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Abstract

Data assimilation methods are routinely employed in many scientific and technological

fields. The inverse Hessian, and inverse square root Hessian, are of importance in

various aspects of these procedures. The Hessian vector product is usually defined in

the context of geophysical and engineering applications by the sequential solution of a

tangent linear and adjoint problem. However, there are no readily available routines

for computing the inverse Hessian, and inverse square root Hessian, vector products.

It is generally necessary, when solving high-dimensional data assimilation problems,

to operate in a matrix-free environment. A suitable method for generating a compact

representation of the inverse Hessian, and inverse square root Hessian, is required in

such cases.

A multilevel eigenvalue decomposition algorithm for constructing a limited-memory

approximation to the inverse (and inverse square root) of any given symmetric positive

definite matrix with eigenvalues clustered around unity is presented in this thesis. This

algorithm is applied to the Hessian in the framework of incremental four-dimensional

variational data assimilation (4D-Var), with the standard control variable transform

implemented, in order to construct an approximation to the inverse Hessian. A novel

decomposition of the Hessian as the sum of a set of local Hessians is introduced in this

setting. Two practical variants of the multilevel eigenvalue decomposition algorithm

for constructing a limited-memory approximation to the inverse (and inverse square

root) of this Hessian are also presented. The accuracy of approximations to the inverse

Hessian generated by applying the three algorithms proposed is investigated. The

application considered in this thesis focuses on preconditioning the system of linear

equations in the inner step of a Gauss-Newton procedure in incremental 4D-Var with

an approximation to the inverse Hessian generated using the three algorithms proposed.
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polation (red circles), and Ã−10 where P k−ik has been implemented using

linear interpolation (black circles). Two combinations of Re and Ne

presented in Table 4.1 are highlighted. . . . . . . . . . . . . . . . . . . . 57

4.5 Comparison plots showing the first eighty eigenvalues of: A−10 (blue cir-
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at outer iteration number j = 6. Note that log10 ε̂d and log10 ε̂g are pre-

sented. The results obtained in the unpreconditioned case denoted by

‘NP’ are also tabulated. The model problem is MP2 where Nc = 10. . . 122

6.11 The ensemble average values ε̂d, ε̂g, N̂g, and N̂v calculated at outer

iteration number j = 25 of the Gauss-Newton method with the precon-

ditioners P2A, P2B, P2C, P2D, P3A, and P3B, respectively, introduced

at outer iteration number j = 6. Note that log10 ε̂d and log10 ε̂g are pre-

sented. The results obtained in the unpreconditioned case denoted by

‘NP’ are also tabulated. The model problem is MP3 where Nc = 5. . . . 122

6.12 The ensemble average values ε̂d, ε̂g, N̂g, and N̂v calculated at outer

iteration number j = 25 of the Gauss-Newton method with the precon-

ditioners P2A, P2B, P2C, P2D, P3A, and P3B, respectively, introduced

at outer iteration number j = 6. Note that log10 ε̂d and log10 ε̂g are pre-

sented. The results obtained in the unpreconditioned case denoted by

‘NP’ are also tabulated. The model problem is MP3 where Nc = 10. . . 125
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6.13 The ensemble average values ε̂d, ε̂g, N̂g, and N̂v calculated at outer

iteration number j = 25 of the Gauss-Newton method with the precon-

ditioners P2A, P2B, P2C, P2D, P3A, and P3B, respectively, introduced
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ditioners P2A, P2B, P2C, P2D, P3A, and P3B, respectively, introduced

at outer iteration number j = 6. Note that log10 ε̂d and log10 ε̂g are pre-

sented. The results obtained in the unpreconditioned case denoted by

‘NP’ are also tabulated. The model problem is MP4 where Nc = 10. . . 128
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Chapter 1

Introduction

1.1 Overview of data assimilation in Numerical Weather

Prediction

Data assimilation is the process whereby mathematical models characterising the key

elements of a dynamical system are combined with observations in order to obtain an

estimate of the system state. Applications of data assimilation arise in many scientific

and technological fields, notably within the geosciences; see, for example, [3], [38], [67],

[108], [115]. Relevant areas of significant interest include meteorology, oceanography,

geology, and hydrology.

Data assimilation is of particular importance in the research and study of weather

forecasting problems in Numerical Weather Prediction (NWP). The principal aim in

NWP is to utilise all available information about the present state of the atmosphere

to produce forecasts predicting the atmospheric state at future time points. For an

introduction to the topic of atmospheric data assimilation see [30], [62]. Further useful

sources of introductory material include [12], [89], [90]. The history and progression of

data assimilation in NWP is reviewed briefly in [87]. An overview of the developments

in data assimilation at NWP centres is given in [100].

Data assimilation in NWP involves combining observational data with mathematical

models representing important atmospheric processes in order to obtain estimates of

current and future atmospheric states. The compilation of regional and global weather

forecasts is usually undertaken several times a day at NWP centres. The assimilation
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process is conducted in real time to ensure that resulting forecasts provide realistic

predictions of future atmospheric states. A data assimilation cycle is executed over

a specified time period encompassing a given set of observations. This time interval

is referred to as the assimilation window. The time period covered in an operational

setting typically ranges from several hours to a few days.

The mathematical models representing the key dynamical processes occurring in

the atmosphere are a fundamental component of any NWP system. The number of

state variables associated with these models is generally of the order of 107 − 108.

Observational data is gathered from a variety of sources such as aircraft, ships, weather

balloons, and satellites. It is usually the case in NWP forecasting problems that the

number of available observations is of the order of 105 − 106, notably less than the

number of model state variables. This issue is addressed by introducing a background

estimate of the true atmospheric state. The background state is typically the result of

a previous data assimilation cycle.

An element of uncertainty is present in all NWP forecasting problems due to the

accumulation of errors throughout the assimilation process. These discrepancies are

incurred primarily through the background, observations, and forecasting models as

a consequence of limitations in the data assimilation system. The background error

characterises the difference between the background and the true atmospheric state.

The observational error is attributed to measuring instrument error, or results from the

translation of observations into model appropriate form. Model error is the result of

the various approximations and discretisations implemented in an attempt to replicate

the dynamical atmospheric processes taking place. It is not possible to represent the

true atmospheric state exactly in practice.

The production of forecasts in NWP is a complex task that requires the efficient

use of supercomputers and specialised data assimilation methods. The improvement

in forecast quality in recent years is mainly attributed to computational advancements

such as the development of sophisticated atmospheric models and data assimilation

techniques, as well as the increase in availability of measuring instruments for capturing

observational data. Operational NWP systems depend on data assimilation methods

to integrate the many variants of atmospheric data with the forecasting models. The
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choice of method is based on a number of factors such as the specific problem under

consideration and the computational resources available. Data assimilation techniques

are discussed in the framework of NWP in [81], [117]; see also [9], [46].

1.2 The Hessian in variational data assimilation

Variational methods are often employed in NWP; see, for example, [22], [30], [62]. The

implementation of variational data assimilation in large-scale problems is discussed

in [69]. The variational approach is to formulate the data assimilation problem as a

constrained minimisation problem. The aim is to determine an estimate of the ini-

tial model state for a given dynamical model by minimising a non-linear cost function

subject to a non-linear model constraint. The solution is referred to as the analysis.

Variational data assimilation problems can be formulated as optimal control problems;

see, for example, [73], [75]. The first variational method implemented operationally is

known as three-dimensional variational data assimilation (3D-Var); see [1], [23], [43],

[84], [103]. Four-dimensional variational data assimilation (4D-Var) is an extension of

3D-Var that incorporates observations distributed within a specified time interval. In-

cremental 4D-Var [24] is currently implemented at NWP centres such as the Met Office

[104] and the European Centre for Medium Range Forecasts (ECMWF) [64], [85], [102].

Ensemble 4D-Var is a recently developed version of 4D-Var that has been implemented

operationally; see, for example, [16], [20], [80]. The development of operational 4D-Var

data assimilation systems for coupled atmospheric and oceanic models is currently of

interest; see, for example, [39], [110].

The Hessian is the matrix containing the second-order partial derivatives of the

associated cost function in variational data assimilation. The Hessian and inverse

Hessian are of importance in various aspects of variational data assimilation procedures.

An overview of the properties of the Hessian in the wider context of meteorological and

oceanographic modelling is given in [118]. One role of the Hessian is as a coefficient

matrix in the inner step of a Gauss-Newton procedure in the framework of incremental

4D-Var [24]. The premise is to solve a system of linear equations in an inner loop

in order to determine an update for the current estimate of the initial model state.
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The linear system is generally solved in practice using a suitable iterative scheme such

as the conjugate gradient method [60]. An approximation to the inverse Hessian, if

inexpensive to compute, can be used to precondition this system to accelerate the

convergence of the iterative method.

The inverse Hessian and inverse square root Hessian also have different statistical

applications in variational data assimilation. Specifically, the inverse Hessian is equal

to the analysis error covariance matrix in the case of a linear dynamical model provided

that certain statistical conditions are satisfied; see, for example, [101], [118]. If the dy-

namical model is non-linear, then the inverse Hessian can be used as an approximation

to the analysis error covariance matrix; see, for example, [44], [74], [101], [118], [119].

That is, information relating to the analysis error covariance matrix can be inferred

from the inverse Hessian. For instance, confidence intervals for the components of

the analysis vector can be defined by the corresponding diagonal entries of the inverse

Hessian. The analysis probability density function is defined by the analysis and the

analysis error covariance matrix. Random functions generated using the inverse square

root Hessian can be used as ‘particles’ of the ensemble of initial states; see [33], [34].

These may be useful in ensemble forecasting; see, for example, [79], [120]. An approx-

imation to the inverse square root Hessian can be used to precondition the non-linear

minimisation procedure in the framework of the fully non-linear ensemble method [44]

or the randomised maximum likelihood method [19] to accelerate convergence.

In practice, due to the large-scale of variational data assimilation problems in NWP,

the Hessian cannot be explicitly represented, or stored, in matrix form. The Hessian

vector product is usually defined in such cases by the sequential solution of a tangent

linear and adjoint problem (see Section 2.8). However, there are no readily available

routines for computing the inverse Hessian, and inverse square root Hessian, vector

products. A suitable method for generating a compact representation of the inverse

Hessian, and inverse square root Hessian, is therefore required. One approach adopted

in operational implementations of incremental 4D-Var [24] at the ECMWF is to use esti-

mates of a specified number of the leading eigenvalues, and corresponding eigenvectors,

of the Hessian, following the application of the standard control variable transform,

to construct a limited-memory approximation to the inverse Hessian; see, for example,
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[36]. These eigenpair estimates are computed by means of the Lanczos method [68];

see also [29].

The concept of employing a multilevel strategy to construct an approximation to

the inverse Hessian, and inverse square root Hessian, is applicable in variational data

assimilation. Multigrid methods are algorithms based on a hierarchy of grids that are

typically used to solve partial differential equations. For an introductory overview of

multigrid see, for example, [14], [57], [131]. Multigrid methods can also be used to

solve optimisation problems governed by partial differential equations; see [11]. An

additional application of multigrid techniques is for solving eigenvalue problems; see,

for example, [21], [55], [65]. A multigrid method has been applied in the context of

variational data assimilation in [31].

1.3 Thesis outline

Background material is presented in Chapters 2 and 3 of this thesis. An overview

of four-dimensional variational data assimilation (4D-Var) is given in Chapter 2. The

mathematical techniques employed in Chapters 4, 5, and 6 are introduced in Chapter 3.

The first novel concept introduced in this thesis, a multilevel eigenvalue decompo-

sition algorithm for constructing a limited-memory approximation to the inverse (and

inverse square root) of any given symmetric positive definite matrix with eigenvalues

clustered around unity, is presented in Chapter 4. This algorithm is applied to the Hes-

sian in the framework of incremental 4D-Var [24], with the standard control variable

transform implemented, in order to construct an approximation to the inverse Hessian.

The accuracy of approximations to the inverse Hessian generated using the multilevel

eigenvalue decomposition algorithm is investigated in Chapter 4.

A second key concept, a novel decomposition of the Hessian as the sum of a set of

local Hessians, is introduced in the setting of incremental 4D-Var in Chapter 5. Two

practical variants of the multilevel eigenvalue decomposition algorithm for constructing

a limited-memory approximation to the inverse (and inverse square root) of this Hessian

are presented in Chapter 5. The accuracy of approximations to the inverse Hessian

generated using the two algorithms proposed is also investigated.
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The application considered in Chapter 6 focuses on preconditioning the system of

linear equations in the inner step of a Gauss-Newton procedure in incremental 4D-Var

with an approximation to the inverse Hessian generated using the three algorithms

introduced in Chapters 4 and 5. A numerical study is presented which shows that

computational gains can be achieved by applying the preconditioners in practice.

The novel concepts introduced in Chapters 4 and 5 have been published in [15]. A

numerical study focusing on the application considered in Chapter 6 is also presented.
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Chapter 2

Four-dimensional variational data

assimilation

Four-dimensional variational data assimilation (4D-Var) is often employed in Numerical

Weather Prediction (NWP); see, for example, [22], [62], [89], [90]. The aim is to

determine an estimate of the initial model state for a forecast model that best fits

given observational data distributed over a specified time interval. An overview of

4D-Var is given in this chapter.

The standard formulation of 4D-Var is presented in Section 2.1 in the first instance.

The tangent linear model (TLM) typically introduced in operational implementations of

4D-Var is defined in Section 2.2. A linear estimate of the solution to the 4D-Var problem

is derived in Section 2.3, and the adjoint model used in operational implementations of

4D-Var is discussed in Section 2.4. The Gauss-Newton method, an iterative technique

applicable for solving the 4D-Var problem, is presented in Section 2.5; see also, for

example, [32], [48], [91]. Specifically, the application of this method for solving the

4D-Var problem is described.

Incremental 4D-Var [24] is an iterative version of 4D-Var currently implemented

at many NWP centres; see, for example, [64], [85], [102], [104]. This procedure is

outlined in Section 2.6. The inner loop problem in incremental 4D-Var is discussed in

Section 2.7. The Hessian is defined in the context of incremental 4D-Var in Section 2.8.

A control variable transform usually applied in incremental 4D-Var is discussed in

Section 2.9. Finally, a limited-memory decomposition of the Hessian following this
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variable transformation is presented in Section 2.10.

2.1 The standard formulation of 4D-Var

The standard formulation of 4D-Var is as a non-linear least squares problem; see,

for example, [89], [90]. The premise is to determine an estimate of the initial model

state for a given dynamical model by minimising a non-linear cost function subject to

a non-linear model constraint. Let xi ∈ RN denote the model state vector at time

ti of the assimilation window [t0, tn]. The evolution of xi from time ti to time ti+1

(i = 0, . . . , n − 1) is defined by a non-linear model operator M(ti+1, ti, .) : RN → RN

as follows:

xi+1 =M(ti+1, ti,xi) (i = 0, . . . , n− 1). (2.1)

Suppose that the observations yi ∈ Rpi at time ti satisfy the equation

yi = Hi(xi) + δio (i = 0, . . . , n) (2.2)

where Hi(.) : RN → Rpi is a non-linear observation operator, and δio ∈ Rpi denotes

the observational error incurred at time ti. The operator Hi(.) is required in (2.2) to

translate xi from the model state space RN to the observation space Rpi . Note that

the number of available observations pi at time ti is usually less than N in practice.

This issue is addressed by introducing an estimate of x0 in the form of the background

xb0 ∈ RN . The error in the background is

δb = xb0 − xt0 (2.3)

where xt0 denotes the true atmospheric state at time t0. The specification of covari-

ance matrices allows uncertainties in yi and xb0 to be represented. Specifically, let

Ri ∈ Rpi×pi and B ∈ RN×N denote symmetric positive definite covariance matrices

characterising the errors in yi and xb0, respectively. The importance of B in variational

data assimilation is discussed in [7], [8]. The aim of 4D-Var is then to minimise the
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cost function

J (x0) =
1

2
(x0 − xb0)

TB−1(x0 − xb0) +
1

2

n∑
i=0

(Hi(xi)− yi)
T R−1i (Hi(xi)− yi) (2.4)

with respect to x0 subject to (2.1). The solution to the 4D-Var problem is known as

the analysis xa0. The error in the analysis is

δa = xa0 − xt0.

It has been shown in [82] that, under certain statistical conditions, xa0 is equal to the

maximum a posteriori Bayesian estimate of x0.

A standard assumption in 4D-Var is thatM(ti+1, ti, .) is perfect. The incorporation

of model error in 4D-Var is discussed in [122], [124]. However, model error is not

considered in this thesis. Note that, if n = 0, then 4D-Var reduces to three-dimensional

variational data assimilation (3D-Var); see, for example, [22], [23], [43], [62], [84].

2.2 The tangent linear model

Simplifications are usually introduced in operational implementations of 4D-Var. The

standard approach is to linearise the operators M(ti+1, ti, .) in (2.1) and Hi(.) in (2.2)

about xi. This procedure is dependent on the validity of the so-called tangent linear

hypothesis; see, for example, [12], [62]. This states that M(ti+1, ti, .) and Hi(.) can

be linearised. The Taylor series expansions of M(ti+1, ti, .) and Hi(.) around xi for a

perturbation δxi ∈ RN are

M(ti+1, ti,xi + δxi) =M(ti+1, ti,xi) +Mi,i+1δxi +O(δx2
i ), (2.5)

Hi(xi + δxi) = Hi(xi) +Hiδxi +O(δx2
i ) (2.6)

where

Mi,i+1 =
∂M(ti+1, ti, .)

∂x

∣∣∣∣
xi

, Hi =
∂Hi(.)
∂x

∣∣∣∣
xi

. (2.7)

The matrices Mi,i+1 and Hi in (2.7) are the Jacobians of M(ti+1, ti, .) and Hi(.), re-

spectively, calculated with respect to xi. If the tangent linear hypothesis is valid, then
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M(ti+1, ti,xi+δxi) in (2.5) andHi(xi+δxi) in (2.6) can be approximated by neglecting

the higher order terms denoted by O(δx2
i ). The premise is therefore to set

M(ti+1, ti,xi + δxi) =M(ti+1, ti,xi) +Mi,i+1δxi (2.8)

and

Hi(xi + δxi) = Hi(xi) +Hiδxi.

It follows from (2.1) that

M(ti+1, ti,xi + δxi) = xi+1 + δxi+1. (2.9)

Substituting the expressions forM(ti+1, ti,xi) in (2.1) andM(ti+1, ti,xi+δxi) in (2.9)

into (2.8) gives

xi+1 + δxi+1 = xi+1 +Mi,i+1δxi

thus

δxi+1 = Mi,i+1δxi.

The matrix Mi,i+1 in (2.7) is referred to as the tangent linear model (TLM). Applying

the chain rule

M0,i = Mi−1,iMi−2,i−1 . . .M0,1. (2.10)

That is, M0,i is equal to the product of i intermediate matrices pertaining to each time

step of the assimilation window [t0, ti]. In practice, the tangent linear model code can

usually be derived from the non-linear model code by applying automatic differentiation

techniques; see, for example, [53].

2.3 Linear analysis estimate

In general, explicit solutions to the 4D-Var problem presented in Section 2.1 cannot be

determined. However, it is possible to obtain a linear estimate of xa0; see, for example,

[90]. This derivation is based on the assumption that the difference between xa0 and xb0
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is a linear combination of the innovation vectors

d̃i = yi −Hi(xbi) (i = 0, . . . , n).

The premise is to linearise J (x0) in (2.4) about the non-linear background trajectory

xbi (i = 0, . . . , n) where

xbi+1 =M(ti+1, ti,x
b
i) (i = 0, . . . , n− 1). (2.11)

This involves linearising the operatorsM(ti+1, ti, .) in (2.1) and Hi(.) in (2.2) about xbi

by defining

M b
i,i+1 =

∂M (ti+1, ti, .)

∂x

∣∣∣∣
xb
i

, Hb
i =

∂Hi(.)
∂x

∣∣∣∣
xb
i

. (2.12)

The matrices M b
i,i+1 and Hb

i in (2.12) are the Jacobians of M(ti+1, ti, .) and Hi(.),

respectively, calculated with respect to xbi . It follows from (2.4) that the resulting

linearised cost function is

J̃ (δx0) =
1

2
δxT0B

−1δx0 +
1

2

n∑
i=0

(Hb
iM

b
0,iδx0 − d̃i)

TR−1i (Hb
iM

b
0,iδx0 − d̃i) (2.13)

where

δx0 = x0 − xb0. (2.14)

The gradient of J̃ (δx0) in (2.13) calculated with respect to δx0 is

∇J̃ (δx0) = (B−1 +H
T
R
−1
H)δx0 −H

T
R
−1

d (2.15)

where

H =


Hb

0

Hb
1M

b
0,1

...

Hb
nM

b
0,n

 , R =


R0 0 . . . 0

0 R1 . . . 0
...

...
. . .

...

0 0 . . . Rn

 , d =


d̃0

d̃1

...

d̃n

 . (2.16)
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Setting ∇J̃ (δx0) in (2.15) equal to zero and solving for δx0 gives

δx0 = (B−1 +H
T
R
−1
H)−1H

T
R
−1

d. (2.17)

Let xa0 ∈ RN denote the linear estimate of xa0. This is determined by replacing δx0 in

(2.17) with the definition in (2.14), solving for x0, and setting x0 = xa0. Specifically,

xa0 = xb0 +Kd (2.18)

where

K = (B−1 +H
T
R
−1
H)−1H

T
R
−1 ≡ BHT

(R+HBH
T

)−1. (2.19)

The matrix K in (2.19) is referred to as the gain or weight matrix of xa0 in (2.18). If

certain statistical conditions are satisfied, then xa0 in (2.18)-(2.19) is the best linear

unbiased estimate (BLUE) of xt0; see, for example, [90]. The error in xa0 is

δa = xa0 − xt0.

The analysis error covariance matrix associated with xa0 in this case is

A = (IN −KH)B (2.20)

where IN is the N ×N identity matrix. The matrix A in (2.20) characterises the error

in xa0.

It follows from (2.15) that the Hessian of J̃ (δx0) in (2.13) calculated with respect

to δx0 is

∇2J̃ (δx0) = B−1 +H
T
R
−1
H (2.21)

where H and R are defined in (2.16). Provided that B is non-singular, then ∇2J̃ (δx0)

in (2.21) is symmetric positive definite. The inverse of ∇2J̃ (δx0) is equal to A in (2.20);

see [101].
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2.4 The adjoint model

An iterative approach is often employed in operational implementations of 4D-Var. The

procedure in such cases is to reformulate the 4D-Var problem presented in Section 2.1 as

an unconstrained optimisation problem. This is solved in practice using an appropriate

optimisation method; see [35]. Applying an optimisation method in 4D-Var involves

computing the gradient of J (x0) in (2.4). This is facilitated by the method of Lagrange;

see, for example, [89], [90]. The new requirement is that a set of adjoint equations must

be satisfied in addition to (2.1).

Suppose that Mi,i+1 and Hi in (2.7) are defined. The adjoints of Mi,i+1 and Hi

are included in the adjoint equations. These adjoints are the transpose matrices MT
i,i+1

and HT
i , respectively; see, for example, [62]. The matrix MT

i,i+1 is referred to as the

adjoint model. Taking the transpose of M0,i in (2.10) gives

MT
0,i = MT

0,1 . . .M
T
i−2,i−1M

T
i−1,i.

Hence MT
0,i is equal to the product of i intermediate transpose matrices pertaining to

each time step of the assimilation window [t0, ti]. The adjoint equations to be solved

are

λn+1 = 0, (2.22)

λi = MT
i,i+1λi+1 +HT

i R
−1
i (yi −Hi(xi)) (i = n, . . . , 0) (2.23)

where λi ∈ RN (i = 0, . . . , n) denote the adjoint variables. A measure of the sensitivity

of J (x0) in (2.4) to variations in xi is provided by λi.

The gradient of J (x0) in (2.4) is computed by solving (2.22)-(2.23). Note that the

gradient of J (x0) calculated with respect to x0 is

∇J (x0) = B−1(x0 − xb0) +
n∑
i=0

MT
0,iH

T
i R
−1
i (Hi(xi)− yi)

= B−1(x0 − xb0) +HT
0 R
−1
0 (H0(x0)− y0) +

n∑
i=1

MT
0,iH

T
i R
−1
i (Hi(xi)− yi)

= B−1(x0 − xb0)− λ0 (2.24)
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where

λ0 = MT
0,1λ1 +HT

0 R
−1
0 (y0 −H0(x0)). (2.25)

The aim is determine x0 such that ∇J (x0) = 0. If this condition is not satisfied, then

the computed gradient provides a search direction for updating the current estimate of

x0. In practice, the adjoint model code can be derived directly from the tangent linear

model code; see [47].

2.5 The Gauss-Newton method

The Gauss-Newton method is an adaptation of Newton’s method for solving non-linear

least squares problems; see, for example, [32], [48], [91]. This iterative technique is

applicable for solving the 4D-Var problem presented in Section 2.1. The Gauss-Newton

method is applied in the numerical studies presented in Chapter 6.

Recall that the aim of 4D-Var is to minimise J (x0) in (2.4) with respect to x0

subject to (2.1). Solving this minimisation problem using the Gauss-Newton method

is now described. The starting point is to observe that the 4D-Var problem can be

formulated as follows:

min
x0∈RN

J (x0) =
1

2
‖f(x0)‖22 ≡

1

2
f(x0)

T f(x0) (2.26)

where

f(x0) =


B−

1
2 (x0 − xb0)

R
− 1

2
0 (H0(x0)− y0)

...

R
− 1

2
n (Hn(xn)− yn)

 (2.27)

and ‖.‖2 represents the `2-norm. The premise is to approximate (2.26) by solving a

sequence of linearised least squares problems. This is conducted in the framework of

an inner-outer loop procedure.

Suppose that Mi,i+1 and Hi in (2.7) are defined. The gradient of J (x0) in (2.4)

calculated with respect to x0 is ∇J (x0) in (2.24)-(2.25). Note that ∇J (x0) can be
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defined in terms of f(x0) in (2.27) as follows:

∇J (x0) = J(x0)
T f(x0) (2.28)

where

J(x0) =



B−
1
2

R
− 1

2
0 H0

R
− 1

2
1 H1M0,1

...

R
− 1

2
n HnM0,n


. (2.29)

The matrix J(x0) in (2.29) is the Jacobian of f(x0) in (2.27) calculated with respect to

x0. It follows from (2.28) that the Hessian of J (x0) calculated with respect to x0 is

∇2J (x0) = J(x0)
TJ(x0) +

n+2∑
i=1

fi(x0)∇2fi(x0) (2.30)

where fi(x0) denotes the ith entry of f(x0). Computing∇2J (x0) in (2.30) is not usually

feasible in practice. The Gauss-Newton method is applicable since this technique does

not require ∇2J (x0) to be computed directly. The idea is to approximate ∇2J (x0) by

setting

∇2J (x0) = J(x0)
TJ(x0).

The steps involved in solving (2.26)-(2.27) using the Gauss-Newton method are outlined

in Figure 2.1.

Solving (2.31) directly is not always practical. The solution ˆδx0
(i)

to (2.31) is

determined in such cases by solving the following linearised least squares problem with

respect to ˆδx0
(i)

in an inner loop:

min
ˆδx0

(i)∈RN

1

2
‖J(x

(i)
0 ) ˆδx0

(i)
+ f(x

(i)
0 )‖22. (2.32)

Theoretical results pertaining to the convergence of the Gauss-Newton method in the

context of variational data assimilation are presented in [51].
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1. Define an initial guess x
(1)
0

2. Perform outer iteration for i = 1, 2, . . . as required. Determine an increment
ˆδx0

(i)
by solving the following system in an inner loop:

J(x
(i)
0 )TJ(x

(i)
0 ) ˆδx0

(i)
= −J(x

(i)
0 )T f(x

(i)
0 ). (2.31)

3. Update the current guess x
(i)
0 using

x
(i+1)
0 = x

(i)
0 + ˆδx0

(i)
.

Figure 2.1: Outline of the steps involved in solving (2.26)-(2.27) using the Gauss-
Newton method.

