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Abstract 

Conventional approaches to dynamic line rating (DLR) forecasting provide single 

point estimates with no indication of the distribution of possible errors. Furthermore, 

most research related to DLR forecasting deals only with continuous or steady-state 

ratings while less attention has been given to short-term or transient-state ratings. 

This thesis describes (a) weather-based models to estimate probabilistic forecasts of 

steady-state DLRs for up to three 10-minutes time steps ahead for a particular span 

and a complete overhead line (OHL) and also (b) a fast-computational weather-based 

approach to probabilistic forecasting of transient-state DLRs for a particular span for 

time horizons of 10, 20 and 30 minutes. The percentiles of DLR forecasts can be 

used by a system operator within a chosen risk policy informed by the probability of 

a rating being exceeded. 

The thesis first develops time series forecasting models for different weather 

variables that impact on line rating (i.e. air temperature, wind speed, wind direction 

and solar radiation) at weather stations that are installed along the route of 132kV 

OHLs in North Wales. Predictive centres of weather variables are modelled as a sum 

of residuals predicted by a suitable auto-regressive process and temporal trends fitted 

by Fourier series. Conditional heteroscedasticity of the predictive distribution is 

modelled as a linear function of recent changes in residuals within one hour for air 

temperature and wind speed or concentration of wind direction observations within 

the most recent two hours. A technique of minimum continuous ranked probability 

score estimation is employed to determine predictive distributions of the measured 

weather variables. 

Then the thesis uses Monte Carlo simulation to generate a large number of random 

weather samples from the modelled predictive distributions which are paired to have 

rank correlations similar to those among their recent observations. The probabilistic 

steady-state DLR forecasts for a particular span in proximity to a weather station are 



 

 

estimated from the random weather samples combined with a maximum allowable 

conductor temperature using a thermal model of the conductors (i.e. a steady-state 

heat balance equation). For a complete OHL, possible weather predictions at each 

span are inferred from random weather samples at stations by using suitable spatial 

interpolation models; the steady-state DLR forecast of the OHL is then identified as 

the minimum DLR among all spans for each generated scenario. Using an enhanced 

analytical method which evolves from a non-steady-state heat balance equation to 

track the transient-state conductor temperature, the transient-state DLR forecast for a 

particular span is calculated as that which increases the conductor temperature from 

an initial value to the maximum allowable limit for a particular future time period (i.e. 

in this study, 10, 20 and 30 minutes) under each set of random weather samples. The 

calibration of probabilistic DLR forecasts estimated from independent or correlated 

random weather samples are then examined to determine which approaches are most 

suited to estimation of DLRs at the lower end of a predictive distribution consistent 

with a system operator’s risk policy. The potential use of DLR forecasting is then 

evaluated through estimating the degree to which wind generation curtailment for 

various assumed installed capacities at a wind farm that is connected to the 132kV 

network in North Wales can be alleviated through using the lower percentiles of 

steady-state DLR forecasts in place of the SLRs for each 132kV OHL.
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- 

* The unit is related to the weather variable of interest 

F. Rank Correlation based Pairing 

𝐶𝑎𝑙,𝑐
2   

C-association describing the rank relationship between linear 

and circular variables  

- 

𝐶𝑟𝑁𝑟, 𝐶𝑟𝑐, 𝐶𝑟𝑠 Coefficients for C-association calculation - 

𝐶𝑅, 𝐶𝑀𝑅 Rank correlation matrices calculated from series of recent 

weather data and arbitrary van der Waerden scores 

- 

𝑀𝑅 Matrix comprising arbitrary van der Waerden scores - 

𝑀𝑅
∗  Matrix having a rank correlation similar to 𝐶𝑅 - 

𝑁𝑟 Number of data pairs for rank correlation calculation - 

𝑛𝑅 Number of variables to be paired - 

𝑃𝑅, 𝑄𝑅 Lower triangular matrices obtained from 𝐶𝑅 and 𝐶𝑀𝑅 - 

𝑟𝑙,𝑖 Linear rank of the 𝑖𝑡ℎ linear data - 

∆𝑟𝑙,𝑖 Rank difference between the 𝑖𝑡ℎ data pair for linear variables - 

𝑟𝑐,𝑖 Circular rank of the 𝑖𝑡ℎ circular data - 

𝑟𝑐𝑙,𝑖 Linear rank of the 𝑖𝑡ℎ circular data when treated as linear data - 

𝑟𝑐𝑙,𝑙 Spearman’s rank correlation coefficient between linear 

variables 

- 
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G. Spatial Interpolation 

𝑎𝛾, 𝑏𝛾, 𝑐𝛾 Coefficients used in mathematical functions to fit 

semi-variances 

- 

𝐶𝑜𝑣 Covariance between weather variables * 

𝐶𝑜𝑣𝑛𝑒𝑔 Covariance between weather variables at the target 

location and the sampled location that has a negative 

kriging weight 

* 

𝑑𝑠𝑖,𝑜 Distance between target location and the 𝑖𝑡ℎ 

sampled location 

𝑘𝑚 

𝑒𝑟𝑟𝑜𝑟𝜃, 𝑒𝑟𝑟𝑜𝑟𝜃
∗ Errors of wind direction estimates 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 

𝑙𝑜𝑐𝑜, 𝑙𝑜𝑐𝑖 Target location and the 𝑖𝑡ℎ sampled location - 

ℎ𝑠 Spatial distance lag between two weather variables 𝑘𝑚 

𝑲 Matrix of covariances between sampled locations * 

𝒌 Vector of covariances between the target and sampled 

locations 

* 

𝑙𝑣𝑙𝑎𝑛𝑒 The anemometer’s height 𝑚 

𝑙𝑣𝑙𝑟𝑒𝑓 The reference level 𝑚 

𝑚𝑒 Expected value or trend components of weather 

variables 

* 

𝜉(𝑙𝑜𝑐𝑜), 𝜉(𝑙𝑜𝑐𝑖) Weather data at the target location or the 𝑖𝑡ℎ 

sampled location 

* 

𝑁(ℎ𝑠) Number of pairs of weather variables, 𝜉(𝑙𝑜𝑐𝑖) and 

𝜉(𝑙𝑜𝑐𝑖~ℎ𝑠), that are a distance lag ℎ𝑠 apart 

- 

𝑁(𝑙𝑜𝑐) Number of sampled locations - 

𝑞 Power parameter in an IDW method - 

𝑟𝑙𝑜 Ground roughness length 𝑚 

𝑤𝑠,𝑎𝑛𝑒 Wind speed at an anemometer’s height 𝑚 𝑠⁄  

𝑤𝑠,𝑟𝑒𝑓 Wind speed at a reference level 𝑚 𝑠⁄  

𝛾(ℎ𝑠), 𝛾
∗(ℎ𝑠) Empirical and fitted Semi-variances at lag ℎ𝑠 * 

𝜆𝑖, 𝜆𝐼𝐷𝑊,𝑖, 𝜆𝐾𝑅𝐼,𝑖 

𝜆𝐾𝑅𝐼,𝑖,𝑛𝑒𝑤 

Weight, IDW weight, kriging weight and corrected 

kriging weight assigned to the 𝑖𝑡ℎ sampled location 

- 

𝜆𝐾𝑅𝐼,𝑛𝑒𝑔 Negative kriging weights - 

* The unit is related to the weather variable of interest 
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H. Transient-state Calculation 

𝐼𝑖, 𝐼𝑓 Initial/final line current before/after step occurs 𝐴 

𝐼𝑖,𝑒𝑞 An equivalent steady-state line current before step 

changes 

𝐴 

𝐼𝑠𝑠,1, 𝐼𝑠𝑠,2, 𝐼𝑠𝑠,3 Steady-state rating forecasts for up to three 

10-minute time steps ahead 

𝐴 

𝐼𝑡𝑠, 𝐼𝑡𝑠,1, 𝐼𝑡𝑠,2, 

𝐼𝑡𝑠,3 

Transient-state rating and that for a specified time 

period of 10, 20 or 30 minutes 

𝐴 

𝐾𝑐, 𝐾𝑐
′ The rate at which the sum of the linearized cooling 

terms varies with conductor temperature 

𝑊 (𝑚 ∙ ℃)⁄  

𝑄𝑥, ∆𝑄𝑥 A particular heating or cooling term per unit length 

and its step change 

𝑊 𝑚⁄  

𝑄𝑐,𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 Linearized convection heat loss rate per unit length 𝑊 𝑚⁄  

∆𝑡 Sufficiently small time interval 𝑠𝑒𝑐 

𝑡𝑝 A specified time period 𝑚𝑖𝑛 

𝑇𝑐𝑖,∆𝑡, 𝑇𝑐𝑓,∆𝑡, 

𝑇𝑐𝑎𝑣,∆𝑡 

Initial, final and average conductor temperatures 

over a time interval ∆𝑡 

℃ 

𝑇𝑐𝑖, 𝑇𝑐𝑓𝑡𝑠 Initial and final conductor temperatures of a 

specified time period 

℃ 

𝑇𝑐𝑖𝑠𝑠, 𝑇𝑐𝑓𝑠𝑠, 

𝑇𝑐𝑎𝑣𝑠𝑠 

Steady-state initial and final conductor 

temperatures of a specified time period and their 

average value 

℃ 

𝑇𝑎𝑣𝑔 Average of 𝑇𝑐𝑖 and 𝑇𝑐𝑓𝑠𝑠 ℃ 

𝑇𝑐10, 𝑇𝑐20, 𝑇𝑐30 Transient-state final conductor temperatures at the 

end of 10, 20 and 30 minutes 

℃ 

𝑤𝑐 Weather conditions after step changes * 

𝑤𝑓1, 𝑤𝑓2, 𝑤𝑓3 Weather forecasts for up to three steps ahead * 

ß𝑖, ß𝑓 The rises above the air temperature for the initial 

conductor temperature 𝑇𝑐𝑖 and the steady-state 

final conductor temperature 𝑇𝑐𝑓𝑠𝑠 

℃ 

𝜏, 𝜏𝑥 Thermal time constant and that for the step change 

in a particular heating or cooling term ∆𝑄𝑥 

𝑚𝑖𝑛 

∆𝐺𝑎𝑖𝑛 Difference between the assumed and actual heat 

gain rates per unit length 

𝑊 𝑚⁄  
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∆𝐿𝑜𝑠𝑠𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 Difference between the sums of linearized cooling 

terms that vary with conductor temperature at 

different rates 

𝑊 𝑚⁄  

𝐹1(∙), 𝐹2(∙) Functions used in the secant method to determine 

the steady-state final conductor temperature and 

the transient-state rating for a specified time period   

- 

* The unit is related to the weather variable of interest 

I. Wind Generation Calculation 

𝑎𝑤𝑝, 𝑏𝑤𝑝, 𝑐𝑤𝑝 Coefficients used in a generic power curve model  - 

𝐷𝐿𝑅1, 𝐷𝐿𝑅2, 

𝐷𝐿𝑅3 

Dynamic line rating forecasts for up to three 

10-minutes time steps ahead for overhead lines 

𝑀𝑉𝐴 

∆𝑊𝑃−, ∆𝑊𝑃+ The maximum volume that a wind farm is allowed to 

ramp down or up in 10 minutes 

𝑊 

𝑊𝑃0, 𝑊𝑃1, 

𝑊𝑃2, 𝑊𝑃3 

Present wind power output and planned power outputs 

after 10, 20 and 30 minutes 

𝑊 

𝑊𝑃𝑎𝑣, 𝑊𝑃1
𝑎𝑣, 

𝑊𝑃2
𝑎𝑣, 𝑊𝑃3

𝑎𝑣 

Expected available wind power and the forecasts for up 

to three 10-minutes time steps ahead 

𝑊 

𝑊𝑃𝑟𝑎𝑡𝑒𝑑 Rated power for a wind turbine 𝑊 

𝑤𝑠,ℎ𝑢𝑏 Wind speed at the hub height 𝑚 𝑠⁄  

𝑤𝑠,𝑖𝑛, 𝑤𝑠,𝑜𝑢𝑡, 

𝑤𝑠,𝑟𝑎𝑡𝑒𝑑 

Cut-in, cut-out and rated wind speeds for a wind 

turbine 

𝑚 𝑠⁄  
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1. INTRODUCTION 

1.1. Background to Dynamic Line Rating 

The real-time thermal rating (RTTR) is the maximum level of power flow at which a 

section of transmission or distribution network can be operated safely and reliably at 

the time in question [1]. In the case of overhead lines (OHLs), RTTR is typically 

referred to as dynamic line rating (DLR). The current passing through a line has to be 

limited to a certain value in order to avoid excessive conductor temperature which 

leads to an unwanted acceleration of aging and excessive sag of a span which may 

violate the minimum required clearance [2]. An OHL is conventionally operated 

below a static line rating (SLR) which is estimated through a thermal model of 

overhead conductors that has been proposed in IEEE Standard 738 [3] and CIGRE 

Technical Brochure 601 [4] using a maximum allowable conductor temperature and a 

conservative set of weather conditions such as a low wind speed and a high air 

temperature for a particular season [5, 6]. 

OHLs have received particular attention in respect of dynamic or real-time ratings 

due to their high dependency of safe ratings on ambient conditions. Most reported 

studies related to DLRs deal only with continuous or steady-state DLRs which lead 

to a maximum allowable conductor temperature for specified weather conditions 

under the assumption of the conductor being in thermal equilibrium [3]. Under 

transient conditions, the temperature of a conductor operated at the short-term or 

transient-state DLR will gradually approach the maximum allowable limit under 

specified weather conditions over a given short time period (typically less than half 

hour) considering the initial temperature and thermal inertia of the conductor [3]. The 

actual power transfer capacity of an OHL is usually higher than the SLR since the 

conservative weather conditions used to estimate the SLR rarely occur in practice. A 
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wind speed above the conservative level can provide a significant cooling of the 

conductor by convection away of the Joule heat generated by the assumed high 

current [7]. The Oncor Electric Delivery Company has deployed DLR technologies 

on eight 345kV and 138kV overhead transmission lines located in central Texas and 

demonstrated that the monitored steady-state ratings exceeded the SLRs for around 

97% – 99% of the time for most transmission lines and provided 6% – 14% and 8% – 

12% more capacities on 345kV and 138kV lines respectively than the ambient 

temperature-adjusted ratings which only considered changes of air temperature [8, 9]. 

The eight 132kV OHLs operated by Scottish Power Energy Networks in North Wales 

were found to have the real-time ratings calculated from weather observations above 

the SLRs for 84.1% – 99.9% of the time [10]. 

The additional headroom of an OHL’s ampacity exploited by a DLR system can 

assist network operators to accommodate growth in power flow and alleviate 

transmission congestion. Talpur [11] evaluated the financial benefit related to an 

increase of 1GWh energy flow passing through a particular OHL in a meshed 130kV 

network in western Sweden that could be achieved by the DLR implementation, 

reconductoring and new line constructions separately considering variations in 

system loads and the connection of a 60MW wind farm; applying a particular DLR 

technique on the OHL showed a significant financial advantage in comparison with 

the other two traditional solutions. Furthermore, it has been widely noted that the 

application of DLR techniques has particular benefit for wind generation due to the 

positive correlation between the output of a wind farm and the ampacity of a line 

connecting it to the network [10, 12, 13]. That is, the high wind speeds producing 

high outputs from a wind farm will provide significant cooling on the nearby OHLs 

which can then tolerate higher levels of power transfer capacity. DLRs can therefore 

be exploited to alleviate curtailment of available wind power or reduce or avoid 

reinforcement of the connection. Heckenbergerova [12] estimated available wind 

powers for various assumed installed capacities at a virtual wind farm located in one 
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of the windiest areas in the Czech Republic which were then compared with the 

ratings (DLRs or SLRs) of a virtual OHL connecting it to the main grid; the use of 

DLRs in place of SLRs led to a significant reduction in curtailed wind generation and 

approximately tripled the optimal size of the wind farm in this particular case study. 

From the perspective of wind farm owners, Wallnerström [14] quantified the life 

cycle costs of implementing DLR on a particular OHL which connected a wind farm 

with a distribution network, compared to building an additional connection line 

under different wind farm capacities separately based on capital and operational 

expenditures of a wind power plant and a line. Though both approaches could 

significantly reduce wind generation curtailment compared with use of SLRs on the 

existing connection line, applying DLR was evaluated to provide a higher profit than 

building an extra line. However, the estimated profit in [14] from applying DLR did 

not consider the costs of investing and operating a particular DLR monitoring 

technique; this would provide an opportunity to estimate the maximum allowed cost 

of introducing DLR based on which an appropriate DLR technique could be selected. 

For investment planning timescales, DLRs can be considered over a range of future 

operating conditions and, provided the system operator has some reasonable 

measures available to them when power flows would exceed the real-time limits, can 

offer a cost-effective means to deal with power generation and demand growth or 

distributed generation connections that reduce the need for network reinforcement. 

In recent decades, a range of DLR techniques [15-18] have been developed to 

estimate or predict the line’s actual ampacity at a given time under prevailing or 

anticipated weather conditions through monitoring or inference of the state of 

overhead conductors. According to monitoring targets, these DLR techniques can be 

classified as [15]: 

⚫ the temperature-based techniques that monitor the conductor temperature; 

⚫ the sag-based techniques that measure the sag of a span; 
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⚫ the tension-based techniques that measure the tension of a line section consisting 

of multiple suspension spans; 

⚫ the weather-based techniques that infer the conductor temperature and the line’s 

rating from weather conditions measured at weather stations. 

Alternatively, the DLR techniques can be classified as [17]: 

⚫ the single-span monitoring techniques that record the behaviour (e.g. conductor 

temperature or sag) of a single span or a single point along a span where the 

device is installed; 

⚫ the multi-span monitoring techniques that measure the average behaviour (e.g. 

horizontal tension) of a line section from which the behaviour of each span within 

the section is inferred. 

The average conductor temperature, mid-point sag, and horizontal tension of a span 

are inter-convertible, as shown in Fig. 1-1. Assuming the conductor to be fully 

flexible and of a uniform weight per unit length, the mid-point sag of a span is 

inversely proportional to the horizontal tension (i.e. the component of the tension 

along the line in the horizontal direction) based on geometric characteristics of the 

span [19]. The mid-point sag or horizontal tension of a span can be used to roughly 

calculate the average conductor temperature through a state change equation [19] or 

a state change curve [17]. The state change equation relates the average conductor 

temperature to the mid-point sag of a span by modelling the conductor elongation. 

The state change curve uses a polynomial curve to describe the relationship between 

the average conductor temperature and the horizontal tension of a span. Both the 

state change equation and curve should be calibrated by various field measurements 

before using them to infer the average conductor temperature from the sag/tension 

measurement. The monitoring or inference of sag/tension and conductor temperature 

cannot be directly used by the system operator to judge the volume of additional 

headroom in power transfer capacity. As a result, the measured or inferred conductor 
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temperature should be used with weather observations in proximity to the monitored 

conductors and a thermal model of the conductors [3, 4] to estimate or predict DLRs 

which can then be provided for operators to dispatch power flows. This is generally 

based on inference of an ‘effective’ wind speed perpendicular to the conductors that 

provides the same cooling effect as the actual wind speeds and directions which vary 

along the span from measurements of the conductor temperature, line current, air 

temperature and solar radiation. The estimated effective perpendicular wind speed is 

then used with a maximum allowable conductor temperature to calculate DLRs based 

on the thermal model of the conductors [17]. The operating theories and features of 

different DLR techniques will be detailed and compared in this thesis. 

 

Fig. 1-1. Inter-conversion among average conductor temperature, sag and horizontal tension of a span. 

1.2. Description of Dynamic Line Rating Research 

1.2.1. Scottish Power Energy Networks DLR project 

Previous work on dynamic line rating (DLR) undertaken by Durham University [1, 

20] developed a weather-based approach to DLR estimation. Durham’s approach 

used spatial interpolation models to infer weather conditions for each span of an 

overhead line (OHL) from real-time weather observations at a limited number of 

weather stations; the minimum of DLRs among all spans estimated from weather 

conditions using a thermal model of the conductors was then applied to the whole 

line. Based on the weather-based approach developed by Durham University, 

Scottish Power (SP) Energy Networks implemented a demonstration project on eight 
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132kV overhead circuits (C) in North Wales [10], as shown in Fig. 1-2. The 

10-minute average weather data including air temperature, wind speed, wind 

direction and solar radiation were recorded at nine weather stations (WS) which were 

separately installed at six 132kV substations (B) and three double circuit steel towers 

along the OHL route. A geographical map of research area is shown in Fig. 1-3. 

 

Fig. 1-2. The 132kV network in North Wales with uppercase letters B, C, WS and DG representing 

132kV substation, overhead circuit, weather station and distributed generation respectively [10]. 

 

Fig. 1-3. Geographic map showing the route of studied overhead lines and locations of 9 weather 

stations in North Wales [10]. 

1.2.2. Primary objective of this research 

The primary objective of this research is to enhance the weather-based approach 

developed by Durham University to not only provide ‘real-time’ ratings but also 

predictions of ratings so that system operators have time to take action to mitigate the 
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consequences of the limitations of power transfer or, alternatively and where possible, 

to exploit additional thermal capacity. In addition, DLR forecasts will be provided 

not just as a single value for a single future moment in time but in the form of 

percentiles describing the probability of a rating being exceeded so that the system 

operator can make an informed judgement about risk. 

In order to achieve expected functions of the enhanced weather-based model and 

accomplish the primary objective of this research, the following steps are to be 

undertaken: 

⚫ Review DLR techniques that are described in published engineering literature; 

⚫ Develop statistical forecasting models to provide point forecasts of air 

temperature, wind speed, wind direction and solar radiation; 

⚫ Extend the statistical forecasting models to provide predictive distributions of 

weather variables; 

⚫ Develop more advanced spatial interpolation models than those used in 

previous work, [20], to infer weather data for each span of an OHL; 

⚫ Quantify percentiles of steady-state DLR forecasts for up to three 10-minutes 

time steps ahead for a particular span and a complete line; 

⚫ Quantify percentiles of transient-state DLR forecasts for time horizons of 10, 

20 and 30 minutes over a particular future half-hour period for a span. 

⚫ Evaluate the potential use of DLR forecasting with respect to alleviating wind 

generation curtailment at a wind farm that has a connection to the 132kV 

network in North Wales. 

The main contribution of the thesis is to propose a framework that uses time series 

forecasting models along with a thermal model of overhead conductors to estimate 

probabilistic forecasts of both steady-state and transient-state DLRs from historic 

weather data in Monte Carlo simulation where correlations between different weather 
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variables are considered. During the development of a weather-based approach to the 

transient-state DLR forecasting, the thesis provides insights into an enhanced version 

of IEEE analytical method for the transient-state conductor temperature calculation 

and some issues that should be paid attention to for the transient rating estimation. 

Furthermore, the thesis examines impacts of correlations between different weather 

variables on predictive distributions of DLRs and emphasises the importance of 

pairing random weather samples in Monte Carlo simulation. 

1.2.3. Enhanced weather-based models for probabilistic DLR forecasting 

In this research, enhanced weather-based DLR forecasting models have been 

developed to estimate probabilistic forecasts of steady-state DLRs for a particular 

span and a complete line. Furthermore, through an enhancement in an analytical 

method described in IEEE Standard 738 [3] for the transient-state conductor 

temperature modelling, a fast-computational approach is developed to determine 

predictive distributions of transient-state DLRs for a particular span. 

1.2.3.1. Probabilistic steady-state DLR forecasting 

A flow chart describing how an enhanced weather-based model estimates 

probabilistic forecasts of steady-state DLRs for an OHL is shown in Fig. 1-4. Based 

on historic time series of 10-minute average weather data, probabilistic forecasting 

models estimate (a) predictive centres of weather variables as a sum of residuals 

predicted by a suitable auto-regressive process and temporal trends fitted by Fourier 

series and (b) conditional heteroscedasticity of the distribution as a linear function of 

changes in residuals within the most recent one hour for air temperature and wind 

speed or concentration of recent wind direction observations over two hours. A 

technique of minimum continuous ranked probability score estimation is then used to 

determine models’ parameters and predictive distributions for air temperature (𝑇𝑎), 

wind speed (𝑤𝑠) and wind direction (𝑤𝑑) respectively. Point forecasts of solar 

radiation (𝑠𝑟) are used here instead of probabilistic forecasts since, when wind speeds 
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are above a modest level [1] or when conductor temperatures are relatively high [21], 

conductor temperature is found to be insensitive to the change in solar radiation. This 

is because an increase in wind speed or the rise of conductor temperature above air 

temperature could lead to the convection heat loss rate significantly exceeding the 

solar heat gain rate. (According to [3], the latter is dependent on the solar intensity, 

conductor’s absorptivity and diameter and not affected by the conductor temperature 

or wind conditions). The point forecasts of solar radiation are calculated in a similar 

way to estimations of predictive centres, with auto-regressive parameters being 

determined by least squares estimation. 

 

Fig. 1-4. An enhanced weather-based model for probabilistic DLR forecasting for an OHL. 
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A large number of random weather samples are independently generated from the 

modelled predictive distributions in a Monte Carlo procedure and then paired to 

create correlations similar to those computed from their recent observations. The 

sampled values of weather forecasts and point forecasts of solar radiation for all 

spans within an OHL are inferred from the correlated random weather samples and 

solar radiation predictions at weather stations using suitable spatial interpolation 

models. A thermal model of overhead conductors is then used to calculate 

steady-state DLR forecasts at a particular future time for all spans of the OHL, 

among which the minimum value is applied to the OHL in each generated scenario. 

A sample cumulative distribution function is extracted from the sampled values of 

DLR forecasts for the OHL and then smoothed by kernel density estimation to 

determine the DLR forecasts in the form of percentiles. The possible location of the 

critical span for the OHL is predicted from the frequency of each span having the 

minimum DLR forecast among all spans in all generated scenarios. 

The probabilistic steady-state DLR forecasts for a particular span in close proximity 

to a weather station can be directly calculated from random samples of weather 

variables and point forecasts of solar radiation at the station without need of spatial 

interpolation models. The calibration of probabilistic DLR forecasts calculated from 

independent or correlated weather samples will be examined by the histograms of 

probability integral transform to determine whether the correlations should be added 

into the random weather samples. 

1.2.3.2. Probabilistic transient-state DLR forecasting 

The majority of published approaches to DLR deal with steady-state ratings. Less 

attention has been given to transient-state DLR calculations. For example, they were 

omitted in previous work [20] where it was speculated, though not proven, that 

applying transient-state DLRs would not materially elevate the power throughout in 

GWh per annum within the power system. This may be because the transient rating 

can be maintained within the given time period only, after which the power transfer 
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capacity would again be limited by the steady-state DLR. Furthermore, calculations 

of transient-state DLRs may be not necessary when sampling intervals of weather 

data and load data are long enough (e.g. 1 hour) for a conductor to fully respond to 

step changes in variables. Moreover, the computation time cost to estimate transient 

ratings is much greater than that for steady-state calculations since a transient rating 

has to be iteratively adjusted until the conductor temperature reaches the maximum 

permissible limit at the end of a specified time period. 

Although an OHL can be operated at the level of the transient-state DLR for the 

specified short term only, applying transient-state DLRs will provide higher 

additional ampacity headroom than using steady-state ratings. This can further 

mitigate transmission congestions and alleviate wind generation curtailment. Most 

research related to transient-state DLR calculations [22-24] used a conventional 

approach to track transient-state conductor temperatures over a specified time period. 

It divides the given time period into several sufficiently small time intervals (e.g. 10 

seconds or less) and then estimates the variation in conductor temperature over each 

time interval. IEEE Standard (Std.) 738 [3] has developed an analytical method to 

calculate the transient-state conductor temperature as an exponential function of time 

which can reduce the computation time compared with the conventional approach. 

However, the IEEE analytical method only considers a step change in line current 

and requires the conductor to be in thermal equilibrium before the step occurs. The 

IEEE analytical method has been enhanced in this thesis through inference of an 

equivalent steady-state initial line current from the initial conductor temperature and 

weather conditions over a given time period. In this way, the conductor’s thermal 

equilibrium at the start of the given time period is created and the changes of weather 

conditions are considered. 

Along with use of the enhanced analytical method, the transient-state DLR forecast 

of a particular span for a particular future time period (i.e. in this research, 10, 20 and 

30 minutes) is calculated from random weather samples that are generated from the 
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predictive distributions for up to three 10-minutes time steps ahead in each scenario. 

The changes of weather forecasts at each future moment are taken into account. The 

probabilistic forecasts of transient-state DLRs for time horizons of 10, 20 and 30 

minutes are then derived from their respective sampled values using kernel density 

estimation. The performance of the fast-computational approach developed here for 

transient-state DLR forecasting will be assessed with respect to the forecast accuracy, 

the calibration of probabilistic forecasts and the computation time. 

1.2.3.3. Application of DLR forecasting to reduce wind generation curtailment 

It is expected that applying DLR techniques can increase the utilisation of wind 

energy. North Wales has considerable renewable resources. As shown in Fig. 1-2, the 

electricity produced by a 90MW Rhyl Flats offshore wind farm (denoted by DG) is 

injected into the 132kV transmission network at a 132kV bus (B3) and dispatched to 

buses B2 and B4 through two 132kV OHLs C2 and C3. The potential application of 

probabilistic steady-state DLR forecasts will be evaluated here through an estimation 

of the degree to which curtailment of various assumed wind farm capacities at Rhyl 

Flats (90MW and a series of upscaled wind farms) can be reduced through using the 

lower percentiles of steady-state DLR forecasts in place of the SLRs of 132kV OHLs. 

The planned power output from Rhyl Flats is maximised using Optimal Power Flow 

subject to the maximum allowable wind generation ramp rate, the expected available 

power output from Rhyl Flats and DLR forecasts for up to three 10-minutes time 

steps ahead. The use of the maximum allowable ramp rate ensures that the power 

output from Rhyl Flats can decrease to the planned output estimated for the next time 

step in a 10-minute period. 
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1.3. Thesis Structure 

The thesis is organised in the following way: 

Chapter 2 describes some useful knowledge associated with the geometric 

characteristics, the state change equation and a thermal model of overhead 

conductors and the concept of ruling span and also reviews the operating theories and 

features of different DLR techniques that have been described in published 

engineering literature. 

Chapter 3 develops different time series forecasting models to estimate predictive 

distributions of air temperature, wind speed and wind direction and point forecasts of 

solar radiation; the models using less computation time and providing the best 

performance with respect to the root mean square error (RMSE) for point forecasting 

and the continuous ranked probability score for probabilistic forecasting are adopted. 

Chapter 4 describes a rank correlation based pairing method to pair the independent 

random samples of different weather variables to create correlations similar to those 

among their recent observations; then the spatial interpolation models developed in 

Durham’s work [20] are improved by comparing different combinations of the 

spatial trend modelling and an inverse distance weighting or kriging interpolation 

model. 

Chapter 5 develops different approaches to probabilistic forecasting of steady-state 

DLRs for a particular span and a complete OHL and assesses their performances 

with respect to the RMSE of point forecasts, the calibration of probabilistic forecasts 

and the effectiveness of using a certain percentile (e.g. the 5th percentile) from a 

probabilistic DLR forecast; the possible location of critical span at a particular future 

time is also predicted for each OHL. 

Chapter 6 enhances the analytical method proposed in IEEE Std. 738 [3] to model 

transient-state conductor temperatures and compares its accuracy with conventional 



14 

 

approaches; probabilistic transient-state DLR forecasts of a particular span for a 

particular future half-hour period are then estimated from the initial conductor 

temperature combined with random sampled values of weather forecasts for up to 

three 10-minutes time steps ahead based on the enhanced analytical method. 

Chapter 7 investigates the potential application of probabilistic DLR forecasting on 

wind power integration by quantifying the reduced wind generation curtailment at 

Rhyl Flat wind farm that is connected to the 132kV network in North Wales through 

replacing the SLRs by the lower percentiles of steady-state DLR forecasts for 132kV 

OHLs; the risk of overloading on each 132kV OHL due to use of DLR percentiles is 

also analysed. 

Chapter 8 summarises findings from the present work, building on which future 

research is suggested. 

1.4. Publications 

The author has published the following papers during the course of Ph.D.: 

F. Fan, K. Bell, D. Hill, and D. Infield, “Wind forecasting using kriging and vector 

auto-regressive models for dynamic line rating studies,” IEEE PowerTech 

Conference, pp. 1-6, Jul. 2015. 

F. Fan, K. Bell, and D. Infield, “Probabilistic weather forecasting for dynamic line 

rating studies,” Power Systems Computation Conference, pp. 1-7, Jun. 2016. 

F. Fan, K. Bell, and D. Infield, “Probabilistic real-time thermal rating forecasting for 

overhead lines by conditionally heteroscedastic autoregressive models,” IEEE 

Transactions on Power Delivery, vol. 32, no. 4, pp. 1881-1890, Aug. 2017.  
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2. REVIEW OF DYNAMIC LINE RATING 

TECHNIQUES 

A range of dynamic line rating (DLR) techniques have been developed in recent 

decades to measure or infer the thermal and mechanical behaviour of overhead 

conductors, most of which have been further upgraded to simultaneously monitor 

more than a single target. Companies owning intellectual properties of the 

monitoring devices have additionally developed the specific mathematical programs 

to calculate the real-time ratings or ratings’ forecasts for different time scales based 

on what the devices have measured. In this chapter, some useful knowledge is 

introduced associated with the geometric characteristics, the state change equation 

and a thermal model of overhead conductors and the concept of ruling span. Then, 

the operating theories and features of different DLR techniques that have been 

described in published engineering literature are explained and summarised. These 

fall into four main families: based on measurement of conductor temperature; 

measurement of sag; measurement of conductor tension; and measurements of 

weather observations. 

2.1. Characteristics of Overhead Conductors 

2.1.1. Geometric characteristics of overhead conductors 

The geometric characteristics of overhead conductors link the sag of a span and its 

horizontal tension. Since an overhead line (OHL) often works in rugged terrain, two 

attachment points of a span along the line are not always placed on the same vertical 

level. A span with both attachment points at the same vertical level is called a level 

span as shown in Fig. 2-1. Otherwise, it is called an inclined span as shown in Fig. 

2-2 [25]. The symbols in Figs. 2-1 and 2-2 are explained in Table 2-1. 
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Fig. 2-1. A level span [25] 

 

Fig. 2-2. An inclined span [25] 

Table 2-1. Symbols and units of quantities for a span. 

