data for the structures composed of PSLs and substrates (without 

copper backing) is provided in table 4.5.2.  For the structures designed to operate at 

the 140-220 GHz band the mean measured period, when quoted to two decimal 

places, was found to match the expected lattice period.  The higher frequency PSL, 

with an expected period of 0.63mm, had a mean measured period of 0.64mm 

(quoted to two decimal places) which was only slightly larger than expected, despite 

the manufacturing challenges associated with the PSL’s small size. 
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FR-4 Thickness (mm) Expected Lattice Period (mm) Mean Lattice Period (mm) 

0.410±0.005 1.50 1.503±0.034 

0.410±0.005 1.62 1.623±0.023 

0.410±0.005 1.74 1.741±0.028 

0.410±0.005 1.94 1.940±0.013 

0.410±0.005 0.63 0.638±0.012 

0.762±0.005 1.50 1.500±0.038 

0.762±0.005 1.62 1.621±0.033 

0.762±0.005 1.74 1.742±0.025 

0.762±0.005 1.94 1.941±0.015 

1.433±0.005 1.50 1.500±0.030 

1.433±0.005 1.62 1.620±0.025 

1.433±0.005 1.74 1.742±0.028 

1.433±0.005 1.94 1.944±0.035 

Table 4.5.1.  Table listing the mean lattice periods quoted with error margins for the PSL 

structures etched onto the copper-backed FR-4 substrates.  The higher frequency 0.638mm 

PSL is included in this table. 
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FR-4 Thickness (mm) Expected Lattice Period (mm) Mean Lattice Period (mm) 

0.410±0.005 1.50 1.499±0.033 

0.410±0.005 1.62 1.621±0.020 

0.410±0.005 1.74 1.740±0.030 

0.410±0.005 1.94 1.939±0.008 

0.762±0.005 1.50 1.503±0.058 

0.762±0.005 1.62 1.623±0.021 

0.762±0.005 1.74 1.742±0.030 

0.762±0.005 1.94 1.943±0.025 

1.433±0.005 1.50 1.501±0.020 

1.433±0.005 1.62 1.623±0.022 

1.433±0.005 1.74 1.741±0.035 

1.433±0.005 1.94 1.942±0.015 

Table 4.5.2.  Table listing the mean lattice periods quoted with error margins for the PSL 

structures etched onto the FR-4 substrates (without copper backing).   

 

 

4.6 Planar PSL with Air Gap 
A tunable “air-gap” structure based on a 1.94mm PSL was constructed.  The 

schematic diagram (figure 4.6.1) shows the copper PSL secured by Perspex holders, 

and held by four nylon screws at a variable distance from a copper back plate. The 

air separation was adjusted to specific values (1mm, 1.6mm and 3mm) with 

equivalent optical path lengths to the 0.41mm, 076mm and 1.43mm FR-4 substrates.  

This arrangement (photographed in figure 4.6.2) allowed the study of a low loss PSL 

structure which is of particular importance when scaling the PSLs up to even higher 

frequencies, where significant dielectric loss may inhibit the coherent 

synchronisation of the lattice.   Further experimental measurements involved the 

insertion of dielectric and aluminium frames.  It was hoped that these would provide 

well-defined boundaries, reducing the levels of radiation leaked from the edges, 

whilst maintaining the low-loss air separation. 
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Figure 4.6.1. Schematic diagram showing tunable “air-gap” structure based on the 
1.94mm PSL.  The air separation is adjusted by the four nylon screws. 

 

Figure 4.6.2.Photograph of “air-gap” structure based on a 1.94mm PSL held at a 
variable distance from a copper back plate.  The gap spacing is adjusted by turning 
the nylon screws.   
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4.7 Vector Network Analyser 
All experimental measurements were performed using a vector network analyser 

(VNA) to generate an incident plane wave which allowed transmission, reflection, 

and phase measurements to be carried out over a broad frequency range. The model 

used was an Anritsu Vector Star (MS4647A) with G-band (140-220 GHz) OML mm-

wave modules (or 325-500 GHz OML modules when working at higher frequencies) 

calibrated to measure 3200 data points. The VNA and modules were used in 

conjunction with a 3739 Broadband Test Set. When operating at G-band, the mm-

wave modules were connected directly to the Broadband Test Set via the local 

oscillator (LO) and radio frequency (RF) drives (figure 4.7.1), while at the 325-500 GHz 

frequency band, two signal generators (MG3692) were required, along with the 

Broadband Test Set, to supply the desired frequency output.  The insertion of a -30dB 

attenuator between one of the signal generators and the 325-500 GHz OML module 

was essential to protect the equipment from damage. The VNA was calibrated using 

the standard Anritsu WR-05 and WR-2.2 waveguide calibration kits for the 140-220 

GHz and 325-500 GHz frequency bands respectively.  For both configurations, an 

offset short (SSLT) calibration method, in which the difference between the length of 

two shorts was used to help define the reflection measurements (Scalzi, Slobodnik 

et. al, 1988), was chosen.  

Figure 4.7.1. shows the Anritsu Vector Star VNA connected  to the Broadband Test 

Set and G-band (140-220 GHz) OML modules.  The scanning platform, used to 

conduct measurements over a range of angles as detailed in the next section, and 

one of the PSL structures with no substrate, as described in §4.2, are also pictured. 
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Figure 4.7.1.  Photograph illustrating the experimental set-up.  The  VNA is  connected 
to the 140-200 GHz OML mm-wave modules.  The copper PSL (without substrate) is 
fixed at 0° and irradiated with a pair of G-band horns using the scanning platform. 

4.8 Experimental Set-up 
The experimental set-up allowing reflection measurements of the PSL structures to 

be made was photographed in figure 4.7.1. As the experiments progressed, the set-

up evolved over time to allow faster, more reliable measurements. This involved the 

construction of an improved scanning platform, allowing more precise alignment 

between the waveguide horns and structure. When carrying out the reflection 

measurements, the high frequency OML modules were rotated on the scanning 

platform, with the PSL structure held in a fixed position, at the pivot point of the 

rotating arms (𝜃𝑖 = 0°). Grooves machined into the Perspex arms were designed to 

hold the OML modules in place, while the use of runners allow them to be moved 

forwards or backwards as necessary.  The angles of incidence 𝜃𝑖  and reflection 𝜃𝑟 

were marked on the wooden protractor in 1° increments, allowing the experimental 

set-up for the reflection measurements to be arranged such that 𝜃𝑖 = 𝜃𝑟.  

Transmission measurements were also made for the set of PSLs without the 
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substrates. This experimental arrangement, with the launching/receiving horns 

directly aligned, is photographed in figure 4.8.1.  In this case the PSL was rotated in 

gradual increments, using the plastic protractor for reference.   

 

Figure 4.8.1.  Experimental set-up for the transmission measurement of the PSL with 
no substrate.  The G-band horns (attached to the 140-220 GHz OML modules) are 
aligned and kept stationary, while the PSL is rotated, using the protractor for 
reference. 

All the measurements were carried out in the far field (Fraunhofer) region, where the 

criterion for the far field boundary is given by 𝑑𝑓𝑎𝑟𝑓𝑖𝑒𝑙𝑑 ≥
𝐷ℎ𝑜𝑟𝑛

2

𝜆
 with 𝑑𝑓𝑎𝑟𝑓𝑖𝑒𝑙𝑑 

defined as the distance between the launching/receiving horn and the PSL.  𝐷ℎ𝑜𝑟𝑛 

denotes the largest dimension of the antenna, while 𝜆 is the wavelength of the 

radiation source.  The distance 𝑑 was set to 75mm for all the 140-220 GHz band 

measurements and 8mm for the 325-500 GHz band measurements. 

A preliminary experiment was carried out to check for diffraction and establish 

whether or not the PSLs behave like diffractive surfaces at the measured frequency 

band. One of the launching/receiving horns was fixed at a particular incident angle 

𝜃𝑖, while the other was swept through the full angular range in 1° increments . The 

results of this preliminary measurement are presented in figure 4.8.2.  No diffraction 
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pattern is observed, as verified by the diffraction condition discussed in the next 

chapter.  Instead, it is confirmed that maximum power is achieved by setting 𝜃𝑖 = 𝜃𝑟, 

which justifies the experimental set-up used to obtain the reflection measurements. 

 

Figure 5.8.2.  Diffraction Measurements made at an incident angle of 50° at 
frequencies of 140 GHz (blue) 180 GHz (red) and 220 GHz (green) for the 1.62mm PSL 
mounted on the 0.41mm substrate (without the copper backing). 

 

4.9 Comparison of W-band and G-band Horns 
Preliminary measurements were also conducted to establish the performance of the 

launching/receiving antennae.  The quality of the results was improved across the 

frequency band by replacing the W-band launching/receiving horns, used in earlier 

experiments, with more compatible G-band (or WR2.2 when working at 325-500 

GHz) launching/receiving antenna. Prior results (obtained using the W-band horns) 

were affected by mode conversion at high frequencies due to the waveguide step.  

In these early measurements, it was necessary to calibrate the raw data by 

subtracting the reflection measurements for a smooth metal plate. Measurements 

of an earlier, 1.79mm PSL etched onto a 0.76mm substrate, carried out using both 

W-band (blue plot) and G-band (red plot) horns are compared in figure 4.9.1.  
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Similarly, results for a 1.79mm PSL etched onto a 0.41mm substrate, measured with 

the W-band (blue plot) and G-band (red plot) horns, are plotted alongside each other 

in figure 4.9.2.  Although two resonances are observed at lower frequencies in both 

cases, the performance of the W-band horns is poor above 170 GHz.  Improving the 

experimental set-up by incorporating the G-band horns greatly enhanced the quality 

of the measurements.  The reproducibility of the results obtained with this set-up is 

demonstrated in chapter 5. 

Figure 4.9.1. Reflected power measurements for 1.79mm PSL etched onto a 0.76mm 
substrate, made using W-band (blue) and G-band (red) waveguide horns. 
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Figure 4.9.2. Reflected power measurements for 1.79mm PSL etched onto a 0.41mm 
substrate, made using W-band (blue) and G-band (red) waveguide horns. 

 

4.10 Mode Scans of Launching/Receiving Antennae 
When carrying out experimental measurements, it was important to ensure uniform 

illumination across the PSL.  Factors such as inadequate irradiation of the PSL or 

potential edge effects, arising from side lobes in the output of the horns striking the 

edges of the structure, may lead to poor results.  The objective was to illuminate an 

optimum number of scatterers in order to achieve a high cavity Q, whilst at the same 

time preventing the side lobes from impinging on the PSL boundaries as much as 

possible.  One way of controlling the spot size was to choose an optimum distance, 

within the far-field, between the sample and the launching/ receiving horns. 

The output beam profiles of the G-band (140-200 GHz) and WR2.2 (325-500 GHz) 

antennae were obtained by conducting mode scans.  This involved keeping one horn 

stationary and scanning the second horn over a range of angles. The angular sweep 

was limited by the length of the cables attached to the OML modules, allowing for a 

range of -15° to 55° for the G-band horns and -30° to 60° for the WR2.2 horns.  While 

waveguide twists (WR2.2) with a 90° rotation, thus converting the polarisation from 
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the H to E plane, were used to measure both polarisations for the WR2.2 horns, no 

such twists were available for use at G-band.   

Due to their small aperture dimensions, the WR2.2 horns proved difficult to align.  

This problem was exacerbated by a slight offset in the waveguide attachment of the 

OML modules.  To compensate, the horns were aligned by maximising the 

transmitted power. Since these measurements were deemed less reliable than those 

at G-band, mode scans for the WR2.2 horns were carried out on two separate 

occasions, with the set-up reassembled between measurements.  The experimental 

findings were compared to theoretical values (Silver, 1949) describing the radiation 

output from a rectangular waveguide aperture.  This approximation does not take 

into account the flared geometry of the horn and assumes plane wave radiation.  The 

following equations were used to describe the E and H planes: 

𝐸𝜃 = 2 (
𝜇

𝜀
)

1
2 𝑎𝑤𝑔

2𝑏𝑤𝑔

𝜋𝜆2𝑅𝑓𝑎𝑟
[1 +

𝑘𝑧
𝑤𝑔

𝑘
𝑐𝑜𝑠𝜃 + Γ𝑟𝑒𝑓 (1 −

𝑘𝑧
𝑤𝑔

𝑘
𝑐𝑜𝑠𝜃)]

𝑠𝑖𝑛 (
𝜋𝑏𝑤𝑔

𝜆
𝑠𝑖𝑛𝜃)

𝜋𝑏𝑤𝑔

𝜆
𝑠𝑖𝑛𝜃

𝑒−𝑗𝑘𝑅𝑓𝑎𝑟  

 

𝐻𝜃 = − (
𝜇

𝜀
)

1
2 𝜋𝑎𝑤𝑔

2𝑏𝑤𝑔

2𝜆2𝑅𝑓𝑎𝑟
[𝑐𝑜𝑠𝜃 +

𝑘𝑧
𝑤𝑔

𝑘
+ Γ𝑟𝑒𝑓 (𝑐𝑜𝑠𝜃 −

𝑘𝑧
𝑤𝑔

𝑘
)]

𝑐𝑜𝑠 (
𝜋𝑎𝑤𝑔

𝜆
𝑠𝑖𝑛𝜃)

(
𝜋𝑎𝑤𝑔

𝜆
𝑠𝑖𝑛𝜃)

2

−
𝜋2

4

𝑒−𝑗𝑘𝑅𝑓𝑎𝑟  

 

The parameters  𝑎𝑤𝑔 and 𝑏𝑤𝑔 are the dimensions of the rectangular antennae, 𝑘𝑧
𝑤𝑔

is 

the longitudinal wavenumber of the fundamental rectangular waveguide mode, 𝑅𝑓𝑎𝑟 

is the radius of the far field and Γ𝑟𝑒𝑓 is a reflection coefficient defined by the ratio of 

the transverse components of the reflected and incident electric field vectors.  When 

the antennae aperture is large in comparison to the operating wavelength 𝜆, Γ𝑟𝑒𝑓 ≈

0. (Silver, 1949) The aperture dimensions of the G-band (𝑎𝑤𝑔 = 12.548, 𝑏𝑤𝑔 =

 9.55)mm and WR2.2(𝑎𝑤𝑔 = 1.89, 𝑏𝑤𝑔 = 2.58)mm horns are sufficiently large, 

allowing the reflection coefficient terms to be neglected. 
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4.10.1 G-Band Mode Scans (H-Plane) 
The normalised transmission measurements (green plots) demonstrating the output 

beam profiles for the H-plane of the G-band horns at frequencies of 140 GHz, 180 

GHz and 220 GHz are presented in figures 4.10.1.1-4.10.1.3.  These are plotted 

alongside the normalised theoretical profiles (red plots) predicted by Silver.  The 

plots show good agreement between the theoretical and experimental results, 

despite a small dip in the transmitted power around 0° at 180 GHz (figure 4.10.1.2). 

Figure 4.10.1.1. Beam-profile showing the normalised transmitted power of the G-
band, standard gain horn at 140 GHz, polarised in the H-plane (green plot).  The red 
plot shows the theoretical beam-profile predicted by Silver. 
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Figure 4.10.1.2. Beam-profile showing the normalised transmitted power of the G-

band, standard gain horn at 180 GHz, polarised in the H-plane (green plot).  The red 

plot shows the theoretical beam-profile predicted by Silver. A dip is observed at the 

centre of the main lobe, around 0º. 

Figure 4.10.1.3. Beam-profile showing the normalised transmitted power of the G-
band, standard gain horn at 220 GHz, polarised in the H-plane (green plot).  The red 
plot shows the theoretical beam-profile predicted by Silver. As expected, the beam-
width is narrowest at 220 GHz.  The dip in the main lobe is least pronounced at this 
frequency. 
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4.10.2 WR2.2 Waveguide Horns – H-plane Results 
Figures 4.10.2.1-4.10.2.3 show the normalised transmission measurements, made on 

two separate occasions (green, purple plots), for the H-plane of the WR2.2 horns at 

frequencies of 140GHz, 180 GHz and 220 GHz.  Both sets of data are compared to the 

normalised, theoretical output beam profile (Silver, 1949) with the best performance 

observed at the centre of the frequency band (figure 4.10.2.2).  To account for a 

systematic error, the green plot as been corrected for a 2° offset. 

 

Figure 4.10.2.1. Beam-profile showing the normalised transmitted power of the 
WR2.2 waveguide standard gain horn at 325 GHz, polarised in the H-plane (green and 
purple plots).  The red plot represents the theoretical values predicted by Silver for a 
rectangular waveguide aperture with WR2.2 dimensions at 325 GHz.   
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Figure 4.10.2.2. Beam-profile showing the normalised transmitted power of the 
WR2.2 waveguide standard gain horn at 412.5 GHz, polarised in the H-plane (green 
and purple plots).  The red plot represents the theoretical values predicted by Silver 
for a rectangular waveguide aperture with WR2.2 dimensions at 412.5 GHz.   

 

Figure 4.10.2.3. Beam-profile showing the normalised transmitted power of the 
WR2.2 waveguide standard gain horn at 500 GHz, polarised in the H-plane (green and 
purple plots).  The red plot represents the theoretical values predicted by Silver for a 
rectangular waveguide aperture with WR2.2 dimensions at 500 GHz.   
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4.10.3 WR2.2 Waveguide Horns – E-plane 
Finally, measurements were made for the WR2.2 horns, polarised in the E-plane 

using the pair of waveguide twists.  The experimental transmission measurements 

(green, purple plots) are once more plotted alongside the theoretical beam profile 

(red plot) at frequencies of 140 GHz, 180 GHz and 220 GHz.  Again, optimum 

performance was measured at the middle of the frequency band.  Besides the main 

lobe, the first side lobe is visible at all frequencies due to the E-plane polarisation. 

Figure 4.10.3.1. Beam-profile showing the normalised transmitted power of the 
WR2.2 waveguide standard gain horn at 325 GHz (green and purple plots).  The horns 
are polarised in the E-plane using a pair of waveguide twists.  The red plot represents 
the theoretical values predicted by Silver for a rectangular waveguide aperture with 
WR2.2 dimensions (A=1.89mm, B=2.58mm) at 325 GHz.   

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-30 -20 -10 0 10 20 30 40 50 60

Tr
an

sm
it

te
d

 P
o

w
e

r 
(S

1
2

) 
(N

o
rm

al
is

ed
) 

Angle (degrees)



106 

Figure 4.10.3.2. Beam-profile showing the normalised transmitted power of the 
WR2.2 waveguide standard gain horn at 412.5 GHz (green and purple plots).  The 
horns are polarised in the E-plane using a pair of waveguide twists.  The red plot 
represents the theoretical values predicted by Silver for a rectangular waveguide 
aperture with WR2.2 dimensions (A=1.89mm, B=2.58mm) at 412.5 GHz.   

Figure 4.10.3.3.Beam-profile showing the normalised transmitted power of the 
WR2.2 waveguide standard gain horn at 500 GHz (green and purple plots).  The horns 
are polarised in the E-plane using a pair of waveguide twists.  The red plot represents 
the theoretical values predicted by Silver for a rectangular waveguide aperture with 
WR2.2 dimensions (A=1.89mm, B=2.58mm) at 500 GHz.   
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4.11 Permittivity of dielectric samples of different 

thickness 
FR-4 is conventionally used in low frequency microwave components and little is 

known about its electromagnetic properties at 140 GHz and beyond.  In addition to 

high frequency dielectric losses, the manufacturing of FR-4 is seldom regulated to 

tight specifications, meaning there can be a relatively large variation in its dielectric 

permittivity, especially for samples of different thickness.  In fact, it is reported that 

thinner samples, such as the 0.41mm substrate used in some of the PSL structures, 

are typically produced using a slightly different chemical composition (Lee, 2014). 

Two methods were used in an attempt to define the dielectric permittivity at 140-

220 GHz for the dielectric samples of different thickness. 

4.11.1 Brewster Method 
In this section the method of determining the dielectric refractive index 𝑛𝑑 by 

measuring Brewster’s angle at the 140-200 GHz frequency band is discussed. 

Typically, Brewster measurements are conducted at optical frequencies with the use 

of a laser beam (Ouseph, Driver et al. 2001).  However, measurements of dielectric 

sheets at microwave frequencies by a similar approach have been documented 

(Afzalzadeh 1998). 

The experiment described in this section has been carried out with the G band horns 

rotated to have the electric field polarised parallel to the plane of incidence (E-plane 

polaristaion).  Reflection measurements were made for the different dielectric 

samples at 1° increments.  The data obtained with the VNA was studied at 

frequencies of 140 GHz, 180 GHz and 220 GHz over the full angular range in order to 

identify a minimum in the reflected signal.  The angle at which the minimum reflected 

power is observed is the Brewster angle 𝜃𝐵.  When 𝜃𝐵  is known, the refractive index 

of the dielectric can be evaluated from Brewster’s Law: 𝑛𝑑 = 𝑛𝑖𝑡𝑎𝑛𝜃𝐵 = 𝑡𝑎𝑛𝜃𝐵 

(Brewster 1815) A more sophisticated method involves using  𝑛𝑑 = 𝑡𝑎𝑛𝜃𝐵  to 

determine an initial value of the dielectric’s refractive index (𝑛𝑑) and gradually 

varying 𝑛𝑑, using the Least Squares method to achieve the closest fit to the Fresnel 

equation (Corson and Lorrain 1962, Hecht 1998)  below. 
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𝑅∥ = (
− cos 𝜃𝑖 + (𝑛1 𝑛2⁄ ) cos 𝜃𝑡

cos 𝜃𝑖 + (𝑛1 𝑛2⁄ ) cos 𝜃𝑡

)

2

 

 

𝜃𝑖  is the angle of incidence and 𝜃𝑡 is the transmitted angle given by Snell’s Law: 

sin 𝜃𝑖 sin 𝜃𝑡 =  𝑛2 𝑛1 = 𝑛𝑑⁄⁄ . The reflection measurements at frequencies of 140 

GHz (green plot), 180 GHz (blue plot) and 200 GHz (red plot) are presented in figure 

4.11.1.1.  At all three frequencies, the minimum (observed around 60°-70°) is 

distorted by oscillations.  The reflected power at lower angles showed poor 

agreement with Fresnel’s equation, and attempts to fit the data proved unsuccessful. 

 

Figure 4.11.1.1. Brewster measurements in the E-plane polarisation for the 0.76mm 
FR-4 sample at frequencies of 140 GHz (green line) 180 GHz (blue line) and 220 GHz 
(orange line).  Oscillations are observed in the region of the Brewster angle. 

The oscillations of figure 4.11.1.1 suggest possible interference of the antennae side 

lobes. The schematic presented in figure 4.11.1.2 shows that the side lobes may 

couple directly into each other when 𝜃𝑠 = 90 − 𝜃𝐵, where 𝜃𝑠 is equivalent to the 

complimentary angle, 𝜃𝑐. If the Brewster angle (𝜃𝑖 = 𝜃𝐵) is assumed to lie between 

64.6° and 67.3° depending on the thickness of the dielectric (as calculated from the 

phase measurements made in the next section, §4.11.2) then the corresponding 
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angle at which the two output beams directly feed into one another, without first 

striking the dielectric, occurs between 𝜃𝑠 =25.4° and 𝜃𝑠 =22.7°.  