2.6 The incremental formulation of 4D-Var

Incremental 4D-Var [24] is an iterative version of 4D-Var. This is currently implemented

at NWP centres such as the Met Office [104], and the European Centre for Medium

Range Forecasts (ECMWF) [64], [85], [102]. The premise is to obtain an estimate of the

solution to the 4D-Var problem presented in Section 2.1, namely, the analysis xa0, by

solving a sequence of simpler linearised problems. This is conducted in the framework

of an inner-outer loop routine. The main steps of incremental 4D-Var are outlined

in Figure 2.2. Note that the matrices M̃i,i+1 and H̃i in (2.36) are the Jacobians of

M(ti+1, ti, .) in (2.1) and Hi(.) in (2.2), respectively, calculated with respect to x
(j)
i .

Incremental 4D-Var is restricted by computational limitations and time constraints

at NWP centres. The number of inner and outer loop iterations to perform is chosen

carefully in practice. Operational implementations typically involve executing a small

number of outer loop iterations. The validity of the tangent linear model (TLM) M̃i,i+1

in (2.36) is discussed in [121]. The outer loop convergence of incremental 4D-Var based

on the ECMWF setup has been considered in [123]. Incremental 4D-Var convergence

when the TLM is approximated has been investigated in [70]. An advantage of incre-

mental 4D-Var is that the inner loop problem (2.34)-(2.35) can be solved in a lower

dimensional space; see [72].

16



1. Perform outer iteration for j = 1, 2, . . . as required. Define an initial guess x
(j)
0

at time t0. If j = 1, then set x
(1)
0 = xb0.

2. Compute x
(j)
i at time ti (i = 1, . . . , n) using

x
(j)
i+1 =M(ti+1, ti,x

(j)
i ) (i = 0, . . . , n− 1) (2.33)

and calculate the innovation vectors

d
(j)
i = yi −Hi(x(j)

i ) (i = 0, . . . , n).

3. Minimise the following linearised cost function with respect to δx
(j)
0 in an inner

loop:

Ĵ (δx
(j)
0 ) =

1

2

{
δx

(j)
0 − (xb0 − x

(j)
0 )
}T

B−1
{
δx

(j)
0 − (xb0 − x

(j)
0 )
}

+
1

2

n∑
i=0

(H̃iδx
(j)
i − d

(j)
i )TR−1i (H̃iδx

(j)
i − d

(j)
i ) (2.34)

subject to

δx
(j)
i = M̃0,iδx

(j)
0 (i = 0, . . . , n) (2.35)

where

M̃i,i+1 =
∂M (ti, ti+1, .)

∂x

∣∣∣∣
x
(j)
i

, H̃i =
∂Hi(.)
∂x

∣∣∣∣
x
(j)
i

. (2.36)

4. Update the current guess x
(j)
0 using

x
(j+1)
0 = x

(j)
0 + δx

(j)
0 .

5. Repeat process until a prescribed convergence criterion has been satisfied, or a
specified number of outer iterations have been executed. The analysis estimate

is given by x̂a0 = x
(m)
0 , where m is the total number of outer iterations performed.

Figure 2.2: Outline of the main steps of incremental 4D-Var.
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2.7 The inner loop problem

The inner loop problem (2.34)-(2.35) in incremental 4D-Var is typically solved using

a suitable optimisation method; see [35]. The choice of method is usually limited to

techniques that require the first, but not the second, derivative of Ĵ (δx
(j)
0 ) in (2.34) to

be computed. The gradient of Ĵ (δx
(j)
0 ) calculated with respect to δx

(j)
0 is

∇Ĵ (δx
(j)
0 ) = (B−1 + ĤT R̂−1Ĥ)δx

(j)
0 −B

−1(xb0 − x
(j)
0 )− ĤT R̂−1d̂ (2.37)

where

Ĥ =


H̃0

H̃1M̃0,1

...

H̃nM̃0,n

 , R̂ =


R0 0 . . . 0

0 R1 . . . 0
...

...
. . .

...

0 0 . . . Rn

 , d̂ =


d0

d1

...

dn

 . (2.38)

Setting ∇Ĵ (δx
(j)
0 ) in (2.37) equal to zero and rearranging terms gives

(B−1 + ĤT R̂−1Ĥ)δx
(j)
0 = B−1(xb0 − x

(j)
0 ) + ĤT R̂−1d̂. (2.39)

The solution δx
(j)
0 to (2.39) is the minimiser of Ĵ (δx

(j)
0 ) in (2.34). An appropriate

iterative method is generally used to solve (2.39). At the start of an outer iteration, it

is necessary to perform n forward integrations of the non-linear model M(ti+1, ti, .) in

(2.33) to calculate the model states x
(j)
i (i = 1, . . . , n). The tangent linear model (TLM)

M̃i,i+1 in (2.36) is used to compute Ĵ (δx
(j)
0 ). The adjoint model M̃T

i,i+1 is involved in

calculating ∇Ĵ (δx
(j)
0 ) in (2.37). These procedures are computationally demanding in

practice. The number of evaluations of Ĵ (δx
(j)
0 ) and ∇Ĵ (δx

(j)
0 ) permitted is therefore

usually restricted.

It has been shown in [70] that solving the 4D-Var problem using the Gauss-Newton

method (as described in Section 2.5) is equivalent to applying incremental 4D-Var

outlined in Figure 2.2. A stopping criterion for the inner loop in incremental 4D-Var

is described in [71].
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2.8 The Hessian in incremental 4D-Var

The Hessian is of importance in incremental 4D-Var; see, for example, [54]. It follows

from (2.37) that the Hessian of Ĵ (δx
(j)
0 ) in (2.34) calculated with respect to δx

(j)
0 is

∇2Ĵ (δx
(j)
0 ) = B−1 + ĤT R̂−1Ĥ (2.40)

where Ĥ and R̂ are defined in (2.38). To simplify notation, henceforth we will denote

∇2Ĵ (δx
(j)
0 ) in (2.40) by the real N × N matrix F . Provided that B is non-singular,

then F is symmetric positive definite. In practice, due to memory constraints, the

Hessian cannot be explicitly represented in matrix form. The Hessian vector product

is usually evaluated by executing the tangent linear model (TLM) M̃i,i+1 in (2.36) and

the associated adjoint model M̃T
i,i+1. This procedure is computationally demanding.

The condition number of the Hessian provides a measure of the conditioning of the

inner loop problem (2.34)-(2.35). A large condition number indicates that the problem

is ill-conditioned. This signifies that the solution δx
(j)
0 to (2.34)-(2.35), or equivalently

(2.39), is sensitive to small perturbations in the input data. If the condition number

of the Hessian is large, then the convergence rate of the iterative method used to

solve (2.39) may be slow. It has been highlighted in [83] that the Hessian is usually ill-

conditioned in practice. A theoretical examination of the conditioning of the variational

data assimilation problem is presented in [54]; see also [116]. If certain statistical

conditions are satisfied, then the inverse Hessian is equal to the analysis error covariance

matrix; see [24], [101].

2.9 The control variable transform

A control variable transform is usually applied in incremental 4D-Var. This typically

involves B1/2, that is, the symmetric square root of the background error covariance

matrix B; see, for example, [8], [83], [90]. The premise is to redefine the inner loop

problem (2.34)-(2.35) in terms of the new variables

δz
(j)
i = B−1/2δx

(j)
i (i = 0, . . . , n) (2.41)

19



where

z
(j)
i = B−1/2x

(j)
i (i = 0, . . . , n) (2.42)

and

zb0 = B−1/2xb0. (2.43)

Substituting the definitions of δx
(j)
i , x

(j)
i , and xb0 given by (2.41)-(2.43) into (2.34)-

(2.35) results in the transformed inner loop problem

Ĵ (δz
(j)
0 ) =

1

2

{
δz

(j)
0 − (zb0 − z

(j)
0 )
}T {

δz
(j)
0 − (zb0 − z

(j)
0 )
}

+
1

2

n∑
i=0

(H̃iB
1/2δz

(j)
i − d

(j)
i )TR−1i (H̃iB

1/2δz
(j)
i − d

(j)
i ), (2.44)

δz
(j)
i = B−1/2δx

(j)
i = B−1/2M̃0,iδx

(j)
0 (i = 0, . . . , n). (2.45)

The aim now is to minimise (2.44) with respect to δz
(j)
0 subject to (2.45). Applying

the control variable transform (2.41)-(2.43) in incremental 4D-Var removes the explicit

representation of the matrix B in the inner loop cost function. In practice, due to

memory constraints, the matrix B cannot be explicitly represented in matrix form.

It is instead defined implicitly in (2.44) through (2.41)-(2.43). The updated steps

of incremental 4D-Var with the control variable transform (2.41)-(2.43) applied are

outlined in Figure 2.3.

The gradient of Ĵ (δz
(j)
0 ) in (2.46) calculated with respect to δz

(j)
0 is

∇Ĵ (δz
(j)
0 ) = (IN +B1/2ĤT R̂−1ĤB1/2)δz

(j)
0 − (zb0 − z

(j)
0 )−B1/2ĤT R̂−1d̂ (2.48)

where Ĥ, R̂ and d̂ are defined in (2.38). Setting ∇Ĵ (δz
(j)
0 ) in (2.48) equal to zero and

rearranging terms gives

(IN +B1/2ĤT R̂−1ĤB1/2)δz
(j)
0 = zb0 − z

(j)
0 +B1/2ĤT R̂−1d̂. (2.49)

The solution δz
(j)
0 to (2.49) is the minimiser of Ĵ (δz

(j)
0 ) in (2.46). It follows from (2.48)
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1. Perform outer iteration for j = 1, 2, . . . as required. Define an initial guess x
(j)
0

at time t0. If j = 1, then set x
(1)
0 = xb0.

2. Compute x
(j)
i at time ti (i = 1, . . . , n) using

x
(j)
i+1 =M(ti+1, ti,x

(j)
i ) (i = 0, . . . , n− 1)

and calculate the innovation vectors

d
(j)
i = y0

i −Hi(x
(j)
i ) (i = 0, . . . , n).

3. Minimise the following cost function with respect to δz
(j)
0 in an inner loop:

Ĵ (δz
(j)
0 ) =

1

2

{
δz

(j)
0 − (zb0 − z

(j)
0 )
}T {

δz
(j)
0 − (zb0 − z

(j)
0 )
}

(2.46)

+
1

2

n∑
i=0

{
H̃iB

1/2δz
(j)
i − d

(j)
i

}T
R−1i

{
H̃iB

1/2δz
(j)
i − d

(j)
i

}
subject to

δz
(j)
i = B−1/2δx

(j)
i = B−1/2M̃0,iδx

(j)
0 (i = 0, . . . , n) (2.47)

where
zb0 = B−1/2xb0,

z
(j)
i = B−1/2x

(j)
i (i = 0, . . . , n),

and

M̃i,i+1 =
∂M (ti, ti+1, .)

∂x
|
x
(j)
i

, H̃i =
∂Hi(.)
∂x

|
x
(j)
i

.

4. Reverse the control variable transform to recover the increment

δx
(j)
0 = B1/2δz

(j)
0 .

5. Update the current guess x
(j)
0 using

x
(j+1)
0 = x

(j)
0 + δx

(j)
0 .

6. Repeat process until a prescribed convergence criterion has been satisfied, or a
specified number of outer iterations have been executed. The analysis estimate

is given by x̂a0 = x
(m)
0 , where m is the total number of outer iterations performed.

Figure 2.3: Outline of the updated steps of incremental 4D-Var with the control variable
transform (2.41)-(2.43) applied.
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that the Hessian of Ĵ (δz
(j)
0 ) in (2.46) calculated with respect to δz

(j)
0 is

C ≡ ∇2Ĵ (δz
(j)
0 ) = IN +B1/2ĤT R̂−1ĤB1/2 (2.50)

where Ĥ and R̂ are defined in (2.38). Note that the matrix B1/2ĤT R̂−1ĤB1/2 in (2.50)

is positive semi-definite. However, this matrix does not have full rank since the number

of observations is usually less than N in practice; see [54]. Hence C is symmetric

positive definite. In particular, the eigenvalues of C are greater than or equal to one.

The matrix C is relevant to the numerical studies presented in Chapters 4, 5, and 6.

2.10 Limited-memory approximation to the Hessian

Applying the control variable transform discussed in Section 2.9 has been shown to

improve the conditioning of the inner loop problem in incremental 4D-Var; see [83]. The

application of this control variable transform is referred to as first-level preconditioning.

However, further preconditioning is usually necessary to improve the conditioning of

the transformed inner loop problem (2.46)-(2.47); see [36]. This generally involves the

Hessian C in (2.50). One approach adopted at the ECMWF is to use estimates of a

specified number of the leading eigenvalues, and corresponding eigenvectors, of C to

construct a limited-memory approximation to C−1; see [36]. These eigenpair estimates

are computed by means of the Lanczos method [68]; see also [29]. Specifically, for any

γ ∈ R,

Cγ ' IN +

r∑
i=1

(λγi − 1)uiu
T
i (2.51)

where {λi,ui} (i = 1, . . . , r) denote estimates of r eigenpairs of C, with r � N . A

limited-memory approximation to C−1 of the form defined in (2.51) is used to pre-

condition the minimisation of the transformed inner loop problem (2.46)-(2.47) in the

ECMWF operational implementation of incremental 4D-Var; see [36]. It has been

shown in [125] that this preconditioner belongs to a class of limited-memory precondi-

tioners that are applicable in incremental 4D-Var. The limited-memory approximation

to Cγ defined in (2.51) is relevant to the multilevel eigenvalue decomposition algorithm

introduced in Chapter 4.
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Chapter 3

Background methods

An introductory overview of the mathematical techniques employed in Chapters 4, 5,

and 6 is given in this chapter.

The methods discussed initially are applicable for solving the eigenvalue problem

Mz = µz (3.1)

where M ∈ RN×N is symmetric, z ∈ RN , and µ ∈ R. The symmetric eigenvalue

problem is discussed in detail in [97]. Solving large-scale eigenvalue problems requires

specialised techniques; see, for example, [18], [50], [107], [112], [114], [129], [132]. The

Lanczos method [68] is particularly relevant if the coefficient matrix M in (3.1) is sparse.

This is described in Section 3.1. The key idea is to first simplify (3.1) by reducing M to

tridiagonal form. Estimates of the eigenvalues of M are computed on termination of the

Lanczos procedure using an appropriate technique such as the QR method [40], [41],

[66] (summarised in Section 3.2). The corresponding eigenvectors, if required, can also

be computed. However, numerical issues limit the application of the Lanczos method

in practice. The implicitly restarted Lanczos method [111] is a variant of the Lanczos

method that is suitable for solving large-scale eigenvalue problems of the form (3.1).

This method, discussed in Section 3.3, is applied in the numerical studies presented in

Chapters 4, 5, and 6.

The final two methods discussed in this chapter are relevant for solving systems of
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linear equations of the form

Kq = f (3.2)

where K ∈ RN×N is symmetric positive definite, q ∈ RN , and f ∈ RN . For an

introduction to solving systems of linear equations using iterative methods see, for

example, [5], [56], [106]. The conjugate gradient method [60] is applicable for solving

(3.2). This is described in Section 3.4. An overview of conjugate direction and gradient

methods in optimisation is given in [59]. The conjugate gradient method can be derived

from the Lanczos method; see, for example, [50]. A preconditioner is usually applied

to (3.2) in practice to accelerate the convergence of the conjugate gradient method.

Preconditioned iterative methods for solving large, sparse systems of linear equations

are surveyed in [4], [10], [13]. The preconditioned version of the conjugate gradient

method is described in Section 3.5. Note that the preconditioned conjugate gradient

method is applied in the numerical studies presented in Chapter 6.

3.1 The Lanczos method

The Lanczos method [68] is a technique for reducing a Hermitian, or in the real case

symmetric, matrix to tridiagonal form. The equivalent procedure in the non Hermitian,

or non symmetric case, is Arnoldi’s method [2]. This is not discussed further since only

the symmetric case is relevant to the applications considered in this thesis.

The aim is to solve (3.1) by first using the Lanczos method to reduce the coefficient

matrix M to tridiagonal form. Let v1 ∈ RN denote any given starting vector such that

‖v1‖2 = 1, where ‖.‖2 represents the `2-norm. Applying the Lanczos method to M in

(3.1) generates a sequence of symmetric tridiagonal matrices of the form

Tj = V T
j MVj (j = 1, . . . , N) (3.3)

where Vj ∈ RN×j (j = 1, . . . , N) is orthogonal. It follows from (3.3) that M and Tj are

similar, that is, Tj has the same eigenvalues as M . Constructing (3.3) is equivalent to

solving

MVj = VjTj (j = 1, . . . , N) (3.4)
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since V T
j Vj = Ij , where Ij denotes the j × j identity matrix. Let

Vj = (v1 | . . . | vj) (3.5)

and

Tj =



α1 β1 . . . 0

β1 α2
. . .

...

. . .
. . .

. . .

...
. . .

. . . βj−1

0 . . . βj−1 αj


. (3.6)

Substituting (3.5) and (3.6) into (3.4) gives the set of equations

Mvj = βj−1vj−1 + αjvj + βjvj+1 (j = 1, . . . , N − 1) (3.7)

where β0v0 ≡ 0, which can be solved to compute the entries of Tj in (3.6). Note that

the columns of Vj in (3.5) form an orthonormal basis of the Krylov subspace

Kj(M,v1) = span
{
v1,Mv1, . . . ,M

j−1v1

}
, (3.8)

see, for example, [50]. The vectors vj (j = 1, . . . , N) are referred to as Lanczos vectors.

The Lanczos method is outlined in Algorithm 3.1.

1: procedure lanczos(M,v1)
2: Set β0 = ‖v1‖2, v0 = 0, and r0 = v1

3: while βj 6= 0 do
4: vj = 1

βj−1
rj−1

5: αj = vTj Mvj
6: rj = (M − αjIN )vj − βj−1vj−1
7: βj = ‖rj‖2
8: end while
9: end procedure

Algorithm 3.1: The Lanczos method.

One iteration of Algorithm 3.1 involves computing one matrix vector product of the

form Mvj . The matrix M is accessed solely for this purpose, and remains unchanged

afterwards. It is necessary to store the two latest Lanczos vectors vj and vj−1 in order
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to compute rj . If βj = 0, or equivalently, if rj = 0, then this indicates that v1 is

contained in an invariant subspace of M . Thus βj = 0, or equivalently, rj = 0, only if

the columns of Vj in (3.5) span an invariant subspace of M . In theory, Algorithm 3.1

terminates at iteration number j = ĵ where

ĵ = rank(KN (M,v1))

and KN (M,v1) has the form (3.8) with j = N . It follows that

MVj = VjTj + rje
T
j (j = 1, . . . , ĵ) (3.9)

where Vj has orthonormal columns that span Kj(M,v1), Tj has the form (3.6), and

ej ∈ Rj denotes the jth axis vector; see [50, p. 474, Theorem 9.1.1].

The columns of Vj in (3.5) form an orthonormal basis of Kj(M,v1) provided that

exact arithmetic is employed. However, this is not the case in finite precision arith-

metic due to the introduction of rounding error. The first documentation of round off

error influence on the Lanczos method is attributed to [93]. An error analysis of the

Lanczos method is given in [94], [95]; see also [96]. Algorithm 3.1 is usually terminated

in practice once βj < tβ, where tβ denotes a user specified tolerance. The difficulties

associated with implementing Algorithm 3.1 are typically addressed by introducing a

reorthogonalisation scheme. An error analysis of the Lanczos method with reorthog-

onalisation in the symmetric case is presented in [92]. Selective reorthogonalisation is

discussed in [98]; see also [109]. An implementation of the Lanczos method with no re-

orthogonalisation is outlined in [27]. A review of practical Lanczos schemes applicable

for solving large-scale symmetric eigenvalue problems is given in [28]; see also [29]. The

block Lanczos method is discussed in [25], [26], [49], [126].

The standard procedure following the termination of Algorithm 3.1 is to obtain

estimates of the eigenvalues of Tj in (3.6) using a suitable method. These are, in turn,

approximations to the eigenvalues of M , since M and Tj are similar. The resulting

eigenvalue problem at iteration number j has the form

Tjd
i
j = θijd

i
j (i = 1, . . . , j) (3.10)

26



where dij ∈ Rj (i = 1, . . . , j), and θij ∈ R (i = 1, . . . , j). The values θij (i = 1, . . . , j)

satisfying (3.10) are referred to as the Ritz values of M . The corresponding Ritz vectors

are given by

d̂ij = Vjd
i
j (i = 1, . . . , j) (3.11)

where dij satisfies (3.10). Note that the Lanczos vectors vi (i = 1, . . . , j) must be stored

in order to recover d̂ij in (3.11). The accuracy of a Ritz pair {θij , d̂ij} improves as j

increases. It follows from (3.9)-(3.11) that the residual of {θij , d̂ij} is given by

M d̂ij − θijd̂ij = MVjd
i
j − θijVjdij

= (MVj − VjTj)dij

= rje
T
j d

i
j (3.12)

thus

‖M d̂ij − θijd̂ij‖2 = ‖βj d̃j,ivj+1‖2 = |βj ||d̃j,i| (3.13)

where d̃j,i denotes the jth component of dij . Computing (3.13) is useful for tracking the

convergence of a Ritz value θij . An estimate of (3.13) is obtained in practice without

calculating d̂ij directly. If (3.13) satisfies a prescribed tolerance, then θij is flagged as

a converged Ritz value. The corresponding Ritz vector, if required, can be computed

using (3.11). It is not possible to determine in advance the number of iterations required

to compute the Ritz values to within a specified accuracy, although, the eigenspectrum

of M , and the starting vector v1, are important factors in this respect. Problems

with storing Vj in (3.5) arise as j becomes large. Theoretical results pertaining to the

convergence of the Ritz values are presented in [63], [93]; see [105], [134] for extensions

of this work.

3.2 The QR method

The QR method [40], [41], [66] is an eigenvalue computation technique. An overview of

this procedure is given in [128], [130]; see also [50], [114]. The QR method is applicable

for obtaining estimates of the eigenvalues of M in (3.1). However, applying the QR

method to Tj in (3.6) on termination of Algorithm 3.1 is advantageous in practice
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since the form of Tj simplifies the computational steps. The premise is to construct a

sequence of similarity transformations that converge to the Schur decomposition of Tj ,

namely,

DTTjD = diag(θ1j , θ
2
j , . . . , θ

j
j) (3.14)

where D ∈ Rj×j is orthogonal. Let dij ∈ Rj denote the ith column of D. Thus (3.10)

follows from (3.14); see [50, p 393, Theorem 8.1.1]. Applying the QR method to Tj in

(3.6) generates a sequence of symmetric tridiagonal matrices

{T (0)
j , T

(1)
j , . . . , T

(i)
j }.

The first step is to construct a factorisation of the form

T
(i−1)
j = D̃iŨi (i = 1, 2, . . .) (3.15)

where D̃i ∈ Rj×j (i = 1, 2, . . .) is orthogonal, and Ũi ∈ Rj×j (i = 1, 2, . . .) is upper

triangular. An iterate is generated by multiplying the factors D̃i and Ũi in the reverse

order of (3.15). That is,

T
(i)
j = ŨiD̃i (i = 1, 2, . . .). (3.16)

Combining (3.15) and (3.16) gives

T
(i)
j = D̃T

i T
(i−1)
j D̃i (3.17)

since D̃T
i D̃i = Ij . Thus T

(i−1)
j and T

(i)
j are similar. It follows from (3.17) that

T
(i)
j = D̂TTjD̂ (3.18)

where

D̂ = D̃1D̃2 . . . D̃i. (3.19)

The QR method is terminated in practice once the off diagonal entries of T
(i)
j in (3.16)

are sufficiently small. Estimates of the eigenvalues of M are contained along the main

diagonal of T
(i)
j . The corresponding eigenvectors, if required, can be computed analo-
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gously to (3.11) using D̂ in (3.19). The QR method is outlined in Figure 3.1.

1: procedure qr(M)
2: Construct Tj = V T

j MVj using Algorithm 3.1

3: Set T
(0)
j = Tj and D̃0 = Ij

4: for i = 1, 2, . . . , do

5: T
(i−1)
j = D̃iŨi

6: T
(i)
j = ŨiD̃i

7: D̂ = D̃i−1D̃i

8: end for
9: end procedure

Figure 3.1: The QR method.

A useful variant of the QR method is obtained by introducing a shift ωi ∈ R in

(3.15) and (3.16); see [40]. Specifically,

T
(i−1)
j − ωiIj = D̃iŨi (i = 1, 2, . . .), (3.20)

T
(i)
j = ŨiD̃i + ωiIj (i = 1, 2, . . .). (3.21)

The matrix T
(i)
j in (3.21) is symmetric tridiagonal. Note that combining (3.20) and

(3.21) gives (3.17). It follows that T
(i)
j has the form (3.18)-(3.19) in this case. A shift

is introduced in the QR method to accelerate the convergence of this procedure. The

rate of convergence is dependent on the choice of shift. Shift selection strategies are

discussed in [50]; see also [114]. The shifted QR method is outlined in Figure 3.2.

1: procedure qrshift(M)
2: Construct Tj = V T

j MVj using Algorithm 3.1

3: Set T
(0)
j = Tj and D̃0 = Ij

4: for i = 1, 2, . . . , do
5: Determine a shift ωi ∈ R
6: T

(i−1)
j − ωiIj = D̃iŨi

7: T
(i)
j = ŨiD̃i + ωiIj

8: D̂ = D̃i−1D̃i

9: end for
10: end procedure

Figure 3.2: The shifted QR method.
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3.3 The implicitly restarted Lanczos method

The implicitly restarted Lanczos method [111] is an adaptation of the Lanczos method

for solving large-scale Hermitian or symmetric eigenvalue problems. The equivalent

Arnoldi variant is applicable in non-Hermitian and non-symmetric cases; see [111]. The

purpose of introducing implicit restarting in the Lanczos method is to overcome the

numerical issues associated with this procedure. An important modification is that the

number of Lanczos iterations to be performed is specified in advance. This ensures that

the number of Lanczos vectors generated is predetermined. The following discussion

relates to the application of the implicitly restarted Lanczos method for solving (3.1).

Suppose that estimates of a specified number q of the eigenvalues of M in (3.1) are

required, and let s denote a positive integer such that f = q + s < N . Let v1 ∈ RN

denote any given starting vector such that ‖v1‖2 = 1, where ‖.‖2 represents the `2-

norm. It follows from (3.9) that terminating Algorithm 3.1 after j = f iterations

gives

MVf = VfTf + rfe
T
f . (3.22)

The premise here is to apply an analogy of the shifted QR method outlined in Figure 3.2

to Tf in (3.22). The first step is to construct

Tf − ωiIf = D̃iŨi, (3.23)

T+
f = ŨiD̃i + ωiIf (3.24)

analogously to (3.20) and (3.21). The matrix T+
f in (3.24) is an update of Tf in (3.23).

The shift ωi is introduced to (3.22) as follows:

(M − ωiIN )Vf − Vf (Tf − ωiIf ) = rfe
T
f . (3.25)

Substituting (3.23) in (3.25) gives

(M − ωiIN )Vf − Vf D̃iŨi = rfe
T
f . (3.26)

The starting vector v1 is updated through this procedure as demonstrated by post
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multiplying (3.26) by the axis vector e1 ∈ Rf . It follows that

(M − ωiIN )v1 = v+
1 û

where

v+
1 = Vf D̃ie1, û = eT1 Ũie1.

