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Abstract

The advancements in polynomial matrix algebra have significantly bolstered the for-

mulation of broadband array problems, enabling more effective solutions. This is par-

ticularly evident through the utilization of polynomial matrix factorization techniques

such as the polynomial eigenvalue decomposition (PEVD), the polynomial singular

value decomposition (PSVD), and the polynomial QR decomposition (PQRD), which

have notably revolutionized the approach to solving these complex problems. There-

fore, these polynomial matrix factorization methods have received significant attention

over the last decades. Still, the polynomial order of the decompositions, complexity

scaling with spatial and temporal dimensions of the matrix, and issues regarding par-

allelizability remain pertinent. Therefore, this thesis address these issues in these three

mentioned polynomial factorization methods.

This thesis demonstrates that in most practical situations, eigen- and singular values

will be spectrally majorised. We exploit this property in the algorithms proposed in

this thesis. The first and foremost algorithm is for applications such as data compaction

or dominant component extraction, where the power method is extended to the para-

Hermitian polynomial matrices for the extraction of a dominant eigenvector. This

approach prevents computing an entire PEVD of a para-Hermitian matrix. Later, this

extension is combined with a deflation approach to compute the PEVD of a low rank

polynomial matrix. Perturbation bounds are computed which show that these bounds

increase with repeated deflations. Ensemble tests reveal its superior performance over

state-of-the-art PEVD algorithms. To accommodate non-para-Hermitian polynomial

matrices, the polynomial power method is extended to general polynomial matrices

for the extraction of dominant left and right singular vectors and the corresponding
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dominant singular value.

To reduce iterations in the polynomial power method to just one, the provided poly-

nomial matrix is decomposed into a sum of rank-one matrices using a computationally

inexpensive approach in the discrete Fourier transform (DFT) domain. Subsequently,

each rank-one term is subjected to a single iteration of the polynomial power method,

resulting in the corresponding eigenpair or the left- and right singular vectors and the

associated singular value. For the PQRD, rank one terms are obtained by computing

QRDs in the DFT bins. To obtain any column of the paraunitary matrix and the

corresponding row of the upper-right triangular matrix, any column of the respective

rank one matrix is normalized to unit norm on the unit circle. This rank one decom-

position based method is termed as unified-I algorithm which is highly parallelizable

and outperforms all state-of-the-art algorithms in accuracy of the decomposition and

execution time.

Lastly, this thesis demonstrates that a further reduction in the order of any of

the above decompositions can be achieved via assessing the auto- and cross-correlation

terms of eigen- or singular vectors. A spectral factorisation of these terms can then lead

to the compact polynomial order factors. This spectral factorization is obtained via

polynomial root finding method to avoid the positive definite restriction of a Laurent

polynomial on the unit circle. Ensemble results show its superior performance over

state-of-the-art algorithms including the rank decomposition method proposed in this

thesis.
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(s) versus order of ground-truth U(z). . . . . . . . . . . . . . . . . . . 117

5.9 Normalization-free PQRD algorithm comparison with SM-PQRD [19]

and PQRD-BC [12] through (a) η, (b) O{Q̂(z)}, and (c) time (s). . . . 119

6.1 Performance metrics computed over an ensemble of randomized para-

Hermitian matrices for SBR2 [13], SMD [22], normalization free variant

of the rank one decomposition based PEVD (here denoted as N-Free) and

roots based PEVD (RPEVD) with (a)ξR, (b) O{Q̂(z)} and (c) execution

time in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

15



6.2 Performance metrics computed over an ensemble of randomized polyno-

mial matrices for GSBR2 [11], 2 PEVDs based PSVD via SMD and roots

based PSVD (RPEVD) with (a) ξA, (b) O{Q̂(z)} and (c) execution time

in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.3 Performance metrics computed over an ensemble of randomized poly-

nomial matrices for PQRD-BC [12], SM-PQRD [19], normalization free

variant of rank decomposition method (N-Free) and roots based PQRD

(RPEVD) with (a)η, (b) O{Q̂(z)} and (c) execution time in seconds. . 144

16



List of Publications

1. F. A. Khattak, S. Weiss, I. K. Proudler, and J. G. McWhirter, “Space-Time

Covariance Matrix Estimation: Loss of Algebraic Multiplicities of Eigenvalues,”

in 56th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove,

CA, USA, Oct. 2022, pp. 975–979.

2. F. A. Khattak, I. K. Proudler, and S. Weiss, “Enhanced Space-Time Covariance

Estimation Based on a System Identification Approach,” in Sensor Signal Pro-

cessing for Defence Conference (SSPD), London, United Kingdom, Sep. 2022,

pp. 1–5.

3. F. A. Khattak, I. K. Proudler, and S. Weiss, “Extension of power method to

para-Hermitian matrices: Polynomial power method,” in 31st European Signal

Processing Conference (EUSIPCO), Helsinki, Finland, 2023, pp. 1564–1568.

4. F. A. Khattak, I. K. Proudler, and S. Weiss, “Generalized polynomial power

method,” in Sensor Signal Processing for Defence Conference (SSPD), Edinburgh,

United Kingdom, 2023, pp. 1–5.

5. F. A. Khattak, I. K. Proudler, and S. Weiss, “Low rank para-Hermitian matrix

EVD via polynomial power method with deflation,” in IEEE International Work-

shop on Computational Advances in Multi-Sensor Adaptive Processing (CAM-

SAP), San Jose, Costa Rica, accepted, 2023.

6. F. Khattak, S.Weiss, and I. K. Proudler, “Fast Givens rotation approach to second

order sequential best rotation algorithms,” in Sensor Signal Processing for Defence

Conference (SSPD), Edinburgh, United Kingdom, 2021, pp. 1–5.

17



7. F. A. Khattak, I. K. Proudler, J. G. McWhirter, and S. Weiss, “Generalised

sequential matrix diagonalisation for the SVD of polynomial matrices,” in Sensor

Signal Processing for Defence Conference (SSPD), Edinburgh, United Kingdom,

2023, pp. 1–5.

8. F. A. Khattak, M. Bakhit, I. K. Proudler, and S.Weiss, “Smooth QR decomposi-

tion of polynomial matrices,” in IEEE International Workshop on Computational

Advances in Multi-Sensor Adaptive Processing (CAMSAP), San Jose, Costa Rica,

accepted, 2023.

9. F. A. Khattak, I. K. Proudler, and S. Weiss, “Support estimation of analytic

eigenvectors of parahermitian matrices,” in International Conference on Recent

Advances in Electrical Engineering & Computer Sciences (RAEE & CS), Islam-

abad, Pakistan, 2022, pp. 1–6.

10. M. Bakhit, F. A. Khattak, I. K. Proudler, S. Weiss, and G. Rice, “Compact

order polynomial singular value decomposition of a matrix of analytic functions,”

in IEEE International Workshop on Computational Advances in Multi-Sensor

Adaptive Processing (CAMSAP), San Jose, Costa Rica, accepted, 2023.

11. S. Weiss, I. K. Proudler, F. K. Coutts, and F. A. Khattak, “Eigenvalue decom-

position of a parahermitian matrix: Extraction of analytic eigenvectors,” IEEE

Transactions on Signal Processing, vol. 71, pp. 1642–1656, 2023.

18



Acknowledgements

All praise is for Allah, who blessed me with everything I needed to carry out this

research. I would also like to acknowledge the help, support, and expert guidance of

my supervisor, Prof. Stephan Weiss at the University of Strathclyde. I am also highly

indebted to Ian K. Proudler, who immensely helped me throughout my entire PhD

journey with constructive suggestions, critical analysis of my drafts, and refining my

ideas regarding new and improved algorithms.

19



Chapter 1

Introduction

1.1 Motivation

Ordinary matrix decomposition techniques, also known as matrix factorization meth-

ods, are fundamental tools in linear algebra and play an important role in different

fields, including mathematics, engineering, data analysis, and computer science [1–5].

These techniques aim to break down a complex matrix into simpler factors, and provide

valuable insights into the structure and properties of matrices, enabling efficient and

meaningful manipulation of data in many real-world scenarios. There are many matrix

factorization methods, but three of the most commonly used ones are the eigenvalue

decomposition (EVD), singular value decomposition (SVD), and QR decomposition

(QRD) [1]. These matrix factorization methods have been used in angle of arrival

estimation [6], image processing, dimensionality reduction and data compaction [5],

precoding and equalization for multiple-input and multiple-output (MIMO) system

design, multiple signal classification (MUSIC) [7], solving linear system, subspace de-

composition and beamforming [8] to name but a few.

Unlike narrowband sensor array system where the matrices of interest, such as the

channel matrix or the instantaneous covariance matrix, are ordinary standard matri-

ces, broadband scenarios are represented via polynomial matrices. Due to broadband

signals spanning potentially several octaves, the mixing is convolutive and so sensor

signals have temporal correlation. To adequately capture this correlation such that
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the directional information can be extracted, one cannot not only rely on instanta-

neous covariance matrix, but instead a space-time covariance matrix is required. Each

element of a space-time covariance matrix is a cross-correlation sequence. Since the

space-time covariance matrix inherits the symmetries of auto- and cross-correlation se-

quences, its z−transform is a polynomial matrix also known as a cross-spectral density

(CSD) matrix, which has a para-Hermitian symmetry. For these polynomial matrices,

ordinary matrix decomposition techniques are not appropriate. Although one could

split a broadband problem into a number of narrowband problems where then ordinary

matrix decomposition techniques can be utilized, this leads to loss of coherence between

the adjacent frequency bands.

In order to appropriately address broadband sensor array problems, polynomial ma-

trix decomposition techniques can be employed [9]. Therefore, the conventional SVD

and QRD techniques have been extended to polynomial SVD (PSVD) [10, 11] and

polynomial QRD (PQRD) [12] to decompose the polynomial channel matrix. In addi-

tion, the scalar EVD has been extended from Hermitian to para-Hermitian polynomial

matrices and defined as polynomial EVD (PEVD) [13]. These polynomial extensions

have found similar applications as mentioned above, such as broadband beamform-

ing [8], polynomial MUSIC (PMUSIC) [14–16], speech enhancement [17, 18], frequency-

selective channel equalization [19], optimal subband coding [20], and source spectral

density estimation [21] etc.

With all recent developments in these polynomial matrix factorization techniques,

the implementation cost — directly related to the polynomial order of a decomposi-

tion — the accuracy, and the execution time are still relevant issues which need to

be addressed. The reason is that all the available time-domain PSVD, PQRD and

PEVD algorithms offer approximate factorization with higher order polynomial fac-

tors [11–13, 22–26]. Many efforts have been focused on limiting the order of polyno-

mial factors through trimming [27–30] which often somehow reduce the order but can

still exceeds the ground-truth polynomial order by an order of magnitude. Moreover,

the iterative trimming, particularly during algorithm iterations, causes errors and error

propagation. To specifically address the complexity growth with spatial dimension,
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a divide-and-conquer method has been employed for time-domain PEVD algorithms.

This divide-and-conquer strategy reduces the complexity for higher spatial dimension

polynomial matrices at the cost of an increase in both the approximation error and

order of the paraunitary matrix [31, 32].

The second category of PEVD, PSVD and PQRD algorithms are DFT-domain tech-

niques which are more focused on producing compact polynomial order decompositions.

While they offer lower order polynomial factorizations, they can be computationally

far more expensive than the traditional time-domain methods. Despite their enhanced

accuracy, the practical deployment of these techniques for broadband applications re-

mains limited due to several challenges. One major constraint is the optimization of a

non-convex objective function required for estimating lower order decompositions [33–

35]. As a result, the computational overhead associated with these DFT-based methods

outweighs the advantages they offer, preventing widespread adoption in real-world ap-

plications. Furthermore, the complexity of DFT-based methods grows significantly

w.r.t both spatial and temporal dimension [35], making them computationally more in-

tensive compared to the traditional time-domain methods. The difference in complexity

can be orders of magnitude, posing a substantial hurdle for their efficient implementa-

tion in practical systems.

1.2 Objective of Research

The primary aim of this thesis is to address the broadband sensor array challenge

related to the estimation process, followed by data processing utilizing polynomial

matrix decomposition or factorization techniques.

� The estimation part objective is the enhancement of the estimation of the space-

time covariance or CSD matrix from sensor measurements with the analysis of

effects of the estimation process on the majorisation [13, 36] property of both

channel and CSD matrix.

� The data processing part includes the aim to enhance the existing polynomial

matrix decomposition methods and to pioneer novel, computationally efficient
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algorithms with superior time and performance metrics.

� Additionally, special emphasis is placed on the development of algorithms that

can be seamlessly implemented across diverse platforms, including both fully par-

allel and partially parallel computing systems. Presently available PEVD, PSVD,

and PQRD methods suffer from limited parallelizability, which restricts the full

utilization of parallel computing platforms like FPGAs, leading to suboptimal

execution timing performance. Consequently, the need arises for advanced al-

gorithms capable of unlocking the potential of real-time broadband sensor array

processing, achieved through fully parallelizable algorithms. These parallelizable

algorithms need is also pursued in this thesis however, without any hardware

implementation.

1.3 Original Contributions

To the best of our knowledge, the following aspects represent the original contributions

of thesis:

1. Enhancement of space-time covariance estimation and loss of algebraic

multiplicities [37, 38]

Broadband sensor array applications require estimation of the space-time covari-

ance matrix from sensor measurements via an un-biased estimator. In order to

achieve better estimates, a system identification based estimation is studied at

various signal-to-noise ratios (SNR). Furthermore, impact of an estimation pro-

cess on the loss of algebraic multiplicities of eigenvalues of CSD matrix is also

investigated.

2. Extension of power method to polynomial matrices [39–41] This contribu-

tion is composed of several minor contributions which are outlined as following:

� The first contribution extends the well known power method, which is only

applicable to ordinary matrices, to para-Hermitian polynomial matrices to

extract its dominant eigenpair.
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� Low-rank para-Hermitian matrix PEVD, which is often required in broad-

band sensor array applications, is computed by combining the Hotellings

deflation approach with polynomial equivalent of the power method. In

addition, perturbation analysis due to repeated deflation is also carried out.

� The polynomial power method is then generalized to ordinary polynomial

matrices for the extraction of dominant singular vectors and the correspond-

ing singular value.

3. Rank one decomposition based unified algorithm I

Due to the existence of an analytic EVD and SVD for analytic, non-multiplexed

para-Hermitian and general polynomial matrix, respectively, any polynomial ma-

trix can be represented as a sum of rank one matrices. Therefore, a DFT-based

rank one decomposition method is proposed which simplifies the computation

of the PEVD and PSVD through polynomial equivalent of the power method.

The same rank one decomposition is also utilized for computing the PQRD of

a polynomial matrix. The proposed technique is computationally cheaper but

may result in higher order polynomial factorization. The proposed approach

performed significantly better against state-of-the-art algorithms in accuracy of

decomposition and execution time. The unified algorithm extracts eigenvectors

or singular vectors independently, making it fully parallelizable and fulfilling our

objective.

4. Spectral factorization based unified algorithm II

Due to the availability of cheap and economical algorithms for performing spectral

factorization of an auto-correlation sequence of finite time-domain support signal,

this contribution adopts similar approach to propose a cheap and an accurate

method to compute the PEVD, PSVD and PQRD of a polynomial matrix. The

resulting order of the paraunitary filter banks in all three types of decomposition

is significantly closer to ground-truth support. Furthermore, it is computationally

cheaper and fully parallelizable due to independent extractions of eigenvectors or

singular vectors, and hence presents a combination of all desired merits in one
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unified algorithm. Limitations of the proposed method along with its comparison

with proven benchmarks is reported in detail.

1.4 Organization of Thesis

The thesis is organized as follows:

� Chapter 2 presents the background on polynomial matrix factorization and recent

algorithmic advancements.

� Chapter 3 introduces the concept of system identification-based enhanced space-

time covariance estimation and highlights the loss of eigenvalue multiplicities

during the estimation process.

� Chapter 4 extends the power method to polynomial power methods, combines it

with deflation, and generalizes it for general polynomial matrices.

� Chapter 5 details the decomposition of polynomial matrices into sums of rank

terms, reducing the polynomial power method to a single iteration.

� Chapter 6 focuses on spectral factorization-based matrix factorization for PEVD,

PSVD, and PQRD to further reduce the polynomial order of decomposition.

� Chapter 7 provides a summary of the entire thesis.
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Chapter 2

Background

This chapter offers an overview of polynomial matrix decomposition techniques for

broadband sensor array data processing. Section 2.1 provides the background for un-

derstanding why polynomial matrices are more suitable for modelling broadband sensor

array problems than ordinary matrices. Section 2.2 presents a concise overview of the

existence of the PEVD, its associated ambiguities, and the number of algorithms cur-

rently available for its computation. Similarly, Sections 2.3 and 2.4 delve into the

existence and related ambiguities, along with the currently accessible algorithms, for

calculating the PSVD and the PQRD of a polynomial matrix, respectively.

2.1 Polynomial Matrices in Broadband Scenarios

2.1.1 Instantaneous and Convolutive Mixing: Channel Matrix

Consider a MIMO system with L sources and M sensors. The uncorrelated source

signals at time instance n are denoted as sℓ[n], where ℓ = 1, . . . , L, while the sensor

measurements are denoted as xm[n], with m = 1, . . . ,M as shown in Fig. 2.1. The

measurement noise vm[n] is assumed to be zero-mean unit variance and have Gaus-

sian distribution. In a narrowband scenario, the delay between the signal arriving at

different sensors is effectively translated into phase shifts. Consequently, the signal

propagation can be conceptualized as being governed by a complex gain factor. This

factor’s magnitude is responsible for signal attenuation or scaling, while its phase ac-
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A[n]
...

...

+

+

x1[n]

xM [n]

s1[n]

sL[n]

v1[n]

vM [n]
...

Figure 2.1: System matrix based source model for the measurement vector x[n].

counts for the signal’s propagation delay. In light of this, a narrowband MIMO system

can be mathematically represented by a complex-valued ordinary matrix such that in

the model illustrated in Fig. 2.1 the support of A[n] would be unity i.e. A ∈ CM×L.

This form of signal mixing is commonly referred to as instantaneous mixing, and the

communication channel is typically described as a frequency-flat channel. For this rea-

son, in applications such as MIMO decoupling or channel equalisation, conventional

SVD and QRD techniques have been used [3, 42, 43].

This instantaneous mixing model is not appropriate for the broadband case. The

reason is that the sensor measurements are not simply scaled and phase-shifted ver-

sions of the source signals, as is in the case of instantaneous mixing. Instead, the signals

become interwoven through convolution, resulting in a more complex relationship be-

tween the source signals and the sensor measurements. Therefore, the impulse response

between any source and sensor is represented as an FIR filter i.e. am,ℓ[n] is the impulse

response between the ℓth source and the mth sensor. The matrix of impulse responses

representing the convolutive mixing of M ×L MIMO system, illustrated in 2.1 is given

as

A[n] =


a1,1[n] a1,2[n] . . . a1,L[n]

a2,1[n] a2,2[n] . . . a2,L[n]
...

. . .
...

aM,1[n] aM,2[n] . . . aM,L[n]

 . (2.1)

The contribution of source signals to the mth sensor signal in the presence of additive
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noise vm[n] can be expressed as

xm[n] =
L∑

ℓ=1

am,ℓ[n] ∗ sℓ[n] + vm[n] , (2.2)

where ∗ denotes convolution. With s[n] = [s1[n], . . . , sL[n]]
T and v[n] =

[v1[n], . . . , vM [n]]T, the sensor measurement vector x[n] can be given as

x[n] = A[n] ∗ s[n] + v[n] , (2.3)

where A(z) � A[n], z-transform of A[n], is a polynomial matrix. The notation �

denotes a transform pair. To emulate the narrowband MIMO communication design

methodology, specifically the employment of pre-coders and equalizers, it is necessary

to utilize the polynomial equivalents of SVD and QRD. This ensures the provision of

SVD and QRD for each value of z. Consequently, the conventional SVD and QRD

techniques, which enable diagonalization or triangularization for specific values of z,

cannot be readily applied in such scenarios. It should be noted that the notation used

in the model in Fig. 2.1 makes it seem causal i.e. only a polynomial matrix, but for

generality, this thesis does not restrict the algorithms to polynomial matrix instead to

general Laurent polynomial matrices i.e. A(z)� A[τ ] where τ ∈ Z.

2.1.2 Space-Time Covariance and Cross-Spectral Density (CSD) Ma-

trix

In convolutive mixing systems, sensor signals are correlated with each other over a range

of time lags. Therefore, to adequately capture the second-order statistics, correlation

has to be computed over a range of lags via the space-time covariance matrix

R[τ ] = E
{
x[n]xH[n− τ ]

}
∈ CM×M , (2.4)

where E{·} is the expectation operator, x[n] = [x1[n], . . . , xM [n]]T is the sensor mea-

surement vector in (2.3) and τ ∈ Z is the lag parameter. For τ = 0, the space-time

covariance reduces to the instantaneous covariance matrix for narrowband sensor ar-
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ray applications. The diagonal elements of R[τ ] are the auto-correlation sequences

and the off-diagonal terms are the cross-correlation sequences. Due to these elements

being correlation sequences, the space-time covariance matrix possesses symmetry i.e.

RH[−τ ] = R[τ ].

The z-transform of the space-time covariance matrix , denoted as R(z), is referred

to as the cross-spectral density (CSD) matrix. The source power spectral densities

determine whether R(z) is a Laurent polynomial or a Laurent series. However, this

thesis assumes that the source signals are uncorrelated and mutually independent, and

that A(z) is of finite order, which results in R(z) being a Laurent polynomial rather

than a Laurent series. Because RH[−τ ] = R[τ ], the z-transform R(z) exhibits para-

Hermitian symmetry. This symmetry implies that RP(z) = R(z), where {·}P represents

a para-Hermitian operation that combines time-reversal and Hermitian conjugation i.e.

RP(z) = RH(1/z∗). If the channel matrix A(z) is known and sources are zero-mean

unit variance, the CSD matrix can given as R(z) = AP(z)A(z) + diag
{
σ2
v1 , . . . , σ

2
vM

}
where σ2

vm is power of noise signal at mth sensor.

Since the conventional EVD cannot completely decorrelate the broadband sensor

array signals, PEVD algorithms are required that can diagonalize R(z) for every z.

2.2 Polynomial Matrix Eigenvalue Decomposition

2.2.1 Existence of Analytic EVD

A para-Hermitian polynomial matrix R(z) ∈ CM×M that is analytic1 in z ∈ C i.e. can

be represented as a convergent Laurent or power series and is infinitely differentiable,

and is not connected to any subband type of application, admits an analytic EVD [44,

45]

R(z) = Q(z)Λ(z)QP(z) . (2.5)

In (2.5), it is possible to select right hand side factors that are analytic in z. The

columns of the paraunitary matrix Q(z), such that Q(z)QP(z) = I, represent analytic

1which is identical to its Taylor series expansion
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eigenvectors and the diagonal, para-Hermitian matrix Λ(z) = diag{λ1(z), . . . , λM (z)}

contains the analytic eigenvalues. While the eigenvalues are unique up to a permutation,

the eigenvectors are subject to an allpass ambiguity: if qm(z) is themth column ofQ(z)

and therefore the mth eigenvector, then ϕm(z)qm(z) is also a valid mth eigenvector,

where ϕm(z) is an arbitrary allpass filter.

Even with R(z) being a Laurent polynomial, often Q(z) and Λ(z) in (2.5) are Lau-

rent series and may even represent transcendental functions [44, 45]. Due to analyticity,

the coefficients of both factors are absolutely convergent. Therefore, both factors can

be approximated arbitrarily closely in the least squares sense by Laurent polynomials.

In case of the para-Hermitian Λ(z), such Laurent series is symmetrically truncated

from both sides [35] whereas in case of Q(z), a suitable finite order approximation is

obtained by masking [34].

2.2.2 PEVD Algorithms

PEVD algorithms have witnessed more advancement compared to other polynomial

matrix decomposition techniques such as PSVD, PQRD, and others. However, it is

important to note that not all PEVD algorithms converge to the decomposition as

given in (2.5). As mentioned Chapter 1, PEVD algorithms can be categorized into

time and DFT-domain algorithms. However, in practice, all to-date time-domain PEVD

algorithms [13, 22, 24, 25, 39, 46] tend to converge to a spectrally majorized solution [13,

36], where the eigenvalues are ordered in a decreasing manner at each frequency point

on the unit circle i.e.

λ1(e
jΩ) ≥ λ2(e

jΩ) ≥ · · · ≥ λM (ejΩ) ∀ Ω ∈ R.

On the other hand, the DFT-domain methods converge to smooth and analytic decom-

position that are not necessarily spectrally majorised [33–35, 47].
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Time Domain PEVD Algorithms

� Second-order sequential best rotation (SBR2)

SBR2 is considered as the first PEVD algorithm that diagonalizes a para-

Hermitian polynomial matrix in an iterative manner by employing elementary

paraunitary operations [48]. This algorithm locates a maximum off-diagonal ele-

ment and transfer it to the zero-lag slice of the given para-Hermitian polynomial

matrix via paraunitary time shift. The zero-lag slice refers to the slice located

at τ = 0 i.e. R[0]. Thereafter, this element is eliminated by transferring its

energy to diagonal via Givens rotation. This iterative process is repeated until

maximum iterations are elapsed or the off-diagonal threshold is satisfied. Due to

the paraunitary time-shift matrices, the order of the partially diagonalized and

intermediate paraunitary matrix increases with each iteration. To limit the order

growth of these matrices for lower order polynomial decomposition, truncation is

applied on the outer lags of these matrices [27, 28, 30, 49]. The most notable trun-

cation method is the shift correction truncation that truncates each eigenvector

independent of others.

SBR2 and its variant converge towards spectrally majorised solution irrespec-

tive of the ground-truth decomposition given in (2.5) [50]. Although, the order

of decomposition produced by SBR2 is high, this issue exacerbate if the input

R(z) is spectrally un-majorised i.e. if eigenvalues intersect. As in this case,

SBR2’s produced eigenvalues would converge towards non-differential function,

the eigenvectors to discontinuous functions. Consequently, the polynomial order

of the eigenvalues and eigenvectors is very large [35]. Multiple-shift SBR2 (MS-

SBR2) variants transfer multiple elements to the zero-lag slice and hence can

provide a slightly faster convergence [25]. Another variant of SBR2 utilizes fast

Givens rotations [51, 52] instead of Givens rotation and therefore provide a slight

improvement in execution time [46].

� Sequential Matrix Diagonalization (SMD)

Instead of shifting a single element, SMD transfers an entire column/row with
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a maximum 2− or ∞−norm to the zero-lag slice of R[τ ]. Subsequently, instead

of applying a Givens rotation, a full EVD of the zero-lag slice is performed.

As a result, each iteration transfers more energy onto the diagonal, leading to

faster convergence of the algorithm [22]. If the algorithm employs the ∞−norm,

it is termed as maximum element SMD (ME-SMD); otherwise, it is referred to

as SMD. Similar to MS-SBR2, a multiple-shift variant of ME-SMD has been

reported in [24], which converges faster than normal SMD but exhibits higher

order growth with each iteration. MSME-SMD is slightly improved by reducing

the search area to limit this order growth and to reduce the execution time.

This variant is known as reduced search MSME-SMD (RS-MSME-SMD) [53]. A

Householder transformation based SMD variant reduces the zero-lag slice to a

tridiagonal form in each iteration before applying Givens rotation. This variant

claims significantly improved convergence speed compared to the original SBR2

algorithm [54]. However, it is worth noting that although this variant requires

fewer iterations, each iteration is computationally more expensive compared to

the standard SBR2 algorithm.

Indeed, while these two methods are commonly used in PEVD-based broadband

sensor array applications, they cannot be considered as the best options because they

provide only approximate decompositions. Achieving an accurate decomposition using

these methods might require the polynomial order of both eigenvalues and eigenvectors

to be excessively large. Especially when the ground-truth eigenvalues intersect/cross

at some frequencies, the SBR2 and SMD algorithms will not converge to an analytic

solution, and hence the resulting order of eigenvalues and eigenvector will be extremely

high. However, if the ground-truth is spectrally majorised, these iterative methods’

solution will converge to an analytic solution. However, for this the number of iterations

may tend towards infinity, which is impractical. As a result, there is a need for more

advanced and efficient algorithms that can offer accurate decomposition without the

drawbacks of high polynomial orders and large number of iterations.
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DFT Domain PEVD Algorithm

The first DFT-based PEVD algorithm was proposed by Tohidian et.al. [33] where the

EVD is performed in the DFT bins i.e. R(z)|z=ejΩk , k = 1, . . . ,K and thereafter a

smooth decomposition is attempted so that the polynomial order of the decomposi-

tion is compact. Initially, the eigenvalues in each bin are sorted in decreasing order.