Symbol Quantity Unit 

𝑆𝑐 Horizontal span length 𝑚 

𝑆𝑐
′ Span length 𝑚 

𝐷𝑚 Midpoint sag 𝑚 

𝐷𝐿 , 𝐷𝑅  Vertical distance from the lowest point to the left or right attachment point 𝑚 

𝐿𝑐  Line length 𝑚 

𝐻 Horizontal tension 𝑁 

𝑤 Weight of conductor per unit length 𝑁 𝑚⁄  

𝑥𝑐 Horizontal distance from the left attachment point 𝑚 

𝑦𝑐(𝑥𝑐) Vertical distance from the conductor at 𝑥𝑐 to the left attachment point 𝑚 

𝑋𝐿, 𝑋𝑅 Horizontal distance from the lowest point to the left or right attachment point 𝑚 

ℎ𝑐 Vertical distance between two attachment points 𝑚 
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The shape of a span is generally dependent on the line’s materials, supporting 

constructions, conductor temperatures, additional forces (e.g. ice and wind loading), 

etc. It can be described by an exact catenary equation in terms of horizontal tension 

𝐻 (i.e. the component of the tension along the line in the horizontal direction) and 

weight per unit length of overhead conductors 𝑤, from which the midpoint sag of a 

level span 𝐷𝑚 is approximately determined as: 

𝐷𝑚 =
𝐻

𝑤
[cosh (

𝑤𝑆𝑐
2𝐻

) − 1] ≅
𝑤𝑆𝑐

2

8𝐻
 (2-1) 

The expression on the right-hand side of equation (2-1) is an approximate parabolic 

formula based on the first term of the Maclaurin expansion of a hyperbolic cosine 

which is valid if 𝑤2𝑆𝑐
2 48𝐻2⁄ ≪ 1 [19]. Another means to derive the parabolic 

formula is listed in Appendix A based on the assumption of the length of a line being 

approximately equal to its span length, i.e. 𝐿𝑐 ≅ 𝑆𝑐. The length of the line between 

two attachment points of a level span is then determined as [19]: 

𝐿𝑐 = (
2𝐻

𝑤
) ∙ sinh (

𝑤𝑆𝑐
2𝐻

) ≅ 𝑆𝑐 +
8𝐷𝑚

2

3𝑆𝑐
 (2-2) 

The difference in length between span and line approximately equal to (8𝐷𝑚
2 3𝑆𝑐⁄ ) 

is termed the “slack” [19]. The midpoint sag 𝐷𝑚 and the horizontal tension 𝐻 can 

therefore be derived from the “slack” by equations (2-3) and (2-4) which indicate 

that a very small variation of line length will result in a large change in the midpoint 

sag of a span. For example, for a particular level span of span length 𝑆𝑐 = 200𝑚, 

the sag 𝐷𝑚 will increase from 8.7𝑚 to 10.6𝑚 when the line length only increases 

from 201𝑚 to 201.5𝑚 according to equation (2-3). 

𝐷𝑚 ≅ √
3 ∙ 𝑆𝑐 ∙ (𝐿𝑐 − 𝑆𝑐)

8
 (2-3) 

𝐻 ≅
𝑤 ∙ 𝑆𝑐
2

√
𝑆𝑐

6(𝐿𝑐 − 𝑆𝑐)
 (2-4) 
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An inclined span can be considered to consist of half sections of two level spans with 

different sags, i.e. one from the lowest point to the left with the sag 𝐷𝐿 and the other 

from the lowest point to the right with the sag 𝐷𝑅  (Fig. 2-2). The horizontal 

distances 𝑋𝐿 and 𝑋𝑅 from the lowest point to the left and right attachment points 

are defined respectively as: 

𝑋𝐿 =
𝑆𝑐
2
(1 +

ℎ𝑐
4𝐷𝑚

) (2-5) 

𝑋𝑅 =
𝑆𝑐
2
(1 −

ℎ𝑐
4𝐷𝑚

) (2-6) 

where the midpoint sag for an inclined span 𝐷𝑚 is approximately equal to the sag 

for a level span with an identical horizontal span length 𝑆𝑐 [26]. Please refer to 

Appendix B where derivations of equations (2-5) and (2-6) are listed. 

2.1.2. State change equation of overhead conductors 

As was noted in equation (2-3), small conductor elongations may lead to a large 

increase in the sag of a span. The conductor temperature is a major factor that affects 

the conductor length. The growth in conductor temperature due to an increasing line 

current or a reduced wind cooling effect will elongate conductors and thus, the span 

will sag more. 

The total length of the conductor is the sum of the original length and elastic, thermal 

and plastic elongations due to changes of conductor’s tension, temperature and time 

[19]. Three models calculating the elongation of conductors have been described in 

[19]. The linear elastic (LE) model and the simplified plastic elongation (SPE) model 

theoretically estimates elastic and thermal elongations based on an assumption that 

the conductor elongation due to the modest changes in tension (elastic elongation) 

and conductor temperature (thermal elongation) is linear and reversible. The plastic 

elongation of conductors is completely neglected in the LE model. In the SPE model, 

a typical value based on engineering judgement and experience is assigned to the 

plastic elongation of conductors. The experimental plastic elongation (EPE) model 
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theoretically calculates elastic and thermal elongation as a linear function of changes 

in tension and temperature and estimates the plastic elongation as a function of 

tension and time based on laboratory tests [19]. 

A state change equation was used in [27] to relate the conductor temperature 𝑇𝑐 to 

the mid-point sag of a span 𝐷𝑚 through modelling the conductor elongation as a 

combination of the linear elastic elongation due to tension and the linear thermal 

elongation due to the change of 𝑇𝑐, as well as the plastic strain that may be included 

in a constant 𝐶𝑠𝑒 [27]: 

8𝐷𝑚
2

3𝑆𝑐2
−

𝑤𝑆𝑐
2

8𝐷𝑚𝐸𝑐𝐴𝑐
− 𝑎𝑐 ∙ 𝑇𝑐 = 𝐶𝑠𝑒  (2-7) 

where terms 𝐸𝑐 , 𝑎𝑐  and 𝐴𝑐  represent Young’s modulus, thermal expansion 

coefficient and cross-sectional area of the conductor respectively. The coefficients 

and constants representing physical properties of conductors should be calibrated 

using the field measurements in practical application [27]. The calibrated state 

change equation can then be used to estimate 𝑇𝑐 from the measured or inferred 𝐷𝑚. 

2.1.3. Ruling spans of line sections 

A line section of an overhead circuit is terminated at each end by a strain structure, 

e.g. an angle structure or a dead-end structure as shown in Fig. 2-3 and comprised of 

multiple suspension spans which are supported by suspension structures as shown in 

Fig. 2-4 [19]. The forces caused by a relatively large change in the line’s orientation 

are resisted by an angle structure. A dead-end structure is generally used to withstand 

full unbalanced tension due to the overhead conductors turning at a wide angle or 

into an end [28]. 
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    Fig. 2-3. Strain (angle) structure [19]              Fig. 2-4. Suspension Structure [19] 

Multiple suspension spans within a line section between two strain structures 

generally vary in length and experience different sag and tension changes with the 

variations of additional forces and conductor temperatures [19]. The unbalanced 

tension between suspension spans is usually equalised by the very small movement 

of suspension insulators which are not fixed and free to move. The suspension 

insulator can swing longitudinally in either direction along the line to allow that the 

horizontal tensions along suspension spans within a line section are approximately 

uniform. The tension equalisation is able to reduce the tensions of suspension spans 

with heavy ice and wind loadings and also to reduce the sags of hotter suspension 

spans [17]. However, it may be hard to achieve the tension equalisation in suspension 

spans which are inclined sharply or of low conductor tensions [19]. 

The tension equalisation for reasonably level suspension spans within a line section 

creates the concept of a single “ruling (or equivalent)” span based on the assumption 

that the variation in tension in response to the changes of ice and wind loading, 

conductor temperature and time for the ruling span essentially applies to all 

suspension spans [19]. The length of ruling span 𝑆𝑅𝑆 for a line section consisting of 

𝑛(𝑠) suspension spans is defined as: 
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𝑆𝑅𝑆 = √
𝑆𝑐,1
3 + 𝑆𝑐,2

3 +⋯+ 𝑆𝑐,𝑛(𝑠)
3

𝑆𝑐,1 + 𝑆𝑐,2 +⋯+ 𝑆𝑐,𝑛(𝑠)
 (2-8) 

where 𝑆𝑐,𝑖 represents the span length of the 𝑖𝑡ℎ span, 𝑖 = 1,… , 𝑛(𝑠). Equation (2-8) 

shows that the ruling span length is largely dependent on the span length of the 

longest suspension span. Based on the assumption of nearly identical tension of all 

suspension spans within a line section, the midpoint sag of each suspension span 

𝐷𝑚,𝑖, 𝑖 = 1, … , 𝑛 can be derived from the estimated sag 𝐷𝑚,𝑅𝑆 of the ruling span: 

𝐷𝑚,𝑖 = 𝐷𝑚,𝑅𝑆 ∙ (
𝑆𝑐,𝑖
𝑆𝑅𝑆

)
2

 (2-9) 

2.1.4. Thermal model of overhead conductors 

Both CIGRE Technical Brochure (TB) 601 [4] and IEEE Standard (Std.) 738 [3] 

present steady-state and transient-state calculations for conductor temperatures and 

dynamic line ratings (DLRs) based on the heat exchange mechanisms of conductors. 

The temperatures of a conductor of LA 280 Hawk type used in a 132kV overhead 

line estimated by CIGRE TB 601 and IEEE Std. 738 were compared with the 

measured values respectively in [29] where it was found that: 

1) the differences of more than 5℃ between weather-based estimates and 

measurements were found in around 20% of cases for steady state and 

around 15% of cases for transient state when theoretical values of solar 

radiation were used; 

2) the occurrence of such temperature difference was reduced to just 5% of 

cases for transient state when solar radiation observations were used instead 

of theoretical values; 

3) the slight deviation between conductor temperatures estimated by CIGRE 

TB 601 and IEEE Std. 738 was mainly due to their different means to 

estimate the convection heat loss rate and solar heat gain rate; 



22 

 

4) the calculated conductor temperatures were much closer to their actual 

values when wind speeds were at higher levels and approximately 

perpendicular to the conductor [29]. In other words, it is difficult to 

accurately estimate the convection heat loss rate at low wind speeds based 

on the relevant formulae described in [3] and [4]. Although the use of the 

higher value of the natural and forced convection heat loss rates, as was 

recommended in [3] and [4], produces a conservative rating estimate at low 

wind speed, this will increase the errors of conductor temperature estimates. 

The thermal model of overhead conductors for calculating the steady-state DLRs 

presented in IEEE Std. 738 [3] is introduced in this section. 

2.1.4.1. Steady-state heat balance of overhead conductors [3] 

The thermal balance of an overhead conductor is kept with heat generated by Joule 

heating 𝐼2 ∙ 𝑅(𝑇𝑐)  and solar heating 𝑄𝑠  and heat lost by convection 𝑄𝑐  and 

radiation 𝑄𝑟 from the conductor surface: 

𝐼2 ∙ 𝑅(𝑇𝑐) + 𝑄𝑠 = 𝑄𝑐 + 𝑄𝑟 (2-10) 

where 𝑅(𝑇𝑐) is the ac resistance of the conductor evaluated at a particular conductor 

temperature 𝑇𝑐, which can be approximately calculated by linear interpolation based 

on the known values of ac resistances, 𝑅(𝑇𝑐ℎ𝑖𝑔ℎ) and 𝑅(𝑇𝑐𝑙𝑜𝑤), at given high and 

low conductor temperatures, 𝑇𝑐ℎ𝑖𝑔ℎ and 𝑇𝑐𝑙𝑜𝑤: 

𝑅(𝑇𝑐) = [
𝑅(𝑇𝑐ℎ𝑖𝑔ℎ) − 𝑅(𝑇𝑐𝑙𝑜𝑤)

𝑇𝑐ℎ𝑖𝑔ℎ − 𝑇𝑐𝑙𝑜𝑤
] (𝑇𝑐 − 𝑇𝑐𝑙𝑜𝑤) + 𝑅(𝑇𝑐𝑙𝑜𝑤) (2-11) 

The steady-state or continuous DLR 𝐼𝑠𝑠 leading to a maximum allowable conductor 

temperature 𝑇𝑐𝑚𝑎𝑥 for specified weather conditions under the assumption of the 

conductor being in thermal equilibrium is then defined as: 

𝐼𝑠𝑠 = √
𝑄𝑐 + 𝑄𝑟 − 𝑄𝑠
𝑅(𝑇𝑐𝑚𝑎𝑥)

 (2-12) 
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2.1.4.2. Convection heat loss rate 

Based on wind tunnel measurements reported by McAdams and his recommended 

cooling curves for convection from cylinders [30], three equations defining the rates 

of convection heat loss 𝑄𝑐 for different levels of wind speeds have been given in [3]. 

When there is no wind, the natural convection 𝑄𝑐𝑛 occurring on the conductor 

surface is mainly dependent on the difference between conductor temperature 𝑇𝑐 

and air temperature 𝑇𝑎: 

𝑄𝑐𝑛 = 0.0205𝜌𝑎
0.5𝐷𝑐

0.75(𝑇𝑐 − 𝑇𝑎)
1.25 (2-13) 

where 𝜌𝑎 is the air density (𝑘𝑔 𝑚3⁄ ) and 𝐷𝑐 is the conductor diameter (𝑚𝑚). 

For wind speeds 𝑤𝑠  above zero, the rates of forced convection heat loss are 

estimated by equations (2-14) and (2-15) for low and high wind speeds respectively: 

𝑄𝑐𝑓1 = [1.01 + 0.0372 (
𝐷𝑐𝜌𝑎𝑤𝑠
𝑣𝑎

)
0.52

] 𝜀𝑎𝐾𝑎𝑛𝑔𝑙𝑒(𝑇𝑐 − 𝑇𝑎) (2-14) 

𝑄𝑐𝑓2 = [0.0119 (
𝐷𝑐𝜌𝑎𝑤𝑠
𝑣𝑎

)
0.6

] 𝜀𝑎𝐾𝑎𝑛𝑔𝑙𝑒(𝑇𝑐 − 𝑇𝑎) (2-15) 

where terms 𝑣𝑎 and 𝜀𝑎 represent the air viscosity in (𝑃𝑎 ∙ 𝑠) and the coefficient 

of thermal conductivity of air in (𝑊 (𝑚 ∙ ℃)⁄ ) respectively. Since there is no 

specific boundary to classify 𝑤𝑠 into the low or high level and equations (2-14) and 

(2-15) underestimate the forced convection at high and low wind speeds respectively, 

it is recommended that the larger value from 𝑄𝑐𝑓1 or 𝑄𝑐𝑓2 is used as the forced 

convection heat loss rate 𝑄𝑐𝑓 = 𝑚𝑎𝑥(𝑄𝑐𝑓1, 𝑄𝑐𝑓2) [3]. 𝐾𝑎𝑛𝑔𝑙𝑒 is the wind direction 

factor that is determined by the attack angle 𝜗𝑑 between the wind direction 𝑤𝑑 and 

the conductor azimuth 𝑍𝑙: 

𝐾𝑎𝑛𝑔𝑙𝑒 = 1.194 − cos(𝜗𝑑) + 0.194 cos(2𝜗𝑑) + 0.368 sin(2𝜗𝑑) (2-16) 

The larger value from 𝑄𝑐𝑓 or 𝑄𝑐𝑛 is recommended to be used as 𝑄𝑐 for low wind 

speeds [3]. Therefore, the convection heat loss rate 𝑄𝑐 is finally determined as the 

largest value from 𝑄𝑐𝑓1, 𝑄𝑐𝑓2 or 𝑄𝑐𝑛 for any level of wind speed. 
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The terms 𝜌𝑎, 𝑣𝑎 and 𝜀𝑎 are all dependent on the average 𝑇𝑓𝑖𝑙𝑚 of 𝑇𝑐 and 𝑇𝑎: 

𝜌𝑎 =
1.293 − 1.525 × 10−4𝐻𝑒 + 6.379 × 10

−9𝐻𝑒
2

1 + 0.00367𝑇𝑓𝑖𝑙𝑚
 (2-17) 

𝑣𝑎 =
1.458 × 10−6(𝑇𝑓𝑖𝑙𝑚 + 273)

1.5

𝑇𝑓𝑖𝑙𝑚 + 383.4
 (2-18) 

𝜀𝑎 = 2.424 × 10−2 + 7.477 × 10−5𝑇𝑓𝑖𝑙𝑚 − 4.407 × 10
−9𝑇𝑓𝑖𝑙𝑚

2  (2-19) 

where 𝐻𝑒 in equation (2-17) is the elevation of the conductor above sea level. 

2.1.4.3. Radiation heat loss rate 

The rate of radiation heat loss 𝑄𝑟 from the conductor surface with an emissivity 𝜀𝑒  

is defined as: 

𝑄𝑟 = 0.0178𝐷𝑐𝜀𝑒 [(
𝑇𝑐 + 273

100
)
4

− (
𝑇𝑎 + 273

100
)
4

] (2-20) 

2.1.4.4. Solar heat gain rate 

The rate of solar heat gain 𝑄𝑠 of the conductor is related to the solar absorptivity 𝜀𝑠, 

projected area of conductor per unit length 𝐴′ (𝑚2 𝑚⁄ ), effective angle of incidence 

of sun’s ray 𝜃𝑠 and the total solar and sky radiated heat intensity 𝑞𝑠𝑒 (𝑊 𝑚2⁄ ) at 

the conductor’s elevation 𝐻𝑒: 

𝑄𝑠 = 𝜀𝑠𝑞𝑠𝑒 sin(𝜃𝑠) 𝐴
′ (2-21) 

where the term 𝜃𝑠 is derived from the altitude of the sun 𝐻𝑠 and the deviation in 

azimuth between the sun 𝑍𝑠 and the line 𝑍𝑙: 

𝜃𝑠 = cos
−1[cos(𝐻𝑠) cos(𝑍𝑠 − 𝑍𝑙)] (2-22) 

The altitude of the sun 𝐻𝑠 depends on the latitude of the conductor 𝐿𝑎𝑡, hour angle 

𝑤ℎ  that is the number of hours from solar noon times 𝜋 12⁄ , and the solar 

declination 𝛿𝑠 which is a function of the day of the year 𝑑𝑛𝑢𝑚: 

𝐻𝑠 = sin−1[cos(𝐿𝑎𝑡) cos(𝛿𝑠) cos(𝑤ℎ) + sin(𝐿𝑎𝑡) sin(𝛿𝑠)] (2-23) 

where, 
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𝛿𝑠 = 0.4094 sin (
284 + 𝑑𝑛𝑢𝑚

365
× 2𝜋) (2-24) 

The value of 𝛿𝑠  is positive for northern hemisphere and negative for southern 

hemisphere. It is suggested in CIGRE TB 601 [4] to correct the hour angle 𝑤ℎ by 

the longitude deviation from the standard meridian of the local time zone. If the 

position is on east side of standard meridian, 4 minutes per degree of longitude is 

added. If it is on west side of standard meridian, 4 minutes per degree of longitude is 

subtracted. Furthermore, it should be noted that the daylight savings time (DST) 

needs to be adjusted to the local standard time (LST), i.e. 𝐿𝑆𝑇 = 𝐷𝑆𝑇 − 1ℎ. 

The azimuth of the sun 𝑍𝑠 is defined as: 

𝑍𝑠 = 𝐶𝑠 + tan
−1(𝜒𝑠) (2-25) 

where 𝜒𝑠 is the solar azimuth variable defined as: 

𝜒𝑠 =
sin(𝑤ℎ)

sin(𝐿𝑎𝑡) cos(𝑤ℎ) − cos(𝐿𝑎𝑡) tan(𝛿𝑠)
 (2-26) 

and 𝐶𝑠 is the solar azimuth constant that is a function of 𝑤ℎ and 𝜒𝑠: 

𝐶𝑠 = {
0 𝑓𝑜𝑟 − 𝜋 ≤ 𝑤ℎ < 0  &  𝜒𝑠 ≥ 0
2𝜋 𝑓𝑜𝑟      0 ≤ 𝑤ℎ < 𝜋  &  𝜒𝑠 < 0
𝜋 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2-27) 

It is noted that all the terms representing the directions are in ‘radians’. 

2.2. Conductor Temperature based DLR Techniques 

This section introduces the temperature based DLR techniques which typically use 

temperature monitoring sensors to measure conductor temperatures so as to prevent 

the maximum allowable conductor temperature being exceeded. In order to provide 

the DLR values, a weather station is usually installed in close proximity to the 

temperature monitoring sensor to measure the weather conditions experienced by the 

monitored span. The measurements of conductor temperature and weather conditions 

are then used to calculate the ‘effective’ wind speeds perpendicular to the span which 
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provides the same wind cooling effect as the actual wind speeds and directions which 

vary along the span [17]. The estimated ‘effective’ wind speeds are then used with a 

maximum allowable conductor temperature to determine real-time ratings based on a 

thermal model of the conductors [3]. Some of the conductor temperature-based DLR 

techniques have been upgraded to measure or infer other conductor characteristics 

such as the inclination angle, tension, and sag of a span. This may make it possible to 

extrapolate sags of other suspension spans within the same line section based on the 

concept of ruling span. 

2.2.1. Overhead Transmission Line Monitoring 

The overhead line monitoring devices developed by the Overhead Transmission Line 

Monitoring (OTLM) Company have been upgraded from measuring the conductor 

temperature and line current only [31] to additionally capturing the inclination angle, 

sag and tension of a span [32]. An OTLM system consists of several OTLM devices, 

as shown in Fig. 2-5, that are fixed on the predefined points (e.g. the critical spans) 

along a line where conductor temperatures, inclination angles and line currents are 

directly measured and weather stations from which ambient conditions are observed 

[32]. The sag and tension of the monitored span are calculated based on the real-time 

measurements of inclination angle and conductor temperature combined with a 

mathematical model which takes the geometric and mechanical characteristics of 

conductors into account. 

 

Fig. 2-5. An OTLM device [32] 
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The actual angle of inclination measured by an inclinometer installed within an 

OTLM device is used to calibrate the mathematical model which calculates the angle 

of inclination by comparing the positions of the fixed point before and after the 

presence of the OTLM device for a range of conductor temperatures when there is no 

additional loading. If the inclination angle calculated by the calibrated mathematical 

model exceeds the measured value by a particular, given tolerance (normally 

determined by the statistical error of an angle measurement), the conductors being 

covered by ice or loaded with wet snow will be informed [33]. In addition, the 

conductor temperature measured by an OTLM device combined with weather 

conditions observed from the installed weather station can be used to estimate the 

“real-time” rating [32] based on a thermal model of the conductors proposed in [4]. 

The operation of an OTLM device is supplied by a built-in current transformer and 

no additional power source is required [32]. The weather station is powered by solar 

panels and batteries [34]. The OTLM device can be applied to the OHLs operating at 

the voltage level from 110kV to 400kV [34]. The OTLM device can only operate 

when the line current is greater than 65𝐴. Therefore, the line current measurements 

range from 65𝐴 with a resolution of 1𝐴. The measured conductor temperature 

ranges from −40℃ to 125℃ with a resolution of 0.5℃ and a deviation of ±2℃ 

[34]. Please refer to [34] which details technical parameters of an OTLM device. 

Scheduled disconnection is recommended (but not necessary) for the installation of 

an OTLM device which is close to tower but after the anti-vibration device if one is 

present. As an OTLM device measures conductor temperature for a single span, it is 

valuable to place OTLM devices on critical spans which can be identified by 

airborne LIDAR survey technology [31]. In complex terrain areas, it is recommended 

that approximately 3 to 5 OTLM devices should be installed in spans where the 

terrains change significantly, or conductors are shielded from wind by surrounding 

obstacles. Two OTLM devices can be fixed at the beginning and end of a line or at 

the sections with considerable pivot angle in flat woodless areas [31, 32]. 
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2.2.2. Power Donut 

The 2nd generation of power donut (PD2) is introduced in this section while the 3rd 

generation (PD3) has been developed by the Underground Systems, Inc. (USi). A 

PD2 device, as shown in Fig. 2-6, can be attached onto an energized overhead 

conductor without a planned outage and measures the line current, voltage, active 

and reactive power, conductor temperature and the inclination angle from which the 

values of sag and tension of the monitored span can be derived [35]. The live-line 

installation of a PD2 device can be accomplished by a ‘hot stick’ [36] which is an 

insulated pole, usually made of fiberglass, for a lineman working on energized high 

voltage OHLs. 

 

Fig. 2-6. A power donut2 (PD2) device [35] 

A PD2 device can be self-powered from an energized line with a minimum current of 

around 60𝐴 (50 − 70𝐴) [35, 37]. When the current is less than the minimum value 

required for the device’s operation, the PD2 device can be temporarily supplied for 

10 hours by a battery pack which will be charged when the line current is above 

120𝐴 and shut down at a low battery status [37] (In [35], the PD2 device is said to 

run on battery for one hour after which the device will automatically shut down). The 

PD2 device can work in systems of voltage level up to 500kV [37]. The PD3 is 

additionally powered by the photovoltaic cells that are attached on the upper surface 



29 

 

of device [35]. Please refer to [35, 37] where the device specifications and the 

features of measurements, i.e. ranges, resolutions and deviations are given. 

A USi weather station is installed in very close proximity to the PD2 device, as 

shown in Fig. 2-7, to measure ambient conditions experienced at the monitored span 

which are used for the accurate estimations of real-time ratings [35]. The operation of 

a USi weather station is supplied by solar power combined with primary battery cells 

and external power is not required [35]. 

 

Fig. 2-7. A PD2 device and a USi weather station [35] 

Two methods of estimating real-time ratings based on measurements from the PD2 

device and the USi weather station are described in [35]. A traditional method is to 

calculate the ratings for the measured weather conditions through the thermal model 

of the conductors [3] directly. The other method is to first determine the ‘effective’ 

wind speed from weather measurements combined with the measured conductor 

temperature and line current based on the thermal model of overhead conductors [3]. 

The estimated ‘effective’ wind speed is then used to calculate the real-time rating that 

leads to a maximum allowable conductor temperature under the measured weather 

conditions [35]. The real-time ratings calculated by the traditional method (‘Normal 

DLR IEEE 738’) and the relatively complex method (‘CTM DLR’), as shown in Fig. 

2-8 [35], were similar for most of the time. A conservative practice may be to use the 

lower value of two estimates of real-time ratings. 
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Fig. 2-8. Real-time ratings calculated by two methods developed for a PD2 system [35]. 

2.2.3. Thermal-vision camera 

A thermal-vision camera can record an infrared image to measure the thermal energy 

emitted from an object. It can therefore be applied to monitoring temperatures of 

overhead conductors through transferring the colour information into the 

corresponding value of temperature [38]. A thermo-vision camera, named FLIR 

ThermaCAM P65 [39], was once employed to capture conductor temperatures for 

each phase of a 330kV OHL in a Latvian power network [40]. Fig. 2-9 shows an 

example of the infrared image of two conductors, each aligned vertically in the 

image. The accuracy of measurements obtained from FLIR ThermaCAM P65 is 

±2℃ or ±2% of the reading [39]. 

 

Fig. 2-9. Infrared image for one phase of a 330kV OHL recorded by FLIR ThermaCAM P65 [40]. 
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2.2.4. Other temperature based DLR techniques 

Distributed temperature sensors (DTS) can monitor the distribution of conductor 

temperatures along an overhead line by means of optical fibres based on detection of 

the back-scattering of light [41]. In a demo project, Red Eléctrica de España (REE) 

replaced one sub-conductor with an optical phase power conductor (OPPC) which 

had ten optical fibres inside a stainless steel tube close to the steel core of the OPPC 

[42]. According to [43], a DTS system using Brillouin analysis can cover a distance 

up to 100𝑘𝑚  at a spatial resolution of 1 − 20𝑚  and measure the conductor 

temperature with an accuracy of ±0.3℃ and a reading resolution of 0.005℃. DTS 

techniques have the advantage of detecting the variations in conductor temperature 

along the covered distance, compared with the OTLM and PD2 devices which can 

only monitor conductor temperatures at their fixing points. However, less notice has 

been given to the DTS technique in practical online monitoring for cost reasons [41]. 

Please refer to [38, 44-46] in which the techniques of conductor temperature 

monitoring based on surface acoustic wave (SAW) sensors and synchronized phasor 

measurements (SPM) are introduced. 

The temperature monitoring sensor (TMS) directly attached on the conductor, e.g. 

equipment of OTLM, PD2 or SAW, is a heat sink so that the conductor temperatures 

measured by the TMS may be lower than their actual values in the free span [47], as 

shown in Fig. 2-10 [45]. Bernauer [44] has proposed an approach to calculating the 

conductor temperature in the free span based on the equivalent thermal source that is 

derived from the conductor temperature measured by a SAW sensor. The proposed 

approach was found to produce a nearly exact estimate of conductor temperature in 

the free span if there was a nearly constant ‘ratio’ between the thermal behaviours 

(i.e. the transient change of temperature in response to the variations in influencing 

factors) of the conductor and the sensor-conductor compound. Otherwise, the 

approach would be extended to additionally take into account the heating functions 
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of the conductor and the sensor at various wind speeds which largely affect the ‘ratio’ 

between thermal behaviours [45]. 

 

Fig. 2-10. Distribution of conductor temperatures affected by a SAW sensor (heat sink effect) [45]. 

The aforementioned temperature monitoring sensor (TMS), except for the DTS, can 

only monitor the conductor temperature at the fixing point of a single span. Though 

air temperatures and solar radiations may vary slightly along a line, the large 

variations in wind speeds and wind directions along suspension spans within a line 

section usually lead to conductor temperatures varying from span to span and even 

within a long span when the line is operated at a high current level greater than 

 1 𝐴 𝑚𝑚2⁄  [17]. Multiple single-span TMS are therefore required to be installed at 

the possible critical spans, e.g. those that may be shielded from wind. As noted in 

Sections 2.2.1 and 2.2.2, the OTLM and PD2 devices are both capable of inferring 

the sag and the horizontal tension of the monitored span from measurements of 

inclination angle and conductor temperature. Therefore, the sags of other suspension 

spans within the same line section can be estimated based on equation (2-9) if there 

is a satisfactory equalisation in tensions between the suspension spans [17]. 
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2.3. Sag based DLR Techniques 

This section will introduce the sag-based DLR techniques which monitor the 

sag/clearance of a span directly through measuring the position of the conductor in 

space so as to prevent the violation of the minimum clearance requirement. The 

measured sag of a span can be converted into the average conductor temperature of 

the span based on the known relationship between sag and temperature of conductor, 

i.e. the state change equation. In addition, the sags of other suspension spans within 

the same line section may be derived from the measurement of sag of the inspected 

span if there is an acceptable tension equalisation within the line section. 

2.3.1. Laser based scanning system 

A laser based scanning system has been developed by Golinelli [48] to measure not 

only the clearance of a span but also the rate of ice accretion on conductors. The 

operation of a laser based scanning system is based on detection of the intensity of 

backscattered signals generated by the inspected conductor when it is intercepted by 

a collimated scanning beam that explores an angular region of ±15𝑜 with respect to 

the line of sight [48]. The sag of a span can be derived from the delay in time 

between the scanner driving signal and the backscattered signal [49]. Fig. 2-11 shows 

a schematic of the laser based scanning system that is placed on the ground at a 

distance of around 20𝑚 from the monitored span [48]. 

 

Fig. 2-11. A schematic of the laser based scanning system [48] 
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The sustained ice accretion on overhead conductors due to the coincidence of high 

winds, air temperatures between −1℃  and 1℃  and snowing may stretch 

conductors, topple structures or even snap them [50], which leads to large economic 

losses and operational problems in power networks [48]. Real-time detection of the 

ice accretion on conductor (or the outer diameter of conductor) is therefore necessary, 

especially when the aforementioned weather conditions happen simultaneously. In 

addition to the sag of a span, the laser based scanning system can provide the value 

of conductor diameter which is proportional to the time duration of the backscattered 

signal [49]. The ice accretion on an overhead conductor can therefore be detected by 

comparing the measured outer diameter of conductor with the normal value. 

Fig. 2-12 shows an example of the time durations of signals backscattered by a 

conductor with an outer diameter of 30𝑚𝑚 and an iced conductor with an outer 

diameter of 60𝑚𝑚  (i.e. widths of the highest peaks in plots) [48]. The time 

durations of backscattered signals for a 60𝑚𝑚 iced conductor were approximately 

twice as long as that for a 30𝑚𝑚 conductor. 

 

Fig. 2-12. Backscattered signals (the highest peaks) generated by a conductor of a 30𝑚𝑚 outer 

diameter having shorter time durations of around 0.03𝑠 in upper plot and that for an iced conductor 

of a 60𝑚𝑚 outer diameter having longer time durations of around 0.05𝑠 in lower plot [48]. 

Assuming a detection accuracy of ±20 samples, the laser based scanning system 

was shown to provide the measurement of the iced conductor diameter with an 

accuracy of ±0.5𝑚𝑚 and the sag measurement with an accuracy of ±3.6𝑚𝑚 in 
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the experiment carried out in [48]. The laser based scanning system has been found 

to perform reliably and satisfactorily during night time as well as under weather like 

raining and snowing [49]. 

2.3.2. Radar based scanning system 

A radar based scanning system developed by Miceli [51] is capable of monitoring 

clearances of spans. Just as with the laser based scanning system, the radar based 

system sends a signal to a region that includes at least a portion of the monitored 

span and a reference object such as a ground surface or an object over the ground 

surface. The geometric relationship between the inspected span and the reference 

object can then be extracted from the reflected radar signal [51]. 

In common with the laser based scanning system, the radar based scanning system 

requires good access to the structures and overhead conductors since the monitoring 

devices are usually placed around the inspected spans [51]. Ground-based laser or 

vehicle-based radar scanning systems neither need a scheduled line outage nor affect 

conductors in the way that the TMS’s direct attachment on conductors does. 

However, the line may be blown out of the laser or radar scanning range in high 

winds [15]. 

2.3.3. Video sagometer scanning system 

A video sagometer scanning system, developed by the Electric Power Research 

Institute (EPRI), can recognize the position of a small target hung on a span based on 

which the catenary equation of conductors and thus the distance from any point along 

the span to ground (i.e. the clearance) can be determined [52]. The major components 

of the system are a video camera based on highly light-sensitive charge coupled 

device technology, a passive reflective target attached on the line (Fig. 2-13), a 

solid-state target illuminator which is used to illuminate the target at night or when 

there is insufficient ambient light, an electronics package containing a system for 
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data acquisition and analysis, and a communication system [52, 53]. The video 

camera is typically mounted on the tower supporting the monitored span or any 

structure in the vicinity where the camera has a good sighting of the target hung on 

the span [16], as shown in Fig. 2-14 [53]. 

  

     Fig. 2-13. A target hung on the line [53]    Fig. 2-14. A camera mounted on a wood pole [53] 

The video sagometer target can be directly installed on an accessible conductor and a 

planned outage is not required [52]. The operation of the video sagometer scanning 

system is supported by either 115V ac power or 12V dc power from a pre-packaged 

photovoltaic power supply [54]. The accuracy of the monitored span coordinates for 

the clearance calculation is within ±1.27𝑐𝑚  for most cases [54]. However, a 

reduced clarity of the target image and a less effective operation of the unit may be 

caused by the extreme weather such as fog or heavy snow [55]. Please refer to [54] 

where detailed information about a video sagometer scanning system is given. 

2.3.4. Differential global positioning system 

The geographic coordinates, i.e. latitude, longitude and altitude of a location can be 

obtained by a global positioning system (GPS) receiver installed at the given position, 

but with a bad accuracy of 20𝑚 − 100𝑚 due to various sources [56]. Knowing the 

altitude of the monitored position makes it possible to measure the sag or clearance 

of a span. One way to improve the accuracy of the GPS measured altitude is using an 

additional GPS base receiver at a reference station to measure the altitude which is 
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compared with its actual value in order to get the timing error of GPS signal. The 

timing error is then transmitted to a GPS receiver attached on the span by a 

communication module to calibrate the altitude measurement at the receiver [56, 57]. 