Figure 4.11.1.2 Schematic diagram demonstrating interference of the 
launching/receiving antennae.  Direct coupling between the output beams, occurs at 
angle 𝜃𝑠 given by 𝜃𝑠 = 90 − 𝜃𝐵. 

Figure 4.11.1.3 shows the theoretical beam profile for the G-band horns at 

frequencies of 140 GHz (green plot), 180 GHz (blue plot) and 220 GHz (yellow plot), 

polarised in the E-plane.  The pair of red dashed lines at 22.7°, and black dashed lines 

at 25.4° mark the angles at which the horn output beams can directly couple at the 

Brewster angle for the thinnest and thickest FR-4 substrates.  When superimposed 

on the theoretical beam profile, it is evident that both the main lobe and first side 

lobe may couple into each other at the oblique incident angles required for the 

Brewster measurements, thus distorting the results.  The refractive indices of the 

0.41mm, 0.76mm and 1.43mm FR-4 dielectrics were therefore determined by an 

alternative method, detailed in the following section. 
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Figure 4.11.1.3. Theoretical beam profile for the G-band horns polarised in the E-plane 
at frequencies of 140 GHz (green plot), 180 GHz (blue plot) and 220 GHz (red plot).  
The dashed lines mark 𝜃𝑆 when the Brewster angle 𝜃𝐵  falls between 64.6° and 67.3.  
The plot indicates that part of the main and first side lobes feed directly into each 
other without first striking the dielectric, leading to interference. 
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4.11.2 Change in Phase Method 
The dielectric permittivity of the different substrates was calculated by measuring 

the phase using the VNA and placing the dielectric samples between the 140-220 GHz 

launching/receiving horns as shown in figure 4.11.2.1. 

 

Figure 4.11.2.1.  Photograph demonstrating the change in phase method used to 
establish the permittivity of the FR-4.  The phase of the dielectric was measured by 
positioning the sample between the G-band horns as shown. 

The phase change was established by removing the sample and recording the phase 

of the resultant air-gap.  From optics, (Hecht, 1998) the phase in the air 𝜃𝑎𝑖𝑟  and 

dielectric 𝜃 𝑑𝑖𝑒𝑙 media of a given length, 𝐿 is defined: 

𝜃𝑎𝑖𝑟,𝑑𝑖𝑒𝑙 = 𝐿𝑘𝑎𝑖𝑟,𝑑𝑖𝑒𝑙 

where 𝑘 is the wavenumber which is written 𝑘𝑎𝑖𝑟 = 2𝜋 𝜆0⁄  and 𝑘𝑑𝑖𝑒𝑙 = 2𝜋𝑛𝑑 𝜆0⁄  for 

the air and dielectric regions respectively, and 𝑛𝑑 is the refractive index of the 

dielectric sample.  The phase change Δ𝜃 is then: 

Δ𝜃 = 𝜃 𝑑𝑖𝑒𝑙 − 𝜃 𝑎𝑖𝑟 =
2𝜋

𝜆0
𝐿(𝑛𝑑 − 1) 

In measuring the phase, the VNA contributes its own unknown phase element, and 

the overall phase change  𝜃𝑉𝑁𝐴  is expressed 

𝜃𝑉𝑁𝐴 = Δ𝜃 + 2𝜋𝑤 
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where 𝑤 is an arbitrary integer number.  Taking this unknown phase element into 

account, the phase change between the two media can be expressed 

Δ𝜃 =
2𝜋𝑓(𝑛𝑑 − 1)𝐿

𝑐
− 2𝜋𝑤 

Differentiating this phase change with respect to the frequency gives: 

∂Δ𝜃

∂f
=

2𝜋𝐿(𝑛𝑑 − 1)

𝑐

and rearranging for the refractive index, 𝑛𝑑 gives the equation below. 

𝑛𝑑 = 1 + 𝑐
∂Δ𝜃 ∂f⁄

2𝜋𝐿

Plots illustrating the phase change over frequency, and demonstrating the lines of 

best fit used to obtain ∂Δ𝜃 ∂f⁄ , are presented for all the FR-4 samples in figures 

4.11.2.2.-4.11.2.4.  Measurements were repeated several times, and the four 

overlaid plots of figure 4.11.2.5 show the reproducibility of the phase change results 

for the 1.43mm dielectric.  The phase, both for the dielectric and equivalent air space, 

was measured four times and the error in the gradient of the line of best fit was found 

to be ±0.0002. The fractional uncertainties of the dielectric thickness (±0.005) and 

change in phase measurements (±0.0002) were combined to give the overall error in 

the refractive indices, listed in table 4.11.1. 
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Figure 4.11.2.2. Change in phase for a signal travelling through the 0.41mm FR-4 
dielectric compared to the phase measured for the same air distance.  The line of best 
fit is marked by the red dashed line.   

 

Figure 4.11.2.3. Change in phase for a signal travelling through the 0.76mm FR-4 
dielectric compared to the phase measured for the same air distance.  The line of best 
fit is marked by the red dashed line.   
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Figure 4.11.2.4. Change in phase for a signal travelling through the 1.43mm FR-4 
dielectric compared to the phase measured for the same air distance.  The line of best 
fit is marked by the red dashed line.   

Figure 4.11.2.4. Change in phase for the 1.43mm FR-4 sample.  The four overlaid plots 
demonstrate the reproducibility of the phase measurements. The error in the gradient 
of the line of best fit for the four measurements was found to be 
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Material Dielectric Thickness (mm) ∂Δ𝜃 ∂f⁄  Refractive index 𝑛𝑑 

FR-4 0.410±0.005 0.0119±0.0002 2.384±0.032 

FR-4 0.762±0.005 0.0187±0.0002 2.252±0.019 

FR-4 1.433±0.005 0.0333±0.0002 2.109±0.013 
Table 4.11.1. Table of results listing the mean gradients and refractive indices with error 

margins for the measured dielectric samples. 

 

4.12 Chapter Conclusions 
Planar PSLs without substrates were manufactured using advanced laser etching 

techniques, with a view to studying the surface field exclusively.   The chemical 

etching process used to fabricate the PSLs mounted on the FR-4 substrates (with and 

without the copper backing) was discussed.  These structures are thought to be 

capable of supporting a volume mode, which under certain conditions, may couple 

with the PSL’s surface field. A similar structure, scaled up to operate at the 325-500 

GHz band, was presented and the construction of an “air-gap” structure based on 

one of the PSLs was described.  Detailed images, including a 3D representation of the 

325-500 GHz PSL, were obtained for the planar structures using a Hirox 3D imager.  

Some localised defects arising from non-uniform etching were observed.  However, 

the structures’ periodicity, measured using the Hirox imager and a travelling 

microscope, were found to coincide with the expected values with small uncertainty 

margins.  Preliminary measurements demonstrated the importance of using 

compatible waveguide horns in order to avoid mode conversion.  The measured 

output beam profiles of the G-band and WR2.2 horns used in the experiments, 

showed good agreement with the theoretical predictions, with optimum 

performance typically observed at the middle of the frequency band.  Finally, two 

methods of measuring the refractive index of a dielectric sample were discussed.  The 

Brewster angle method proved unsuccessful due to interference of the 

launching/receiving horn lobes.  Measuring the phase in the dielectric, however, led 

to refractive indices of 2.38±0.03, 2.25±0.02 and 2.11±0.01 for the 0.41mm, 0.76mm 

and 1.43mm substrates respectively, demonstrating a significant variation between 

samples.   
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Chapter 5- Experimental Results for 2D Planar PSLs 
 

5.1 Introduction 
The experimental results for the 2D planar PSL structures are presented in this 

chapter.  The results for the simplest structures, consisting of copper PSLs designed 

to study the surface field, are discussed in §5.2. Another layer of complexity is 

introduced in §5.3, where electromagnetic behaviour associated with the volume 

and surface fields is demonstrated for the set of PSLs mounted on the 0.76mm FR-4 

substrates.  When the copper backing is added, the PSLs etched onto the 0.76mm 

copper-backed substrates, studied in §5.4, are shown to facilitate coherent coupling 

between volume and surface fields.  The reproducibility of these key results, which 

demonstrate coherent eigenmode formation, is established in §5.5.  

Subsequent sections are devoted to the study of the PSLs etched onto the thinner 

0.41mm (§5.6) and thicker 1.43mm (§5.7) substrates where further complex 

behaviour is observed. The effect of changing the dielectric boundaries is explored in 

§5.8. A reflection measurement of the higher frequency, 0.63mm structure (designed 

to operate at the 325-500 GHz frequency band) is presented (§5.9), confirming the 

scalability of this work.  In §5.10 the 0.63mm PSL is measured at 140-220 GHz, where 

it better satisfies the metamaterial criterion, and exhibits unique EM properties.  

Finally, the role of the dielectric is investigated by measuring the “air-gap” structure, 

based on the 1.94mm PSL.  Measurements made for different air separations are 

discussed in §5.11.  To conclude, the main outcomes of this chapter are summarised 

in §5.12.  
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5.2 Planar PSLs without Substrates 
Measurements were first made for simple PSLs with no dielectric or copper backing.  

These PSLs, with no well-defined waveguide boundaries to support volume waves, 

allowed exclusive study of the surface waves.  For structures of this type, the ratio of 

the lattice period 𝑑𝑧 to the wavelength 𝜆 determines whether or not the PSL will 

behave like a diffractive surface in the transverse direction.  At normal incidence, the 

PSLs diffract radiation when 𝑑𝑧 𝜆 > 1⁄ . However, when the PSLs are irradiated at 

𝜃𝑖 >0°, the diffraction condition 
2𝜆

𝑑𝑧
(1 + 𝑠𝑖𝑛𝜃𝑖) < 1 applies.  The PSLs with 𝑑𝑧 ≈ 𝜆 

therefore operate in the non-diffractive regime, where mesh structures  such as the 

PSLs studied in this work, are known to behave like high-pass filters (Ulrich 

1968,1976).   This explains why no diffraction pattern was observed in the 

preliminary measurements conducted in §4.8. 

 Surface currents induced in the copper flow around each unit cell and are scattered 

by the lattice perturbations to produce a surface field which, in turn interferes with 

the reflected signal, resulting in a sharp resonance. Figure 5.2.1 demonstrates the 

reflection measurements for the set of PSLs without substrates at a fixed incident 

angle of 40°. The periodicity defines the resonant frequency of the PSL with larger 

periods corresponding to lower frequencies.  The highest frequency resonance was 

observed for the 1.50mm PSL (red plot), while the lowest was measured for the 

1.94mm PSL (purple plot). 
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Figure 5.2.1 Reflection measurements at 40° for the set of copper PSLs (without 
substrates). The lattice periods are as follows: 1.50mm (red), 1.62mm (green), 
1.74mm (blue) and 1.94mm (purple) at an incident angle of 40°.  The resonant mode 
of the PSL shifts down the frequency band with increasing 𝑑𝑧. 

 

Each lattice cell supports a surface field when 𝜆𝑠 ≅ 𝑑𝑧 . As an approximation, the PSL 

can be described as an array of rectangular waveguide apertures, where the reflected 

frequency lies close to the cut-off frequency of the fundamental 𝑇𝐸1,0 mode. 

Degenerate modes are neglected due to asymmetries associated with the fabrication 

of the PSLs. The periodicity of the lattice, however, is not the only factor in 

determining the operating frequency of the PSL which corresponds to the surface 

field’s resonance. Figure 5.2.2 shows that the PSL resonances are also characterised 

by a strong angular dependence. For all four PSLs, the frequency of the resonance 

shifts down with increasing incident angle. 
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Figure 5.2.2. Reflection measurements made at different angles for the set of copper 
PSLs (without substrates). The lattice periods are as follows: 1.50mm (red), 1.62mm 
(green), 1.74mm (blue) and 1.94mm (purple).The resonant mode of the PSL shifts 
down the frequency band with increasing angle. 

 

This may be attributed to a phase shift, introduced when 𝜃𝑖 >0°.  The individual 

perturbations of the PSL oscillate slightly out of phase with one another.  This phase 

shift is most pronounced when the signal strikes the structure at large angles. The 

reflection measurements for the set of PSLs, carried out over a range of incident 

angles from 25° to 65° are presented in figures 5.2.3-5.2.6. From these 

measurements it is observed that the resonances are typically sharper at large 

incident angles where they appear most constrained and shift to a lesser extent with 

increasing angle.  For instance, figure 5.2.3 shows a frequency separation of 6.1 GHz 

between the resonances at 25° and 35° while a difference of just 0.85 GHz exists 

between those at 65° and 70°.  The measured resonances are indicative of the PSL’s 

surface field, and at lower incident angles (𝜃𝑖 =30°- 35°) occur when 𝜆𝑠 ≅ 𝑑𝑧. 
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Figure 5.2.3.  Reflected power for 1.50mm PSL without dielectric substrate for varying 
angle of incidence from 25° to 70°. 

Figure 5.2.4.  Reflected power for 1.62mm PSL without dielectric substrate for varying 
angle of incidence from 25° to 70°. 
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Figure 5.2.5.  Reflected power for 1.74mm PSL without dielectric substrate for varying 
angle of incidence from 25° to 70°. 

Figure 5.2.6.  Reflected power for 1.94mm PSL without dielectric substrate for varying 
angle of incidence from 25° to 70°. 



122 
 

Transmission measurements were also made for the set of PSLs with no substrates. 

As expected, the transmitted frequencies of the structures were found to coincide 

with the reflected resonances demonstrated in figures 5.2.3-5.2.6.  Figure 5.2.7 

shows the transmitted power, over a range of incident angles from 10° to 80°, for 

the 1.94mm PSL.  Close agreement is observed between the reflected and 

transmitted frequencies of figures 5.2.6 and 5.2.7.   

 

Figure 5.2.7.  Transmitted power for the 1.94mm PSL without the dielectric substrate 
at varying angles of incidence (10° to 80°). 

 

5.3 Planar PSLs with 0.76mm Substrates 
Having investigated the EM response of the PSLs alone, measurements of the PSLs 

etched onto dielectric substrates (with no copper backing) were studied.  Initially, the 

PSLs mounted on the 0.76mm FR-4 substrates (with 𝜀 = 4.71) were considered. 

Measurements of the PSLs etched onto the thinner (0.41mm) and thicker (1.43mm) 

substrates are presented later in this chapter (§5.6 and§5.7). Weak volume waves 

inside the dielectric are internally reflected when 𝜃𝑖 >26°. The inclusion of the lossy 

dielectric introduces experimental noise which significantly attenuates the field 

magnitude, particularly at larger incident angles. 
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Of the set of PSLs etched onto the 0.76mm substrates, the clearest results were 

obtained for the 1.62mm PSL, shown in figure 5.3.1.  The surface field, most 

prominent at 25°, is comparable to that of the 1.62mm PSL alone (figure 5.2.4) with 

some deviation between the two results (~3GHz) at low incident angles.  Further 

complex behaviour evident in figure 5.3.1 may be attributed to the presence of a 

volume field within the dielectric.  This volume field is thought to be weakened by 

the lack of well-defined waveguide boundaries. Without the copper backing, the 

unbound volume field is less effective at synchronising the PSL, as required for 

coherent radiation.  Weak reflection at the back surface of the dielectric, however, 

may still facilitate weak coupling between volume modes and the surface mode of 

the PSL. 

 

Figure 5.3.1 Reflected power for 1.62mm PSL with 0.76mm dielectric substrate 
(without copper backing) over a range of incident angles from 25° to 70°. 

Throughout the duration of the experiment, measurements were repeated on 

separate occasions, with a period of several months between each measurement.  

The experimental set-up was completely dismantled and reassembled on each 

occasion, and the VNA was recalibrated for each set of measurements.  The collective 
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reproducibility of the set of structures (excluding the PSLs mounted on the 0.76mm 

copper-backed substrates which are discussed in §5.4-§5.5) was found to be ± 0.8 

GHz (frequency) and ± 2 dB (magnitude).  These error margins were calculated by 

evaluating the standard deviation of the mean for each resonance, and choosing the 

largest values to give an overall error approximation. The uncertainty associated with 

the angular resolution of the scanning platform is covered by the frequency 

uncertainty. The quoted magnitude instability of the 140-200 GHz VNA modules is 

~ ±0.25 dB, which is negligible in comparison to the magnitude uncertainty 

associated with the experimental alignment.   

Figure 5.3.2 shows three overlaid plots (dotted, dashed and solid lines), measured on 

three separate occasions, for the 1.62mm PSL with the 0.76mm substrate at low 

incident angles (𝜃𝑖 ≤ 40°) where the resonances are best defined.  The results 

demonstrate good reproducibility between the measurements. 

 

Figure 5.3.2. Reflection measurements for the 1.62mm PSL with 0.76mm substrate 
without copper backing.  Results have been measured on three separate occasions 
(dotted, dashed and solid lines) to demonstrate the repeatability of the results.  
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Having established the reproducibility of the measurements, the results of figure 

5.3.2 are studied at a fixed angle in order to interpret some of the structure’s complex 

behaviour.  Four distinct resonances are identified in figure 5.3.3a, which shows the 

reflected power for the 1.62mm PSL with the 0.76mm substrate at an incident angle 

of 35°.  The trace provided in figure 5.3.3.b shows the surface field (resonance 3) 

annotated with error bars to illustrate the ± 0.8 GHz frequency uncertainty.  A similar 

plot is shown in figure 5.3.3.c, where the shaded region demonstrates the ± 2dB 

magnitude uncertainty. 

 

Figure 5.3.3a. Reflected power for 1.62mm PSL with 0.76mm dielectric substrate 
(without copper backing) at an incident angles of 35°.   
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Figure 5.3.3.b. Plot showing ±0.8 GHz frequency uncertainty error bars for the surface 
field (resonance 3) of the 1.62mm PSL mounted on the 0.76mm dielectric substrate 
(without copper backing) at an incident angles of 35°.   

 

Figure 5.3.3.c. Plot showing ±2 dB magnitude uncertainty (shaded region) for the 
1.62mm PSL mounted on the 0.76mm dielectric substrate (without copper backing) 
at an incident angles of 35°.   
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Resonance 1 may indicate a possible volume mode existing within the dielectric while 

resonance 2, which lies almost exactly between 1 and 3, may represent weak 

coupling between the volume and surface modes, facilitated by weak reflection at 

the dielectric boundary. Earlier in this section, figure 5.3.1 showed the uppermost 

resonance (4) shifting up with increasing angle, in the opposite direction to the 

others. This behaviour is most prominent in the PSLs with larger periodicities and is 

similar to that observed in a Fabry-Perot cavity.  For example, measurements of the 

1.74mm PSL (figure 5.3.4) show possible Fabry-Perot resonances that are 

comparable in magnitude to the PSL’s surface field. Likewise, for the 1.94mm PSL 

(figure 5.3.5) the Fabry-Perot behaviour appears to dominate over the surface field 

of the PSL.  Some similarities exist between the reflection measurements of the 

1.94mm PSL etched onto the 0.76mm substrate (figure 5.3.5) and the 0.76mm FR-4 

sample alone (figure 5.3.6).  In both cases, the Fabry-Perot resonance manifests 

around 185 GHz at 𝜃𝑖 =30° and shifts up in frequency as the incident angle in 

increased. 

Figure 5.3.4. Reflection measurement for the 1.74mm PSL with the 0.76mm dielectric 
substrate (without copper backing) over a range of incident angles from 30° to 70°. 
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Figure 5.3.5. Reflection measurement for the 1.94mm PSL with the 0.76mm dielectric 
substrate (without copper backing) over a range of incident angles from 30° to 70°. 

 

Figure 5.3.6 Reflection measurements for the 0.76mm dielectric (FR-4) sample.  The 
results show possible Fabry-Perot resonances that shift up in frequency with 
increasing incident angle. 
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5.4 Eigenmode Formation in Planar PSLs with 0.76mm 

Copper-backed Substrates 
Introducing the copper backing further changes the EM properties of the structure. 

Under certain conditions, and when the PSL is assembled like a Fabry-Perot cavity 

(with the PSL acting as one of the mirrors and the copper backing acting as the 

second) coupling between volume and surface modes can take place, leading to the 

formation of a cavity eigenmode.  The copper backing facilitates coupling by 

increasing the quality of the cavity structure and better synchronising the modes. 

When the lattice is properly synchronised by the volume mode trapped inside the 

dielectric, the resulting resonance appears to be locked at a particular frequency, 

irrespective of the incident angle.   

Reflection measurements showing coherent eigenmode formation for the set of PSLs 

mounted on copper-backed 0.76mm FR-4 substrates are presented in figures 5.4.1-

5.4.4.  Although the position of the eigenmode still varies with the PSL’s periodicity, 

the measured resonances appear within a narrow frequency range (~145-165 GHz).  

Unlike previous measurements of the PSL and substrate, where multiple resonances 

were identified, a single well-defined resonance is observed, indicative of coherent 

cavity eigenmode formation.  The coupling of volume and surface takes place at a 

specific frequency and dominates over other competing behaviour. 

For all the PSLs, the ‘mode-locking’ associated with the formation of the coupled 

eigenmode is most effective at higher incident angles.  For example, measurements 

of the 1.50mm PSL show an angular dependence at 30° and 35°. However, it is noted 

that the resonances are moving up with increasing angle, in the opposite direction to 

before, indicating that the strong coupling, facilitated by the copper backing, alters 

the behaviour of the structure at all incident angles.  For the set of PSLs mounted on 

the 0.76mm copper backed structures, mode-locking is best observed at angles 

above 40°, possibly due to a decreased frequency separation between the uncoupled 

volume and surface fields at higher angles.  The mode-locking illustrated in figures 

5.4.1-5.4.4 demonstrates the principle of mode selection in an over-sized structure. 
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Figure 5.4.1. Coherent, coupled eigenmode formation observed for the 1.50mm PSL 
etched onto the 0.76mm copper backed substrate  

 

Figure 5.4.2. Coherent, coupled eigenmode formation observed for the 1.62mm PSL 
etched onto the 0.76mm copper backed substrate 
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Figure 5.4.3. Coherent, coupled eigenmode formation observed for the 1.74mm PSL 
etched onto the 0.76mm copper backed substrate 

 

Figure 5.4.4. Coherent, coupled eigenmode formation observed for the 1.94mm PSL 
etched onto the 0.76mm copper backed substrate. 
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5.5 Reproducibility of Coherent Eigenmode Formation 

Measurements 
The demonstration of coherent, high Q eigenmode formation in the planar PSLs is 

the main focus of this work, and it was therefore important to prove the 

reproducibility of these results.  In doing so, the experimental set-up was completely 

re-assembled and the VNA measurements were repeated on three separate 

occasions spread over intervals of months.  During this period, the experimental set-

up evolved to allow faster and more reliable measurements.  Replacing the original 

wooden scanning platform with an updated Perspex set-up led to improved 

alignment between the VNA heads and the PSL sample, increasing the precision of 

the angular measurements.  