Later, the bin-wise eigenvalues are sorted in each bin by assessing the orthogonality of

the eigenvectors of adjacent bins. This sorting mechanism becomes ambiguous if any

bin has algebraic multiplicity greater than one. Moreover, the algorithm does not put

forward any mechanism to determine a sufficient DFT size to extract the eigenvalues.

Apart from this issue, it also requires an a priori estimate of the order of eigenvectors

which in practical cases is not known in advance. Additionally, a quadratically con-

strained quadric programming (QCQP) objective function is optimized via the Powell’s

dogleg algorithm [55] for phase smoothing of eigenvectors. Given its substantial com-

putational complexity due to the need of the phase smoothing procedure, this approach

is less practical for real-world applications.

Another DFT-based eigenvalue extraction method is reported in [35, 56] which

does not suffer from the issue of algebraic multiplicity. This algorithm permutes the

eigenvalues in each bin such that if a periodic interpolation is performed across the

eigenvalues in each, the smoothness is maximum. This method iteratively increases the

DFT size to extract the eigenvalues with minimum time-aliasing to ensure that eigen-

values are extracted at sufficient DFT size. In addition, it has proven convergence.

The downside of this algorithm is its complexity which in fact grows with the factorial

of the spatial dimension of the input para-Hermitian matrix. Once the eigenvalues

are extracted, eigenvectors are estimated via optimizing a QCQP problem through the

Newton method [34]. In comparison to the method of [33], this method has proven

convergence. The DFT domain approach is quite practical for small sizes, but doesn’t

scale well: the eigenvalue extraction’s complexity grows with M !, the eigenvectors ex-

traction become increasingly complex for para-Hermitian matrices with large temporal

dimension which require higher DFT orders.
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2.3 Polynomial Matrix Singular Value Decomposition

2.3.1 Existence of Analytic SVD

For an analytic, non-multiplexed polynomial matrix A(z) ∈ CM×L,M ≥ L, with sin-

gular values having even number of spectral zeros on the unit circle, the analytic SVD

exists [10] as

A(z) = U(z)Σ(z)V P(z) , (2.6)

such that Σ(z) = diag{σ1(z), . . . , σL(z)} ∈ CM×L contains the analytic singular values

and the matrices U(z) ∈ CM×M , V (z) ∈ CL×L are paraunitary i.e. U(z)UP(z) =

I,V (z)V P(z) = I, and contains the left- and right analytic singular vectors, respectively.

Unlike singular values of constant matrices, which must be real and positive semi-

definite [1], the analytic singular values evaluated on unit circle for z = ejΩ must be

permitted to take on negative values. This is similarly known for matrices that depend

analytically on a continuous, real parameter on some interval [57, 58]. Similar to the

analytic EVD factors’ finite order polynomial approximation, the analytic SVD factors

can similarly be approximated in case any of the three factors on the r.h.s of (2.6) are

Laurent series.

If the number of zero crossings of any singular value on the unit circle are odd,

analytic SVD of A(z) will not exist. Instead, its up-sampled version by 2 i.e. A(z2)

would admit analytic SVD [10].

2.3.2 PSVD Algorithms

The PSVD of a polynomial matrix was initially computed through two PEVD opera-

tions by using either the SBR2 or SMD for PEVD computation [13, 26]. This method

of PSVD computation is expensive, involving the calculation of the PEVD for two para-

Hermitian matrices, each having an order twice that of the original polynomial matrix.

Additionally, the independent estimation of singular vectors results in complex singular

values if evaluated on the unit circle, which deviates from the conventional expectation.

Instead of depending on PEVD algorithms, as suggested in [12], a subsequent proposal
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in the same work advocated computing PSVD through a series of PQRD operations.

This approach is claimed to offer improved stability and superior performance when

compared to the two PEVDs-based method, as discussed in [43].

The methods mentioned above can be classified as indirect approaches for computing

the PSVD of a polynomial matrix. Direct methods, on the other hand, utilize special-

ized PSVD algorithms, which are again categorized as time-domain or DFT-domain

methods. In DFT-domain methods, SVD is performed within DFT bins instead of

EVD, and phase-coherence is subsequently established between the bin-wise singular

vectors, as explained in [33] and [59]. However, it is worth noting that these meth-

ods share the same limitations as DFT-based PEVD approaches. The time-domain

methods are, in fact, generalizations of SBR2 and SMD, which are reviewed as follows:

Kogbetliantz based PSVD Algorithm

This PSVD algorithm [11] is a generalisation of the SBR2 algorithm, that extends the

application of the latter from para-Hermitian to general matrices, and hence is termed

in this thesis as generalized SBR2 (GSBR2). It employs either Givens rotations or the

complex Kogbetliantz transformation [60], an extension of the Jacobi transformation

to non-symmetric matrices. These techniques are used to transfer the off-diagonal en-

ergy onto the diagonal, depending on the location of the maximum off-diagonal element.

When the maximum off-diagonal element is located outside the upper L×L sub-matrix,

a Givens rotation is applied from the left to eliminate it. If the maximum off-diagonal

element is within the sub-matrix, the Kogbetliantz transformation is applied. This

transformation is a combination of Givens rotation, symmetrization, and Jacobi trans-

formation. While this is a direct method for diagonalization, it has the drawback of slow

convergence and higher computational cost compared to the SBR2 algorithm, mainly

due to the complexity of the Kogbetliantz transformation. Furthermore, the multiple

shift strategy, already applied to SBR2, appears incompatible with the Kogbetliantz

transformation due to its combination of Givens rotation, symmetrization, and Jacobi

transformation.
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Generalized Sequential Matrix Diagonalization (GSMD)

Similar to how the SBR2 algorithm was extended to GSBR2, the SMD algorithm also

has a generalized version called the GSMD algorithm [61]. This extension was developed

within the scope of this thesis; however, it was not included in the contributions due

to space constraints. As a result, only a concise overview of the GSMD algorithm is

provided here.

Unlike GSBR2, the GSMD algorithm transfers more energy to the diagonal in each

iteration. It achieves this by shifting the column with the maximum 2− or ∞−norm

to the zero-lag position, A[0], and then performing a full SVD of the zero-lag matrix

instead of employing Kogbetliantz transformation or Givens rotation. This key differ-

ence allows GSMD to outperform GSBR2 and two PEVD based approaches in terms of

convergence and provides lower-order eigenvectors [61]. Just like in the SMD algorithm,

the GSMD algorithm can benefit from a multiple-shift strategy to further improve its

convergence speed.

2.4 Polynomial Matrix QR Decomposition

2.4.1 Existence and Uniqueness of the PQRD

For a polynomial matrix A(z) : C → CM×L, the aim of the PQRD is to achieve a

decomposition

A(z) = Q(z)R(z) , (2.7)

where Q(z) ∈ CM×M is paraunitary [36], and an upper triangular R(z) ∈ CM×L.

The underscore in notation is to differentiate the paraunitary and the upper-triangular

matrix of the QR decomposition from the eigenvector matrix Q(z) and para-Hermitian

matrix R(z), respectively . To use the z-domain notation, A(z), Q(z), and R(z) in

(2.7) must be analytic in z with some region of convergence including |z| = 1.

Even though proofs exist for the related polynomial eigenvalue [44, 45, 62] and

polynomial singular value decompositions [10, 62], there exists no formal proof for an
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analytic QR existence. However, [63, 64] have represented these factors as functions of z

with region of convergence, even though these factors may be transcendental functions.

Despite this lack, the factorisation (2.7) has been assumed in some already established

PQRD algorithms [12, 23, 65] that are discussed below. Analyticity implies infinite

differentiability, i.e. smoothness, of A(z)|z=ejΩ and hence motivates the considerations

in [63, 64] that Q(z), and R(z) can be Laurent series. If so, then the best polynomial

approximation to (2.7) can be achieved by masking and trunctation [34], similar to the

case of the analytic PEVD factors hinted to in Section 2.2.

Assuming that (2.7) is valid, interesting parallels can be drawn to the ambiguity of

the conventional QRD. That is, if an ordinary matrixA ∈ CM×L admitsA = QR, both

unitary Q ∈ CM×M and upper-triangular R ∈ CM×L are ambiguous w.r.t. an arbitrary

common phase factor Φ = diag
{
ejϕ1 , . . . , ejϕM

}
i.e. A = QΦΦHR = Q′R′. In other

words, the mth column of the unitary Q and the mth row of the upper triangular

matrix R are ambiguous w.r.t a common arbitrary phase shift ϕm, m = 1, . . . ,M .

Note that we can equivalently have this ambiguity in (2.7) as

A(z) = Q(z)Φ(z)ΦP(z)R(z) = Q′(z)R′(z) , (2.8)

with a paraunitary matrix Φ(z) = diag{ϕ1(z), . . . , ϕM (z)} that is diagonal and con-

taining allpass filters ϕm(z), m = 1, . . . ,M . Hence Q′(z) = Q(z)Φ(z) and R′(z) =

ΦP(z)R(z) remain paraunitary and upper right triangular matrices, and hence valid

PQRD factors. Unlike for ordinary matrices, the allpass factor Φ(z) determines the

support of the PQRD. For example, if Q(z) and R(z) have finite order, then Q′(z) and

R′(z) would have infinite order unless Φ(z) takes the form of simple delays. There-

fore, the impact of finding a suitable Φ(z) is crucial for the order and hence for the

smoothness and implementation complexity of the QR factors in (2.7).

2.4.2 Existing Iterative PQRD Techniques

To date iterative PQRD algorithms are either based on the concept of SBR2 [13] or

SMD [22] algorithms, which are reviewed below.

37



� SBR2-based PQRD

The SBR2 algorithm [13] is an iterative polynomial matrix EVD method that in

each operation eliminates the largest off-diagonal component via an elementary

paraunitary operation comprising a delay and a Givens rotation. This concept has

been extended to operate as a PQRD approach by iteratively applying elementary

paraunitary operations until all elements in the lower left-triangular part of a

matrix are either sufficiently suppressed, or until the maximum element within

that part for the matrix falls below a preset threshold.

There are two reported variants: (i) PQRD by steps (PQRD-BS) [23], and (ii)

PQRD by column (PQRD-BC) [12]. The former suppresses one polynomial lower

left triangular entry at a time such that all coefficients are driven below the

threshold before proceeding to the next polynomial elements. The PQRD-BC

variant instead aims to approximately zero a column at a time. This is performed

via an iterative search and elimination of the successively largest elements in

the selected column. While its convergence is faster than PQRD-BS, the search

operation in PQRD-BC is comparatively more expensive [12].

� SMD-based PQRD

The idea of the SMD-based PQRD algorithm [19] is to temporally shift as much

energy as possible to a particular lag component, where then a full QR decomposi-

tion triangularizes that. The SM-PQRD performs this iteratively, until a stopping

criterion similar to the SBR2-based PQRD algorithms is satisfied. As a result,

SM-PQRD provides faster convergence but each iteration is more expensive than

an iteration of the SBR based PQRD algorithms.

� DFT-based PQRD

This approach has been developed within the framework of this thesis. It employs

the eigenvector phase smoothing procedure introduced by [34]. This algorithm

conducts a conventional QR decomposition (QRD) within each DFT bin. Sub-

sequently, it establishes phase coherence among the neighbouring bin-wise QRD

factors, leading to the derivation of compact order polynomial QR factors for
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a given polynomial matrix [66]. Compared to the SBR2 and SMD type PQRD

approach, this technique attains a notably reduced decomposition order. Further-

more, its decomposition accuracy surpasses that of the aforementioned methods

by several orders of magnitude. However, it is important to note that its compu-

tational complexity grows with both spatial and temporal dimension making it

only suitable for lower-order polynomial matrices.

2.5 Summary

This chapter has provided the necessary background material for this thesis while also

identifying areas in need of improvement. In the context of PEVD algorithms, the time-

domain methods reviewed here, such as SBR2 and SMD, have been the subject of recent

research focus. Their iterative nature achieves only an approximate diagonalization and

results in higher-order decompositions. In addition, these method are not fully paral-

lelizable whereas for the realization of real-time implementation of broadband sensor

array applications like angle of arrival estimation [67] and speech-enhancement [17, 18],

parallelization can be considered a possible solution. In contrast, DFT-domain alterna-

tives are parallelizable since each eigenvector is extracted independently. However, their

computational complexity remains a significant challenge, making them best suited for

lower-order polynomial matrices. A summary of the comparison of the PEVD methods

based on the performance metrics considered in this thesis is presented in Table 2.1.

Similar improvement are needed in case of both PSVD, whose comparison is shown in

Table 2.2 and PQRD for applications like MIMO equalization and decoupling.

The remainder of this thesis relies on certain pertinent background material, which

is not specifically detailed within this chapter, related to the estimation theory and

standard matrix algebra, both of which are succinctly discussed within their respective

contribution chapter.

In light of the limitations of both time and DFT domain polynomial matrix factor-

ization techniques mentioned above, the thesis primarily emphasizes the development of

novel methods aimed at substantial computational improvements over state-of-the-art

algorithms. Rather than pursuing incremental modifications to established algorithms,
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Table 2.1: Performance Comparison of PEVD Methods

Methods Complexity Accuracy Parallelizability O{Q(z)}
SBR2 Low Very Low Very Low Very High
SMD Medium Average Very Low High
Smooth [33] High High High Low
Analytic [34, 35] Very High Very High Average Compact

Table 2.2: Performance Comparison of PSVD Methods

Methods Complexity Accuracy Parallelizability O{U(z)}
GSBR2 Very Low Very Low Very Low Very High
2-PEVD [26] Average Average Least High
PQRD [12] High Very Low Very Low Very High
Smooth [33] High High High Low

the emphasis is on introducing innovative solutions. Furthermore, as new methods

are developed, the thesis also underscores the importance of ensuring that the pro-

posed method is highly parallelizable. This parallelizability will provide the flexibility

to perform either full or partial decomposition, allowing for adaptation to the specific

requirements of users or applications.
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Chapter 3

Space-Time Covariance

Estimation and Loss of Algebraic

Multiplicities

3.1 Introduction

As covered in the previous chapter, broadband sensor array problems can be formulated

using the second-order statistics in form of the space-time covariance matrix R[τ ] [13].

In almost all of these broadband scenarios, the space-time covariance matrix cannot be

obtained via expectations but must be estimated from finite data. The estimate R̂[τ ]

will be prone to estimation errors, and the variance of the unbiased estimator based

on N snapshot of data x[n] ∈ CM , n = 0, · · · , (N − 1) has been investigated in [68].

This deviation from the ground truth R[τ ] will in turn result in a perturbation of the

eigenvalues and eigenspaces [4, 69, 70]. This perturbation has profound consequences

in subspace decomposition applications such as speech enhancement [71], fetal ECG

extraction [72], angle of arrival of estimation [73] etc. The impact of estimation errors

is twofold. Firstly, an estimation error causes imprecision e.g. through subspace leakage

for the above applications. Secondly, e.g. overestimating the support of the space-time

covariance matrix will result in polynomial matrices of higher order than necessary [74],

counteracting many efforts to keep computational complexity low via e.g. numerical
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efficiency [31, 46, 75] or trimming of polynomials [27, 28].

Therefore, the primary aim of this chapter is to enhance the estimate R̂[τ ] and

thus reduce the perturbation of its eigenvalue decomposition, as well as aid in keeping

the polynomial orders of all factors low. This is achieved if the source signals are

accessible, such that the convolutive mixing system that contributes to x[n] can be

estimated via system identification. This type of estimation for R̂[τ ] is possible e.g. in

loudspeaker-microphone setups such as in [17, 18, 71, 76].

The secondary aim of this chapter is to investigate the perturbation of the eigen-

values and eigenspaces of the estimated space-time covariance matrix from finite data.

Previously, it has been linked to the ground-truth space-time covariance, the sample

size N and the distance between the eigenvalues evaluated on isolated point Ω0 [68, 70].

However, the impact of the estimation process on the overall factors of R̂(ejΩ) for con-

tinuous Ω has not been previously investigated. The prime focus of this analysis is the

effects on the non-trivial algebraic multiplicities of the eigenvalues that are present if

at least some eigenvalue intersect on the unit circle. The loss of such algebraic mul-

tiplicities, and therefore the loss of such intersections, is a fundamental challenge for

space-time covariance matrix estimation.

Below, Section 3.2 provides a brief recap of the unbiased estimator and the pertur-

bation of the eigenvalues from [68, 70, 74]. Section 3.3 explains the system identification

approach along with numerical examples and ensemble tests whereas Section 3.4 inves-

tigates the loss of algebraic multiplicities in the estimation process.

3.2 Estimation and Its Perturbation Effects

Prior to presenting the novel system identification based estimation of space-time co-

variance estimation, we offer a concise summary of the background material on the

unbiased estimator and the impact of estimation errors on the perturbation of eigen-

values.
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3.2.1 Perturbation of Eigenvalues

The effects of estimation errors have been investigated in [68, 70] by deriving the bounds

for the cumulative square difference between the eigenvalues λm(z) and λ̂m(z) of R(z)

and R̂(z), respectively, on the unit circle. Thus, if evaluated for z = ejΩ0 , through the

Hoffman-Wielandt theorem [69], the inequality

M∑
m=1

(
λ̂m(ejΩ0)− λm(ejΩ0)

)2
≤ ∥E(ejΩ0)∥2F , (3.1)

can be established, where E(ejΩ0) = R(ejΩ0) − R̂(ejΩ0). This shows that the bin-wise

perturbation of the eigenvalues is directly related to the estimation error. A similar

relation has been established for the eigenspaces in [70]. Hence, in order to limit the

perturbation, the estimation error has to be kept as small as possible.

3.2.2 Unbiased Estimator

With assumptions made in Chapter 2 for the source model in Fig. 2.1, the ground-

truth space-time covariance matrix R[τ ] will have time-domain support of 2τmax + 1

i.e. R[τ ] = 0 for |τ | > τmax. Each individual element of R[τ ], being a cross-correlation

sequence, can be computed as

rℓ,m[τ ] = E{xℓ[n]x∗m[n− τ ]}

=
∑
n

L∑
k=1

aℓ,k[n]a
∗
m,k[n− τ ] + σ2

vδ[τ ]δ[l −m], m, l = 1, . . . ,M (3.2)

These elements of a space-time covariance matrix are often estimated directly from the

finite data received at a sensor array. For N measurements i.e. x[n], n = 0, . . . , (N−1),

the unbiased estimator for (3.2) is defined as [68]

r̂ℓ,m[τ ] =

{
1

N−|τ |
∑N−|τ |−1

n=0 xℓ[n+ τ ]x∗m[n], τ ≥ 0 ,

1
N−|τ |

∑N−|τ |−1
n=0 xℓ[n]x

∗
m[n− τ ], τ < 0 .

(3.3)
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The variance of the estimator, derived in [68] under assumptions made in Chapter 2, is

var{r̂ℓ,m[τ ]} = 1

(N − |τ |)2

N−|τ |−1∑
t=−N+|τ |+1

(N − |τ | − |t|)

· (rℓ,ℓ[t]r∗m,m[t] + r̄ℓ,m[τ + t]r̄∗ℓ,m[τ − t]), (3.4)

where r̄ℓ,m[τ ] = E{xℓ[n]xm[n− τ ]} refers to complementary cross-correlation [74]. It

shows that the estimator variance depends upon R[τ ] and the sample size N . The

optimum support for the estimated space-time covariance is obtained by minimizing

the overall estimation error

τopt = argmin
τest

ζUE , (3.5)

where

ζUE = E

{∑
τ

∥E[τ ]∥2F

}
=

τest∑
−τest

E
{
∥E[τ ]∥2F

}
+ 2

τmax∑
τest+1

∥R[τ ]∥2F (3.6)

with E[τ ] = R[τ ] − R̂[τ ], 2τest + 1 is the support of R̂[τ ]. The subscript UE in ζUE

stands for ”unbiased estimator”. The first summation term is an estimation error while

the second term represents the truncation part. It must be noted that for τest > τmax,

the truncation part would be zero. The optimum support for estimation leads to the

balance between these two error components which makes up the total estimation error.

It can be observed that the truncation part depends on the ground-truth space-time

covariance matrix R[τ ] and the support over which the estimation is made, i.e., τest,

while the estimation error depends on the sample size, the ground-truth space-time

covariance, and the estimation support τest [68, 74].
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3.3 Space-Time Covariance Estimation via System Iden-

tification

3.3.1 Source Model and Space-Time Covariance Matrix

With the source covariance E
{
s[n]sH[n− τ ]

}
= ILδ[τ ] and the noise covariance matrix

E
{
v[n]vH[n− τ ]

}
= σ2

vIMδ[τ ], the space time covariance R[τ ] = E
{
x[n]xH[n− τ ]

}
∈

CM×M can be tied to the source model of Fig. 2.1 through A[n] as

R[τ ] =
∑
n

A[n]AH[n− τ ] + σ2
vIMδ[τ ] , (3.7)

where the individual elements of R[τ ], the cross-correlation sequences, is defined in

(3.2).

3.3.2 Estimation via System Identification

In the case source signals are accessible and can be controlled, system identification

can be performed to estimate A[n] with finite time-domain support LA. With a system

matrix estimate Â[n], the estimate of R[τ ] can be obtained directly from (3.7) as

R̂[τ ] =
∑
n

Â[n]ÂH[n− τ ] + σ̂2
vIMδ[τ ] , (3.8)

where σ̂2
v variance estimate of the additive noise in Fig. 2.1 which can be obtained by

finding the minimum mean square error as explained further below. It can be seen that

the system identification method requires more knowledge and control over the source

model and therefore, it is expected to produce better space-time covariance estimate

than the unbiased estimator which relies only on the measurement vector.

The entire procedure for system identification, noise variance estimate and the

optimum support estimate is described below.
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Adaptive Filter Theory

To perform the system identification, a variety of approaches can be utilized such as the

least mean square and recursive least squares algorithms [2]. For lower minimum mean

squared error, the Wiener solution [2] can be utilized to identify the channel responses

between L sources and M sensors. The M separate L-channel adaptive filter problem

can be formulated using

x̂m[n] =
L∑

ℓ=1

âHm,ℓsℓ[n] = ŵH
my[n], m = 1 , . . . ,M (3.9)

where âm,ℓ = [â∗m,ℓ[0], . . . , â
∗
m,ℓ[Lf−1]]T, sℓ[n] = [sℓ[n], . . . , sℓ[n−Lf+1]]T is a tap-delay

line with Lf filter coefficients, ŵm = [âm,1, . . . , âm,L]
T and y[n] = [s1[n], . . . , sL[n]]

T,

to obtain the optimal filter coefficients by solving

ŵm,opt = argmin
ŵm

E
{
|xm[n]− x̂m[n]|2

}
. (3.10)

This is solved using the Wiener Hopf solution as

ŵm,opt = R̂−1p̂m , (3.11)

where R̂, the sample covariance matrix, and p̂m, the correlation vector, estimate the

quantities E
{
y[n]yH[n]

}
and E{y[n]xm[n]}, respectively, from N instances. The l.h.s

of (3.11) i.e. ŵm,opt is the minimum mean squared error estimate of the conjugate of

the coefficients in the mth row of A[n].

Noise Variance Estimate

In the ideal case where ŵm,opt accurately reflects the approriate coefficients of A[n],

the variance estimate σ̂2
v is equivalent to the minimum mean square error [2],

σ̂2
v,m = σ̂2

xm
− p̂H

mR̂−1p̂m , (3.12)
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where σ̂2
xm

is the power estimated over the N samples of xm[n]. Due to the M separate

multichannel identification, σ̂2
v can assumed to be the average of all M individual noise

power estimates, and so σ̂2
v = 1

M

∑
m σ̂2

v,m.

Optimum Filter Length and Lag Support

Once the channel matrix and noise variance estimates have been obtained, R[τ ] can

be estimated using (3.8). Similar to the unbiased estimator, the error ζSI, where SI

subscript stands for system identification, defined akin to ζUE in (3.6) as

ζSI = E

{∑
τ

∥E[τ ]∥2F

}
= 2

LA−1∑
Lf

∥R[τ ]∥2F +

Lf−1∑
−Lf+1

E
{
∥E[τ ]∥2F

}
, (3.13)

where E[τ ] = R[τ ]− R̂[τ ] with R[τ ] defined in (3.7) and R̂[τ ] in (3.8). Similar to ζUE,

two terms contributes to ζSI (i) a truncation term in case the adaptive filter length

Lf falls short of the ground truth system A[n] length, denoted with LA; and (ii) an

estimation or perturbation term that impacts on the coefficients of ŵm,opt in (3.11),

which grows with the number of coefficients. Hence, the optimal length Lf,opt is where

these two error terms results in least overall error similar to (3.5). To illustrate the

impact of each error term with respect to the adaptive filter, a numerical example is

provided below.

Example 1. An experiment over an ensemble consisting of 300 instances of a channel

matrix A[n] ∈ C2×2 with LA = 30 is presented where the average SNR at the sensors,

defined as

SNR =

∑
n ∥A[n]∥2F
Mσ2

v

, (3.14)

is set to 20 dB via σ2
v . System identification is performed for every instance in the

ensemble with adaptive filter length Lf being varied from 20 to 40 over different sample

sizes i.e. N . In order to measure the error for an ensemble, a metric is defined as

ζnorm =

∑
τ ∥R[τ ]− R̂[τ ]∥2F∑

τ ∥R[τ ]∥2F
. (3.15)
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Figure 3.1: Ensemble results for ζnorm when obtaining R̂[τ ] in dependence of adaptive
filter length, Lf .

The numerator of this metric relates to the bin-wise perturbation bound on the eigen-

values in (3.1) via Parseval’s theorem [77]. Normalizing it by the Frobenius norm of

the ground-truth ensures that the metric can be applied to extract ensemble results

for different instances of R[τ ]. This metric is depicted in Fig. 3.1 for the ensemble

test, illustrating the above trade-off mentioned earlier. For low values of Lf , the trun-

cation error dominates, while at higher values of Lf , the error increases due to the

noisy coefficients. In addition, the ensemble optimum filter length Lf,opt depends on

the filter length. In Fig. 3.1, note that Lf,opt is 28, 29 and 30 for N = 1e3, 1e4 and 5e4

respectively. The filter length, for which the minimum is reached, therefore converges

towards the ground truth support LA. △

3.3.3 Simulations and Comparison

This subsection provides a comparative analysis of system identification with the unbi-

ased estimator across different SNRs and sample sizes (N). To facilitate the comparison,

the normalized error metric defined in (3.15) is employed
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Scenario and Parameters

To compare both methods, an ensemble of 500 random instances of R[τ ] ∈ C2×2 with

moderately large support LA = 30 is employed. The estimates are made over various

sample sizes N ranging from 103 to 106 and noise levels of 10 dB and 20 dB SNR

according to (3.14). The optimal lag support for the unbiased estimator is selected

on the basis of the lowest value of ζ by varying the lag support between 1 and 29

because τopt < τmax = 30 [68]. In contrast, the adaptive filter length for the system

identification is set equal to 30 from the experiment of Example 1.

Ensemble Results

Fig. 3.2 shows the ensemble results for the experiment. For each case, curves for 10 dB

and 20 dB SNR are shown, together with the bounds within which 90% of the ensemble

results fall.

It can be observed that the unbiased estimator, which treats measurement noise

as part of the data, is independent of the SNR. In contrast, the noise terms acts as

observation noise for the system identication approach, which therefore yields increased

accuracy as the SNR grows. All curves converge with approximately 1/N , but the

system identification approach generally is capable of reaching better accuracy than

the unbiased estimator. This is due to the additional information that in this case

is known for the system — the source signals sℓ[n]. In contrast, for lower SNR, the

system identification performance will drop below that of the unbiased estimator, as

the known signals sℓ[n] will be dwarfed by the unknown observation noise vm[n] which

then start to dominate.

It is important to note that for small values of N , both the sources and noise signals

generated in MATLAB© are usually not significantly random, that is, they may exhibit

mutual and temporal correlations. Therefore, the considered assumptions do not hold

true, and this effect can be seen in the insignificant difference between 10 and 20 dB

cases for sample size N < 104.
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Figure 3.2: Comparison of estimation methods via an ensemble ofR[τ ] ∈ C2×2, showing
the measured error via the unbiased estimator and the system identification approach.

