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Abstract 

Over the past decade the bioprocessing industry has embraced and led the creation of a 

number of initiatives to drive process development and optimisation. There has 

consequently been an increased demand for tools capable of meeting the requirements of 

these initiatives. Spectroscopic monitoring systems such as Near infrared (NIR), Mid 

infrared (MIR) and Raman can provide a number of substantial advantages over more 

conventional off-line monitoring methods, normally applied to bioprocessing. With these 

techniques the bioprocessing industry has means of meeting these demanding challenges. 

The aim of study was to determine the feasibility of using NIR, MIR and Raman 

spectroscopy as a combined ‘toolkit’ to correlate changes in metabolic profile to spectral 

changes, within low passage Chinese Hamster Ovary cell cultures. The target metabolites 

focused upon in the spectroscopic analysis for this study were glucose and lactate. 

Conventional off-line techniques were used to investigate any correlation between spectral 

changes and those in the reference data. A design of experiment (DoE) approach was used 

to identify the optimum preprocessing techniques of the data and to build more accurate 

process trajectory models. These models were subjected to both an internal and external 

validation to guarantee the reliability of the results. Feasibility of data fusion, to create a 

single ‘fused’ dataset from the three spectroscopic techniques was also assessed, to 

produce a model with lower errors of prediction that the individual parts. The other area 

investigated was the characterisation of low passage number cultures in various media and 

process formats, which was of interest to the industrial collaborators. To test this three 

media; CD CHO, CD OptiCHO and Dynamis were provided by Thermo Fisher Scientific. 

Currently there is no system which utilises this toolkit with a combined DoE and data fusion 
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strategy, within the bioprocessing industry. This research demonstrates a gap in the 

industry and a novel approach as to how tackle process monitoring. 

The results in this project demonstrate the varying degrees of success the 

spectroscopic techniques across all process formats and media. The NIR proved to be the 

most successful at modelling the target metabolites, with MIR being unsuccessful and 

Raman only being able to detect but not model the metabolites. This research provides an 

indicator of media suitability in low passage number cell cultures, by comparing the batch 

culture processes. The CD CHO media proved to be the best of the three tested media, 

based upon the cell density, viability and mAb titre produced. Overall this study represents 

a valuable stage in the progression towards real time monitoring of biomanufacturing 

processes and development of tailored low passage number cell culture media. However 

there are areas of this study where further investigation could be improved. 
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Introduction 
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1.1 Introduction 

As a result of the bioprocessing industry embracing the PAT and QbD initiatives, which seek 

to apply new technologies and build quality into processes respectively, there is a need to 

implement tools capable of meeting these challenges and moving towards real time 

bioprocess monitoring. Utilising spectroscopic technologies such as Near infrared (NIR), Mid 

infrared (MIR) and Raman offers industry a means of meeting these needs. The overlapping 

nature of the data produced by these three technologies is what could potentially offer the 

opportunity to gain an improved process understanding and increased process control. 

Consequently this combination could lead to improved final product quality and potentially 

lead to greater yields. However, these techniques haven’t been investigated as a combined 

‘toolkit’ for the purposes of bioprocess monitoring. 

In the biopharmaceutical industry there are a number of expression systems used 

to produce therapeutic agents, of these, mammalian cell lines are often utilised due to their 

ability to produce more ‘humanised’ therapeutic proteins as they have reduced adverse 

effects in the clinic. One category of therapeutic proteins, monoclonal antibodies represent 

a large section of the market due to their impact on both clinical and medical research. As 

such, production of therapeutic proteins requires constant monitoring to ensure that no 

deviations occur within the production process. This again is where spectroscopic 

techniques offer the opportunity to provide constant monitoring.  

This study utilised a high yielding monoclonal antibody (hIgG) producing industrial 

Chinese Hamster Ovary (CHO) cell line, due to their extensive use within the 

biopharmaceutical industry. This cell line was provided by a world leading supplier to the 

pharmaceutical and biotechnology sectors, Lonza, who were interested in collaborating in 

this research. Their interests coincided with the other industrial collaborator involved, 
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Thermo Fisher Scientific, who provided all the culture media and feeds. The interests of 

both companies overlapped well as both had an interest in characterisation of the cell line 

in various media and process formats. However Thermo Fisher had a specific interest in 

investigating low passage number, as it would help them better develop media to aid in 

early cell culture development. As such the needs of the collaborators were integrated into 

this research, with a low passage number culture grown in increasingly more complex 

medium and format (Table 1.1). 

Table 1.1 Experimental process methodology 

Reactor Passage 

Number 
Medium Process Format 

7 

CD CHO 
Batch 

Fed Batch (EFB) 

CD OptiCHO 
Batch 

Fed Batch (EFA) 

Dynamis Batch 

 

The objective of this research was to move towards a real time monitoring system 

and development of process models, through the application of an at-line monitoring 

system incorporating NIR, MIR and Raman spectroscopies. An at-line system is where the 

analyser is not directly implemented within a bioprocess system, but is within the 

bioprocessing area. While an on-line monitoring system would be more suitable in the 

development of real time process analysis, they are far more complex in terms of 

implementation/integration. Therefore an at-line monitoring system was more suitable for 

establishing a baseline monitoring system, during the investigation. The other novel aspect 

of this research was the design of experiment approach that was taken in the preprocessing 

of the spectral data. The aim of investigating this methodology was to improve the final 

process models, by taking a systematic approach to preprocessing combined with prior 
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knowledge. While this approach has been demonstrated to have some merit in chemical 

processing, it has yet to be applied to a biopharmaceutical process. The final novel feature 

to be investigated was determining the feasibility of applying data fusion, with the aim of 

combining the individual datasets from each technique, if suitable. The result of this would 

be a single ‘fused’ dataset which when modelled should produce a process model with 

reduced prediction errors than would be present from the three individual models.   

Throughout this study, application of NIR, MIR and Raman to the various cell 

culture processes for the development of process models is documented and unbiasedly 

presented. Both the successes and the limitations of the applied techniques are assessed 

and discussed. From these assessments, conclusions are presented alongside the potential 

future developments for the research in this study. 
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2.1 Bioprocess monitoring 

2.1.1 Why monitor bioprocesses? 

Over the past few decades increasing importance and interest has been placed on 

bioprocess monitoring. Effective process monitoring has become essential in academia, as a 

means to study microbial physiology and in industrial bioprocess development where it 

provides a time-efficient method of extracting more precise data from each experiment 

(Olsson et al., 1998, Lourenco et al., 2012). Within many industrial sectors such as beverage 

production, pharmaceutical, agro-food and biowaste treatment, where demand to have 

decreased process times and cost effective means of product analysis is required, 

bioprocess monitoring has steadily been more widely implemented. Such implementation 

in some industries leads to reduced costs, increased productivity and efficiency, improved 

process reproducibility and quality control (Vojinovic et al., 2006, Ündey et al., 2010, 

Svendsen et al., 2015). 

Different industrial sectors, despite the varying prices of their end products and 

their goals, are connected in their requirement for cultivation of microorganisms, 

mammalian cells, insect cells and plant cells, processes which require accurate monitoring 

systems. To cultivate cells in bioreactors is challenging with regards to control and 

monitoring, since during the running of the process, substrates are utilised and 

intermediates and products are produced in the presence of living cells (Workman et al., 

2003). Small uncontrolled changes in nutrient availability, temperature, pH, and pressure 

can have significant effects on cellular metabolism and can alter the overall efficiency and 

productivity, and can even result in the process being unprofitable (Sales et al., 2015). Full 

monitoring and control of bioprocesses aims to control the environment within the reactor 
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to the optimal conditions for growth, biosynthesis, and/or downstream processing 

(Vojinovic et al., 2006). 

It should also be recognised that while intensive bioprocess monitoring is a must in 

the biopharmaceutical industry, and can theoretically be applied to any industrial process, 

in reality it is often not economically viable for use in all types of industrial bioprocesses. 

This is particularly true of bioprocesses where the end product either does not require such 

strict regulations as biopharmaceuticals or is not of high value, such as Baker’s yeast. In the 

biopharmaceutical industry, there is pressure to develop more cost-effective manufacturing 

processes, and innovating the way in which bioprocesses are monitored offers one solution 

to this problem. However, the development and application of bioprocess monitoring can 

make up a significant portion of the overall investment made in bringing a product to 

market (Harms et al., 2002). It has previously been outlined that the costs associated with 

process development and clinical manufacturing, which bioprocess monitoring falls under, 

can represent up to 40-60% of the overall investment. Thus the cost of purchasing and 

implementation of monitoring equipment must be heavily assessed and scrutinised 

(Rosenberg, 2000, Farid, 2007).  

Despite the need for better process monitoring, there is still a significant way to go, 

especially in the biopharmaceutical industry (Zhao et al., 2015). One study in particular 

summaries this disparity very well by stating, while there have been advances in academic 

fields the translation of techniques into industrial settings is significantly lacking, noting 

that “most” industrial processes still employ “primitive” strategies. Again the authors 

demonstrate that one of the main reasons for this is due to the high cost of new 

technologies (Mercier et al., 2013). Regardless of the need for up-front investment, if 

bioprocess monitoring  development is carried out it could result not only in reduced 
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production costs and improved product yields, but also an overall decrease in future 

development costs (Clementschitsch and Bayer, 2006, Mercier et al., 2013).  

However in recent years there have been significant steps and initiatives taken by 

both regulators and the biopharmaceutical industry, to address the shortcomings in the 

development of bioprocesses and their monitoring (Gomes et al., 2015). 

2.1.2 Current Trends in Biopharmaceutical Monitoring 

2.1.2.1 Process Analytical Technology 

Biopharmaceuticals have a stringent regulatory requirement, since they are products for 

use on/in humans and thus need to be manufactured by means that provide the highest 

possible quality assurance (Miller et al., 1996). To meet the need for high quality assurance, 

the United States Federal Drug Administration released a series of voluntary guidelines 

entitled, “Process Analytical Technology - A framework for innovative pharmaceutical 

development, manufacturing, and quality assurance” (F.D.A., 2004). The document outlined 

a series of voluntary guidelines which would lead to the development and implementation 

of innovative pharmaceutical product development, manufacturing, and quality assurance. 

Implementation of PAT within the biopharmaceutical industry is essential for a 

number of reasons. The primary reason is that the consumer’s health is paramount and so 

the more data obtained regarding the quality of a biopharmaceutical, the greater the 

confidence there is when it is released to the clinic. Another reason is the need for 

companies to prove to regulators that the highest possible standards of production are 

being met. These are two of the reasons that PAT has been implemented within the 

biopharmaceutical industry, but what is PAT? (Swarbrick, 2007). 
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 In general terms, PAT can be seen as any technology that integrates aspects of 

microbiological, chemical, mathematical and physical analysis in a given bioprocess. 

Implementation of PAT aims to result in the highest possible quality of product, through 

thorough monitoring and control of the bioprocess (F.D.A., 2004, Gomes et al., 2015, 

Murphy et al., 2016). The technologies utilised in PAT cover a range of different functions, 

e.g. multivariate tools for the purpose of design, acquisition of data, and analysis or process 

analysers and control tools (De Beer et al., 2008). Figure 2.1, shows the three key steps by 

which such tools can be used, often in combination, to achieve the PAT goals of a particular 

bioprocess. 

 

Figure 2.1: PAT Quality Assurance Steps. Adapted from; (Read et al., 2010). 

In a PAT implemented bioprocess there are three methods which utilise real-time 

or near real-time bioprocess measurements; firstly at-line, or near real-time, involving 

manual sampling which is then transported to an analyser located in the processing area; 

secondly, on-line, where sample extraction and transport through a sample line is 

automated. The sample in the line is subsequently sent to an automated analyser and once 
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analysed the sample is returned to the process stream via another transport line; and 

finally in-situ, this requires no removal of samples as a probe connected to the analyser can 

be placed inside the reactor vessel. The latter two methods are the most desirable as they 

provide direct analysis without destruction of or interference with the sample (F.D.A., 2004, 

Murphy et al., 2016).  

In order to produce the highest possible quality of product, coupling PAT with risk 

assessment strategies is required to provide measurement of critical quality attributes. 

These attributes result in alterations to the bioprocess in order to maintain the high quality 

of the product and the process is subsequently validated. The only way to effectively 

improve product quality is by ensuring bioprocess reproducibility which can be done by PAT 

implementation. Through use of the data obtained, where real-time trends within the 

bioprocess can be monitored and controlled PAT has the capability to greatly improve the 

production of biopharmaceuticals (Challa and Potumarthi, 2012, Gomes et al., 2015). 

2.1.2.2 Quality by Design 

Since the development of the PAT initiative in 2004, further work to regulate and 

standardise the production of biopharmaceuticals has been carried out, so the Quality by 

Design (QbD) initiative has been introduced. QbD encompasses a number of overlapping 

concepts which include PAT, risk- assessment and management, creation of a bioprocess 

knowledge database and process design spaces. The ICH pharmaceutical development 

guideline Q8 (R2) defined the objective of QbD in 2009, as an approach to build a high 

degree of end product quality into the bioprocess, instead of just testing for it post-process 

(Murphy et al., 2016). At the heart of QbD is the intention to understand the relationship 

between the overall efficacy and safety of the end product, quality of the product, and the 

means by which the product is manufactured (Read et al., 2010, Rouiller et al., 2012, 
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Gomes et al., 2015, Junker et al., 2015, Murphy et al., 2016). The result of understanding 

such factors means that companies can constantly assess and update their bioprocesses 

when needed, to guarantee a high level of consistency in their end product. The QbD 

approach to bioprocessing of biopharmaceuticals is very different from the more traditional 

approaches, which rely on repeated testing to ensure product quality (Rathore and Winkle, 

2009, Rathore, 2016) (Figure 2.2). 

 

Figure 2.2: Overview of QbD Strategy. Adapted from; (Rathore and Winkle, 2009). 

  Application of QbD seeks to achieve manufacture of a product with a pre-defined 

quality and so when implementing QbD the first stage is to gather information. The 

gathering of information must be extensive and must include; the product’s therapeutic 

action, initial raw materials used for production, means of product manufacturing and all 

possible sources of variability. Once this information is gathered, it is used to set the 

bioprocess parameters and coupled with continuous real-time monitoring, helps ensure 
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that the end product meets not only the pre-defined quality but also the highest level of 

safety and efficacy (Rathore and Winkle, 2009, Gomes et al., 2015, Rathore, 2016).  

 Since the QbD approach was first introduced, the biopharmaceutical industry has 

been able to implement its framework into the production of small-molecule therapeutics. 

However in contrast, implementation of QbD into the production of protein therapeutics 

has been more challenging. The most probable reason for this is that the manufacturing of 

small-molecule therapeutics is better understood, and thus, the relationship between the 

variable aspects of the process and the end product quality is much easier to define. In the 

production of protein therapeutics there are a number of factors which could explain why 

application of QbD is difficult such as, the complex structures and the need for purification 

of the target protein. However, although there have been difficulties in implementing QbD 

in this area, there is a belief among regulators and researchers that there is enough 

knowledge either currently available or that can be obtained through experimentation and 

modelling, which would elucidate the relationship between the bioprocess and the protein 

therapeutic quality, that allows for successful implementation of QbD (Rathore and Winkle, 

2009, Del Val et al., 2012, Junker et al., 2015). 

Implementation of QbD in the biopharmaceutical industry is believed to result in 

reduced process approval costs and time, lower regulator interference, and potentially lead 

to better optimisation and innovation, as bioprocesses can be developed based on the 

relationship between the variable aspects of the process and the end product quality 

(Kourti and Davis, 2012, Kumar and Gupta, 2015). As this relationship is defined by the 

understanding and application of scientific and engineering principles, the results of the 

process are easier to predict, and thus would decrease regulatory approval times and the 

cost of process development. The predictions would also lead to more efficient controls 
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systems, which would greatly reduce the possibility of the end product failing to meet an 

acceptable standard of quality. The information gathered during QbD implementation and 

the resulting lessening in regulatory approval steps would greatly contribute to 

optimisation and potential development of novel methods processing (Yu, 2008, Rathore 

and Winkle, 2009, Del Val et al., 2012, Rathore, 2016). 

2.1.3 Addressing PAT/QbD 

As a result of the drive to embrace and implement PAT and QbD to innovate 

bioprocess monitoring, there has been increased need to implement tools suitable for 

meeting the requirements of these initiatives. Tools that would meet the requirements of 

PAT and QbD for bioprocess monitoring would need to be capable of continuous real time 

monitoring of the variable factors, substrates, intermediates and products, within a given 

process. Given these needs, spectroscopic sensors offer a viable option for meeting the 

specific demands of both of these initiatives and provide a means for innovating bioprocess 

monitoring. 

2.2 Spectroscopic monitoring 

Spectroscopic sensors such as Near infrared (NIR), Mid infrared (MIR) (Figure 2.3) and 

Raman provide a number of substantial advantages in the monitoring and control of 

bioprocess. They can be integrated in-line and thus there is no need to remove samples 

from the process. These sensors can be miniaturized and multiplexed, and can also send 

data instantaneously. The most beneficial advantage of these technologies is that they can 

potentially monitor several analytes simultaneously and be used together to create a more 

comprehensive overview of the bioprocess, allowing for greater monitoring and control. 

However, in order to obtain the desired data, these techniques must be used in conjunction 
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with multivariate analytical techniques like, principal component analysis (PCA) and partial 

least squares analysis (PLA) (Landgrebe et al., 2010, Biechele et al., 2015, Glassey, 2016). 

 

Figure 2.3: Types of radiation and their approximate wavelength ranges within the 

electromagnetic spectrum. Adapted from; (Lourenco et al., 2012). 

 Spectroscopic sample analysis can be broken down into three main categories; off-

line, at-line, which is dependent on the location of the sensor to the bioreactor, and on-line 

(Figure 2.4) (Lourenco et al., 2012, Sales et al., 2015). 

 

Figure 2.4: Spectroscopic sampling approaches. Adapted from; (Lourenco et al., 2012) 

Off-line sampling is a destructive process, in that requires the removal of samples 

from the reactor for analysis. These samples are often then stored or pre-treated in some 

way before being transferred, to a separate analysis laboratory (Vaidyanathan et al., 1999). 

The main downside to this approach is the time period between removing a sample, until 

the analysis is completed. In regards to process control this lag period is not desirable, as 

the opportunity to correct any process deviations will have passed by the time the data 
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from the analysis has been gathered and the possibility of significant change within the 

removed sample (Sales et al., 2015). 

At-line sampling has a similar methodology to that used for off-line analysis. It also 

requires either manual or automatic removal of a sample from the bioreactor, but instead 

of transporting the removed sample to a separate analysis laboratory it is analysed using 

instrumentation nearby the bioreactor. At-line sampling offers a slightly faster analysis 

option than the off-line method, however the process is still destructive and has an 

undesirable time lag between sampling and analysis (Lourenco et al., 2012, Sales et al., 

2015). 

The final method, on-line, unlike the previous two methods, integrates sampling 

analysis into the process allowing near real time acquisition of process data. On-line can 

also be subdivided into either a, ex-situ (in-line) or in-situ configuration (Vaidyanathan et 

al., 1999, Lourenco et al., 2012, Sales et al., 2015) (Figure 2.5). 

 

Figure 2.5: On-line sample analysis – [A] Ex-situ (in-line) probe [B] In-situ probe. Adapted 

from; (Lourenco et al., 2012) 

Ex-situ, also called in-line, has the analysis probe outside of the bioreactor vessel with a 

constant flow of the culture diverted through a flow cell for measurement.  An in-situ 

[A]                                   [B] 
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approach utilises a probe or sensor, inside the vessel itself, coming into direct contact with 

the culture. This strategy is regarded as the optimum method, as it allows for real time 

process analysis and does not require any removal of samples for measurement thus 

avoiding the risk of introducing artefacts in the sample (Vaidyanathan et al., 1999, Lourenco 

et al., 2012).  

2.2.1 NIR Spectroscopy 

The region of the electromagnetic spectrum that corresponds to near infrared is located 

between 780–2500 nm (Figure 2.3) and within this range a number of the functional groups 

of molecules have had their vibrational frequencies characterised. These molecular 

vibrations are characterised as a variation in either the length of the bond present, called 

stretching, or a change in the angle of the bond, called bending. The stretching or bending 

of the bond can either be symmetrical, which is IR inactive, or asymmetric, which is IR 

active. For absorption to take place the asymmetric stretching and bending has to lead to a 

change in the molecule’s polarity, a dipole moment. This change and subsequent 

absorption are dependent on three main factors, the number, size and orientation of atoms 

(Workman and Weyer, 2012). Due to a high dipole moment of the vibrations arising from 

covalent bonds, and the presence of such bonds in nearly every biological molecule, they 

form the foundations of the data acquired from NIR and thus NIR can be used in the 

monitoring of bioprocesses (Scarff et al., 2006). 

Implementation of NIR utilising in situ fibre-optic probes has been shown to 

produce excellent results when used for the characterising and optimisation of process 

conditions, and in the monitoring of substrates, intermediates and products, and 

elucidation of the mechanisms for multicomponent mixtures (Mcfearin et al., 2011, Zhao et 

al., 2015). These NIR probes offer a few advantages, one example is the ability to provide 
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comprehensive non-destructive measurements as the probe is in situ, so no samples needs 

to be removed from the process stream (Genkawa et al., 2012). Another advantage 

provided by fibre-optics is that they exhibit high light transmission and can hence be much 

longer in length than other materials and this advantage allows for the spectrometer and 

the light source to be located away from the processing area. The use of fibre-optics also 

allows for multiplexing of probes to different process reactors connected to a single 

spectrometer, thus eliminating the need for multiple systems (Roychoudhury et al., 2007, 

Beuermann et al., 2012).  

NIR is a useful technique for the gathering of real time reaction data, for enabling a 

high degree of product quality and reproducibility, providing modelling data and overall 

control of the process thus contributing to process optimization (Becker et al., 2007). As 

NIR is a relatively insensitive technique with weaker absorbance than that of MIR, 10-100 

times weaker, thus it enables samples to be directly analysed (Scarff et al., 2006, Tamburini 

et al., 2014). Initial application of NIRS for bioprocess monitoring was carried out by Karl 

Norris in the 1980’s and he applied it in solid-state fermentations for quantitative analysis 

(Hakemeyer et al., 2012). Since then NIRS has been thoroughly applied in many industries 

as means of process monitoring and quality assurance for initial materials, intermediates 

and end product testing (Scarff et al., 2006, Vanarase et al., 2010, Sinelli et al., 2011, Grassi 

et al., 2014, Glassey, 2016, Murphy et al., 2016).  

While the limits of detection for NIR may be in the g/L range, this can be further 

lowered to approximately 100 ppm by investigating the effects target components have on 

the NIR spectra, through the use of multivariate data analysis techniques. (Hakemeyer et 

al., 2012, Tamburini et al., 2014). As multivariate data analysis on the NIR spectrum bases 

the predictions using all of the process factors this allows for, more accurate process 
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monitoring, predictions on batch quality, fault detection and hence process optimisation 

(Hakemeyer et al., 2012). Some of the most common pre-processing methods used to 

analyse the data include, centering of data, baseline correction and the scaling of the data 

in order to improve the predictability of the evaluation method, to name a few (Beutel and 

Henkel, 2011).  This analysis is essential in industry as the benefits previously mentioned 

can lead to reduction in delays and allow any preventive measures to be taken far more 

quickly than with other monitoring techniques, thus make the process more cost-effective 

(Scarff et al., 2006). 

2.2.2 MIR Spectroscopy 

Unlike the NIR region which is characterised by only overtones and vibration combinations, 

the mid infrared region, 2500–25000 nm (Figure 2.3), is characterised by excitations of 

fundamental molecular vibrations. The spectra obtained from MIR also differ from NIR, in 

that it produces well defined peaks for the scanned material (Landgrebe et al., 2010, Sales 

et al., 2015). 

Within the MIR spectra there are four regions which each correspond to specific 

stretches (Table 2.1). Region 1 is associated with fatty acids and within Region 2 there are a 

few stretching bands, the first of which is the lipid based C=O stretching band. The next 

bands are those which are associated with proteins and peptides. These bands are 

important for interpreting the structural components of the molecule based on the α-helix, 

β-sheet and random coil conformations. Region 3, corresponds to a number of cellular 

components, such as phospholipids and nucleic acids and finally, Region 4 of the spectra 

relates to the structure of polysaccharides (Lu et al., 2011). 
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Table 2.1: MIR regions and their associated structural features. 

Region of the 
Spectrum 

1 2 3 4 

Spectral 
Location (cm−1) 

3,000–2,800 

1,800–1,500 
(specific bands) 

[i - 1,740] 
[ii - 1,650] 
[iii - 1,550] 

1,500 and 1,200 1,200 and 900 

Structural 
Feature 

aliphatic C―H 
stretches 

i – lipid based 
C=O stretching 

ii – amide I 
iii – amide II 

phospholipids 
and nucleic acids 

polysaccharides 

 

Implementation of MIR for the quantification of multiple components in aqueous 

solutions has advanced greatly in the past decade to become an on-line technology.  This 

can in part be related to attenuated total reflection (ATR) sample presentation mode and 

the application of the mathematical technique, Fourier transformation (FT). Fourier 

transformation minimises the issues that are associated with signal stability and 

measurement noise. FT-MIR which utilise interferometers as opposed to monochromators, 

is more beneficial for quantification of concentrations of components in complex mixtures, 

as opposed to NIR.  Overall the application of FT-MIR has made it easier for spectra 

acquisition of multiple compounds in complex aqueous mixtures (Roychoudhury et al., 

2006b, Schenk et al., 2007). 