The three overlaid traces of figure 5.5.1, made on three separate occasions, illustrate 

the reproducibility of the 1.62mm PSL (mounted on the 0.76mm copper-backed 

substrate) when measured at an incident angle of 35°.  The results, which exhibit a 

high degree of reproducibility (±0.3GHz) in frequency, confirm that mode-locking is 

less effective at lower incident angles, where two and in some cases three, 

resonances are observed.  As stated previously, this may be due to a larger frequency 

separation between the volume and surface fields at lower incident angles. The 

±0.3GHz frequency uncertainty for the mode-locked structures (§5.4) is lower than 

the uncertainty quoted for the set of structures as a whole (±0.8GHz). 
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Figure 5.5.1. Reflected power for the 1.62mm PSL etched onto the 0.76mm copper 
backed substrate.  The measurement was repeated on 3 separate occasions, with 
several months between measurements to establish the reproducibility of the results. 

The reproducibility of the magnitude (±16dB) is poor in comparison, as shown by the 

large fluctuation in the reflected power measurements. Figure 5.5.2 shows the same, 

1.62mm PSL structure measured at an incident angle of 45° on three separate 

occasions. The black plot demonstrates a high-Q cavity mode, with a reflected power 

of ~-75dB, while the blue plot illustrates a comparatively weak ~-37dB resonance. 

Precise alignment is essential to achieve optimum power response, and the 

construction of a higher precision set-up may improve the magnitude stability of the 

results.  
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Figure 5.5.2. Comparison of 3 separate measurements for the 1.62mm PSL with the 
copper-backed 0.76mm FR-4 substrate at an incident angle of 45° 

The error bars included in figure 5.5.3 demonstrate the frequency uncertainty in the 

coupled, mode-locked eigenmode of the 1.50mm PSL mounted on the 0.76mm 

copper backed substrate at 40°.  The large ±16dB magnitude uncertainty is 

illustrated by the shaded region of figure 5.5.4. 
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Figure 5.5.3. Plot demonstrating the ±0.3GHz  frequency uncertainty for the coupled, 
mode-locked eigenmode of the 1.50mm PSL mounted on the 0.76mm copper backed 
substrate at 40°. 

 

Figure 5.5.4. Plot demonstrating the ±16dB  magnitude uncertainty (shaded region) 
for the coupled, mode-locked eigenmode of the 1.50mm PSL mounted on the 0.76mm 
copper backed substrate at 40°. 
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5.6 Planar PSLs with 0.41mm Substrates 
The effect of decreasing the dielectric thickness, thereby reducing the number of half 

wavelengths inside the substrate, was studied for the set of PSLs etched onto 

0.41mm substrates, with and without the copper foil backing.  The reflection 

measurements for each case are presented in §5.6.1 and §5.6.2. 

5.6.1 Planar PSLs with 0.41mm Substrates (no copper backing) 
The set of PSLs mounted on the 0.41mm substrates without the copper backing are 

considered in this section. For the structures of this type with =5.69, total internal 

reflection is expected to occur at the air/ dielectric interface when 𝜃𝑖 >25° and may 

facilitate weak coupling by confining some of the field within the dielectric. 

Reflection measurements for the 1.50mm PSL etched onto the 0.41mm substrate are 

provided in figure 5.6.1.1. 

Figure 5.6.1.1.  Reflection measurements for the 1.50mm PSL etched onto the 
0.41mm dielectric substrate (without copper backing) at incident angles of 30° to 70°. 

Three distinct resonances are identified.  Resonance 1 represents a mode inside the 

dielectric with a clear angular dependence. The frequency position of the second 

resonance (2) (which matches the coupled eigenmode of figure 5.4.1 when 𝜃𝑖 ≥55°) 
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is suggestive of weak scattering between the volume and surface fields. Unlike the 

coherent eigenmode observed in §5.4, this resonance is not mode locked, and 

therefore varies with angle.  Phenomena, such as weak reflection at the dielectric 

boundary and total internal reflection, may confine some of the field within the 

dielectric, contributing to the formation of a weakly coupled eigenmode.  

The highest frequency resonance (3) represents the surface field of the PSL. Figure 

5.6.1.2 compares the surface field of the present structure (solid lines) to that of the 

1.50mm PSL with no substrate shown in figure 5.2.3 (dashed lines), when 𝜃𝑖 ≥45°. 

Despite the large disparity in magnitude, the two sets of results demonstrate good 

frequency agreement as anticipated. 

Figure 5.6.1.2. Comparison of reflection measurements of the 1.50mm PSL etched 
onto the 0.41mm substrate (solid lines) and the 1.50mm PSL without the substrate 
(broken lines) at incident angles of 45° to 70°.  

Similar behaviour is observed for the 1.62mm PSL (mounted on the 0.41mm 

substrate) where three resonances exist within the measured frequency band (figure 

5.6.1.3 -5.6.1.4).  All three resonances are best-defined at higher incident angles and, 

for clarity, the results are studied at 𝜃𝑖 ≥40° as plotted in figure 5.6.1.4.  The weakest 

resonance (1), may represent a weakly defined volume mode within the dielectric.  It 
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is worth noting that this may contribute to the sharp, low frequency resonance 

observed in the following section (figure 5.6.2.2).  Once again, resonance 2, which is 

formed around 160-170 GHz, may correspond to a weakly coupled eigenmode that 

lies between the mode inside the dielectric (1) and the surface field (3) of the 1.62mm 

PSL.  

As the lattice period is increased to 1.94mm (figure 5.6.1.5), all three resonances are 

further shifted down the frequency band, suggesting that the lattice period 

influences the volume field as well as the surface field. The 1.94mm PSL exhibits 

significant experimental noise.  In this case it is difficult to distinguish possible 

eigenmode formation from the PSL’s surface field, as the two phenomena, which 

manifest at similar frequencies, may coincide with one another.  The resonance at 

~150 GHz, however, appears fixed at its lower edge, suggesting possible mode 

locking and incoherent eigenmode formation at this frequency. 

Figure 5.6.1.3. Reflection measurement for the 1.62mm PSL etched onto the 0.41mm, 
dielectric substrate (without copper backing) at incident angles of 30° to 65°. 
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Figure 5.6.1.4. Reflection measurement for the 1.62mm PSL etched onto the 0.41mm, 
dielectric substrate (without copper backing) at incident angles  𝜃𝑖 ≥40°. 

Figure 5.6.1.5. Reflection measurement for the 1.94mm PSL etched onto the 0.41mm, 
dielectric substrate (without copper backing) at incident angles. 25° to 65°. 

1 
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5.6.2 Planar PSLs with 0.41mm Copper-backed Substrates 
While the PSLs etched onto 0.41mm substrates with no copper backing exhibit clear 

resonances at frequencies determined by the lattice period and incident angle, the 

structures composed of PSLs mounted on 0.41mm copper-backed substrates appear 

to behave like reflective surfaces across most of the frequency band.  It is possible 

that the 0.41mm dielectric may be too thin to support a suitable volume mode.  Sharp 

resonances, however, are present at the lower edge of the frequency band for the 

1.50mm and 1.62mm PSLs presented in figures 5.6.2.1 and 5.6.2.2.  Similarities can 

be drawn between these two resonances and the mode-locked eigenmode 

resonances of §5.4.  The resonance measured for the 1.62mm PSL (figure 5.6.2.2), 

for instance, exhibits no obvious angular dependence and appears locked at 140 GHz, 

while the 1.50mm PSL’s resonance (figure 5.6.2.1) varies slightly with angle and shifts 

up in frequency with increasing 𝜃𝑖, rather than down.  This is similar to the behaviour 

observed in the 1.50mm PSL mounted on the 0.76mm copper-backed substrate 

(figure 5.4.1) for which mode-locking is most effective at higher incident angles. Both 

structures demonstrate the potential for high-Q cavity modes, with optimum 

reflected powers of ~-50dB and ~-40dB.  The presence of just one resonance, as 

oppose to the multiple resonances measured in the structures without the copper 

backing, provides further evidence of strong coupling . 
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Figure 5.6.2.1. Reflection measurement for 1.50mm PSL etched onto 0.41mm copper-
backed substrate.  A well-defined (~-50dB) resonance is observed at ~141.7GHz. 

Figure 5.6.2.2. Reflection measurement for the 1.62mm PSL with 0.41mm copper-
backed substrate.  A well-defined (~-40dB) resonance is observed at ~140GHz. 

Boundary constraints, imposed by the thinner, 0.41mm copper-backed substrates, 

allow only higher frequency volume waves to exist within the dielectric.  This is 
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slightly mitigated by the higher (𝜀 =5.69) dielectric permittivity.  One possible reason 

for the resonances of figures 5.6.2.1 and 5.6.2.2 being lower than anticipated, is the 

potential involvement of a TEM mode inside the copper-backed PSLs, which 

resemble parallel plate waveguides in the regions between the two conductors. Since 

the entire field is not contained within the dielectric region, due to the perforated 

boundary of the PSL, the structure is unlikely to support a pure TEM mode. Instead, 

a quasi TEM mode may exist when 𝑑 ≪  𝜆 (Pozar 1998) This condition is satisfied at 

very low frequencies in the PSLs with the thin, 0.41mm copper-backed substrates 

and may lead to coupling between the quasi-TEM mode and surface field of the PSL. 

TEM modes within these structures are studied in Chapter 6. 

Resonances are observed at both ends of the frequency band in the case of the 

1.74mm PSL (figure 5.6.2.3). These results, which shift up with increasing incident 

angle, resemble Fabry-Perot resonances. The lower resonance, which manifests at 

small incident angles (25°-35°), may otherwise represent a possible coupled 

eigenmode, similar to that shown in the previous examples (figures 5.6.2.1 and 

5.6.2.2). 

Figure 5.6.2.3.  Reflection measurement for the 1.74mm PSL etched onto the 0.41mm 
copper-backed substrate at incident angles of 30° to 65°. 
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Fabry-Perot resonances are also evident at high frequencies in the measuements of 

the 1.94mm PSL, presented in figure 5.6.2.4. Even though these results are affected 

by experimental noise, a weak resonance (~ 3db) is visible at ~158 GHz.  The fixed 

frequency position of this resonance again suggests possible coupling. However, 

further study is required to understand the complex nature of these resonances.  

In addition to a TEM mode, it may be possible for these structures to support a 

parallel plate waveguide mode.  Taking into account the thickness and permittivity 

of the dielectric, the cut-off frequency for the first parallel plate waveguide mode is 

~ 154GHz.  Although this may account for the weak resonance at 158 GHz in figure 

5.6.2.4, no similar resonances are present for the other lattice periodicities. The 

reflection measurement of the 0.41mm FR-4 sample is provided in figure 5.6.2.5. Two 

resonances, which move further apart with increasing incident angle, are observed.  

Figure 5.6.2.4.  Reflection measurement for the 1.94mm PSL etched onto the 0.41mm 
copper-backed substrate at incident angles of 25° to 65°. 
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Figure 5.6.2.5.  Reflection measurement for the 0.41mm FR-4 sample at incident 
angles of 30° to 70°. 

5.7 Planar PSLs with 1.43mm Substrates 
The experimental measurements for the set of structures consisting of PSLs etched 

onto 1.43mm FR-4 substrates, with and without the copper backing, are presented 

in this section.  For the thicker, 1.43mm substrates with 𝜀 =4.45, total internal 

reflection occurs when 𝜃𝑖 >28°. 

5.7.1  Planar PSLs with 1.43mm Substrates (no copper backing)

Figure 5.7.1 illustrates the reflected power for the 1.50mm PSL mounted on the 

1.43mm substrate (with no copper backing).  The surface field of the PSL (resonance 

4) is evident between ~190 GHz and ~200GHz. The lowest, and best defined

resonance (1), appears locked at its lower edge and may represent a weakly coupled 

eigenmode.  Similarly, the weak (~3dB) neighbouring resonance (2), which does not 

vary with angle and exists at the same frequency as the coupled eigenmode of the 

1.50mm PSL mounted on the thinner, 0.76mm copper-backed substrate, may occur 

due to weak coupling of volume and surface fields.  The presence of an additional 
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resonance (3) at ~180GHz, not observed in the PSLs with the thinner dielectrics, 

suggests that the 1.43mm substrate is over-moded. 

 

Figure 5.7.1.1. Reflection measurement for the 1.50mm PSL etched onto the 1.43mm 
substrate (without copper backing) at incident angles of 30° to 70°. 

The reflection measurements for the 1.62mm PSL with the 1.43mm substrate are 

presented in figure 5.7.1.2.  Once again, the uppermost resonance (4) describes the 

surface field of the PSL, while the lowest resonance (1), which varies slightly with 

angle, represents a mode within the dielectric. The middle resonance (2), which 

appears mode-locked at higher incident angles (𝜃𝑖 ≥40°), lies between the mode 

inside the dielectric (1) and the surface field of the PSL (4), and is characteristic of a 

coupled eigenmode. In this case, the lattice is not sufficiently synchronised, partly 

due to the absence of the copper backing, and consequently, the eigenmode is 

weakly defined (~5dB).  Finally, resonance 3, which is observed at lower incident 

angles, provides further evidence that the 1.43mm dielectric may be over-moded. 

A distinct resonance, centred around 150 GHz and similar to that shown in figure 

5.4.4, is observed for the 1.94mm PSL, presented in figure 5.7.1.3.  This is another 
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example of incoherent eigenmode formation, associated with the weak coupling of 

volume and surface fields. 

 

 

Figure 5.7.1.2. Reflection measurement for the 1.62mm PSL etched onto the 1.43mm 
substrate (without copper backing) at incident angles of 25° to 65°. 
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Figure 5.7.1.3. Reflection measurement for the 1.94mm PSL etched onto the 1.43mm 
substrate (without copper backing) at incident angles of 25° to 65°. 

 

5.7.2 Planar PSLs with 1.43mm Copper-backed Substrates  
In this section, the results for the set of PSLs mounted on the 1.43mm copper-backed 

substrates are presented and compared to those for the PSLs with the 1.43mm 

substrates and no copper backing (§5.7.1).  Figure 5.7.2.1 shows four resonances 

measured for the 1.50mm PSL with the 1.43mm copper-backed substrate.  All four 

resonances exist at frequencies close to those of figure 5.7.1.1. The magnitude of 

resonance 2, however, is significantly greater (~-39dB) when the copper-backing is 

included (figure 5.7.2.1) and demonstrates a high Q-factor at lower angles in 

particular. This resonance, which shows no clear angular dependence, may represent 

a coupled cavity eigenmode that is more coherently formed in the presence of the 

copper backing.  This eigenmode is weaker than that of the 1.50mm PSL mounted on 

the thinner, 0.76mm copper-backed substrate, possibly due to the greater absorptive 

losses associated with the thicker 1.43mm dielectric.  The 1.43mm dielectric’s 

capacity to become over-moded may also inhibit the coherent synchronisation of the 

PSL, leading to the observation of multiple resonances. Typically, the resonances 
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appear equally distributed across the frequency band, suggesting a possible cavity 

effect due to reflection off the copper surface. 

 

Figure 5.7.2.1. Reflection measurements for the 1.50mm PSL etched onto the 1.43mm 
copper-backed substrate at incident angles of 25° to 65°. 

With the inclusion of the copper backing, the structure has the potential to behave 

partially like a parallel plate waveguide.  In this event, the structure may support 

waveguide modes of a TE or TM nature.  Taking into account the thickness and 

permittivity of the dielectric, the second and third parallel plate waveguide modes 

(with cut-off frequencies of 143GHz and 199GHz) may propagate within the 

measured frequency range. Although a corresponding resonance exists around 

145GHz, this is also present in the structure without the copper backing (figure 

5.7.1.1) and is therefore unlikely to represent a parallel plate waveguide mode.   

For the 1.62mm PSL shown in figure 5.7.2.2, the lowest resonance (1) has slightly 

shifted down in frequency, compared to the equivalent structure without the copper 

backing (figure 5.7.1.2).  Resonance 1 now resembles the low frequency, mode-

locked resonance observed in the 1.62mm PSL with the thin, 0.41mm copper-backed 
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substrate (figure 5.6.2.2).  The middle resonances (2 and 3) are better-defined (~-

30dB) due to the enhanced coupling associated with the copper backing. 

 

 

 

Figure 5.7.2.2.Reflection measurements for the 1.62mm PSL etched onto the 1.43mm 
copper-backed substrate at incident angles of 25° to 65°. 

Reflection measurements for the 1.94mm PSL etched onto the 1.43mm copper-

backed substrate are provided in figure 5.7.2.3. The sharp resonance at ~150 GHz 

(similar to that of figure 5.4.4) is indicative of the PSL’s coupled eigenmode.  Although 

there is a slight frequency shift with angle, indicating that the resonances are not 

fully mode-locked, they appear constrained at the lower frequency edge.  Since the 

PSL is not entirely synchronised, owing to the larger dielectric losses associated with 

the thick substrate, further behaviour, manifesting in the form of weak resonances 

(~160-180 GHz), is evident.  This complex behaviour again suggests that the 1.43mm 

dielectric is over-moded.  Figure 5.7.2.4 shows the reflection measurement of the 

1.43mm FR-4 sample alone. The lower resonance (~150-175 GHz) which is well-

defined at 𝜃𝑖 =30°, may account for some of the behaviour observed in the 1.94mm 
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PSL mounted on the 1.43mm copper-backed substrate (figure 5.7.2.3).  The upper 

resonance is attributed to a Fabry-Perot cavity effect.   

 

 

Figure 5.7.2.3. Reflection measurements for the 1.94mm PSL etched onto the 1.43mm 
copper-backed substrate at incident angles of 25° to 65°. 
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Figure 5.7.2.4.  Reflection measurements for the 1.43mm FR-4 sample at incident 
angles of 25° to 65°. 

 

Overall, for the set of PSLs mounted on the 1.43mm copper-backed substrates, the 

coupled eigenmodes are less well-defined, and not as constrained, possibly due to 

absorptive losses within the dielectric and also the capability of the thicker dielectric 

to become over-moded.  

5.8 PSL Structures with Reduced Dielectric Borders 
It has so far been demonstrated that the dielectric thickness affects the properties of 

the PSL structures.  In order to investigate the effect of changing the dielectric width, 

which may influence the volume field, structures consisting of planar PSLs with a 

reduced, 3mm dielectric border were obtained by trimming the excess substrate. 

Structures composed of 1.62mm PSLs etched onto 1.43mm thick substrates, with and 

without the copper backing, were trimmed accordingly. The results presented in 

figure 5.8.1 (for the 1.62mm PSL with the reduced, 1.43mm substrate) almost exactly 

match those of figure 5.7.1.2, suggesting that the width of the dielectric has little 

effect on the electromagnetic characteristics of the structure.  Likewise, the 
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reflection measurements for the 1.62mm PSL mounted on the 1.43mm copper-

backed substrate with a reduced, 3mm dielectric border (figure 5.8.2) replicate those 

obtained for the original 1.62mm PSL mounted on the 1.43mm copper-backed 

structure. 

 

Figure 5.8.1. Reflection measurements for the 1.62mm PSL etched onto the 1.43mm 
substrate (without copper backing).  The boundaries of the substrate have been 
trimmed to leave a thin, 3mm dielectric border at the edges of the PSL. 
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Figure 5.8.2. Reflection measurements for the 1.62mm PSL etched onto the 1.43mm 
copper-backed substrate.  The boundaries of the substrate have been trimmed to 
leave a thin, 3mm dielectric border at the edges of the PSL. 

 

 

5.9 High-Frequency Planar PSL Structure 
Measurements were made for the professionally etched 0.63mm PSL at the 325-

500GHz frequency band using a pair of 325-500GHz band horns to prevent mode 

conversion.   The structure (composed of a 0.41mm copper-backed FR-4 substrate) 

has similar properties to those previously shown to support coherent eigenmode 

formation at the 140-200GHz band.  In this case, a coupled eigenmode is observed 

around 371 GHz and, like the results presented in §5.4, the resonances appear to be 

mode-locked at one specific frequency.   
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Figure 5.9.1.  Reflected power of the 0.63mm PSL etched onto the 0.41mm copper-
backed substrate, measured at the 325-500 GHz frequency band. Coherent, coupled 
eigenmode formation is observed around 371 GHz. 

Measurements were made over a restricted range of angles due to the shorter cables 

required to connect the high frequency modules to the VNA.  To compensate for this, 

the angle was varied in smaller increments to obtain the same amount of data 

presented in previous sets of results. Precise alignment of the pair of high-frequency 

(325-500 GHz) horns required to make these measurements proved difficult and, 

consequently, the reflected power (~5dB) and therefore quality of the coupled cavity 

mode, is poor in comparison to the mode-locked structures designed to operate at 

the 140-220 GHz band.  Nevertheless, the results demonstrate the fundamental 

“proof of principle” coupling between volume and surface waves at a single 

frequency and verify the scalability of the PSLs.  This lays the foundation for future 

work which may involve further scaling up of the PSL structures to operate at the THz 

regime. 

 



155 
 

5.10 Metamaterial PSL Structure 
Thus far, the structures have been considered to behave like metadielectrics in the 

plane of incidence, due to the corrugation depth (35µm) being much smaller than 

the operating wavelength.  However, since the lattice period is comparable with the 

wavelength, the structures do not strictly satisfy the metamaterial criteria.  In order 

to investigate the electromagnetic properties when the structure moves closer to the 

true definition of a metamaterial, the 0.63mm PSL is measured at the 140-200GHz 

frequency band, as shown in figure 5.10.1. The PSL is now characterised by an 

effective permittivity and permeability, derived from its subwavelength structure. 

The structure displays unique behaviour when measured at the lower, 140-220 GHz 

frequency band, and despite the copper backing and thin substrate, no longer 

exhibits mode-locked eigenmode formation.  It is noted that the frequency of the 

measured resonance (~175-188 GHz) now shifts up with increasing incident angle. 

Further work and analysis is required to understand this complex behaviour. 

 

Figure 5.10.1. Reflected power of the 0.63mm PSL structure measured at the 140-220 
GHz frequency band where the PSL is expected to behave more like a metamaterial.  
The resonances shift up with angle, in the opposite direction to the PSLs with 𝑑𝑧 ≈ 𝜆. 
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5.11 Measurements of PSL Structures with Air Gaps 
Reflection measurements for a 1.94mm PSL structure, with a tunable air gap between the 

PSL and copper backing, are presented in this section. The spacing between the 1.94mm PSL 

and copper backing was adjusted to have an optical path difference equivalent to that of the 

FR-4 substrates. The purpose of carrying out these measurements was two-fold; first to 

establish whether or not the dielectric is essential for the coupling of volume and surface 

fields, and also to investigate the possibility of coupling in low loss structures, which may lead 

to enhanced, high Q cavity modes. Measurements made for air separations of 1mm, 1.6mm 

and 3mm, comparable to the 1.94mm PSLs etched onto the 0.41mm, 0.76mm and 1.43mm 

copper-backed substrates, are shown in figures 5.11.1-5.11.3.  For each gap width, a distinct 

resonance with a reflected power of up to -40 dB is observed at ~150-155 GHz, only at 

certain incident angles. Significant experimental noise is present, especially around 165-170 

GHz and 185-190 GHz where further resonances, attributed to reflection off the copper 

backing, exist.   