3.3.4 Conclusion

This section compared the unbiased estimator with the proposed system identification

approach for the estimation of a space time covariance matrix. Unlike the unbiased

estimator, the latter can only be exploited in case the source signals are known. This

method consists of the identification of the convolutive mixing system by a Wiener filter

approach, and the estimation of the additive noise power via the minimum mean square

error of the Wiener filter. An ensemble experiment carried out at various noise levels

demonstrates that the system identification approach performs significantly better than

the unbiased estimator for reasonable to high SNRs. This is important, as the enhanced

accuracy results in a lower bin-wise perturbation of the eigenvalue decomposition of this

matrix, which is key to formulating and solving a number of relevant broadband array

problems.
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3.4 Eigenvalues of an Estimated Space-Time Covariance

Matrix

3.4.1 Eigenvalues at an Algebraic Multiplicity

As outlined in Sec. 3.2, the variance of the unbiased estimator depends on both the

ground truth R[τ ] and the sample size N . Thus, the eigenvalues of R̂[τ ] are perturbed,

and now are random variables [68]; this is well-known from random matrix theory, see

e.g. [78–80]. This is particularly noticeable where the eigenvalues of R(z) possess an

algebraic multiplicity greater than one, i.e. where at least two eigenvalues are identical.

When now inspecting the eigenvalues of R̂(z) instead, we find that these eigenvalues

are drawn from probability distributions, and that we thus obtain distinct eigenvalues

with probability one, unless for the sample size we have N →∞.

Example 2. Consider the parahermitian matrix

R(z) =

 1−j
2 z + 3 + 1+j

2 z−1 1+j
2 z2 + 1−j

2

1+j
2 + 1−j

2 z−2 1−j
2 z + 3 + 1+j

2 z−1

 (3.16)

from [44]. This matrix possesses the analytic eigenvalues λ1(z) = z + 3 + z−1, and

λ2(z) = jz + 3 − jz−1, which are shown, evaluated on the unit circle, in Fig. 3.3(a).

The analytic eigenvectors can be selected as qm(z) = [1,±z−1]T/
√
2, m = 1, 2. The

evolution of the eigenvectors along the unit circle is visualised in Fig. 3.3(b) via the

Hermitian angle αm(Ω), with cosαm(Ω) = |qH1 (ej0)qm(ejΩ)|, whereby the DC value for

the first eigenvalue, qH1 (e
j0), is chosen as an arbitrary reference point. Note that due

to analyticity, both eigenvalues and the angles of the eigenvectors evolve smoothly.

Based on this para-Hermitian matrix, the source model in Fig. 2.1 with A(z) =

Q(z)diag
{√

λ1(z),
√

λ2(z)
}
to generate an ensemble of 105 data sequences with various

sample sizes N , from which the distributions of the eigenvalues at Ω = π
4 are estimated.

Note that at Ω = π
4 , there exists a non-trivial multiplicity i.e. λ1(e

jπ/4) = λ2(e
jπ/4),

as evident in Fig. 3.3(a). The approximated distributions for the two eigenvalues are

shown in Fig. 3.4; note that only for the transition N →∞ will one have a distribution
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Figure 3.3: Example for (a) analytic eigenvalues and (b) Hermitian angles of their
corresponding analytic eigenvectors.

that guarantees two identical eigenvalues, i.e. an algebraic multiplicity of two. △

3.4.2 Impact on Analytic Eigenvalues

As it has been argued, at a given frequency Ω0 with an algebraic multiplicity of the

eigenvalues of R(ejΩ0) greater than one, the eigenvalues λ̂(ejΩ0) of R̂(ejΩ0) must be

distinct with probability one. Since the eigenvalues λ̂(ejΩ) are random variables for all

Ω, R̂(ejΩ) has distinct eigenvalues with probability one for all frequencies Ω.

Since R̂(z) is analytic, e.g. because it is estimated with only finite support |τ | ≤

τmax, its eigenvalues λ̂m(z), m = 1, . . . ,M must also be analytic. However, since the

eigenvalues are distinct at all frequencies, if ordered in descending values, they must

now be strictly spectrally majorised, such that on the unit circle

λ̂m(ejΩ) > λ̂m+1(e
jΩ) ∀Ω, m = 1, . . . , (M − 1) . (3.17)

Spectral majorisation has been a feature of two families of polynomial EVD algo-

rithms [13, 20, 22, 50], but here is not an algorithmic detail but expresses the nature

of the estimated space-time covariance matrix.
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Figure 3.4: Normalised approximate probability density functions p(λ̂) for eigenvalues λ̂
of R̂(ejπ/4), estimated for a number of different sample sizes N , from each 105 instances.

3.4.3 Impact of Sample Size

It is interesting to note that the loss of algebraic multiplicities or the strict spectral

majorisation of eigenvalues cannot be alleviated by enhancing estimates. This includes,

for example, limiting the perturbation of eigenvalues through optimum support estima-

tion [74]. Bypassing some estimation errors through performing a system identification

of the source model, as already explained in Sec. 3.3 and [38], generally still retains

some finite error, for example due to observation noise. Simply increasing the sample

size N on which the estimate is based will not bypass this challenge unless the transition

N →∞ is made [68].

A detrimental effect occurs for the analytic EVD as N increases. Let λ′
m(ejΩ) and

q′m(ejΩ) be permuted versions of the EVD factors λm(ejΩ) and qm(ejΩ) of R(ejΩ), such

that the modified eigenvalues λ′
m(ejΩ) are spectrally majorised,

λ′
m(ejΩ) ≥ λ′

m+1(e
jΩ) ∀Ω, m = 1, . . . , (M − 1) . (3.18)

If the analytic eigenvalues λm(ejΩ) are not spectrally majorised, then λ′
m(ejΩ) will only

be piece-wise analytic: at frequencies where permutations occur, they will be continuous

but not infinitely differentiable. Further the corresponding eigenvectors q′m(ejΩ) will
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be discontinuous at permutation frequencies [44]. Thus, as N increases, we find that

λ̂m(ejΩ) −→ λ′
m(ejΩ) . (3.19)

Therefore, with increasing sample size N , λ′
m(ejΩ) tends towards a function that is not

infinitely differentiable. The eigenvectors of R̂(z), q′m(ejΩ), converge towards discontin-

uous functions. With increasing N , both eigenvalues and eigenvectors remain analytic

but become more and more difficult to approximate by polynomials or Laurent poly-

nomials [44], requiring them to be of higher orders than for a lower value of N . Lets

consider an example that further explains this issue.

Example 3. In this example, the setup of Example 2 is further investigated such that

the inspection of analytic eigenvalues λ̂m(ejΩ) and eigenvectors q̂m(ejΩ) across the range

Ω = (0; 2π) can be made. These are extracted by taking EVDs within individual bins

obtained with a DFT of R̂[τ ] of sufficient length. Due to (3.17), the eigenvalues are

straightforward to associate across the DFT bins [35]. For the eigenvectors, EVDs in

individual frequency bins will not be phase-aligned [34, 47]; this however does not affect

the subspaces in which these analytic eigenvectors exist [34], and the Hermitian angle

evaluated in Example 2 will measure the smoothness of these subspaces.

Fig. 3.5 shows the case of R̂[τ ] estimated with a sample size N = 102 via (3.3). Due

to this small size, the estimation error can be significant, particularly if the support of

R[τ ] is overestimated [68]. Here and in the following examples, the support is optimised

to yield the smallest possible estimation error [74]. Nonetheless, the eigenvalues and

eigenspaces are perturbed and significantly deviate from the eigenvalues and eigenvector

angles of the ground truth space-time covariance R[τ ]. For N = 104 in Fig. 3.6, the

eigenvalues λ̂m(ejΩ) are strictly spectrally majorised according to (3.17) and now follow

λm(ejΩ) closely on a bin-wise basis. However, permutations w.r.t. λm(ejΩ) occur at

Ω = π
4 and Ω = 5π

4 . The angles αm(Ω) of the associated eigenvectors q̂(ejΩ) closely

follow those of qm(ejΩ) on a bin-wise basis, but are also permuted at Ω = π
4 and Ω = 5π

4 .

Since q′m(ejΩ) would be discontinuous at those points, but q̂(ejΩ) has to be analytic,

some sharp transitions occur around the permutation frequencies.
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Figure 3.5: (a) eigenvalues λ̂m(ejΩ) for N = 100 (coloured curves) and ground truth
λm(ejΩ) (in grey, underlaid); Hermitian angles αm(Ω) for the corresponding eigenvectors
q̂(ejΩ) and q(ejΩ).

Figure 3.6: (a) eigenvalues λ̂m(ejΩ) for N = 104 (coloured curves) and ground truth
λm(ejΩ) (in grey, underlaid); Hermitian angles αm(Ω) for the corresponding eigenvectors
q̂(ejΩ) and q(ejΩ).
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The results for a further increase to N = 106 are shown in Fig. 3.7. The approxi-

mation of a discontinuity of the Hermitian angles αm(ejΩ) in Fig. 3.7(b) indicates that

the eigenvalues λ̂m(ejΩ) in Fig. 3.7(a) remain strictly spectrally majorised. Compared

to Fig. 3.6(b), the transition at the permutation frequencies Ω = π
4 and Ω = 5π

4 is

now sharpened, and show behaviour similar to Gibbs phenomena when approximating

discontinuities. As a consequence, the eigenvalues q̂m(z) need a higher approximation

order or than those obtainable for a smaller sample size N . Although, the example is

founded on the estimate of the unbiased estimator, the same is true for a system iden-

tification estimate which causes the loss of algebraic multiplicities as shown in Fig. 3.8.

The system identification is performed at 20 dB SNR from N = 106 snapshots. While

it’s clear that the perturbation in the system identification case is lower compared to

the unbiased estimator case, it’s important to note that both cases result in the loss of

multiplicities. △

3.4.4 Impact on Applications

The strict spectral majorisation of eigenvalues of an estimated space-time covariance

matrix can have both positive and negative consequences, which this subsection briefly

highlights.

Subspace Methods

For subspace-based methods such as the polynomial multiple signal classification (P-

MUSIC) approach [14, 67, 76] or transient signal detection in the noise-only sub-

space [81–83], an accurate estimation of the signal-plus-noise and noise-only subspaces

is required. The effect caused by permutations of the ground truth analytic EVD fac-

tors causes an increase in the approximation orders for the eigenvectors, and hence for

computational complexity that the paraunitary matrices incur when implemented.

Additionally, since the permutations at algebraic multiplicities greater than one of

the eigenvalues of R(z) cause switching between subspaces in R̂(z), the switching itself

and the associated Gibbs-type phenomena that could be observed in Example 3 — see

Fig. 3.7(b) — may cause challenges when performing projections.
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Figure 3.7: (a) eigenvalues λ̂m(ejΩ) for N = 106 (coloured curves) and ground truth
λm(ejΩ) (in grey, underlaid); Hermitian angles αm(Ω) for the corresponding eigenvectors
q̂(ejΩ) and q(ejΩ).

Figure 3.8: (a) eigenvalues λ̂m(ejΩ) estimated via system identification at 20 dB SNR
for N = 106 (coloured curves) and ground truth λm(ejΩ) (in grey, underlaid); Hermitian
angles αm(Ω) for the corresponding eigenvectors q̂(ejΩ) and q(ejΩ).
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Spectral Majorisation

Applications such as subband coding are optimal in terms of the coding gain if the space-

time covariance matrix of the subband signals is strongly decorrelated, i.e. if R[τ ] is

diagonalised, and its eigenvalues are spectrally majorised [48]. Methods such as in [20]

and signal compaction approaches [18] rely on this, and are supported by a number of

numerical techniques to perform the analytic decomposition. This includes the class

of second order sequential best rotation (SBR2) and sequential matrix diagonalisation

(SMD) algorithms and their variants [13, 22, 25, 46], which tend — or in some cases

are guaranteed [50] — to converge to the spectrally majorised solution.

Analytic EVD of Multiplexed Systems

If the data vector x[n] emerges from a multiplexing operation, such as for subband

coding [20], then the analytic EVD of the ground truth space-time covariance R(z)

does not exist [44, 45]. This is due to the eigenvalues possessing a longer periodicity

of 2πF , with F representing the multiplexing factor. However, spectral majorisation

will enforce a 2π periodicity, such that an analytic EVD becomes feasible. This has

been noted in [45] but without realising that the estimation error when estimating the

space-time covariance from finite data, and the associated loss of algebraic multiplicities

greater than one, is responsible for this beneficial effect.

3.4.5 Conclusions

This section investigated a fundamental effect that results in the loss of algebraic mul-

tiplicities greater than one in the eigenvalues of a space-time covariance matrix that

is estimated from finite data. This effect cannot be alleviated by increasing the sam-

ple size; rather, such an increase will result in the analytic EVD factors requiring an

increasing order if the ground-truth eigenvalues intersect, as non-differentiabilities and

discontinuities have to be approximated when extracting the eigenvalues and eigenvec-

tors of such an estimated space-time covariance matrix.

In terms of applications, the effect can be both beneficial or detrimental, and favours

a revival of algorithms that target spectrally majorised eigenvalues for polynomial ma-
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trix factorisations, which are supported by substantial algorithmic developments and

implementations [31, 46]. Alternatively, analytic eigenvalue and eigenvector extraction

algorithms [34, 35, 56, 84] can also yield such solutions with guaranteed spectral ma-

jorisation where current time domain methods may fail due to a large dynamic range

in the eigenvalues.

3.5 Summary

Typically, the space-time covariance matrix is estimated from sensor measurements.

However, in this chapter, a system identification approach was reviewed for a more

accurate estimation. Unlike the unbiased estimator, the system identification method

requires additional control over the sources to estimate the channel matrix. The system

identification-based estimate results in lower bin-wise perturbation of the eigenvalues

and eigenvectors, particularly for reasonable to low SNR. However, this perturbation

in bin-wise eigenvalues has a significant consequence, leading to the loss of algebraic

multiplicities even when the ground-truth eigenvalue has non-trivial multiplicities. It’s

important to note that this issue is independent of how accurate the estimate is made;

even a system identification approach to the source model cannot bypass this funda-

mental challenge.

Consequently, building upon the discoveries presented in this chapter, the subse-

quent sections of this thesis adopt the assumption that any para-Hermitian or general

polynomial matrix exhibits spectral majorization. Furthermore, it is assumed that

eigenvalues or singular values do not exhibit any common multiplicities along the unit

circle.
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Chapter 4

Polynomial Power Method and

Its Generalization

4.1 Introduction

In cases such as coding or compaction, which work by extracting the dominant signal

component from multichannel data [17, 18, 72], a complete PEVD may be unneccessary,

and it often sufficies to extract the largest eigenvalue and its corresponding eigenvector,

termed as principal eigenpair. For the standard EVD, this can be accomplished e.g. by

applying the power method [1]. Moreover, due to the complexity of performing a

full PEVD, a partial or reduced PEVD can also be considered useful for low rank

applications, such as in speech enhancement where a large number of microphones

may record only a very limited number of speakers [17]. In the narrowband case, the

power method in conjunction with Hotelling’s deflation approach [5] is well suited for

factorising rank-deficient matrices, where the number of eigenvalues and eigenvectors

to be determined is smaller than the dimension of the matrix.

To extend the utility of the power method [1] from narrowband to broadband sensor

array problems, the power method can be extended to the polynomial power method

using polynomial matrix notation with some modest modifications. Narrowband al-

gorithms can be readily extended to their equivalent broadband cases; an example is

the generalisation of the multiple signal classification (MUSIC) algorithm [7] to the
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polynomial MUSIC approach [14, 15]. In addition, due to the existence of the analytic

EVD [44, 45, 62], and the fact that analytic functions can be closely approximated by

polynomials of finite order, the deflation concept appears viable for polynomial matri-

ces. Hence, through the integration of the polynomial power method with polynomial

matrix deflation, it becomes achievable to leverage the benefits of the power method

in both narrowband and broadband contexts. While this amalgamation facilitates the

PEVD of para-Hermitian polynomial matrices with low ranks, it is essential to note

that the iterative application of the polynomial power method to a deflated polynomial

matrix necessitates an analysis of eigenvalue perturbations.

In addition, for a general polynomial matrix, an SVD with analytic factors ex-

ists [10, 85], such that there are unique singular values that are real on the unit circle,

and left- and right-singular vectors that share a common ambiguity w.r.t. arbitrary

allpass functions. The PSVD algorithms mentioned in Chapter 2 ignore this coupled

ambiguity, and hence typically yield complex-valued approximations of the singular

values. Therefore, it further motivates the generalization of the polynomial power

method from para-Hermitian matrices to general polynomial matrices for the extrac-

tion of the left- and right-singular polynomial vectors corresponding to the dominant

singular value.

Therefore this chapter discusses this extension of the ordinary power method to

para-Hermitian polynomial matrices, and then generalizes it to general polynomial

matrices. The extension multiplies a polynomial vector with a given para-Hermitian

matrix and then in each iteration performs a normalization to unity everywhere on the

unit circle instead of the normalization of the approximated eigenvector to unit length

in the ordinary power method. The order of the product vector, which grows with

each iteration due to repeated multiplication, is limited by truncating it either to the

support estimate discussed in Chapter 6, also in [86], or by trimming trailing values

that fall below some threshold. The proposed approach requires that the dominant

eigenvalue spectrally majorises the remaining eigenvalues; for estimated CSD matrix,

this assumption is satisfied with probability one in Chapter 3 and in [37]. The polyno-

mial equivalent of the power method is then combined with a deflation approach for the
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PEVD of low rank matrices with perturbation analysis. Similarly, the generalization

of the polynomial power method is only possible if the dominant singular value spec-

trally majorises others on the unit circle. And this assumption is similarly true for an

estimated polynomial matrix because the estimation process leads to loss of algebraic

multiplicities.

The chapter is organized as follows: Section 4.2 briefly explains the ordinary power

method with relation to a narrowband instantaneous covariance matrix. Section 4.3

explains the extension of the ordinary power method from narrowband covariance ma-

trices to broadband space-time covariance matrices — para-Hermitian polynomial ma-

trices — and draws a comparison with previous PEVD algorithms. In order to com-

pute the PEVD of low rank para-Hermitian matrices, this extension is combined with a

polynomial deflation approach in Section 4.4. With ordinary generalized power method

covered in Section 4.5, this polynomial power method is then generalized to ordinary

polynomial matrices in Section 4.6. Every approach is compared against state-of-the-

art algorithms in their respective sections and summary is provided in Section 4.7.

4.2 Power Iterations Method

The ordinary power method [1], while considered a fundamental concept, is briefly

discussed in this context to establish a foundation for the polynomial power method.

The power method is explained here in reference to the instantaneous covariance

matrix R ∈ CM×M of a narrowband MIMO system. This instantaneous covariance

matrix is related to the space-time covariance matrix R[τ ] as R = R[0]. Further, it

is assumed that the eigenvalues λ1, . . . , λm of R satisfy |λ1| > |λm| for m = 2, . . . ,M .

Now, if a non-zero vector v(0) ∈ CM is repeatedly multiplied against R, a sequence of

vectors v(1),v(2), . . . ,v(k) can be obtained, which can be written as

v(k) = Rv(k−1) = Rkv(0), k = 1, 2, . . . (4.1)

As R has Hermitian symmetry and the eigenvalues are unique, its M eigenvectors

q1, . . . ,qM form an orthonormal basis for CM . This permits representing v(0) as a
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linear combination of eigenvectors,

v(0) = c1q1 + c2q2 + . . . + cMqM . (4.2)

Substituting v(0) from (4.2) into (4.1), we get

vk = Rk
M∑

m=1

cmqm =
M∑

m=1

cmλk
mqm = λk

1(c1q1 +
M∑

m=2

cm(λm/λ1)
kqm) . (4.3)

Over a sufficient number of iterations k, the direction vk converges to that of q1 for

c1 ̸= 0. It means that a random vector repeatedly multiplied with R converges towards

a scaled version of its principal eigenvector provided that the initial vector has a non-

zero component in that direction [1]. This constitutes the power method. In order to

avoid overflow or underflow, vk can be normalised in every iteration step, which makes

its converge towards

lim
k→∞

v(k)
norm = ejϕq1, where ϕ = ∠c1 (4.4)

reflecting the phase ambiguity of eigenvectors. The rate of convergence depends upon

the ratio |λ2/λ1|.

4.3 Polynomial Power Method (PPM)

This section presents the extension of the power method [1] to polynomial para-

Hermitian matrices. This work has been published in [39].

4.3.1 Power Method Extension to Para-Hermitian Matrices

Let us assume some vector of analytic functions v(0)[n] � v(0)(z) ∈ CM . Thus the

weighting functions can be written as c(z) = QP(z)v(0)(z), where Q(z) is the matrix

of eigenvectors of R(z). Due to the analyticity of both Q(z) and v(0)(z), c(z) is also
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analytic. Further, the paraunitarity of Q(z) i.e. Q(z)QP(z) = I permits

v(0)(z) = Q(z)c(z) = c1(z)q1(z) + · · · + cM (z)qM (z) , (4.5)

i.e. the vector v(0)(z) can be expressed as a superposition of analytic eigenvectors,

weighted by some analytic functions cm(z), m = 1, . . . ,M .

This polynomial vector v(0)(z) can be utilized as the initialisation for PPM. Due

to analyticity, the analysis can be based on the unit circle with z = ejΩ for simplicity,

and so v(z)|z=ejΩ will be

v(0)(ejΩ) = c1(e
jΩ)q1(e

jΩ) + . . .+ cM (ejΩ)qM (ejΩ) . (4.6)

Note that qm(ejΩ) can be seen as either the mth analytic eigenvector evaluated at

z = ejΩ or the mth eigenvector of a Hermitian matrix viz. R(z) evaluated at a specific

frequency Ω. This permits to replicate the procedure described in Section 4.2, where

by repeated multiplications, a similar sequence of frequency dependent vectors can be

obtained. Hence the kth iteration vector can be written as

v(k)(ejΩ) = R(ejΩ)v(k−1)(ejΩ) = Rk(ejΩ)v(0)(ejΩ) . (4.7)

Combining (4.6) and (4.7), the frequency dependent version of (4.3) will be

v(k)(ejΩ) = (λ1(e
jΩ))k

[
c1(e

jΩ)q1(e
jΩ) +

M∑
m=2

cm(ejΩ)

(
λm(ejΩ)

λ1(ejΩ)

)k

qm(ejΩ)

]
. (4.8)

From the fact that the estimated R(z) is strictly spectrally majorised with its eigen-

values satisfying

|λm(ejΩ)| > |λm+1(e
jΩ)| ∀ Ω for m = 1, . . . ,M − 1 ,

the summation term in (4.8) will decay to zero as k →∞.

What is required that the first term in (4.8) converges to an unnormalised version of

q1(z) evaluated at z = ejΩ? Similar to the discussion in Sec. 4.2, it must be ensured that
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the initialisation v(0)(z) contains a portion of the principal eigenvector q1(z), i.e. that

c1(z) does not vanish. Since c1(z) must be analytic, unless c1(z) = 0 ∀z, on the unit

circle c1(e
jΩ) can only possess isolated zero crossings as a result of the uniqueness

theorem of analytic functions [87]. Hence c1(e
jΩ) must in general be non-zero except

for a finite number of zero-crossings. Such zero-crossings will generate challenges for

PPM; one solution is normalised regularisation which we will introduce further below.

Thus, for a sufficiently large value of k1, v(k)(ejΩ) becomes

v(k)(ejΩ) = (λ1(e
jΩ))kc1(e

jΩ)q1(e
jΩ) . (4.9)

If (4.9) is normalized to unit norm ∀ Ω ∈ R, which is discussed in Section 4.3.2, it

produces

lim
k→∞

v(k)
norm(e

jΩ) = φ1(e
jΩ)q1(e

jΩ) , (4.10)

where φ1(e
jΩ) = c1(e

jΩ)/|c1(ejΩ)| is an arbitrary allpass filter noting the ambiguity of

analytic eigenvectors discussed in Chapter 2. This also generalizes the phase-ambiguity

of the eigenvector of ordinary matrices shown in (4.4). With an analytic φ(z), v(k)(z)

will generally be an absolutely convergent but infinite series. Since with no control

over either c1(e
jΩ) or φ1(z), it is necessary to perform truncation after normalization.

Through repeated truncation, it is effectively similar to performing phase smoothing

that helps to minimise the order [33, 47].

4.3.2 Normalisation and Principal Eigenvalue

For v(k)(z) to formally take on properties of an eigenvector, it requires normalisation,

such that for the normalised vector we have v
(k),P
norm(z)v

(k)
norm(z) = 1. This can be accom-

plished as

v(k)
norm(e

jΩ) =
v(k)(ejΩ)√

v(k),H(ejΩ)v(k)(ejΩ) + ε
. (4.11)

1The k will be sufficient when
∑M

m=2 cm(ejΩ)
(
λm(ejΩ)/λ1(e

jΩ)
)k

becomes negligible
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where 0 < ε≪ 1 is a regularisation parameter. This regularisation serves two purposes:

(1) it prevents a division by zero, in case the singularity of c1(e
jΩ) causes problems; (2)

at frequencies where the norm of v(k)(ejΩ) is depressed because of c1(e
jΩ), it will create

a bias, such that we may move away from a poor initialisation v(0)(z). However, if

c(ejΩ) is missing the components of q1(e
jΩ) i.e. c1(e

jΩ) = 0 ∀ Ω, PPM will not reinsert

them.

To evaluate (4.11), a DFT domain approach can be applied. For a sufficiently

large DFT length K, (4.11) can be computed for z = ejΩi , i = 0, . . . , (K − 1). Since

the overall result is potentially infinite but absolutely convergent due to analyticity,

v
(k)
norm[n] ◦ • v(k)

norm(z) can be obtained via a K-point inverse DFT in good approxi-

mation. The solution may be non-causal and exceed the order necessary for a good

approximation. Therefore, after performing normalization, a shift-corrected trimming

of v
(k)
norm[n] may be applied to restore causality and to limit the order of the normalised

product in (4.11). This is discussed in Section 4.3.3.

The corresponding principal eigenvalue can be determined via the Rayleigh quotient

RQ,k(z) =
v(k),P(z)R(z)v(k)(z)

v(k),P(z)v(k)(z)
= v(k),P

norm(z)R(z)v(k)
norm(z) , (4.12)

i.e. by a weighted inner product of the eigenvector estimate. Thus the principal eigen-

value can be related to RQ,k(z) as λ1(z) = limk→∞RQ,k(z).

4.3.3 Order Limitation by Shift-Corrected Truncation

To limit the order-growth of v
(k)
norm(z), two different order-limitation approaches are

defined.

Order Limitation to Eigenvector Support

It is possible to accurately estimate the support of Q(z) before extracting any of its

columns constituting the eigenvectors [86]. This estimated support N can be exploited
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Figure 4.1: Optimal shift for approximation of a 100 order vector q(z), with unit
norm on the unit circle, by an N = 50th order polynomial using a suitable window to
minimise the truncation error.

by truncating v
(k)
norm[n] subject to an optimal shift-correction akin to [27, 34], such that

ṽ(k)
norm[n] = v(k)

norm[n−∆opt]pN [n] , (4.13)

where pN [n] is a rectangular window of size N , and the shift ∆opt is calculated via

∆opt = argmax
∆

N−1∑
n=0

∥v[n−∆]∥22 . (4.14)

This actually minimizes the truncation error in truncating v
(k)
norm(z) to best approximate

it in least square sense via an Nth order vector. The optimal shift parameter is further

explained via an example.

Example 4. A paraunitary matrix Q(z) ∈ C2×2 of order 100 is generated through a

concatenation of elementary paraunitary elements [36]. The norm of one of the column

i.e. q[n] ◦ • q(z) is shown in Fig. 4.1. To approximate q(z) by N = 50th order

polynomials with minimum truncation error, the optimum shift found via (4.14) is

∆opt = 25. △

The truncation in (4.13) has to be performed in each iteration to ease the computa-

tional burden of the multiplication and normalization steps. This repeated truncation

of the time domain vector is analogous to phase smoothing in the frequency domain.

Its purpose is to find the eigenvector with minimum time-domain support given its

ambiguity w.r.t. an arbitrary allpass filter ϕ1(z), as discussed in Chapter 2.
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Direct Truncation of Coefficients

This method truncates the outer lags of v
(k)
norm[n] on either end if its norm |v(k)

norm[n]|2

falls below some threshold. Since for a low threshold the resulting order will be high, this

method may produce higher-order approximations compared to the previous method,

particularly if the truncation length N is inappropriate for intermediate solution after

insufficient iteration steps. While the direct truncation is simple, there currently does

not exists any well-defined criterion to determine the appropriate truncation threshold.