There are however some limitations of MIR, firstly as infrared absorption requires a 

change in dipole moment to occur and certain polar groups have strong stretching 

vibrations that can interfere with the spectra. One example of a polar molecule that has a 

strong infrared absorption is water and thus when analysing the spectra this interference 

needs to be compensated for. Another limitation of MIR is the limit of detection is 

potentially not low enough to allow for quantification of low levels of analytes in contrast 
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to techniques like immunochemical analysis (Lu et al., 2011, Foley et al., 2012). Finally as 

with NIR, one method to quantitatively analyse the data is by the application of 

multivariate data analysis, such as Partial Least-Squares (PLS). MIR is potentially capable of 

producing data on large range of products and offers an excellent method for the 

qualitative analysis of compounds (Schenk et al., 2007, Capito et al., 2013). 

The advantages that MIR offers, high absorption capacity and well defined peaks, 

are what make it an invaluable technique for the monitoring of biological processes (Capito 

et al., 2015b). But the development and application of FT-MIR in combination with 

multivariate data analysis techniques to produce process models, allowing identification 

and quantification of different analytes, is why MIR has increasingly been applied as a 

bioprocessing monitoring technique (Roychoudhury et al., 2006b, Capito et al., 2013). 

2.2.3 Raman Spectroscopy 

Raman spectroscopy utilises the scattering of photons as opposed to NIR and MIR which 

rely on absorbance of light (Paudel et al., 2015). When a photon of light interacts with a 

molecule, it can result in the induction of a transition in the energy states, which causes the 

molecule to be in an excited vibrational state. The majority of photons that are scattered by 

the molecule have the same energy as the initial light ray that strikes it and this is referred 

to as Rayleigh (elastic) scattering. However a minority of the scattered photons possess a 

different frequency and this is referred to as Raman (inelastic) scattering (Ashton and 

Goodacre, 2011, Zhao et al., 2015). As Raman scattering is dependent on a change in the 

dipole moment of functional groups during molecular vibrations, S―S and C―C bonds 

which have nonpolar groups have strong Raman bands (Kneipp and Kneipp, 2006, Lu et al., 

2011). Depending on the frequency of the Raman scattered photon it can be classed as 

either Stokes scattering, where it is less than the incident frequency, or anti-Stokes 
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scattering, where it is greater than the incident frequency. Stokes scattering is the most 

common form measured and it provides greater Raman intensities (Ashton and Goodacre, 

2011) (Figure 2.6). 

 

Figure 2.6: Energy level diagram of Raman and Rayleigh scattering. Adapted from; (Ashton 

and Goodacre, 2011). 

Raman offers a number of advantages over the infrared spectroscopy techniques 

for the monitoring of biological processes, as the interference of water on the spectra is 

reduced. Over the same wavenumber range, Raman produces more detectable spectral 

features than that of infrared. Bands produced from Raman have a tendency to be 

narrower than those in the MIR range and this is due to the increased specificity offered by 

Raman lasers/detectors. The potential analytical wavelength range and laser resources are 

also greater for Raman than for the infrared technologies (Lu et al., 2011, Zhao et al., 2015). 

Another property that makes Raman a useful probe in the monitoring of bioprocesses is 

that there is comprehensive structural information produced within the spectra. When 

monitoring proteins in an aqueous medium, the orientation of hydrogen bonds and the 

interactions of side chains can be determined by monitoring the process environment and 

this information can subsequently be used to determine the stability of the protein. Further 
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combining the side chain stability data with the conformational details of secondary 

structure elements, makes Raman an exceptional tool for monitoring of biological systems 

(Ashton and Goodacre, 2011). Finally, bioprocess monitoring using Raman, as with NIR and 

MIR, also offers the advantage of no sample preparation being required and can be applied 

to aqueous systems with ease (Abu-Absi et al., 2011). 

The main obstacle to the application of Raman spectroscopy in monitoring 

bioprocesses is the fluorescence produced by many biological molecules which can obscure 

the Raman spectra. Even if the fluorescent intensity is not great, Raman spectrometers are 

designed to detect weak signals and the resulting effect of this detection is that Raman 

bands will seem like small, narrow peaks (Murphy et al., 2016).  However there are a 

number of solutions to this issue, one solution although not necessarily viable is to remove 

the fluorescent compounds from the sample, however if the fluorescence is from the 

compound of interest this is obviously not viable (Beutel and Henkel, 2011). A more viable 

solution is to shift the excitation wavelength to 785 nm or greater, although this reduces 

the fluorescence it can decrease the efficiency of the scattering in contrast to the 532-633 

nm range. The most viable and beneficial solution is to use wavelengths in the deep UV, 

180-260 nm, as excitation in this range completely removes fluorescence and can also 

increase the scattering signal by a factor of 103-105, compared to normal Raman scattering 

(Ashton and Goodacre, 2011, Paudel et al., 2015). 

The continuing developments in miniaturisation of equipment, reduction in costs 

and improving software capabilities, are all contributing to the advance of Raman 

spectroscopy. Overall due to these advances, Raman has been used extensively for a wide 

variety of applications and appears to be the most promising spectroscopic method for in-
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line analysis of complex cell culture systems (Ashton and Goodacre, 2011, Abu-Absi et al., 

2011, Singh et al., 2015). 

2.3 Chemometrics and Data Analysis 

Chemometrics is the application of mathematical and statistical methods to extract and 

analyse information derived from a combination of reference and spectral data (Murphy et 

al., 2016). The spectroscopic data collected by NIR, MIR and Raman can contain information 

about numerous components from within the sample matrix. The effects and correlations 

of these various components on the resulting spectra generally render univariate analysis 

techniques unsuitable, thus multivariate analysis methods must be used (Rathore et al., 

2011, Rathore and Singh, 2015). 

2.3.1 Principal Component Analysis 

One method of multivariate data analysis that can be used to reduce the complex spectral 

data collected from NIR and MIR is principal component analysis (PCA). The basic concept 

of PCA is to describe the data collected using only abstract variables. These variables are 

known as Principal Components (PCs), which are representative of those features which 

have the biggest influence on the process (Abdi and Williams, 2010). 

The most basic means of describing the points of a dataset is by expressing them as 

two-dimensional X and Y co-ordinates. However PCA can be used to further reduce the 

dimensionality into a single axis with each point represented as a linear combination of the 

original variables. Principal component one (PC1) is inserted through the data, which 

describes the maximum variance observed within the samples, and the initial points from 

the data are projected onto PC1. All subsequent PCs, e.g. PC2, PC3, etc., are positioned 

orthogonal to the previously plotted PCs and describe increasingly less observed variance in 
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the dataset. The result of using PCA is that the total variance present in the data, both 

substantial and random noise, is displayed as a series of PCs and the number of which 

normally equals the number of process variables (Figure 2.7). PCs representative of random 

noise can be disregarded, thus reducing the dataset further to include only those PCs that 

describe significant variation in the data (Miller and Miller, 2000, Gemperline, 2006a). 

 

Figure 2.7: Diagrammatic Representation of PCA – [A] data points [B] PC1 inserted showing 

maximum variance with data point projections [C] data points projected onto PC1 [D] PC2 

plotted orthogonally to PC1 with initial data point projections [E] data points projected 

onto PC2. 

PCA generates two small matrices and an error matrix from the original data 

matrix. One matrix is the scores and this provides information about the samples and how 
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they relate to one another. The other matrix, the loadings, is representative of how the 

measured variables are related. In regards to spectral data the scores relate to the sample’s 

spectra and the loadings are representative of the spectral regions causing the variation. 

Each unique source of variance within the original data matrix is characterised by the total 

of its constituent principal components, which have their own scores and loadings matrices 

(Gemperline, 2006a, Abdi and Williams, 2010). 

2.3.2 Spectral Pre-processing 

The application of pre-processing spectral data is an essential component of chemometrics 

modelling. The intention of pre-processing is to remove physical phenomena in the spectra 

thus enhancing the quality of the data and subsequently improve the final model thus 

improving the accuracy of the predicted analyte concentrations. Two of the most widely 

used pre-processing techniques are, mean centering of the data and Savitzky-Golay 

derivation (Miller and Miller, 2000, Gemperline, 2006a, Rinnan et al., 2009). 

2.3.2.1 Mean Centering 

Mean centering data works by firstly using the average of the total values for each column, 

which in the case of spectral data represents a wavelength. Then this value is subtracted 

from the value of each row of that column, which is representative of the spectrum of a 

sample. The points within the data matrix therefore have no associated mean value, thus 

dataset origin point is shifted (Wise and Kowalski, 1995, Gemperline, 2006a, Varmuza and 

Filzmoser, 2016). 

2.3.2.2 Savitzky-Golay Smoothing & Derivation 

The Savitzky-Golay smoothing and derivation is a polynomial smoothing technique, which 

uses both a smoothing step and derivation on the spectral data. The aim of the smoothing 
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step is to enhance the signal while minimising the effects generated by background noise. 

Spectral smoothing is carried out firstly by taking a single point in the spectrum and 

examining a region surrounding it. From this examination a mean value is calculated for the 

region and substituted in place of the original value. This process is then is then repeated 

for each point across the spectral dataset (Zhang et al., 2005, Gemperline, 2006a, Varmuza 

and Filzmoser, 2016). 

Application of derivatising the spectral data seeks to enhance spectral features and 

reduce any baseline errors, through narrowing and sharpening the spectral peaks. Similar 

to the smoothing step, derivation places a narrow window around the data and fits a 

polynomial expression within it. Coefficients from the polynomial expression are used to 

calculate the derivative of the given data point. Like the smoothing step, once a point has 

been determined the window is moved forward repeated across the data (Wise and 

Kowalski, 1995, Gemperline, 2006a). 

2.3.2.3 Multiplicative Scatter Correction (MSC) 

Multiplicative scatter correction (MSC) is a spectral pre-processing technique that was 

initially characterised and then developed in the 1980s by; (Martens et al., 1983, Geladi et 

al., 1985), and commonly used in the initial stages of processing data for model 

development (Afseth and Kohler, 2012). MSC is a row-oriented transformative technique 

which normalises certain effects from spectral data such as the scaling and offset (baseline) 

effects. The application of MSC is a two-step process the first of which is an estimation of 

the correction coefficients and secondly the correction of the original spectrum, which are 

represented by the following equations (Figure 2.8). 
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[A]    𝒙𝑜𝑟𝑔 = 𝑏0 + 𝑏𝑟𝑒𝑓,1 ∙ 𝒙𝑟𝑒𝑓 + 𝒆 

[B] 𝒙𝑐𝑜𝑟𝑟 =
𝒙𝑜𝑟𝑔−𝑏0

𝑏𝑟𝑒𝑓,1
= 𝒙𝑟𝑒𝑓 +

𝒆

𝑏𝑟𝑒𝑓,1
 

[C] Constituent Definition 

 𝒙𝑜𝑟𝑔 Original measured sample spectra  

 𝒙𝑟𝑒𝑓 Reference spectra used in data preprocessing 

 𝒆 Un-modelled part of 𝒙𝑜𝑟𝑔 

 𝒙𝑐𝑜𝑟𝑟 Corrected spectra 

 𝑏0 + 𝑏𝑟𝑒𝑓,1 Scalar parameters that vary for each sample  

 

Figure 2.8: Multiplicative scatter correction equations – [A] Estimation of the correction 

coefficients [B] Recorded spectrum correction [C] Equation legend (Rinnan et al., 2009) 

The reference spectra for the equation can be derived from either the average 

spectrum of the calibration set or a generic reference spectrum. To determine the scalar 

parameters, sample spectrum have to first be plotted against a reference spectrum. The 

next step is to fit a line through the plotted points using least-squares regression fit through 

the plotted data, with the resulting intercept and slope of the line corresponding to the 

scalar parameters. Transformed MSC data has significantly reduced noise and is more linear 

when compared to the original data. The literature demonstrates that MSC can be utilised 

as spectral pre-processing technique across a range of platforms and processes, such as 

food/beverages, agriculture and biopharmaceuticals (Maleki et al., 2007, Rinnan et al., 

2009, Clavaud et al., 2013, Mou et al., 2014). 

2.3.2.4 Standard Normal Variate (SNV) 

Standard normal variate (SNV), is a transformative normalisation technique similar to MSC 

(Figure 2.9) and has been demonstrated to be suitable when utilised in the pre-processing 

stage of some spectral data  (Syvilay et al., 2015). 
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[A]  𝒙𝑐𝑜𝑟𝑟 =
𝒙𝑜𝑟𝑔−𝑎0

𝑎1
 

[B] Constituent Definition 

 𝒙𝑐𝑜𝑟𝑟 Corrected spectra 

 𝒙𝑜𝑟𝑔 Original measured sample spectra  

 𝑎0 Average value of the sample spectrum to be corrected 

 𝑎1 Standard deviation of the sample spectrum 

 

Figure 2.9: Standard normal variate equations – [A] SNV correction [B] Equation legend 

(Rinnan et al., 2009) 

As stated SNV signal-correction works in a similar format to that utilised in MSC, 

however the main difference between these two methods is that a reference spectrum is 

not utilised in the dataset pre-processing. The alternative is that each sample undergoes 

the transformation individually, as opposed to applying the transformation to the whole 

data set at once (Guo et al., 1999, Rinnan et al., 2009, Varmuza and Filzmoser, 2016). 

2.3.3 Partial Least Squares Modelling 

Partial least squares (PLS) is a regression algorithm, used in process modelling which aims 

to correlate the spectral variance to measured analyte concentrations. It achieves this by 

integrating the identification of maximum spectral variation from principal component 

analysis (PCA), with the correlation of observed spectral features to known concentrations 

of analytes from multiple linear regression (MLR) (Rathore et al., 2014). There are two 

methods of PLS that can be performed, PLS1 and PLS2. PLS1, constructs individual 

calibration models for each response (Y) variable. Alternatively PLS2, constructs only a 

single calibration model which incorporates all of the response variables simultaneously 

(Gemperline, 2006b). 

When PLS is utilised it decomposes the data blocks into the corresponding scores 

and loadings matrices using the following formulas (Figure 2.10). 



Page | 29  
 

𝑋 = 𝑇𝑃𝑇 + 𝐸 

𝑌 = 𝑈𝑄𝑇 + 𝐹 

Figure 2.10: PLS decomposition equations 

The X and Y matrices are respectively composed of, the T and U which are 

representative of the scores, while the loadings correspond to PT and QT and E/F make up 

the residual matrices, which are approximated to be zero by the algorithm.  However 

because the above equations calculate the latent vectors of the X and Y blocks 

independently, this can result in them only having a weak relation to one another. But this 

can be improved by calculating what is termed the ‘inner relationship’ between the scores 

of the X (T) and Y (U) blocks, by using a predictive formulation that also includes the matrix 

of the regression coefficients (W) (Figure 2.11) (Trygg and Wold, 1998, Abdi, 2003, 

Gemperline, 2006b). 

𝑈 = 𝑇𝑊 

Figure 2.11: ‘inner relationship’ PLS equation 

The advantage of utilising PLS over MLR for modelling is that it enables analysis of 

large numbers of predictor (X) variables which can be noisy or collinear, and can model 

multiple response (Y) variables at once  (Wold et al., 2001, Gemperline, 2006b, Rathore et 

al., 2014, Varmuza and Filzmoser, 2016). 

2.3.4 Evaluation & Validation of Models 

2.3.4.1 Calibration 

Overall quality of models is evaluated based upon the statistical values derived from the 

root mean square error of calibration (RMSEC), root mean square error of validation 

(RMSEV) and root mean square error of prediction (RMSEP) which should be as low as 
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possible. One indicator that a model has a good predictive ability is when the values for the 

RMSEC and RMSEP are similar. The value of the RMSEC is derived from a calculation of the 

standard deviation between the reference (actual) and spectroscopic (predicted) datasets, 

which are present in calibration dataset. This is calculated by using the equation in Figure 

2.12, with 𝑛 representing the number of samples and 𝑓 the number of factors utilised in the 

model. 

𝑅𝑀𝑆𝐸𝐶 =  √
∑ (𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2𝑛
𝑖=1

𝑛 − 𝑓 − 1
 

Figure 2.12: Root mean square error of calibration (RMSEC) calculation 

Another indicator of good model predictive ability between the reference and 

predicted values is the coefficient of determination (R2) values. R2 values closest to one 

indicate that the two datasets are well correlated, with the data points well aligned to the 

straight line of the model (Roychoudhury et al., 2006a, Kamruzzaman et al., 2012, Sileoni et 

al., 2013). 

2.3.4.2 Internal Validation 

The first stage of truly assessing model predictive performance is carrying out an internal 

validation, expressed as the RMSEV. One of the most commonly utilised internal validation 

techniques is leave one out cross validation. This technique operates by constructing 

models from the calibration data, where initially the first sample excluded and is then 

predicted. The strategy is then repeated for each sample separately until all of the 

calibration dataset samples have been tested (Brereton, 2007). The downside to this 

technique is that the data used to test the model was initially included in its construction. 

Therefore the model isn’t tested as thoroughly as it would against data not with the initial 
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calibration dataset. So even with the internal validation statistics indicating good predictive 

ability the truest test of the model comes from an external validation. 

2.3.4.3 External Validation 

External validation is carried out by introducing data (validation dataset) not incorporated 

into the initial calibration dataset, which is where the RMSEP is used to indicate predictive 

ability of the model. This is expressed by the function in Figure 2.13, representing the 

standard deviation between the reference (actual) and validation (predicted) datasets and 

𝑛 which corresponds to the number of samples from the validation dataset (Roychoudhury 

et al., 2006a, Sileoni et al., 2013). 

𝑅𝑀𝑆𝐸𝑃 = √
∑ (𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2𝑛
𝑖=1

𝑛
 

Figure 2.13: Root mean square error of prediction (RMSEP) calculation 

2.3.5 Design of Experiment 

As previously outlined the purpose of chemometrics, is to reduce or remove data variation 

in the data prior to the construction of process models, through the use of various 

preprocessing techniques. However the selection of preprocessing techniques has 

historically been based on previous experience and knowledge. While this approach will 

most likely produce an acceptable model, it is most likely not to be the optimal approach. 

This is where a Design of Experiment (DoE) strategy can be applied to the selection of 

preprocessing techniques. 

There are two basic principles by which DoE functions, firstly it systematically tests 

the effects that the predefined levels of the preprocessing techniques (variables) have upon 

the data (i.e. the RMSE value of either calibration or validation). Secondly, it also assesses 
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the interactions that each variable has on each other and the subsequent effects this has on 

the RMSE value. An example of spectral preprocessing using DoE can be seen in Figure 2.14 

which utilises the DoEman software (CPACT, University of Strathclyde, Department of Pure 

& Applied Chemistry) (Flåten and Walmsley, 2003, Gerretzen et al., 2015, Gerretzen et al., 

2016). 

 

Figure 2.14: DoEman example plot. The main diagonal plots of the DoE matrix reflect main 

effects, off diagonal plots represent subsequent interaction between variables. Levels of 

the variables (columns) correspond to the different lines in the plots. Levels of the rows are 

found along the abscissas in the plots. Adapted from; (Flåten and Walmsley, 2003). 

2.4 Data Fusion 

Data fusion is a division of chemometrics, in which data from various analysis techniques is 

collected and analysed simultaneously. The aim of this technique is to extract more 

qualitative and quantitative information, than would be through individual analysis. In 
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terms of data modelling, application of data fusion has a number of advantages over 

individual analysis, such as reduction in errors and improvements in detection of previously 

obscured variables. These benefits can ultimately lead to better model predictions, when 

the data is subsequently modelled (Dearing et al., 2011, Khaleghi et al., 2013, Silvestri et al., 

2014). The ‘simplest’ form of data fusion is termed as low-level data fusion, which involves 

concatenation of the different datasets. The fused dataset is scaled, and then undergoes 

the normal preprocessing and modelling (Forshed et al., 2007, Dearing et al., 2011). 

2.5 Chinese Hamster Ovary (CHO) Cells 

Most of the current production of biopharmaceuticals is carried out using mammalian cell 

cultures. This is because they are capable of producing the proteins which possess the 

required posttranslational glycosylations, and are nearest in structure to authentic human 

proteins. These traits subsequently decrease the chance of consumers having an 

immunogenic response to the drug and deliver greater stability and efficacy of the drug (Del 

Val et al., 2012).  

One particular cell line that has been extensively used in the industrial production 

of biopharmaceuticals is the Chinese Hamster Ovary (CHO) cell line, initially isolated in the 

1950’s by Theodore Puck (Reichert, 2012, Bandaranayake and Almo, 2014). Production of 

the earliest clinically approved recombinant protein from mammalian cells, tissue 

plasminogen activator (tPA), was done using CHO cells (Kaufman et al., 1985). Since then, 

use of CHO cells for production of therapeutic proteins is estimated to make up more than 

seventy per cent of the global market, with an annual sales value of one hundred billion U.S 

dollars and in the European Union, 47 out of 77 therapeutic EMA approved glycoprotein 

drugs are produced by CHO cells (Jayapal et al., 2007, Del Val et al., 2012, Bandaranayake 

and Almo, 2014).  
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Some significant developments in CHO cultures have arisen through media 

optimisation approaches, such as feeding strategies. This has in some cases led to increased 

antibody product yields ranging from 2-6 g/L. As a result the production of recombinant 

proteins at an industrial scale is largely carried out using fed batch systems. This is where 

concentrated feeds are introduced in small quantities over a period of time to improve cell 

growth, viability and production (Huang et al., 2010, Bandaranayake and Almo, 2014). The 

adaptability of CHO cells is in part what allows for transition into chemically defined serum 

free media and growth at high densities, but this adaptability does have disadvantages. One 

disadvantage of note is that each desired product requires the selection of a clone or clones 

that exhibit specific properties, however this selection is not without fault as phenotypic 

drift can occur (Jadhav et al., 2013). 

CHO cells may consume certain nutrients such as glucose, at a rate which is greater 

than their stoichiometric needs and then produce lactate and ammonia as waste products 

(Dean and Reddy, 2013). The production of lactate has a detrimental effect on both growth 

and production of monoclonal antibodies (mAbs) in CHO cell lines and a number of 

methods have been tested to limit this, such as reduction of glucose concentration (Gagnon 

et al., 2011). There are two distinct phases in CHO cell metabolism in a fed batch system 

the first of which is the growth phase. This phase is characterised by a relatively high rate of 

cellular growth and the production of lactate. The second phase is known as the stationary 

phase, in which the rate of cellular growth is reduced or has ceased and the production of 

recombinant proteins is increased (Dean and Reddy, 2013). 

One key adaptability advantage of CHO cell lines is their genomic variability, which 

has allowed for manipulation and subsequent isolation of mutant lines with beneficial 

phenotypes. Often these mutants are designed with a selection marker such as nutrient 

dependency thus making them desirable for the development of producer lines (Del Val et 
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al., 2012). There are three engineering strategies utilised for CHO cell line development, 

genetic engineering, cellular engineering and metabolic engineering (Datta et al., 2013).  

 The first strategy for CHO cell line development, genetic engineering, is where a 

specific gene is expressed for the production of the target product. This approach has a 

number of steps, firstly the target gene is cloned into an expression-vector. Next the vector 

is transfected and integrated into the CHO cells. Finally the most stable clones are selected 

and the expression level is optimised by gene amplification. (Jayapal et al., 2007, Walsh, 

2010, Datta et al., 2013). 

Cellular engineering is performed to alter phenotypes for improved growth and 

productivity (Datta et al., 2013). The goal of this strategy is to optimise normal cellular 

processes, which can be achieved by engineering the cells to have a decreased production 

of lactate, resistance to apoptosis and improved glycosylation patterns (Jeon et al., 2011). 

There are a number of methods by which the cellular processes of CHO can be engineered, 

one of which is utilising microRNAs (miRNAs) to down-regulate gene expression of groups 

of genes. These miRNA are small non-coding RNA molecules which carry out the down-

regulating of genes by binding messenger RNA (mRNA) and thus inhibit translation of the 

gene protein (Datta et al., 2013). 

The final method for CHO cell engineering is metabolic engineering, which is used 

for the production of novel products. In order to achieve this, specific proteins in a 

metabolic pathway must be overexpressed and/or down-regulated (Wong et al., 2006, 

Datta et al., 2013). An example of this method was employed in the investigation into the 

feasibility of producing Heparin. This was done by exploiting metabolic pathways present in 

the CHO cells similar to that involved in Heparin production (Baik et al., 2012).  

The drive to improve production through CHO cell engineering resulted in a 

collaboration between University of Minnesota and the Bioprocessing Technology Institute 
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of Singapore in 2002, to sequence the genome of a number of CHO cell line. From this a 

subsequent sequencing study was established between the Consortium on Chinese 

Hamster Ovary Cell Genomics with the Society for Biological Engineers (SBE), whose aim 

was to identify specific genetic markers correlated to increased productivity 

(Bandaranayake and Almo, 2014).  

2.6 Monoclonal Antibodies 

2.6.1 Background 

In 1975, Georges Köhler and César Milstein published a method for producing a novel 

hybridoma, a hybrid cell line combining a myeloma cell and an antibody-producing B cell. 

This new cell line was able to not only produce high volumes of specific antibodies, 

monoclonal (mAbs), but also be grown in culture (Galluzzi et al., 2012, Liu, 2014, Skolnick, 

2016). 

Various sectors have had a massive impact with the advent of mAbs such as, clinical 

and medical research. There are two main reasons behind the impact of mAbs firstly, the 

high affinity selective binding ability, which allows two of the same antigen types to be 

bound simultaneously. The second is the increased stability that they display both, in vivo 

and in vitro.   In comparison to polyclonal antibodies, derived from immunised animal 

serum, mAbs have increased specificity and reduced risk of contamination. As a result of 

this mAbs have also improved numerous diagnostic areas, such as immunohistochemistry 

and immunofluorescence (Galluzzi et al., 2012, Ecker et al., 2015, Skolnick, 2016, Treacy 

and Knight, 2016). 

