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Abstract

This thesis concerns the analytical and numerical investigation of a bilayer of liquid

and gas contained between two electrodes. The work contained in this thesis uses the

Taylor–Melcher leaky dielectric model to describe electrostatic effects, which are cou-

pled with the hydrodynamic effects through the normal and tangential stresses. The

long-wave approximation is used to obtain a model that consists of two coupled, non-

linear partial differential equations for the interfacial height and the charge density.

Several limiting cases of this long-wave model are considered. The first limiting case

is when the liquid is perfectly conducting, the second limiting case is when the liquid

and gas have high conductivities, and the third limiting case is when the liquid and gas

are both perfect dielectrics. The first two limiting cases and the full long-wave model

are investigated in detail. This analysis shows that a variety of different behaviours

can occur, i.e. levelling, upper contact, thinning, and touchdown behaviour, which are

explored, both analytically and numerically. In particular, levelling behaviour is de-

scribed by linear stability theory, similarity solutions are found for the interface during

the upper contact and thinning behaviours, and an extensive numerical investigation of

touchdown behaviour is performed. A systematic numerical investigation of parameter

space for the long-wave model and the limiting cases is performed. In particular, the

regions of parameter space in which each behaviour occurs, and the transitions between

these regions, are investigated. Coupled with an investigation of the interfacial dynam-

ics of the different behaviours, this work allows for a more complete understanding of

the behaviour of electrohydrodynamic flows.
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Chapter 1

Introduction

1.1 Thin-film flows

Thin films of fluid are ubiquitous in nature, are commonplace in our daily lives,

and occur in many physical contexts such as rain draining down a window and

the formation of polymer fibres. The behaviour of thin films has been the subject

of many analytical, numerical, and experimental investigations. The free surface

of a fluid film is, in general, deformable, which can lead to a range of interesting

behaviours, such as pattern formation phenomena, which involve the formation

of chaotic or regular structures [1, 2, 3, 4], and film rupture [5, 6, 7, 8]. Thin-film

flows occur, and have been studied, in a host of different situations, which include

(but are not limited to) geophysical settings, from lava flows [9, 10] to gravity

currents [11, 12], a range of biological scenarios, from the airways and lining of

the lung [13] to tear films in the eye [14, 15], and in engineering, where thin films

are used in heat and mass transfer processes [16, 17]. Oron et al. [18], Craster

and Matar [19], and Davis [20] give extensive reviews on thin-film flows in many

situations. As these reviews describe, low-order modelling has been applied to

thin-film flows, and elucidating their behaviour has involved a variety of ana-

lytical and numerical techniques, many of which are surveyed in these reviews.
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Specifically, low-order modelling typically exploits the presence of small param-

eters in problems, using techniques such as asymptotic or perturbation methods

to obtain approximate and asymptotic solutions to problems that are otherwise

very difficult or impossible to solve. Studies using low order techniques will be

explored further in Section 1.2.

The interfacial patterns that arise from instabilities of thin-film flows have im-

portant technological applications as mentioned earlier and have received con-

siderable attention [21, 22, 23, 24, 25]. Electric fields can be used to induce

electrohydrodynamic (EHD) instabilities and control how fluids behave, and this

has led to a wide range of practical applications. In particular, electric fields have

been used for pattern formation in electronic devices at the micro- or nano- scale

[26, 3, 23], micro-fluidic mixing [3, 27, 28, 29], and electrospinning [30, 31, 32] (a

cheap method of producing thin fibres). Specifically, pattern formation applica-

tions that use EHD instabilities include Lithographically Induced Self Assembly

(LISA) and Lithographically Induced Self Construction (LISC) [26, 3, 33, 34].

LISA and LISC are processes where a uniform film self-assembles into a peri-

odic array of pillars that bridge a lower substrate and upper mask (LISA), or

the film assembles into a replica of an upper mask (LISC). Electric fields are

the driving force behind these instabilities, and Figure 1.1(a) shows the setup of

LISA/LISC applications, and Figure 1.1(b) shows a micrograph of pillars formed

from a poly(methyl methacrylate) film.

In Section 1.2, we will outline the low-order modelling techniques that can be used

to simplify the governing equations of a wide range of different systems, involving

thin and/or slender films of fluid, by utilising the disparities in lengthscales that

arise in thin-film flows. We then discuss numerical schemes used to investigate

thin-film flows in Section 1.3. In Section 1.4, we will review previous studies of

thin-film flows in a range of different coating and draining problems, as well as

film or jet rupture problems in Section 1.5. In Section 1.6.1, we will introduce the

2



(a) (b)

Figure 1.1: Part (a) shows the setup of LISA/LISC applications, reproduced with
permission from [37], and part (b) shows a micrograph of pillars formed from a
poly(methyl methacrylate) film, reproduced with permission from [26]

Taylor–Melcher leaky dielectric model [35, 36] which couples electrostatic effects

with the hydrodynamics of a fluid. This model will be appropriate for the system

we are studying (introduced in Section 2.1). In Section 1.7, we will review rele-

vant previous studies that include electrostatic effects, before concluding with an

outline of the contents of this thesis in Section 1.8.

1.2 Low-order modelling

Interfacial flows involve the flow of two or more fluids bounded by one or more

interfaces. Hence, when studying these flows, the presence of one or more de-

formable interfaces makes the situation complicated (and interesting) as the lo-

cations of the interfaces are unknown a priori and have to be determined as part

of the solution to the problem. The motion of interfaces can be determined as

part of the solution of the governing equations and boundary conditions of the

system under investigation. For viscous fluids, the governing equations are the

3



Navier–Stokes equations, which are a set of nonlinear partial differential equa-

tions (PDEs). There are challenges in solving the full Navier–Stokes equations

in general: performing direct numerical simulations (DNS) is costly (as it can

take weeks to months of processing time to solve some problems) and it is diffi-

cult to make any analytical progress [18, 19]. However, there are situations (e.g.

thin-film and slender-body flows) where the disparities between the lateral and

transverse lengthscales give rise to one or more small parameters, which can be

used to simplify the governing equations. For example, the disparity between a

characteristic film thickness H to a characteristic lateral lengthscale L (such as

the characteristic wavelength) gives the small aspect ratio ǫ = H/L ≪ 1. Quan-

tities (such as the derivatives and the components of the velocity) are typically

found to scale with powers of ǫ, allowing for an asymptotic reduction of the prob-

lem: this is referred to as a thin-film or long-wave (LW) approximation. These

techniques, in which an approximate or asymptotic solution to the problem under

investigation is found by using asymptotic and perturbation methods, are known

as low-order modelling techniques, as previously described in Section 1.1. The

terms “thin film” and “long wave” are interchangeable here as we are working

in a planar context (this would not be the case, for example, when working on

a curved substrate). The consequence of this LW approximation is generally to

remove the dependence of the problem on the transverse coordinate, reducing the

dimensionality of the problem by one. The LW approximation is a powerful tool

that has been used to study the dynamics of thin fluid films driven to flow by

various forces, such as gravity, capillarity, thermocapillarity, and intermolecular

forces [18, 19, 20].

In his classical work, Benney [38] investigated a two-dimensional fluid film flow-

ing down an inclined plane, using a Cartesian coordinate system (x, y), and he

used the LW approximation to derive a nonlinear equation for the thickness of

the fluid film y = h(x, t). This has come to be known as the Benney equation,

4



which is, in its dimensionless form,

∂h

∂t
+

∂

∂x

(
2

3
h3 + ǫ

[(
16Re

15
h6 − 2

3
h3 cot θ

)
∂h

∂x
+

1

Ca
h3
∂3h

∂x3

])
= 0, (1.1)

where Re = gH3 sin θ/ν2 and Ca = ρgH2/σǫ2 are the Reynolds and capillary

numbers, respectively, g is acceleration due to gravity, H is the mean film thick-

ness, ρ is the density of the fluid, ν is the kinematic viscosity of the fluid, ǫ is the

small aspect ratio, and θ is the angle of inclination of the plane to the horizontal.

Re and Ca represent the relative significance of inertial forces to viscous forces,

and of viscous forces to surface tension forces, respectively. Note that the surface

tension term was not present in the original equation investigated by Benney [38]

since this term enters at higher-order unless the capillary number is rescaled in ǫ,

as is given by (2.24). The leading-order terms in ǫ of equation (1.1) are linearly

neutrally stable and form a shock in finite time [39]. The destabilising iner-

tia term and the stabilising hydrostatic pressure and surface tension terms (the

third, fourth, and fifth terms, respectively, in equation (1.1)) enter at first order

in ǫ. Finite-time “blowup” (where the interfacial height grows without bound)

was found to occur [40, 41] for solutions of equation (1.1) for moderate to large

Reynolds numbers. Hence, solutions to the Benney equation lose any physical

relevance during blowup. Furthermore, it was found that blowup does not occur

when DNS of the full Navier–Stokes equations are performed [42, 43, 44, 45].

The Benney equation (1.1) can be simplified by reducing it to a weakly nonlinear

equation, as derived by Sivashinsky [46]. They perturbed the interfacial height

h around some steady base state y = h, namely, h = h + δh̃, where δ ≪ 1 and

h̃ = h̃(x, t) are the size and shape of the perturbation, respectively. The per-

turbed solution was then substituted into equation (1.1), the x and t coordinates

were rescaled, and the appropriate Galilean transformation was applied such that

the system was expressed in a moving frame of reference (which removes convec-
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tive terms and has no impact on the dynamics of the system). The first-order

terms in δ give a weakly nonlinear equation for h̃, namely,

∂h̃

∂t
+ h̃

∂h̃

∂x
+
∂2h̃

∂x2
+
∂4h̃

∂x4
= 0, (1.2)

where the second, third, and fourth terms correspond to inertial, gravitational,

and surface tension effects, respectively. Equation (1.2) is known as the Kuramoto–

Sivashinsky (KS) equation and is applicable to numerous other physical situations

[47, 48, 49, 46]. Note that equation (1.2) is only valid for perturbations that are

small compared to the base state h. In equation (1.2), the gravitational term

acts as an energy source and so has a destabilising effect, the stabilising iner-

tial term transfers energy from small to large wavenumbers, where the stabilising

∂4h̃/∂x4 term (which dissipates energy) dominates. Solutions to the KS equation

give complicated behaviour, i.e. periodic, quasi-periodic, and chaotic solutions,

as shown through previous analytical [50, 51] and computational [52, 53, 54, 55]

studies.

Initial attempts at resolving the unphysical blowup phenomenon that occurs in

the solution of the Benney equation (1.1) were performed [56, 57], but the results

did not show good agreement with experimental results or with DNS of the full

Navier–Stokes equations. One approach that did stop blowup from occurring was

the weighted residual integral boundary-layer (WRIBL) method, introduced by

Ruyer-Quil and Manneville [58]. We will use the WRIBL method in Appendix F.

The WRIBL method was used to derive a model, using a Galerkin method, that

is based on a LW approximation of the Navier–Stokes equations. For falling films,

this method gives four governing equations for h(x, t) and the depth-integrated

flux q(x, t) =
∫ h

0
u dy, where u = u(x, y, t) is the velocity in the transverse direc-

tion. In addition, there are two subsidiary fields s1(x, t) and s2(x, t) that describe

the deviation of the velocity profile from a parabolic velocity profile. Numerical
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calculations using the WRIBL method have produced very good agreement with

linear stability results of the full Navier–Stokes equations [59], as well as very

good qualitative agreement with experimental results [60]. The WRIBL method

has been extended to describe falling films with inertial effects [58, 59, 60, 61], as

well as flows with other physical effects [62, 63, 64]. More recently, the WRIBL

method has been used to study “thick-film flows” [65, 66], in which the radius of

curvature of the substrate over which the fluid flows can be the same size as the

thickness of the film.

1.3 Numerical schemes for thin-film flows

Models of thin-film flows derived using low-order modelling techniques can rarely

be solved analytically to obtain explicit expressions for the variables, and so

numerical schemes (that solve these models) have been used as a powerful way to

complement the results from perturbation theory and asymptotic analysis. The

numerical results are particularly useful in exploring the interfacial dynamics in

the nonlinear regime, and for comparisons (both qualitatively and quantitatively)

against experimental results. Numerical techniques have been used to study

falling films [67, 68, 69, 70], finite-time singularity problems [71, 72, 73, 74], and

pattern formation problems [75, 76, 77]. One commonly-used numerical technique

for solving differential equations is the Finite-Difference Method, where both

the spatial domain and the time interval are discretised into grid points. The

Method of Lines allows us to convert the solution of a PDE to a system of

nonlinear ordinary differential equations (ODEs) corresponding to each of the

grid points. A time-stepping technique (such as the Backwards Euler or the

Trapezium rule) can be applied and the resulting nonlinear algebraic expressions

can then be solved using the Newton–Raphson (NR) method. We will use the

Finite-Difference Method to investigate the problems tackled in this thesis, and

7



will discuss this method (and our numerical implementation of it) in more detail

in Chapter 4.

1.4 Coating and draining flow problems

There have been extensive studies on coating and draining flow problems where

instabilities in the system arise due to gravity and/or capillarity. Understanding

these flows are important to numerous applications, such as microfluidic heat

transfer problems [78], coating flow problems [79], and flows in the lungs [13],

and low-order modelling has given a host of results through using both analytical

and numerical methods. Jones and Wilson [80] used a thin-film approximation to

investigate the Rayleigh–Taylor (RT) instability of a liquid film trapped beneath a

sedimenting drop of fluid, finding that the height of the interface h was described

by an equation of the form

∂h

∂t
= − ∂

∂x

(
h3

3

(
A
∂h

∂x
+ B

∂3h

∂x3

))
, (1.3)

where A and B are constants. Note that the studies reviewed in this Section

look at problems that are influenced by different physical mechanisms but are

mathematically similar, i.e. are governed by equations of the form (1.3). These

differences in the physics of the systems are incorporated into the constants A and

B, which usually contain non-dimensional parameters such as Re and Ca. Jones

and Wilson [80] found that, as the liquid drains from beneath the sedimenting

drop, the height of the liquid film decreases like h ∼ t−1/2. In a later study, Ham-

mond [81] investigated the axisymmetric case of a liquid coating a solid cylinder

in the absence of gravity, and found h to be governed by (1.3). The liquid film

evolved into a series of filling and draining lobes, separated by trough regions, as

shown in Figure 1.2, and the liquid flowed from the draining lobe into the filling

lobes. Figure 1.2 shows a plot of h as a function of x/L, highlighting the draining
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Figure 1.2: Plot of h as a function of x/L showing draining and filling lobe regions,
and the trough region.

and filling lobe regions, as well as the trough region. Here, L is the length of the

domain. A similarity solution for the interface in the trough region was found,

for which the matching conditions onto the draining and filling lobes are linear

and quadratic functions, respectively. This difference between the matching con-

ditions at either side of a trough is what drives the drainage. Hammond [81]

also found that, at late times, the height of the interface in the trough regions

varied like h ∼ t−1/2, the same scaling law as that found by Jones and Wilson

[80]. Later, Yiantsios and Higgins [82] investigated the RT instability of a liquid

film coating the lower surface of a horizontal substrates (i.e. on the ceiling), and

found that the interface again evolved into a series of filling and draining lobes.

They found that for asymmetric (but, notably, not symmetric) initial conditions,

a sliding phenomenon occurred, in which, at late times, the lobes translated to

the left or right. In a later study, Lister et al. [83], confirmed Hammond’s findings

[81] that for sufficiently small domains, the height of the trough regions varied

like h ∼ t−1/2 at late times. However, for longer domain lengths, Lister et al.

[83] showed that the trough regions can be situated between two filling lobes (in-

stead of between a filling and draining lobe), and in this case the height of the
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trough regions varied like h ∼ t−1. Furthermore, Lister et al. observed a sliding

phenomenon similar to that seen by Yiantsios and Higgins [82]. In particular,

they found that the filling lobe can translate back and forward along the domain,

where it consumes the draining lobe in its path and leaving a smaller daughter

lobe behind it. In a companion paper, Lister et al. [84] investigated the drainage

of a liquid trapped between a two-dimensional drop that settles towards a hor-

izontal plane, in which filling and draining lobes formed. They found that the

Bond number B, i.e. the measure of the relative importance between gravity and

surface tension, controls the evolution of the liquid film. Specifically, when B is

sufficiently small, all of the liquid ultimately drains from the draining lobe. When

B is sufficiently large, permanent filling and draining lobes are formed, and the

sliding dynamics seen by Lister et al. [83] were observed. Furthermore, for critical

values of B, they also found cases where liquid is permanently trapped inside the

draining lobe. Glasner [85] investigated the RT instability of a liquid film coating

a porous ceiling, with a constant supply of liquid. Filling and draining lobes

formed, and a sliding phenomena similar to that seen by Yiantsios and Higgins

[82] and Lister et al. [84] was observed. Glasner [85] showed that it is energetically

favourable for the liquid film to slide in the direction of the thicker (rather than

the thinner) liquid film. Furthermore, the RT instability of a liquid film coating

a ceiling was also investigated by Dietze et al. [86]. They investigated the onset

of the sliding phenomena and showed that it can occur for both symmetric and

asymmetric initial conditions, in contrast to that seen by Yiantsios and Higgins

[82], who only observed sliding for asymmetric initial conditions. Dietze et al.

[86] showed that, if the Yiantsios and Higgins [82] had performed their numeri-

cal calculations long enough in time, sliding would indeed be seen for symmetric

initial conditions. They also showed that the sliding phenomenon arises from

asymmetric instabilities, and, even though sliding is typically observed when the

interface has reached a quasi-steady state, sliding can effectively occur at any
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time after filling and draining lobes have formed. Furthermore, Dietze et al. [86]

investigated this system with additional Marangoni stresses, which incorporated

an extra tangential stress term to equation (1.3). They showed that this tangen-

tial stress term prevents the sliding phenomenon from occurring, and instead the

troughs “buckle” into additional filling and draining lobes, and troughs. In fact,

these buckling events occur indefinitely and are therefore referred to as a cascade

of buckling events.

For steady flows, the fourth-order governing equation (1.3) can be simplified to a

third-order equation of the form

∂3h

∂x3
= f(h), (1.4)

where the function f(h) varies for different systems. Equation (1.4) has been

studied in many coating and draining problems, such as flows with high surface

tension [87, 88] where f(h) = −1 + 1/h2, free-surface flows with surface tension

effects [89] where f(h) = 1/h2, and thermally driven flows [90].

In all of the studies described above, the effects of gravity and/or surface ten-

sion control the evolution of the interface. However, the effect of an electric field

can also be incorporated (in place or alongside gravity, surface tension, or other

physical effects) into these coating and draining flow problems, which have ap-

plications in technology and engineering, such as in LISC/LISA applications, as

discussed in Section 1.6.

1.5 Film or jet rupture problems

There has been a lot of attention on problems where rupture of liquid films or jets

occur. Figure 1.3 shows experimental pictures of the process of droplet separation

from a jet (reproduced from [91]) where panel (a) is at times before breakup of

the jet, and panel (b) is at times after breakup of the jet. The arrows show where
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(a) (b)

Figure 1.3: Experimental pictures of the process of droplet separation from a jet
where (a) is at times before breakup of the jet and (b) is at times after breakup of
the jet. The arrows show where the jet is thinning. Reproduced with permission
from [91].

the thinning of the jet (and ultimately breakup) occurs. Film or jet rupture has a

variety of engineering applications and has been the focus of experimental studies,

for example, on droplet formation in a jet leaving an orifice at high speeds [92, 93,

91] and of a liquid being released very slowly from a nozzle (e.g. a dripping faucet)

[94, 95, 96]. Mathematically, rupture is represented by a localised finite-time

singularity of the governing equations, and the dynamics of the interface (close in

space and time to the singularity) can often be described by self-similar solutions.

This allows for more analytical insight into the dynamics of the interface close

in space and time to the singularity. There has been extensive research on the

breakup of fluid jets caused by surface tension [5, 6, 7, 8], the rupture of a fluid

sheet by van der Waals forces [97, 73], and finite-time singularities in systems

with variations in topology [98, 99, 100, 101]. In these systems, the thickness of

12



the liquid films h = h(x, y, z) are typically governed by equations of the form

∂h

∂t
= ∇ ·

(
Aha∇h−Bhb∇∇2h

)
, (1.5)

where a, b, A and B are constants that are dependent on the system being

investigated. In this Section, we will focus on the rupture of a thin liquid film

on a solid substrate due to van der Waals forces. This problem was investigated

by Williams and Davis [102], who derived a governing equation for h of the form

(1.5) where a = 3 and b = −1. Burelbach et al. [103] proposed, after performing

numerical simulations in two-dimensions, that surface tension is negligible near

rupture, and that only van der Waals forces and viscous dissipation are important.

However, Zhang and Lister [71] showed that, in fact, van der Waals forces, surface

tension, and viscous dissipation are all important near rupture. Furthermore, for

both the axisymmetric and two-dimensional situations, Zhang and Lister [71]

obtained similarity solutions for the interface near to the time of rupture tR, and

these solutions predicted that h ∼ (tR−t)1/5 and x ∼ (tR−t)2/5. Zhang and Lister

[96] also showed, using a numerical shooting method, that there is an infinite

set of similarity solutions and that the profile seen in the solutions to the PDE

corresponds to the similarity solution with the least oscillatory curvature profile,

called the fundamental similarity solution. Witelski and Bernoff [72] investigated

the stability of the similarity solutions of this system. Specifically, they introduced

an alternative numerical approach for calculating the self-similar profiles that also

enabled them to determine the stability of these solutions. They found that only

the fundamental similarity solution is stable to linear perturbations. Hence, the

fundamental similarity solution i.e. the stable similarity solution, corresponds to

the solution to the PDE.

Finite-time singularities also occur in different systems when electric fields are

present. In Section 1.7, we will provide an overview of the investigations into
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finite-time singularity problems where electrostatic effects are present.

1.6 Modelling electrostatic effects

EHD flows have been studied experimentally since Gilbert’s treatise De Magnete

in the 1600s. Before the 1960’s, most work focused on perfectly conducting fluids

or perfect dielectrics (i.e. perfectly insulators) until the work of Allan and Mason

[104] who studied leaky-dielectric (i.e. poorly conducting) fluids. For our study

of leaky-dielectric fluids, we will use the Taylor–Melcher leaky dielectric model,

which is the most commonly used model. In Section 1.6.1 we will outline this

model, and in Section 1.7, we will discuss previous studies of EHD flows.

1.6.1 Taylor–Melcher leaky dielectric model

The leaky-dielectric model was first outlined in the work of Taylor on drop de-

formation [105] and the subsequent review of EHD flows by Melcher and Taylor

[106]. The reviews by Saville [35] and Papageorgiou [36] give an overview of the

pioneering and recent work on EHD instabilities, respectively.

Typically, systems are investigated where there are immiscible fluids separated

by sharp interfaces subject to electrostatic forces. Under static conditions, the

electric and magnetic fields are decoupled (Feynman et al. [107]), and in the ab-

sence of external magnetic fields, the magnetic effects can be neglected and the

electrostatic approximation to Maxwell’s equations is used. These state that, in

the absence of magnetic effects, the divergence of the electric field is due to local

free charge density, namely,

∇ · (ǫ0ǫE) = ρe, (1.6)

where E is the electric field, ǫ0 is the permittivity of free space, ǫ is the relative

permittivity of the fluid, and ρe is the local free charge density. Note that for two
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fluids (Fluid 1 and 2), E1 and E2 are the vectors describing the electric field in

each fluid. Using the notation E means that the expression holds for the electric

field in both fluids. Equation (1.6) is Gauss’ law in the absence of magnetic fields.

In addition, since magnetic effects are neglected, Faraday’s law becomes

∇× E = 0, (1.7)

i.e. the electric field is irrotational. Equations (1.6) and (1.7) can be used to

show that the tangential component of the electric field is continuous at fluid-

fluid interfaces (Landau and Lifshitz [108]) and its normal component jumps by

a quantity proportional to the free charge per unit area q, namely,

ǫ0
[
ǫ1E

1 − ǫ2E
2
]
· n = q, (1.8)

where n is the normal vector to the interface between the two fluids, and ǫ1 and

ǫ2 are the relative permittivities of each fluid. The electric field exerts a force

through an additional contribution to the stress tensor, namely, the Maxwell

stress tensor,

M = ǫL,Gǫ0

(
E⊗ E− 1

2
|E|2 I

)
, (1.9)

and under circumstances where the permittivities are uniform, the conductivities

are constant and charge is neglected in the bulk of the fluids [36], the hydro-

dynamics are coupled with the electrostatics only via the Maxwell stress at the

interface.

Since there is free charge at the interface, an equation governing the evolution of

this charge is required. This is given by the charge transport equation,

∂q

∂t
+ u · ∇sq − qn · (n · ∇)u =

[
σ2E

2 − σ1E
1
]
· n, (1.10)
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where ∇s = ∇− n (n · ∇) is the surface gradient operator,u is the fluid velocity

at the interface, and σ1 and σ2 are the conductivities of each fluid, and n and t

are the normal and tangential vectors of the interface, respectively. The second

and third terms on the left hand side correspond to convection and dilation of

the free surface, respectively, and the term on the right hand side corresponds to

ion conduction through the bulk. Equations (1.6)–(1.10) constitute the Taylor–

Melcher leaky dielectric model which we will use in the present work.

1.7 Previous studies of EHD flows

There have been a vast range of experimental, analytical, and numerical studies

performed on EHD flows. In this Section, we will discuss some of the previous

studies on EHD instabilities and pattern formation, coating and draining flow

problems, finite-time singularity problems, and other relevant studies on EHD

flows.

1.7.1 EHD instability and pattern formation studies

There have been a host of linear stability studies and computational studies that

have investigated EHD instabilities in systems with thin liquid films in two di-

mensional and axisymmetric geometries, where the system parameters are tuned

to give structures of different wavelengths and heights (and this has applications

to pattern formation technologies). Linear stability analyses of a bilayer of two

fluids bounded by electrodes have shown that even the slightest conductivity in a

fluid has a profound influence on the growth rates and characteristic lengthscale

of EHD instabilities [109, 110]. Papageorgiou and Petropolous [111] studied the

linear stability of a liquid film surrounded by a gas. They showed that (for ar-

bitrary Reynolds numbers) a liquid film can become unstable when ΣRǫR > 1 or

ΣRǫR < 1, and (ΣR − 1)(1− ǫR) < 0, where ΣR and ǫR are the conductivity and

16



permittivity ratios, respectively, of the liquid film and surrounding gas. Also,

depending on the values of the system parameters, linear stability theory also

showed that the electric field can be either stabilising or destabilising in a bilayer

of leaky dielectric liquids [112, 113, 114]. Li et al. [114] showed that, for a bilayer

of two perfectly dielectric viscous fluids in a two-dimensional channel, the electric

field is always destabilising. In a later study by Uguz et al. [115], a system with a

normal electric field was shown to have broader regions of parameter space that

were destabilising compared to systems with a tangential electric field.

Numerical computations have allowed for the investigation of EHD instabilities in

the nonlinear regime. Wu and Chou [37] investigated a two-dimensional bilayer

of perfect dielectric liquid film and air contained between two electrodes, and

found that the frequency of the pillars that formed are dependent on the ratio

of the surface tension and electrostatic forces. Craster and Matar [75] studied a

more general system of two viscous leaky dielectric fluid films, and found that

varying the system parameters alters the shape and frequency of the pillars that

form. Figure 1.4 is an example of the results obtained by Craster and Matar [75],

and shows plots of h as a function of x for different values of the thickness ratio

β (i.e. the ratio of the thickness of the lower and upper fluid films). Figure 1.4

illustrates the change in the shape and frequency of the pillars with a varying β.

The enhancement and control of interfacial instabilities in the nonlinear regime

was explored by Wray et al. [116], who investigated the evolution of the interface

between a leaky dielectric liquid and gas contained between two concentric cylin-

drical electrodes in an axisymmetric geometry. They found that four behaviours

can occur (depending on the values of the system parameters):

1. A stable regime in which the interface is uniform.

2. Nonlinear steady-state travelling waves.

3. Complex droplet-like behaviour that did not reach a steady state.
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Figure 1.4: Plots of h as a function of x for varying values of the ratio of the
lower to upper film thicknesses. Reproduced with permission from [75].

4. The formation of finite-time singularities.

Wray et al. [116] also performed a parametric investigation to determine where

in parameter space each of the four behaviours occur.

Even though the studies discussed above investigate planar or axisymmetric

geometries, there have also been studies exploring three dimensional systems

[117, 76].

1.7.2 Coating and draining flow problems

Wang and Papageorgiou [74] investigated two immiscible perfect or leaky dielec-

tric fluids in an axisymmetric geometry, that were confined between two concen-

tric cylinders in the presence of a radial electric field. They showed that, for

perfect dielectric fluids, filling and draining lobes (separated by troughs) formed,

as described in Section 1.4. In particular, they found that h ∼ t−1/2 in the trough

regions, the same scaling law as that seen in previous studies [80, 81, 83]. Also,

Pillai and Narayanan [118] investigated the two-dimensional case of a bilayer
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of perfectly conducting liquid below a passive gas, contained between two planar

electrodes. They showed that the interface evolved into filling and draining lobes,

and observed a sliding phenomena at late times. They stated that this sliding

phenomenon must be facilitated by an asymmetric instability, as shown to be the

case for the system investigated by Dietze et al. [86]. They also investigated the

fast charge relaxation limiting case (i.e. when both the liquid and gas are highly

conducting), and showed that a cascade of buckling events occurred in the trough

regions, as also seen by Dietze et al. [86].

1.7.3 Film or jet rupture problems

There have been studies of finite-time singularities in systems with electric fields.

The pinching or breakup of liquid jets or threads have been studied [119, 120],

and also flows with charged surfactants [121, 122, 123, 124]. Barannyk et al.

[125] observed finite-time singularities when investigating two perfect dielectric

liquid films contained between two electrodes, where the electric field was applied

parallel to the interface. Wray et al. [116] investigated finite-time interfacial

touchdown and obtained similarity solutions for the interfacial height close to

touchdown. Wang and Papageorgiou [74], who investigated the axisymmetric

case of two viscous fluids contained between two concentric electrodes, found

that finite-time touchdown can occur at either electrode for leaky dielectrics, and

two-sided touchdown can occur for perfect dielectrics.

1.7.4 Other studies of EHD flows

Two and three-dimensional WRIBL models were derived by Wray et al. [70]

to investigate gravity-driven, leaky-dielectric films with inertial effects. These

models were validated against linear theories and DNS, and showed excellent

agreement. A parametric study found that increasing the conductivity ratio and

decreasing the permittivity ratio resulted in a disordered interface (i.e. there is
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no clear order to the interfacial profile) and an increase in surface area. More

recent studies have used WRIBL models to study flows with electrostatic effects

[118, 126, 127, 128], and have shown them to be accurate in describing “thick-film

flows” with electrostatic effects [129], showing both very good agreement with

the linear stability results of the full Navier–Stokes equations, like accurately

predicting the critical Reynolds number from stability to instability, as well as

good qualitative agreement with DNS.

Furthermore, there have been studies of a thin, perfectly conducting or perfect

dielectric liquid film below a passive, perfectly dielectric gas (which is not thin),

that are only bounded below by an electrode [130, 131, 132, 133, 134]. However,

there has been little attention paid to two-dimensional, thin, perfectly conducting

liquid and perfectly insulating gas films that are bounded by two electrodes.

These systems are singular (i.e. the denominators of the governing equations are

zero) when the interface touches one of the electrodes [36]. Also, the situation

in which a liquid flows over a corrugated electrode or wall has been investigated

[68, 135, 136, 134, 137], and the results showed that the flows have nonuniform

steady states.

The studies above investigated systems with DC electric fields, but the effect of

AC electric fields have also been studied [138, 139, 140, 141, 142, 143, 118, 126].

It has been shown that the size and frequency of the interfacial patterns that

form can be controlled by AC electric fields, and the subharmonic modes that

arise may dominate depending on the imposed electric field.

Lastly, even though there have been extensive studies on varying the values of

system parameters to investigate their effect on the stability of the system and

on the evolution of different structures, there have been few parametric studies

investigating where different behaviours occur [116]. In particular, there have

been no systematic parametric investigations of the whole of parameter space to

determine where different behaviours occur. In systems where the interface can

20



touch either electrode, it may be useful to know where in parameter space the

interface approaches one electrode rather than the other. Also, knowledge of how

behaviours change when a parameter (e.g. the conductivity or permittivity of a

liquid) is varied will give a deeper insight into the effects of these parameters on

the behaviour of flows. In this thesis, we will determine all possible behaviours

that occur for the systems being investigated, and parametric studies will be

performed that will determine where in the relevant parameter spaces the different

behaviours occur.

1.8 Thesis outline

In Chapter 2, we derive the model used to describe the two-dimensional system

we will investigate, namely a bilayer of liquid and gas contained between two pla-

nar electrodes. We derive the LW approximation to this model, as well as three

limiting cases of the LW model, namely, when the liquid is perfectly conducting,

the liquid and gas are both highly conducting, and when the liquid and gas are

both perfect dielectrics. The case where the liquid and gas are perfect dielectrics

is mathematically similar to the other limiting cases, and so, along with the time

constraints of the PhD, we do not investigate this case in this thesis.

In Chapter 3, we perform a linear stability analysis of the perfectly conducting,

highly conducting limiting cases, as well as the LW model. To validate these

models in appropriate regime, the results are compared against the results of

the full model. We then introduce and describe the numerical schemes used to

perform our numerical calculations in Chapter 4. In particular, we explain the

Matlab code that was used to perform these calculations, as well as additional

code used to perform extra analyses.

The case where the liquid is perfectly conducting is then investigated in Chapter

5. We identify three possible behaviours and explore parameter space, indicating
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where these behaviours occur, and investigate each behaviour further, both ana-

lytically and numerically.

In Chapter 6, we investigate the case where the liquid and gas are both highly

conducting. Again, we identify the same three possible behaviours and explore

parameter space, indicating where these behaviours occur, and investigate each

behaviour further, both analytically and numerically.