4.3.4 Stopping Criterion

In order to define a suitable stopping criterion for the PPM, it is necessary to know

how closely aligned two polynomial vectors v(k)(z) and v(k−1)(z) are. Evaluated on

the unit circle, the Hermitian angle ∠{a(z), b(z)} between any two polynomial vectors

a(z), b(z) : C→ CM can be employed, which is defined as

∠{a(ejΩ), b(ejΩ)} = acos

(
|aH(ejΩ)b(ejΩ)|

∥a(ejΩ)∥2 · ∥b(ejΩ)∥2

)
. (4.15)

This Hermitian angle concept can be exploited in defining a suitable a metric

α(Ω) = ∠{ṽ(k)
norm(e

jΩ), ṽ(k−1)
norm (ejΩ)}. (4.16)

It should be noted that the normalisation in (4.15) is retained in case of errors in-

troduced due to truncation. If two successive estimates are aligned, the respective

α(Ω) = 0 ∀Ω. To measure an overall deviation,

γ =
1

2π

∫ π

−π
|α(Ω)|2dΩ (4.17)

is a suitable criterion for convergence, while α(Ω) permits to check on any frequency-

dependent differences in convergence.
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4.3.5 Simulations and Results

Order Limitation and Initialisation Effects

To evaluate the impact of the two types of order limitations, mentioned in Sec-4.3.3,

on convergence and efficiency, a simple para-Hermitian matrix R(z) : C → C3×3 with

eigenvalues

λ1(z) = z(6 + j)/100 + 1.01 + z−1(6− j)/100

λ2(z) = −z(1− 2j)/100 + 0.86− z−1(1 + 2j)/100

λ3(z) = z(5− 2j)/100 + 0.71 + z−1(5 + 2j)/100 ,

which are illustrated in Fig. 4.2, is being considered. The matrix of eigenvectors Q(z)

is defined by a sequence of elementary paraunitary operations [48],

Q(z) = [q1(z), . . . , q3(z)] =

4∏
i=1

(I+ (z−1 − 1)eie
H
i ) ,

with unit norm vectors ei, i = 1, . . . 4,

ei={1,3} =
1√
2
[1, 0, ∓1]T , ei={2,4} =

1√
2
[±1, 1, 0]T .

With 500 random initializations for v(0)[n], Algorithm 1 is executed over k = 300

iterations, recording both the vector alignment γ of (4.17) and the normalised error in

the principal eigenvalue,

ξλ =

∑
τ |λ[τ ]− λ̂[τ ]|2∑

τ |λ[τ ]|2
. (4.18)

Both types of limitation strategies are tested. For the second method, the threshold

for the truncation of trailing coefficients is set to 10−3.

The results, illustrated in Fig. 4.3, show that Algorithm 1 with truncation method

1 (in black) is generally less costly per iteration and therefore terminates within shorter

time. The execution time for the truncation method depends on the truncation thresh-

old. If the coefficient truncation threshold is small, the execution time will be higher
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Figure 4.2: Eigenvalues for the example matrix R(z).

Figure 4.3: Effects of types of order limitation on algorithm convergence, measuring
(a) angle deviation metric γ, and (b) accuracy of the extracted eigenvalue.

because a of more relaxed order limitation and hence higher cost of each iteration. For

the given ensemble experiment, the order of the resulting v
(k)
norm(z) is 4 and 49 under

the order limitation method 1 and the truncation method 2, respectively. Despite all

this, the direct truncation method employed by Algorithm 1 achieves a lower value of

overall deviation metric i.e. γ in the extraction of principal eigenvector which makes

it more accurate in comparison to the order limitation method (see Fig. 4.3(a)). For

instance, at time 10−1s, the direct truncation method attains γ = 10−10 and the order

limitation achieves γ = 10−8. Similarly, the direct truncation method obtains a more

accurate eigenvalue estimate than the order limitation method, reflected in the form of
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Algorithm 1: PPM Algorithm

Input: R(z), ϵ, kmax

Output: q̂1(z), λ̂1(z)
v(0)(z) ∈ CM , k ← 0, γ =∞;

ṽ
(0)
norm(z)← normalise & order limit v(0)(z) ;

while γ > ϵ & k < kmax do
k ← k + 1;

v(k)(z)← R(z)ṽ
(k−1)
norm (z) ;

v
(k)
norm(z)← normalisation v(k)(z);

ṽ
(k)
norm(z)← order limitation of v

(k)
norm(z);

update γ
end

q̂1(z) = ṽ
(k)
norm(z);

λ̂1(z) = ṽ
(k),P
norm(z)R(z)ṽ

(k)
norm(z);

a lower value of the normalized error metric ξλ as shown in Fig. 4.3.

To assess the impact of a singularity in c1(e
jΩ), we use a simple system with

λ1(e
jΩ) = 1 and λ2(e

jΩ) = 1
2 . With eigenvectors q1,2(z) = [1; ±z−1]/

√
2 and ini-

tialisation v(0)(z) = [(1 − z−1)q1(z) + (1 + z−1)q2(z)]/
√
2, we have c1(e

jΩ) = 0 for

Ω = 0. Nonetheless, a regularisation ε = 0.1 leads to the convergence of the Hermitian

angle in Fig. 4.4, showing that the singularity is overcome, even though the bias intro-

duced by ε causes a noise floor to the alignment of the estimated principal eigenvector

with the ground truth.

Comparison with State-Of-The-Art

The proposed PPM approach is compared to the state-of-the-art algorithms SBR2 [13]

and SMD [22], through an ensemble of 103 randomised spectrally majorised para-

Hermitian matrices R(z) ∈ C4×4 based on the source model in [22]. In this model,

the order of the ground truth eigenvectors O{Q(z)}, where O{·} measures the polyno-

mial order of its argument, is varied from 20 to 100 in steps of 20. The proposed method

is executed with kmax = 103 and ϵ = 10−10. The support of ṽ
(k)
norm[n] is truncated with

a threshold of 10−3 via the second method and the regularisation term ε is set to zero

to see if any issue is encountered with random normalization. Additionally, truncating

71



Figure 4.4: Convergence of β(Ω) = ∠{ṽ(k)
norm(ejΩ), q1(e

jΩ)} in case of a singularity of
c1(e

jΩ) for Ω = 0.

the order of ṽ
(k)
norm[n] to have same order as the ground truth may impede the PPM’s

convergence for some initializations or it may not converge at all because of the non-

convex nature of the phase smoothing process [34]. The SBR2 and SMD algorithms,

on the other hand, are allowed a maximum of 103 iterations with truncation parameter

µ, meant to limit the order of any intermediate q̂1(z) by truncating its outer lags with

the same threshold of 10−3 as for PPM, while the maximum off-diagonal threshold to

is chosen as 10−6.

All the above methods are evaluated based on the order of extracted eigenvector

O{q̂1(z)}, ξλ and the execution time. Note that none of the instances of the ensemble

are excluded due to possible poor initialisation. The ensemble results are illustrated in

Fig. 4.5 which shows that the PPM performance is better than both SBR2 and SMD

w.r.t all three metrics. Especially, the order of the extracted eigenvector is orders of

magnitude lower than that of SBR2 and SMD. Although convergence is yet to be proven,

the ensemble results suggest that the proposed method converges to an acceptable

approximate principal eigenpair as evident from Fig. 4.5. Furthermore, the ensemble

results, which look fairly acceptable at least within 10 to 90 percentile, show that there

is only a low probability of encountering a zero crossings for c1(z) when randomly

initialising v(0)(z).
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Figure 4.5: Performance metrics comparison (a) ξλ, (b) O{q̂1(z)}, and (c) execution
time of SBR2, SMD and PPM in dependence of the ground truth order of the principal
eigenvector.

4.4 Low-rank PEVD through Deflation

This section applies the polynomial power method to compute the PEVD of a rank-

deficient para-Hermitian matrix with the help of deflation. Moreover, perturbation of

the eigenvalues and eigenvectors due to error propagation in the deflation process is

also analysed.

4.4.1 EVD via Power Method and Deflation

A Hermitian matrix R ∈ CM×M with p ≤M non-zero eigenvalues λm ∈ R, m = 1, . . . p

can be represented as a sum of rank one terms

R =

p∑
m=1

qmqH
mλm =

p∑
m=1

Rm, (4.19)
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where qm is themth eigenvector andRm is a rank one Hermitian matrix, whose columns

are spanned by qm. It is assumed that R is positive semi-definite, and its p non-zero

eigenvalues are distinct and majorised as λm > λm+1,m = 1, . . . , (p − 1). With the

dominant eigenpair, i.e. {q1, λ1}, determined via the power method, the matrix R can

be deflated by removing the contribution of the dominant eigenpair as

R(2) = R−R1 = R− q1λ1q
H
1 . (4.20)

If the estimated eigenpair is sufficiently accurate, then the deflated matrix R(2) has

the decremented rank (p− 1), and its dominant eigenpair is now {q2, λ2}. This second

eigenpair can be extracted by a repeat of the power method on the matrix R(2). In

turn, R(2) can now be deflated, and through a total of p iteration, all eigenpairs of R

can be determined. As a recursive formulation with the initialisation R(1) = R, the

scheme operates via

R(m+1) = R(m) − λmqmqH
m , (4.21)

with m = 1, . . . , p. Ideally, by exactly extracting the dominant eigenpair {qm, λm} at

the mth iteration, we finally end up with R(p+1) = 0.

If an eigenpair, such as the first one in (4.21), is inaccurate, i.e. an estimate {q̂m, λ̂m}

is obtained via a limited number of iterations k instead of the exact {qm, λm}, then

R(m+1) will be perturbed by the error Rm − R̂m, with R̂m = R̂(m) − q̂mq̂H
mλ̂m. This

perturbation term will (i) lead to an insufficient rank reduction, and (ii) cause error

propagation as subsequent eigenpairs are estimated with decreasing accuracy. To inves-

tigate such perturbation effects, and hence potential bounds on the estimation error of

subsequently extracted eigenpairs, a perturbation analysis [4], in part for reduced-rank

perturbations [88, 89], can be employed.
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4.4.2 Para-Hermitian Matrix Rank One Representation and Deflation

Similar to a Hermitian matrix R, a para-Hermitian matrix can be represented as the

sum of rank one para-Hermitian matrices Rm(z),

R(z) =

p∑
m=1

qm(z)qPm(z)λm(z) =

p∑
m=1

Rm(z) , (4.22)

where p ≤ M is the number of non-zero analytic eigenvalues. This entire section

assumes that R(z) possesses rank p < M , in which case λp+1(e
jΩ) = . . . = λM (ejΩ) = 0

∀Ω, i.e. that there are (M − p) eigenvalues that are identical to zero. In the case of

p < M for R(z), this thesis refers to R(z) as a low-rank polynomial matrix. This

shows that if an eigenpair is available, deflation can be performed to reduce the rank

of R(z). For instance, if {q1(z), λ1(z)} is extracted via the polynomial power method,

its contribution can be removed from the original para-Hermitian matrix as

R(2)(z) = R(z)− q1(z)q
P
1(z)λ1(z) = R(z)−R1(z) . (4.23)

The allpass ambiguity of the extracted eigenvector mentioned in Section 2.2 does not

cause any issue since with ϕ1(z)ϕ
P
1(z) = 1 this ambiguity drops out.

The polynomial power method can be repeated on R(2)(z), if the dominant eigen-

pair is accurate. Thus over p− 1 deflations and p application of the polynomial power

method, an analytic EVD can be computed using a recursive procedure akin to (4.21),

such that with R(1)(z) = R(z),

R(m+1)(z) = R(m) − qm(z)qP(z)λm(z)︸ ︷︷ ︸
Rm(z)

. (4.24)

The approach in (4.24) requires the accurate determination of eigenpairs

{qm(z), λm(z)} via the polynomial power method at every stage. Estimation errors

due to a limited number of iterations k in the polynomial power method will result

not only in estimated eigenpairs {q̂m(z), λ̂m(z)} that may differ from the desired quan-

tities, but will also lead to potentially inaccurate estimates R̂m(z) of the rank one
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matrices and R̂
(m+1)

(z) of the deflated matrices w.r.t. the quantities defined in (4.24).

It is therefore required to investigate how incorrect eigenpairs and rank-one estimates

perturb the subsequent extraction of any remaining eigenpairs.

4.4.3 Perturbation Analysis and Error Propagation

The perturbation and error propagation analysis here is defined as per frequency bin,

i.e. for any specific frequency Ω on the unit circle. This is carried out by assessing the

difference E(m+1)(ejΩ) between the correctly deflated matrix R(m+1)(ejΩ) after the mth

rank deflation, and its estimate, R̂
(m+1)

(ejΩ):

E(m+1)(ejΩ) = R(m+1)(ejΩ)− R̂
(m+1)

(ejΩ) , (4.25)

for m = 1, . . . , (p− 1). Since due to the rank one deflations

R(m+1)(ejΩ) = R(ejΩ)−R1(e
jΩ)− . . .−Rm(ejΩ) , (4.26)

R̂
(m+1)

(ejΩ) = R(ejΩ)− R̂1(e
jΩ)− . . .− R̂m(ejΩ) , (4.27)

we have

E(m+1)(ejΩ) =
m∑

µ=1

R̂µ(e
jΩ)−Rµ(e

jΩ)

=
m∑

µ=1

q̂µ(e
jΩ)q̂H

µ (e
jΩ)λ̂µ(e

jΩ)− qµ(e
jΩ)qHµ (e

jΩ)λµ(e
jΩ) . (4.28)

This can also be written recursively as

E(m+1)(ejΩ) = E(m)(ejΩ) +
(
q̂m(ejΩ)q̂H

m(ejΩ)λ̂m(ejΩ)− qm(ejΩ)qHm(ejΩ)λm(ejΩ)
)

.

(4.29)

Since the eigenvectors of a para-Hermitian matrix can be selected to be orthonormal,

the different terms in the sum of (4.28) are approximately (due to estimation errors)
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orthogonal, and for sufficiently small perturbations it can be shown that

∥E(m+1)(ejΩ)∥2F ≈ ∥E(m)(ejΩ)∥2F +
∥∥∥q̂m(ejΩ)q̂H

m(ejΩ)λ̂m(ejΩ)− qm(ejΩ)qHm(ejΩ)λm(ejΩ)
∥∥∥2
F

≥ ∥E(m)(ejΩ)∥2F . (4.30)

Hence, the error norm does not improve over subsequent deflation operations, and

generally tends to grow.

The effect of the above error on the eigenpair {qm+1(e
jΩ), λm+1(e

jΩ)} that is in-

tended to be extracted from R(m+1)(ejΩ) can now be assessed. Similarly, the estimate

{q̂m+1(e
jΩ), λ̂m+1(e

jΩ)} is extracted from R̂
(m+1)

(ejΩ). Utilizing (4.25) and referring

to the Bauer-Fike theorem [90], it can be observed that the accuracy of the extracted

(m+ 1)st eigenvalue is upper-bounded as follows:

|λm+1(e
jΩ)− λ̂m+1(e

jΩ)| ≤ ∥E(m+1)(ejΩ)∥2F . (4.31)

Therefore, the worst case accuracy of the (m + 1)st eigenvalue is determined by the

cummulative error E(m+1)(ejΩ). Regarding the eigenvectors, the subspace distance

Um+1(e
jΩ) can be defined using the spectral norm ∥ · ∥2 [1] to measure the difference

between projections as

Um+1(e
jΩ) =

∥∥∥qm+1(e
jΩ)qHm+1(e

jΩ)− q̂m+1(e
jΩ)q̂Hm+1(e

jΩ)
∥∥∥
2
. (4.32)

Then perturbation theory [1] provides an upper bound

Um+1(e
jΩ) ≤ 4

d
∥em+1(e

jΩ)∥2 , (4.33)

where d = λm+1(e
jΩ) − λm+2(e

jΩ) is the distance to the next-nearest eigenvalue, and

em+1(e
jΩ) ∈ CM−1 comes from a partition of E(m+1)(ejΩ),

E(m+1)(ejΩ) =

 em+1(e
jΩ) eHm+1(e

jΩ)

em+1(e
jΩ) E2,m+1(e

jΩ)

 . (4.34)
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Figure 4.6: Example for the ground truth (shaded grey) and estimated eigenvalues
using the proposed deflation approach (in colour) λ̂m(ejΩ),m = 1, 2, 3 for the example
matrix R(z) when injecting perturbation through insufficient convergence of the PPM
algorithm.

Thus, the upper bound on the accuracy of them+1st eigenvector extracted by deflation

also depends on the accummulated errors in E(m+1)(ejΩ). Hence, any inaccuracies in a

rank one estimate will impact on and further degrade the precision bounds with which

any remaining eigenpairs can be determined.

Example 5. To demonstrate the deflation concept combined with the polynomial

power method, a spectrally majorised para-Hermitian example from Section 4.3.5 is

considered. The exact eigenvalues of R(z) are shown in Fig. 4.6. These are compared to

eigenvalues extracted by the deflation approach based on the polynomial power method

executed with kmax = 5e3, ϵ = 10−4 and x(0)(z) =
∑4

i=0 z
−i. The difference between

the estimated and the ground-truth eigenvalues can be seen in Fig. 4.6, and is measured

for the mth eigenvalue λm[τ ] ◦ • λm(z) via (4.18). For λ̂1(z), which is extracted by

the polynomial power method from R(1)(z) = R(z), we obtain ξλ1 = 6.8 × 10−5. By

subsequent deflation, from R̂
(2)

we obtain the second eigenpair with ξλ2 = 1.55×10−4.

This shows that the extracted second eigenvalue is not as accurate as the first one. The

third eigenvalues is then obtained from R̂
(3)

(z) with ξλ3 = 3.6 × 10−4. It can be seen

that due to error propagation, indeed ξλ3 > ξλ2 > ξλ1 , and the error is increasing with

each extraction. The impact of perturbations and error propagation can also be seen

in the estimated eigenvalues shown in Fig. 4.6, where the third eigenvalue appears to

have the largest estimation error. △
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4.4.4 Application and Ensemble Simulation

This section provides an ensemble test to demonstrate the enhanced performance of

the proposed approach for the PEVD of low-rank para-Hermitian matrices. The per-

formance metrics selected for comparison are the resulting order of the estimated pa-

raunitary matrix Q̂(z), denoted as O(Q̂(z)), the execution time t of the approach, and

the reconstruction metric ξR. The latter is defined as

ξR =

∑
τ ||R[τ ]− R̂[τ ]||2F∑

τ ||R[τ ]||2F
, (4.35)

and measures the accuracy of the decomposition, where with the convolution operator

∗, R̂[τ ] = Q̂[τ ] ∗ Λ̂[τ ] ∗ Q̂H[−τ ].

For an exhaustive test, an ensemble comprising of 100 instantiations of 6× 6 para-

Hermitian matrices of rank two is constructed, where each instance represents a system

of two spectrally majorised broadband sources illuminating an array of M = 6 sensors

through a convolutive mixing system. The instantiations are generated using the source

model in [22], with the source power spectral densities and the convolutive paraunitary

mixing defining the ground truth analytic EVD. The concatenation of spectral shaping

and mixing jointly form a system H(z) : C → C6×2 of order 100. The resulting

cross-spectral density matrix R(z) = H(z)HP(z) is therefore of order 200.

The PPM algorithm is executed with kmax = 103 and ϵ = 10−7. The trailing

coefficients of the normalized vector are truncated once they fall below a threshold of

10−3. The support of the initial vector x(0)(z) is set to the estimated support of the

eigenvectors, which can be evaluated via [86]; its coefficients are drawn from a complex-

valued normal distribution. The state-of-the-art algorithms SBR2 [13] and SMD [22]

are run for comparison, and are permitted to reach a maximum of 500 iterations or run

until the maximum off-diagonal element magnitude falls below 10−6. The intermediate

para-Hermitian and paraunitary matrices are truncated by removing the outer lags via

a threshold µPH = µPU = 10−6 [13, 30, 91].

The ensemble results in the form of the three metrics are illustrated as box-plots

in Fig. 4.7. In Fig. 4.7(a), it can be seen that the reconstruction metric ξR is orders
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Figure 4.7: Ensemble results illustrated as box-plots for (a) reconstruction error, (b)
O{Q̂(z)}, and (c) execution time. (red marks show outliers)

of magnitude lower for the proposed approach than for SBR2 and SMD. This suggests

that the proposed combination of PPM and deflation can compute the PEVD of a

para-Hermitian matrix significantly more accurately than both benchmark algorithms.

Moreover, in Fig. 4.7(b) the order of the estimated paraunitary Q̂(z) is lower for the

proposed method. This indicates that the perturbation potentially introduced by the

deflation process is negligible, as otherwise the order might grow as successive eigenpairs

are extracted. The lower order is also significant, since this determines the complexity of

implementing the paraunitary Q(z) for subspace projection-type applications. Lastly,

the proposed approach executes faster compared to SBR2 and SMD, as evident from

Fig. 4.7(c).
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4.5 Ordinary Generalised Power Method

In a manner akin to Section 4.2, which delves into the ordinary power method, the

generalization of this method is a fundamental concept in the standard matrix alge-

bra. However, in this chapter, it serves as the foundation for the exploration of the

polynomial power method’s generalization.

The conventional reduced SVD of A ∈ CM×L with M ≥ L, given as A = UΛVH

with U = [u1, . . . ,uL] ∈ CM×L, Σ ∈ RL×L and V = [v1, . . . ,vL] ∈ CL×L, can be

obtained through the ordinary power method [1], which is briefly explained in Sec-

tion 4.2. In order to determine the right-singular vectors, the power method can be

applied to AHA ∈ CL×L as its eigenvectors are in fact the right-singular vectors of A.

After v̂i = ejϕvi, i = 1, . . . , L has been computed, the singular values and left-singular

vectors can be obtained via

σi = ||Av̂i||2,⇒ ûi =
Avi

σi
= ejϕui, i = 1, . . . ,M , (4.36)

where ejϕ is an arbitrary phase shift. Note that the phase ambiguity of the left- and

right-singular vectors is coupled because the previously extracted right-singular vector

is used for computing the left-singular vector.

Alternatively, the left and right singular vectors can be determined by applying

the power method to AAH and AHA, respectively, and then the correspoding singular

value is computed. Since left- and right-singular vetors are determined independently,

their phase ambiguities are no longer coupled. Hence, if û1 = ejϕ
′
u1 and v̂1 = ejϕv1,

the resulting estimated singular value will be σ̂1 = ûH
1 Av̂1 = e−jϕ′

σ1e
jϕ i.e. it will not

in general be real-valued. However, real-valuedness, and therefore phase coupling of

the left- and right-singular vectors, can be achieved by adjusting the phase of σ̂1. Such

a procedure may be possible in the case of polynomial matrices but may be expensive

as will be discussed in Section 4.6. To avoid confusion in the following sections, this

alternative approach is termed as second method.

The arguments in the preceding paragraph indicate shows that the power iteration

is not restricted to Hermitian matrices, but can indeed be applied to any matrix.
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This motivates the need to combine the above concept with the already established

polynomial power iteration. The aim is to drop the restrictition to para-Hermitian

matrices, such that the dominant singular vectors may be computed in first instance,

with the option of later performing a full SVD of a polynomial matrix through deflation.

4.6 Generalized Polynomial Power Method

This section extends the polynomial power method reviewed in Section 4.3 to generalise

the SVD approach summarised in Section 4.5 to the case of a polynomial matrix A(z) :

C→ CM×L which has spectrally majorised singular values.

4.6.1 Polynomial Iterations Analysis

For an initial x(0)(z) = V (z)c(z), the polynomial iteration can be applied to a para-

Hermitian matrix AP(z)A(z) in a similar manner as described in Section 4.3. Thus

after k iterations, with z substituted by ejΩ , it produces

x(k)(ejΩ) = AH(ejΩ)A(ejΩ)x(k−1)(ejΩ)

=
L∑

ℓ=1

vℓ(e
jΩ)σ2k

ℓ (ejΩ)vH
ℓ (e

jΩ)V (ejΩ)c(ejΩ) , (4.37)

which can be re-written as

x(k)(ejΩ) = σ2k
1 (ejΩ)

[
c1(e

jΩ)v1(e
jΩ) +

L∑
ℓ=2

cℓ(e
jΩ)

(
σℓ(e

jΩ)

σ1(ejΩ)

)2k

vℓ(e
jΩ)

]
. (4.38)

Since the singular values of A(z) are spectrally majorised, so are the eigenvalues of the

para-Hermitian matrix AP(z)A(z) i.e. σ2
ℓ (e

jΩ) ≥ σ2
ℓ+1(e

jΩ) ℓ = 1, . . . , L − 1. Hence

x(k)(ejΩ) converges to a scaled version of v1(e
jΩ) for sufficiently large k similar to (4.9).

Similarly, the normalized vector will be

x(k)
norm(e

jΩ) = v̂1(e
jΩ) = ϕ1(e

jΩ)v1(e
jΩ) ∀ Ω , (4.39)
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where ϕ(ejΩ) = c1(e
jΩ)/|c1(ejΩ)|. Similar to the PPM, this generalised approach also

includes truncation and normalization in each iteration which has already been dis-

cussed in Sections 4.3.3 and 4.3.2, respectively. Similarly, the problem of singularities

in c1(e
jΩ) can be handled either through regularization or a modification to the initial-

ization if a spectral zero is encountered.

The estimation of the s and the corresponding left-singular vector is not straight-

forward and needs careful consideration. Assuming that the first method described

in Section 4.5 is adopted i.e. using (4.36), which is to determine the singular value

and then the left-singular vector, the frequency dependent version for extracting the

dominant singular value will be

σ̂m(ejΩ) = ||A(ejΩ)v̂m(ejΩ)||2, m = 1, . . . , N . (4.40)

This forces σm(ejΩ) to be positive ∀ Ω ∈ R due to the norm operator whereas the

theory behind the analytic decomposition existence shows that the singular value can

be negative on the unit-circle [58]. Forcing the singular values to be positive violates

this condition, thus with this method, the obtained decomposition might differ from the

decomposition given in [10] and it would also not be analytic in case the ground-truth

is negative. Alternatively, if the matrix A(z) is known to be positive semi-definite,

the singular values are guaranteed to be real and positive and so this method gives

the correct decomposition. Once the singular value is obtained with an acceptable

accuracy, which we discuss further below, via (4.40), the dominant left-singular vector

can be obtained as

ũ1(e
jΩ) = A(ejΩ)ṽ1(e

jΩ)/σ̂1(e
jΩ) = ϕ1(e

jΩ)u1(e
jΩ) . (4.41)

The allpass factor ϕ1(e
jΩ) is the same as that of the right-singular vector, such that their

ambiguities are coupled. This coupling results in the singular value being real-valued

on the unit-circle. Both (4.40) and (4.41) can be implemented in the DFT domain .

Adjusting the size of this DFT is discussed further below.

The second method, described in Section 4.5, which motivates to determines the
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left- and right-singular vectors by applying the polynomial power method independently

to A(z)AP(z) and AP(z)A(z), respectively, and then computes the singular value as

σ̂1(z) = ũP
1(z)A(z)ṽ1(z). This method does not impose the condition of singular val-

ues being positive on the unit circle, and so it can allow the analytic decomposition

proven in [10] to be achievable for any A(z). However, to retain real-valuedness for the

singular values on the unit circle, the left- and right-singular vector have to have a com-

mon allpass factor. Thus if both the left- and right-singular vectors are independently

extracted by applying the polynomial power method to AP(z)A(z) and A(z)AP(z), re-

spectively, the allpass factor in ũ1(z) and ṽ1(z) will, in general, not be coupled. Hence,

the second method may not be desirable to be used unless a common phase shift can

be found. This coupling can be regained in the DFT domain by adjusting the phase

until singular values are real in each bin. However, this method is still avoided as it

invokes two PPM calculations which is computationally more expensive compared to

the first approach.

To optimize the computational efficiency of the first approach, the right singular

vector is computed via the PPM in case of M ≥ L. For the case M ≤ L, all of the

above approaches can used instead to factorise AP(z).

4.6.2 Sufficient DFT Size

Dominant Singular Value

Once v1(z) is determined with Algorithm 1, the singular value can be determined via

(4.40) in the DFT domain. To determine a sufficient DFT size, time-domain aliasing

can be utilized [35]. Thus (4.40) can be evaluated at increasing DFT sizes until

ζσ =

∑
τ |σ̂

(K)
1 [τ ]− σ̂

(K/2)
1 [τ ]|2∑

τ |σ̂
(K)
1 [τ ]|2

, (4.42)

where σ̂
(K)
1 [τ ] represents the time-domain equivalent of (4.40) obtained with aK−point

inverse DFT, falls below a certain low threshold ε1. A small value of ζσ indicates that

K/2 can be considered sufficient to approximate the dominant singular because the

difference between the singular value estimate at size K/2 and at size K will be small.
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Otherwise, they will differ, and the singular value estimated with K/2 DFT size will

not just be a truncated version of the estimate at DFT size K, but will also suffer from

time domain aliasing due to the inverse DFT. Hence, then ζσ will be significant. Once

ṽi(z) is extracted with satisfactory accuracy, a DFT size of K = O{A(z)ṽi(z)} + 1

should generally suffice.