The vector v+
1 is an update of v1. The next step is to post multiply (3.26) by D̃i to

obtain

(M − ωiIN )(Vf D̃i)− (Vf D̃i)(ŨiD̃i) = rfe
T
f D̃i. (3.27)

Rearranging terms in (3.27) gives

M(Vf D̃i)− (Vf D̃i)(ŨiD̃i + ωiIf ) = rfe
T
f D̃i. (3.28)

The shift strategy is extended by applying s shifts ωi (i = 1, . . . , s) in (3.22). It follows

from (3.28) that (3.22) has the updated form

MV +
f = V +

f T
+
f + rfe

T
f D̂

+ (3.29)

where

V +
f = Vf D̂

+, T+
f = (D̂+)TTf D̂

+, (3.30)

and

D̂+ = D̃1D̃2 . . . D̃s. (3.31)

The matrices defined in (3.30) are updates of Vf and Tf . An important property is

that

(V +
f )TV +

f = If

since V T
f Vf = If and (D̂+)T D̂+ = If . Partitioning V +

f and T+
f in (3.30) such that

V +
f = (V +

q , V̂s), T+
f =

 T+
q β̂qeqe

T
1

β̂qe1e
T
q T̂s

 , (3.32)
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the term rfe
T
f D̂

+ in (3.29) simplifies as follows

rfe
T
f D̂

+ = βfvf+1e
T
f D̂

+ = vf+1h (3.33)

where

h = (0, 0, . . . , β̃f︸ ︷︷ ︸
q

, h
T︸︷︷︸
s

). (3.34)

Substituting (3.32)-(3.34) into (3.29) gives

M(V +
q , V̂s) = (V +

q T
+
q + β̂qV̂se1e

T
q + β̃fvf+1e

T
q︸ ︷︷ ︸

q

, β̂qV
+
q eqe

T
1 + V̂sT̂s + vf+1h

T︸ ︷︷ ︸
s

). (3.35)

The first q columns in (3.35) satisfy

MV +
q = V +

q T
+
q + r+q e

T
q (3.36)

where

r+q = β̂qV̂se1 + β̃fvf+1, (3.37)

v+
q+1 =

1

β+q
r+q , β+q = ‖r+q ‖2. (3.38)

It follows that (3.36)-(3.38) is a Lanczos factorisation of M since

(V +
q )T r+q = β̂q(V

+
q )T V̂se1 + β̃f (V +

q )Tvf+1 = 0

thus

(V +
q )Tv+

q+1 =
1

β+q
(V +
q )T r+q = 0.

A new factorisation of the form (3.22) is obtained at this stage by performing j = s

iterations of Algorithm 3.1 starting from (3.36)-(3.38), with v1 replaced by v+
1 . The

process continues in a recursive manner with the alternative application of s shifts,

and the execution of s iterations of Algorithm 3.1, until a given convergence criterion

is satisfied. Estimates of the q requested eigenvalues of M are contained along the

main diagonal of T+
q in (3.36) on termination of the procedure. The corresponding

eigenvectors, if required, can be computed using V +
q in (3.36) and D̂+ in (3.31). The
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implicitly restarted Lanczos method is outlined in Algorithm 3.2.

1: procedure irlm(M,v1, q, s)
2: Set f = q + s
3: Perform j = f iterations of Algorithm 3.1 to obtain

MVf = VfTf + rfe
T
f

4: for i = 1, 2, . . . do
5: Determine the shifts ωj (j = 1, . . . , s)
6: Set D̃0 = If
7: for j = 1, . . . , s do
8: Tf − ωjIf = D̃jŨj
9: T+

f = ŨjD̃j + ωjIf

10: D̂+ = D̃j−1D̃j

11: end for
12: Set V +

q = V +
f D̂

+(:, 1 : q) and T+
q = T+

f (1 : q, 1 : q)
13: Perform j = s iterations of Algorithm 3.1 starting from

MV +
q = V +

q T
+
q + r+q e

T
q

with v1 = v+
1 to obtain a Lanczos factorisation of the form

MVf = VfTf + rfe
T
f

14: end for
15: end procedure

Algorithm 3.2: The implicitly restarted Lanczos method.

The implementation of Algorithm 3.2 involves computing f matrix vector products

of the form Mvj . The procedure outlined in Algorithm 3.2 is a polynomial acceleration

scheme. The first application of polynomial acceleration for solving eigenvalue problems

is attributed to [37]. An overview of polynomial acceleration techniques in this context

is given in [107]. Applying s shifts ωi (i = 1, . . . , s) to Tf in (3.22) implicitly updates

the starting vector v1 as follows

v+
1 =

1

τ
ψs(M)v1

where

ψs(M) = (M − ωsIN )(M − ωs−1IN ) . . . (M − ω1IN ) (3.39)

and τ ∈ R denotes a scaling factor included to ensure that ‖v+
1 ‖2 = 1. The polynomial

ψs(M) in (3.39) is of degree s. The shifts ωi (i = 1, . . . , s) are the zeros of ψs(M). It
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therefore follows from (3.1) and (3.39) that

ψs(µ) =

s∏
i=1

(µ− ωi). (3.40)

The premise is to define ωi (i = 1, . . . , s) in (3.40) such that ψs(M)v1 dampens the

undesirable components of v1; see [107]. Knowledge of the eigenspectrum of M is useful

in this respect. If no such information is available, then the recommended procedure

is to implement exact shifts; see [111]. This involves using the s unwanted eigenvalue

estimates of Tf as shifts. Alternative shift selection strategies are described in [6], [17].

The convergence of Algorithm 3.2 is discussed in [111]. Deflation techniques designed

to accelerate the convergence of Algorithm 3.2 are presented in [76], [77].

The standard implementation of Algorithm 3.2 is available through the ARPACK

software; see [78]. Note that this is applied in the numerical studies presented in

Chapters 4, 5, and 6. Suppose that θij (i = 1, . . . , j) satisfying (3.10) is a Ritz value

of M in (3.1) computed at iteration number j of Algorithm 3.1 as per step 13 of

Algorithm 3.2. The corresponding Ritz vector is d̂ij in (3.11). The convergence of θij

is determined in ARPACK using the residual norm defined in (3.13). The criterion

employed is

‖M d̂ij − θijd̂ij‖2 ≤ teε̂ (i = 1, . . . , j) (3.41)

where

ε̂ = max(ε, |θij |)

with te a user specified tolerance and ε a machine constant. The default tolerance used

in the numerical studies presented in Chapters 4, 5, and 6 is te = 10−2.

3.4 The conjugate gradient method

The conjugate gradient (CG) method [60] is an iterative technique applicable for solving

systems of linear equations of the form (3.2). The starting point is to observe that (3.2)

can be formulated as the minimisation problem

min
q∈RN

φ(q) (3.42)
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where

φ(q) =
1

2
qTKq− qT f . (3.43)

The gradient of φ(q) in (3.43) calculated with respect to q is

∇φ(q) = Kq− f . (3.44)

The solution q to ∇φ(q) = 0 is therefore the minimiser of (3.42)-(3.43). Clearly, setting

∇φ(q) in (3.44) equal to zero and rearranging terms gives (3.2), so the minimiser q

of (3.42)-(3.43) is also the solution of (3.2). The idea of CG is to solve (3.42)-(3.43)

iteratively instead of solving (3.2) directly. Let q0 ∈ RN denote any given initial

estimate of q in (3.2). The steps involved in solving (3.2) using the conjugate gradient

method are outlined in Algorithm 3.3.

1: procedure cg(K, f , q0)
2: Set r̂0 = f −Kq0

3: while r̂i 6= 0 do
4: if i = 1 then
5: p1 = r̂0
6: else
7: ηi = r̂Ti−1r̂i−1/r̂

T
i−2r̂i−2

8: pi = r̂i−1 + ηipi−1
9: end if

10: νi = r̂Ti−1r̂i−1/p
T
i Kpi

11: qi = qi−1 + νipi
12: r̂i = r̂i−1 − νiKpi
13: end while
14: end procedure

Algorithm 3.3: The conjugate gradient method.

One iteration of Algorithm 3.3 involves computing one matrix vector product of the

form Kpi. The set of vectors {p1,p2, . . . ,pi} generated by applying Algorithm 3.3 to

(3.2) are conjugate with respect to the matrix K, that is,

pTi Kpj = 0, ∀ i 6= j,

hence the method’s name. The convergence rate of Algorithm 3.3 depends on the eigen-

value distribution of K: specifically, convergence is faster when the eigenvalues of K
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are clustered in a small number of distinct groups. In theory, Algorithm 3.3 terminates

after at most N iterations; see, for example, [50, p. 530, Theorem 10.2.5]. However,

this is not guaranteed in practice due to the introduction of rounding error. The be-

haviour of the conjugate gradient method in finite precision arithmetic is discussed in

[52], [133]; see also [61], [113]. The convergence rate of the conjugate gradient method

in exact arithmetic has been considered in [127]. Algorithm 3.3 is generally terminated

once ‖r̂i‖2 < tc‖r̂0‖2, where ‖.‖2 represents the `2-norm and tc denotes a user specified

tolerance.

3.5 The preconditioned conjugate gradient method

A preconditioner is usually applied to (3.2) in order to accelerate the convergence of the

conjugate gradient method. Suppose that W ∈ RN×N is symmetric positive definite.

The theoretical idea is to precondition (3.2) with W−1 as follows:

W−1Kq = W−1f . (3.45)

Note that solving (3.45) is equivalent to solving (3.2). The aim is to define W such

that the eigenvalues of W−1K are more clustered than the eigenvalues of K, resulting

in faster CG convergence. However, W−1K must be symmetric in order to apply the

conjugate gradient method to (3.45). This is not generally the case, so in practice it is

usual to set W = G2 and precondition (3.2) symmetrically. This gives

K̂q̂ = f̂ (3.46)

where K̂ = G−1KG−1, q̂ = Gq, and f̂ = G−1f . The conjugate gradient method can

now be applied to (3.46) since K̂ is symmetric positive definite. Note that K̂ and q̂

in (3.46) are not constructed in practice, but W−1q̃ must be computable for any given

vector q̃ ∈ RN . The matrices W−1K and K̂ are similar since

GW−1KG−1 = G(G−1G−1)KG−1 = G−1KG−1 = K̂.
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Thus W−1K has the same eigenvalues as K̂. Let q0 ∈ RN denote any given initial

estimate of q in (3.2). The steps involved in solving (3.45) using the preconditioned

conjugate gradient method are outlined in Algorithm 3.4.

1: procedure pcg(K, f ,q0)
2: Set r̂0 = f −Kq0

3: while r̂i 6= 0 do
4: Solve Wci−1 = r̂i−1
5: if i = 1 then
6: p1 = c0
7: else
8: ηi = r̂Ti−1ci−1/r̂

T
i−2ci−2

9: pi = ci−1 + ηipi−1
10: end if
11: νi = r̂Ti−1ci−1/p

T
i Kpi

12: qi = qi−1 + νipi
13: r̂i = r̂i−1 − νiKpi
14: end while
15: end procedure

Algorithm 3.4: The preconditioned conjugate gradient method.

One iteration of Algorithm 3.4 still involves computing only one matrix vector

product of the form Kpi. However, Algorithm 3.4 requires additional computational

work compared to Algorithm 3.3 since the system of linear equations Wci−1 = r̂i−1

must be solved at step 4. Of course, this should be feasible in practice. Setting W = IN

in Algorithm 3.4 gives the standard conjugate gradient method (with no change to the

spectrum of K). If W = K, then Algorithm 3.4 converges in one iteration, but solving

the linear system at step 4 is just as computationally expensive as solving (3.2). The

sensible approach for choosing W involves balancing the computational cost of solving

the linear system at step 4 of Algorithm 3.4 with the desired enhanced convergence

rate of the method.

The preconditioned conjugate gradient method is applied in the numerical studies

presented in Chapter 6. The tolerance used in the stopping criterion in these numerical

studies is tc = 10−2. The number of iterations permitted is restricted, as is generally

the case in NWP applications. Two cases are considered in this thesis, namely, Nc = 5

and Nc = 10, where Nc denotes the maximum allowable number of PCG iterations.
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Chapter 4

A multilevel eigenvalue

decomposition algorithm for

approximating the inverse

Hessian

A multilevel eigenvalue decomposition algorithm for constructing a limited-memory

approximation to the inverse (and inverse square root) of any given symmetric positive

definite matrix A ∈ RN×N with eigenvalues clustered around unity is presented in this

chapter. It is assumed that A can be approximated using a specified number of its

leading eigenvalues, and corresponding eigenvectors, by means of a limited-memory

approximation of the form defined in (2.51). That is, for any γ ∈ R,

Aγ ' IN +
r∑
i=1

(λγi − 1)uiu
T
i (4.1)

where {λi,ui} (i = 1, . . . , r) denote r eigenpairs of A, with r � N . Note that Aw must

be computable for any given vector w ∈ RN .

The discussions in Sections 4.1-4.4 focus on the multilevel eigenvalue decomposition

algorithm. The multilevel grid structure employed is described in Section 4.1 in the first

instance. The interpolation and restriction operators required to transfer information

between grids in this multilevel construction are discussed in Section 4.2. Additional
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specialised grid transfer operators used in the multilevel eigenvalue decomposition algo-

rithm are defined in Section 4.3. An outline of the multilevel eigenvalue decomposition

algorithm is presented in Section 4.4.1, and the algorithm is described in detail in Sec-

tion 4.4.2. The preconditioning strategy adopted is discussed in Section 4.4.3. Finally,

a summary of the complete algorithm is presented in Section 4.4.4.

The particular case of the matrix A considered in this chapter is the Hessian C in

(2.50) (see Section 4.5). The numerical studies presented in this chapter involve ap-

proximating the inverse Hessian for the specific model problem outlined in Section 4.6.

The implementation details pertaining to this model problem are discussed in Sec-

tion 4.7. The numerical measure employed to evaluate the accuracy of approxima-

tions constructed using the multilevel eigenvalue decomposition algorithm is defined

in Section 4.8. The choices of preconditioner applied in the multilevel eigenvalue de-

composition algorithm, and interpolation method used to implement the interpolation

operator, are considered in Sections 4.9 and 4.10, respectively. The software package

ARPACK [78] discussed in Section 3.3 is applied in the numerical studies presented in

Sections 4.10 and 4.12. A modified version of ARPACK that permits only one shift to

be executed is considered in Section 4.11. The numerical study presented in Section 4.12

focuses on comparing various approximations to the inverse Hessian constructed using

the multilevel eigenvalue decomposition algorithm.

4.1 Multilevel grid structure

The multilevel eigenvalue decomposition algorithm is outlined in this chapter for the

one-dimensional case. However, the concepts discussed are also valid in two- and three-

dimensional settings. Suppose that the matrix A represents an operator based on a

grid defined over any given spatial domain Ω. A sequence of grids over Ω, assumed

here to be Ω = [0, 1], is required for the multilevel eigenvalue decomposition algorithm.

Suppose that the base grid contains m0 = m + 1 uniformly distributed grid points.

Specifically, m must be a positive integer that is divisible by 2nl−1, where nl is the

total number of grid levels required in the multilevel construction. The base grid will

be the finest grid in the multilevel setup, denoted using the level counter k = 0. The
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next grid is constructed by removing a grid point from between each pair of existing grid

points on the finest grid. This generates a grid at grid level k = 1 that is composed

of m1 = m/2 + 1 uniformly distributed grid points. The grid coarsening process is

continued in order to construct a sequence of grids at grid levels k = 0, 1, 2, . . . , kc,

where k = kc denotes the coarsest grid level and kc = nl − 1. Note that the grid at a

general grid level k in this setup contains mk = m/2k + 1 grid points. In what follows,

the notation Ik represents the mk ×mk identity matrix associated with grid level k in

the multilevel construction.

4.2 Interpolation and restriction operators

Interpolation and restriction operators are required to transfer information between

grids in the multilevel construction described in Section 4.1. The interpolation operator

which prolongs any given vector wk ∈ Rmk defined at grid level k to the finer grid at

grid level k − i (0 ≤ i ≤ k) is introduced in the first instance. Let P k−ik ∈ Rmk−i×mk

(0 ≤ i ≤ k) denote the interpolation matrix that prolongs wk from grid level k to grid

level k − i. That is,

w̃k−i = P k−ik wk, P kk = Ik (0 ≤ i ≤ k). (4.2)

The restriction operator performs the opposite procedure of restricting any given vector

wk−i ∈ Rmk−i defined at grid level k − i to the coarser grid at grid level k. Let

(P k−ik )T ∈ Rmk×mk−i denote the restriction matrix that restricts wk−i from grid level

k − i to grid level k. Specifically,

ŵk = (P k−ik )Twk−i, (P kk )T = Ik (0 ≤ i ≤ k). (4.3)

If wk−i = w̃k−i, then the definition of w̃k−i in (4.2) can be substituted into (4.3). This

gives

ŵk = (P k−ik )T w̃k−i = (P k−ik )TP k−ik wk. (4.4)

It follows from (4.4) that

ŵk = wk (4.5)
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only if

(P k−ik )TP k−ik = Ik. (4.6)

Provided that P k−ik is orthogonal, then the condition in (4.6) holds. The specific form

of P k−ik in (4.2) used in the numerical studies presented in this chapter is discussed in

Sections 4.7 and 4.10. Note that the orthogonality condition in (4.6) is not imposed in

these cases.

4.3 Additional grid transfer operators

We now consider how the matrix A can be represented at the various grid levels in

the multilevel construction described in Section 4.1. Suppose that A is constructed

based on the finest grid at grid level k = 0: we will write A ≡ A0. More generally, let

Ak ∈ Rmk×mk denote a representation of the matrix A at grid level k (k = 0, . . . , kc).

Although the matrix A0 may not be constructed in practice, it is assumed that A0w0

is computable for any given vector w0 ∈ Rm0 defined at grid level k = 0. A strategy

for computing Akwk (k = 1, . . . , kc), where wk ∈ Rmk denotes any given vector defined

at grid level k, is required for the multilevel eigenvalue decomposition algorithm.

Now suppose that Ak is defined at grid level k (k = 1, . . . , kc). Let wk−i ∈ Rmk−i

denote any given vector defined at a finer grid level k − i (0 < i ≤ k). The aim is to

compute S̃k−i(Ak)wk−i, where S̃k−i(.) : Rmk×mk → Rmk−i×mk−i denotes a grid transfer

operator required to prolong Ak from grid level k to grid level k−i. An obvious strategy

would be to define S̃k−i(Ak)wk−i as follows:

S̃k−i(Ak)wk−i = P k−ik Ak(P
k−i
k )Twk−i (0 < i ≤ k) (4.7)

where

S̃k(Ak) = P kkAk(P
k
k )T = IkAkIk = Ak

using (4.2) and (4.3). Now suppose that Ak−i is defined at grid level k− i (0 < i ≤ kc).

Let wk ∈ Rmk denote any given vector defined at a coarser grid level k. The aim in

this case is to compute Q̃k(Ak−i)wk, where Q̃k−i(.) : Rmk−i×mk−i → Rmk×mk denotes

a grid transfer operator required to restrict Ak−i from grid level k − i to grid level k.
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Note that Q̃k(Ak−i)wk can be defined analogously to S̃k−i(Ak)wk−i in (4.7) as follows:

Q̃k(Ak−i)wk = (P k−ik )TAk−iP
k−i
k wk, (0 < i ≤ kc) (4.8)

where

Q̃k(Ak) = (P kk )TAkP
k
k = IkAkIk = Ak

using (4.2) and (4.3).

In this thesis, alternative grid transfer operators are used instead of S̃k−i(.) in (4.7)

and Q̃k(.) in (4.8). These are derived by considering the process of restricting wk−i to

grid level k in detail. The first step is to decompose wk−i into two vectors as follows:

wk−i = wa
k−i + wb

k−i (4.9)

where

wa
k−i = (Ik−i − P k−ik (P k−ik )T )wk−i (4.10)

and

wb
k−i = P k−ik (P k−ik )Twk−i. (4.11)

Let wk ∈ Rmk denote the vector obtained by restricting wk−i in (4.9)-(4.11) to grid

level k using (P k−ik )T in (4.3). Specifically,

wk = wa
k + wb

k

where

wa
k = (P k−ik )Twa

k−i

= (P k−ik )T (Ik−i − P k−ik (P k−ik )T )wk−i

= ((P k−ik )T − (P k−ik )TP k−ik (P k−ik )T )wk−i (4.12)
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and

wb
k = (P k−ik )Twb

k−i

= (P k−ik )TP k−ik (P k−ik )Twk−i.

Assuming that (4.6) holds, then wa
k in (4.12) simplifies to wa

k = 0 and wk = wb
k

where wb
k = (P k−ik )Twk−i. This indicates that wa

k−i in (4.10) includes components of

wk−i that cannot be represented on the grid at grid level k. Thus wa
k−i should not be

restricted to grid level k. The premise of our novel grid transfer operator is therefore

to restrict wb
k−i in (4.11) to grid level k, apply Ak, and prolong the result to grid level

k − i. That is,

Sk−i(Ak)wk−i = wa
k−i + S̃k−i(Ak)w

b
k−i

= wa
k−i + P k−ik Ak(P

k−i
k )Twb

k−i

= (Ik−i − P k−ik (P k−ik )T )wk−i + P k−ik Ak(P
k−i
k )TP k−ik (P k−ik )Twk−i

= (Ik−i − P k−ik (P k−ik )T )wk−i + P k−ik Ak(P
k−i
k )Twk−i

=
[
P k−ik (Ak − Ik)(P k−ik )T + Ik−i

]
wk−i (4.13)

using (4.6) and (4.7). The grid transfer operator Sk−i(.) : Rmk×mk → Rmk−i×mk−i in

(4.13) is used in the multilevel eigenvalue decomposition algorithm instead of S̃k(.) in

(4.7). Specifically, Sk−i(Ak) is defined as follows:

Sk−i(Ak) = P k−ik (Ak − Ik)(P k−ik )T + Ik−i (0 < i ≤ k) (4.14)

where

Sk(Ak) = P kk (Ak − Ik)(P kk )T + Ik = Ik(Ak − Ik)Ik + Ik = Ak

using (4.2) and (4.3). The transpose of Sk−i(.) in (4.14) is also required. It follows
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from (4.14) that

STk−i(Ak) =
[
P k−ik (Ak − Ik)(P k−ik )T + Ik−i

]T
= P k−ik (ATk − Ik)(P k−ik )T + Ik−i

= Sk−i(A
T
k ).

In a similar way, the grid transfer operator Qk(.) : Rmk−i×mk−i → Rmk×mk is used in

the multilevel eigenvalue decomposition algorithm instead of Q̃k(.) in (4.8). Note that

Qk(Ak−i) is defined analogously to Sk−i(Ak) in (4.14) as follows:

Qk(Ak−i) = (P k−ik )T (Ak−i − Ik−i)P k−ik + Ik (0 < i ≤ kc) (4.15)

where

Qk(Ak) = (P kk )T (Ak − Ik)P kk + Ik = Ak

using (4.2) and (4.3). It follows from (4.15) that

QTk (Ak−i) =
[
(P k−ik )T (Ak−i − Ik−i)P k−ik + Ik

]T
= (P k−ik )T (ATk−i − Ik−i)P k−ik + Ik

= Qk(A
T
k−i).

Since we have assumed that (4.6) holds, then Sk−i(Ak) in (4.14) has the property

Sk−i(Ak) = Sk−i(A
1/2
k )Sk−i((A

1/2
k )T ).

An additional result is that Qk(Ak−i) in (4.15) simplifies to

Qk(Ak−i) = (P k−ik )TAk−iP
k−i
k

however

Qk(Ak−i) 6= Qk(A
1/2
k−i)Qk((A

1/2
k−i)

T ).

44



4.4 The multilevel eigenvalue decomposition algorithm

4.4.1 Outline

Suppose that A0 is available on the finest grid at grid level k = 0 in the multilevel

construction described in Section 4.1 in the form of A0w0, where w0 ∈ Rm0 denotes

any given vector defined on the finest grid. Full details of the multilevel eigenvalue

decomposition algorithm for constructing a limited-memory approximation to A−10 w0

and A
−1/2
0 w0 are described in Section 4.4.2: we present here an outline of the algorithm

to aid understanding. The steps involved in the multilevel eigenvalue decomposition

algorithm are as follows:

1. Represent A0 on the coarsest grid at grid level k = kc in the multilevel setup

using the grid transfer operator Qk(.) defined in (4.15).

2. Apply a local preconditioner to Qk(A0) in order to cluster its eigenvalues around

unity.

3. Compute estimates of a specified number (nk, say) of the largest eigenvalues,

and corresponding eigenvectors, of the preconditioned matrix using the Lanczos

method and store in memory. If k = 0, then terminate the procedure following

this step.

4. Construct a limited-memory approximation to the inverse of the preconditioned

matrix of the form defined in (4.1) to be used for preconditioning at the next

finest grid level k − 1.

5. Progress to the next finest grid level k − 1 and repeat the procedure.

An approximation to A−10 w0 or A
−1/2
0 w0 can be computed on termination of the mul-

tilevel eigenvalue decomposition algorithm using the nk eigenpairs calculated at each

grid level k (k = 0, . . . , kc) in the multilevel construction.

4.4.2 Details

The multilevel eigenvalue decomposition algorithm is now described in terms of the

procedure at grid level k (k = 1, . . . , kc) in the multilevel construction outlined in
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Section 4.1. The first step is to represent A0 on the grid at grid level k using the grid

transfer operator Qk(.) in (4.15) as follows:

Qk(A0) = (P 0
k )T (A0 − I0)P 0

k + Ik. (4.16)

The next step is to precondition Qk(A0) in (4.16) to obtain

Q̃k(A0) = (Zkk+1)
TQk(A0)Z

k
k+1 (4.17)

where Zkk+1 ∈ Rmk×mk (k = 0, . . . , kc) denotes a preconditioner defined on the grid at

grid level k. The premise is to construct Zkk+1 such that the eigenvalues of Q̃k(A0) in

(4.17) are closer to unity than those of Qk(A0) in (4.16). The specific preconditioning

strategy adopted, that is, the choice of Zkk+1 in (4.17), will be discussed in Section 4.4.3.

The notation Zkk+1 highlights that this preconditioner is constructed at grid level k+ 1

then prolonged on to grid level k. The Lanczos method is used to compute estimates

of a specified number nk of the largest eigenvalues, and corresponding eigenvectors, of

Q̃k(A0) in (4.17). The resulting nk eigenpairs {λik,uik} (i = 1, . . . , nk) are required in

order to construct a limited-memory approximation to Q̃−1k (A0) or Q̃
−1/2
k (A0) of the

form defined in (4.1). Specifically,

Q̂−1k (A0) = Ik +

nk∑
i=1

((λik)
−1 − 1)uik(u

i
k)
T (4.18)

and

Q̂
−1/2
k (A0) = Ik +

nk∑
i=1

((λik)
−1/2 − 1)uik(u

i
k)
T . (4.19)

It therefore follows from (4.17), (4.18), and (4.19) that

Q−1k (A0) = Zkk+1Q̃
−1
k (A0)(Z

k
k+1)

T ' Zkk+1Q̂
−1
k (A0)(Z

k
k+1)

T (4.20)

and

Q
−1/2
k (A0) = Zkk+1Q̃

−1/2
k (A0) ' Zkk+1Q̂

−1/2
k (A0). (4.21)
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An approximation to Q−1k (A0)wk or Q
−1/2
k (A0)wk, for any given vector wk ∈ Rmk

defined at grid level k, is therefore computable using (4.20) or (4.21).

The procedure on the finest grid at grid level k = 0 differs since A0 is available in

the form A0w0. Thus Q0(A0) ≡ A0 in this case. The first step is then to precondition

A0 directly to obtain

Q̃0(A0) = (Z0
1 )TA0Z

0
1 . (4.22)

The Lanczos method is used to compute estimates of a specified number n0 of the largest

eigenvalues, and corresponding eigenvectors, of Q̃0(A0) in (4.22). The resulting n0

eigenpairs {λi0,ui0} (i = 1, . . . , n0) are required in order to construct a limited-memory

approximation to Q̃−10 (A0) or Q̃
−1/2
0 (A0) of the form defined in (4.18) or (4.19). An

approximation to A−10 w0 can be computed at this stage by means of (4.20). That is,

A−10 w0 ' Q−10 (A0)w0 = Z0
1Q̂
−1
0 (A0)(Z

0
1 )Tw0. (4.23)

An approximation to A
−1/2
0 w0, if required, can be computed using (4.21). Specifically,

A
−1/2
0 w0 ' Q−1/20 (A0)w0 = Z0

1Q̂
−1/2
0 (A0)w0 (4.24)

where Q̂
−1/2
0 (A0) has the form (4.19).