We then investigate the LW model in Chapter 7, identifying four possible be-

haviours. We explore parameter space, indicating where these behaviours occur,

and investigate the four behaviours further, both analytically and numerically.

In Chapter 8, we provide a summary of our analysis, draw conclusions, and high-

light possible directions for future work.

1.9 Presentations and publications

The work contained in this thesis was presented at several local, national, and in-

ternational conferences and meetings. Specifically, oral presentations of Chapters

3–7 were given at the following conferences and meetings: the British Applied

Mathematics Colloquium 2019, Bath, the SIAM-IMA Student Chapter Confer-

ence 2019, University of Strathclyde, and the 8th International Symposium on Bi-

furcations and Instabilities in Fluid Dynamics 2019, University of Limerick. In ad-

dition, a poster presentation of Chapters 3–7 was given at the 32nd Scottish Fluid

Mechanics Meeting 2019, Dundee. A virtual presentation of Chapters 3–7 was

also given at the APS–DFD 2020, Chicago, and a short prerecorded presentation

can still be viewed on YouTube (accessible via https://youtu.be/8q4TSyET1zc).

Furthermore, Chapters 3–7 were also presented by Dr A.W. Wray at the Joint

British Mathematical Colloquium / British Applied Mathematics Colloquium

2021 held virtually at the University of Glasgow. The work described in this

thesis is currently being written up for publication in a peer-reviewed journal.
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Chapter 2

Formulation of the mathematical

model

In Section 2.1, we will introduce the system being investigated, describing the

geometry setup and the coordinate system. In Sections 2.2 and 2.3, the hydrody-

namic and electrostatic parts of the model, respectively, will be introduced and

presented in more detail. In particular, the governing equations will be obtained,

non-dimensionalised, and presented in coordinate form before deriving the LW

version of the model. In Section 2.4, we will derive the governing equations for

three limiting cases of the LW model.

2.1 System formulation

We consider a two-dimensional film of leaky dielectric liquid with constant density

ρ and viscosity µ, and a hydrodynamically passive gas sandwiched between two

impermeable, infinite electrodes. A potential difference is present across the two

electrodes which induces electric fields EL and EG in the liquid and gas, respec-

tively. The voltage potential in the liquid and gas are given by φL = φL(x, y, t)

and φG = φG(x, y, t), respectively. The liquid has constant conductivity σL and

permittivity ǫLǫ0, where ǫL is the relative permittivity of the liquid and ǫ0 is
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Figure 2.1: Schematic diagram of the system.

the permittivity of free space, and the gas has constant conductivity σG and

permittivity ǫGǫ0, where ǫG is the relative permittivity of the gas. A Cartesian

coordinate system (x, y) is used in which the velocity of the liquid u is described

by

u = (u, v) = (u(x, y, t), v(x, y, t)) , (2.1)

where t denotes time. The lower electrode, located at y = 0, is held at zero

voltage potential. The upper electrode is located at y = d and has constant

voltage potential φ = φd. The liquid-gas interface is located at y = h(x, t) and

has constant interfacial tension γ. Hence, the liquid and gas are located in the

regions 0 < y < h(x, t) and h(x, t) < y < d, respectively. In the absence of

perturbations, y = h0 where h0 is a constant, i.e. the interface is flat and parallel

to the electrodes. The normal and tangential vectors of the interface are expressed

as

n =
(−∂h/∂x, 1)(

1 + (∂h/∂x)2
)
)1/2

, t =
(1, ∂h/∂x)

(
1 + (∂h/∂x)2

)1/2 ,

respectively, in which h = h(x, t). A schematic diagram of this system is shown

in Figure 2.1.
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2.2 Hydrodynamic part

We begin by formulating the hydrodynamic part of the model. The governing

equations are presented in Section 2.2.1 before non-dimensionalising in Section

2.2.2. The equations are then expressed in coordinate form in Section 2.2.3 before

a LW approximation is made in Section 2.2.4.

2.2.1 Governing equations

There is assumed to be no charge in the bulk of the liquid or gas which is in line

with the Taylor–Melcher leaky dielectric model, which is a reasonable assumption

to make for a small charge relaxation time [35, 36]. This assumption makes the

analysis more tractable since the electrostatic effects are only incorporated into

the model through the boundary conditions. Hence, the hydrodynamics of the

liquid are governed by the Navier–Stokes and continuity equations,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u, (2.2)

∇ · u = 0, (2.3)

respectively, which are subject to the standard no-slip and no-penetration on the

lower electrode,

u = 0 on y = 0. (2.4)

At the interface y = h(x, t), there is the balance of normal and tangential stresses,

[n ·T · n]GL = γκ [n ·T · t]GL = 0, (2.5)
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where

κ = − ∂2h/∂x2

(
1 + (∂h/∂x)2

)3/2 , (2.6)

is the interfacial curvature, [·]GL represents the jump in the value of a quantity from

one side of the interface to the other, andT is the total stress tensor. In particular,

the total stress tensor contains three components, T = −pI + M + τ , where

p = p(x, y, t) is the pressure in the liquid, M is the Maxwell stress tensor, and

τ is the viscous stress tensor [39, 144]. The electrostatic effects are incorporated

into the model through the Maxwell stress tensor M and will be described by

equation (2.39) in Section 2.3.

Lastly, there is the kinematic boundary condition at the interface,

D

Dt
(y − h(x, t)) = 0, (2.7)

where D/Dt = ∂/∂t+u · ∇ is the material derivative, and equation (2.7) can be

expressed as

∂h

∂t
+ u

∂h

∂x
= v, (2.8)

evaluated at y = h(x, t).

2.2.2 Non-dimensionalisation

The system is made non-dimensional using the following scalings,

(x, y, h) = h0(x
′, y′, h′), (u, v) = V (u′, v′), p =

V µ

h0
p′, t =

h0
V
t′, (2.9)

where the dashes denote dimensionless quantities and V is the characteristic

velocity which will be defined in Section 2.2.4. The following non-dimensional

26



parameters arise,

d′ =
d

h0
, Ca =

µV

γ
, Re =

ρh0V

µ
, (2.10)

where d′ is the scaled position of the upper electrode, Ca is the capillary number,

and Re is the Reynolds number.

Immediately dropping the dashes, the Navier–Stokes and continuity equations,

(2.2) and (2.3), respectively, become

Re

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇2u, (2.11)

∇ · u = 0. (2.12)

We will only consider flows in which liquid inertia is neglected, i.e. Re = 0,

which corresponds to viscous forces being much greater than inertial forces. This

regime is called Stokes flow (also called creeping flow or slow flow [39]) and in it

equations (2.11) and (2.12) become the Stokes flow (SF) equations,

0 = −∇p+∇2u, (2.13)

∇ · u = 0. (2.14)

The normal and tangential interfacial stresses (2.5) are

[n ·T · n]GL =
κ

Ca
[n ·T · t]GL = 0, (2.15)

and the non-dimensional kinematic condition (2.23) is

∂h

∂t
+ u

∂h

∂x
= v. (2.16)
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2.2.3 Cartesian Coordinate form

The governing equations (2.13)-(2.16) are now presented in Cartesian coordinate

form. The SF equations, (2.13) and (2.14), are

0 = −∂p
∂x

+

(
∂2u

∂x2
+
∂2u

∂y2

)
, (2.17)

0 = −∂p
∂y

+

(
∂2v

∂x2
+
∂2v

∂y2

)
, (2.18)

0 =
∂u

∂x
+
∂v

∂y
. (2.19)

The no-slip and no-penetration boundary conditions (2.4) give

u = v = 0 on y = 0, (2.20)

and the normal and tangential stress conditions (2.15), respectively, evaluated at

y = h(x, t), become

2

(
∂v

∂y
+
∂u

∂x

(
∂h

∂x

)2

− ∂h

∂x

(
∂u

∂y
+
∂v

∂x

))
− EN =

[
1 +

(
∂h

∂x

)2
](

p− κ

Ca

)
,

(2.21)

(
1−

(
∂h

∂x

)2
)(

∂u

∂y
+
∂v

∂x

)
+ 2

∂h

∂x

(
∂v

∂y
− ∂u

∂x

)
− ET = 0, (2.22)

where

EN =
h0
V µ

(
1 +

(
∂h

∂x

)2
)
[n ·M · n]GL , ET =

h0
V µ

(
1 +

(
∂h

∂x

)2
)
[t ·M · n]GL ,

are the electrostatic contributions to the normal and tangential stresses, respec-

tively, which describe the jump in value of the Maxwell stress across the interface,

and will be given by equations (2.57) and (2.61) in Section 2.3.

After using the continuity equation (2.19) and the no-penetration condition (2.20),
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the kinematic condition (2.16) in Cartesian coordinate form is given by

∂h

∂t
+

∂

∂x
Q(x, t) = 0, (2.23)

where Q(x, t) =
∫ h

0
udy is the volume flux of liquid across the line x = constant.

2.2.4 Long-wave (LW) approximation

The LW version of the SF model is now derived, in which the analysis of the

system becomes more tractable by reducing the system from two dimensions (x, y)

to one dimension x. This allows for more progress to be made both analytically

and numerically.

The following scalings are used:

• Assuming the characteristic length of the film is long relative to its thickness

motivates the scaling x = x̃/ǫ, where ǫ = h0/λ≪ 1 is the small aspect ratio

and λ is the characteristic wavelength of the system.

• To keep both terms of the continuity equation (2.19) (and ensure mass

conservation) at leading-order in ǫ, the familiar LW scaling for the x- and

y-component of the velocity, u = ǫũ and v = ǫ2ṽ, are imposed.

• To retain the time dependence term in the kinematic condition (2.23) at

leading-order, the scaling t = t̃/ǫ2 is imposed.

• To keep the surface tension terms at leading-order in ǫ in (2.21), the scaling

Ca = ǫ2C̃a is imposed.

In summary, the LW version of the SF model is derived by imposing the following

scalings:

x =
1

ǫ
x̃, t =

1

ǫ2
t̃, u = ǫũ, v = ǫ2ṽ, Ca = ǫ2C̃a. (2.24)
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From here on, we set C̃a = 1 which fixes the characteristic velocity as V = γǫ2/µ

through the definition of the capillary number (2.10).

2.2.4.a Leading-order equations

After introducing the scalings (2.24), and dropping the tildes immediately, the

leading-order SF equations (2.17) and (2.18) become

0 = −∂p
∂x

+
∂2u

∂y2
, (2.25)

0 = −∂p
∂y
. (2.26)

Equation (2.26) shows that the pressure is independent of y, i.e. p = p(x, t).

Furthermore, equation (2.25) is used with the no-slip (2.20) and the tangential

stress (2.22) conditions to yield an expression for u,

u =
1

2

∂p

∂x

(
y2 − 2hy

)
+ ET

LWy, (2.27)

where the expression for p is obtained from the leading-order normal stress con-

dition (2.21), namely,

p = −∂
2h

∂x2
− EN

LW, (2.28)

where ET
LW and EN

LW are the leading-order electrostatic contributions to the tan-

gential and normal stresses, respectively, which will be given in Section 2.3.4.

The kinematic condition (2.23) is

∂h

∂t
+
∂Q

∂x
= 0, (2.29)
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where Q = Q(x, t) and substituting the expression for u (2.27) into (2.29) yields

the governing equation for the interfacial height h,

∂h

∂t
+

∂

∂x

(
h3

3

(
∂2h

∂x2
+ EN

LW

)
+
h2

2
ET

LW

)
= 0. (2.30)

2.3 Electrostatic part

We now formulate the electrostatic part of the model. The governing equations

are presented in Section 2.3.1 before non-dimensionalising in Section 2.3.2. The

equations are expressed in coordinate form in Section 2.3.3 before a LW approx-

imation is made in Section 2.3.4.

2.3.1 Governing equations

The electrostatic part of the model is described by the Taylor–Melcher leaky

dielectric model [35, 36] introduced in Section 1.6.1. The electric field in the

liquid and gas regions, EL = EL(x, y, t) and EG = EG(x, y, t), respectively, satisfy

∇ · EL = 0, ∇× EL = 0, (2.31)

∇ · EG = 0, ∇× EG = 0. (2.32)

Therefore, since the electric field in the liquid and gas have zero divergence and

zero curl, they can be expressed in terms of the gradients of voltage potential

according to EL = −∇φL(x, y, t) and EG = −∇φG(x, y, t), which satisfy Laplace’s

equation,

∇2φL = 0, ∇2φG = 0. (2.33)
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At the interface y = h(x, t), the electric field satisfies Gauss’ law,

ǫ0
[
ǫLE

L − ǫGE
G
]
· n = q, (2.34)

where q = q(x, t) is the interfacial charge density. The tangential component of

the electric field is continuous across the interface so that

[
EL − EG

]
· t = 0 at y = h(x, t). (2.35)

Equations (2.34) and (2.35) may be rewritten as conditions for the voltage po-

tential φL = φL(x, y, t) and φG = φG(x, y, t), evaluated at y = h(x, t), specifically,

ǫ0
[
ǫL∇φL − ǫG∇φG

]
· n = −q, (2.36)

φL = φG, (2.37)

where the voltage potential boundary conditions at the lower and upper electrodes

are

φL|y=0 = 0, φG|y=d = φd. (2.38)

The Maxwell stress tensor is defined as [35]

M = ǫǫ0

(
E⊗ E− 1

2
|E|2 I

)
, (2.39)

where E = EL and ǫ = ǫL, and E = EG and ǫ = ǫG in the liquid and gas,

respectively.

Lastly, the charge transport equation, evaluated at y = h(x, t), which governs the

evolution of charge q at the interface [35, 36], is given by

∂q

∂t
+ u · ∇sq − qn · (n · ∇)u = −

[
σLE

L − σGE
G
]
· n, (2.40)
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where ∇s = ∇ − n (n · ∇) is the surface gradient operator. This can be recast

so that the right hand side is expressed in terms of the voltage potentials φL and

φG, evaluated at y = h(x, t), namely,

∂q

∂t
+ u · ∇sq − qn · (n · ∇)u =

[
σL∇φL − σG∇φG

]
· n. (2.41)

Pillai and Narayanan [118, 126] included an additional diffusion term that incor-

porates the effects of the interfacial velocity u|h on the distribution of charge on

the interface, as studied by Johns [145]. It is expected that this will occur over a

much slower timescale that the other diffusion terms and so is neglected in this

system [35].

2.3.2 Non-dimensionalisation

The system is made non-dimensional using the scalings (2.9) and

(
φL, φG

)
= φd

(
φL′, φG′

)
, q =

ǫGǫ0φd

h0
q′. (2.42)

The following non-dimensional parameters arise,

Eb =
ǫGǫ0φ

2
d

µV h0
, ΣL =

σLh0
ǫGǫ0V

, ΣG =
σGh0
ǫGǫ0V

, ǫR =
ǫL
ǫG
, (2.43)

where Eb is a measure of the electric field strength, ΣL and ΣG are measures of

the conductivities in the liquid and gas, respectively, and ǫR is the ratio of the

permittivities between the liquid and gas.

Dropping the dashes immediately, the governing equations for the voltage poten-

tial (2.33) become

∇2φL = 0, ∇2φG = 0. (2.44)
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The non-dimensionalisation applied to Gauss’ law (2.36) and the continuity of

voltage potential (2.37) at the interface y = h(x, t) yields

∇
(
φG − ǫRφ

L
)
· n = −q, (2.45)

φL = φG, (2.46)

respectively, and the boundary conditions for the voltage potential at the elec-

trodes (2.38) become

φL|y=0 = 0, φG|y=d = 1. (2.47)

Lastly, the non-dimensionalised charge transport equation (2.41), evaluated at

y = h(x, t) is

∂q

∂t
+ u · ∇sq − qn · (n · ∇)u =

[
ΣL∇φL − ΣG∇φG

]
· n. (2.48)

2.3.3 Cartesian Coordinate form

The electrostatic part of the model is now presented in Cartesian coordinate form.

The voltage potential governing equations (2.44) become

∂2φL

∂x2
+
∂2φL

∂y2
= 0, (2.49)

∂2φG

∂x2
+
∂2φG

∂y2
= 0. (2.50)

Gauss’ law (2.45) and the continuity of voltage potential (2.46) in Cartesian

coordinate form are

−
(
1 +

∂h

∂x

2) 1

2

q =

(
∂φG

∂y
− ∂h

∂x

∂φG

∂x

)
− ǫR

(
∂φL

∂y
− ∂h

∂x

∂φL

∂x

)
, (2.51)

φL = φG, (2.52)
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respectively, evaluated at y = h(x, t), and the boundary conditions at the elec-

trodes (2.47) are

φL|y=0 = 0, φG|y=d = 1. (2.53)

The Maxwell stress tensor (2.39) in Cartesian coordinate form is

M =
ǫL,Gǫ0φ

2
d

h20






(
∂φ
∂x

)2 ∂φ
∂x

∂φ
∂y

∂φ
∂x

∂φ
∂y

(
∂φ
∂y

)2


− 1

2

((
∂φ

∂x

)2

+

(
∂φ

∂y

)2
)
I


 . (2.54)

We now calculate the electrostatic contribution to the normal and tangential

stresses EN and ET, respectively. Firstly, the electrostatic contribution to the

normal stress is

EN =
h0
V µ

(
1 +

(
∂h

∂x

)2
)
[n ·M · n]GL (2.55)

=
ǫGǫ0φ

2
d

h0V µ
MG − ǫLǫ0φ

2
d

h0V µ
ML (2.56)

= Eb (MG − ǫRML) , (2.57)

where

ML,G =

[
1

2

(
1−

(
∂h

∂x

)2
)((

∂φ

∂y

)2

−
(
∂φ

∂x

)2
)

− 2
∂h

∂x

∂φ

∂x

∂φ

∂y

]
; (2.58)

and the electrostatic contribution to the tangential stress is

ET =
h0
V µ

(
1 +

(
∂h

∂x

)2
)
[t ·M · n]GL (2.59)

=
h0
V µ

(
[ǫǫ0 t · (E⊗ E) · n]GL − 1

2

[
ǫǫ0 |E|2 t · n

]G
L

)
, (2.60)

= −Ebq

(
1 +

(
∂h

∂x

)2
) 1

2

∂φ|y=h

∂x
, (2.61)
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where E = EL = EG, φ = φL = φG, and ǫ = ǫL = ǫG evaluated at y = h(x, t), and

we have used the fact that t ·n = 0 to remove the second term of (2.60) and have

used Gauss’ law (2.45) to obtain (2.61). The electrostatic stress terms (2.57) and

(2.61) are then substituted into equations (2.21) and (2.22) for the normal and

tangential stresses, respectively, to yield

2

(
∂v

∂y
+
∂u

∂x

(
∂h

∂x

)2

− ∂h

∂x

(
∂u

∂y
+
∂v

∂x

))
− 1

2

(
1− ∂h

∂x

2)((∂φ
∂y

)2

−
(
∂φ

∂x

)2
)

− 2
∂h

∂x

∂φ

∂x

∂φ

∂y
=

[
1 +

(
∂h

∂x

)2
](

p− κ

Ca

)
, (2.62)

and

(
1−

(
∂h

∂x

)2
)(

∂u

∂y
+
∂v

∂x

)
+ 2

∂h

∂x

(
∂v

∂y
− ∂u

∂x

)
+ Ebq

(
1 +

(
∂h

∂x

)2
) 1

2

∂φ|y=h

∂x
= 0.

(2.63)

The charge transport equation (2.48) in coordinate form becomes

∂q

∂t

(
1 +

(
∂h

∂x

)2
)

+
∂q

∂x

(
u+ v

∂h

∂x

)
− q

(
∂v

∂y
+
∂u

∂x

(
∂h

∂x

)2

− ∂h

∂x

(
∂v

∂x
+
∂u

∂y

))

=

(
1 +

(
∂h

∂x

)2
)1/2 [

ΣL

(
∂φL

∂y
− ∂h

∂x

∂φL

∂x

)
− ΣG

(
∂φG

∂y
− ∂h

∂x

∂φG

∂x

)]
.

(2.64)

2.3.4 Long-wave (LW) approximation

The LW version of the model is derived by using the scalings (2.24) from Section

2.2.4. In addition, the following scalings are used (where the tilde variables are

O(1)):

• Using the scalings (2.24), the electrostatic effects described in the normal

and tangential stress conditions (2.21) and (2.22), respectively, are lost at
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leading-order. To retain these effects, the scaling Eb = Ẽb/ǫ is imposed.

• To keep the right hand side of the charge transport equation (2.64), i.e.

the ion conduction terms, at leading-order, the scalings ΣL = ǫ2Σ̃L and

ΣG = ǫ2Σ̃G are imposed.

In summary, the LW version of the model is derived by using the scalings (2.24)

as well as the three additional scalings,

Eb =
1

ǫ
Ẽb, (ΣL,ΣG) = ǫ2

(
Σ̃L, Σ̃G

)
. (2.65)

2.3.4.a Leading-order equations

After introducing the scalings (2.24) and (2.65), and dropping the tildes immedi-

ately, the leading-order governing equations for the voltage potential in the liquid

and gas, (2.49) and (2.50), respectively, are

∂2φL

∂y2
= 0, (2.66)

∂2φG

∂y2
= 0. (2.67)

Gauss’ law (2.51) and the continuity of voltage potential (2.52) at leading order

are

−q = ∂φG

∂y
− ǫR

∂φL

∂y
, (2.68)

φL = φG, (2.69)

respectively, evaluated at y = h(x, t). Together with the boundary conditions at

the lower and upper electrodes (2.53), equations (2.66) and (2.67) can be solved
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to obtain the following expressions for φL and φG,

φL(x, y, t) =
((d− h)q + 1) y

ǫR(d− h) + h
, φG(x, y, t) =

(ǫR − hq)(y − d)

ǫR(d− h) + h
+ 1. (2.70)

The leading-order electrostatic contribution to the normal and tangential stresses,

(2.57) and (2.61), respectively, are

EN
LW =

Eb

2

((
∂φG

∂y

)2

− ǫR

(
∂φL

∂y

)2
)
, (2.71)

ET
LW = −Ebq

∂φ|y=h

∂x
, (2.72)

where φ = φL = φ = φG evaluated at y = h(x, t), and are then used in the

governing equation for the interfacial height h (2.30). The expression for the

pressure p (2.28) is

p = −∂
2h

∂x2
− Eb

2

((
∂φG

∂y

)2

− ǫR

(
∂φL

∂y

)2
)
. (2.73)

The electrostatic terms (2.71) and (2.72) are used in the leading-order governing

equation for the interfacial height h (2.30) to give

∂h

∂t
− ∂

∂x

(
h3

3

∂p

∂x
+
Eb

2
qh2

∂φ|y=h

∂x

)
= 0, (2.74)

and the charge transport equation (2.64) at leading-order in ǫ becomes

∂q

∂t
− ∂

∂x

(
1

2
qh2

∂p

∂x
+ Ebq

2h
∂φ|y=h

∂x

)
= ΣL

∂φL

∂y
− ΣG

∂φG

∂y
, (2.75)

where expressions for the pressure p and the voltage potentials φL and φG are

given by (2.73) and (2.70), respectively.
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2.3.5 Recasting in canonical form

The following additional scalings are imposed:

x =
1

Σ
1/4
G

x′, t =
1

ΣG

t′, Eb = Σ
1/2
G E ′

b, (2.76)

which reduces the number of dimensionless parameters by one. In particular, ΣL

and ΣG are replaced with the new dimensionless parameter

ΣR =
ΣL

ΣG

,

which is the ratio of the conductivities of the liquid and the gas. The right hand

side of the charge transport equation (2.75) becomes an expression involving ΣR,

namely,

∂q

∂t
− ∂

∂x

(
1

2
qh2

∂p

∂x
+ Ebq

2h
∂φL,G|y=h

∂x

)
=
∂φG

∂y
− ΣR

∂φL

∂y
, (2.77)

where the dashes are dropped immediately. The other equations in the LW model

(2.70), (2.73), and (2.74) remain unchanged.

In Chapters 3 and 7, will use this version of the charge transport equation, i.e.

equation (2.77) in place of (2.75), in which we will investigate (ΣR, ǫR) parameter

space.

2.3.6 Typical parameter values

A bilayer of water or polymer (liquid) and air (gas) that are used in devices at

the micro and nano scale for applications as discussed in Section 1.1. Hence, in
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exploring these applications, we use the values [109, 110, 75, 146, 126]

γ = 0.03 N/m, µ = 10 N s/m2, ǫ0 = 8.85× 10−12 C2 s2 / kg m3, h0 = 1× 10−8 m,

σL =
[
10−13 − 10−9

]
C2s/(kg m2), σG =

[
10−15 − 10−9

]
C2s/(kg m2).

(2.78)

The characteristic velocity V = γǫ2/µ is substituted into the non-dimensional

conductivities (2.43), subject to (2.43) and (2.65), to give

ΣL,G =
µh0σL,G
γǫ0ǫGǫ4

. (2.79)

and using (2.78) yields

ΣL,G =
1.88× 107

ǫ4
σL,G. (2.80)

The values for σG and σL were chosen to be

σG = 10−11 C2s/(kg m2), σL =

[
10−11 − 1

]
C2s/(kg m2), (2.81)

where the values inside the square brackets indicate a range of σL from 10−11 to

1, and using them in the conductivity ratio ΣR = σL/σG gives the range

ΣR =

[
1− 1011

]
C2s/(kg m2). (2.82)

Furthermore, the conductivities and permittivities of liquids are typically greater

than those of gases [110, 75, 126], and so, throughout this thesis, we will investi-

gate systems where ΣR ≥ 1 and ǫR ≥ 1.
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Furthermore, we use (2.43) subject to (2.65) to give

Eb =

(
ǫ2ǫ3Gǫ

3
0

µγh30σG

)1/2

. (2.83)

Using (2.78) yields Eb = 15.2ǫ, and for values of ǫ = [0.1− 0.5], we obtain

Eb = [1.52− 7.6] . (2.84)

2.4 Electrostatic limiting cases

In many cases, models can be simplified by exploring approximations in particular

regimes that are typical of what occurs physically. The limiting cases of these

models allow for even greater analytical and numerical progress. In this Section,

three commonly studied limiting cases of the LW model, given in Sections 2.2.4.a

and 2.3.4.a, are now derived. Specifically, these are the perfectly conducting

(PC) case, the highly-conducting (HC) case, and the perfectly dielectric (PD)

case. These approximations all lead to useful simplifications of the LW model

as it is reduced from two coupled governing equations for h and q to a single

governing equation for the interfacial height h.

2.4.1 Perfectly conducting (PC) case

Many common liquids have a high conductivity (e.g. brine water [116] and ultra-

pure water [118]), and a commonly studied system is when the conductivity of the

liquid is much greater than the conductivity of the overlying gas. For example,

we choose the liquid to be ultrapure water which has conductivity σL = 5.5×10−6

C2s/(kg m2) [126], and the gas to be air with conductivity σG = 10−13 C2s/(kg
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m2). Together with the parameter values (2.78), we obtain

ΣR =
σL
σG

= 5.5× 107. (2.85)

Hence, we will explore the limit where the conductivity ratio of the liquid and

gas is large, i.e. the limit ΣR → ∞. Taking this limit yields a single governing

equation for the interfacial height h and we will call this the perfectly conducting

(PC) case.

2.4.1.a Derivation of the governing equation

In the limit ΣR → ∞, the charge transport equation (2.77) simplifies to

∂φL

∂y
= 0, (2.86)

and, together with the governing equation for the voltage potential in the liquid

(2.66) and the boundary condition at the lower electrode (2.53), the voltage po-

tential in the liquid is φL ≡ 0. This means that everywhere in the liquid takes

the value of the potential of the lower electrode.

The continuity of voltage potential at the interface (2.69) simplifies to φG
∣∣
y=h

= 0,

and, together with the voltage potential boundary condition at the upper elec-

trode (2.53) and governing equation for the voltage potential (2.67), the voltage

potential in the gas has the simple linear form,

φG(x, y, t) =
y − h

d− h
. (2.87)

Using (2.86) and (2.87), the charge density q may now be explicitly determined

from Gauss’ law (2.68),

q = − ∂φG

∂y

∣∣∣∣
y=h

= − 1

d− h
. (2.88)
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Owing to the continuity of voltage potential at the interface, i.e. φG
∣∣
y=h

=

φL
∣∣
y=h

= 0, the tangential electric stress terms drop out of the governing equa-

tion for the interfacial height h (2.74), and, using (2.86), (2.87) and (2.88), the

governing equation for h is reduced to

∂h

∂t
+

∂

∂x

(
h3

3

(
∂3h

∂x3
+

Eb

(d− h)3
∂h

∂x

))
= 0. (2.89)

Equation (2.89) may be rendered into canonical form via the scalings

x = E
−1/2
b x′, t = E−2

b t′, (2.90)

where the non-dimensional parameter Eb is scaled out of (2.89). Hence, after

dropping the dashes, the governing equation for h (2.89) is

∂h

∂t
+

∂

∂x

(
h3

3

(
∂3h

∂x3
+

1

(d− h)3
∂h

∂x

))
= 0. (2.91)

2.4.1.b Summary of PC case

As we have shown, in the PC case, the LW model consisting of two coupled

nonlinear governing equations for h and q, (2.74) and (2.77), respectively, is sim-

plified to one governing equation for h (2.91). We will perform both analytical

and numerical investigations of equation (2.91) in Chapter 5. We are also inter-

ested in the parameter space of this system, which has two parameters, namely,

d and the computational domain length L, which will be introduced in Chapter 4.

2.4.2 Highly conducting (HC) case

Another common problem [70, 111, 126] is when the non-dimensional conductiv-

ities of both the liquid and gas are large. For example, we choose the liquid to be

water which has conductivity σL = 1 × 10−2 C2s/(kg m2), and the gas to be air
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with conductivity σG = 10−10 C2s/(kg m2) [146]. Together with the parameter

values

γ = 0.03 N/m, µ = 10 N s/m2, ǫ0 = 8.85× 10−12 C2 s2 / kg m3,

h0 = 10−3 m, ǫ = 0.1,

(2.92)

we obtain

ΣL = 3.76× 1012, ΣG = 1× 104. (2.93)

Hence, we will explore the limit where the conductivity of both the liquid and

gas are large i.e. the limits ΣL → ∞ and ΣG → ∞, and will consequently call

this the highly conducting (HC) case.

2.4.2.a Derivation of the governing equation

In the limit ΣL,G → ∞ with ΣL = O (ΣG), the interfacial charge transport

equation (2.75) simplifies to

φG
y = ΣRφ

L
y . (2.94)

Using (2.94) together with the governing equations for the voltage potential,

(2.66) and (2.67), the continuity of voltage potential at the interface (2.69),

and the voltage potential boundary conditions at the lower and upper electrodes

(2.53), solutions for φL and φG are obtained,

φL(x, y, t) =
y

ΣR(d− h) + h
, φG(x, y, t) =

ΣR(y − h) + h

ΣR(d− h) + h
. (2.95)
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Using (2.95), the charge density q may now be explicitly determined from Gauss’

law (2.68),

q =
ǫR − ΣR

ΣR(d− h) + h
. (2.96)

The expressions (2.95) and (2.96) are used in the governing equation for h (2.74)

to yield

∂h

∂t
= − ∂

∂x

[
h3

3

(
∂3h

∂x3
+
Eb(ΣR − 1)(Σ2

R − ǫR)

(ΣR(d− h) + h)3
∂h

∂x

)
+
h2

2

Ebd(ΣR − ǫR)ΣR

(ΣR(d− h) + h)3
∂h

∂x

]
.

(2.97)

Equation (2.97) may be rendered into canonical form via the scalings

x = E
−1/2
b x′, t = E−2

b t′, (2.98)

where the non-dimensional parameter Eb is scaled out of (2.97). Hence, after

dropping the dashes, the governing equation for h (2.97) becomes

∂h

∂t
= − ∂

∂x

[
h3

3

(
∂3h

∂x3
+

(ΣR − 1)(Σ2
R − ǫR)

(ΣR(d− h) + h)3
∂h

∂x

)
+
h2

2

d(ΣR − ǫR)ΣR

(ΣR(d− h) + h)3
∂h

∂x

]
.

(2.99)

Note that, by taking the limit ΣR → ∞, the governing equation (2.99) simplifies

to that of the PC model (2.91), as expected.

2.4.2.b Summary of the HC case

As we have shown, in the HC case, the LW model consisting of two coupled non-

linear governing equations for h and q, (2.74) and (2.75), respectively, is simplified

to one governing equation for h (2.99). We will perform both analytical and nu-

merical investigations to equation (2.99) in Chapter 6. We are also interested in

the parameter space of this system, which has four parameters, namely, d, ΣR,
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ǫR, and L.

2.4.3 Perfectly dielectric (PD) case

Another commonly studied problem [37, 109] is when both the liquid and gas are

perfect dielectrics (perfect insulators). For example, we choose the liquid to be

water with conductivity σL = 1× 10−11 C2s/(kg m2), and the gas to be air with

conductivity σG = 10−13 C2s/(kg m2) [118, 146]. Together with the parameter

values

γ = 0.03 N/m, µ = 10 N s/m2, ǫ0 = 8.85× 10−12 C2 s2 / kg m3,

h0 = 0.5× 10−6 m, ǫ = 0.5,

(2.100)

we obtain

ΣL = 3× 10−3, ΣG = 3× 10−5. (2.101)

Hence, we will explore the case when the conductivities of the liquid and gas are

zero, i.e. ΣL,G = 0, and call this the perfectly dielectric (PD) limiting case.

2.4.3.a Governing equation/system

In the PD limiting case, ΣL,G = 0 and it is assumed that, as well as no charge

in the bulk, there is no charge on the interface, i.e. q ≡ 0. Hence the interfacial

charge transport equation (2.75) is automatically satisfied.