Left Singular Vector

Similarly, to determine a sufficient DFT size for (4.41), time-domain aliasing may be

captured via the error w.r.t. normality in the time-domain as

ζu =
∑
τ

|ûH
1 [−τ ] ∗ û1[τ ]− δ[τ ]|22, τ ∈ Z . (4.43)

A similar criterion has been utilised for the DFT size in [34]. There, it is shown as a

necessary criterion; while sufficiency has not been proven, in practise it has generally

been shown to suffice in all simulations.

It follows that for a sufficient DFT size, ζu will be small since û1[τ ] should be

normal. Thus (4.41) is implemented at increasing DFT size until ζu falls below a some

given threshold εu.

4.6.3 Simulations and Results

Example 6. To demonstrate the potential of the generalized polynomial power

method, a simple case of A(z) is assumed whose ground-truth SVD is known such

that Σ(z) ∈ C3×2 contains

σ1(z) =
1

2
z + 4 +

1

2
z−1, (4.44)

σ2(z) =
1

4
z + 1 +

1

4
z−1 , (4.45)

85



which are spectrally majorised. The left-singular vectors matrix U(z) constructed via

elementary paraunitary operations given as [36]

U(z) =
2∏

i=1

{I− (1− z−1)eie
H
i )} , (4.46)

where ei=1,2 = [1, 1, ∓1]T/
√
3 ∈ C3 are unit-norm vectors. The right-singular vectors

in V (z) ∈ C2×2 of order 2 are generated by the same approach with e1 = [1,−1]T/
√
2

and e2 = [−1, 0]T. The polynomial matrix A(z) is then defined as U(z)Σ(z)V P(z).

Algorithm 1 is executed with ϵ = 10−12, kmax = 103, R(z) = AP(z)A(z) and

v(0)(z) = x(0)(z) = 1. The truncation method employed is the order limitation de-

scribed in Section 4.3.3 where the order of x
(k)
norm(z) is limited to the estimated support

obtained from [86]. Algorithm 1 converges in 44 iterations resulting in ζv = 1.4×10−11.

Once the left-singular vector is esimated, the corresponding singular value is estimated

via (4.40). With K = 16, the time-domain aliasing ζσ = 8 × 10−28. The trailing

coefficients of σ̂1[τ ] are truncated on either side of τ = 0 via a threshold of 10−10.

This results in a order of 6 whereas the ground-truth singular value has an order of 2.

The coefficients are illustrated in Fig. 4.8(a) where the coefficients at |τ | ≤ 1 exactly

match the ground-truth coefficients in (4.44), whereas the coefficients at |τ | > 1 are

smaller than 10−5. The normalized squared difference between the estimated and the

ground-truth singular value, which can be defined similar to (4.42) as

ξσ =

∑
τ |σ1[τ ]− σ̂1[τ ]|2∑

τ |σ1[τ ]|2
, (4.47)

is 3.5×10−12. The corresponding left-singular vector is then obtained from (4.41) with

a DFT of size K = 16. Thereafter, the order is limited by a shifted truncation to 3,

which achieves a metric of ζv = 9× 10−12.

The GSBR2 algorithm [11] is executed with µPU = 10−5, ϵ = 10−5 and µPH = 10−5

for 1000 iterations and results in ζv = 9.6× 10−5, ζu = 1.5× 10−5 and ξσ = 2.7× 10−2.

The dominant singular value estimated with the GSBR2 has order 8 whose coefficients

are illustrated in Fig. 4.8(b). It is evident that the estimated singular value is neither

conjugate symmetric and nor the coefficients match the ground truth coefficients except
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Figure 4.8: (a) GPPM, and (b) GSBR2 [11] based estimated dominant singular value
coefficients for the numerical example.

at τ = 0 where σ̂[0] = 3.95 ≈ 4. This loss of conjugate symmetry may be the cause of

a large value of ξσ. △

Ensemble Test

In a more extensive test, the proposed method is evaluated against the GSBR2 al-

gorithm via an ensemble consisting of 500 randomised instantiations of A(z) ∈ C3×2

such that each instance has O{U(z)} = O{V (z)} = 10 and O{Σ(z)} = 20. All the

instantiations have spectrally majorised singular values.

For the proposed method, Algorithm 1 is simulated with ϵ = 10−10, kmax =

103, R(z) = AP(z)A(z) and x(0)(z) = 1. The order of the product vector is lim-

ited to 10, with its order estimated through the method in [86], followed by shifted-

truncation [27, 39]. The corresponding singular value and the left-singular vector are

extracted at K = 2⌈log2(O{A(z)ũ1(z)})⌉ where ⌈.⌉ denotes ceiling operation. The trailing

coefficients of the estimated left-singular vectors are truncated below a threshold of

10−10 while the right-singular vector is similarly order-limited to its estimated support.

The GSBR2 is simulated with µPU = 10−4, µPH = 2 × 10−10 employing the original
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Table 4.1: Performance Comparison of GSBR2 and GPPM

Metrics GSBR2 GPPM

O{ũ1(z)} 966± 185 10
O{ṽ1(z)} 422± 126 10
O{σ̂1(z)} 96± 38 57± 4
ζv (1.2± 0.8)× 10−3 (5.5± 4.5)× 10−5

ζu (1.6± 0.85)× 10−3 (5.5± 4.5)× 10−5

ξσ 0.09± 0.07 (1.5± 1.3)× 10−5

time(s) 0.67± 0.15 0.44± 0.19

truncation method of SBR2/SMD [13, 22]. The algorithm is allowed to perform a max-

imum of 200 iteration; however, the execution is terminated if the off-diagonal terms

fall below 10−6.

The ensemble average for all the metrics is shown in Table 4.1. It is evident that the

proposed method provides a more compact order approximation for both the left- and

right-singular vectors and the singular value compared to the GSBR2. Moreover, the

error metrics ζu and ζv of the proposed method’s extracted singular vectors reach orders

of magnitude below those obtained with GSBR2. Likewise, the normalized squared

difference between the estimated and ground-truth singular value is orders of magnitude

lower for the polynomial method than GSBR2. The potential reason for the large

deviation of the GSBR2’s estimated singular value might be the imperfect conjugate

symmetry. Also, the SBR2-type algorithms are known to only achieve a relatively poor

diagonalisation compared to their DFT-domain counterparts in e.g. [34, 35].

4.7 Summary

This chapter first introduced the polynomial equivalent of the well known power method

for the extraction of the dominant eigenpair of a spectrally majorised para-Hermitian.

Since the repeated multiplication of a polynomial matrix with a polynomial vector in-

creases the order of the product vector, two methods of truncation are demonstrated to

limit the order growth. Proposed polynomial extension has shown superior performance

over benchmark algorithms.

Secondly the approach of combining the polynomial power method with deflation for
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the PEVD of a low-rank para-Hermitian polynomial matrix has been presented. It has

been shown that it is possible for almost all para-Hermitian matrices to apply deflation

similar to the approach for ordinary matrices. The perturbation of the eigenpairs of the

deflated matrix has been studied and has been shown to relate directly to the accuracy

of the successively extracted eigenpairs. Over an ensemble of low-rank para-Hermitian

matrices, the proposed method has outperformed state-of-the-art algorithms in terms

of accuracy, speed, and implementation complexity.

Lastly, the polynomial power method, which was initially proposed for para-

Hermitian matrices, is extended into the generalized polynomial power method for

computing the dominant left- and right-singular vectors and their corresponding sin-

gular value of a polynomial matrix. This extension provides better estimation of the

singular vectors with lower order approximation as compared to the only direct PSVD

algorithm based on the Kogbetliantz method. The proposed method promises better

results and can be further utilized to compute the PSVD of a low-rank polynomial

matrix through the polynomial matrix deflation analogous to a low-rank PEVD.

With the proposed novel method in form of an extension of the power method, the

problem of a large number of iterations still needs to be addressed, as otherwise this

makes the polynomial power method computationally expensive. Due to this reason

only a low-rank PEVD can be accomplished through the polynomial power method if

combined with a deflation approach. Therefore, this method is further improved in the

next chapter by reducing the number of iterations to one by decomposing the given

polynomial matrix into sum of rank one matrices.

89



Chapter 5

Unified Algorithm I: Rank One

Decomposition of a Polynomial

Matrix

5.1 Introduction

While the previous chapter introduced the polynomial and generalized polynomial

power method, this chapter builds upon those findings to achieve further improvements.

The primary goal is to reduce the computational cost by minimizing the number of it-

erations. To accomplish this, the key idea is to decompose any given polynomial matrix

into rank-one polynomial matrices. This is made possible by leveraging the fact that

analytic EVD and SVD exist for an analytic para-Hermitian and general polynomial

matrix, respectively, as discussed in Chapter 2.

A rank-one polynomial matrix inherently possesses a single non-zero eigenvalue or

singular value, making it feasible to achieve convergence within a single polynomial

power iteration. This facilitates the efficient computation of the PEVD and PSVD

of para-Hermitian and general polynomial matrices, respectively. While the polyno-

mial power method and its generalization iteratively reduce the order of the resulting

vector to control the order growth, the resulting decomposition order, on average, re-

mains relatively compact. However, in cases where only a single iteration is performed,
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achieving order reduction may not be feasible. While this limitation is noteworthy, the

advantages is the independent extraction of each eigenpair or singular value and its

corresponding vectors. This approach offers the potential for improved accuracy and

execution time.

In addressing the singularity issue that arises when normalizing a product vector

x(k)(z), which involves the use of a regularization parameter (see (4.11)), it becomes

evident that this problem becomes particularly pronounced when only a single iteration

is performed. Additionally, it is observed that the initial vector x(0)(z) may sometimes

lack components in the direction of the desired eigenvector or singular vector. To over-

come the former issue, a solution similar to the one proposed in [10], which involves

employing upsampling and sign changes, can be adopted with some additional modifi-

cations. In terms of the latter issue, one potential approach is to restrict the choices

for initialization, thereby ensuring that the problem does not arise on the unit circle or

within the region of convergence.

In the previous chapter, the emphasis was solely on PEVD and PSVD. In the cur-

rent chapter, it is evident from the algorithm’s name that all three polynomial matrix

decomposition methods are covered, with rank decomposition serving as the founda-

tional principle. To apply this methodology for computing the PQRD of a polynomial

matrix, the rank-one matrix terms can be estimated using QR decompositions in the

sample points of a polynomial matrix evaluated on the unit circle. When the columns

of these terms are normalized, they yield a paraunitary matrix capable of transforming

a polynomial matrix into an upper triangular form.

The chapter is structured as follows: Section 5.2 provides an overview of rank one

decomposition of a para-Hermitian matrix for a quick and accurate PEVD. Its simplified

version, referred to in this thesis as normalization-free, is explained in Section 5.3. Simi-

larly, Section 5.4 outlines the PSVD while Section 5.6 presents the PQRD of polynomial

matrices achieved through rank-one decompositions. Their respective normalization-

free variants are introduced in Section 5.5 and Section 5.7, respectively. Simulation

results are discussed in Section 5.8, and a summary is provided in Section 5.9.
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5.2 PEVD by Rank One Decomposition

5.2.1 Objective and Rationale

The ordinary power method described in Section 4.2 will converge in a single iteration

provided that the Hermitian matrix is rank one. Therefore, if a rank one decomposi-

tion is available for a Hermitian matrix, an EVD can be easily be performed through

a single iteration of the power method. However, if the given Hermitian matrix is al-

ready rank deficient i.e. p < M , then after the first p dominant eigenpairs have been

extracted, the remaining M − p eigenvectors can be extracted through Gram-Schmidt

orthogonalization [1].

Similarly, if any para-Hermitian polynomial matrix can effortlessly be decomposed

into sum of rank one matrices, a single iteration of the polynomial power method will

suffice to extract any eigenpair. However, the case where p < M , the Gram-Schmidt

orthogonalization procedure will have to be extended to the polynomial domain.

5.2.2 Para-Hermitian Matrix Rank One Decomposition

For a rank p para-Hermitian matrix, its rank one terms given in (4.22) can be estimated

via a DFT domain method without computing its PEVD. This method assumes that

R(z) is estimated from finite data and therefore is spectrally majorised. The EVD of

sample points of R(z) along the unit circle i.e. Rk = R(ejΩk) where Ωk = 2πk
K , is given

as

Rk = QkΛkQ
H
k , for k = 1, . . . ,K, (5.1)

where Λk = diag{λ1,k, . . . , λM,k} where λm,k ≥ λm+1,k for m = 1, . . . ,M − 1 and

Qk = [q1,k, . . . ,qM,k] denotes the kth bin eigenvectors. The rank one decomposition of

Rk similar to (4.19) can be given as

Rk =

M∑
m=1

Rm,k,where Rm,k = qm,kλm,kq
H
m,k . (5.2)
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For an estimated para-Hermitian matrix, the sample points of its analytic PEVD in

(2.5) relate to its bin-wise EVD in (5.1) as

Λ(ejΩk) = Λk (5.3)

Q(ejΩk) = ΦkQk , (5.4)

where Φk = diag
{
ejϕ1,k , . . . , ejϕM,k

}
is a diagonal phase matrix.

Now the objective is to find the relation between Rm,k and the sample points of

Rm(z) on the unit circle at the same frequency points i.e. R(ejΩk) so that Rm(z) can

be estimated through Rm,k available from (5.2). To establish this relation, the relations

in (5.3) and (5.4) can be used, so it leads to

Rm(ejΩk) = qm(ejΩk)qHm(ejΩk)λ(ejΩk) = ejϕm,kqm,ke
−jϕ1,kqH

m,kλm,k

= qm,kq
H
m,kλm,k = Rm,k .

This shows that sample points of Rm(z) on the unit circle are in-fact the bin-wise rank

one terms Rm,k obtained via the conventional EVD in the DFT bins. Furthermore, the

above analysis also shows that phase smoothing — the costly process of determining

Φ[k] [33, 47] — is not required for the estimation of rank one terms as it is eliminated

automatically.

With access to the sample points of Rm(z) along the unit circle, the estimate of

Rm[τ ]� Rm(z) can be derived from Rm[k] using the inverse DFT (IDFT) over a suit-

ably extensive range of K. It is important to highlight that Rm[τ ] is not required to

possess an identical support as R[τ ]� R(z). As a result, the determination of an ap-

propriate value for K becomes essential in order to extract rank one matrices from their

equivalent in the DFT domain. The time-domain equivalent of [Rm[1], . . . ,Rm[K]], ob-

tained via the IDFT, is denoted as R̃m[τ ], the estimate of Rm[τ ]. This estimate will

be periodic as

R̃m[τ ] =
∞∑

µ=−∞
Rm[τ −Kµ] (5.5)
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If K is shorter than the support of Rm[τ ], then (5.5) would have time-domain aliasing.

Moreover, Rm(z) can be an infinite Laurent series however due to analyticity, the

corresponding Rm[τ ] would converge absolutely which permits it to be approximated

with a finite order Laurent polynomial [35]. In order to determine a sufficient value

for K that exceeds the optimum finite support, first it is important to isolate the

fundamental period of (5.5) through a rectangular window pK [τ ] of size K − 1 centred

at τ = 0

pK [τ ] =

{
1 |τ | ≤ K−1

2

0 otherwise
, odd K (5.6)

as

R(K)
m [τ ] = pK [τ ]R̃m[τ ] . (5.7)

For determining a value for K which results in minimum time-domain aliasing in (5.5),

the DFT size K can be increased by a factor of two until γR, defined as

γR =

∑
|τ |≥K/2 ||R

(K)
m [τ ]−R

(K/2)
m [τ ]||2F∑

τ ||R
(K)
m [τ ]||2F

, (5.8)

to measure the normalized time-domain aliasing, falls below a certain suitably selected

threshold ϵγR . Once the desired K is reached, the required estimate of Rm[τ ] will be

R̂m[τ ] = R
(K/2)
m [τ ] and so (4.22) can be re-written as

R(z) ≈
M∑

m=1

R̃m(z) with R̃m(z) = q̃m(z)λ̃m(z)q̃Pm(z) , (5.9)

with q̃m(z) and λ̃m(z) being the accurate estimates of qm(z), and λ(z), respectively.

This thesis assumes that R̃m(z) and q̃m(z) has shortest time-domain support.

5.2.3 Single Polynomial Power Iteration

With access to the rank one estimate, a single iteration of the polynomial power method

can now be applied. Analogous to the ordinary power method, the single polynomial
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iteration can be applied to a rank one para-Hermitian matrix R̃m(z) to obtain q̂m(z).

For an initial x(0)(z) = Q(z)c(z), the single iteration results in

x(1)(ejΩ) = R̃m(ejΩ)x(0)(ejΩ)

= q̃m(ejΩ)λ̃m(ejΩ)q̃Hm(ejΩ)Q(ejΩ)c(ejΩ) . (5.10)

Since q̃Hm(ejΩ)qi(e
jΩ) = k′δ[m− i] ∀ Ω with k′ ≈ 1, (5.10) reduces to

x(1)(ejΩ) = q̃m(ejΩ)λ̃m(ejΩ)cm(ejΩ) , (5.11)

which shows that x(1)(ejΩ) is a scaled version of the mth eigenvector of R(z) or the

dominant eigenvector of R̃m(z). Once normalized, the eigenvalues can similarly be

determined through the Rayleigh quotient in (4.12).

5.2.4 Normalization

After normalizing (5.11) to unit norm ∀ Ω, discussed in Section 4.3, it produces

x(1)
norm(e

jΩ) =
x(1)(ejΩ)√

x(1),H(ejΩ)x(1)(ejΩ)
=

cm(ejΩ)q̃m(ejΩ)

|cm(ejΩ)|

= φm(ejΩ)q̃m(ejΩ), for k = 1, . . . ,K , (5.12)

where the factor φm(ejΩ) = cm(ejΩ)/|cm(ejΩ)| is an allpass factor. This all-pass factor

often complicates the compact order approximation of the eigenvector and generally,

this is the reason why phase smoothing [33, 34, 47] is required. If this phase factor

is a simple delay, x
(1)
norm(z) will have the shortest possible order as q̃m(z) itself has

shortest support. During the normalization procedure, two potential challenges may

arise: Firstly, we need to find a sufficiently large DFT size to perform normalize or

implement (5.12). This issue has already been discussed in Section 4.6.

Secondly, cm(ejΩ) might have a finite number of singularities at distinct frequencies

which will lead to division by zero or cm(z) = 0 ∀ z. To resolve this, the regularisation

approach proposed in Section 4.3 must be avoided, because here only a single iteration

is performed instead of multiple iterations. Moreover, if regularization is still used, the
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resulting normalized vector may not represent a valid eigenvector. Therefore, this issue

can be avoided by a suitable initialization as described in following subsections.

5.2.5 Choices and Issues in Initialization

To avoid singularities and accurately estimate the eigenvector, it is important to choose

an appropriate initialization for x(0)(z). However, initializing the vector can sometimes

lead to singularities for certain values of z, or even result in cm(z) = 0 ∀ z. To solve the

problem of cm(z) = 0 ∀ z, one potential solution is to restrict the initialization to any

of the M columns of the rank one matrix. For example, if x(0)(z) is initialized with the

nth column of R̃m(z) i.e. x(0)(z) = q̃m(z)λ̃m(z)q̃Pm,n(z) where cm(z) = λ̃m(z)q̃Pm,n(z),

this prevents the issue of cm(z) = 0 ∀ z. However, cm(z) may have a finite number

of zeros at distinct frequencies on the unit circle which can be avoided through the

method discussed in next subsection.

Unfortunately, determining the optimum order of the initialization vector x(0)(z)

and how it affects the order of the estimated eigenvector, particularly the order of

φm(z), can be difficult. Ideally, the initialization should result in φm(z) being a simple

delay, but this is unlikely to happen with random initialization. Therefore, the only

approach is to experiment with different initializations and select the one resulting in

the lowest possible order for the estimated eigenvector.

5.2.6 Solution to Normalization Issue

Types of Zero Crossings

Due to the potential presence of zero crossings in cm(ejΩ), the phase function φ(ejΩ) in

(5.12) may experience phase discontinuities. Consequently, achieving an approximation

of the normalized vector would necessitate an infinitely long DFT size. The zero cross-

ings of cm(ejΩ) across which the phase is continuous do not cause any problem in the

process of normalization. This type of situation is experienced when the multiplicity

of a zero is even. As in such case, the cm(ejΩ) can easily be factored into an analytic

phase times a magnitude function. Therefore, one needs to carry out the normalization

given in (5.12) at unevenly spaced frequency points on the unit circle or by slightly
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Figure 5.1: Example 7 illustration showing the smooth evolution of both the real and
imaginary parts of the components of the normalized vector with cm(ejΩ) with zero
crossing with no phase jump across it.

shifting the DFT bins by a small shift such that none of the bins coincide with zero

crossings. To elaborate more on this, let us consider a simple example.

Example 7. Let us assume x(1)(z) = (1 + 2z−1 + z−2)q1(z) with q1(z) ∈ C3 is

considered from Section 4.3.5. Since ∠cm(ej(π+ϵ)) − ∠cm(ej(π−ϵ)) ≈ 2nπ where n ∈ Z,

which is not a phase discontinuity instead a phase wrap, this does not cause any issue in

the smooth evolution of both the real and imaginary components of x
(1)
m,norm(ejΩ),m =

1, 2, as illustrated in Fig. 5.1 except at z = ejπ. Therefore, after the normalization has

been performed in the DFT domain with a DFT size of 64 such that none of the bins

has a zero crossings, the resulting x̂
(1)
norm[τ ] = q̂1[τ ] exhibits time domain aliasing of

ζq = 2.6 × 10−30. This estimated eigenvector extracts the dominant eigenvalue using

the Rayleigh quotient, defined in (4.12), at a normalized error of ξλ = 2.3× 10−8. △

With Example 7, it is evident that not all zero crossings pose issues. However, in

scenarios where cm(ejΩ) exhibits zero crossings across which there are phase discon-

tinuities, the solution can be complex depending upon the number of zero crossings.

Let’s first address the straightforward situation where the number of zero crossings is

even. In such cases, an even count of phase discontinuities (π radians) at the zero

crossing locations can be effectively compensated by applying an additional π phase.

This facilitates the analytic factorization of cm(ejΩ) into an allpass and a real-valued

function. This method shares similarities with the approach outlined in [10], designed

for computing the analytic SVD existence of a polynomial matrix. For a clearer grasp,

let us delve into an illustrative example.
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Figure 5.2: Normalization results for x(1)(z) on the unit circle in presence of even
number of zeros of cm(ejΩ): given case illustrates 2 zero crossings.

Example 8. We consider the setting of Example 7 except with cm(ejΩ) set to (1 +

z−2). It has two zero crossings at z = {ejπ/2, ej3π/2} both associated with a π phase

discontinuity. For illustration, the real and imaginary components of the normalized

vector x
(1)
norm(ejΩ) is shown in Fig. 5.2. It can be seen that both real and imaginary

components of the two drawn components have discontinuities across the zero crossings

at π/2 and 3π/2. In addition, if the sections of all curves shown in Fig. 5.2 between

these two zero crossings are inverted i.e. multiplied by a negative sign, the resulting

curves becomes smooth as illustrated in Fig. 5.3. The reason is that these zero crossings

had π phase discontinuities which can be compensated by applying an extra π phase

to either the sections between the zero crossings or before and after the zero crossings.

Now except at zero crossings frequency points, both the real and imaginary part of all

components of x
(1)
norm(ejΩ) evolves smoothly. Therefore, the normalized x

(1)
norm[τ ] = q̂1[τ ]

is obtained via an IFFT after performing inversion, and the resulting time-domain

aliasing is 1.54× 10−31 which estimates the dominant eigenvalue through the Rayleigh

quotient with ξλ = 2.3× 10−8. △

Example 8 demonstrated a simple case of two zero crossings. In case of Nz zero

crossings where Nz is even, and all of these zero crossings are associated with phase

discontinuities, the inversion or application of additional π phase to compensate for

the π phase discontinuities have to be carried out in special manner. For instance, if

k1, . . . , kNz are zero crossing bins, if sign is change is applied to bins k = k1+1, . . . , k2−1
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Figure 5.3: Inverted section of the curves, shown in Fig. 5.2, between two zero crossings
i.e. Ω = {π/2, 3π/2}.

as

x(1)
norm(e

jΩk)← −x(1)
norm(e

jΩk), k = k1 + 1, . . . , k2 − 1 ,

then the next adjacent range of bins i.e. k2 +1, . . . , k3 − 1 will not be applied negative

sign. Similarly, k3 + 1, . . . , k4 − 1 will require sign change while k4+1, . . . , k5 − 1 will

not implement sign inversion. Similarly, sign change is applied in alternate manner.

To figuratively explain this procedure of sign inversion, consider an additional example

where cm(z) has 6 zero crossings on the unit circle.

Example 9. With x(1)(z) = cm(z)q1(z), where cm(ejΩ) has zero crossings at Ω = nπ/4

where n = 1, . . . , 6, the components of the normalized vector are illustrated in

Fig. 5.4(a), drawn using a DFT size of 210 bins. The zero crossings coincides with bins

k ∈ {129, 257, 385, 513, 641, 769}. Additional phase shift of π is applied to the nor-

malized vector in bins {1, . . . , 128}, {258, . . . , 384}, {514, . . . , 640}, and {770, . . . , 210},

which represents bins before π/4 or the first zero crossing, between the 2nd and 3rd,

4th and 5th zero crossings, and after the 6th zero crossing, respectively. With appli-

cation of π phase shift in alternating manner, the resulting time-domain equivalent

of the normalized vector has time-domain aliasing of 5 × 10−29 which estimates the

corresponding eigenvalue with accuracy of ξλ = 5.5× 10−12. △

Contrary to an even number of zeros, an odd number of zeros of cm(ejΩ) linked with

phase discontinuities will not permit ϕm(ejΩ) to be continuous in nature. However, the

oversampled version by a factor 2, cm(z2), will possess an even number of zeros on the
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Figure 5.4: Normalized vector components real and imaginary components with even
number of zero crossing in cm(ejΩ) (a) without out sign change, (b) with sign change
applied in alternate manner i.e. Ω ∈ [{0, π/4},{π/2, 3π/4}, {π, 5π/4},{3π/2, 2π}].

unit circle, making it possible to derive an non discontinuous allpass factor ϕm(ejΩ),

as described through Example 8-9. The same procedure of sign inversion is applied,

ensuring a smooth evolution of both the real and imaginary parts of all components

of the normalized vector. While only the phase of the normalized vector in the DFT

domain is affected, it retains the characteristics of an eigenvector within each DFT

bin. The distinction lies in its oversampled state. Consequently, once the time-domain

sequence is obtained via an IFFT, downsampling in the time-domain is performed

to extract the required eigenvector. This assertion is further reinforced through the

example described below.