In what follows, it is useful to represent the parameters nk (k = 0, . . . , kc) in vector

form by setting

Ne = (n0, n1, . . . , nkc), N̂e =

kc∑
k=0

nk (4.25)

where N̂e is the sum of the entries in Ne. The accuracy of an approximation to A−10 w0

or A
−1/2
0 w0 constructed using the multilevel eigenvalue decomposition algorithm is

dependent on the choice of Ne in (4.25). That is, the values nk in Ne are key in

determining the quality of the approximation obtained. This will be explored later.

4.4.3 Preconditioning strategy

The preconditioner Zkk+1 in (4.17) is defined based on the assumption that Qk+1(A0) is

a good approximation to Qk(A0). If this is the case then, recalling definition (4.14), it
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is reasonable to expect that Sk(Q
−1
k+1(A0)) can be used to precondition Qk(A0). This

expectation will be considered for a particular example in Section 4.9. Specifically, we

expect the matrix

Qk(A0) ' Sk(Q
− 1

2
k+1(A0))Qk(A0)Sk(Q

− 1
2

k+1(A0)) (4.26)

to have eigenvalues clustered more closely around unity. In practice, the preconditioner

Zkk+1 at grid level k is constructed using information prolonged from the next coarsest

grid level k + 1. The procedure on the coarsest grid at grid level k = kc is to set

Zkckc+1 = Ikc

since grid level k = kc + 1 does not exist. At other grid levels, the preconditioner Zkk+1

and its transpose (Zkk+1)
T are defined as follows:

Zkk+1 =


Sk(Z

k+1
k+2Q̂

−1/2
k+1 (A0)), if k = 0, 1, . . . , kc − 1

Ikc , if k = kc

, (4.27)

(Zkk+1)
T =


Sk(Q̂

−1/2
k+1 (A0)(Z

k+1
k+2 )T ), if k = 0, 1, . . . , kc − 1

Ikc , if k = kc

(4.28)

where Q̂
−1/2
k+1 (A0) is of the form defined in (4.19).

4.4.4 Summary

The multilevel eigenvalue decomposition algorithm described in Section 4.4.2 is outlined

in Figure 4.1. Note that the matrices involved in this procedure are not explicitly

constructed in practice. Specifically, only matrix vector products are computed. The

inputs to the multilevel eigenvalue decomposition algorithm are A0 in the form of A0w0,

where w0 ∈ Rm0 denotes any given vector defined at grid level k = 0, and Ne in (4.25).

The outputs are the following two vectors

Λ0 = [λ1kc , . . . , λ
nkc
kc
, λ1kc−1, . . . , λ

nkc−1

kc−1 , . . . , λ
1
0, . . . , λ

n0
0 ], (4.29)
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1: [Λ0, U0] = MLEVD(A0, Ne)
2: for k = kc, kc − 1, . . . , 0 do
3: Construct Qk(A0) in (4.16)
4: if k = kc then
5: Set Zkckc+1 = Ikc and (Zkckc+1)

T = Ikc
6: else
7: Construct Zkk+1 in (4.27) and (Zkk+1)

T in (4.28)
8: end if
9: Precondition Qk(A0) to obtain Q̃k(A0) in (4.17)

10: Compute {λik,uik} (i = 1, . . . , nk) by applying the Lanczos method to Q̃k(A0)
and store in memory

11: end for

Figure 4.1: Outline of the multilevel eigenvalue decomposition algorithm.

U0 = [u1
kc , . . . ,u

nkc
kc
,u1

kc−1, . . . ,u
nkc−1

kc−1 , . . . ,u
1
0, . . . ,u

n0
0 ]. (4.30)

The entries of Λ0 in (4.29) are the eigenvalue estimates λik (i = 1, . . . , nk) of Q̃k(A0)

in (4.17) computed at grid levels k = 0, . . . , kc. The corresponding eigenvectors uik

(i = 1, . . . , nk) are contained in U0 in (4.30). The vectors Λ0 and U0 in are constructed

as the procedure progresses from the coarsest grid level k = kc to the finest grid level

k = 0. An approximation to A−10 w0 or A
−1/2
0 w0 can be computed on termination of

the multilevel eigenvalue decomposition algorithm by means of (4.23) or (4.24) using

Λ0 and U0.

The vector Λ0 in (4.29) contains a total of N̂e entries, where N̂e is defined in (4.25).

The total number of entries in U0 in (4.30) is therefore

kc∑
k=0

nkmk =

(
kc∑
k=0

nk
2k

)
m+ N̂e

since mk = m/2k+1. Given that the finest grid at grid level k = 0 contains m0 = m+1

grid points, an estimate of the ratio of memory required for the multilevel eigenvalue

decomposition algorithm in terms of m is obtained by calculating

Re =

kc∑
k=0

nk
2k
. (4.31)

Note that the memory ratio Re in (4.31) is dependent on Ne in (4.25). This quantity
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will play a key role in the numerical study presented in Section 4.12.

4.5 Approximating the inverse Hessian

The multilevel eigenvalue decomposition algorithm outlined in Figure 4.1 is proposed

as a suitable method for constructing a limited-memory approximation to the inverse

(and inverse square root) of any given symmetric positive definite matrix A ∈ RN×N

with eigenvalues clustered around unity. It is assumed that A can be approximated

using a specified number of its leading eigenvalues, and corresponding eigenvectors, by

means of a limited-memory approximation of the form defined in (4.1). The particular

case of the matrix A considered in the remainder of this chapter is the Hessian C in

(2.50). The numerical studies presented in Sections 4.10-4.12 involve approximating

the inverse Hessian for the specific model problem outlined in Section 4.6.

4.6 Model problem

Burgers’ equation is often used in data assimilation applications as a simple model

characterising elements of atmospheric flow; see, for example, [42]. The model problem

implemented in the numerical studies presented in this chapter is a one-dimensional

Burgers’ equation incorporating a non-linear viscous term. That is,

∂ϕ

∂t
+

1

2

∂

∂x
(ϕ2) =

∂

∂x

(
µ(ϕ)

∂ϕ

∂x

)
, ϕ = ϕ(x, t), x ∈ (0, 1), t ∈ (0, T ) (4.32)

subject to the Neumann boundary conditions

∂ϕ

∂x

∣∣∣∣
x=0

= 0,
∂ϕ

∂x

∣∣∣∣
x=1

= 0 (4.33)

with viscosity coefficient

µ(ϕ) = ρ0 + ρ1

(
∂ϕ

∂x

)2

(4.34)

where ρ0 and ρ1 are positive constants. The particular values used in this thesis are

ρ0 = 10−4 and ρ1 = 10−5 in (4.34) for all computations. The tangent linear problem

associated with (4.32)-(4.34) is presented in Appendix A. The initial condition for
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Figure 4.2: Flow evolution of ϕ(x, t) satisfying (4.32)-(4.34) for initial condition ϕ1(x, 0)
in (4.35).

(4.32)-(4.34) is defined as follows:

ϕ1(x, 0) = 0.1 + 0.35

[
1 + sin

(
4πx+

3π

2

)]
, (0 < x < 1) . (4.35)

The flow evolution of ϕ(x, t) satisfying (4.32)-(4.34) where ϕ(x, 0) = ϕ1(x, 0) is plotted

in Figure 4.2.

An implicit time discretisation is used, and the power law first-order finite volume

scheme for spatial discretisation; details can be found in [99]. The procedure at each

time step is to perform non-linear iterations to converge on non-linear coefficients. The

observations yi (i = 0, . . . , n) in (2.2) included in the 4D-Var cost function J (x0) in

(2.4) are typically provided by sensors. The observational data for this model problem

is generated randomly based on the sensor configuration scheme S1. This comprises of

seven stationary sensors. A stationary sensor has a fixed position in space and provides

observational data captured at this point. That is, xj(t) = xj(0) (i = 1, . . . , 7) for all

t ∈ [0, T ], where xj(t) denotes the position of sensor j in the spatial domain Ω at time

t. Note that Ω = [0, 1]. Specifically, x1(t) = 0.3, x2(t) = 0.4, x3(t) = 0.45, x4(t) = 0.5,

x5(t) = 0.55, x6(t) = 0.6, and x7(t) = 0.7 for all t ∈ [0, T ] in this case.
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4.7 Implementation details

The model problem outlined in Section 4.6 is implemented in FORTRAN. The tan-

gent linear and adjoint models associated with (4.32)-(4.34) are generated using the

automatic differentiation engine TAPENADE; see [58]. For this model problem, the

multilevel construction described in Section 4.1 consists of four grids. The finest grid

at grid level k = 0 contains m0 = 401 grid points and the coarsest grid at grid level

k = 3 is composed of m3 = 51 grid points. The interpolation matrix P k−ik in (4.2)

is constructed using cubic spline interpolation. This choice of interpolation method is

discussed in Section 4.10. The restriction matrix (P k−ik )T in (4.3) is generated using

TAPENADE.

The background error covariance matrix B in (2.4) is defined based on the assump-

tion that the background error δb in (2.3) belongs to the Sobelev space W 2
2 [0, 1]; see

[45, §5.1] for details. The observation error δio in (2.2) is Gaussian and uncorrelated

with standard deviation σo = 0.016. The observation error covariance matrix Ri in

(2.4) is diagonal with uniform variance (Ri)j,j = σ2o .

The eigenvalue problems involving Q̃k(A0) (k = 0, 1, 2, 3) in (4.17) are solved using

the standard version of ARPACK; see [78]. Specifically, estimates of the nk largest,

in terms of magnitude, eigenvalues of Q̃k(A0), and the corresponding eigenvectors, are

computed using ARPACK. The particular technique applied is the implicitly restarted

Lanczos method (see Section 3.3). The default tolerance used in the convergence crite-

rion in (3.41) in ARPACK is te = 10−2. A modified version of ARPACK is considered

in Section 4.11. The eigenvalue computations must be conducted in double precision.

However, it is acceptable to store the resulting eigenpairs in single precision. As the

eigenpairs computed at grid level k (k = 1, 2, 3) in the multilevel construction are used

to precondition Qk−1(A0) in (4.16) at grid level k− 1, any round-off errors incurred at

grid level k are mostly compensated for at grid level k − 1.
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4.8 Evaluating the accuracy of approximations using the

Riemannian distance

A numerical measure is required to evaluate the accuracy of approximations constructed

using the multilevel eigenvalue decomposition algorithm outlined in Figure 4.1. The

Riemannian distance is used in the numerical studies presented in this chapter; see, for

example, [86]. Let G1, G2 ∈ RN×N denote symmetric positive definite matrices. The

Riemannian distance between G1 and G2 is defined as follows:

δR(G1, G2) = ‖ ln(G−11 G2)‖F =

(
N∑
i=1

ln2(ξi)

)1/2

(4.36)

where ‖.‖F represents the Frobenius norm and ξi (i = 1, . . . , N) are the eigenvalues

of G−11 G2. A statistical interpretation of the Riemannian distance is as a symmetric

measure of the difference between two Gaussian probability distributions having equal

modes. As the inverse Hessian can be used as an approximation to the analysis error

covariance matrix in 4D-Var, it is appropriate to use the Riemannian distance to mea-

sure the difference between the inverse Hessian and an approximation to this matrix

constructed using the multilevel eigenvalue decomposition algorithm. An important

property is that δR(G1, G2) in (4.36) remains unchanged on applying symmetric pre-

conditioning to the input matrices G1 and G2. This is relevant since applying the

control variable transform discussed in Section 2.9 implicitly preconditions the Hessian

F defined in Section 2.8 symmetrically with B1/2, that is, the symmetric square root

of the background error covariance matrix B. Specifically,

B1/2FB1/2 = B1/2(B−1 + ĤT R̂−1Ĥ)B1/2 = IN +B1/2ĤT R̂−1ĤB1/2 = C (4.37)

where C is the Hessian defined in (2.50). In terms of the Riemannian distance, this

means that

δR(F̃ , F ) = δR(C̃, C) (4.38)

where F̃ ∈ RN×N denotes a symmetric positive definite matrix and C̃ = B1/2F̃B1/2.

Let A0 ∈ R401×401 denote the Hessian C in (2.50) for the specific model problem
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outlined in Section 4.6. This is defined on the finest grid at grid level k = 0 in the

multilevel construction described in Section 4.1, and is available in the form of A0w0,

where w0 ∈ R401 denotes any given vector defined at grid level k = 0. Note that,

since we are dealing with a small model problem, A−10 is also available. This is used

to evaluate the accuracy of approximations to A−10 constructed using the multilevel

eigenvalue decomposition algorithm outlined in Figure 4.1. Let Ã−10 ∈ R401×401 denote

an approximation generated in this way. The cases of Ã−10 considered in this chapter are

symmetric positive definite. The accuracy of Ã−10 is evaluated in the numerical studies

presented in Sections 4.10-4.12 by calculating the normalised Riemannian distance

De =
δR(Ã−10 , A−10 )

δR(I0, A
−1
0 )

(4.39)

where I0 is the 401× 401 identity matrix associated with the finest grid level k = 0 in

the multilevel construction. The accuracy of Ã−10 is dependent on Ne in (4.25). The

ideal outcome would be to identify the optimal Ne for any given problem. However,

this is non-trivial in practice. For instance, it may be desirable to construct the best

possible approximation given a fixed amount of allocated memory. Alternatively, it may

be necessary to determine the approximation that results in the largest reduction in

computational cost to construct Ã−10 w0. The approach adopted in the numerical study

presented in Section 4.12 is to fix the memory allocated to the multilevel eigenvalue

decomposition algorithm. This involves fixing Re in (4.31) and specifying Ne in (4.25)

accordingly. The ARPACK software discussed in Section 4.7 is used in the numerical

studies presented in this chapter to compute estimates of a specified number nk of

the largest eigenvalues, and corresponding eigenvectors, of Q̃k(A0) in (4.17). This

procedure involves computing Hessian vector products of the form A0w0 on the finest

grid at grid level k = 0 in the multilevel construction. A Hessian vector product

evaluation is computationally demanding since it requires the tangent linear and adjoint

models associated with (4.32)-(4.34) to be executed. The total number of Hessian vector

products computed at the finest grid level k = 0 is evaluated in the numerical studies
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Figure 4.3: Standard deviation σk plotted as a function of x on Ω = [0, 1].

presented in this chapter by calculating

Me =
3∑

k=0

ñk (4.40)

where ñk denotes the number of Hessian vector products computed at the finest grid

level k = 0 in order to solve the eigenvalue problem involving Q̃k(A0) in (4.17) at grid

level k (k = 0, 1, 2, 3).

4.9 Choice of preconditioner

The choice of preconditioner Zkk+1 in (4.17) applied at grid level k (k = 0, . . . , kc) in the

multilevel eigenvalue decomposition algorithm outlined in Figure 4.1 is considered for

the case of the Hessian C associated with the model problem outlined in Section 4.6.

The inverse Hessian is interpreted here as an approximation to the analysis error covari-

ance matrix. Let Ck ∈ Rmk×mk denote a representation of the matrix C at a coarser

grid level k (k = 1, 2, 3) (this will be defined precisely in (5.5)).

The standard deviation pertaining to C−1k is defined here as the vector σk ∈ R401
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containing the square roots of the diagonal entries of S0(C
−1
k ), using the grid transfer

operator Sk−i(.) in (4.14). Specifically, the ith entry of σk is defined as follows:

(σk)i =
√(

S0(C
−1
k )
)
i,i

(i = 1, . . . , 401) (4.41)

where
(
S0(C

−1
k )
)
i,i

denotes the (i, i)th entry of S0(C
−1
k ). The standard deviation σ0

associated with C−10 is used as a reference function for comparing σk. The plot in

Figure 4.3 shows σk plotted as a function of x on Ω = [0, 1]. The key observation based

on the plot in Figure 4.3 is that σk+1 captures the fundamental components of σk. Thus

it is reasonable to expect that σk+1 is a good approximation to σk. This substantiates

the idea discussed in Section 4.4.3 that Sk(Q
−1
k+1(A0)), using the grid transfer operator

Qk(.) in (4.15), is a good choice of preconditioner for Qk(A0).

4.10 Choice of interpolation method

An interpolation method is required to implement the interpolation operator P k−ik in

(4.2). The two methods considered in this section are linear and cubic spline interpola-

tion. These methods are compared by evaluating the accuracy of Ã−10 in each case using

De in (4.39). Note that Me in (4.40) is also calculated. This provides an indication of

computational cost.

The results obtained for four combinations of Re in (4.31) and Ne in (4.25) are

tabulated in Table 4.1. Note that the choices of values used in Ne will be discussed in

Section 4.12. The key observation based on the results presented in Table 4.1 is that

implementing P k−ik using linear interpolation resulted in larger values of De, that is,

less accurate approximations to A−10 , in all instances. However, this approach involved

computing a smaller number of Hessian vector products at the finest grid level k = 0

in almost all cases (excluding Re = 8), as shown by the values of Me tabulated.

The eigenvalues of A−10 and Ã−10 for two combinations of Re and Ne presented in

Table 4.1 are plotted in Figure 4.4. The plots in subfigures 4.4(a) and 4.4(b) relate

to the cases of Re = 8 with Ne = (0, 0, 16, 32) and Re = 16 with Ne = (4, 8, 16, 32),

respectively. The first eighty eigenvalues of A−10 are plotted in each case using blue

circles. The remaining eigenvalues of A−10 are close to one and have been omitted. The
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De Me

Re Ne Linear Cubic spline Linear Cubic spline

8 (0, 0, 16, 32) 9.6358e− 1 2.7997e− 1 69 62

12 (0, 8, 16, 32) 7.8938e− 1 2.0623e− 1 89 116

16 (4, 8, 16, 32) 7.1718e− 1 1.7247e− 1 108 159

24 (6, 12, 24, 48) 5.4323e− 1 1.2217e− 1 210 262

Table 4.1: The values De and Me obtained for four combinations of Re and Ne, respec-
tively, with P k−ik implemented using linear or cubic spline interpolation.
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(a) Re = 8, Ne = (0, 0, 16, 32)
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(b) Re = 16, Ne = (4, 8, 16, 32)

Figure 4.4: Comparison plots showing the first eighty eigenvalues of: A−10 (blue circles),
Ã−10 where P k−ik has been implemented using cubic spline interpolation (red circles),

and Ã−10 where P k−ik has been implemented using linear interpolation (black circles).
Two combinations of Re and Ne presented in Table 4.1 are highlighted.

first eighty eigenvalues of Ã−10 where P k−ik in (4.2) has been implemented using cubic

spline interpolation are plotted using red circles. The first eighty eigenvalues of Ã−10

where P k−ik has been implemented using linear interpolation are plotted using black

circles. The eigenvalues of Ã−10 in the plots in subfigures 4.4(a) and 4.4(b) are closer to

the eigenvalues of A−10 with P k−ik implemented using cubic spline interpolation. This

corresponds to the smaller distances De tabulated in Table 4.1.

The results presented demonstrate that implementing P k−ik using linear interpo-

lation produces a less accurate approximation to A−10 than achievable by employing

cubic spline interpolation. However, constructing an approximation to A−10 with P k−ik
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implemented using linear interpolation has been shown to be less computationally ex-

pensive in almost all cases studied, as substantiated by the values Me obtained in these

instances. This indicates that employing linear interpolation is a viable strategy for

reducing the computational cost. However, as we are interested in obtaining more

accurate approximations, cubic spline interpolation is used in the numerical studies

presented in the remainder of this thesis.

4.11 Executing one shift in ARPACK

The standard version of ARPACK is used to solve the eigenvalue problems involving

Q̃k(A0) (k = 0, 1, 2, 3) in (4.17). The implicitly restarted Lanczos method is the specific

technique applied (see Section 3.3). The procedure employed involves executing the

necessary number of shifts such that the convergence criterion in (3.41) is satisfied for

each of the nk requested eigenvalue estimates. In this section, a modified version of

ARPACK that permits only one shift to be executed is considered. This is compared

with the standard version of ARPACK by evaluating the accuracy of Ã−10 in each

case using De in (4.39). Note that Me in (4.40) is also calculated. This provides an

indication of computational cost.

The results obtained for the same four combinations of Re in (4.31) and Ne in

(4.25) presented in Table 4.1 are tabulated in Table 4.2. The key observation based

on the results presented is that applying the proposed modified version of ARPACK

resulted in larger values of De, that is, less accurate approximations to A−10 , in all

instances. However, this approach involved computing a smaller number of Hessian

vector products at the finest grid level k = 0 in all cases, as evidenced by the results

Me attained.

The eigenvalues of A−10 and Ã−10 for two Re and Ne combinations presented in

Table 4.2 are plotted in Figure 4.5. The plots in subfigures 4.5(a) and 4.5(b) relate to

the cases of Re = 12 with Ne = (0, 8, 16, 32) and Re = 24 with Ne = (6, 12, 24, 48),

respectively. The first eighty eigenvalues of A−10 are plotted in each case using blue

circles. The remaining eigenvalues of A−10 are close to one and have been omitted. The

first eighty eigenvalues of Ã−10 where the standard version of ARPACK has been applied
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De Me

Re Ne Standard Modified Standard Modified

8 (0, 0, 16, 32) 2.7997e− 1 3.0768e− 1 62 50

12 (0, 8, 16, 32) 2.0623e− 1 2.3901e− 1 116 59

16 (4, 8, 16, 32) 1.7247e− 1 2.2543e− 1 159 64

24 (6, 12, 24, 48) 1.2217e− 1 1.7726e− 1 262 94

Table 4.2: The values De and Me obtained for four combinations of Re and Ne, respec-
tively, with the standard or proposed modified version of ARPACK applied.
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(a) Re = 12, Ne = (0, 8, 16, 32)
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(b) Re = 24, Ne = (6, 12, 24, 48)

Figure 4.5: Comparison plots showing the first eighty eigenvalues of: A−10 (blue circles),
Ã−10 where the standard version of ARPACK has been applied (red circles), and Ã−10

where the proposed modified version of ARPACK has been applied (black circles). Two
combinations of Re and Ne presented in Table 4.2 are highlighted.

are plotted using red circles. The first eighty eigenvalues of Ã−10 where the proposed

modified version of ARPACK has been applied are plotted using black circles. The

eigenvalues of Ã−10 in the plots in subfigures 4.5(a) and 4.5(b) with the two versions of

ARPACK applied have similar distributions, which corresponds to the small differences

in De shown in Table 4.2.

The results presented demonstrate that applying the proposed modified version

of ARPACK produces a less accurate approximation to A−10 than achievable using

the standard version of ARPACK. However, constructing an approximation to A−10

with the proposed modified version of ARPACK applied has been shown to be less

computationally expensive in all cases studied, as evidenced by the results Me attained.
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This indicates that applying the proposed modified version of ARPACK is a viable

strategy for reducing the computational cost. However, as we are interested in obtaining

more accurate approximations, the standard version of ARPACK is applied in the

numerical studies presented in the remainder of this thesis.

4.12 Comparing approximations to the inverse Hessian

The numerical study presented here focuses on the choice of Ne in (4.25), that is,

how many eigenpairs to calculate at each grid level in the framework of the multilevel

eigenvalue decomposition algorithm outlined in Figure 4.1. Specifically, various cases of

Ã−10 are considered. The accuracy of Ã−10 is evaluated in each case using De in (4.39),

with Me in (4.40) also being calculated to provide an indication of computational cost.

We first suppose that there are no memory restrictions in place. The maximum

allowable case of Re in (4.31) given the model problem setup is Re = 400, so we can

set Ne = (400, 0, 0, 0). That is, all eigenvalues (excluding one) of Q̃0(A0) in (4.22) are

computed on the finest grid at grid level k = 0 (note that this is the maximum number

of eigenvalues computable at grid level k = 0 using ARPACK). The output Ã−10 in this

case is therefore the best possible approximation to A−10 achievable using the multilevel

eigenvalue decomposition algorithm. With this choice of Ne, De = 5.5185e − 13 and

Me = 401. The eigenvalues of A−10 and Ã−10 are plotted in Figure 4.6. The first eighty

eigenvalues of Ã−10 are plotted using red circles. The remaining eigenvalues of Ã−10

are close to one and have been omitted. The first eighty eigenvalues of A−10 are also

plotted using blue circles. However, these eigenvalues are indistinguishable from the

eigenvalues of Ã−10 in the plot in Figure 4.6, as Ã−10 is an excellent approximation to

A−10 . This is supported by the very small value of De attained. The result Me obtained

is indicative of a high computational cost as expected.

Suppose now instead that the maximum allowable case of Re is Re = 24. We

now consider every combination of Re and Ne within this fixed memory framework,

and calculate the resulting values of De. Figure 4.7 shows De plotted against Re. The

dashed blue line highlights the true minimumDe attained. The solid blue line represents

the average of De calculated with respect to the 5% of cases of Ne that resulted in the
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Figure 4.6: Comparison plot showing the first eighty eigenvalues of Ã−10 (red cir-
cles). The first eighty eigenvalues of A−10 plotted using blue circles are indistinguish-
able from the eigenvalues of Ã−10 . The combination implemented is Re = 400 and
Ne = (400, 0, 0, 0). The associated measures of accuracy and computational cost are
De = 5.5185e− 13 and Me = 401, respectively.
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Figure 4.7: Comparison plot showing De plotted against Re where the maximum al-
lowable memory ratio is Re = 24. The average of De calculated with respect to the 5%
of cases of Ne that resulted in the lowest De (solid blue line). The true minimum De

attained (dashed blue line). The result De obtained where the case of Ne implemented
involved only the finest grid at grid level k = 0 (dotted blue line). The value De ob-
tained where the case of Ne implemented resulted from applying the doubling strategy
(red crosses).

lowest De. This is included in order to show that the true minimum is not an outlier.

The dotted blue line shows De where Ne involved only the finest grid at grid level k = 0,

that is, Ne = (Re, 0, 0, 0). The red crosses represent De where Ne = (n0, 2n0, 4n0, 8n0),

for some n0. We refer to this approach for specifying Ne as a doubling strategy. For

our small example, the particular case of Ne that results in the minimum De for a

given choice of Re was determined by trying all possible combinations. However, this

approach is obviously not feasible in practice. The doubling strategy introduced is

proposed as an alternative method for specifying Ne in general.

A number of key observations can be made based on the plot in Figure 4.7. The

first observation is that De decreased as Re increased in almost all instances. That

is, as Re increased, the accuracy of Ã−10 also increased. It is therefore expected that

De → 0 as Re → ∞. The second observation is that involving only the finest grid
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in Ne resulted in the largest De, namely, the least accurate approximation to A−10 , in

every case of Re studied. Of course, given unlimited memory, using only the fine grid

eigenvalues would give the most accurate approximation, as discussed at the beginning

of this section. The final observation is that implementing the doubling strategy failed

to produce the true minimum De, that is, the most accurate approximation to A−10 , in

every case of Re considered. However, applying this method resulted in at least one

reasonably accurate approximation to A−10 in all cases, as substantiated by the values

De obtained.

The eigenvalues of A−10 and Ã−10 for various cases of Re included in the plot in

Figure 4.7 are plotted in Figures 4.8 and 4.9. The specific case of Ne implemented

in each instance is highlighted. Note that the particular combinations of Re and Ne

considered are selected from Tables 4.4, 4.5, and 4.6. The value of De obtained for

each Re and Ne combination is presented in order to demonstrate the accuracy of

Ã−10 . The approach adopted is the same as that employed in the plot in Figure 4.6.