Despite the advantages that mAbs provide, with their increased use some 

disadvantages have been highlighted, particularly in relation to their complexity. The 
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extensive cloning required for production of Immunoglobulin G (IgG) mAbs with specific 

glycosylation patterning, have been shown to produce low titres initially and thus require 

more resource commitment to optimise the production process.  Some of other issues 

associated with mAbs include: prolonged half-life, which is undesirable in some 

applications, and complex engineering for designing specific binding sites on the mAb 

(Razinkov et al., 2015). 

With the advent of monoclonal antibodies, from the Immunoglobulin G (IgG) 

family, they now represent one of the fastest growing biopharmaceutical products in terms 

of both, moving into the phase three clinical trials and subsequently gaining market 

approval (Liu, 2014, Reichert, 2014, Razinkov et al., 2015). As a result of this development, 

the annual global sales for mAB based therapies is estimated at $75 billion, with fourty-

seven mAbs currently approved in Europe the US for therapeutic use in humans for 

numerous medical issues and 300 mAb products in development (Liu, 2014, Ecker et al., 

2015).  

2.6.2 mAb Structure  

The structure of IgG mAbs (Figure 2.15) consists of four polypeptide chains of identical pairs 

of heavy and light chains linked with disulphide bonds. Each of the heavy chains is 

composed of three specific components: constant domains (CH1, CH2 and CH3), the hinge 

region which is linked to the disulphide bonds and a variable domain (VH). The light chains 

consist of two components; a constant (CL) and variable (VL) domain. IgG’s overall structure 

can be placed into two distinct regions: firstly the fragment antigen binding (Fab) region, 

which comprises the VL/CL domains of the light chain and VH/CH1 domains from the heavy 

chain. The second is the fragment crystallisable (FC) domain, which has the remaining CH2 

and CH3 domains from the heavy chain. The variable domains within the Fab region are 
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what mediate the specificity of mAbs to antigens. Variable domains can be subdivided into 

the complementarity-determining region (CDR), responsible for binding of the antigen to 

the mAb, and a framework region for contact between the CDR to the antigen (Buss et al., 

2012, Ordás et al., 2012, Treacy and Knight, 2016). 

 

Figure 2.15: IgG Monoclonal Antibody Structure. Adapted from; (Buss et al., 2012). 

2.6.3 Categories of mAbs 

There are four categories which that can be used to classify commercial mAbs, 

murine, chimaeric (murine/human), humanised and finally human (Figure 2.16). The first 

mAbs developed for clinical use were murine based, and as such resulted in a strong 

immunogenic response. In order to reduce the immunogenic response from murine mAbs, 

chimaeric and humanised antibodies were engineered to contain minimal animal based 

regions. Chimaeric antibodies are produced by, fusing the variable immunoglobulin (Ig) 

region of mouse antibody to the human constant Ig region. Humanised antibodies take the 

modification further, with the complementarity-determining regions (CDRs) of the chimeric 

mouse/human antibody were grafted into human antibody structure. The downside to 

humanised antibodies is that the engineering process is very time consuming, as it has to be 
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repeated for each desired antigen (Buss et al., 2012, Glassy and Gupta, 2014, Treacy and 

Knight, 2016). 

 

Figure 2.16: Categories of Monoclonal Antibody. Adapted from (Glassy and Gupta, 2014). 

2.7 Aims 

The main aim of this project is to look at approaches for progressing towards real-time 

monitoring and control of biomanufacturing processes, to this end application of the 

spectroscopic techniques NIR, MIR and Raman will be used at-line to construct process 

models. These techniques will be applied to CHO cell cultures for the purposes of 

monitoring key metabolites, cell density and product titre. The project will also focus on 

utilising low passage number cultures, to align with the needs of the industrial 

collaborators, and taking a DoE approach to spectral data preprocessing when forming the 

process models for each of the cell cultures. One other aspect that would be investigated 

would be the forming a single model from the combined data of all the techniques using 

data fusion. The models from each technique will be compared to the single “fused” model 

to determine which produces the lowest error of prediction. It is hypothesised that using a 

data fused model along with multiple analytical measurements, will result in a reduction in 

errors of prediction.  

Animal Chimaeric Humanised Human 

Constant 

Region 

Variable 

Region 
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 The potential impact and relevance of this project to the bioprocessing industry has 

three key aspects, firstly it aims to demonstrate the feasibility of triple spectrometric 

‘toolset’  in moving towards on-line real time monitoring, as a viable alternative to more 

traditional at- and off-line monitoring techniques. The potential from utilising these 

techniques would be the ability to monitor a process as it is happening in real-time and be 

able to intervene at the first instance of an irregularity thus ensuring the integrity of the 

end product. Secondly this research seeks to directly aid the biopharmaceutical industry by 

carrying out research in partnership with two leading companies. Finally the utilisation of 

data fusion in complex biological processes, on which to date there has been limited 

published data to the author’s knowledge, could in theory provide a more accurate means 

for developing real-time monitoring of biomanufacturing processes. Overall these aims are 

offering novel solutions to meet the demanding standards of the ever increasing bioprocess 

industry. 
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Chapter 3:                  

Materials & Methods 
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3.1 CHO Cell Lines 

There were three Chinese Hamster Ovary cell lines provided for use in this study, which 

have been recorded as producing varying titres of a human Immunoglobulin G (hIgG) 

monoclonal antibody (mAb), cB72.3 (Table 3.1). These cell lines were kindly provided by 

Lonza (Slough, UK). 

Table 3.1: Lonza CHO cell line predicted mAb production. Colour indicates the different 

concentrations of production, with the light to dark representing low to high. 

Cell Line 
Product Concentration (g/L) 

Batch Shake Flask 
Fed-batch Shake 

Flask 
Fed-batch 10 L 

Bioreactor 

124 0.3 1 1.5 

47 0.8 2 2 

42 0.5 2.5 3 

 

As the experimental design for this work was focused on lab scale bioreactor 

culturing with industrial relevance, CHO cell line 42 was chosen as its predicted product 

titre was the highest.  

3.2 Media & Feed Supplements 

All media and feed supplements used in this work are chemically defined and animal origin-

free, containing no hydrolysates, proteins or components which do not have a fully defined 

composition. These were selected for a number of reasons, industrial relevance, indicated 

use within the literature and also the interests expressed by the company supplying them, 

Thermo Fisher Scientific. This last point in particular was of great importance, as the 

industrial was interested in knowing the effects of low passage number cultures in these 

media. However all the specific composition of the media and supplements used were 
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confidential and not disclosed to the author. While overall composition of the three media 

was not known to the author some analysis indicated that initial glucose concentration was 

different across the three. The CD CHO medium contained the most starting glucose, while 

CD OptiCHO and Dynamis were more similar to each other ,but contained less than CD 

CHO. 

3.2.1 Media 

3.2.1.1 CD CHO 

GIBCO CD CHO Medium (Life Technologies Ltd., Paisley, UK) is designed for suspension 

culture of Chinese Hamster Ovary (CHO) cells and the production of recombinant proteins, 

in batch and fed-batch cultures. 

3.2.1.2 CD OptiCHO 

GIBCO CD OptiCHO Medium (Life Technologies Ltd., Paisley, UK) has been further 

developed from CD CHO for growth of CHO cells and has been shown to increase product 

titre in fed-batch cultures.  

3.2.1.3 Dynamis 

GIBCO Dynamis Medium (Life Technologies Ltd., Paisley, UK) has been designed to produce 

the highest cell densities and product titres in both batch and fed-batch cultures of the 

three GIBCO media. Dynamis has had the glucose concentration formulated in order to 

minimise negative effects of lactic acid accumulation. 

3.2.2 Feed Supplements 

These feed supplements are utilised to extend standard batch cultures, by feeding them 

with concentrated glucose and essential nutrients over time. 



Page | 44  
 

3.2.2.1 CHO CD EfficientFeed™ A Liquid Nutrient Supplement 

GIBCO CHO CD EfficientFeed™ A (EFA) liquid nutrient supplement (Life Technologies Ltd., 

Paisley, UK) is designed for a CD OptiCHO media fed-batch process. 

The feeding strategy utilised for the CD OptiCHO cell cultures was taken and scaled 

up from one described by (Reinhart et al., 2015a). They outline a feeding strategy utilising 

an IgG producing CHO cell line culture in flasks. The strategy required the addition of 10% 

v/v of EFA on days 3, 5, 7, 9 (40% total) to maintain the glucose concentration above 3 g/L. 

3.2.2.2 CHO CD EfficientFeed™ B Liquid Nutrient Supplement 

GIBCO CHO CD EfficientFeed™ B (EFB) liquid nutrient supplement (Life Technologies Ltd., 

Paisley, UK) is designed for fed-batch culture systems and is compatible with CD CHO 

culture media. 

The CD CHO cell cultures were fed utilising a strategy based on one described by 

(Barrett et al., 2012). They outline a feeding strategy utilising an IgG producing CHO cell line 

culture in a 5L bioreactor. To maintain the glucose concentration above 2 g/L, the culture 

was fed with 5.6% v/v EFB on days 3, 5, 7, 9, 11, 13, and 15 (39.2% total). 

3.3 CHO Cell Line Development 

The initial cell line vials provided by Lonza were in a CD CHO based freezing medium and 

labelled as passage number one, which formed the base for all further passage number 

development. The revival and seeding procedures that follow account for scaling through 

an initial passage number of four at the revival, through to the bioreactor at a final passage 

number of seven, for all processes. 
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3.3.1 Cell Banking 

CHO cell cultures were spun down at 1000 rpm for 5 min and the supernatant was removed 

(Thermo Fisher Scientific, UK, Model: Heraeus Megafuge 8R Centrifuge). To cryopreserve 

the resulting cell pellet at -80 ⁰C, ‘freezing’ medium composed of 90 % v/v CD CHO medium 

and 10 % v/v DMSO was added to resuspend the cells, to a final density of 1x107 cells/mL. 

The cells were evenly suspended by gently aspirating with a pipette, once this was carried 

out 1.8 mL of the suspension was transferred into cryovials. Vials were placed into a 

Nalgene ‘Mr Frosty’ (Sigma-Aldrich Company Ltd., Dorset, UK) container containing 

isopropanol, allowing gradual freezing of cells and minimising cellular damage, and frozen 

for a week at -80 ⁰C. Vials designated for the master cell bank were transferred to liquid 

nitrogen storage for long term preservation, while working cell bank cultures were 

maintained at -80 ⁰C.  

3.3.2 Cell Revival 

A CHO cell culture vial was thawed at room temperature, to reduce thermal shock, while a 

bottle of appropriate media supplemented with 1 mL /L 25 mM L-methionine sulfoximine 

(MSX) (Sigma-Aldrich Company Ltd., Dorset, UK) was warmed to 37 ⁰C. Once the culture 

was completely defrosted it was transferred to a falcon tube containing 10 mL of medium 

and spun down at 1000 rpm for 5 min (Thermo Fisher Scientific, UK, Model: Heraeus 

Megafuge 8R Centrifuge). The supernatant was removed and 10 mL of fresh medium was 

added to the cell pellet, then gently aspirated with a pipette to obtain a homogenous cell 

suspension. The cell suspension was then transferred to a 125 mL Erlenmeyer flask, with a 

vented cap and baffled base, and brought up to 30 mL using the media. Flasks were then 

incubated (Infors UK, Reigate, UK, Model: Minitron) at; 5% CO2, 37 ⁰C, 150 rpm and after 3 
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days of incubation flask contents were spun down at the previously stated parameters, the 

cell pellet was then resuspended in 30 mL of fresh media. 

3.3.3 Seeding Procedure 

The seed was developed from the initial revived culture in the appropriate media with the 

addition of MSX at the same conditions previously stated (Section 3.3.2), with cell density 

and viability calculated each day (Section 3.8.3). Once the culture reached a density of 

3x106 cells/mL, it was passaged and scaled up into a 250 mL Erlenmeyer shake flask, with a 

working volume of 150 mL and cell density of 0.3x106 cells/mL. This culture was again 

grown until it reached a density of 3x106 cells/mL and was scaled up into a 1 L Erlenmeyer 

shake flask, with a working volume of 300 mL until the cell density was 0.3x106 cells/mL.  

The seed was ready to be utilised in the bioreactor vessel when it reached a density of 

≥3x106 cells/mL. 

3.3.4 Production Procedure 

For both batch and fed-batch cultures, an initial seed density of 0.3x 106 cells/mL was used 

as the seed culture for the production vessel which was set up under the following 

conditions; pH 7, 40 % dO2, 37 ⁰C, 200 rpm. The aeration of the production vessels was 

maintained at 0.05 vvm and they were also supplemented with 0.1 ml/L of 10% Antifoam C 

(Sigma-Aldrich Company Ltd., Dorset, UK) when excessive foaming was observed. A 20 mL 

sample was taken every 24 hours for analysis, until the percentage viability was zero, at 

which point the run was ended. Feeding protocols for the fed-batch cultures, were unique 

to each process based on the basal media used (3.2.2). 
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3.4 Bioreactor 

3.4.1 Applikon Bioreactor System 

All experimental work was carried out using an Applikon bioreactor system consisting of a 7 

L glass bioreactor, ADI 1010/1025 controller units and gas analyser (Figure 3.1). 

 

Figure 3.1: Applikon Bioreactor System. [A] Bioreactor Vessel [B] ADI 1010/1025 [C] Gas 

Analyser 

3.4.1.1 Vessel 

The vessel used was an Applikon 7 L dished bottom autoclavable glass bioreactor with a 

working volume of 5 L. This bioreactor has a head plate consisting of numerous ports for 

sampling and addition of titrants, as well as the various probes (pH, temperature and 

dissolved oxygen). The stirring was maintained by a single Rushton turbine impeller, while 
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aeration was provided by a ring sparger and to control the temperature a silicone heating 

blanket was wrapped around the vessel (Figure 3.2) [Applikon Biotechnology, Tewkesbury, 

UK]. 

 

Figure 3.2: Applikon Bioreactor Vessel. [A] Motor [B] Gas Inlet [C] pH Probe [D] Condenser 

[E] Dissolve Oxygen Probe [F] Sampling Vial [G] Heating Jacket [H] Media & Feed Line [I] 

Base Line 

3.4.1.2 Applikon BioController ADI 1010 & Applikon BioConsole ADI 1025 

The controller is used to set, monitor and maintain the process variables of, pH, 

temperature, dissolved oxygen (dO2) and stirrer speed, throughout the course of the run 

[Applikon Biotechnology, Tewkesbury, UK, Model: ADI 1010]. The ADI 1025 is an actuator 
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console coupled with the BioController ADI 1010, which enables the regulation of gas flow, 

temperature control, the titrant pumps and finally the flow of cold water to the condenser 

(Figure 3.3). 

 

Figure 3.3: Applikon Control Units. [A] BioController ADI 1010 [B] Actuator Console ADI 

1025: (1) Air/O2 Rotameter (2) CO2 Rotameter (3) Heating Jacket Power Supply (4) Titrant 

Pump 

3.4.1.3 Off Gas Analyser 

Analysis of the respiratory gases was carried out using a, Tandem Off Gas Analyser. This 

monitors the oxygen (O2) uptake rate and carbon dioxide (CO2) evolution rate of the gases 

being fed to and removed from the fermenter, using polyurethane tubing (SHPI, Taiwan) 

(Figure 3.1 [C]).  
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3.4.2 BioXpert 

The BioXpert program is used in conjunction with Applikon bioreactors as a means of 

controlling processing set points and collecting process variable data. The program presents 

the data collected in either graphically or in a table and is exportable for further analysis 

[Applikon Biotechnology, Tewkesbury, UK]. 

3.5 NIR 

3.5.1 Foss 6500 

Near infrared spectral data was acquired using an at-line 6500 vis-NIR spectrophotometer 

(Foss NIRSystems, Maryland, USA) (Figure 3.4), with a spectral range of 1100 to 2500 nm 

and the spectral data gathered was displayed using Vision Near-Infrared Spectral Analysis 

Software (Foss NIRSystems, Maryland, USA, Version: 3.4). 

 

Figure 3.4: At-line 6500 vis-NIR spectrophotometer. Highlighted region indicates the 

internal cuvette holder where the air reference and cuvettes loaded with the sample are 

scanned. 
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The samples used (1 mL) were all liquid based and were analysed in a 0.5 mm 

pathlength cuvette in transmission mode, with air as a reference. Transmission mode was 

selected as the samples of medium and cell culture scanned were optically clear and not 

overly viscous. The cuvette was cleaned before and after each sample using 70% ethanol to 

remove any matter within the viewing pane, washed with distilled water to remove any 

ethanol and then dried to ensure no trace of water/ethanol remained to interfere with the 

results of the scan. Samples were pipetted, undiluted, into the cuvette until the viewing 

pane was filled and placed into the holder within the spectrophotometer. Thirty-two scans 

of the sample were carried out, as this was a common number of accumulations used in the 

literature, and averaged to produce the final spectra which was referenced against the air 

background. This process was performed in triplicate to provide the most accurate 

representation of the sample and the results were consolidated and exported to Matlab for 

analysis. 

3.6 MIR 

3.6.1 MB3000 FT-IR with ATR Diamond Probe 

The instrument that will be used to gather the MIR spectral data will be the at-line MB3000 

FT-IR (ABB Inc. Analytical Measurements, Quebec, Canada) with a ATR Diamond Probe (Art 

Photonics, Berlin, Germany) covering a spectral range of 900 to 1200 cm-1 (Figure 3.5). 
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Figure 3.5: At-line ABB MB3000 FT-IR system with ATR Diamond Probe. [A] MB3000 FT-IR 

unit with modified probe attachment [B] ATR Diamond Probe. 

To analyse the sample, a 3 mL undiluted volume was held in a 5 ml vial and the 

probe was lowered into the vial ensuring that there are no air bubbles present until the 

diamond was immersed in the sample. The probe head was cleaned before and after each 

sample using 70% ethanol and then washed with distilled water before being dried to 

ensure there was no trace of water/ethanol that might interfere with the results. As with 

the NIR (3.5) analysis all of the samples were scanned thirty-two times, then averaged and 

carried out in triplicate to ensure the most accurate result was obtained before being 

exported to Matlab for analysis. 
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3.7 Raman 

3.7.1 RamanRXN2 Analyzer 

The at-line RamanRXN2 Analyzer (Kaiser Optical Systems Inc., Michigan, USA) was used for 

Raman spectrometric analysis. This instrument utilises the Mk II Probe Head (Kaiser Optical 

Systems Inc., Michigan, USA) fitted onto an enclosed sample compartment (Kaiser Optical 

Systems Inc., Michigan, USA, Model: RXN-ESC) allowing at-line scanning of the samples at a 

wavelength of 785 nm over a spectral range of 100 to 3500 cm-1 (Figure 3.6). 

 

Figure 3.6: At-line RamanRXN2 Analyzer. Highlighted regions indicate [A] At-line 

RamanRXN2 Analyzer [B] at-line enclosed sample compartment [C] Mk II Probe Head 

The iC Raman software package (Kaiser Optical Systems Inc., Michigan, USA) was 

used to control the RamanRXN2 spectrometer and provide basic data presentation, it will 

also be used to communicate with other data analysis packages, such as Matlab. Samples 

were analysed by placing a Kimble™ scintillation vial containing a 5 mL undiluted sample 

into the enclosed sample compartment with the Mk II Probe Head attached and initiating 

the scanning. To ensure no interference from previous samples the probe and vial was 

cleaned with 70% ethanol, followed by distilled water and then dried, before and after each 
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sample was scanned. Samples were analysed in the same manner as was used for the 

previous spectroscopic techniques (3.5 & 3.6). 

3.8 Spectral Analysis 

3.8.1 Reference Spectra 

As is discussed in the results chapters the spectral regions focused upon were based on 

observations from both the published literature and upon previously performed 

experimental analysis on pure media as blanks and component samples. The following 

reference spectra represent the observations previously noted by the author. 

3.8.1.1 NIR Reference Spectra 

The initial NIR observations (Figure 3.7) indicated that in order to determine spectral 

regions of focus some basic processing was required to visualise the activity and reduce the 

effect of water upon the spectra. By applying a Savitzky-golay derivatisation to the data, 

clear activity in the regions of interest indicated by the literature(2200 to 2400 nm)  could 

be seen (Figure 3.8) (Chen et al., 2004, Goodarzi et al., 2015). 

 The observations demonstrate that while the three media used in this research 

have some similarities, in terms of specific peaks, there are also some subtle differences 

which are probably a result of the specific media compositions. In comparison the pure 

component spectra of glucose shares a similar overall structure to the three media, 

indicating the presence and influence of glucose on the spectra of the media. In contrast 

the distinct lactate peaks are absent in the pure media samples. When comparing the 

synthetic glucose/lactate mix NIR spectra to process samples (Chapter 4, 5 & 6) these 

appear to be similar in structure. As this specific spectral structure is only present when 
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both glucose and lactate are present, it can be used as a means to determine the 

concentrations of both metabolites in the process samples.  

 

Figure 3.7: Raw Reference NIR Spectral Data – Whole Spectra & Target Region. [A] Standard 

Whole Spectra [B] CD CHO medium [C] CD OptiCHO medium [D] Dynamis medium [E] Pure 

Component spectra of Lactate(Light Blue), Glucose (Dark Blue) & Glucose/Lactate mix 

(Darkest Blue)  
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Figure 3.8: Processed Reference NIR Spectral Data – Whole Spectra & Target Region. [A] 

Standard Whole Spectra [B] CD CHO medium [C] CD OptiCHO medium [D] Dynamis medium 

[E] Pure Component spectra of Lactate (Light Blue), Glucose (Dark Blue) & Glucose/Lactate 

mix (Darkest Blue). 

3.8.1.2 MIR Reference Spectra 

Previously performed MIR analysis on pure component glucose and lactate, at a 

wavenumber range of 900 to 1200 cm-1 was used to initially identify the spectral signals of 

interest (Figure 3.9), the results of which correlated to those region identified by the 

literature (Rhiel et al., 2002, Lu et al., 2011). This analysis was carried out on a Zinc Selenide 

(ZnSe) trough plate Thermo Nicolet AVATAR 370 FTIR system. As this system was not 
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available at the time of the present study, as it needed repairs, the system outlined in 

section 3.6.1 was used and the previous data generated from the AVATAR 370 FTIR system 

was utilised as a guide for further analysis. In contrast to the previous system, the current 

system used in this study didn’t display any particular signal at the previously identified 

regions (Figure 3.10). However by applying the DoE strategy to the spectral preprocessing, 

it was hoped that the previously identified signals would be elucidated in the data from the 

current MIR system.  

 

Figure 3.9: Thermo Nicolet AVATAR 370 FTIR Raw Reference Spectral Data of Target Region. 

[A] Pure Component spectra of Glucose [B] Pure Component spectra of Lactate  
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Figure 3.10: At-line ABB MB3000 FT-IR Raw Reference MIR Spectral Data – Whole Spectra & 

Target Region. [A] Standard Whole Spectra [B] CD CHO medium [C] CD OptiCHO medium 

[D] Dynamis medium [E] Pure Component spectra of Lactate (Light Blue) & Glucose (Dark 

Blue) 

3.8.1.3 Raman Reference Spectra  

 The Raman analysis (Figure 3.11) indicated that all three media had some spectral activity 

in the region the literature indicated glucose was present (1100 to 1150 cm-1) (Mehdizadeh 

et al., 2015, Singh et al., 2015). That these peaks were of varying intensities also confirmed 

previous knowledge of the variance of starting glucose concentration between the media.  

The pure component glucose spectral also showed activity in the same region as the media, 
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while pure component lactate activity was observed in the region highlighted by the 

literature (830 to 860 cm-1).   

 

Figure 3.11: Raw Raman Reference Spectral Data – Whole Spectra & Target Regions. [A] 

Standard Whole Spectra [B] CD CHO medium [C] CD OptiCHO medium [D] Dynamis medium 

[E] Pure Component spectra of Lactate (Light Blue) & Glucose (Dark Blue) 

To calibrate the instrument and determine the optimal focal point for sample analysis, 

cyclohexane was used as a reference due to its distinct and easily identifiable Raman 

spectral signature (Figure 3.12).  
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Figure 3.12: Raw Raman Cyclohexane Reference Spectral Data 

3.8.2 Matlab 

All spectral data was analysed using the Matlab analysis software version R2012b (Natick, 

MA, USA), which included the additional statistical processing ‘toolboxes’ for PCA, PLS and 

DoE analysis of the spectral data. 

3.8.3 DoEman 

As described in 2.3.5 DoEman software (CPACT, University of Strathclyde, Department of 

Pure & Applied Chemistry) was utilised in determining the optimal preprocessing strategy 

for all the spectral data sets. The spectral and reference data is firstly loaded into Matlab 

before it is uploaded in the DoEman software. Once loaded into DoEman, there are a 

number of options that can be selected for investigation; regression method, no. of 

components and preprocessing techniques. After DoEman has completed the analysis it will 

generate a matrix of plots, as seen in the aforementioned section (Figure 2.14), from this 

the optimal preprocessing strategy can be selected based on the lowest RMSE. For this 
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research the pre-processing techniques investigated in Chapters 4, 5 and 6 can be seen in 

Table 3.2. 

Table 3.2: DoE parameters and levels tested in the pre-processing of the spectral data in all 

media processes, for glucose and lactate. 

Parameter Levels 

Regression 
PLS 1 

PLS 2 

Savitzky-Golay 

None 

1
st

 Derivative 

2
nd

 Derivative 

Scatter Correction  
None 

MSC 

Normalisation 
None 

SNV 

Scaling 

None 

Mean 
Centering 

No. of Latent Variables 1 - 10 
 

3.9 Reference Analysis 

3.9.1 YSI: Glucose, Lactate, Glutamine, Glutamate & Ammonia Analyses 

To gather reference data from the various metabolites a YSI 2950 Biochemistry Analyzer 

(YSI Ltd.   Hampshire, UK) was used (Figure 3.13). All the metabolite analysis was done in 

triplicate by programing the instrument to take three 100 µL volumes, from 1 mL process 

samples that were loaded, and then mixed with the appropriate buffer/calibrator (Figure 
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3.13 [B]). These samples were then introduced to the enzyme sensor probes, for metabolite 

measurement. 