Example 10. This example considers the x(1)(z) = (
∑3

n=0 z
−n)q1(z) where cm(z) =

1+ z−1+ z−2+ z−3 has three zero crossing on unit circle at Ω = π/2, π, 3π/2, depicted

in the normalized vector illustrated in Fig. 5.5(a) via arrows. Upon applying a sign

change is applied to alternate section of the normalized curve similar to as described

previously, both the real and imaginary part of all the components of the normalized

vector will not be periodic in the DFT domain. The reason is the odd number of zero

crossing. To address this, the normalized vector in the DFT domain is oversampled by a
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factor of 2 before applying the sign inversion. The oversampled version exhibits 6 zeros,

shown in Fig. 5.5(b) after the alternate sign inversion. It can be observed that the real

and imaginary components evolve smoothly, except at the zero crossings where these

values are undefined. As all zero crossings in the selected example lie at odd numbered

DFT bins, x̂
(1)
norm[τ ] is obtained via an IFFT performed by considering only the even

numbered DFT bins. The resulting time-domain equivalent is down sampled by 2 which

resulted in time-domain aliasing of 3.5×10−30, providing an accurate estimation of the

corresponding eigenvalue through the Rayleigh quotient with ξλ = 10−11. △

Figure 5.5: Normalized vector in presence of odd number of zero crossings in cm(ejΩ),
here showing example of 3 with (a) without oversampling and sign inversion (b) with
oversampling by 2 and applying sign inversion to section of curve between alternate
zero crossings. (arrows indicate zero crossings associated with phase discontinuities)

Detecting zeros with phase discontinuities

Since cm(z) is unknown, instead we have access to x(1)(z), therefore, zero crossings can

only be detected on the unit circle via x(1)(ejΩ). In addition, examining the phases

of the normalized vector components, x
(1)
norm(z), can help identify whether a particular

zero is associated with a phase discontinuity. When the zero crossings of the eigenvector

components don’t align with those of cm(z) on the unit circle, any phase discontinuities

in all components of the normalized vector will indicate the locations of zeros in cm(ejΩ)
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linked with phase discontinuities. In the worst-case scenario, only M − 1 components

of an eigenvector can share a common zero on the unit circle with cm(z) due to the

constraint ||qm(ejΩ)||2 = 1. Therefore, the zero crossings of cm(ejΩ) can be identified

by detecting the zeros of ||x(1)(ejΩ)||2. Meanwhile, its phase discontinuities can be

determined by analyzing the phase of the individual components of x
(1)
norm(ejΩ), which

will be common across all M components. If a zero crossing does not align with any

the DFT bins, it can still be detected by observing phase discontinuities within the

normalized vector’s components. Any phase discrepancies would be uniform across all

M components at any frequency point, unless a specific component of the eigenvector

possesses a zero crossing at that frequency. An example is presented below to elaborate

on situations where zero crossings do not align with bins.

Example 11. Consider x(1)(z) = (1 + (0.98− 1.035j)z−1 − (0.052 + 0.999j)z−2)q1(z)

where cm(ejΩ) exhibits two zero crossings at Ω = π/2 − π/180 and 3π/2 − π/60, re-

spectively, with a π phase discontinuity around each. The zero crossings of cm(ejΩ) do

not coincide with any DFT bins or the zero crossing of any components of q1(e
jΩ) if

normalization is performed in the DFT bin at a DFT size of 256. However, it can be

detected by analysing the phase of the components of x
(1)
norm(ejΩk), k = 1, . . . , 256 as

illustrated in Fig. 5.6(a). Phase discontinuity of a π radians around Ω = π/2 and 3π/2

are common in all components of the normalized vector even though none of the bins

coincide with zero crossings of cm(ejΩ). However, the phase discontinuity around Ω = π

for x
(1)

m,norm(ejΩ )
for m = 1, 2 is not encountered by the third component which negate

the possibility of any zero crossings of cm(ejΩ) around Ω = π. Further evidence from

the magnitude profile of x(1)(ejΩ) i.e. ||x(1)(ejΩ)||2 (depicted in Fig. 5.6(b)) indicates

no dip around Ω = π. Consequently, cm(ejΩ) exhibits two zero crossings proximal to

Ω = π/2 and 3π/2 that correspond to phase discontinuity.

Hence, when an even number of zero crossings is observed, oversampling is not

conducted. Instead, a sign inversion is performed to the segment of x
(1)
norm(ejΩ) start-

ing from Ω = 0 until just before the first detected zero crossing frequency, and

from the section after the second zero crossing until Ω = 2π. In the context of the

DFT domain, sign inversion occurs for bins k = 1, . . . , 64 and 191, . . . , 256. The
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resulting estimated x̂
(1)
norm[τ ] = q̂1[τ ], obtained by performing a 256−point IFFT of

x
(1)
norm(ejΩk), k = 1, . . . , 256, exhibits a time-domain aliasing of ζq = 1.65 × 10−30.

This estimated vector is then utilized to compute the corresponding eigenvalue via

the Rayleigh quotient, resulting in a substantially reduced value of ξλ = 1.4 × 10−9.

This demonstration emphasizes that the zero crossings need not align with DFT bins

to be detected. Furthermore, it indicates that distinguishing zero crossings associated

with phase jumps from those without such jumps is relatively straightforward. Addi-

tionally, the accuracy provided by this example in normality and eigenvalue estimation

errors underscores that detecting the precise position of the zero crossings of cm(ejΩ)

may not be imperative.

Figure 5.6: Detection of zero crossings of cm(ejΩ) associated with phase discontinuities
via a combined observation from (a) phase discontinuities observed in the components

of x
(1)
norm(ejΩ), and (b) magnitude profile ||x(1)(ejΩ)||2 in case some or all zero crossing

do not coincide with the DFT bin.

△

5.2.7 Truncation

The coefficients of the eigenpair decay at least exponentially, assuming the eigenpair is

analytic, which permits it to be truncated via a small threshold [13, 27, 28, 30] to reduce
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its support for reducing the implementation cost in signal processing applications. The

threshold for truncating the coefficients of the estimated eigenvalues and eigenvectors

are denoted as µPH and µPU, respectively.

5.2.8 Reduced PEVD to Full PEVD

Given that solely p out of the M rank one matrices can be effectively estimated using

this approach, the remaining M−p matrices become zero matrices due to the condition

λm(z) = 0 ∀ z for m = p+1, . . . ,M . To recover the remaining M − p eigenvectors in a

manner that ensures orthogonality among themselves and with the already estimated

p eigenvectors i.e. q̂m(z)q̂j(z) ≈ δ[m− j], thereby enabling the construction of a com-

plete M ×M dimension paraunitary filter bank, the Gram-Schmidt orthogonalization

procedure [1] can be explored.

Polynomial Gram-Schmidt Orthogonalization

The eigenvectors corresponding the zero eigenvalues qm(z),m = p + 1, . . . ,M can be

determined from the already estimated p eigenvectors q̂m(z) m = 1, . . . , p, by a polyno-

mial vector ortho-normalization on the unit circle i.e. for z = ejΩ . This method is the

extension of the famous Gram-Schmidt orthogonalization [1] process to the polynomial

domain. Thus for randomly initialized x(z), the frequency dependent version of the

Gram-Schmidt process for determining qm(z) can be given as

w(ejΩ) = x(ejΩ)−
m−1∑
n=1

q̂Hn (e
jΩ)x(ejΩ)q̂n(e

jΩ) , (5.13)

which, if normalized at sufficient DFT size, results in

wnorm(e
jΩ) =

w(ejΩ)

||w(ejΩ)||2
= gm(ejΩ)qm(ejΩ) (5.14)

with some allpass function gm(ejΩ). The above relation is implemented in the DFT

domain such that the DFT size is iteratively increased until the resulting time-domain

aliasing, captured by a metric ζq defined akin to (4.43), satisfies a preset threshold.

For measuring the metric, the K−point IDFT of [wnorm(e
jΩ1), . . . ,wnorm(e

jΩK )] will
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Algorithm 2: Rank One Decomposition Based PEVD Algorithm

Input: R(z), ϵζq , ϵγR , µPH, µPU

Output: Q̂(z), Λ̂(z)
Determine R̂m(z),m = 1, . . . , p; ζq = 1;
for m = 1 : p do

initialize x(0)(z); x(1)(z)← R̂m(z)x(0)(z);
while ζq > ϵζq do

K ← 2K;

q̂m(z)←Normalization x(1)(z);

end

λ̂m(z) = q̂Pm(z)Rm(z)q̂m(z)
end
Estimate q̂m(z),m = p+ 1, . . . ,M via Gram-Schmidt orthogonalization;

Truncate Q̂(z) and Λ̂(z) with thresholds µPU and µPH;

produce the time-domain vector q̂m[τ ]. When the metric falls below a threshold of εq,

the value of K can be considered adequate. The support of the resultant estimated

eigenvector or the necessary DFT size relies on the initialization of x(z). Ideally,

x(z) should be chosen in a manner that transforms the allpass factor gm(z) into a

straightforward delay, which in reality may not be possible. Likewise, in the event of

encountering any spectral zero during the normalization process, the same approach

as elucidated above can be readily applied. The entire rank one decomposition based

PEVD algorithm is outlined in Algorithm 2.

5.3 Normalization Free PEVD Approach

With choices of initialization of x(0)(z) restricted to the M columns of R̂m(z), the rank

one terms estimation and the normalization step in (5.12) may not be necessary in

order to compute the PEVD of a para-Hermitian matrix. Therefore, this section delves

into an in-depth analysis of how such initialization circumvents the normalization step

and provides an overview of the general procedural framework of this method.
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5.3.1 Analysis for Normalization Free Approach

In order to estimate qm(z), let us assume x(0)(z) is initialized with the nth column

of R̂m(z) i.e. q̂m(z)λ̂m(z)q̂Pn,m(z) where q̂n,m(z) is the nth element of q̂m(z) ∈ CM .

A single iteration will produce x(1)(z) = q̂(z)λ̂2(z)q̂Pm,n(z) for which the normalized

vector, with the normalization step carried out in the DFT-domain with DFT size of

K, will be

x(1)
norm(e

jΩk) =
q̂(ejΩk)λ̂2(ejΩk)q̂∗n,m(ejΩk)√

x(1),H(ejΩk)x(1)(ejΩk)
=

q̂(ejΩk)q̂∗n,m(ejΩk)

|q̂n,m(ejΩk)|
, k = 1, . . . ,K. (5.15)

Now the aforementioned results can be arrived at directly from the bin-wise EVD results

without either performing any rank one decomposition or single iteration. Substituting

q̂m(ejΩk) = ejϕm,kqm,k and q̂n,m(z) = ejϕm,kqn,m,k from (5.4) into (5.15) produces

x(1)
norm(e

jΩk) =
qm,kq

∗
n,m,k

|qn,m,k|
= qm,ke

j∠q∗n,m,k , k = 1, . . . ,K. (5.16)

Here qn,m,k refers to the nth element of the mth eigenvector at the kth bin i.e. qm,k.

It can be seen that for this particular initialization, the end results are such that

they are easily obtainable from the bin-wise EVD results. Hence, if the bin-wise

eigenvectors are accessible, it becomes possible to directly acquire the single itera-

tion normalized vector, as indicated by (5.16). Consequently, both the estimation

of rank one terms and the vector-product multiplication can be circumvented, in ad-

dition to the normalization step. In the estimation of the mth eigenvector, any of

the M components of qm,k can be employed in (5.16). Unlike in proper single it-

eration approach, up-sampling has to be carried out in the DFT domain since the

time-domain sequence of the unnormalized version of x
(1)
norm(ejΩk) i.e. x(1)[τ ] is not

known beforehand. To up-sample by a factor of 2, we concatenate two sets of K-bins

as [x
(1)
norm(ejΩ1), . . . ,x

(1)
norm(ejΩK ),x

(1)
norm(ejΩ1), . . . ,x

(1)
norm(ejΩK )].

The single polynomial iteration based approach reduces to the normalization-free

approach if cm(z) is set equal to qPn,m(z). Therefore, it becomes imperative to identify

the zero crossings of qPn,m(z) on the unit circle, specifically those that are associated

with phase discontinuities or have odd multiplicities. In this regard, similar procedure
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to that described in Section 5.2.6 is applicable here. In case of an even number of

zeros with odd multiplicities or phase discontinuities, only a sign inversion is applied to

the alternate section between zero crossings bins. However, in case of an odd number

of zero crossings associated with phase discontinuities, up-sampling is required along

with sign inversion. Subsequently, the required down sampling is performed in the

time-domain vector obtained via an IFFT of the upsampled DFT domain vector.

5.3.2 Eigenvector Support and Initialization Choices

This approach restricts the initialization options for an eigenvector extraction to M ,

corresponding to the number of components in each eigenvector. As a result, the

mth eigenvector can be derived via (5.16) for any value of n within the range 1, . . . ,M ,

albeit with varying support depending on the chosen n. To achieve the smallest feasible

support using the available n choices, it is possible to compute x
(1)
norm(ejΩk) at different

values of n, commencing with the smallest DFT size, and subsequently selecting the n

that yields the lowest ζq value.

Example 12. Consider the example R(z) ∈ C3×3 from Section 4.3.5 where the

first eigenvector is extracted through this normalization-free approach. This exam-

ple attempts to estimate the dominant eigenvector via (5.16) using various values of

n = 1, 2, 3. For each value of n, the time-domain sequence of the eigenvector is es-

timated at different DFT sizes. Subsequently, truncation is applied to the outer lags

using a threshold value µPU = 10−8. The resulting time-domain support for n = 1, 2,

and 3 is found to be 28, 5, and 54, respectively. Moreover, the time-domain aliasing

metric ζq for all these truncated eigenvector estimates remains below 10−18, indicating

a high level of accuracy in the estimates. This example effectively demonstrates that

different values of n result in different support sizes for the estimated eigenvector. △

5.4 PSVD by Rank One Decomposition

Like for the PEVD of a para-Hermitian R(z), achieving the PSVD of an analytic and

non-multiplexed general matrix A(z) ∈ CM×L necessitates a rank one decomposition
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along with the execution of a single iteration. To obtain the left- and right-singular

vectors, a single polynomial power iteration has to be applied to every rank one compo-

nent of the para-Hermitian matrix A(z)AP(z) or AP(z)A(z) similar to the generalized

polynomial power method discussed in Section 4.6. To circumvent the necessity of a

rank one decomposition for both para-Hermitian matrices, an alternative approach is

adopted where the rank one decomposition of A(z) is directly ascertained. Due to

the analytic PSVD existence for an analytic, non-multiplexed A(z) as detailed in Sec-

tion 2.3, the rank one decomposition is similarly possible to a para-Hermitian matrix.

Therefore, for A(z) with p ≤ L non-zero singular values, the following holds true

A(z) =

p∑
n=1

An(z) with An(z) = un(z)σn(z)v
P
n(z), (5.17)

where An(z) is a rank one matrix.

5.4.1 Rank One Decomposition of A(z)

The sample points of the rank one An(z) can be obtained via the bin-wise SVD as

done in (5.1). With the assumption of spectral majorisation, the bin-wise SVD of the

sample points of A(z) on the unit-circle A(ejΩk) = Ak,

Ak = UkΣkV
H
k , (5.18)

can be related to the sample points of analytic functions in (2.6)

Σ(ejΩk) = Σk, (5.19)

U(ejΩk) = UkΦk, V (ejΩk) = VkΦk. (5.20)

Here it can be seen that left- and right singular vectors are phase coupled to common

arbitrary allpass functions.

Following a similar methodology as described in Section 5.2.2, the sample points of
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An(z) can be obtained from the bin-wise SVD i.e. from (5.18) to (5.20) as

An(e
jΩk) = un(e

jΩk)vH
n (e

jΩk)σn(e
jΩk) = ejϕn,kun,ke

−jϕ1,kvH
n,kσn,k (5.21)

= un,kv
H
n,kσn,k = An,k, n = 1, . . . , p. (5.22)

Therefore, the sample points of each ground-truth rank one matrix on the unit circle

can actually be obtained from the bin-wise SVD. Hence, the rank one estimates can

be obtain from these samples via a K−point IDFT with K large enough so that the

time-aliasing metric γA, defined akin to (5.8), falls below a small threshold. The choice

of the windowing function pK [τ ] depends on number of positive and negative lags in

A[τ ]. In general, channel matrix does not exhibit negative lags, so pK [τ ] will be a

positive time domain window. The resulting rank one decomposition is

A(z) ≈
p∑

n=1

Ân(z) with Ân(z) = ûn(z)σ̃n(z)v̂
P
n(z). (5.23)

5.4.2 Single Polynomial Power Iteration Application

With rank one estimates, a single iteration of the polynomial power method can be

applied separately to Ân(z)Â
P
n(z) and Â

P
n(z)Ân(z), which are para-Hermitian matri-

ces, to obtain the left- and right-singular vectors, respectively. These independently

extracted left- and right singular vectors will not be coupled to a common allpass func-

tion. Consequently, the singular value extracted via these uncoupled singular vectors

will be complex valued on the unit circle.

An alternative approach for extracting singular vectors with a shared allpass factor

involves obtaining the right singular vector via a single iteration applied to Â
P
n(z)Ân(z).

Upon obtaining the right-singular vector, the singular value along with its correspond-

ing left-singular vector can be extracted as outlined in Section 4.6, or more specifically,

by utilizing equations (4.40) and (4.41), respectively. Notably, the determination of a

suitable DFT size follows a similar methodology as proposed in Section 4.6.
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5.4.3 Reduced to Full PSVD

The concept of extending the reduced PSVD to a full PSVD, wherein U(z) and V (z)

possess dimensions of M ×M and L × L respectively, rather than M × p and p × L,

can be achieved by utilizing the Gram-Schmidt orthogonalization technique described

in Section 5.2.8.

5.5 Normalization Free PSVD Approach

To derive an equivalent normalization variant of the aforementioned PSVD algorithm,

one can apply the normalization-free PEVD to the matrix AP(z)A(z), which, by def-

inition, is a para-Hermitian matrix. This approach yields its eigenvectors, which also

represent the right-singular vectors. Subsequently, the remaining components, specif-

ically the singular values and the right singular vector, can be determined following

the procedures outlined in Chapter 4 within the section dedicated to the generalized

polynomial power method.

However, it is important to note that there is no actual requirement to formulate

AP(z)A(z) explicitly to compute the PSVD. Instead, same approach as that used for

PEVD can be applied directly to A(z) instead of AP(z)A(z), with the only modifi-

cation being the substitution of bin-wise EVD with SVD. Following this, x
(1)
norm(ejΩk),

particularly in the case of estimating the right singular vector, can be obtained as

x(1)
norm(e

jΩk) = vm,ke
j∠v∗n,m,k for k = 1, . . . ,K. (5.24)

The subsequent steps align with those detailed for the normalization-free PEVD ap-

proach in Section 5.3. Upon acquiring the right-singular vector, one can retrieve the

associated singular value and left singular vector using the methodology established in

the generalized polynomial power method expounded in Section 4.6. Specifically, this

can be achieved by employing equations (4.40) and (4.41), respectively.
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5.6 PQRD by Rank One Decomposition

Although the existence of an analytic polynomial QR decomposition (PQRD) has not

been formally proven, this thesis operates under the assumption that the decomposition,

as given in (2.7), exists, thereby enabling the decomposition process as follows:

A(z) =

p∑
n=0

An(z) where An(z) = q
n
(z)rn(z) . (5.25)

Here, q
n
(z) represents the nth column of the paraunitary matrix Q(z), and rn(z)

denotes the nth row of the upper-right triangular matrixR(z). For subsequent sections,

it is assumed that q
n
(z) and rn(z) has the shortest time-domain support. This means

that q′
n
(z) = ϕn(z)qn(z) and q′

n
(z) = ϕP

n(z)rn(z), which are also valid factors in the

context of analytic QR decomposition, will have compact order if ϕn(z) takes on a

simple delay. Similar to previous rank one decomposition, An(z), n = 1, . . . , p denotes

rank one sum of A(z). The number of non-zero rows in R(z) is equal to the number

of non-zero singular values i.e. p. It is important to emphasize that the rank one SVD

component An(z) is distinct from An(z) due to potential variations in their non-zero

singular values.

5.6.1 QR-based Rank One Decomposition

To estimate rank one terms in (5.25), first the bin-wise QRD is performed for bin-wise

rank one decompositions as

Ak = Q
k
Rk; A(ejΩk) = Ak =

p∑
n=1

An,k where An,k = q
n,k

rn,k, n = 1, . . . , p , (5.26)

where rn,k is the nth row of Rk and q
n,k

is the nth column of Q
k
. The above bin-wise

QRD can be related to the sample points of analytic functions in (2.7) as

Q(ejΩk) = Q
k
Φk; R(ejΩk) = ΦH

k Rk (5.27)
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where the diagonal phase matrix actually manifests the phase ambiguity of QR de-

composition similar to EVD and SVD. Via (5.26), the sample points of An(z) on the

unit-circle can be obtained via An,k because

An(e
jΩk) = q

n
(ejΩk)rn(e

jΩk) = ejϕn,kq
n,k

e−jϕn,krn,k = q
n,k

rn,k = An,k (5.28)

It can be seen that the sample points of the ground truth rank one terms An(z) on the

unit circle are same as the terms An,k which are available via bin-wise QRDs. Thus,

through a K−point IDFT of An,k, QR-based rank one terms can be estimated. The

sufficient DFT size can be determined by assessing the time-domain aliasing metric γA,

defined akin to (5.8), ensuring its value is acceptably low.

5.6.2 Normalizing Columns of Ân(z) for PQRD

The QR-based rank one terms estimate, denoted by Ân(z), has columns as

Ân(z) = [q̂
n
(z)r̂n,1(z), . . . , q̂n(z)r̂n,N (z)] ,

where r̂n,i is the ith element of the nth row of R̂(z), which shows that each column

of rank one estimate is a scaled version of q
n
(z), the nth column of Q(z). Therefore,

any of the {n, n+1, . . . , L} columns of Ân(z) can be normalized to obtain the estimate

of the unit norm vector q
n
(z). For instance, if an ith column, denoted with a(z) =

q̂
n
(z)r̂n,i(z), is normalized, where i < L, the resulting normalization on the unit-circle

yields

anorm(e
jΩ) =

q̂
n
(ejΩ)r̂n,i(e

jΩ)

||q̂
n
(ejΩ)r̂n,i(e

jΩ)||2
=

q̂
n
(ejΩ)r̂n,i(e

jΩ)

|r̂n,i(ejΩ)|
= q̂

n
(ejΩ)φ(ejΩ) , (5.29)

where φ(ejΩ) = r̂n,i(e
jΩ)/|r̂n,i(ejΩ)|, which is the desired result. In case, the allpass

factor φ(z) is a simple delay, q̂
n
(z) would have lowest order. Following the procedure

discussed in the previous section, the normalization is performed in the DFT domain

where the DFT size is iteratively increased until the time-domain aliasing in normalized

anorm[τ ], obtained via an IFFT, diminishes to a value below a designated threshold.
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The time-domain aliasing metric is defined akin to (4.43), Due to the assumption that

M ≥ L, rank p of A(z) can be p ≤ L. Therefore, the proposed approach can only

extract p or L of the M columns of the paraunitary Q(z), depending upon the rank of

A(z). The remaining M − p or M − L normal vectors can be determined through the

Gram-Schmidt orthogonalization as detailed in Section 5.2.8. Once all M columns of

Q̂(z) have been obtained, R̂(z) can be easily obtained from Q̂
P
(z)A(z).

Furthermore, it is worth noting that there exists no assurance that rn,i(z) or

r̂n,i(z) would be devoid of zeros on the unit circle, potentially rendering normalization

unattainable. Therefore, in such cases, the approach described in Section 5.2.6 can be

applied. A noteworthy consideration is that the support of the extracted column from

Q(z) may vary contingent on the specific column of Ân(z) being utilized. Given the

unpredictability of which column will yield the lowest order post-normalization, one

could experiment with multiple columns and select the one with the smallest support.

This strategy accommodates the uncertainty surrounding the optimal choice of column

for achieving the lowest order after normalization.

5.7 Normalization Free PQRD Approach

Upon a comprehensive examination of the normalization procedure outlined in (5.29),

it becomes apparent that resorting to QR-based rank one decomposition may not be

obligatory. Instead, a bin-wise QR decomposition might suffice to attain the result

presented in (5.29).

Leveraging the relationship expressed in (5.27), the normalized vector at ejΩk , as

defined in (5.29), can be obtained through bin-wise QR decomposition. This involves

the respective components q
n,k

and rn,i,k, leading to the following expression:

anorm(e
jΩk) =

q̂
n
(ejΩk)r̂n,i(e

jΩk)

|r̂n,i(ejΩk)|
=

ejϕn,kq
n,k

e−jϕn,krn,i,k

|rn,i,k|

=
q
n,k

rn,i,k

|rn,i,k|
= q

n,k
ej∠rn,i,k , (5.30)

This observation highlights that even without performing a rank one decomposition,
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the normalized vector anorm(e
jΩk) can be directly obtained from a bin-wise QR decom-

position. In this context, the phase of rn,i,k is a crucial element, which can be readily

accessed via a bin-wise QR decomposition. Then, following the standard practice, the

time-domain sequence can be obtained by applying the IDFT to the normalized vector

using a DFT size that is sufficiently large to minimize time-domain aliasing. The com-

ponents of anorm(e
jΩk) may have discontinuities between the adjacent bins due to phase

jumps encountered due to zero crossings in rn,i(e
jΩ) for which a similar procedure, de-

scribed in Section 5.2.6, can be adopted. Likewise PEVD and PSVD, after extracting

a set of p ≤ L columns, the remaining M − p columns of Q(z) can be obtained via the

Gram-Schmidt procedure. This resultant set of all M vectors i.e. q̂
m
(z), m = 1, . . . ,M

can then be employed for estimating the matrix R(z).

5.8 Simulation and Results

This thesis only evaluates the normalization-free variant for the PEVD, PSVD and

PQRD against the state-of-the-art algorithms. The underlying reason for not evaluat-

ing the rank one decomposition approach for the mentioned decompositions is that it

is computationally more intensive than the normalization-free variant. This computa-

tional overhead arises from the extensive number of FFT and IFFTs: M2 in case of

PEVD and LM times in case of PSVD and PQRD. These FFTs/IFFTs are repeated

at different DFT sizes in the estimation of each rank one term. Additionally, after

estimating the rank one terms, obtaining eigenvectors or singular vectors involves poly-

nomial matrix vector multiplication. Subsequent normalization adds an extra pair of

FFT/IFFT operations. In contrast, the normalization-free approach directly estimates

the necessary components from the bin-wise EVDs, SVDs, and QRDs, eliminating the

need for additional FFTs and IFFTs.

5.8.1 Performance Metrics

To evaluate and compare the performance of the proposed method against state-of-the-

art algorithms, this thesis employs two reconstruction error metrics:
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� ξR, defined in (4.35), for the PEVD;

� ξA, defined akin to (4.35) however in terms of A(z), for PSVD where the recon-

structed polynomial matrix is defined as Â(z) = Û(z)Σ̂(z)V̂ (z);

� triangularization ratio η for comparing PQRD algorithms is defined as

η = 1−
∑

τ ||
¯̂
R[τ ]||2F∑

τ ||A[τ ]||2F
, (5.31)

where
¯̂
R[τ ] is same as the estimated upper triangular matrix R̂[τ ] but with the

sub-matrix below the main diagonal forced set to zero.

To gauge the computational complexity of the proposed algorithms, this thesis consid-

ers execution time as a suitable metric, measured using the ”tic-toc” function in the

MATLAB environment. The implementation cost of any algorithm is reflected through

the order or support of the resulting decomposition matrices, such as eigenvectors in

the case of the PEVD, left- and right singular vectors in the case of the PSVD, and the

paraunitary Q̂(z) matrix for the PQRD.

5.8.2 PEVD

For the tests, an ensemble of 103 spectrally majorised randomized para-Hermitian ma-

trices R(z) ∈ C3×3 is constructed using the source model from [22] with O{Q(z)} ∈

{20, 40, . . . , 100} and O{Λ(z)} ∈ {40, 80, . . . , 200}. Both the SBR2 and SMD algo-

rithms are allowed a maximum of 500 iterations with µPH = µPU = 10−6 and the

maximum off-diagonal energy threshold set to 10−6.

The normalization-free approach is executed over the entire ensemble with ϵζq =

10−5, µPH = µPU = 10−4 and Kmax = 2⌈log2[O(R(z))]⌉+3. Fig. 5.7 illustrates the ensem-

ble results, showing that the proposed normalization-free approach achieves an order of

magnitude lower reconstruction error compared to SBR2 and SMD. It is also worth not-

ing that the resulting order of Q̂(z) for the proposed method is on average slightly lower

than that of SBR2 and SMD’s output. Moreover, the proposed method is considerably

faster than SBR2 and SMD as evident from the execution time curve in Fig. 5.7(c).
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Figure 5.7: PEVD algorithm comparison on an ensemble showing (a) ξR̂, (b) O{Q̂(z)},
and (c) execution time.

This suggests that with the proposed method can perform a quick and accurate decom-

position of a para-Hermitian matrix with comparable or lower order approximation for

Q̂(z) compared to the SBR2 and SMD algorithms.

5.8.3 PSVD

Although the PSVD can be accomplished through two PEVDs as outlined in [26] or via

a PQRD [12], in this comparison, this thesis evaluates the normalization-free variant of

the proposed method against the dedicated PSVD algorithm GSBR2 [11]. The ensemble

employed for the comparison purpose consists of 500 instantiations of A(z) ∈ C4×3

where the orders of U(z) and V (z) are jointly varied from 10 to 50 in steps of 10, and

the order of Σ(z) from 20 to 100 in steps of 20.