This sag monitoring technique is the differential GPS (DGPS). A schematic 

representing a DGPS is shown in Fig. 2-15 where the base receiver is around 16𝑘𝑚 

away from the monitored span [57]. 

 
Fig. 2-15. A schematic of a DGPS [57] 

In the field experiment conducted in [57], a laser based scanning system was used as 

a reference to calibrate DGPS measurements. The historical DGPS measurements 

recorded every second in a ten-second sliding training window were compared with 

the laser measurements in the same period, from which appropriate curve-fitting and 

smoothing techniques were determined so as to refine the DGPS measurements. The 

clearance of a span measured by the DGPS and the laser based scanning system were 

compared for a variety of current profiles. The error of the DGPS measurements after 

the calibration was around ±1.27𝑐𝑚 when the laser measurement was regarded as 

the reference [57]. 
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2.4. Multi-span DLR Monitoring Techniques 

The aforementioned conductor temperature-based and sag-based DLR techniques 

provide measurements only for the spans where they are installed. These techniques 

may be named as the single-span DLR monitoring techniques, though the 

measurement or inference of sag for the monitored span may be used to extrapolate 

the sags of other suspension spans within the same line section using the concept of 

ruling span if there is an acceptable tension equalisation within the line section. This 

section introduces two DLR technologies, i.e. a ‘CAT-1’ Dynamic Line Rating 

System and an ‘Ampacimon’ sensor which are both capable of monitoring the 

average thermal and mechanical behaviours of a line section. The ‘CAT-1’ Dynamic 

Line Rating System and the Ampacimon may be named as the multi-span DLR 

monitoring techniques which extrapolate a global section value to each of the 

suspension spans within the line section using the concept of ruling span [17]. 

2.4.1. CAT-1 Dynamic Line Rating System 

A ‘CAT-1’ Dynamic Line Rating (DLR) System is designed to measure the tension 

and infer the sag, average temperature and real-time rating of overhead conductors 

between strain (dead-end or angle) structures [58] based on an assumption of 

horizontal tensions along a line section being nearly equalised. A CAT-1 DLR 

System mainly consists of load cells that measure the horizontal tensions of 

conductors, a net radiation sensor (NRS) representing a de-energized conductor, an 

air temperature sensor, a CAT-1 Main Unit responsible for the main processor and 

communications, and a CAT-PAC power module that supplies power for the CAT-1 

DLR System’s operation [58]. 

2.4.1.1. Load cells and sag measurements 

Typically, two load cells are placed at a strain structure to monitor different line 

sections on each side of the structure. An example of a four-span section supported 
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by two strain structures and three suspension structures is shown in Fig. 2-16. The 

horizontal tension along suspension spans can be monitored by a load cell placed at 

the strain structure A or E [8]. The load cell is usually installed between the cross arm 

of a strain structure and the de-energized side of an insulator [58], as shown in Fig. 

2-17 [59]. The measured tension of conductors generally has an accuracy of 0.25% 

of full scale and a resolution of 0.06% of full scale. In practice, the load cell is 

likely to operate at 50% of full scale and thus the accuracy and resolution are about 

0.5% and 0.2% of the measured values respectively [17]. 

 
Fig. 2-16. A four-span section consisting of two strain structures and three suspension structures [8] 

 

Fig. 2-17. Load cells mounted between the cross arm of a strain structure and insulators [59] 

The sag of each suspension span within the monitored line section can be roughly 

determined from the measured tension by the equations relating tension to sag as 

described in Appendix A and B based on the assumption of tension equalisation 

between suspension spans. In practical applications, the accuracy of the sag-tension 

calculation is affected by several error sources such as the flexibility of structures 

and uncertain weights of overhead conductors [19] which must be calibrated by the 

field measurements [17]. The CAT-1 DLR System was stated in [59] to measure the 

span sag with an accuracy of 3 − 6 𝑐𝑚. The field experiment carried out in [60], 
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however, showed that the tension-based sag measurement of de-energized conductors 

had an error exceeding 8𝑐𝑚 at times (but within 2% of their actual values). A 

scheduled line outage is required for installation of load cells. 

2.4.1.2. Net radiation sensor and average conductor temperature 

The mechanical tension measured by a load cell is also correlated with the average 

conductor temperature of the line section. The temperature of a de-energized 

conductor, i.e. net radiation temperature (NRT) was found to decrease linearly with 

the increase in the measured tension [60]. The NRT can be measured by a net 

radiation sensor (NRS) as shown in Fig. 2-18 [61] which is mainly made up of a 

conductor replica made of the same material, with approximately the same diameter 

and painted to have approximately the same absorptivity and emissivity as the actual 

conductor. The conductor replica is placed parallel to the line and at approximately 

the same height in the vicinity of the actual conductor in order to experience the 

same ambient conditions as the actual conductor. Therefore, the temperature of the 

conductor replica, i.e. the NRT is nearly the same as the actual conductor temperature 

when the line is not in operation. 

 

Fig. 2-18. A net radiation sensor (NRS) [61] 

A state change curve [17] which indicates the relationship of average conductor 

temperature with tension is usually used to estimate the tension-based conductor 

temperature. It is recommended to use various field measurements of tensions and 

NRTs at low line currents to calibrate the state change curve [17, 19]. Fig. 2-19 

shows the data pairs of 15-minute average tensions of the ‘Hen’ ACSR conductor 
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and NRTs recorded for 3 months [17]. At each NRT, the minimum tension revealing 

the largest sag and the highest conductor temperature was usually observed at a high 

current and under the worst-case ambient conditions while the maximum tension 

corresponded to the minimum line current approaching zero, at which the conductor 

temperature might by nearly equal to the measured NRT. Therefore, the data pairs of 

the NRTs and their corresponding maximum tensions can be used to calibrate the 

state change curve which is then used to estimate the average conductor temperature 

from the measured tension. 

 
Fig. 2-19. Data pairs of tensions of the 'Hen' ACSR conductor and NRTs recorded for 3 months [17]. 

2.4.1.3. Dynamic line rating estimations 

The concept of the ‘effective’ wind speed is applied to DLR calculations in the 

CAT-1 DLR System. The ‘effective’ wind speed perpendicular to a line section is 

determined based on the average conductor temperature derived from the measured 

conductor tension by the calibrated state change curve, the line current provided by 

the SCADA system, air temperature measured by an air temperature sensor, and the 

actual solar radiation input to the conductor represented by the NRT [17] combined 

with the thermal model of the conductors. The exact algorithm of DLR estimations 

used by the CAT-1 DLR System is not available in the published literature which 

may be due to the concerns about intellectual property rights. One possible form for 

the algorithm is briefly introduced as below. 
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The thermal balance of the conductor replica of the NRS is kept with the heat 

generated by solar heating 𝑄𝑠 only and the heat lost by convection 𝑄𝑐(𝑁𝑅𝑇) and 

radiation 𝑄𝑟(𝑁𝑅𝑇) from the surface of conductor replica evaluated at 𝑁𝑅𝑇: 

𝑄𝑠 = 𝑄𝑐(𝑁𝑅𝑇) + 𝑄𝑟(𝑁𝑅𝑇) (2-28) 

For the line section operated at a line current 𝐼𝑙𝑠, the heat is additionally generated 

by the Joule heating and the convection and radiation heat loss rates are estimated at 

the average conductor temperature 𝑇𝑎𝑣−𝐻  that is inferred from the measured 

conductor tension: 

𝐼𝑙𝑠
2 ∙ 𝑅(𝑇𝑎𝑣−𝐻) + 𝑄𝑠 = 𝑄𝑐(𝑇𝑎𝑣−𝐻) + 𝑄𝑟(𝑇𝑎𝑣−𝐻) (2-29) 

In equations (2-28) and (2-29), 𝑄𝑠 and the ‘effective’ wind speed that is used to 

estimate 𝑄𝑐 are unknown. The term 𝑄𝑠 can be eliminated by subtracting equation 

(2-28) from equation (2-29). In this manner, the ‘effective’ wind speed is the only 

unknown variable to be solved from equation (2-30): 

𝐼𝑙𝑠
2 ∙ 𝑅(𝑇𝑎𝑣−𝐻) = 𝑄𝑐(𝑇𝑎𝑣−𝐻) + 𝑄𝑟(𝑇𝑎𝑣−𝐻) − 𝑄𝑐(𝑁𝑅𝑇) − 𝑄𝑟(𝑁𝑅𝑇) (2-30) 

The estimated ‘effective’ wind speed is then used to calculate the corresponding 

steady-state rating 𝐼𝑠𝑠−𝑙𝑠 for the line section given a maximum allowable conductor 

temperature 𝑇𝑐𝑚𝑎𝑥: 

𝐼𝑠𝑠−𝑙𝑠 = √
𝑄𝑐(𝑇𝑐𝑚𝑎𝑥) + 𝑄𝑟(𝑇𝑐𝑚𝑎𝑥) − 𝑄𝑐(𝑁𝑅𝑇) − 𝑄𝑟(𝑁𝑅𝑇)

𝑅(𝑇𝑐𝑚𝑎𝑥)
 (2-31) 

2.4.2. Ampacimon 

2.4.2.1. Smart sensor Ampacimon and sag determination 

Conductors of an OHL vibrate in response to wind. The vibration frequency 

spectrum of a span is made up of harmonics of its fundamental frequency which is 

dependent on the sag of the span [62]. Ampacimon is a sensor directly attached on a 

conductor (Fig. 2-20) which monitors the conductor movements, analyses the 

conductor vibration and detects fundamental frequencies of a span from which the 
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span’s sag is determined [63, 64]. Accelerometers built into an Ampacimon device 

are capable of detecting even a slight movement of 1𝑚𝑚 at the lowest frequency 

(0.15𝐻𝑧) for a typical span and even smaller movements at higher frequencies. The 

measurements of conductor vibration are processed to form a vibration frequency 

spectrum (Fig. 2-21) [64] from which the fundamental frequency is extracted [62]. 

 

Fig. 2-20. Ampacimon smart sensor [64]         Fig. 2-21. Vibration frequency spectrum [64] 

The movements of overhead conductors can be regarded as the vibration of a 

fixed-fixed string. A span’s fundamental frequency 𝑓𝑟𝑞𝑜 is defined as a function of 

the horizontal tension 𝐻, span length 𝑆𝑐 and the mass of the conductor per unit 

length 𝑚 [64]: 

𝑓𝑟𝑞𝑜 =
1

2𝑆𝑐
√
𝐻

𝑚
 (2-32) 

According to equation (2-1) representing the sag-tension relationship, the horizontal 

tension 𝐻 in equation (2-32) can be replaced by the mid-point sag 𝐷𝑚 and the span 

length 𝑆𝑐: 
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(2-33) 
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where 𝑔  is the gravitational acceleration and 𝑚 ∙ 𝑔  equals the weight of the 

conductor per unit length 𝑤. It can be seen from equation (2-33) that 𝐷𝑚 is only 

related to a single variable, that is, the fundamental frequency 𝑓𝑟𝑞𝑜: 

𝐷𝑚 =
1

32

𝑔

𝑓𝑟𝑞𝑜2
 (2-34) 

Therefore, the fundamental frequency obtained from an Ampacimon device can be 

directly used to calculate the sag of the inspected span. The outstanding advantage of 

Ampacimon is that the whole process of sag estimation is only concerned with 𝑓𝑟𝑞𝑜. 

The impacts of external conditions such as weather conditions, line currents, wind 

and ice loads, etc. on the sag of a span are all reflected by the frequency readings. An 

Ampacimon device can measure the sag over a range from 0𝑚 to 25𝑚 with an 

accuracy that is typically less than 10𝑐𝑚 and maximum at 20𝑐𝑚 [65]. In addition, 

an Ampacimon sensor can be easily installed anywhere along a span without the need 

for a line outage and self-powered from an energized line with a minimum operating 

line current of 80𝐴 [64, 66]. The specifications for an Ampacimon sensor can be 

found in [66]. 

2.4.2.2. Average conductor temperature and DLR estimation 

The concept of the ruling span is used by Ampacimon to infer average conductor 

temperature and DLR. The sag measured for a span within a line section is converted 

to the sag of the ruling span by equation (2-9). The unknown constants in the state 

change equation (2-7) are determined based on the estimated ruling span sags and the 

corresponding average conductor temperatures for the ruling span that are calculated 

based on IEEE Std. 738 [3] combined with weather measurements during several 

nights when there are stable wind conditions without solar radiation [27]. The 

calibrated state change equation can then be used to calculate the average conductor 

temperature from the estimated sag of the ruling span. 

The average conductor temperature of the ruling span is additionally estimated using 

the thermal model of the conductors [3] and ambient conditions observed from web 
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or weather stations. The weather-based estimate of average conductor temperature is 

then converted to the sag value. The deviation from the measured sag is eliminated 

through adapting wind speed and solar radiation to their ‘effective’ values in a 

conservative way. That is, if the measured sag is greater than the weather-based value 

which indicates overestimated heat losses or underestimated heat gains, the ‘effective’ 

wind speed perpendicular to the line section is first reduced and the solar radiation is 

then increased when the ‘effective’ wind speed has been reduced to zero until the 

difference between the measured sag and the re-calculated weather-based value is 

within a predefined tolerance; in the case of the sag measurement being lower than 

the weather-based estimate, the solar radiation is first decreased and the ‘effective’ 

wind speed is then increased when solar radiation has reduced to zero. The ‘effective’ 

wind speed estimated in this manner is conservative. The effective weather variables 

are then used to determine the DLR that leads to the lower value from the maximum 

allowable conductor temperature or the maximum conductor temperature limited by 

the maximum allowable span sag based on the thermal model of the conductors [27]. 

The static line rating (SLR) will be adopted as the line rating under conditions where 

the line current is too low to support operation of the Ampacimon sensor or the line 

current data and weather data are missing [27]. 

2.5. Weather-based DLR Techniques 

2.5.1. ThermalRate System 

A ThermalRate system estimates real-time ratings of an OHL by placing the 

ThermalRate sensors at a number of critical spans which model the influences of 

weather conditions on the inspected spans. The ThermalRate sensor (Fig. 2-22) [67] 

consists of two conductor replicas, each having the same material, diameter, 

absorptivity and emissivity as the actual overhead conductor. One replica has an 

internal resistive heater at a constant wattage while the other one is not heated. The 
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two conductor replicas are of the same length which is sufficiently long as 1𝑓𝑡 

(30.48𝑐𝑚) in order to minimize the influences of thermal boundary losses [68, 69]. 

   
Fig. 2-22. A ThermalRate sensor [67] 

The ThermalRate sensor is installed in the vicinity of the monitored span and may be 

mounted on a mast on an existing transmission tower or on a separate pole, as shown 

in Fig. 2-22. The sensor is placed at the average conductor height and in the same 

orientation of the span in order to experience the same weather conditions as the span 

[67]. A thermocouple embedded at the longitudinal centre of each replica can tell the 

difference in temperature between two replicas, from which the ‘effective’ wind 

speed perpendicular to the line conductors is determined based on IEEE Std. 738 [3] 

combined with air temperature from a ThermalRate ambient thermometer. The 

estimated ‘effective’ wind speed is then used to calculate the rating of the monitored 

span [69, 70]. The algorithms used by the ThermalRate System may be similar to 

equations (2-28) - (2-31), except for substituting the constant heating power for the 

Joule heating in equations (2-29) and (2-30). The minimum value of the calculated 

real-time ratings at critical spans is applied to the entire OHL. 

The installation of a ThermalRate sensor does not need a scheduled line outage since 

it does not contact with line conductors [67]. A ThermalRate System that consumes 

15𝑊 − 17𝑊 is supplied by a solar panel combined with a rechargeable battery [67, 

69]. An outstanding advantage of a ThermalRate System is that the estimation of 
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‘effective’ wind speed and thus DLR is independent of the line current data from the 

SCADA system. For the Power Donut (PD), CAT-1 Dynamic Line Rating System 

and Ampacimon, the ‘effective’ wind speed may only be accurately determined in the 

cases of the measured average conductor temperature being several degrees Celsius 

higher than air temperature, which generally requires that the line current reaches a 

sufficiently high level, i.e. greater than 20% − 30% of its SLR or 0.5𝐴/𝑘𝑐𝑚𝑖𝑙 

(0.987A/𝑚𝑚2) [71]. However, the required level of line current is not often reached 

especially for 69kV to 230kV lines [71] and the estimates of ‘effective’ wind speeds 

may be less accurate. The ThermalRate System has the capability of settling the 

problem of lightly loaded lines as the temperature difference between the heated and 

non-heated conductor replicas is large enough to estimate the ‘effective’ wind speed. 

For lightly loaded lines that are monitored by the PD, CAT-1 or Ampacimon devices, 

normal SLRs can be adopted as their thermal limits which still provide considerable 

additional headroom for power transfer. 

2.5.2. Weather-based DLR models 

A weather-based DLR model determines real-time ratings of conductors by directly 

using ambient conditions measured at weather stations combined with conductor 

parameters as the inputs of the thermal model of overhead conductors [3, 4]. The 

conductor temperature can also be calculated if the line current is provided. To 

inspect ratings for an entire OHL, a sufficient number of weather stations are 

installed along the line, measuring the local weather conditions which are then used 

to estimate ambient conditions for each span through suitable spatial interpolation 

methods. The rating at each span is determined from the inferred weather data and 

the minimum value of ratings among all spans is applied to the whole OHL [20]. 

The weather-based DLR models usually suffer from inaccuracy of wind speed and 

wind direction measurements, especially at low wind speeds. In addition, weather 

conditions, especially wind speeds and directions, are largely affected by local effects 
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and may significantly vary from span to span or even along a single span. Though a 

weather station is installed in close proximity to the line conductors, there is a 

difference in wind cooling effects between the measured wind variables and the 

average wind conditions experienced by the span. The ratings of a 220kV OHL in 

France calculated by the weather-based model and the Ampacimon System were 

compared in [72]. The DLR estimations by using measurements of wind speed and 

wind direction were shown to have an error, on average, equal to around 10% of the 

estimations by the Ampacimon which used the deduced ‘effective’ wind speed [72]. 

However, the unsatisfactory performance of the weather-based DLR model found in 

[72] may be, to some extent, due to fact that weather measurements were from a 

weather station that was too far (a few kilometres) away from the monitored line. 

Installing more weather stations along OHLs within a network requires a higher 

investment cost but may result in more precise interpolations of weather data which 

will be beneficial to provide DLR estimations of a higher reliability to operators. 

Therefore, there is a trade-off between the interpolation accuracy of weather 

conditions and the investment in weather stations. The research at Durham 

University recommended that the distance between two adjacent weather stations 

should not exceed 10𝑘𝑚 [10]. For the DLR project in North Wales, six weather 

stations have been installed at each of the 132kV substations as shown in Fig. 1-2, 

taking account of the benefits of secure source of electrical power that supports the 

operation of weather stations, reliable private-wired telecommunications networks, 

etc. Other weather stations were considered to be installed in the areas between two 

adjacent 132kV substations which are greater than 10𝑘𝑚 apart. Four towers along 

the 132kV circuits were determined as the locations of weather stations since the 

alternative 33kV substations were sheltered from wind due to the local geography 

and did not have private-wired telecommunications networks [10]. The tower-based 

weather station located between 132kV substations B1 and B5 (Fig. 1-2) did not 

work and weather measurements were only available from the other nine stations. 
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Due to the random character of instantaneous weather data, using average values of 

weather conditions generally gives more accurate estimates of ratings and conductor 

temperatures [73]. The duration that a conductor can be operated at the level of the 

calculated steady-state rating is generally determined by the frequency at which the 

rating is updated. For example, the conductor’s ampacity would be assumed to be 

kept at the hourly updated steady-state rating over the present or future one hour. 

However, the use of weather data averaged over a relatively longer interval, e.g. one 

hour, may lead to a risk of the conductor’s thermal overloading due to the short-term 

variability of weather conditions, especially wind speed [73]. It is recommended that 

an update interval of 10 minutes is preferred to fulfil the requirement of rating 

calculation for most cases [73, 74]. In this research, 10-minute average weather data 

are used to calculate rating forecasts. 

It may be more valuable to install weather stations in close proximity to critical spans 

which are those likely to be sheltered from wind or exposed to direct sunlight along 

the monitored OHLs within a network since the rating of an OHL is limited by the 

minimum value of ratings of all spans which often occurs at the critical span. 

Furthermore, weather conditions measured for critical spans generally have 

conservative cooling effects or high solar radiations on conductors. The ratings for 

other spans deduced from interpolations of the conservative weather data and thus 

the rating for the entire OHL are conservative. 

2.6. DLR Estimation Errors due to Measurement Accuracies 

As was noted above, a DLR monitoring technique generally determines steady-state 

ratings of a span based on an effective wind speed perpendicular to the span that is 

inferred from the measured line current, air temperature and solar radiation combined 

with the conductor temperature obtained from what the monitoring device measures 

through a thermal model of the conductors. This approach can mitigate the difference 

between the wind conditions recorded at a meteorological station and those actually 
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experienced by the conductor [17]. However, the measuring errors of these variables, 

e.g. conductor temperature and solar radiation, may degrade the accuracy of effective 

perpendicular wind speed (EPWS) estimates, leading to an error in DLR estimation. 

This section will investigate the effects of measuring errors of line current, solar 

radiation 𝑠𝑟 and conductor temperature 𝑇𝑐 on the performance of the EPWS-based 

approach to DLR estimation. 

Based on an assumption that the conductor is in thermal equilibrium, line currents 

passing through an ACSR ‘Drake’ conductor are calculated by the thermal model of 

the conductors [3] based on an air temperature 𝑇𝑎 of 10℃ and an EPWS of 1𝑚 𝑠⁄  

that are combined with different values of 𝑇𝑐 ranging from 25℃ to 65℃ and 𝑠𝑟 

equal to 50𝑊 𝑚2⁄ , 500𝑊 𝑚2⁄  and 1000𝑊 𝑚2⁄  respectively. The technical 

parameters describing characteristics of the ‘Drake’ conductor are listed in Table 2-2 

[4]. The calculated line currents, as shown in Fig. 2-23, are assumed to be the ‘actual’ 

values, which are to be measured by a monitoring device, e.g. PD2, with an accuracy 

of around ±0.5% of reading [37]. 

Table 2-2: Technical parameters of ACSR ‘Drake’ conductor [4] 

Conductor Characteristics ACSR ‘Drake’ 

Conductor diameter (𝑚𝑚) 28.143 

Emissivity (-) 0.8 

Solar absorptivity (-) 0.8 

Low conductor temperature for which ac resistance is specified (℃) 25 

High conductor temperature for which ac resistance is specified (℃) 75 

Conductor ac resistance at low conductor temperature (𝛺 𝑘𝑚⁄ ) 0.0727 

Conductor ac resistance at high conductor temperature (𝛺 𝑘𝑚⁄ ) 0.0872 

Conductor elevation above sea level (𝑚) 0 
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Fig. 2-23: Line currents calculated for the Drake conductor that has 𝑇𝑐 ranging from 25℃ to 65℃ 

based on an EPWS of 1𝑚 𝑠⁄  and 𝑇𝑎 of 10℃ under different values of 𝑠𝑟 . 

Based on the thermal model of the conductors [3] combined with an EPWS of 1𝑚 𝑠⁄  

and 𝑇𝑎 of 10℃, steady-state ratings of the Drake conductor at 𝑇𝑐𝑚𝑎𝑥 = 75℃ are 

estimated to be 1199.1𝐴, 1251.8𝐴 and 1297.4𝐴 for 𝑠𝑟  equal to 1000𝑊 𝑚2⁄ , 

500𝑊 𝑚2⁄  and 50𝑊 𝑚2⁄  respectively. When the maximum error of line current 

measurements, i.e. ±0.5% of readings, are considered only, the steady-state DLR of 

the Drake conductor at 𝑇𝑐𝑚𝑎𝑥 = 75℃  is estimated from the EPWS which is 

calculated by the thermal model of the conductors [3] based on 100.5% or 99.5% 

of the ‘actual’ line current for each scenario. The percentage errors of steady-state 

DLRs due to the measuring errors of line currents only under different values of 𝑠𝑟 

are shown in Fig. 2-24. The ±0.5% measuring errors of line currents lead to similar 

percentage errors of DLRs at a high 𝑇𝑐 which corresponds to a high line current. 

When 𝑇𝑐 is at a low level which means a low line current, percentage errors of 

DLRs due to the measuring errors of line currents are reduced, especially in the 

scenarios of high 𝑠𝑟. This is because, in these scenarios, an increased proportion of 

𝑠𝑟 in the total heat gain rate constrains the impacts of the measuring errors of line 

currents on the EPWS estimation. 
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Fig. 2-24: Percentage errors of steady-state DLRs of the Drake conductor estimated by the EPWS 

based method due to the measuring errors of line currents only under different values of 𝑠𝑟 . 

The 𝑇𝑐-based monitoring devices, e.g. OTLM, usually have measuring errors of 𝑇𝑐 

(denoted by ∆𝑇𝑐) equal to around ±2℃. Other DLR monitoring techniques, e.g. 

Ampacimon and CAT-1, generally infer 𝑇𝑐 from measurements of sag or tension 

using a calibrated state change equation or curve. CIGRE Technical Brochure 498 

[17] recommended that the clearance or sag of a span, i.e. the fundamental data to be 

checked by a system operator, should be measured or determined with a minimum 

accuracy of ±20𝑐𝑚. This may represent a variation of around ±5℃ in 𝑇𝑐 at low 

conductor temperatures (e.g. below 75℃) based on a 4th order polynomial equation 

relating sag to 𝑇𝑐 which is derived for a 300𝑚 ruling span [17]. Since the CAT-1, 

Ampacimon and some sag-based monitoring techniques meet the minimum required 

accuracy of ±20𝑐𝑚, the maximum measuring errors of ±5℃ for 𝑇𝑐 are used here 

to analyse the impacts of ±20𝑐𝑚 of errors in sag measurements on the performance 

of the EPWS-based approach. Figs. 2-25 and 2-26 compare percentage errors of 

steady-state ratings of the Drake conductor due to ∆𝑇𝑐 equal to ±2℃ and ±5℃ 

respectively under different values of 𝑠𝑟. 
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Fig. 2-25: Percentage errors of steady-state DLRs of the Drake conductor estimated by the EPWS 

based approach due to measuring errors of 𝑇𝑐 equal to ±2℃ only under different values of 𝑠𝑟 . 

 

Fig. 2-26: Percentage errors of steady-state DLRs of the Drake conductor estimated by the EPWS 

based approach due to measuring errors of 𝑇𝑐 equal to ±5℃ only under different values of 𝑠𝑟 . 

When calculating the EPWS from the measured 𝑇𝑐, ∆𝑇𝑐 equal to −2℃ or −5℃ 

will underestimate the arise of 𝑇𝑐 above 𝑇𝑎, leading to an underestimation in the 

radiation heat loss rate 𝑄𝑟. Then the underestimated temperature difference (𝑇𝑐 − 𝑇𝑎) 

and 𝑄𝑟 produce an overestimated EPWS. However, the overestimation in EPWS 

will be mitigated by an underestimated Joule heat gain rate due to a negative ∆𝑇𝑐 

underestimating the ac conductor resistance. Since 𝑠𝑟 is independent of 𝑇𝑐, a large 
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proportion of 𝑠𝑟 in total heat gain rate (e.g. when line current is low and 𝑠𝑟 equals 

1000𝑊 𝑚2⁄ ) will reduce the mitigation in an overestimated EPWS by the 

underestimated ac resistance. Therefore, percentage errors of DLRs due to ∆𝑇𝑐 only 

evaluated at low current levels or 𝑠𝑟 = 1000𝑊 𝑚2⁄  are higher than those estimated 

at high current levels or lower 𝑠𝑟, as shown in Figs. 2-25 and 2-26. 

When operating the conductor at 𝑇𝑐 close to 𝑇𝑐𝑚𝑎𝑥 (e.g. above 60℃ in this case), 

the EPWS-based approach is shown to produce a steady-state DLR with an accuracy 

of about ±2% or ±5% given that the DLR monitoring techniques have ∆𝑇𝑐 equal 

to ±2℃ (e.g. OTLM) or ±5℃ (e.g. Ampacimon) respectively. When 𝑇𝑐 is low, 

e.g. 25℃ in this case, the error of the EPWS-based DLR increases to around ±6% 

for ∆𝑇𝑐 = ±2℃, −12% for ∆𝑇𝑐 = +5℃ and +22% for ∆𝑇𝑐 = −5℃. It is noted 

that a negative ∆𝑇𝑐 at low 𝑇𝑐 is shown to cause an overestimation in DLR that is 

higher in magnitude than an underestimation in DLR due to a positive ∆𝑇𝑐. 

Given that 𝑠𝑟 is measured with an accuracy of ±5% [10], percentage errors of the 

EPWS-based steady-state DLRs of the Drake conductor evaluated at 𝑇𝑐𝑚𝑎𝑥 = 75℃ 

due to the measuring error of 𝑠𝑟 only in different scenarios are shown in Fig. 2-27. 

When directly calculating DLRs from weather observations, positive errors of 𝑠𝑟 

measurements would underestimate DLRs. However, Fig. 2-27 shows that a positive 

measuring error of 𝑠𝑟 cause an overestimation in the EPWS-based DLR, and vice 

versa. This is because the EPWS-based approach overestimates the level of EPWS 

given a positive error of 𝑠𝑟. When the difference between conductor temperature and 

𝑇𝑎 increase from (𝑇𝑐 − 𝑇𝑎) to (𝑇𝑐𝑚𝑎𝑥 − 𝑇𝑎), the overestimation in convection heat 

loss rate evaluated at 𝑇𝑐𝑚𝑎𝑥 exceeds the overestimation in 𝑠𝑟, leading to a positive 

error of the EPWS-based DLR. 
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Fig. 2-27: Percentage errors of steady-state DLRs of the Drake conductor estimated by the EPWS 

based method due to 𝑠𝑟  measuring errors of ±5% only under different values of 𝑠𝑟 . 

The above analysis shows that the accuracy of steady-state DLRs estimated by an 

EPWS-based approach is very sensitive to the errors of the measured or inferred 𝑇𝑐, 

especially when the conductor is operating at low 𝑇𝑐. Therefore, it is necessary to 

maintain a reasonable safety margin relative to the EPWS-based DLR. 

2.7. Conclusions 

This chapter has given a high level explanation and description of the theories and 

dynamic line rating (DLR) techniques, most of which have the capability of 

estimating real-time ratings of the inspected span or line section through monitoring 

or inference of the state of overhead conductors. 

Conductor temperature-based DLR techniques such as Overhead Transmission Line 

Monitoring (OTLM) and Power Donut can measure the conductor temperature at the 

fixed point by a temperature sensor. In addition to conductor temperature, these 

monitoring devices have been developed to capture other characteristics of line 

conductors, e.g. line current and inclination angle from which the sag and tension of 

the monitored span can be derived. The temperature sensors being directly attached 
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upon conductors can effectively reduce the measurement error. However, the 

temperature sensors that make contact with conductors additionally suffer from heat 

skin effects, i.e. the measured conductor temperature being lower than the actual 

value in the free span [47]. The heat skin effects due to the difference in thermal 

behaviours between the conductor and the sensor-conductor compound can be 

mitigated by taking into account the heating functions of conductor and sensor for a 

range of wind speeds [45]. 

Installations of sag monitoring devices generally do not require a planned line outage 

since most of them such as laser and radar based scanning systems do not make 

contact with the conductors. In addition, a laser scanning system can additionally 

measure outer diameters of conductors from which the ice accretion rate on 

conductors can be deduced. However, the laser and radar based scanning systems do 

need good access to the lines and structures and may face the risk of the inspected 

line being blown off the scanning range in high wind speeds [15]. 

The CAT-1 DLR System and the Ampacimon System are both capable of capturing 

the average behaviour of a line section between two strain structures based on the 

concept of ruling span. The CAT-1 system measures the tension of line conductors 

from which the average conductor temperature is determined based on a calibrated 

state change curve. An Ampacimon sensor measures the sag of a particular span 

within a line section which is then converted to the ruling span sag. The average 

conductor temperature of the line section can be calculated from the ruling span sag 

based on a calibrated state change equation. 

It has been argued here that CAT-1 and Ampacimon can be regarded as multi-span or 

line-section monitoring techniques while most of the conductor temperature-based 

and sag-based DLR techniques are regarded as the single-span monitoring techniques, 

i.e. each of their devices only monitoring a single span. The capability of monitoring 

multiple spans of CAT-1 and Ampacimon depends on the ruling span concept which 

can only be utilised when there is a reasonable tension equalisation in suspension 
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spans within a line section. If a satisfactory tension equalisation exists within a line 

section, some single-span DLR monitoring techniques that can capture the sag of a 

span, such as OTLM, Power Donut, laser and radar based scanning systems, may 

turn into multi-span monitoring techniques since the sag of the inspected span can be 

used to extrapolate the sags for other suspension spans through equation (2-9) based 

on the concept of ruling span. 

DLRs cannot be determined only by measurements of conductor temperature or sag 

without weather data. Therefore, the monitoring devices are commonly used together 

with weather stations or net radiation sensors (NRS) to calculate DLRs based on the 

thermal model of overhead conductors. The line currents and the average conductor 

temperatures of the ruling span or a line section inferred from the conductor tension 

or sag measurements are used to estimate the ‘effective’ wind speeds perpendicular 

to line conductors. The estimated ‘effective’ perpendicular wind speed (EPWS) is 

then used to evaluate the real-time rating for the line section that increases the 

average conductor temperature to the maximum allowable limit. 

The DLRs estimated from EPWS are generally of higher accuracy than directly using 

wind speeds and wind directions observed at weather stations due to less precise 

measurements of wind conditions at low wind speeds. Furthermore, wind variables 

measured at a weather station cannot accurately represent the average wind cooling 

effects experienced by the span. However, it should be noted that the EPWS-based 

DLRs may suffer from the accuracy of the variable being monitored, especially the 

measuring error of conductor temperature. Even so, weather-based DLR models may 

be the most practical technique to evaluate the thermal limits of overhead lines since 

installations of weather stations may be cost-effective and do not require a scheduled 

line outage [15]. It was recommended in [15] to use the weather-based DLR model 

with other DLR monitoring techniques so as to validate the outputs of the 

weather-based model. Moreover, additionally deploying other DLR techniques such 

as conductor temperature sensors can help cover microclimate regions [10]. 
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Appropriate locations of monitoring sensors are critical since the number of sensors 

is normally limited by the available budget. Except for the load cells in a CAT-1 

DLR System that are placed at a strain structure, it may be valuable to determine 

installation positions at the thermally vulnerable components, i.e. critical spans 

which experience low convection effects and high solar radiations. For weather based 

DLR models, more weather stations may be required in complex terrains.  