 

Figure 3.13: YSI 2950 Biochemistry Analyzer. [A] Program & Result Display [B] Sample 

Holder & Analysis Chamber [C] Buffer & Waste Bottles [D] Calibrator Standard Bottles  

This instrument utilises enzyme sensor probes to quantify the specific metabolites within a 

sample. Each probe is fitted with a three-layer membrane which covers the face electrode 

and Figure 3.14 shows a schematic of each membrane layer. 
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Figure 3.14: YSI Sensor Probe & Membrane 

The face of the probe, covered by the membrane, facilitates diffusion of the 

substrate and when it contacts the immobilized enzyme it is rapidly oxidized, producing 

hydrogen peroxide (Figure 3.14 - Reaction 1). The hydrogen peroxide (H2O2) is, in turn, 

oxidized at the platinum anode, producing electrons (Figure 3.14 – Reaction 2). A dynamic 

equilibrium is achieved when the rate of H2O2 production and the rate at which H2O2 leaves 

the immobilized enzyme layer are constant. The electron flow is linearly proportional to the 

steady state H2O2 concentration and therefore, to the concentration of the substrate. The 

membranes, buffers and calibrators required to analyse each metabolite are outlined in 

Table 3.3. 
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Table 3.3: Metabolite YSI membranes, buffers and calibrators 

Metabolite Membrane Buffer Calibrators 

Glucose YSI 2365 

YSI 2357  

YSI 2776 
(L-)Lactate YSI 2329 

Glutamine YSI 2735 YSI 2736 

Glutamate YSI 2754 YSI 2755 

Ammonia YSI 2974 (Probe) YSI 2970 YSI 2972 

 

3.9.2 ELISA: Product Titre 

Quantification of human IgG (hIgG) produced in the cell culture processes were carried out 

using a hIgG ‘sandwich’ ELISA Kit (Bethyl Laboratories, Inc., Montgomery, TX, USA) (Figure 

3.15). 

 

Figure 3.15: Step by step protocol for hIgG ELISA quantification 

The hIgG in the 100 µL samples are bound to the wells by anti-hIgG antibody and 

any unbound proteins were washed off. A 100 µL of biotinylated detection antibody was 

added, to bind to the hIgG bound to the well, creating the ‘sandwich’. Horseradish 

Add 100 µL 
of standard 
or sample to 

wells 

Cover & 
incubate at 
room temp 
for 1 hour 

Wash plate 
FOUR 
times 

Add 100 µL  
of anti-

hIgG 
Detection 
Antibody 

Cover & 
incubate at 
room temp 
for 1 hour 

Wash plate 
FOUR 
times 

Add 100 µL 
of HRP 

Solution 

Cover & 
incubate at 
room temp 
for 30 min 

Wash plate 
FOUR 
times 

Add 100 µL 
of TMB 

Substrate 
Solution 

Incubate in 
the dark at 
room temp 
for 30 min 

Add 100 µL 
of Stop 

Solution 

Measure 
absorbance 
of samples 
at 450 nm 
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peroxidase (100 µL) was then added to catalyse a colorimetric reaction, producing a blue 

colour which then becomes yellow upon termination by the addition of 100 µL sulfuric acid. 

Absorbance of the well contents was read at 450 nm, with the intensity being directly 

related to the concentration of hIgG present in the samples and hIgG concentrations are 

determined by generating a standard curve from the standards provided in the kit. 

3.9.3 Cell Density & Viable Cell Counting 

This was carried out using a haemocytometer (Improved Neubauer, Hawksley, West Sussex, 

UK). The haemocytometer and cover-slip were first cleaned with 70% ethanol and the 

cover-slip was then affixed to the haemocytometer. 100 µL of the culture, well mixed by 

gently aspirating was added to 100 µL of 0.4% Trypan Blue stain. Approximately 10µl of the 

trypan blue/cell mix was pipetted onto the haemocytometer and as Trypan Blue is a "vital 

stain" it excludes live (viable) cells, therefore only dead cells become stained (Insert figure 

of slide with dead/live cells). To calculate the cell density, four corner sections from the 

haemocytometer grid were used and incorporated into the equation, as highlighted in 

Figure 3.16. 

 

Figure 3.16: Cell counting procedure – [A] Improved Neubauer Haemocytometer Layout 

with cells counted highlighted in blue [B] Cell density calculation 

  

𝑁𝑜.𝐶𝑒𝑙𝑙𝑠/𝑚𝐿 =   

𝑁𝑜.𝐶𝑒𝑙𝑙𝑠 𝐶𝑜𝑢𝑛𝑡𝑒𝑑
𝑁𝑜. 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 𝐶𝑜𝑢𝑛𝑡𝑒𝑑

× 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒
 × 1000 

[A]     [B] 
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Chapter 4:                              

A Multisensor At-Line Approach to 

Monitor Chinese Hamster Ovary 

Cell Line in a CD CHO Batch and 

Fed Batch Culture System 
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4.1 Overview 
The bioprocesses that were investigated in this research were batch and then fed batch 

cultures of the industrial CHO 42 mAb (hIgG) producing cell line, at a low passage number, 

in the commercial CD CHO medium. These were chosen as the literature indicated these 

processes would provide both a suitable baseline and the first developmental stage for the 

overall research program (Barrett et al., 2012, Ling et al., 2015). Due to the ever increasing 

regulatory stance and high standards set out by the PAT, QbD and ICHQ8 (R2) initiatives for 

biopharmaceutical production, progressing towards real time monitoring of these 

processes has never been more vital. It was for these reasons that application of the 

spectroscopic techniques NIR, MIR and Raman was chosen for process monitoring. 

The replicates for both of the processes were run under the parameters set out in 

Section 3.3, as was the sampling procedure carried out over the course of the processes. To 

monitor the progress of the batches in-situ measurements of pH, dissolved oxygen and 

temperature were made, while cell density and viability were analysed at-line immediately 

when samples were taken. The metabolite and product analysis was split into two 

categories, reference (offline) or modelling (at-line).  All reference analysis was obtained 

from the YSI and ELISA, while modelling data was gathered from the NIR, MIR and Raman 

spectrometers. 

Spectroscopic data collected contained information relating to not only the target 

metabolites but also numerous other components within the sample matrix. This influence 

from the other components, which is reflected in the spectra, normally rules out univariate 

analysis techniques, which is why multivariate analysis methods were employed to 

elucidate the effects of the target metabolites, glucose and lactate (Rathore et al., 2015, 

Sokolov et al., 2015). Analysing the data was carried out using a combination of DoEMan 
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and PCA (2.3 & 2.4) to determine both the optimum pre-processing techniques and model 

calibration/validation data sets, to produce the final refined metabolite models.  

4.1.1 Aim & Objectives 

The aim of this study was to initially characterise the CHO cell culture, at a low passage 

number, in the commercial CD CHO medium in the batch/fed batch systems and to 

investigate the combined use of at-line NIR, MIR and Raman spectroscopy to monitor key 

metabolites in a number of CHO 42 bioprocesses, with the objective of developing 

metabolite models to aid in advancing towards real time monitoring. This spectral data 

would also be used in determining the feasibility of data fusion, to produce a single ‘fused’ 

model that in theory should have reduced errors of prediction than the individual models 

for each technique. 

As these processes were to form the baseline for all the future work it was essential 

to fully characterise the CD CHO medium used. The changing nature of these types of 

process-fluids, caused by varying concentrations of cellular material and other components, 

means that application of spectroscopic techniques is not straightforward. However a 

number of studies have reported the success of NIR, MIR and Raman, either individually or 

in combination, for process monitoring of CHO cell cultures which is why these techniques 

were initially selected for the metabolite modelling (Hakemeyer et al., 2012, Whelan et al., 

2012, Clavaud et al., 2013, Sandor et al., 2013, Pais et al., 2014). These authors discuss the 

approaches they took to apply the respective spectroscopic techniques to CHO culture 

bioprocesses. They demonstrate that while models for some of the target 

metabolites/products were constructed the main challenges in the construction were the 

selection of calibration/validation datasets, separation of the target metabolites/products 

and processing of data. 
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In a previous study glucose/lactate pure component and media samples were 

analysed using the at-line instruments, to determine the appropriate spectral regions to 

focus on during subsequent samples spectral processing. These spectral regions were 

selected based on both the observed activity and that which has been reported in the 

literature (Williams and Fleming, 1995, Colthup, 2012, Nyquist and Kagel, 2012, Smith and 

Dent, 2013). In the present study the suitability of the at-line NIR, MIR and Raman 

spectrometers would also be assessed at this point and the instruments would be 

optimised for data collection. Utilising collected spectral data and the off-line reference 

data from the bioprocess samples, quantitative models would be produced for the most 

prominent metabolites, glucose and lactate. These models would undergo a validation 

using selected samples from among the replicate batches, which were not incorporated 

into the model calibration. 

Although this research was carried out at-line, it creates a solid foundation on 

which to develop into processes with more complex media and could also facilitate a 

transition into developing an on-line process monitoring system. 

4.1.2 Novelty 

Although some research has demonstrated the effects of high passage number and 

chemically defined media upon CHO cultures, relating to protein expression or cell viability 

(Beckmann et al., 2012, Veith et al., 2016), there has been relatively little focus on lower 

passage number cultures and their media requirements. In terms of early culture 

development this offers the opportunity, through characterisation of low passage cultures 

in chemically defined media, to create new tailored media for early stages of bioprocesses 

development. 
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While a number of studies over the past few years have focused on the various 

capabilities NIR, MIR and Raman spectroscopies in biopharmaceutical applications, to the 

author’s knowledge none have taken a DoE approach to data pre-processing and few have 

systematically investigated all three of the outlined techniques to the same process. 

It is well documented that spectra are subject to numerous variations which make 

spectral interpretation difficult. This is where application of pre-processing techniques and 

PCA are introduced to enhance the spectra and allow the relevant information to be 

elucidated (Lourenco et al., 2012). However, selection of pre-processing methods is often 

based on an a priori approach utilising previously reported studies or a desired effect (i.e. 

removal of background noise or baseline correction), rather than a systematic DoE 

approach which also incorporates previous knowledge of the matrix. 

Even though there have been a number of studies which have utilised either one or 

two of the aforementioned spectroscopic techniques for biopharmaceutical process 

monitoring (Hakemeyer et al., 2012, Ashton et al., 2013, Sandor et al., 2013) to the author’s 

knowledge there are only  a limited number of studies which have used all three. The 

potential advantage of utilising the three techniques is that the overlapping data sets could 

provide far more accurate process information. 

Data fusion has been shown to be an effective method of combing the data for 

multiple compatible techniques, across a range of industries and processes, to produce 

models with lower errors of prediction than the individual techniques (Dearing et al., 2011, 

Bachmann et al., 2013, Chen et al., 2015). However application of this strategy in the 

biopharmaceutical has been extremely limited and therefore offers a unique opportunity 

for improving process monitoring and modelling.  
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4.2 Results 

4.2.1 Spectral Region Assignment 

For both the batch and fed batch processes the initial spectral regions assigned to the two 

metabolites of interest, glucose and lactate, were based upon both previous work (data not 

shown) and those regions reported in the literature. 

There are a number of regions where the signals representative of the glucose and 

lactate appear in the NIR spectrum, but only the combination band region (2200-2400 nm), 

which represents stretching and bending vibrations of C-H bonds, was selected for this 

research. This was for two reasons, it covered the broadest wavelengths of the spectrum 

that encompass the various C-H bonds found in the target metabolites and more 

importantly has been previously shown to be better for modelling (Chen et al., 2004, 

Goodarzi et al., 2015). 

For the MIR spectrum the region between 900-1200 cm-1 was selected due to the 

series of distinct peaks reported to be present, which correspond to the target metabolites 

(Table 4.1) (Rhiel et al., 2002, Lu et al., 2011). 

Table 4.1: Specific peaks of target metabolites. 

Metabolite Peak Region (cm-1) Spectral Feature 

Glucose 
1150, 1106, 1079 

& 1034 

Vibrational C-O-C/C-O-H  
& Stretching C-O 

Lactate 1123 & 1040 Carboxyl & Primary Alcohols 

 

The region between, 800-1200 cm-1 was focused on for the Raman analysis of the 

process fluids. The particular peaks focused on were at 1072 cm-1 and 1128 cm-1 for 
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glucose, which corresponded to the stretching of the C-O and the C-O-H bending 

respectively. For lactate the C-COO- stretching peak at 855 cm-1 was utilised (Mehdizadeh et 

al., 2015, Singh et al., 2015).  

4.2.2 CD CHO Batch Process Analysis 

4.2.2.1 Reference Analysis  

Initially the CHO 42 batch processes in CD CHO chemically defined medium were 

investigated to form a baseline, by characterising the cell metabolism (glucose 

utilisation/lactate production), live cell density/viability (Figure 4.1) and hIgG production. 

The highest observed average cell concentration was on day 7 (5.8x106 cells/mL), also 

coinciding with the first observed decrease in cell viability and increased lactate 

concentration. However despite the increased density, the glucose concentration was 

already depleted to nearly 1 g/L. The subsequent glucose deficiency and lactate 

accumulation led to the cultures being terminated on day 13, as it resulted in the average 

live cell viability reaching 0%. The hIgG production has been normalised as a percentage of 

the highest concentration achieved during the process due to commercial sensitivity, 

however it can be noted that the increase in concentration coincides with the increase in 

cell density. The subsequent decrease at the end of the process could be the result of 

degradation of the hIgG.  See appendix Table A.1 for the corresponding values to Figure 4.1 

and appendix Figure A.1 the bioreactor process condition values (pH, dO2, Agitation & 

Temperature). 
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Figure 4.1: Time course of process data from CHO 42 batch culture in CD CHO medium [average of triplicate measurements from three bioreactors 

plotted with standard deviation]. 
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4.2.2.2 Raw Process Spectra 

As shown by the raw process spectra from the NIR and MIR (Figure 4.2 & 4.3) there are no 

clear discernible signals due to the intensity of the water absorbance, which is consistent 

with the literature (Beutel and Henkel, 2011, Reich, 2016). 

 

Figure 4.2: Batch CD CHO NIR absorbance of combination band region (stretching and 

bending vibrations for C–H) from all processes [Colour Code Light to Dark = Bioreactor 1 to 

3] (Processing: Average of triplicate measurements from each bioreactor). 
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Figure 4.3: Batch CD CHO MIR absorbance of 900-1200 cm-1 region from all processes 

[Colour Code Light to Dark = Bioreactor 1 to 3] (Processing: Average of triplicate 

measurements from each bioreactor). 

However, the Raman spectra displayed activity at only two of the specific peaks, 

855 cm-1 and 1128 cm-1, in the region identified from the literature (Mehdizadeh et al., 

2015, Singh et al., 2015) which was why the area around these peaks, 835-865 cm-1 and 

1100-1150 cm-1, were selected for all future analysis (Figure 4.4). 
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Figure 4.4: Batch CD CHO Raman scattering of 835-865 cm-1 and 1100-1150 cm-1 regions 

from all processes [Colour Code Light to Dark = Bioreactor 1 to 3] (Processing: Average of 

triplicate measurements from each bioreactor). 

4.2.2.3 DoEman 

As previously stated a combination of using a priori knowledge from the literature and a 

systematic DoE approach was taken to optimise the pre-processing of the raw spectral data 

and selection of the calibration/validation datasets, before constructing the models. 

Initially, a DoE approach was taken using the DoEman software outlined in 3.8.2, to 

determine what the optimal pre-processing techniques were. A number of commonly 

reported techniques from the literature, known to be useful in spectral pre-processing, 

were selected for investigation. 

As the spectral data require a series of pre-processing treatments to be 

investigated, it was essential that the treatments were applied in the correct sequence to 

avoid any negative influences either upon or between the treatments (Flåten and 
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Walmsley, 2003, Gerretzen et al., 2015). The experimental design utilised in DoEman 

analysis of the CD CHO batch cultures in Table 3.2.  

The first variable applied was the regression method, which compared PLS1 to 

PLS2. As Savitzky-Golay has been reported in either first or second derivative, it had to be 

applied in three levels within DoEman. The filter width and polynomial order for the first 

and second derivation was set to, 21 and 2, respectively. The transformative techniques 

MSC, which deals with light scattering effects, and SNV for spectral averaging were also 

investigated, because of their ability to correct spectral data for scaling and offset (baseline) 

effects. Next to be investigated was one of the most common pre-processing techniques, 

mean centering of the data and finally the number of latent variables was investigated 

which ranged from one to ten. 

The NIR results from the DoEman plots for both the glucose and lactate indicated 

that the following combination of pre-processing techniques, PLS1, 2nd Derivative (21, 2), 

MSC and Mean Centering, would yield the most optimal results from the data, when 

constructing the PLS models.  The optimal MIR data pre-processing regime for glucose and 

lactate was identified by the DoEman plots as a combination of MSC and mean centering, 

which were used for the PCA to determine the separation of calibration/validation datasets.  

Similar to the MIR results the DoEman plots for the Raman glucose and lactate data 

specified that the optimal pre-processing techniques were, MSC and mean centering, which 

were subsequently applied in the PCA to determine the calibration/validation datasets. 

4.2.2.4 PCA Scores/Plots 

The next step in the spectral data optimisation was to select calibration and validation 

datasets. For this PCA was carried out to ensure that the spectral variation between the 
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three batches was captured. The pre-processing techniques indicated by the DoE to be the 

most optimal were applied to the data in the PCA, as was an internal validation (Table 4.3). 

Table 4.3: Spectral pre-processing PCA parameters and statistical values   

Technique Pre-processing 
Cross 

Validation 

No. of 
Latent 

Variables 

Variance 
Captured 

NIR 2
nd

 Derivative, MSC & Mean 
Centering 

Venetian 
Blinds 

6 90.89 % 

MIR MSC & Mean Centering 
Venetian 

Blinds 
6 70.47 % 

Raman MSC & Mean Centering 
Venetian 

Blinds 
6 88.78 % 

 

 Using the previously outlined parameters for the NIR PCA (Table 4.3), a trend was 

observed within the PCA scores [PC1 vs PC2] (Figure 4.5) as all three batches seem to 

overlap, indicating similarity between the batches and samples. Early process samples 

correlate to PC1 and over time as the process continues the samples begin to shift and 

correlate to PC2. Based on these observations, batches 2 and 3 were selected as the 

calibration dataset which would be used to predict the validation dataset, batch 1. 
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Figure 4.5: Batch CD CHO NIR PCA scores of the combination band region in all processes, 

with process sample numbers represented [Class=Bioreactor 1-3] (Processing: Savitzky-

Golay Second Derivative; MSC; Mean Centered; Average of triplicate measurements per 

batch). 

The MIR PCA, using the parameters from Table 4.3, resulted in the PCA scores [PC1 

vs PC2] plot displayed in Figure 4.6. While the results from the batches would be expected 

to overlap the three batches seem to be individually distributed, indicating differences 

between the batches. But there is some overlap between batches 2 and 3, suggesting 

similarities in these samples. There does seem to be a trend within each batch that is 

similar, with majority of early process samples correlating to PC1 and later process samples 

to PC2. From these observations, batches 1 and 3 were assigned to the calibration dataset 

to predict the validation dataset, batch 2. 
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Figure 4.6: Batch CD CHO MIR PCA scores of the 900-1200 cm-1 region in all processes, with 

process sample numbers represented [Class=Bioreactor 1-3] (Processing: MSC and Mean 

Centered; Average of triplicate measurements per batch). 

Similar to the NIR results the Raman PCA (Figure 4.7) display an apparent trend, as 

all three batches are overlapping, indicating similarity and reproducibility. Earlier process 

samples correlate to PC1 and then develop a correlation with PC2, as the process 

continues. From these observations, batches 1 and 2 were selected as the calibration 

dataset which would be used to predict the validation dataset, batch 3. 
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Figure 4.7: Batch CD CHO Raman PCA scores of the 835-865 cm-1 and 1100-1150 cm-1 

regions from all processes, with process sample numbers represented [Class=Bioreactor 1-

3] (Processing: MSC and Mean Centered; Average of triplicate measurements per batch). 

 Although it is expected for the batches to overlap in the PCA scores plots, there is 

enough overlap between the batches to indicate similarity despite some deviation. From 

the observed trends, move from PC1 to PC2 as time passes, within the PCA scores plots of 

each technique it can be inferred that PC1 and PC2 correlate to glucose and lactate, 

respectively. 

4.2.2.5 Processed Spectra 

Once the selected pre-processing parameters from the DoEman are applied to the NIR 

spectral data, distinct peaks and troughs can be observed which correspond to the 

absorbance intensity within the CH region (Figure 4.8). The changes in height and depth of 
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the peaks follow the concentration of glucose/lactate trends within the reference data from 

all batches. 

 

Figure 4.8: Preprocessed batch CD CHO NIR absorbance of CH region of all processes 

[Colour Code Light to Dark = Bioreactor 1 to 3] (Processing: Savitzky-Golay Second 

Derivative; MSC; Mean Centered; Average of triplicate measurements from each 

bioreactor). 

Despite application of the optimised pre-processing techniques, there do not 

appear to be any distinct signals corresponding to the peak areas of interest within the MIR 

data (Figure 4.9). This lack of activity indicates that the PLS modelling might not be able to 

predict either glucose or lactate.  
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Figure 4.9: Preprocessed batch CD CHO MIR absorbance of 900-1200 cm-1 region from all 

processes [Colour Code Light to Dark = Bioreactor 1 to 3] (Processing: MSC; Mean Centered; 

Average of triplicate measurements from each bioreactor). 

 Like the NIR data, after the application of the pre-processing treatments the target 

peaks within the Raman data are elucidated (Figure 4.10). Again peak intensity seems to 

correspond to the concentration of glucose and lactate within the samples of all three 

batches. 
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Figure 4.10: Processed batch CD CHO Raman scattering of 835-865 cm-1 and 1100-1150 cm-1 

regions from all processes [Colour Code Light to Dark = Bioreactor 1 to 3] (Processing: MSC; 

Mean Centered; Average of triplicate measurements from each bioreactor). 

4.2.2.6 Partial Least Squares (Calibration & Validation) 

Once the spectral data optimisation was completed and the calibration and validation 

datasets selected, the final stage was to carry out the PLS modelling. The PLS models and 

their Root Mean Square Errors (RMSE) produced from the NIR data indicate, good model fit 

and low errors of prediction for both glucose (Figure 4.11) and lactate (Figure 4.12). 

Although there is some shift in the lactate model, possibly due to selection of samples in 

the prediction dataset. 
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[A] 
Calibration 

Internal 
Validation 

External 
Validation 

(Prediction) 

RMSE (g/L) 0.30 0.70 0.45 

R2 0.98 0.91 0.96 
 

       [B]             [C] 

 

Figure 4.11: NIR batch CD CHO glucose PLS [A] RMSE & R2 values [B] Calibration & Internal 

Validation model [C] External Validation (Prediction) model; with the selected samples 

(blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 
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[A] 
Calibration 

Internal 
Validation 

External 
Validation 

(Prediction) 

RMSE (g/L) 0.17 0.37 0.45 

R2 0.97 0.91 0.94 
 

       [B]             [C] 

 

Figure 4.12: NIR batch CD CHO lactate PLS [A] RMSE & R2 values [B] Calibration & Internal 

Validation model [C] External Validation (Prediction) model; with the selected samples 

(blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 

Unlike the NIR PLS models, the MIR PLS models and their RMSE indicate a poor 

model fit and high errors of prediction for both glucose (Figure 4.13) and lactate (Figure 

4.14). As the batches display little similarity in the PCA plot, it is not unexpected that the 

model would not predict well due to the high level of variance. 
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[A] 
Calibration 

Internal 
Validation 

External 
Validation 

(Prediction) 

RMSE (g/L) 0.33 2.77 2.79 

R2 0.98 0.01 0.00 
 

       [B]             [C] 

 

Figure 4.13: MIR batch CD CHO glucose PLS [A] RMSE & R2 values [B] Calibration & Internal 

Validation model [C] External Validation (Prediction) model; with the selected samples 

(blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 
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[A] 
Calibration 

Internal 
Validation 

External 
Validation 

(Prediction) 

RMSE (g/L) 0.13 1.15 1.43 

R2 0.98 0.01 1.83 
 

       [B]             [C] 

 

 

Figure 4.14: MIR batch CD CHO lactate PLS [A] RMSE & R2 values [B] Calibration & Internal 

Validation model [C] External Validation (Prediction) model; with the selected samples 

(blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 

Similar to the MIR PLS models, the Raman PLS models and their RMSE indicate a 

poor model fit and high errors of prediction for both glucose (Figure 4.15) and lactate 

(Figure 4.16). Despite the batches displaying similarity in the PCA plot, it is unexpected that 

the model would not predict. However there may also be unseen effects from other 

components with the sample matrix or poor selection of calibration/validation datasets, 

which have resulted in poor model performance. 
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[A] 
Calibration 

Internal 
Validation 

External 
Validation 

(Prediction) 

RMSE (g/L) 0.84 2.58 3.11 

R2 0.87 0.24 0.43 
 

       [B]             [C] 

 

Figure 4.15: Raman batch CD CHO glucose PLS [A] RMSE & R2 values [B] Calibration & 

Internal Validation model [C] External Validation (Prediction) model; with the selected 

samples (blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 
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[A] 
Calibration 

Internal 
Validation 

External 
Validation 

(Prediction) 

RMSE (g/L) 0.43 1.38 1.62 

R2 0.87 0.29 0.51 
 

       [B]             [C] 

 

Figure 4.16: Raman batch CD CHO lactate PLS [A] RMSE & R2 values [B] Calibration & 

Internal Validation model [C] External Validation (Prediction) model; with the selected 

samples (blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 

 Overall the PLS modelling has produced results of varying success. The models 

generated from the NIR indicate suitability for predicting glucose and lactate. While the 

MIR and Raman models indicate poor suitability for predicting both metabolites. 