 

 Figure 5.11.1 Reflection measurement for the 1.94mm PSL structure with an air 
separation of 1mm, and an optical path difference equivalent to the 0.41mm FR-4 
substrate. 
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Figure 5.11.2. Reflection measurement for the 1.94mm PSL structure with an air 
separation of 1.6mm and an optical path difference equivalent to the 0.76mm FR-4 
substrate. 

 

 Figure 5.11.3. Reflection measurement for the 1.94mm PSL structure with an air 
separation of 3mm, and an optical path difference equivalent to the 1.43mm FR-4 
substrate. 
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Figure 5.11.4 compares the results for the 1.94mm PSL with the 1.6mm air separation 

(green trace) to the mode-locked, 1.94mm PSL etched onto the 0.76mm copper-

backed substrate (red trace), at a fixed angle of 45°.  Both measurements 

demonstrate resonances at 150 GHz and 163 GHz, showing that the gap structure 

has the potential to support weak eigenmode formation at some angles. Despite the 

reduced dielectric loss, coherent eigenmode formation is not observed at all angles 

due to energy escaping from the unbound edges.  Previously, with the dielectric, the 

field was internally reflected and confined within the structure.  

 

 

Figure 5.11.4. Reflection measurements for the 1.94mm PSL structure with an air 
separation of 1.6mm (green trace) and the 1.94mm PSL mounted on the 0.76mm 
copper-backed substrate.  

Finally, in an attempt to confine a volume field inside the structure whilst maintaining 

the low loss air gap, dielectric and metal frames were inserted between the 1.94mm 

PSL and the copper backing.  Measurements made for the air-gap structure with FR-

4 (figure 5.11.5) and aluminium (figure 5.11.6) borders, designed to provide dielectric 

and metal boundaries, are presented below. 
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Figure 5.11.5.  Reflection measurements for the air-gap structure based on the 
1.94mm PSL with a dielectric boundary provided by a FR-4 frame.

 

Figure 5.11.6.  Reflection measurements for the air-gap structure based on the 
1.94mm PSL with an aluminium boundary to confine the field inside the structure. 
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Both the structures with the dielectric and aluminium frames have the capability to 

support high Q cavity modes.  The structure with the FR-4 frame (figure 5.11.5) has a 

reflected power of -65dB at 144 GHz when measured at an incident angle of 30°.  This 

resonance resembles the coupled eigenmode of the 1.94mm PSL, although the 

presence of additional resonances (around 160 GHz and 190 GHz) indicate that, while 

the frame improves the quality of the cavity, it is not sufficient for coherent 

synchronisation of the lattice, which requires a dielectric substrate with carefully 

chosen parameters.  Though the aluminium frame would be expected to further 

increase the quality of the cavity, a reduction in power is evident in figure 5.11.6, 

where the strongest reflection (-49 dB) occurs at 145 GHz. A large magnitude 

uncertainty (± 16dB) was previously demonstrated for the coupled resonances in 

§5.4 and may account for this apparent reduction in power.

5.12 Chapter Conclusions 
Reflection measurements for the simple PSLs (with no dielectric or copper backing) 

showed a sharp resonance corresponding to the PSL’s surface field at a specific 

frequency, dependent upon the period of the PSL. Larger periodicities led to lower 

frequency resonances as expected, demonstrating that the EM properties of the 

structure are tailored by varying the lattice parameters. It was also shown that the 

frequency of the PSL’s surface field can be shifted by changing the angle of incidence, 

with the frequency shifting down with increasing angle.  Transmission measurements 

confirmed that the PSLs transmit and reflect at the same frequencies. 

More complex behaviour was observed in the PSLs with dielectric substrates which 

support weakly defined volume waves.  Above the critical angle, internally reflected 

volume waves can facilitate weak coupling with the surface field. Varying the 

dielectric thickness changed the EM properties of the PSL structures.  Typically, three 

resonances, corresponding to the PSL’s surface field as well as modes within the 

dielectric, including weakly coupled eigenmodes, were observed. Additional 

resonances, measured for the 1.43mm substrates, imply that the thicker dielectric 

has the capacity to become over-moded, while Fabry-Perot resonances, which shift up 

in frequency with increasing angle, were identified in several of the structures. 
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Coherent eigenmode formation was observed in the PSLs etched onto the 0.76mm 

copper-backed substrates.  The results showed sharp, mode-locked resonances at a 

specific frequency, dependent on the periodicity of the PSL.   The presence of a single, 

mode-locked resonance indicated that the PSLs were coherently synchronised by the 

field confined within the dielectric, allowing all the individual scatters to oscillate in 

phase.  This illustrated the fundamental “proof of principle” coupling between volume 

and surface fields in the planar PSLs, and established their potential for use as the 

interaction region of a high, power coherent radiation source.  Good frequency 

reproducibility (±0.3 GHz) was established for these important results. 

Possible coherent eigenmode formation was also observed at the lower edge of the 

frequency band for the 1.50mm and 1.62mm PSLs mounted on the 0.41mm copper 

backed substrates.  The sharp resonances measured in these structures may, however, 

represent complex behaviour such as coupling between a TEM type mode and the 

surface field of the PSL.  The nature of these resonances is further investigated in 

Chapter 6.  As a consequence of the large dielectric losses in the 1.43mm dielectric, 

which disrupts the coherent synchronisation of the lattice, coherent eigenmode 

formation was not seen in the PSLs mounted on the 1.43mm copper-backed 

substrates. 

While the dielectric thickness was found to influence the properties of the structure, 

with suitable dimensions required for coherent eigenmode formation, changing the 

boundaries by reducing the dielectric bordering the PSL showed no significant effect.  

Experiments involving the tunable “air-gap” structure based on the 1.94mm PSL 

confirmed that the dielectric substrate plays a crucial role in coupled eigenmode 

formation, synchronising the PSL and reducing the radiation leaked from the edges. 

Finally, measurements of the 0.63mm PSL at the 325-500 GHz frequency band verified 

the scalability of this work, while unique EM behaviour was observed for the same 

structure measured at 140-220 GHz where it was assumed to behave more like a 

metamaterial. 
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Chapter 6: Numerical Dispersions of Planar PSLs 
 

6.1. Introduction 
Further analysis of the experimental results presented in chapter 5 requires studying 

and comparing the dispersion plots of the planar PSLs.   An analytical approach was 

used to obtain dispersion diagrams for the cylindrical PSLs in chapter 3. This 

technique proves difficult when considering the planar PSLs, for which the volume 

field inside the substrate is not clearly defined, and the individual volume and surface 

modes that constitute the cavity eigenmode are unknown.   Instead, dispersion 

diagrams are obtained by modelling the planar PSLs using the EM software package 

CST Microwave Studio (CST MWS). This method calculates the possible modes inside 

the structure and does not take into account the source of radiation or incident angle 

as discussed in §6.2.  If approximate values for the cut-off frequency of the uncoupled 

volume field and detuning parameter Γ are observed through numerical modelling, 

the MAPLE code (based on the analytical study of the cylindrical PSLs with very large 

radii) can be adapted and compared to the CST MWS dispersion plots for the planar 

PSLs. The layout of this chapter is as follows: 

A description of the CST MWS model and appropriate boundary conditions is 

provided in §6.2.   The CST MWS dispersions are then compared with the analytical 

dispersion plots of Chapter 3 (§6.3) and the experimental results presented in 

Chapter 5 (§6.4). In §6.4 the set of PSLs mounted on the 0.41mm and 0.76mm 

copper-backed substrates and 1.94mm PSL with the thicker, 1.43mm copper-backed 

substrate are investigated.  Subsections 6.4.4 and 6.4.5 are devoted to the study of 

the 0.63mm PSL modelled at the 325-500 GHz and 140-200 GHz frequency bands.  

The main conclusions of this chapter are summarised in §6.5. 

6.2. CST Microwave Studio Model 
Dispersion diagrams for the planar PSLs were obtained using the Eigenmode Solver 

of CST Microwave Studio (CST MWS). Out of the two available eigenmode solvers, 
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the Advanced Krylov Subspace method (AKS) - which calculates a specified number 

of modes with the lowest resonant frequencies in a lossfree structure - was chosen 

for its fast computation time. The AKS Eigenmode solver was used in conjunction 

with a parameter sweep, calculating a specified number of eigenmodes as the phase 

was varied from -360° to 360°.  An important feature of the eigenmode solver is its 

use of periodic boundaries. Figure 6.2.1 shows a unit cell of the PSL structure with 

periodic boundaries in the direction of the lattice corrugation (x and z axes).  The 

boundary conditions along the y-axis force the tangential magnetic field to zero 

(Ht=0) at the corrugated surface and the transverse electric field to zero (Et=0) at the 

metal wall.  For the structures without the copper backing, the boundary conditions 

were defined by setting Ht=0 at the corrugated surface and back wall of the dielectric.  

 

Figure 6.2.1. Unit cell of the planar 2D PSL with periodic boundaries along x and z, 
used to obtain a dispersion relation with the Eigenmode solver of CST Microwave 
Studio.  𝐻𝑡=0 at the corrugated surface and 𝐸𝑡=0 at the metal wall.  

One of the limitations of this model is that the CST MWS Eigenmode solver considers 

only modes that can exist inside the structure and does not calculate for a given 

incident angle.  This accounts for small differences between the frequencies at which 

the experimental resonances are observed and the location of the eigenmodes 

predicted by the numerical dispersions.  The dispersions are therefore best 

compared to the equivalent experimental results at the lowest incident angle. 
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Diffractive edge effects, as well as the possibility of non-uniform irradiation by the 

excitation source, and potential side lobe involvement are not taken into 

consideration in these simulations. Another physical aspect neglected by the CST 

MWS Eigenmode Solver is the Ohmic and dielectric losses associated with the copper 

lattice and dielectric substrate.  Although viable coupling mechanisms may be 

observed in the dispersions, in practice the losses may impact on the structure’s 

ability to support a coupled eigenmode.  In addition to the above, although the Et=0 

boundary appropriately describes the copper backed substrates, the Ht=0 magnetic 

boundary for the structures without the copper backing provides a less accurate 

representation.  

6.3. Comparison of Numerical and Theoretical 

Models 

The CST MWS model of the planar PSL structure was compared to the analytical 

dispersion study of the oversized cylindrical PSLs solved using MAPLE.  The planar 

and cylindrical geometries for which the two models were developed are related by 

the assumption that the mean radius of the cylindrical waveguide is very large.  

Differences between the numerical and theoretical methods adopted in this work, 

including the geometry of the PSL structures, were taken into account. The 

approximations 𝜔0
𝑣 ≅ 𝜔0

𝑠 and ∆̃= 0  were used to simplify the analytical dispersion 

study while in the CST MWS model, the specific cut-off frequencies of the individual 

modes were calculated. Furthermore, just one known volume mode (near cut-off 

mode of the cylindrical waveguide) was considered in the analytical model, while the 

CST MWS Eigenmode Solver computes a number of possible modes.  The inclusion of 

these extra modes may lead to the observation of several possible coupling 

mechanisms, resulting from the surface field coupling with different volume fields.  

In addition to this, the analytical dispersions only take into account the fundamental 

space harmonic of the volume field, whereas the simulations performed using CST 

MWS include the ±1 spatial harmonics of the volume field and allow for possible 

eigenmodes formed by the coupling of neighbouring volume field harmonics.  The 



165 
 

coupled spatial harmonics alter the gradient and overall appearance of the dispersion 

curves introducing further disparity between the two approaches. Despite these 

differences, some similarities can be drawn between the numerical and analytical 

dispersion plots when appropriate parameter values are chosen.   

One of the thinner, and therefore less over-moded, structures consisting of the 

1.94mm PSL mounted on a 0.41mm dielectric was modelled and compared to the 

analytical dispersion. A corrugation depth of 35 µm was chosen to match the planar 

PSL structures measured in the experiment. For simplicity, and to allow a better 

comparison between the two methods, only the fundamental harmonic of the 

volume mode (dashed blue lines) is considered in this section. The spatial harmonics 

of the surface field occur at intervals of 𝑛�̅�𝑧 allowing the ± 1 harmonics to exist within 

the calculated 𝑘𝑧 range. Figure 6.3.1 shows the CST MWS dispersion plot for the 

1.94mm PSL mounted on the 0.41mm dielectric. Three coupled dispersion branches 

(red plots) and a volume mode (dashed blue lines) are observed.  It is assumed that 

the volume mode with 𝑓𝑐 ≅125 GHz couples with the surface field to form dispersion 

branches 1-3.   
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Figure 6.3.1. Dispersion plot for the 1.94mm PSL with ∆𝑟 =35 µm mounted on a 
0.41mm dielectric substrate with 𝜀 = 4.3 and obtained using the Eigenmode solver of 
CST Microwave Studio.  The dashed blue line represents a volume mode within the 
dielectric while branches 1-3 (red lines) indicate possible coupled dispersions. 

It was demonstrated in Chapter 3 that the structure of the dispersion plots is 

determined by the strength of the coupling between the volume and surface 

fields, 𝛼, and also by the detuning parameter Γ which is related to the frequency 

separation of the individual volume and surface modes.  The frequency of the surface 

mode supported by the 1.94mm PSL at low incident angles is given by the 

experimental results of figure 5.2.6 (Chapter 5), while the cut-off frequency of the 

volume field is estimated from the CST MWS dispersion of figure 6.3.1.  Approximate 

values of 125 GHz and 160 GHz (for the volume and surface fields respectively) were 

obtained from the numerical and experimental results allowing  Γ  to be evaluated 

using equation 3.2.2 (Chapter 3), stated below. 

Γ =
2�̅�𝑧𝑐

√((𝜔0
𝑣)2 + (𝜔0

𝑠)2)
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An approximate value of Γ ≅1.52 was calculated from Eq.3.2.2 and used to obtain an 

analytical dispersion plot (figure 6.3.2) which was then compared to the CST MWS 

results of figure 6.3.1. The analytical dispersion was solved using the following 

parameters: Γ ≅1.52, ∆̃=0.76, α =0.5. Similarities can be drawn between the 

numerical and analytical dispersions.  In particular, the upper coupled dispersion 

branches (2,3) and volume mode (blue dashed lines) of figure 6.3.1 resemble the 

coupled (red solid lines) and uncoupled volume field (dashed blue line) dispersions 

of figure 6.3.2.   

 
Figure 6.3.2. Analytical dispersion plot obtained from Eq.3.2.2 and solved for  𝛤 ≅1.52 
using the mathematical software package MAPLE.  The red plots indicate coupled 
dispersion branches, while the dashed blue and green lines represent the uncoupled 
volume and surface fields respectively.  

Chapter 3 showed that, given sufficient coupling, and on the condition that Γ ≥ √2, 

the surface field (which has an imaginary transverse wavenumber and therefore no 

cut-off frequency) is incorporated into the coupled dispersion of the structure, and 

cannot be separated from the contribution of the volume field. Although the surface 

field is not observed exclusively, the location at which the uncoupled surface field 

harmonics intersect one another governs the maximum and minimum frequencies 

of the coupled dispersion. For example, in the analytical dispersion of figure 6.3.2, 
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the maximum frequency of the lower dispersion branch (red line) coincides with the 

intersection of the uncoupled surface field harmonics (green dashed lines). This is 

also evident in the CST MWS dispersion of figure 6.3.1 where the maximum of branch 

2 (161 GHz) matches the frequency of the surface field measured in the experimental 

study of the 1.94mm PSL with no substrate (figure 5.2.6). 

On the other hand, when kz is large, the coupled dispersion tends towards that of the 

uncoupled volume field and in certain cases, as demonstrated in Chapter 3, the 

coupled dispersion’s lower branch overlays the dispersion of the uncoupled volume 

field i.e. when 𝛼 is small as in figures 3.3.1.1 and 3.3.3.1 or when Γ ≈ √2  (figure 

3.3.2.3)). Consequently, even when the volume and surface fields are coupled, 

experimental resonances may exist close to the frequencies of the uncoupled volume 

and surface fields.  The extent of the coupling 𝛼 influences the frequency at which 

possible eigenmodes are located. 

It was discussed in Chapter 2 that the coupling coefficient 𝛼 of the cylindrical PSL 

varies directly with  ∆𝑟 𝑟0⁄  and therefore, increasing the corrugation depth of the 

planar PSL whilst maintaining the same dielectric thickness, effectively increases 𝛼.  

The CST MWS dispersion plot for the 1.94mm PSL with an increased corrugation 

depth of 0.1mm, mounted on the 0.41mm substrate with no copper backing, is 

presented in figure 6.3.3.  The general appearance of the dispersion is similar to the 

previous example for the 1.94mm PSL with ∆𝑟 =35 µm (figure 6.3.1).  However, as 

expected, the dispersion branches have shifted slightly further apart due to the 

enhanced coupling.  Branch 1 has shifted down from 143 GHz to 141GHz, while the 

upper branch (2) has moved up from 150 GHz to 151 GHz, increasing the separation 

of the branches by 3 GHz. The oscillations present in branch 2 can be reduced by 
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increasing the mesh refinement of the CST MWS model from ten cells per 

wavelength.  However, this significantly increases the computation time.  

 

Figure 6.3.3. Dispersion plot for the 1.94mm PSL with ∆𝑟 =0.1mm mounted on a 
0.41mm dielectric substrate with 𝜀 = 4.3 and obtained using the Eigenmode solver of 
CST Microwave Studio.  The dashed blue line represents a volume mode within the 
dielectric while branches 1-3 (red lines) indicate possible coupled dispersions. 

The detuning parameter Γ, which influences the overall appearance of the 

dispersion, is controlled by the period of the PSL and the thickness and permittivity 

of the dielectric substrate. The effect of increasing 𝜀, without changing the thickness 

of the substrate and implicitly increasing Γ, is investigated. Figure 6.3.4 shows the 

CST MWS dispersions for the 1.94mm PSL mounted on a 0.41mm dielectric substrate 

with 𝜀 =5.69 and Γ ≅1.63. 
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Figure 6.3.4. Dispersion plot for the 1.94mm PSL with ∆𝑟 =35 µm mounted on a 
0.41mm dielectric substrate with 𝜀 = 5.69 and obtained using the Eigenmode solver 
of CST Microwave Studio.  The dashed blue line represents a volume mode within the 
dielectric while branches 1-3 (red lines) indicate possible coupled dispersions. 

Although dispersion branches 1 and 2 resemble those of figures 6.3.1 and 6.3.2, the 

increase in 𝜀 from 4.3 to 5.69 reduces the cut-off frequency of the volume mode, 

causing both branches to shift down in frequency by approximately 18 GHz.  As 

before, branch 3, characterised by maxima and minima at 161 GHz and 154 GHz, may 

describe coupling of volume and surface fields taking place close to the measured 

surface field. The altered appearance of branch 3 is due to the change in Γ (from 1.52 

to 1.63) associated with the increased dielectric permittivity. 

As expected, the dielectric permittivity 𝜀 has a significant effect on the location of 

the coupled eigenmodes, and in the following sections, the value of 𝜀 is chosen to 

match the dielectric samples used in the fabrication of the planar PSL structures.  It 

is worth noting, however, that due to possible variations in the composition of FR-4, 

even between samples of the same thickness, as well as experimental uncertainties 

in the measurement of 𝜀, a small deviation in 𝜀 may exist between the CST MWS 

model and the structures measured in the experiment.  This is taken into account, 
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along with the differences discussed in §6.2, when comparing the numerical and 

experimental results. 

Overall, the CST MWS dispersions show some correlation to the analytical dispersions 

obtained using MAPLE if the correct parameter values are chosen.  It has been 

demonstrated that the coupled eigenmode should lie between the uncoupled 

volume and surface modes, although resonances associated with the individual 

surface and volume fields may also be observed. This may explain the additional 

resonances present in the 1.43mm substrates (when the dielectric losses affect the 

lattice synchronisation) and in all the substrates without the copper backing which is 

required to confine the volume field.  Other behaviour, including coupling between 

volume field harmonics and Fabry Perot resonances, is also present to some extent. 

6.4. Comparison of Experimental and Numerical 

Results 
The CST MWS dispersion plots describing the planar PSL structures were compared 

to the experimental results by noting the frequencies of the coupled dispersions’ 

maxima and minima points which indicate the positions of possible cavity 

eigenmodes. The frequencies of the experimental resonances were compared to the 

CST MWS dispersions for the PSLs mounted on the different substrates, including the 

high frequency 0.63mm PSL and the metadielectric structure.  The differences 

between the numerical and experimental models, discussed in §6.2, were taken into 

account, allowing for small discrepancies between the two sets of results. 

6.4.1. Planar PSLs with 0.41mm substrates 
The CST MWS dispersion of the 1.50mm PSL mounted on the 0.41mm substrate 

(without the copper backing) is presented in figure 6.4.1.1 and compared to the 

experimental results of figure 5.6.1.1 Potential eigenmodes located at 155 GHz and 

162 GHz, formed by coupled volume field space harmonics (blue dashed lines) may 

account for the experimental resonance at 159 GHz when 𝜃𝑖 =25. Two coupled 

dispersion branches (red lines) thought to arise from coupled volume and surface 
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modes, are observed between 180 GHz and 220 GHz.  In particular, (1) which has a 

suitably flat profile with the potential to facilitate mode-locking in a well 

synchronised PSL, corresponds to the sharpest experimental resonance (~44dB) 

measured at 178 GHz and is indicative of coupled eigenmode formation.  The upper 

branch (2) is formed close to the PSL’s surface field, and has a minimum frequency at 

209 GHz which may be linked to the experimental resonance at 205 GHz.  

 

Figure 6.4.1.1. Dispersion plot for the 1.50mm PSL with ∆𝑟 =35 µm mounted on the 
0.41mm dielectric substrate with 𝜀 = 5.69 and obtained using the Eigenmode solver 
of CST Microwave Studio.  The dashed blue lines represent volume modes coupled to 
neighbouring space harmonics while branches 1 and 2 (red lines) indicate possible 
coupled dispersions. 

6.4.1.1. 1.50mm PSL with 0.41mm Copper-backed Substrate 
Introducing the copper backing changes the EM properties of the structure. In 

chapter 5, the possible involvement of a TEM mode, coupling with the volume or 

surface modes of the structure and contributing to the sharp, and possibly mode-

locked, resonances measured for the 1.50mm and 1.62mm PSLs (with the copper-

backed 0.41mm substrates) was discussed. Figure 6.4.1.1.1 shows the numerical 

dispersion of the 1.50mm structure, plotted at low frequencies. As expected, a TEM 
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mode (black lines) is supported between the two conductors.  The ±1 spatial 

harmonics of the TEM mode, which cease to exist beyond 93 GHz, intersect one 

another and interact with a volume mode around 74 GHz.  Although this may lead to 

coupling of the two modes, the resulting eigenmode lies below the measured 

frequency band (140-220 GHz).  The CST MWS results show that, for the set of PSLs 

with  𝑑𝑧 ≅ 𝜆𝑜𝑝, the TEM mode always exists below the measured frequency range, 

and is therefore neglected.   