The GSBR2 algorithm is executed with the following parameters: µPU = 10−4,

µPH = 10−6, utilizing the truncation method described in references [13] and [22],

with a maximum off-diagonal threshold ϵ set to 10−5. This algorithm is constrained
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to execute a maximum of 100 iterations if the maximum off-diagonal threshold is not

met. The normalization-free variant is executed with µPU = µPH = 10−6, ϵζu = 10−6

and Kmax = 2⌈log2[O(R(z))]⌉+5. The ensemble results are presented in Fig. 5.8, with

Figure 5.8: Comparison of the normalization-free PSVD algorithm against the
GSBR2 [11] through: (a) O{V̂ (z)}, (b) O{Û(z)}, (c) ξA, and (d) time (s) versus
order of ground-truth U(z).

the first two figures, (a) and (b), showing the resulting order of both paraunitary

matrices compared to the order of the ground-truth U(z). Based on the provided

results, it is evident that the proposed method outperforms GSBR2 slightly in terms

of overall performance. However, when it comes to the accuracy of the decomposition,
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the proposed method demonstrates an order of magnitude improvement over GSBR2.

This superiority is also reflected in the execution time, where the normalization-free

approach delivers a lower-order and highly accurate decomposition in significantly less

time.

5.8.4 PQRD

In this experiment, both the PQRD-BC and SM-PQRD approaches are compared

against the normalization-free PQRD approach outlined in this chapter. The compar-

ison is carried out over an ensemble of 103 instantiations of A(z) ∈ C4×4 constructed

from a known ground-truth paraunitary Q(z) and upper triangular R(z), whose coef-

ficients are drawn from a normal distribution. Ensemble experiments are carried out

at various orders of Q(z) and R(z).

Both iterative algorithms are permitted 200 iterations unless the maximum element

below the main diagonal falls below 10−8. The intermediate paraunitary and triangular

matrix are truncated via µPU = µR = 10−6. The proposed normalization-free approach

is simulated with parameters Kmax = 2⌈log2[O(A(z))]⌉+3 and ϵζq = 10−6. At each DFT

size, n is varied from {1, . . . ,M} and the best n is decided which satisfies ϵζq . The

proposed algorithm initially estimates Q(z), and then use it to estimate R(z).

Ensemble results are depicted in Fig. 5.9. A smaller value of parameter η cor-

responds to a more effective triangularization. The proposed method achieves sig-

nificantly improved triangularization accuracy compared to the time-domain iterative

algorithms as visible in Fig. 5.9 (a). The resulting order of the paraunitary matrix

Q(z) is notably lower for the proposed method in comparison to PQRD-BC and SM-

PQRD. The complexity of the proposed algorithm, as reflected in its execution time,

is orders of magnitude lower than that of PQRD-BC and SM-PQRD. These findings

demonstrate that the proposed method outperforms previously suggested algorithms

across all metrics, particularly in terms of accuracy and execution time.

This demonstrates that the proposed method allows for accurate frequency-selective

channel equalization, resulting in a lower bit-error-rate (BER) compared to both SM-

PQRD [19] and PQRD-BC methods [12, 43]. This conclusion is contingent upon achiev-
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Figure 5.9: Normalization-free PQRD algorithm comparison with SM-PQRD [19] and
PQRD-BC [12] through (a) η, (b) O{Q̂(z)}, and (c) time (s).

ing an accurate PQRD decomposition with the proposed method, as it directly influ-

ences the equalization calculations. However, it should be noted that if the channel

estimate is inaccurate, the impact of an accurate PQRD decomposition may vary, and

definitive conclusions cannot be drawn.

5.9 Summary

This chapter has introduced a unified algorithm for computing the PEVD of a para-

Hermitian matrix, as well as the PSVD and PQRD of a general polynomial matrix.

The approach involves decomposing these matrices into a sum of rank one polynomial

matrices. This idea is an extension of the polynomial power method presented in

Chapter 4, where a polynomial matrix is decomposed into rank-one matrices, and a

single iteration of the polynomial power method is applied for estimation.
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The rank-based decomposition PEVD algorithm first splits the given para-

Hermitian matrix into rank-one para-Hermitian terms and then applies the polynomial

power method to determine the respective eigenpair. However, normalizing the prod-

uct vector after a single iteration can encounter singularities. This issue is addressed

through modulation and sign changes. Furthermore, this method can be computation-

ally improved by restricting the initialization choices of the initial vector x(0)(z) to

the M columns of the rank-one terms. This improvement arises from the fact that

these initialization choices lead to the same conclusions as those obtained directly from

a bin-wise EVD without estimating rank-one matrices or applying a single iteration.

Although no normalization is required in this restricted initialization approach, which

we refer to in this thesis as normalization-free PEVD, the modulation and sign change

trick is still necessary in the case of singularities. Simulation experiments demonstrate

a significant improvement in both decomposition accuracy and execution time.

A similar approach is presented for the PSVD and the PQRD of a polynomial ma-

trix, with slightly different rank-one terms for PSVD and PQRD. In the case of the

PSVD, rank-one samples on the unit circle are obtained via a bin-wise SVD, whereas

for the PQRD, they are obtained through a bin-wise QR decomposition. The PSVD

method similarly applies a single iteration to a rank-one para-Hermitian matrix ob-

tained from the rank-one term of the given polynomial matrix to obtain one of the

singular vectors. The corresponding singular value and the other singular vector are

obtained through a method outlined in Chapter 4 for the generalized polynomial power

method. This approach also has a normalization-free variant, which follows the same

principles as the PEVD approach.

While the PQRD cannot use a single iteration, any of the M columns can be

normalized to obtain the columns of the paraunitary matrix Q(z). Then, an upper-

right triangular matrix can be easily obtained with the help of A(z) and Q(z). To avoid

QR-based rank decomposition, the normalization-free approach directly estimates the

columns of the paraunitary matrix Q(z) from bin-wise QR results. The proposed

normalization-free approach shows significant improvements compared to state-of-the-

art algorithms.
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To complete the paraunitary matrix, the Gram-Schmidt orthogonalization is ex-

tended to the polynomial domain, which can convert a reduced PSVD to full a PSVD.

Thus, with the availability of any number of columns of a paraunitary matrix, the

remaining columns can be easily estimated via this extension.

The use of any of the two approaches explained in this chapter can depend on the

nature of the application and requirements. Because the original rank decomposition

method is computationally expensive compared to its normalization-free variant, it

is recommended to use a normalization-free variant. The only disadvantage of the

normalization-free approach with respect to the original rank decomposition method

is that it produces a solution with the same initialization choice, in which there is

no possibility of a low-order polynomial vector, which can be expected with some

initializations in the original rank decomposition method.

While these methods represent significant advancements over state-of-the-art algo-

rithms, the decomposition order remains notably high, prompting the need for further

investigation. This concern arises from the practical applications of paraunitary filter

banks, which are often implemented on hardware platforms. The complexity of these

filter banks is directly tied to the order of a decomposition. Additionally, the latency

also generally increases with the filter length. Therefore, the focus of the next chapter

will be to address the challenge of reducing the decomposition order while maintaining

or improving execution time and accuracy.
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Chapter 6

Unified Algorithm II: PEVD,

PSVD and PQRD via Spectral

Factorization of Laurent

Polynomials

6.1 Introduction

The polynomial factorization methods presented in previous chapters result in high-

order decompositions, which can be deemed computationally expensive for real-world

applications. The reason for large polynomial order can be tied to the allpass ambiguity.

Reducing this allpass factor to a simple delay can lead to a compact order decompo-

sition. Notably, none of the methods proposed in previous chapters or the current

time-domain iterative approaches that compute the PEVD, PSVD and PQRD address

this issue. Unlike time-domain methods, the DFT based methods address this issue in

order to obtain compact order decompositions [33–35, 47, 56]. However, it is important

to note that these methods are more suitable for low order temporal and spatial dimen-

sion para-Hermitian or general polynomial matrices [33–35, 59]. The primary reason for

such limitations lies in the complexity of the phase smoothing process, which is funda-

mental to achieving compact-order decomposition. As explained previously, the phase
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smoothing procedure establishes phase coherence between the eigenvectors obtained

independently in each DFT bin through EVD, leading to a compact-order time-domain

eigenvector. This phase smoothing procedure involves numerical optimization and uti-

lizes the Newton method in [35, 47] and Powell’s dogleg algorithm [55] in [33], both of

which rely on the Hessian matrix inversion in each iteration. Furthermore, this proce-

dure needs to be repeated for each eigen- or singular vector, rendering it rather costly

for real-world applications.

Moreover, the SBR2 and SMD algorithms can no longer compete in the pursuit

of providing compact-order decompositions. This holds also true for the SBR2 and

SMD based PSVD and PQRD algorithms. As a result, this chapter introduces an

entirely new approach to address this problem. A subtle hint in this direction was

previously provided in the context of support estimation for analytic eigenvectors [86].

In that endeavour, the auto-correlation function — which is blind to any arbitrary

phase terms — of a component of any analytic eigenvector was computed to estimate

its support. However, the current idea is to make use of the auto- and possibly cross-

correlation functions of the components of eigenvectors, which can be easily estimated

with extreme accuracy, to spectrally factorize it in order to estimate the eigenvector’s

components.

The spectral factorization of an eigenvector component’s auto-correlation function

exists by definition, allowing for the application of spectral factorization methods [92].

However, many of these methods assume the para-Hermitian polynomial to be positive

definite on the unit circle, which might not hold true for the auto-correlation func-

tion. While the true auto-correlation function remains non-negative, it may contain

zeros on the unit circle. In the estimated function, truncation during the estimation

process might even cause negativity on the unit circle. Consequently, not all spectral

factorization methods are suitable for polynomial matrix decomposition.

The structure of this chapter is as follows: Section 6.2 provides an overview of the

spectral factorization of para-Hermitian polynomials and reviews two spectral factor-

ization methods that are applied in the context of polynomial matrix factorization.

Section 6.3 introduces a time-domain aliasing metric in order to avoid unnecessary rep-
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etition of all steps in the cepstral method at each DFT size until a sufficient DFT size

is reached. Sections 6.4 through 6.6 apply this concept to PEVD, PSVD, and PQRD,

respectively, and results are presented in Section 6.7. Section 6.8 provides a summary

of the chapter.

6.2 Spectral Factorization of Para-Hermitian Laurent

Polynomials

Let us assume that rss(z) is a Laurent polynomial having para-Hermitian symmetry

i.e. rss(z) = r∗ss(z
−1) = rPss(z) and is positive semi-definite on the unit circle i.e.

rss(e
jΩ) ≥ 0. This Laurent polynomial admits a spectral factorization

rss(z) = s(z)sP(z) , (6.1)

where s(z) is an analytic function. In order to spectrally factorize rss(z), most of

the spectral factorization methods, namely the Cepstral method [77, 93], Bauer’s

method [92, 93], MinPh method [93], Wilson’s method [94], impose the condition on

the Laurent polynomial to be positive definite on the unit circle i.e. rss(e
jΩ) > 0 ∀ Ω.

While s(z) is an unknown, its spectral density function or its autocorrelation func-

tion i.e. rss(z) = s(z)sP(z) is known. From the available rss(z), the objective is to

spectrally factorize it such that the estimated spectral factor ŝ(z) has a polynomial

order equal to half of the polynomial order of rss(z). To facilitate this type of fac-

torization, this thesis reviews two of the well-established methods which are further

extended to compute the PEVD, PSVD and PQRD of a polynomial matrix. Readers

seeking more detailed information are encouraged to consult [77, 92, 93, 95, 96].

6.2.1 Roots Method

This method estimates the roots of a given para-Hermitian Laurent polynomial, which

subsequently facilitates the construction of spectral factors [93]. This estimation lever-

ages the insight that complex roots off the unit circle occur in quadruples – two inside

and two outside the unit circle. Conversely, real roots located off the unit circle ex-
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hibit even multiplicity, comprising one root inside and one outside the circle. A similar

pattern holds for roots situated on the unit circle. To compute these roots, one can

estimate the eigenvalues of a companion matrix, which is constructed from the coeffi-

cients of rss(z) and corresponds to the Laurent polynomial [1]. The eigenvalues of the

companion matrix can be determined using the QR decomposition [1, 93]. It should be

noted that this method does not presuppose the strict positivity of rss(e
jΩ).

As an illustration, consider the Laurent polynomial rss(z) = 4z2+15z+26+15z−1+

4z−2. To construct the companion matrix, the polynomial is first divided by 4 to make

the last coefficient unity i.e. a monic polynomial, resulting in:

C =


0 1 0 0

0 0 1 0

0 0 0 1

−1 −15/4 −26/4 −15/4

 . (6.2)

The eigenvalues of this companion matrix, which are {−1.5± 1.323j,−0.375± 0.3307j}

correspond to the roots of the given polynomial. Two of the roots are situated inside

the unit circle, forming a conjugate pair, while the other two are outside the unit circle.

Consequently, the spectral factor s(z) can be constructed from various combinations

of these roots, including using the roots inside the unit circle, those outside the unit

circle, or a combination of one inside and one outside. For instance, the minimum-phase

spectral factor can be determined as follows

s(z) = 4(z + 0.375− 0.3307j)(z + 0.375 + 0.3307j) = 4z2 + 3z + 1 . (6.3)

There is also a built-in function in MATLAB® called roots which utilizes the

QR decomposition to compute polynomial roots. There are various other methods of

finding roots of high order polynomials [97–99]. This method of spectral factorization

can easily be used even in case of polynomials with roots on the unit circle unlike other

methods.
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6.2.2 Cepstral Method

This method is characterized by its simplicity, ease of implementation, and cost

effectiveness. Initially, it was introduced to ascertain the presence and timing of echoes

in the context of seismological data analysis [100]. Subsequently, this concept has found

application in various fields, including speech processing and the broader domain of sig-

nal processing [77, 101]. It leverages the fact that for positive definite rss(z)|z=ejΩ , the

logarithm of rss(z) should exhibit properties of being an absolutely convergent, conju-

gate symmetric Laurent series

p(z) = log(rss(z)) =
∑
n∈Z

pnz
n . (6.4)

The coefficients of p(z) decay at least as rapidly as an exponential function due to its

analyticity, making it feasible to approximate it with a finite-order series in practical

terms. One can split p(z) into left and right series as follows:

p(z) = p−(z) + p+(z) , (6.5)

where p+(z) = pP−(z) = p0/2 +
∑

n=1,2,... pnz
−n. The spectral factor s(z) is related to

p+(z) through an exponential function

s(z) = exp(p+(z)) . (6.6)

This method is implemented in the DFT domain and therefore heavily relies on the

FFT algorithm as evident from Algorithm 3, outlining the entire cepstral algorithm.

It can be seen that the entire procedure is repeated at increasing DFT size unless the

reconstruction error threshold ϵζr is satisfied. There is no proper method to determine

a sufficient DFT size. The review paper [93] also does not mention any direct method

to determine a sufficient DFT size. However, in line with [102] and [103], which appear

to have merely reproduced this work without introducing any innovations, the authors

do not explicitly state the criteria for determining sufficiency. Instead, they propose

setting the DFT size to be 10 to 50 times the order of rss(z). Furthermore, [101] hints
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Algorithm 3: Spectral Factorization via Cepstral Method [96, 100, 102–104]

Input: rss(z)
Output: ŝ(z)

1. evaluate rss(z) at z = ejΩk , k = 1, . . . ,K

2. compute p(ejΩk) = log(rss(e
jΩk)), k = 1, . . . ,K

3. obtain p̂[τ ] via K−point IFFT of p(ejΩk), k = 1, . . . ,K

4. obtain p+[τ ] =

{
p̂[τ ]/2, τ = 0

p̂[τ ] τ > 0

5. perform K−point FFT of p+[τ ] to obtain p+(e
jΩk), k = 1, . . . ,K

6. perform K−point IFFT of ep+(ejΩk ), k = 1, . . . ,K to obtain ŝ[τ ]

7. if
∑

τ |rss[τ ]− ŝ[τ ] ∗ ŝ∗[−τ ]| < ϵζr terminate, otherwise repeat at K = 2K

at the concept of time-domain aliasing but primarily in the context of comparing DFT

with DTFT, without providing a specific metric or method to determine a sufficient

DFT size for spectral factorization.

Furthermore, it is essential to highlight that the issue of a zero on the unit circle has

not been adequately addressed in the existing literature. The proposed solutions often

involve approximations or adding small biases, which can introduce errors and, hence,

may not be suitable for polynomial matrix decomposition. Additionally, a zero in close

proximity of the unit circle can introduce a dip in the power spectral density curve,

necessitating a significantly larger DFT size for an accurate spectral factorization.

Therefore, the next section introduces a time-domain aliasing metric to ascertain

if a DFT size for this method is sufficient or not to avoid unnecessary repetition of all

steps within Algorithm 3 at each DFT size. However, it must be noted that the issue

of zeros on the unit circle is not addressed. Instead, the roots method is used as an

alternative.
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6.3 Modified Cepstral Method

The cepstral method must undergo modifications to make it more cost-effective for

polynomial matrix factorization. Hence, in Algorithm 3, before proceeding from step

3 to 4, it becomes necessary to measure the time-domain aliasing. This is because if

the chosen value of K is insufficient to approximate p̂[τ ] with minimal time-domain

aliasing, further steps in the algorithm would be futile. Consequently, this additional

check enhances the computational efficiency.

To assess the time-domain aliasing in the estimation of p̂[τ ], a time-domain aliasing

metric ζp can be defined in a manner similar to (4.42). To calculate this metric, step

3 should be adjusted to obtain p̂(K)[τ ] and p̂(K/2)[τ ] using K and K/2-point IFFTs,

respectively. The algorithm should not proceed unless this metric is below a sufficiently

considerably low threshold, denoted as ϵζp . Meeting this threshold signifies that the

chosen DFT size is sufficient for estimating p̂[τ ]. After obtaining p+[τ ], the next step

involves calculating ŝ[τ ] from ep+(ejΩk ) at minimum time-domain aliasing because it

is implemented in the DFT domain. However, it is important to note that the DFT

size at which ζp meets the threshold condition is typically adequate for obtaining ŝ[τ ],

but it may not always be necessary. Therefore, it becomes advantageous to assess and

compute time-domain aliasing independently.

6.4 PEVD Via Spectral Factorization

This section applies para-Hermitian Laurent polynomial spectral factorization methods

to compute the PEVD of a para-Hermitian polynomial matrix.

6.4.1 Auto- and Cross-Correlation Functions of the Component of

Analytic Eigenvectors

Given that phase smoothing is the computationally intensive step in deriving compact-

order PEVD elements, and it has been established as a non-convex problem in [34],

this thesis aims to circumvent the need for phase smoothing. Instead, the underlying

approach involves calculating the autocorrelation function of the eigenvector compo-
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Algorithm 4: Modified Cepstral Method

Input: rss(z), ϵζp
Output: ŝ(z)

1. evaluate rss(z) at z = ejΩk , k = 1, . . . ,K

2. compute p(ejΩk) = log(rss(e
jΩk)), k = 1, . . . ,K

3. obtain p̂[τ ] via K−point IFFT of pk, k = 1, . . . ,K

4. if ζp > ϵζq , goto 1 with K = 2K

5. obtain p+[τ ] =

{
p̂[τ ]/2, τ = 0

p̂[τ ] τ > 0

6. perform K−point FFT of p+[τ ] to obtain p+(e
jΩk), k = 1, . . . ,K

7. perform K−point IFFT of ep+(ejΩk ) to obtain ŝ[τ ]

8. if
∑

τ |rss[τ ]− ŝ[τ ] ∗ ŝ∗[−τ ]| < ϵζr terminate, otherwise goto 6 with K = 2K

nents, followed by the application of the spectral factorization techniques outlined in

Section 6.2.

As discussed in Section 6.1, it is important to maintain phase coherence between the

eigenvectors of adjacent bins to achieve a compact-order estimation for Q(z). However,

it is worth noting that the autocorrelation function of the components of an analytic

eigenvector can be directly obtained from these bin-wise eigenvector components with-

out any phase smoothing. For instance, if rnn,m(z) = qn,m(z)qPn,m(z) represents the

z-transform of the autocorrelation function of the nth component of the mth analytic

eigenvector, its samples on the unit circle can be extracted directly from the components

of bin-wise eigenvectors such that

rnn,m(ejΩk) = qn,m(ejΩk)q∗n,m(ejΩk) = |qn,m(ejΩk)|2 = |ejϕm,kqn,m,k|2 = |qn,m,k|2 , (6.7)

where qn,m,k is the nth component of bin-wise eigenvector qm,k. The samples of rnn,m(z)

on the unit circle are effectively the absolute squared values of the corresponding bin-

wise eigenvector components. These values can be readily obtained from a bin-wise

EVD. Consequently, it becomes feasible to accurately estimate rnn,m(z) using a suffi-
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ciently large K−point IFFT where K is chosen to minimize aliasing in r̂nn,m[τ ]. The

time-domain aliasing of the resulting r̂nn,m[τ ] can be measured via a metric ζrq , de-

fined akin to (4.42). This metric, as discussed earlier, relies on obtaining r̂
(K)
nn,m[τ ] and

r̂
(K/2)
nn,m [τ ] at two different DFT sizes, namely K and K/2. As this metric quantifies

the normalized difference between these two estimates, a small threshold ϵζrq can be

deemed suitable for all scenarios. Consequently, the process is reiterated with increas-

ing DFT sizes until ζrq drops below ϵζrq . It is important to note that a lower value

of ϵζrq indicates a more accurate estimate, albeit at the expense of having a larger

time-domain support. It is crucial to highlight that (6.7) remains valid when none of

the bins has eigenvalues with multiplicity greater than one, and this condition holds

true for any estimated para-Hermitian matrix, as established in Chapter 3.

The above analysis is shown for an auto-correlation function of the nth component

of the mth eigenvector, a similar analysis is possible for cross-correlation between any

two different components of themth eigenvector. For example rnℓ,m(z) = qn,m(z)qPℓ,m(z)

is a cross-correlation between the nth and ℓth component of the mth eigenvector. Its

sample points on the unit circle can be obtained from the bin-wise component as

rnℓ,m(ejΩk) = qn,m(ejΩk)q∗ℓ,m(ejΩk) = ejϕm,kqn,m,ke
−jϕm,kq∗ℓ,m,k = qn,m,kq

∗
ℓ,m,k , (6.8)

where again the phase ambiguity cancels out. Thus both the auto- and cross-correlation

sequences of the components of an eigenvector can be estimated via the proposed

method. The entire procedure for estimating r̂nℓ,m(z), n, ℓ = 1, . . . ,M is outlined in

Algorithm 5. The resulting autocorrelation function i.e. for ℓ = n is a para-Hermitian

Laurent polynomial in the z−domain and so spectral factorization can be performed.

Before the entire procedure of computing the PEVD is discussed, the autocorrelation

function estimation can be further used to estimate the support of the analytic eigen-

vector so that the spectral factor ŝ[τ ] can be truncated appropriately.

6.4.2 Support Estimation of Analytic Eigenvector

As previously mentioned, an analytic eigenvector exhibits an allpass ambiguity, which

can extend its support infinitely even if it was originally finite. However, if this allpass
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Algorithm 5: Auto- and cross-correlation function of the components of an
analytic eigenvector

Input: R(z), m, n, ℓ, ϵζrq
Output: r̂nℓ,m
set initial K; ζrq = 1;
while ζrq > ϵζrq do

Qk ← EVD(Rk), k = 1, . . . ,K;
rnℓ,m(ejΩk) = qn,m,kq

∗
ℓ,m,k;

r̂
(K)
nℓ,m[τ ]← K−point IFFT of rnℓ,m(ejΩk), k = 1, . . . ,K;

r̂
(K/2)
nℓ,m [τ ]← K/2−point IFFT of rnℓ,m(ejΩk), k = 1, 3, 5, . . . , (2K − 1);

ζrq =
∑

τ |r̂
(K)
nℓ,m[τ ]− r̂

(K/2)
nℓ,m [τ ]|2/|

∑
τ r̂

(K)
nℓ,m[τ ]|2;

K ← 2K
end

r̂nℓ,m ← r̂
(K/2)
nℓ,m (z)

factor takes on a simple delay, an analytic eigenvector can be approximated sufficiently

accurately with a compact order polynomial. The support of the analytic eigenvector

can be determined from the estimated autocorrelation function of its components.

In the case of a signal with support length N , the time-domain support of its

autocorrelation function is typically 2N − 1. Applying a similar concept to the au-

tocorrelation function of the components of analytic eigenvectors, the support of the

analytic eigenvector would fall within the bounds of K/8 < N̂ ≤ K/4 when r̂nn,m[τ ] is

estimated using Algorithm 5. However, since the DFT size is increased by a factor of 2,

the support of the analytic eigenvector needs further refinement i.e. the bounds need

to be decreased. This can be achieved by either truncating or by conducting additional

iterations within Algorithm 5, where the DFT size varies between K/2 and K, until

the difference in the DFT sizes over which the ζrq metric is computed becomes small.

For more detailed information, interested readers are referred to [86].

6.4.3 Spectral Factorization Ambiguity in Context of PEVD

For any given para-Hermitian polynomial rss(z), the spectral factors can be catego-

rized as minimum phase, maximum phase, or mixed phase. The number of poten-

tial choices for p+(z) depends on the order of rss(z). For example, let us consider

rss(z) = 6(z−2 + z2) + 35(z−1 + z) + 62, a para-Hermitian polynomial of order 4 with
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roots {−1/3,−1/2,−2,−3}. Although, in the field of signal and system theory, there

is often a preference for minimum phase systems, it is essential to recognize that the

possible choices for the roots of p+(z), the spectral factor of rss(z), can be numerous:

{−1/3,−2}, {−3,−2}, {−3,−1/2} ,

where each pairing represents the roots of a valid spectral factor of rss(z). The number

of possible combinations increases with the order of rss(z). However, in the context of

the PEVD, only one specific combination results in the lowest order for all components

of any eigenvector. For instance, when we consider the spectral factor of r11,m(z) =

q1,m(z)qP1,m(z), which we refer to as pq1,m(z), it must be such that it shares all of its

zeros with r1ℓ,m(z) = q1,m(z)qPℓ,m(z), where ℓ = 2, . . . ,M. In summary, r1ℓ(z)/pq1,m(z)

must have the lowest possible order, which can only be achieved when all the zeros of

the spectral factor of r11,m(z) coincide with the zeros of r1ℓ,m(z). Otherwise, if zeros

are not common, r1ℓ(z)/pq1,m(z) will have an infinite order. Even if an attempt is made

to approximate it with a finite-order polynomial, the resulting approximation order will

be significantly higher than the potential compact order in case of common zeros. This

ambiguity in spectral factorization has a direct impact on the order of the resulting

eigenvectors.

6.4.4 PEVD Method via Cepstral Method

The cepstral method performs spectral factorization without addressing the ambiguity

mentioned above. Consequently, it is expected that the decomposition order obtained

through this method will be higher than necessary. To compute the PEVD of a para-

Hermitian polynomial matrix R(z), the auto-correlation function of any component of

the eigenvector is obtained using Algorithm 5 (i.e., for n = ℓ). Let us assume that

r̂n′n′,m(z) is estimated using Algorithm 5. Its spectral factorization via the modified

cepstral method will produce p̂qn′,m(z) which will have same magnitude as that of

qn,m(z) but differ in phase if evaluated on the unit circle. Therefore, this spectral

factor can be considered as an estimate of qn,m(z) and can be used to phase-smooth
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the remaining component as follows:

q′n,m,k = qn,m,k

p̂qn′,m(e
jΩk)

qn′,m,k
, for n = 1, . . . ,M, k = 1, . . . ,K . (6.9)

Applying this phase i.e.
p̂qn′,m (ejΩk )

qn′,m,k
, k = 1, . . . ,K from the spectral factor to the bin-

wise components of the mth eigenvector will make it smooth. The resulting time-

domain sequence of all M components of the mth analytic eigenvector can be obtained

via an IFFT of q′n,m,k where the DFT size should be iteratively increased until the

time-domain aliasing

∑
τ

|q̂Hm[−τ ]q̂m[τ ]− δ[τ ]|22

becomes negligible. Here q̂m[τ ] denotes the time-domain sequence of q′n,m,k for

n = 1, . . . ,M, k = 1, . . . ,K. It is worth noting that a similar issue of division by

zero can arise when applying the phase to bin-wise eigenvector components in (6.9).

Consequently, the up-sampling and sign change solution, as previously described in

Section 5.2.6, should be applied.