4.2.3 CD CHO Fed Batch Process Analysis 

4.2.3.1 Reference Analysis 

Following the batch processes, a fed batch process in the CD CHO medium with addition of 

CHO CD EfficientFeed™ B (EFB) was carried out, for further process development. Using the 
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strategy outlined in Section 3.2.2.2, the processes characterised the cell metabolism 

(glucose utilisation/lactate production), live cell density/viability (Figure 4.17) and antibody 

titre. The highest observed average cell density was on day 7 (5.2x106 cells/mL) however 

this was lower than the batch processes. Despite the feed strategy, the process does not 

appear to have been affected in a positive manner. The overall lactate concentration was 

higher than in the batch process, it was also noted that it did decrease in the later stages of 

the processes. As with the batch process the fed batch culture was terminated on day 13, 

as the viability reach 0%. The hIgG production has been normalised as a percentage of the 

highest concentration achieved during the process due to commercial sensitivity, however 

it can be noted that the increase in concentration coincides with the increase in cell 

density. The subsequent decrease at the end of the process could be the result of 

degradation of the hIgG. See appendix Table A.2 for the corresponding values to Figure 4.17 

and appendix Figure A.2 the bioreactor process condition values (pH, dO2, Agitation & 

Temperature). 
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Figure 4.17: Time course of process data from CHO 42 fed batch culture in CD CHO medium. Vertical lines represent days when EfficientFeed™ B was 

fed to the culture [average of triplicate measurements from two bioreactors plotted with standard deviation error bars].  
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4.2.3.2 Raw Process Spectra 

Similar to the batch processes, the raw process spectra from the NIR and MIR (Figure 4.18 

& 4.19) do not exhibit any discernible signals due to the intensity of the water absorbance. 

 

Figure 4.18: Fed batch CD CHO NIR absorbance of combination band region (stretching and 

bending vibrations for C–H) from all processes [Colour Code Light to Dark = Bioreactor 1 & 

2] (Processing: Average of triplicate measurements from each bioreactor) Raw spectra MIR 
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Figure 4.19: Fed batch CD CHO MIR absorbance of 900-1200 cm-1 region from all processes 

[Colour Code Light to Dark = Bioreactor 1 & 2] (Processing: Average of triplicate 

measurements from each bioreactor). 

The Raman spectra again displayed activity at the 855 cm-1 and 1128 cm-1 peaks, 

however in comparison the peaks are less pronounced than in the batch cultures. For the 

PLS analysis the regions around the two peaks were selected, 835-865 cm-1 and 1100-1150 

cm-1 (Figure 4.20). 
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Figure 4.20: Fed batch CD CHO Raman scattering of 835-865 cm-1 and 1100-1150 cm-1 

regions from all processes [Colour Code Light to Dark = Bioreactor 1 to 2] (Processing: 

Average of triplicate measurements from each bioreactor). 

4.2.3.3 DoEman 

The spectral pre-processing optimisation strategy outlined in Section 4.2.2.3 was also 

utilised in the analysis of the fed batch processes. 

The results from the DoEman plots for each technique reflect the same outcomes 

which were observed from the analysis of the batch processes for both glucose and lactate. 

For the NIR data the optimal pre-processing strategy was indicated to be, 2nd Derivative (21, 

2), MSC and Mean Centering. While for both MIR and Raman, MSC and mean centering 

were again identified as the most optimal for these datasets. These outcomes were then 

utilised in the PCA to determine the calibration/validation datasets. 
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4.2.3.4 PCA Scores/Plots 

To select calibration and validation datasets, PCA was performed ensuring that the spectral 

variation between the two batches was captured. The pre-processing techniques indicated 

by the DoE to be the most optimal were applied to the data in the PCA, as was an internal 

validation (Table 4.4). 

Table 4.4: Spectral pre-processing PCA parameters and statistical values   

Technique Pre-processing 
Cross 

Validation 

No. of 
Latent 

Variables 

Variance 
Captured 

NIR 2
nd

 Derivative, MSC & Mean 
Centering 

Venetian 
Blinds 

4 99.08 % 

MIR MSC & Mean Centering 
Venetian 

Blinds 
7 81.34 % 

Raman MSC & Mean Centering 
Venetian 

Blinds 
6 97.04 % 

 

 Using the previously outlined parameters for the NIR PCA (Table 4.4), there was a 

trend observed within the PCA scores [PC1 vs PC2] (Figure 4.21) of both batches. The earlier 

process samples correlated to PC1 and over time as the process continues the samples 

begin to shift and correlate to PC2. Based on these observations, two thirds of the data 

were selected from both batches to form the calibration data set, while the remaining third 

formed the validation dataset. However the batches themselves display limited overlapping 

indicating poor batch to batch differences. 
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Figure 4.21: Fed batch CD CHO NIR PCA scores of the combination band region in all 

processes, with process sample numbers represented [Class=Bioreactor 1-2] (Processing: 

Savitzky-Golay Second Derivative; MSC; Mean Centered; Average of triplicate 

measurements per batch). 

The MIR parameters from Table 4.4 when applied to the data, resulted in the PCA 

scores [PC1 vs PC2] plot displayed in Figure 4.22. There was no overlap within two batches, 

indicating no batch to batch similarity as they seem to be individually distributed. But there 

was again a trend within each batch which was similar to the previous processes, as the 

majority of early process samples correlated to PC1 and later process samples to PC2. Two 

thirds of the data were selected, which covered a wide distribution of the data, to form the 

calibration dataset and the remaining third was used for the validation dataset. 
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Figure 4.22: Fed batch CD CHO MIR PCA scores of the 900-1200 cm-1 region in all processes, 

with process sample numbers represented [Class=Bioreactor 1-2] (Processing: MSC and 

Mean Centered; Average of triplicate measurements per batch). 

Results of the Raman PCA (Figure 4.23) display the opposite trend as the previous 

datasets where, earlier process samples correlate to PC2 and then develop a correlation 

with PC1, as the process continues. However there is only a minimal overlap between 

batches, but again from the data two thirds were selected as a calibration dataset and a 

third for the validation to be used in the PLS modelling. 
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Figure 4.23: Fed batch CD CHO Raman PCA scores of the 835-865 cm-1 and 1100-1150 cm-1 

regions from all processes, with process sample numbers represented [Class=Bioreactor 1-

2] (Processing: MSC and Mean Centered; Average of triplicate measurements per batch). 

Despite the absence of overlap in the fed batch PCA scores plots from the NIR and 

MIR, the presence of a trend from PC1 and PC2 again indicate a correlation to glucose and 

lactate, respectively. The alternate trend in the Raman data is unexpected and does 

indicated that modelling of this data would be challenging, due to the distribution of the 

samples. 

4.2.3.5 Processed Spectra 

Much like the batch data once the selected pre-processing parameters from the DoEman 

are applied to fed batch spectral data, distinct peaks and troughs can be observed which 

follow the concentration of glucose/lactate trends within the reference data from all 
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batches (Figure 4.24). However there is less overlap between the two batches which reflect 

the same trends in the PCA plots. 

 

Figure 4.24: Preprocessed fed batch CD CHO NIR absorbance of CH region of all processes 

[Colour Code Light to Dark = Bioreactor 1 & 2] (Processing: Savitzky-Golay Second 

Derivative; MSC; Mean Centered; Average of triplicate measurements from each 

bioreactor). 

 Similar to the batch data, the MIR fed batch data do not display any signals of the 

distinct target peaks, glucose or lactate (Figure 4.25). Again this indicates that PLS 

modelling of the data is potentially not possible. 
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Figure 4.25: Preprocessed fed batch CD CHO MIR absorbance of 900-1200 cm-1 region from 

all processes [Colour Code Light to Dark = Bioreactor 1 & 2] (Processing: MSC; Mean 

Centered; Average of triplicate measurements from each bioreactor). 

 The Raman data are encouraging, with the two target peaks being more prominent 

once the appropriate pre-processing techniques were applied (Figure 4.26). Like the NIR fed 

batch data there is some difference between the batches, but these changes could 

represent the observations within the PCA plots.  
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 Figure 4.26: Processed fed batch CD CHO Raman scattering of 835-865 cm-1 and 1100-1150 

cm-1 regions from all processes [Colour Code Light to Dark = Bioreactor 1 & 2] (Processing: 

MSC; Mean Centered; Average of triplicate measurements from each bioreactor). 

4.2.3.6 Partial Least Squares (Calibration & Validation) 

As with the batch data, the same PLS modelling procedure was performed upon the 

selected fed batch calibration and validation datasets selected. The fed batch PLS indicated, 

good model fit and low errors of prediction for both glucose (Figure 4.27) and lactate 

(Figure 4.28), comparable to those in the batch process. Although there is some shift in 

both the glucose and lactate models, which could be the result of inappropriate selection of 

samples in the prediction dataset. 
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[A] Calibration Validation Prediction 

RMSE (g/L) 0.12 0.54 0.56 

R2 0.99 0.94 0.96 
 

       [B]             [C] 

 

Figure 4.27: NIR Fed batch CD CHO glucose PLS [A] RMSE & R2 values [B] Calibration & 

Internal Validation model [C] External Validation (Prediction) model; with the selected 

samples (blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 
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[A] Calibration Validation Prediction 

RMSE (g/L) 0.17 0.48 0.34 

R2 0.99 0.96 0.97 
 

       [B]             [C] 

 

Figure 4.28: NIR Fed batch CD CHO lactate PLS [A] RMSE & R2 values [B] Calibration & 

Internal Validation model [C] External Validation (Prediction) model; with the selected 

samples (blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 

The MIR PLS models and their RMSE for the fed batch processes reflect the results 

from the batch processes, with a poor model fit and high errors of prediction for both 

metabolites (Figure 4.29 & 4.30). The difference between the two batches, despite the 

trend between PC1 and PC2, has influenced the final model and even selection of 

calibration/validation samples to cover the plot space has not improved the model. 
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 [A] Calibration Validation Prediction 

RMSE (g/L) 0.02 2.07 1.45 

R2 0.99 0.07 0.49 
 

       [B]             [C] 

 

Figure 4.29: MIR Fed batch CD CHO glucose PLS [A] RMSE & R2 values [B] Calibration & 

Internal Validation model [C] External Validation (Prediction) model; with the selected 

samples (blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 
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[A] Calibration Validation Prediction 

RMSE (g/L) 0.03 2.49 1.66 

R2 0.99 0.01 0.38 
 

       [B]             [C] 

 

Figure 4.30: MIR Fed batch CD CHO lactate PLS [A] RMSE & R2 values [B] Calibration & 

Internal Validation model [C] External Validation (Prediction) model; with the selected 

samples (blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 

Once again the Raman PLS models and their RMSE indicate a poor model fit and 

high errors of prediction for both glucose (Figure 4.31) and lactate (Figure 4.32).   
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[A] Calibration Validation Prediction 

RMSE (g/L) 0.09 0.72 2.35 

R2 0.99 0.85 0.15 
 

       [B]             [C] 

 

Figure 4.31: Raman Fed batch CD CHO glucose PLS [A] RMSE & R2 values [B] Calibration & 

Internal Validation model [C] External Validation (Prediction) model; with the selected 

samples (blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 
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 [A] Calibration Validation Prediction 

RMSE (g/L) 0.18 1.07 2.24 

R2 0.99 0.69 0.13 
 

       [B]             [C] 

 

Figure 4.32: Raman Fed batch CD CHO lactate PLS [A] RMSE & R2 values [B] Calibration & 

Internal Validation model [C] External Validation (Prediction) model; with the selected 

samples (blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 

 Much like the batch results the PLS modelling of the fed batch processes has 

produced results of varying success. The models produced from the NIR once again indicate 

suitability for predicting both glucose and lactate. The MIR and Raman models however 

indicate poor suitability for predicting both metabolites. 
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4.3 Discussion 

4.3.1 Spectral Models 

4.3.1.1 NIR 

As expected, based on the published literature, the prediction errors obtained using 

spectroscopic data in both processes were greater than those generated by the reference 

measurements (Hakemeyer et al., 2012, Clavaud et al., 2013). This is a result of the whole 

sample matrix influencing the prediction, hence the need to apply MVDA techniques to 

reduce the effects in the raw spectra (Biechele et al., 2015, Rathore and Singh, 2015). These 

effects are absent in the YSI, as it utilises enzymes specific to only the metabolite of interest 

(3.9.3). However, despite the matrix complexity, it was possible to accurately predict both 

glucose and lactate in the batch (Figure 4.11 & 4.12) and fed batch (Figure 4.27 & 4.28) 

processes utilising the NIR models developed. 

In terms of model predictive abilities both over- and under-fitting of models are 

undesirable, as they include not only relevant process data in the predictions but also noise, 

which is the result of including too many or too few latent variables (Rhiel et al., 2002, 

Faber and Rajko, 2007, Gowen et al., 2011). In regards to the batch data in this study, the 

glucose prediction for the external validation was superior to that of the internal validation, 

indicating that there was no over- or under-fitting of the calibration dataset. Unlike the 

glucose data, the lactate prediction is higher than the internal validation demonstrating an 

over fit in the initial calibration. For the fed batch processes the inverse of these results was 

observed, with the lactate prediction lower and glucose prediction higher, than the internal 

validation. 
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The results obtained for both processes are comparable and in some instances 

better to those from other reported CHO studies. Sandor et al. (2013) and Milligan et al. 

(2014) reported glucose predictions of 0.48 g/L and 0.99 g/L with R2 values of 0.73 and 0.99, 

respectively. The values attained for within this study are comparable to those from the 

aforementioned authors, with the glucose predictions being 0.45 g/L (batch) and 0.56 g/L 

(fed batch), and the R2 value of 0.96 (both processes). Likewise the lactate results from this 

study, RMSEP 0.34/0.45 g/L and R2 0.97/0.94, in the batch and fed batch processes 

respectively also correlated well with the published data of Sandor et al, with an RMSEP of 

0.44 g/L and R2 value of 0.86. 

The general increase in RMSEP value from the batch to fed batch processes could 

be the result of a combination of physical and metabolic changes in the different processes, 

as a number of studies have indicated that these can play have a significant influence upon 

the resulting models (Clavaud et al., 2013, Sandor et al., 2013, Milligan et al., 2014). One 

factor that could be addressed to improve prediction is further investigation into the 

selection of the samples chosen for the calibration/validation datasets. However, the small 

size of the datasets in comparison to other published studies (Hakemeyer et al., 2012, 

Clavaud et al., 2013, Mercier et al., 2016), limits the number of selection options in 

developing the calibration/validation datasets. 

Overall the low errors of prediction in the batch and fed batch models for both 

metabolites clearly demonstrate the benefits NIR can offer to industry, as a process 

monitoring technique which provides predictions with an acceptable degree of accuracy. 

4.3.1.2 MIR 

Despite success in a previous study carried out by the author, utilising at-line MIR to 

analyse CHO cell culture samples, the results presented in this study do not indicate the 
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suitability of MIR as an analytical technique. One of the most plausible causes for this 

difference is the instrument. Previously an ATR zinc selenide (ZnSe) crystal based plate 

system was used, where as in this study an ATR Diamond Probe was employed. It has been 

highlighted that the composition of the crystal plays an integral role in MIR and that ZnSe is 

preferable to silicon or diamond based systems. This is because ZnSe offers a number of 

advantages such as, lower costs, higher refractive index, longer light paths and wider range 

of optical transmission transparency through the MIR spectrum (Roychoudhury et al., 

2006b, Sparks et al., 2011, Reich, 2016). 

The other potential cause of the MIR spectral results obtained in this study could be 

due to the poor temperature control, during the sample analysis. It has previously been 

reported that temperature variation has a significant effect on the spectrum, as the 

molecular bonds in the sample are affected by temperature variations (Foley et al., 2012, 

Geörg et al., 2015). As temperature variation was not accounted for during the sample 

analysis and the area where this took place was also poorly temperature controlled, it may 

have had a significant effect on the resulting spectra. 

Although other studies have indicated the success of ATR MIR probes in bioprocess 

applications, including CHO cell processes, they do highlight some other issues associated 

with these systems that could have contributed to the results in this study. The limits of 

detection (LoD) of the instrument itself may have contributed to the lack of an apparent 

signal. It has been suggested that those concentrations of some metabolites in cell cultures 

are too low for certain instruments to analyse and the interactions within the complex 

media can lead to increased LoD (Foley et al., 2012). 

As previously discussed, the complex nature of media samples requires multivariate 

data analysis techniques to be applied to elucidate any information. However it has been 
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noted that as a result of this, a large sample set is advised and as the sample set in this 

study is only composed of two or three batches this could have had an influence in the poor 

model performance (Vojinovic et al., 2006, Foley et al., 2012). 

The final issue that has been highlighted in some studies to impact on the spectra is 

the environmental conditions i.e. temperature. Control of these factors is crucial as they 

can lead to increased noise and signal drift in the spectra (Foley et al., 2012, Geörg et al., 

2015). The results here demonstrate that extensive development and optimisation is 

required for MIR to be successfully applied to these CHO cell processes.  

4.3.1.3 Raman 

A number of recent studies have demonstrated the successful application of Raman 

spectroscopy for the analysis of CHO cell cultures and the subsequent quantitative 

modelling, incorporating the metabolites of interest in this study (glucose and lactate) 

(Whelan et al., 2012, Berry et al., 2015, Mehdizadeh et al., 2015, Singh et al., 2015, 

Matthews et al., 2016). 

Although the Raman spectra for both the batch and fed batch processes displayed 

visible activity in the spectral regions of interest indicated by the literature for glucose 

(1128 cm-1) and lactate (855 cm-1) (Mehdizadeh et al., 2015, Singh et al., 2015), the 

subsequent quantitative modelling of the data in this study proved challenging and 

ultimately unsuccessful. 

A number of strategies were employed during the course of this study to not only 

try to improve the obtained spectra but also the resulting models. When the initial analysis 

was performed on the samples for both the batch and fed batch processes, there was 

significant variation observed between the spectra of sample replicates (data not shown). 
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Four parameters were investigated to decrease this variance and improve the raw spectral 

quality, laser power output, sample focal point and the exposure time. 

The laser power output was the first parameter investigated as any fluctuations 

would indicate a serious fault with the instrument itself. A continuous measurement was 

carried out for an hour using a Spectra-Physics 407A laser power meter (Newport 

Corporation, CA, USA). The output of the laser power source was set at 400 mW, as per 

manufacturer’s instruction, and the final readings from the laser probe head was 

consistently read as 200 mW. This 50 % loss from source to probe is acceptable as the loss 

of power is caused by the absorption and scattering of the light through the fibre, and 

consistent with the manufacturer’s specifications. As there was no fluctuation in power 

output from the laser probe during these measurements, the instrument was ruled out as 

the cause of the spectral variation. 

The next parameter investigated was the sample focal point because having the 

sample out of position would result in the spectra having increased noise and reduced 

intensity in the target peaks. The initial measurements were performed using the most 

concentrated sample from each process to find the focal point, as it was assumed that this 

would result in the optimal spectra and based on achieving a pixel fill between 50-70%. 

However as the instrument is calibrated/validated with cyclohexane, utilising this to 

optimise the focal point was investigated, as cyclohexane has a distinct Raman spectrum. It 

was discovered that by using cyclohexane, instead of the process sample to optimise the 

focal point, that the distance between the sample and the probe had to be adjusted and 

resulted in a reduction in variance between the replicates. 

Once the focal point was optimised, the last parameter investigated to improve the 

spectra was the exposure time during the sample scanning and a range of exposure times 
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from 5 to 40 seconds were analysed. From these an exposure time of 35 seconds was 

selected as it increased the intensity of the target metabolite peaks, without increasing 

noise. Despite the significant improvements made on the Raman spectra these still yielded 

only qualitative data from the batch and fed batch processes. 

The high errors of prediction for both metabolites, from both the batch and fed 

batch process indicate that further development and optimisation is required to utilise 

Raman spectroscopy in the presented CHO cell processes. 

4.3.2 Data Fusion 

As previously stated one of the aims of this study was to apply data fusion to the spectral 

data generated, with the goal of creating ‘fused’ models with lower errors of prediction 

than the individual parts. Unfortunately, this aim was not realised as only the NIR 

instrument produced data of a quantitative nature and therefore further investigation of 

data fusion had to be postponed. But the application of data fusion has had increasing 

interest over the past few years and does continue to offer a novel method of further 

developing spectral process models in the biopharmaceutical industry. 

A number of studies have demonstrated the potential of data fusion to create a 

‘fingerprint’ for the characterisation of various processes and products, such as craft beer 

and heavy oil (Biancolillo et al., 2014, Laxalde et al., 2014). This ability to create a unique 

‘fingerprint’ for a process/product offers the biopharmaceutical the opportunity to not only 

characterise processes and detect deviations in product formation, but also detect 

counterfeit pharmaceuticals. 

Although the application of data fusion in the biopharmaceutical industry has 

received very little attention and none in terms of biopharmaceutical process monitoring, 
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there has been some limited interest. One study applied a data fusion approach to four 

spectroscopic techniques for assessing raw materials used in mammalian cell culture. They 

demonstrated that while two techniques had a high predictive capability in terms of 

material/product quality, when all were ‘fused’ the single model produced greater 

predictions. The study offers a clear insight to the potential that data fusion can offer the 

biopharmaceutical industry, if taken beyond initial characterisation of raw materials and 

into process monitoring (Lee et al., 2012b). 

4.3.3 Batch vs Fed Batch 

As all the research in this study was done in collaboration with Lonza and Thermo Fisher 

Scientific, meeting their needs into characterising the batch/fed batch systems across 

different media was essential. This particular study formed the baseline and first process 

development stage for the future studies, using Thermo Fisher Scientific’s ‘simplest’ 

medium CD CHO. 

The aim of a fed batch culture is to ultimately prolong process/production time to 

increase cell density and prevent cell death induced by nutrient depletion. However even 

with application of a feeding strategy, cell death can be induced by other factors such as; 

hyperosmolality, oxygen limitation, or accumulation of metabolic by-products i.e. lactate 

(Han et al., 2011, Barrett et al., 2012). With the aim of developing and improving the overall 

process a fed batch strategy was employed here, based up a protocol from a published 

study investigating a number of feeding regimes  in different culture media (Barrett et al., 

2012). 

The feeding strategy Barrett et al. (2012), outlined in the CD CHO medium used a 

similar proprietary IgG producing CHO cell line at a comparable scale. However, when their 

feeding strategy was applied to the processes in this study, it did not improve overall 
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process time, viable cell density or decrease lactate accumulation. In regards to the highest 

viable cell density the observed results, 5.8x106/5.2 x106 cells/mL, between the batch and 

fed batch cultures respectively, are not that different. In comparison to the study by Barrett 

et al. (2012) the highest viable cell density achieved here was roughly four fold lower than 

what they attained. 

The initial difference in the glucose utilisation and lactate accumulation over the 

first seven days, between the batch and fed batch processes, could be due the reduced 

glucose conversation to lactate which has been reported in fed batch systems (Lee et al., 

2015). The decrease in lactate concentration in the latter stages of both processes indicated 

that the cultures may have switched metabolism. This switch has been reported to occur 

due to a number of reasons, such as reduced glucose or glutamine availability, which could 

be applied to the batch and fed batch culture respectively (Tsao et al., 2005, Zagari et al., 

2013). 

In terms of the batch culture the switch to lactate consumption could have 

occurred around day 8-9 as the lactate concentration shows a decrease and glucose is very 

limited. With the glucose concentration never reaching zero suggests that regeneration of 

glucose could be taking place through lactate consumption/conversation (Tsao et al., 2005, 

Wilkens et al., 2011, Zagari et al., 2013). The notable increase in lactate on the final day of 

the process could also be a result of intracellular lactate being released from lysed cells, as 

it has been found that lactate can accumulate (Wilkens et al., 2011). In the fed batch 

culture the addition of the feed may be responsible, firstly for the higher lactate 

concentration than that observed in the batch culture and the subsequent lactate 

consumption in the latter stages of the process (Zagari et al., 2013). 
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Due to commercial sensitivity the specific concentration of hIgG produced cannot 

be disclosed, but the highest average concentration observed in the CD Batch process was 

within the concentration ranges reported in the published literature (Reinhart et al., 2015a, 

Reinhart et al., 2015b). However when transitioned into the fed batch process, the highest 

yield was half of that observed in the batch process. 

While in theory this feeding strategy should have improved the initial batch 

process, the failure of the strategy could be down to the inhibitory effect of excessive feed 

which has been reported in CHO cell cultures (Han et al., 2011, Lee et al., 2015). Clearly, the 

transfer into a fed-batch protocol requires considerable optimisation of the process. 

Further bioreactor fed-batch runs would have been very useful in that process. 

4.4 Conclusion 

From the results presented in this study, it is apparent that only the NIR produced data of a 

sufficient quality to monitor metabolite formation in mammalian cell culture in both batch 

and fed batch processes, with the MIR being deemed unsuitable and the raman being 

suitable only in a qualitative approach. Thus investigating the feasibility of data fusion was 

not possible. The implementation of a fed batch protocol to improve the results of the 

initial batch process did not lead to any significant improvements and in some aspects 

adversely affected the process. 

By utilising only the combination band region of the near infrared spectra 

successful construction of both glucose and lactate process models in both of the 

aforementioned process formats was achieved. These models produced errors of 

calibration, internal validation and external validation (prediction) which were comparable 

to those found in the literature. 
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Mid infrared models for both processes constructed produced very high errors 

across the calibration, validation and prediction. The poor performance of the models 

however reflects the results of the raw and processed spectra, where no apparent signals 

for either glucose or lactate were observed. 