 

Figure 6.4.1.1.1. Dispersion plot obtained using the Eigenmode Solver of CST MWS 
showing the space harmonics of the TEM mode (black lines) interacting with a 
coupled volume mode (dashed blue lines) at 74 GHz and 94 GHz, for the 1.50mm PSL 
with ∆𝑟 =35 µm mounted on the 0.41mm copper-backed dielectric substrate with 
𝜀 = 5.69. 

The dispersion plot for the 1.50mm PSL with the 0.41mm copper backed substrate at 

higher frequencies (figure 6.4.1.1.2) shows two possible coupled dispersions. Both 

dispersion branches are relatively flat across the frequency band, again 

demonstrating the potential for mode-locking.  Branch 1, evident around 151 GHz, 

may correspond to the experimental resonance measured at 140 GHz.  The relatively 

large deviation (~11 GHz) between the two results can be attributed to the various 
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differences between the numerical model and experiment, and may also be 

explained by a slight variation in 𝜀, which may fluctuate throughout the set of 

0.41mm samples. Branch 1 is intersected by the spatial harmonics of the volume field 

(dashed blue lines).  Despite the common substrate, volume modes are observed at 

different frequencies in the 1.62mm, 1.74mm and 1.94mm PSLs (figures 6.4.1.2.1, 

6.4.1.3.1 and 6.4.1.3.1, indicating that the volume modes are influenced not only by 

the dielectric thickness and permittivity, but by the periodicity of the structure as 

well.  These volume modes, along with the surface field, contribute to the formation 

of the coupled dispersion branches. 

It is interesting to note that the upper dispersion branch (2), formed around 170 GHz, 

lies close in frequency to the mode-locked resonance (~167 GHz) observed in the 

1.50mm PSL with the thicker, 0.76mm copper-backed structure.  The position of this 

upper branch may be largely determined by the surface field.  Branch 2 is similar in 

appearance, though shifted down by 10 GHz, to branch 1 of the structure without 

the copper backing (figure 6.4.1.1).  The increased coupling facilitated by the copper 

backing may shift the coupled branches, which would otherwise be formed close to 

the surface field, further towards the volume mode. 
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 Figure 6.4.1.1.2. Dispersion plot for the 1.50mm PSL with ∆𝑟 =35 µm mounted on 
the 0.41mm copper-backed dielectric substrate with 𝜀 = 5.69 and obtained using the 
Eigenmode solver of CST Microwave Studio.  The dashed blue lines represent volume 
modes coupled to neighbouring space harmonics while branches 1 and 2 (red lines) 
indicate possible coupled dispersions. 

6.4.1.2. 1.62mm PSL with 0.41mm Copper-backed Substrate 
The CST MWS dispersion of the 1.62mm PSL mounted on the 0.41mm copper-backed 

substrate is presented in figure 6.4.1.2.1. The dashed blue lines represent volume 

modes contained within the dielectric, while the red plots indicate possible coupled 

dispersions. As with the dispersion of the 1.50mm PSL (figure 6.4.1.1.2), the spatial 

harmonics of the volume field intersect and contribute to the formation of branch 1, 

which manifests around 145 GHz and may relate to the experimental resonance at 

140 GHz. Compared with the previous example, the cut-off frequency of the volume 

field is shifted down by around 6 GHz.  Again, the upper dispersion branch (with 

maxima and minima at 164mm and 160mm respectively) coincides with the mode-

locked resonance (~164 GHz) of the 1.62mm PSL with the 0.76mm copper-backed 

substrate. 
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Figure 6.4.1.2.1. Dispersion plot for the 1.62mm PSL with ∆𝑟 =35 µm mounted on the 
0.41mm copper-backed dielectric substrate with 𝜀 = 5.69 and obtained using the 
Eigenmode solver of CST Microwave Studio.  The dashed blue lines represent volume 
modes coupled to neighbouring space harmonics while branches 1 and 2 (red lines) 
indicate possible coupled dispersions. 

6.4.1.3. 1.74mm PSL with 0.41mm Copper-backed Substrate 
CST MWS dispersions for the 1.74mm PSL with the 0.41mm copper-backed substrate 

are provided in figure 6.4.1.3.1.  The cut-off frequency of the lower volume field has 

shifted down by approximately 5 GHz compared to that of figure 6.4.1.2.1 confirming 

that the periodicity of the PSL influences the volume mode, with larger periods 

corresponding to lower cut-off frequencies.  Although the upper volume field has 

shifted down by the same amount, the appearance of the dispersion has also 

changed. The flattened appearance of 1 is uncharacteristic of a simple volume mode 

and may indicate that the surface field is participating in coupling at this frequency, 

affecting the dispersive behaviour. The experimental resonance at 142.5 GHz was 

previously attributed to Fabry-Perot behaviour since the frequency was seen to shift 

up with angle. While this may be the case, it is also possible that the resonance 

corresponds to branch 1 of figure 6.4.1.3.1, which at 142 GHz, demonstrates close 

agreement with the experiment, and may represent coupled volume and surface 
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modes.  Once again, dispersion branch 2 (with maxima and minima at 151 GHz and 

154.5 GHz) is observed close to the frequency of the mode-locked resonance (~155 

GHz) of the 1.74mm PSL etched onto the 0.76mm copper-backed substrate. 

 
Figure 6.4.1.3.1. Dispersion plot for the 1.74mm PSL with ∆𝑟 =35 µm mounted on the 
0.41mm copper-backed dielectric substrate with 𝜀 = 5.69 and obtained using the 
Eigenmode solver of CST Microwave Studio.  The dashed blue lines represent volume 
modes coupled to neighbouring space harmonics while branches 1 and 2 (red lines) 
indicate possible coupled dispersions. 

6.4.1.4. 1.94mm PSL with 0.41mm Copper-backed Substrate 
Finally, CST MWS results for the 1.94mm PSL etched onto the 0.41mm copper-backed 

substrate are provided in figure 6.4.1.4.1. The lower coupled dispersion branch has 

shifted below the measured frequency range as anticipated.  The experimental 

results for this structure show a very weak resonance fixed at around 159 GHz for all 

angles of incidence.  This may correspond to the maxima of the upper coupled 

dispersion branch at approximately 157 GHz. 
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Figure 6.4.1.4.1 Dispersion plot for the 1.94mm PSL with ∆𝑟 =35 µm mounted on the 

0.41mm copper-backed dielectric substrate with 𝜀 = 5.69 and obtained using the 

Eigenmode solver of CST Microwave Studio.  The dashed blue lines represent volume 

modes coupled to neighbouring space harmonics while branches 1 and 2 (red lines) 

indicate possible coupled dispersions. 

It has been shown for the copper-backed structures that the TEM mode is not 

implicated in coupling at the frequency range of interest (140-220 GHz). It was also 

confirmed that the frequency of the volume field is influenced by the lattice 

periodicity with larger periods corresponding to lower cut-off frequencies. The 

simulations performed with CST MWS demonstrated two possible coupled 

dispersion branches indicating coupling of volume and surface fields at different 

frequencies.  Taking into account known differences between the simulations and 

experiment, some correlation was found between the lower dispersion branches and 

the experimental resonances of the 1.50mm and 1.62mm PSLs.  Since the 

experimental resonances, which do not exhibit a clear angular dependence, appear 

to be mode locked, only one eigenmode is formed and hence coupling associated 

with the higher dispersion branch is not observed. 
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The thin dielectric of the planar PSL is equivalent to a small radius 𝑟0 when 

considering the PSL of cylindrical geometry, and from the theory developed in 

Chapter 2, it is known that 𝛼 ∝ ∆𝑟 𝑟0⁄ .  This, in addition to the reduced dielectric 

losses of the thinner FR-4, may lead to stronger coupling in the 0.41mm copper-

backed structures, in comparison to the PSLs with the thicker substrates, and may 

explain the observation of mode-locked resonances at frequencies much lower than 

the surface field.  For the 1.94mm PSL, the lower branch lies below the measured 

frequency range (140-220 GHz) and the weak experimental resonance at 159 GHz 

suggests possible eigenmode formation and mode-locking associated with the upper 

dispersion branch. 

6.4.2. Planar PSLs with copper-backed 0.76mm 

substrates 

6.4.2.1. 1.50mm PSL with 0.76mm Copper-backed Substrate 
The CST MWS dispersion of the 1.50mm PSL  with the copper-backed 0.76mm 

substrate presented in figure 6.4.2.1.1, shows two possible coupled dispersion 

branches. Both branches exist at frequencies close to the experimental resonance of 

figure 5.4.1, which appears ‘mode-locked’ at 168 GHz when measured at oblique 

incident angles.  The eigenmode located at the minimum of dispersion branch 2 best 

matches this experimental result.  However, closer to normal incidence, for instance 

at 30°, mode-locking is less effective and the eigenmode, now formed at 160 GHz, 

exhibits better agreement with branch 1.  The maximum of branch 1, which exists at 

164 GHz,  appears to be formed by the coupled spatial harmonics of the volume field 

(dashed blue lines) and thus the surface field harmonics are expected to intersect 

further up the frequency band.   
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Figure 6.4.2.1.1. Dispersion plot for the 1.50mm PSL with ∆𝑟 =35 µm mounted on the 
0.76mm copper-backed dielectric substrate with 𝜀 = 4.71 and obtained using the 
Eigenmode solver of CST Microwave Studio.  The dashed blue lines represent volume 
modes coupled to neighbouring space harmonics while branches 1 and 2 (red lines) 
indicate possible coupled dispersions. 

6.4.2.2. 1.62mm PSL with 0.76mm Copper-backed Substrate 
Two possible coupled dispersion branches (1 , 2) describing the 1.62mm PSL mounted 

on the 0.76mm copper-backed substrate are shown in figure 6.4.2.2.1. The volume 

mode at 142 GHz (blue dashed lines) is coupled to its neighbouring spatial harmonics 

and, as with the previous example, forms the maximum of branch 1.  Together, the 

coupled dispersion branches predict the existence of potential eigenmodes at 154 

GHz, 160 GHz, 163 GHz and 170 GHz.  At the lowest incident angle (25°) the 
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experimental resonances evident at 152 GHz, 159 GHz and 167 GHz, all lie within 

±4GHz of one of the possible eigenmodes shown in figure 6.4.2.2.1.   

 

Figure 6.4.2.2.1. Dispersion plot for the 1.62mm PSL with ∆𝑟 =35 µm mounted on the 
0.76mm copper-backed dielectric substrate with 𝜀 = 4.71 and obtained using the 
Eigenmode solver of CST Microwave Studio.  The dashed blue lines represent volume 
modes coupled to neighbouring space harmonics while branches 1 and 2 (red lines) 
indicate possible coupled dispersions. 

 

6.4.2.3  1.74mm PSL with 0.76mm Copper-backed Substrate 
Two dispersion branches, describing the possible eigenmodes associated with the 

1.74mm PSL with the 0.76mm copper-backed substrate, are illustrated in figure 

6.4.2.3.1. As before, the maxima and minima points of these branches (144 GHz, 149 

GHz and 156 GHz) indicate the frequency position of potential eigenmodes. When 

𝜃𝑖 =25°, the experimental findings of figure 5.4.3 demonstrate resonances at 142 

GHz, 151 GHz and 157 GHz, all of which appear within ±2 GHz of the eigenmodes 

predicted by CST MWS. Mode locking is most effective at 𝜃𝑖 ≥50 when the 

experimental resonance is fixed at 156 GHz, corresponding to the maximum 

frequency of branch 2. 
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Figure 6.4.2.3.1. Dispersion plot for the 1.74mm PSL with ∆𝑟 =35 µm mounted on the 
0.76mm copper-backed dielectric substrate with 𝜀 = 4.71 and obtained using the 
Eigenmode solver of CST Microwave Studio.  The red plots (1,2) indicate coupled 
dispersion branches and the maxima and minima represent possible eigenmodes. 

In chapter 5 (figures 5.2.2-5.2.6) it was established that, at higher incident angles, the 

surface mode is shifted down in frequency, possibly increasing its ability to couple 

with the volume mode by reducing the frequency separation between the two 

modes.  This may explain why mode locking is typically observed at higher angles of 

incidence.  As the surface mode shifts down in frequency, the parameter value of  Γ 

increases, modifying the overall appearance of the coupled dispersion at higher 

incident angles. 

6.4.2.4. 1.94mm PSL with 0.76mm Copper-backed Substrate 
The CST MWS dispersion diagram for the 1.94mm PSL mounted on the 0.76mm 

copper-backed substrate is presented in figure 6.4.2.4.1. Three possible coupled 

dispersion branches are observed in the frequency range of interest. The lowest 

branch (1) lies outside the measured frequency range, while the maxima and minima 

of the middle branch (2) correspond to ~152 GHz and ~147 GHz respectively.  Both 

demonstrate good agreement with the experimental results where mode locking is 
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observed around 146.5 GHz at higher incident angles and ~150 GHz at angles below 

50°. The potential eigenmodes located at the maximum and minima of branch 2 are 

close in frequency, and the experimental results suggest that mode selection 

between the two is determined by the incident angle.  

 

 

Figure 6.4.2.4.1. Dispersion plot for the 1.94mm PSL with ∆𝑟 =35 µm mounted on the 
0.76mm copper-backed dielectric substrate with 𝜀 = 4.71 and obtained using the 
Eigenmode solver of CST Microwave Studio.  The red plots (1-3) indicate coupled 
dispersion branches and the maxima and minima represent possible eigenmodes. 

 

6.4.3. 1.94mm PSL with 1.43mm Copper-backed 

Substrate  
The EM behaviour when the dielectric thickness is further increased is explored by 

modelling the 1.94mm PSL with the 1.43mm copper-backed substrate.  The 

experimental resonance of figure 5.7.2.3 appears mode-locked at its lower edge 

(~149 GHz) and is centred around 151 GHz at 25°, correlating to the minimum 

frequency of dispersion branch 1 in figure 6.4.3.1. A weaker resonance, evident 

around 165 GHz at 25°, may correspond to the maxima of dispersion branch 2. The 
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uppermost resonance, manifesting around 172 GHz, is seen from figure 5.7.2.3 to 

shift up with increasing incident angle, and is most likely associated with Fabry-Perot 

behaviour. It is important to note that lower order volume modes, as well as the TEM 

mode supported between the two conductors, exist below the plotted frequency 

range.  When modelling these structures, a large number of modes (~50) were 

considered and for clarity only those in the frequency ranges of interest, as 

determined by the experimental results, are presented.  As expected, this structure 

with the largest cavity dimensions supports lower frequency volume modes than the 

PSLs mounted on the 0.41mm and 0.76mm substrates.  These lower order modes are 

neglected in the present study. 

As stated previously, the CST MWS model neglects the dielectric loss.  The increased 

losses, associated with the thicker 1.43mm dielectric, may lead to extra experimental 

resonances (compared to the same PSL with the 0.41mm or 0.76mm copper-backed 

substrate) occurring due to poor lattice synchronisation. In the ideal case of a loss-

free dielectric, it is expected that the PSL will be more effectively synchronised, 

facilitating coupling at just one of the possible frequencies indicated in figure 6.4.3.1. 
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Figure 6.4.3.1. Dispersion plot for the 1.94mm PSL with ∆𝑟 =35 µm mounted on the 
1.43mm copper-backed dielectric substrate with 𝜀 = 4.71 and obtained using the 
Eigenmode solver of CST Microwave Studio.  The red plots (1-3) indicate coupled 
dispersion branches and the maxima and minima represent possible eigenmodes. 

 

6.4.4. 0.63mm Planar PSL Modelled at 325-500 GHz 
The 0.63mm PSL with the 0.76mm copper-backed substrate was modelled at 325-

500 GHz to investigate the coupling of volume and surface modes at higher 

frequencies.  The experimental results demonstrate mode-locking around 370 GHz 

for all incident angles.  This corresponds to the maxima of the uppermost coupled 

dispersion branch (figure 6.4.4.1).  Both the CST MWS dispersion and experimental 

results exhibit similar behaviour to that observed for the set of 140-220 GHz PSLs, 

verifying the scalability of the structures. 
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Figure 6.4.4.1. Dispersion plot obtained using the Eigenmode Solver of CST MWS 
showing coupled dispersion branches for the 0.63mm PSL with ∆𝑟 =35 µm mounted 
on the 0.76mm copper-backed dielectric substrate with 𝜀 = 4.71 and modelled at 
325-500 GHz. 

6.4.5. 0.63mm Planar PSL Modelled at 140-220 GHz 

(Metamaterial) 
When the 0.63mm PSL is measured at 140-220 GHz, thus behaving more like a 

conventional metamaterial, a distinct resonance ranging from 178 GHz to 187 GHz 

depending on the incident angle, is observed.  Despite these experimental 

observations, no obvious coupling between volume and surface fields is evident in 

the dispersion plots obtained from the CST MWS model.  However, according to 

figure 6.4.5.1, the TEM mode exists up to frequencies of around 220 GHz, allowing 

for possible coupling with volume fields in the 140-220 GHz range.  While the lowest 

volume field (occurring at 89 GHz) lies outside the measured frequency region, the 

volume field at 176 GHz, which is intersected by the TEM mode at 183 GHz, may 

account for the sharp resonance of figure 5.10.1. This may explain the behaviour of 

the measured resonance which, unlike the resonances associated with the coupled 

volume and surface modes observed in the set of 140-220 GHz PSLs, shifts up in 
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frequency with increasing incident angle. Other resonances exhibiting this 

characteristic are possibly attributed to Fabry-Perot behaviour 

 

Figure 6.4.5.1 Dispersion plot obtained using the Eigenmode Solver of CST MWS for 
the 0.63mm PSL modelled at 140-220 GHz.  The 0.63mm PSL is thought to behave like 
a metadielectric at this frequency range.  The TEM mode (black lines) intersects the 
two volume modes (blue dashed lines) around 133 GHz and 183 GHz. 

6.5. Chapter Conclusions 
In conclusion, the numerical dispersions of eigenmodes formed by the coupling of 

volume and surface modes have been studied and compared to the experimental 

results, allowing some of the complex EM behaviour to be interpreted. Generally, 

close agreement between the CST MWS dispersion plots and the experimental 

results was demonstrated.  Furthermore, strong similarities were observed between 

the 1.94mm PSL (with the 0.41mm substrate) and the analytical dispersion with 

equivalent parameters, thus linking the CST MWS dispersions with the theory 

developed in chapter 2 for the cylindrical PSL with large radius. 

The experimental results were compared to the maxima and minima of the CST MWS 

dispersion branches which indicate the location of potential eigenmodes.  When 
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coherent lattice synchronisation is achieved, leading to the observation of a single 

mode-locked resonance, coupling occurs at just one of these possible frequencies.  

This behaviour, observed in the PSLs with the 0.76mm copper-backed substrates, as 

well as the 1.50mm and 1.62mm PSLs with the 0.41mm copper-backed substrates, 

increases the structures’ suitability for use as the interaction region of a high-power 

source. 

Multiple resonances can arise for various reasons including the formation of 

additional eigenmodes associated with the individual volume and surface modes, 

especially in the case of weak coupling.  Also, the surface mode of the PSL may 

interact with different volume modes inside the substrate, resulting in several 

possible coupling zones.  In some cases, additional resonances may be attributed to 

coupling between neighbouring volume field harmonics. 

The manifestation of more than one resonance suggests that the lattice is not ideally 

synchronised and occurs when the metal backing is not in place to confine the 

volume field, or when the dielectric losses impede the synchronisation.  The PSLs 

with the 1.43mm substrates do not exhibit mode-locking, despite the copper 

backing, due to large dielectric losses (associated with the increased thickness) 

inhibiting the synchronisation of the lattice and resulting in weak coupling at various 

frequencies. The scalability of the PSLs has been demonstrated by modelling the 

0.63mm PSL with the copper-backed 0.76mm substrate at 325-500 GHz and 

comparing the dispersion to the experimental findings.  Once again, the structure is 

mode-locked and behaves much like the set of 140-220 GHz PSLs.   

Finally, it has been shown that the 0.63mm PSL displays unique EM characteristics 

when modelled at the 140-220 GHz frequency band, where it becomes more like a 

conventional metamaterial.  The potential for TEM involvement at this frequency 

range was established as a possible explanation for the structure’s distinctive 

behaviour. 
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7 - Conclusions and Future Work 

7.1 Conclusions 
The focus of the theoretical, numerical and experimental work described in this thesis was 

the observation and understanding of the role of PSLs in the coupling of volume and surface 

fields, resulting in the formation of a cavity eigenmode.  The theory presented in this thesis 

was developed for a PSL with cylindrical geometry under the assumption that 𝑟0 ≫ 𝜆. 

Planar geometry rather than a cylindrical geometry was adopted in the numerical modelling 

and experimental measurements in order to investigate and demonstrate the fundamental 

“proof of principle” coupling between the volume and surface fields. Planar PSLs were 

fabricated by etching copper-coated dielectric substrates and under certain circumstances, 

coherent eigenmode formation was observed.  In this work the planar PSLs were not 

intended for use within electron-beam-driven, high power coherent sources.  However, 

conformal mapping allows PSLs in planar geometry to be mapped into PSLs in cylindrical 

geometry that are compatible with the construction of high power electron-beam-driven 

sources. The conclusions of the theoretical, experimental and numerical work presented in 

this thesis are summarised in §7.1.2 -7.1.4 while potential future work is discussed in §7.2. 

7.1.1. Theoretical Study of PSLs 
A theoretical description of a PSL based on an oversized cylindrical waveguide with a very 

large mean radius (𝑟0 ≫ 𝜆) was presented. Due to the assumption that 𝑟0 ≫ 𝜆, the 

theoretical studies provide an approximate description of the PSLs in planar geometry as 

well as the cylindrical PSLs for which the theory was developed.  As stated previously, 

conformal mapping allows PSLs in planar geometry to be mapped into PSLs in cylindrical 

geometry.  The theoretical description of the PSL was divided into two main parts. Initially, 

the corrugated inner wall of the structure with ∆𝑟 ≪ 𝜆𝑜𝑝 was described as an effective 

metadielectric, or high-impedance layer, by defining the field structure in the two distinct 

(air and dielectric) regions and applying known boundary conditions at the lattice-air 

interface as laid out in (Konoplev, MacLachlan et. al 2011). Using this approach led to a 

dispersion equation describing the hybrid surface field and an expression for the refractive 

index of the metadielectric close to the structure’s resonant frequency.  In the second  (part 
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of the theoretical study, possible scattering mechanisms were explored and coupled wave 

equations were derived using the method of fictitious magnetic sources, where the 

structure was described as a cylindrical waveguide with a magnetic surface current in place 

of the corrugation at the inner wall. An analytical expression for the coupling coefficient, 

describing the strength of the coupling between the volume and surface fields, was derived 

using this method. 

A coupled dispersion equation was obtained by renormalising the coupled wave equations 

derived using the method of fictitious magnetic sources for the oversized cylindrical PSL as 

published in (Konoplev, MacLachlan et al. 2012). An analytical study was carried out by 

varying the lattice parameters and coupling coefficient using the mathematical software 

package MAPLE (Konoplev, MacLachlan et al. 2012, MacLachlan, Konoplev et al. 2013).  It 

was shown that, under certain conditions, when driven by a suitable electron beam, the 

structure is capable of supporting a Cherenkov instability, demonstrating the potential of 

PSLs for use in electron-beam-driven high power, coherent sources 

7.1.2. Experimental Set-up and Results 

A description of the chemical etching procedure used to fabricate the set of PSL structures 

mounted on dielectric substrates, with and without the copper backing, was provided. 