Since q ≡ 0, Gauss’ law (2.68) becomes a statement of the continuity of current

across the interface,

φG
y = ǫRφ

L
y , (2.102)
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and together with the governing equations for the voltage potential, (2.66) and

(2.67), its boundary conditions at the upper and lower electrodes (2.53), and the

continuity of voltage potential across the interface (2.69), the expressions for φL

and φG are obtained,

φL(x, y, t) =
y

h− ǫR
, φG(x, y, t) =

ǫR(y − d)

(h− ǫR)(h− d)
+ 1. (2.103)

The absence of charge on the interface means that the tangential electric stress

terms drop out of the governing equation for the interfacial height h (2.74), and

the expressions for the potentials in the liquid and gas (2.103) are used in (2.74)

to give

∂h

∂t
+

∂

∂x

(
h3

3

(
∂3h

∂x3
+

EbǫR(ǫR − 1)2

(ǫR(d− h) + h)3
∂h

∂x

))
= 0. (2.104)

Equation (2.104) may be rendered into canonical form via the scalings

x = E
−1/2
b x′, t = E−2

b t′, (2.105)

where the non-dimensional parameter Eb is scaled out of (2.97). Hence, after

dropping the dashes, the governing equation for h (2.104) becomes,

∂h

∂t
+

∂

∂x

(
h3

3

(
∂3h

∂x3
+

ǫR(ǫR − 1)2

(ǫR(d− h) + h)3
∂h

∂x

))
= 0. (2.106)

2.4.3.b Summary of the PD case

As we have shown, in the HC case, the LW model consisting of two coupled

nonlinear governing equations for h and q, (2.74) and (2.75), respectively, is

simplified to one governing equation for h (2.106). Specifically, these parameters

are d, ǫR and L. We will not explore this limiting case further, firstly, due to time

constraints and secondly, the PD case is mathematically similar to both PC and
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HC limiting cases (there is no tangential component to the governing equation,

like the PC case, but there is no singularity at y = h, like the HC case), and so

we believe the PD model will exhibit the similar qualitative behaviours to the PC

and HC models. Hence, we concentrate our attention on the PC and HC limiting

cases.

2.5 Summary

In this Chapter, we have introduced and described the system under investigation

in Section 2.1, as illustrated by Figure 2.1. Specifically, we formulated a SF model

described in Sections 2.2.3 and 2.3.3. A LW approximation was then performed,

which provides a useful simplification by reducing the system from two dimensions

(x, y) to one dimension x, which is described by two coupled nonlinear equations

for h and q, specifically,

∂h

∂t
− ∂

∂x

(
h3

3

∂p

∂x
+
Eb

2
qh2

∂φL,G|y=h

∂x

)
= 0 (2.107)

∂q

∂t
− ∂

∂x

(
1

2
qh2

∂p

∂x
+ Ebq

2h
∂φL,G|y=h

∂x

)
= ΣL

∂φL

∂y
− ΣG

∂φG

∂y
, (2.108)

where

p = −∂
2h

∂x2
− Eb

2

((
∂φG

∂y

)2

− ǫR

(
∂φL

∂y

)2
)
, (2.109)

and φL and φG are given by

φL(x, y, t) =

(
(d− h)q + 1

ǫR(d− h) + h

)
y, (2.110)

φG(x, y, t) =
(ǫR − hq)(y − d)

ǫR(d− h) + h
+ 1. (2.111)
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Furthermore, we imposed the additional scalings (2.76), where the parameters ΣL

and ΣG are replaced by ΣR, thereby reducing the number of parameters in the

system by one. Hence, the system (2.107)-(2.111) remains unaltered other than

the charge transport equation (2.108) which becomes

∂q

∂t
− ∂

∂x

(
1

2
qh2

∂p

∂x
+ Ebq

2h
∂φL,G|y=h

∂x

)
=
∂φG

∂y
− ΣR

∂φL

∂y
. (2.112)

In Chapters 3 and 7, we will use the charge transport equation (2.112). Lastly,

we looked at limiting cases of the LW model, and derived the PC, HC, and

PD models. The PC and HC models contain single governing equations for

h, that is, equations (2.91) and (2.99), respectively. We also derived the PD

model which contains a single governing equation for h (2.106). However, due to

time constraints and that equation (2.106) is mathematically similar to equations

(2.91) and (2.99), we will not explore the PD model further. We will investigate

the PC and HC models further in Chapters 5 and 6, respectively.
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Chapter 3

Linear stability analysis

Performing a linear stability analysis involves perturbing the system variables

around a steady configuration, i.e. a base state, to determine whether it is stable

or not. This allows us to obtain the growth rate of the system in which we can

determine the relative importance of different physical mechanisms and obtain

an insight into the mechanisms stabilising and destabilising the flow. In Section

3.1, a simple uniform base state will be formulated, and in Section 3.2, a linear

stability analysis of the SF model will be performed in which the results of this

analysis are exact for this system. In Sections 3.3, 3.5, and 3.7, a linear stability

analysis of the LW, PC, and HC models, respectively, will be performed, and

in Sections 3.4, 3.6, and 3.8, the linear stability results of the LW, HC, and PC

models, respectively, will be compared with the linear stability results of the SF

model for a range of parameter values. This allows us to compare the agreement

in the appropriate parts of parameter space which can be used towards validating

the LW, HC, and PC models.

3.1 Base state

The SF model admits a base state with a flat interface and no flow, given by

h = 1 and u = v = 0, where the bars denote base state quantities.
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The governing equations for φL and φG,

∂2φL

∂x2
+
∂2φL

∂y2
= 0,

∂2φG

∂x2
+
∂2φG

∂y2
= 0,

were solved subject to the voltage potential boundary conditions at the elec-

trodes (2.53), the charge transport equation (2.64), and the continuity of voltage

potential across the interface (2.69), to give base state solutions for the voltage

potential in the liquid and gas, φ
L
= φ

L
(y) and φ

G
= φ

G
(y), respectively, namely,

φ
L
=

y

ΣR(d− 1) + 1
, φ

G
=

ΣR(y − 1) + 1

ΣR(d− 1) + 1
, (3.1)

which are both simple linear functions of y. These base state quantities were used

in Gauss’ law (2.51) to find the constant base state solution for the interfacial

charge density q, namely,

q =
ǫR − ΣR

ΣR(d− 1) + 1
, (3.2)

and the above base state quantities were used in the normal stress condition

(2.62) to find the constant base state solution for the pressure p, namely,

p =
Eb (ǫR − Σ2

R)

2 (ΣR(d− 1) + 1)2
. (3.3)

Furthermore, the stream function ψ(x, y, t) was introduced such that the stream

function to the base state ψ gives

u =
∂ψ

∂y
= 0, v = −∂ψ

∂x
= 0, (3.4)

which satisfies the continuity equation (2.19), and this yields

ψ = CS, (3.5)
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where CS is an irrelevant constant that we set to zero without loss of generality.

The base state described above will be used to perform the linear stability calcu-

lations throughout Chapter 3.

3.2 Stokes flow (SF) model

A linear stability analysis of the SF model was performed by perturbing around

the base state according to

(h, q, u, v, φL, φG, p) =
(
1, q, 0, 0, φ

L
, φ

G
, p
)
+ δ

[(
h̃, q̃, ũ, ṽ, φ̃L, φ̃G, p̃

)
est+ikx + c.c.

]
,

(3.6)

where δ ≪ 1 is the linearisation parameter, the tilde variables are the ampli-

tudes of the perturbation of the different variables, s is the (complex) growth

rate, c.c. denotes the complex conjugate, and k is the (real) wavenumber of the

perturbation. Also, note that

(
ũ, ṽ, φ̃L, φ̃G, p̃

)
=
(
ũ(y), ṽ(y), φ̃L(y), φ̃G(y), p̃(y)

)
.

The perturbation of the stream function ψ̃ = ψ̃(y) was introduced such that

ψ = ψ + δψ̃est+ikx, (3.7)

and

ũ =
∂ψ̃

∂y
, ṽ = −ikψ̃, (3.8)

and so ψ satisfies the continuity equation (2.19).

The perturbations (3.6) were substituted into the Stokes equations, (2.17) and
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(2.18), and equations were linearised to give

0 = −ikp̃− k2ũ+
∂2ũ

∂y2
, (3.9)

0 = −∂p̃
∂y

− k2ṽ +
∂2ṽ

∂y2
. (3.10)

Equations (3.9) and (3.10) were differentiated with respect to y and multiplied

by ik, respectively, and the expressions (3.8) were used to obtain expressions in

terms of ψ̃, namely,

0 = −ik ∂p̃
∂y

− k2
∂2ψ̃

∂y2
+
∂4ψ̃

∂y4
, (3.11)

0 = −ik ∂p̃
∂y

− k4ψ̃ + ik
∂2ψ̃

∂y2
. (3.12)

Subsequently, to remove the p̃ term, equation (3.12) was subtracted from equation

(3.11), giving

0 =
∂4ψ

∂y4
− 2k2

∂2ψ

∂y2
+ k4ψ, (3.13)

and this was solved for ψ̃ to give

ψ̃ = (C1 + C2y)e
ky + (C3 + C4y)e

−ky, (3.14)

where the Ci (i = 1, 2, 3, 4) are constants of integration. Hence, using (3.8),

expressions for ũ and ṽ in terms of ψ̃ were found, namely,

ũ = k
[
(C1 + C2y) e

ky − (C3 + C4y) e
−ky
]
, (3.15)

ṽ = −ik
[
(C1 + C2y)e

ky + (C3 + C4y)e
−ky
]
. (3.16)
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The Stokes equation (3.9) was multiplied by −i/k and rearranged to obtain an

expression for p̃, namely,

p̃ =
i

k

(
k2ũ− ∂2ũ

∂y2

)
, (3.17)

where ũ is given by (3.15), and for consistency, (3.17) also satisfies equation

(3.11).

Furthermore, the perturbations were substituted into the governing equations for

φL and φG, (2.49) and (2.50), respectively, and linearised to give

∂2φ̃L

∂y2
− k2φ̃L = 0, (3.18)

∂2φ̃G

∂y2
− k2φ̃G = 0, (3.19)

and these equations were solved for φ̃L and φ̃G to yield

φ̃L = CLe
−ky +DLe

ky, (3.20)

φ̃G = CGe
−ky +DGe

ky, (3.21)

where Ci, Di (i = L,G) are additional constants of integration.

Using the expressions for φ̃L and φ̃G, given by (3.20) and (3.21), respectively, the

linearised form of Gauss’ law (2.51) yields an expression for q̃, namely,

q̃ =
[
CGe

−k −DGe
k + ǫR

(
−CLe

−k +DLe
k
)]
k. (3.22)
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We also obtained the linearised form of the boundary conditions at the electrodes,

(2.20) and (2.53), namely,

ũ = ṽ = 0, (3.23)

φ̃L = φ̃G = 0, (3.24)

evaluated at y = 1, where ũ, ṽ, φ̃L, and φ̃G are given by (3.15), (3.16), (3.20),

and (3.21), respectively.

Furthermore, the linearised form of the normal stress (2.62), tangential stress

(2.63), the kinematic condition (2.23), the continuity of voltage potential (2.52),

and the charge transport equation (2.64) were obtained, namely,

0 = 2
∂ṽ

∂y
− Eb

(
∂φ

G

∂y

∂φ̃G

∂y
− ǫR

∂φ
L

∂y

∂φ̃L

∂y

)
+
i

k

(
∂2ũ

∂y2
− k2ũ

)
+ k2h̃, (3.25)

0 =
∂ũ

∂y
+ ikṽ + iEbkq

(
h̃
∂φ

∂y
+ φ̃

)
, (3.26)

0 = sh̃− ṽ, (3.27)

0 = φ̃L + h̃
∂φ

L

∂y
− φ̃G − h̃

∂φ
G

∂y
, (3.28)

0 = sq̃ − q
∂ṽ

∂y
− ΣG

∂φ̃G

∂y
+ ΣL

∂φ̃L

∂y
, (3.29)

evaluated at y = 1, where φ = φG = φL, the expression (3.17) for p̃ was used in

the normal stress condition, and ũ, ṽ, φ̃L, φ̃G and q̃ are given by (3.15), (3.16),

(3.20), (3.21) and (3.22) respectively.

The boundary conditions and interfacial conditions (3.23)–(3.29) were expressed

as the matrix equation Ax = 0, where x =
(
h̃, C1, C2, C3, C4, CL, CG, DL, DG

)T

is the vector of unknowns and A is the 9 × 9 stability matrix. The elements of

the stability matrix A are given in Appendix A. To obtain a non-trivial solution
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to this problem, we set det(A)= 0 and obtained the dispersion relation for the

growth rate s in terms of the wavenumber k and the other parameters in the

problem, namely, Eb, ΣG, ΣL, ǫR, and d.

The dispersion relation is a quadratic equation that has two roots, s = s1 and

s = s2, which arise from the two governing equations for h and q, (2.29) and

(2.64), respectively, and correspond to different modes of behaviour. The general

expressions for sSF1 and sSF2 are rather complicated, so we obtained their small-k

expansions, namely,

sSF1 =
EbΣG(ΣR − ǫR)

(
N SF

1 + T SF
1

)

6 (ΣR(d− 1) + 1)3
k2 +O(k4) (3.30)

as k → 0, where

N
SF

1 = 2(Σ2
R − ǫR), T

SF
1 = 3ΣRd,

and

sSF2 = −ΣG (ΣR(d− 1) + 1)

ǫR(d− 1) + 1
+O(k2) (3.31)

as k → 0. Here, N SF
1 and T SF

1 are the normal and tangential contributions of the

electrical stress, respectively. At leading-order in the small-k limit, the sign of the

sSF1 term (and so the stability of the flow) is dependent on the groupings ΣR− ǫR

and Σ2
R − ǫR. The leading-order term for sSF2 is always negative. Furthermore,

when Eb = 0, i.e. there is no electric field, sSF1 is always negative as capillarity is

now the only force present in the system and it is stabilising in a planar geometry.

These small-k expansions will be used, along with plots of sSF1 and sSF2 as functions

of k and other parameters, to compare the linear stability predictions of the SF

model with those of the LW, HC and PC models.
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3.3 Long-wave (LW) model

A linear stability analysis of the LW mode (derived in Sections 2.2.4.a and 2.3.4.a)

was performed by perturbing the interfacial height h and charge density q around

the uniform base state according to

(h, q) = (1, q) + δ
[(
h̃, q̃
)
est+ikx + c.c.

]
, (3.32)

where q is the base state quantity for q given by (3.2).

These perturbations were substituted into the governing equation h (2.107) and

q (2.112), which were then linearised. The resulting system is expressed as the

matrix equation Bx = 0, where B is the 2 × 2 stability matrix whose elements

are given in Appendix B, and x =
(
h̃, q̃
)T

. As before, we set det (B) = 0 and

solved it to obtain the dispersion relation describing the growth rate s in terms

of the wavenumber k and the other parameters in the problem, namely, Eb, d,

ΣR, and ǫR.

The dispersion relation is a quadratic equation that has two roots, s = sLW1 and

s = sLW2 , which arise from the two evolution equations for h and q, (2.107) and

(2.112), respectively, and correspond to different modes of behaviour. As was

the case for the SF model, the general expressions for sLW1 and sLW2 are rather

complicated, so we obtained their small-k expansions to elucidate behaviour in

this limit, namely,

sLW1 =
Eb(ΣR − ǫR)

(
N LW

1 + T LW
1

)

6 (ΣR(d− 1) + 1)3
k2 +O(k4) (3.33)

as k → 0, where

N
LW

1 = 2(Σ2
R − ǫR), T

LW
1 = 3ΣRd,
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and

sLW2 = −ΣR(d− 1) + 1

ǫR(d− 1) + 1
+

Eb(ΣR − ǫR)
(
N LW

2 + T LW
2

)

6 (ΣR(d− 1) + 1)3 (ǫR(d− 1) + 1)
k2 +O(k4) (3.34)

as k → 0, where

N
LW

2 = (ΣR + ǫR(d− 1))(ΣR(3d− 5) + 5),

T
LW
2 = (d− 1)(ΣR − ǫR)(ΣR(2d− 3) + 3).

Here, N LW
1 and N LW

2 , and T LW
1 and T LW

2 are the normal and tangential contri-

butions of the electrical stress, respectively. Specifically, (3.33) and (3.34) show

that, at leading-order in the small-k limit, the sign of sLW1 depends on the group-

ings ΣR− ǫR and Σ2
R− ǫR, whereas the leading-order term for sLW2 is always O(1)

and negative, and hence this mode is always linearly stable at leading order. Ad-

ditionally, as in the SF case, sLW2 is most unstable at k = 0 where it is neutrally

stable. Therefore, this small-k limit suggests that sLW1 is the most unstable mode

and that the values of ΣR and ǫR are crucial to determining the linear stability

of the system. As in the SF case, when Eb = 0, sLW1 is negative as capillarity is

the only force present in the system which is stabilising.

Furthermore, we performed a large-k expansion of sLW1 and sLW2 . Even though

this is the short-wave limit of the LW model, it is useful to show that the LW

model is stable to short-wave perturbations, i.e. short waves decay. The large-k

expansions are

sLW1 = −1

3
k4 +O

(
k2
)

(3.35)

as k → ∞, and

sLW2 = − Eb (d− 1) (ΣR − ǫR)
2

4 (ǫR (d− 1) + 1) (ΣR (d− 1) + 1)2
k2 +O (1) (3.36)
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as k → ∞. For Eb > 0, d > 1, ΣR > 0, and ǫR > 0, the leading order terms

for both sLW1 and sLW2 are always negative, which suggests that the LW model is

always stable to short-wave perturbations. Also, the stabilising effect of capillary

forces is characterised by the negative leading-order term of the unstable mode

s1 given by (3.35).

3.4 Comparison of the linear stability results of

the LW model with the SF model

The linear stability results of the LW model given above were compared with

the corresponding results of the SF model. Firstly, the small-k expansions of the

growth rates were compared. Using the scalings (2.24) and (2.65), we obtained

the following relationship for the growth rates and wavenumbers between the SF

and LW models,

sSF = ΣGs
LW, kSF = Σ

1/4
G kLW, (3.37)

where the SF and LW subscripts denote variables in the SF and LW models,

respectively, and ΣG is defined by (2.43). Using (3.37), we found that the small-k

expansions of the growth rates in the SF and LW models are the same at leading-

order which we expected as long wavelengths correspond to small wavenumbers,

i.e. λ≫ 1 corresponds to k ≪ 1. Furthermore, we compared the growth rates s as

a function of the wavenumber k according to the SF and LW models using a range

of system parameters. Figure 3.1 shows plots of the two modes of s as a function

of k for the SF model (solid line) and the LW model (dashed line). Figure 3.1

shows that the agreement between the linear stability predictions of the SF and

LW models improves as k → 0, and the curves show good qualitative agreement

for k < 1. Additionally, when d becomes large, we expect the agreement between
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(a)

(b)

Figure 3.1: Plots of s as a function of k for the SF model (solid line) and the LW
model (dashed line) where (a) Eb = 5, d = 3, ΣG = 1, ΣL = 6, ǫR = 4, and ǫ = 1,
and (b) Eb = 5, d = 4, ΣG = 1, ΣL = 2, ǫR = 30, and ǫ = 1. The inserts show a
magnified view of the most unstable modes.

the SF and LW models to decrease as the system is no longer thin. Indeed,

this is what is observed when the parameter d is increased. Furthermore, as

k → ∞ there is a deterioration in agreement between the SF and LW models.

These results are expected as variation in the x-direction is expected to become

more important as k increases, which cannot be described by the LW model as

it assumes that the flow is slowly-varying in the x-direction.
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3.5 Highly conducting (HC) model

A linear stability analysis of the HC model (derived in Section 2.4.2) was per-

formed by perturbing the interfacial height h around the uniform base state ac-

cording to

h(x, t) = 1 + δh̃est+ikx. (3.38)

This perturbation was substituted into the governing equation for h (2.99) and

linearised to yield an expression for the growth rate s as a function of k, d, ΣR,

and ǫR, namely,

s = −1

3
k4 +

(
(ΣR − 1)(Σ2

R − ǫR)

3(ΣR(d− 1) + 1)3
+

d(ΣR − ǫR)ΣR

2(ΣR(d− 1) + 1)3

)
k2, (3.39)

which is the expression found by Pillai and Narayanan [126] who investigated

the linear stability of the same system in the HC case. The first term of (3.39)

corresponds to the stabilising effect of capillary forces, and the second and third

terms corresponds to the effect of the normal and tangential components of the

electrical stress, respectively. Note that in the limit ΣR → ∞, the tangential

electrical stress terms vanish and the expression for s (3.39) simplifies to that

of the PC case (3.43), as expected. As noted in Section 2.3.6, we assume that

ΣR ≥ 1 and so three terms determine the linear stability of the system, namely,

ΣR − 1, Σ2
R − ǫR, ΣR − ǫR, and d. The system is neutrally stable when the linear

stability of the electrostatic terms, i.e. the second and third terms of (3.39) are

zero. Hence, by solving

(ΣR − 1)(Σ2
R − ǫR)

3(ΣR(d− 1) + 1)3
+

d(ΣR − ǫR)ΣR

2(ΣR(d− 1) + 1)3
= 0,
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for the value of ǫR when the system is neutrally stable yields

ǫR =
Σ2

R (2ΣR + 3d− 2)

ΣR (3d+ 2)− 2
. (3.40)

We produced a figure which examines the linear stability of the HC model in

(ΣR, ǫR) parameter space, similar to that produced by Pillai and Narayanan [126].

Figure 3.2 shows a plot of (ΣR, ǫR) parameter space which shows the regions in

which the system is linearly stable or unstable. Specifically, the system is always

stable above the solid grey line and unstable below the solid black line. Addition-

ally, the dashed, dot-dashed, and dotted lines show plots of (3.40) where d = 2,

d = 5, and d = 8, respectively. The system is stable and unstable above and be-

low these lines, respectively. This makes sense physically since the destabilising

influence of the electric field becomes less important as d increases, and so the

region of stability should increase. Note that the maximum region of stability

occurs in the limit d → ∞, where the expression (3.40) simplifies to ǫR = ΣR

and this corresponds to the region above the solid black line in Figure 3.2 being

stable.

Furthermore, the most unstable wavenumber kmax (i.e. the value of k correspond-

ing to the largest positive value of s) was found by solving ∂s/∂k = 0 for k = kmax,

which yields

kmax =

√
Σ2

R (2ΣR + 3d− 2) + ǫR (2− (2 + 3d) ΣR)

4 (ΣR (d− 1) + 1)3
, (3.41)

which is the same expression found by Pillai and Narayanan [126], and substitut-

ing k = kmax into (3.39) gives the most unstable growth rate smax, namely,

smax =
1

4

(
Σ2

R (2− 3d− 2ΣR) + ǫR (ΣR (3d+ 2)− 2)

3(ΣR(d− 1) + 1)3

)2

. (3.42)
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Figure 3.2: Plot of (ΣR, ǫR) parameter space which describes the stability of the
system. The solid black and grey lines are plots of ǫR = ΣR and ǫR = Σ2

R,
respectively. The dashed, dot-dashed, and dotted lines are plots of (3.40) in
which d = 2, d = 5, and d = 8, respectively, where the system is stable above
these lines and unstable below these lines. Note that the horizontal and vertical
axes are logarithmically scaled.

Expressions (3.39) and (3.42) show that s and smax decrease for increasing d, high-

lighting that the destabilising effect of the electric field decreases for increasing

distance between electrodes, as expected.

3.6 Comparison of the linear stability results of

the HC model with the SF and LW models

The linear stability results of the HC model given above were compared with

the corresponding results of the SF and LW models. Figure 3.3 shows plots of

the unstable growth rate s as a function of k for the SF model (thick solid line),

the LW model (dashed, dotted, and dot-dashed lines), and the HC model (solid

line) for a range of parameter values. Figure 3.3 shows that the agreement of the

linear stability predictions between the LW and HC models improves as ΣG and
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ΣL increase in the LW model, as expected, corresponding to the system moving

into the HC regime. We also found that the two modes of behaviour present

in the LW model reduce to one in the HC model which is characterised by the

presence of a single growth rate (3.39) in the HC model. Considering the stable

growth rate s4 (3.34) of the LW model, we found that s4 → −∞ in the HC

limit which corresponds to the loss of one mode in this limit (where all waves

are infinitely damped). Furthermore, we also found that the agreement between

the linear stability results of the SF model and the LW and HC models improves

as k → 0. This is expected since both the LW and HC models are both LW

approximations to the SF model.

3.7 Perfectly conducting (PC) model

A linear stability analysis of the PC model (derived in Section 2.4.1) was per-

formed by perturbing the interfacial height h around the uniform base state ac-

cording to (3.38). This perturbation was then substituted into the governing

equation for h (2.91) and linearised to yield an expression for the growth rate s

as a function of k and d, namely,

s =
1

3

(
−k4 + 1

(d− 1)3
k2
)
, (3.43)

which is the expression found by Pillai and Narayanan [126] who investigated

the linear stability of this PC case. The first term of (3.43) corresponds to the

stabilising effect of capillary forces on the system and the second term corresponds

to the effect of electrostatic forces. Note that the second term of (3.43) is always

positive which corresponds to the electrostatic forces always being destabilising

in the PC case and so the system is always unstable. Also, there is a range

of unstable wavenumbers with s > 0 between k = 0 and a cutoff wavenumber

k = kc, in which s = 0 at both k = 0 and k = kc. The cutoff wavenumber kc was
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(a)

(b)

Figure 3.3: Plots of the unstable growth rate s as a function of k in which (a)
Eb = 10, d = 4, and ǫR = 25, where ΣG = 106 and ΣL = 3×106 for the SF model
(thick solid line), ΣR = 3 for the HC model (solid line) and, for the LW model,
ΣG = 1 and ΣL = 3 (dashed line), ΣG = 10 and ΣL = 30 (dotted line), and
ΣG = 100 and ΣL = 300 (dot-dashed line); and (b) Eb = 10, d = 2.5, and ǫR = 5,
where ΣG = 106 and ΣL = 8× 106 for the SF model (thick solid line), ΣR = 8 for
the HC model (solid line) and, for the LW model, ΣG = 1 and ΣL = 8 (dashed
line), ΣG = 2 and ΣL = 16 (dotted line), and ΣG = 4 and ΣL = 32 (dot-dashed
line).
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obtained by setting s = 0 in (3.43) and solving for k, which yields

kc =
1

(d− 1)3/2
, (3.44)

which is the same expression found by Pillai and Narayanan [126]. Since d > 1,

it is clear from (3.44) that kc > 0, i.e. for all values of d, there exists a range

of unstable wavenumbers between k = 0 and k = kc, and hence this also shows

that the system is always linearly unstable. Also, kc decreases as d increases,

i.e. the range of unstable wavenumbers decreases as the electrodes move further

apart. This makes sense physically since the destabilising effect of the electric

field decreases for increasing d.

The most unstable wavenumber kmax (i.e. the value of k corresponding to the

largest positive value of s) was found by solving ∂s/∂k = 0 for k = kmax, which

gives

kmax =
1√

2(d− 1)3/2
, (3.45)

and substituting k = kmax into (3.43) gives the most unstable growth rate smax,

namely,

smax =
1

12(d− 1)6
. (3.46)

This shows that the maximum growth rate decreases for increasing d, i.e. increas-

ing d weakens the destabilising effect of the electric field.
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3.8 Comparison of the linear stability results of

the PC model with the SF and LW models

The linear stability results of the PC model given above were compared with

the corresponding results of the SF and LW models. Figure 3.4 shows plots of

the unstable growth rate s as a function of the wavenumber k for the SF model

(thick solid line), the LW model (dashed, dotted, and dot-dashed lines), and the

PC model (solid line). Figure 3.4 shows that the agreement of the linear sta-

bility predictions between the LW and PC models improves as ΣR increases in

the LW model, corresponding to the system moving into the PC regime, as ex-

pected. Specifically, the dot-dashed lines in Figures 3.4(a) and (b), corresponding

to ΣR = 1000, are virtually indistinguishable from the solid line which highlights

the excellent agreement of the linear stability results between the LW and PC

models as ΣR becomes large. Additionally, the two modes of behaviour present

in the LW model reduce to one in the PC model, which is characterised by the

presence of a single growth rate (3.43) in the PC model. Considering the stable

growth rate s4 given by (3.34) of the LW model, we found that s4 → −∞ in the

PC limit, which corresponds to the loss of one mode in this limit (where all waves

are infinitely damped). Furthermore, we also found that as k → 0 the agreement

of the linear stability results between the SF model and the LW and PC models

improves, as expected since the LW and PC models are both LW approximations

to the SF model.

3.9 Summary

In summary, a uniform base state to the system (introduced in Section 2.1) was

given, and we performed a linear stability analysis of the SF, LW, HC, and PC

models by perturbing around this base state. For both the SF and LW models,
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(a)

(b)

Figure 3.4: Plots of the unstable growth rate s as a function of k where (a)
Eb = 10, d = 3, and ǫR = 5, where ΣG = 1 and ΣL = 106 for the SF model (thick
solid line) and PC model (solid line) and, for the LW model, ΣR = 10 (dashed
line), ΣR = 100 (dotted line), and ΣR = 1000 (dot-dashed line); and (b) Eb = 20,
d = 5, and ǫR = 5, where ΣG = 1 and ΣL = 106 for the SF model (thick solid
line) and PC model (solid line) and, for the LW model, ΣR = 10 (dashed line),
ΣR = 100 (dotted line), and ΣR = 1000 (dot-dashed line). The dot-dashed lines
are virtually indistinguishable.
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we obtained implicit expressions for the two different modes of the growth rate s,

which are functions of the wavenumber of the perturbation k and other system

parameters, and are given in Appendices A and B, respectively. We also obtained

the small-k expansions for s, namely, (3.30) and (3.31) for the SF model, and

(3.33) and (3.34) for the LW model, to gain more insight into the linear stability

of the system in the long-wave limit. We also obtained an expression for s as

a function of k and other parameters for the PC and HC models, (3.43) and

(3.39), respectively, which corresponds to the most unstable mode in the SF

and LW models, (3.30) and (3.33), respectively. In addition, the most unstable

growth rate smax for the PC and HC models, (3.46) and (3.42), respectively, was

obtained. We found that, for both limiting cases, smax decreases for increasing

d, making physical sense as the effect of the destabilising electric field should

decrease for increasing distance between the two electrodes. The linear stability

predictions of the SF model were compared with the predictions of the LW, HC,

and PC models, and we found that their agreement improves as k decreases, as

expected. Similarly, we compared plots of s as a function of k for the HC model

against the SF and LW models, and found that for increasing ΣG and ΣL in the

LW model, its agreement with the HC model improves. Lastly, plots of s as a

function of k for the PC model were compared with the corresponding plots for

the SF and LW models. We found that for increasing ΣR in the LW model, its

agreement with the PC model improves. Therefore, the linear stability results

throughout this Chapter are important to the work throughout this thesis for

two main reasons. Firstly, it shows that in the appropriate ranges of parameter

space, and for sufficiently long waves, the SF model agrees with the LW, HC

and PC models. Secondly, the regions of parameter space that are linearly stable

or unstable have been located, and, for the limiting cases, analytical expressions

have been obtained that separate these regions.
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Chapter 4

Numerical schemes

This Chapter introduces and discusses the numerical schemes that we use solve

the PDEs and ODEs considered in this work. In Section 4.1, a numerical scheme

is introduced which solves the governing equations for the LW (2.107)–(2.108),

HC (2.99) and PC (2.91) models, using the Method of Lines. Specifically, in Sec-

tion 4.1.1 the theoretical approach is introduced and discussed, and in Section

4.1.2 a Matlab code is discussed that solves the LW model. This code imposes

periodic boundary conditions on the system and, unless otherwise stated, they

are used in the calculations throughout this thesis. In Section 4.1.3, a simpli-

fied Matlab code that solves the HC and PC models is discussed, and in Section

4.1.4, additional code which is used to perform extra analysis of the systems is

introduced. Specifically, we discuss code that calculates ∂2h/∂x2|x=xmin
and the

minimum points of the interfacial height hmin = hmin(t) at each time step of

our numerical calculations, as well as introducing code that imposes symmetric

boundary conditions in the system. In Section 4.1.5, this Matlab code is vali-

dated by comparing the numerically calculated growth rates with the theoretical

predictions of the linear theory, and the numerical results obtained compared

with those obtained with other numerical solvers. Furthermore, in Section 4.2, a

shooting method is introduced which solves the boundary value problem (BVP)
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(4.20)–(4.23). In Section 4.2.1, the theoretical framework for solving this BVP is

introduced and subsequently, in Section 4.2.2, the Matlab code which implements

this theory is discussed.

4.1 Numerical scheme using the Method of Lines

The Method of Lines was used to solve the governing equations of the LW model,

i.e. (2.107)–(2.108) for h and q, and the HC and PC models, i.e. (2.99) and (2.91),

respectively, for h. This involves discretising the PDEs into a system of nonlinear

ODEs which are then solved using the backwards Euler method, as described

in Section 4.1.1. There is also extensive literature on the use of finite difference

methods to solve ODEs and PDEs [147, 148, 149, 150]. The implementation of

this bespoke code using Matlab, and the reasons for doing so, is then discussed

in Section 4.1.2.

4.1.1 Theoretical approach

We consider a PDE of the form

∂u

∂t
= F, (4.1)

on the domain 0 < x < L, where u = u(x, t), L is the domain length, and

F = F

(
u,
∂u

∂x
,
∂2u

∂x2
,
∂3u

∂x3
,
∂4u

∂x4

)
,

is a (nonlinear) function of u and its first to fourth x-derivatives. Equation (4.1)

is subject to the initial condition

ux,t=0 = uIC(x), (4.2)

71



and periodic boundary conditions, i.e.

∂ku(0, t)

∂xk
=
∂ku(L, t)

∂xk
(4.3)

for k = 0, 1, 2, ....

The numerical method for solving the system (4.1)–(4.3) is now introduced.

Firstly, the independent variable x is discretised onto a uniform, one-dimensional

grid, namely,

0 = x0 < x1 < ... < xM−1 < xM = L−∆x,

where M +1 is the number of grid points and, since it is a uniform grid, the grid

step-size ∆x is

∆x =
xM − x0
M + 1

=
L

M + 1
.