That is, the first eighty eigenvalues of A−10 and Ã−10 are plotted using blue and red

circles, respectively. The plots in subfigures 4.8(a), 4.8(c), and 4.8(e) correspond to

the case of Re = 4. The plots in subfigures 4.8(b), 4.8(d), and 4.8(f) relate to the

case of Re = 24. The cases of Ne pertaining to the plots in subfigures 4.8(a) and

4.8(b) resulted in the true minimum De. The cases of Ne corresponding to the plots

in subfigures 4.8(c) and 4.8(d) resulted from applying the doubling strategy. The cases

of Ne relating to the plots in subfigures 4.8(e) and 4.8(f) involve only the finest grid

at grid level k = 0. The first observation is that the eigenvalues of Ã−10 are closest to

the eigenvalues of A−10 in the plots in subfigures 4.8(a) and 4.8(b), as expected, with

the smallest values of De obtained in each case. Note that the eigenvalues of Ã−10 in

the plots in subfigures 4.8(a) and 4.8(c) have similar distributions. This is also evident

from the plots in subfigures 4.8(b) and 4.8(d). However, the eigenvalues of Ã−10 are

closer to the eigenvalues of A−10 in the plot in subfigure 4.8(b) than in the plot in

subfigure 4.8(d). The eigenvalues of Ã−10 are furthest from the eigenvalues of A−10 in

the plots in subfigures 4.8(e) and 4.8(f). This is again substantiated by the result De

obtained in each case.

The plots in subfigures 4.9(a) and 4.9(b) correspond to the case of Re = 16. The
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(a) Re = 4, Ne = (0, 0, 4, 24), De = 4.3365e− 1
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(b) Re = 24, Ne = (3, 36, 0, 24), De = 8.8838e− 2
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(c) Re = 4, Ne = (0, 0, 8, 16), De = 4.4996e− 1
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(d) Re = 24, Ne = (6, 12, 24, 48), De = 1.2217e−1
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(e) Re = 4, Ne = (4, 0, 0, 0), De = 8.7840e− 1
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(f) Re = 24, Ne = (24, 0, 0, 0), De = 3.6951e− 1

Figure 4.8: Comparison plots showing the first eighty eigenvalues of: A−10 (blue circles)
and Ã−10 (red circles). Six combinations of Re and Ne are highlighted. The results De

obtained are presented.
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(a) Re = 16, Ne = (0, 14, 31, 10), De = 1.3759e−1
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(b) Re = 16, Ne = (4, 8, 16, 32), De = 1.7247e− 1
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(c) Re = 12, Ne = (0, 7, 28, 12), De = 1.8564e− 1
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(d) Re = 12, Ne = (0, 8, 16, 32), De = 2.0623e− 1
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(e) Re = 8, Ne = (0, 1, 21, 18), De = 2.5832e− 1
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(f) Re = 8, Ne = (0, 0, 16, 32), De = 2.7997e− 1

Figure 4.9: Comparison plots showing the first eighty eigenvalues of: A−10 (blue circles)
and Ã−10 (red circles). Six combinations of Re and Ne are highlighted. The results De

obtained are presented.
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Re Da
e Ma

e

4 4.4026e− 1 57

8 2.6536e− 1 86

12 1.9155e− 1 131

16 1.4411e− 1 186

20 1.1377e− 1 169

24 9.3671e− 2 205

Table 4.3: The average values Da
e and Ma

e calculated with respect to the 5% of cases
of Ne that resulted in the lowest De for six instances of Re included in the plot in
Figure 4.7.

Re Ne De Me

4 (0, 0, 4, 24) 4.3365e− 1 56

8 (0, 1, 21, 18) 2.5832e− 1 87

12 (0, 7, 28, 12) 1.8564e− 1 126

16 (0, 14, 31, 10) 1.3759e− 1 325

20 (1, 31, 0, 28) 1.0697e− 1 112

24 (3, 36, 0, 24) 8.8838e− 2 156

Table 4.4: The values De and Me obtained for six cases of Re included in the plot in
Figure 4.7 where Ne resulted in the true minimum De.

plots in subfigures 4.9(c) and 4.9(d) relate to the case of Re = 12. The plots in

subfigures 4.9(e) and 4.9(f) pertain to the case of Re = 8. The cases of Ne corresponding

to the plots in subfigures 4.9(a), 4.9(c), and 4.9(e) resulted in the true minimum De.

The cases of Ne relating to the plots in subfigures 4.9(b), 4.9(d), and 4.9(f) resulted

from applying the doubling strategy. The key observation is that the eigenvalues of

Ã−10 in the plots in subfigures 4.9(a), 4.9(c), and 4.9(e) have similar distributions to

those in the corresponding plots in subfigures 4.9(b), 4.9(d), and 4.9(f), respectively.

This indicates that the doubling strategy is a viable method for specifying Ne. The

effect of transitioning from involving the two coarsest grids at grid levels k = 2 and

k = 3, to incorporating all four grids, in Ne on the eigenvalue distribution of Ã−10 is

illustrated in the plots in subfigures 4.9(b), 4.9(d), and 4.9(f), respectively.
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Re Ne De Me

4 (4, 0, 0, 0) 8.7840e− 1 27

8 (8, 0, 0, 0) 7.7086e− 1 30

12 (12, 0, 0, 0) 6.6738e− 1 41

16 (16, 0, 0, 0) 5.6683e− 1 40

20 (20, 0, 0, 0) 4.6678e− 1 38

24 (24, 0, 0, 0) 3.6951e− 1 38

Table 4.5: The values De and Me obtained for six cases of Re included in the plot in
Figure 4.7 where Ne involved only the finest grid at grid level k = 0.

Re Ne De Me

4 (0, 0, 8, 16) 4.4996e− 1 62

8 (0, 0, 16, 32) 2.7997e− 1 62

12 (0, 8, 16, 32) 2.0623e− 1 116

16 (4, 8, 16, 32) 1.7247e− 1 159

20 (5, 10, 20, 40) 1.4219e− 1 285

24 (6, 12, 24, 48) 1.2217e− 1 262

Table 4.6: The values De and Me obtained for six cases of Re included in the plot in
Figure 4.7 where Ne followed the doubling strategy.
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In Table 4.3, the average values of De and Me calculated with respect to the 5%

of cases of Ne that resulted in the lowest De are tabulated for six instances of Re

included in the plot in Figure 4.7. These figures are denoted by Da
e and Ma

e . The

key observation based on the results presented in Table 4.3 is that Ma
e increased as

Re increased, and Da
e decreased, in almost all instances. Note that it is difficult to

predict Me in advance since this depends on the performance of the ARPACK software

used to solve the eigenvalue problems in the framework of the multilevel eigenvalue

decomposition algorithm. The results De and Me tabulated in Tables 4.4, 4.5, and 4.6

are for the six cases of Re presented in Table 4.3. Specifically, the cases of Ne presented

in Table 4.4 resulted in the true minimum De. The cases of Ne presented in Table 4.5

involve only the finest grid at grid level k = 0. The cases of Ne presented in Table 4.6

resulted from applying the doubling strategy. Note that more than one case of Ne

resulted from applying the doubling strategy in the instances of Re = 4, 8, 12. The

case of Ne that resulted in the minimum De has been selected in these instances. The

first observation based on the results presented in Table 4.4 is that every case of Ne

implemented, excluding the instance of Ne = (0, 0, 4, 24) pertaining to Re = 4, involved

three grid levels. The second observation is that all cases of Ne implemented involved

the coarsest grid at grid level k = 3. The cases of Ne implemented that involved three

grid levels included the grid at grid level k = 1. The cases of Ne = (1, 31, 0, 28) and

Ne = (3, 36, 0, 24) relating to Re = 20 and Re = 24, respectively, involved the finest

grid at grid level k = 0, but not the grid at grid level k = 2. However, the values of

n0 implemented in Ne in these cases was small. An additional observation based on

the results presented in Tables 4.4, 4.5, and 4.6 is that involving only the finest grid

at grid level k = 0 in Ne required computing the smallest number of Hessian vector

products at the finest grid level k = 0 in all instances, as shown by the values of Me.

In addition, the result Me attained in the cases of Re = 8, 12, 16 where the instance of

Ne implemented resulted from applying the doubling strategy is smaller than obtained

in the corresponding true minimum case.

Overall, the results presented demonstrate that the accuracy of Ã−10 depends on Re,

that is, the memory allocated to the multilevel eigenvalue decomposition algorithm.

These results also show that, when Re is restricted, then specifying Ne based on a
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multilevel approach produces a more accurate approximation to A−10 than achievable

by employing a single-level procedure. The results presented indicate that doubling the

values in Ne successively from the finest grid, to the coarsest grid, is a viable strategy

for generating reasonably accurate approximations to A−10 . However, constructing an

approximation to A−10 using the multilevel eigenvalue decomposition algorithm has been

shown to be computationally expensive, as evidenced by the values of Me obtained.

4.13 Conclusion

This chapter introduced a multilevel eigenvalue decomposition algorithm for construct-

ing a limited-memory approximation to the inverse (and inverse square root) of any

given symmetric positive definite matrix A ∈ RN×N with eigenvalues clustered around

unity. It was assumed that A could be approximated using a specified number of its

leading eigenvalues, and corresponding eigenvectors, by means of a limited-memory

approximation of the form defined in (4.1).

The numerical studies presented in this chapter involved approximating the inverse

Hessian for the specific model problem outlined in Section 4.6. The approach adopted

focused on fixing the memory ratio Re in (4.31) allocated to the multilevel eigenvalue

decomposition algorithm and specifying Ne in (4.25) accordingly. This included eval-

uating the accuracy of approximations to the inverse Hessian by calculating De in

(4.39). The total number of Hessian vector products computed on the finest grid at

grid level k = 0 was evaluated by calculating Me in (4.40). This provided an indication

of computational cost.

The choice of interpolation method used to implement the interpolation operator in

the multilevel eigenvalue decomposition algorithm was considered in Section 4.10. The

results presented demonstrated that implementing the interpolation operator P k−ik in

(4.2) using linear interpolation produced a less accurate approximation to the inverse

Hessian than achieved by employing cubic spline interpolation. However, constructing

an approximation to the inverse Hessian with P k−ik implemented using linear interpo-

lation was shown to be less computationally expensive in almost all cases studied, as

substantiated by the results Me obtained in these instances. The results presented in
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Section 4.10 indicated that implementing P k−ik using cubic spline interpolation was the

best strategy in terms of accuracy.

A modified version of the software package ARPACK that permits only one shift

to be executed was considered in Section 4.11. The results presented demonstrated

that applying the proposed modified version of ARPACK in order to solve the eigen-

value problems in the framework of the multilevel eigenvalue decomposition algorithm

produced a less accurate approximation to the inverse Hessian than achieved using the

standard version of ARPACK. However, constructing an approximation to the inverse

Hessian with the proposed modified version of ARPACK applied was shown to be less

computationally expensive in all cases studied, as substantiated by the results Me ob-

tained. The results presented in Section 4.11 indicated that applying the proposed

modified version of ARPACK was a viable strategy for reducing the computational

cost. However, as we were interested in obtaining more accurate approximations, this

was not used in practice.

The numerical study presented in Section 4.12 focused on comparing various ap-

proximations to the inverse Hessian constructed using the multilevel eigenvalue de-

composition algorithm. The results presented demonstrated that the accuracy of the

approximation to the inverse Hessian constructed using the multilevel eigenvalue decom-

position algorithm depended on the memory allocated to this algorithm, as measured

by Re. These results also showed that, when Re was restricted, then specifying Ne

based on a multilevel approach produced a more accurate approximation to the inverse

Hessian than achieved by employing a single-level procedure. The results presented

in Section 4.12 indicated that doubling the values in Ne successively from the finest

grid at grid level k = 0, to the coarsest grid at grid level k = 3, was a viable strategy

for generating reasonably accurate approximations to the inverse Hessian. However,

constructing an approximation to the inverse Hessian using the multilevel eigenvalue

decomposition algorithm was shown to be computationally expensive, as substanti-

ated by the results Me obtained. Given the computational expense of constructing the

multilevel approximations considered so far, the remainder of this thesis is devoted to

modifications to the algorithm presented in this chapter which reduce implementation

costs.
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A novel decomposition of the Hessian C as the sum of a set of local Hessians

is introduced in Chapter 5, which leads to two practical algorithms for constructing

limited-memory approximations to the inverse Hessian (and inverse square root Hes-

sian). These algorithms are based on the multilevel eigenvalue decomposition algorithm

presented in this chapter.
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Chapter 5

Practical algorithms for

approximating the inverse

Hessian

In this chapter, two practical algorithms for constructing a limited-memory approxima-

tion to the inverse (and inverse square root) of the Hessian C in (2.50) are presented.

Firstly, a modified version of the multilevel eigenvalue decomposition algorithm out-

lined in Figure 4.1 that involves generating a representation of the matrix A at the

next finest grid level in the multilevel construction is considered in Section 5.1. The

numerical study presented focuses on approximating the inverse Hessian for the specific

model problem outlined in Section 4.6. A novel decomposition of the Hessian as the

sum of a set of local Hessians is then derived in Section 5.2.

The Hessian decomposition algorithm presented in Section 5.3 is the first practical

algorithm introduced in this chapter. The premise is to reduce the computational cost

of constructing an approximation to the inverse Hessian, or inverse square root Hessian,

compared to applying the multilevel eigenvalue decomposition algorithm. An outline

of the Hessian decomposition algorithm is presented in Section 5.3.1. This algorithm

is described in detail in Section 5.3.2, and summarised in Section 5.3.3. The Hessian

decomposition algorithm is applied to the Hessian associated with the specific model

problem outlined in Section 4.6 in order to construct an approximation to the inverse

Hessian (see Section 5.4). Additional implementation details pertaining to the Hessian
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decomposition algorithm are discussed in Section 5.5. The numerical study presented

in Section 5.6 focuses on comparing various approximations to the inverse Hessian

constructed using the Hessian decomposition algorithm.

The reduced memory Hessian decomposition algorithm presented in Section 5.7 is

the second practical algorithm introduced in this chapter. The premise is to reduce the

memory requirements of the Hessian decomposition algorithm outlined in Section 5.3.

An outline of the reduced memory Hessian decomposition algorithm is presented in

Section 5.7.1. This algorithm is described in detail in Section 5.7.2, and summarised

in Section 5.7.3. The reduced memory Hessian decomposition algorithm is also applied

to the Hessian associated with the specific model problem outlined in Section 4.6 in

order to construct an approximation to the inverse Hessian (see Section 5.8). The

numerical study presented in Section 5.9 focuses on comparing various approximations

to the inverse Hessian constructed using the reduced memory Hessian decomposition

algorithm.

5.1 Modified version of the multilevel eigenvalue

decomposition algorithm

A modified version of the multilevel eigenvalue decomposition algorithm outlined in

Figure 4.1 that involves generating a representation of the matrix A at the next finest

grid level k− i (0 < i ≤ k) in the multilevel construction is considered. The premise is

to modify the first step of this algorithm by replacing Qk(A0) in (4.16) with Qk(Ak−i),

where Ak−i ∈ Rmk−i×mk−i denotes a representation of the matrix A at grid level k − i.

Specifically, the first step of the proposed modified version of the multilevel eigenvalue

decomposition algorithm is to represent Ak−i on the grid at grid level k using the grid

transfer operator Qk(.) in (4.15) as follows:

Qk(Ak−i) = (P k−ik )T (Ak−i − Ik−i)P k−ik + Ik (0 < i ≤ k). (5.1)

The next step is to precondition Qk(Ak−i) in (5.1) analogously to Qk(A0) in (4.17) to

obtain

Q̃k(Ak−i) = (Zkk+1)
TQk(Ak−i)Z

k
k+1 (0 < i ≤ k). (5.2)

73



The Lanczos method is then used to compute estimates of a specified number nk of

the largest eigenvalues, and corresponding eigenvectors, of Q̃k(Ak−i) in (5.2). The

resulting nk eigenpairs {λik,uik} (i = 1, . . . , nk) are required in order to construct a

limited-memory approximation to Q̃−1k (Ak−i) or Q̃
−1/2
k (Ak−i) of the form defined in

(4.18) or (4.19).

The particular case of the matrix A considered in this thesis is the Hessian C in

(2.50). Suppose that C is represented on the finest grid at grid level k = 0 in the

multilevel construction. Let Ck ∈ Rmk×mk denote a representation of the matrix C at

grid level k. It is assumed that C0w0 is computable for any given vector w0 ∈ Rm0

defined at grid level k = 0. Let B
1/2
0 ∈ Rm0×m0 , Ĥ0 ∈ Rp×m0 , ĤT

0 ∈ Rm0×p, and

R̂−10 ∈ Rp×p denote representations of the matrices B1/2, Ĥ, ĤT , and R̂−1 in (2.50),

respectively, at grid level k = 0 where

p =

n∑
i=0

pi (5.3)

with pi the number of available observations at time ti (see Section 2.1). It follows that

C0 = I0 +B
1/2
0 ĤT

0 R̂
−1
0 Ĥ0B

1/2
0 (5.4)

where I0 is the m0 ×m0 identity matrix associated with grid level k = 0.

Suppose that M̃k ∈ Rmk×mk and M̃T
k ∈ Rmk×mk are representations of the tangent

linear model (TLM) M̃i,i+1 in (2.36) and the adjoint model M̃T
i,i+1, respectively, at

grid level k. These can be used to define Ĥk ∈ Rp×mk and ĤT
k ∈ Rmk×p which are

representations of the matrices Ĥ and ĤT in (2.50), respectively, at grid level k. Then

Ck can be generated at grid level k using the grid transfer operator Qk(.) in (4.15) as

follows:

Ck = Ik +Qk(B
1/2
0 )ĤT

k Qk(R̂
−1
0 )ĤkQk(B

1/2
0 ) (5.5)

where Ik is the mk ×mk identity matrix associated with grid level k. Note that this

definition of Ck is used in the Hessian decomposition and reduced memory Hessian

decomposition algorithms presented in Sections 5.3 and 5.7, respectively.

The numerical study presented here involves approximating the inverse Hessian
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De Me

Re Ne Standard Modified Standard Modified

8 (0, 0, 16, 32) 2.7997e− 1 3.0169e− 1 62 33

12 (0, 8, 16, 32) 2.0623e− 1 2.2598e− 1 116 63

16 (4, 8, 16, 32) 1.7247e− 1 1.9786e− 1 159 106

24 (6, 12, 24, 48) 1.2217e− 1 1.4722e− 1 262 191

Table 5.1: The values De and Me obtained for four combinations of Re and Ne, re-
spectively, using the standard or proposed modified version of the multilevel eigenvalue
decomposition algorithm outlined in Figure 4.1.

for the specific model problem outlined in Section 4.6. The notation introduced in

Section 4.8 is employed. Let Ak ∈ R401×401 denote a representation of the matrix A at

grid level k (equivalent to Ck in (5.5)). The two versions of the multilevel eigenvalue

decomposition algorithm are compared by evaluating the accuracy of Ã−10 in each case

using De in (4.39), with Me in (4.40) also being calculated to provide an indication of

computational cost.

The results obtained for four combinations of Re in (4.31) and Ne in (4.25) previ-

ously used in Table 4.6 are tabulated in Table 5.1. The key observation based on the

results presented in Table 5.1 is that applying the proposed modified version of the

multilevel eigenvalue decomposition algorithm resulted in larger values of De, that is,

less accurate approximations to A−10 , in all instances. However, implementing the pro-

posed modified version of the multilevel eigenvalue decomposition algorithm involved

computing a smaller number of Hessian vector products at the finest grid level k = 0

in all cases, as shown by the values of Me tabulated.

The eigenvalues of A−10 and Ã−10 for two combinations of Re and Ne presented in

Table 5.1 are plotted in Figure 5.1. The plots in subfigures 5.1(a) and 5.1(b) relate to

the cases of Re = 12 with Ne = (0, 8, 16, 32) and Re = 24 with Ne = (6, 12, 24, 48),

respectively. The first eighty eigenvalues of A−10 are plotted in each case using blue

circles. The remaining eigenvalues of A−10 are close to one and have been omitted.

The first eighty eigenvalues of Ã−10 where the standard version of the multilevel eigen-

value decomposition algorithm has been applied are plotted using red circles. The first

eighty eigenvalues of Ã−10 where the proposed modified version of the multilevel eigen-
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(a) Re = 12, Ne = (0, 8, 16, 32)

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Re = 24, Ne = (6, 12, 24, 48)

Figure 5.1: Comparison plots showing the first eighty eigenvalues of: A−10 (blue circles),
Ã−10 where the standard version of the multilevel eigenvalue decomposition algorithm
has been applied (red circles), and Ã−10 where the proposed modified version of the
multilevel eigenvalue decomposition algorithm has been applied (black circles). Two
combinations of Re and Ne presented in Table 5.1 are highlighted.

value decomposition algorithm has been applied are plotted using black circles. The

eigenvalues of Ã0 in the plots in subfigures 5.1(a) and 5.1(b) with the two versions of

the multilevel eigenvalue decomposition algorithm applied have similar distributions,

which corresponds to the small differences in De shown in Table 5.1.

The results presented demonstrate that applying the proposed modified version of

the multilevel eigenvalue decomposition algorithm produces a less accurate approxima-

tion to A−10 than achievable using the standard version of this algorithm. However,

constructing an approximation to A−10 using the proposed modified version of the mul-

tilevel eigenvalue decomposition algorithm has been shown to be less computationally

expensive in all cases studied, as evidenced by the results Me attained. This indicates

that applying the proposed modified version of the multilevel eigenvalue decomposition

algorithm is a viable strategy for reducing the computational cost.

5.2 Decomposition of the Hessian

In this section, a novel decomposition of the Hessian C in (2.50) as the sum of a

set of local Hessians is derived. The idea is based on considering the local impact

of observational data on C. Recall that the observations yi (i = 0, . . . , n) in (2.2)
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are included in the 4D-Var cost function J (x0) in (2.4), with the uncertainty in yi

(i = 0, . . . , n) represented in J (x0) using the observation error covariance matrix Ri.

The block diagonal matrix R̂ in (2.38) contains the matrices Ri (i = 0, . . . , n) along

its main diagonal, so the observational component of 4D-Var is captured by C through

the matrix R̂−1.

The proposed decomposition of C is derived by factorising the matrix R̂−1 in (2.50)

as follows:

R̂−1 = R̂−1/2IpR̂
−1/2 (5.6)

where Ip is the p× p identity matrix and p has been defined in (5.3). Substituting the

expression for R̂−1 in (5.6) into (2.50) gives

C = IN +B1/2ĤT R̂−1/2IpR̂
−1/2ĤB1/2. (5.7)

Let Ĩ denote a set containing the indices of the diagonal entries of Ip. Partition Ĩ into L

disjoint subsets Ĩ l (l = 1, . . . , L). Assuming that Î l ∈ Rp×p (l = 1, . . . , L) is a diagonal

matrix defined such that

Î li,i =


1, i ∈ Ĩ l

0, i /∈ Ĩ l
, i = 1, . . . , p,

then Ip is expressible in the form

Ip =
L∑
l=1

Î l.

It follows from (5.7) that

C = IN +

L∑
l=1

B1/2ĤT R̂−1/2Î lR̂−1/2ĤB1/2

= IN +

L∑
l=1

(C l − IN ) (5.8)

where

C l = IN +B1/2ĤT R̂−1/2Î lR̂−1/2ĤB1/2. (5.9)
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We refer to C l in (5.9) as a local Hessian.

To use this decomposition of C, a strategy for partitioning the observations yi

(i = 0, . . . , n) in (2.2) to be associated with C l in (5.9) is required. The observations

yi (i = 0, . . . , n) are typically provided by sensors. The approach employed to define

a practical partition of Ĩ uses the fact that the impact of observations provided by a

sensor located within any given spatial subdomain is also spatially localised. Suppose

that S sensors are deployed. Assuming that each sensor j (j = 1, . . . , S) provides

p̂ observations at time ti (i = 0, . . . , n), then pi = Sp̂ in (5.3) and p = (n + 1)Sp̂. A

stationary sensor has a fixed position in space and provides observational data captured

at this point. On the other hand, a moving sensor traverses a spatial domain providing

observational data captured within this domain. Let xj(ti) (j = 1, . . . , S) denote the

position of sensor j in the spatial domain Ω at time ti (i = 0, . . . , n). If sensor j

is stationary, then xj(ti) = xj(t0) for all i ∈ [0, n]. It is assumed that R̂ in (2.50)

has the form defined in (2.38), where Ri ∈ RSp̂×Sp̂ (i = 0, . . . , n). The premise is to

partition Ω into L disjoint subdomains Ωl (l = 1, . . . , L) and divide the observations

yi (i = 0, . . . , n) into sets based on the position of sensor j (j = 1, . . . , S) at time ti by

defining Ĩ l as follows:

Ĩ l = {u ∈ N, u = (j − 1)(n+ 1)p̂+ ip̂+ v : xj(ti) ∈ Ωl, v = 1, . . . , p̂}. (5.10)

The standard approach is to order the observations yi (i = 0, . . . , n) first by time ti, and

then by sensor j (j = 1, . . . , S). However, this novel approach requires the observations

to be reordered first by sensor, and then by time. Specifically, Ĩ l in (5.10) defines

the relationship between the indices of the observations provided by sensor j, and

associated with the subdomain Ωl, in the novel and standard formulations. Provided

that Ωl (l = 1, . . . , L) cover Ω and do not overlap, then the decomposition of C in

(5.8)-(5.9) is defined for this partition. Note that this approach is employed in the

numerical studies presented in Sections 5.6, 5.9, and 6.7.

Using (5.8)-(5.9), we can decompose Ck in (5.5) at grid level k in the multilevel

construction as

Ck = Ik +

L∑
l=1

(C lk − Ik) (5.11)
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where

C lk = Ik +Qk(B
1/2
0 )ĤT

k Qk(R̂
−1/2
0 Î lR̂

−1/2
0 )ĤkQk(B

1/2
0 ) (5.12)

is a local Hessian defined at grid level k. Note that C lk in (5.12) can be approximated

using a specified number of its leading eigenvalues, and corresponding eigenvectors, by

means of a limited-memory approximation of the form defined in (2.51). That is, for a

specific partition of Ĩ, and any γ ∈ R,

(C lk)
γ ' Ik +

rlk∑
i=1

((λlk,i)
γ − 1)ulk,i(u

l
k,i)

T (5.13)

where {λlk,i,ulk,i} (i = 1, . . . , rlk) denote rlk eigenpairs of C lk, with rlk � mk. The limited-

memory decomposition of (C lk)
γ in (5.13) is relevant to the Hessian decomposition and

reduced memory Hessian decomposition algorithms presented in Sections 5.3 and 5.7,

respectively.

The introduction of local Hessians leads to a number of potential computational

savings. These are outlined as follows:

• Each local Hessian C lk in (5.12) differs from Ik only within a set region around

the subdomain Ωl referred to as the area of influence, whose size depends on the

specific processes incorporated in the dynamical modelM(ti+1, ti, .) in (2.1). The

computation of an individual local Hessian C lk is therefore not as computationally

expensive as computing the global Hessian Ck in (5.5).

• The computational cost of calculating each local Hessian C lk in (5.12) can be

reduced by setting k > 0, however, accuracy may be lost.

• A significant reduction in computational cost is achievable by calculating the

local Hessians in parallel. In this case, the computational cost of calculating Ck

in (5.11)-(5.12) will be the highest cost to calculate an individual local Hessian

C lk in (5.12). Note that parallel computing is not considered in this thesis.

• If observations from a particular sensor s (s = 1, . . . , S) are of less importance,

then it may not be necessary to compute C lk in (5.12) for every subdomain Ωl.

This concept is not considered in this thesis.
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5.3 The Hessian decomposition algorithm

5.3.1 Outline

Suppose that C0 is available on the finest grid at grid level k = 0 in the multilevel

construction described in Section 4.1 in the form of C0w0, where w0 ∈ Rm0 denotes

any given vector defined on the finest grid. Full details of the Hessian decomposition

algorithm for constructing a limited-memory approximation to C−10 w0 and C
−1/2
0 w0

are described in Section 5.3.2, but first an outline of this algorithm is presented here.

The premise is to reduce the computational cost of constructing an approximation to

C−10 or C
−1/2
0 compared to applying the multilevel eigenvalue decomposition algorithm

outlined in Figure 4.1. The steps involved in the Hessian decomposition algorithm are

as follows:

1. Define Î l (l = 1, . . . , L) in (5.12) by partitioning the observations yi (i = 0, . . . , n)

in (2.2).