It should be evident that the time-domain support of q̂n′,m[τ ] will be compact as it

was phase smooth via its spectral factor p̂qn′,m(z) but the remaining components of the

same eigenvector q̂n,m[τ ], n ̸= n′ will be of large order. Therefore, one might think of

performing spectral factorization of the auto-correlation function of each component of

the mth eigenvector independently in order to estimate the eigenvector with compact

support. However, this is not possible because each component of the eigenvector will

be subjected to a different phase adjustment and hence the vector will not retain the

properties of an eigenvector. Therefore, the only possible option is to obtain one of the

component of an eigenvector through the spectral factorization of its auto-correlation

function estimated through Algorithm 5 while the remaining M − 1 eigenvector com-

ponents can be estimated via (6.9).
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6.4.5 PEVD via Roots Method

This method is straightforward but can be considerably more expensive than the

cepstral method as it involves finding polynomial roots. The procedure requires the

autocorrelation function of any component of an eigenvector and the cross-correlation

function of that component with another i.e. rn′n′,m(z) = qn′,m(z)qPn′,m(z) and

rn′ℓ,m(z) = qn′,m(z)qPℓ,m(z) where ℓ ̸= n′. These two functions can be estimated

via Algorithm 5. Once estimated, the roots of both these Laurent polynomials are

determined. Since qn′,m(z) is a common factor between rn′n′,m(z) and rn′ℓ,m(z), half

the number of roots of rn′n′,m(z) will be common with rn′ℓ,m(z) and these roots belong

to qn′,m(z). Therefore, the roots of both these polynomials should be compared and

matched, and the common roots can be used to construct a polynomial p̂qn′,m(z) such

that rn′n′,m(z) = g2p̂qn′,m(z)p̂
P
qn′,m(z) where g ∈ R. Hence the estimate of qn′,m(z) will

be gp̂qn′,m(z) where

g =

√
rn′n′,m[0]∑
τ |p̂qn′,m [τ ]|2

,

with rn′n′,m[τ ]� rn′n′,m(z) and p̂qn′,m [τ ]� p̂qn′,m(z). This estimate of qn′,m(z) can

now be used to phase smooth the remaining bin-wise components akin to (6.9). This

root matching method produces eigenvectors with order equal to the ground truth

order if the ground truth autocorrelation function is known. For an estimated auto-

and cross-correlation function where half of the roots are matching, the resulting order

of the eigenvector will also be compact but may not be equal to the ground truth order.

The downside of this root matching approach is that for each eigenvector extraction,

two (2N)th order polynomial roots are estimated where N is the order of the ground-

truth analytic eigenvector.

Example 13. Lets consider a para-Hermitian matrix from Section 4.3.5. This example

demonstrates the estimation of q1(z) via roots method. Similar example with the

cepstral method is not possible due to zeros on the unit circle for the considered para-

Hermitian matrix. For sake of explanation, r11,1(z) and r12,1(z) are assumed to be
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known which in practice can also be estimated via Algorithm 5. Roots of these two

Laurent polynomials are

roots{r11,1(z)} = [0.2778,0.0334± 0.3025j, −1, −1, 0.3611± 3.266, 3.6]

roots{r12,1(z)} =[0.0334± 0.3025j, −1, 1, 1,−1, 3.6]

which shows that there are roots of r11,1(z) which are also roots of r12,1(z). Therefore,

p̂q1,1(z) is constructed from [3.6, 0.0334 ± 0.3025j,−1] and its phase is then applied to

all bin-wise components of q1,k for k = 1, . . . ,K similar to (6.9) which produces q′
1,k.

The time-domain eigenvector, obtained via an IFFT of q′
1,k, which if truncated via an

threshold of 10−10 produces same order as that of the ground truth i.e. 5. The resulting

eigenvalue estimated through this estimated eigenvector results in ξλ1 = 1.4 × 10−9,

which is sufficiently accurate. This demonstrates that the roots matching method

extracts compact order eigenvector if the ground truth eigenvector components’ auto-

and cross-correlation function is known. △

While this method performs effectively when roots are accurately estimated and

both the auto- and cross-correlation functions share common roots, it does face a

significant challenge related to root mismatch. Because both the auto- and cross-

correlation functions are estimated, errors in the estimation process can perturb the

roots, resulting in mismatch. In practical situations, relying on a matching approach is

often not feasible, and determining a suitable threshold to compare the roots of both

sets is a complex task. Furthermore, when dealing with a considerably large temporal

dimension, employing a root finding method can be computationally expensive. Hence,

an approach based on function evaluations can be employed to determine the roots

necessary for constructing the spectral factor of the auto-correlation function.

Let us assume that r
(i)
n′n′,m, i = 1, . . . , 2N represents the roots of rn′n′,m(z) arranged

in ascending order of the absolute value. Due to the para-Hermitian symmetry of

rn′n′,m(z), r
(i)
n′n′,m, i = 1, . . . , N will be located inside or on the unit circle, while the

remaining roots will be outside or on the unit circle. As a result, the spectral factor

can include either r
(i)
n′n′,m or its conjugate inverse 1/r

(i),∗
n′n′,m = r

(N−i+1)
n′n′,m as a root for any
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given value of i, but not both simultaneously. To select the roots for constructing the

spectral factor, one can determine this based on the minimum value of the function

rn′ℓ,m(z) by evaluating it over these roots as

min{rn′ℓ,m(r
(i)
n′n′,m), rn′ℓ,m(r

(2N−i+1)
n′n′,m )}, i = 1, . . . , N .

The root that yields the minimum value is chosen, while its conjugate reciprocal is dis-

carded. After constructing the spectral factor p̂qn′,m(z), the remaining components can

be obtained through phase smoothing using the constructed spectral factor according to

(6.9). This approach, although involving 2N function evaluations, only requires roots

of a single polynomial of order 2N . As a result, it is less computationally expensive

compared to the root-matching approach.

Following this strategy, it becomes possible to estimate any number of eigenvec-

tors independently. Consequently, this method is entirely parallelizable and thus e.g.

compatible with FPGAs.

6.5 PSVD via Spectral Factorization

Similar to the PEVD, the PSVD can be computed by estimating the auto- and cross-

correlation functions of either the right or left singular vectors’ components and then

applying the roots method. Once one of these paraunitary matrices is estimated, for

instance, let us say V (z) is estimated, the left singular vectors can be estimated through

an IFFT of

u′
m,k = um,k

−p̂vn′,m(e
jΩk)

vn′,m,k
, m = 1, . . . , L, k = 1, . . . ,K , (6.10)

where p̂vn′,m(z) is the spectral factor of vn′,m(z)vPn′,m(z) and vn′,m,k is the bin-wise n′th

component of vm,k. With the phase smoothing process carried out in each bin, applying

an IFFT will yield ûm[τ ]. It is essential to increase the DFT size until the time-domain

aliasing in ûm[τ ] becomes negligible. Subsequently, the corresponding singular values

can be estimated as σ̂m(z) = ûP
m(z)A(z)v̂m(z),m = 1, . . . , L to obtain Σ̂(z) having on
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its diagonal the estimated singular values.

To complete the paraunitary matrix U(z) from an initial size of M × L to a final

size of M×M , there are two possible approaches. In case where M = L+1, uM (z) can

be obtained in a manner similar to the previous singular vectors. This involves deter-

mining the auto- and cross-correlation functions using the bin-wise singular vectors and

then applying the roots method for spectral factorization. However, if M > L+ 1, the

auto- and cross-correlation functions of the components of these singular vectors cannot

be derived from the bin-wise singular vectors, specifically um,k for m = L+ 1, . . . ,M ,

using Algorithm 5. The reason for this is that the singular values from L+1 to M are

zero, leading to an algebraic multiplicity in each bin. Consequently, only an (M − L)

dimensional subspace is defined, within which smooth 1-d subspaces would have to be

first found before phase smoothing can be applied within each individual 1-d subspace.

This process is beyond the methods in this thesis or, in fact, beyond any methods yet

developed in the area of polynomial matrix factorisations. As a result, un′,m,kuℓ,m,k is

likely to exhibit discontinuities for any DFT size, making it impossible to determine the

auto- and cross-correlation functions of the components of um(z) for m = L+1, . . . ,M .

In simpler terms, the vectors um,k can be ambiguous up to an arbitrary unitary matrix.

This means that if we haveUo,k = [uL+1,k, . . . ,uM,k] ∈ CM×(M−L), thenUo,kBk, where

Bk ∈ C(M−L)×(M−L), represents a unitary matrix [34]. There is an unknown matrix

Bk in every bin, and it therefore cannot be resolved as in [34] by interpolating across

isolated algebraic multiplicities. Therefore, the only possible option is to adopt the

polynomial extension of the Gram-Schmidt orthogonalization procedure described in

Chapter 5. Since um,k cannot be relied upon to estimate its auto- and cross correlation

function for spectral factorization due discontinuities, wm(ejΩk) can be obtained via

(5.13) to estimate these correlation functions, one auto and one cross-correlation func-

tion. One may estimate um(z) directly from the IFFT of wm(ejΩk) at sufficient DFT

size, but it will result in higher order polynomial due to the phase ambiguity introduced

due to bin-wise normalization as given in (5.14). Therefore, instead wn′,m(z)wP
n′,m(z)

and wn′,m(z)wP
ℓ,m(z) are estimated from wm(ejΩk) via Algorithm 5. In this case, the

phase ambiguity would cancel out. Subsequently, its spectral factorization via the roots
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method will provide the compact order (L+ 1), . . . ,Mth singular vectors.

6.6 PQRD via Spectral Factorization

In the PQRD factorization, the auto- and cross-correlation function of the components

of the columns of Q(z) can similar be obtain via Algorithm 5 however by replacing the

EVD by the QR decomposition. The auto- and cross-correlation function can be used to

estimate the respective columns via the roots method employing function evaluations.

With all columns estimated, R(z), the upper right-triangular matrix, is estimated

through the estimated paraunitary matrix Q(z). For M = L + 1, the Mth column of

Q(z) can be obtained similarly as all previous columns by estimating the auto- and

cross-correlation function followed by a spectral factorization. However, for M > L+1,

the polynomial Gram-Schmidt orthogonalization has to be applied to determine L +

1, . . . ,M indexed columns of Q(z). The polynomial Gram-Schmidt orthogonalization

might produce orthonormal vectors with unnecessary large polynomial order due to

the allpass factor i.e. ŵm(z) = ϕm(z)q
m
(z). Therefore, similar to the discussion in

Section 6.5, wn′,m(z)wP
n′,m(z) and wn′,m(z)wP

ℓ,m(z) can be estimated from wm(ejΩk)

via Algorithm 5 which is blind to the allpass factor. Thereafter, its spectral factorization

through the roots method can be performed to obtain compact order vectors.

6.7 Simulation and Results

In this section, the proposed spectral factorization-based polynomial matrix decompo-

sition technique is simulated for all three categories i.e. PEVD, PSVD, and PQRD.

The roots finding based approach is compared against state-of-the-art algorithms the

performance metrics detailed in Section 5.8.

6.7.1 PEVD

Here the comparison of the proposed approach against state-of-the-art algorithms is

drawn over an ensemble of spectrally majorised instantiations of R(z) ∈ C4×4. The

instantiation are created using the source model in [22] where the order of Q(z) is
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varied from 100 to 500 in steps of 100 and Λ(z) from 200 to 1000 in steps of 200.

For every order of Q(z), 100 instances are generated. Due to how the ground-truth

paraunitary Q(z) is generated via elementary paraunitary operations, its outer lags

decays to significantly small values; and so are the coefficients of R[τ ]. Therefore, R[τ ]

is truncated symmetrically around τ = 0 via a significantly low threshold µPH = 10−20.

This truncation removes the exterior lags having µPH times of the total energy.

The proposed method estimates an auto- and cross-correlation function via Algo-

rithm 5 with ϵζrq = 10−16. Thereafter, the roots method is applied to estimate the

eigenvector and then the corresponding eigenvalue. The estimated eigenvector is trun-

cated using a threshold of µPU = 10−10, employing a method similar to [27]. For

the SBR2 and SMD algorithms, a maximum of 500 iterations is allowed, but termi-

nation occurs if the off-diagonal energy threshold falls below 10−8. As both of these

methods are iterative algorithms, intermediate parunitary matrices are truncated using

µPU = 10−10, employing the row-shifted corrected truncation method proposed in [27],

which is currently the most promising truncation method for these iterative techniques.

The normalization-free algorithm from Chapter 5 is executed with ϵζq = µPU = 10−6

and Kmax = 2⌈log2[O(R(z))]⌉+5.

The ensemble results are presented in Fig. 6.1, where it is evident that the recon-

struction error for SBR2, SMD and normalization-free approach is significantly high

whereas the proposed roots based PEVD method achieves an error of orders of 10−10.

This highlights that, with the settings mentioned above, the reconstruction error for

SBR2 and SMD is approximately 106 times larger than the roots method, denoted as

RPEVD in Fig. 6.1. Moreover, the order of the resulting eigenvectors with the proposed

method is close to the ground-truth for lower order ground truth order but eventually

falls below the ground-truth. This discrepancy in order is due to the fact that the

trailing coefficients of the ground-truth eigenvectors are small, and thus an approxi-

mation with lower-order polynomials is possible. In contrast, SBR2 and SMD, despite

utilizing row-shifted corrected truncation [27], still yield eigenvectors with large orders.

It is important to emphasize that the high-order eigenvectors produced by SBR2 and

SMD can only yield poor reconstruction errors, as demonstrated in Fig. 6.1(a). This
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Figure 6.1: Performance metrics computed over an ensemble of randomized para-
Hermitian matrices for SBR2 [13], SMD [22], normalization free variant of the rank one
decomposition based PEVD (here denoted as N-Free) and roots based PEVD (RPEVD)
with (a)ξR, (b) O{Q̂(z)} and (c) execution time in seconds.

implies that the order would need to be increased even more if a lower reconstruction

error is desired. Here it is also important to emphasize that the normalization free

variant have resulted in large polynomial order than the SBR2 and SMD which seems

contradictory to Chapter 5 simulation results. In fact, this difference is due to the use

of row-shifted corrected truncation approach for both SBR2 and SMD. Furthermore,

the execution time of the proposed roots method and the normalization-free method

is orders of magnitude lower than that of both SBR2 and SMD. Once again, if SBR2

and SMD are required to produce better results, the execution time gap between the

proposed method and these two iterative methods will widen. If analysed minutely,

the normalization-free approach, from Chapter 5, execution time is least of all four

algorithms upto O{Q(z)} = 300 and then exceeds that of the roots method for higher

orders of Q(z).

This thesis have not included a comparison of the proposed method with the analytic

PEVD method [33–35], which is more suitable for para-Hermitian matrices of small
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spatial and temporal dimensions. Specifically, the eigenvector phase smoothing process

in the analytic method involves optimizing an objective function via the Newton or

Powell’s dogleg [55] optimization techniques which computes matrix inversion of an

order K ×K, where K > N with N being the order of eigenvectors, in each iteration.

6.7.2 PSVD

The proposed algorithm is compared against the GSBR2 [11] and the approach which

employs two PEVDs in order to compute a PSVD. For computing the PEVDs, the

SMD algorithm is utilized. All methods are tested over an ensemble containing 100

randomized polynomial matrices A(z) ∈ C4×4 for each value of O{U(z)} = O{V (z)}

which is jointly varied from 100 to 500 in steps of 100. The outer lags of A[n] �

A(z) may become very small, therefore each instance in the ensemble is truncated to

eliminate its trailing outer lags to ensures such that the reconstruction error remains

below 10−20. The proposed method and the SMD algorithm (utilized for PEVDs to

compute the PSVD) are executed with the parameter settings of Section 6.7.1. The

GSBR2 algorithm is allowed to run for a maximum of 200 iterations. However, it

terminates before reaching the iteration limit if the maximum off-diagonal energy falls

below 10−6. The intermediate paraunitary truncation threshold set to µPU = 10−5.

Both the GSBR2 and SMD are executed with row-shifted corrected truncation strategy

for lower order paraunitary matrices [27].

Ensemble results are depicted in Figure 6.2, where the reconstruction error achieved

by the proposed algorithm is orders of magnitude lower than that of both iterative meth-

ods. In fact, the proposed method attains a reconstruction error that is 108 times lower

than that achieved by the GSBR2 and 2-SMDs. While the orders of singular vectors

obtained by the iterative methods may seem comparable to the order generated by the

proposed method, it is important to note that these singular vectors are not accurate

enough to diagonalize the underlying polynomial matrix effectively as reflected by high

reconstruction error. On the other hand, the proposed method achieves a negligible

normalized reconstruction error with extremely compact-order paraunitary matrices,

and it does so in significantly less time as evidenced by Fig. 6.2(d). Therefore, the
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Figure 6.2: Performance metrics computed over an ensemble of randomized polynomial
matrices for GSBR2 [11], 2 PEVDs based PSVD via SMD and roots based PSVD
(RPEVD) with (a) ξA, (b) O{Q̂(z)} and (c) execution time in seconds.

proposed method outperforms state-of-the-art algorithms equally in all performance

metrics. In addition, the proposed algorithm estimates each singular vectors separately

which makes it highly parallelizable compared to all state-of-the-art algorithms. Nor-

malization free approach is not included in this comparison because it performs similar

to as shown in case of the PEVD illustrated in Fig. 6.1.
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6.7.3 PQRD

Similar to the rank decomposition-based PQRD algorithm in Chapter 5, the proposed

PQRD approach, referred to here as RPQRD, is compared against PQRD-BC [12]

and SM-PQRD [19]. This comparison is carried out using an ensemble of randomized

matrices A(z) ∈ C4×4. The ensemble is constructed following the methodology de-

scribed in Section 5.8.4. However, in this case, the ground-truth order for Q(z) and

the upper triangular matrix R(z) have higher orders. The ensemble is generated sep-

arately for each value of O{A(z)} in the range {200, 400, . . . , 1000}, where the orders

of OQ(z) and OR(z) vary in the range {100, 200, . . . , 500}. Both PQRD-BC and SM-

PQRD are simulated using the same settings as detailed in Section 5.8.4. The proposed

method, RPQRD, is executed with the same settings as those used for the PEVD and

PSVD methods mentioned above. The normalization free variant of the rank decom-

position method, explained in Chapter 5, is executed with ϵζq = µPU = 10−6 and

Kmax = 2⌈log2[O(R(z))]⌉+5.

Ensemble results for all three metrics are shown in Fig. 6.3(a)-(c). The proposed

approach triangularizes the given polynomial matrix with compact order paraunitary

matrix in significantly reduced amount of time. The computational complexity of the

proposed algorithm is evident from the results shown which can further be improved as

the proposed algorithm is highly parallelizable as each column of Q(z) can be estimated

independently.

6.8 Summary

This chapter has introduced a novel approach for computing the factorization of poly-

nomial matrices. Recognizing the computational expense of the phase smoothing pro-

cedure required to estimate a compact-order factorization, this approach is based on the

principle of estimating the auto- and cross-correlation sequences of the decomposition

elements, thereby eliminating the need for phase smoothing. Subsequently, spectral

factorization is applied to recover the compact-order component, which is essential for

determining the necessary phase adjustments for the other remaining components. In
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Figure 6.3: Performance metrics computed over an ensemble of randomized polynomial
matrices for PQRD-BC [12], SM-PQRD [19], normalization free variant of rank decom-
position method (N-Free) and roots based PQRD (RPEVD) with (a)η, (b) O{Q̂(z)}
and (c) execution time in seconds.

this context, two spectral factorization methods have been analyzed.

The cepstrum-based cepstral method [96, 100] is an iterative technique designed for

positive definite para-Hermitian Laurent polynomials. However, the auto-correlation

function of the components of an eigenvector or singular vector may not be positive

definite, which can pose challenges. This method involves taking the logarithm in the

DFT domain to transform the product of spectral factors, which can then be retrieved

through exponentiation. One of the limitations of the cepstral method is that, due to

the logarithm operation, it may not converge for any DFT size if the auto-correlation

function has zeros on the unit circle. Due to this issue, cepstral method is not preferred

as the condition of positive definiteness may not be satisfied. Moreover, this method

also blindly spectrally factorizes an auto-correlation,usually resulting in minimum phase

spectral factor, which may not result in compact polynomial order for the remaining

component of an eigenvectors.

While spectral factorization is being performed, it should be considered that the

spectral factor rnn,m(z) must share all of its zero with rnℓ,m(z) where n ̸= ℓ. As other-

144



wise, the polynomial order of the estimated eigenvector/singular vector or the columns

of Q(z) in the PQRD will not be compact, To address this issue of specific combinations

of zeros of the auto-correlation function for constructing the spectral factor, the roots-

based spectral factorization method is employed. This approach involves estimating

both an auto-correlation function and a cross-correlation function of any component of

an eigenvector or singular vector, and then determining their roots. The roots that are

common to both functions are used to construct the spectral factors, resulting in the

lowest possible order. However, due to estimation errors, the roots can be perturbed.

In this case, instead of directly comparing the roots, the specific combination of roots is

determined based on function evaluations. This allows for a more robust and accurate

determination of the spectral factors, even in the presence of perturbations in the root

estimates.

The proposed roots-based approach has been compared with state-of-the-art algo-

rithms such as SBR2 and SMD for PEVD, GSBR2 and 2-SMDs for PSVD, and PQRD-

BC and SM-PQRD for PQRD. It has consistently outperformed these algorithms in

terms of the order of decomposition, reconstruction error, and execution time, achieving

orders of magnitude improvement. One of the key advantages of the proposed method

is its high parallelizability. Each eigenvector, singular vector, or column of Q(z) in

PQRD can be estimated independently, making it a suitable candidate for platforms

like FPGA where real-time broadband applications such as angle-of-arrival or speech

enhancement are relevant. Additionally, this approach can be applied to various types

of polynomial matrix decomposition, extending linear transformations like Givens ro-

tations, Jacobians, Householder transformations, and Gram-Schmidt orthogonalization

to the polynomial domain. This versatility makes it a valuable tool in various applica-

tions.

The spectral factorization method is generally preferred over the rank decomposition

approach and its normalization-free variant in applications that necessitate lower-order

polynomial factor decomposition or increased accuracy. The normalization-free variant

is simple to implement in hardware, as it only requires basic implementation blocks

such as FFT/IFFT and standard matrix factorization. As a result, it is recommended
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for rapid and straightforward hardware analysis, the normalization-free variant is a

suitable choice.
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Chapter 7

Conclusion & Future Work

7.1 Thesis Summary

With the increasing interest in using polynomial matrices to model and represent broad-

band sensor array problems, polynomial matrix algebra has found numerous applica-

tions. As a result, issues related to computational complexity, accuracy, and polynomial

order of decomposition have gained significant attention. Based on previous research

compiled in [105–107], in this thesis, the three most commonly used polynomial matrix

decomposition techniques PEVD, PSVD, and PQRD have been investigated. Here is

a summary of the major findings:

7.1.1 Space-Time Covariance Estimation and Loss of Multiplicities

Chapter 3 introduced the concept of system identification for improved space-time

covariance estimation from sensor measurements, assuming known and controllable

sources. This approach enhanced the accuracy of the estimation process with reduced

sensor data requirements. Despite the ability to improve estimates at various SNRs

through system identification, it was shown that the loss of algebraic multiplicities

in the estimated space-time covariance still occurs with probability one. This insight

allowed for more flexibility in defining new analytic PEVD and PSVD algorithms that

rely on spectrally majorised eigen- and singular values.
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7.1.2 Polynomial Power Method

Chapter 4 extended the power iteration method to the polynomial domain for esti-

mating the dominant eigenvector of a para-Hermitian matrix. This method assumes

that the estimated para-Hermitian matrix already has the spectral majorization prop-

erty due to the loss of multiplicities during the estimation process. The approach was

further combined with deflation to compute the PEVD of a low or reduced-rank para-

Hermitian matrix. Lastly, the polynomial power method was generalized to estimate

the dominant right and left singular vectors of a PSVD, along with the corresponding

dominant singular value.

7.1.3 Rank One Decomposition

In Chapter 5, rank one decomposition-based PEVD, PSVD, and PQRD algorithms

were introduced. This method represents any polynomial matrix as a sum of rank one

terms and then applies a single iteration of the polynomial power method to determine

the respective eigenvector and the corresponding eigenvalue or singular vector and the

corresponding singular value. To address the issue of initializing the vector required

for power iteration and polynomial power iteration, a normalization-free approach was

proposed, which considers the columns of rank one terms as the initial vector. This

proposed approach is fully parallelizable and provides accurate decomposition in the

least amount of time compared to all available polynomial matrix factorization methods

in literature except the spectral factorization method proposed in this thesis.

While a single iteration of the polynomial power method is not applicable for a

PQRD computation, the columns of rank one terms are directly normalized to unit

norm on the unit circle to estimate the columns of the paraunitary matrix for accom-

plishing the PQRD of a given polynomial matrix. However, the normalization process

can encounter division by zero, which leads to a phase discontinuity and potentially

requires a representation of infinite order to estimate the normalized vector. This issue

was addressed by up-sampling the corresponding function to make the phase continuous

across zero crossings.
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7.1.4 Spectral Factorization for Polynomial Matrix Decomposition

Chapter 6 introduced a novel approach to compute spectral factors of the auto-

correlation function of components of eigenvectors, singular vectors, or columns of

Q(z) for PEVD, PSVD, and PQRD, respectively. This approach eliminated the need

for complex phase smoothing procedures. The chapter reviewed two spectral factor-

ization methods, with the polynomial roots-based method found to perform better

in terms of execution time and the order of the resulting paraunitary matrix. The

proposed unified algorithm was compared to state-of-the-art algorithms in all three

categories, demonstrating its significant accuracy, speed, and ability to produce com-

pact order paraunitary matrices. Additionally, the method estimated each column of

the paraunitary matrix independently, making it potentially suitable for fully parallel

implementation, unlike current state-of-the-art algorithm, in real-time applications.

7.2 Applications-Oriented Comparison

A comparison chart has been provided in Table 7.1 between the spectral factorization-

based method, commonly referred to as the root method, and the rank decomposition

method, including its normalization-free variant, known as N-Free. This chart can aid

in making a quick decision regarding the most suitable method to use based on the

specific requirements of the application.

Table 7.1: Application-Oriented Comparison of the Proposed Approaches

Applications Rank Decomposition N-Free Root Method

Accuracy Low Low High
Order High High Low
Execution Time High Low Low
Ease of Implementation High High Low

7.3 Future Work

Based on the research presented in this thesis, possible future work that will further

improve or broaden its scope can include:
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� The proof of convergence for polynomial power method is yet to be formally

formulated which could be beneficial, especially for improving the initialization

vector to expedite its convergence.

� extending the generalized polynomial power method in combination with defla-

tion for PSVD may necessitate a distinct approach compared to the PEVD case.

Conducting an analysis of perturbations and error bounds within this context

could provide valuable insights for theoretical advancements.

� it is highly likely that with the proposed unified algorithm-II, all feasible lin-

ear unitary transformations can be seamlessly extended to the polynomial do-

main. Especially the Jacobian transformation or Givens rotation extension to

polynomial domain would offer a significantly different perspective of the SBR2

algorithm considering its reliance on the standard Jacobian transformation in

each iteration. Furthermore, the Householder transformation based SBR2 vari-

ant would also benefit from this polynomial extension, potentially reducing the

number of required transformations. These possibilities for polynomial extensions

could also enhance the iterative PQRD algorithms, enabling them to operate on

an entire element of a polynomial matrix instead of being restricted to a single

slice.

� With the proof of existence and the underlying condition for an analytic SVD

of a polynomial matrix, there is a possibility of an un-majorised para-Hermitian

polynomial estimated through system identification. For instance if A(z), with

negative singular values on the unit circle, is estimated via system identification

and then a para-Hermitian matrix Â
P
(z)Â(z) or Â(z)Â

P
(z) is constructed, there

is a possibility that this type of estimated CSD matrix for given MIMO system

might be spectrally un-majorised.

� Polynomial Gram-Schmidt orthogonalization can be utilized in different appli-

cations, such as for the block matrix construction of a polynomial generalized

sidelobe canceller in the area of adaptive broadband beamforming.
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� Except for the normalization-free approach, which has demonstrated superior per-

formance in speech enhancement, surpassing SBR2 and SMD, all other proposed

methods in the thesis require evaluation using real-world data to compare their

performance more effectively against state-of-the-art algorithms.

� Applications for the various techniques proposed in this thesis could be explored.

This includes for example the utilisation of the PSVD for the best paraunitary

approximation of a general polynomial matrix, i.e. a polynomial extension of the

Procrustes problem [1, 108], in order to find lossless transfer function matrices

in the context of acoustics and artifical reverberation of multichannel audio [109,

110].
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