The time variable t is discretised as t = tj (j = 0, 1, 2..., N − 1, N), where t0 = 0,

and the approximate discretised solution corresponding to u evaluated at x = xi

and t = tj is denoted as

uji = u(xi, tj),

where i = 0, 1, ...,M − 1,M and j = 0, 1, ..., N − 1, N .

The x-derivatives are calculated using centred finite-difference approximations,

namely,

∂uji
∂x

=
uji+1 − uji−1

2∆x
, (4.4)

∂2uji
∂x2

=
uji+1 − 2uji + uji−1

∆x2
, (4.5)

∂3uji
∂x3

=
uji+2 − 2uji+1 + 2uji−1 − uji−2

2∆x3
, (4.6)

∂4uji
∂x4

=
uji+2 − 4uji+1 + 6uji − 4uji−1 + uji−2

∆x4
, (4.7)
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and the periodic boundary conditions,

∂kuj1
∂xk

=
∂kujM
∂xk

,

for k = 0, 1, 2, ....

The time derivative is calculated using the backwards Euler method, namely,

∂uji
∂t

=
uji − uj−1

i

∆t
, (4.8)

where ∆t = tj − tj−1 (j = 1, 2, ..., N − 1, N) is the time step size. The backwards

Euler method was used due to its stability in solving stiff equations [148].

Hence, after discretising the variable u onto the grid x = xi (i = 1, 2, ...,M − 1,M),

and applying the centred finite differences (4.4)–(4.7) and the backwards Euler

method (4.8), equation (4.1) becomes

uj+1
i − uji
∆t

= F
(
uj+1
i

)
, (4.9)

for j = 0, 1, ..., N − 2, N − 1. This is rearranged to give

uj+1
i −∆tF

(
uj+1
i

)
= uji , (4.10)

where i = 0, 1, ...,M − 1,M and j = 0, 1, ..., N − 2, N − 1, which can be recast as

uj+1 −∆t F
(
uj+1

)
= uj, (4.11)

for j = 0, 1, ..., N − 2, N − 1, where uj =
(
uj0, u

j
1, ..., u

j
M−1, u

j
M

)T
and Fj+1 =

F (uj+1) is a vector function with elements F j+1
i = F (uj+1

i ) which, for our models

investigated in this thesis, is nonlinear.

The aim is to solve equation (4.11) for uj+1 where uj is known. Since the initial

conditions u = u0 are known, equation (4.11) can be solved to find u1, and
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consequently, this can be used to find u2. This process can be used to find uj

(j = 1, 2, ..., N − 1, N).

For the LW, HC, and PC models, equation (4.11) is a nonlinear, implicit equation

that cannot be solved explicitly, and so we use an iterative procedure to solve

it. Hence, at each time step t = tj (j = 0, 1, ..., N − 2, N − 1), we let u∗ =
(
u∗0, u

∗

1, ..., u
∗

M−1, u
∗

M

)T
be a vector approximation to uj+1 which solves equation

(4.11), and let ∆u be the correction to this approximation. Substituting

uj+1 = u∗ +∆u,

into equation (4.11) and linearising around ∆u yields

u∗ +∆u−∆t (F (u∗) + J∆u) = uj +O
(
∆u2

)
, (4.12)

where J = ∂F (u∗) /∂u is the Jacobian matrix which has elements Jij = ∂F (u∗i ) /∂uj.

Considering only the leading-order terms and rearranging gives

(I− J)∆u = uj − u∗ +∆t F (u∗) , (4.13)

where I is the identity matrix.

Now uj+1 is calculated by firstly making an initial guess, namely,

u∗ = u∗

(0), (4.14)

where u∗

(0) is chosen to be the solution at the previous time step, i.e. u = uj

(j = 0, 1, ..., N − 2, N − 1). Then (4.14) is substituted into equation (4.13) and

solved for ∆u, which is used to find a new approximation for u∗, namely,

u∗

(1) = u∗

(0) +∆u. (4.15)
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These iterations are continued for υ = 1, 2, ..., where u∗

(υ) is substituted into

equation (4.13) and solved for ∆u, and u∗

(υ+1) is calculated by

u∗

(υ+1) = u∗

(υ) +∆u. (4.16)

These iterations are repeated until ||∆u|| < ∆uc (where ||.|| denotes the L2 norm)

when, say, υ = l, where ∆uc is some (small) cutoff value. Hence, the numerically

calculated solution to equation (4.1) at t = tj+1 is

uj+1 = u∗

(l+1).

4.1.2 Matlab scheme used to solve the LW model

Matlab was used to solve the LWmodel (2.107)–(2.108) using the Method of Lines

introduced in Section 4.1.1. The code contained a main function with a number

of nested functions, which are given by Listings C.1–C.5 in Appendix C. This

bespoke code was chosen over other solvers, such as Matlab, Mathematica and

COMSOL Multiphysics [151], to perform the numerical calculations. Firstly, as

will be discussed, this code is time-adaptive which makes the analysis easier, since

behaviours such as finite-time rupture occur. Secondly, this code only retains the

interfacial profiles for the current and previous time steps, and the important

information is extracted at each time step and retained. Since the number of

grid points required throughout this thesis is very large, this is beneficial for two

reasons: minimising the memory usage speeds up the calculations, and analysing

large datasets once the numerical calculations are complete is not required.

The main function is given by Listing C.1, which begins by setting up the problem

75



and using the initial conditions

h = 1 + δh̃ cos

(
2πx

L

)
, (4.17)

q = q + δq̃ cos

(
2πx

L

)
, (4.18)

where, typically, δ = 0.01, q is the base state for charge density (3.2), and h̃

and q̃ are the eigenvectors of the linear stability matrix A (given in Appendix B).

These initial conditions for h and q, (4.17) and (4.18), respectively, were chosen to

represent a small perturbation to the base state of the system under investigation.

The Jacobian matrix is calculated using the function which is described by Listing

C.3. So long as each iteration of the NR method converges to the solution the

Jacobian matrix is not recomputed and can also be used over numerous time

steps. This is important since the number of grid points M used throughout

this thesis are typically very large, and so computing the Jacobian can be a

very computationally expensive process. Note that the Jacobian matrix is also

quite sparse for the computations used throughout this thesis, with most entries

occurring along the diagonal, and the code stores only the non-zero entries. This

speeds up the computations due to the lower memory usage and Matlab is also

very good with dealing with sparse matrices. Furthermore, the functions given by

Listing C.2 in Appendix C compute the governing equations, as well as calculating

the first and second x-derivatives. Lastly, the NR method is performed using the

code given by Listing C.4. As discussed earlier, the NR method is made more

efficient by not recomputing the Jacobian after every iteration, which would be

computationally expensive and slow down the numerical calculations. Lastly, an

adaptive time stepping method was also used. After each time step, if h changed

by more than 2%, the time step size was reduced, and if it was less than 0.02%

the time step size was increased.
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4.1.3 Numerical calculations for HC and PC models

In the HC and PC models there is only one governing equation (for h), equations

(2.99) and (2.91), respectively, and these are solved using a simplified version of

the Matlab code described in Section 4.1.2. In this simplified code, the vector

q is omitted which means that the number of grid points halves as well as the

number of rows and columns of the Jacobian matrix, i.e. the size of the Jacobian

matrix reduces from 2M × 2M to M ×M . Therefore, the numerical calculations

become less computationally expensive. Additionally, only the initial conditions

for h (4.17) are used due to the absence of q from the governing equations.

4.1.4 Additional code

Throughout the numerical analysis of the LW, HC, and PC models, comprehen-

sive analyses of the different behaviours are performed. In particular, hmin and

xmin, and ∂
2h/∂x2 |x=xmin

are tracked during behaviours where hmin ≪ 1. In these

cases there may not be many grid points around the minimum points, it is useful

to interpolate around x = xmin to obtain more refined results, as described by

the Matlab code in Listing C.5 in Appendix C. This Matlab code uses in-built

functions to interpolate around x = xmin, which makes the analysis of the system

easier and more efficient.

Furthermore, there are situations in this thesis where symmetric boundary con-

ditions are required instead of the periodic boundary conditions. As this periodic

code was well-tested and validated, we implemented a symmetrisation procedure,

equivalent to the imposition of symmetric boundary conditions:

1. The Matlab function “fliplr”, which flips a vector around its centre, was

applied to h and q.

2. This was added to the original h and q, and this result was divided by 2,

symmetrising the resultant h and q.
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Figure 4.1: Plots of s as a function of k for the LW model where (a) Eb = 5,
d = 3, ΣG = 1, ΣL = 6, ǫR = 4, and ǫ = 1, and (b) Eb = 5, d = 4, ΣG = 1,
ΣL = 2, ǫR = 30, and ǫ = 1.

4.1.5 Validating the Matlab code

This Matlab code was validated against two stringent tests. Firstly, the analyt-

ically derived growth rates predicted by linear stability theory were reproduced

numerically in the appropriate linear regime. Secondly, the results produced us-

ing Matlab, once the system had entered the nonlinear regime, were compared

with those of other numerical solvers.

4.1.5.a Comparison with linear stability theory

The numerically calculated growth rates sN at early times were compared with

the linear stability predictions. The initial conditions (4.17) and (4.18) were used

where δ = 10−6, and sN was obtained using

sN =
log (h20max)− log (h10max)

t20 − t10
, (4.19)

where h = hjmax is the maximum value of the interfacial height hj at time t = tj.

The growth rates were calculated from the time t = t10 since the initial conditions

for h and q are out of phase, and so it takes a few time steps to readjust. This

could be solved by calculating h̃ and q̃ from the linear stability analysis in Chapter

3 and applying them to the initial conditions. The numerically calculated growth

rates sN are illustrated by the filled dots on Figures 4.1, which also show plots of

the linear growth rates s as a function of k. The results were compared for various
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wavenumbers by changing the domain length L and obtaining the corresponding

wavenumber by using the relation, k = 2π/L. These figures show excellent agree-

ment between the linear stability predictions and the numerical results for the

LW model. When the parameter δ in the initial conditions (4.17) and (4.18) was

increased from from 10−6 to 0.1, it was observed that the agreement between the

linear stability results and numerical results worsened. This is expected as the

nonlinear terms, which are neglected during the linear stability analysis, begin

to become important with increasing δ. Therefore, the excellent agreement of

the numerical results with the linear stability results inspires confidence in this

numerical code and the results that it produces.

4.1.5.b Comparison with the results of other numerical codes

The numerical results from the Matlab code was also compared with the results

using other numerical solvers, specifically, the Mathematica solver “NDSolve”, the

finite-element solver COMSOL Multiphysics, and a pre-existing C++ code written

by one of the author’s supervisors (Dr Wray) which performs the calculations on a

uniform grid using the Method of Lines. The results obtained using the different

solvers were compared when h and q in the nonlinear regime in which the linear

stability theory is not applicable.

Firstly, the Matlab code, the COMSOL and C++ codes were used to solve the

LW model for h and q, and their results were compared. Figure 4.2 shows plots

of (a) h and (b) q as functions of x/L. The solid, dashed and dotted lines show

the results obtained using the Matlab code, the C++ code, and the COMSOL

solver, respectively, and the lines are virtually indistinguishable, demonstrating

the excellent agreement between the results of the different solvers. Similarly,

Figure 4.3 shows plots of (a) h and (b) q as functions of x/L, where the solid,

dashed and dotted lines show the results obtained using the Matlab code, the

C++ code, and the COMSOL solver, respectively. At this time, t = 885, the
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(a) (b)

Figure 4.2: Plots of (a) h and (b) q as a function of x/L at time t = 1000, where
the solid, dashed, and dotted lines are the results of the LW model using the
Matlab code, the author’s supervisor’s C++ code, and COMSOL solver, respec-
tively. The inserts show magnified views of the plots. The parameter values used
are Eb = 20, d = 5, ΣR = 4, ǫR = 1, and L = 10, and 1000 grid points used in all
calculations and the initial conditions used are given by (4.17) and (4.18).

interface around x/L = 0.5 is moving very fast, and the time steps used are

small. There is a difference in the results between the solvers around x/L =

0.5, and these discrepancies are due to the time step sizes that are used in the

numerical solvers. Decreasing the step sizes would lead to smaller errors and

better agreement between the solvers, however, decreasing the step-sizes must be

balanced against the computational cost of an increased number of time steps

required to reach the same time. Nevertheless, the results given in Figure 4.3

still show very good agreement between the results of the different solvers.

Furthermore, the simplified Matlab code used to solve the HC and PC models

was compared against C++ code and the Mathematica solver “NDSolve”. These

were used to solve the HC model for various parameter values, and Figure 4.4

shows plots of h as a function of x/L for different parameter values. The results

in Figure 4.4(a), in which the lines are virtually indistinguishable, show excellent

agreement between the results of the different solvers. In Figure 4.4(b), the

difference between the results is visible, however, this is again due to the interface

moving quickly and the small step sizes that are required at these times.
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Figure 4.3: Plots of (a) h and (b) q as a function of x/L at time t = 885, where the
solid, dashed, and dotted lines are the results of the LW model using the Matlab
code, the author’s supervisor’s C++ code, and COMSOL solver, respectively. The
parameter values used are Eb = 2, d = 5, ΣR = 2, ǫR = 60, and L = 10, and 1000
grid points used in all calculations. The initial conditions used in all calculations
are given by (4.17) and (4.18).

(a) (b)

Figure 4.4: Plots of h as a function of x/L where the solid, dashed, and dotted
lines are the results of the HC model using the Matlab code, the author’s super-
visor’s C++ code, and the Mathematica solver, respectively, at times (a) t = 107

and (b) t = 3× 104. The insert in (a) shows a magnified view of the plots. The
parameter values used are (a) d = 5, ΣR = 2, ǫR = 1, and L = 50, and (b) d = 4,
ΣR = 10, ǫR = 3, and L = 10, and 1000 grid points used in all calculations. In
all calculations, the initial conditions used are given by (4.17).
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4.2 Shooting method for solving a BVP

In Chapter 5, the shooting method was used to solve a BVP, specifically, a fourth-

order ODE (5.13) subject to the four boundary conditions (5.31)–(5.33). The

shooting method involves changing a BVP into an initial value problem (IVP)

and finding the initial conditions in which the solutions to the IVP also satisfy

the BVP. In Section 4.2.1, we discuss the theoretical approach of solving the BVP

that arises in Chapter 5 through using this shooting method. In Section 4.2.2,

we discuss the Matlab routine used to implement the shooting method and hence

solve the BVP.

4.2.1 Theoretical approach

Consider the following BVP,

f (4) = F (η, f, f ′, f ′′, f ′′′) , (4.20)

on the domain 0 ≤ η ≤ ηend, where f = f(η), and which is subject to the

boundary conditions

f ′(0) = f ′′′(0) = 0, (4.21)

at the origin η = 0, and

f (ηend) = F1 (ηend, f
′) , (4.22)

f (ηend) = F2 (ηend, f
′′) , (4.23)

where F1 = F1 (η, f
′) and F2 = F2 (η, f

′′) are functions of η, f ′(η), and f ′′(η).

The shooting method begins by changing this BVP into an IVP, specifically,
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equation (4.20) subject to the boundary conditions,

f(0) = α, f ′(0) = 0, f ′′(0) = β, f ′′′(0) = 0, (4.24)

where α and β are constants and the solution to this IVP is denoted by f = fS(η).

Therefore, an investigation of (f(0), f ′′(0))-space is required to find values of α

and β such that fS(η) satisfies both boundary conditions (4.22) and (4.23). Hence,

for these values of α and β, fS(η) is also a solution to the BVP (4.20)–(4.23).

The investigation of (f(0), f ′′(0))-space is performed in two stages:

1. (a) Assign a value to α.

(b) Search for values of β where the solution to the IVP f = fS(η) satisfies

equation (4.22) at η = ηend.

2. (a) Assign a value to β.

(b) Search for values of α where the solution to the IVP f = fS(η) satisfies

equation (4.23) at η = ηend.

Once a value has been assigned to α or β, i.e. part (a) of each stage, a root-finding

method, such as the NR method or Euler’s method, is used in part (b) of each

stage to find the solution to the IVP. An initial guess is chosen for the remaining

parameter, β and α at stage 1 and 2, respectively, and β or α may converge to

a different solution depending on this initial guess. Hence, for any value of α or

β assigned at step (a), a different initial guess for the remaining parameter may

converge to a different solution. If fS(η) satisfies the required boundary condition

at η = ηend, the values (f(0), f ′′(0)) = (α, β) are stored. Lastly, the solution to

the BVP is found using points in (f(0), f ′′(0))-space at which the solution to the

IVP satisfies both of the boundary conditions (4.22) and (4.23).
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4.2.2 Matlab code

A Matlab routine was used to solve the BVP (4.20)–(4.23). Firstly, a search

of (f(0), f ′′(0))-space is performed to find values of f(0) and f ′′(0) where the

solution to the IVP f = fS(η) satisfies both of the boundary conditions (4.22) and

(4.23). Listing C.6 gives Matlab code that performs part 1 of the (f(0), f ′′(0))-

space investigation as described in Section 4.2.1, i.e. finding β, and a very similar

code was used to perform stage 2 of the investigation, i.e. finding α. Secondly,

the solution to the IVP f = fS(η) was found using values of α and β as initial

conditions that ensured the BVP was also satisfied.

This Matlab code in Listing 4.2.2 does particularly well at solving the BVP

(4.20)–(4.22). The Matlab solver “ode15s” deals with stiff systems particularly

well and the code is more robust in dealing with changes in the boundary sizes, i.e.

changing ηend. Also, the regions of (f(0), f
′′(0))-space can be refined by choosing

smaller step sizes.

4.3 Summary

In summary, a numerical scheme was introduced that solves the LW model

(2.107)–(2.108) in Section 4.1.1. Here, the Method of Lines was used in which

the PDEs were discretised into a system of nonlinear ODEs using centred finite-

differences and the backwards Euler method. The NR method was then used to

solve the system of ODEs. A bespoke Matlab code, which solves the LW model

and imposes periodic boundary conditions, was discussed in Section 4.1.2 and is

given by Listings C.1–C.4 in Appendix C. Important features of the code were

highlighted and discussed. Specifically, an adaptive time stepping feature is used

such that the time step size is decreased when the difference in h changes by more

than 2% and increases when h changes by less than 0.02%. Also, the memory and

computational costs were minimised by retaining only the time steps from the
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current and previous time steps, as well as using a conservative approach to com-

puting the Jacobian matrix and storing it as a sparse matrix, which ultimately

speeds up the code. In Section 4.1.4, additional Matlab code was introduced to

interpolate the results around x = xmin, which is given by Listing C.5, and a

routine to impose symmetric boundary conditions was discussed.

Furthermore, the Matlab code was validated extensively by comparing the nu-

merically calculated growth rates with the analytically calculated linear growth

rates, which showed excellent agreement. Also, the numerical results were also

compared against results of other PDE solvers, showing very good agreement

even when the system has entered the nonlinear regime.

In Section 4.2.1, the theoretical framework for performing the shooting method

was introduced. This shooting method solves the BVP (4.20)–(4.23) by turning

it into an IVP (equation (4.20) with initial conditions (4.24)). A search for initial

conditions is performed in which the solution to the IVP also satisfies the BVP.

The Matlab code given by Listing C.6 applies this theory, which searches for ini-

tial conditions in which the solution of the IVP satisfies the boundary condition

(4.22). This code can be easily altered to search for initial conditions in which the

solution to the IVP satisfies equation (4.23) instead. The solution of the BVP

is subsequently found by solving the IVP using initial conditions for which its

solution satisfies both boundary conditions (4.22) and (4.23).
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Chapter 5

Perfectly conducting (PC) model

In this Chapter, the PC model (derived in Section 2.4.1) is investigated and three

behaviours are observed, namely, levelling (LV), upper contact (UC), and thinning

(TH). In Section 5.1, we investigate (L, d) parameter space, highlighting where

each of these three behaviours occur. In Sections 5.2–5.4, the three different be-

haviours are described fully and investigated both analytically and numerically.

In Section 5.5, the transition curves separating the three behaviours will be in-

vestigated, and we use linear stability theory to obtain an analytical expression

for the transition curve separating UC or TH behaviour with LV behaviour.

5.1 (L, d) parameter space

The results of our numerical investigation of the PC model revealed three be-

haviours, namely, levelling (LV), upper contact (UC), and thinning (TH), which

will be fully described in Sections 5.2, 5.3, and 5.4, respectively. However, we will

briefly introduce each behaviour here:

1. LV behaviour: perturbations to the base state decay and the interface levels.

2. UC behaviour: the interface touches the upper electrode in finite time.
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3. TH behaviour: the interface approaches the lower electrode asymptotically

as t→ ∞.

The behaviour which the system adopts is dependent on the parameter values,

specifically, the domain length L and the upper electrode position d. Therefore,

we performed a numerical investigation of (L, d) parameter space to explore where

each behaviour is observed.

5.1.1 Numerical investigation

The investigation of (L, d) parameter space was performed by solving the govern-

ing equation for h of the PC model (2.91) using a pre-existing C++ code written by

one of the author’s supervisors (Dr Wray) that implements the Method of Lines

on a uniform grid. Note that the C++ code was used to perform the extensive

parameter space investigation due to the program’s speed and memory efficiency.

However, later in this Chapter each behaviour is investigated further using Mat-

lab. This is since the author is more familiar and adept in using Matlab than

C++ , as well as Matlab having useful built-in functions (described in Chapter

4), which makes the analysis of each behaviour easier to perform. Furthermore,

Matlab is used over C++ since a comprehensive analysis of each behaviour is not

as computationally expensive as the parameter space investigation.

We performed the numerical calculations using 2048 grid points and the initial

conditions given by (4.17) with δ = 0.01. We explored (L, d) parameter space

over the ranges 7 ≤ L ≤ 500 and 1.5 ≤ d ≤ 20 with step sizes of 1 and 0.05 in

the L and d directions, respectively. At each point in (L, d) parameter space, the

observed behaviour was classified according to the following conditions:

1. LV behaviour: When hmax − hmin < 10−8.

2. UC behaviour: When the time step size ∆t < 10−4 (as the step size is

reduced as h→ d).
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3. TH behaviour: When hmin < 10−3.

Recall from Chapter 4 that ∆t is the time step size, and that hmax = hmax(t) is

the maximum value of h, located at x = xmax(t). The results obtained using the

C++ code were cross-referenced at several points in parameter space by using the

Matlab code introduced in Chapter 4. Both codes predicted the same behaviour

in all cases which inspires confidence in the results.

5.1.2 Results of the investigation of (L, d) parameter space

The results of the investigation of (L, d) parameter space are presented in Figure

5.1, which includes transition curves that separate regions of (L, d) parameter

space in which UC, TH or LV behaviours occur. Figure 5.1 shows the numerically

calculated transition curves (solid lines) and the analytically calculated transition

curve (dashed line) given by equation (5.85) which will be discussed in Section

5.2. The numerically calculated transition curves were obtained by taking two

points in (L, d) parameter space, denoted by (L1, d1) and (L1, d2), with the same

value of L, between which the behaviour changes as the value for d changes,

and estimating that the transition curve lies half-way between these points, i.e.

(L1, (d1 + d2) /2), which is accurate since the step size in d, i.e. d2 − d1, is small,

i.e. 0.05. Figure 5.1 also includes insets which identify the LV, UC, and TH

behaviours by the dark grey, black, and light grey dots, respectively, at all the

points for which numerical calculations were undertaken. The lower inset shows

the transition from TH to LV behaviour as d increases, and the upper transition

shows a “tongue” of UC behaviour extending into the region of TH behaviour.

Also, the density of points shown in both insets shows the large number of data

points used to produce this plot of (L, d) parameter space. There is also excellent

agreement between the analytical transition curve and corresponding numerically

calculated transition curve as these two curves are indistinguishable. Figure 5.1

also shows that below a critical value for the domain length, specifically, below
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Figure 5.1: (L, d) parameter space showing the numerically calculated transition
curves (solid lines) and the analytically calculated transition curve (dashed line)
given by equation (5.85) separating the UC or TH, and LV behaviours. The solid
and dashed curves are indistinguishable. The inset figures show the numerically
calculated behaviours around the transition curves, where the dark grey, black,
and light grey dots in the insets indicate LV, UC, and TH behaviours, respectively.
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L = 56.5 ± 0.5, the TH region disappears, which is marked by the larger black

dot at (56.5 ± 0.5, 5.275) in Figure 5.1. Hence, to the left of this black dot, the

behaviour goes from UC to LV as d increases. For a range of values of L to the

right of L = 56.5± 0.5, the behaviour goes from UC to TH, and then to LV as d

increases. This critical value for the domain length is marked by the filled circle

at (56, 5.275). Furthermore, for even larger values of L, there are also regions in

which the behaviour goes from TH to UC as d increases, i.e. the tongue of UC

behaviour extending into the TH region, shown in the upper inset in Figure 5.1.

For example, for L = 250 the behaviour goes from UC to TH, then from TH to

UC behaviour, and finally from UC to TH then to LV behaviour as d increases.

5.2 Levelling (LV) behaviour

LV behaviour occurs when perturbations to the base state h = 1 decay, as illus-

trated by Figure 5.2. Figure 5.2 shows plots of h as a function of x/L at equally

spaced times t including a plot of the initial condition (4.17) in which δ = 0.01

(shown with a dashed line).

Recall that the PC model is always linearly unstable in an unbounded domain,

as discussed in Section 3.7. Therefore, LV behaviour can only occur when there

are unstable wavenumbers but the corresponding wavelengths are too long (i.e.

the values of k are too small) to fit into the domain. The value for d = 7 used

in Figure 5.2 was substituted into the equation for the cutoff wavenumber kc

given by equation (3.44) in Section 3.7. This gives kc = 1/63/2 which means that

only domain lengths longer than L = 63/2 × 2π = 12
√
6π contain any unstable

wavenumbers. Since the domain length used in Figure 5.2 is L = 10, it is too

short to contain any unstable wavenumbers and so the linear stability theory

predicts LV behaviour, agreeing with the results of the numerical calculations.

90



Figure 5.2: Plots of the interfacial height h as a function of x/L at equally spaced
times from t = 0 to t = 80. The dashed line indicates the initial condition (4.17)
where δ = 0.01, and the parameters used are L = 10 and d = 7.

5.3 Upper contact (UC) behaviour

UC behaviour occurs when the interface approaches the upper electrode and

touches it in finite time, as illustrated by Figure 5.3. Figure 5.3 shows plots of

(a) h as a function of x/L for values of t corresponding to d − hmax = 0.1, 0.3,

0.5, 0.7 and 0.9 (solid lines), and the initial condition (4.17) for δ = 0.01 (shown

by the dashed line), and (b) dhmax/dt as a function of t where the vertical axis is

logarithmically scaled. Note that dhmax/dt = ∂h/∂t|x=xmax
which will be equal to

∂h/∂t(0, t) since the calculations are performed using the initial condition (4.17,

and Figure 5.3(b) shows that this term blows up as the interface approaches

the upper electrode, i.e. dhmax/dt → ∞ as hmax → d, showing that finite-time

contact occurs. Smaller time steps are required close to contact, i.e. smaller values

of ∆t as h → d, to resolve the behaviour when the interface moves rapidly. The

evolution of h to finite-time contact corresponds to a localised singularity of the

governing equation (2.91) at h = d, in which the third term of (2.91) diverges as

h approaches d.
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5.3.1 Analytical investigation of UC behaviour

Close to the time of contact with the upper electrode, i.e. when hmax is close to

d, the interface exhibits self-similar behaviour, as we shall now describe. Firstly,

we pose the similarity solution for h (close to the time of contact) to be of the

form,

h = d− ταf(η), (5.1)

in which

η =
x− xc
τβ

, τ = tc − t, (5.2)

where t = tc and x = xc are the time and position of contact with the upper

electrode, respectively, τ ≪ 1, f = f(η) is the similarity function, and α and β

are the similarity exponents which are expected to be positive. Also note that

xc = 0 for our numerical calculations since the initial condition (4.17) is used

(and there is no symmetry breaking) which means that hmax (and hence contact)

will occur at x = 0.

We will now determine the similarity exponents α and β by firstly substituting

the similarity solution (5.1) into the governing equation (2.91). Firstly, the ∂h/∂t

term in (2.91) is

∂h

∂t
= −ατα−1f(η)− ταf ′(η)

∂η

∂τ
= τα−1 (−αf(η) + βηf ′(η)) , (5.3)

where the dashes represent differentiation with respect to the argument. Simi-

larly, the h3 term, the spatial derivative terms, and the 1/(d− h)3 term in (2.91)
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Figure 5.3: Plots of (a) h as a function of x/L for values of t corresponding to
d− hmax = 0.1, 0.3, 0.5, 0.7 and 0.9 (solid lines), and the initial condition (4.17)
in for δ = 0.01 (shown by the dashed line), and (b) dhmax/dt as a function of t
where the vertical axis is logarithmically scaled. The parameters used are L = 20
and d = 3.

are

h3 = (d− ταf(η))3 = d3 +O (τα) , (5.4)

∂h

∂x
= −τα−βf ′(η),

∂2h

∂x2
= −τα−2βf ′′(η),

∂3h

∂x3
= −τα−3βf ′′′(η), (5.5)

1

(d− h)3
=

τ−3α

(f(η))3
, (5.6)

respectively. Hence, using equations (5.4)–(5.6), the second and third terms of

(2.91) become

∂

∂x

(
h3
∂3h

∂x3

)
=

∂

∂x

(
−τα−3βd3f ′′′(η) +O

(
τ 2α−3β

))
(5.7)

= −τα−4βd3f (4)(η) +O
(
τ 2α−4β

)
, (5.8)

∂

∂x

(
h3

1

(d− h)3
∂h

∂x

)
=

∂

∂x

(
−τ−2α−βd3f−3(η)f ′(η) +O

(
τ−α−β

))
(5.9)

= −τ−2(α+β)d3
(
f ′(η)f−3(η)

)
′

+O
(
τ−α−2β

)
. (5.10)
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Therefore, balancing the leading order terms of (5.3), (5.8) and (5.10) gives the

balance,

τα−1 ∼ τα−4β ∼ τ−2(α+β). (5.11)

Balancing these three terms requires

α− 1 = α− 4β = −2(α + β), (5.12)

which has a unique solution for the similarity exponents, namely, α = 1/6 and

β = 1/4, which will be compared against the solutions to the governing equation

(2.91) in Section 5.3.1.a. This balance means that both surface tension and

electrostatic effects are important close to contact.

Furthermore, using the similarity exponents α = 1/6 and β = 1/4, and equations

(5.3), (5.8) and (5.10) at leading order in τ , we find that the similarity function

f obeys the similarity ODE

3ηf ′ − 2f = −4d3
(
f (4) +

(
f−3f ′

)
′

)
. (5.13)

This ODE governs the shape of the similarity solution close to contact and in-

cludes the effects of surface tension and electrostatic effects, corresponding to the

second and third terms, respectively.

In summary, close to the time of contact tc during UC behaviour, the interface

exhibits self-similar behaviour which is described by the similarity solution,

h = d− τ 1/6f(η), (5.14)
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in which

η =
x− xc
τ 1/4

, τ = tc − t, (5.15)

where τ ≪ 1, and f obeys the similarity ODE (5.13) which incorporates both

surface tension and electrostatic effects.

5.3.1.a Comparison between the similarity solution (5.14)–(5.15) and

the numerical results

We will now compare the power-law behaviour predicted by the similarity solu-

tion (5.14)–(5.15) with numerical solutions to the governing equation (2.91). In

particular, we will show that log-log plots of dhmax/dt and −∂2h/∂x2 |x=xmax
as

functions of d − hmax give the power-law behaviour predicted by (5.14)–(5.15).

Plotting these variables as a function of d−hmax instead of τ leads to more robust

results as it bypasses the issue of accurately calculating tc, which can be quite

difficult due to the small time step sizes close to the time of contact.

We used the similarity solution (5.14)–(5.15) to evaluate

log(∂h/∂t)

log (d− h)
=

log
(
τ−5/6 (−f + ηf ′)

)

log (τ 1/6f)
= −5×

log
(
τ (−f + ηf ′)6/5

)

log
(
τ (f)−1/6

) (5.16)

and

log (−∂2h/∂x2)
log (d− h)

=
log
(
τ−1/3f ′′

)

log (τ 1/6f)
= −2×

log
(
τ (f ′′)1/3

)

log
(
τ (f)−1/6

) . (5.17)

Furthermore, evaluating equations (5.16) and (5.17) at x = xmax yields

log(dhmax/dt)

log (d− hmax)
= −5×

1 + log
(
(−f(0))6/5

)
/ log (τ)

1 + log
(
(f(0))−1/6

)
/ log (τ)

(5.18)
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and

log (−∂2h/∂x2 |x=xmax
)

log (d− hmax)
= −2×

1 + log
(
(f ′′(0))1/3

)
/ log (τ)

1 + log
(
(f(0))−1/6

)
/ log (τ)

. (5.19)

Hence, as the interface approaches the upper electrode, i.e. as τ → 0, we expect

log-log plots of dhmax/dt and −∂2h/∂x2 |x=xmax
as a function of d− hmax to have

gradients −2 and −5, respectively. Figure 5.4 shows log-log plots of dhmax/dt

and −∂2h/∂x2 |x=xmax
as a function of d− hmax (solid lines) and the lines of best

fit (dashed lines). We have validated across four different parameter regimes,

namely, (a) L = 10 and d = 2, (b) L = 20 and d = 3, (c) L = 60 and d = 5,

and (d) L = 80 and d = 6, and the lines of best fit have gradients (a) −5.01003

and −1.99581, (b) −5.00375 and −1.99531, (c) −5.0027 and −1.99059, and (d)

−5.0185 and −1.99343. Hence, Figure 5.4 shows that as hmax → d, the solutions

to the governing equation (2.91) converge to the power-law behaviour predicted

by the similarity solution (5.14)–(5.15). This excellent agreement was also found

for solutions to the governing equation (2.91) at other points in (L, d) parameter

space. Hence, this confirms that the self-similar solutions to the governing equa-

tion (2.91) are described by the similarity solution (5.14)–(5.15) with similarity

exponents α = 1/6 and β = 1/4, and so both surface tension and electrostatic

effects are important during UC behaviour. Furthermore, the intercepts of the

lines of best fit were used to estimate f(0) and f ′′(0) (the theory governing this

is outlined in Appendix D) and are presented in Table 5.1 in Section 5.3.3.a. We

will compare these estimates against the solutions to the similarity ODE (5.13)

in Section 5.3.3.