The Raman data demonstrated clear qualitative signals for glucose/lactate, in the 

target regions of the spectra where it was reported glucose and lactate are active. 

Unfortunately this did not translate into success when modelling these regions for the 

target metabolites, producing high errors, possibly caused by influences of other culture 

components in these regions. 

Overall from the results achieved in this study NIR, for the purpose of glucose and 

lactate modelling, would be carried forth in the further development of the mammalian cell 

cultures in the more developed media. Despite only the qualitative data collected from the 

Raman, it would also be utilised in the next development stages. 
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5.1 Overview 

The next bioprocess development stage investigated in this study involved low passage 

number, batch and fed batch culture of the industrial CHO 42 mAb (hIgG) producing cell 

line, in the commercial chemically defined CD OptiCHO medium. Based upon observations 

in the published literature, these processes would provide suitable next developmental 

stages, in terms of spectroscopic characterisation of a CHO culture in a more developed 

medium (Barrett et al., 2012, Reinhart et al., 2015a). As with the previous study (Chapter 4) 

the low passage number was set at seven passages, as the industrial collaborators wished 

to investigate the requirements of early process medium in cultures under ten passages. 

 The strict regulatory stance within the biopharmaceutical industry has led to many 

innovations in terms of medium development. Initial focus was in developing media free 

from both animal components and serum for a number of reasons such as, variation in 

composition, potentially introducing microbial contaminants and the ethics of using these 

in human therapeutic production (Rodrigues et al., 2013). With the success of serum-free 

media, focus has shifted into further development of the chemically defined media and 

feeds to improve cell culture processes (Yang, 2016), which is in part the purpose of this 

current study. 

The conditions and sampling procedure outlined in 3.3 was utilised for both the 

batch and fed batch processes, and their replicates, performed during this study. In-situ 

measurements of pH, dissolved oxygen and temperature, along with at-line cell density and 

viability analysis, were performed to monitor the progress of each process. Metabolite and 

product analysis was split into either, reference (offline) or modelling (at-line). Offline 

measurements were analysed using the techniques and procedures outlined in 3.9, while 

at-line data was collected from the NIR and Raman spectrometers. To produce the final 
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metabolite models analysis of the spectral data was carried out using those the techniques 

outlined in 2.3/2.4.   

5.1.1 Aim & Objectives 

The aim of this study was to characterise the CHO cell culture, using a low passage number 

cell culture (seven), in the commercial CD OptiCHO medium in the batch/fed batch systems 

using a dual spectroscopic strategy of at-line NIR and Raman spectroscopy. These 

techniques were used to monitor glucose and lactate, with the objective of developing 

process models which could be compared to the CD CHO medium processes. By comparing 

the low passage cultures in both media the results will aid the industrial collaborators 

(Thermo Fisher Scientific & Lonza) in further developing an early stage process medium. 

 As these processes would be compared to the previous CD CHO processes, it was 

essential to fully characterise the CD OptiCHO processes in as similar a manner to the 

aforementioned processes as was possible. The results from the previous study 

demonstrated that it is possible to apply NIR and Raman spectroscopy for analysis of 

glucose and lactate, in a CD CHO medium culture and there have been reports of utilising 

these techniques in CD OptiCHO processes (Lee et al., 2012a, Matthews et al., 2016). These 

authors discuss the approaches they took to apply the respective spectroscopic techniques 

to CHO culture bioprocesses and the multivariate analysis strategies utilised to produce the 

metabolite models. 

Similar to Chapter 4, both analysis of pure media samples and observations from 

the literature were used to determine the appropriate spectral regions to focus on, during 

subsequent sample spectral processing (Williams and Fleming, 1995, Colthup, 2012, Nyquist 

and Kagel, 2012, Smith and Dent, 2013). In the present study the previously outlined at-line 

NIR and Raman spectrometers would also be reassessed to determine if the instruments 
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had to be further optimised for data collection in the CD OptiCHO medium. From the 

collected spectral data and the off-line reference data, quantitative NIR models would be 

produced for glucose and lactate. Raman would also be used to produce qualitative 

information and reassessed for the development of quantitative models, for the two 

metabolites. The resulting models would be tested for suitability by subjecting them to 

both an internal and external validation, using selected samples from among the batches. 

Overall this research represents the next stage of process development as it utilises 

a more complex medium. The results can be compared to the previous study to provide an 

insight into the performance and needs of a low passage number culture performance. 

5.1.2 Novelty 

As with the other CHO bioprocess investigated, these systems have not previously been 

investigated with a focus on characterisation of low passage number cultures. The process 

being investigated in this study also utilises a more complex chemically defined medium, 

which offers greater understanding in terms of what developments can be made in early 

culture media. This research provides further complexity and novelty within the 

investigated CHO bioprocesses, which can be fed back to the industrial collaborators. 

 Interpretation of spectral data has been well reported to be problematic due to 

spectral variance, influenced by a number of different factors. The CD OptiCHO medium in 

this study represents a significant change to the sample matrix, which could potentially 

render the previously identified data pre-processing approach from the CD CHO medium 

processes ineffectual. To determine if the CD OptiCHO medium led to any significant 

changes in the optimal data pre-processing, the novel DoE strategy previously employed 

was utilised again in combination with PCA in this study. 
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5.2 Results 

5.2.1 Spectral Region Assignment 

To determine if the change in medium composition, affects the position of the glucose and 

lactate signals in the NIR and Raman spectra, pure media samples were analysed. These 

results indicated that there was no effect on the metabolite signals and combined with the 

literature, the previously assigned regions for glucose and lactate were assigned to the 

NIR/Raman spectra (Table 5.1) (Chen et al., 2004, Goodarzi et al., 2015, Mehdizadeh et al., 

2015, Singh et al., 2015). 

Table 5.1: Specific peaks of target metabolites in CD OptiCHO medium. 

Metabolite NIR Peak Region Raman Peak Region 

Glucose 
2200-2400 nm 

1072 cm-1 and 1128 cm-1 

Lactate 855 cm-1 

 

5.2.2 CD OptiCHO Batch Process Analysis 

5.2.2.1 Reference Analysis  

Two, passage number seven CHO 42 batch processes in CD OptiCHO chemically defined 

medium were investigated to form a baseline for this chapter and as new development 

stage, through characterisation of the cell metabolism (glucose utilisation/lactate 

production), live cell density/viability (Figure 5.1) and hIgG concentration. The highest 

observed average cell concentration was on day 6 (2.5x106 cells/mL), with observed 

variations in viability the previous days and rapidly increasing lactate concentration. 

Subsequent glucose depletion and lactate accumulation resulted in the cultures being 

terminated on day 13, once the average live cell viability reached 6% (Figure 5.1). The hIgG 



Page | 124  
 

production was normalised as a percentage of the highest concentration achieved during 

the process due to commercial sensitivity, however it can be noted that the initial increase 

in concentration coincides with the rapid increase in cell density. Subsequent decrease in 

hIgG concentration during the final four days of the process is most likely to have been 

caused by degradation of the hIgG. See appendix Table A.3 for the corresponding values to 

Figure 5.1 and appendix Figure A.3 the bioreactor process condition values (pH, dO2, 

Agitation & Temperature). 
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Figure 5.1: Time course of process data from CHO 42 culture in batch CD OptiCHO medium [average of triplicate measurements from two bioreactors 

plotted with standard deviation]. 
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5.2.2.2 Raw Process Spectra 

As reported in the literature, in the present study there were no  visible signals  present in 

the raw NIR process spectra (Figure 5.2), because of the dominant effect that the 

absorbance of water has upon the spectra (Beutel and Henkel, 2011, Reich, 2016). 

 

Figure 5.2: Batch CD OptiCHO NIR absorbance of combination band region (stretching and 

bending vibrations for C–H) from all processes [Colour Code Light to Dark = Bioreactor 1 to 

2] (Processing: Average of triplicate measurements from each bioreactor). 

From the Raman spectral data, the two peaks identified from the previous study 

and the literature, which corresponded to lactate (855 cm-1) and glucose (1128 cm-1), were 

identified in the process samples (Mehdizadeh et al., 2015, Singh et al., 2015). The regions 

around the two peaks, 835-865 cm-1 and 1100-1150 cm-1, were utilised in the DoEman and 

PCA analysis to produce the process models (Figure 5.3). 
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Figure 5.3: Batch CD OptiCHO Raman scattering of 835-865 cm-1 and 1100-1150 cm-1 

regions from all processes [Colour Code Light to Dark = Bioreactor 1 to 2] (Processing: 

Average of triplicate measurements from each bioreactor). 

5.2.2.3 DoEman 

As previously highlighted, due to the change in medium, it could not be assumed that the 

optimised pre-processing treatments for the CD CHO medium were suitable for the CD 

OptiCHO medium. Using the DoE approach outlined in 3.8.2, a selection of pre-processing 

treatments were applied to determine what the optimal strategy for processing the data 

was (Table 3.2). 

5.2.2.4 PCA Scores/Plots 

Selecting the calibration and validation datasets was the next stage to optimise the spectral 

data and to do this PCA was performed upon the spectral regions of interest. The 

parameters outlined in Table 5.3, are those that resulted in the PCA capturing the 

maximum variance within both the NIR and Raman data.   
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Table 5.3: Spectral pre-processing PCA parameters and statistical values   

Technique Pre-processing 
Cross 

Validation 

No. of 
Latent 

Variables 

Variance 
Captured 

NIR 2
nd

 Derivative, MSC & Mean 
Centering 

Venetian 
Blinds 

4 98.39 % 

Raman MSC & Mean Centering 
Venetian 

Blinds 
4 94.07 % 

 

 The parameters outlined in Table 5.3 for the NIR PCA, resulted in an observable 

trend within the PCA scores [PC1 vs PC2] (Figure 5.4). While both batches appear different, 

the early process samples in both batches correlated to PC1 and then shifted towards PC2 

over time as the process continued. Based upon the observations, two thirds of the data 

which were equally distributed across the PCA plot were selected as the calibration dataset. 

The remaining third was then utilised in the external validation data set. 
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Figure 5.4: Batch CD OptiCHO NIR PCA scores of the combination band region in all 

processes, with process sample numbers represented [Class=Bioreactor 1-2] (Processing: 

Savitzky-Golay Second Derivative; MSC; Mean Centered; Average of triplicate 

measurements per batch). 

The results of the Raman PCA (Figure 5.5) indicated a similar trend to that observed 

in the NIR, but unlike NIR there is more overlap indicating similarity in those samples. The 

earlier process samples again correlate to PC1 and then develop a correlation with PC2, as 

the process continues. As a result of the PCA, the calibration dataset was composed again 

of two thirds of the data and the other third of the data formed the validation dataset. 
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Figure 5.5: Batch CD OptiCHO Raman PCA scores of the 835-865 cm-1 and 1100-1150 cm-1 

regions from all processes, with process sample numbers represented [Class=Bioreactor 1-

2] (Processing: MSC and Mean Centered; Average of triplicate measurements per batch). 

While it would be expected that the replicate batches presented should overlap in 

the PCA scores plots due to the similarity of the samples, this was not entirely clear in the 

present batches. Despite this, the similar observed trends within the PCA scores plots of 

each technique infer that PC1 and PC2 correlate to glucose and lactate, respectively. 

5.2.2.5 Processed Spectra 

In terms of changes to the raw NIR spectra once the optimised pre-processing techniques 

were applied, clear distinct peaks and troughs which correspond to the absorbance 

intensity within the CH region are now observable (Figure 5.6). The changes in height and 

depth of the peaks follow the concentration of glucose/lactate trends within the reference 

data from all batches. It is also notable that the intensity of the NIR absorbance peaks 
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differs between batch 1 and 2. This difference in intensity could reflect the observed 

differences between the batches in the previous PCA plot.  

 

Figure 5.6: Preprocessed Batch CD OptiCHO NIR absorbance of CH region of all processes 

[Colour Code Light to Dark = Bioreactor 1 to 2] (Processing: Savitzky-Golay Second 

Derivative; MSC; Mean Centered; Average of triplicate measurements from each 

bioreactor). 

 The Raman spectral data after application of the optimised pre-processing 

treatments, like the NIR data, better elucidates the previously observed peak activity at the 

target spectral regions (Figure 5.7). The intensity of the peak at these regions correlates to 

the concentration of glucose and lactate within the samples of both batches. 
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Figure 5.7: Processed Batch CD OptiCHO Raman scattering of 835-865 cm-1 and 1100-1150 

cm-1 regions from all processes [Colour Code Light to Dark = Bioreactor 1 to 2] (Processing: 

MSC; Mean Centered; Average of triplicate measurements from each bioreactor). 

5.2.2.6 Partial Least Squares (Calibration & Validation) 

The final stage of the data analysis, after the spectral data optimisation was completed and 

calibration/validation datasets selected was to carry out the PLS modelling. The resulting 

PLS models and their Root Mean Square Errors (RMSE) produced from the NIR data 

indicated, a good model fit and with low errors of prediction for both glucose (Figure 5.8) 

and lactate (Figure 5.9). However there is an offset in the glucose model not present in the 

lactate model, which is possibly due to selection of samples in the prediction dataset. 
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[A] 
Calibration 

Internal 
Validation 

External 
Validation 

(Prediction) 

RMSE (g/L) 0.17 0.33 0.37 

R2 0.99 0.97 0.98 
 

[B]     [C] 

 

Figure 5.8: NIR Batch CD OptiCHO glucose PLS [A] RMSE & R2 values [B] Calibration & 

Internal Validation model [C] External Validation (Prediction) model; with the selected 

samples (blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 
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[A] 
Calibration 

Internal 
Validation 

External 
Validation 

(Prediction) 

RMSE (g/L) 0.09 0.16 0.17 

R2 0.99 0.98 0.97 
 

[B]     [C] 

 

Figure 5.9: NIR Batch CD OptiCHO lactate PLS [A] RMSE & R2 values [B] Calibration & 

Internal Validation model [C] External Validation (Prediction) model; with the selected 

samples (blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 

The Raman PLS models and their RMSE indicate a poor model fit and high errors of 

prediction for both glucose (Figure 5.10) and lactate (Figure 5.11). The model’s poor 

predictive ability, despite the batches similar PCA plot trends, was to some extent 

anticipated (4.2.2.6) due to the previous study not demonstrating the success of 

quantitative Raman analysis. Undetected effects from other sample matrix components or 

poor selection of calibration/validation datasets, could potentially explain the poor model 

performance. 
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[A] 
Calibration 

Internal 
Validation 

External 
Validation 

(Prediction) 

RMSE (g/L) 1.69 2.02 2.04 

R2 0.39 0.18 0.06 
 

[B]     [C] 

 

Figure 5.10: Raman Batch CD OptiCHO glucose PLS [A] RMSE & R2 values [B] Calibration & 

Internal Validation model [C] External Validation (Prediction) model; with the selected 

samples (blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 
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[A] 
Calibration 

Internal 
Validation 

External 
Validation 

(Prediction) 

RMSE (g/L) 0.78 0.91 0.93 

R2 0.48 0.31 0.19 
 

[B]     [C] 

 

Figure 5.11: Raman Batch CD OptiCHO lactate PLS [A] RMSE & R2 values [B] Calibration & 

Internal Validation model [C] External Validation (Prediction) model; with the selected 

samples (blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 

The PLS modelling has produced results which again indicate the suitability of NIR 

for predicting glucose and lactate. However, the Raman models indicate poor suitability for 

predicting both metabolites. 

5.2.3 CD OptiCHO Fed Batch Process Analysis 

5.2.3.1 Reference Analysis 

To continue the process development, a fed batch process in the CD OptiCHO CHO medium 

with addition of CHO CD EfficientFeed™ A (EFA) was next to be carried out. The strategy 
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outlined in 3.2.2.1 was utilised and the processes characterised through the monitoring of 

the cell metabolism (glucose utilisation/lactate production), live cell density/viability (Figure 

5.12) and hIgG production. Day 6 marked the highest cell concentration (2.7x106 cells/mL), 

slightly higher than that observed in the batch processes. However, this was subsequently 

followed by a sudden drop in viability, to 0% resulting in the termination of the culture. 

Despite employing a feeding strategy to improve culture life and performance, it has not 

been effected in a positive manner and the process was shortened significantly compared 

to the batch culture. Production of hIgG has been normalised as a percentage of the highest 

concentration achieved during the process due to commercial sensitivity. Once again the 

initial increase in concentration appears to be directly related to the increase in cell density, 

as does the subsequent decrease in the final day of the process which has led to potential 

degradation of the hIgG. See appendix Table A.4 for the corresponding values to Figure 5.12 

and appendix Figure A.4 the bioreactor process condition values (pH, dO2, Agitation & 

Temperature). 
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Figure 5.12: Time course of process data from CHO 42 culture in fed batch CD OptiCHO media. Vertical lines represent days when EfficientFeed™ A 

was fed to the culture [average of triplicate measurements from two bioreactors plotted with standard deviation error bars].  
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5.2.3.2 Raw Process Spectra 

The fed batch NIR raw process spectra, like the batch processes, (Figure 5.13) did not 

exhibit any visible signals as a result of the intensity of the water absorbance. 

 

Figure 5.13: Fed batch CD OptiCHO NIR absorbance of combination band region (stretching 

and bending vibrations for C–H) from all processes [Colour Code Light to Dark = Bioreactor 

1 & 2] (Processing: Average of triplicate measurements from each bioreactor)  

The metabolite peaks for glucose (1128 cm-1) and lactate (855 cm-1) are once again 

present in the results from the Raman spectral data. But when compared to those peaks 

present in the batch cultures, they are much less pronounced. The regions around these 

two peaks, 835-865 cm-1 and 1100-1150 cm-1, for lactate and glucose respectively were 

subsequently utilised in all future analysis (Figure 5.14). 
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Figure 5.14: Fed batch CD OptiCHO Raman scattering of 835-865 cm-1 and 1100-1150 cm-1 

regions from all processes [Colour Code Light to Dark = Bioreactor 1 to 2] (Processing: 

Average of triplicate measurements from each bioreactor). 

5.2.3.3 DoEman 

To improve and elucidate the features in the spectral data, the pre-processing optimisation 

strategy outlined in 5.2.2.3 was applied to the fed batch data for the future analysis. 

The fed batch DoEman plots for both the NIR and Raman indicated that optimal 

pre-processing treatments were the same as those observed in batch processes analysis, 

for both glucose and lactate. The optimal preprocessing strategy for the NIR was indicated 

to be, 2nd Derivative (21, 2), MSC and Mean Centering. MSC and mean centering were 

identified as the optimised pre-processing treatments for the Raman dataset. The results of 

the DoEman were utilised in the PCA to define the calibration/validation datasets. 
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5.2.3.4 PCA Scores/Plots 

Selection of the calibration and validation datasets was performed using PCA, to ensure 

spectral variation between the two batches was captured. Once the optimised pre-

processing techniques were applied to the data in the PCA combined with an internal 

validation, the results which captured the maximum variance in the data were produced 

(Table 5.4). 

Table 5.4: Spectral preprocessing PCA parameters and statistical values   

Technique Preprocessing 
Cross 

Validation 

No. of 
Latent 

Variables 

Variance 
Captured 

NIR 2
nd

 Derivative, MSC & Mean 
Centering 

Venetian 
Blinds 

5 99.15 % 

Raman MSC & Mean Centering 
Venetian 

Blinds 
5 96.15 % 

 

 From the results outlined in the NIR PCA (Table 5.4), there was a trend observed 

within the PCA scores [PC1 vs PC2] (Figure 5.15). In both batches the earlier process 

samples correlated to PC1 and as the process continues there was a shift towards a 

correlation to PC2. However both batches display some differences in the later samples, 

which corresponds to differences observed in the reference data. As a result of the PCA, 

two thirds of the data were selected equally distributed across both batches to form the 

calibration data set, with the remaining third forming the validation dataset. 
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Figure 5.15: Fed batch CD OptiCHO NIR PCA scores of the combination band region in all 

processes, with process sample numbers represented [Class=Bioreactor 1-2] (Processing: 

Savitzky-Golay Second Derivative; MSC; Mean Centered; Average of triplicate 

measurements per batch). 

The Raman PCA results (Figure 5.16) demonstrate the inverse trend of that 

observed in the previous datasets, the earlier process samples correlate to PC2 and then 

correlate to PC1 as process time increases. Once again there is only a minimal overlap 

between batches, at the beginning of the process and a notable difference between the 

batches in the latter samples. As a result of this, selection of the calibration/validation 

datasets was difficult in terms of selecting samples that cover the plot space. However 

again two thirds of the data was selected as the calibration dataset and the other third 

formed the validation dataset for the PLS modelling. 
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Figure 5.16: Fed batch CD OptiCHO Raman PCA scores of the 835-865 cm-1 and 1100-1150 

cm-1 regions from all processes, with process sample numbers represented 

[Class=Bioreactor 1-2] (Processing: MSC and Mean Centered; Average of triplicate 

measurements per batch). 

Despite there being minimal overlap in the fed batch PCA scores plots for both the 

NIR and Raman, indicating similarity between batches, the presence of the trends within 

the data indicate potential for modelling the metabolites. However the alternate trend in 

the Raman data, PC2 to PC1, indicates that modelling of this data would difficult in 

comparison to the NIR, due to the distribution of the samples. 

5.2.3.5 Processed Spectra 

As the optimised pre-processing treatments from the DoEman were applied to the fed 

batch spectral data distinctive peaks and troughs are observed, these reflect the 

glucose/lactate concentration trends within the reference data from all batches (Figure 
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5.17). But there is some difference in peak intensity between the two batches, which reflect 

the observed trends in the PCA plots. 

 

Figure 5.17: Preprocessed Fed batch CD OptiCHO NIR absorbance of CH region of all 

processes [Colour Code Light to Dark = Bioreactor 1 & 2] (Processing: Savitzky-Golay Second 

Derivative; MSC; Mean Centered; Average of triplicate measurements from each 

bioreactor). 

 The two target peaks are more distinct once the appropriate pre-processing 

techniques were applied to the Raman data (Figure 5.18). Similar to the NIR fed batch data, 

the previously observed difference in peak intensity between the batches can be seen more 

clearly than in the raw spectral data, these differences could explain the observations 

within the PCA plots.  
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 Figure 5.18: Processed Fed batch CD OptiCHO Raman scattering of 835-865 cm-1 and 1100-

1150 cm-1 regions from all processes [Colour Code Light to Dark = Bioreactor 1 & 2] 

(Processing: MSC; Mean Centered; Average of triplicate measurements from each 

bioreactor). 

5.2.3.6 Partial Least Squares (Calibration & Validation) 

The same PLS modelling procedure was performed upon the selected fed batch calibration 

and validation datasets selected, as was done for the previous batch processes. In regards 

to the NIR PLS, the resulting models for both glucose (Figure 5.19) and lactate (Figure 5.20) 

demonstrate an acceptable fit and low errors of prediction, slightly higher than those 

observed in the batch process. The offset in both models, could however be caused by the 

samples selected in the modelling datasets. 
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[A] Calibration Validation Prediction 

RMSE (g/L) 0.34 0.54 0.57 

R2 0.97 0.92 0.98 
 

[B]          [C] 

 

Figure 5.19: NIR Fed batch CD OptiCHO glucose PLS [A] RMSE & R2 values [B] Calibration & 

Internal Validation model [C] External Validation (Prediction) model; with the selected 

samples (blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 
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[A] Calibration Validation Prediction 

RMSE (g/L) 0.07 0.11 0.33 

R2 0.99 0.99 0.96 
 

[B]          [C] 

 

Figure 5.20: NIR Fed batch CD OptiCHO lactate PLS [A] RMSE & R2 values [B] Calibration & 

Internal Validation model [C] External Validation (Prediction) model; with the selected 

samples (blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 

The Raman PLS models reflect those achieved for the batch processes, and the 

RMSE values indicate a poor model fit for both glucose (Figure 5.21) and lactate (Figure 

5.22) and high errors of prediction.   
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[A] Calibration Validation Prediction 

RMSE (g/L) 0.24 1.83 0.83 

R2 0.99 0.32 0.89 
 

[B]          [C] 

 

Figure 5.21: Raman Fed batch CD OptiCHO glucose PLS [A] RMSE & R2 values [B] Calibration 

& Internal Validation model [C] External Validation (Prediction) model; with the selected 

samples (blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 
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[A] Calibration Validation Prediction 

RMSE (g/L) 0.08 0.74 0.24 

R2 0.99 0.64 0.96 
 

[B]            [C] 

 

Figure 5.22: Raman Fed batch CD OptiCHO lactate PLS [A] RMSE & R2 values [B] Calibration 

& Internal Validation model [C] External Validation (Prediction) model; with the selected 

samples (blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 

 Overall the results of the fed batch process PLS models produced results of varying 

success. NIR produced models which displayed acceptable predictions for both glucose and 

lactate. Inversely the Raman models produced models which indicated poor suitability in 

predicting both metabolites. 
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5.3 Discussion 

5.3.1 Spectral Models 

5.3.1.1 NIR 

As has been described previously, predictions using NIR may often produce greater errors 

than those from the reference methods, as a result of interactions in the sample matrix 

(Hakemeyer et al., 2012, Clavaud et al., 2013, Biechele et al., 2015, Rathore and Singh, 

2015). These effects are absent in the YSI, as it utilises enzymes specific to only the 

metabolite of interest (3.9.3). Even with the influences of these interactions, this study 

demonstrates the successful application of NIR in CD OptiCHO batch and fed batch cultures, 

to produce acceptable glucose (Figure 5.8 & 5.19) and lactate (Figure 5.9 & 5.20) prediction 

models. 

For the batch data gathered in this study, the glucose and lactate errors of 

predictions for the external validation were greater than those of the internal validation, 

indicating that there was an over fit in the initial calibration. However the increases in error 

in the external validation were only minimal, 0.04 g/L and 0.01 g/L, for the glucose and 

lactate respectively. This observed over fit of the initial calibration was the same for the fed 

batch processes, with the glucose and lactate prediction errors being higher, 0.03 g/L and 

0.22 g/L respectively, than the internal validation. 