2. Calculate each local Hessian C lk in (5.12) at a specified grid level k in the multilevel

setup. This involves restricting the matrices B
1/2
0 and R̂−10 in (5.4) to grid level

k.

3. Compute estimates of a specified number (nlk, say) of the largest eigenvalues, and

corresponding eigenvectors, of C lk using the Lanczos method and store in memory.

4. Construct a limited-memory approximation to C lk of the form defined in (5.13) to

be used to obtain a limited-memory approximation to Ck analogously to (5.11)-

(5.12).

5. Prolong the limited-memory approximation to Ck to the finest grid at grid level

k = 0 using the grid transfer operator Sk−i(.) in (4.14).

6. Apply the multilevel eigenvalue decomposition algorithm outlined in Figure 4.1

to the prolonged limited-memory approximation to Ck.

An approximation to C−10 w0 or C
−1/2
0 w0 can be computed on termination of the Hes-

sian decomposition algorithm using the nk eigenpairs calculated at each grid level k

(k = 0, . . . , kc) in the framework of the multilevel eigenvalue decomposition algorithm.
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5.3.2 Details

Following step 3 of the Hessian decomposition algorithm, the resulting nlk eigenpairs

{λlk,i,ulk,i} (i = 1, . . . , nlk) are used to construct a limited-memory approximation to C lk

of the form defined in (5.13). Specifically,

C̃ lk = Ik +

nl
k∑

i=1

(λlk,i − 1)ulk,i(u
l
k,i)

T (l = 1, . . . , L). (5.14)

A limited-memory approximation to Ck is then constructed using C̃ lk in (5.14) as follows:

C̃k = Ik +
L∑
l=1

(C̃ lk − Ik). (5.15)

The definition of C̃k in (5.15) is based on the decomposition of Ck in (5.11)-(5.12). The

grid transfer operator Sk−i(.) in (4.14) is used to prolong C̃k to the finest grid at grid

level k = 0. The multilevel eigenvalue decomposition algorithm outlined in Figure 4.1

is applied to S0(C̃k) at this stage.

In what follows, it is useful to represent the parameters nlk (l = 1, . . . , L) in vector

form by setting

Nd = (n1k, n
2
k, . . . , n

L
k ), N̂d =

L∑
l=1

nlk (5.16)

where N̂d is the sum of the entries in Nd. The accuracy of an approximation to C−10 w0

or C
−1/2
0 w0 constructed using the Hessian decomposition algorithm is dependent on the

choices of Nd in (5.16) and Ne in (4.25). That is, the values nlk in Nd and nk in Ne are

key in determining the quality of the approximation obtained. Various combinations

of k, Nd, and Ne are considered in the numerical study presented in Section 5.6.

5.3.3 Summary

The Hessian decomposition algorithm described in Section 5.3.2 is outlined in Fig-

ure 5.2. Note that the matrices involved in this procedure are not explicitly constructed

in practice. Specifically, only matrix vector products are computed. The inputs to the

Hessian decomposition algorithm are C0 in the form of C0w0, where w0 ∈ Rm0 denotes
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1: [Λ0, U0] = HD(C0, k,Nd, Ne)
2: Define Î l (l = 1, . . . , L) in (5.12)
3: for l = 1, . . . , L do
4: Calculate C lk in (5.12)
5: Compute {λlk,i,ulk,i} (i = 1, . . . , nlk) by applying the Lanczos method to C lk

and store in memory
6: end for
7: Construct C̃k in (5.15) using C̃ lk in (5.14)
8: Prolong C̃k to grid level k = 0 using Sk−i(.) in (4.14)
9: Compute Λ0 in (4.29) and U0 in (4.30) by applying the multilevel eigenvalue

decomposition algorithm outlined in Figure 4.1 to S0(C̃k)

Figure 5.2: Outline of the Hessian decomposition algorithm.

any given vector defined at grid level k = 0, a specified grid level k (0 ≤ k ≤ kc), Nd in

(5.16), and Ne in (4.25). The outputs are the vectors Λ0 in (4.29) and U0 in (4.30) as

before. An approximation to C−10 w0 or C
−1/2
0 w0 can be computed on termination of

the Hessian decomposition algorithm by means of (4.23) or (4.24) using Λ0 and U0.

Recall that the memory ratio for the multilevel eigenvalue decomposition algorithm

outlined in Figure 4.1 is Re in (4.31). The Hessian decomposition algorithm requires

additional memory since a further N̂d eigenpairs must be stored, where N̂d is defined

in (5.16). The finest grid at grid level k = 0 is composed of m0 = m + 1 grid points.

Given that the grid at grid level k contains mk = m/2k + 1 grid points, an estimate of

the ratio of memory required for the Hessian decomposition algorithm in terms of m is

obtained by calculating

Rd =
1

2k
N̂d +Re. (5.17)

5.4 Approximating the inverse Hessian using the Hessian

decomposition algorithm

The Hessian decomposition algorithm outlined in Figure 5.2 is proposed as a suitable

method for constructing a limited-memory approximation to the inverse (and inverse

square root) of the Hessian C in (2.50). The numerical study presented in Section 5.6

involves approximating the inverse Hessian for the specific model problem outlined

in Section 4.6. This numerical study focuses on comparing various approximations
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to the inverse Hessian constructed using the Hessian decomposition algorithm. Let

Ck ∈ Rmk×mk denote a representation of the matrix C ∈ R401×401 at grid level k

(k = 0, 1, 2, 3). This is defined analogously to Ck in (5.5). Note that C0 is available

in the form of C0w0, where w0 ∈ R401 denotes any given vector defined at the finest

grid level k = 0. For this small example, C−10 is also available by direct computation.

Let C̃−10 ∈ R401×401 denote an approximation to C−10 constructed using the Hessian

decomposition algorithm. Additional implementation details relevant to the Hessian

decomposition algorithm are discussed in Section 5.5.

5.5 Additional implementation details

The sensor configuration scheme S1 discussed in Section 4.6 comprises of seven station-

ary sensors. That is, L = 7 in the framework of the Hessian decomposition algorithm

outlined in Figure 5.2. The observational data generated is partitioned using the ap-

proach described in Section 5.2 in order to define Î l (l = 1, . . . , 7) and decompose Ck at

grid level k (0 ≤ k ≤ 3) analogously to Ck in (5.11)-(5.12). Let C lk ∈ Rmk×mk denote

C lk in (5.12) at grid level k for the particular model problem studied. This corresponds

to a stationary sensor located at the point x = x̃l in the spatial domain Ω = [0, 1].

Specifically, x̃1 = 0.3, x̃2 = 0.4, x̃3 = 0.45, x̃4 = 0.5, x̃5 = 0.55, x̃6 = 0.6, and x̃7 = 0.7

in this case.

The eigenvalue problems involving C lk at grid level k are solved using the stan-

dard version of ARPACK; see [78]. That is, estimates of the nlk largest, in terms

of magnitude, eigenvalues of C lk, and the corresponding eigenvectors, are computed

using ARPACK. The default tolerance used in the convergence criterion in (3.41) in

ARPACK is te = 10−2. The eigenvalue computations must be conducted in double

precision. However, it is acceptable to store the resulting eigenpairs in single precision,

as has been discussed in Section 4.7.

5.6 Comparing approximations to the inverse Hessian

The numerical study presented here focuses on the choices of k and Nd in (5.16) in the

framework of the Hessian decomposition algorithm outlined in Figure 5.2. Specifically,
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various cases of C̃−10 are considered. Note that these cases are symmetric positive

definite. The accuracy of C̃−10 is evaluated in each case using De in (4.39). The

ARPACK procedure involves computing Hessian vector products of the form C lkwk at

grid level k, where wk ∈ Rmk×mk denotes any given vector defined at grid level k.

Recall that the finest grid at grid level k = 0 is composed of m = 401 grid points, and

the grid at grid level k (k = 1, 2, 3) contains mk = m/2k + 1 grid points. An estimate

of the number of Hessian vector products computed in terms of the cost of one Hessian

vector product at the finest grid level k = 0 is obtained by calculating

M̂e = max
1≤l≤7

m̂l (5.18)

where m̂l = m̃l/2
k and m̃l denotes the number of Hessian vector products computed

at grid level k in order to solve the eigenvalue problem involving C lk at this grid level.

Note that M̂e in (5.18) is calculated to provide an indication of the computational cost

if the eigenvalue problems involving C lk at grid level k were solved in parallel.

We first suppose that there are no memory restrictions in place. The maximum

allowable case of Rd in (5.17) given the model problem setup is Rd = 3200. This

corresponds to calculating each local Hessian C lk at the finest grid level k = 0 in the

multilevel construction, computing the maximum number of eigenpairs of C lk, that is,

nlk = 400 in Nd in (5.16), and setting Ne = (400, 0, 0, 0) in (4.25). Note that this choice

of Ne has been considered in the numerical study presented in Section 4.12. The out-

put C̃−10 in this instance is the best approximation to C−10 achievable using the Hessian

decomposition algorithm. The results De in (4.39) and M̂e in (5.18) obtained are tabu-

lated in Table 5.2. The eigenvalues of C−10 and C̃−10 are plotted in subfigure 5.3(a). The

first eighty eigenvalues of C̃−10 are plotted using red circles. The remaining eigenvalues

of C̃−10 are close to one and have been omitted. The first eighty eigenvalues of C−10 are

plotted using blue circles. However, these eigenvalues are indistinguishable from the

eigenvalues of C̃−10 in the plot in subfigure 5.3(a). The result M̂e obtained is indicative

of a high computational cost as expected.

Suppose now instead that memory is restricted. A strategy for reducing Rd in

(5.17) is to specify k such that k > 0, that is, compute the local Hessians at a coarser
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Rd k nlk De M̂e

3200 0 400 4.2496e− 12 401

1100 1 200 1.6716e− 1 101

575 2 100 3.4664e− 1 26

444 3 50 5.3251e− 1 7

Table 5.2: The values De and M̂e obtained for four combinations of k and nlk in Nd

where Ne = (400, 0, 0, 0). The memory ratio Rd is also tabulated.
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(a) k = 0, nl
k = 400, De = 4.2496e− 12
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(b) k = 1, nl
k = 200, De = 1.6716e− 1
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(c) k = 2, nl
k = 100, De = 3.4664e− 1
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(d) k = 3, nl
k = 50, De = 5.3251e− 1

Figure 5.3: Comparison plots showing the first eighty eigenvalues of: C−10 (blue circles)
and C̃−10 (red circles). The eigenvalues of C−10 are indistinguishable from the eigenvalues
of C̃−10 in the plot in subfigure 5.3(a). The four combinations of k and nlk presented in
Table 5.2 are highlighted. The results De obtained are presented.
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grid level. We consider the three applicable cases of k for our model problem, namely,

k = 1, 2, 3. The maximum number of eigenpairs is computed in each case. Specifically,

nlk = 200 for k = 1, nlk = 100 for k = 2, and nlk = 50 for k = 3. Again, the particular

case of Ne implemented is Ne = (400, 0, 0, 0). The output C̃−10 in each of the three

cases studied is therefore the best approximation to C−10 achievable on a specific grid

level. The associated values of De, M̂e, and Rd are tabulated in Table 5.2. The key

observations based on the results presented in Table 5.2 are that De increased, that is,

the accuracy of C̃−10 decreased, but Rd and M̂e decreased, as k varied from k = 0 to

k = 3. This shows that specifying k such that k > 0 is a viable strategy for reducing

the memory required and the computational cost. The eigenvalues of C−10 and C̃−10 for

the three combinations of k and nlk considered are plotted in subfigures 5.3(b)-5.3(d).

The plots in subfigures 5.3(b)-5.3(d) relate to the cases of k = 1, k = 2, and k = 3.

The first eighty eigenvalues of C−10 and C̃−10 are plotted in each case using blue and

red circles, respectively.

We now fix k = 1, again with nlk = 200, and tabulate De, M̂e, and Rd in Table 5.3 for

the six cases of Ne previously used in Table 4.6. The output C̃−10 in each of the six cases

studied is the best approximation to C−10 achievable given k and Ne. Suppose now that

nlk is varied depending on the particular case of Ne implemented. Specifically, we use

the minimum nlk required to produce approximations C̃−10 of similar accuracy in terms

of De. The results are tabulated in Table 5.4. The results presented in Tables 5.3 and

5.4 show that using a smaller value of nlk than the maximum allowable case of nlk = 200

is a viable method for reducing the memory required and the computational cost. The

eigenvalues of C−10 and C̃−10 for four combinations of nlk and Ne presented in Table 5.4

are plotted in Figure 5.4. The plots in subfigures 5.4(a)-5.4(d) relate to the cases of

Ne = (6, 12, 24, 48) with nlk = 9, Ne = (0, 8, 16, 32) with nlk = 9, Ne = (0, 0, 16, 32) with

nlk = 7, and Ne = (0, 0, 8, 16) with nlk = 5. The first eighty eigenvalues of C−10 and C̃−10

are plotted in each case using blue and red circles, respectively.

The results presented demonstrate that, for a particular choice of Ne, applying

the Hessian decomposition algorithm produces a less accurate approximation to C−10

than achievable using the multilevel eigenvalue decomposition algorithm outlined in

Figure 4.1. However, constructing an approximation to C−10 using the Hessian de-
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Rd Ne De M̂e

704 (0, 0, 8, 16) 4.5095e− 1 101

708 (0, 0, 16, 32) 2.8444e− 1 101

712 (0, 8, 16, 32) 2.1870e− 1 101

716 (4, 8, 16, 32) 2.0397e− 1 101

720 (5, 10, 20, 40) 1.8334e− 1 101

724 (6, 12, 24, 48) 1.7746e− 1 101

Table 5.3: The values De and M̂e obtained for the six cases of Ne presented in Table 4.6
where k = 1 and nlk = 200 in Nd. The memory ratio Rd is also tabulated.

Rd nlk Ne De M̂e

22 5 (0, 0, 8, 16) 4.5541e− 1 5

33 7 (0, 0, 16, 32) 2.8981e− 1 5

44 9 (0, 8, 16, 32) 2.1894e− 1 6

44 8 (4, 8, 16, 32) 2.0628e− 1 6

48 8 (5, 10, 20, 40) 1.8667e− 1 6

56 9 (6, 12, 24, 48) 1.7860e− 1 6

Table 5.4: The values De and M̂e obtained for the six cases of Ne presented in Table 5.3
where k = 1 and nlk in Nd is specific to the particular case of Ne implemented. The
memory ratio Rd is also tabulated.
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(a) nl
k = 9, Ne = (6, 12, 24, 48), De = 1.7860e− 1
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(b) nl
k = 9, Ne = (0, 8, 16, 32), De = 2.1894e− 1
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(c) nl
k = 7, Ne = (0, 0, 16, 32), De = 2.8981e− 1
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(d) nl
k = 5, Ne = (0, 0, 8, 16), De = 4.5541e− 1

Figure 5.4: Comparison plots showing the first eighty eigenvalues of: C−10 (blue circles)
and C̃−10 (red circles). Four combinations of nlk and Ne presented in Table 5.4 are
highlighted. The results De obtained are presented.
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composition algorithm has been shown to be less computationally expensive in some

cases studied where k > 0, since M̂e < Me in these instances, where Me is defined in

(4.40). The results presented also show that, for a specific choice of Ne, the Hessian

decomposition algorithm requires more memory than the multilevel eigenvalue decom-

position algorithm, that is, Rd > Re, where Re is defined in (4.31). These results also

indicate that computing estimates of a small number of the largest eigenvalues, and

corresponding eigenvectors, of each local Hessian C lk at grid level k (0 < k ≤ kc) is a

viable strategy for reducing the memory required and the computational cost.

5.7 The reduced memory Hessian decomposition algorithm

5.7.1 Outline

The premise of the reduced memory Hessian decomposition algorithm is to reduce the

memory requirements of the Hessian decomposition algorithm outlined in Figure 5.2.

The steps involved in the reduced memory Hessian decomposition algorithm are as

follows:

1. Define Î l (l = 1, . . . , L) in (5.12) by partitioning the observations yi (i = 0, . . . , n)

in (2.2).

2. Calculate each local Hessian C lk in (5.12) at a specified grid level k in the multilevel

setup. This involves restricting the matrices B
1/2
0 and R̂−10 in (5.4) to grid level

k.

3. Compute estimates of a specified number (nlk, say) of the largest eigenvalues, and

corresponding eigenvectors, of C lk using the Lanczos method and store in memory.

4. Construct a limited-memory approximation to (C lk)
−1 of the form defined in

(5.13).

5. Apply the multilevel eigenvalue decomposition algorithm outlined in Figure 4.1 to

the limited-memory approximation to (C lk)
−1 in order to obtain a limited-memory

approximation to C lk.
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6. Construct a limited-memory approximation to Ck analogously to (5.11)-(5.12)

using the limited-memory approximation to C lk.

7. Prolong the limited-memory approximation to Ck to the finest grid at grid level

k = 0 using the grid transfer operator Sk−i(.) in (4.14).

8. Apply the multilevel eigenvalue decomposition algorithm to the prolonged limited-

memory approximation to Ck.

An approximation to C−10 w0 or C
−1/2
0 w0 can be computed on termination of the re-

duced memory Hessian decomposition algorithm using the nk eigenpairs calculated at

each grid level k (k = 0, . . . , kc) in the framework of the multilevel eigenvalue decom-

position algorithm.

5.7.2 Details

The first steps are exactly as before: define Î l (l = 1, . . . , L) in (5.12) by partition-

ing the observations yi (i = 0, . . . , n) in (2.2); calculate each local Hessian C lk in

(5.12); use the Lanczos method to compute estimates of a specified number nlk of the

largest eigenvalues, and corresponding eigenvectors, of C lk. Instead of being used to

construct a limited-memory approximation to C lk, however, here the resulting nlk eigen-

pairs {λlk,i,ulk,i} (i = 1, . . . , nlk) are required in order to construct a limited-memory

approximation to the local inverse Hessian (C lk)
−1. Specifically, we obtain

(C̃ lk)
−1 = Ik +

nl
k∑

i=1

((λlk,i)
−1 − 1)ulk,i(u

l
k,i)

T (l = 1, . . . , L). (5.19)

The multilevel eigenvalue decomposition algorithm outlined in Figure 4.1 is then applied

to each (C̃ lk)
−1 in (5.19) to obtain a limited memory approximation to C̃ lk. This is

denoted by Ĉ lk (l = 1, . . . , L). Note that

Ĉ lk = Q−1k ((C̃ lk)
−1) (l = 1, . . . , L) (5.20)
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where Q−1k (.) is defined in (4.20). A limited-memory approximation to Ck is now

constructed using Ĉ lk in (5.20) as follows:

Ĉk = Ik +

L∑
l=1

(Ĉ lk − Ik). (5.21)

The definition of Ĉk in (5.21) is based on the decomposition of Ck in (5.11)-(5.12).

Finally, the grid transfer operator Sk−i(.) in (4.14) is used to prolong Ĉk to the finest

grid at grid level k = 0 as before, and the multilevel eigenvalue decomposition algorithm

outlined in Figure 4.1 is applied to S0(Ĉk) at this stage.

The parameters nlk (l = 1, . . . , L) can again be represented in vector form using Nd

in (5.16). Note, however, that the additional parameters n̂lk′ (k′ = k, . . . , kc) must be

defined in order to apply the multilevel eigenvalue decomposition algorithm to (C̃ lk)
−1

in (5.19). In what follows, it is useful to represent these parameters in vector form by

setting

N l
k = (n̂lk, n̂

l
k+1, . . . , n̂

l
kc), N̂ l

k =

kc∑
k′=k

n̂lk′ (l = 1, . . . , L) (5.22)

where N̂ l
k is the sum of the entries in N l

k. The idea is to define N l
k in (5.22) such that

kc∑
k′=k

n̂lk′

2k′
<
nlk
2k
. (5.23)

The accuracy of an approximation to C−10 w0 or C
−1/2
0 w0 constructed using the

reduced memory Hessian decomposition algorithm is dependent on the choices of Nd

in (5.16), N l
k in (5.22), and Ne in (4.25). That is, the values nlk in Nd, n̂

l
k in N l

k, and

nk in Ne are key in determining the quality of the approximation obtained. Various

cases of N l
k are considered in the numerical study presented in Section 5.9 for specific

combinations of k, Nd, and Ne.

5.7.3 Summary

The reduced memory Hessian decomposition algorithm described in Section 5.7.2 is

outlined in Figure 5.5. Note that the matrices involved in this procedure are not ex-

plicitly constructed in practice. Specifically, only matrix vector products are computed
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1: [Λ0, U0] = RMHD(C0, k,Nd, N
l
k, Ne)

2: Define Î l (l = 1, . . . , L) in (5.12)
3: for l = 1, . . . , L do
4: Calculate C lk in (5.12)
5: Compute {λlk,i,ulk,i} (i = 1, . . . , nlk) by applying the Lanczos method to C lk

and store in memory
6: Construct (C̃ lk)

−1 in (5.19)
7: Compute Λlk in (5.24) and U lk in (5.25) by applying the multilevel eigenvalue

decomposition algorithm outlined in Figure 4.1 to (C̃ lk)
−1

8: end for
9: Construct Ĉk in (5.21) using Ĉ lk in (5.20) based on Λlk and U lk

10: Prolong Ĉk to grid level k = 0 using Sk−i(.) in (4.14)
11: Compute Λ0 in (4.29) and U0 in (4.30) by applying the multilevel eigenvalue

decomposition algorithm to S0(Ĉk)

Figure 5.5: Outline of the reduced memory Hessian decomposition algorithm.

as before. The inputs to the reduced memory Hessian decomposition algorithm are

C0 in the form of C0w0, where w0 ∈ Rm0 denotes any given vector defined at grid

level k = 0, a specified grid level k, Nd in (5.16), N l
k in (5.22), and Ne in (4.25). The

outputs are the vectors Λ0 in (4.29) and U0 in (4.30) as before. An approximation to

C−10 w0 or C
−1/2
0 w0 can be computed on termination of the reduced memory Hessian

decomposition algorithm by means of (4.23) or (4.24) using Λ0 and U0.

The two vectors generated at step 7 of the reduced memory Hessian decomposition

algorithm are defined as follows:

Λlk = [(λ1kc)
l, . . . , (λ

n̂kc
kc

)l, (λ1kc−1)
l, . . . , (λ

n̂kc−1

kc−1 )l, . . . , (λ1k)
l, . . . , (λn̂k

k )l], (5.24)

U lk = [(u1
kc)

l, . . . , (u
n̂kc
kc

)l, (u1
kc−1)

l, . . . , (u
n̂kc−1

kc−1 )l, . . . , (u1
k)
l, . . . , (un̂k

k )l]. (5.25)

The entries of Λlk in (5.24) are the eigenvalue estimates (λik)
l (i = 1, . . . , n̂k) of Q̃k((C̃

l
k)
−1),

where Q̃k(.) is defined in (4.17), computed at grid levels k′ = k, . . . , kc. The corre-

sponding eigenvectors (uik)
l (i = 1, . . . , n̂k) are contained in U lk in (5.25). The vector

Λlk contains a total of N̂ l
k entries, where N̂ l

k is defined in (5.22). The total number of

entries in U lk is therefore

kc∑
k′=k

n̂lk′mk′ =

(
kc∑
k′=k

n̂lk′

2k′

)
m+ N̂ l

k
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since mk = m/2k + 1.

Finally, note that the eigenpairs {λlk,i,ulk,i} (i = 1, . . . , nlk) computed at step 5 of

the reduced memory Hessian decomposition algorithm can be discarded following step

7. The memory ratio for the multilevel eigenvalue decomposition algorithm outlined in

Figure 4.1 is Re in (4.31). Given that the finest grid at grid level k = 0 is composed of

m0 = m + 1 grid points, an estimate of the ratio of memory required for the reduced

memory Hessian decomposition algorithm in terms of m is obtained by calculating

R̂d = Nd +Re (5.26)

where

Nd =

L∑
l=1

kc∑
k′=k

n̂lk′

2k′
.

5.8 Approximating the inverse Hessian using the reduced

memory Hessian decomposition algorithm

The reduced memory Hessian decomposition algorithm outlined in Figure 5.5 is pro-

posed as a suitable method for constructing a limited-memory approximation to the

inverse (and inverse square root) of the Hessian C in (2.50). The numerical study

presented in Section 5.9 involves approximating the inverse Hessian for the specific

model problem outlined in Section 4.6. This numerical study focuses on comparing

various approximations to the inverse Hessian constructed using the reduced memory

Hessian decomposition algorithm. The notation introduced in Section 5.4 is employed.

Let C̃−10 ∈ R401×401 denote an approximation to C−10 constructed using the reduced

memory Hessian decomposition algorithm here. The additional implementation details

discussed in Section 5.5 are also relevant to the reduced memory Hessian decomposition

algorithm.

5.9 Comparing approximations to the inverse Hessian

The numerical study presented here focuses on the choice of N l
k in (5.22) in the frame-

work of the reduced memory Hessian decomposition algorithm outlined in Figure 5.5.
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R̂d N l
k De M̂e

31 (0, 0, 0, 8) 5.7919e− 1 6

38 (0, 0, 8, 0) 3.3861e− 1 6

52 (0, 8, 0, 0) 1.8164e− 1 6

68 (0, 0, 0, 50) 5.7844e− 1 6

199 (0, 0, 100, 0) 3.3436e− 1 6

724 (0, 200, 0, 0) 1.7937e− 1 6

Table 5.5: The values De and M̂e obtained for six cases of N l
k where k = 1, nlk = 9 in

Nd, and Ne = (6, 12, 24, 48). The memory ratio R̂d is also tabulated.

Specifically, various cases of C̃−10 are considered. Note that these cases are symmetric

positive definite. The accuracy of C̃−10 is evaluated in each case using De in (4.39),

with M̂e in (5.18) also being calculated to provide an indication of computational cost.

We first suppose that there are no memory restrictions in place. The maximum

allowable memory ratio R̂d in (5.26) given the model problem setup is R̂d = 3200.

The combination of k = 0, nlk = 400 in Nd in (5.16), and Ne = (400, 0, 0, 0) in (4.25)

used in the numerical study presented in Section 5.6 is considered. The case of N l
k in

(5.22) implemented is N l
k = (400, 0, 0, 0). The output C̃−10 in this instance is the best

approximation to C−10 achievable using the reduced memory Hessian decomposition

algorithm. With these choices of nlk, Ne, and N l
k, De = 4.3068e − 12 and M̂e = 401,

respectively. The eigenvalues of C−10 and C̃−10 are plotted in Figure 5.6. The first

eighty eigenvalues of C̃−10 are plotted using red circles. The remaining eigenvalues of

C̃−10 are close to one and have been omitted. The first eighty eigenvalues of C−10 are

plotted using blue circles. However, these eigenvalues are indistinguishable from the

eigenvalues of C̃−10 in the plot in Figure 5.6. The result M̂e obtained is indicative of a

high computational cost as expected.

Suppose now instead that k = 1. A particular combination of nlk and Ne previously

used in Table 5.4 is considered. Specifically, we set nlk = 9 and Ne = (6, 12, 24, 48).