5.3.2 Asymptotic far-field behaviours

Close to the time of contact, we have found that h is described locally near

x = xmax by the similarity solution (5.14), where f obeys the similarity ODE
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(a)

(b)

Figure 5.4: Log-log plots of dhmax/dt and −∂2h/∂x2 |x=xmax
as a function of

d − hmax (solid lines) and the lines of best fit (dashed lines). The parameter
values used are (a) L = 10 and d = 2, and (b) L = 20 and d = 3, and the
lines of best fit have gradients (a) −5.01003 and −1.99581, and (b) −5.00375 and
−1.99531.
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(5.13). This local solution corresponds to an inner solution in the asymptotic

sense, and we will now search for the corresponding outer solution by finding all

asymptotic far-field behaviours of f as η → ∞. These will then be compared

against the far-field behaviours that are observed in the numerical solutions to

the governing equation (2.91).

5.3.2.a Analytical investigation of asymptotic far-field behaviours

We look for asymptotic far-field behaviours of the similarity function f in the

form

f ∼ ηn (5.20)

as η → ∞.

Substituting (5.20) into the similarity ODE (5.13), we obtain the following bal-

ance at leading order in the limit η → ∞,

ηn ∼ ηn−4 ∼ η−2n−2. (5.21)

The first and second terms in (5.21) can never balance, however balancing the first

and third terms in (5.21) yields n = −2/3, which gives the far-field behaviour,

f ∼ η−2/3 (5.22)

as η → ∞. Therefore, using (5.14)–(5.15), this corresponds to the far-field be-

haviour

h ∼ d− τ 1/6η−2/3 (5.23)
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as η → ∞.

On the other hand, balancing the second and third terms of (5.21) yields n = 2/3,

which gives the far-field behaviour

f ∼ η2/3 (5.24)

as η → ∞, and using (5.14)–(5.15) gives

h ∼ d− τ 1/6η2/3 (5.25)

as η → ∞. This far-field behaviour corresponds to the left hand side of the

similarity ODE (5.13) being negligible in the limit η → ∞, namely,

3ηf ′ − 2f ∼ 0, (5.26)

which also corresponds to the time derivative term ∂h/∂t of the governing equa-

tion (2.91) being negligible. Hence (5.26) describes a quasi-steady far-field be-

haviour in which h is slowly-varying in time t.

5.3.2.b Numerical investigation of far-field behaviours

The similarity solution (5.14)–(5.15) can be rearranged to obtain an expression

for τ , namely,

τ =

(
d− h

f(η)

)6

, (5.27)

and this shows that, close to the time of contact at x = xmax,

τ =

(
d− hmax

f(0)

)6

≪ 1. (5.28)
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This expression for τ was used in (5.14)–(5.15) evaluated at x = xmax to obtain

d− h =
d− hmax

f(0)
f(η) (5.29)

and

x− xc =

(
d− hmax

f(0)

)3/2

η (5.30)

when hmax is close to d.

Equations (5.29) and (5.30) show that, close to the time of contact, d − h ∼

(d−hmax)f(η) and x−xc ∼ (d− hmax)
3/2 η, which are used to plot the numerical

solution to the governing equation (2.91) in appropriately rescaled coordinates, as

presented in Figure 5.5. Figure 5.5 shows log-log plots of the rescaled interfacial

height (d − h)/ (d− hmax) as a function of the rescaled horizontal coordinate

(x− xc)/(d− hmax)
3/2 (solid line) and the line of best fit (dashed line). The lines

of best fit have gradients (a) 0.6620, (b) 0.6631, (c) 0.6677, and (d) 0.6730. The

plots were taken at values of t where (a) d − hmax ≃ 0.02, (b) d − hmax ≃ 0.02,

(c) d − hmax ≃ 0.05, and (d) d − hmax ≃ 0.05. The gradients of the lines of best

fit describe the behaviour in the bulk of the domain away from the boundaries,

and they suggest that the rescaled interfacial height (d − h)/(d − hmax) varies

approximately like
(
(x− xc)/(d− hmax)

3/2
)2/3

= (x− xc)
2/3/(d− hmax), i.e. f ∼

η2/3. This shows that the quasi-steady far-field behaviour described by (5.24) and

not that described by (5.22), is the one observed in the solutions to the governing

equation (2.91). This means that the interface close to contact is described by the

similarity ODE (5.13), and this matches to the quasi-steady behaviour described

by (5.24) as η → ∞.
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(a)

(b)

Figure 5.5: Log-log plots of the rescaled interfacial height (d− h)/ (d− hmax) as
a function of the rescaled horizontal coordinate (x−xc)/(d−hmax)

3/2 (solid line)
and the line of best fit (dashed line). The lines of best fit have gradients (a)
0.6620 and (b) 0.6631. The plots were taken at values of t where d−hmax ≃ 0.02.
The parameter values used are (a) L = 10 and d = 2, and (b) L = 20 and d = 3.
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5.3.3 Numerical solution of the similarity ODE (5.13)

The shooting method used to solve the similarity ODE (5.13) provides further

confirmation that the solutions to the governing equation (2.91) are described by

the similarity solution (5.14)–(5.15). The similarity ODE was solved over a large

but finite integration interval from η = 0 to f = ηend. In practice, we found it

sufficient to use ηend = 10. Furthermore, four boundary conditions are required

since the ODE is fourth-order. Firstly, we imposed two boundary conditions at

η = 0, namely,

f ′(0) = f ′′′(0) = 0, (5.31)

and are the symmetry boundary conditions.

The two remaining boundary conditions were imposed at the end of the integra-

tion interval, namely,

3ηf ′(η)− 2f(η) = 0, (5.32)

9η2f ′′(η) + 2f(η) = 0, (5.33)

evaluated at η = ηend. We chose equations (5.32) and (5.33) so that the quasi-

steady far-field behaviour (5.24) was satisfied at η = ηend and their solutions are

independent of each other. Specifically, the solutions to equations (5.32) and

(5.33) are f = Aη2/3 and f = Bη1/3+Cη2/3, respectively, where A, B, and C are

constants. Hence, for both solutions, f ∝ η2/3 for large η, which corresponds to

the quasi-steady far-field behaviour (5.24). To confirm that this far-field condition

gives the correct number of boundary conditions, we may follow Zhang and Lister

[71] and linearise (5.13) about η = η2/3. We find that there are two exponentially

growing modes, so that imposing this far-field condition is equivalent to requiring

that the amplitudes corresponding to both these modes must vanish as η → ∞,
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which constitutes two boundary conditions.

The shooting method described in Section 4.2 is used to solve the similarity ODE

(5.13) subject to the four boundary conditions (5.31)–(5.33). Recall that the

shooting method is split into two parts:

1. An investigation of (f(0), f ′′(0))-space to search for points at which the

solution to (5.13) satisfies both boundary conditions (5.32) and (5.33) at

η = ηend.

2. Solving the similarity ODE (5.13) from η = 0 to η = ηend, subject to the

initial conditions (5.31) and the points in (f(0), f ′′(0))-space found in step

1.

5.3.3.a Investigation of (f(0), f ′′(0))-space

Part 1 of the shooting method, described above, involves investigating (f(0), f ′′(0))-

space to find regions where the solution to the similarity ODE (5.13) satisfies

either boundary condition (5.32) or (5.33) at η = ηend. The investigation was

performed in two steps using the Matlab code introduced in Section 4.2.2:

1. We fixed a value of f(0), and continued on the value of f ′′(0) in order to find

parameter pairs where the solution to the similarity ODE satisfies equation

(5.32).

2. We then fixed a value of f ′′(0), and continued on the value of f(0) in order

to find parameter pairs where the solution to the similarity ODE satisfies

equation (5.33).

The results of the investigation of (f(0), f ′′(0))-space are presented in Figure 5.6.

Figure 5.6 shows the results of the investigation of (f(0), f ′′(0))-space where the

black and grey dots (which are so numerous they appear to be lines) correspond

to points where the solution to the similarity ODE (5.13) satisfies the boundary
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conditions (5.32) and (5.33), respectively. The larger black dots show the points

located at (a) (0.7905, 0.5095), (b) (0.9655, 0.3445), (c) (1.2355, 0.2055), and (d)

(1.3655, 0.1625), which are estimates of f(0) and f ′′(0) for which the solution to

(5.13) satisfies both boundary conditions (5.32) and (5.33). These points were

estimated by drawing straight lines between the dots and finding the four data

points surrounding the intersection point, denoted by (x1, y1), (x1, y2), (x2, y1),

and (x2, y2). The estimate of the intersection point was obtained by calculating

((x2 − x1)/2, (y2 − y1)/2), which is a good approximation since x2−x1 and y2−y1
are small.

Figure 5.6 shows that there are many intersection points (where the solution to

the similarity ODE (5.13) satisfies both boundary conditions (5.32) and (5.33)

at η = ηend) and so we conclude that there is a family of solutions to the simi-

larity ODE (5.13). As also noted by Zhang and Lister [71], the spacing between

intersection points decreases as f(0) → 0, suggesting that there are countably

infinite solutions to (5.13). However, note that the points indicated by the larger

black dots are in very good agreement with the estimates of f(0) and f ′′(0) using

the numerical solutions, given in Table 5.1, and we expect that this agreement

would improve even more if the numerical calculations could get closer to the

time of contact. Hence, this suggests that the similarity solutions obtained us-

ing the points denoted by the larger black dots correspond to the solutions to

the governing equation (2.91). Furthermore, we also searched (f(0), f ′′(0))-space

for different values of ηend from 4 to 10, which changed its qualitative structure.

However, the intersection points denoted by the larger black dots stayed roughly

the same.

5.3.3.b Solving the similarity ODE (5.13)

The similarity ODE (5.13) is solved using the Matlab code introduced in Section

4.2.2 to perform the shooting method, in which the following initial conditions
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(a)

●●

(b)
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Figure 5.6: Results of the investigation of (f(0), f ′′(0))-space where the black and
grey dots (which are so numerous they appear to be lines) correspond to points
where the solution to the similarity ODE (5.13) satisfies the boundary conditions
(5.32) and (5.33), respectively. The parameter values used are ηend = 10 and
(a) d = 2 and (b) d = 3. The larger black dots show the points located at (a)
(0.7905, 0.5095) and (b) (0.9655, 0.3445) that are estimates of f(0) and f ′′(0) for
which the solution to the ODE satisfies both boundary conditions (5.32) and
(5.33).

105



Figure 5.4 (a) (b) (c) (d)
f(0) 0.7796 0.9597 1.2414 1.3446
f ′′(0) 0.5387 0.3559 0.2162 0.1820

Table 5.1: Estimated values for f(0) and f ′′(0) using the intercepts of the lines
of best fit in Figure 5.4.

are used

f(0) = f0, f ′(0) = 0, f ′′(0) = f ′′

0 , f ′′′(0) = 0, (5.34)

where f0 and f ′′

0 are constants. Recall that, close to contact, we obtained an

expression for τ , namely, expression (5.28), which was used to give equations

(5.29) and (5.30). Hence, both f and η can be expressed in terms of h and x−xc,

respectively, i.e.

f(η) =
f(0)

d− hmax

(d− h) , (5.35)

η =

(
f(0)

d− hmax

)3/2

(x− xc) , (5.36)

where the value of f(0) corresponds to the intersection point denoted by the

larger black dots in Figure 5.6. Equations (5.35) and (5.36) allow us to compare

the solutions to the similarity ODE (5.13) with the corresponding solutions to

the governing equation (2.91).

Figure 5.7 shows plots of the rescaled interfacial height (f(0)/(d− hmax)) (d−h) as

a function of the rescaled horizontal coordinate (f(0)/(d− hmax))
3/2 (x−xc) (solid

line) and the corresponding solution to the similarity ODE (dashed line) with ini-

tial conditions (5.34) in which (a) f0 = 0.7905, and f ′′

0 = 0.5095, (b) f0 = 0.9655

and f ′′

0 = 0.3445, (c) f0 = 1.2355 and f ′′

0 = 0.2055, and (d) f0 = 1.3655 and

f ′′

0 = 0.1625. The values of f0 and f
′′

0 were chosen so that they correspond to the

larger black dots in Figure 5.6. The plots of the solutions to the governing equa-
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(a)

(b)

Figure 5.7: Plots of the rescaled interfacial height (f(0)/(d− hmax)) (d− h) as a

function of the rescaled position (f(0)/(d− hmax))
3/2 (x−xc) (solid line) and the

corresponding solution to the similarity ODE (dashed line) with initial conditions
(5.34) in which (a) f0 = 0.7905, and f ′′

0 = 0.5095, and (b) f0 = 0.9655 and
f ′′

0 = 0.3445. The plots of the solution to (2.91) correspond to values of t where
(a) d−hmax ≃ 0.02. The parameter values are (a) L = 10, d = 2 and (b) L = 20,
d = 3.
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Figure 5.8: Plots of f ′′′(η) as a function of η using the initial conditions (5.34)
in which f0 = 0.7905 and f ′′

0 = 0.5095 (solid line), f0 = 0.6465 and f ′′

0 = 0.1535
(dashed line), and f0 = 0.554 and f ′′

0 = 0.1115 (dotted line). The parameter
values used are ηend = 10 and d = 2.

tion (2.91) correspond to values of t where (a) d−hmax ≃ 0.02, (b) d−hmax ≃ 0.02,

(c) d− hmax ≃ 0.05, and (d) d− hmax ≃ 0.05.

Figure 5.7 shows very good agreement between the rescaled solutions to the gov-

erning equation (2.91) and the solutions to the similarity ODE (5.13). Specifically,

the rescaled solutions to the governing equation (2.91) converge to the solutions

to the similarity ODE (5.13) as hmax → d. However, the numerical calculations

can only be computed up to around d − hmax = 0.01 due to restrictions in the

number of grid points, and so we would expect even better agreement for numer-

ical solutions closer to contact. Together with the results in Section 5.3.1.a, this

confirms that, during UC behaviour, the interface exhibits self-similar behaviour

which is described by the similarity solution (5.14)–(5.15). In particular, h is

described near x = xmax by the similarity ODE (5.13) and quasi-steady far field

behaviour, as described by (5.24), at η → ∞. As discussed in Chapter 1, Zhang

and Lister [71] concluded that solutions to their governing equation corresponds

to the intersection point with the largest value of f(0), which gives the least os-

cillatory curvature profile. Also, Witelski and Bernoff [72] subsequently showed

that this was the only stable similarity solution.

For the present problem, Figure 5.8 shows plots of f ′′′(η) as a function of η using

the initial conditions (5.34) in which f0 = 0.7905 and f ′′

0 = 0.5095 (solid line),

f0 = 0.6465 and f ′′

0 = 0.1535 (dashed line), and f0 = 0.554 and f ′′

0 = 0.1115 (dot-
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ted line). These initial conditions correspond to the first three intersection points

from right to left in Figure 5.6(a) (estimated using the same method described

previously). Figure 5.8 shows the same structured ordering as seen by Zhang and

Lister [71], where there are extra half oscillations of the f ′′′(η) profile at each

intersection point as f(0) decreases. The same behaviour is seen for other values

of ηend and d. Hence, following the same logic used by Zhang and Lister [71], we

conclude that there are no more intersection points for values of f(0) larger than

those corresponding to the larger black dots in the (f(0), f ′′(0))-space plots in

Figure 5.6, and the self-similar behaviour observed in the solutions to the govern-

ing equation (2.91) corresponds to the least oscillatory curvature profile. We will

hypothesise that the similarity solutions obtained using smaller values of f(0),

that are not observed in the solutions to (2.91), are unstable, though a stability

analysis has not been performed.

Lastly, we note that the similarity ODE (5.13) can be recast into canonical form

using the scalings

f = d1/2g, η = d3/4ξ, (5.37)

where g = g(ξ), giving

3ξg′ − 2g = −4(g(4) + (g−3g′)′). (5.38)

Hence, under these rescalings, the parameter d falls out of the similarity ODE

(5.13), and we find that the solutions to the similarity ODE presented in Figure

5.7 collapse onto the same curve.
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Figure 5.9: Plots of h as a function of x/L during the (a) progressive growth,
(b) buckling, (c) asymptotic thinning, and (d) onset of sliding stages. The dots,
squares, crosses, and circles are used to track the positions of hmin during the
progressive growth, buckling, asymptotic thinning, and onset of sliding stages,
respectively. The parameter values used are L = 100 and d = 7.
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Figure 5.10: Plots of (a) hmin and hDL as functions of t, and (b) xmin/L and
xDL/L as functions of t. Note that, in (a) the horizontal and vertical axes are
logarithmically scaled, and in (b) the horizontal axes is logarithmically scaled.
The dots, squares, crosses, and circles correspond to those in Figure 5.9. The
solid and dashed lines correspond to the numerical calculations in which the
periodic and symmetric boundary conditions are imposed, respectively, and are
indistinguishable until t ≈ 6× 109. The parameter values used are L = 100 and
d = 7.
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5.4 Thinning (TH) behaviour

TH behaviour occurs when the interface evolves through four different stages,

which we term “progressive growth”, “buckling”, “asymptotic thinning”, and

“onset of sliding”, as illustrated by Figure 5.9. Figure 5.9 shows plots of h as a

function of x/L during the (a) progressive growth, (b) buckling, (c) asymptotic

thinning, and (d) onset of sliding stages. The dots, squares, crosses, and circles

are used to track the positions of hmin during the progressive growth, buckling,

asymptotic thinning, and onset of sliding stages, respectively. Note that, unless

otherwise stated, the periodic boundary conditions are imposed. The evolution

of the interface through these four stages are the same as those found by Dietze et

al. [86] who considered the Rayleigh–Taylor instability of a fluid film suspended

from a ceiling.

During the progressive growth stage, the interface approaches the lower electrode,

as shown in Figure 5.9(a). The resistance to flow increases as h approaches the

lower electrode, and this is characterised by the mobility coefficient h3/3 present

in the governing equation (2.91), which corresponds to the effect of viscosity.

During the buckling stage, the interface flattens as it approaches the lower elec-

trode, and ultimately the “buckling” occurs where the interface forms two trough

regions (that each contain a local minimum), two filling lobes and a draining lobe,

as shown in Figure 5.9(b). Note that in Figure 5.9(b), the draining lobe is located

between the two trough regions, i.e. between x/L ≈ 0.44 and x/L ≈ 0.56, and

the filling lobes are located at both ends of the domain. The liquid flows from

the draining lobe into the filling lobe through the trough regions, and the local

minima in the trough regions approach the lower electrode. Symmetry is imposed

at t = 0, since the initial initial conditions (4.17) are used, and holds for some of

the calculation. Hence, the height of the local minima in the trough regions have

the same value, namely y = hmin. Due to the symmetry of the interface, we only

track the position of the minimum for the leftmost trough region in Figure 5.9.
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The interface now enters the asymptotic thinning stage, as shown by Figure

5.9(c), where the liquid continues to drain from the draining lobe into the filling

lobes through the trough regions, and the local minima located in the trough

regions continue to approach the lower electrode. The interface is also in a quasi-

steady regime during the asymptotic thinning stage, in which the variation of

the interface in time t is small, and this will be shown analytically in Section

5.4.1. It is also observed during the asymptotic thinning stage that hmin and the

height of the draining lobe, denoted by hDL = hDL(t) at x/L = xDL/L = 0.5,

approach a power-law behaviour at large times, specifically, hmin = O(t−1/2) and

hDL = O(t−1/4), as illustrated in Figure 5.10(a). Figure 5.10 shows plots of (a)

hmin and hDL as functions of t, and (b) xmin/L and xDL/L as functions of t. Note

that, in (a) the horizontal and vertical axes are logarithmically scaled, and in

(b) the horizontal axis is logarithmically scaled. The dots, squares, crosses, and

circles correspond to those in Figure 5.9. The solid and dashed lines correspond

to the numerical calculations in which the periodic and symmetric boundary con-

ditions are imposed, respectively, and are indistinguishable until t ≈ 6 × 109.

Recall that the symmetric boundary conditions are imposed using the Matlab

code introduced in Section 4.1.4. The parameter values used are L = 100 and

d = 7. Note that x = xmin denotes the positions of the local minima in the trough

regions.

Furthermore, the values of hmin and hDL continue to decrease like O(t−1/2) and

O(t−1/4), respectively, until asymmetric disturbances, which are seeded by small

numerical noise, stimulate the onset of sliding (and this will be discussed further

in Section 5.4.2). The onset of sliding stage is characterised by a loss of symmetry

and the interface translates to the left, as illustrated by Figures 5.9(d) and 5.10.

Note that the interface can also translate to the right, and we will show in Section

5.4.2 that the direction of translation is determined by numerical errors seeded

by numerical noise. Figure 5.10(a) shows that the values of the local minima
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hmin in the two trough regions diverge from each other, highlighting the loss of

symmetry, and Figure 5.10(b) shows the positions of the local minima xmin and

the position of the draining lobe xDL moves to the left at t ≈ 6×109, highlighting

the translation of the interface to the left. Note that the circles in Figures 5.9

and 5.10 now track the global minimum point, since symmetry is lost and the

local minima values in the two trough regions diverge.

The numerical calculations of Pillai and Narayanan [118, 126], who studied this

system, also show that sliding occurs. Furthermore, if the symmetric boundary

conditions are used (implemented using the Matlab code introduced in Section

4.1.4), then the onset of sliding would never occur since asymmetric disturbances

are removed at every time step of the numerical calculations. Therefore, the

asymptotic thinning stage would continue indefinitely for increasing t, and hmin

and hDL would continue to show the power-law behaviour described earlier, i.e.

hmin = O(t−1/2) and hDL = O(t−1/4). The dashed lines in Figure 5.10 show that

these symmetric boundary conditions do indeed stop sliding. Specifically, the

dashed lines in Figure 5.10(a) show that there is no loss of symmetry in the val-

ues of the local minima in the two trough regions hmin, and Figure 5.10 shows

that the positions of the local minima and the draining lobe xmin and xDL, respec-

tively, do not move to the left at all. The results of the numerical calculations

introduced above were observed for other values of L and d.

In Section 5.4.1, the asymptotic thinning stage is investigated analytically. In

particular, a similarity solution describing the trough region (at times where

hmin ≪ 1) is determined, and the time dependence of the system is then de-

termined analytically which agrees with the numerical results. Furthermore, in

Section 5.4.2, the onset of sliding is investigated by performing a frozen-time lin-

ear stability analysis (which will be introduced and discussed in Section 5.4.2),

which shows that the sliding phenomenon is caused by asymmetric disturbances.
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Figure 5.11: Plots of (a) ∂2h/∂x2, and (b) ∂h/∂x as functions of x/L. The dots
indicate the positions of the local minima in the trough regions. The profiles are
shown at t ≈ 9 × 107 for which hmin = 8.351 × 10−3, and the parameter values
used are L = 100 and d = 7.

5.4.1 Investigation of the asymptotic thinning stage

In this Section, we take inspiration from the work of Hammond [81], who ob-

tained asymptotic solutions to the long-time behaviour of a draining lobe when

he investigated the nonlinear evolution of an axisymmetric annular film confined

within a cylindrical pipe, as discussed in Chapter 1. Specifically, we obtain a

similarity solution that describes the interface in the trough regions during the

asymptotic thinning stage of TH behaviour, specifically, at times when hmin ≪ 1.

We consider a system of filling lobe, trough, and draining lobe regions, in which

the local minima in the trough regions are located at x = ±x0, and the draining

lobe is in the region −x0 ≤ x ≤ x0. We will consider the trough region at x = x0,

although, due to symmetry, a similar analysis will apply to the trough region at

x = −x0. Firstly, we seek a similarity solution for h in the trough region of the

form,

h = ǫH(η), η =
x− x0
ǫα

, (5.39)

where ǫ ≪ 1 is a measure of the height of the trough region, H = H(η) is

the similarity function, and α is the similarity exponent. The numerical results,
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Figure 5.12: Log-log plots of hDL as a function of hmin where the dashed line is
the line of best fit with gradient 0.4764. The symmetric boundary conditions are
used so that sliding does not occur, and the parameter values used are L = 100
and d = 7.

specifically the variation in curvature ∂2h/∂x2 across the local minima in the

trough regions, shown in Figure 5.11(a), are used to determine the value for α.

Figure 5.11 shows plots of (a) ∂2h/∂x2, and (b) ∂h/∂x as functions of x/L. The

dots indicate the positions of the local minima in the trough regions. Figure

5.11(a) shows that the curvature changes by O(1) across the local minimum

located at x = xmin. Motivated by these results, we infer that ∂2h/∂x2 is of order

unity the trough region, and using the similarity solution (5.39) we obtain

ǫ1−2αH ′′(η) = O(1), (5.40)

and hence α = 1/2, i.e. the appropriate lengthscale in the trough region is x =

O(ǫ1/2), and so the similarity solution (5.39) becomes

h = ǫH(η), η =
x− x0
ǫ1/2

. (5.41)

In Section 5.4.1.a, the heights and lengthscales of the filling and draining lobe

regions are obtained, then, in Section 5.4.1.b, the timescales in the filling lobe,

trough, and draining lobe regions are determined, and we show that the interface

in these regions is quasi-steady. In Sections 5.4.1.c and 5.4.1.d, the governing
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equation for H in the trough region and the matching conditions to the filling and

draining lobes are determined, respectively, and the resultant system is presented

in Section 5.4.1.e. Furthermore, the system is used in Section 5.4.1.f to show

analytically that the time dependence h in the trough and draining lobe regions

are h = O(t−1/2) and h = O(t−1/4), respectively, agreeing with the numerical

results shown in Figure 5.10(a).

5.4.1.a Obtaining the heights and lengthscales of the draining and

filling lobe regions

The draining lobe is investigated first, in which the height and lengthscale are

taken to be h = O(tn1) and x = O(tn2), where the exponents n1 and n2 are

constants to be determined. Figure 5.12 shows log-log plots of hDL as a function of

hmin, where the dashed line is the line of best fit with gradient 0.4764. Symmetric

boundary conditions are used so that sliding does not occur, and the parameter

values used are L = 100 and d = 7. Figure 5.12 (and similar plots for other values

of L and d not shown for brevity) suggests that log-log plots of hDL as a function

of hmin converge to straight lines with gradients of 1/2 as t→ ∞. Since

log (hDL)

log (hmin)
∼ log (ǫn1)

log (ǫ)
= n1, (5.42)

the numerical results suggest that n1 = 1/2, i.e. the height of the draining lobe

is h = O(ǫ1/2). The lengthscale of the draining lobe can now be determined

by substituting h = O(ǫ1/2) and x = O(ǫn2) into the governing equation (2.91).

Ensuring that the surface tension and electrostatic effects are both important

in the draining lobe means that the second and third terms (corresponding to

surface tension and electrostatic effects, respectively) must balance, giving

ǫ1/2−3n2 ∼ ǫ1/2−n2 . (5.43)
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Figure 5.13: A schematic of the heights and lengthscales of the filling lobe, the
trough, and the draining lobe regions.

Hence, n2 = 0, and so the lengthscale of the draining lobe region is x = O(1).

Now considering the filling lobe regions, again motivated by the numerical results,

we pose that the heights of the filling lobes are h = O(1), and the lengthscale

is x = O(ǫn3), where the exponent n3 is a constant to be determined. The

lengthscale is determined by substituting h = O(1) and x = O(ǫn3) into the

governing equation (2.91). Again, ensuring that surface tension and electrostatic

effects are important in the filling lobe means that the second and third terms

must balance, which gives

ǫ−3n3 ∼ ǫ−n3 . (5.44)

Hence, n3 = 0, and so the lengthscales of the filling lobe regions are x = O(1).

In summary, the heights and lengthscales of the three different regions, namely,

the filling lobe, trough, and draining lobe regions, have been determined, as sum-

marised in Figure 5.13. Figure 5.13 is a schematic of the heights and lengthscales

of the filling lobe, trough, and draining lobe regions.
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5.4.1.b Determination of different timescales

Recall that, during the asymptotic thinning stage, the liquid flows from the

draining lobe through the troughs and into the filling lobes. The heights and

lengthscales in these regions are different (and shown in Figure 5.13), and so the

timescales may be different too. Furthermore, an additional timescale needs to

be considered, namely, the timescale for drainage, i.e. the drainage of the liquid

from the draining lobe into the filling lobe. We will show that the timescale

for drainage is much longer than the timescales in the filling lobe, trough, and

draining lobe regions. This means that the filling lobe, trough and draining lobe

regions can be treated as quasi-steady, and so time derivative terms in the differ-

ential equations describing them can be neglected.

Firstly, the timescales in the trough regions are t = O(ǫn4), where the exponent

n4 is a constant to be determined. Recall that h = O(ǫ) and x = O(ǫ1/2) in

the trough regions, and from the governing equation (2.91) the following balance

is obtained between the time derivative term and the capillary and electrostatic

terms,

ǫ1−n4 ∼ ǫ2. (5.45)

Hence, n4 = −1, and so the timescale in the trough regions is t = O(ǫ−1).

Secondly, the timescale in the draining lobe region is t = O(ǫn5), where the

exponent n5 is a constant to be determined. Recall that h = O(ǫ1/2) and x = O(1)

in the draining lobe regions, and the governing equation (2.91) gives the following

balance between the time derivative and capillary terms,

ǫ1/2−n5 ∼ ǫ2. (5.46)
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Hence, n5 = −3/2, and so the timescale in the draining lobe region is t = O(ǫ−3/2).

Furthermore, the timescales in the filling lobe regions are t = O(ǫn6), where

the exponent n6 is a constant to be determined. Recall that h = O(1) and

x = O(1) in the filling lobe regions, and from the governing equation (2.91) the

following balance is obtained between the time derivative term and the capillary

and electrostatic terms,

ǫn6 ∼ ǫ0. (5.47)

Hence, n6 = 0, and so the timescale in the filling lobe regions is t = O(1).

The timescale for the drainage of liquid from the draining lobe into the filling

lobes through the trough region is now determined. We express the governing

equation (2.91) as

∂h

∂t
= −∂Q

∂x
, (5.48)

where Q = Q(x, t) is the volume flux of liquid in the x-direction, namely,

Q =
h3

3

(
∂3h

∂x3
+

1

(d− h)3
∂h

∂x

)
. (5.49)

Integrating equation (5.48) with respect to x between −x0 and x0, i.e. between

the two trough regions, gives

∂V

∂t
= −(Q(−x0)−Q(x0)) = −2Q(x0), (5.50)

where V = V (t) is the volume of liquid in the draining lobe and the second

equality comes from the symmetry of the interface. Note that equation (5.50)

states that the change in volume of liquid in the draining lobe is balanced by the

liquid flux through the trough regions into the filling lobes.
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The timescale for drainage is t = O(ǫn7), where the exponent n7 is a constant to

be determined. Since h = O(ǫ) and x = O(ǫ1/2) in the trough regions, we find

that Q(x0) = O(ǫ5/2) from equation (5.49). Hence, equation (5.48) gives

ǫ1/2−n7 ∼ ǫ5/2, (5.51)

and balancing these terms gives n7 = −2. Therefore, the timescale for drainage

is t = O(ǫ−2).

In summary, the timescales in the filling lobe, trough, and draining lobe regions

are t = O(1), t = O(ǫ−1), and t = O(ǫ−3/2), respectively, and the timescale for

drainage is t = O(ǫ−2). Therefore, drainage takes place on a timescale much

longer than those in the three different regions, and so the interface in the filling

lobe, trough, and draining lobe regions can be treated as being quasi-steady.

5.4.1.c Governing equation for H(η) in the trough region

In order to find the equation that describes H(η) at leading order in the trough

regions, the similarity solution (5.41) is substituted into the governing equation

(2.91), giving

H3

3

(
ǫ5/2H ′′′ + ǫ7/2

H ′

(d− ǫH)3

)
= Q(x0) = ǫ5/2Q(x0), (5.52)

where Q(x0) = O(1), where we have used the fact that the interface is quasi-

steady. Hence, at leading order in ǫ, equation (5.52) becomes

H ′′′ =
3Q(x0)

H3
, (5.53)

which is the same equation as that found by Hammond [81].
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5.4.1.d Matching conditions to the draining and filling lobe regions

The matching conditions from the trough region to the filling and draining lobe

regions are now determined, where, in an asymptotic sense, the trough region

is the inner solution, and the draining and filling lobes are the outer solution.

A qualitative difference is found in the matching conditions to the filling and

draining lobes, namely that the trough region matches to a linear function as

η → ∞ (corresponding to the draining lobe) and matches to a quadratic function

as η → −∞ (corresponding to the filling lobe): This is then the manifestation of

the asymmetry which causes drainage. The matching condition to the draining

lobe is determined first.

In the draining lobe region, recall that h = O(ǫ1/2) and x = O(1), and so the

governing equation (2.91) at leading order in ǫ becomes

∂

∂x

(
h3
(
∂3h

∂x3
+

1

d3
∂h

∂x

))
= 0, (5.54)

which has the solution

h = ǫ1/2
(
A+ B cos

( x

d3/2

))
, (5.55)

where A = O(1) and B = O(1) are unknown constants of integration.

As determined in Section 5.4.1.a, the heights of the filling and draining lobe

regions are much larger than the height of the trough region, and so the matching

conditions h(±x0) = 0 are used. Imposing these matching conditions on the

solution given in equation (5.55) yields

h = ǫ1/2B
(
cos
( x

d3/2

)
− cos

( x0
d3/2

))
. (5.56)

Matching the trough region (inner solution) to the draining lobe region (outer

solution) requires performing a Taylor expansion of equation (5.56) around x =
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x0, giving

h ∼ −ǫ1/2α(x− x0) (5.57)

as x→ x−0 , where

α =
B

d3/2
sin
( x0
d3/2

)
= O(1). (5.58)

Rewriting (5.57) in terms of H(η) and η using the similarity solution (5.41) gives

H ∼ −αη (5.59)

as η → −∞. Hence, the matching condition from the trough region to the

draining lobe region is given by (5.59).