59 

 

3. POINT AND PROBABILISTIC WEATHER 

FORECASTING 

3.1. Introduction 

Dynamic Line Rating (DLR) promises to release extra power transfer capacity on a 

network and to reduce the need for balancing actions to modify, in the first instance, 

generator outputs. Depending on where dynamic line rating is deployed, this would 

have a clear benefit in terms of reducing curtailment of low carbon generation and 

reducing the total cost of balancing actions. However, many of these require some 

notice due to, for example, the time taken to identify and communicate the need for 

actions and the ramp rate limits on generation. Thus, forecasting of ratings seems 

necessary if system operator actions are not to be unduly conservative. 

Weather-based DLR forecasting techniques which use weather predictions are being 

widely developed for different time horizons in operational planning and real-time 

system operation. Since the steady-state rating of an OHL is significantly influenced 

by weather conditions, reliable and accurate weather forecasting is a prerequisite for 

a system operator having confidence in the provided DLR forecast to dispatch power 

flow. For look ahead times of a few hours, time series forecasting models are well 

suited to DLR forecasting, producing weather forecasts from historic observations 

that are combined with a thermal model of overhead conductors [3, 4]. Time series 

approaches have been developed in [75, 76] to derive predictive distributions of 

weather parameters for a few hours ahead from which random weather samples were 

generated using Monte Carlo simulation to estimate probabilistic DLR forecasts. The 

accuracy of a time series forecasting model commonly decreases with the forecast 

time horizon. Weather forecasts from numerical weather prediction models are 

generally preferred for a forecast horizon greater than 4 hours ahead [77]. Numerical 

weather predictions and weather forecast ensembles provided by a weather service 
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are usually used for the estimation of point forecasts for DLR [77, 78] and the 

uncertainties of DLR forecasts [2] respectively for a day ahead. 

The primary objective of this research is to develop an enhanced weather-based 

model to provide DLR forecasts in the form of percentiles which can be used by a 

system operator within a chosen risk policy with respect to the probability of a rating 

being exceeded. Predictive distributions of weather variables are estimated from their 

historic time series observed at weather stations by using suitable probabilistic 

forecasting models. The modelled distributions of weather forecasts are then used to 

derive the percentiles of DLR forecasts in Monte Carlo simulation. A probabilistic 

forecast or a predictive probability distribution can be regarded as an extension of a 

point forecast, indicating the size or distribution of possible errors. An accurate point 

forecast is therefore necessary for minimising the uncertainty of forecasts, but 

knowledge of the distribution is required to understand the risks. 

In this chapter, time series forecasting models are first developed to estimate point 

forecasts for each weather variable by using an auto-regressive process that is 

combined with a Fourier series based de-trending method. The point or deterministic 

forecasting models that have an adequate forecast accuracy are then selected to 

model predictive centres of weather variables. Conditional heteroscedasticity of the 

predictive distribution is modelled as a linear function of recent changes in the 

de-trended data within one hour for air temperature and wind speed or the 

concentration of recent wind direction observations within two hours. The predictive 

distributions of weather variables are determined using a technique of minimum 

continuous ranked probability score (CRPS) estimation. The probabilistic forecasting 

models that have smaller CRPS values and require less computation time are used to 

produce predictive distributions for each weather parameter. In the case of solar 

radiation only point forecasts have been used here since, when wind speeds are 

above a modest level [1] or when conductor temperatures are relatively high [21], 

conductor temperature is insensitive to the change in solar radiation. 
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As was noted in Sections 1.2.1 and 2.5.2, 10-minute average weather data was used 

in this work; the examples of estimating 𝐿-step-ahead weather forecasts described 

here therefore use step lengths of 10 minutes. Although the first challenge is to 

develop reasonable forecasts for 1 step ahead, in practice, it is very difficult for 

system operators to make use of 10-minute steady-state DLR forecasts as updates of 

system state from an energy management system and implementation of any action 

required to secure the system would typically take at least that long. Although the 

notice given to operators would ideally be longer than 30 minutes, as a means of 

establishing the viability of the described approach and giving something of at least 

some value to system operators, results for 3-step-ahead are also presented. In 

addition to probabilistic steady-state DLR forecasts, the thesis aims to quantify lower 

percentiles of transient-state rating forecasts which may yield a maximum allowable 

conductor temperature in a specified time period (typically less than half-an-hour [3]), 

considering the thermal inertia of the conductor. Therefore, predictive distributions of 

weather variables for up to three 10-minute time steps ahead estimated in this chapter 

are necessary for probabilistic forecasting of transient-state DLR. 

3.2. Methodology 

3.2.1. Fourier series based temporal de-trending 

Data applied to statistical models, like time series forecasting models, are generally 

required to satisfy a weak or second order stationarity. That is, neither the average 

nor the variance of the data should vary with time and the auto-covariance is 

dependent on the time lag only [79]. The inherent trends of non-stationary data may 

be misleading with regard to correlations among variables or the autocorrelation of a 

time series. Any trend implied in the non-stationary data should therefore be removed 

before the application of statistical models. 
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A temporal de-trending method using a Fourier series of a reasonable order 𝑝𝑓𝑠 is 

employed here to extract temporal trends from weather data [80]: 

𝑇𝑟𝑒𝑛𝑑 = 𝐹𝑆𝑜 +∑𝐹𝑆𝑖 sin(𝑖𝜔𝑓𝑠𝑡 + 𝜑𝑖)

𝑝𝑓𝑠

𝑖=1

 (3-1) 

where terms 𝐹𝑆𝑖 and 𝜑𝑖 are the Fourier coefficients of the 𝑖𝑡ℎ harmonics. The 

term 𝐹𝑆𝑜 is the offset of data and 𝜔𝑓𝑠 represents the frequency. The annual trend 

and diurnal trend of weather data can be modelled with an annual angular frequency 

of 2𝜋 (365 × 24ℎ𝑟)⁄  and a diurnal angular frequency of 2𝜋 24ℎ𝑟⁄  [81]. 

Hourly wind speed measurements over two years 2006-2007 from the British 

Atmospheric Data Centre (BADC) that were recorded at Rhyl weather station located 

in North Wales are used to illustrate the process of Fourier series based temporal 

de-trending. The annual trend of wind speed is first well modelled by a 3rd order 

Fourier series with the annual angular frequency, as shown in Fig. 3-1, and then 

subtracted from the original data of wind speed. 

 

Fig. 3-1. Modelling of annual trend of wind speed over two years 2006-2007 at Rhyl 

Hill [81] found that the diurnal trend of wind speed, especially at coastal locations, 

varies throughout the year. As a consequence, the wind speeds without the annual 
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trend are categorized into four groups according to four seasons, winter (December 

to February), spring (March to May), summer (June to August) and autumn 

(September to November). The diurnal trend in each season is then fitted to the 

average value at each hour within a day for each season by a Fourier series of order 

equal to two with the diurnal angular frequency, as shown in Fig. 3-2. The diurnal 

trends of wind speeds in spring and summer are shown to be similar and more 

obvious than those in autumn and winter. 

 

Fig. 3-2. Modelling of diurnal trends of wind speeds over two years 2006-2007 in four seasons at Rhyl 

The modelled annual trend and the diurnal trends in different seasons are all removed 

from the original data so as to obtain the de-trended data with a reasonable degree of 

stationarity. To examine the effect of temporal de-trending on the stationarity of data, 

sample autocorrelations of the original data and the residuals are calculated for time 

lags up to 144 hours separately, as shown in Fig. 3-3. The autocorrelation of original 

data is shown to decay periodically with a period of approximately 24 hours while 

the autocorrelation of the residuals that are obtained via the temporal de-trending 

process decays to zero relatively smoothly. This confirms the necessity to remove 

temporal trends, especially the diurnal trends, from the original time series, which 
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would otherwise correlate the pairs of wind speed data that are at the time lags of 

multiples of 24 hours. The de-trended data can then be used to estimate parameters of 

time series forecasting models. 

 

Fig. 3-3. Sample autocorrelations of the original wind speed data and the corresponding de-trended 

data at time lags up to 144 hours at Rhyl 

3.2.2. Auto-regressive model 

Time series forecasting models using an auto-regressive (AR) process calculate point 

forecasts of weather variables from recent observations based on their correlations 

extracted from historic time series. An auto-regressive (AR) model of order 𝑝 is a 

stochastic model that estimates the forecast �̃�𝑡 as a linear combination of 𝑝 historic 

values �̃�𝑡−𝑖 (𝑖 = 1, … , 𝑝) at a target location and a Gaussian noise term 𝑒𝑡 [82]: 

�̃�𝑡 = 𝑢 +∑𝛽𝑖�̃�𝑡−𝑖

𝑝

𝑖=1

+ 𝑒𝑡 

 

(3-2) 

where �̃�𝑡  represents the deviation from the trend component. The term 𝑢 is a 

constant and 𝛽𝑖 denote the auto-regressive parameters which can be determined by 

using the ordinary least squares estimation [83] or Yule-Walker equations [82]. 
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3.2.2.1. Ordinary least squares estimation [83] 

For 𝑡 = 1, … , 𝑛 in equation (3-2), a set of equations can be obtained: 

�̃�𝑛 = 𝑢 + 𝛽1�̃�𝑛−1 + 𝛽2�̃�𝑛−2 +⋯+ 𝛽𝑝�̃�𝑛−𝑝  + 𝑒𝑛 

          �̃�𝑛−1 = 𝑢 + 𝛽1�̃�𝑛−2 + 𝛽2�̃�𝑛−3 +⋯+ 𝛽𝑝�̃�𝑛−𝑝−1 + 𝑒𝑛−1 

            ⋮    ⋮     ⋮       ⋮      ⋱     ⋮        ⋮ 
            �̃�1 = 𝑢 + 𝛽1�̃�0     + 𝛽2�̃�−1   + ⋯+ 𝛽𝑝�̃�1−𝑝    + 𝑒1 

(3-3) 

which can be written in the matrix form as: 

𝒚 = 𝒛𝒃 + 𝒆 (3-4) 

where, 

𝒚 = [

 �̃�𝑛
 �̃�𝑛−1
⋮
 �̃�1

] 𝒃 = [

𝑢
𝛽1
⋮
𝛽𝑝

] 𝒛 =

[
 
 
 
  1 �̃�𝑛−1
  1 �̃�𝑛−2

 �̃�𝑛−2 ⋯ �̃�𝑛−𝑝
 �̃�𝑛−3 ⋯ �̃�𝑛−𝑝−1

⋮  ⋮
1  �̃�0

⋮ ⋱ ⋮
�̃�−1 ⋯  �̃�1−𝑝 ]

 
 
 

 𝒆 = [

𝑒𝑛
𝑒𝑛−1
⋮
𝑒1

] 

The auto-regressive parameters 𝛽𝑖 and the constant 𝑢 are determined to minimise 

the sum of squares of residuals (𝒚 − 𝒛𝒃) which is a function of variables  𝑢,

𝛽1, … , 𝛽𝑝: 

𝒃 = (𝒛′𝒛)−1𝒛′𝒚 (3-5) 

3.2.2.2. Autocorrelation function [82] 

Multiplying throughout in equation (3-2) by �̃�𝑡−𝑘 for 𝑘 > 0, it can be obtained that: 

�̃�𝑡−𝑘�̃�𝑡 = �̃�𝑡−𝑘𝑢 +∑𝛽𝑖�̃�𝑡−𝑘�̃�𝑡−𝑖

𝑝

𝑖=1

+ �̃�𝑡−𝑘𝑒𝑡 (3-6) 

Taking the expected value 𝐸{∙} of each term in equation (3-6), 𝐸{�̃�𝑡−𝑘𝑒𝑡} equals 

zero since �̃�𝑡−𝑘 are uncorrelated with 𝑒𝑡. 𝐸{�̃�𝑡−𝑘𝑢} is also equal to zero due to the 

de-trended data having an average equal to zero. Then it can be obtained that: 

𝜁𝑘 =∑𝛽𝑖𝜁𝑘−𝑖

𝑝

𝑖=1

, 𝑘 > 0 (3-7) 

where 𝜁𝑘  represents 𝐸{�̃�𝑡−𝑘�̃�𝑡}, i.e. the auto-covariance at the time lag 𝑘. The 

autocorrelation function can then be obtained through dividing the terms in equation 

(3-7) by 𝐸{�̃�𝑡
2} which is the variance of the time series denoted by 𝜁𝑜: 
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𝜌𝑘 =∑𝛽𝑖𝜌𝑘−𝑖

𝑝

𝑖=1

, 𝑘 > 0 (3-8) 

where terms 𝜌𝑘 and 𝜌𝑘−𝑖, equalling 𝜁𝑘 𝜁𝑜⁄  and 𝜁𝑘−𝑖 𝜁𝑜⁄ , are the autocorrelations 

of the time series at time lags 𝑘 and (𝑘 − 𝑖) respectively. 

3.2.2.3. Yule-Walker equations [82] 

If a time series has a weak or second-order stationarity, its auto-covariance only 

depends on the time lag and thus 𝜌𝑘 = 𝜌−𝑘 . A set of linear equations for 

auto-regressive parameters 𝛽𝑖 in terms of autocorrelations 𝜌𝑘 can be obtained by 

substituting 𝑘 = 1, … , 𝑝 in equation (3-8): 

𝜌1 = 𝛽1     + 𝛽2𝜌1   +  ⋯  + 𝛽𝑝𝜌𝑝−1 

𝜌2 = 𝛽1𝜌1   + 𝛽2     +  ⋯  + 𝛽𝑝𝜌𝑝−2 

                  ⋮    ⋮         ⋮          ⋱     ⋮ 
𝜌𝑝 = 𝛽1𝜌𝑝−1 + 𝛽2𝜌𝑝−2 +  ⋯  + 𝛽𝑝 

(3-9) 

The linear equations in equation (3-9) are known as the Yule-Walker equations, the 

matrix form of which can be written as: 

𝑷𝑝𝜷𝑝 = 𝝆𝑝 (3-10) 

where, 

𝝆𝑝 = [

𝜌1
𝜌2
⋮
𝜌𝑝

] 𝜷𝑝 = [

𝛽1
𝛽2
⋮
𝛽𝑝

] 𝑷𝑝 = [

1  𝜌1
𝜌1  1

   
⋯ 𝜌𝑝−1
⋯ 𝜌𝑝−2

⋮ ⋮
𝜌𝑝−1 𝜌𝑝−2

⋱ ⋮
⋯ 1

] 

Thus, the auto-regressive parameters 𝛽𝑖  can be estimated based on the sample 

autocorrelations determined from the historic time series: 

𝜷𝑝 = 𝑷𝑝
−1𝝆𝑝 (3-11) 

3.2.2.4. Partial autocorrelation function [82] 

The order of an AR model can be determined from the partial autocorrelation 

functions of a time series. According to equation (3-8), the 𝑖𝑡ℎ coefficients in an AR 

representation of order 𝑘 denoted by 𝛽𝑘𝑖 satisfy the set of equations: 
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𝜌𝑗 =∑𝛽𝑘𝑖𝜌𝑗−𝑖

𝑘

𝑖=1

, 𝑗 = 1,… , 𝑘 (3-12) 

which can be expressed in the form of matrix as: 

[

1  𝜌1
𝜌1  1

   
⋯ 𝜌𝑘−1
⋯ 𝜌𝑘−2

⋮ ⋮
𝜌𝑘−1 𝜌𝑘−2

⋱ ⋮
⋯ 1

] [

𝛽𝑘1
𝛽𝑘2
⋮
𝛽𝑘𝑘

] = [

𝜌1
𝜌2
⋮
𝜌𝑘

] (3-13) 

or, 

𝑷𝑘𝜷𝑘𝑘 = 𝝆𝑘 (3-14) 

Where the term 𝛽𝑘𝑘 in equation (3-13) is known as the partial autocorrelation 

function at time lag 𝑘. For an AR process of order 𝑝, 𝛽𝑘𝑘 is nonzero if 𝑘 is less 

than or equal to order 𝑝 and zero otherwise. 

3.2.3. Vector auto-regressive model 

As was noted in Section 3.2.2, an AR forecasting model considers historic time series 

of weather variables at the target location only. Given historic time series at other 

surrounding locations, a vector auto-regressive (VAR) model additionally considers 

spatio-temporal correlations between the target location and other locations. Provided 

that weather variables have strong correlations between different locations, the use of 

a VAR model may improve the forecast accuracy over an AR model. 

3.2.3.1. Vector auto-regressive model 

As an extension of a univariate AR model, a VAR model of order 𝑝 offers a way of 

producing the forecast as a weighted sum of historic time series not only at the target 

location but also from (𝐾 − 1) surrounding sampled locations [84, 85]: 

�̃�𝑡 = 𝒖 +∑𝑨𝑖�̃�𝑡−𝑖

𝑝

𝑖=1

+ 𝑬𝑡 (3-15) 
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where �̃�𝑡 is a (𝐾 × 1) vector consisting of �̃�𝑗𝑡  (𝑗 = 1, … , 𝐾) at 𝐾 locations. 𝒖 is 

a (𝐾 × 1) vector comprising constants. 𝑨𝑖 represents a (𝐾 × 𝐾) matrix of model 

parameters at time lag 𝑖 and 𝑬𝑡 is a (𝐾 × 1) vector of noise terms [85]. 

�̃�𝒕 = [

�̃�1𝑡
�̃�2𝑡
⋮
�̃�𝐾𝑡

] 𝒖 = [

𝑢1
𝑢2
⋮
𝑢𝐾

] 𝑨𝑖 =

[
 
 
 
𝐴11
𝑖 𝐴12

𝑖

𝐴21
𝑖 𝐴22

𝑖
     
⋯ 𝐴1𝐾

𝑖

⋯ 𝐴2𝐾
𝑖

⋮ ⋮
𝐴𝐾1
𝑖 𝐴𝐾2

𝑖      
⋱ ⋮
⋯ 𝐴𝐾𝐾

𝑖 ]
 
 
 

 𝒆𝑡 = [

𝑒1𝑡
𝑒2𝑡
⋮
𝑒𝐾𝑡

] 

3.2.3.2. Multivariate least squares estimation [85] 

Given that each of 𝐾 locations has a time series of size 𝑇 over the same period 

�̃�𝑗𝑇 , … , �̃�𝑗1 (𝑗 = 1,… , 𝐾) and 𝑝 historic values �̃�𝑗0, … , �̃�𝑗(−𝑝+1) (𝑗 = 1,… , 𝐾), some 

terms are defined as: 

𝒀 = (�̃�𝑇 , … , �̃�1) 𝑩 = (𝒖, 𝑨1, … , 𝑨𝑝) 𝒁 = [

1 ⋯  1
�̃�𝑇−1 ⋯   �̃�0

 
⋮ ⋱ ⋮

   �̃�𝑇−𝑝 ⋯ �̃�−𝑝+1

] 𝑬 = (𝒆𝑇 , … , 𝒆1) 

Thus, a VAR process of order 𝑝 can be expressed in the matrix form: 

𝒀 = 𝑩𝒁 + 𝑬 (3-16) 

The VAR model parameters 𝑨𝑖 and constants 𝒖 are then determined to minimise 

the sum of squares of residuals (𝒀 − 𝑩𝒁) for each location separately: 

𝑩 = 𝑿𝒁′(𝒁𝒁′)−1 (3-17) 

3.2.4. AR and VAR models for circular data 

Equation (3-2) for a univariate AR model and equation (3-15) for a VAR model can 

be applied to forecasting of air temperature, wind speed and solar radiation which are 

linear data. Some changes in both equations are made for wind direction forecasting 

due to the circular properties of wind direction. Care is need when dealing with wind 

direction since two opposite conventions are commonly used for the reference angle, 

i.e. the wind vector azimuth 𝜃𝑣𝑒𝑐𝑡 and the meteorological wind direction 𝜃𝑚𝑒𝑡 [86]. 
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Fig. 3-4 provides a clear explanation of differences between two conventions and 

introduces an additional reference angle, i.e. the wind vector polar angle 𝜃𝑝𝑜𝑙𝑎𝑟. 

 
Fig. 3-4. Two conventional reference angles for wind direction record and an additional reference [86] 

The wind vector azimuth 𝜃𝑣𝑒𝑐𝑡 represents the direction towards which the wind is 

blowing while the meteorological wind direction 𝜃𝑚𝑒𝑡 represents the direction from 

which the wind is blowing. Both of them regard north as 0𝑜, east as 90𝑜, south as 

180𝑜, and west as 270𝑜 in clockwise order. In contrast, the wind vector polar angle 

𝜃𝑝𝑜𝑙𝑎𝑟  regards east as 0𝑜 , north as 90𝑜 , west as 180𝑜 , and south as 270𝑜  in 

anticlockwise order [86]. 

Wind direction measurements provided in this research are meteorological wind 

directions which have been converted to the form of the wind vector polar angle. The 

wind directions mentioned below are all referred to wind vector polar angles. 

For wind direction (or circular data) forecasting, wind directions 𝑤𝑑 ∈ [−𝜋, 𝜋) at 

each location are first decomposed along the easterly and northerly axes in the 

Cartesian coordinates as cos𝑤𝑑 and sin𝑤𝑑 respectively before the application of 

the AR or VAR model. Thus, the terms in equations (3-2) are redefined as: 

�̃�𝒕
′ = [

�̃�𝑐𝑡
�̃�𝑠𝑡
] 𝑢′ = [

𝑢𝑐
𝑢𝑠
] 𝛽𝑖

′ = [
𝛽𝑐𝑐
𝑖

𝛽𝑠𝑐
𝑖
  
𝛽𝑐𝑠
𝑖

𝛽𝑠𝑠
𝑖
] 𝑒𝑡

′ = [
𝑒𝑐𝑡
𝑒𝑠𝑡
] 

Each location has two time series, �̃�𝑐𝑡 and �̃�𝑠𝑡, consisting of the easterly components 

cos𝑤𝑑 and the northerly components sin𝑤𝑑 which range between −1 and +1 
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respectively. In this way, an AR model for wind direction forecasting can be regarded 

as a VAR model with two variables [87, 88]. When using a VAR model to predict 

wind direction, the terms in equation (3-15) are redefined as: 

�̃�𝒕
′ =

[
 
 
 
 
�̃�1𝑐𝑡
�̃�1𝑠𝑡
⋮

�̃�𝐾𝑐𝑡
�̃�𝐾𝑠𝑡]

 
 
 
 

 𝒖′ =

[
 
 
 
 
𝑢1𝑐
𝑢1𝑠
⋮
𝑢𝐾𝑐
𝑢𝐾𝑠]

 
 
 
 

 𝑨𝑖
′ =

[
 
 
 
 
 
𝐴1𝑐1𝑐
𝑖 𝐴1𝑐1𝑠

𝑖

𝐴1𝑠1𝑐
𝑖 𝐴1𝑠1𝑠

𝑖

… 𝐴1𝑐𝐾𝑐
𝑖

… 𝐴1𝑠𝐾𝑐
𝑖

𝐴1𝑐𝐾𝑠
𝑖

𝐴1𝑠𝐾𝑠
𝑖

⋮ ⋮
𝐴𝐾𝑐1𝑐
𝑖 𝐴𝐾𝑐1𝑠

𝑖
⋱ ⋮
… 𝐴𝐾𝑐𝐾𝑐

𝑖
⋮

𝐴𝐾𝑐𝐾𝑠
𝑖

𝐴𝐾𝑠1𝑐
𝑖 𝐴𝐾𝑠1𝑠

𝑖 … 𝐴𝐾𝑠𝐾𝑐
𝑖 𝐴𝐾𝑠𝐾𝑠

𝑖 ]
 
 
 
 
 

 𝑬𝒕
′ =

[
 
 
 
 
𝑒1𝑐𝑡
𝑒1𝑠𝑡
⋮

𝑒𝐾𝑐𝑡
𝑒𝐾𝑠𝑡]

 
 
 
 

 

where four redefined terms have the size of (2𝐾 × 1), (2𝐾 × 1), (2𝐾 × 2𝐾) and 

(2𝐾 × 1) respectively. Then the wind direction forecast is determined based on 

predictions of the easterly and northerly components. 

3.2.5. Probabilistic forecasting 

Many users of forecasts, including power system operators, would like to know not 

only what the ‘best’ forecast is but also how wrong it might be, i.e. to have a 

probabilistic forecast that gives the probability of the true value of the forecasted 

quantity lying within a certain range [88]. When producing a probabilistic forecast, 

the aim is to maximize the sharpness of predictive probability distributions subject to 

a calibration to minimize the uncertainty [89]. The calibration represents the 

statistical consistency between the predictive distributions and the observations [90]. 

The sharpness refers to the spread or concentration of the predictive distribution [90] 

which can be represented by the average width of central prediction intervals. 

Sharper or more concentrated predictive distributions are preferred under the 

constraint of calibration. The histogram of probability integral transform (PIT) is an 

effective tool to assess the calibration of probabilistic forecasts. In this case, the PIT 

is the value of the predictive cumulative distribution function (CDF) evaluated at the 

observation [91]. An approximately uniform PIT histogram reveals probabilistic 

forecasts to be nearly fully calibrated. 
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3.2.5.1. Predictive probability distributions 

When establishing a probabilistic forecasting model, it is necessary to predefine an 

appropriate type of probability distribution for the forecast variable with the 

unknown predictive centre and spread or concentrate parameter which will be 

determined from historic time series. The probability distribution of the forecast error 

or the predictand (i.e. the sum of the forecast error and its actual value) at a particular 

future time is usually assumed to be Gaussian [89]. The prediction distribution of air 

temperature is therefore taken to be normal denoted by Ɲ(𝜇𝑎, 𝜎𝑎) as shown in Fig. 

3-5. A truncated normal distribution with a cut-off at zero denoted by Ɲ+(𝜇𝑣, 𝜎𝑣) is 

employed as the predictive distribution of wind speed due to its non-negativity [89], 

as shown in Fig. 3-5. Since probabilistic forecasting aims to quantify the possible 

size of the forecast error, the Weibull distribution that is usually used to model the 

distribution of wind speed time series over a year [92] may be not an appropriate 

representation for the distribution of the wind speed forecast error at a particular 

future moment. In order to address the circular properties of wind direction, the 

predictive distribution of wind direction is assumed to be von Mises denoted by 

𝑉𝑀(𝜇𝜃, 𝜅) as shown in Fig. 3-6, which is regarded as the circular analogue of the 

Gaussian distribution [93]. Their probability density functions (PDFs) for 𝐿 steps 

ahead are defined as [94, 95, 93]: 

𝑓𝜇𝑎,𝑡+𝐿,𝜎𝑎,𝑡+𝐿
Ɲ (𝑥𝑎) =

1

𝜎𝑎,𝑡+𝐿
∅(
𝑥𝑎 − 𝜇𝑎,𝑡+𝐿
𝜎𝑎,𝑡+𝐿

),   𝑥𝑎 ∈ (−∞,∞) (3-18) 

𝑓𝜇𝑣,𝑡+𝐿,𝜎𝑣,𝑡+𝐿
Ɲ+ (𝑥𝑣) =

1
𝜎𝑣,𝑡+𝐿

∅ (
𝑥𝑣 − 𝜇𝑣,𝑡+𝐿
𝜎𝑣,𝑡+𝐿

)

1 − 𝛷 (−
𝜇𝑣,𝑡+𝐿
𝜎𝑣,𝑡+𝐿

)
,    𝑥𝑣 ∈ [0,∞)  (3-19) 

    𝑓𝜇𝜃,𝑡+𝐿,𝜅𝑡+𝐿
𝑉𝑀 (𝑥𝜃) =

𝑒𝜅𝑡+𝐿 cos(𝑥𝜃−𝜇𝜃,𝑡+𝐿)

2𝜋𝐼0(𝜅𝑡+𝐿)
,           𝑥𝜃 ∈ [−𝜋, 𝜋) (3-20) 

where terms 𝜇𝑎,𝑡+𝐿  and 𝜇𝑣,𝑡+𝐿  are the predictive centres and terms 𝜎𝑎,𝑡+𝐿  and 

𝜎𝑣,𝑡+𝐿 are the predictive spreads of probability distributions for the 𝐿-step-ahead air 
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temperature and wind speed forecasts respectively. The 𝐿-step-ahead predictive 

centre and concentration parameter of a von Mises distribution for wind direction are 

denoted by 𝜇𝜃,𝑡+𝐿 ∈ [−𝜋, 𝜋) and 𝜅𝑡+𝐿 ∈ [0,∞). ∅(∙) and 𝛷(∙) represent the PDF 

and CDF of a standard normal distribution respectively. 𝐼0(∙) refers to the modified 

Bessel function of the first kind of order zero. 

 
Fig. 3-5. Probability density functions of a normal (or Gaussian) distribution and a truncated normal 

distribution with a cut-off at zero, both having a mean of one and a standard deviation of one 

 
Fig. 3-6. Probability density functions of von Mises distributions with the same mean of 𝜋 4⁄  and 

different concentration parameters equal to 1, 2 and 5 
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The centres of predictive distributions can be modelled as a sum of residuals 

predicted by the AR or VAR forecasting models and the corresponding diurnal trends 

fitted by Fourier series. Conditional heteroscedasticity considers the spread or 

concentration parameter of predictive distribution to be time variable. The predictive 

spread 𝜎𝑡+𝐿 or concentration parameter 𝜅𝑡+𝐿 for 𝐿 steps ahead is modelled as a 

linear function of the root mean square of recent changes in residuals 𝑅𝑒𝑠 at the 

target location for air temperature and wind speed, assessed over 1 hour, as in 

equation (3-21). For wind direction, due to its circular nature, the concentration of 

recent observations at the target location is used, in this research over a period of 2 

hours, as in equation (3-22). The concentration of recent wind direction observations, 

𝜅𝑜, is calculated based on the code provided by Berens [96]. In this research, steps of 

10 minutes are used to reflect the input data. 

𝜎𝑡+𝐿 = 𝑐0 + 𝑐1 [
1

5
∑(𝑅𝑒𝑠𝑡−𝑗 − 𝑅𝑒𝑠𝑡−𝑗−1)

2
4

𝑗=0

]

1
2

 (3-21) 

𝜅𝑡+𝐿 = 𝑐𝑐0 + 𝑐𝑐1𝜅𝑜 (3-22) 

where 𝑐0, 𝑐1, 𝑐𝑐0 and 𝑐𝑐1 are non-negative coefficients. The experimental results 

obtained suggest that the selected lengths of one and two hours used to model the 

conditional heteroscedasticity result in an effective probabilistic forecasting model. 

The homoscedastic model, which assumes a constant spread or concentration 

parameter, is also constructed as a comparison to analyse the advantages of the 

conditionally heteroscedastic model. 

3.2.5.2. Continuous ranked probability score 

A technique of minimum continuous ranked probability score (CRPS) estimation 

proposed by Gneiting [97] is used to estimate the predictive probability distributions 

of weather variables. The CRPS is one of the scoring rules and can be used as a 

summary indicator to assess performance of probabilistic forecasting models with 

respect to the calibration and sharpness [95]. 
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For a point forecasting assessment, the scoring rule refers to mean absolute error or 

root mean square error that describes the differences between point forecasts and 

actual values on average. For a probabilistic forecasting assessment, a numerical 

score is assigned to each probabilistic forecast according to the predictive 

distribution and the observation. The Brier score (BS) is a traditional scoring rule to 

verify the prediction of the occurrence of a specific event by considering two options 

that the event occurs or does not occur [98]. The ranked probability score (RPS) 

generalises the BS by dividing the range of the parameter of interest into more 

classes. Then the CRPS is generated when the number of classes is infinite. 

Compared with the RPS, the CRPS takes account of the whole permissible range of 

parameter of interest and does not require the predefined classes [98]. 

In the case of predictive distribution, events are characterised in terms of percentiles. 

The CRPS gives a numerical score to the event based on the difference between the 

predictive PDF 𝑓 and the observation 𝑥𝑜 [98]: 

𝑐𝑟𝑝𝑠(𝑓, 𝑥𝑜) = ∫ [∫ 𝑓(𝑦)𝑑𝑦
𝑥

−∞

− 𝐹𝑜(𝑥, 𝑥𝑜)]

2

𝑑𝑥
∞

−∞

 (3-23) 

where ∫ 𝑓(𝑦) 𝑑𝑦
𝑥

−∞
 represents the predictive probability for 𝑥 ≥ 𝑥𝑜. 𝐹𝑜(𝑥, 𝑥𝑜) is 

the Heaviside function and equal to 1 if the event that the percentile 𝑥 ≥ 𝑥𝑜 happens 

and 0 otherwise. The 𝑐𝑟𝑝𝑠 value at a future moment may be regarded as the sum of 

the squares of the difference between ∫ 𝑓(𝑦)𝑑𝑦
𝑥

−∞
 and 𝐹𝑜(𝑥, 𝑥𝑜) at each percentile 

with zero width [87]. The average value of 𝑐𝑟𝑝𝑠, used to assess probability forecasts, 

should be minimised for probabilistic forecasting. For linear variables, wind speed 

and air temperature, equation (3-23) can be written equivalently as [99]: 

𝑐𝑟𝑝𝑠𝑙(𝐹𝑙, 𝑥𝑜) = 𝐸{|𝑋 − 𝑥𝑜|} −
1

2
𝐸{|𝑋 − 𝑋′|} (3-24) 

where 𝑋 and 𝑋′ represent independent random samples from the linear predictive 

CDF 𝐹𝑙  and 𝐸{∙} denotes the expectation operator. The expressions derived by 
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Gneiting can be directly used to calculate the 𝑐𝑟𝑝𝑠𝑙  value for the normal 

distribution Ɲ(𝜇, 𝜎) [97] and the truncated normal distribution with a cut-off at zero 

Ɲ+(𝜇, 𝜎) [95]: 

𝑐𝑟𝑝𝑠(Ɲ(𝜇, 𝜎2), 𝑥𝑜) = σ {
𝑥𝑜 − 𝜇

𝜎
[2𝛷 (

𝑥𝑜 − 𝜇

𝜎
) − 1] + 2∅ (

𝑥𝑜 − 𝜇

𝜎
) −

1

√𝜋
} (3-25) 

 𝑐𝑟𝑝𝑠(Ɲ+(𝜇, 𝜎2), 𝑥𝑜)  

= 𝜎𝛷 (
𝜇

𝜎
)
−2

× {
𝑥𝑜 − 𝜇

𝜎
𝛷 (

𝜇

𝜎
) [2𝛷 (

𝑥𝑜 − 𝜇

𝜎
) + 𝛷 (

𝜇

𝜎
) − 2]

+ 2∅ (
𝑥𝑜 − 𝜇

𝜎
)𝛷 (

𝜇

𝜎
) −

1

√𝜋
𝛷 (√2

𝜇

𝜎
)} 

(3-26) 

The circular 𝑐𝑟𝑝𝑠𝑐 for wind direction forecasting is estimated by using the angular 

distance α(∙) instead of the Euclidean distance in equation (3-24) [93]: 

𝑐𝑟𝑝𝑠𝑐(𝐹𝑐, 𝜃𝑜) = 𝐸{𝛼(𝛩, 𝜃𝑜)} −
1

2
𝐸{𝛼(𝛩, 𝛩∗)} (3-27) 

where 𝛩  and 𝛩∗  represent the independent randomly sampled wind directions 

from the circular predictive CDF 𝐹𝑐. The term 𝜃𝑜 represents the observed wind 

direction. The angular distance α(∙) is defined as: 

α(𝜃1, 𝜃2) = {
  |𝜃1 − 𝜃2|              𝑓𝑜𝑟   0 ≤ |𝜃1 − 𝜃2| < 𝜋

2𝜋 − |𝜃1 − 𝜃2|        𝑓𝑜𝑟   𝜋 ≤ |𝜃1 − 𝜃2| < 2𝜋
 (3-28) 

where 𝜃1 and 𝜃2 are two random directions within the interval [−𝜋, 𝜋). The first 

term on the right-hand side of equation (3-27) can be expressed as [93]: 

𝐸{𝛼(𝛩, 𝜃𝑜)} =
1

2𝜋𝐼0(𝜅)
∫ 𝛼(𝑥𝜃, 𝜃𝑜)𝑒

𝜅 cos(𝑥𝜃−𝜇𝜃)
𝜋

−𝜋

𝑑𝑥𝜃 (3-29) 

where 𝜇𝜃  is the predictive centre of von Mises distribution. It is found that 

𝐸{𝛼(𝛩, 𝜃𝑜)} is only dependent on the concentration parameter 𝜅 and the angular 

distance between 𝜃𝑜 and 𝜇𝜃. Therefore, a look-up table for 𝐸{𝛼(𝛩, 𝜃𝑜)} in terms 

of both 𝜅 with accuracy of 0.1 and 𝛼(𝜃𝑜 , 𝜇𝜃) with accuracy of 0.0017 (0.1𝑜) is 

built up in order to reduce computation time due to iterative calculation for the 

determination of model parameters. How the value of 𝐸{𝛼(𝛩, 𝜃𝑜)} varies with 𝜅 

for typical values of 𝛼(𝜃𝑜 , 𝜇𝜃) is shown in Fig. 3-7 [87]. 
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Fig. 3-7. 𝐸{𝛼(𝛩, 𝜃𝑜)} varying with 𝜅 under typical 𝛼(𝜃𝑜, 𝜇𝜃) values [87] 

The second term on the right-hand side of equation (3-27) is only dependent on 𝜅. It 

equals 𝜋 4⁄  for 𝜅 = 0 and is approximated to 1 (2𝜋𝜅)1 2⁄⁄  when 𝜅 approaches 

infinity (≥ 200) [93]. The second term for  0 < 𝜅 < 200 is calculated by standard 

Monte Carlo integration [100]. A look-up table is also built for the second term 

1

2
𝐸{𝛼(𝛩, 𝛩∗)} in terms of 𝜅 with accuracy of 0.1 and is smoothed by the lowess 

technique [101] according to the procedure in [93]. How the value of 
1

2
𝐸{𝛼(𝛩, 𝛩∗)} 

varies with the concentration parameter 0 ≤ 𝜅 ≤ 200 is plotted in Fig. 3-8 [87]. 