Photographs of the planar PSLs taken using a Hirox KH-770 Digital Microscope were 

presented. The tendency for structures to become over or under-etched due to non-

uniform etching was discussed, and the presence of defects in some of the samples was 

demonstrated.  The importance of using an appropriate set of waveguide horns to avoid 

mode conversion at higher frequencies was established.  Refractive indices of 2.38±0.03, 

2.25±0.02 and 2.11±0.01, as reported in (MacLachlan, Phipps et.al 2014), were determined 

for the 0.41mm, 0.76mm and 1.43mm dielectric samples respectively, using an Anritsu 

Vector Network Analyser (VNA) to measure the samples’ phase. Further preliminary 

measurements showed that, at the measured frequencies, the structures do not behave like 

diffractive surfaces, and maximum reflected power was achieved by setting the angle of the 

receiving horn equal to the incident angle, as stated in (MacLachlan, Phipps et al. 2014).   

Experiments were first performed for the simplest structures, consisting of copper PSLs 

without substrates.  These structures, with no well-defined waveguide boundaries to 

support volume waves, allowed exclusive study of the surface field. Surface currents 
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induced in the copper flow around each unit cell and are scattered by the lattice 

perturbations to form a surface field, which in turn interferes with the reflected signal of the 

PSL, leading to a sharp resonance. This resonance was seen to shift down the frequency 

band with increasing lattice period allowing the PSLs to be tailored to operate at a specific 

frequency.  Transmission measurements of the PSLs showed similar behaviour, with the 

transmitted frequencies corresponding to the frequency of surface field resonances.   

Measurements were made over a range of angles, where it was discovered that increasing 

the incident angle also caused the resonance to shift down in frequency.  This was 

attributed to a phase shift introduced by the angle of the radiation striking the PSL in a non-

uniform manner.  Though neighbouring cells are effectively synchronised by the surface 

current, without the substrate in place to support a volume field (which acts as the “global 

oscillator”, driving possible collective phenomena) the individual scatterers oscillate out of 

phase with one another.  This concept, shown schematically in (MacLachlan, Phipps et al. 

2013), may explain why mode-locking was observed only in the case of coherent lattice 

synchronisation.  

Coherent cavity eigenmode formation was demonstrated for the set of PSLs mounted on 

the 0.76mm copper-backed substrates (MacLachlan, Phipps et al. 2014, 2015), including the 

shorter wavelength 0.63mm PSL, establishing the potential for achieving single mode 

operation through the coupling of volume and surface fields and verifying the scalability of 

the structures.  When the required conditions for cavity eigenmode formation were 

satisfied, the resulting resonance was locked to a particular frequency which did not vary 

with incident angle. This ‘mode-locked’ behaviour was typically observed at higher incident 

angles, possibly due to the reduced frequency separation between the volume and surface 

fields facilitating coupling between the two fields.  The reproducibility of these important 

results was demonstrated by re-assembling the experimental set-up and repeating 

measurements on separate occasions over the course of several months (MacLachlan, 

Phipps et al. 2014, 2015).   

The sharp resonances measured in the 0.41mm copper-backed structures were also 

characteristic of a coupled eigenmode, especially in the structures with smaller lattice 

periods.  Numerical modelling (discussed in §7.1.4) ruled out the possibility of coupling 

between the surface field and a TEM type mode. Coherent eigenmode formation was not 
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observed in the samples without the copper backing (required to confine the volume field) 

or when the dielectric losses were large, disrupting the coherent synchronisation of the 

lattice.  Weak coupling, however, induced by internally reflected volume waves within the 

dielectric, led to the observation of incoherent coupled modes in the PSLs mounted on the 

dielectric substrates (without the copper backing) reported in (MacLachlan, Phipps et al. 

2014, 2015).  In this case, multiple resonances were measured, all of which varied with 

angle, due to inadequate synchronisation of the PSL.  This was also true of the PSLs 

mounted on the 1.43mm copper-backed substrates as a consequence of their large 

dielectric losses and capacity to become overmoded.   

The shorter wavelength 0.63mm PSL, when measured at the 140-220 GHz frequency band 

where it is expected to behave more like a conventional metamaterial, displayed unique EM 

characteristics.  A sharp resonance, shifting up in frequency with increasing incident angle 

(in the opposite direction to the larger wavelength PSLs which behave more like photonic 

structures) was observed. Finally, the importance of the dielectric was established through 

the study of the “air-gap” structures, which showed that without the dielectric substrate to 

support the volume mode, the cavity eigenmode was not coherently formed.  Although a 

resonance corresponding to possible eigenmode formation was observed in certain cases, 

this was not consistent at all angles, and the observed resonances were not mode-locked. 

7.1.3. Numerical Modelling of Planar PSLs 

Dispersion diagrams for the planar PSLs were obtained using the Eigenmode Solver of the 

modelling software ‘CST Microwave Studio’ (CST MWS) and compared to the analytical 

dispersion diagrams and experimental results. When appropriate parameter values were 

chosen, strong similarities between the analytical dispersion (plotted using MAPLE) and the 

CST MWS dispersion were reported, showing a correlation between the theory developed 

for the cylindrical PSL with 𝑟0 ≫ 𝜆 and the numerical model of the planar PSLs. Taking into 

account the notable differences between the CST MWS model and the experimental 

measurements, good agreement was demonstrated between the frequency of the 

experimental resonances and the location of the coupled eigenmodes predicted by the 

maxima and minima points of the CST MWS dispersions.  The results of the CST MWS 

modelling, combined with the analytical MAPLE dispersions, suggested that the occurrence 

of multiple resonances in the weakly coupled structures, may correspond to the separate 
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branches of the coupled dispersion.  It was evident, for the case of weak coupling, that 

eigenmodes exist close to the frequencies of the individual volume and surface fields.  

Typically, the best-defined coupled eigenmode was found to lie between the two.  It was 

demonstrated in both theory (Konoplev, MacLachlan et al. 2012) and modelling that the 

coupled dispersion’s branches move further apart in the case of strong coupling.  This may 

provide further explanation as to why only one sharp resonance is observed in the 

measured frequency range for the well synchronised, mode-locked structures, where strong 

coupling is present. The potential for the surface field to couple with different volume 

modes within the dielectric, as well as the possibility of coupling between the volume field’s 

spatial harmonics, was established through numerical modelling. 

7.2. Future Work 
Future work may involve the construction of PSLs mounted on low-loss substrates, using 

dielectric material intended for use at microwave frequencies and beyond.  This may lead to 

the observation of cavity eigenmodes with a higher Q-factor than shown in this work.  Mode 

selection in highly over-moded planar structures can then be studied by increasing the 

thickness of the low-loss dielectric, thereby increasing the cavity dimensions and enhancing 

the structure’s capacity for a high output power when mapped into cylindrical coordinates 

and coupled with a suitable electron beam.  Further experimental measurements may 

determine the extent to which the low-loss substrate can be increased before the coherent 

lattice synchronisation starts to break down and mode-selection can no longer be achieved.  

In doing so, ways of improving the experimental alignment by arranging the PSL and 

waveguide horns with greater precision, and considering the use of an automated system 

configured to measure results over the full angular range, could be explored. 

Continuation of the research presented in this thesis may also include converting a planar 

PSL, of the type studied in this work, into cylindrical geometry using conformal mapping 

with a view to eventually coupling energy into the structure.  Further studies into the 

structure’s behaviour when the PSL is pushed further into the metamaterial regime is 

another interesting topic of future research.  All the PSLs considered are scalable and 

therefore the concepts discussed in this work are applicable to a broad range of frequencies 

throughout the microwave and mm-wave range and stretching into the THz and far-infrared 

regions of the spectrum. Manufacturing ever smaller scale PSL structures for even shorter 
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wavelengths becomes more difficult.  Extension of this work to study higher frequency 

structures may therefore involve some investigation into alternative manufacturing 

techniques.  

Another possible avenue of research, related to the realisation of high frequency structures, 

is the excitation of surface polaritons, which can be generated on thin, film metal surfaces in 

place of the lattice corrugation, and form the basis of novel structures such as polaritonic 

crystals (Zayats, Smolyaninov et al.2004) designed to act as two-dimensional photonic 

crystals for surface polaritons. The innovation of using a nanometal film with dielectric-

medium loading, and then exciting surface polaritons by a uniformly moving electron bunch 

has been shown to be able to create a novel tunable surface polariton Cherenkov light 

radiation source for the visible light and ultraviolet frequency regimes (Shenggang Liu, 

Zhang et al. 2012 ) and may be applied to this work in the future. 
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Cylindrical periodic surface lattice as a metadielectric: Concept of a surface-field
Cherenkov source of coherent radiation
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A two-dimensional (2D), cylindrical, periodic surface lattice (PSL) forming a surface field cavity is considered.
The lattice is created by introducing 2D periodic perturbations on the inner surface of a cylindrical waveguide.
The PSL facilitates a resonant coupling of the surface and near cutoff volume fields, leading to the formation
of a high-Q cavity eigenmode. The cavity eigenmode is described and investigated using a modal approach,
considering the model of a cylindrical waveguide partially loaded with a metadielectric. By using a PSL-based
cavity, the concept of a high-power, 0.2-THz Cherenkov source is developed. It is shown that if the PSL satisfies
certain defined conditions, single-mode operation is observed.

DOI: 10.1103/PhysRevA.84.013826 PACS number(s): 42.25.Fx, 42.60.Da, 78.67.Pt, 73.20.Mf

I. INTRODUCTION

Electromagnetic (EM) field excitation and evolution inside
and on the surface of periodic structures facilitate interaction
between active media and the fields and thus are important and
challenging problems in plasma physics and electronics [1–10]
as well as optics and photonics [11–17]. Extensive study of
the electromagnetic wave propagation and control in periodic
structures has already led to many technological breakthroughs
and is a driving force behind many interesting concepts such
as plasmonic devices [11–15], particle acceleration [3,4], and
signal transformers [10,15–17]. Bridging the terahertz (THz)
gap and realization of compact, high-power sources operating
in the GHz-THz [1,2,5–8] and x-ray [1,11], frequency ranges
are also strongly linked to the ability to control the EM fields
inside and on the surface of periodic lattices. In recent years,
a large amount of research has been carried out using periodic
lattices and deals with both propagating volume (bulk) waves
and surface waves. For many conventional active devices, such
as lasers, localized surface waves are rather inconvenient due
to their strong localization at the surface accompanied by large
thermal losses and weak coupling with bulk active media
resulting from the rapid exponential decay inside the active
media. However, it has been suggested recently that such
fields can be used either in very small nano-oscillators [14]
or in high-power [5,6] active devices. The research has been
further propelled [15–17] by the exponential development
of nanofabrication and nanotechnology. The current stage
is one of the rapidly growing areas of research, promising
groundbreaking results in signal processing, communication
[18], and spectroscopy [16]. The lattices (metamaterials) are
normally based on fundamental cells (scatterers) (e.g., split-
ring resonators or nanoparticles covered with dielectrics) hav-
ing dimensions much smaller than the operating wavelength
λ [19]. Conventionally, both theory and experiments have been
developed for these structures with overall transverse dimen-
sions comparable with the operating wavelength, which allows
synchronization of the radiation from individual scatterers.
However, there are a number of challenges associated with the
interaction region’s small size, including manufacture of the

*ivan.Konoplev@strath.ac.uk

lattices and their output power limitations. A simple scaling
up of the interaction region’s dimensions (i.e., making the
total surface area S � λ2 or total volume V � λ3) results
in disruption of the coherent emission or scattering due to
problems associated with synchronization of the individual
scatterers that form the metamaterial. The synchronization of
the individual scatterers is needed, for example, because of the
spatial detuning (caused by finite tolerances of manufacturing)
and temporal detuning (caused by nonuniform heating of the
metamaterial) of the scatterers’ eigenfrequencies and lack of
“cross talk” and feedback between them. If the synchronization
is not provided, the temporal and spatial coherence of such
devices can be questionable. Overcoming these difficulties
is especially important for applications where high-power,
coherent radiation is required, for instance, in THz active
devices for pollution monitoring (atmospheric dust clouds
and space debris), security (active control and detection),
chemistry, and bioscience. In this paper, we discuss one of the
ways to synchronize the radiation from individual scatterers or
radiators assembled into a large-area structure. The structure
discussed is based on a cylindrical conducting waveguide
having an area S = 2πr0L � λ2 and manufactured using
electroforming techniques. The periodic two-dimensional
(2D) perturbations on the inner surface of the waveguide
have amplitudes much smaller than the operating wavelength
(λ) and form the 2D periodic surface lattice (2D PSL) of
cylindrical topology. The photograph and numerical model of
the 2D periodic structure are shown in Figs. 1(a) and 1(b). Each
individual element of the lattice [Fig. 1(c)] has dimensions
smaller but comparable with the operating wavelength (∼λ/2),
and each fundamental cell of the lattice is an individual
scatterer that supports an individual localized surface field.
The surface currents excited along the boundaries of the cells
[Fig. 1(c)] allows “cross talk” between fundamental cells
and coupling of the surface and near cutoff volume fields.
These lead to synchronization of the scatterers’ oscillations
from different parts of the oversized structure. The structure
studied [Figs. 1(a) and 1(b)] is low contrast (small amplitude
perturbations) and oversized, allowing the “square wave”
approximation (also known as the “chessboard” model) [5,7],
to be used [Fig. 1(b)]. Further, in this paper, all numerical
simulations are carried out using the “square wave” model.
Figure 1(c) demonstrates the excitation of synchronized
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surface currents In around a single cell Cn formed by square
wave perturbations. The contour plot [observed using the
three-dimensional (3D) software package CST MICROWAVE

STUDIO] demonstrates the current distributions on the surface
of the individual cells Cn, while the arrows indicate the
currents’ flow directions. To study the eigenmodes of the
structure (Fig. 1), the lattice, consisting of the discrete,
distributed scatterers, is substituted with a cylindrical waveg-
uide partially loaded with continuous “metadielectric” [19].
The parameters and the properties of the “metadielectric”
such as its geometry and refractive index are discussed.
We note that the introduction of the metadielectric allows
us to consider the localized surface fields supported by the
scatterers as eigenmodes of a partially loaded waveguide [20].
Such modes, being eigensolutions of the wave equation,
can only be observed in a waveguide with resistive walls
or partially loaded with dielectric. One of the features of
such fields is an imaginary transverse wave number in free
space, leading to localization of the surface modes inside
the metal skin layer or the dielectric and decaying rapidly
outside. Also, when increasing the field frequency toward
the optical range and the metal plasma frequency, the surface
fields become known as surface plasmons. In this work, the
field structure is studied and a surface field (SF) Cherenkov
source based on such a SF cavity will be designed. The results
of numerical studies of the Cherenkov source driven by an
oversized, mildly relativistic electron beam are presented and
discussed.

The paper’s structure is as follows. In Secs. II and III, the
basic model and equations are described and shown. The model
is analyzed and the results are discussed. In these sections, the
results of the numerical studies which have been conducted
using the 3D code MAGIC are presented and compared with
analytical data. By substituting the periodic lattice with a
metadielectric and combining this approach with direct 3D
numerical modeling of the lattice, the understanding of the field
evolution and formation of the cavity’s eigenfield structure is
developed. Section IV is dedicated to the concept of Cherenkov
sources based on a 2D cylindrical lattice, and it is shown
that such sources can produce spatially coherent high-power
radiation in the high-GHz to THz frequency ranges. The
basic principles of the SF Cherenkov source and its design
are discussed. In the conclusion, we summarize the results
obtained.

II. CYLINDRICAL STRUCTURE BASED ON 2D LATTICE:
ANALYTICAL AND NUMERICAL MODELS

The 2D lattice of cylindrical topology [Fig. 1(a)] can be ob-
served by machining small periodic perturbations (�r << λ,
where �r is the amplitude of the perturbations) on
the inner surface of the cylindrical waveguide: r = r0 +
�r cos(k̄zz) cos(m̄ϕ). Here, r0 is the mean radius of the
unperturbed waveguide, k̄z = 2π/dz and dz is the lattice
longitudinal period, and m̄ is the lattice number of azimuthal
variations. The structure made from copper [Fig. 1(a)] has
a large diameter 2r0 = 79 mm (r0 � dz = 8 mm, r0 �
λ, λ ∼ 8 mm) and m̄ = 28. Let us note that m̄ is smaller
than M = 2πr0/dz ∼ 31; that is, the cells forming the
lattice are slightly asymmetric. Such a structure has already

(a) 

(b) 

(c) 

FIG. 1. (Color online) (a) Photograph of the 2D periodic lattice of
length L = 48 mm machined on the inner surface of copper cylindrical
waveguide of mean diameter 80 mm. The lattice has longitudinal
period dz = 8 mm and number of azimuthal variations m̄ = 28
azimuthal. (b) The chessboard model [5,7], of the 2D cylindrical
lattice studied via numerical simulations and illustrated using 3D
code MAGIC. (c) The excitation of surface currents on the lattice
fundamental cell boundaries observed using 3D code CST MICROWAVE

STUDIO.

been used in a number of experiments [5,7,10], and thus it
is chosen here for theoretical consideration. The conditions
of low-contrast (small) perturbations of the waveguide wall
allow us to apply a modal approximation. We assume that the
transverse structure of the excited eigenfield is a superposition
of the transverse structures of eigenmodes of the unperturbed
cylindrical waveguide partially loaded with a metadielectric.
The substitution of the corrugation with a thin metadielectric
(Fig. 2) allows us to define the field’s complex structure at
the lattice interface and include the surface fields in the study.
One notes that the surface fields do not exist in a smooth
cylindrical waveguide machined from an ideal conductor, and
they were ignored in [7]. The electric field will be described as
a superposition of volume (subscript v) and surface (subscript
s) fields:

�E = �As + �Bv. (1)

Such a description is different from the one used in [7],
which is based on defining the structure’s eigenmodes as a
superposition of partial volume waves structurally coinciding
with the eigenmode of the unperturbed waveguide. In this
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FIG. 2. (Color online) The schematics of the (a) r-z and (b) r-ϕ
cross sections of partially loaded cylindrical waveguide.

work, we consider that the surface field is bound to the lattice-
vacuum interface, is therefore localized, and decays towards
the structure’s axis (i.e., it has an imaginary transverse wave
number, while the volume (bulk) field with a real transverse
wave number occupies the bulk of the structure. We note that
the coupling of otherwise independent fields is mediated by
the “soft” boundary (i.e., the 2D lattice). The volume field will
be considered as having a transverse structure coinciding with
the structure of a near cutoff azimuthally symmetric eigen-
mode of the unperturbed cylindrical waveguide of radius r. The
thin dielectric insert does not affect the transverse structure of
this partial field, as the near cutoff wave that forms this field
has λz ∼ L (where L is the length of the lattice) and λz � dz.
Taking into account the amplitude of the perturbation �r,
one finds an approximate expression for the waveguide radius
r = r0 – �r (Fig. 2). The surface fields (SFs) are described
as eigenmodes of the partially loaded cylindrical waveguide.
The surface fields will have a real transverse wave number
inside the dielectric and an imaginary transverse wave number
outside it. The effective dielectric used in the substitution
has a refractive index and thickness defined by the lattice
parameters, as well as the field’s structure and frequency.

Let us consider the stationary regime (i.e., when cavity’s
eigenmode is established). In this case, the azimuthally
nonsymmetric (ms �= 0) surface field can be described as
a superposition of E and H modes of the partially loaded
cylindrical waveguide (EH hybrid mode). By taking into
account the cylindrical topology of the lattice (i.e., periodicities
along azimuthal ϕ and longitudinal z coordinates), the Fourier
decomposition of the surface field can be applied:

Ez =
∑
ms

F e
ms

(k⊥sr) sin(msϕ)
∞∑

q=−∞
Eq(z)eiqk̄zz;

(2a)

Hz =
∑
ms

F h
ms

(k⊥sr) cos(msϕ)
∞∑

q=−∞
Hq(z)eiqk̄zz,

where Ez and Hz are the longitudinal field components which
define the hybrid EH mode, q is the harmonic number due

to the lattice periodicity along z, and ms is the number of
azimuthal variations of the field. The surface field’s transverse
wave number is k⊥s, the angular frequency is ω = kvph, k is the
wave vector, and vph is the phase velocity (vph = c/n, where
c is speed of light in vacuum and n is the refractive index of
the dielectric). The amplitudes Eq (z) and Hq(z) are the slowly
varying amplitudes of the field harmonics, and Fe,h

m (x) are
the cylindrical functions of order m. Let us note that outside
the metadielectric the functions Fe,h

m (x) are combinations of
modified Bessel functions (x is imaginary) [8] defining the field
decay toward the central axis of the cylindrical structure, while
inside the dielectric the field is defined by the ordinary Bessel
functions that have an oscillating nature. It is important to note
that in general, the boundary of the metadielectric may not
coincide with the corrugation boundary (Fig. 2). The surface
and volume fields are coupled on the metadielectric-vacuum
interface, and the radius of the interface can be found from
the impedance matching condition, which is discussed below.
The matching condition on the boundary follows also from
the two-stage scattering model via surface current excitation
(i.e., as the two fields excite the same surface currents, their
impedances on the boundary should be equal). The transverse
structure of the near cutoff volume field (in the stationary
regime) is close to the structure of a TM0l mode of cylindrical
waveguide and is defined by an ordinary Bessel function
J0(x): Ez = J0(k⊥vr)

∑∞
q=−∞ Ev

q (z)eiqk̄zz, where l is the radial
variation number and k⊥v is the transverse wave number. To
illustrate the applicability of the model, numerical studies of
the eigenfields’ distributions inside the 2D structure [Fig. 1(b)]
have been carried out using the three-dimensional (3D) code
MAGIC. The structure studied and shown has square-wave
periodic perturbations on the inner surface of the waveguide.
The total length of the lattice is 48 mm and the mean diameter
is 79 mm, while the lattice has the following parameters: m̄ =
28, �r = 0.5 mm, and dz = 8 mm. To simulate the excitation
of the EM field inside the structure, the coaxial launcher
tested in the real experiments and based on the coaxial line
termination [5] has been modeled [Fig. 1(b)]. In this case,
the Transverse Electromagnetic (TEM) wave is formed in a
coaxial line before the termination point. In the vicinity of the
periodic structure’s input, the line is terminated, resulting in
excitation of the whole spectrum of the azimuthally symmetric
waveguide modes. Figures 3 and 4 illustrate the dependence of
the structure eigenfield excited by a narrow band (35–40 GHz)
pulse. In Fig. 3, the dependencies of the transverse structures of
the electric [Fig. 3(a), bold lines] and magnetic [Fig. 3(b), bold
lines] fields on the radial coordinate are shown and compared
with the transverse structure of the field associated with the
TM near the cutoff wave (broken lines) of the conventional
smooth waveguide of the same dimensions. It is evident that
the volume fields observed inside the 2D lattice and smooth
cylindrical waveguide coincide well and that the differences
are due to the surface fields excited at the cavity wall (see Hr,z

and Eφ field components). The TM near the cutoff, azimuthally
symmetric field has zero Hr,z and Eφ field components, while
the eigenfield structure of the 2D PSL-based cavity has all six
nonzero field components, including both longitudinal electric
and magnetic fields. This is similar to the hybrid mode of
an unperturbed partially dielectric-loaded waveguide, which
indirectly confirms the model described above. In spite of
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FIG. 3. (Color online) The comparison of the transverse struc-
tures of the (a) electric Ez,r,φ and (b) magnetic Bz,r,φ fields observed
(3D code MAGIC) inside the SF cavity (solid lines) and smooth
cylindrical waveguide (SCW) cavity (broken lines). The SCW cavity
eigenmode’s transverse structure coincides with the structure of the
near cutoff TM0,10 wave. The inserts (contour diagrams) illustrate
(a) electric and (b) magnetic fields inside the SF cavity (the 1/28th
section of the structure).

the fact that the fields Hz and Eφ have structures similar to
those of a whispering-gallery mode, the Hr,φ components
are exponentially decaying toward the center, underlining
surface field behavior. The inserts to Figs. 3(a) and 3(b)
are the partial contour plots (showing one azimuthal period
of the lattice) illustrating the transverse dependence of the
periodic structure’s eigenmode in the r-ϕ cross sections. In
Fig. 4, a full set of contour plots along r-z [Fig. 4(a)] and r-ϕ
[Fig. 4(b)] are shown. The coupling between the surface and
volume fields can be clearly seen. Also, one may note that the
decay of the surface fields starts outside the lattice-vacuum
interface (the maximum of the field is slightly elevated above
the metal surface), allowing us to define the boundary of the
metadielectric as the field’s caustic radius.