The matching condition from the trough region to the filling lobe region is found

by firstly performing a Taylor expansion of h around x = x0, which gives

h = h(x0) + (x− x0)
∂h

∂x
(x0) +

(x− x0)
2

2

∂2h

∂x2
(x0) +O

(
(x− x0)

3
)

(5.60)

as x→ x+0 .

The matching conditions h(±x0) = 0 are again used, and the numerical results

suggest that ∂h/∂x → 0 as x → x+0 , and an analytical justification of this result

is presented in Appendix E. Imposing h(x0) = ∂h/∂x(x0) = 0, equation (5.60)

simplifies to

h =
(x− x0)

2

2

∂2h

∂x2
(x0) +O

(
(x− x0)

3
)

(5.61)

as x→ x+0 .

The similarity solution (5.15) is used to rewrite the leading order term of equation
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(5.61) in terms of H(η) and η, giving

H ∼ H ′′(0)

2
η2 (5.62)

as η → ∞. Hence, the matching condition from the trough region to the filling

lobe region is given by (5.62). Recall that the qualitative difference in the match-

ing conditions to the filling and draining lobes, namely that the trough region

matches to a linear function as η → ∞ and matches to a quadratic function as

η → −∞, is the manifestation of the asymmetry which causes drainage.

5.4.1.e The system describing the trough region

In Sections 5.4.1.c and 5.4.1.d, the following system describing the trough region

has been obtained,

H ′′′(η) =
3Q(x0)

H(η)3
, H(η) ∼ −αη as η → −∞, H(η) ∼ H ′′(0)

2
η2 as η → ∞,

(5.63)

where the second and third equations are the matching conditions to the draining

and filling lobes, respectively.

The system (5.63) can be recast in canonical form by introducing the following

rescalings,

X =
H ′′(0)

2α
η, Y (X) =

H ′′(0)

2α2
H(η), (5.64)

where

Λ =
3H ′′(0)Q(x0)

2α5
, (5.65)
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to yield

Y ′′′ =
Λ

Y 3
, Y ∼ −X as −X → ∞, Y ∼ X2 as X → ∞. (5.66)

This is exactly the same system as that found by Jones and Wilson [80] and

Hammond [81], and its time dependence will be explored in Section 5.4.1.f to

show that h = O(t−1/2) and h = O(t−1/4) in the trough and draining lobe regions,

respectively, consistent with the numerical results presented in Section 5.4.

5.4.1.f Investigation of the time dependence of the system given by

(5.66)

Recall that the timescale for drainage of liquid from the filling lobe to the draining

lobe is longer than the timescales in the filling lobe, trough, and draining lobe

regions, and so the time dependence for h during the asymptotic thinning stage

of TH behaviour is determined by drainage. Firstly, the solution for h in the

draining lobe region, i.e. (5.56), is integrated with respect to x between −x0 and

x0 to obtain the expression for the volume of liquid in the draining lobe, namely,

V = 2ǫ1/2d3/2
(
1− x0 cot

( x0
d3/2

))
B sin

( x0
d3/2

)
= 2ǫ1/2d3/2

(
1− x0 cot

( x0
d3/2

))
α.

(5.67)

The expression Q(x0) = ǫ5/2Q(x0) is used in equation (5.50) to yield

∂V

∂t
= −2ǫ5/2Q(x0). (5.68)

Using the definition of Λ given by (5.65), equation (5.68) becomes

∂V

∂t
= −4ǫ5/2Λα5

3H ′′(0)
. (5.69)
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The expression for V , given by equation (5.67), is now used to remove ǫ from

(5.69), giving

∂V

∂t
= − Λ

24d15/2H ′′(0)

(
1− x0 cot

( x0
d3/2

))
−5

V 5 = −K1V
5, (5.70)

where

K1 =
Λ

24d15/2H ′′(0)

(
1− x0 cot

( x0
d3/2

))
−5

. (5.71)

Equation (5.70) shows that ∂V/∂t ∝ d−15/2, and suggests that the distance be-

tween the two electrodes d has an important impact on the rate of drainage of

liquid from the draining lobe. Specifically, as the distance between the two elec-

trodes increases or decreases, the rate at which liquid drains from the draining

lobe decreases or increases, respectively. This makes sense physically since the

destabilising electric field is facilitating drainage, and its strength is decreasing

as as d increases, leading to a slower rate of drainage of liquid from the draining

lobe. Likewise, the strength of the electric field increases as d decreases leading

to an increased rate of drainage of liquid from the draining lobe.

We solve equation (5.70) for V (t) to give

V (t) = V (0)
(
1 + 4V (0)4K1t

)
−1/4

. (5.72)

Hence, the volume of the draining lobe varies like V = O(t−1/4), which we will

now use to show that h = O(t−1/2) and h = O(t−1/4) in the trough and draining

lobe regions, respectively.

Firstly, the time dependence of h in the trough region is determined analyti-

cally. Rearranging the second term of (5.64) for H(η) and substituting it into the

126



similarity solution (5.41) gives

h = ǫH(η) =
2ǫα2

H ′′(0)
Y (X), (5.73)

and using equation (5.67) to remove ǫ from (5.73) gives

h =
Y (X)

2d3H ′′(0)

(
1− x0 cot

( x0
d3/2

))
−2

V 2 = K2V
2, (5.74)

where

K2 =
Y (X)

2d3H ′′(0)

(
1− x0 cot

( x0
d3/2

))
−2

. (5.75)

Since V = O(t−1/4), it is clear from equation (5.74) that h = O(t−1/2), which is

consistent with the results of the numerical calculations shown in Figure 5.10(a).

Secondly, the time dependence of h in the draining lobe region can be determined

analytically. Recall that equation (5.56) gives the solution for h in the draining

lobe, and using equation (5.67) to remove ǫ from (5.56) yields

h =
B

2d3/2α

(
cos
( x

d3/2

)
− cos

( x0
d3/2

))(
1− x0 cot

( x0
d3/2

))
−1

V = K3V, (5.76)

where

K3 =
B

2d3/2α

(
cos
( x

d3/2

)
− cos

( x0
d3/2

))(
1− x0 cot

( x0
d3/2

))
−1

. (5.77)

Therefore, since V = O(t−1/4), equation (5.76) shows that h = O(t−1/4) in the

draining lobe, which is in agreement with the results of the numerical calculations

shown in Figure 5.10(a).
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(a) (b)

(c) (d)

Figure 5.14: Plots of (a) h as a function of x/L at equally spaced times, (b) hmin

as a function of t, (c) xmin as a function of t, and (d) ∂2h/∂x2|x=xmin
as a function

of t. The solid and dashed lines in parts (b), (c) and (d) correspond to the
numerical results obtained using periodic and symmetric boundary conditions,
respectively, and the parameter values used are L = 100 and d = 7.
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5.4.2 Investigation of the onset of sliding stage

The onset of sliding stage is characterised by a loss of symmetry and the interface

translates to the left, as shown in Figure 5.14. The interface can also translate

to the right, and we will show that the direction of translation is dependent on

numerical errors seeded by numerical noise. Figure 5.14 shows plots of (a) h

as a function of x/L at equally spaced times, (b) hmin as a function of t, (c)

xmin as a function of t, and (d) ∂2h/∂x2|x=xmin
as a function of t. The solid and

dashed lines in parts (b), (c) and (d) correspond to the numerical results obtained

using periodic and symmetric boundary conditions, respectively. In particular,

the heights of the local minima in the left and right hand trough regions decrease

and increase in height, respectively, as shown in Figure 5.14(a) and (b), and the

leftward translation of the interface is shown in Figure 5.14(a) and (c). Figure

5.14(d) shows that the interfacial curvature in the left and right hand trough

regions decreases and increases, respectively, which corresponds to the left and

right hand trough regions flattening and becoming more curved, respectively, as

shown in Figure 5.14(a). The time of the onset of sliding is ts = 4.849 × 109, as

determined by calculating the first time step where the differences between the

values of hmin between the numerical calculations using symmetric and periodic

boundary conditions differ by more than 2%.

In Section 5.4.2.a we describe and use a frozen-time linear stability analysis to

show that the onset of sliding is caused by an asymmetric disturbance. In Section

5.4.2.b we discuss the results of this analysis, which will also be used in Section

5.4.2.c to understand the interfacial dynamics during the onset of sliding.

5.4.2.a Frozen-time linear stability analysis

Recall from Section 5.4.1.b that the interface in the filling lobe, trough, and

draining lobe regions is quasi-steady. Therefore, we will use a frozen-time linear

stability analysis to investigate the system at t = ts. A frozen-time linear sta-
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Figure 5.15: Plots of h as a function of x/L at t = ts, and so is also a plot
of H(x). The solid and dashed lines correspond to the results of the numerical
calculations that use symmetric and periodic boundary conditions, respectively,
and are indistinguishable. The parameter values used are L = 100 and d = 7.

bility analysis involves obtaining a base state, denoted by H = H(x). In this

case, it must be determined numerically as the interfacial shapes are not accessi-

ble analytically. Hence, the base state H was determined numerically (using the

symmetric boundary conditions) at t = ts, as shown in Figure 5.15. Figure 5.15

shows plots of h as a function of x/L at t = ts, and so is also a plot of H. The

solid and dashed lines correspond to the results of the numerical calculations that

use symmetric and periodic boundary conditions, respectively, and are indistin-

guishable. At the time of sliding t = ts, the interface is evolving slow enough that

it can be assumed to be quasi-static, and we will determine whether there is a

dominant asymmetric instability. The system is then perturbed around the base

state H, i.e.

h = H(x) + δh̃ exp(st), (5.78)

where δ ≪ 1 is the linearisation parameter, h̃ = h̃(x) is the amplitude of the

perturbation, and s is the growth rate. The perturbed interfacial height (5.78) is

substituted into the governing equation (2.91) and linearised, giving an equation
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in terms of (the eigenvalue) s and (the eigenfunction) h̃, namely,

sh̃ = − ∂

∂x

[
H

2

A4

((
A4∂

3H

∂x3
+ d

∂H

∂x

)
h̃+

H

3

(
A4∂

3h̃

∂x3
+ A

∂h̃

∂x

))]
. (5.79)

where A = d − H. To solve this equation for s and h̃, a Fourier ansatz for h̃ is

introduced, namely,

h̃(x) =
N∑

j=1

Aj sin

(
2πxj

L

)
+ Bj cos

(
2πxj

L

)
, (5.80)

where Aj and Bj are constants for j = 1, 2, ..., N . The ansatz (5.80) is sub-

stituted into equation (5.79), which is solved for symmetric and antisymmetric

perturbations. Specifically, setting Aj = 0 removes all sine functions from the

Fourier series ansatz and gives a symmetric perturbation to the base state H.

Similarly, setting Bj = 0 removes all cosine functions and gives an antisymmet-

ric perturbation to the base state H. Furthermore, since the base state H is

x-periodic with period L, this stability analysis is that of a Floquet-type analysis

[152]. The linear stability calculations were performed using Mathematica, where

Fourier transforms were used to calculate the derivatives and in-built functions

were used to obtain the eigenvalues and eigenfunctions of the system. The accu-

racy of these calculations were explored through comparison with the numerical

results, as illustrated by Figure 5.18.

5.4.2.b Frozen-time linear stability analysis results

The linear stability analysis was performed using N = 150 Fourier modes, and

the results revealed that all symmetric eigenmodes (when Ai = 0 in equation

(5.80)) are stable, with least stable eigenvalue s = −5.2509 × 10−10. Also, all

antisymmetric eigenmodes (when Bi = 0 in equation (5.80)) except one are also

stable, and the unstable eigenmode has eigenvalue s = 5.512× 10−9. This is very
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Figure 5.16: Plot of the unstable growth rate s as a function of the number of
Fourier modes N . The y-axis is logarithmically scaled.

close to zero, and so a plot of the most unstable eigenvalue as a function of the

number of Fourier modes N was produced, given by Figure 5.16. Figure 5.16

shows a plot of the unstable eigenvalue s as a function of the number of Fourier

modes N . This shows that the unstable growth rate does indeed converge to

a positive value and not zero. Furthermore, we found that this linear stability

analysis produces a spectrum of N discrete eigenvalues that are all real. The

least stable symmetric and unstable antisymmetric eigenfunctions are shown in

Figure 5.17. Figure 5.17 shows plots of the least stable symmetric and unstable

antisymmetric eigenfunctions (a) h̃ and (b) h̃/H as functions of x/L. The solid

and dashed lines correspond to the antisymmetric and symmetric eigenfunctions,

respectively. The dots correspond to the heights of the local minima in the trough

regions. The results of this analysis suggests that the onset of sliding is caused

by a single, unstable, antisymmetric eigenmode, which we will now confirm by

showing that the unstable antisymmetric eigenfunction shows excellent agreement

with the perturbations calculated by taking the difference between h using the

symmetric and periodic boundary conditions at t = ts.

The antisymmetric perturbation was obtained by calculating the difference be-
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Figure 5.17: Plots of the least stable symmetric and unstable antisymmetric
eigenfunctions (a) h̃ and (b) h̃/H as functions of x/L. The solid and dashed lines
correspond to the antisymmetric and symmetric eigenfunctions, respectively. The
dots correspond to the local minima in the trough regions, and the parameter
values used are L = 100 and d = 7.
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Figure 5.18: Plots of the perturbation obtained by calculating the difference
between the interfaces using symmetric and periodic boundary conditions at t =
ts (solid line), and the unstable asymmetric eigenfunction (dashed line), as a
function of x/L. The solid and dashed lines are virtually indistinguishable. The
dots correspond to the local minima in the trough regions, and the parameter
values used are L = 100 and d = 7.

tween h at t = ts obtained using the symmetric and periodic boundary conditions,

i.e. the difference between the solid and dashed lines in Figure 5.15. Figure 5.18

shows plots of the asymmetric perturbation obtained this way (solid line), and

the unstable asymmetric eigenfunction (dashed line), as functions of x/L. The

solid and dashed lines are virtually indistinguishable. The dots correspond to the

local minima in the trough regions, and the parameter values used are L = 100

and d = 7. Figure 5.18 shows excellent agreement between the numerical results

and the frozen-time linear stability results, confirming that the onset of sliding is

caused by this asymmetric disturbance. Similar results were found in other parts

of (L, d) parameter space for which TH behaviour occurs.

5.4.2.c Understanding the interfacial dynamics during the onset of

sliding stage

The results of the frozen-time linear stability analysis are now used to describe

the interfacial dynamics during the onset of sliding stage. In particular, we show

that the unstable asymmetric eigenfunction causes the local minima in the left

and right hand trough regions to decrease and increase, respectively, as shown

in Figure 5.14(a) and (b). In addition, the asymmetric disturbance shown in
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Figure 5.18 is used to explain the leftward translation of the interface (and, in

particular, of the trough regions), as shown in Figure 5.14(a) and (c). Note

that, since the eigenfunction is determined to within a +/− regularisation, the

eigenfunction could also translate to the right. Furthermore, the time derivative of

the interfacial curvature ∂/∂t (∂2h/∂x2) of the unstable asymmetric eigenfunction

is used to show that the asymmetric disturbance causes the left and right hand

trough regions to flatten and become more curved, respectively, as shown in

Figure 5.14(a) and (d).

The perturbed interfacial height (5.78) is used to obtain

∂h

∂t
= sh̃ exp (st) , (5.81)

where s > 0 and exp (st) > 0 for the unstable asymmetric eigenmode, and so

the sign of ∂h/∂t is determined by the sign of h̃. Figure 5.15 shows that the

unstable asymmetric eigenfunction h̃ (and h̃/H) is negative and positive in the

left and right hand trough regions, respectively. Hence, equation (5.81) shows that

∂h/∂t < 0 and ∂h/∂t > 0 in the left and right hand trough regions, respectively.

This corresponds to the heights of the local minima in the left and right hand

trough regions decreasing and increasing during the onset of sliding, in agreement

with the numerical results shown in Figure 5.14(a) and (b).

Figure 5.18 can also be used to explain the leftward translation of the trough

regions. Specifically, in the left hand trough region, h̃/H is negative and positive

to the left and right of the local minimum. This shows that h is decreasing and

increasing to the left and right hand side of the local minimum, indicating that

the local minimum in the left hand trough region is moving to the left. Likewise,

for the right hand trough region, h̃/H is negative and positive to the left and right

hand sides of the local minimum. This shows that h is decreasing and increasing

to the left and right hand side of the local minimum, respectively, indicating that
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the local minimum in the trough region is moving to the left. Therefore, this

explains the leftward translation of the local minima in the trough regions during

the onset of sliding.

Note that the leftward translation of the interface is not unique, and it could

equally well translate rightward. Since the numerical calculations begin with

symmetric initial conditions, given by (4.17), the asymmetric disturbances must

come from small numerical errors seeded by numerical noise. The numerical noise

is dependent on factors such as the number of grid points used in the calculations

and the accuracy of the finite-difference scheme (introduced in Section 4.1.1).

Hence, numerical noise ultimately determines the direction that the interface

moves during the onset of sliding which is effectively random.

Furthermore, the perturbed interfacial height (5.78) gives

∂

∂t

(
∂2h

∂x2

)
=

∂

∂t

(
∂2h̃

∂x2
exp (st)

)
= s

∂2h̃

∂x2
exp (st) , (5.82)

where s > 0 and exp(st) > 0 for the unstable asymmetric eigenmode, and so the

sign of ∂/∂t (∂2h/∂x2) is determined by the sign of ∂2h̃/∂x2. Figure 5.19 shows

a plot of ∂2h̃/∂x2 as a function of x/L for the unstable asymmetric eigenmode.

The dots correspond to the local minima in the trough regions. Figure 5.19 shows

that, for the unstable asymmetric eigenfunction, ∂2h̃/∂x2 < 0 and ∂2h̃/∂x2 > 0

in the left and right hand trough regions, respectively. Hence, equation (5.82)

shows that ∂/∂t (∂2h/∂x2) < 0 and ∂/∂t (∂2h/∂x2) > 0 in the left and right

hand trough regions, respectively. This corresponds to the interface in the left

and right hand trough regions flattening and becoming more curved, respectively,

agreeing with the numerical results shown in Figure 5.14(a) and (c).

The results of this frozen-time linear stability analysis also agree with the results

of Dietze et al. [86], who found that the onset of sliding for their problem was

caused by an asymmetric disturbance. Recall also that Pillai and Narayanan
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Figure 5.19: Plots of the ∂2h̃/∂x2 as a function of x/L, for the unstable asymmet-
ric eigenfunction. The filled circles correspond to the local minima in the trough
regions, and the parameter values used are L = 100 and d = 7.

[126], who also studied this PC model, showed that sliding occurs, and they

assumed that the onset of sliding is caused by an asymmetric disturbance as

found by Dietze et al. [86]. The results of our frozen-time linear stability analysis

confirms that this is indeed the case.

5.5 Investigation of the transition curves in (L, d)

parameter space

In this Section, the transition curves separating the three behaviours in (L, d)

parameter space, shown in Figure 5.1, are investigated. Specifically, there are

two different types of transition curve:

1. One that separates UC or TH behaviour from LV behaviour.

2. One that separates UC behaviour from TH behaviour.

The first type of transition curve is investigated in Section 5.5.1, and is obtained

analytically using linear stability theory. The second type of transition curve is

investigated in Section 5.5.2, and we will show that its more complex behaviour

is explained using the number of filling lobes and the value of d.
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5.5.1 Transition curve separating UC or TH behaviour

from LV behaviour

Recall from Section 3.7 the PC model is always linearly unstable in an unbounded

domain, and so LV behaviour can only occur when the domain length L is too

short to contain any unstable wavenumbers. We will now calculate analytically

the transition curve separating UC or TH behaviour from LV behaviour.

Recall that the cutoff wavenumber kc, given by equation (3.44), is the value of

k > 0 where s = 0. Equation (3.44) is substituted into the expression

kc =
2π

L
, (5.83)

giving

1

(dc − 1)3/2
=

2π

L
, (5.84)

where dc is the cutoff value for d, and the system is unstable to small perturbations

of wavelength L when d < dc. Equation (5.84) can be rearranged to give an

equation for dc in terms of L, namely,

dc = 1 +

(
L

2π

)2/3

. (5.85)

Therefore, for any given domain length L, equation (5.85) gives the value for dc

such that, when d < dc and d ≥ dc, the PC model will exhibit UC or TH behaviour

and LV behaviour, respectively. Equation (5.85) is used to plot the analytically

calculated transition curve (shown by the dashed line) in Figure 5.1 which is in-

distinguishable from the corresponding numerically calculated transition curve.

This shows the excellent agreement between the numerically calculated and ana-

lytical transition curves. Equation (5.85) is the analytic expression for the curve

separating UC or TH behaviour from LV behaviour.
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5.5.2 Transition curve separating UC and TH behaviours

We will show that the transition curve separating UC behaviour from TH be-

haviour is determined by a complex balance between the number of filling lobes

and the value of d. Recall that (L, d) parameter space shows a tongue of UC be-

haviour extending into the TH region, shown in the upper inset in Figure 5.1. The

behaviour in this tongue is investigated by exploring Figure 5.20, which shows

plots of h as a function of x/L for (a) d = 7, (b) d = 7.5, (c) d = 8, (d) d = 8.5,

(e) d = 9, and (f) d = 9.5 when L = 240. Figure 5.20(a), (b) and (e) show

UC behaviour, and Figure 5.20(c), (d) and (f) show TH behaviour. The profiles

are plotted at the first time where the conditions that determine each behaviour

(described in Section 5.1.1) were satisfied, and the horizontal dashed lines show

the upper electrode.

In Figure 5.20:

1. Parts (a) and (b) show one filling lobe around x/L = 0 and two half filling

lobes at the ends of the domain which, due to periodicity, means that there

are essentially two full filling lobes in the domain. These plots show that h

has got sufficiently close to the upper electrode for UC behaviour to occur.

2. Parts (c) and (d) still show two filling lobes in the domain, and so in this

case TH behaviour will occur. The change in behaviour from UC to TH,

between plots (b) and (c), occurs since the value of d is sufficiently large

such that h will not evolve to be sufficiently close to the upper electrode for

UC behaviour to occur.

3. Part (e) now only has one filling lobe around x/L = 0, into which all the

liquid now drains. This means that h can now evolve close enough to the

upper electrode for UC behaviour to occur.

4. Part (f) also shows one filling lobe around x/L = 0, and in this case TH

behaviour will occur. The change in behaviour from UC to TH between
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(a) (b)

(c) (d)

(e) (f)

Figure 5.20: Plots of the h as a function of x/L for (a) d = 7, (b) d = 7.5, (c)
d = 8, (d) d = 8.5, (e) d = 9, and (f) d = 9.5 when L = 240. Plots (a), (b)
and (e) show UC behaviour, and plots (c), (d) and (f) show TH behaviour. The
profiles are plotted at the first time where the conditions that determine each
behaviour (described in Section 5.1.1) were satisfied, and the horizontal dashed
lines show the upper electrode
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plots (e) and (f) occurs for the same reason as that between plots (b) and

(c), namely, the upper electrode is now too far away from the filling lobe

such that UC behaviour cannot occur.

Hence, the transition between UC behaviour and TH behaviour is a complex

balance between the number of filling lobes and the value of d. It might reasonably

be anticipated that the number of lobes can be predicted by linear stability theory;

in this case it would be expected that the transition from two lobes to one would

take place when the linear growth rate s corresponding to the wavenumber k =

2π/L exceeded that corresponding to k = 2 × 2π/L. From equation (3.43) this

takes place at d = 1 + 4 × 51/3 (3/π)2/3 ≈ 7.63, which is in only approximate

agreement with the actual transition from (d) to (e) which takes place at d ≈ 8.8,

reflecting the fact that the formation of lobes is at least in part a nonlinear

phenomenon.

The analysis above raises the question of how close the filling lobe has to be

to the upper electrode for UC behaviour to occur. We performed a detailed

investigation of the interfacial height at the first time step at which the conditions

that determine each behaviour were satisfied. As a general rule of thumb, the

behaviour observed is determined by the maximum value of the interfacial height

hmax. Specifically, when the interface evolves to the point where hmax > d/2, UC

behaviour is observed, otherwise, if hmax < d/2 for all t, then TH behaviour is

observed. This discussion about hmax ties up with the number of filling lobes,

since varying the number of filling lobes will influence the value of hmax, and,

therefore, influences the behaviour that is observed.

5.6 Summary

In summary, we performed an analytical and numerical investigation of the PC

model that has the governing equation (2.91) for h. We found that three be-
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haviours can occur, namely, LV, UC and TH. In Section 5.1, we performed a

numerical investigation of (L, d) parameter space, and transition curves (which

separate regions in (L, d) parameter space with different behaviours) were ob-

tained. We described and investigated LV behaviour in Section 5.2, in which

perturbations to the base state decay. Using linear stability theory, we showed

that while unstable wavenumbers always exist, none are sufficiently short to fit

into a domain of a given length.

In Section 5.3, UC behaviour was described and investigated, in which the inter-

face touches the upper electrode in finite time. A similarity solution (5.14)–(5.15)

was found that describes the interface close to the upper electrode, which showed

excellent agreement with the numerical results. The similarity ODE (5.13) was

found and solved using the shooting method, and showed good agreement with

the numerical results, which is further confirmation that the interface exhibits

self-similar behaviour described by the similarity solution (5.14)–(5.15). We also

noted that, through the rescalings (5.37), the similarity ODE can be recast into

canonical form (5.38).

A description and investigation of TH behaviour was performed in Section 5.4,

where the interface evolves through four different stages, namely, the progressive

growth, buckling, asymptotic thinning, and the onset of sliding stages. For the

asymptotic thinning stage where the interface has evolved into filling lobe, trough,

and draining lobe regions, we found a similarity solution for the trough region.

In particular, the similarity solution shows that h = O(t−1/2) and h = O(t−1/4)

in the trough and draining lobe regions, respectively, agreeing with the numerical

results. Furthermore, the onset of sliding stage was investigated using a frozen-

time linear stability analysis, the results of which showed that sliding is caused

by asymmetric disturbances, seeded by the numerical noise.

In Section 5.5, we investigated the transition curves in (L, d) parameter space

shown in Figure 5.1. In particular, linear stability theory was used to show that
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the transition curves separating UC or TH behaviour from LV behaviour occurs

when the domain length is too short to contain any unstable wavenumbers. We

also obtained an analytical expression for the transition curve, given by equation

(5.85), separating regions with UC or TH behaviour with LV behaviour. Further-

more, we found that the transition curve separating the UC and TH behaviours

is determined by a complex balance between the number of filling lobes and the

value of d.
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Chapter 6

Highly conducting (HC) model

In this Chapter, the HC model, that has governing equation for h (2.99), is

investigated. The UC, LV, and TH behaviours are again observed and, in Section

6.1, an investigation (ΣR, ǫR) parameter space is performed for various values of d.

This investigation is made more complicated than that of the PC case due to the

higher dimensionality of parameter space, as will be discussed in Section 6.1.1.

Also, the specific details of the three behaviours are different from the PC case,

and will be discussed and explored further in Sections 6.2–6.4. In Section 6.5, the

transition curves separating the three behaviours will be investigated, and we use

linear stability theory to obtain an analytical expression for the transition curve

separating UC or TH behaviour with LV behaviour.

6.1 (ΣR, ǫR) parameter space

As mentioned above, the results of our numerical investigation of the HC model

reveals three behaviours, namely, UC, LV, and TH behaviour. As in the PC

case, the behaviour that the system adopts is dependent on the parameter val-

ues, specifically, the conductivity ratio ΣR, the permittivity ratio ǫR, the upper

electrode position d, and the domain length L. This four-dimensional parameter

space is impracticably large to explore completely, and so in order to make things
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more tractable, we selected values of d from 3 to 8, and the value for L was

calculated explicitly at each point in parameter space which will be described

fully in Section 6.1.1. In Section 6.1.1, the numerical investigation of (ΣR, ǫR)

parameter space is described, and we give the criteria that are used to classify

each behaviour. In Section 6.1.2, the results of this investigation are presented

and discussed.

6.1.1 Numerical investigation of (ΣR, ǫR) parameter space

The investigation of (ΣR, ǫR) parameter space was performed by solving the gov-

erning equation for h of the HC model (2.99) using the pre-existing C++ code

written by Dr Wray. We also used the Matlab code (introduced in Section 4.1.2)

for cross-checking and validation of the results, which is the same as that used for

the PC case. The numerical calculations were performed using 1024 grid points

and the initial conditions given by (4.17) with δ = 0.01. For each point in pa-

rameter space that was explored, L was chosen so that exactly one wave of the

most unstable wavenumber kmax given by (3.41) would fit in the domain, i.e.

L =
2π

kmax

. (6.1)

Note that when there are no real solutions for kmax, indicating that there are no

unstable wavenumbers, we set L = 2π.

We explored parameter space over the ranges 1 < ΣR < 10 and 1 < ǫR < 20 with

step sizes of 0.05 and 0.025, respectively, and d was varied from 3 to 8 in step

sizes of 1. These step sizes were chosen so that an accurate picture of parameter

space was obtained whilst not taking an inordinate amount of time to do so. At

each point in parameter space, we used the same conditions for determining each

behaviour as for the PC case (given in Section 5.1.1).

We checked points in (ΣR, ǫR) parameter space close to the transitions and at
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extremal points, and the results were cross-referenced between the Matlab and

C++ codes (which are not shown here), and predict the same behaviours in all

cases.

6.1.2 Results of the investigation of (ΣR, ǫR) parameter

space

The results of the investigation of (ΣR, ǫR) parameter space are presented in

Figure 6.1. Figure 6.1 shows (ΣR, ǫR) parameter space showing the numerically

calculated transition curves (solid lines) and the analytically calculated transition

curve (dashed line) separating the regions showing UC, TH, and LV behaviours,

with (a) d = 3, (b) d = 4, (c) d = 5, (d) d = 6, (e) d = 7, (f) d = 8. The solid

and dashed curves are indistinguishable and the inset figures show the numer-

ically calculated behaviours around the transition curves, where the light grey,

dark grey, and black dots in the insets indicate LV, UC, and TH behaviours, re-

spectively, and are so numerous that they are indistinguishable and appear to be

lines. The larger black dots are located at (a) (1.225, 1.225), (b) (1.425, 1.45), (c)

(1.475, 1.5), (d) (1.525, 1.55), (e) (1.725, 1.7625), and (f) (1.775, 1.8125). To the

left of the larger black dots, the behaviour goes from TH to LV as ǫR increases,

and to the right of the larger black dots, the behaviour goes from TH to UC,

then to LV behaviour as ǫR increases. The margin of error of the location of

the larger black dots is 0.025 and 0.0125 for ΣR and ǫR, respectively, since the

step sizes for ΣR and ǫR are 0.05 and 0.025, respectively. Figure 6.1 shows that,

as d increases, the regions in (ΣR, ǫR) parameter space showing TH and UC be-

haviours become larger and smaller, respectively. Also, the location of the larger

black dots (indicating where UC behaviour first occurs) moves upwards and to

the right in (ΣR, ǫR) parameter space as d increases. This makes sense since, as

d increases, there will be more points in parameter space for which the interface

will not evolve close enough to the upper electrode, meaning that TH behaviour
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Figure 6.1: (ΣR, ǫR) parameter space showing the numerically calculated transi-
tion curves (solid line) and the analytically calculated transition curve (dashed
line) separating the UC, TH, and LV behaviours, where (a) d = 3, (b) d = 4,
(c) d = 5, (d) d = 6, (e) d = 7, (f) d = 8. The solid and dashed curves are in-
distinguishable, and the inset figures show the numerically calculated behaviours
around the transition curves, where the light grey, dark grey, and black dots in
the insets indicate LV, UC, and TH behaviours, respectively, and are so numerous
that they are indistinguishable and appear to be lines. The larger black dots are
located at (a) (1.225, 1.225), (b) (1.425, 1.45), (c) (1.475, 1.5), (d) (1.525, 1.55),
(e) (1.725, 1.7625), and (f) (1.775, 1.8125).
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will occur. Also, the region showing LV behaviour becomes larger for increasing

d: the transition curve separating UC or TH behaviour from LV behaviour moves

towards the ΣR-axis as d increases. This makes sense since the strength of the

electric field (which is the only source of instability in this system) decreases as

d increases, and so we would expect the region showing LV behaviour to become

larger.

6.2 Levelling (LV) behaviour

LV behaviour occurs when perturbations to the base state h = 1 decay, as il-

lustrated by Figure 5.2. Since the value of L in our numerical calculations cor-

responds to the most unstable wavenumber from linear stability theory, LV be-

haviour only occurs when there are no unstable wavenumbers which means that

the system is always stable. This is different from the PC case where LV behaviour

occurs if the domain length L is too short to contain any unstable wavelengths.

In Section 7.6, we will determine analytically (using linear stability theory) the

transition curve separating UC or TH behaviour from LV behaviour, which show

very good agreement with the numerical results.

6.3 Upper contact (UC) behaviour

UC behaviour occurs when the interface touches the upper electrode, as shown

in Figure 6.2, and unlike the PC case, the interface does not show self-similar

behaviour. Figure 6.2 shows plots of (a) h as a function of x/L at equally spaced

times from t = 326.075 to t = 264403, and (b) dhmax/dt as a function of t. In

Figure 6.2(b) the values of dhmax/dt are small, showing that the interface does

not approach the upper electrode rapidly. To show that self-similar behaviour

during UC behaviour does not occur, the singularity in the governing equation
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(a) (b)

Figure 6.2: Plots of (a) h as a function of x/L at equally spaced times from
t = 326.075 to t = 264, 403, and (b) ∂hmax/∂t as a function of t. The parameter
values used are d = 3, ΣR = 2, ǫR = 2, and L = 70.2481.

(2.99) was found, which occurs when its denominator is zero, i.e. when

h =
ΣRd

ΣR − 1
> d. (6.2)

Therefore, the singularity occurs at h > d, which does not occur physically since

the interface would touch the upper electrode before reaching the singularity.