In terms of direct comparability to the published literature, there are only a very 

limited number of sources which have applied NIR to a CD OptiCHO based culture. However 

one study (Lee et al., 2012a), assessed a number of selection algorithms in PLS modelling of 

a flask batch CHO cultures in CD OptiCHO medium. They reported a series of glucose 

prediction errors (RMSEP) ranging from, 1.15-1.45 g/L, using either 7 ±2 latent variables. 
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Even factoring in the slight overfitting of the prediction model, in comparison the glucose 

predictions produced in the present study using only 4 latent variables were far lower at, 

0.37 g/L.  

Due to limited application of NIR in OptiCHO processes, drawing direct comparisons 

between the results produced in the present study, for lactate and glucose/lactate in the 

batch and fed batch processes respectively and those in published works has not been 

possible. However, the results from these also indicate an acceptable level of error within 

the models. The lactate model produced from the batch culture data had an error of 0.17 

g/L, which was lower than that observed in the glucose model. In regards to the fed batch 

models for glucose and lactate, they produced errors of 0.57 g/L and 0.33 g/L respectively, 

which were still lower than those observed in the study from the literature (Lee et al., 

2012a). 

Based upon the NIR results from this study there is an acceptable degree of 

prediction errors for both metabolite models, which compare well to both the previous 

study (Chapter 4) and from the CHO culture literature. The low errors in prediction support 

the application of NIR to monitor an industrial bioprocess, as the technique could be 

partnered with a feeding strategy to counter the glucose depletion while also assessing 

lactate accumulation, which is detrimental to CHO processes. 

5.3.1.2 Raman 

Similar to the NIR, application of Raman spectroscopy to CD OptiCHO cultures in the 

published literature is limited. However, one very recent study investigated the application 

of a Kaiser Raman RXN2 spectrometer as a monitoring and control tool in a series of batch 

CD OptiCHO cultures at different scales (Matthews et al., 2016). The models they generated 

through all the scales produced errors of 0.27 g/L and 0.20 g/L, for glucose and lactate 
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respectively. In comparison, the results from the batch processes in the present study were 

poorer, as they produced glucose errors of 2.04 g/L and lactate errors of 0.93 g/L, with very 

low R2 values indicating poor correlation between the reference and spectral data. 

Although the systems used in both studies were the same, in the study from the literature 

(Matthews et al., 2016) the system utilised different spectral acquisition strategy, which 

were not feasible in the present study. This strategy consisted of 600 accumulations of one 

second duration which took 17 minutes to acquire and the greater number of spectral 

accumulations used could have provided better defined spectra with reduced noise, making 

subsequent modelling more feasible. 

Again there is limited application of Raman spectroscopy to similar CD OptiCHO 

processes in the literature, in particular for glucose/lactate modelling in fed batch 

processes, which has meant that gaining a comparison of the results in the present study 

has not been possible. Based upon the results produced in the study, it is safe to assume 

that the models produced here would be poorer than those in any published literature, 

indicated by the RMSEP and R2 values. 

While there are observable changes at the target peaks, 1128 cm-1 (glucose) and 

855 cm-1  (lactate), in the Raman spectra from both batch and fed batch processes, even 

applying the developments outlined in 4.3.1.3 has failed to produce successful quantitative 

models for both metabolites. The results achieved here indicate that at this time the Raman 

modelling requires significant development to meet the needs of a PAT tool in these 

processes, as the high errors of predictions could not be used to monitor an industrial 

bioprocess. 
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5.3.2 Batch vs Fed Batch 

This study represented a new stage in development, in terms of the needs of the industrial 

collaborators, Lonza and Thermo Fisher Scientific, by developing a batch/fed batch CHO 

culture system, using Thermo Fisher Scientific’s more complex chemically defined CD 

OptiCHO medium. As previously described in 3.2.2.1, the feeding strategy applied to this 

study was from Reinhart et al. (2015) as they utilised a comparable IgG producing CHO cell 

line in CD OptiCHO medium. 

The balance between over and under feeding is key in the fed batch cell process, as 

either can lead to a metabolic change. In terms of underfeeding, studies have shown that 

the glucose concentration should be maintained at 2-3 g/L and not be allowed to decrease 

below that (Barrett et al., 2012, Lu et al., 2013, Baik et al., 2015, Reinhart et al., 2015a). The 

issue with depletion of glucose or glutamine in CHO cultures is that without these 

components the cells have no precursors to feed into the TCA cycle for energy. As a result 

of this depletion a metabolic switch occurs where lactate is then utilised as an alternative 

precursor for the TCA cycle (Wilkens et al., 2011, Zagari et al., 2013). Counter to this, 

overfeeding poses just as serious an issue to the CHO cell culture as underfeeding. 

Overfeeding has been shown to affect the overall flux of glucose in the TCA cycle by 

upregulating the enzymes responsible for the conversation of pyruvate to lactate, to favour 

lactate production and the subsequent accumulation of lactate is in turn toxic to the culture 

(Lee et al., 2015). It is possible that these reported metabolic observations could explain the 

difference between the batch and fed batch results presented in this study. 

Although the fed batch strategy should have had a superior performance to that of 

the batch process, it has been clearly demonstrated that this was not the case. The highest 

viable cell density observed between the two process types was not altered by much, 
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2.5x106 cells/mL in the batch culture compared to, 2.7x106 cells/mL in the fed batch culture. 

In contrast Reinhart et al. (2015) observed a peak viable cell density of 3.9x106 cells/mL, a 

less complex flask fed batch CD OptiCHO process compared to the systems used in the 

present study. The most obvious difference in between the two process types is, of course 

the process time, as the fed batch process only ran for half the time observed in the batch 

process. The poor performance of the CD OptiCHO fed batch culture could be the result of a 

potentially inhibitory effects caused by excessive feeding (Han et al., 2011, Lee et al., 2015). 

Another notable feature of both cultures is the decrease in lactate concentration in 

the latter stages of both processes which indicate a metabolic switch. However, this 

observation may not be applicable in the fed batch culture, as the change only occurred on 

the final day as the process was terminated. The lack of glucose and glutamine availability 

has previously been demonstrated to be influential in this metabolic switch and could 

potentially be the reason for this observed change in the batch and fed batch cultures 

respectively (Tsao et al., 2005, Zagari et al., 2013). 

The final four days of the batch culture indicate a switch to lactate as a result of the 

glucose depletion, due to the observed decrease in lactate concentration. As the glucose 

concentration does not reach zero during the process, this again infers a switch to lactate 

utilisation with it being converted to glucose and then being rapidly utilised (Tsao et al., 

2005, Wilkens et al., 2011, Zagari et al., 2013). In terms of the fed batch culture, the switch 

to lactate at the end of the process may have been due to the addition of the feed, but due 

to this only being observed in the final day this may or may not be the case. 

Overall the results obtained in this study indicate that transition of batch to fed 

batch culture process requires significant further development and optimisation. Only by 

performing more bioreactor fed-batch runs can these changes be achieved and any 
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meaningful conclusions regarding the performance of low passage number cultures in CD 

OptiCHO medium can be drawn. 

5.3.3 CD CHO vs CD OptiCHO 

In terms of comparing the results between the two medium processes from this study and 

the previous study, as the feed used between the two studies was different only the batch 

processes can be directly compared, while indirect observations can be drawn between the 

fed batch processes. Although the length of the batch cultures is the same in both media, 

the CD CHO medium produced a higher viable cell density of 5.8x106 cells/mL compared to, 

2.5x106 cells/mL. This increase in viable cell density also resulted in the highest average 

hIgG yield observed, to be three times higher in the CD CHO batch culture compared to that 

achieved in the CD OptiCHO batch culture. 

 Since the Raman models for both the previous study and the current study were 

unsuccessful, only the NIR results will be discussed. The NIR model values from both studies 

are comparable, the glucose models produced RMSEP’s of 0.45/0.37 g/L, and R2 values of 

0.96/0.98, for the CD CHO and CD OptiCHO respectively. The lactate results demonstrated 

an RMSEP value of 0.45 g/L for CD CHO and 0.17 g/L CD OptiCHO, with the models having 

an R2 of 0.94 and 0.97 respectively. While the results are comparable, the RMSEP values 

from the CD OptiCHO cultures are twice as low as those observed in the CD CHO batches, 

indicating that the models perform better. This increased error in the CD CHO batches, 

could be due to there being three batches introducing more variance, whereas there were 

only two batches in the CD OptiCHO processes. As the feed for this fed batch process is 

different from the previous study (4.2.3), only an indirect comparison will be made 

between them. Looking at the NIR model values from both studies they appear to be very 
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similar. The models for both the glucose and lactate produced in the CD CHO and CD 

OptiCHO had RMSEP’s which differed by only 0.1g/L.  

As previously discussed, one theme of this and the previous study was to compare 

the performance of low passage number CHO cell cultures in the various media provided by 

Thermo Fisher, to better understand the medium needs in early process development. It 

has been well reported that high passage number has a number of negative effects upon 

CHO culture stability, affecting protein expression, cell growth and cell viability. These 

effects can be a result of loss of genes or mutations, leading to varying production rates 

between cell populations. The genetic change of some cell populations in the culture can 

potentially offer advantages which could therefore overgrow the initial production cell 

(Bailey et al., 2012, Beckmann et al., 2012, Veith et al., 2016). 

In contrast there is relatively little investigation into lower passage number cultures 

and their media requirements. Therefore only assumptions and speculation, based upon 

current understanding of animal cell physiology in culture systems can be made about how 

these cultures perform. Commercial cell lines go through multiple rounds of clonal selection 

and development to ensure stability, in terms of production, growth and medium suitability 

(Bailey et al., 2012). It could be assumed from this observation that the transfer of a low 

passage cell culture designed for use in a medium containing a broad range of nutrients 

such as CD CHO, to a more specialised refined medium (CD OptiCHO) is not possibly and 

requires the initial development to be performed in the same medium. 

From the results of the two studies, it appears that the CD CHO medium is better 

suited to early culture development due to the increased viable cell density and subsequent 

hIgG production. As both media are proprietary the differences between these is not fully 
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known, but it is clear that changes in medium composition have had a significant effect 

when utilised in low passage cultures. 

5.4 Conclusion 

The outcomes of the present study demonstrate the suitability of NIR as a qualitative and 

quantitative means of monitoring a mammalian cell culture in batch/fed batch processes, 

and the application of Raman as a qualitative technique for glucose and lactate analysis. 

The fed batch strategy used in this study proved to be a significantly detrimental 

development of the initial batch process. Rather than improving the results it had a 

detrimental effect upon the process by, increasing the decline in live cell density  leading to 

a halving of the overall process time. 

Application of near infrared spectroscopy in both batch and fed batch processes 

resulted in successful models for glucose and lactate, with low RMSE and R2 values being 

produced. Despite the limited reporting of NIR in CD OptiCHO medium, there was some 

indication that the errors for glucose reported in some studies were more than double of 

those achieved in this present study. While the Raman data produced observable 

qualitative signals in the target regions corresponding to glucose and lactate, this did not 

lead to successful modelling of the data. 

In conclusion the results of this study indicate that in comparison to the CD CHO 

medium, the CD OptiCHO medium is not as suitable for low passage cultures, as it produces 

lower viable cell densities and hIgG concentration. NIR is acceptable for glucose and lactate 

modelling and utilised in the final developmental stage of the mammalian cell cultures, in 

the Dynamis medium, along with the Raman for qualitative analysis.  



Page | 158  
 

 

Chapter 6:        

Characterisation of Dynamis Batch 

Chinese Hamster Ovary Cell 

Culture by Application of Dual At-

Line Spectroscopic Monitoring 

Strategy 

  



Page | 159  
 

6.1 Overview 

The final bioprocess development stage to be investigated was a batch culture of the 

industrial CHO 42 mAb (hIgG4) producing cell line, at a low passage number, in the 

commercial Dynamis medium. This process was selected as the final developmental stage 

as the industrial collaborator, Thermo Fisher Scientific, had very little data regarding the 

performance of industrial cell lines in this medium. 

 The drive to develop chemically defined cell culture medium over the past two 

decades has resulted in several formulations, which have been shown to provide varying 

degrees of success (Barrett et al., 2012, Reinhart et al., 2015a, Ling et al., 2015). Chemically 

defined culture media can have anywhere from fifty to one hundred different constituents, 

each of which plays a vital role. Even the more common medium constituents, such as 

glucose, can be further optimised in terms of concentration to improve process 

performance (Ling et al., 2015). Dynamis medium represents Thermo Fisher Scientific’s 

most recent effort at producing a complex chemically defined medium, tailored to produce 

the highest product yields and superior culture performance, in CHO cell line systems. 

The batch processes performed in this study utilised the same bioreactor conditions 

as the previous studies, which are described in 3.3. To monitor the progress of the batches, 

pH, dissolved oxygen and temperature measurements were performed in-situ and cell 

density/viability was done at-line. The metabolite data required for the production of 

process models was collected in two formats, the offline reference data (YSI: 3.9) and the 

at-line spectroscopy data (NIR & Raman: 3.5/3.7). Offline measurements were analysed 

using the techniques and procedures outlined in 3.9, while at-line data was collected from 

the NIR and Raman spectrometers. The techniques described in 2.3/2.4 were utilised in the 

production of the final metabolite models for the batch processes.  
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6.1.1 Aim & Objectives 

The aim of this study was to utilise a dual spectroscopic strategy of at-line NIR and Raman 

spectroscopy, to characterise low passage number batch CHO cell culture in the commercial 

Dynamis medium. Glucose and lactate were monitored using NIR and Raman for the 

purpose of developing process models, which would be compared to the CD CHO and CD 

OptiCHO media processes (Chapter 4 & 5). The information obtained from the overall 

culture performance and process models, would then be provided to the industrial 

collaborators which would enable them in further developing an early stage process 

medium.  

 The Dynamis processes in this study were performed in the same manner as the CD 

and CD OptiCHO batch process, so as to provide a suitable comparison. As there are no 

previous spectral data from either the industrial collaborator or in the published literature, 

finding a direct comparison upon which to determine the feasibility of the dual 

spectroscopic strategy in this study has not been straightforward. However an indirect 

assessment of the strategy, based upon the observations in the previous studies (Chapter 4 

& 5) and related studies in the literature, will also be utilised in assessing the spectroscopic 

strategy in the present study. 

As with the previous studies, a combination of pure media analysis and evidence in 

the published literature were utilised in the determination of the specific regions of the NIR 

and Raman spectra, throughout the spectral processing of the Dynamis batch samples 

(Williams and Fleming, 1995, Colthup, 2012, Nyquist and Kagel, 2012, Smith and Dent, 

2013). A reassessment of the applied at-line NIR and Raman spectrometers would also be 

performed to determine if there was any need to optimise the instruments for the analysis 

of the Dynamis medium process samples. NIR data combined with the YSI reference data 
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would be utilised to produce quantitative PLS models for both glucose and lactate, while 

the Raman would be used in a qualitative fashion for these metabolite. Any models 

produced in the course of the present study would undergo both an internal and external 

validation, to determine their ability to accurately predict the metabolites. 

The research in this study represents a significant final stage of process 

development, as it utilises the most complex chemically defined medium provided by 

Thermo Fisher Scientific. Combined with the results obtained from the previous studies, the 

results of this study will be will be used to provide an insight into the requirements of early 

stage process development medium. 

6.1.2 Novelty 

The research presented in the current study adds additional complexity and novelty to that 

of the previously investigated CHO bioprocesses, the results of which can be fed back to the 

industrial collaborators. This study adds an additional layer into the spectroscopic 

investigation and characterisation of low passage number cultures, by testing a batch 

culture in the alternative chemically defined medium, Dynamis. Secondly these processes 

will also provide an insight into the performance of Dynamis, which at the time the study 

was conducted had no published reports in the literature. The level of interest of both 

industrial collaborators was high indicating the relevance of the study to both Thermo and 

Lonza. 

The interpretation of the spectral data might prove to be more problematic than 

usual, as there have been no reports of spectroscopic analysis of Dynamis medium based 

cultures with which to assess any potential spectroscopic variance effects. Similar to the 

previous study (Chapter 4) to determine if the change to Dynamis medium has a significant 
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effect on the selection of the optimal data pre-processing strategy the novel DoE strategy 

was utilised in along with PCA. 

6.2 Results 

6.2.1 Spectral Region Assignment 

To assess whether using an alternative medium to the previous studies influences the 

presence or location of the glucose and lactate peaks in the spectra of both techniques, 

samples of the Dynamis media were analysed. Based upon the results, there was no 

notable effect upon the metabolite signals previously noted in earlier chapters of the 

current work. When compared to observations from the literature, regions for the NIR and 

Raman spectra previously assigned to glucose/lactate were utilised for the process sample 

analysis (Table 6.1) (Chen et al., 2004, Goodarzi et al., 2015, Mehdizadeh et al., 2015, Singh 

et al., 2015). 

Table 6.1: Glucose & lactate peak regions in Dynamis medium. 

Metabolite NIR Peak Region Raman Peak Region 

Glucose 
2200-2400 nm 

1072 cm-1 and 1128 cm-1 

Lactate 855 cm-1 
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6.2.2 Dynamis Batch Process Analysis 

6.2.2.1 Reference Analysis  

To characterise the performance of CHO 42 cell culture in Dynamis medium, two batch 

processes were performed as the final process development stage. Characterisation of the 

process was performed by analysing the live cell density/viability and the cell metabolism 

through observation of glucose utilisation/lactate production (Figure 6.1) and hIgG 

production. On day 7 the highest average cell density was observed to be, 1.9x106 cells/mL, 

which was associated with a steady decrease in cell viability and rapid increase in lactate 

concentration. One notable feature present in the data is the increase in both cell density 

and viability on day 12, which coincided with a decrease in lactate concentration. The 

culture process was terminated on day 14 as a result of an overnight technical fault, 

however due to the rapidly declining cell density and viability it is unlikely that the 

processes would have continued for longer. hIgG production has been normalised due to 

commercial sensitivity, again the notable increase in concentration coincides with the 

increase in cell density. The spike in hIgG concentration on day 13 also may be related to 

the increase in cell density/viability on day 12.  The decrease in hIgG at the end of the 

process is most likely the result of degradation brought about by the conditions of the 

culture. See appendix Table A.5 for the corresponding values to Figure 6.1 and appendix 

Figure A.5 the bioreactor process condition values (pH, dO2, Agitation & Temperature).
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Figure 6.1: Time course of process data from CHO 42 culture in batch Dynamis medium [average of triplicate measurements from two bioreactors 

plotted with standard deviation]. 
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6.2.2.2 Raw Process Spectra 

Due to the effect that water absorbance has upon the NIR spectra, which has been 

reported in the literature (Beutel and Henkel, 2011, Reich, 2016), no metabolite 

absorbances which may be present are easily discernible in the unprocessed spectra (Figure 

6.2). 

 

Figure 6.2: Batch Dynamis NIR absorbance of combination band region (stretching and 

bending vibrations for C–H) from all processes [Colour Code Light to Dark = Bioreactor 1 to 

2] (Processing: Average of triplicate measurements from each bioreactor). 

The Raman spectral data produced very low intensity peaks at the previously 

identified regions from the literature, that corresponded to lactate (855 cm-1) and glucose 

(1128 cm-1) (Mehdizadeh et al., 2015, Singh et al., 2015). For the DoEman and PCA analysis 

the regions at 835-865 cm-1 and 1100-1150 cm-1 were chosen to develop the process 

models, as they represented the regions of highest spectral activity in regards to the target 

metabolites (Figure 6.3). 

2200 2250 2300 2350 2400
1.0

1.5

2.0

2.5

Wavenumber (nm)

A
b

s
o

rb
a
n

c
e



Page | 166  
 

 

Figure 6.3: Batch Dynamis Raman scattering of 835-865 cm-1 and 1100-1150 cm-1 regions 

from all processes [Colour Code Light to Dark = Bioreactor 1 to 2] (Processing: Average of 

triplicate measurements from each bioreactor). 

6.2.2.3 DoEman 

Working under the assumption that a change in medium represents a significant change in 

the sample matrix, and could change the previously identified pre-processing techniques, a 

new DoE analysis was performed for the Dynamis medium. The DoE strategy previously 

outlined in 3.8.2 was applied with the selected pre-processing treatments indicated in Table 

6.2, to determine the optimal data processing strategy (Table 3.2 

6.2.2.4 PCA Scores/Plots 

The second step in the spectral data optimisation was a PCA of the previously identified 

regions of the NIR and Raman spectra. The PCA parameters which captured the maximum 

variance within both the NIR and Raman data are outlined in Table 6.3. From these results 

are the calibration and validation datasets were selected.  
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Table 6.3: Spectral pre-processing PCA parameters and statistical values   

Technique Pre-processing 
Cross 

Validation 

No. of 
Latent 

Variables 

Variance 
Captured 

NIR 2
nd

 Derivative, MSC & Mean 
Centering 

Venetian 
Blinds 

4 98.72 % 

Raman MSC & Mean Centering 
Venetian 

Blinds 
4 93.44 % 

 

 The NIR PCA strategy outlined in Table 6.3 resulted in the PCA scores plot observed 

in Figure 6.4 and despite the apparent difference between the two batches there is a 

distinct trend between PC1 vs PC2 shared by both batches. In both batches, early process 

samples correlate to PC1 and then favour PC2 as the process time increases. From these 

results, the calibration dataset was formed from two thirds of the data which covered the 

PCA scores plot, while the remaining third formed the external validation data set. This 

represents a rigorous external validation of the model formulated using the calibration 

dataset. 
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Figure 6.4: Batch Dynamis NIR PCA scores of the combination band region in all processes, 

with process sample numbers represented [Class=Bioreactor 1-2] (Processing: Savitzky-

Golay Second Derivative; MSC; Mean Centered; Average of triplicate measurements per 

batch). 

The Raman PCA results (Figure 6.5) also displayed the previously observed trend 

from the NIR, however there is more overlap between the batches compared to that 

observed in the NIR which indicate greater similarity in the composition of those samples.  

As before the early samples are correlated to PC1 and the later process samples develop a 

correlation to PC2. The calibration dataset was again composed of two thirds of the data 

and the external validation dataset was produced from the other third. 
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Figure 6.5: Batch Dynamis Raman PCA scores of the 835-865 cm-1 and 1100-1150 cm-1 

regions from all processes, with process sample numbers represented [Class=Bioreactor 1-

2] (Processing: MSC and Mean Centered; Average of triplicate measurements per batch). 

Despite the apparent variance between the batches in both the NIR and Raman, 

the trend observed within the PCA scores plots of each technique indicated that PC1 and 

PC2 correlate to glucose and lactate, respectively. 

6.2.2.5 Processed Spectra 

After the application of the identified optimal pre-processing techniques to the raw NIR 

data, peaks and troughs corresponding to the absorbance intensity of the CH region are 

now observable (Figure 6.6). The varying concentration of glucose/lactate in the reference 

data over the process time is reflected in the changes in height and depth of the peaks from 

both batches. 
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Figure 6.6: Preprocessed batch Dynamis NIR absorbance of CH region of all processes 

[Colour Code Light to Dark = Bioreactor 1 to 2] (Processing: Savitzky-Golay Second 

Derivative; MSC; Mean Centered; Average of triplicate measurements from each 

bioreactor). 

 The previously observed peak activity at the target spectral regions are better 

elucidated in the Raman spectral data after the application of the optimised pre-processing 

treatments (Figure 6.7). Again based upon the reference data, the intensity of the peaks at 

the specified regions is representative of the concentration of glucose and lactate within 

the samples of both batches. 
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Figure 6.7: Processed batch Dynamis Raman scattering of 835-865 cm-1 and 1100-1150 cm-1 

regions from all processes [Colour Code Light to Dark = Bioreactor 1 to 2] (Processing: MSC; 

Mean Centered; Average of triplicate measurements from each bioreactor). 

6.2.2.6 Partial Least Squares (Calibration & Validation) 

Once the spectral data optimisation was completed and the calibration/validation datasets 

selected, the final stage of the process characterisation was to carry out the PLS modelling 

of the target metabolites. The NIR data produced PLS models which indicated a good model 

fit and with low errors of prediction both glucose (Figure 6.8) and lactate (Figure 6.9). 

However there is a slight offset in the glucose model which is not present in the lactate 

model. 
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[A] 
Calibration 

Internal 
Validation 

External 
Validation 

(Prediction) 

RMSE (g/L) 0.23 0.52 0.63 

R2 0.99 0.96 0.94 
 

     [B]         [C] 

 

 

Figure 6.8: NIR Batch Dynamis glucose PLS [A] RMSE & R2 values [B] Calibration & Internal 

Validation model [C] External Validation (Prediction) model; with the selected samples 

(blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 
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[A] 
Calibration 

Internal 
Validation 

External 
Validation 

(Prediction) 

RMSE (g/L) 0.04 0.13 0.08 

R2 0.99 0.99 0.99 
 

     [B]         [C] 

 

 

Figure 6.9: NIR Batch Dynamis lactate PLS [A] RMSE & R2 values [B] Calibration & Internal 

Validation model [C] External Validation (Prediction) model; with the selected samples 

(blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 

Once more the Raman data produced poor PLS models with high errors of 

prediction for both glucose (Figure 6.10) and lactate (Figure 6.11). Again the poor predictive 

abilities of the Raman PLS were not unexpected, based on the observations from the 

previous studies (Chapter 4 & 5). Despite the qualitative success of the Raman it is still not 

clear what the cause of the poor model performance is and if it is the result of undetected 

effects from other sample matrix components or poor selection of calibration/validation 

datasets. 
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[A] 
Calibration 

Internal 
Validation 

External 
Validation 

(Prediction) 

RMSE (g/L) 0.34 3.02 3.16 

R2 0.98 0.01 0.16 
 

     [B]         [C] 

 

Figure 6.10: Raman Batch Dynamis glucose PLS [A] RMSE & R2 values [B] Calibration & 

Internal Validation model [C] External Validation (Prediction) model; with the selected 

samples (blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 
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[A] 
Calibration 

Internal 
Validation 

External 
Validation 

(Prediction) 

RMSE (g/L) 0.16 1.41 1.35 

R2 0.98 0.01 0.17 
 

     [B]         [C] 

 

Figure 6.11: Raman Batch Dynamis lactate PLS [A] RMSE & R2 values [B] Calibration & 

Internal Validation model [C] External Validation (Prediction) model; with the selected 

samples (blue points), the theoretical ‘perfect’ fit (green line) and the actual fit (red line). 