The associated values of De, M̂e, and R̂d obtained for six cases of N l
k are tabulated

in Table 5.5. Note that the cases of N l
k presented in Table 5.5 involve only one grid

at grid level k (0 < k ≤ 3). The maximum number of eigenpairs is computed in the
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Figure 5.6: Comparison plot showing the first eighty eigenvalues of C̃−10 (red circles).
The first eighty eigenvalues of C−10 plotted using blue circles are indistinguishable from
the eigenvalues of C̃−10 . The combination implemented is k = 0 where nlk = 400,
N l
k = (400, 0, 0, 0), and Ne = (400, 0, 0, 0). The associated measures of accuracy and

computational cost are De = 4.3068e− 12 and M̂e = 401, respectively.
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(a) N l
k = (0, 200, 0, 0), De = 1.7937e− 1
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(b) N l
k = (0, 8, 0, 0), De = 1.8164e− 1
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(c) N l
k = (0, 0, 8, 0), De = 3.3861e− 1
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(d) N l
k = (0, 0, 0, 8), De = 5.7919e− 1

Figure 5.7: Comparison plots showing the first eighty eigenvalues of: C−10 (blue circles)
and C̃−10 (red circles). Four cases of N l

k presented in Table 5.5 are highlighted. The
results De obtained are presented.
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cases of N l
k = (0, 200, 0, 0), N l

k = (0, 0, 100, 0), and N l
k = (0, 0, 0, 50). The output C̃−10

in the case of N l
k = (0, 200, 0, 0) is the best approximation to C−10 achievable given

k, nlk, and Ne. The first observation based on the results presented in Table 5.5 is

that De increased, that is, the accuracy of C̃−10 decreased, but R̂d decreased, as the

grid involved in N l
k varied from the grid at grid level k = 1, to the grid at grid level

k = 3. An additional observation is that using smaller values of n̂lk than the maximum

allowable cases of n̂lk = 200 for k = 1, n̂lk = 100 for k = 2, and n̂lk = 50 for k = 3 resulted

in approximations C̃−10 of similar accuracies in terms of De. The results presented in

Table 5.5 demonstrate that using a smaller value of n̂k than the maximum allowable case

on each grid level k is a viable strategy for reducing the memory required. However, this

approach has been shown to have no effect on the computational cost, as evidenced

by the values M̂e tabulated. The computational cost incurred by implementing the

reduced memory Hessian decomposition algorithm, measured in terms of M̂e, results

from computing the nlk eigenpair estimates of each local Hessian, as in the case of the

Hessian decomposition algorithm outlined in Figure 5.2. The figures M̂e tabulated in

Table 5.5 are the same since nlk = 9 in all cases studied. The eigenvalues of C−10 and

C̃−10 for four cases of N l
k presented in Table 5.5 are plotted in Figure 5.7. The plots

in subfigures 5.7(a)-5.7(d) relate to the cases of N l
k = (0, 200, 0, 0), N l

k = (0, 8, 0, 0),

N l
k = (0, 0, 8, 0), and N l

k = (0, 0, 0, 8). The first eighty eigenvalues of C−10 and C̃−10 are

plotted in each case using blue and red circles, respectively. The eigenvalues of C̃−10 in

the plots in subfigures 5.7(a) and 5.7(b) have similar distributions. This is confirmed

by the results De attained.

The results presented demonstrate that, for a particular combination of k, Nd,

and Ne, applying the reduced memory Hessian decomposition algorithm produces a

less accurate approximation to C−10 than achievable using the Hessian decomposition

algorithm. However, constructing an approximation to C−10 using the reduced memory

Hessian decomposition algorithm has been shown to be as computationally expensive

in all cases studied, as substantiated by the results M̂e obtained. The results presented

also show that, if N l
k is chosen carefully, then R̂d < Rd, where Rd is defined in (5.17).

That is, in this case, the reduced memory Hessian decomposition algorithm requires

less memory than the Hessian decomposition algorithm.
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5.10 Conclusion

This chapter introduced two practical algorithms for constructing a limited-memory

approximation to the inverse (and inverse square root) of the Hessian C in (2.50). A

modified version of the multilevel eigenvalue decomposition algorithm outlined in Fig-

ure 4.1 that involves generating a representation of the matrix A at the next finest

grid level in the multilevel construction was considered in Section 5.1. A novel de-

composition of the Hessian as the sum of a set of local Hessians was then derived in

Section 5.2. The Hessian decomposition algorithm outlined in Figure 5.2 was the first

practical algorithm introduced in this chapter. The premise was to reduce the compu-

tational cost of constructing an approximation to the inverse Hessian, or inverse square

root Hessian, compared to applying the multilevel eigenvalue decomposition algorithm.

The reduced memory Hessian decomposition algorithm outlined in Figure 5.5 was the

second practical algorithm introduced in this chapter. The premise was to reduce the

memory requirements of the Hessian decomposition algorithm.

The numerical studies presented in Sections 5.1, 5.6, and 5.9 involved approximat-

ing the inverse Hessian for the specific model problem outlined in Section 4.6. The

approaches adopted included evaluating the accuracy of approximations to the inverse

Hessian by calculating De in (4.39). The total number of Hessian vector products

computed on the finest grid at grid level k = 0 was evaluated in the numerical study

presented in Section 5.1 by calculating Me in (4.40). An estimate of the number of

Hessian vector products computed at the finest grid level k = 0 was obtained in the

numerical studies presented in Sections 5.6 and 5.9 by calculating M̂e in (5.18). The

results M̂e and Me attained in these cases provided indications of computational cost.

The numerical study presented in Section 5.1 involved approximating the inverse

Hessian using a generalised version of the multilevel eigenvalue decomposition algo-

rithm. The results presented demonstrated that applying the proposed modified version

of the multilevel eigenvalue decomposition algorithm produced a less accurate approxi-

mation to the inverse Hessian than could be achieved using the standard version of this

algorithm. However, constructing an approximation to the inverse Hessian using the

proposed modified version of the multilevel eigenvalue decomposition algorithm was
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shown to be less computationally expensive in all cases studied, as substantiated by

the results Me obtained. This indicated that applying the proposed modified version

of the multilevel eigenvalue decomposition algorithm was a viable strategy for reducing

the computational cost.

The numerical study presented in Section 5.6 focused on comparing various approx-

imations to the inverse Hessian constructed using the Hessian decomposition algorithm.

The results presented demonstrated that, for a particular choice of Ne in (4.25), ap-

plying the Hessian decomposition algorithm produced a less accurate approximation

to the inverse Hessian than could be achieved using the multilevel eigenvalue decom-

position algorithm. However, constructing an approximation to the inverse Hessian

using the Hessian decomposition algorithm was shown to be less computationally ex-

pensive in some cases studied where k > 0, since M̂e < Me in these instances. The

results presented in Section 5.6 also showed that, for a specific choice of Ne, the Hessian

decomposition algorithm required more memory than the multilevel eigenvalue decom-

position algorithm, that is, Rd > Re, where Re and Rd are defined in (4.31) and (5.17),

respectively. These results also indicated that computing estimates of a small number

of the largest eigenvalues, and corresponding eigenvectors, of each local Hessian at grid

level k (0 < k ≤ kc) was a viable strategy for reducing the memory required and the

computational cost, respectively.

The numerical study presented in Section 5.9 focused on comparing various ap-

proximations to the inverse Hessian constructed using the reduced memory Hessian

decomposition algorithm. The results presented demonstrated that, for a particular

combination of k, Nd in (5.16), and Ne, applying the reduced memory Hessian decom-

position algorithm produced a less accurate approximation to the inverse Hessian than

could be achieved using the Hessian decomposition algorithm. However, constructing

an approximation to the inverse Hessian using the reduced memory Hessian decom-

position algorithm was shown to be as computationally expensive in all cases studied,

as substantiated by the results M̂e obtained. The results presented in Section 5.9 also

showed that, when N l
k in (5.22) was chosen carefully, then R̂d < Rd, where R̂d is defined

in (5.26). That is, in this case, the reduced memory Hessian decomposition algorithm

required less memory than the Hessian decomposition algorithm.
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In the next chapter, the performances of the multilevel eigenvalue decomposition,

Hessian decomposition, and reduced memory Hessian decomposition algorithms will be

compared in the context of preconditioning the system of linear equations in the inner

step of a Gauss-Newton procedure within the framework of incremental 4D-Var.
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Chapter 6

Preconditioning in a

Gauss-Newton procedure using

approximations to the inverse

Hessian

In this chapter, the effectiveness of approximations to the inverse Hessian generated

using the multilevel eigenvalue decomposition, Hessian decomposition, and reduced

memory Hessian decomposition algorithms outlined in Figures 4.1, 5.2, and 5.5, re-

spectively, will be compared in a practical application, namely, as preconditioners in a

preconditioned conjugate gradient (PCG) method (see Section 3.5) within an incremen-

tal 4D-Var procedure (see Section 2.6). As outlined in Section 2.5, the Gauss-Newton

method can be applied in the framework of 4D-Var. Assuming that the control variable

transform discussed in Section 2.9 is implemented in incremental 4D-Var, then applying

the Gauss-Newton method involves solving the system of linear equations in (2.49) in

an inner loop. The premise here is therefore to solve

Cδz
(j)
0 = g (6.1)
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where C is the Hessian defined in (2.50) and

g = zb0 − z
(j)
0 +B1/2ĤT R̂−1d̂. (6.2)

An appropriate iterative method is typically used to solve (6.1) in practice. The con-

jugate gradient (CG) method (see Section 3.4) is applicable for solving (6.1) since C is

symmetric positive definite. It is usually necessary to precondition (6.1) to accelerate

the convergence of the iterative scheme, as discussed in Section 3.5. An approximation

to C−1, if inexpensive to compute, can be used to precondition (6.1).

The application considered in this chapter focuses on constructing approximations

C̃−1 ∈ RN×N to C−1 using the multilevel eigenvalue decomposition, Hessian decompo-

sition, and reduced memory Hessian decomposition algorithms outlined in Figures 4.1,

5.2, and 5.5, respectively. Note that the cases of C̃−1 considered are symmetric positive

definite. The procedure employed involves constructing C̃−1 once per Newton step and

solving the resulting preconditioned system of linear equations by applying the precon-

ditioned conjugate gradient (PCG) method. This differs from the approach considered

in [31] where the multigrid method used to precondition the system of linear equations

in (6.1) was applied on each preconditioned conjugate gradient iteration. The model

problem outlined in Section 4.6 is implemented in the numerical studies presented in

Sections 6.5, 6.6, and 6.7. A further three model problems are also implemented in

the numerical study presented in Section 6.7: these are described in Section 6.1. The

implementation details pertaining to the four model problems studied in this chapter

are discussed in Section 6.2. The numerical measures used to evaluate preconditioners

constructed using the multilevel eigenvalue decomposition, Hessian decomposition, and

reduced memory Hessian decomposition algorithms are defined in Section 6.3. The

choices of preconditioners applied in the numerical studies presented in Sections 6.5,

6.6, and 6.7 are discussed in Section 6.4. The effect of introducing preconditioning

at different stages of the Gauss-Newton method is considered in Section 6.5. The

numerical studies presented in Sections 6.6 and 6.7 focus on comparing the various pre-

conditioners constructed using the multilevel eigenvalue decomposition algorithm and

the Hessian decomposition, or reduced memory Hessian decomposition, algorithm.
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Figure 6.1: Flow evolution of ϕ(x, t) satisfying (4.32)-(4.34) for initial condition ϕ2(x, 0)
in (6.3).

6.1 Additional model problems

As well as the model problem outlined in Section 4.6, a further three model problems are

also used in the numerical studies presented in this chapter. These additional model

problems result from varying the initial condition (ϕ1(x, 0) in (4.35)), or the sensor

configuration scheme (S1, discussed in Section 4.6), or both.

The alternative initial condition for (4.32)-(4.34) is defined as follows:

ϕ2(x, 0) =


0.5 [1− cos (8πx)] , 0 < x ≤ 0.4

0.5 [cos (4π (x− 1))− 1] , 0.6 ≤ x < 1

0 otherwise

. (6.3)

Note that the initial conditions ϕ1(x, 0) in (4.35) and ϕ2(x, 0) in (6.3) differ in terms of

the magnitude of non-linear effects. The flow evolution of ϕ(x, t) satisfying (4.32)-(4.34)

where ϕ(x, 0) = ϕ2(x, 0) is plotted in Figure 6.1.

The alternative sensor configuration scheme S2 comprises of one moving sensor that

traverses the spatial domain Ω = [0, 1] twice during the observation time. This sensor
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Model problem Sensor scheme Initial condition

MP1 S1 ϕ1(x, 0)

MP2 S1 ϕ2(x, 0)

MP3 S2 ϕ1(x, 0)

MP4 S2 ϕ2(x, 0)

Table 6.1: Summary of the four model problems studied.

configuration scheme is included to imitate satellite observations.

The four model problems studied in this chapter are summarised in Table 6.1. Note

that model problem MP1 is used in the numerical studies presented in Sections 6.5,

6.6, and 6.7. However, the three model problems MP2, MP3, and MP4 are only used

in the numerical study presented in Section 6.7.

6.2 Implementation details

The implementation details discussed in Section 4.7 apply to all four model problems

in Table 6.1. Incremental 4D-Var (see Section 2.6) is implemented in each case. Specif-

ically, the 4D-Var problem presented in Section 2.1 is solved twenty-five times with a

perturbed background xb0 and perturbed observations yi (i = 0, . . . , n); see [44, §5.2]

for details. The Gauss-Newton method is used to solve the 4D-Var problem as in

Section 2.5, and twenty-five outer loop iterations are performed.

The preconditioned conjugate gradient (PCG) method outlined in Section 3.5 is

used to solve the inner system of linear equations (with the Hessian as coefficient

matrix) within the framework of the Gauss-Newton method. The tolerance employed

in the PCG stopping criterion is tc = 10−2. The number of PCG iterations permitted

is restricted, as this is usually the case in NWP applications. Two cases are considered

in this instance, namely, Nc = 5 and Nc = 10, respectively, where Nc denotes the

maximum allowable number of PCG iterations per Gauss-Newton step.

The notation introduced in Section 5.4 is employed for the four model problems sum-

marised in Table 6.1. Let C̃−10 ∈ R401×401 denote an approximation to C−10 constructed

using the multilevel eigenvalue decomposition, Hessian decomposition, or reduced mem-
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ory Hessian decomposition algorithm outlined in Figures 4.1, 5.2, and 5.5 in each case.

The Hessian decomposition and reduced memory Hessian decomposition algorithms are

applied in the numerical study presented in Section 6.7. The implementation details

discussed in Section 5.5 apply to these algorithms in the cases of model problems MP1

and MP2. However, the alternative sensor configuration scheme S2 is implemented in

the cases of model problems MP3 and MP4. In these instances, the spatial domain

Ω = [0, 1] is divided into six subdomains Ωl (l = 1, . . . , 6), so L = 6. Specifically,

Ω1 = [0, 0.2), Ω2 = [0.2, 0.4), Ω3 = [0.4, 0.5), Ω4 = [0.5, 0.6), Ω5 = [0.6, 0.8), and

Ω6 = [0.8, 1] in this case. The observational data generated is partitioned using the

approach described in Section 5.2 in order to define Î l and decompose Ck at grid level

k analogously to Ck in (5.11)-(5.12). Note that the observations associated with the

subdomain Ωl are captured by C lk in (5.12).

6.3 Evaluating preconditioner performance

The performance of preconditioners will be evaluated by calculating two important

convergence measures. The first convergence measure employed is the deviation norm.

Specifically,

εd = ‖z(j)0 − ẑ0‖2 (j = 1, . . . , 25) (6.4)

where z
(j)
0 is the iterate computed at iteration number j of the Gauss-Newton method,

ẑ0 denotes the final estimate of z0, and ‖.‖2 represents the `2-norm. The second con-

vergence measure used is the gradient norm. That is,

εg = ‖g‖2 = ‖zb0 − z
(j)
0 +B1/2ĤT R̂−1d̂‖2 (j = 1, . . . , 25) (6.5)

recalling the definition of g in (6.2).

Computational cost is evaluated in the numerical studies which follow using two

units. The first unit, Ng, denotes the number of cost function and gradient evaluations

conducted on the finest grid at grid level k = 0 at iteration number j of the Gauss-

Newton method. The second unit, Nv, denotes the number of Hessian vector products

computed on the finest grid at grid level k = 0 at iteration number j of the Gauss-
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Newton method. The Hessian vector products counted in Nv are those associated with

constructing C̃−10 and applying the preconditioned conjugate gradient (PCG) method.

The total number of Hessian vector products computed at the finest grid level k = 0

in order to construct C̃−10 using the multilevel eigenvalue decomposition algorithm is

evaluated by calculating Me in (4.40). An estimate of the number of Hessian vector

products computed at the finest grid level k = 0 to construct C̃−10 using the Hessian

decomposition, or reduced memory Hessian decomposition, algorithm is obtained by

calculating M̂e in (5.18). Note that applying the preconditioned conjugate gradient

(PCG) method involves computing Nc Hessian vector products at the finest grid level

k = 0, where Nc denotes the maximum allowable number of iterations (which is either

Nc = 5 or Nc = 10 here).

Ensemble data generated for the model problems outlined in Table 6.1 is presented

in Sections 6.5, 6.6, and 6.7. Specifically, the ensemble averages of εd in (6.4), εg in

(6.5), Ng, and Nv are calculated; see [44, §5.2] for details. Let εid, ε
i
g, N

i
g, and N i

v

(i = 1, . . . , 25) denote εd, εg, Ng, and Nv, respectively, computed at minimisation

number i of the incremental 4D-Var procedure implemented. The ensemble averages

of εd, εg, Ng, and Nv are calculated as follows:

ε̂d =
1

25

25∑
i=1

εid, ε̂g =
1

25

25∑
i=1

εig, (6.6)

N̂g =
1

25

25∑
i=1

N i
g, N̂v =

1

25

25∑
i=1

N i
v. (6.7)

Note that ensemble average data generated for model problem MP1 summarised in

Table 6.1 is presented in Sections 6.5, 6.6, and 6.7. Ensemble average data generated

for the three additional model problems MP2, MP3, and MP4 is also presented in

Section 6.7.

6.4 Choices of preconditioners

Various preconditioners C̃−10 are applied in the numerical studies presented in this chap-

ter. Four cases of C̃−10 are constructed using the multilevel eigenvalue decomposition
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Preconditioner Re Ne

P1A 4 (0, 0, 8, 16)

P1B 8 (0, 0, 16, 32)

P1C 12 (0, 8, 16, 32)

P1D 16 (4, 8, 16, 32)

Table 6.2: Details of the four preconditioners generated using the multilevel eigenvalue
decomposition algorithm outlined in Figure 4.1.

Preconditioner Algorithm nlk Ne N l
k

P2A HD 5 (0, 0, 8, 16) -

P2B HD 7 (0, 0, 16, 32) -

P2C HD 9 (0, 8, 16, 32) -

P2D HD 9 (6, 12, 24, 48) -

P3A RMHD 9 (6, 12, 24, 48) (0, 0, 8, 0)

P3B RMHD 9 (6, 12, 24, 48) (0, 8, 0, 0)

Table 6.3: Details of the preconditioners generated using the Hessian decomposition
(‘HD’) and reduced memory Hessian decomposition (‘RMHD’) algorithms outlined in
Figures 5.2 and 5.5, respectively.

algorithm outlined in Figure 4.1, namely, those corresponding to four combinations

of Re in (4.31) and Ne in (4.25) presented in Table 4.6. These parameters are sum-

marised in Table 6.2. Preconditioner P1B is used in the numerical study presented in

Section 6.5, while all four preconditioners P1A, P1B, P1C, and P1D are used in the

numerical study presented in Section 6.6.

A further four cases of C̃−10 are constructed using the Hessian decomposition algo-

rithm outlined in Figure 5.2, using four combinations of nlk in Nd and Ne presented in

Table 5.4 (note that k = 1 in all cases). Also, L = 7 in model problems MP1 and MP2,

but L = 6 for MP3 and MP4, respectively. The parameters used are summarised in

Table 6.3 (Algorithm ‘HD’). The corresponding memory ratios Rd in (5.17) for model

problems MP1/MP2 and MP3/MP4 are given in Table 6.4. The four preconditioners

P2A, P2B, P2C, and P2D are used in the numerical study presented in Section 6.7.

An additional two cases of C̃−10 are constructed using the reduced memory Hessian
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Model problem

MP1/MP2 MP3/MP4

Preconditioner Algorithm Rd R̂d Rd R̂d

P2A HD 22 - 19 -

P2B HD 33 - 29 -

P2C HD 44 - 39 -

P2D HD 56 - 51 -

P3A RMHD - 38 - 36

P3B RMHD - 52 - 48

Table 6.4: The memory ratios Rd and R̂d corresponding to the preconditioners pre-
sented in Table 6.3 for the four model problems summarised in Table 6.1.

decomposition algorithm outlined in Figure 5.5, using two instances of N l
k from Ta-

ble 5.5. Note that k = 1, nlk = 9 in Nd in (5.16), and Ne = (6, 12, 24, 48) in (4.25)

in these cases. The two preconditioners generated using the reduced memory Hessian

decomposition algorithm are summarised in Table 6.3 (Algorithm ‘RMHD’). The corre-

sponding memory ratios R̂d in (5.26) for model problems MP1/MP2 and MP3/MP4 are

included in Table 6.4. The two preconditioners P3A and P3B are used in the numerical

study presented in Section 6.7.

6.5 Introducing preconditioning at different stages of the

Gauss-Newton method

In this section, the effect of introducing preconditioning at different stages of the

Gauss-Newton method is considered. Specifically, preconditioning is introduced at

various outer iteration numbers of the Gauss-Newton method, applied to model prob-

lem MP1. Five preconditioned conjugate gradient (PCG) iterations are used at each

Gauss-Newton outer iteration, that is, Nc = 5. The preconditioner applied is P1B (see

Table 6.2).

The ensemble average values ε̂d, ε̂g, N̂g, and N̂v in (6.6)-(6.7) calculated with pre-

conditioning introduced at outer iteration numbers j = 1, 2, 3, 6 of the Gauss-Newton
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method are plotted in the convergence diagram in Figure 6.2. Note that ε̂d and ε̂g

are plotted on a log10-scale. The plots in subfigures 6.2(a) and 6.2(b) show log10 ε̂d

plotted against N̂g and N̂v, respectively. Subfigures 6.2(c) and 6.2(d) show analogous

plots for log10 ε̂g. The cases of preconditioning introduced at outer iteration num-

bers j = 1, 2, 3, 6 of the Gauss-Newton method are represented in the plots in subfig-

ures 6.2(a)-6.2(d) using solid red, blue, green, and pink lines. The first observation

based on the plots in subfigures 6.2(a)-6.2(d) is that ε̂d decreased as N̂g and N̂v in-

creased in all instances, excluding in the case of preconditioning introduced at outer

iteration number j = 1 of the Gauss-Newton method. Specifically, introducing pre-

conditioning at outer iteration number j = 1 of the Gauss-Newton method resulted in

an initial increase in ε̂d. However, ε̂d decreased from outer iteration number j = 2 in

this instance. A further observation is that ε̂g decreased as N̂g and N̂v increased in all

instances. The key observation is that ε̂d and ε̂g decreased faster initially as the outer

iteration number of the Gauss-Newton method with preconditioning introduced varied

from j = 1 to j = 6.

In Table 6.5, the ensemble average values ε̂d, ε̂g, N̂g, and N̂v calculated at outer

iteration number j = 25 of the Gauss-Newton method with preconditioning introduced

at outer iteration numbers j = 1, 2, 3, 6 are tabulated. Note that log10 ε̂d and log10 ε̂g

are presented. The key observation based on the results tabulated in Table 6.5 is that

the final value of N̂v decreased as the outer iteration number of the Gauss-Newton

method with preconditioning introduced varied from j = 1 to j = 6. However, the final

results N̂g obtained in the cases of preconditioning introduced at outer iteration num-

bers j = 2, 3, 6 of the Gauss-Newton method are the same. An additional observation is

that introducing preconditioning at outer iteration number j = 2 of the Gauss-Newton

method resulted in the smallest final values of ε̂d and ε̂g, but a larger final value of

N̂v than attained with preconditioning introduced at outer iteration numbers j = 3, 6.

The computational cost, measured in terms of N̂v, associated with introducing precon-

ditioning at outer iteration number j = 2 of the Gauss-Newton method outweighed

the small gain in accuracy achieved compared to introducing preconditioning at outer

iteration number j = 6.

The results presented demonstrate that introducing preconditioning at outer iter-
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Figure 6.2: Convergence diagram for model problem MP1 where Nc = 5. The ensemble
average values ε̂d, ε̂g, N̂g, and N̂v are plotted. Note that ε̂d and ε̂g are plotted on a
log10-scale. Preconditioner P1B introduced at outer iteration number j of the Gauss-
Newton method: j = 1 (solid red line), j = 2 (solid blue line), j = 3 (solid green line),
and j = 6 (solid pink line).

Preconditioning introduced log10 ε̂d log10 ε̂g N̂g N̂v

j = 1 -3.5151 -1.0585 27 3014

j = 2 -3.6360 -1.3136 26 2518

j = 3 -3.4829 -1.1311 26 2446

j = 6 -3.5262 -1.2644 26 2035

Table 6.5: The ensemble average values ε̂d, ε̂g, N̂g, and N̂v calculated at outer iteration
number j = 25 of the Gauss-Newton method with preconditioning introduced at outer
iteration numbers j = 1, 2, 3, 6. Note that log10 ε̂d and log10 ε̂g are presented. The
model problem is MP1 where Nc = 5. The preconditioner applied is P1B.
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ation number j = 1 of the Gauss-Newton method gives an intermediate solution that

initially diverges. However, these results also show that no initial divergence in the in-

termediate solution occurs with preconditioning introduced at outer iteration numbers

j = 2, 3, 6, suggesting a possible improvement in the stability of the method. This is the

case since the Burgers’ equation implemented in the four model problems summarised

in Table 6.1 includes strongly non-linear constraints; see, for example, [88]. The results

presented indicate that performing a number of unpreconditioned Gauss-Newton outer

iterations initially, before introducing preconditioning, is a viable stratgy for reducing

N̂v, namely, the computational cost. As introducing preconditioning at outer iteration

number j = 6 of the Gauss-Newton method resulted in the smallest final value of N̂v,

this approach is adopted in the subsequent numerical studies.

6.6 Comparing preconditioners constructed using the

multilevel eigenvalue decomposition algorithm

In this numerical study, various preconditioners C̃−10 constructed using the multilevel

eigenvalue decomposition algorithm outlined in Figure 4.1 are applied to model problem

MP1. Specifically, the four preconditioners P1A, P1B, P1C, and P1D are applied (see

Table 6.2). Five preconditioned conjugate gradient (PCG) iterations are used at each

Gauss-Newton outer iteration, that is, Nc = 5. Preconditioning is introduced at outer

iteration number j = 6 of the Gauss-Newton method, as discussed in Section 6.5.

The ensemble average values ε̂d, ε̂g, N̂g, and N̂v in (6.6)-(6.7) calculated for the

four preconditioners considered are plotted in the convergence diagram in Figure 6.3.

The ensemble average data generated in the unpreconditioned case denoted by ‘NP’

is also plotted in the convergence diagram in Figure 6.3. Note that ε̂d and ε̂g are

plotted on a log10-scale. The plots in subfigures 6.3(a) and 6.3(b) show log10 ε̂d plotted

against N̂g and N̂v, respectively. Subfigures 6.3(c) and 6.3(d) show equivalent plots for

log10 ε̂g. The preconditioners P1A, P1B, P1C, and P1D are represented in the plots in

subfigures 6.3(a)-6.3(d) using solid red, blue, green, and pink lines, respectively. The

unpreconditioned case is represented in the plots in subfigures 6.3(a)-6.3(d) using a solid

black line. The key observation based on the plots in subfigures 6.3(a)-6.3(d) is that
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Preconditioner log10 ε̂d log10 ε̂g N̂g N̂v

NP -1.1178 0.9963 25 125

P1A -2.1845 0.7290 26 1375

P1B -3.5262 -1.2644 26 2035

P1C -3.8476 -4.9869 31 4950

P1D -3.8476 -5.9865 37 7239

Table 6.6: The ensemble average values ε̂d, ε̂g, N̂g, and N̂v calculated at outer iteration
number j = 25 of the Gauss-Newton method with the preconditioners P1A, P1B, P1C,
and P1D, respectively, introduced at outer iteration number j = 6. Note that log10 ε̂d
and log10 ε̂g are presented. The results obtained in the unpreconditioned case denoted
by ‘NP’ are also tabulated. The model problem is MP1 where Nc = 5.

ε̂d and ε̂g decreased faster, in terms of computational costs, in the four preconditioned

cases studied than in the unpreconditioned case. Specifically, ε̂d and ε̂g decreased as

the preconditioner applied varied from P1A to P1D.