Let us look closely on a field structure excited inside the
2D SF cavity (Fig. 4). We note that each fundamental cell or
scatterer supports an individual uncoupled localized field, and
the cavity’s eigenmode is formed only if such fundamental
cells are synchronized [19]. It is known that the resonant
coupling of the surface and volume fields on the SP lattice takes
place only if the Bragg resonance condition �̄k = �ks − �kv is
satisfied, where �̄k is the lattice reciprocal vector and �ks,v are the

wave vectors. The number of the field’s azimuthal variations,
as well as the longitudinal wave numbers, are linked with the
lattice parameters such that m̄ = ms + mv and k̄z = kzs − kzv .
If the eigenmode is formed, and the volume field is azimuthally
symmetric mv = 0, the SF number of azimuthal variations is
ms = m̄ and one can write As(ϕ)eiϕm̄m̄ = As(ϕ + ϕm̄) where
ϕm̄ = 2π/m̄ (Fig. 4). The lattice also defines the localized
SF periodicity along the z coordinate [i.e., As(z)eik̄zdz =
As(z + dz)], leading to a strong presence of spatial harmonics
in the stationary regime. As a result, taking into account that
the volume field is represented by a fundamental harmonic
of a near cutoff (kzv

∼= 0; see Figs. 3 and 4) wave with mv

= 0 (azimuthally symmetric field, Fig. 4), it is clear that
the coupling takes place with the ±1 spatial harmonics of
the SF |kzs | = |k̄z|, having ms = m̄. At this stage, for clarity,
the coupling between the higher harmonics of the volume and
surface fields are overlooked; however, all these discussions
are still valid for higher harmonics as well. Further, we deal
with the cavity fundamental eigenmode, which is defined as
a superposition of the azimuthally symmetric, near cutoff,
volume partial field and surface partial field having ms =
m̄ and one radial variation. No doubt, more complex modes
can also be observed, for instance if the volume wave is not
azimuthally symmetric. Considering the fundamental mode,
we can rewrite the expressions (2a):

Es
z = Fm̄(k⊥sr)E(z) sin(k̄zz) sin(m̄ϕ);

Hs
z = Fm̄(k⊥sr)H (z) cos(k̄zz) cos(m̄ϕ); (2b)

Ev
z = J0(k⊥vr).

The surface modes with m �= 0, unlike whispering-gallery
modes, are always hybrid (i.e., having both Ez and Hz

(see below) field components). Due to coupling to a near
cutoff T M0,10 mode, which is defined by Ez,r and Hφ with
|Er |/|Ez| = kz/k⊥v ≈ dz/L, the coupling between the surface
and volume fields takes place via the Hφ field [7], leading to
excitation and strong modification of the transverse structures
of the surface Hφ and Ez field components. The peculiarity
of the eigenmode structures observed is due to a combination
of ordinary and modified Bessel functions, which “elevates”
the maximum amplitude of the surface fields above the lattice-
vacuum interface, making it look like a whispering-gallery
mode. However, if the whispering-gallery mode having m =
m̄ = 28 would be excited, the Ez and Eφ should be comparable,
while the Eφ observed in modeling is nearly 100 times smaller
than Ez. Let us note that “elevation” of the SF above the
interface makes it more effective for interaction with the active
media located outside the lattice.

To identify the fields bound to the lattice, one can also
analyze the partial fields’ dispersions at the frequency of the in-
terest. The fundamental expressions for the dispersions (in the
cylindrical waveguide partially loaded with a metadielectric)
for volume and surface fields are k2 = k2

⊥v + k2
z and k2 = k2

z −
k2
⊥s , respectively. It is known that under the assumption of the

perturbations’ amplitudes tending to zero, any complex disper-
sion relation that describes coupling of the partial fields should
split into fundamental dispersions of the fields existing in the
unperturbed system. In the case considered, the partial fields’
dispersion diagrams should coincide with the dispersions of
the unperturbed waveguide eigenmodes; however, due to the
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FIG. 4. (Color online) The contour plots of (a,b) electric (E) field’s components and (c,d) magnetic (B) field’s components in (a,d) r-z and
(b,d) r-ϕ cross sections. The contours indicate the field strength and polarity. The figures observed using full 3D code MAGIC when the structure
is irradiated by the narrow-band (35–40 GHz), flat-top-spectrum pulse.

periodicity along the longitudinal coordinate, the formation of
the spatial harmonics should be taken into account. Though
the modifications of the diagrams, such as splitting and kink
formation, will take place in the immediate vicinity of the
crossings of the dispersions’ branches, it will only slightly
affect the diagram’s overall appearance. Therefore, analyzing
the unperturbed dispersions may give a good first inspection
and fundamental understanding of the properties and positions
of the eigenmodes. Such an analysis can also show which
partial fields can be coupled in the frequency region of interest.
In Figs. 5, the dispersion diagrams associated with different
partial fields are shown. The graphs are for the structure having
a 40-mm mean radius, 8-mm longitudinal period, and 28
azimuthal variations. To observe coupling between the partial
fields in the vicinity of the cutoff frequency of the TM0l

mode associated with the volume partial field, it is important
that the second partial field has an imaginary transverse
wave number. If alternatively the partial fields are those of

a whispering-gallery mode, either TM28,1 or TE28,1 having
ms

∼= 2πr0/λ and real transverse wave number, the crossing
with the TM0l mode takes place at higher frequencies above
the region of interest, that is, f > 40 GHz [Fig. 5(a)]. However,
if the second partial field is the surface field, it is possible to
observe the intersection in the frequency interval between the
cutoff frequencies ∼37.5 and 40 GHz [Figs. 5(b)–5(d)]. Let
us note that in Figs. 5(a) and 5(d) the case (k̄2

z = k2
⊥s + k2

⊥v

and k̄z = √
2k⊥v) when the branches of the surface and the

volume fields’ dispersions cross each other at the precise cutoff
frequency is also shown. Figures 5(b), 5(c), 5(e), and 5(f)
show the dispersions observed for the cases k̄2

z < (k2
⊥s + k2

⊥v)
if k̄z = k⊥v/1.1 (b); k̄z = k⊥v/1.5 (c); and k̄2

z > (k2
⊥s + k2

⊥v) if
k̄z = 1.5k⊥v (e), k̄z = 2k⊥v (f). The arrows indicate the shifts
of the branches of the surface field’s dispersion with variation
of the lattice period dz. In Figs. 5(b) and 5(c), the branches
“move” toward each other, while in Figs. 5(e) and 5(f),
the branches “move” outward. If k̄2

z = k2
⊥s + k2

⊥v [Fig. 5(d)],
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FIG. 5. (Color online) The unperturbed dispersions of the fundamental volume and ±1 harmonics surface partial fields observed inside the
2D cylindrical PSL of 80 mm mean diameter, m̄ = 28, and amplitude of the perturbations tending to zero. The volume field is associated with
the TM0,10 mode of the cylindrical waveguide, while the second partial field is associated with (a) whispering-gallery mode (TM28,1-TE28,1) and
(b,c,d,e,f) surface field having an imaginary transverse wave number. The crossing between volume and surface field at exact cutoff frequency
(k̄2

z = k2
⊥s + k2

⊥v) is shown in (a) and (d). The figures (b) and (c) are observed if k̄2
z < k2

⊥s + k2
⊥v , while (e) and (f) if k̄2

z > k2
⊥s + k2

⊥v . The
arrows indicate the displacement of the surface field dispersions with increase of k̄z. The dashed lines indicate schematically the splitting of
the dispersions with increase of the lattice contrast.

one observes a bifurcated state. The dispersion splitting is
schematically illustrated by dashed lines on these graphs. The
topology of the dispersion splittings are different, illustrating
the possibilities of observing instabilities of different types,
either convective [Figs. 5(b), 5(c)] or absolute [Figs. 5(e),
5(f)] instabilities, if the lattice forms an interaction region of
an active device driven, for example, by an electron beam. This
can be beneficial for devices operating in different regimes and
using different types of interactions.

The number of the radial variations of the field excited
inside the low-contrast structure is not controlled by the lattice
in the same way as it maintains the field’s number of azimuthal
variations. The number of radial variations only depends on
the radius of the unperturbed cylindrical waveguide. Thus, the
volume field inside the structure will have l radial variations
such that k⊥v = χv

l /r , where χv
l is the lth root of the Bessel

function of zero order. As we deal with the fundamental
mode of the structure, inside the frequency interval, which
is associated only with the fundamental mode, the number of
radial variations of the surface field will be considered to be
equal to unity. Increasing the operating frequency will lead to
an increase of the surface and volume fields’ numbers of radial
variations, affecting for instance the inner boundary of the
metadielectric (the surface field’s radial variations exist only
inside the metamedia). The numerical modeling illustrating
such eigenfield dependence on the operating frequency and
eigenmode excitation has been carried out using the full 3D
code MAGIC in the following frequency regions: from 30 to
40 GHz (Fig. 6) and from 65 to 70 GHz. Let us note that
the first band is well below the whispering-gallery modes’
(TE28,1 and TM28,1) cutoff frequencies (44.6 and 41.6 GHz
respectively), while the second band was chosen to illustrate
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the concept discussed and to demonstrate the high-order
modes’ excitation. To observe the cavity eigenmodes having
different radial indices, a broad-band pulse has been used.
In Fig. 6(a), the eigenmodes excited (solid line) by the pulse
with a flat spectrum (dotted line) in the region between 30
and 40 GHz are shown. The spectrum maxima are associated
with the eigenmodes having different radial l∈ [8–10] and
the same azimuthal indices, m = m̄ = 28. An excitation of a
specific mode with l = 9 [Figs. 4 and 6(b), solid line] has
been observed using a narrow-band, flat-top-spectrum pulse
in the interval from 35 to 40 GHz [Fig. 6(b), dotted line].
The contour plots of the eigenfields’ components observed in
this case are shown in Fig. 4. In Fig. 7, the contour plots of
the eigenfield structure inside the cavity observed as a result
of the cavity excitation with a narrow-band, flat-top-spectrum
pulse similar to the one shown in Fig. 6(b) (dotted line) in the
interval from 65 to 70 GHz are presented. It can be seen from
these figures that the surface field’s components of high-order
eigenmodes are also localized inside a specific region. The
number of radial variations is increased, as discussed, while
the azimuthal variation number of the eigenmode is maintained
constant. The increase of the radial variation number results in
a shift of the surface field caustic radius from the lattice toward
the center. The dotted lines in Fig. 7 indicate the position of
the field caustic radius, which coincides with the metadielectric
boundary.
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FIG. 6. (Color online) The spectra of the structure’s eigenmodes
excited (solid lines) if the input signal used to irradiate the lattice
has a flat-top spectrum in the frequency ranges (a) 30–40 GHz and
(b) 35–40 GHz.

III. SURFACE FIELD INSIDE WAVEGUIDE PARTIALLY
LOADED WITH A METADIELECTRIC

Let us consider the SF structure observed inside the
2D periodic lattice by substituting the periodic lattice with
an effective imaginary dielectric (metadielectric) [18], the
thickness 2�r − δ and refractive index n = √

εμ of which
are functions of the EM field frequency, structure, and
lattice parameters (Fig. 2). The inner and outer radii of the
metadielectric insert can be defined as rd = r0 − �r − δ

and r+ = r0 + �r respectively. The surface field is localized
(having a real wave number) inside the dielectric (rd < r �
r+) and decaying (imaginary transverse wave number) outside
(r � rd ). At the boundary of the metadielectric, the field’s
continuity conditions for its tangential components (i.e., Ez,φ

and Hz,φ) should be met. The field is described as a standing
(to observe localization) wave having both Ez and Hz field
components and defined using the vector potential �e,h as
follows:

(Ez; Hz) =
(

∂2

∂z2
+ k2εμ

)
(�e; �h), (3)

where the vector potentials inside the dielectric are

�e = C1Fe(κsr) sin(m̄ϕ) sin(k̄z),

�h = C2Fh(κsr) cos(m̄ϕ) cos(k̄z) (4a)
and those outside the dielectric are

�e = C3
�

F e(psr) sin(m̄ϕ) sin(k̄z),

�h = C4
�

Fh(psr) cos(m̄ϕ) cos(k̄z) (4b)

and

κ2
s = k2n2 − k̄2

z , p2
s = k̄2

z − k2. (5)

The C1,2,3,4 are arbitrary constants and

Fe(κsr) = Jm̄(κsr)Nm̄(κsr+) − Jm̄(κsr+)Nm̄(κsr),

Fh(κsr) = Jm̄(κsr)N ′
m̄(κsr+) − J ′

m̄(κsr+)Nm̄(κsr),
�

F e(psr) = �

Fh(psr) = Im̄(psr). (6)

The approach is synonymous with including only the
first positive and negative harmonics (observed in the pe-
riodic structure), manifesting itself as cos(k̄z) and sin(k̄z)
dependences of the �e and �h potentials. By expressing
the tangential fields using (4) and applying the continuity
conditions at the dielectric-vacuum interface, the characteristic
equation that links the transverse wave numbers can be
observed:

p4
s κ

4
s r4

d (εfe − �

f e)(μfh − �

f h) = m̄2k̄2
z k

2(n2 − 1)2, (7)

where
�

f e = �

f h = �

f = −I ′
m̄(y)(yIm̄(y)), y = psrd , fe =

1
xd

J ′
m̄(xd )Nm̄(x+)−Jm̄(x+)N ′

m̄(xd )
Jm̄(xd )Nm̄(x+)−Jm̄(x+)Nm̄(xd ) , fh = 1

xd

J ′
m̄(xd )N ′

m̄(x+)−J ′
m̄(x+)N ′

m̄(xd )
Jm̄(xd )N ′̄

m(x+)−J ′̄
m(x+)Nm̄(xd ) ,

and xd,+ = κsrd,+. The dispersion equation (7) shows that
the EM fields with nonzero azimuthal variation numbers
are always hybrid (i.e., have Ez and Hz field components),
while the azimuthally symmetric fields are either E or H
polarized. It also indicates that far from the resonance, where
the effective refractive index is equal to 1 (no interaction), no
hybrid modes can be observed; that is, the partially loaded
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FIG. 7. (Color online) The contour plots of (a,b) electric (E) field’s components and (c,d) magnetic (B) field’s components in (a,d) r-z and
(b,d) r-ϕ cross sections. The contours indicate the field strength and polarity. The figures were observed using full 3D code MAGIC when the
structure was irradiated by the narrow-band (65–70 GHz), flat-top-spectrum pulse. The dotted line shows schematically the boundary of the
imaginary metadielectric, whose radius coincides with caustic radius.

waveguide turns into a conventional cylindrical waveguide.
Taking into account (5), one finds that

κ2
s + p2

s = k2(n2 − 1), (8)

which together with (7) allows the evaluation of the transverse
wave numbers and dispersion analysis. To define fully the
dispersion relation, the refractive index and dielectric inner
boundary have to be found. Assuming that the metadielectric
has μ = 1, the refractive index n, where n2 = εμ, can be
defined from the following consideration: The system which
includes the lattice and EM fields (the lattice manifests itself in
the appearance of the field’s harmonics) has been substituted
with a waveguide partially loaded with a metadielectric and
the EM field. Thus, taking into account that the localized
field, which is nonpropagating and exists only inside the
metadielectric, is coupled to the cutoff volume wave, we
require the absolute value of κs (the transverse wave number
inside the metadielectric) to be equal to the wave number k.
One can also regard this as phase matching of the fundamental
harmonics of the surface and volume fields. Taking (5) into ac-
count leads to the following expression: k2n2 = κ2

s + (lk̄z)2 =
k2 + (lk̄z)2, where l is an integer indicating the harmonic’s
number. Considering only the surface field’s ±1 harmonics,

the expression for the refractive index in the vicinity of the
resonance frequency takes the following form:

n =
√

1 + k̄2
z

k2
. (9)

At this stage, the only unknown parameter is the inner
radius rd of the metadielectric. We define it from the following
consideration. At the caustic boundary, the two partial fields
(the surface and volume fields) have to be matched, yielding
the following condition:

ps

Im̄(psrd )

I ′̄
m(psrd )

= k⊥v

J0(k⊥vrd )

J ′
0(k⊥vrd )

and

ω/c =
√

(k⊥v)2 + k2
zv

∼= k⊥v, (10)

which defines the inner radius. Its analytical solution can be
found under the assumptions that the structure is oversized
in comparison with an operating wavelength, the amplitude
of the corrugations, and the deviation δ (rd = r− + δ) of the
metadielectric boundary from the lattice interface (Fig. 2),
which are small in comparison with the operating wavelength
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(δ/r0 << 1 and δ/λ << 1). The solution for δ can be found by
applying Taylor’s expansions to the above expression (10):

δ ∼= p2
s(

k2
⊥v − p2

s

) r−
(psr− − m̄)

. (11)

The expression (11) allows estimation of the field caustic
radius, that is, the boundary at which the surface field starts
to decay exponentially. One notes that if k⊥v

∼= k = ω/c

and considering only the surface field’s ±1 harmonics, it
follows from (11) and (5) that δ = 0 if k̄z = k = ω/c and
δ ∼ −ε/k, where ε is the detuning ε = (k̄z/k)2 − 1. Also, if
an interaction between an electron beam and the EM field
is considered in order to observe high-power lasing, the
electron beam should propagate outside the lattice while still
inside the region defined by the shift δ (i.e., δ < 0). Thus,
expression (11) imposes conditions on the electron beam,
accelerating voltage, EM field, and lattice parameters. By
optimizing these parameters, a steady-state, single-mode,
high-power source operating in the low-THz frequency range
can be created.

IV. CHERENKOV OSCILLATOR BASED ON
CYLINDRICAL 2D SURFACE PERIODIC LATTICE

Let us consider the interaction between an electron beam
and the electromagnetic fields mediated by the cylindrical 2D
PSL. Inside the cavity defined by the lattice, the partial surface
and volume fields form the cavity eigenmode. Electrons inter-
act with the synchronous harmonic of the cavity eigenmode’s
partial SF at the lattice interface. The near cutoff partial volume
field synchronizes the individual scatterers forming the lattice
and ensures that the different parts of the oversized electron
beam interact with the coherent SF. The condition required
for the electron beam–EM wave interaction has the following
general form:

ω = kzvz + 2π

dz

vz, (12a)

where vz is the electron beam longitudinal velocity and kz

is the wave’s longitudinal wave number. Taking into account
that the electrons interact with the localized surface field (kz∼= 0), (12a) can be rewritten as f = c

dz

√
1 − γ −2, where γ =

1 + eU
m0c2

∼= 1 + W (keV)
511 keV is the relativistic Lorentz factor and f

is the wave frequency. By rearranging the last expression, the
formula linking the longitudinal period of the lattice with the
wave frequency and the electron beam accelerating voltage U
can be found:

U (kV) ∼= 511 kV ×
[

λ√
λ2 − d2

z

− 1

]
. (12b)

To study the interaction between an electron beam and
the cavity eigenmode, it is important to define correctly the
radial position of the annular electron beam (i.e., the mean
radius). We have to locate the electron beam outside the
lattice to avoid its interception with the structure. Such an
interception may affect the lifetime of the oscillator as well as
limit the level of output power. To optimize the beam radius, the
relations (11) and (12b) can be used, and as discussed above, to
observe an effective interaction between the electron beam and

the EM field the electron beam should be inside the following
region (Fig. 2):

r0 − �r = r+ > R > rd = r0 − �r + δ.

To avoid the electron beam interception, it is important that
δ < 0. This can be achieved if either

k2
⊥v − p2

s > 0, while psr0 − m̄ < 0 (13a)
or

k2
⊥v − p2

s < 0, while psr0 − m̄ > 0. (13b)

By looking at the conditions (13) and linking them to the
expression (12b), two distinctive cases can be identified. It is
possible to show that the first condition (13a) is associated with
high-voltage (relativistic) electron beams, while the condition
(13b) is linked to low-voltage (mildly relativistic) electron
beams. Indeed, taking into account that k⊥v = ω/c, ps =√
k̄2
z − (ω/c)2, dz = λ

a

√
a2 − 1, and a2 = ( U (kV)

511 kV + 1)2 > 1
and substituting them into (11), we find that k2

⊥v − p2
s > 0 if

λ/dz <
√

2, leading to a >
√

2 (i.e., if the beam accelerating
voltage is above U0 = 212 kV). In this case, δ < 0 if
psr0 − m̄ < 0, which is achieved when

2πr0

λa
< m̄ and a >

√
2. (14a)

This shows that for a specific mean radius of the lattice
and operating wavelength, the number of the lattice azimuthal
variations should be larger than the number of wavelengths
along the unperturbed circumference of the waveguide. In the
low-voltage regime for which k2

⊥v − p2
s < 0 and the electron

beam accelerating voltage is less than U0, then δ < 0 if

2πr0

λa
> m̄ and a ∼ 1, (14b)

indicating that the number of azimuthal variations should be
less than the number of wavelengths along the unperturbed
circumference of the waveguide. If the conditions (14) are
not satisfied, the coupling between the electron beam and
electromagnetic fields will be significantly weaker, resulting
in the necessity to either increase the length of the interaction
region or the electron beam current and propagate the elec-
tron beam inside the periodic structure. The electron beam
accelerating voltage defines also the topology of the lattice’s
single cell. If γ is large (relativistic electron beam), the cell
has rectangular geometry, with the longest side codirected
with the electron beam drift velocity, while if γ is low
(mildly relativistic electron beam), the cells have elongated
geometry with the longest side perpendicular to the electron
beam drift velocity. One also notes that there is overlap �

∼(1 – 1/a) between (14a) and (14b), allowing the maser’s
operating frequency to be maintained if the accelerating
voltage is varied by adjusting only the structure’s longitudinal
period.