 

Fig. 3-8. 
1

2
𝐸{𝛼(𝛩, 𝛩∗)} varying with 𝜅 [87] 

The parameters in the AR and VAR forecasting models and the coefficients 

representing the predictive spread or concentration parameter are determined with 

the objective of minimising the average value of 𝑐𝑟𝑝𝑠𝑙 or 𝑐𝑟𝑝𝑠𝑐. Initial values of 
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the AR and VAR parameters are determined from the de-trended data at each location 

using least squares estimation [83, 85]. Initial values of the non-negative coefficients 

modelling the spread or concentration parameter are set to be 0.1 and 1.0 respectively. 

The dependencies of the probability distribution of wind direction, 𝐸{𝛼(𝛩, 𝜃𝑜)} and 

1

2
𝐸{𝛼(𝛩, 𝛩∗)} on concentration parameter 𝜅 have been explored as shown in Figs. 

3-7 and 3-8 and there is little change for 𝜅 over 200. Therefore, 𝜅 is limited to a 

maximum value of 200 [88]. 

3.3. Results and Model Validation of Point Forecasting 

This section will develop different time series forecasting models to estimate point 

forecasts for each weather variable using an auto-regressive process that is combined 

with the Fourier series based de-trending method. Through a comparison between 

their performances in terms of the root mean square errors of predictions for a 

number of time steps ahead, the point forecasting models that provide a reasonable 

forecast accuracy are selected to model predictive centres of predictive distributions. 

3.3.1. Air temperature forecasting 

A persistence forecasting method that supposes the predictions in the future being 

equal to the present values [102] may work well for the very-short-term prediction of 

air temperature due to the slow fluctuation of air temperature [103]. In addition to the 

linear regression-based forecasting methods, an average changes method and a 

precedent-based forecasting method were developed in [103] to predict air 

temperature according to the similarities of air temperature variations over the same 

periods in different days [103]: an average changes method estimated air temperature 

at one future moment as an average of historic values that were recorded at the same 

time point within recent days; the precedent-based forecasting method first 

determined the historic time series segments of air temperature that had high 
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similarities with the current segment, and their subsequent observations were then 

averaged as the air temperature forecast following the current segment [103]. 

The de-trended data was used in [104] to train an artificial neural network (ANN) 

model for short-term air temperature forecasting. A better performance was achieved 

by using two ANN models which were trained based on the de-trended data of air 

temperatures in warm months (April to September) and those in cold months 

(October to March) separately. However, Yang [80] mentioned some disadvantages 

of an ANN model, such as computation time and the risk of under-fitting or 

over-fitting which might increase the out-of-sample forecasting errors. 

Yang [80] modelled air temperature’s annual movement by month and the diurnal 

movement by hour based on Fourier series. The Fourier coefficients were estimated 

from historic time series of air temperature using least squares estimation and were 

then used to predict the future movements of air temperature. This is the so-called 

‘Fourier series forecasting model’. The forecast accuracy achieved in Yang’s work 

may be improved if the deviations from temporal movements or trends (i.e. the 

de-trended data) are additionally forecast by an AR or VAR model. In this section, 

the point forecast of air temperature will be estimated as a sum of the de-trended data 

predicted by the AR or VAR forecasting models and the corresponding diurnal trend 

fitted by Fourier series. 

3.3.1.1. AR and VAR model validation procedure 

Air temperature forecasts are determined based on historic observations within a 

sliding training window, from which the diurnal trends are first extracted by the 2nd 

order Fourier series for each weather station as shown in Fig. 3-9. The parameters in 

the AR and VAR forecasting models are then estimated from the de-trended data 

within the training window for each station using least squares estimation [83, 85]. 

The forecasts of residuals and the corresponding fitted diurnal trends are added up as 

point forecasts of air temperature. 
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Fig. 3-9. Diurnal trends modelled from air temperature observations from 00:00 on 01/02/2013 to 

23:50 on 17/03/2013 at stations 2, 4, 6 and 7 

As noted in Section 3.2.5.2, a point forecasting model’s performance can be assessed 

in terms of the root mean square error (RMSE) of predictions [105]. The length of 

sliding training window will be determined as that which gives the best improvement 

in RMSE over persistence forecasting. In addition to the inspection of partial 

autocorrelation functions [82] as introduced in Section 3.2.2.4, the orders of the AR 

and VAR models can be determined by the comparison of forecast errors for different 

model orders [81, 106]. 

In order to determine the window lengths, an order of 2 is initially used for both AR 

and VAR models based on Hill’s work [81] in which varying the order from 2 to 4 

produced less than 1% improvement in RMSE of 1-step-ahead forecasts of hourly 

wind speed. As an illustration, the improvements over persistence in RMSE of air 

temperature forecasts for up to 3 steps (half hour) ahead for AR(2) and VAR(2) 

models with varying training window length are tested for all stations and the results 

at weather station 2 are shown in Fig. 3-10 where the RMSE of persistence forecasts 

for each time step ahead is 0.2062℃, 0.3454℃ and 0.4644℃ respectively. 
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Fig. 3-10. Improvement over persistence in RMSE of air temperature forecasts for 𝐿 = 1, 2, 3 steps 

ahead for AR(2) and VAR(2) models with varying training window length at station 2 

The experimental results demonstrate that (a) the performance of AR(2) and VAR(2) 

models with a window length of smaller than 5 days are worse than the persistence 

forecasting; (b) given a sufficiently long training window, VAR(2) models perform 

better than AR(2) models; (c) the improvement over persistence for AR(2) and 

VAR(2) models are usually more significant with the forecast horizon going further; 

and (d) although there will be a range of effective training window lengths, 40 days 

are reasonable choices for both AR and VAR models here since the selected length 

have been found to work well for all weather stations. (It is noted that an increased 

training window length does not need extra computation time). The VAR forecasting 

models with a 20-day sliding training window are shown to have similar accuracies 

to those that use a training window of 40 days at weather station 2. This may be 

because the auto-regressive parameters derived from a longer training window would 

accurately represent the correlations between the de-trended data as the statistical 

variability is reduced in the estimation, whereas the seasonal variations in air 

temperature reflected by the fitted diurnal trends would be smoothed to some extent, 

and vice versa [95]. 
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In order to confirm the models’ orders the air temperature forecasts for up to 3 steps 

ahead at weather station 2 produced by the AR and VAR models of different orders 

𝑝 are compared with persistence forecasts, as shown in Fig. 3-11. It is found that less 

than 1% improvements are achieved for air temperature forecasts for up to 3 steps 

(half hour) ahead when orders are greater than 2. Furthermore, the VAR model is 

generally shown to give a lower RMSE than the AR model of a same order due to the 

additional capture of the spatial correlations among the field data [81]. Therefore, a 

VAR(2) model with a sliding training window of 40 days is adopted here to model 

the centres of predictive distributions for air temperature for up to 3 steps ahead. 

 
Fig. 3-11. Improvement over persistence in RMSE of air temperature forecasts for 𝐿 = 1, 2, 3 steps 

ahead for AR and VAR models of different orders at station 2 

It is noted that auto-regressive parameters and Fourier coefficients are updated once a 

day which has been proved to be sufficient to give accurate forecasts in this research. 

For example, updating the VAR(2) model from daily to hourly achieves less than 0.5% 

improvement for 1-step-ahead air temperature forecasts at station 2. 

3.3.2. Wind speed and wind direction forecasting 

For wind speed forecasting, the VAR forecasting model was shown to give greater 

improvement over persistence than a simple AR forecasting model in [81] which 

suggested that the spatial correlations among wind speeds at different locations 
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captured by the VAR model made the main contribution to the improvement. For 

wind direction forecasting, an inverse of link function was used in [107] to convert 

circular variables (wind directions) to linear variables; predictions of linear data 

estimated by an auto-regressive moving average (ARMA) method were then 

converted back to the circular data by a link function. In El-Fouly’s work [108], the 

forecasts of hourly wind speed and wind direction for up to 24 hours ahead were 

estimated as a weighted sum of historic values recorded at the same time points 

within recent years separately. Although the forecasting model presented in [108] 

performed better than persistence forecasting a large storage of historic data was 

required. 

Wind directions have been incorporated as additional variables in several approaches 

to wind speed forecasting. A regime-switching space-time (RST) approach which 

relied on the pre-analysis of local geographic features and wind direction 

observations was developed to model the centres of predictive distributions for wind 

speed [95]. However, it may be complicated to determine the number and boundaries 

of the regimes in the RST approach. Hering and Genton [109] proposed a 

trigonometric direction diurnal (TDD) model in which sine and cosine values of 

wind directions (i.e. the northerly and easterly components) were included as the 

covariates affecting wind speed forecasts in their later work. In Erdem’s work [110], 

historic wind directions were classified into three clusters based on the levels of their 

corresponding wind speeds (e.g. low, medium and high speeds) using k-means 

algorithm. The clusters that wind directions were forecast to be located at were 

represented by dummy variables, which were subsequently used as additional 

variables in a linear regression forecasting model to estimate wind speed predictions. 

The time series models that forecast wind speeds in connection with wind directions 

have also been developed. In Erdem’s another work [107] wind speeds were 

decomposed into the easterly and northerly components according to their 

accompanying wind directions and the predictions of components were combined to 
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obtain the forecasts of wind speed and direction. In addition, wind speed and wind 

direction could be regarded as the magnitude and phase of a complex value 

respectively which was used to establish the forecasting models [111]. 

The AR and VAR forecasting models will be developed for wind speed and direction 

separately in this section. It is noted that wind directions are processed in the 

Cartesian coordinates before the application of AR and VAR models according to the 

procedure as introduced in Section 3.2.4. The performance of the selected forecasting 

models will be additionally compared with the approach presented in [107] which 

decomposes wind speeds into the easterly and northerly components with respect to 

their associated wind directions and then determines the forecasts of wind speed and 

wind direction from the components predicted by an AR model. 

3.3.2.1. Validation procedure of AR and VAR models for wind speed 

The sliding window technique is also applied to wind speed forecasting in this study. 

The diurnal trends of wind speed are modelled by the 2nd order Fourier series (as 

shown in Fig. 3-12) and then removed from historic time series within the training 

window to obtain the de-trended data for all weather stations, based on which the 

auto-regressive parameters are calculated using the least squares estimation. 

 
Fig. 3-12. Diurnal trends modelled from wind speed observations from 00:00 on 01/02/2013 to 23:50 

on 17/03/2013 at stations 2, 4, 6 and 7 
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The improvements over persistence in RMSE of wind speed forecasts for up to 3 

steps (half hour) ahead for AR(2) and VAR(2) models that use different training 

window lengths are examined at all stations so as to select the reasonable window 

lengths and the results at station 2 are shown in Fig. 3-13 as an illustration where the 

RMSE of persistence forecasts for each time step ahead is 0.3771𝑚/𝑠, 0.4395𝑚/𝑠 

and 0.482𝑚/𝑠 respectively. 

 
Fig. 3-13. Improvement over persistence in RMSE of wind speed forecasts for 𝐿 = 1, 2, 3 steps 

ahead for AR(2) and VAR(2) models with varying training window length at station 2 

The experimental results indicate that (a) VAR(2) models perform better than AR(2) 

models when the training window is sufficiently long; (b) AR(2) and VAR(2) models 

give greater improvement over persistence with a longer forecast horizon; (c) the 

VAR(2) models with a training window of 20 and 45 days have similarly high 

forecast accuracies, meaning a trade-off in the determination of window length 

between the respective advantages of a shorter training window and a longer window 

as discussed in Section 3.3.1.1; and (d) 45 days are selected among a range of 

effective window lengths for AR and VAR models since the use of a 45-day training 

window is found to result in reasonable forecasting performance at all stations. 

The accuracies of wind speed forecasts for up to 3 steps ahead produced by AR and 

VAR models of different orders are compared with persistence forecasts (as shown in 

Fig. 3-14) to select an appropriate order for each model. Although a higher-order 
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forecasting model is usually shown to generate more accurate wind speed forecasts, 

less than 1% improvement can be achieved by the VAR models when the model 

order increases from 2 to 4. However, the AR(4) models could give approximately 1% 

more improvement over persistence than the AR(2) models. Furthermore, the AR(4) 

models have a similar or even better forecasting capability than the VAR(2) models 

for wind speed forecasting. Moreover, the probabilistic forecasting model established 

based on the AR(4) model has fewer auto-regressive parameters and requires less 

computation time in the process of minimising the average value of continuous 

ranked probability score (CRPS). For example, it costs around 3.7 and 22.5 seconds 

to determine parameters of the AR(4) and VAR(2) based probabilistic forecasting 

models respectively that minimise the average value of CRPS. (The computer being 

used for weather forecasting has a 64-bit operating system, 8GB of RAM, and an 

Intel Core i7-4500U, 2.4GHz processor). Therefore, the AR(4) model with a 45-day 

training window is used here to predict wind speeds for up to 3 steps ahead. 

 
Fig. 3-14. Improvement over persistence in RMSE of wind speed forecasts for 𝐿 = 1, 2, 3 steps 

ahead for AR and VAR models of different orders at station 2 

3.3.2.2. Validation procedure of AR and VAR models for wind direction 

The diurnal trends of the northerly and easterly components of wind directions were 

separately modelled from historic time series within a training window based on the 

2nd order Fourier series, as shown in Figs. 3-15 and 3-16. The residuals of the 
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northerly and easterly components are then used to determine the parameters of AR 

and VAR models. The wind direction forecast is derived from the predictions of two 

components estimated by the AR or VAR forecasting model that are combined with 

the fitted diurnal trends. As was noted in Section 3.2.4, an AR model developed here 

for wind direction (circular data) forecasting can be regarded as a VAR model that 

consists of two variables. 

 
Fig. 3-15. Diurnal trends modelled from the northerly components of wind direction observations 

from 00:00 on 01/02/2013 to 23:50 on 17/03/2013 at stations 2, 4, 6 and 7 

 
Fig. 3-16. Diurnal trends modelled from the easterly components of wind direction observations from 

00:00 on 01/02/2013 to 23:50 on 17/03/2013 at stations 2, 4, 6 and 7 
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Like the procedure of validating the forecasting models for air temperature and wind 

speed, the improvements over persistence in RMSE of wind direction forecasts for 

up to 3 steps (half hour) ahead for AR(2) and VAR(2) models with varying training 

window length are assessed in order to confirm the length of sliding training window. 

As an illustration, the results at station 2 are shown in Fig. 3-17 where the RMSEs of 

persistence forecasts for different time steps ahead are 0.8, 0.843, and 0.872 radians 

respectively. It is noted that the error of wind direction forecast is calculated as the 

angular distance between the prediction and the actual value via equation (3-28). 

 
Fig. 3-17. Improvement over persistence in RMSE of wind direction forecasts for 𝐿 = 1, 2, 3 steps 

ahead for AR(2) and VAR(2) models with varying training window length at station 2 

The experimental results indicate that (a) the AR(2) and VAR(2) models have similar 

performances when their parameters are determined from the de-trended data within 

a training window of 15 – 40 days; (b) the improvement over persistence increases 

with the forecast look ahead time; (c) a training window of 45 days is selected for 

AR and VAR models which can produce wind direction predictions with a reasonable 

accuracy at all stations. 

The accuracies of wind direction forecasts determined by AR and VAR models of 

different orders are compared with persistence forecasts and the results at station 2 

are shown in Fig. 3-18. For 1-step-ahead wind direction forecasting, the AR(4) 

models having fewer auto-regressive parameters are shown to perform similarly to or 
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even better than the VAR(2) models. As noted in section 3.3.2.1, having fewer 

auto-regressive parameters reduces computation time required to minimise the 

average value of continuous ranked probability score. Therefore, the AR(4) model 

with a 45-day training window is used to model predictive centres of wind direction 

for 1 step (10 minutes) ahead. For 2-step-ahead and 3-step-ahead forecasting, the 

AR(6) models having reasonable forecast accuracies and fewer auto-regressive 

parameters are preferred here rather than the VAR models. 

 
Fig. 3-18. Improvement over persistence in RMSE of wind direction forecasts for 𝐿 = 1, 2, 3 steps 

ahead for AR and VAR models of different orders at station 2 

3.3.2.3. Wind vector forecasting model 

A time series forecasting model which decomposes wind speeds into the northerly 

and easterly components based on their associated wind directions and determines 

the predictions of wind speed and direction from the forecasts of components is 

referred to here as a wind vector forecasting model. The diurnal trends of the 

northerly and easterly components are extracted from their respective historic time 

series within a training window by Fourier series and then removed to obtain the 

de-trended data from which auto-regressive parameters are determined. Like the AR 

model developed for wind direction forecasting in this work, an AR process utilised 

in the wind vector forecasting model can be regarded as a VAR process that consists 

of two variables, i.e. the northerly and easterly components. The forecast of each 
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component is calculated as a sum of the residual predicted by an AR or VAR model 

and the corresponding fitted diurnal trend. 

The forecasts of wind speed and wind direction for up to 3 steps (half hour) ahead 

estimated by the wind vector (WV) forecasting model using an AR(6) process with a 

training window of 45 days are compared with those that are produced by the 

forecasting models selected in Sections 3.3.2.1 and 3.3.2.2. As an illustration, their 

forecasting performances for wind speed and wind direction at weather stations 2, 4 

and 6 are shown in Fig. 3-19 where WV-AR(6) represents an AR(6) process based 

WV forecasting model. 

 
Fig. 3-19. Improvement over persistence in RMSE of wind speed and wind direction forecasts for up 

to 3 steps ahead for WV-AR(6) models, AR(4) and AR(6) models at stations 2, 4 and 6 

For wind speed forecasting, the AR(4) models that take account of wind speeds only 

are shown to give greater improvement over persistence than the WV-AR(6) models 

which decompose wind speeds with respect to their accompanying wind directions in 

the Cartesian coordinates. This may be because the auto-regressive parameters in the 

WV-AR(6) models are determined to minimise the sum of squares of errors for each 

component separately while the AR(4) models focus on the total wind speed directly. 
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Furthermore, the wind speed time series has high autocorrelation coefficients at time 

lags up to 30 minutes. After decomposing wind speeds into the easterly and northerly 

components, autocorrelation coefficients for the time series of each component and 

correlation coefficients between them are reduced. For example, the autocorrelation 

coefficient of the original 10-minute average wind speed time series within 45 days 

from 01/02/2013 to 17/03/2013 at weather station 2 was equal to 0.9 at the time lag 

of 10 minutes while the corresponding autocorrelation coefficients for the time series 

of two components were 0.64 and 0.8 respectively and the correlation coefficient 

between two components was only -0.26. 

For wind direction forecasting, the WV-AR(6) models are shown to perform 

similarly to the AR(4) and AR(6) models, with a slight improvement less than 1% 

in certain cases. The experimental results suggest that, in the work conducted here, 

the wind vector forecasting model that estimates wind speed and direction forecasts 

from the predictions of wind components does not have a significant enhancement 

over the use of two individual AR forecasting models to predict wind speed and wind 

direction separately. 

3.3.3. Solar radiation forecasting 

A number of methods for solar radiation forecasting have been detailed in [112, 113]. 

According to different forecast horizons, solar radiation forecasting approaches can 

be basically categorized as: 

• time series forecasting models for 5 minutes to 6 hours ahead; 

• satellite images (e.g. cloudiness and cloud motion vectors) based forecasting 

model for 30 minutes to 6 hours ahead; 

• numerical weather predictions for 6 hours onwards; 

• hybrid models for adjustable time scales. 

Although the short-term forecast accuracy of solar radiation may be largely 

influenced by cloud transients [114], a time series forecasting model is preferred here 
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considering the available data in this research. In Huang’s work [113], a persistence 

forecasting model and an auto-regressive moving average (ARMA) model were both 

applied to short-term solar radiation forecasting. It was found that the persistence 

forecasting model performed well for 1 step (1 hour) ahead only, whereas the ARMA 

model exceled for a longer forecast horizon, e.g. 5 steps (5 hours) ahead. 

In order to reduce the influence of diurnal trends of solar radiation on the 

determination of a forecasting model’s parameters, a local polynomial regression 

fitting method was used in [114] to model the diurnal cycles of solar radiation. 

Fourier series has also been employed in [115, 116] to extract temporal trends from 

historic solar radiation time series, which were then removed to generate the 

de-trended data with a reasonable order of stationarity. Liu [117] used Fourier series 

to capture the annual trend of solar radiation and the remaining diurnal trend was 

modelled by the second-order Chebyshev polynomials. In this section, the AR and 

VAR processes combined with a Fourier series based de-trending method and a 

sliding window technique will be developed for point forecasting of solar radiation. 

3.3.3.1. AR and VAR model validation procedure 

The 2nd order Fourier series is first used to model diurnal trends of solar radiation 

from historic time series within a 45-day training window, as shown in Fig. 3-20. The 

diurnal trends fitted by the 2nd order Fourier series are generally higher than the 

actual values around sunrise and sunset due to zero solar radiation before the sunrise 

and after the sunset. A feasible solution is to model the diurnal trends between 

sunrise and sunset only, exclusive of the other time periods at which zero solar 

radiations are observed. An alternative solution is to extract diurnal trends of solar 

radiation by using a higher-order Fourier series [118]. Fig. 3-21 shows that the 

diurnal trends fitted by the 3rd order Fourier series are much closer to the actual 

values than those that are modelled by the 2nd order Fourier series, especially around 

sunrise and sunset. 
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Fig. 3-20. Diurnal trends modelled from solar radiation observations from 00:00 on 01/02/2013 to 

23:50 on 17/03/2013 based on the 2nd order Fourier series at stations 2, 4, 6 and 7 

 

Fig. 3-21. Diurnal trends modelled from solar radiation observations from 00:00 on 01/02/2013 to 

23:50 on 17/03/2013 based on the 3rd order Fourier series at stations 2, 4, 6 and 7 

Due to solar radiations being zero during the night, the correlations between the 

de-trended data during the daytime are only considered for solar radiation forecasting. 

The parameters of AR and VAR models are determined to minimise the sum of 

squares of differences between the residuals and their expected values during the 
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daytime over a training window. The solar radiation forecast is then calculated as a 

sum of the fitted diurnal trend and the de-trended data predicted by an AR or VAR 

model. 

In order to determine the training window lengths, forecast accuracies of solar 

radiation for up to 3 steps (half hour) ahead during the daytime produced by AR(2) 

and VAR(2) models with varying window length are assessed with persistence 

forecasting being adopted as a benchmark, as shown in Fig. 3-22 where the RMSE of 

persistence forecasts for each time step ahead is 72.235𝑊 𝑚2⁄ , 88.193𝑊 𝑚2⁄  and 

93.808𝑊 𝑚2⁄  respectively. 

 

Fig. 3-22. Improvement over persistence in RMSE of solar radiation forecasts for 𝐿 = 1, 2, 3 steps 

ahead for AR(2) and VAR(2) models with varying training window length at station 2 

The experimental results suggest that 25 and 45 days should be selected for AR and 

VAR models respectively among a range of effective training window lengths since 

these selected lengths are found to work well for all stations. In order to determine 

the models’ orders, the solar radiation forecasts produced by AR and VAR models of 

different orders are compared with persistence forecasts, as shown in Fig. 3-23. 

Performing better than the AR models, the VAR(1) models are employed here to 

forecast solar radiations for up to 3 steps (half hour) ahead due to insignificant 

improvement using higher orders. 
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Fig. 3-23. Improvement over persistence in RMSE of solar radiation forecasts for 𝐿 = 1, 2, 3 steps 

ahead for AR and VAR models of different orders at station 2 

3.3.4. Summary of auto-regressive models applied to point forecasting 

Based on the experimental results and associated analysis described in previous 

sections, the AR and VAR forecasting models employed here for different weather 

variables and forecast horizons are summarised in Table 3-1. The Fourier coefficients 

and auto-regressive parameters in the forecasting models are daily updated. 

Table 3-1. Types of the forecasting models used for different weather parameters and forecast horizons 

 Air temperature Wind speed Wind direction Solar radiation 

1 step ahead VAR(2) – 40 days AR(4) – 45 days AR(4) – 45 days VAR(1) – 45 days 

2 steps ahead VAR(2) – 40 days AR(4) – 45 days AR(6) – 45 days VAR(1) – 45 days 

3 steps ahead VAR(2) – 40 days AR(4) – 45 days AR(6) – 45 days VAR(1) – 45 days 

The RMSEs of point forecasts for up to 3 steps (half hour) ahead for the selected 

models and persistence forecasting model are evaluated for each weather variable at 

all stations, as listed in Tables 3-2, 3-3, 3-4 and 3-5. Their improvements over 

persistence are shown in Fig. 3-24. The AR and VAR forecasting models are mostly 

shown to provide distinct improvement over persistence with the forecast horizon 

going further, especially for air temperature and solar radiation forecasting. The 
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insignificant improvement over persistence in some particular cases, e.g. wind 

direction forecasting at station 8, may be due to its RMSEs of persistence forecasts 

being sufficiently small, meaning that the use of an advanced forecasting model can 

lead to a slight improvement in forecast accuracy only in such cases. The selected 

point forecasting models will be used to model the centres of predictive distributions 

for each weather variable in next section. 

Table 3-2. RMSEs (℃) of air temperature forecasts for up to 3 steps ahead estimated by the selected 

VAR(2) forecasting models and the persistence forecasting models for all weather stations. 

Station 

Index 

Persistence Forecasting Selected Forecasting Model 

1-step-ahead 2-step-ahead 3-step-ahead 1-step-ahead 2-step-ahead 3-step-ahead 

WS1 0.2159 0.3373 0.4359 0.2057 0.3144 0.3977 

WS2 0.2118 0.3489 0.4616 0.1892 0.3035 0.3884 

WS3 0.2815 0.4386 0.5617 0.2659 0.4048 0.5036 

WS4 0.1865 0.3057 0.4068 0.1687 0.2690 0.3480 

WS5 0.1873 0.2866 0.3601 0.1797 0.2688 0.3299 

WS6 0.1887 0.3094 0.4138 0.1699 0.2686 0.3482 

WS7 0.2616 0.3971 0.5105 0.2487 0.3608 0.4478 

WS8 0.1669 0.2523 0.3157 0.1621 0.2391 0.2931 

WS9 0.1848 0.3012 0.3994 0.1679 0.2652 0.3394 
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Table 3-3. RMSEs (𝑚/𝑠) of wind speed forecasts for up to 3 steps ahead estimated by the selected 

AR(4) forecasting models and the persistence forecasting models for all weather stations. 

Station 

Index 

Persistence Forecasting Selected Forecasting Model 

1-step-ahead 2-step-ahead 3-step-ahead 1-step-ahead 2-step-ahead 3-step-ahead 

WS1 0.6095 0.7080 0.7829 0.5630 0.6514 0.7142 

WS2 0.4125 0.4806 0.5295 0.3808 0.4397 0.4802 

WS3 0.5786 0.6471 0.6859 0.5162 0.5707 0.6062 

WS4 0.4766 0.5575 0.6000 0.4394 0.5091 0.5509 

WS5 0.6380 0.7621 0.8318 0.5981 0.7054 0.7696 

WS6 0.5032 0.5865 0.6442 0.4636 0.5345 0.5805 

WS7 0.3578 0.4316 0.5001 0.3365 0.4094 0.4765 

WS8 0.6191 0.7418 0.8335 0.6062 0.7250 0.8106 

WS9 0.4852 0.5670 0.6139 0.4492 0.5188 0.5618 

 

Table 3-4. RMSEs (radians) of wind direction forecasts for up to 3 steps ahead estimated by the 

selected AR forecasting models and the persistence forecasting models for all weather stations. 

Station 

Index 

Persistence Forecasting Selected Forecasting Model 

1-step-ahead 2-step-ahead 3-step-ahead 1-step-ahead 2-step-ahead 3-step-ahead 

WS1 0.6613 0.7439 0.7753 0.6221 0.6846 0.7150 

WS2 0.7950 0.8411 0.8749 0.6794 0.7051 0.7211 

WS3 0.7776 0.8135 0.8398 0.6888 0.7129 0.7337 

WS4 0.6480 0.6869 0.7126 0.5803 0.6115 0.6378 

WS5 0.6097 0.6705 0.7046 0.5807 0.6170 0.6462 

WS6 0.4692 0.5649 0.6180 0.4583 0.5456 0.5869 

WS7 0.2978 0.3774 0.4485 0.2992 0.3849 0.4581 

WS8 0.3651 0.4257 0.4597 0.3630 0.4224 0.4571 

WS9 0.4374 0.5112 0.5517 0.4214 0.4902 0.5337 
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Table 3-5. RMSEs (𝑊 𝑚2⁄ ) of solar radiation forecasts for up to 3 steps ahead estimated by the 

selected VAR(1) forecasting models and the persistence forecasting models for all weather stations. 

Station 

Index 

Persistence Forecasting Selected Forecasting Model 

1-step-ahead 2-step-ahead 3-step-ahead 1-step-ahead 2-step-ahead 3-step-ahead 

WS1 66.6860 80.2963 88.4812 62.1556 71.6979 77.4574 

WS2 65.8288 79.8972 85.6799 59.2281 69.4389 73.1703 

WS3 68.5600 82.1641 86.1539 60.7509 68.5204 71.3597 

WS4 65.4434 79.3437 90.0054 58.7159 67.7287 73.2744 

WS5 71.7106 89.0890 95.6463 62.8960 73.3579 77.3509 

WS6 69.9859 85.2411 94.0595 62.4857 72.2760 76.8391 

WS7 28.9470 43.2171 56.7475 27.9074 39.6308 49.4930 

WS8 54.2907 67.6353 75.3186 48.8133 56.9653 61.6906 

WS9 73.1843 84.5242 91.6000 64.3684 71.2387 75.6061 

 

 

Fig. 3-24. Improvement over persistence in RMSE of weather forecasts for 𝐿 = 1, 2, 3 steps ahead 

for the selected AR and VAR forecasting models at all weather stations 
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3.3.5. Effects of forecast errors of individual weather variables on DLR 

In order to assess the effect of the performance of the AR or VAR forecasting model 

for each individual weather variable on the forecast accuracy of weather-based DLRs, 

3-step-ahead steady-state DLR forecasts at two particular spans, i.e. CQ34-CQ35 and 

AC102-AC101B in close proximity to weather stations 4 and 6, are calculated from 

forecasts of an individual weather variable and observations of other variables based 

on a thermal model of the conductors [3]. The two spans comprise ‘Lynx’ ACSR 

175𝑚𝑚2  and ‘Poplar’ AAAC 200𝑚𝑚2  conductors with maximum allowable 

conductor temperatures of 50℃ and 75℃ which are reduced to 45℃ and 70℃ 

respectively for reasons of conservatism [10]. This is because the weather-based 

model that directly estimates DLRs from weather data may suffer from the difference 

between the wind conditions recorded at a weather station and those actually 

experienced by the conductor. Furthermore, values of the conductor’s emissivity and 

absorptivity coefficients that determine rates of radiation heat loss and solar heat gain 

respectively are usually not very accurate. The technical parameters describing the 

characteristics of ‘Lynx’ and ‘Poplar’ conductors are listed in Table 3-6. 

Table 3-6. Characteristics of ‘Lynx’ ACSR 175mm2 and ‘Poplar’ AAAC 200mm2 conductors.  

Conductor Characteristics ACSR ‘Lynx’ AAAC ‘Poplar’ 

Conductor diameter (𝑚𝑚) 19.53 20.09 

Emissivity (-) / Solar absorptivity (-) 0.6 / 0.5 0.9 / 0.9 

Low/high conductor temperature for which ac 

resistance is specified (℃) 
20 / 45 20 / 70 

Conductor ac resistance at low/high conductor 

temperature (𝞨/km) 
0.1583 / 0.1740 0.1404 / 0.1600 

Conductor elevation above sea level (𝑚) 16.7 36.6 

Conductor orientation (degree 

counter-clockwise rotation from East) 
35.4525 167.0054 

Reduced maximum allowable conductor 

temperature (℃) 
45 70 

Static line rating for Winter/Spring or 

Autumn/Summer (𝐴) 
485 / 450 / 389 607 / 581 / 533 
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Tables 3-7 and 3-8 compare RMSEs of steady-state DLR forecasts for 3 steps ahead 

at CQ34-CQ35 and AC102-AC101B that are affected by the forecast errors of each 

individual weather variable at stations 4 and 6 respectively. The effects of forecast 

errors of each individual weather variable estimated by the AR or VAR models listed 

in Table 3-1 and persistence forecasting models are both examined. 