Hence, self-similar behaviour or ∂h/∂t→ ∞ as t increases do not occur.

6.4 Thinning (TH) behaviour

TH behaviour occurs when the interface evolves through two different stages,

namely, “progressive growth” and “buckling”, as described in Section 5.4. After-

wards, instead of asymptotic thinning and the onset of sliding (which is observed

in the PC case), secondary buckling events occur, where each trough region splits

into two trough regions that each contain a local minimum, as shown in Figure

6.3. Figure 6.3 shows plots of h as a function of x/L at equally spaced times

using the symmetric boundary conditions. In fact, we will show in Section 6.4.1

that a cascade of secondary buckling events occur indefinitely as h → 0, and is

a consequence of the tangential Maxwell stress term that is now present in the
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Figure 6.3: Plots of h as a function of x/L at equally spaced times from t =
197, 938 to t = 704, 469. The symmetric boundary conditions are imposed and
the parameter values used are d = 3, ΣR = 1.5, ǫR = 1.2, and L = 44.5159.

governing equation for h (2.99).

6.4.1 Investigation of the cascade of secondary buckling

events

Recall from Section 1.4 that a cascade of secondary buckling events were inves-

tigated by Dietze et al. [86], and found that by including Marangoni stresses in

their system, secondary buckling events occur (as described above) which sup-

press the onset of sliding. Later, Pillai and Narayanan [126] showed that the

cascade of buckling events occur for leaky dielectrics when the normal compo-

nent of the Maxwell stress is zero. Drawing on the results of Dietze et al. [86],

Pillai and Narayanan [126] briefly stated that the cascade of buckling events occur

due to the presence of the tangential Maxwell stress term (which is mathemat-

ically similar to the Marangoni stress term in [86]). Hence, in this Section, we

take inspiration from the work of Dietze et al. [86] to confirm that the cascading

buckling events (in the HC case) are indeed caused by tangential component of

the Maxwell stress, i.e. the third term on the right hand side of equation (2.99).

To describe the secondary buckling events, we use the liquid flux Q, as well as
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Figure 6.4: Plots of h as a function of x/L (first column) and Q (solid lines), QN

(dashed lines), and QT (dotted lines) as functions of x/L (second column). The
black dots indicate the positions of the local minima, and the the crosses in parts
(c) and (d) indicate the position where Q = 0. The parameter values used are
d = 3, ΣR = 1.5, ǫR = 1.2, and L = 44.5159.
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the contributions to the flux arising from the normal and tangential components

of the stress, QN and QT, respectively, i.e.

Q = QN +QT, (6.3)

QN =
h3

3

(
∂3h

∂x3
+

(ΣR − 1)(Σ2
R − ǫR)

(ΣR(d− h) + h)3
∂h

∂x

)
, (6.4)

QT =
h2

2

d(ΣR − ǫR)ΣR

(ΣR(d− h) + h)3
∂h

∂x
. (6.5)

Plots of h, Q, QN, and QT before, during and after secondary buckling, are shown

in Figure 6.4. Figure 6.4 shows plots of h as a function of x/L (first column) and

Q (solid lines), QN (dashed lines), and QT (dotted lines) as functions of x/L

(second column). The black dots indicate the positions of the local minima of h,

and the crosses in parts (c) and (d) indicate the position where Q = 0.

Figures 6.4(a) and (b) show that, before secondary buckling, QN is the dominant

term in the trough region, and so the liquid continues to drain from the draining

lobe to the filling lobe. As h approaches the lower electrode, QT begins to compete

with QN, and this creates a divergence point Q (where the liquid flows away from

this point) to the right of the local minimum, at the location of the crosses in

Figures 6.4(c) and (d). This is explained by equations (6.3)–(6.5), where, in

particular, we note the mobility coefficients of the normal and tangential terms,

h3/3 and h2/2, respectively. These mobility coefficients are important since,

as h → 0, we expect QT to begin to compete with QN, and then dominate.

This is shown by the numerical results in Figure 6.4(d), where the QT term

creates the divergence point in Q. This means that liquid is flowing away from

this point, as shown by the arrows in Figure 6.4(c), and ultimately leads to the

formation of another local minimum, as shown in Figure 6.4(e). Furthermore,

Figure 6.4(f) shows that the region located between the black dots is a draining

lobe, and that QN is now the dominant term after the additional local minimum
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has formed. However, as h continues to approach the lower electrode, QT will

begin to compete again, causing more secondary buckling events, showing that

there will be a cascade of buckling events that will occur indefinitely as h→ 0.

Note that, due to symmetry, the preceding description of secondary buckling also

applies to the right hand trough region. Therefore, using an analysis inspired by

Dietze et al. [86], we have shown that the cascade of secondary buckling events

are due to the tangential Maxwell stress term, confirming the statement made by

Pillai and Narayanan [126].

6.5 The transition curves in (ΣR, ǫR) parameter

space

In this Section, we will investigate the transition curves separating the three

behaviours in (ΣR, ǫR) parameter space, shown in Figure 6.1. Specifically, there

are two types of transition curve:

1. One that separates UC or TH behaviour from LV behaviour.

2. One that separates UC behaviour from TH behaviour.

The first type of transition curve is investigated in Section 6.5.1 and is obtained

analytically using linear stability theory, and the second type of transition curve

is investigated in Section 6.5.2.

6.5.1 Transition curve separating UC or TH behaviour

from LV behaviour

Recall from Section 6.2 that LV behaviour in the HC case must occur when

the growth rate s < 0 for all wavenumbers k > 0, and, equation (3.40) gives

a relationship between ǫR, ΣR and d in which the system is neutrally stable.
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Substituting ǫR = ǫc (where ǫc is the cutoff value) into equation (3.40) gives

ǫc =
Σ2

R (2ΣR + 3d− 2)

ΣR (3d+ 2)− 2
, (6.6)

and the system is unstable and stable to small perturbations when ǫR < ǫc and

ǫR ≥ ǫc, respectively. Therefore, when ǫR < ǫc or ǫR ≥ ǫc, the HC system will

exhibit UC or TH behaviour, or LV behaviour, respectively. The analytically

calculated transition curve (shown by the dashed line) in Figure 6.1, is indistin-

guishable from the corresponding numerically calculated transition curve (shown

by the solid line), confirming that equation (6.6) is the analytic expression for

the curve separating UC or TH behaviour with LV behaviour.

Furthermore, equation (6.6) shows that ǫc decreases as d increases, agreeing with

the numerical results shown in Figure 6.1, where the transition curve separating

UC or TH behaviour with LV behaviour tends towards the ΣR-axis as d increases.

This makes sense physically since the electric field is the only source of instability

in this system, and increasing d weakens the influence of the electric field. Hence,

the region where LV behaviour is observed is expected to become larger as d

increases.

6.5.2 Transition curve separating UC and TH behaviour

Limited progress has been made in analysing the transition curve that separates

UC and TH behaviour. There are additional factors involved in this system

which make this curve difficult to analyse. Firstly, the position of the singularity

is dependent on ΣR and d, and so changes throughout parameter space. Secondly,

there are now two ways in which UC behaviour is observed and, thirdly, the value

for L changes at every point in parameter space. Hence, these additional factors

make the system more complex and difficult to analyse. Furthermore, in contrast

to the PC case, this transition curve does not show a tongue. This is since L is
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calculated at each point in parameter space using kmax, and so h always evolves

to form one filling lobe and one draining lobe. Recall that, in Section 5.5.2, the

tongue is associated with a change in the number of filling lobes (that ultimately

form in the evolution of h) as a parameter is varied in parameter space, leading

to a change in behaviour. Hence, for the HC case, the number of filling lobes will

not change as a parameter is varied since L is determined using the most unstable

wavenumber kmax, and so we would not expect to see tongues as was observed in

the PC case.

6.6 Summary

In summary, we have investigated the HC model, that has governing equation

(2.99) for h, both analytically and numerically. We found that, as in the PC

case, the LV, UC and TH behaviours are possible, albeit the details of each be-

haviour are different.

An investigation of (ΣR, ǫR) parameter space with varying values of d was per-

formed in Section 6.1, and the transition curves separating each behaviour was

obtained. In Section 6.2, we described and investigated LV behaviour, and linear

stability theory showed that LV behaviour occurs when s < 0 for all k > 0.

We also described and investigated UC behaviour, where, in contrast to the PC

case, self-similar behaviour does not occur. This is because the singularity in the

governing equation (2.99) occurs when h > d, and so the interface touches the

upper electrode before reaching the singularity.

TH behaviour was described and investigated in Section 6.4, and we showed that

the system evolves through two stages seen in the PC case, namely, progressive

growth and buckling. However, instead of the onset of sliding occurring, the in-

terface undergoes a cascade of secondary buckling events not seen in the PC case.

Here, the local minima in the trough regions split into two minima (and so into
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two separate trough regions) as h → 0, as shown in Figure 6.3. We showed that

the presence of the tangential component of the Maxwell stress (not present in

the PC model) causes the secondary buckling events.

In Section 6.5, we investigated the transition curves in (ΣR, ǫR) parameter space,

as shown in Figure 6.1. In particular, in Section 6.5.1, linear stability theory was

used to show that the transition curves separating UC or TH behaviour from LV

behaviour occurs when s < 0 for all k > 0. Equation (5.85) gives an analytical

expression for the transition curve separating regions with UC or TH behaviour

from LV behaviour. In Section 6.5.2, limited progress was made in analysing the

transition curve separating UC and TH behaviour, due to the additional factors

that make investigating this curve more difficult. However, we explained that,

since kmax was used to calculate L at every point in parameter space, no tongues

will be observed (as was seen in the PC case).
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Chapter 7

Long-wave (LW) model

In this Chapter, the LW model, that has governing equations (2.107)–(2.108), is

investigated. An investigation (ΣR, ǫR) parameter space is again performed for

various values of Eb. Since the LW model is more complex than the PC and HC

models, this parameter space investigation is made more complicated, as will be

discussed in Section 6.1.1. Again, the same three behaviours seen in Chapters 5

and 6, i.e. LV, UC and TH, are observed. The details of these behaviours are

the same as the HC case, as will be discussed in Sections 7.2–7.4. However, an

additional behaviour is observed, which does not occur in the PC and HC cases,

which we call touchdown (TD). During TD, the interface approaches the lower

electrode and touches it in finite time, and will be described and investigated fully

in Section 7.5. In Section 7.6, the transition curves separating the four behaviours

are investigated and linear stability theory is used to obtain the transition curves

analytically.

7.1 (ΣR, ǫR) parameter space

As mentioned above, for the LWmodel there are four possible behaviours, namely,

UC, LV, TH, and TD. The behaviour that the system adopts is dependent on

the parameters ΣR, ǫR, d, Eb, and L. This five-dimensional parameter space is
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impracticably large to explore completely, and so in order to make things more

tractable, we set d = 5 and L = 150, and investigated (ΣR, ǫR) parameter space

for various values of Eb. Our investigation of (ΣR, ǫR) parameter space for the

HC case shows that qualitatively similar behaviours occur for other values of

d. Hence, we hypothesise that this is the case for the LW model, however, our

subsequent investigation of (ΣR, ǫR) parameter space is performed for d = 5.

Unlike the PC and HC models, where we obtained explicit expressions for kmax

(given by equations (3.45) and (3.41), respectively), it is impossible to obtain a

closed-form expression for kmax for the LW model. This is because the expression

for s is of degree 8 in the variable k, and the Abel-Ruffini Theorem [153, 154]

states that there are no closed-form expressions for the solutions of equations

with arbitrary coefficients of degree 5 or higher. The value L = 150 was chosen

in our numerical calculations (except where noted otherwise) so that the domain

length is large enough to contain waves of small wavenumber k where s > 0, while

not requiring an excessive number of grid points to resolve h and q. In Section

7.1.1, the numerical investigation of (ΣR, ǫR) parameter space is described, and

we describe the criteria that are used to classify each behaviour. In Section 7.1.2,

the results of this investigation are presented and discussed.

7.1.1 Numerical investigation of (ΣR, ǫR) parameter space

The investigation of (ΣR, ǫR) parameter space was performed by solving the gov-

erning equations for h and q of the LW model (equations (2.107) and (2.112),

respectively) using Dr Wray’s C++ code. As discussed in Chapter 4, this code is

different from that used in the PC and HC cases (described in Section 4.1.2) as it

also solves two coupled PDEs for h and q instead of one for h. The numerical cal-

culations were performed using 1024 grid points and the initial conditions given

by (4.17) with δ = 0.01. Using 1024 grid points meant that the numerical calcu-

lations took approximately 4 weeks to produce the results of (ΣR, ǫR) parameter
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space that are shown in Figure 7.1 in Section 7.1.2 (which contains approximately

700000 data points). Investigating more of parameter space was impractical given

the restrictions on both time and computing power available. The investigation

of parameter space was performed over the ranges 1 < ΣR < 10, 1 < ǫR < 60, and

Eb = {1, 2, 3, 4, 5, 6}. The step sizes for ΣR and Eb were 0.05 and 1, respectively.

To speed up the investigation, the step size of ǫR was varied from 0.05 closer to

the transition curves to 0.2 further away from them. These step sizes were chosen

so that an accurate picture of parameter space was obtained whilst not taking

an inordinate amount of time to do so. At each point in parameter space, the

behaviour was classified according to the following conditions:

1. LV behaviour: When hmax − hmin < 10−9.

2. UC behaviour: When ∆t < 10−4 and d− hmax < 10−2.

3. TH behaviour: When hmin < 10−3 and ∆t > 10−2.

4. TD behaviour: When hmin < 10−4 and ∆t < 10−6 (as smaller step sizes are

required to resolve the rapidly moving interface as hmin → 0).

The ∆t condition used to determine UC acts as an extra condition since the time

step was halved whenever h > d in the numerical calculations. These conditions

are different from those used in the PC and HC cases due to the occurrence

of the additional TD behaviour, which makes it difficult to correctly determine

which behaviour is occurring. Specifically, hmin → 0 for increasing t for both

TH and TD behaviour, and so we require an additional criteria involving ∆t to

correctly determine which behaviour is occurring (since ∆t→ 0 for UC behaviour

and ∆t becomes large at late times for TH behaviour). Also, ∆t → 0 as t

increases for both UC and TD behaviour, and so we require an additional criteria

involving d− hmax and hmin to correctly determine which behaviour is occurring.

The results obtained using the C++ code were cross-referenced with those of the

159



Matlab code introduced in Chapter 4. In particular, the results of the two codes

were compared in order to determine whether the same behaviour is predicted,

as well as comparing the final interfacial profiles. We checked points in (ΣR, ǫR)

parameter space close to the transitions, and the results are not presented here

but the same behaviours were predicted in all cases.

7.1.2 Results of the investigation of (ΣR, ǫR) parameter

space

The results of the investigation of (ΣR, ǫR) parameter space are presented in

Figure 7.1, together with the numerically and analytically calculated transition

curves (which are analysed in Sections 7.6.1 and 7.6.2). Figure 7.1 shows (ΣR, ǫR)

parameter space together with numerically and analytically calculated transition

curves, given by the solid and dashed lines (of which there are two sets in parts

(a)–(f)), respectively, separating regions with UC, TH, LV, and TD behaviours.

There is evidently excellent agreement between the solid and dashed lines, which

are virtually indistinguishable. The insets show the numerically calculated be-

haviours, where the light grey, dark grey, and black dots indicate LV, UC, and

TH behaviour, respectively. Note that the dots are so numerous that they are

indistinguishable, and so the regions appear to be shaded. The parameter values

used are d = 5, and (a) Eb = 1, (b) Eb = 2, (c) Eb = 3, (d) Eb = 4, (e) Eb = 5,

and (f) Eb = 6.

Figure 7.1 shows that, as Eb increases, there are regions of (ΣR, ǫR) parameter

space which go from LV behaviour to TD behaviour; this makes sense since the

electric field is the only destabilising effect in this system (and so Eb increases

with increasing field strength). Figure 7.1 also shows the transition between UC

and TH behaviour becomes increasingly complicated as Eb increases, as shown

by the insets, as more tongues and “islands” of TH behaviour form. It was not

possible to draw the transition curves between UC and TH behaviour in Figure
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(a) (b)

(c) (d)

(e) (f)

Figure 7.1: Plots of (ΣR, ǫR) parameter space for the LW model, with numeri-
cally and analytically calculated transition curves, given by the solid and dashed
lines, respectively, separating regions with UC, TH, LV, and TD behaviours, and
are virtually indistinguishable. The insets show the numerically calculated be-
haviours, where the light grey, dark grey, and black dots indicate LV, UC, and
TH behaviour, respectively, and are so numerous that they are indistinguishable
and so the region appears to be shaded. The parameter values used are d = 5,
and (a) Eb = 1, (b) Eb = 2, (c) Eb = 3, (d) Eb = 4, (e) Eb = 5, and (f) Eb = 6.
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7.1 due to their complicated nature as shown in the insets of Figure 7.1.

7.2 Levelling (LV) behaviour

LV behaviour occurs when perturbations to the base state (h = 1 and q given

by equation (3.2)) decay, as illustrated by Figure 5.2. Since the domain length

is held constant in our numerical calculations, namely, L = 150, LV behaviour

occurred for one of three reasons. Firstly, there are unstable wavenumbers but

the corresponding wavelengths are too long (i.e. the values of k are too small)

to fit into the domain. Secondly, there are no unstable wavenumbers and so

the system is always stable. Thirdly, there are unstable wavenumbers that are

short wavelength (large values of k) but, as energy is transferred from small

(stable) to large (unstable) wavenumbers, the interface levels to the point where

the condition for LV behaviour (set in our numerical code) is satisfied. Note that

the third reason for LV behaviour is not valid in the PC and HC cases since any

instabilities in these systems are always LW. In Section 7.6, we will determine

analytically (using linear stability theory) the transition curves separating UC

or TH, and TD behaviour from LV behaviour, which show very good agreement

with the numerical results.

7.3 Upper contact (UC) behaviour

UC behaviour occurs when the interface touches the upper electrode, as shown in

Figure 6.2, and, like the HC case (but unlike the PC case), the interface does not

show self-similar behaviour. The singularity in the LW model occurs where the

denominator in the φG and φL terms in equations (2.111) and (2.110), respectively,
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are zero, i.e. where

h =
ǫRd

ǫR − 1
> d. (7.1)

Therefore, as in the HC case, the singularity occurs at h > d, which does not

occur physically since the interface touches the upper electrode before reaching

the singularity. Hence, we do not observe self-similar behaviour and ∂h/∂t→ ∞

as t increases.

7.4 Thinning (TH) behaviour

TH behaviour occurs when the interface approaches the lower electrode but only

touches it in infinite time. The interface evolves through the same three stages

that occur during TH behaviour in the HC case, namely, “progressive growth”,

“buckling”, and a “cascade of secondary buckling events”.

In order to describe this behaviour, we express the charge transport equation

(2.108) in the form

∂q

∂t
+
∂Cv

∂x
= Cd, (7.2)

where

Cv = CN + CT, Cd = ΣGφ
G
y − ΣLφ

L
y , (7.3)

are the convection and ion conduction terms, respectively,

CN =
1

2
qh2

∂p

∂x
, CT = Ebq

2h
∂φL,G|y=h

∂x
, (7.4)

are the terms due to the normal and tangential stress, respectively, and p, φL,

and φG are given by equations (2.109), (2.110), and (2.111), respectively. Figure
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(a) (b)

(c) (d)

(e) (f)

Figure 7.2: Plots of h as a function of x/L (first column), and ∂Cv/∂x (dashed
line) and the first and second parts of Cd (given by the solid lines which are
indistinguishable) as functions of x/L (second column). The parameter values
used are Eb = 5, d = 5, ΣR = 2, ǫR = 1, and L = 25.
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7.2 shows plots of h as a function of x/L (first column), and ∂Cv/∂x (dashed

line) and the two parts of Cd (given by the two indistinguishable solid lines) as

functions of x/L (second column). Figures 7.2 (b), (d), and (f) show that, during

TH behaviour, the ∂Cv/∂x terms are negligible compared to the Cd terms. Hence,

the charge transport equation (7.2) reduces to a statement of the continuity of

current at y = h, namely,

φG
y = ΣRφ

L
y , (7.5)

and so the LW model simplifies to that of the HC limiting case, where the gov-

erning equation for h is given by equation (2.99). We do not say anymore about

TH behaviour since it is identical to the TH behaviour in the HC case (and this

was confirmed numerically).

7.5 Touchdown (TD) behaviour

TD behaviour occurs when the interface touches the lower electrode in finite time,

as shown in Figure 7.3. Figure 7.3 shows plots of h in (a,c) and q in (b,d) as

functions of x/L. The dashed lines in parts (a)–(d) correspond to the same time,

which is the last time shown in parts (a,b) and the first time shown in parts (c,d).

The positions of the minimum value of h and the maximum value of q are denoted

by x = xmin and x = xmax, respectively, and part (e) shows plots of xmin/L (solid

lines) and xmax/L (dashed lines) as functions of t. Figures 7.3(a,b) show that

q → ∞ and h → 0 as t increases. When h is close to the lower electrode, a

new phenomenon occurs, namely, the minimum value of h splits into two local

minima and the maximum value of q splits into two local maxima, as shown in

Figures 7.3(c,d). We will call this new phenomenon “tip splitting” and we note

that it has not previously been reported in the literature. Figure 7.3(e) shows

that tip splitting for q occurs just prior to tip splitting for h. For the Matlab code,
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numerically resolving the interface during tip splitting proved to be challenging,

as resolving tip splitting on a uniform grid required a large number of grid points:

for the numerical calculations shown in Figure 7.3, we used 4 × 104 grid points

and so the grid step size was ∆x = 1.5708× 10−4.

7.5.1 Investigation of tip splitting

As we have already seen, during tip splitting, q splits at t = t1 and h splits

at t = t2 (where t1 < t2), and so we can divide it into three stages, namely,

t < t1, t1 ≤ t < t2, and t ≥ t2. To gain insight into the mechanisms of splitting,

these three stages were investigated by analysing the contributions to the liquid

flux Q arising from the normal and tangential stresses, denoted by QN and QT,

respectively, i.e.

Q = QN +QT, (7.6)

where

QN =
h3

3

∂p

∂x
, QT =

Eb

2
qh2

∂φL,G|y=h

∂x
, (7.7)

and p, φL, and φG are given by equations (2.109), (2.110), and (2.111), respec-

tively. Also, the numerical calculations reveal that, as shown in Figure 7.4, at

points in (ΣR, ǫR) parameter space where TD behaviour occurs, the ∂Cv/∂x terms

(the convection terms) in the charge transport equation (7.2) dominate and Cd

terms (the ion conduction terms) are negligible. Specifically, Figure 7.4 shows (a)

a plot of h as a function of x/L, and (b) the corresponding plots of ∂Cv/∂x (solid

line), ΣGφ
G
y , and ΣLφ

L
y , i.e. the first and second terms of Cd (7.3) (given by the

indistinguishable dashed lines), as functions of x/L. Hence, for our investigation

of tip splitting, we set Cd = 0 in equation (7.2), i.e. neglect the ion conduction

terms, which yields
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(a) (b)

(c) (d)

(e)

● ●

Figure 7.3: Plots of h in (a,c) and q in (b,d) as functions of x/L. The dashed
lines in parts (a)–(d) correspond to the same time, which is the last time shown
in parts (a,b) and the first time shown in parts (c,d). Part (e) shows plots of
xmin/L (solid lines) and xmax/L (dashed lines) as functions of t, and the dots
indicate where tip splitting occurs for h and q. The parameter values used are
Eb = 5, d = 5, ΣR = 2, ǫR = 40, and L = 2π.
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(a)

●●

(b)

Figure 7.4: Plot of (a) h as a function of x/L, and the corresponding plots of
(b) ∂Cv/∂x (solid line) and the first and second parts of Cd (given by the dashed
lines which are indistinguishable) as functions of x/L. The dot in (a) indicates
the position of the minimum point. The parameter values used are Eb = 5, d = 5,
ΣR = 2, ǫR = 40, and L = 2π.

∂q

∂t
+
∂Cv

∂x
= 0. (7.8)

Figure 7.5 shows plots of h ((a)–(c)), q ((d)–(f)), Q ((g)–(i)), and Cv ((j)–(l)) as

functions of x/L. In the third/fourth rows, the solid, dashed, and dotted lines

denote Q/Cv, QN/CN, and QT/CT, respectively. The first column ((a), (d), (g),

(j)) shows plots at a time t before t1 (i.e. the first stage of tip splitting), the

second column ((b), (e), (h), (k)) shows plots at a time t such that t1 ≤ t < t2

(i.e. the second stage of tip splitting), and the third column ((c), (f), (i), (l))

shows plots at a time t after t2 (i.e. the third stage of tip splitting).

7.5.1.a First stage of tip splitting (t < t1)

During this stage, tip splitting has not occurred for either h or q. Figure 7.5(g)

shows that Q = 0 at x/L = xmin/L = 1/2: Q is negative and positive to the left

and right of x = xmin, respectively. This corresponds to liquid draining away from

the interface at x = xmin, and so h decreases at x = xmin. Figure 7.5(j) shows

that Cv = 0 at x/L = xmax/L = 1/2: Cv is positive and negative to the left

and right of x = xmax, respectively. This corresponds to charge moving towards

x = xmax, and so q increases near x = xmax.
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(a)

●●

(b)

●●

(c)

● ●

(d)

●●

(e)

● ●

(f)

● ●

(g) (h) (i)

(j) (k) (l)

Figure 7.5: Plots of h (first row), q (second row), Q (third row), and Cv (fourth
row) as functions of x/L. In the third/fourth rows, the solid, dashed, and dotted
lines denote Q/Cv, QN/CN, and QT/CT, respectively. The first column ((a), (d),
(g), (j)) shows plots at a time t before t1, the second column ((b), (e), (h), (k))
shows plots at a time t such that t1 ≤ t < t2, and the third column ((c), (f), (i),
(l)) shows plots at a time t after t2. The dots in (a)–(f) indicate the positions of
the minimum points, i.e. where x = xmin. The parameter values used are Eb = 5,
d = 5, ΣR = 2, ǫR = 40, and L = 2π.
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7.5.1.b Second stage of tip splitting (t1 ≤ t < t2)

During this stage, tip splitting has occurred for q but not for h. Figure 7.5(h)

shows that Q = 0 at x/L = xmin/L = 1/2: Q is negative and positive to the

left and right of x = xmin, respectively. This corresponds to liquid draining

away from the interface at x = xmin, and so h decreases there. To the left and

right of x/L = 1/2, there are values of x for which the slope of Q steepens.

This corresponds to liquid draining away from these values of x faster than the

liquid draining in; hence, the value of h is decreasing faster at these values of

x, showing that new minima for h will form. Figure 7.5(k) shows that Cv = 0

at x/L = xmax/L = 1/2: Cv is positive and negative to the left and right of

x = xmax, respectively. This corresponds to charge moving towards x = xmax,

and so q increases near x = xmax. However, Cv is steeper at one side of the

new maxima points for q than the other side. This corresponds to extra charge

accumulating at these new maxima points, and so q increases near these points.

7.5.1.c Third stage of tip splitting (t ≥ t3)

At this stage, tip splitting has occurred for both h and q. Figure 7.5(i) shows

that there are three points where Q = 0. This corresponds to liquid draining into

the region between the two minima, shown in Figure 7.5(c), and so h increases in

the vicinity of x/L = 1/2. Figure 7.5(i) corresponds to liquid draining away from

the interface at the two minimum points for h, and so the interface decreases at

the minimum points. Figure 7.5(l) shows that there are now three points where

Cv = 0. This corresponds to charge moving towards the points where the two

local maxima are located, and so q increases at these maximum points. Also,

Cv is negative and positive immediately to the left and right of x/L = 1/2,

corresponding to charge moving away from x/L = 1/2. Hence, q decreases in the

vicinity of x/L = 1/2.
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7.5.2 Discussion of the time difference between the onset

of tip splitting for h and q

In this subsection, we discuss the time difference between the onset of tip splitting

for h and q. The driving terms in the governing equations during tip splitting,

i.e. QN + QT and CN + CT, are structurally almost identical, as can be seen

from the full governing equations for h and q (equations (2.107) and (2.112),

respectively), which makes the time difference between the onset of tip splitting

for h and q perhaps slightly unexpected. However, the relative significance of the

tangential component compared to the normal component is slightly different in

the governing equation for q (i.e. CT/CN) compared to that for h (i.e. QT/QN).

In particular,

CT

CN

/
QT

QN

=
4

3
, (7.9)

i.e. the tangential component is a third stronger (compared to the normal com-

ponent) in the governing equation for q than it is for h. This accounts for the

slightly earlier onset of tip splitting for q. It is informative to examine why this

happens. The evolution of h and q is determined, respectively, by

∂h

∂t
= − ∂

∂x

∫ h

0

u dy, (7.10)

∂q

∂t
= − ∂

∂x
(qu|y=h) , (7.11)

where the streamwise velocity u is

u =
1

2

∂p

∂x

(
y2 − 2hy

)
− Ebq

∂φ|y=h

∂x
y, (7.12)

and ion conduction terms have been omitted as their effects are negligible, as

discussed in Section 7.5.1. Thus the relative significance of the tangential and

normal components for h is determined by their relative depth-averaged values
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(∫ h

0
u dy

)
, whereas that for q is determined by their relative interfacial values

(u|y=h). This introduces a disparity because the normal terms are quadratic in

y, whereas the tangential terms are linear in y. This disparity is ultimately the

source of the time difference between the onset of sliding for h and q: that one

governing equation (equation (7.10)) is incorporated as a body force, while the

other (equation (7.11)) is a tangential interfacial stress, resulting in a difference

in their effect on the liquid flux and on interfacial flux for charge.

7.6 The transition curves in (ΣR, ǫR) parameter

space

In this Section, we will investigate the transitions in (ΣR, ǫR) parameter space

between UC or TH behaviour and LV behaviour, and between LV behaviour and

TD behaviour. We note that for the LW model, there are three possible plots of

the linear growth rate s as a function of k (i.e. the dispersion curves), as shown

in Figure 7.6, which are:

1. s < 0 for all k > 0, as illustrated by Figure 7.6(a).

2. s > 0 for a range of unstable wavenumbers 0 < k < kc, where s = 0 when

k = kc, as illustrated by Figure 7.6(b).

3. s > 0 for a range of unstable wavenumbers 0 < k1 < k < k2, where s = 0

when k = k1 or k = k2, as illustrated by Figure 7.6(c).

In Sections 7.6.1 and 7.6.2, we investigate the points in (ΣR, ǫR) parameter space

where there is a qualitative change in the dispersion curves, and use these points

to obtain an analytical expression for some of the transition curves.
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(a) (b) (c)

Figure 7.6: Plots of s as a function of k. The parameter values used are Eb = 5,
d = 5, and (a) ΣR = 2 and ǫR = 5, (b) ΣR = 10 and ǫR = 2, and (c) ΣR = 2 and
ǫR = 40.

7.6.1 Transition curve separating UC or TH behaviour

from LV behaviour

In this Section, we will show that UC or TH behaviour occurs at points in (ΣR, ǫR)

parameter space where the dispersion curve is of the form shown in Figure 7.6(b),

and we will calculate where in (ΣR, ǫR) parameter space there is a qualitative

change in the dispersion curves between those shown in Figures 7.6(a) and (b).

After investigating dispersion curves throughout (ΣR, ǫR) parameter space, we

found that they cannot change directly between those of the form shown in Fig-

ures 7.6(b) and (c). Hence, a transition in the sign of ∂2s/∂k2 at k = 0 must

correspond to a transition between curves of type (a) and type (b). This transi-

tion is determined to be

ǫR =
Σ2

R (2ΣR + 3d− 2)

2ΣR + 3dΣR − 2
. (7.13)

Recall that the solid and dashed lines in Figure 7.1 correspond to the numer-

ically and analytically calculated transition curves, respectively, and equation

(7.13) also provides the expression for the analytically calculated transition curves

(dashed lines) in Figure 7.1. There is good agreement between the lower solid and

dashed lines in Figure 7.1. The differences between the solid and dashed curves

are due to the restrictions of having a finite domain length in our numerical cal-

culations, i.e. close to the transition curves, the domain was not long enough to
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Figure 7.7: Plots of s as a function of k. The parameter values used are Eb = 5,
d = 5, ΣR = 2, and ǫR = {25, 26, 27, 28, 29, and 30}.

contain any unstable wavenumbers and so LV behaviour was observed.

7.6.2 Transition curve separating LV behaviour from TD

behaviour

We will not show that TD behaviour occurs at points in parameter space where

the dispersion curve is of the form shown in Figure 7.6(c), and will calculate

where this occurs. The transition between the dispersion curves shown in Figures

7.6(a) and (c) occurs when s > 0 at some finite, non-zero wavenumber k > 0 as

shown in Figure 7.7. Figure 7.7 shows representative plots of s as a function

of k for varying values of ǫR. Hence, this change in behaviour is caused by a

finite-wavelength instability, and so an analytical expression that captures this

transition curve could not be obtained. Therefore, we calculated this transition

curve numerically by choosing a value for ΣR and increasing ǫR until s > 0 (for

values of k in the range 0.5 < k < 2 due to the finite-wavelength instability). In

order to perform these calculations, the wavenumber k is discretised from k = 0

to k = 2 in step sizes of 10−2, ΣR increased from ΣR = 1 to ΣR = 10 in step

sizes of 10−2, ǫR is increased in step sizes of 10−2, and we calculate the transition

curves for Eb = {1, 2, 3, 4, 5, 6}. The results are given by the upper dashed lines

(analytical results) in Figure 7.1, which are virtually indistinguishable from the
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upper solid lines (numerical results). The small difference between the upper solid

and dashed lines is because we have to choose a cutoff criteria for each behaviour

in our numerical calculations, and so the criteria for LV behaviour (described in

Section 7.1.1) is satisfied before energy in the system is transferred from small

(stable) wavenumbers to large (unstable) wavenumbers.