Numerical studies of a 200-GHz Cherenkov oscillator
based on the PSL and driven by an annular (rb = 5 mm),
thin-wall (δr = 0.5 mm) electron beam immersed in a guiding
magnetic field of 2 T have been carried out using the 3D code
MAGIC. In Fig. 8, the results illustrating the scaling relation
(12b) are shown. The graphs presented were observed under
the condition that the system’s only variable parameters are
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the electron beam accelerating voltage and the longitudinal
period of the structure. The rest of the parameters, including
the number of lattice periods along z, have been maintained
constant. The oscillator’s parameters were chosen to satisfy
the relations (11) and (14) for the range of the electron
beam voltages (overlapping region is from 100 to 300 kV).
It can be seen from Fig. 8 that by changing the electron
beam accelerating voltage and scaling the lattice period dz

using (12b), the operating frequency is maintained constant.
However, as one would expect, the operating regime as well as
the output efficiency of the oscillator varies with the change of
the accelerating voltage. In Fig. 8(b), the steady-state single-
mode operation of a 0.2-THz Cherenkov oscillator is observed.
The device is driven by a 250-kV, 20-A annular electron
beam and the efficiency observed is around 2.5%, yielding
∼120 kW output power. However, taking into account the
possibility of highly efficient electron beam energy recovery,
which is routinely carried out, an overall efficiency above
40% (after energy recovery) can be expected. By optimizing
the interaction region parameters, a further increase of the
energy extraction efficiency and thus an increase of output
power can be observed. For instance, an efficiency of 10% is
achieved when a 100-kV electron beam is used [Fig. 8(c)].
However, for the parameters used, output power modulation
can be seen, indicating mode competition due to the excitation
of high-order eigenmodes. The number of the lattice azimuthal
variation m̄ should also affect the behavior of the Cherenkov
oscillator [see (14)]. The numerical modeling of the Cherenkov
oscillator driven by a low-voltage (50-kV), 40-A electron beam

was carried out, and the results of the investigation of the
dependence of the oscillator operation on m̄ are shown in
Fig. 9. In these studies, the lattice longitudinal period dz =
0.58 mm was changed in accordance with (12b) to maintain
the operating frequency range of ∼0.2 THz. The rest of the
lattice parameters are the same as listed in Fig. 8. One notes
that if the number of the structure’s azimuthal variations are
maintained (m̄ = 20 as in Fig. 8), a drop of the output power
[Fig. 9(a)] and a frequency jump to 207.3 GHz [Fig. 9(b)]
[which follows from (14b) take place (operating with higher
order radial mode). Taking into account that r0 = 5.5 mm,
U = 50 kV (a ∼ 1.1), λ = 1.53 mm (∼195 GHz), one finds
that in accordance with condition (14b) m̄ < 20 is required to
observe an effective interaction below 195 GHz. The variation
of transient times observed [Fig. 9(a)] from approximately 4 ns
(for m̄ = 18) to above 10 ns (for m̄ = 21) indicates also the
dependence of coupling between the electron beam and the
EM field on the azimuthal index m̄. It is clear that changing
m̄ results in variation of the oscillation evolution [Fig. 9(a)]
and the operating frequency [Fig. 9(b)]. One notes that in
all cases observed (14b) has been satisfied. Thus with the
change of the number of azimuthal variations, the operating
frequency upshift from 182 GHz (m̄ = 18) to 214 GHz
(m̄ = 21) has been observed. Further increase of m̄ led to
continuous increase of the transient time, and at m̄ = 24 the
startup of the oscillations did not take place. We note that for
m̄ = 21 the transition time to observe steady-state single-mode
operation has increased from ∼7 ns (for m̄ ∈ [18; 20]) to
30 ns. However, one also notes that the output power has

FIG. 8. (Color online) The spectrum of the output radiation (first column) and output power (second column) from Cherenkov oscillator
driven by a 20-A, thin, annular electron beam with interaction region formed by cylindrical 2D PSL of 11 mm diameter with m̄ = 20 and
30 longitudinal periods. The lattice’s longitudinal period and beam accelerating voltage was (a) dz = 1.32 mm, U = 300 kV; (b) dz = 1.26 mm,
U = 250 kV; and (c) dz = 0.82 mm, U = 100 kV.

013826-10



CYLINDRICAL PERIODIC SURFACE LATTICE AS A . . . PHYSICAL REVIEW A 84, 013826 (2011)

FIG. 9. (Color online) (a) The output power and (b) the spectrum
of the output radiation observed from the Cherenkov maser driven by
a thin, annular, 40-A, 50-kV electron beam and based on a 2D PSL of
11 mm mean diameter and 17.4 mm length (30 longitudinal periods)
and having m̄ = [18;21].

also increased by a factor of 4, indicating significant potential
for further improvement of the oscillator performance. The
excitation of up- and down-shifted satellite modes associated
with fields having different radial variation numbers has been
observed for m̄ ∈ [18; 21]. The field amplitudes of these
modes are 30 dB less than the operating mode but still would
be measurable if experimental studies are conducted with such
a device.

V. CONCLUSION

In this paper, we presented the model describing the
fundamental eigenmode structure inside the cavity formed
by a 2D periodic surface lattice of cylindrical topology. We
demonstrated that the eigenmode structure can be considered

as a superposition of partial surface and volume fields, which
are coupled on the lattice-vacuum interface. We discussed
the structures of the volume and surface partial fields, and
it was shown that the surface field excited is different from a
whispering-gallery mode and has all the features of a surface
mode. To define the structure of the eigenfield, the cylindrical
lattice was substituted with a smooth cylindrical waveguide,
partially loaded with a metadielectric. It was found that the
properties of the metadielectric depend on the lattice and
radiation parameters, and the conditions required to observe
the elevation of the surface field above the lattice were
discussed. Contour plots of the cavity eigenfield structures
were demonstrated. By analyzing the dispersion of the weakly
coupled partial fields, we illustrated that to observe coupling
at a near cutoff frequency of the volume field, the surface field
has to decay toward the center (i.e., it should have an imaginary
transverse wave number), thus making its structure different
from the whispering-gallery modes. Using the observed
results, numerical studies of a Cherenkov oscillator based on
a 2D PSL cavity and driven by an annular, electron beam
were carried out. The dependence of the lattice parameters on
the electron beam accelerating voltage was discussed and the
required lattice parameters’ scaling (to maintain the operation
of the Cherenkov oscillator) with variation of the electron
beam voltage was shown. Using the 3D numerical code MAGIC,
we demonstrated that single-mode steady-state operation of a
high-power 200-GHz Cherenkov maser can be achieved.

Let us note that the results observed in the paper have a
fundamental impact as they illustrate coupling on a “soft”
boundary of two different electromagnetic fields, which
without the lattice would be uncoupled. The model devel-
oped shows that the set of discrete synchronized scatterers
(oscillators) assembled into the 2D cylindrical lattice allows
coupling between an azimuthally nonsymmetric, localized
surface field and an azimuthally symmetric volume field. The
nature of the scatterers as well as the fields coupled can
be different from the ones considered, as the mathematical
apparatus and concepts used here can be applied to different
systems. For instance, similar results showing the evolution of
Bose-Einstein condensate density waves in atomic quantum
corrals have been recently observed in [21]. Such coupling
can also be expected inside the structures formed by dust
particles in plasma and other cylindrical systems based on
periodic discrete oscillators or scatterers. We also presented
the fundamental concept of substituting the PSL with a
continuous metadielectric and have shown the possibility
of using surface waves for high-power sources of coherent
radiation.
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A two-dimensional surface lattice of cylindrical topology obtained via perturbing the inner surface of a

cylinder is considered. Periodic perturbations of the surface lead to observation of high-impedance,

dielectric-like media and resonant coupling of surface and non-propagating volume fields. This allows

synthesis of tailored-for-purpose “coating” material with dispersion suitable, for instance, to mediate a

Cherenkov type interaction. An analytical model of the lattice is discussed and coupled-wave equations

are derived. Variations of the lattice dispersive properties with variation of parameters are shown,

illustrating the tailoring of the structure’s electromagnetic properties. Experimental results are

presented showing agreement with the theoretical model. VC 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4754572]

One of the important and challenging problems is to

understand the phenomena associated with excitation and

evolution of electromagnetic (EM) fields on the surface of

artificial periodic structures.1–4 The studies of surface latti-

ces, which mediate the interaction between active media and

EM fields, are an active and exciting research field, recently

boosted by development of nanotechnology and understand-

ing of utilizing surface fields (SFs) for compact sources of

coherent radiation (CSCR) such as the SPASAR.4 Here, we

consider the hollow cylindrical structure made from a perfect

conductor with the inner surface having two-dimensional

(2D) chessboard patterns (periodic perturbations).2,5–7 The

periodic perturbations manufactured via machining of the

smooth surface of the conductor form the square lattice,

which geometrically results in localization of the free elec-

trons inside areas which were not machined (scatterers).

Thus, electrons move freely inside the scatterers but electron

transmission through the whole lattice is terminated, with no

electron transport across the lattice in the azimuthal and lon-

gitudinal directions, for some range of frequencies. The

structure at these frequencies can be considered as a cylindri-

cal waveguide lined with a thin (2D) dielectric8 or a high-

impedance surface,9,10 inside which the excitation of SFs

and resonance coupling between surface and near cut-off

volume fields (VFs) take place. Also, the topology of the

structure is perfect for a number of applications including

CSCR and wake-field acceleration. The lattice has a large

surface area (in comparison with k2, where k is the operating

wavelength) and formed by the ensemble of individual scat-

ters which has to be synchronized to observe a coherent

state. To resolve the problem, feedback (realized in the set-

up (Fig. 1) similar to a Fabry-Perot (FP) cavity with a peri-

odic surface lattice (PSL) playing the role of one of the mir-

rors) can be used.11 In Figure 1, conformal mapping is

required to observe a cylindrical system from a planar sys-

tem as shown. The cut-off wave of the cylindrical waveguide

(standing wave in a planar system) ensures the feedback and

synchronization of the individual scatterers while the surface

fields can be used to interact with active media to observe a

CSCR.2,4–8,10–14 In this letter, we present an analytical model

of PSL eigenmodes defined via coupling of the partial local-

ized SFs with the azimuthally symmetric, near cut-off VFs

and comparing the experimental data observed with our

understanding of the phenomena. We show that dispersive

properties of the structures can be tailored to mediate differ-

ent phenomena including a Cherenkov instability.8,10 The

model is defined using a modal approach and a set of

coupled wave equations describing the eigenfields’ distribu-

tion inside the lattice. The eigenfield is considered as a

superposition of partial localized SFs and VFs of the unper-

turbed, partially loaded with a thin dielectric, cylindrical

waveguide. Using coupled wave equations derived from the

Maxwell equations, the eigenfields’ dispersion relations are

derived. We note that without the 2D patterns the SF will not

be formed; a change of the perfect conductor surface into a

high-impedance (dielectric-like) surface can only be

observed under specific conditions (see Refs. 1, 8–10 and

12), which is outside the scope of this paper.

Let us consider a 2D cylindrical structure formed by a

chessboard,6,8 surface lattice on the inner wall of a hollow,

cylindrical, copper waveguide. The pattern’s depth, i.e., the

individual element amplitude is smaller than the operating

wavelength. The resonant coupling (scattering) and cavity

eigenmode formation take place if the resonance conditions

are satisfied.2,6,8,12–14 The discussion and experiments were

carried out in the GHz frequency range6 but as will be clear,

the equations observed are applicable to THz and infrared

frequencies.

Starting with curl~E ¼ ik~H � ð4p~Jm=cÞ; curl~H ¼ �ik~E ,

where c is the speed of light, ~k ¼ x=c is the wave vector, x
is the angular frequency, ~Jm is the surface magnetic cur-

rent,12–14 we present the fields as a superposition of partial

modes whose transverse structure coincides with eigenmodes

of a cylindrical waveguide having a high surface impedance

(partially loaded with dielectric). The field’s components are
~H ¼

X
q
CqðzÞ~Hq; ~E ¼

X
q
CqðzÞ~Eq (see Refs. 12–14), thea)Email: ivan.konoplev@physics.ox.ac.uk. Tel.: þ44(0)-1865-273456.
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Cq(z) are the slowly varying amplitudes along the z coordi-

nate and the wave equations are

X
q

DzCqðzÞ þ
X
q

x27ðxq
0Þ2

c2

 !
CqðzÞ ¼ i

1

Nq

ð
r

~Jm~H�qjr0dr:

(1)

The contour integral taken along the unperturbed cylinder

cross-section, N�1
q ¼ 4pk=ðcÐ r ~Hq

~H�qdrÞ is the wave

norm12–14 and dr defines the integration surface while the

lattice is substituted with the set of surface currents, which

exist on the waveguide wall (r¼ r0). Equation (1) was

obtained taking into account: k2 ¼ x2=c2; D ¼ Dz þ D? and�
D?6

ðxq
0
Þ2

c2

�
Hq ¼ 0, where “þ” corresponds to the volume

(xq
0 ¼ xv

0 ¼ kv?c, k
2 ¼ k2z þ k2?) and “�” to the surface (k2

¼ k2z þ ðipÞ2, xq
0 ¼ xs

0 ¼ pc) localized modes. Introducing

X2¼ðjxv
0j2þjxs

0j2Þ=2, U2¼ðjxs
0j2�jxv

0j2Þ=2, d¼x�X
and considering U2=X2�1 (partial fields coupling with

kz!0 inside a long lattice), using Fourier decomposition

(structure is periodic along z), the set of equations defining

the coupling of the surface field’s spatial harmonic with an

index n and the fundamental harmonic of the VF can be

obtained

@2

@z2
þ 2 �K

2
�d
�K
þ

�d
2

2 �K
2
þ D2

2 �K
2

 ! !
AðzÞ ¼ i

1

Nv

ð
r

~Jm~H
v

�q

����
r0

dr;

(2a)

@2

@z2
þ 2in�kz

@

@z
þ 2 �K

2
1� n2 �k

2

z

2 �K
2
þ

�d
�K
þ D2

2 �K
2
þ

�d
2

2 �K
2

 ! !

� BnðzÞ ¼ i

Ns

ð
~Jm~H

s

�qjr0e�in�kzzdr; (2b)

where “s” and “v” indicate the norms of the surface and vol-

ume fields, A(z) and Bn(z) are the slowly varying amplitudes,
�K ¼ X=c, D ¼ U=c, and �d ¼ d=c. The right-hand sides of

Eqs. (2a) and (2b) can be rewritten as a2v;sFs;v,
12–14 where av;s

are the coupling coefficients and Fs,v are functions of the

amplitudes A(z) and Bn(z)
12–14 (i.e., Eqs. (2a) and (2b) are

coupled only if a2v;sFs;v 6¼ 0). Here, we will treat as;v as vari-
able parameters, the strict definition of which is outside the

scope of this letter and can be found using the technique dis-

cussed in Refs. 12–14. The coupling between the near cut-

off, VF fundamental harmonic, and SF takes place if the SF

harmonic’s number n coincides with the harmonic of the lat-

tice �n. Assuming that the lattice is sinusoidal (n¼61), intro-

ducing Z ¼ �Kz, Â0ðZÞ ¼ A0ðZÞ=av, B̂6ðZÞ ¼ B6ðZÞ=as,
a2¼avas= �K

2
, C¼ �kz= �K , ~d¼�d= �K¼ðx�XÞ=X; ~D¼D= �K

�1, x2
e ¼2~dþð~d2þ ~D

2Þ and assuming that Â0, B̂6 are pro-

portional to eiKZ, the dispersion relation can be found

ðx2
e �K2Þ½K4� 2K2ð2þC2þx2

eÞþ ð2�C2þx2
eÞ2�

¼ 2a4ð2�C2þx2
e �K2Þ: (3)

The detuning parameter C is a function of the structure’s ge-

ometry (for a specific mode) as it links the periodicity of the

lattice and xs
0 ¼ pc and xv

0 ¼ kv?c. One notes that if a ! 0,

no coupling is observed (Fig. 2, broken lines) while large a
such as a¼ 1 is associated with strong coupling and the

whole dispersion is affected (right insets of Fig. 2). For

clarity reasons only, the dispersions (Fig. 2) were observed

for the structure having the same mean diameter as used in

experiments reported6 under the assumption that D¼ 0 and a
� 1 (weak coupling, solid lines). If a � 1, then the eigen-

mode dispersion deviates from the unperturbed values in the

vicinity of the crossing points where the split between

branches takes place (main case). In Figure 2, eigenmodes’

dispersions are presented for the set of structure detuning pa-

rameter C¼ 1,
ffiffiffi
2

p
, and 2.3, respectively. With increase of C

from 1 to 2.3, the crossing points are moving towards the

vertex of the parabola8 and at C¼ ffiffiffi
2

p
and a¼ 0.25 (Fig.

2(b)), the crossing points merge at the center of the parabola.

Also, the gap in this case (as expected) is larger as compared

with a¼ 0.1. Assuming now a Cherenkov interaction

between an electron beam and the eigenfield formed, the

synchronism condition required for the interaction to take

place is x ¼ 2pvzl=dz (kz¼ 0, l¼ 1 here l is the electron

beam harmonic) leading to an electron beam velocity condi-

tion 1/
ffiffiffi
2

p � vz/c< 1. At C¼ 2.3 and a¼ 0.1, the eigenmo-

des’ dispersions (Fig. 2(c)) change further and now the

interaction between the electron beam and the EM fields can

be observed even at lower beam velocities 1/C� vz/c,
8 thus

making an increase of C synonymous with increasing effec-

tive dielectric refractive index. On the right-side insets

FIG. 1. Schematic showing a planar

Fabry-Perot like cavity with one of the

mirrors having a high-impedance surface

which allows coupling of surface fields

and volume fields. The arrows indicate

the mathematical steps required to move

from planar geometry to a cylindrical

cavity with a high-impedance surface

similar to a dielectric layer.
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(Fig. 2), the dispersion diagrams for a¼ 1 are shown and it is

clear that these are formed via an increasing gap between

branches at the crossings. Analyzing the graphs we see that

the positions of the extrema points (@f=@kz ¼ 0), indicating

the positions of the cavity eigenmodes, are different from the

unperturbed waveguide cut-off frequencies and having

f=kz < c and @f=@kz with sign variation illustrates the possi-

bility for observing slow forward and backward waves,

required for a Cherenkov interaction to take place.

The experiments, for which the set-ups were discussed

in Refs. 3 and 6, have been conducted to link theoretical

understanding with experimental measurements. The first set

of experiments is based on excitation of the structure’s

eigenmode inside the lattice via resonant scattering of the

near cut-off VFs to the SFs. To observe the near cut-off VF,

a coaxial line was used and it was terminated at the lattice,

resulting in excitation of the near cut-off, azimuthally sym-

metric mode. The resonant coupling between the fields mani-

fests itself as two gaps (Fig. 3(a)) in the signal transmission

observed at small observation angles with respect to the

structure’s axis of symmetry. The gaps are shifting in the fre-

quency domain with variation of the observation angle. Each

minima correspond to a point on the dispersion and the fre-

quency shift corresponds to the move of the point along the

dispersions’ branches. A specific angle corresponds to a lon-

gitudinal wavenumber (ratio k and k?, k2?=k
2 ¼ e2). Thus,

measuring the frequency shift of the minima and knowing

the observation angle one can recover the dispersion. The

technique works for small observation angles, corresponding

to small variations of kz around 0, as at larger angles the

appearance of other minima can be expected due to non-

coherent scattering3 of propagating waves. In Figure 3(a)

and the inset of this figure, the results of the transmission

measurements for the observation angles [0�;6�] and the shift

of the observed minima are shown. There is correlation

between the theory and the predictions, while differences

come from the fact that the structure studied in the experi-

ment is of finite size (4.8 cm long and 7.9 cm in diameter),

while the theory is developed for an infinitely long structure.

In the second set of experiments, we illustrate the high-Q

mode excitation6,8 at a frequency different from the cut-off

frequency of the non-perturbed waveguide. For this purpose,

the cavity was driven by short 50 ns pulses having 5 ns rise

and fall times and formed via amplitude modulation of the

high-frequency wave. The structure is based on the wave-

guide with an unperturbed radius of 3.95 cm (TM0,10 mode

cut-off frequency, i.e., @f=@kz ¼ 0 is �37GHz), while

from the previous experiment it was expected that the

cavity eigenmode should be observed at �37.7GHz, i.e.,

@f=@kz ¼ 0 is above the cut off frequency of the conven-

tional waveguide. The results shown in Fig. 3(b) illustrate

the pulse propagation through the structure and cavity

FIG. 2. Dispersion diagrams observed

from Eq. (3) for a structure having:

mean diameter 7.9 cm, number of azi-

muthal variation 28 illustrating the cou-

pling between partial volume TM0,10 and

surface EH28,1 fields when kc/dz and a
coupling coefficient (a¼ 1 for all right

hand-side insets) are: (a) 1 and 0.1; (b)ffiffiffi
2

p
and 0.25; (c) 2.3 and 0.1, respec-

tively. In all figures, the dashed lines

indicate the dispersion of the unper-

turbed partial fields, i.e., when a¼ 0.
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excitation at 37.64GHz (inset of Fig. 3(b)). Tuning the signal

carrier frequency to 37.64 GHz results in a visible change of

the pulse profile, similar to those observed during excitation

of critically coupled cavities, confirming our understanding

of the structure’s dispersion and phenomena observed. The

cavity Q-factor can also be estimated from the exponential

time-decay observed in Fig. 3(b) and is found to be approxi-

mately 600.

To summarize, in this paper, we have developed an ana-

lytical theory of the coupling of partial fields inside a 2D cy-

lindrical periodic structure formed by small periodic

perturbations. The surface lattice is described as a high-

impedance thin material (dielectric layer) allowing SFs to be

taken into consideration as partial fields forming the lattice

eigenmode. The dispersion relation describing the EM prop-

erty of the lattice has been derived and dispersion diagrams

were analyzed for different sets of parameters. We have dis-

cussed the possibility to excite the structure with a relativis-

tic electron beam to observe Cherenkov interaction. The

theory developed was linked to the previous works and anal-

ysis was carried out taking into account the parameters of the

experimental set-up. We have measured the dependence of

the spectra of the transmission coefficient versus angle of ob-

servation and discussed the method of deriving the disper-

sion from the data obtained. The structure has been

considered as a cavity and eigenmode excitation using a

short pulse has been carried out. We have shown that in spite

of the complexity of the measurements a good agreement,

between theoretical understanding and experimental meas-

urements, has been observed. We would like to note that the

theory developed is applicable for a broad range of frequen-

cies including THz and infrared frequencies.
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