Table 3-7: RMSEs of weather forecasts of each individual variable at station 4 and their corresponding 

steady-state DLR forecasts at span CQ34-CQ35 for 3 steps ahead along with the AR/VAR forecasting 

models’ improvements over persistence. 

Weather Variable 

of Interest 

RMSE of Weather 

Forecasts 
Imp. over 

Persistence 

RMSE of DLR Forecast 

(A) 
Imp. over 

Persistence 

AR/VAR Persistence AR/VAR Persistence 

𝑇𝑎 (℃) 0.3480 0.4068 14.45% 2.7027 3.0805 12.26% 

𝑤𝑠 (𝑚 𝑠⁄ ) 0.5509 0.6000 8.18% 46.7385 52.1028 10.30% 

𝑤𝑑 (𝑟𝑎𝑑𝑖𝑎𝑛𝑠) 0.6378 0.7126 10.48% 45.7737 48.3927 5.41% 

𝑠𝑟  (𝑊 𝑚2⁄ ) 73.2744 90.0054 18.59% 3.3683 4.1498 18.83% 

Table 3-8: RMSEs of weather forecasts of each individual variable at weather station 6 and their 

corresponding steady-state DLR forecasts at span AC102-AC101B for 3 steps ahead along with the 

AR/VAR forecasting models’ improvements over persistence. 

Weather Variable 

of Interest 

RMSE of Weather 

Forecasts 
Imp. over 

Persistence 

RMSE of DLR Forecast 

(A) 
Imp. over 

Persistence 

AR/VAR Persistence AR/VAR Persistence 

𝑇𝑎 (℃) 0.3482 0.4138 15.85% 2.3955 2.7686 13.48% 

𝑤𝑠 (𝑚 𝑠⁄ ) 0.5805 0.6442 9.89% 60.1287 65.7099 8.49% 

𝑤𝑑 (𝑟𝑎𝑑𝑖𝑎𝑛𝑠) 0.5869 0.6180 5.03% 66.1046 67.3369 1.83% 

𝑠𝑟  (𝑊 𝑚2⁄ ) 76.8391 94.0595 18.31% 4.7942 5.8826 18.50% 
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Since it is the wind attack angle (or the angle of incidence) between wind direction 

and line orientation that determines the convection heat loss rate, wind direction 

forecasts for 3 steps ahead estimated by the AR(6) model and the persistence method 

are converted to attack angles which have RMSEs (radians) of 0.3740 and 0.3852 

respectively for span CQ34-CQ35. For span AC102-AC101B, RMSEs (radians) of 

the attack angle forecasts for the two methods are 0.3218 and 0.3355 respectively. 

The improvements over persistence in RMSEs of attack angle forecasts for the AR(6) 

models at two spans are 2.93% and 4.08% respectively, which are smaller than that 

for wind direction forecasting. This may be one of the reasons causing the AR(6) 

models’ improvements over persistence in RMSEs of wind direction forecasts to be 

higher than those for their corresponding steady-state rating forecasts, as shown in 

Tables 3-7 and 3-8. 

Tables 3-7 and 3-8 indicate that the VAR model gives an improvement greater than 

10% over persistence in RMSEs of steady-state DLR forecasts that include forecast 

errors of 𝑇𝑎 or 𝑠𝑟. However, 𝑇𝑎 or 𝑠𝑟 forecasts based DLRs at the two spans have 

smaller RMSEs than 𝑤𝑠 or 𝑤𝑑 forecasts based DLRs. Fig. 3-25 shows percentage 

errors of DLR forecasts for 3 steps ahead at the two spans that are caused by forecast 

errors of each individual weather variable. It is shown that forecast errors of 𝑇𝑎 or 

𝑠𝑟 generally lead to percentage errors of DLR forecasts that are much smaller than 

those for 𝑤𝑠 or 𝑤𝑑 in this research. As was noted in Section 1.2.3.1, a large rise of 

the convection heat loss rate above the solar heat gain rate due to an increment in 𝑤𝑠 

or conductor temperature would reduce the impact of the change of 𝑠𝑟 on conductor 

temperature. Therefore, forecast errors of 𝑠𝑟 are shown to have a slight effect on the 

forecast accuracy of steady-state DLRs evaluated at a maximum allowable conductor 

temperature 𝑇𝑐𝑚𝑎𝑥. 
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Fig. 3-25: Percentage errors (%) of steady-state DLR forecasts for 3 steps ahead at different spans 

estimated from forecasts of each individual weather variable. 

As was noted in Sections 2.1.4.2 and 2.1.4.3, the convection 𝑄𝑐 and radiation 𝑄𝑟 

heat loss rates for steady-state DLR calculation are both dependent on the difference 

between 𝑇𝑐𝑚𝑎𝑥 and 𝑇𝑎. The DLR demonstration project by Scottish Power Energy 

Networks [10] reported that 𝑇𝑎 measured at nine weather stations over a full year 

from 24th September 2012 to 23rd September 2013 ranged from −6.1℃ to 30.3℃. 

Assuming 𝑇𝑎 to be forecast with errors of ±3℃ (i.e. the maximum magnitude of 

𝑇𝑎 forecast error as shown in Fig. 3-25), the ratio of the forecast 𝑄𝑟 to the actual 

𝑄𝑟 is calculated by equation (2-20) based on 𝑇𝑎 that ranges from −10℃ to 30℃ 

combined with 𝑇𝑐𝑚𝑎𝑥 for each span, as shown in Fig. 3-26. The forecast error of 𝑇𝑎 
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shows a larger impact on 𝑄𝑟 at a higher 𝑇𝑎 for span CQ34-CQ35 that has a smaller 

𝑇𝑐𝑚𝑎𝑥, i.e. a smaller difference between 𝑇𝑎 and 𝑇𝑐𝑚𝑎𝑥. 

 

Fig. 3-26: Ratios of the forecast 𝑄𝑟 to the actual 𝑄𝑟 evaluated at 𝑇𝑎 ranging from −10℃ to 30℃ 

combined with 𝑇𝑐𝑚𝑎𝑥 for different spans based on 𝑇𝑎 forecast error equal to ±3℃. 

Since 𝑄𝑐 evaluated at 𝑇𝑐𝑚𝑎𝑥 is found to be determined by the forced convection 

heat loss rate 𝑄𝑐𝑓 in greater than 96.33% and 98.03% of cases for CQ34-CQ35 and 

AC102-AC101B respectively in this research, the ratio of the forecast 𝑄𝑐𝑓 to the 

actual 𝑄𝑐𝑓 is estimated for the two spans based on their 𝑇𝑐𝑚𝑎𝑥 and 𝑇𝑎 that ranges 

from −10℃ to 30℃ with a forecast error of ±3℃. It may be noted that the ratios 

for 𝑄𝑐𝑓1 and 𝑄𝑐𝑓2 calculated by equations (2-14) and (2-15) are similar since an 

error of ±3℃ in 𝑇𝑎 forecasts has a slight impact on air properties (i.e. the density, 

viscosity and thermal conductivity coefficient of air) which are determined by 

equations (2-17), (2-18) and (2-19). Therefore, the ratios of the forecasts to the actual 

values for 𝑄𝑐𝑓2 that have slightly higher magnitudes are presented here as shown in 

Fig. 3-27. The forecast error of 𝑇𝑎 is shown to have a larger influence on 𝑄𝑐𝑓2 at a 

higher 𝑇𝑎 for the span CQ34-CQ35 which has a lower 𝑇𝑐𝑚𝑎𝑥, i.e. a smaller arise of 

𝑇𝑐𝑚𝑎𝑥 above 𝑇𝑎. 
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Fig. 3-27: Ratios of the forecast 𝑄𝑐𝑓2 to the actual 𝑄𝑐𝑓2 evaluated at 𝑇𝑎 ranging from −10℃ to 

30℃ combined with 𝑇𝑐𝑚𝑎𝑥 for different spans based on 𝑇𝑎 forecast error equal to ±3℃. 

Figs. 3-26 and 3-27 show that a forecast error of ±3℃ for 𝑇𝑎 = 30℃ would lead 

to a significant underestimation or overestimation in 𝑄𝑟 and 𝑄𝑐𝑓 by around 20% 

for span CQ34-CQ35. This will cause the steady-state DLR to be underestimated or 

overestimated by about 10% when there is no solar radiation. Given a non-zero solar 

radiation, the forecast error of the steady-state DLR would then be less than 10%. 

Since 𝑇𝑎 recorded for span CQ34-CQ35 over the period evaluated in this research 

(January, February and March in 2012) was under 13.5℃, a forecast error of ±3℃ 

for 𝑇𝑎 would cause 𝑄𝑟 and 𝑄𝑐𝑓 to be underestimated or overestimated by around 

10%. This means that the steady-state DLR forecast error could reach less than 5% of 

the actual rating, which is mostly less significant than the forecast error induced by 

wind conditions, as shown in Fig. 3-25. Therefore, wind conditions are generally the 

dominant factors affecting the forecast accuracy of steady-state DLRs. 

3.4. Results and Model Validation of Probabilistic Forecasting 

As was noted in Section 3.2.5, the ‘accuracy’ of probabilistic forecasts can be 

evaluated through checking their calibration which is the consistency between the 

predictive distribution and the actual value. The calibration of probabilistic forecasts 

can be examined by the histogram of probability integral transform (PIT). For fully 
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calibrated probabilistic forecasts, the percentage of the actual value being lower than 

the 𝑛𝑡ℎ percentile just equals 𝑛% for each percentile, i.e. a uniform PIT histogram.  

A sharper predictive probability distribution (i.e. a smaller predictive spread or a 

higher concentration parameter) is desired under the constraint of calibration. The 

sharpness of a predictive probability distribution can be indicated by the average 

width of central prediction intervals (CPIs), e.g. the average width of 50% CPIs 

between the 25th and 75th percentiles. In addition to the calibration and sharpness, the 

performance of a probabilistic forecasting model can be assessed by the continuous 

ranked probability score (CRPS) which is a summary metric representing the average 

difference between the predictive distribution and the actual value. Small values are 

sought for the average width of CPIs and the CRPS value. 

Based on the point forecasting models validated in Section 3.3 which are employed 

to model the predictive centres of weather variables, the probabilistic forecasting 

models are developed here by modelling the conditional heteroscedasticity of the 

predictive distribution as a linear function of recent changes in the de-trended data 

within one hour for air temperature and wind speed or concentration of recent wind 

direction observations within two hours. To analyse the advantage of modelling the 

predictive spread as time dependent (i.e. the conditional heteroscedasticity), the 

homoscedastic model is additionally constructed which assumes a constant predictive 

spread or concentration parameter that is updated once a day. 

In this section, the CRPS values, calibration and sharpness are assessed for different 

probabilistic forecasting models. The models having the best performance are 

selected to generate predictive distributions for each weather parameter. 

3.4.1. Assessments of probabilistic weather forecasting 

The parameters in the auto-regressive (AR) and vector auto-regressive (VAR) models 

and the non-negative coefficients representing the predictive spread or concentration 

parameter are determined to minimise the average value of CRPS based on historic 
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time series within a training window. Probabilistic 1-step-ahead weather forecasts 

produced by the four models, homoscedastic AR(4)-H and VAR(2)-H models and 

conditionally heteroscedastic AR(4)-CH and VAR(2)-CH models, are assessed. The 

average CRPS values and average widths of 50% CPIs of probabilistic forecasts for 

each weather parameter at stations 2, 4 and 6 are listed in Table 3-9 where the 

smallest values among the four models are highlighted in red. 

Table 3-9. CRPS and average widths of 50% CPIs of probabilistic 1-step-ahead forecasts produced by 

four probabilistic forecasting models for air temperature 𝑇𝑎, wind speed 𝑤𝑠 and wind direction 𝑤𝑑 

at stations 2, 4 and 6. 

  Station No. AR(4)-H VAR(2)-H AR(4)-CH VAR(2)-CH 

𝑇𝑎 

(℃) 

CRPS 

2 0.0947 0.0928 0.0922 𝟎. 𝟎𝟗𝟎𝟒 

4 0.0839 0.0829 0.0811 𝟎. 𝟎𝟖𝟎𝟑 

6 0.0833 0.0820 0.0800 𝟎. 𝟎𝟕𝟗𝟎 

50%CPIs 

2 0.1895 𝟎. 𝟏𝟖𝟓𝟓 0.1979 0.1940 

4 0.1592 𝟎. 𝟏𝟓𝟓𝟕 0.1692 0.1660 

6 0.1533 𝟎. 𝟏𝟓𝟎𝟓 0.1655 0.1628 

𝑤𝑠 

(𝑚 𝑠⁄ ) 

CRPS 

2 0.2025 0.2042 𝟎. 𝟏𝟗𝟕𝟐 0.1988 

4 0.2341 0.2373 𝟎. 𝟐𝟐𝟗𝟎 0.2318 

6 0.2465 0.2475 𝟎. 𝟐𝟑𝟗𝟐 0.2402 

50%CPIs 

2 0.4617 0.4594 𝟎. 𝟒𝟓𝟖𝟒 0.4586 

4 𝟎. 𝟓𝟐𝟓𝟏 0.5299 0.5290 0.5353 

6 0.4999 𝟎. 𝟒𝟗𝟗𝟖 0.5336 0.5436 

𝑤𝑑 

(𝑟𝑎𝑑𝑖𝑎𝑛𝑠) 

CRPS 

2 0.3563 0.3598 𝟎. 𝟑𝟑𝟗𝟓 0.3450 

4 0.2812 0.2829 𝟎. 𝟐𝟓𝟏𝟒 0.2546 

6 0.1986 0.1977 𝟎. 𝟏𝟖𝟖𝟐 0.1886 

50%CPIs 

2 𝟎. 𝟕𝟒𝟑𝟑 0.7553 0.7600 0.7672 

4 𝟎. 𝟒𝟔𝟔𝟓 0.4672 0.5448 0.5451 

6 𝟎. 𝟐𝟗𝟔𝟓 0.2966 0.3820 0.3779 
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The experimental results show that over half of the time the predictive distributions 

modelled by conditionally heteroscedastic models are more concentrated than the 

distributions modelled by homoscedastic models. For example, predictive spreads of 

air temperature for 1 step (10 minutes) ahead determined by the VAR(2)-CH model 

at station 2 are smaller than those that are estimated by the VAR(2)-H model for 

about 61.3% of the time. However, due to some extremely dispersive distributions 

for conditionally heteroscedastic models, most of the average widths of 50% CPIs 

modelled by the homoscedastic models are smaller on average, at the cost of losing a 

certain calibration. This can be inspected from their PIT histograms, as shown in Figs. 

3-28 – 3-30 where the relative frequency of 0.1 per 10 percentiles for a uniform PIT 

histogram which reveals probabilistic forecasts to be fully calibrated is denoted by a 

black dashed line. In addition, the probabilistic forecasts estimated by conditionally 

heteroscedastic models are generally shown to have a smaller CRPS value than those 

for homoscedastic models. 

 

Fig. 3-28. PIT histograms for probabilistic 1-step-ahead air temperature forecasts produced by four 

probabilistic models at station 2 

0 0.2 0.4 0.6 0.8 1
0   

0.05

0.1 

0.15

0.2 

PIT for VAR(2)-H

R
e
la

ti
v

e
 F

re
q

u
e
n

c
y

0 0.2 0.4 0.6 0.8 1
0   

0.05

0.1 

0.15

0.2 

PIT for VAR(2)-CH

R
e
la

ti
v

e
 F

re
q

u
e
n

c
y

0 0.2 0.4 0.6 0.8 1
0   

0.05

0.1 

0.15

0.2 

PIT for AR(4)-H

R
e
la

ti
v

e
 F

re
q

u
e
n

c
y

0 0.2 0.4 0.6 0.8 1
0   

0.05

0.1 

0.15

0.2 

PIT for AR(4)-CH

R
e
la

ti
v

e
 F

re
q

u
e
n

c
y



107 

 

 

Fig. 3-29. PIT histograms for probabilistic 1-step-ahead wind speed forecasts produced by four 

probabilistic models at station 2 

 

Fig. 3-30. PIT histograms for probabilistic 1-step-ahead wind direction forecasts produced by four 

probabilistic models at station 2 

The PIT histograms in Figs. 3-28 – 3-30 demonstrate that the conditionally 

heteroscedastic models generally show a better calibration than their respective 

homoscedastic models. The variance of relative frequency at each percentile can be 

used as an indicator to assess the distribution of a PIT histogram and thus the 
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calibration of probabilistic forecasts. A smaller variance indicates that the PIT 

histogram is closer to a uniform distribution, i.e. the probabilistic forecasts having a 

better calibration. Fig. 3-31 shows that the variance of relative frequency at each 

predictive percentile for 3 steps ahead for the conditionally heteroscedastic (CH) 

models is smaller than that for their respective homoscedastic (H) models for each 

weather parameter at all stations. 

 

Fig. 3-31. Variances of relative frequency at each predictive percentiles for 3 steps (half hour) ahead 

estimated by the homoscedastic (H) models and the conditionally heteroscedastic (CH) models for 

each weather variable 

As a summary indicator reflecting both calibration and sharpness of probabilistic 

forecasts, the average CRPS values of conditionally heteroscedastic models and their 

respective homoscedastic models are compared for each weather parameter at all 

weather stations, as shown in Figs. 3-32 – 3-34. The experimental results suggest that 

the VAR(2)-CH, AR(4)-CH and AR(4)-CH models having smaller CRPS values are 

used to estimate probabilistic 1-step-ahead forecasts for air temperature, wind speed 

and wind direction respectively. For 2 and 3 steps ahead, the VAR(2)-CH, AR(4)-CH 

and AR(6)-CH models are selected for each weather parameter. 
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Fig. 3-32. CRPS values (℃) of probabilistic air temperature forecasts for 𝐿 = 1, 2, 3 steps ahead 

produced by the VAR(2)-CH and VAR(2)-H models 

 
Fig. 3-33. CRPS values (𝑚 𝑠⁄ ) of probabilistic wind speed forecasts for 𝐿 = 1, 2, 3 steps ahead 

produced by the AR(4)-CH and AR(4)-H models 
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Fig. 3-34. CRPS values (radians) of probabilistic wind direction forecasts for 𝐿 = 1, 2, 3 steps ahead 

produced by the AR-CH and AR-H models 

The 50% and 90% CPIs associated with their 1- and 3-step-ahead predictive centres 

for wind speed and direction on 27/03/2013 at station 2 are shown in Figs. 3-35 and 

3-36 respectively. For probabilistic forecasting of wind speed, the observations locate 

within the 1-step-ahead and 3-step-ahead 50% CPIs for around 52.9% and 54.8% of 

the time respectively and within the 90% CPIs for approximately 88.8% and 88.7% 

of the time respectively. In addition, the expected values of probabilistic wind speed 

forecasts (equivalent to the point forecasts) for 1 and 3 steps ahead estimated by the 

AR(4)-CH models having RMSEs of 0.38𝑚 𝑠⁄  and 0.48𝑚 𝑠⁄  respectively give 

7.7% and 9.4% improvement over persistence forecasts. 

For probabilistic forecasting of wind direction, the observations locate within the 

1-step-ahead and 3-step-ahead 50% CPIs for about 48.8% and 46.1% of the time 

respectively and within the 90% CPIs for around 86.9% and 85.8% of the time 

respectively. Furthermore, the expected values of probabilistic wind direction 

forecasts for 1 and 3 steps ahead generated by the AR(4)-CH and AR(6)-CH models 

have RMSEs of 0.68 radians and 0.72 radians respectively, which give 14.5% and 

17.6% improvement over persistence forecasts. 
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Fig. 3-35. The 50% and 90% CPIs associated with 1-step-ahead and 3-step-ahead predictive centres of 

wind speed modelled by the AR(4)-CH models on 27/03/2013 at station 2 

 

Fig. 3-36. The 50% and 90% CPIs associated with 1-step-ahead and 3-step-ahaed predictive centres of 

wind direction modelled by the AR(4)-CH and AR(6)-CH models on 27/03/2013 at station 2 

It can be found that the predictive distributions for 3 steps (half hour) ahead are less 

concentrated than the distributions for 1 step (10 minutes) ahead. This is because a 

satisfactory calibration is to be preserved while the forecast error increases for 3 
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steps ahead. As the time horizon increases, the reduction in the sharpness or 

concentration of predictive distribution results in an increase in the CRPS value as 

shown in Figs. 3-32 – 3-34. 

3.5. Conclusions 

A number of point (or deterministic) and probabilistic forecasting models have been 

developed for different weather parameters in this chapter by the use of an 

auto-regressive process that is combined with a technique of minimum continuous 

ranked probability score (CRPS) estimation. The time series forecasting models have 

been selected for each weather parameter based on their performances reflected by 

the root mean square error (RMSE) for point forecasts and the CRPS value for 

probabilistic forecasts. 

The point forecasting models are first determined for each weather parameter for 

different time horizons since they are the basis on which the probabilistic forecasting 

models are established. In the main, the point forecast of a weather variable is 

modelled as a sum of the fitted diurnal trend component and the corresponding 

de-trended data forecast by an auto-regressive (AR) or vector auto-regressive (VAR) 

model. The 2nd order Fourier series is used to extract diurnal trends from historic 

time series within a sliding training window for air temperature, wind speed and the 

easterly and northerly components of wind direction separately; diurnal trends of 

solar radiation are fitted by the 3rd order Fourier series which accurately models the 

variation in solar radiation, especially around sunrise and sunset. The AR and VAR 

models are then applied to the de-trended data within the training window. 

The point forecasts of weather variables for up to 3 steps (half hour) ahead estimated 

by the AR and VAR models are assessed for different training window lengths and 

different model orders. Given a sufficiently long training window, the VAR 

forecasting models are generally shown to perform better than the AR models in a 
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preliminary test where the model order of 2 is used. There is a trade-off in the 

selection of training window length between using a longer window to reduce the 

statistical variability in the estimation of model parameters and using a shorter 

window to avoid the seasonal variations being excessively smoothed. Amongst a 

range of effective training window lengths, for AR and VAR models here 40, 45 and 

45 days are reasonable choices for air temperature, wind speed and wind direction 

respectively since they have been found to work well at all weather stations. For 

solar radiation, 25 and 45 days are selected for AR and VAR models respectively. 

Using the selected training window lengths, the VAR models are mostly shown to 

perform better than the AR models of a same order due to additionally capturing the 

spatial correlations among the field data. The VAR(2) and VAR(1) models are 

selected for air temperature and solar radiation respectively since they give better 

performances than the AR models and insignificant improvements are obtained when 

using higher orders. For wind speed and wind direction, the AR models of a higher 

order have fewer auto-regressive parameters and perform similarly to or even better 

than the VAR models of a lower order. Since having fewer parameters can reduce 

computation time in the process of minimising CRPS value, the AR(4) models are 

used to predict wind speeds for up to 3 steps ahead. For wind direction, the AR(4) 

model is employed for 1-step-ahead forecasting and the AR(6) forecasting models 

are preferred for 2 and 3 steps ahead in this research. Through an assessment of 

forecast errors of steady-state ratings at two particular spans in close proximity to 

weather stations due to the forecast uncertainty of each individual weather variable, 

wind conditions are found to be the dominant factors that affect the forecast accuracy 

of steady-state DLRs. 

Two approaches to modelling the spreads or concentration parameters of predictive 

distributions have been compared: a homoscedastic (H) model that assumes a 

constant predictive spread and a conditionally heteroscedastic (CH) model that 

estimates the predictive spread as time variable based on recent changes in weather 
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data. Due to the constantly adjusted predictive spreads, the predictive distributions 

generated by the CH models are found to be of better calibration and more 

concentrated in most cases than those that are produced by the H models. However, 

most of the average widths of central prediction intervals modelled by CH models 

are larger on average due to some extremely dispersive distributions. The calculated 

CRPS values demonstrate that the VAR(2)-CH, AR(4)-CH and AR(4)-CH models 

give the best performance considering the trade-off between calibration and 

sharpness and should be used to generate probabilistic 1-step-ahead forecasts for air 

temperature, wind speed and wind direction respectively. For two and three 

10-minutes time steps ahead, the VAR(2)-CH, AR(4)-CH and AR(6)-CH models 

should be employed for each weather parameter respectively in this research. The 

predictive distributions estimated by the CH forecasting models for air temperature, 

wind speed and wind direction and point forecasts of solar radiation will be used to 

generate probabilistic forecasts of DLRs for spans and overhead lines.  
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4. RANK CORRELATION BASED PAIRING AND 

SPATIAL INTERPOLATION 

4.1. Introduction 

The thermal rating of an overhead conductor is influenced by different weather 

variables in a complex way. It is difficult to directly calculate the probabilistic 

forecasts of dynamic line rating (DLR) from predictive distributions of weather 

variables through a thermal model of overhead conductors [3]. For example, the 

convection heat loss rate of the conductor per unit length is estimated as the largest 

value of three components that are determined by air temperature, wind speed and 

wind direction in different ways as defined by equations (2-13) - (2-15). Alternatively, 

Monte Carlo simulation [119] allows us to model different combinations of weather 

input variables, as well as their interdependent relationships. It is used to produce a 

large number of sampled values of steady-state DLR forecasts by evaluating the 

outputs (ratings) of the thermal model of overhead conductors [3] for inputs of values 

randomly sampled from the predictive probability distributions of air temperature, 

wind speed and wind direction modelled by the conditionally heteroscedastic 

auto-regressive models and point forecasts of solar radiation. 

In order to cover a range of possible weather conditions, a sufficiently large number, 

say 𝑁𝑀𝐶 = 10
4 of weather input variables are randomly sampled from the modelled 

normal, truncated normal and von Mises distributions, as appropriate to the different 

variables, through the codes provided in [120, 121, 96]. The numerous random 

weather input variables can be regarded as being independent of each other since 

they are randomly and independently sampled from their own predictive distributions. 

For example, two series consisting of 104 random samples that are independently 

generated from a standard normal distribution typically have a correlation less than 

0.01. 
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Different pairs of weather variables are correlated. A rank correlation based pairing 

method [122], independent of the type of distribution, is used to pair independently 

sampled random weather variables so as to create a correlation similar to that 

calculated from weather observations over recent days. For a single span in 

proximity to an installed weather station, the uncertainty of DLR forecasts is mainly 

determined by the distribution of weather prediction errors. The independent or 

correlated (paired) weather samples at the station are directly applied to the thermal 

model of the conductors to estimate probabilistic DLR forecasts for the span. For an 

entire overhead line (OHL), the possible weather predictions for each span are 

extrapolated from the correlated or independent random samples of the measured 

weather variables by using suitable spatial interpolation models. The minimum value 

of the steady-state ratings for all spans within an OHL derived from inferences of 

weather samples is then applied to the entire OHL in each of 104 scenarios. 

This chapter describes the application of the rank correlation based pairing method to 

random weather samples of both different parameters and the same parameters at all 

stations. In addition, the spatial interpolation methods that were used in previous 

research [20] are improved here through an investigation into a number of available 

spatial interpolation methods and a comparison between their performances for each 

weather variable. 

4.2. Methodology 

4.2.1. Rank correlation based pairing method [122] 

The Spearman’s rank correlation coefficient represents the statistical dependence 

between the rankings of two variables. For linear variables, the Spearman’s rank 

correlation coefficient 𝑟𝑐𝑙,𝑙 is defined as [75]: 

𝑟𝑐𝑙,𝑙 = 1 −
6∑∆𝑟𝑙,𝑖

2

𝑁𝑟(𝑁𝑟2 − 1)
 (4-1) 
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where 𝑁𝑟 is the number of data pairs which have rank differences ∆𝑟𝑙,𝑖, 𝑖 = 1,… ,𝑁𝑟. 

The term 𝑟𝑐𝑙,𝑙 ranges from −1 to +1 with 𝑟𝑐𝑙,𝑙 = 0 indicating two independent 

linear variables, i.e. no correlation, and 𝑟𝑐𝑙,𝑙 = ±1  meaning a significant 

positive/negative correlation between their ranks. The uniform score or circular rank 

𝑟𝑐,𝑖 associated with wind direction 𝑤𝑑,𝑖 is defined as [123]: 

𝑟𝑐,𝑖 =
2𝜋𝑟𝑐𝑙,𝑖
𝑁𝑟

, 𝑖 = 1,… ,𝑁𝑟 (4-2) 

where 𝑟𝑐𝑙,𝑖 represents the linear rank of 𝑤𝑑,𝑖 when 𝑤𝑑,1, … , 𝑤𝑑,𝑁𝑟 are treated as 

linear data and it is multiplied by 2𝜋/𝑁𝑟 to obtain the corresponding circular rank 

𝑟𝑐,𝑖 . The C-association 𝐶𝑎𝑙,𝑐
2  describing the rank relationship between a linear 

variable of rank 𝑟𝑙,𝑖, 𝑖 = 1,… ,𝑁𝑟 and a circular variable of rank 𝑟𝑐,𝑖, 𝑖 = 1,… ,𝑁𝑟 is 

evaluated by [124]: 

𝐶𝑎𝑙,𝑐
2 = 𝐶𝑟𝑁𝑟 (𝐶𝑟𝑐

2+ 𝐶𝑟𝑠
2
) (4-3) 

where, 

𝐶𝑟𝑐 = 

∑𝑟𝑙,𝑖 cos 𝑟𝑐,𝑖  

𝐶𝑟𝑠 = 

∑𝑟𝑙,𝑖 sin 𝑟𝑐,𝑖  

𝐶𝑟𝑁𝑟 = 

{
1 [1 + 5 cot2(𝜋 𝑁𝑟⁄ ) + 4 cot4(𝜋 𝑁𝑟⁄ )]⁄   𝑁𝑟 𝑒𝑣𝑒𝑛

  2 sin4(𝜋 𝑁𝑟⁄ ) [1 + cos(𝜋 𝑁𝑟⁄ )]3⁄     𝑁𝑟 𝑜𝑑𝑑
  

It is noted that the C-association between a linear variable and a circular variable is 

non-negative. They are independent of each other if 𝐶𝑎𝑙,𝑐
2 = 0  and are highly 

correlated if 𝐶𝑎𝑙,𝑐
2  approaches 1. Please refer to [124] which details the T-monotone 

association that represents the rank relationship between circular variables. 

Based on equations (4-1) – (4-3), the elements in a (𝑛𝑅 × 𝑛𝑅) rank correlation 

matrix 𝐶𝑅 that is made up of the rank correlations among 𝑛𝑅 weather variables can 

be computed from each pair of weather observations taken over recent days. A new 

matrix 𝑀𝑅  of size (𝑁𝑀𝐶 × 𝑛𝑅)  is generated in which each column comprises 

arbitrary van der Waerden scores 𝛷−1(𝑖 (𝑁𝑀𝐶 + 1)⁄ ), 𝑖 = 1,… , 𝑁𝑀𝐶  [122]. The 

lower triangular matrices 𝑃𝑅 and 𝑄𝑅 are obtained through Cholesky factorization 

such that 𝑃𝑅𝑃𝑅
′ = 𝐶𝑅 and 𝑄𝑅𝑄𝑅

′ = 𝐶𝑀𝑅 where 𝐶𝑀𝑅 is the sample rank correlation 
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matrix associated with 𝑀𝑅 . The matrix 𝑀𝑅
∗ = 𝑀𝑅(𝑃𝑅𝑄𝑅

−1)′  would have a rank 

correlation matrix quite similar to 𝐶𝑅. Then the random weather input variables 

sampled from each independent marginal distribution are sorted according to the 

order of corresponding column in 𝑀𝑅
∗  [122]. In this manner, the dependence among 

historic time series of weather variables within the most recent days is incorporated 

into the paired multivariate random weather input variables. 

4.2.2. Spatial interpolation 

Spatial interpolation models that estimate ambient conditions for each span from the 

measured weather data enable the weather-based DLR model to assess the spare 

ampacity of an entire OHL. The inverse distance weighting (IDW) method was 

previously used in [10, 20] to calculate the sampling weight as a decreasing function 

of distance from the target location. However, the influences of geographical 

variables of interest on local weather conditions were not considered except for the 

use of a wind profile power law with a reference level of 200m above ground level 

for wind speed interpolation. In addition to the IDW method, a geostatistical 

interpolation method, kriging, is developed in this section to estimate weather data 

for each span. The kriging model additionally takes account of spatial correlations 

not only between the target and sampled locations but also between the sampled 

locations themselves and does not assign an unduly high weighting to what are 

effectively duplicate measurements in similar locations. Furthermore, the effects of 

the associated geographical variables on local weather conditions are investigated 

and considered in the process of spatial interpolation. 

4.2.2.1. Inverse distance weighting and kriging 

Inverse distance weighting (IDW) and kriging both infer the value at a target location 

as a weighted sum of observations at surrounding sampled locations [125]: 

𝜉(𝑙𝑜𝑐𝑜) − 𝑚𝑒(𝑙𝑜𝑐𝑜) =∑ 𝜆𝑖[𝜉(𝑙𝑜𝑐𝑖) − 𝑚𝑒(𝑙𝑜𝑐𝑖)]
𝑁(𝑙𝑜𝑐)

𝑖=1
 (4-4) 
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where 𝜉(𝑙𝑜𝑐𝑜) and 𝜉(𝑙𝑜𝑐𝑖) are values at the target location 𝑙𝑜𝑐𝑜 and the sampled 

location 𝑙𝑜𝑐𝑖  respectively. The terms 𝑚𝑒(𝑙𝑜𝑐𝑜)  and 𝑚𝑒(𝑙𝑜𝑐𝑖)  represent the 

expected values or trend components of 𝜉(𝑙𝑜𝑐𝑜)  and 𝜉(𝑙𝑜𝑐𝑖) . 𝑁(𝑙𝑜𝑐)  is the 

number of sampled locations and 𝜆𝑖 is the weight assigned to the sampled location 

𝑙𝑜𝑐𝑖, 𝑖 = 1, … ,𝑁(𝑙𝑜𝑐). 

IDW is a relatively simple spatial interpolation method. The IDW weights 𝜆𝐼𝐷𝑊,𝑖 

are inversely proportional to the distances 𝑑𝑠𝑖,𝑜 between 𝑙𝑜𝑐𝑜 and 𝑙𝑜𝑐𝑖: 

𝜆𝐼𝐷𝑊,𝑖 =
1 𝑑𝑠𝑖,𝑜

𝑞
⁄

∑ (1 𝑑𝑠𝑗,𝑜
𝑞

⁄ )
𝑁(𝑙𝑜𝑐)
𝑗=1

 (4-5) 

where 𝑞 is a power parameter. A higher power parameter 𝑞 will increase the 

influences of the nearest sampled locations while the use of a lower 𝑞 results in a 

smoother interpolation surface [126]. A default value of 𝑞 equal to 2 was used in 

[20]. 