7.7 Summary

In summary, an investigation of the LW model revealed four possible behaviours,

i.e. LV, UC, TH and TD. The dynamics of the LV, UC and TH behaviours were

the same as the HC model. In Section 7.1, a numerical investigation of parameter

space was performed, and the transition curves separating the different behaviour

were calculated. In Section 7.2, we described and investigated LV behaviour, and

found that it occurs due to one of three reasons: when s < 0 for all k > 0, when the

domain length is not large enough to contain any unstable wavenumbers, or when

there are short-wavelength instabilities but the criteria for LV is satisfied before

energy can be transferred from small (stable) wavenumbers to large (unstable)

wavenumbers. In Section 7.3, we described and investigated UC behaviour, and

showed that self-similar behaviour does not occur since the singularity in the

LW model occurs at h > d, which is similar to the HC case. Furthermore,

TH behaviour was explored in Section 7.4, and we showed numerically that the

governing equations for h and q, (2.107) and (2.108), respectively, reduce to that

of the HC case, namely, the governing equation (2.99) for h.

In Section 7.5, we described and investigated the additional TD behaviour, where

the interface approaches the lower electrode and touches it in finite time. We

showed that a new phenomenon occurs, namely the minimum and maximum of

h and q, respectively, split into two minima and maxima, and we called this “tip

splitting”. Tip splitting for q occurs just before it does for h. We showed that a
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possible reason for this difference is that one governing equation (equation (7.10))

is incorporated as a body force, while the other (equation (7.11)) is a tangential

interfacial stress, resulting in a difference in their effect on the liquid flux and on

interfacial flux for charge.

In Section 7.6, we investigated the two transition curves in (ΣR, ǫR) parameter

space, shown in Figure 7.1. For the LW model, there are three qualitatively

different dispersion curves, shown in Figure 7.6. We showed that different regions

of (ΣR, ǫR) parameter space where LV, UC or TH, and TD behaviours occur

correspond to dispersion curves of the form shown in Figures 7.6(a), (b), and (c),

respectively.
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Chapter 8

Conclusions and future work

8.1 Conclusions

In this thesis, we have investigated the behaviour of a two-dimensional bilayer

of leaky-dielectric liquid and gas contained between two planar electrodes. In

Chapter 1 we discussed relevant work by previous authors on thin-film and EHD

flows, and in Chapter 2 we derived the mathematical models of the system under

investigation, including the limiting cases, specifically, the SF, LW, HC, PC and

PD models. Linear stability analyses of the SF, LW, HC, and PC models were

performed in Chapter 3. This allowed us to show that, for small perturbations of

sufficiently long wavelength, the linear stability results of the SF model showed

good agreement with the LW, HC, and PC models. In Chapter 4, we introduced

and described the numerical schemes used to solve the initial value PDEs for h

and q, and for the Shooting Method used to solve the BVP (4.20)–(4.23).

We investigated the PC case in Chapter 5, and found that three behaviours can

occur, namely, LV, UC, or TH behaviour. The transition curve separating UC or

TH behaviour and LV behaviour was calculated analytically using linear stabil-

ity theory. The three behaviours were also investigated further. The occurrence

of LV behaviour was explained using linear stability theory. For UC behaviour,
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similarity solutions were obtained that describe the interface close in time and

position to the point of contact with the upper electrode. For TH behaviour,

similarity solutions were obtained describing the interface at late times and the

sliding phenomenon was shown to occur due to asymmetric perturbations that

arise from numerical noise.

In Chapter 6, we investigated the HC case and again found that the LV, UC,

and TH behaviours can occur. A systematic investigation of (ΣR, ǫR) parameter

space was performed, for values of d from 2 to 6, showing where these behaviours

occurred and the transition curves separating the different regions were deter-

mined. The transition curve separating UC or TH behaviour and LV behaviour

was calculated analytically using linear stability theory. The three behaviours

were investigated further. The occurrence of LV behaviour was explained using

linear stability theory. For UC behaviour, the interface does not show self-similar

behaviour, unlike the PC case. For TH behaviour, a new phenomenon occurs

that is not present in the PC case, namely, a cascade of buckling events.

In Chapter 7, the LW model was investigated and it was found that four be-

haviours can occur, namely, LV, UC, TH, and TD behaviour. A systematic

investigation of (ΣR, ǫR) parameter space was performed with d = 5, L = 150,

and values of Eb from 1 to 6, showing where each behaviour occurs. Transitions

between LV behaviours and other behaviours were determined analytically using

linear stability theory. The four behaviour were investigated further. The occur-

rence of LV behaviour was explained using linear stability theory. For TH and

UC behaviour, the interfacial dynamics were the same as in the HC case. For TD

behaviour, the interface touched the lower electrode in finite time, during which

the minimum of h split into two minima as it approached the lower electrode

(which we termed “tip splitting”), and the corresponding maximum point of q

split into two maxima.

Throughout this thesis, we have performed systematic parametric investigations
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of each model we have investigated, determining the regions in which different

behaviours occur. Coupled with an investigation of the interfacial dynamics of

the different behaviours, this has allowed us to obtain a more complete under-

standing of how varying different parameter values affects what behaviour occurs,

and so we have obtained a deeper understanding of this system.

8.2 Further Work

There are many potential avenues that provide an opportunity for future work

that builds on the work described in this thesis.

The system investigated in this thesis could be made more general by making the

gas a viscous fluid 1.4, so that the hydrodynamics in the upper layer are now im-

portant. In particular, the presence of an upper layer may affect the behaviours

that occur as well as the structure of parameter space.

It is known that the geometry of the present system influences its behaviour [116].

It would therefore be interesting to investigate what behaviours occur for different

geometries and to explore where in parameter space each behaviour occurs. The

differences in the behaviours seen in the planar system discussed in this thesis

could be compared with those for systems with different geometries, as well as

trying to form a physical understanding behind why these differences occur. One

possible change in the geometry is to extend the system explored in this thesis

to three dimensions, and there has been some previous work exploring this case

[76, 117]. Any investigation of such a system would probably have to be numeri-

cal: all of the possible behaviours, and their differences with the two-dimensional

case, could be determined. A systematic parametric investigation of where they

occur is possible, though would be a lot more computationally expensive. We

could also investigate the axisymmetric case of a liquid coating the outside of a

cylindrical electrode and bounded outside by an outer electrode, similar to the
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systems investigated in previous studies [74, 116, 119]. In this situation there

is an additional destabilising surface tension term compared to the analogous

two-dimensional case in which surface tension is always stabilising. This system

has been investigated in previous studies [70, 74, 116, 119], and has exhibited

additional behaviours that are different to those described earlier in this thesis.

However, there have been few systematic investigations of where these different

behaviours occur, and it would therefore be interesting to see how the qualitative

structure of parameter space compares with the parameter space of the analogous

two-dimensional system

Another potential route for future work is to examine the WRIBL formulation

of this system. We applied the method of weighted residuals to the full leaky

dielectric problem, as outlined in Appendix F. Due to time constraints, we have

only performed a preliminary investigation of the linear stability of the problem

according to this formulation, as illustrated by Figure 8.1. Figure 8.1 shows plots

of the growth rate s as a function of k, using parameter values Eb = 5, d = 3,

(a) ǫR = 2 and ΣR = 10, and (b) ǫR = 30 and ΣR = 4. These parameter values

were used to show two plots that are qualitatively different. The solid, dashed

and dotted lines denote the SF, WRIBL and LW results, respectively. Figure 8.1

shows that the linear stability results derived using the WRIBL technique are

in better agreement with the results of the SF model than are those of the LW

model. It would be interesting to see whether the WRIBL formulation captures

the same behaviours, or whether new ones occur, like the short-wave behaviour

of UC and TD.

Lastly, we could compare our results with those from DNS calculations. Sys-

tematic parametric investigations would be impractical, but each individual be-

haviour could be explored in more detail using DNS. The similarities and dif-

ferences between the results in this thesis and the DNS calculations could be

explored. In particular, it would be interesting to see whether the DNS calcu-
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(a) (b)

Figure 8.1: Plots of the growth rate s as a function of k, using parameter values
Eb = 5, d = 3, (a) ǫR = 2 and ΣR = 10, and (b) ǫR = 30 and ΣR = 4. The solid,
dashed and dotted lines denote the results of the SF, WRIBL and LW models,
respectively.

lations show the same qualitative behaviour when the LW approximation is no

longer valid, e.g. during UC behaviour. In summary, there has been considerable

insight gained into the dynamics of EHD flows in this thesis. However, there

are still many open challenges in this interesting and surprisingly complicated

problem.
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Appendix A

SF linear stability matrix

The linearised SF system is described by Ax = 0, where

x =
(
h̃, C1, C2, C3, C4, CL, CG, DL, DG

)T
and A is the 9 × 9 stability matrix,

namely,

A =




0 k 1 −k 1 0 0 0 0

0 1 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 e−kd ekd

s ikek ikek ike−k ike−k 0 0 0 0

0 A62 A63 A64 A65 A66 A67 A68 A69

A71 2k2ek 2(k2 + k)ek 2k2e−k 2(k2 − k)e−k 0 0 A78 A79

k2/Ca −2k2eki −2eki 2k2e−ki 2e−ki A86 A87 A88 A89

A91 0 0 0 0 e−k ek −e−k −ek




,

where

A62 =
(ǫRΣG − ΣL) e

kk2

ΣL(d− 1) + ΣG

i,

A63 =
(ǫRΣG − ǫGΣL) (k + k2)ek

ΣL(d− 1) + ΣG

i,

A64 = −(ǫRΣG − ΣL) k
2e−k

ΣL(d− 1) + ΣG

i,

182



A65 =
(ǫRΣG − ΣL) (k − k2)e−k

ΣL(d− 1) + ΣG

i,

A66 = −k (sǫR + ΣL) e
−k,

A67 = k (sǫR + ΣL) e
k,

A68 = k (sǫG + ΣG) e
−k,

A69 = −k (sǫG + ΣG) e
k,

A71 =
Eb (ǫRΣG − ΣL) ΣLk

(ΣL(d− 1) + ΣG)2
i,

A78 =
Eb (ǫLΣG − ǫGΣL) ke

−k

ΣL(d− 1) + ΣG

i,

A79 =
Eb (ǫRΣG − ΣL) ke

k

ΣL(d− 1) + ΣG

i,

A86 = − EbǫRΣGke
−k

ΣL(d− 1) + ΣG

,

A87 =
EbǫRΣGke

k

ΣL(d− 1) + ΣG

,

A88 =
EbΣLke

−k

ΣL(d− 1) + ΣG

,

A89 =
EbǫGΣLke

k

ΣL(d− 1) + ΣG

,

A91 =
ΣG − ΣL

ΣL(d− 1) + ΣG

.
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Appendix B

LW linear stability matrix

The linearised LW system is described by Bx = 0, where x =
(
h̃, q̃
)T

and B is

the 2× 2 stability matrix, namely,

B =



B11 − s B12

B21 B22 − s


 ,

where

B11 =
A

6 (ǫR(d− 1) + 1) (ΣR(d− 1) + 1)2
,

in which

A = −2 (ǫR(d− 1) + 1) (ΣR(d− 1) + 1) k4 + Eb

(
3Σ2

R − 3(d− 1)ǫ2R

+ ǫR (2 + 3dΣR + 2 (ΣR − 5)ΣR)) k
2,

and

B12 =
Eb (ΣR (3d− 5)− 5ǫR(d− 1))

6 (ǫR(d− 1) + 1) (ΣR(d− 1) + 1)2
k2,

B21 =
(ΣR − ǫR)

((
(ΣR(d− 1) + 1)2 (ǫR(d− 1) + 1) k4 + 2 (1− ΣR)

))

(ǫR(d− 1) + 1) (ΣR(d− 1) + 1)3
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+
Eb (2Σ

2
R(d− 1)− ǫR (Σ2

R + 2ΣR(d− 3) + 1)− 2Σ2
R) k

2

(ǫR(d− 1) + 1) (ΣR(d− 1) + 1)3
,

B22 =
Eb (ΣR − ǫR) (3ΣR(d− 1) + ΣR(3− 2d)) k2 + 2 (ΣR(d− 1) + 1)3

2 (ǫR(d− 1) + 1) (ΣR(d− 1) + 1)2
.
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Appendix C

Examples of numerical schemes

implemented using Matlab

The numerical schemes introduced in Chapter 4 were implemented using Matlab,

and this Appendix gives examples of the code. Firstly, the Matlab code that

implements the Method of Lines, introduced and described in Section 4.1, to solve

the LW model is given by Listings C.1–C.5. Secondly, the code that implements

the Shooting method, described in Section 4.2, is given by Listing C.6.
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Listing C.1: Main function for solving the LW model (2.107)–(2.108)

1 func t i on LW Model
2 %%% Set parameter va lue s : %%%
3 d=5; Eb=5; s r =2; epr=40;
4 %%% Choose g r id : %%%
5 DomainLength=2*pi /1 ; nPts=1000; dx=DomainLength/nPts ;
6 x=0:dx : DomainLength−dx ;
7 %%% Choose i n i t i a l c ond i t i on s : %%%
8 qBar=(epr−s r ) /( s r *(d−1)+1) ;
9 de l t a=1e−2;
10 H=1+de l t a * cos ( 2 .* pi .* x . / DomainLength ) ;
11 Q=qBar+de l t a * cos ( 2 .* pi .* x . / DomainLength ) ;
12 HQ=[H,Q] ;
13
14 Time=0; %%% I n i t i a l time %%%
15 dt =0.002; %%% and time−s tep s i z e %%%
16 %%% Compute Jacobian : %%%
17 [ J]=Jacobian (H,Q, d ,Eb , sr , epr , dt , dx ) ;
18 RecomputeJ=f a l s e ; %%% I f t rue : recompute Jacobian %%%
19
20 whi l e Time<=tEnd
21 %%% Implement NR method : %%%
22 [HNew,QNew, J , RecomputeJ]=Newton Raphson (H,Q,Eb , d , sr , epr , dt , dx ,

J ) ;
23
24 maxdi f f=max( abs (H−HNew) . / (HNew) ) ; %%% Condit ions to

%%%
25 Cond1=(min (HNew)>0) ; Cond2=(max(HNew)<=d) ; %%% accept new

va lue s %%%
26 i f maxdiff <0.1 && Cond1 && Cond2 && RecomputeJ==0
27 H=HNew; Q=QNew;
28 Time=Time+dt ;
29 i f maxdiff <0.01
30 dt=dt * 1 . 2 ; %%% Inc r e a s i n g time−s tep s i z e %%%
31 end
32 e l s e
33 dt=dt /2 ; %%% Halve time−s tep s i z e i f c ond i t i on s not met

%%%
34 end
35 %%% Recompute Jacobian i f statement i s t rue : %%%
36 i f RecomputeJ
37 [ J]= jacob ian (H,Q,Eb , d , sr , epr , dt , dx ) ;
38 RecomputeJ=f a l s e ;
39 end
40 end
41 end
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Listing C.2: Matlab function for calculating the governing equations.

1 func t i on [ rhs ]=eqnrhsH (H,Q,Eb , d , sr , epr , dx )
2 %%% De f i n t i on s f o r d e r i v a t i v e s o f phi and pr e s su r e : %%%
3 pgx=( ( d* epr +( dˆ2 * epr − 2*d* epr .*H +(epr−1) .*H.ˆ2 ) .*Q) .*

d i f f (H, dx )+ (d−H) .*H. * ( d*epr−(epr−1) .*H) .* d i f f (Q, dx ) ) . / ( (H
+epr . * ( d−H) ) . ˆ 2 ) ;

4 pgy=( ( epr−(H.*Q) ) ) . / ( H + epr . * ( d−H) ) ;
5 ply=( (1+ ( Q. * ( d−H) ) ) . / ( H+epr . * ( d−H) ) ) ;
6 px=d i f f (− d i f f 2 (H, dx )−(Eb . / 2 ) . * ( ( pgy . ˆ 2 ) − epr . * ( ply . ˆ 2 ) ) , dx ) ;
7 %%% Computing RHS o f h governing equat ion : %%%
8 rhs=−d i f f ( ( px ./3 ) . * (H.ˆ3 ) + (Eb/2) .*Q. * (H. ˆ 2 ) . * ( pgx ) , dx ) ;
9 end
10 func t i on [ rhs ]=eqnrhsQ (H,Q,Eb , d , sr , epr , dx )
11 %%% De f i n t i on s f o r d e r i v a t i v e s o f phi and pr e s su r e : %%%
12 pgx=( ( d* epr +( dˆ2 * epr − 2*d* epr .*H +(epr−1) .*H.ˆ2 ) .*Q) .*

d i f f (H, dx ) + (d−H) .*H. * ( d*epr−(epr−1) .*H) .* d i f f (Q, dx ) ) . / ( (
H+epr . * ( d−H) ) . ˆ 2 ) ;

13 pgy=( ( epr−(H.*Q) ) ) . / ( H + epr . * ( d−H) ) ;
14 ply=( (1+ ( Q. * ( d−H) ) ) . / ( H+epr . * ( d−H) ) ) ;
15 px=d i f f (− d i f f 2 (H, dx )−(Eb . / 2 ) . * ( ( pgy . ˆ 2 ) − epr . * ( ply . ˆ 2 ) ) , dx ) ;
16 %%% Computing RHS o f q governing equat ion : %%%
17 rhs=−(( d i f f ( ( px . / 2 ) .*Q. * (H. ˆ 2 ) +(Eb) . * (Q. ˆ 2 ) .*H. * ( pgx ) , dx ) )+

pgy−s r .* ply ) ;
18 end
19 func t i on [D]= d i f f (u , dx )
20 %%% Computing f i r s t d e r i v a t i v e : %%%
21 D=( c i r c s h i f t (u,−1)− c i r c s h i f t (u , 1 ) ) /(2*dx ) ;
22 end
23 func t i on [D]= d i f f 2 (u , dx )
24 %%% Computing second d e r i v a t i v e : %%%
25 D=( c i r c s h i f t (u,−1)−2*u+c i r c s h i f t (u , 1 ) ) /(dxˆ2) ;
26 end

188



Listing C.3: Matlab function for creating the Jacobian matrix.

1 func t i on [ J]=Jacobian (H,Q, d ,Eb , sr , epr , dt , dx )
2 per t =1.e−10; %%% Perturbat ion used f o r c a l c u l a t i n g

d e r i v a t i v e %%%
3 %%% Create combined RHS vecto r : %%%
4 RHS=[eqnrhsH (H,Q,Eb , d , sr , epr , dx ) , eqnrhsQ (H,Q,Eb , d , sr , epr ,

dx ) ] ;
5 %%% Create spar s e matrix : %%%
6 J=spar s e (2*n ,2*n) ;
7 f o r i =1: l ength (H)
8 %%% Perturb i t h element o f h : %%%
9 H( i )=H( i )+pert ;
10 %%% Create new RHS: %%%
11 NewRHS=[eqnrhsH (H,Q,Eb , d , sr , epr , dx ) , eqnrhsQ (H,Q,Eb , d , sr ,

epr , dx ) ] ;
12 %%% Compute i t h column o f Jacobian : %%%
13 J ( : , i )=dt *(NewRHS−RHS) / per t ;
14 %%% Reverse pe r turbat i on on h . Now perturb i t h element o f

q : %%%
15 H( i )=H( i )−pert ; Q( i )=Q( i )+pert ;
16 %%% Create new RHS: %%%
17 NewRHS=[eqnrhsH (H,Q,Eb , d , sr , epr , dx ) , eqnrhsQ (H,Q,Eb , d , sr ,

epr , dx ) ] ;
18 %%% Compute i+1th element o f Jacobian : %%%
19 J ( : , i+n)=dt *(NewRHS−RHS) / per t ;
20 %%% Reverse pe r turbat i on on h : %%%
21 Q( i )=Q( i )−pert ;
22 %%% Add 1 ac ro s s d iagona l : %%%
23 J ( i , i )=1+J ( i , i ) ; J ( i+n , i+n)=1+J ( i+n , i+n) ;
24 end
25 end
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Listing C.4: Matlab function for performing the NR method.

1 func t i on [H,Q, J , RecomputeJ]=Newton Raphson (H,Q,Eb , d , sr , epr , dt ,
dx , J )

2 numIts=0; check=0; %%% Setup f o r
%%%

3 nPts=length (H) ; dh=ones (1 , nPts ) ; dh1=dh ; %%% NR
%%%

4 HQ=[H,Q] ; hqNR=[H,Q] ; %%% Method
%%%

5
6 whi l e max( abs (dh) )>1e−10 %%% Condit ion to stop NR i t e r a t i o n s

%%%
7 %%% Create RHS o f PDEs and combine then in to one vec to r :

%%%
8 RhsH=eqnrhsH (h , q , dx , d , sr , epr ,Eb) ; RhsQ=eqnrhsQ (h , q , dx , d , sr

, epr ,Eb) ;
9 EqnRHS=[RhsH , RhsQ ] ;
10 %%% Solv ing equat ion f o r c o r r e c t i o n term : %%%
11 dh=(J\(HQ−(hqNR+dt*EqnRHS) ) ') ' ;
12 %%% I s the c o r r e c t i o n term growing ? %%%
13 i f abs (norm(dh1 ) )−abs (norm(dh) )<0
14 i f check==3 %%% Jacobian recomputed three t imes

a l r eady ? %%%
15 RecomputeJ=true ; %%% Then stop the %%%
16 break %%% NR method %%%
17 end
18 %%% I f Jacobian hasn ' t been computed three t imes %%%
19 %%% then do t h i s : %%%
20 [ J]= jacob ian (hqNR( 1 : nPts ) ,hqNR( nPts+1:end ) ,Eb , d , sr , epr , dt

, dx ) ;
21 check=check+1;
22 e l s e
23 hqNR=hqNR+dh ; %%% I f the c o r r e c t i o n term dec r ea s e s

%%%
24 dh1=dh ; %%% then c a l c u l a t e new h and q

%%%
25 numIts=numIts+1;
26 end
27 i f numIts==50 %%% Have the re been 50 i t e r a t i o n s ?

%%%
28 RecomputeJ=true ; %%% Then s e t 'RecomputeJ' to t rue

%%%
29 break %%% and stop the NR method

%%%
30 end
31 end
32 end
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Listing C.5: Additional Matlab code

1 %%% Compute curvature , i . e . h xx %%%
2 hxx=d i f f 2 (NewH, dx ) ;
3 %%% Set up vec t o r s : %%%
4 mins = [ ] ; minp= [ ] ; minhxx = [ ] ;
5 f o r i =3: l ength (NewH)−2
6 %%% I s t h i s g r i d po int o f h a minima point ? %%%
7 i f NewH( i −1)>=NewH( i ) && NewH( i +1)>=NewH( i )
8 %%% Take two gr id po in t s at e i t h e r s i d e and c r e a t e %%%
9 %%% a new vecto r 'xInt ' with 100000 po in t s : %%%
10 dxInt=((x ( i +2)−x ( i −2) ) /100000) ; xInt = x( i −2) : dxInt : x ( i

+2) ;
11 %%% In t e r p o l a t e h and h xx at 'xInt : %%%
12 HInt=in t e rp1 (x ,NewH, xInt , ' s p l i n e ' ) ;
13 HxxInt=in t e rp1 (x , hxx , xInt , ' s p l i n e ' ) ;
14 %%% Calcu la t e the minimum he ight and po s i t i o n 'HInt ' : %%%
15 [ MinVal , MinPos]=min (HInt ) ;
16 %%% Add the value o f the minima , i t ' s p o s i t i o n %%%
17 %%% and h xx at the minima to the cor re spond ing ve c t o r s : %%%
18 MinH=[MinH, MinVal ] ;
19 PosH=[PosH , xInt (MinPos ) ] ;
20 Hxx=[minhxx , HxxInt (MinPos ) ] ;
21 end
22 end
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Listing C.6: Matlab code for investigating (f(0), f ′′(0))-space.

1 func t i on ShootSpace
2 SaveName=s p r i n t f ( ' ( f ( 0 ) , f '' (0 ) )−space where d=3−Ass ign ing f .

txt ' ) ;
3 f o r f 0 =0 . 4 : 0 . 0 0 1 : 1 . 1 %%% Ass ign ing f (0 ) %%%
4 Space = [ ] ; %%% Reset t h i s when f (0 ) changes %%%
5 %%% Use func t i on ' so l v e r ' in l i n e s 27−31 to a s s i gn %%%
6 %%% f0 and c r e a t e a func t i on o f one va r i ab l e : %%%
7 so l v e r 2=@(x ) s o l v e r ( f0 , x ) ;
8 f o r fD=0 . 2 : 0 . 0 0 1 : 1 . 2 %%% I n i t i a l guess f o r f ' '(0) %%%
9 %%% Root−s o l v e r us ing fD as the i n i t i a l guess %%%
10 NewVal=f z e r o ( so lve r2 , fD ) ;
11 Coord=[ f0 , NewVal ] ; %%% Create coord ina te in ( f (0 ) , f ' '(0) )−

space %%%
12 i f isempty ( Space ) %%% I s t h i s the f i r s t s o l u t i o n ? %%%
13 Space=[Space NewVal ] ; %%% Remeber t h i s s o l u t i o n %%%
14 %%% Write coord ina te in to a f i l e : %%%
15 dlmwrite (SaveName , Coord , 'Del imi t e r ' , '\ t ' , '−append' , ' p r e c i s i o n '

, '%.10 f ' )
16 %%% Are the re a l r eady s o l u t i o n s ? %%%
17 %%% And are they d i f f e r e n t ? %%%
18 e l s e i f ˜ isempty ( Space ) && min ( abs ( Space−NewVal ) )>1e−5
19 Space=[Space , NewVal ] ; %%% Remember t h i s s o l u t i o n %%%
20 %%% Write coord iante in to a f i l e : %%%
21 dlmwrite (SaveName , Coord , 'Del imi t e r ' , '\ t ' , '−append' , ' p r e c i s i o n '

, '%.10 f ' )
22 end
23 end
24 end
25 end
26 func t i on F=so l v e r ( f0 , fD )
27 EtaEnd=10; %%% Assign Eta end %%%
28 %%% Solve the ODE de f ined in l i n e s 34−40: %%%
29 [ ˜ , f ]=ode15s(@f2 , [ 0 EtaEnd ] , [ f 0 0 fD 0 ] ) ;
30 %%% The boundary cond i t i on at Eta=Eta end : %%%
31 F=f ( end , 1 ) −(3/2)*EtaEnd* f ( end , 2 ) ;
32 end
33 func t i on u=f2 (Eta , f )
34 d=3; %%% Assign parameter d %%%
35 u=ze ro s (4 , 1 ) ;
36 u (1 )=f (2 ) ; u (2 )=f (3 ) ; u (3 )=f (4 ) ; %%% u1=f , u2=f ' , u3=f '' %%%
37 %%% Create ODE to be so lved : %%%
38 u (4)=(3* f ( 2 ) ˆ2) /( f (1 ) ˆ4)−( f ( 3 ) / f (1 ) ˆ3)+(2* f ( 1 )−3*Eta* f ( 2 ) ) /(4*

dˆ3) ;
39 end
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Appendix D

Estimating the values of f (0) and

f ′′(0) using the lines of best fit

In this Appendix, we estimate the values of f(0) and f ′′(0) by fitting a straight

line to the results of the numerical calculations close to the time of contact given

by Figure 5.4. The intercept of these straight lines are then used to obtain the

values of f(0) and f ′′(0).

We firstly find f(0) by investigating the straight line with gradient −5 and inter-

cept C1 given by

log (dhmax/dt) = −5 log (d− hmax) + C1, (D.1)

and using (5.3) evaluated at y = hmax gives

log

(
τ−5/61

6
f(0)

)
= −5 log

(
τ 1/6f(0)

)
+ C1. (D.2)

Rearranging (D.2) gives

log
(
τ−5/6

)
+ log

(
1

6
f(0)

)
= log

(
τ−5/6

)
+ log

(
(f(0))−5)+ C1, (D.3)
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which is then simplified by cancelling the τ terms and collecting the terms in-

volving f(0), namely,

log

(
1

6
(f(0))6

)
= C1. (D.4)

An expression for f(0) was obtained by taking the exponential of both sides of

the equation and rearranging for f(0), namely,

f(0) =
(
6eC1

)1/6
. (D.5)

Similarly, we obtain f ′′(0) by investigating the straight line with gradient −2 and

intercept C2 given by

log

(
− ∂2h

∂x2

∣∣∣∣
y=hmax

)
= −2 log (d− hmax) + C2, (D.6)

and using (5.5) evaluated at y = hmax gives

log
(
τ−1/3f ′′(0)

)
= −2 log

(
τ 1/6f(0)

)
+ C2. (D.7)

Rearranging (D.7) gives

log
(
τ−1/3

)
+ log (f ′′(0)) = log

(
τ 1/3

)
+ log

(
(f(0))−2)+ C2, (D.8)

and cancelling the τ terms yields

log (f ′′(0))− log
(
(f(0))−2) = C2. (D.9)

This equation can be rearranged to give

f ′′(0) (f(0))2 = eC2 , (D.10)

194



and an expression for f ′′(0) is obtained, namely,

f ′′(0) = (f(0))−2 eC2 , (D.11)

where the f(0) is determined using (D.5).
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Appendix E

Analytical justification of

∂h/∂x→ 0 as x→ x+0 in the filling

lobe regions

During the asymptotic thinning stage of thinning (TH) behaviour, the numerical

calculations suggest that ∂h/∂x → 0 as x → x+0 in the filling lobe regions. In

this Appendix we provide an analytical justification of this result.

Recall that the interface in the filling lobe region is quasi-steady, and so the time

derivative term ∂h/∂t is negligible. Hence, the governing equation (2.91) reduces

to

h3

3

(
∂3h

∂x3
+

1

(d− h)3
∂h

∂x

)
= Q(x0). (E.1)

The matching conditions with the filling lobe regions are h(±x0) = 0, and so

Q(x0) must be zero. Hence, equation (E.1) becomes

∂3h

∂x3
+

1

(d− h)3
∂h

∂x
= 0. (E.2)
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Integrating equation (E.2) with respect to x and multiplying throughout by

2∂h/∂x yields

∂

∂x

(
∂h

∂x

)2

=

(
2C − 1

(d− h)2

)
∂h

∂x
, (E.3)

where C is a constant of integration.

Setting D = 2C and evaluating equation (E.3) at x = x0 yields

2
∂h

∂x

∣∣∣∣
x=x0

∂2h

∂x2

∣∣∣∣
x=x0

= D
∂h

∂x

∣∣∣∣
x=x0

− 1

d

∂h

∂x

∣∣∣∣
x=x0

, (E.4)

where the matching condition h(x0) = 0 has been used.

Equation (E.4) can be rearranged to give

∂h

∂x

∣∣∣∣
x=x0

(
2
∂2h

∂x2

∣∣∣∣
x=x0

+
1

d
−D

)
= 0. (E.5)

Therefore, there are two solutions to equation (E.5), namely,

∂h

∂x

∣∣∣∣
x=x0

= 0

and

D =
1

d
+ 2

∂2h

∂x2

∣∣∣∣
x=x0

.

However, for equation (E.5) to be true for arbitrary D, then it must be that

∂h/∂x = 0 at x = x0. This shows analytically that ∂h/∂x = 0 at x = x0 in the

filling lobe regions.
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Appendix F

Application of the WRIBL

method to the leaky dielectric

problem

In this Appendix, we use the WRIBL method to obtain a model for the system

when the liquid and gas are leaky dielectrics. In Section 2.3.4, we found explicit

expressions for the voltage potential in the liquid and gas (given by (2.70)),

namely,

φL(x, y, t) =
((d− h)q + 1) y

ǫR(d− h) + h
, φG(x, y, t) =

(ǫR − hq)(y − d)

ǫR(d− h) + h
+ 1. (F.1)

Therefore, this suggests projecting onto polynomials of the form

φL = a0(x, t)y + ǫ2
N1∑

n=2

an(x, t)y
n, (F.2)

φG = 1 + b0(x, t)(y − d) + ǫ2
N2∑

n=2

bn(x, t)(y − d)n, (F.3)

where an = an(x, t) (n = 0, 1, ..., N1) and bn = bn(x, t) (n = 0, 1, ..., N2) are

unknown functions, ǫ is the small aspect ratio, and N1 and N2 are constants.
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Substituting (F.2) into the governing equation for φL, i.e. equation (2.49), yields

ǫ2

(
∂2a0
∂x2

y +

N1∑

n=2

n(n− 1)any
n−2

)
= 0. (F.4)

Equating powers of y, the nonzero coefficient terms only appear when n = 3,

which yields

φL = a0y − ǫ2
1

6

∂2a0
∂x2

y3. (F.5)

Similarly, substituting (F.3) into the governing equation for φG, i.e. equation

(2.50), and equating powers of y, we also obtain an expression for φG, namely

φG = 1 + b0(y − d)− ǫ2
1

6

∂2b0
∂x2

(y − d)3. (F.6)

Expressions (F.5) and (F.6) automatically satisfy the boundary conditions at the

upper and lower electrodes.

Substituting (F.5) and (F.6) into the continuity of potential and Gauss’ law at

y = h, i.e. equations (2.69) and (2.68), respectively, gives

a0h− ǫ2
1

6

∂2a0
∂x2

h3 − 1− b0(h− d) + ǫ2
1

6

∂2b0
∂x2

(h− d)3 = 0,

(F.7)

−
(
1 + ǫ2

∂h

∂x

2)3/2

q − b0 +
∂

∂x

[
ǫ2
(
1

2

∂b0
∂x

(h− d)2
)
+ ǫR

(
a0 − ǫ2

[
1

2

∂a0
∂x

h2
])]

= 0.

(F.8)

In summary, in this Appendix we have used the WRIBL method to obtain a model

for the system when the liquid and gas are leaky dielectrics. It consists of the

governing equations for h and q, i.e. equations (2.107) and (2.108), respectively,

and two equations for a0 and b0, equations (F.7) and (F.8), respectively. For the

purposes of comparison in Fig 8.1, we undo the long-wave scaling, i.e. set ǫ = 1.
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