The ensemble average values ε̂d, ε̂g, N̂g, and N̂v calculated at outer iteration number

j = 25 of the Gauss-Newton method for the four preconditioners considered and the

unpreconditioned case denoted by ‘NP’ are tabulated in Table 6.6. Note that log10 ε̂d

and log10 ε̂g are presented. The key observation based on the results tabulated in

Table 6.6 is that the final values of ε̂d and ε̂g obtained in the four preconditioned

cases studied are smaller than attained in the unpreconditioned case. An additional

observation is that the final values of ε̂d and ε̂g decreased in almost all instances as the

preconditioner applied varied from P1A to P1D.

The results presented demonstrate that, when the memory allocated to the multi-

level eigenvalue decomposition algorithm, namely, Re in (4.31), is fixed, then applying

the preconditioners generated using this algorithm increases the accuracy of the solu-

tion obtained by means of the Gauss-Newton method compared to the unpreconditioned

case. These results also show that the performance of the preconditioners generated by

applying the multilevel eigenvalue decomposition algorithm depends primarily on Re.

However, constructing the preconditioners using the multilevel eigenvalue decomposi-

tion algorithm has been shown to be computationally expensive in all cases studied, as

substantiated by the results N̂v obtained.
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Figure 6.3: Convergence diagram for model problem MP1 where Nc = 5. The ensemble
average values ε̂d, ε̂g, N̂g, and N̂v are plotted. Note that ε̂d and ε̂g are plotted on a
log10-scale. Preconditioners P1A (solid red line), P1B (solid blue line), P1C (solid
green line), and P1D (solid pink line) introduced at outer iteration number j = 6 of
the Gauss-Newton method. The solid black line represents the unpreconditioned case
denoted by ‘NP’.
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6.7 Comparing preconditioners constructed using the

Hessian decomposition and reduced memory Hessian

decomposition algorithms

Now various preconditioners C̃−10 constructed using the Hessian decomposition and

reduced memory Hessian decomposition algorithms outlined in Figures 5.2 and 5.5,

respectively, are applied to the four model problems studied. Specifically, the six pre-

conditioners P2A, P2B, P2C, P2D, P3A, and P3B are applied (see Table 6.3). Five

or ten preconditioned conjugate gradient (PCG) iterations are used at each Gauss-

Newton outer iteration, that is, Nc = 5 or Nc = 10. Preconditioning is introduced at

outer iteration number j = 6 of the Gauss-Newton method as before.

The ensemble average values ε̂d, ε̂g, N̂g, and N̂v in (6.6)-(6.7) calculated for the

six preconditioners considered are plotted in the convergence diagrams in Figures 6.4-

6.11. The ensemble average data generated in the unpreconditioned cases denoted by

‘NP’ are also plotted in the convergence diagrams in Figures 6.4-6.11. Note that ε̂d

and ε̂g are plotted on a log10-scale. The plots in Figures 6.4-6.5, 6.6-6.7, 6.8-6.9, and

6.10-6.11 pertain to model problems MP1, MP2, MP3, and MP4 outlined in Table 6.1,

respectively. The plots in Figures 6.4, 6.6, 6.8, and 6.10 relate to Nc = 5. The plots in

Figures 6.5, 6.7, 6.9, and 6.11 correspond to Nc = 10. The plots in subfigures 6.4(a)-

6.11(a) and 6.4(b)-6.11(b) show log10 ε̂d plotted against N̂g and N̂v, respectively. The

plots in subfigures 6.4(c)-6.11(c) and 6.4(d)-6.11(d) show analogous plots for log10 ε̂g.

The preconditioners P2A, P2B, P2C, P2D, P3A, and P3B are represented in the plots

in subfigures 6.4(a)-6.11(d) using solid red, dashed red, dotted red, dash-dot red, solid

blue, and dashed blue lines, respectively. The unpreconditioned cases are represented

in the plots in subfigures 6.4(a)-6.11(d) using solid black lines.

The key observation based on the plots in subfigures 6.4(a)-6.11(d) is that ε̂d and ε̂g

decreased faster, in terms of computational costs, in the six preconditioned cases stud-

ied than in the unpreconditioned case in all instances. Specifically, ε̂d and ε̂g decreased

faster in most cases as Nc, namely, the number of of PCG iterations conducted, varied

from Nc = 5 to Nc = 10. An additional observation is that the performances of the pre-

conditioners considered improved in the cases of model problems MP3 and MP4. This
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is due to the differences between the sensor configuration schemes S1 and S2 imple-

mented in these cases. That is, the differences in observational impact with stationary

or moving sensors deployed. With a stationary sensor, observational information is

introduced at one specific point and propagated over the spatial domain (Ω = [0, 1]

in this case). On the other hand, with a moving sensor, observational information is

distributed throughout the spatial domain.

The preconditioner P2A performed worst in all cases considered. The precondi-

tioners P2C, P2D, and P3B performed best in the case of model problem MP1 with

Nc = 5. However, the preconditioners P2C, P2D, P3A, and P3B performed similarly

in the instance where Nc = 10. The preconditioner P3A performed best in the cases

of model problem MP2 with Nc = 5 and Nc = 10. The preconditioners P2B and P2C

performed similarly in the instance where Nc = 5. The preconditioners P2D and P3B

also performed similarly in the case of model problem MP2 with Nc = 5. The precon-

ditioners P2B, P2C, P2D, and P3B performed similarly in the case of model problem

MP2 with Nc = 10. The preconditioners P2C and P2D performed best in the case

of model problem MP3 with Nc = 5. However, the preconditioners P2C, P2D, P3A,

and P3B performed similarly in the instance where Nc = 10. The preconditioner P3A

performed best in the case of model problem MP4 with Nc = 5. The preconditioners

P2C, P2D, P3A, and P3B performed similarly in the instance where Nc = 10.

The ensemble average values ε̂d, ε̂g, N̂g, and N̂v calculated at outer iteration number

j = 25 of the Gauss-Newton method for the six preconditioners considered and the

unpreconditioned cases denoted by ‘NP’ are tabulated in Tables 6.7-6.14. Note that

log10 ε̂d and log10 ε̂g are presented. The key observation based on the results tabulated

in Tables 6.7-6.14 is that the final values of ε̂d and ε̂g obtained in the six preconditioned

cases are smaller than attained in the unpreconditioned case in all instances. A further

observation is that the final values of ε̂d and ε̂g decreased in most cases as Nc varied

from Nc = 5 to Nc = 10.

The results presented demonstrate that, when the memory allocated to the Hessian

decomposition and reduced memory Hessian decomposition algorithms, namely, Rd in

(5.17) and R̂d in (5.26), respectively, is fixed, then applying the preconditioners gener-

ated using these algorithms increases the accuracy of the solution obtained by means
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Preconditioner log10 ε̂d log10 ε̂g N̂g N̂v

NP -1.1178 0.9963 25 125

P2A -2.4133 0.5944 25 226

P2B -3.7585 -1.8821 26 233

P2C -3.8446 -5.3939 32 246

P2D -3.8474 -5.7701 36 245

P3A -3.8221 -4.1745 26 236

P3B -3.8469 -5.7241 36 235

Table 6.7: The ensemble average values ε̂d, ε̂g, N̂g, and N̂v calculated at outer iteration
number j = 25 of the Gauss-Newton method with the preconditioners P2A, P2B, P2C,
P2D, P3A, and P3B, respectively, introduced at outer iteration number j = 6. Note
that log10 ε̂d and log10 ε̂g are presented. The results obtained in the unpreconditioned
case denoted by ‘NP’ are also tabulated. The model problem is MP1 where Nc = 5.

of the Gauss-Newton method compared to the unpreconditioned case. Furthermore,

constructing the preconditioners using the Hessian decomposition and reduced memory

Hessian decomposition algorithms has been shown to be less computationally expensive

than applying the multilevel eigenvalue decomposition algorithm outlined in Figure 4.1

in all cases studied, as substantiated by the results N̂v obtained. The results presented

also show that the performance of the preconditioners generated by applying the Hes-

sian decomposition and reduced memory Hessian decomposition algorithms depends on

the particular sensor configuration scheme implemented, as well as the specific model

problem studied.

6.8 Conclusion

This chapter focused on comparing the effectiveness of approximations to the inverse

Hessian generated using the multilevel eigenvalue decomposition, Hessian decomposi-

tion, and reduced memory Hessian decomposition algorithms outlined in Figures 4.1,

5.2, and 5.5, respectively, in a practical application, namely, as preconditioners in a

preconditioned conjugate gradient (PCG) method within a Gauss-Newton procedure

in the framework of incremental 4D-Var. The numerical studies presented in this chap-
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Figure 6.4: Convergence diagram for model problem MP1 where Nc = 5. The ensemble
average values ε̂d, ε̂g, N̂g, and N̂v are plotted. Note that ε̂d and ε̂g are plotted on a
log10-scale. Preconditioners P2A (solid red line), P2B (dashed red line), P2C (dotted
red line), P2D (dash-dot red line), P3A (solid blue line), and P3B (dashed blue line)
introduced at outer iteration number j = 6 of the Gauss-Newton method. The solid
black line represents the unpreconditioned case denoted by ‘NP’.
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Figure 6.5: Convergence diagram for model problem MP1 where Nc = 10. The ensem-
ble average values ε̂d, ε̂g, N̂g, and N̂v are plotted. Note that ε̂d and ε̂g are plotted on a
log10-scale. Preconditioners P2A (solid red line), P2B (dashed red line), P2C (dotted
red line), P2D (dash-dot red line), P3A (solid blue line), and P3B (dashed blue line)
introduced at outer iteration number j = 6 of the Gauss-Newton method. The solid
black line represents the unpreconditioned case denoted by ‘NP’.
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Preconditioner log10 ε̂d log10 ε̂g N̂g N̂v

NP -1.8393 0.2412 25 238

P2A -3.8398 -3.4894 26 340

P2B -3.8476 -5.7452 35 345

P2C -3.8475 -6.2132 39 327

P2D -3.8475 -6.6200 39 292

P3A -3.8475 -6.3705 40 338

P3B -3.8475 -6.1836 40 290

Table 6.8: The ensemble average values ε̂d, ε̂g, N̂g, and N̂v calculated at outer iteration
number j = 25 of the Gauss-Newton method with the preconditioners P2A, P2B, P2C,
P2D, P3A, and P3B, respectively, introduced at outer iteration number j = 6. Note
that log10 ε̂d and log10 ε̂g are presented. The results obtained in the unpreconditioned
case denoted by ‘NP’ are also tabulated. The model problem is MP1 where Nc = 10.

Preconditioner log10 ε̂d log10 ε̂g N̂g N̂v

NP -0.6460 1.6306 25 124

P2A -1.1691 1.2659 26 227

P2B -2.1728 0.4209 26 234

P2C -2.1349 0.5443 26 247

P2D -1.9506 0.7940 26 247

P3A -3.2887 -1.0045 27 240

P3B -1.9682 0.7468 26 240

Table 6.9: The ensemble average values ε̂d, ε̂g, N̂g, and N̂v calculated at outer iteration
number j = 25 of the Gauss-Newton method with the preconditioners P2A, P2B, P2C,
P2D, P3A, and P3B, respectively, introduced at outer iteration number j = 6. Note
that log10 ε̂d and log10 ε̂g are presented. The results obtained in the unpreconditioned
case denoted by ‘NP’ are also tabulated. The model problem is MP2 where Nc = 5.
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Figure 6.6: Convergence diagram for model problem MP2 where Nc = 5. The ensemble
average values ε̂d, ε̂g, N̂g, and N̂v are plotted. Note that ε̂d and ε̂g are plotted on a
log10-scale. Preconditioners P2A (solid red line), P2B (dashed red line), P2C (dotted
red line), P2D (dash-dot red line), P3A (solid blue line), and P3B (dashed blue line)
introduced at outer iteration number j = 6 of the Gauss-Newton method. The solid
black line represents the unpreconditioned case denoted by ‘NP’.
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Figure 6.7: Convergence diagram for model problem MP2 where Nc = 10. The ensem-
ble average values ε̂d, ε̂g, N̂g, and N̂v are plotted. Note that ε̂d and ε̂g are plotted on a
log10-scale. Preconditioners P2A (solid red line), P2B (dashed red line), P2C (dotted
red line), P2D (dash-dot red line), P3A (solid blue line), and P3B (dashed blue line)
introduced at outer iteration number j = 6 of the Gauss-Newton method. The solid
black line represents the unpreconditioned case denoted by ‘NP’.
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Preconditioner log10 ε̂d log10 ε̂g N̂g N̂v

NP -1.2467 0.9540 25 240

P2A -2.1105 0.2832 27 345

P2B -3.5404 -2.7891 28 347

P2C -3.5034 -2.9003 28 361

P2D -3.4880 -2.6738 28 361

P3A -3.6206 -3.3085 29 347

P3B -3.4764 -2.5911 27 354

Table 6.10: The ensemble average values ε̂d, ε̂g, N̂g, and N̂v calculated at outer iteration
number j = 25 of the Gauss-Newton method with the preconditioners P2A, P2B, P2C,
P2D, P3A, and P3B, respectively, introduced at outer iteration number j = 6. Note
that log10 ε̂d and log10 ε̂g are presented. The results obtained in the unpreconditioned
case denoted by ‘NP’ are also tabulated. The model problem is MP2 where Nc = 10.

Preconditioner log10 ε̂d log10 ε̂g N̂g N̂v

NP -0.9627 0.8836 25 125

P2A -2.9614 -0.8450 27 293

P2B -3.6398 -2.5796 28 281

P2C -3.8542 -3.7241 29 275

P2D -3.8474 -3.8658 29 274

P3A -3.8348 -3.5336 29 238

P3B -3.8476 -3.6716 29 237

Table 6.11: The ensemble average values ε̂d, ε̂g, N̂g, and N̂v calculated at outer iteration
number j = 25 of the Gauss-Newton method with the preconditioners P2A, P2B, P2C,
P2D, P3A, and P3B, respectively, introduced at outer iteration number j = 6. Note
that log10 ε̂d and log10 ε̂g are presented. The results obtained in the unpreconditioned
case denoted by ‘NP’ are also tabulated. The model problem is MP3 where Nc = 5.
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Figure 6.8: Convergence diagram for model problem MP3 where Nc = 5. The ensemble
average values ε̂d, ε̂g, N̂g, and N̂v are plotted. Note that ε̂d and ε̂g are plotted on a
log10-scale. Preconditioners P2A (solid red line), P2B (dashed red line), P2C (dotted
red line), P2D (dash-dot red line), P3A (solid blue line), and P3B (dashed blue line)
introduced at outer iteration number j = 6 of the Gauss-Newton method. The solid
black line represents the unpreconditioned case denoted by ‘NP’.
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Figure 6.9: Convergence diagram for model problem MP3 where Nc = 10. The ensem-
ble average values ε̂d, ε̂g, N̂g, and N̂v are plotted. Note that ε̂d and ε̂g are plotted on a
log10-scale. Preconditioners P2A (solid red line), P2B (dashed red line), P2C (dotted
red line), P2D (dash-dot red line), P3A (solid blue line), and P3B (dashed blue line)
introduced at outer iteration number j = 6 of the Gauss-Newton method. The solid
black line represents the unpreconditioned case denoted by ‘NP’.
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Preconditioner log10 ε̂d log10 ε̂g N̂g N̂v

NP -1.8171 -0.0517 26 250

P2A -3.6757 -3.4044 30 414

P2B -3.8088 -3.7500 31 374

P2C -3.8498 -3.8977 30 331

P2D -3.8625 -3.9310 30 320

P3A -3.8506 -3.9507 30 297

P3B -3.8552 -3.9042 30 292

Table 6.12: The ensemble average values ε̂d, ε̂g, N̂g, and N̂v calculated at outer iteration
number j = 25 of the Gauss-Newton method with the preconditioners P2A, P2B, P2C,
P2D, P3A, and P3B, respectively, introduced at outer iteration number j = 6. Note
that log10 ε̂d and log10 ε̂g are presented. The results obtained in the unpreconditioned
case denoted by ‘NP’ are also tabulated. The model problem is MP3 where Nc = 10.

Preconditioner log10 ε̂d log10 ε̂g N̂g N̂v

NP -1.0165 0.7764 25 125

P2A -2.7710 -0.1609 28 265

P2B -3.2487 -1.4309 28 291

P2C -3.6738 -3.5101 29 260

P2D -3.7785 -4.0002 29 259

P3A -3.8039 -4.1054 29 251

P3B -3.7779 -3.8877 29 250

Table 6.13: The ensemble average values ε̂d, ε̂g, N̂g, and N̂v calculated at outer iteration
number j = 25 of the Gauss-Newton method with the preconditioners P2A, P2B, P2C,
P2D, P3A, and P3B, respectively, introduced at outer iteration number j = 6. Note
that log10 ε̂d and log10 ε̂g are presented. The results obtained in the unpreconditioned
case denoted by ‘NP’ are also tabulated. The model problem is MP4 where Nc = 5.
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Figure 6.10: Convergence diagram for model problem MP4 where Nc = 5. The ensem-
ble average values ε̂d, ε̂g, N̂g, and N̂v are plotted. Note that ε̂d and ε̂g are plotted on a
log10-scale. Preconditioners P2A (solid red line), P2B (dashed red line), P2C (dotted
red line), P2D (dash-dot red line), P3A (solid blue line), and P3B (dashed blue line)
introduced at outer iteration number j = 6 of the Gauss-Newton method. The solid
black line represents the unpreconditioned case denoted by ‘NP’.
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Figure 6.11: Convergence diagram for model problem MP4 where Nc = 10. The
ensemble average values ε̂d, ε̂g, N̂g, and N̂v are plotted. Note that ε̂d and ε̂g are plotted
on a log10-scale. Preconditioners P2A (solid red line), P2B (dashed red line), P2C
(dotted red line), P2D (dash-dot red line), P3A (solid blue line), and P3B (dashed blue
line) introduced at outer iteration number j = 6 of the Gauss-Newton method. The
solid black line represents the unpreconditioned case denoted by ‘NP’.
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Preconditioner log10 ε̂d log10 ε̂g N̂g N̂v

NP -1.9908 -0.1718 25 247

P2A -3.4232 -2.0279 28 385

P2B -3.5716 -3.1404 29 402

P2C -3.7732 -4.4277 29 327

P2D -3.7775 -4.6431 30 319

P3A -3.7797 -4.6009 30 324

P3B -3.7773 -4.6583 30 318

Table 6.14: The ensemble average values ε̂d, ε̂g, N̂g, and N̂v calculated at outer iteration
number j = 25 of the Gauss-Newton method with the preconditioners P2A, P2B, P2C,
P2D, P3A, and P3B, respectively, introduced at outer iteration number j = 6. Note
that log10 ε̂d and log10 ε̂g are presented. The results obtained in the unpreconditioned
case denoted by ‘NP’ are also tabulated. The model problem is MP4 where Nc = 10.

ter involved calculating the ensemble average values ε̂d, ε̂g, N̂g, and N̂v in (6.6)-(6.7)

for the specific model problem outlined in Section 4.6. The numerical study presented

in Section 6.7 also included ensemble average data generated for the three additional

model problems outlined in Section 6.1. The values ε̂d and ε̂g obtained were used as

convergence measures. The values N̂g and N̂v attained provided indications of compu-

tational cost.

The effect of introducing preconditioning at different stages of the Gauss-Newton

method was considered in Section 6.5. The results presented demonstrated that intro-

ducing preconditioning at outer iteration number j = 1 of the Gauss-Newton method

gave an intermediate solution that initially diverged. However, these results also showed

that no initial divergence in the intermediate solution occurred with preconditioning

introduced at outer iteration numbers j = 2, 3, 6, suggesting a possible improvement

in the stability of the method. The results presented in Section 6.5 indicated that per-

forming a number of unpreconditioned Gauss-Newton outer iterations initially, before

introducing preconditioning, was a viable strategy for reducing N̂v, that is, the compu-

tational cost. These results showed that introducing preconditioning at outer iteration

number j = 6 was the best strategy in terms of reducing N̂v.

The numerical study presented in Section 6.6 focused on comparing the various
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preconditioners constructed using the multilevel eigenvalue decomposition algorithm.

The results presented demonstrated that, when the memory allocated to the multilevel

eigenvalue decomposition algorithm, namely, Re in (4.31), was fixed, then applying the

preconditioners generated using this algorithm increased the accuracy of the solution

obtained by means of the Gauss-Newton method compared to the unpreconditioned

case. These results also showed that the performance of the preconditioners generated

by applying the multilevel eigenvalue decomposition algorithm depended primarily on

Re. However, constructing the preconditioners using the multilevel eigenvalue decom-

position algorithm was shown to be computationally expensive in all cases studied, as

substantiated by the results N̂v obtained.

The numerical study presented in Section 6.7 focused on comparing the various pre-

conditioners constructed using the Hessian decomposition and reduced memory Hes-

sian decomposition algorithms. The results presented demonstrated that, when the

memory allocated to the Hessian decomposition and reduced memory Hessian decom-

position algorithms, namely, Rd in (5.17) and R̂d in (5.26), respectively, was fixed, then

applying the preconditioners generated using these algorithms increased the accuracy

of the solution obtained by means of the Gauss-Newton method compared to the un-

preconditioned case. Specifically, constructing the preconditioners using the Hessian

decomposition and reduced memory Hessian decomposition algorithms was shown to

be less computationally expensive than applying the multilevel eigenvalue decomposi-

tion algorithm in all cases studied, as substantiated by the results N̂v obtained. The

results presented in Section 6.7 also showed that the performance of the precondition-

ers generated by applying the Hessian decomposition and reduced memory Hessian

decomposition algorithms depended on the particular sensor configuration scheme im-

plemented, as well as the specific model problem studied.
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Chapter 7

Conclusions

A multilevel eigenvalue decomposition algorithm for constructing a limited-memory

approximation to the inverse (and inverse square root) of any given symmetric posi-

tive definite matrix with eigenvalues clustered around unity was introduced in Chap-

ter 4. This algorithm was applied to the Hessian in the framework of incremental four-

dimensional variational data assimilation (4D-Var), with the standard control variable

transform implemented, in order to construct an approximation to the inverse Hessian.

The accuracy of approximations to the inverse Hessian generated using the multilevel

eigenvalue decomposition algorithm was investigated in Chapter 4. The key results

from the numerical studies presented in Chapter 4 are as follows:

• The accuracy of the approximation to the inverse Hessian generated using the

multilevel eigenvalue decomposition algorithm depended on the memory allocated

to this algorithm.

• Adopting a multilevel approach in the multilevel eigenvalue decomposition algo-

rithm produced a more accurate approximation to the inverse Hessian than could

be achieved by employing a single-level procedure when the memory allocated to

this algorithm was restricted.

• Applying the multilevel eigenvalue decomposition algorithm to the Hessian was

computationally expensive since this involved computing Hessian vector products

at the finest grid level in the multilevel setup.

The multilevel eigenvalue decomposition algorithm can be applied to other symmetric
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positive definite matrices with the appropriate form. This algorithm could potentially

be implemented in different application areas.

A novel decomposition of the Hessian as the sum of a set of local Hessians was

introduced in the setting of incremental 4D-Var in Chapter 5. Two practical variants

of the multilevel eigenvalue decomposition algorithm for constructing a limited-memory

approximation to the inverse (and inverse square root) of this Hessian were presented

in Chapter 5. The accuracy of approximations to the inverse Hessian generated using

the two algorithms proposed was also investigated. The key results from the numerical

studies presented in Chapter 5 are as follows:

• Applying the Hessian decomposition and reduced memory Hessian decomposition

algorithms produced less accurate approximations to the inverse Hessian than

could be achieved using the multilevel eigenvalue decomposition algorithm.

• Implementing the reduced memory Hessian decomposition algorithm produced a

less accurate approximation to the inverse Hessian than could be attained using

the Hessian decomposition algorithm.

• The reduced memory Hessian decomposition algorithm required less memory than

the Hessian decomposition algorithm when parameters were chosen carefully.

• Generating an approximation to the inverse Hessian by applying the Hessian

decomposition algorithm was less computationally expensive than implementing

the multilevel eigenvalue decomposition algorithm when the local Hessians were

defined at a coarser grid level than the finest grid level and a small number of

eigenpairs of each local Hessian was computed.

• Constructing an approximation to the inverse Hessian using the reduced memory

Hessian decomposition algorithm was as computationally expensive as applying

the Hessian decomposition algorithm.

The Hessian decomposition and reduced memory Hessian decomposition algorithms

may be applicable in operational implementations of incremental 4D-Var. The option

of computing the local Hessians in parallel would be a useful resource in such cases.
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The application considered in Chapter 6 focused on preconditioning the system of

linear equations in the inner step of a Gauss-Newton procedure in incremental 4D-Var

with an approximation to the inverse Hessian generated using the multilevel eigenvalue

decomposition, Hessian decomposition, and reduced memory Hessian decomposition

algorithms. The preconditioned conjugate gradient (PCG) method was used to solve

this system of linear equations. The key results from the numerical studies presented

in Chapter 6 are as follows:

• The solution obtained by means of the Gauss-Newton method was more accurate

with the preconditioners generated using the multilevel eigenvalue decomposition,

Hessian decomposition, and reduced memory Hessian decomposition algorithms

applied than in the unpreconditioned cases.

• The performance of preconditioners generated using the multilevel eigenvalue

decomposition algorithm depended primarily on the memory allocated to this

algorithm.

• Generating preconditioners by applying the multilevel eigenvalue decomposition

algorithm was computationally expensive since this involved computing Hessian

vector products at the finest grid level in the multilevel setup.

• The performance of preconditioners generated using the Hessian decomposition

and reduced memory Hessian decomposition algorithms depended primarily on

the particular sensor configuration scheme implemented, as well as the specific

model problem studied.

• Generating preconditioners by applying the Hessian decomposition and reduced

memory Hessian decomposition algorithms was less computationally expensive

than implementing the multilevel eigenvalue decomposition algorithm.

The Hessian decomposition and reduced memory Hessian decomposition algorithms

may be useful for constructing preconditioners in the framework of a minimisation pro-

cedure in operational implementations of incremental 4D-Var. The option of computing

the local Hessians in parallel would be particularly relevant in this context.
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The novel concepts introduced in this thesis and published in [15] could be studied

further by considering higher dimensional problems. Alternative sensor configuration

schemes could also be considered. The multilevel eigenvalue decomposition algorithm

presented in Chapter 4 could potentially be applied to other symmetric positive definite

matrices with the appropriate form in different application areas.

The model problems considered in this thesis were small-scale and based on a

one-dimensional Burgers’ equation. An obvious next step would be to study a two-

dimensional model problem on a larger scale. This could potentially facilitate the

application of the multilevel eigenvalue decomposition, Hessian decomposition, and

reduced memory Hessian decomposition algorithms in a practical 4D-Var setting.

In all of the numerical studies presented in this thesis, the outputs of the multi-

level eigenvalue decomposition, Hessian decomposition, and reduced memory Hessian

decomposition algorithms were symmetric positive definite. However, there were no

theoretical proofs of this given for the general case. Further study focusing on the the-

oretical aspects of the three algorithms proposed in this thesis would also be a potential

next step.
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Appendix A

Tangent linear problem for

Burgers’ equation

The tangent linear problem associated with the one-dimensional Burgers’ equation in

(4.32)-(4.34) is

∂υ

∂t
+
∂

∂x
(ϕυ) =

∂

∂x

(
µ(ϕ)

∂υ

∂x

)
+
∂

∂x

(
µ′(ϕ)υ

∂ϕ

∂x

)
, υ = υ(x, t), x ∈ [0, 1], t ∈ [0, T ]

(A.1)

subject to the boundary conditions

∂υ

∂x

∣∣∣∣
x=0

= 0,
∂υ

∂x

∣∣∣∣
x=1

= 0 (A.2)

where υ(x, 0) = υ̂(x) and

µ′(ϕ) =
∂

∂x
(µ(ϕ)) = 2ρ1

(
∂ϕ

∂x

)
∂2ϕ

∂x2
.

The tangent linear model defined by (A.1)-(A.2), and the associated adjoint model, are

generated in practice using the automatic differentiation engine TAPENADE; see [58].
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