The kriging weights are determined to minimise the variance of estimation errors. In 

addition to the distance 𝑑𝑠𝑖,𝑜 , kriging weights 𝜆𝐾𝑅𝐼,𝑖  largely depend on spatial 

relationships among weather variables at all locations [125]: 

𝜆𝐾𝑅𝐼,𝑖 = 𝑲
−1𝒌 (4-6) 

where 𝑲 represents the matrix of covariances between the sampled locations and 𝒌 

is the vector of covariances between the target and sampled locations. The elements 

in both 𝑲 and 𝒌 are estimated using a semi-variogram model which describes how 

the spatial variability between weather variables represented by the semi-variance 

increases with distance. The semi-variogram model is fitted to the empirical 

semi-variance 𝛾(ℎ𝑠) calculated from historic time series at sampled locations [127]: 

𝛾(ℎ𝑠) =
1

2𝑁(ℎ𝑠)
∑ [𝜉(𝑙𝑜𝑐𝑖) − 𝜉(𝑙𝑜𝑐𝑖~ℎ𝑠)]

2
𝑁(ℎ𝑠)

𝑖=1
 (4-7) 

where 𝑁(ℎ𝑠)  is the number of pairs of observations 𝜉(𝑙𝑜𝑐𝑖)  and 𝜉(𝑙𝑜𝑐𝑖~ℎ𝑠) 

which are a distance lag ℎ𝑠  apart. The semi-variogram that models the spatial 
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variability among weather variables can be fitted by several mathematical functions, 

e.g. a spherical model, an exponential model and a Gaussian model [127] which are 

listed in equations (4-8) – (4-10) respectively: 

𝛾∗(ℎ𝑠) =

{
 
 

 
 
0,                                                                          ℎ𝑠 = 0

𝑏𝛾 + 𝑐𝛾 {
3ℎ𝑠
2𝑎𝛾

−
1

2
(
ℎ𝑠
𝑎𝛾
)

3

} ,                       0 < ℎ𝑠 < 𝑎𝛾

𝑏𝛾 + 𝑐𝛾,                                                                ℎ𝑠 ≥ 𝑎𝛾

 (4-8) 

𝛾∗(ℎ𝑠) = {

0,                                                                          ℎ𝑠 = 0

 𝑏𝛾 + 𝑐𝛾 {1 − 𝑒𝑥𝑝 (−
3ℎ𝑠
𝑎𝛾
)},                       ℎ𝑠 > 0

 (4-9) 

𝛾∗(ℎ𝑠) = {

0,                                                                         ℎ𝑠 = 0

 𝑏𝛾 + 𝑐𝛾 {1 − 𝑒𝑥𝑝 (−
3ℎ𝑠

2

𝑎𝛾2
)},                     ℎ𝑠 > 0

 (4-10) 

where the coefficients in three functions 𝑎𝛾 , 𝑏𝛾  and 𝑐𝛾  represent the ‘range’, 

‘nugget’ and ‘partial sill’ respectively which are the major characteristics of a 

semi-variogram. The semi-variograms modelled by different mathematical functions 

with 𝑎𝛾 = 0.8, 𝑏𝛾 = 0.1 and 𝑐𝛾 = 0.9 are shown in Fig. 4-1. The ‘nugget’ is an 

estimate of the uncorrelated noise in space, representing the spatial variability 

between two locations that are very close. This is mainly caused by the measurement 

error or/and the spatial variability at distances smaller than the sampling distance 

[127]. For a spherical model, the semi-variance increases with distance and just 

reaches the maximum value (𝑏𝛾 + 𝑐𝛾) at the ‘range’. The maximum value of 

semi-variance is known as the ‘sill’. The calculated semi-variance between variables 

separated by a distance in excess of the ‘range’ is equal to ‘sill’, implying that they 

have no impact on each other. For the exponential and Gaussian models, the 

semi-variance gradually approaches the ‘sill’ with the increase in distance and 

reaches 0.95(𝑏𝛾 + 𝑐𝛾) at the ‘range’ [128]. 
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Fig. 4-1. The semi-variogram determined by the spherical, exponential and Gaussian models with 

range 𝑎𝛾 = 0.8, nugget 𝑏𝛾 = 0.1 and partial sill 𝑐𝛾 = 0.9 

The type of function for the semi-variogram fitting can be determined based on the 

empirical semi-variances computed from historic weather data. A spherical model is 

usually selected if empirical semi-variances have clear range and sill. An exponential 

model is preferred when empirical semi-variances clearly show the nugget and sill 

and asymptotically approaches the sill. If empirical semi-variances vary smoothly 

and have a parabolic behaviour at the origin a Gaussian model is usually adopted 

[127, 129]. The 𝑁(𝑙𝑜𝑐) ∙ (𝑁(𝑙𝑜𝑐) − 1) 2⁄  empirical semi-variance points calculated 

from 𝑁(𝑙𝑜𝑐) sampled locations are likely to show an unclear increasing pattern 

which makes it difficult to select an appropriate mathematical model to fit the 

semi-variogram and will also increase computation time [130]. A feasible solution is 

to categorise the calculated empirical semi-variances into a number of isotonic 

distance lag bins [131]. The averages of empirical semi-variances and their 

accompanying distance lags at each bin are then used to determine the type of the 

mathematical model with coefficients being estimated from the averages by the least 

squares fitting [132]. Then, the elements of covariance 𝐶𝑜𝑣(ℎ𝑠) in 𝑲 and 𝒌 can 

be estimated via the equation: 

𝐶𝑜𝑣(ℎ𝑠) = 𝑆𝑖𝑙𝑙 − 𝛾∗(ℎ𝑠) (4-11) 
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It should be noted that the semi-variance 𝛾∗(0) at distance lag ℎ𝑠 = 0 is equal to 

zero rather than the nugget 𝑏𝛾 when calculating the covariance 𝐶𝑜𝑣(0) in 𝑲 and 

𝒌. When a spherical model is used, the non-diagonal elements in matrix 𝑲 and 

elements in vector 𝒌 can be represented as: 

𝐶𝑜𝑣(ℎ𝑠) = (𝑏𝛾 + 𝑐𝛾) − {𝑏𝛾 + 𝑐𝛾 {
3ℎ𝑠
2𝑎𝛾

−
1

2
(
ℎ𝑠
𝑎𝛾
)

3

}} 

= 𝑐𝛾 {1 −
3ℎ𝑠
2𝑎𝛾

+
1

2
(
ℎ𝑠
𝑎𝛾
)

3

} , 0 < ℎ𝑠 < 𝑎𝛾 

(4-12) 

If 𝛾∗(0) = 𝑏𝛾, all the diagonal elements of matrix 𝑲 are equal to (𝑏𝛾 + 𝑐𝛾) −

𝑏𝛾 = 𝑐𝛾. Then all the elements in 𝑲 and 𝒌 have a common coefficient equal to the 

partial sill 𝑐𝛾. Thus, the values of 𝑏𝛾 and 𝑐𝛾 will not affect the determination of 

kriging weights. If 𝛾∗(0) = 0, the diagonal elements of matrix 𝑲 are all equal to 

(𝑏𝛾 + 𝑐𝛾). The kriging weights are then dependent on the ratio between 𝑏𝛾 and 𝑐𝛾 

in addition to the type of the mathematical function selected to model the 

semi-variogram [133]. The kriging model with a large 𝑏𝛾 will assign similar kriging 

weights to sampled locations, largely smoothing the interpolation surface [134]. 

When the nugget is equal to the sill, i.e. a nugget model with 𝑐𝛾 = 0 [127], sampled 

locations will have the same weights. 

It can be found that besides the distances from the target location, kriging weights are 

dependent on the spatial correlations not only between the sampled and target 

locations but also between sampled locations themselves. In an isotropic region, i.e. 

one that has the same characteristics in all directions, the sum of kriging weights 

assigned to the sampled locations within a cluster is generally similar to the weight 

assigned to an isolated sampled location if they have similar distances from the target 

location. Fig. 4-2 provides an example where an isolated sampled location 𝑙𝑜𝑐3 and 

a cluster consisting of two sampled locations 𝑙𝑜𝑐1 and 𝑙𝑜𝑐2 are located on one side 

of a target location 𝑙𝑜𝑐𝑜 in a line with similar distances from the target location. The 
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IDW weights and the kriging weights calculated based on an exponential model of 

𝑎𝛾 = 20, 𝑏𝛾 = 0.1, 𝑐𝛾 = 1.9 are listed in Table 4-1. 

 
Fig. 4-2. An example showing kriging’s compensation for cluster effects 

Table 4-1. IDW weights and kriging weights assigned to an isolated 𝑙𝑜𝑐3 and a cluster consisting of 

𝑙𝑜𝑐1 and 𝑙𝑜𝑐2. 

 𝑙𝑜𝑐1 𝑙𝑜𝑐2 𝑙𝑜𝑐3 

IDW 0.2700 0.4033 0.3267 

Kriging 0.1651 0.3583 0.4472 

The sum of IDW weights assigned to 𝑙𝑜𝑐1 and 𝑙𝑜𝑐2  within the cluster equals 

0.6733 that is twice as high as the IDW weight assigned to 𝑙𝑜𝑐3. The estimate at 

𝑙𝑜𝑐𝑜  is therefore largely dependent on the cluster though the isolated sampled 

location and the centre of the cluster are both 1.0 from the target location. In the 

kriging process which takes into account the significant correlation between 𝑙𝑜𝑐1 

and 𝑙𝑜𝑐2 within the cluster, the weights assigned to 𝑙𝑜𝑐1 and 𝑙𝑜𝑐2 are reduced 

along with a growth in the weight at 𝑙𝑜𝑐3. The total kriging weight of the cluster (i.e. 

the sum of 0.1651 for 𝑙𝑜𝑐1 and 0.3583 for 𝑙𝑜𝑐2) equals 0.5234 which is similar to 

the kriging weight assigned to the isolated sampled location 𝑙𝑜𝑐3 (i.e. 0.4472). 

Therefore, compared to the IDW method giving a significant weight to clusters, the 

effect of clusters can be mitigated by the kriging process. 

4.2.2.2. Correction for negative weights [135] 

Negative weights may be produced in a kriging process. The estimate at a target 

location may be negative and nonphysical when negative weights are assigned to the 

sampled locations that have high sampled values, like extreme wind speeds. 

Therefore, negative kriging weights have to be corrected. An algorithm developed by 

Deutsch [135] is used here to correct negative weights through setting the negative 

weights and relevant positive weights to zero and normalising the remaining positive 

weights as described below. 
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Given average magnitude of negative weights equal to |�̅�𝐾𝑅𝐼,𝑛𝑒𝑔| and the average of 

the covariances between the target location and the sampled locations with negative 

weights equal to 𝐶𝑜𝑣̅̅ ̅̅ ̅
𝑛𝑒𝑔, the initial kriging weights 𝜆𝐾𝑅𝐼,𝑖, 𝑖 = 1,… ,𝑁(𝑙𝑜𝑐) are 

corrected based on the following steps: 

1) 𝜆𝐾𝑅𝐼,𝑖
′ = 𝜆𝐾𝑅𝐼,𝑖; 

2) If 𝜆𝐾𝑅𝐼,𝑖 < 0, then 𝜆𝐾𝑅𝐼,𝑖
′ = 0; 

3) If 𝜆𝐾𝑅𝐼,𝑖 > 0 and 𝜆𝐾𝑅𝐼,𝑖 < |�̅�𝐾𝑅𝐼,𝑛𝑒𝑔| and 𝐶𝑜𝑣𝑖 < 𝐶𝑜𝑣̅̅ ̅̅ ̅
𝑛𝑒𝑔  where 𝐶𝑜𝑣𝑖  is the 

covariance between the target location 𝑙𝑜𝑐𝑜 and the sampled location 𝑙𝑜𝑐𝑖, then 

𝜆𝐾𝑅𝐼,𝑖
′ = 0; 

4) 𝜆𝐾𝑅𝐼,𝑖
′  are normalised to sum to one: 

𝜆𝐾𝑅𝐼,𝑖,𝑛𝑒𝑤 =
𝜆𝐾𝑅𝐼,𝑖
′

∑ 𝜆𝐾𝑅𝐼,𝑖
′𝑁(𝑙𝑜𝑐)

𝑖=1

 (4-13) 

In this manner, the corrected weights 𝜆𝐾𝑅𝐼,𝑖,𝑛𝑒𝑤 are non-negative and unbiased. 

4.2.2.3. Spatial de-trending 

Weather conditions are influenced by local geographic parameters. For example, air 

temperature generally decreases with the elevation above sea level. Spatial 

de-trending is used to remove the trend surfaces or spatial trends that are fitted to 

weather data in terms of the associated geographic variables. The modelled trend 

surfaces are added back in the interpolations at the end of the IDW or kriging process. 

In this manner, the effects of these geographic variables on both spatial correlations 

and interpolations of weather parameters can be mitigated [136]. The elevation above 

sea level is a major factor influencing air temperature and wind speed. Typically, 

measurements of air temperature and wind speed at weather stations are first 

converted to a common reference level at which the IDW and kriging interpolations, 

as well as the subtraction and addition of trend surfaces are carried out. The 

interpolation results at the reference level are then converted back to the elevation of 

the target location [20, 106, 128, 137]. 
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The air temperature generally decreases with the elevation above sea level at a rate 

named as the lapse rate. A typical value of −6.0℃ 𝑘𝑚⁄  [128, 137] is used here to 

convert air temperatures at the elevations of weather stations to that at sea level. An 

alternative approach could be to extract the decreasing rate of air temperature with 

elevation from historic time series of air temperature recorded at weather stations by 

the linear fitting. For wind speed, the anemometers’ heights 𝑙𝑣𝑙𝑎𝑛𝑒 above ground 

level and the ground roughness lengths 𝑟𝑙𝑜 are additionally required to convert 

wind speeds 𝑤𝑠,𝑎𝑣𝑒 from the anemometers’ heights 𝑙𝑣𝑙𝑎𝑛𝑒 to a common reference 

level 𝑙𝑣𝑙𝑟𝑒𝑓 (e.g. 300m above sea level) based on a log-law wind profile [138]: 

𝑤𝑠,𝑟𝑒𝑓 = 𝑤𝑠,𝑎𝑛𝑒
ln(𝑙𝑣𝑙𝑟𝑒𝑓 𝑟𝑙𝑜⁄ )

ln(𝑙𝑣𝑙𝑎𝑛𝑒 𝑟𝑙𝑜⁄ )
 (4-14) 

In order to minimise the spatial variation further, the trend surface of wind speeds 

𝑤𝑠,𝑟𝑒𝑓 at the reference level of 300m above sea level is modelled in terms of 

distance to ocean (DTO) as shown in Fig. 4-3. The weather stations closer to the 

coast are generally known to have higher wind speed averages in this case, which is 

also discovered by Nawri [139] and Xue [140]. 

 

Fig. 4-3. Modelling of trend surfaces of wind speeds at the reference level of 300m above sea level in 

terms of distance to ocean (DTO) based on wind speed observations over 45 days from 00:00 on 

14/12/2012 to 23:50 on 27/01/2013 
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4.2.2.4. Temporal de-trending 

As was noted in Section 3.2.1, data applied to statistical models are generally 

required to satisfy a weak or second order stationarity. Spatial correlations between 

weather variables may be misled by the inherent trends of non-stationary data. The 

spatial de-trending method has been used to remove the trend surfaces of weather 

variables in terms of the associated geographic variables. The temporal trends of 

weather variables at the reference level should be additionally removed using the 

Fourier series based temporal de-trending method as described in Section 3.2.1. 

Fig. 4-4 compares the empirical semi-variances (𝑚2 𝑠2⁄ ) which are calculated from 

(a) the wind speed residuals after temporal de-trending (TD) and spatial de-trending 

(SD); (b) the wind speed residuals after SD only; and (c) original wind speeds at the 

reference level of 300m above sea level. The empirical semi-variances calculated 

from original wind speeds at the reference level are shown to be higher than those 

that are estimated from the residuals without spatial trends in terms of DTO. In 

addition, the indistinct pattern of growth in semi-variance with distance lag makes it 

difficult to select an appropriate mathematical function to model the semi-variogram. 

Moreover, the semi-variogram modelled from original wind speeds may not 

accurately indicate spatial correlations among wind speeds at the reference level due 

to the interference of trend surfaces in terms of DTO. When TD and SD are both 

applied to the original data at the reference level, the empirical semi-variances 

calculated from the de-trended data are smaller than that for original data and are 

clearly shown to asymptotically approach the maximum value, i.e. the sill, 

illustrating the importance of detrending. 
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Fig. 4-4. Empirical semi-variances calculated from (a) residuals of wind speed after temporal 

de-trending (TD) and spatial de-trending (SD); (b) wind speed residuals after SD only; and (c) original 

wind speeds at the reference level of 300m above sea level over 45 days from 00:00 on 14/12/2012 to 

23:50 on 27/01/2013 

4.3. Results of Rank Correlation based Pairing 

Pairs of weather variables including different parameters at a particular location and 

the same parameters at different locations are correlated. In the Monte Carlo process, 

104 weather samples are randomly and independently generated from the modelled 

predictive distributions of the measured weather variables including air temperature 

(𝑇𝑎), wind speed (𝑤𝑠) and wind direction (𝑤𝑑). These random weather samples at a 

particular future time are paired based on the rank correlations calculated from recent 

weather observations taken to be within 15 days. Fig. 4-5 shows that the paired 

random weather samples at a single station have similar rank correlations to those 

between their recent observations, especially the paired samples of air temperature 

and wind speed. The magnitudes of correlations between the unpaired weather 

samples are smaller than 0.01 which confirms that they are independent of each 

other. 
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Fig. 4-5. Rank correlations between paired, unpaired random samples of weather variables and their 

recent observations within 15 days at the same weather stations 4 and 6 

The paired random samples of air temperature and wind speed at different stations 

having rank correlations quite close to those between their recent observations are 

shown in Fig. 4-6. The same weather parameters between different weather stations 

generally have positive rank correlations which are relatively higher than those 

between different weather parameters. Due to the paired samples of air temperature 

between different weather stations having significant positive rank correlations, the 

paired wind speed samples at a particular station are shown to have similar rank 

correlations with air temperature samples at different stations. When calculating the 

rating for an entire OHL, random samples of air temperature and wind speed at 

different stations are only paired. This is because the rank correlation matrix 𝐶𝑅 

computed from recent observations may not be positive definite when additionally 

considering wind direction samples, which means that the Cholesky factorization 

could not be implemented. 
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Fig. 4-6. Rank correlations of paired, unpaired random samples of air temperature and wind speed and 

their recent observations between stations 4 and 6 within 15 days. 

The paired (correlated) weather samples at a particular station can be directly used to 

calculate probabilistic forecasts of steady-state DLRs for the span in close proximity 

to the station. To estimate probabilistic DLR forecasts for an entire OHL, the paired 

samples of air temperature and wind speed, unpaired (independent) wind direction 

samples and point forecasts of solar radiation at different weather stations are first 

used to infer possible weather predictions for all spans within the OHL by suitable 

spatial interpolation methods which will be determined in Section 4.4. 

4.4. Results of Spatial Interpolation 

As was noted in Section 4.2.2, the inverse distance weighting (IDW) method assigns 

weights to sampled locations considering their distances from the target location only. 

In addition to the distances, the kriging weights are largely influenced by spatial 

relationships between different locations which are modelled from historic time 

series of the measured weather variables within a sliding training window. The 

training window length used for spatial interpolation is the same as that selected for 

probabilistic forecasting for each weather variable. In the kriging process, the 
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semi-variogram model used to determine covariances between locations is fitted to 

the empirical semi-variances that are computed from the de-trended data after 

removing temporal trends and trend surfaces (or spatial trends) of weather data in 

terms of the associated geographical variables at a predefined reference level. 

The performances of different spatial interpolation methods are assessed by 

calculating their root mean square errors (RMSEs) [105] when taking each weather 

station as the target location in a cross-validation procedure. Since the captured 

spatial correlations between locations additionally affect the kriging weights, the 

semi-variogram model for each weather variable is first examined, as shown in Fig. 

4-7 where weather station 2 is regarded as the target location. Due to the circular 

properties of wind direction, measurements of wind directions are decomposed into 

the easterly and northerly components and the semi-variogram is then fitted for each 

component separately. 

 
Fig. 4-7. The semi-variogram fitted to empirical semi-variances calculated from the de-trended data 

within the training window from 00:00 on 14/12/2012 to 23:50 on 27/01/2013 for air temperature at 

sea level, wind speed at 300m above sea level, easterly and northerly components of wind direction, 

and solar radiation when weather station 2 is regarded as the target location 
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The spatial relationships of air temperature referenced to sea level and solar radiation 

in the research area are successfully represented by Gaussian and exponential models 

respectively. A relatively large deviation between the semi-variance fitted by an 

exponential model and the empirical value is observed at around 10𝑘𝑚 distance lag 

for wind speed at 300m above sea level (ASL), meaning that the actual spatial 

correlations between wind speeds that are approximately 10𝑘𝑚 apart at 300m ASL 

may be lower than the modelled correlations. The semi-variances fitted for the 

northerly and easterly components of wind directions reach their respective 

maximum values or sills at a very short distance lag (around 10𝑘𝑚). The IDW 

interpolation method is therefore applied to each component of wind direction. 

Previous work [20] undertaken by Durham University used the IDW method for each 

weather variable. A wind profile power law with a reference level of 200m above 

ground level (AGL) was additionally used for wind speed interpolation [20]. In this 

section, a number of spatial interpolation models are developed through different 

combinations of the interpolation methods, i.e. IDW or kriging (KRI) and spatial 

de-trending, as listed in Table 4-2. It is noted that the sliding training windows for the 

modelling of spatiotemporal trends and the determination of kriging weights are of 

the same lengths as those that are selected for weather forecasting models and are 

updated at each 10-minutes time step. The improvements in RMSEs for spatial 

interpolation of each weather variable over the Durham’s methods for the models 

that are developed in this research are shown in Figs. 4-8, 4-9, 4-12 and 4-14 

respectively in the following subsections. 
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Table 4-2. Spatial interpolation models developed in previous work [20] and in this section 

 Air Temperature Wind Speed Wind Direction Solar Radiation 

Durham IDW 
IDW + 200m 

AGL 
IDW IDW 

New 1 
IDW + Lapse 

Rate 
IDW + 300m ASL 

IDW + Cartesian 

Coordinates 
KRI 

New 2 KRI + Lapse Rate 
IDW + 300m ASL 

+ DTO 
  

New 3  
KRI + 300m ASL  

+ DTO 
  

4.4.1. Spatial interpolation of air temperature 

 
Fig. 4-8. Improvement in RMSEs for air temperature interpolation over the Durham’s method for the 

models developed in this section when taking each weather station as the target location 

The spatial interpolation models taking account of the lapse rate are shown to 

perform better than the IDW method used in [20] for air temperature interpolation at 

most weather stations. The improvements over the IDW method without use of the 

lapse rate are significant at the weather stations on east side of the research area (i.e. 

stations 5 – 9) which have large variations in altitude. This means that the conversion 

of air temperature between original heights and the sea level (i.e. the reference level 

at which the spatial interpolation is carried out) can effectively mitigate impacts of 

the elevation above sea level on spatial interpolation of air temperature. 
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However, the accuracies of air temperature estimates for stations 1 and 7 are not 

improved with the additional consideration of the lapse rate. It is found that the 

differences in air temperature between station 1 and its adjacent stations 2 and 3 at 

their original heights are slightly smaller on average than that at the sea level. Table 

4-3 describes a particular case where the use of the lapse rate in the IDW method 

does not significantly reduce the error of air temperature estimate for station 7. The 

elevations (𝑚) ASL, average air temperatures (℃) at original levels and the sea level 

of station 7 and its surrounding stations 5, 6, 8 and 9 on which it largely depends on 

16/02/2013 are listed in Table 4-3. The IDW weights assigned to the stations in 

proximity to station 7 and their kriging weights are also given in Table 4-3 together 

with the corresponding estimates for station 7. Since there are slight changes in 

kriging weights at each 10-minutes time step, the kriging weights evaluated at 00:00 

on 16/02/13 are applied to average air temperatures to estimate the interpolation. 

Table 4-3. Elevation (𝑚) ASL, average air temperature (℃) at original heights and the sea level of 

stations 5 – 9, IDW weights and kriging weights assigned to stations 5, 6, 8 and 9 and the 

corresponding estimates (℃) for station 7 

Station Index 5 6 7 8 9 

Estimates (℃) 

IDW Kriging 

Elevation (𝑚) 136.2 32.5 175.7 256.6 9.0 N/A 

Original (℃) 3.2403 3.8514 2.6528 1.6637 3.5804 2.3626 N/A 

Sea Level (℃) 4.0575 4.0464 3.7070 3.2033 3.6344 3.4715 3.7192 

IDW 0.0362 0.1311 N/A 0.6737 0.1018 N/A 

Kriging 0.1224 0.2450 N/A 0.3091 0.2620 N/A 

The average air temperature of station 7 at the original height is shown to be higher 

than that at the nearest station 8 but lower than those at other surrounding stations. 

When the average air temperatures are converted from original levels to the sea level, 

these relatively large deviations from surrounding stations are significantly reduced. 

Though it is more reasonable to take account of the effect of lapse rate on air 
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temperature, the direct use of the IDW method happens to result in an error similar to 

that for the additional consideration of lapse rate. 

The kriging model is shown to give further improvements at most stations due to it 

additionally taking into account spatial correlations between different locations. It is 

found that the empirical semi-variances between air temperatures that are short 

distances apart (e.g. within 35𝑘𝑚 as shown in Fig. 4-7) are very similar meaning 

that the actual value at the target location may be closer to the observation at a 

sampled location relatively further away from it than the nearest sampled location. 

For example, the difference (0.07℃) in average air temperature at the sea level 

between stations 7 and 9 is smaller than that (0.5℃) between stations 7 and 8 and 

that (0.43℃) between stations 8 and 9 as listed in Table 4-3 though station 8 is the 

nearest location to both stations 7 and 9. The large weight assigned to the nearest 

sampled location in the IDW process may therefore lead to a relatively large error of 

air temperature estimate. 

Fig. 4-7 shows that the semi-variances of residuals of air temperature at the sea level 

fitted by a Gaussian model increase slowly at the origin due to the similar empirical 

semi-variances at short distance lags. This weakens the impact of the nearest sampled 

location and increases the weights assigned to sampled locations that are relatively 

further away from the target location. In addition, the smoothing effect of the nugget 

reduces the influence of the nearest location on the target location. For example, 

when station 7 is regarded as the target location, the IDW weight assigned to the 

nearest station 8 is 0.67 which reduces to 0.31 in the kriging process along with 

the increasing impacts of other stations as listed in Table 4-3. In this calculation 

example, the kriging estimate has an error of 0.01℃ which is much smaller than the 

error of IDW estimate equal to 0.24℃. Therefore, in this study where the air 

temperatures that are short distances apart have similar spatial correlations, the 

kriging model shows a better performance than the IDW method through weakening 
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the weight given to the nearest sampled location. The kriging model with an addition 

of lapse rate is therefore used here for air temperature interpolation. 

4.4.2. Spatial interpolation of wind speed 

 

Fig. 4-9. Improvement in RMSEs for wind speed interpolation over the Durham’s method for the 

models developed in this section when taking each weather station as the target location 

The experimental results show that 300m ASL is a better choice as the reference 

level in this case where weather stations are located in the mountainous terrain. 

Using the reference level of 300m ASL and the IDW method, the additional 

modelling of the surface trend in terms of distance to ocean (DTO) improves the 

accuracy of wind speed interpolation further at most stations, except for stations 1 

and 9. As can be seen from Fig. 1-3, stations 1 and 9 are located on the edge of the 

research area and their estimates largely depend on the nearest stations 2 and 8 

respectively. It is found in some cases that removing the trend surfaces increases the 

differences in residuals between the target locations and their adjacent sampled 

locations. As shown in Fig. 4-10, for example, wind speeds of station 9 (i.e. the target 

location) and station 8 at the reference level of 300m ASL have a slight difference of 

0.14𝑚 𝑠⁄  at 00:10 on 28/01/2013. However, the difference between their residuals 

increases to 1.35𝑚 𝑠⁄  when the trend surface in terms of DTO modelled from 

sampled locations (i.e. stations 1 to 8) is removed. 
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Fig. 4-10. Wind speeds at 300m ASL at 00:10 on 28/01/2013 and the trend surfaces in terms of DTO 

modelled from the data within recent 45 days at stations 1 – 8 

The kriging model performs just slightly better than the IDW method at most stations 

when both make use of spatial de-trending. The limited improvement might be due to 

the insufficient number and distribution of weather stations. Since the wind speed is 

largely affected by local effects and varies significantly across the study region, the 

limited number of weather stations results in an inadequate number of empirical 

semi-variance points to fit an accurate semi-variogram to represent spatial 

correlations of wind speed, especially at short distance lags. As was noted in Section 

4.2.2.1, the kriging model can mitigate the effects of clusters. However, the weather 

stations are fairly well distributed and there are no severe clusters so that kriging’s 

advantage of being able to compensate for cluster effects is limited. 

An unsatisfactory performance of kriging is observed at station 3 compared to the 

IDW, which may be due to the smoothing effect of the nugget. Regarding station 3 as 

the target location, the IDW method gives a high weight of 0.75 to the nearest 

station 2 while the kriging weight is around 0.58. It is found that the empirical 

semi-variance of wind speed residuals at 300m ASL between stations 2 and 3 that are 

3.8𝑘𝑚 apart (i.e. the minimum sampling distance in the research area) equals 

approximately 1.6𝑚2 𝑠2⁄ , which is much smaller than the semi-variances at other 
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distance lags as shown in Fig. 4-11. This indicates a strong correlation between wind 

speeds that are quite close in space. Therefore, the weakened influence of the nearest 

station 2 in the kriging process leads to less accurate estimates for station 3. 

 

Fig. 4-11. Empirical semi-variances calculated from residuals of wind speeds at all weather stations at 

300m ASL over the period from 00:00 on 14/12/2012 to 23:50 on 17/01/2013 

Considering the strong correlations between wind speeds that are very close in space, 

the IDW method combined with the modelling of trend surfaces of wind speed at 

300m ASL in terms of DTO is employed here to estimate wind speeds for overhead 

spans that are located below 300m ASL. For a limited number of spans that are 

above 300m and 400m ASL, the reference levels of 400m and 500m ASL are 

adopted respectively. Although the use of 400m and 500m ASL is found to slightly 

reduce the accuracy of wind speed interpolation in the cross-validation procedure, 

the spans above 300m and 400m ASL may rarely limit the rating for an OHL since 

they usually experience relatively higher wind speeds and lower air temperatures, i.e. 

a higher convection cooling than those that are located at lower elevations. 
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4.4.3. Spatial interpolation of wind direction 

 

Fig. 4-12. Improvement in RMSEs for wind direction interpolation over a simple IDW method for a 

combination of the IDW method and the Cartesian coordinates when taking each weather station as 

the target location 

Decomposing wind directions along the easterly and northerly axes in Cartesian 

coordinates successfully addresses the circular properties of wind direction 𝑤𝑑 ∈

(−𝜋, 𝜋] and results in more accurate interpolations than directly applying IDW to 

original wind directions. It was mentioned in [20] that the direct application of IDW 

may result in erroneous wind direction estimates, in particular when concurrent 

observations at weather stations are around – 𝜋 and 𝜋. In this case, the inference of 

wind direction for the target location may be around 0, leading to an error of 𝜋 

between the actual value and the estimate. However, an error of 𝜋 in wind direction 

provides the same cooling as the actual wind direction due to the fact that the forced 

convection heat loss rate is determined by the angle between the conductor axis and 

wind direction [3]. Therefore, the maximum error of ±𝜋  in wind direction 

interpolation would not affect the cooling effect estimation [20], while an error of 

𝜋 2⁄  may be a real problem for certain wind directions, e.g. those that are 

approximately parallel or perpendicular to the conductor. 
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To assess the accuracy of wind direction interpolations with respect to their impacts 

on the wind cooling effect, errors of wind direction estimates 𝑒𝑟𝑟𝑜𝑟𝜃 are converted 

into the interval of (−𝜋 2⁄ , 𝜋 2⁄ ]: 

𝑒𝑟𝑟𝑜𝑟𝜃
∗ = {

𝑒𝑟𝑟𝑜𝑟𝜃 + 𝜋     𝑓𝑜𝑟
      𝑒𝑟𝑟𝑜𝑟𝜃       𝑓𝑜𝑟
𝑒𝑟𝑟𝑜𝑟𝜃 − 𝜋     𝑓𝑜𝑟

                    𝑒𝑟𝑟𝑜𝑟𝜃 ≤ −𝜋 2⁄

−𝜋 2⁄ < 𝑒𝑟𝑟𝑜𝑟𝜃 ≤ 𝜋 2⁄

                  𝑒𝑟𝑟𝑜𝑟𝜃 > 𝜋 2⁄
 (3-15) 

The RMSEs of 𝑒𝑟𝑟𝑜𝑟𝜃
∗  are calculated for both spatial interpolation models, as 

shown in Fig. 4-13 where the additional use of the Cartesian coordinates gives 

significant improvement in RMSEs of 𝑒𝑟𝑟𝑜𝑟𝜃
∗ over the Durham’s method at most 

stations. Therefore, the IDW method is combined with the Cartesian coordinates to 

estimate wind directions for spans in this study. 

 

Fig. 4-13. Improvements in RMSE of 𝑒𝑟𝑟𝑜𝑟𝜃
∗ ∈ (−𝜋 2⁄ , 𝜋 2⁄ ] over a simple IDW method for a 

combination of the IDW method and the Cartesian coordinates when taking each weather station as 

the target location 
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4.4.4. Spatial interpolation of solar radiation 

 

Fig. 4-14. Improvement in RMSEs for solar radiation interpolation over IDW for kriging when taking 

each weather station as the target location 

Although the semi-variogram model was successfully fitted for solar radiation, the 

kriging is shown to perform similarly to IDW. This may be because weather stations 

are in fairly even distribution where kriging may give a similar interpolation 

accuracy to other interpolation methods [141]. In addition to the spatial interpolation 

algorithm used to calculate weights, the accuracy of solar radiation estimate is 

influenced by associated meteorological parameters such as precipitation, relative 

humidity, vapor pressure deficit, cloudiness, etc. [142]. Local topographic features 

(i.e. elevation, slope and aspect) provided by a digital elevation model could also be 

used for solar radiation interpolation. Solar radiation mapping techniques have been 

developed in a geographic information system (GIS) to estimate the potential solar 

radiation from topographic information that is combined with different physical 

parameterization [143]. The GIS based solar radiation map was additionally refined 

by comparing the physical estimates with their corresponding actual observations 

[144]. However, the GIS based solar radiation mapping generally requires the 

associated meteorological parameters which may be difficult to obtain [145]. Bezzi 

and Vitti [146] defined a morphological index for each location by combining the 
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classes of the local slope and aspect, and developed a linear function to model the 

variation in direct solar radiation with the order of the morphological index that was 

sorted based on the average of the measured direct solar radiation. It may be feasible 

to use the combined re-classification of the slope and aspect classes to model the 

trend surfaces of solar radiation if the associated meteorological parameters are fairly 

uniform in the research area. 

Since the associated meteorological parameters and topographic features are not 

available in this study, the IDW method that shows similar performance and requires 

less computation time than the kriging model is used to infer solar radiations for 

overhead spans. 