The results produced from the PLS modelling demonstrate the suitability of NIR for 

predicting glucose and lactate, in the Dynamis CHO culture. But again indicate poor 

suitability of the Raman models in predicting both of the metabolites. 

  

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

Measured Lactate (g/L)

P
re

d
ic

te
d
 L

a
c
ta

te
 (

g
/L

)

 

 

Fit

1:1

Y CV Predicted 1

0 0.5 1 1.5 2 2.5 3 3.5
-2

-1

0

1

2

3

4

Measured Lactate (g/L)

P
re

d
ic

te
d
 L

a
c
ta

te
 (

g
/L

)

 

 

Fit

1:1

Y Predicted 1



Page | 176  
 

6.3 Discussion 

6.3.1 Spectral Models 

6.3.1.1 NIR 

The glucose error of prediction for the external validation obtained in this study 

was 0.11 g/L greater than that of the internal validation, indicating an over fit in the initial 

calibration. This observed over fit of the initial calibration was absent from the lactate data, 

with the error of prediction for the internal validation being 0.05 g/L than those of the 

external validations. This difference in the errors of prediction between the two 

metabolites could potentially be a result of the sample distribution for the 

calibration/validation datasets favouring lactate over glucose. This is reflected in the R2 

values of the external validation for the metabolites, with glucose being 0.94 and lactate 

0.99, indicating a better correlation between the spectral data to the lactate reference 

data. 

In terms of drawing a direct comparison between the glucose/lactate results 

produced in the present study to the published literature has not been possible. This is due 

to there being no published sources which have utilised Dynamis medium or tried to apply 

NIR to such a process. An indirect comparison of NIR in Dynamis can be made from the 

previous CHO media batch processes (4.3.1.1 & 5.3.1.1) and those in the published 

literature. Although the glucose model error in the Dynamis batches, 0.62 g/L, is higher 

than those obtained from the CD and OptiCHO media (0.45 g/L and 0.37 g/L), they are still 

within the range of those reported in some of the literature 0.48-1.45 g/L (Lee et al., 2012a, 

Sandor et al., 2013, Milligan et al., 2014). Conversely, the lactate results produced in the 

Dynamis batch (0.08 g/L) were lower than those obtained in both the, previous studies, 
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0.34/0.17 g/L for the CD CHO/CD OptiCHO respectively, and in the CD CHO literature, 0.44 

g/L (Sandor et al., 2013) . 

Overall the results from this study indicate an acceptable level of error within the 

models for both metabolites, glucose (0.62 g/L) and lactate (0.08 g/L), which compare well 

to the previous studies and the published CHO culture literature. These low errors are 

potentially useful to the cell culture industry, as they indicate the suitability to use NIR to 

monitor an industrial process with an acceptable degree of accuracy. 

6.3.1.2 Raman 

Once more there was no change in the quantitative capabilities of the Raman, 

despite the spectral signals in the previously identified regions, for glucose (1128 cm-1) and 

lactate (855 cm-1) (Mehdizadeh et al., 2015, Singh et al., 2015). Regardless of the 

application of the developments outlined in 4.3.1.3, the Raman data has failed to produce 

quantitative models for both metabolites in this study. 

Similar to the NIR, as there is no application of Dynamis processes in the literature 

gaining a direct comparison of the results from the Raman spectroscopic data was not 

possible. The results indicate the models in their current state would not be suitable for use 

in monitoring an industrial process, as they are not sufficiently accurate at predicting the 

metabolite concentrations, which is indicated by the RMSEP values 3.16 g/L (glucose) and 

1.35 g/L (Lactate). 

When indirectly compared to the previous studies, the results generated here have 

similarly high errors of prediction to those of the previous media batches (4.3.1.1 & 

5.3.1.1). Both the glucose/lactate model errors in the Dynamis medium are higher than 

those observed from the previous CD CHO and CD OptiCHO studies, 3.11/1.62 g/L and 
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2.04/0.93 g/L. When compared to the glucose and lactate results obtained from one CD 

OptiCHO study, 0.27 g/L and 0.20 g/L (Matthews et al., 2016), it is clear that the errors here 

are significantly higher and the present models are not suitable for process monitoring at 

this time without more development and optimisation. 

6.3.2 Batch Process 

In terms of meeting the needs of the industrial collaborators, Lonza and Thermo Fisher 

Scientific, this low passage number batch process represents the final characterisation 

stage, as the Dynamis medium is the most recently developed chemically defined medium. 

 From the reference results it is clear that the performance of the culture is limited, 

as indicated by the slow growth rate and decreasing viability, which are potentially related 

to the lactate increasing concentration. This assumption is supported by the increase of 

both the cell density and viability on day 12, which coincided with a decrease in lactate 

concentration.  

The decrease in the lactate concentration indicates a potential metabolic switch to 

lactate into the TCA cycle as an alternate energy source around day 11, as this is when the 

glucose concentration is almost completely depleted. As previously reported in the 

literature, one of the causes of this switch is reduced glucose availability (Tsao et al., 2005, 

Wilkens et al., 2011, Zagari et al., 2013), which could be applied to the batch process 

presented in this study.  

As previously stated in 6.2.2.1, the processes had to be terminated on day 14 due 

to a technical fault. But regardless of this unfortunate circumstance, it is clear from the data 

that both the cell density and viability were on the decline again, despite the potential 

switch to lactate consumption to support the culture. 
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6.3.3 Dynamis vs CD CHO & CD OptiCHO 

To determine how the Dynamis medium performed, the results from this study will be 

compared to those obtained from the previous CD CHO and OptiCHO batch processes only. 

Despite the additional day in the process time, this has not had any beneficial effect upon 

the culture. Comparing the highest cell densities, the result of the Dynamis is very low at 

only 1.9x106 cells/mL, almost a third lower that of the CD CHO medium (5.8x106 cells/mL) 

and lower still than the CD OptiCHO (2.5x106 cells/mL).The low viable cell density in the 

Dynamis medium, has subsequently also resulted in a lower yields of hIgG being attained, 

composed to those from the CD CHO and CD OptiCHO media. In terms of metabolic profiles 

from all three studies they are relatively comparable, with glucose being reduced below 1 

g/L from days 7-9 and lactate reaching the highest concentration of 2.6-2.9 g/L between 

days 8-10. 

A number of observations can be made about the performance of the cell line 

across each medium, which can be fed back to the industrial collaborators to help in the 

development of early culture process medium. The similarity between the culture time and 

the metabolic profile (glucose consumption/lactate production) across each medium 

process indicates that the basic metabolic needs of the cell line are being met fairly 

consistently in each medium. However, the changes in cell density between each medium 

process indicate that of the three CD CHO produces the best results. In terms of the highest 

average hIgG concentration between the three media, the Dynamis batch process 

performed only marginally better than the CD OptiCHO media, producing half as much as 

the CD CHO batch process. Again, the results of the three studies indicate that the CD CHO 

medium is better suited to early culture development, due to the increased viable cell 

density and subsequent hIgG production. But with the specific formulation of the medium 
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being proprietary, it is not possible to specifically identify which components are 

responsible for the varying performances of the cultures. 

6.4 Conclusion 

The present study once again clearly demonstrates the qualitative and quantitative 

capabilities of NIR spectroscopy in the monitoring of mammalian cell culture in batch 

processes, and the qualitative ability of Raman in the analysis of glucose and lactate. The 

study also provides a suitable starting point for further investigation into the utilisation of 

Dynamis medium. 

The NIR batch and fed batch processes produced successful models for glucose and 

lactate, with acceptable RMSE and R2 values. Although there is no reporting of NIR in 

Dynamis medium, the results obtained were comparable to those in the published 

literature in CD CHO and CD OptiCHO media. Again despite the Raman data producing 

qualitative signals in the glucose and lactate target regions of the spectra, this did not result 

in successful modelling of the data and the observed signals were weaker in intensity that 

the previous two studies. 

In conclusion this study indicates that in comparison to the CD CHO and CD 

OptiCHO media, Dynamis is not as suitable for low passage cultures, as it produces lower 

viable cell densities and hIgG concentration. This could possibly be remedied by 

optimisation of the culture work up and further adaptation to the “new” medium of the cell 

line. In the present study, time limitations prevented this.  
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Chapter 7:               

Conclusions 
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7.1 Conclusions 

The main aim at the outset of this project was to look at approaches for progressing 

towards real-time monitoring and control of mammalian cell line based biomanufacturing 

processes. To achieve this, NIR, MIR and Raman were utilised at-line to construct 

metabolite models in a number of industrial CHO cell culture processes. This project 

investigated the performance of low passage number cultures in three different media, to 

align with the needs of the industrial collaborators, and utilised a DoE strategy to optimise 

spectral data preprocessing when forming models for each of the cell culture process. The 

final aspect that was investigated was the formulation of a single model from the data of all 

the spectroscopic techniques through data fusion. An overview of the processes and 

analysis performed throughout this study, to achieve these aims, can be seen in Table 8.1. 

Table 7.1: Study experimental overview 

Chapter Medium Process Format 
Spectroscopic 

Analysis 

4 CD CHO Batch & 

Fed Batch 

NIR MIR Raman 

5 CD Opti CHO NIR & Raman 

6 Dynamis Batch NIR & Raman 

 

 The results presented from the initial study (Chapter 4) in the CD CHO medium 

process demonstrated varying degrees of success between the spectroscopic techniques 

and the process formats. Utilising the combination band region in the NIR spectra, glucose 

and lactate models were successfully constructed in both the batch and fed batch process 

formats, which compared well with the literature. In contrast the MIR and Raman both 

failed to produce process models without high errors, despite the latter displaying 

qualitative Raman signals for the target metabolites. While the CD CHO batch process 
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formed a suitable baseline for the characterisation of the low passage number cell cultures, 

the unrefined fed batch protocol used adversely affected the overall process. 

Disappointingly, as only the NIR produced suitable process models, investigating the 

feasibility of data fusion was not possible. This initial study set a good foundation in terms 

of the low passage number batch culture characterisation and NIR analysis of CD CHO. But 

it also highlighted the shortcomings of the Raman analysis and the failure of the MIR. As a 

result of this some of the previously planned analysis had to be reassessed, with only NIR 

and Raman being carried forth in the investigation of CD OptiCHO processes. 

The outcomes of the CD OptiCHO study (Chapter 5) study reinforced the suitability 

of NIR and Raman as quantitative/qualitative techniques respectively, for glucose/lactate 

analysis in both batch/fed batch processes. Despite limited application of NIR in CD 

OptiCHO medium, there were indications that the results in the present study were better 

than those few published studies. Modelling of the Raman data was again unsuccessful in 

producing process models, despite the presence of qualitative signals in the target regions. 

Likewise the fed batch strategy used in this study proved to be significantly detrimental to 

the cell culture process, increasing the decline in live cell density  leading to a halving of the 

overall process time. Compared to the CD CHO medium processes, the results of the CD 

OptiCHO medium processes indicate it is unsuitable for the development of low passage 

cultures, due to the lower viable cell density and hIgG concentration produced. The results 

of this study continue to build upon the initial batch process characterisation through the 

NIR/Raman analysis and highlight the limitations of the more developed CD OptiCHO 

medium. 

The final study in this project (Chapter 6) represented the not only the last stage of 

process characterisation for the industrial partners, but also a suitable starting point for 



Page | 184  
 

further investigation into the utilisation of Dynamis medium. The NIR data from both the 

batch and fed batch processes produced successful models for glucose and lactate, with 

satisfactory error values comparable to CD CHO and CD OptiCHO media research in the 

published literature. Once more the qualitative signals in the glucose and lactate target 

regions of the Raman spectra data did not yield successful models. When compared to the 

results from CD CHO and CD OptiCHO, those obtained from the Dynamis indicate that it 

was the least suitable of the three for use in low passage cell cultures, because of the low 

viable cell density and hIgG concentration. Overall this study proved to be a suitable 

finishing point of the investigation of the CHO cell processes, demonstrating again the 

success of NIR and the poor performance of the Dynamis medium for low passage number 

cultures. 

In conclusion the results achieved in throughout this project demonstrate the 

success of NIR analysis across all process formats and media, as supported by the literature, 

and the failure of MIR based data modelling. The qualitative analytical ability of Raman 

spectroscopy is also shown, with the results of this analysis appearing to differ between the 

various media processes. Raman spectroscopy using the instrument supplied did not seem 

suitable for quantitative modelling despite published research indicating otherwise. The 

research in this project also provides a suitable indicator as to the media suitability for use 

in low passage number cell cultures, through comparison of the batch culture processes. 

Overall this study represents a useful stage in the development towards real time 

monitoring of biomanufacturing processes and in the development of low passage number 

cell culture media, however it requires further investigation to improve upon the 

Raman/MIR analysis and fed batch strategy, but also to refine the processes for future use 

in industry.  
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Chapter 8:                       

Future Work 
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8.1 Future Work 

As with all research studies there are always areas which can be improved in hindsight, 

however the research presented here does offer a foundation from which future 

developments can be made. But due to both the time limitations and some of the 

unexpected results, there are a number of aspects which would benefit from future 

improvements and developments. 

8.2 NIR 

Although the at-line NIR proved successful in monitoring of glucose and lactate in all 

process formats, there are still some improvements and developments that can still be 

made. Investigation into in-situ NIR monitoring should be assessed, as it would be the key 

next stage in development towards real time monitoring of these processes and could 

potentially reduce some of the limitations observed in this study. The main limitation to the 

at-line was the ability to analyse other important metabolites (glutamine) and culture 

parameters (viable cell density), which give a wider understanding of the process. As yet 

there are no studies which have looked at in-situ NIR monitoring in low passage number 

cultures combined with DoE based preprocessing. But number of studies have indicated 

that application of in-situ NIR can yield process models for multiple culture process 

parameters (Clavaud et al., 2013, Courtès et al., 2016).  

8.3 MIR 

As previously discussed the failure of the MIR was potentially caused by a number of 

reasons (4.3.1.2). There are a couple of methods which could be used to try to improve the 

MIR analysis in the future. Firstly, moving the instrument to a more suitable location within 

the processing area would be done, to determine if the poor temperature control in the 



Page | 187  
 

current location was to blame for the poor performance. A more extensive study into the 

limit of detection of the instrument would also be carried out to reassess the suitability of 

the instrument. The final potential improvement would be to switch to a different 

instrument such as the Direct Detect at-line MIR spectrophotometer (Merck Millipore, 

Danvers, MA). A few studies have demonstrated that this instrument, which uses a PTFE 

membrane to present the sample to the spectrometer, has been successful in analysing 

various parameters in CHO cell cultures (Capito et al., 2015a, Capito et al., 2015b). 

8.4 Raman 

The ability for the Raman spectrometer to only produce data of a qualitative data was 

disappointing, even considering the improvements to the instrument that were made 

(4.3.1.3). As these improvements indicated no fault with the instrument, the only 

conceivable development to potentially improve the process spectra would be to increase 

the analysis time through in-situ analysis. There are a number of reported successes in the 

literature of in-situ Raman (Whelan et al., 2012, Matthews et al., 2016) but not within a low 

passage number process combined with DoE , based pre-processing, thus maintaining the 

original novel aspects of this thesis. 

8.5 Modelling 

Overall the modelling strategy employed in this thesis was suitable, as indicated by some of 

the successfully developed models. However, one improvement that could be made to the 

modelling would be to increase the number of processes utilised in each developed model. 

This would increase the amount of spectral measurements potentially leading to better end 

models.  
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8.6 Medium 

In terms of meeting the aim of characterising low passage culture performance in the 

various media, there is still a significant amount of development to be done, but the work 

presented here forms a good foundation for future studies. Looking at the major 

performance indicators, viable cell density, viability and product titre, it is clear that the CD 

CHO medium was most suitable for low passage number culture cultivation. As the three 

media in this study were proprietary and the compositions not disclosed to the author, it is 

possible that a removal or addition of components to the media is the cause of the poor 

performances but this can only be speculated. Assuming that it is a removal or addition of 

components to the media that caused the issues, one method of future development could 

be to perform multiple experiments in CD CHO batch processes to fully characterise the 

metabolic needs of low passage cultures. This could then enable the industrial partners 

involved, Thermo Fisher Scientific, to tailor a medium specifically for low passage number 

cultures. 

8.7 Fed Batch Strategy 

The fed batch strategies in this thesis represent one of the major future developments that 

must be addressed, due to the failure of these in the CD CHO and CD OptiCHO processes. 

While these strategies were chosen from the literature as they demonstrated an improved 

culture performance (Barrett et al., 2012, Reinhart et al., 2015a), it could be that these 

feeds are not compatible with low passage number cultures. Had time permitted, a series 

of small scale feasibility studies would have been very useful to determine the compatibility 

of these feeds and an optimisation of the feeding strategy.  
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Table A.1: Process data from CHO 42 batch culture in CD CHO medium [corresponds to Figure 4.1]. 

Time (Days) 
Live Cell 

Density (Cells 
per mL) 

Live Cell Density 
Standard 
Deviation 

Cell 
Viability 

(%) 

Cell Viability 
Standard 
Deviation 

Glucose 
(g/L) 

Glucose  
Standard 
Deviation 

Lactate 
(g/L) 

Lactate  
Standard 
Deviation 

0 251667 6.20 99 0.65 5.93 0.05 0.12 0 

1 417778 7.84 98 0.56 5.63 0.12 0.25 0 

2 741667 7.25 98 1.05 5.38 0.10 0.43 0.01 

3 1108333 3.68 97 1.54 4.98 0.03 0.80 0.01 

4 2252778 5.03 97 0.63 3.94 0.10 1.48 0.03 

5 3230556 5.65 98 1.32 2.81 0.05 2.14 0.03 

6 4219445 4.44 97 1.11 1.97 0.03 2.33 0.01 

7 5827778 9.14 95 0.87 1.15 0.00 2.58 0.02 

8 5233334 4.31 91 2.22 0.66 0.01 2.69 0.01 

9 3644445 7.12 69 3.73 0.42 0.01 2.63 0.03 

10 2855556 6.90 56 4.25 0.27 0.00 2.51 0.03 

11 1555556 6.02 35 2.91 0.15 0.00 2.54 0.06 

12 991667 5.63 27 4.87 0.12 0.00 2.46 0.03 

13 0 1.00 2 3.00 0.15 0.00 2.73 0.05 

 



Page | 207  
 

Time (Days)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

T
e

m
p

e
ra

tu
re

 (
o
C

)

36.9

37.0

37.1

37.2

37.3

A
g
it
a
ti
o
n
 (

rp
m

)

199.5

200.0

200.5

p
H

6.8

6.9

7.0

7.1

7.2

7.3

7.4

d
O

2

39.5

40.0

40.5

Temperature

Agitation 

pH 

dO2 

  

Figure A.1: Bioreactor process data from CHO 42 batch culture in CD CHO medium. 
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Table A.2: Process data from CHO 42 fed batch culture in CD CHO medium with EfficientFeed™ B [corresponds to Figure 4.17]. 

Time 
(Days) 

Live Cell 
Density (Cells 

per mL) 

Live Cell Density 
Standard 
Deviation 

Cell 
Viability 

(%) 

Cell Viability 
Standard 
Deviation 

Glucose 
(g/L) 

Glucose  
Standard 
Deviation 

Lactate 
(g/L) 

Lactate  
Standard 
Deviation 

0 243333 4.15 98 1.14 5.30 0.05 0.10 0 

1 489167 3.94 98 1.61 5.80 0.06 0.24 0 

2 881250 2.29 98 0.49 5.55 0.11 0.45 0.01 

3 1666667 3.46 98 1.16 5.06 0.02 0.84 0.00 

4 2983333 9.98 98 0.70 5.27 0.09 1.43 0.03 

5 4858334 10.69 97 1.08 4.05 0.03 2.21 0.02 

6 5008334 8.95 95 1.72 3.65 0.03 3.09 0.03 

7 5241667 6.03 94 1.45 2.06 0.02 3.93 0.04 

8 4700000 5.10 87 2.79 2.24 0.01 4.06 0.02 

9 3183333 5.06 47 1.15 1.70 0.03 4.30 0.03 

10 2150000 1.80 40 1.83 2.66 0.04 4.58 0.04 

11 1741667 9.02 37 5.98 2.95 0.01 3.89 0.01 

12 608333 6.81 25 7.21 3.98 0.02 3.62 0.03 

13 0 0.00 0 0.00 3.56 0.03 3.48 0.03 
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Figure A.2: Bioreactor process data from CHO 42 fed batch culture in CD CHO medium with EfficientFeed™ B. 
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Table A.3: Process data from CHO 42 batch culture in CD OptiCHO medium [corresponds to Figure 5.1]. 

Time 
(Days) 

Live Cell 
Density (Cells 

per mL) 

Live Cell Density 
Standard 
Deviation 

Cell 
Viability 

(%) 

Cell Viability 
Standard 
Deviation 

Glucose 
(g/L) 

Glucose  
Standard 
Deviation 

Lactate 
(g/L) 

Lactate  
Standard 
Deviation 

0 223333 4.07 99 1.61 4.59 0.03 0.06 0 

1 388333 6.22 97 1.41 5.08 0.09 0.21 0 

2 552500 4.77 96 0.86 4.93 0.01 0.33 0.00 

3 795833 7.99 92 2.38 4.61 0.03 0.56 0.00 

4 1257500 5.95 83 3.13 3.36 0.01 0.76 0.35 

5 2328333 2.93 88 0.74 2.91 0.02 1.49 0.02 

6 2477083 8.89 91 1.67 1.77 0.01 2.07 0.04 

7 2433333 3.71 82 2.98 0.93 0.01 2.36 0.02 

8 1787500 3.79 76 2.94 0.32 0.01 2.55 0.03 

9 1725000 2.52 60 2.13 0.02 0.00 2.62 0.04 

10 991667 3.86 37 2.46 0.02 0.01 2.51 0.03 

11 766667 4.25 26 2.93 0.02 0.00 2.47 0.12 

12 362500 2.87 14 1.82 0.02 0.00 2.29 0.04 

13 145833 1.15 6 1.06 0.02 0.00 2.27 0.06 
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Figure A.3: Bioreactor process data from CHO 42 batch culture in CD OptiCHO medium. 
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Table A.4: Process data from CHO 42 fed batch culture in CD OptiCHO medium with EfficientFeed™ A [corresponds to Figure 5.12]. 

Time 
(Days) 

Live Cell 
Density (Cells 

per mL) 

Live Cell Density 
Standard 
Deviation 

Cell 
Viability 

(%) 

Cell Viability 
Standard 
Deviation 

Glucose 
(g/L) 

Glucose  
Standard 
Deviation 

Lactate 
(g/L) 

Lactate  
Standard 
Deviation 

0 335000 3.05 95 0.75 5.23 0.17 0.10 0 

1 508333 5.24 96 1.30 4.90 0.13 0.28 0 

2 1008333 5.97 97 1.10 4.84 0.05 0.46 0.01 

3 1318750 4.27 95 2.67 4.29 0.02 0.75 0.01 

4 2616667 10.25 96 1.01 5.46 0.03 1.50 0.02 

5 2558333 7.54 95 2.01 2.36 0.03 2.31 0.03 

6 2683333 2.39 74 2.44 2.86 0.02 2.70 0.01 

7 16667 0.29 1 0.23 2.85 0.03 1.92 0.02 
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Figure A.4: Bioreactor process data from CHO 42 fed batch culture in CD OptiCHO medium with EfficientFeed™ A. 
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Table A.5: Process data from CHO 42 batch culture in Dynamis medium [corresponds to Figure 6.1]. 

Time 
(Days) 

Live Cell 
Density (Cells 

per mL) 

Live Cell Density 
Standard 
Deviation 

Cell 
Viability 

(%) 

Cell Viability 
Standard 
Deviation 

Glucose 
(g/L) 

Glucose  
Standard 
Deviation 

Lactate 
(g/L) 

Lactate  
Standard 
Deviation 

0 257500 1.80 100 0.59 5.92 0.11 0.14 0 

1 469167 7.39 97 1.82 5.90 0.11 0.27 0 

2 791667 4.41 96 0.56 5.63 0.03 0.42 0 

3 939583 5.43 95 1.76 5.24 0.04 0.71 0.01 

4 1289583 4.34 94 0.81 4.46 0.04 1.13 0.01 

5 1379167 5.14 88 2.17 3.41 0.03 1.70 0.01 

6 1741667 4.08 87 0.57 2.31 0.02 2.33 0.01 

7 1975000 6.43 83 2.07 1.53 0.01 2.60 0.02 

8 1641667 8.00 66 2.43 1.12 0.01 2.61 0.03 

9 1341667 3.59 56 2.30 0.68 0.00 2.72 0.04 

10 1225000 1.05 39 1.44 0.24 0.00 2.88 0.04 

11 933333 1.26 34 0.06 0.03 0.00 2.86 0.03 

12 1283333 1.53 53 1.68 0.02 0.01 2.58 0.09 

13 1008333 1.53 41 5.02 0.02 0.00 2.41 0.03 

14 758333 3.06 27 1.09 0.02 0.01 2.33 0.03 
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Figure A.5: Bioreactor process data from CHO 42 batch culture in Dynamis medium.  