4.5. Conclusions 

A rank correlation based paring method and spatial interpolation models have been 

developed in this chapter to generate appropriate correlated weather samples for each 

overhead span. To determine probabilistic forecasts of steady-state ratings, a large 

number of random weather samples are independently generated from the predictive 

distributions modelled for the measured weather variables. These independent 

random weather samples are paired to have rank correlations similar to those that are 

computed from recent weather observations within the most recent 15 days. The 

correlations of the paired weather samples are close to those from historic weather 

data, especially for linear variables, i.e. air temperature and wind speed. The random 

samples of air temperature and wind speed at different stations are only paired for the 

rating estimation for an entire overhead line (OHL). This is because the rank 

correlation matrix calculated from recent weather observations may not be positive 

definite when including variables for wind direction, which would disable the rank 

correlation based pairing method. 
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The correlated random samples of air temperature and wind speed, independent wind 

direction samples and point forecasts of solar radiation at different stations are used 

to infer possible weather conditions experienced at all spans within an OHL through 

suitable spatial interpolation methods. An appropriate spatial interpolation method is 

determined for each weather parameter by comparing performances of an inverse 

distance weighting (IDW) model that was employed in previous work [20] and a 

kriging interpolation model that assigns weights based on a data-driven weighting 

function. In addition, spatial de-trending has been used to fit spatial trends or trend 

surfaces to weather data in terms of the associated geographic variables, e.g. air 

temperature decreasing with elevation above sea level (ASL) and wind speed at a 

reference level of 300m ASL decreasing with distance to ocean. Then the modelled 

trend surfaces are removed from weather data at the reference level so as to mitigate 

the impacts of geographic variables on spatial correlations among the field data as 

well as the interpolation process. The semi-variogram fitted to the empirical 

semi-variances that are computed from residuals after Fourier series based temporal 

de-trending and spatial de-trending does not suffer from the interference of the trends 

implied in weather data. Compared to the semi-variogram derived from the original 

data, the residuals based semi-variogram clearly shows the pattern of semi-variances 

between weather variables increasing with distance lag. The additional use of spatial 

de-trending makes the main contribution to the accuracy of spatial interpolation for 

air temperature and wind speed. Furthermore, more accurate wind direction estimates 

are obtained by using the IDW method that is combined with the decomposition of 

wind direction in the Cartesian coordinates. 

Due to the similar spatial correlations between air temperatures that are short 

distances apart, a Gaussian model with a non-zero nugget is selected to fit empirical 

semi-variances in the kriging process. This weakens the kriging weight assigned to 

the nearest sampled location and smooths the interpolation surface, which results in a 

higher accuracy of air temperature interpolation in this study. For wind speed and 
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solar radiation, the kriging model performs just slightly better than the IDW method 

at most stations, which might be due to the insufficient number of weather stations 

and their fairly even distribution in the research area. Compared to the IDW that uses 

an arbitrary function to give a decreasing weight with increasing distance from the 

target location, the main advantage of kriging is that it does not assign an unduly 

high weighting to what are effectively duplicate measurements in similar locations, 

an advantage that is not significant in this case. An insufficient number of sampled 

locations could result in that the fitted semi-variogram not accurately representing 

the spatial correlations among weather variables, especially at a short distance lag. 

Furthermore, the smoothing effect of the nugget in the kriging process could degrade 

the performance of wind speed interpolation for the target location that is very close 

to its nearest sampled location. This is because wind speeds show significant spatial 

correlations at short distance lags while the nugget effect reduces the influence of the 

nearest sampled location on the target location. 

Through a detailed comparison and assessment of the accuracy of different spatial 

interpolation methods for each weather parameter, the following spatial interpolation 

methods are employed in this research: 

• Kriging combined with the lapse rate for air temperature; 

• IDW combined with the modelling of the trend surface of wind speed at the 

reference level of 300m ASL in terms of distance to ocean (DTO) for wind 

speed; (The reference levels of 400m and 500m ALS are adopted for the 

overhead spans that are located above 300m and 400m ASL respectively); 

• IDW combined with the decomposition of wind direction in the Cartesian 

coordinates for wind direction; 

• IDW for solar radiation. 

It should be noted that it cannot be guaranteed that any particular spatial interpolation 

method will be suitable for all cases [147]. The modelling of spatial trends in terms 
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of geographic parameters is location specific. For example, the effect of DTO on 

wind speed has been tested and considered for spatial interpolation in this research 

which focuses on a coastal area. However, this may be not applicable for an inland 

region or a particular area where there is no clear relationship between wind speed 

and DTO. Furthermore, spatial correlations among weather variables generally vary 

in different research areas, which may affect the selection of spatial interpolation 

models. As was discussed above, kriging works better than IDW for air temperature 

interpolation in this study since kriging takes account of similar spatial correlations 

between air temperatures at short distance lags and weakens the weight assigned to 

the nearest sampled location. For other study regions where air temperature shows a 

strong spatial correlation at short distance lags, kriging may have a performance 

similar to or worse than IDW. Moreover, as noted above, a fairly even distribution 

and a limited number of weather stations in a research area may degrade the 

performance of kriging which has an advantage of compensation for cluster effects 

and relies on the accurate modelling of spatial correlations between weather variables. 

Therefore, for different weather parameters or study regions of interest, an 

appropriate spatial interpolation method in each case has to be determined through 

assessment of the possible approaches [106].  
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5. PROBABILISTIC FORECASTING OF 

STEADY-STATE DYNAMIC LINE RATING 

5.1. Introduction 

The probabilistic forecasts of steady-state dynamic line rating (DLR) for up to a half 

hour (3 steps) ahead at two particular spans, CQ34-CQ35 and AC102-AC101B in 

proximity to weather stations 4 and 6 and eight 132kV overhead lines (OHLs) in the 

research area, are studied. The 132kV OHLs are composed of ‘Lynx’ ACSR 

175𝑚𝑚2  and ‘Poplar’ AAAC 200𝑚𝑚2  conductors with maximum allowable 

conductor temperatures of 50℃ and 75℃ which are reduced to 45℃ and 70℃ 

respectively for reasons of conservatism [10], as was discussed in Section 3.3.5. The 

static line ratings (SLRs) for the two spans are 485𝐴 and 607𝐴 in winter (January 

and February) and 450𝐴 and 581𝐴 in spring (March) respectively [10]. 

Using the rank correlation based pairing method and the spatial interpolation model 

adopted for each weather parameter, 104 sets of correlated and independent random 

weather samples are generated for each span from the predictive distributions of the 

measured weather variables at a particular future moment. These correlated and 

independent weather inputs are then separately used to determine the possible 

forecasts of steady-state DLRs for each span based on a thermal model of overhead 

conductors [3]. The minimum value of DLR forecasts for all spans within an OHL is 

identified as the rating for the whole line in each of 104 scenarios. A sample 

cumulative distribution function (CDF) can be extracted from 104 sampled values 

of DLR forecasts for a particular span or an entire OHL. The percentiles of DLR 

forecasts are then smoothed and estimated by kernel density estimation [148]. 

The calibration of probabilistic steady-state DLR forecasts estimated by different 

approaches, i.e. the conditionally heteroscedastic (CH) models based on correlated 

weather samples, the CH models based on independent weather samples, and the 
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homoscedastic models based on independent weather samples, will be examined by 

their histograms of probability integral transform (PIT) so as to determine which 

approaches are most suited to estimation of DLRs, especially at lower percentiles for 

a particular span and an OHL. The forecast accuracies of the selected approaches will 

be assessed for different rating levels using persistence forecasting as a benchmark. It 

is noted that, in this chapter, steady-state DLRs estimated from weather observations 

through the thermal model of the conductors are regarded as the ‘actual’ ratings and 

that the uncertainty of DLR forecasts is modelled based on weather forecast errors 

only under an assumption of perfect spatial interpolation between weather variables.  

5.2. Probabilistic DLR Forecasting for a Single Span 

Random weather inputs for a particular span are separately estimated through a 

spatial interpolation between correlated and independent weather samples which are 

generated from the predictive distributions of the measured weather variables. For a 

single span in close proximity to a weather station, weather measurements at the 

station can be directly used to calculate probabilistic DLR forecasts for the span. The 

probabilistic 1-step-ahead and 3-step-ahead DLR forecasts at two spans CQ34-CQ35 

and AC102-AC101B in proximity to weather stations 4 and 6 are studied here. 

5.2.1. Calibration of probabilistic forecasts for a single span 

When calculating probabilistic DLR forecasts for a single span in close proximity to 

an installed weather station, only correlations between random samples of different 

weather parameters at the station are considered. The predictive distribution of 

steady-state DLR is derived from the 104 sets of random weather samples using 

Monte Carlo simulation. Fig. 5-1 shows the predictive distributions of the measured 

weather variables for 3 steps ahead at station 4 and the corresponding distribution of 

DLR forecasts at span CQ34-CQ35 estimated from the correlated random weather 



147 

 

samples. The percentiles of DLR forecasts are then smoothed and estimated by 

kernel density estimation [148]. 

 

Fig. 5-1. Predictive distributions of weather conditions at weather station 4 and the corresponding 

steady-state DLR at span CQ34-CQ35 derived from the paired weather samples for 3 steps ahead at 

12:00 on 25/02/2013 (observed values are represented by red lines). 

Figs. 5-2 and 5-3 show the ratios of 5th – 95th percentiles, 25th – 75th percentiles, point 

forecasts of continuous DLRs modelled by the conditionally heteroscedastic (CH) 

models based on correlated (CH-C) weather samples for 1 step ahead and 3 steps 

ahead and weather observation based DLRs to the static line ratings (SLRs) on 

27/03/2013 for CQ34-CQ35 and AC102-AC101B respectively. The distributions of 

3-step-ahead DLR forecasts are less concentrated than that of 1-step-ahead forecasts 

on average due to the fact that a satisfactory calibration is to be preserved while the 

forecast errors increase for DLRs for 3 steps ahead. 
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Fig. 5-2. Probabilistic 1-step-ahead and 3-step-ahead steady-state DLR forecasts on 27/03/2013 for 

span CQ34-CQ35 

 

Fig. 5-3. Probabilistic 1-step-ahead and 3-step-ahead steady-state DLR forecasts on 27/03/2013 for 

span AC102-AC101B 

As was noted in Section 3.2.5, the calibration of probabilistic forecasts can be 

assessed by the histogram of the probability integral transform (PIT). An 

approximately uniform PIT histogram reveals probabilistic forecasts to be fully 

calibrated. The PIT histograms for probabilistic steady-state DLR forecasts for half 
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hour ahead generated by the CH-C weather inputs, the CH models based on 

independent (CH-I) weather inputs, and the homoscedastic (H) models based on 

independent (H-I) weather inputs for two spans are plotted in Fig. 5-4. The relative 

frequency of 0.01  per percentile for a uniformly distributed PIT histogram is 

represented by a black solid line. 

 
Fig. 5-4. PIT histograms of probabilistic 3-step-ahead steady-state DLR forecasts for the two spans 

The PIT histograms of probabilistic steady-state DLR forecasts derived from the CH 

models are shown to have a better calibration than those derived from the H models. 

The hump shaped PIT histograms of DLR forecasts estimated by the H-I weather 

inputs indicate that the H-I probabilistic DLR forecasts are too dispersive on average. 

Furthermore, the relative frequencies at both ends of the CH-C PIT histograms are 

high which reveals that the predictive distributions of DLRs are less dispersive for 

most of the time. This might be due to the long-term positive correlations between 

the paired random samples of air temperature and wind speed as shown in Fig. 4-5. 

The increased cooling effect induced by high wind speeds is usually reduced by 

accompanied high air temperatures, and vice versa. This hypothesis is tested by 

comparing the PIT histograms of DLR forecasts for half hour ahead at the span 



150 

 

CQ34-CQ35 that are derived from (a) the independent random weather inputs, (b) 

the independent wind direction samples and the correlated samples of wind speed 

and air temperature that are paired based on historic weather observations and (c) the 

independent wind direction samples and the correlated samples of air temperature 

and wind speed that are paired based on a specified rank correlation of 0.9. These are 

shown in Fig. 5-5. 

 

Fig. 5-5. PIT histograms of 30-minutes-ahead steady-state DLR forecasts at the span CQ34-CQ35 

estimated from (a) the independent weather samples, (b) the independent wind direction samples and 

the correlated air temperature and wind speed samples that are paired based on historic weather 

observations and (c) the independent wind direction samples and the correlated air temperature and 

wind speed samples that are paired based on a specified rank correlation of 0.9. 

When pairing the samples of air temperature and wind speed only, the PIT histogram 

(b) is very similar to the PIT histogram (a) derived from the independent random 

weather inputs. When a specified rank correlation of 0.9 is imposed on the random 

samples between air temperature and wind speed, the relative frequencies at both 

ends of the PIT histogram (c) are slightly higher than those that are derived from the 

independent random weather samples. This means that it is the correlation between 

wind speed and wind direction samples that makes the main contribution to the 

overconcentration of the CH-C model based predictive distributions of DLRs on 

average. This may be because air temperature predictions are so accurate that the 

range of air temperature samples at a particular future time is very small, leading to a 

slight impact of the correlation between wind speed and air temperature samples on 

the distribution of DLR forecasts. In addition, it is the rise of the maximum allowable 
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conductor temperature 𝑇𝑐𝑚𝑎𝑥 above air temperature that determines the convection 

and radiation heat loss rates which affect steady-state DLRs. As was noted in Section 

3.3.5, given a large difference between 𝑇𝑐𝑚𝑎𝑥 and air temperature, the small range 

of air temperature samples at a particular future moment would have similar impacts 

on the prediction of steady-state DLRs. 

The significant deviations from the ideal relative frequency of 0.01 at both ends of 

the CH-C PIT histograms are mitigated in the CH-I PIT histograms as shown in Fig. 

5-4. In theory, the independent random weather samples should be treated as 

correlated. However, the additional correlations aggravate the concentration of 

under-dispersive CH-I probabilistic DLR forecasts in this research. Through 

checking the correlation between PIT values of the probabilistic DLR forecasts for 

each of the weather predictions, wind speed is found to be the dominant factor 

affecting the distributions of the PIT histograms of DLR forecasts. (The correlations 

in PIT values between DLR forecasts for the two spans and wind speed forecasts at 

the local weather stations are 0.75 and 0.67 respectively.) The PIT histograms of 

probabilistic steady-state DLR forecasts for 1 step (10 minutes) ahead are similar to 

the PIT histograms for 3 steps (half hour) ahead derived from the same models. The 

conclusions obtained from the histograms for 3 steps ahead can also be summarised 

from the histograms for 1 step ahead. 

5.2.2. Accuracy of DLR forecasts for a single span 

In spite of the extra current-carrying capacity released by DLRs being several times 

higher than the SLRs for most of the time, as shown in Figs. 5-2 and 5-3, in practical 

application, the upgrading of ratings will usually be limited to levels around 25% 

above the SLRs to prevent the protection scheme tripping and to reflect the 

constraints of other circuit equipment [71, 149]. Although the estimated lower DLR 

percentiles were found to exceed the uprating limit in some cases, the weather-based 

model developed here is necessary for the cases where the percentiles adopted from 
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probabilistic DLR forecasts are below 125% of SLRs. The accuracies (root mean 

square error, RMSE) of DLR forecasts estimated by the CH-I models for the three 

levels of less than 100% SLR, 100-125% SLR and above 125% SLR, are estimated 

respectively as tabulated in Table 5-1. It may be noted that the accuracies of point 

forecasts of steady-state DLRs calculated from the correlated and independent 

random weather samples are quite similar. 

Table 5-1. RMSE (𝐴) of steady-state DLR forecasts estimated by the CH-I models for the three levels 

of improvement of SLR and their improvement (%) over persistence 

Span CQ34-CQ35 AC102-AC101B 

Step(s) ahead 1 3 1 3 

Total 
RMSE 53.3 61.7 65.1 77.6 

Improve. 11.34% 12.07% 9.25% 11.46% 

≤100% 

SLR 

RMSE 80.7 95.1 N/A† N/A 

Improve. −7.51% −5.03% N/A N/A 

100-125% 

SLR 

RMSE 52.9 59.1 89.9 113.6 

Improve. 17.45% 18.59% −4.25% −2.56% 

>125% 

SLR 

RMSE 48.6 57.0 61.0 71.6 

Improve. 12.95% 13.42% 12.21% 14.95% 

†
Only one rating observation was found below SLR for AC102-AC101B. 

The CH-I model based DLR predictions are shown to be significantly better than 

persistence. For the key level of 100-125% SLR, the CH-I models perform much 

better for CQ34-CQ35, but worse for AC102-AC101B, than persistence. That is, the 

CH-I forecasting models perform worse for both spans at the levels of their 

respective lower ratings (the levels below SLR for CQ34-CQ35 and of 100-125% 

SLR for AC102-AC101B). It is found that wind speed observations corresponding to 

lower rating levels are mainly within the ranges of smaller values where the 

improvement in RMSE over persistence for the AR(4)-CH forecasting models is 

quite small, i.e. 0.66% at CQ34-CQ35 and 0.27% at AC102-AC101B. The 
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distributions of errors of DLR forecasts for 3 steps ahead at the level below the SLR 

and the distributions of corresponding wind speed and wind direction observations 

and their 3-step-ahead forecasts for CQ34-CQ35 are compared in Fig. 5-6. 

 
Fig. 5-6. Distributions of errors of 3-step-ahead steady-state DLR forecasts, the wind speed and wind 

direction observations and their 3-step-ahead forecasts corresponding to the rating level below the 

SLR for CQ34-CQ35 

Fig. 5-6 reveals that the DLRs predicted by the CH-I models are usually 

overestimated at the low rating levels (<SLR) due to the wind speed forecasts being 

significantly overestimated by the AR(4)-CH models. It is interesting that a 

significant proportion of the DLR persistence forecast errors are concentrated around 

zero which might be due to the predicted and observed wind speeds having very low 

values (≤ 0.4𝑚/𝑠). This will lead to small differences between the predicted and 

observed DLRs, especially when wind directions are nearly parallel to the overhead 

span which mitigates wind cooling. The experimental results indicate that, at this low 

rating level, the persistence forecasts and observations of wind speed are both under 

0.4𝑚/𝑠 for 23.6% of the time and both under 0.3𝑚/𝑠 for 10.3% of the time, while 

for the AR(4)-CH model, the corresponding percentages of time are only 6.5% and 

0.3% respectively. The AR(4)-CH model’s overestimation at lower values of wind 

speed can also explain the unsatisfactory performance of the CH-I model at the level 
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of 100-125% SLR for AC102-AC101B. Therefore, the lower percentiles of DLR 

forecasts derived from the CH-I model should be applied so as to avoid the risk of 

using the overestimated point predictions of steady-state DLRs for a particular span. 

The average additional capacities (AAC) above SLR (in %) released by the CH-I 1st, 

3rd and 5th percentiles for 3 steps (30 minutes) ahead and the percentage of time that 

these percentiles are above SLR are listed in Table 5-2. The extra thermal headroom 

which can be exploited by lower percentiles for AC102-AC101B is much higher than 

that for CQ34-CQ35. Furthermore, the lower rating percentiles for AC102-AC101B 

are usually greater than its SLRs. It is found that the SLRs used for AC102-AC101B 

(i.e., 607𝐴 for winter and 581𝐴  for spring [10]) are smaller than those (i.e., 

654.4𝐴 and 609.1𝐴) that are calculated by the thermal model of the conductors [3] 

based on the ‘worst-case’ weather assumptions for the SLR estimation (wind speed 

of 0.5𝑚 𝑠⁄ , wind attack angle of 12.5𝑜, zero solar radiation and air temperatures of 

2℃ and 9℃ for winter and spring respectively) [150]. This may be because the 

emissivity (ranging from 0 to 1) of the ‘Poplar’ conductor studied here was estimated 

to be 0.9 for AC102-AC101B after a few years’ service, which increased the 

radiation heat loss rate and the SLRs. If the SLRs of AC102-AC101B were replaced 

by 654.4𝐴 and 609.1𝐴 for winter and spring respectively, the CH-I 1st, 3rd and 5th 

percentiles of DLR forecasts for half hour ahead would be higher than the updated 

SLRs in 83.26%, 88.25% and 91.06% of cases. 

Table 5-2. The average additional capacities (AAC) above SLR (%) for CH-I 1st, 3rd and 5th 

percentiles for 3 steps ahead and the percentages of time for the percentiles above SLR 

 1st Percentiles 3rd Percentiles 5th Percentiles 

% above SLRs AAC Time AAC Time AAC Time 

CQ34-CQ35 3.5% 44.5% 8.0% 54.1% 10.7% 59.3% 

AC102-AC101B 24.9% 99.2% 29.1% 99.6% 31.6% 99.8% 
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5.2.3. Effectiveness of using lower percentiles for a single span 

In order to have clear limits to system operation that, in turn, drive decisive action, a 

system operator is likely to set a policy in which a particular percentile is adopted 

from a probabilistic forecast and regarded as The Limit. This is consistent with 

current practice in Britain in which static line ratings (SLRs) are calculated based on 

a certain small probability of the actual rating being greater than the quoted SLR [5]. 

One reasonable policy that might be adopted would be to ensure that the loading on a 

line never exceeds the 5th percentile (P5 value) from the probabilistic forecast. The 

effectiveness of any policy should be checked. Fig. 5-7 shows the differences 

between the 3-step-ahead P5 forecast and the actual rating when the time comes. If 

the probabilistic forecasting works well then, on average, the actual rating should be 

less than the P5 forecast in no more than 5% of cases. 

 
Fig. 5-7. The distributions of differences between the 5th percentile (P5) forecasts for 3 steps ahead 

and their corresponding actual ratings and the proportion of positive differences for cases (a) when P5 

forecast is less than 125% of SLR and (b) when it is greater than or equal to 125% of SLR 

As noted above, various practical issues will prevent more than a certain uprating 

relative to the SLR, e.g. 25%. As a consequence, Fig. 5-7 shows two sets of two 

results for two different overhead spans: for 6662 and 4207 cases in which the P5 

forecast was less than 125% of SLR; and 2410 and 4865 cases in which it was 

greater than or equal to 125%. For CQ34-CQ35, the test set showed 3.68% of the 
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former cases in which the actual rating was less than the P5 value and 5.02% of the 

latter. For AC102-AC101B, the actual rating was less than the P5 forecast in 3.02% 

of cases when the P5 forecast rating was less than 125% of SLR and 5.32% 

otherwise. Although these seem reasonable results, the test set contains an example 

of a quite large positive difference between the P5 forecast (1091.9𝐴) and the actual 

value (829.3𝐴) on AC102-AC101B: 262.6𝐴 compared with the relevant seasonal 

SLR of 607𝐴. This occurred after a period of 6 hours in which the wind speed had 

been greater than 3𝑚/𝑠 which led to a forecast wind speed of 3.29𝑚/𝑠 but where 

it turned out actually to be 1.31𝑚/𝑠. In addition, at that moment, the wind blew at 

43.14𝑜 to the span whereas it had previously been perpendicular to it, leading to a 

forecast angle of incidence equal to 89.33𝑜. The convection heat loss rate per unit 

length estimated from the actual weather data was around 88.94𝑊 𝑚⁄  while it was 

forecast to be about 188.11𝑊 𝑚⁄ . However, regardless of how much above 125% 

the P5 forecast was, if the system operator limited loading on the line to no more 

than 125%, such a limit would have proved to be too high relative to the actual rating 

in only 3% and 2.1% of cases for the different spans and the extreme case noted 

would have presented no problem. Moreover, it can be seen from Fig. 5-7 that the 

standard deviation of differences is higher for cases forecasting a small uprating than 

for those that forecast a higher uprating. This can be explained by the precise 

uprating being more sensitive to the exact wind speed at low speeds than at high 

wind speeds. 

5.3. Probabilistic DLR Forecasting for a Complete OHL 

The weather-based DLR model developed for a single span is extended to estimate 

probabilistic forecasts of steady-state DLRs for an entire overhead line (OHL) by 

using the spatial interpolation models refined in Chapter 4 to infer the possible 

weather conditions for each span within the line from the independent and correlated 

weather forecasts randomly sampled from the conditionally heteroscedastic (CH) 
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distributions of the measured weather variables. The minimum value of DLR 

forecasts for all spans calculated from the inferred weather samples is applied to the 

whole OHL in each of the generated 104 scenarios. The cumulative distribution 

function extracted from the 104 sampled values of steady-state DLR forecasts at a 

particular future time is then smoothed by kernel density estimation [148] to 

determine predictive DLR percentiles for the entire OHL. The probability of each 

span within an OHL being the critical span at a particular future time is defined as 

the frequency of the span having the minimum value of DLR forecasts at all spans in 

the 104 scenarios. As was noted in Section 4.3, random samples of air temperature 

and wind speed are only paired for the estimation of probabilistic DLR forecasts for 

an entire OHL since the rank correlation matrix calculated from recent weather 

observations at different weather stations may not be positive definite when 

additionally including wind direction samples. 

In this section, the calibration of probabilistic steady-state DLR forecasts for an OHL 

estimated by different approaches is assessed so as to determine a conservative 

approach to producing lower percentiles of DLR forecasts. The forecast accuracies of 

steady-state DLRs and critical spans for an OHL estimated by the adopted approach 

are then examined for each of the eight 132kV OHLs in the research area. 

5.3.1. Calibration of probabilistic DLR forecasts for an overhead line 

Details of eight 132kV overhead circuits in North Wales between Pentir and 

Connah’s Quay covering the number of spans, circuit length (𝑘𝑚), conductor types 

and average elevations (𝑚) above sea level are provided in Table 5-3 [10]. Since the 

ampacity of a line is limited by the span that has the lowest rating, static line ratings 

(SLRs) of an OHL comprising two conductor types are determined as those for the 

‘Lynx’ ACSR conductor. Therefore, the circuit from Kinmel Bay Tee (B3) to St 

Asaph (B4) has the SLRs of 607𝐴 in winter and 581𝐴 in spring while all the other 

circuits have the SLRs of 485𝐴 in winter and 450𝐴 in spring. 
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Table 5-3. Details of eight 132kV overhead circuits in North Wales [10] 

Circuit 

No. 
Circuit 

No. of 

Spans 

Total 

Length 

(𝑘𝑚) 

Conductor 

Types 

Max./Min. 

Elevation 

(𝑚) 

Average 

Elevation 

(𝑚) 

C1 
Pentir (B1) to 

Colwyn Bay (B2) 
153 42.0 

6.0𝑘𝑚 Poplar 

36.0𝑘𝑚 Lynx 
420/3 194 

C2 
Colwyn Bay (B2) to 

Kinmel Bay Tee (B3) 
74 21.2 

19.9𝑘𝑚 Lynx 

1.3𝑘𝑚 Poplar 
310/3 110 

C3 
Kinmel Bay Tee (B3) 

to St Asaph (B4) 
22 6.7 Poplar 201/24 110 

C4 
Pentir (B1) to 

Dolgarrog (B5) 
87 24.0 

18.0𝑘𝑚 Lynx 

6.0𝑘𝑚 Poplar 
219/21 79 

C5 
Dolgarrog (B5) to 

St Asaph (B4) 
94 26.9 

7.5𝑘𝑚 Poplar 

19.4𝑘𝑚 Lynx 
308/3 164 

C6 
St Asaph (B4) to 

Holywell (B6) 
50 13.4 Lynx 252/11 114 

C7 
Holywell (B6) to 

Connah’s Quay (B7) 
50 15.7 Lynx 285/14 145 

C8 
St Asaph (B4) to 

Connah’s Quay (B7) 
98 29.8 Lynx 285/11 129 

Fig. 5-8 shows the ratios of 5th – 95th percentiles, 25th – 75th percentiles, point 

forecasts of steady-state DLRs modelled by the CH models based on correlated 

weather samples for 3 steps (half hour) ahead and weather observation based DLRs 

to the SLRs on 27/03/2013 for the overhead circuit C2 from Colwyn Bay (B2) to 

Kinmel Bay Tee (B3) and the circuit C3 from Kinmel Bay Tee (B3) to St Asaph (B4). 

The PIT histograms of probabilistic 3-step-ahead DLR forecasts generated by the CH 

models based on correlated (CH-C) and independent (CH-I) weather samples for the 

different 132kV OHLs are plotted in Figs. 5-9 and 5-10. 
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Fig. 5-8. Probabilistic steady-state DLR forecasts for 3 steps ahead on 20/03/2013 for the circuit C2 

from Colwyn Bay (B2) to Kinmel Bay Tee (B3) and C3 from Kinmel Bay Tee (B3) to St Asaph (B4) 

 
Fig. 5-9. PIT histograms of probabilistic 3-step-ahead steady-state DLR forecasts for OHLs C1 – C4 
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Fig. 5-10. PIT histograms of probabilistic 3-step-ahead steady-state DLR forecasts for OHLs C5 – C8 

The relative frequencies at both ends of the CH-I PIT histograms are higher than 

those of the CH-C PIT histograms, especially for overhead circuits C5 – C8, meaning 

that the distributions of DLR forecasts derived from the independent random weather 

samples are on average less dispersive. In other words, the CH-I lower percentiles of 

DLR forecasts are overestimated while the higher percentile forecasts are 

underestimated for most of the time. The significant deviations from the ideal 

relative frequency of 0.01 at both ends of the CH-I PIT histograms are mitigated in 

the CH-C PIT histograms. This might be due to the positive correlations between the 

paired random samples of the same weather parameters at different weather stations 

as shown in Fig. 4-6. 

As noted in Section 5.2.1, wind speed is the dominant factor affecting the rating of 

an overhead conductor. The values of the paired (correlated) wind speed samples at 

different weather stations in each of the 104 scenarios will be at the similar levels 
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with respect to their respective ranges of 104 sampled values due to the significant 

positive correlations among them. That is, the wind speed sample from a ‘low’ value 

at a station is usually accompanied by ‘low’ wind speed samples at the other stations 

in a particular scenario. Therefore, the possible wind speeds at all spans within an 

OHL inferred from the paired samples of ‘low’ wind speeds at stations are at their 

respective ‘low’ levels as well, which leads to a ‘low’ rating sample applied to each 

OHL. When using the independent weather inputs, all the stations having ‘low’ wind 

speed samples in a particular scenario would rarely happen. A span having a low 

wind speed sample may not be the critical span due to the fact that the conductor 

rating is also determined by other weather parameters. For example, a particular span 

that has a relatively high wind speed sample blowing parallel to the span or 

accompanied by a high air temperature sample may be the critical span. Therefore, 

the lower percentiles of DLR forecasts derived from the correlated wind speed 

samples for an entire OHL are generally smaller than those that are estimated from 

the independent samples. Similarly, the higher DLR percentiles generated by the 

CH-C models are generally greater than those for the CH-I models. 

The influence of positive correlations between the paired air temperature samples at 

different stations on the concentration of predictive distributions of DLRs for an 

OHL can be explained in a similar way. Due to their significant positive correlations, 

the paired samples of air temperature that are at ‘high’ levels with respect to their 

respective distributions in a particular scenario would lead to each span within an 

OHL having a ‘high’ air temperature sample. This ensures that the minimum of DLR 

forecasts among all spans is at a ‘low’ level in that particular scenario. Therefore, the 

lower percentiles of DLR forecasts calculated from the correlated air temperature 

samples are smaller than those for the independent samples. However, the positive 

correlations among air temperature samples at different stations may have a less 

significant impact on the dispersion of predictive distributions of DLRs than that 

among wind speed samples due to the relatively high accuracy of air temperature 
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prediction. It can be concluded that the positive correlations between the paired 

random weather samples of the same parameters (i.e. air temperature and wind speed) 

at different stations help mitigate the overestimation of lower DLR percentiles that 

are derived from independent weather samples for an OHL. 

5.3.2. Accuracy of DLR forecasts for an overhead line 

The point forecasts of steady-state DLRs for up to 3 steps (half hour) ahead produced 

by the CH-C forecasting models are compared with persistence forecasts in root 

mean square errors (RMSEs) for each overhead circuit, as shown in Fig. 5-11 which 

demonstrates that the CH-C forecasting models give a significant improvement in 

RMSE over persistence for all OHLs. 

 

Fig. 5-11. Improvements over persistence in RMSE of point forecasts of steady-state DLRs for up to 3 

steps ahead for the CH-C forecasting models for each OHL. 

The accuracies (RMSE) of DLR forecasts estimated by the CH-C models for the five 

levels of less than 90% SLR, 90-100% SLR, 100-110% SLR, 110-120% SLR and 

above 120% SLR, are calculated respectively for each circuit as tabulated in Tables 

5-4 and 5-5. The experimental results show that the CH-C forecasting models 

perform similarly to or even worse than persistence forecasting for most circuits at 

the levels of their respective low ratings (the levels of 100-110% SLR for circuit C3 
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and below 90% SLR for the other circuits). It is found that the DLR point predictions 

are usually overestimated by the CH-C forecasting models at the low rating levels 

due to the overestimation of corresponding wind speed forecasts by the AR(4)-CH 

forecasting models. Figs. 5-12 and 5-13 show the distributions of errors of 

3-step-ahead DLR forecasts at the low rating levels for circuits C3 and C6 and the 

distributions of corresponding wind speed observations and their 3-step-ahead 

forecasts at the most influential weather stations (stations 5 and 6 for C3 and stations 

6 and 7 for C6) respectively. Therefore, the lower percentiles of DLR forecasts 

should be applied for an entire OHL so as to avoid the risk of using the overestimated 

point forecasts of steady-state DLRs. 

Table 5-4. RMSEs (𝐴) of 3-step-ahead DLR forecasts for CH-C models for the five levels of 

improvement of SLR and their improvement (%) over persistence for circuits C1 – C4 

Circuit C1 C2 C3 C4 

Total 
RMSE 37.8 37.6 58.0 63.0 

Improve. 18.22% 16.25% 10.41% 19.18% 

≤90% 

SLR 

RMSE 41.2 48.8 N/A 89.7 

Improve. 5.19% −1.65% N/A −2.84% 

90-100% 

SLR 

RMSE 31.9 38.8 N/A 69.0 

Improve. 17.05% 4.01% N/A 11.63% 

100-110% 

SLR 

RMSE 31.4 32.6 85.1 49.4 

Improve. 33.00% 25.74% −8.28% 26.54% 

110-120% 

SLR 

RMSE 38.7 32.1 68.4 39.7 

Improve. 23.75% 27.54% 3.39% 40.02% 

>120% 

SLR 

RMSE 50.8 40.8 53.9 75.8 

Improve. 9.29% 13.69% 14.12% 15.04% 
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Table 5-5. RMSEs (𝐴) of 3-step-ahead DLR forecasts for CH-C models for the five levels of 

improvement of SLR and their improvement (%) over persistence for circuits C5 – C8 

Circuit C5 C6 C7 C8 

Total 
RMSE 46.9 35.7 45.4 33.1 

Improve. 15.14% 10.39% 11.03% 10.72% 

≤90% 

SLR 

RMSE 49.8 33.1 60.5 31.2 

Improve. 1.46% −12.55% −20.35% −12.78% 

90-100% 

SLR 

RMSE 41.8 30.3 47.5 29.0 

Improve. 11.05% 7.93% −5.45% 9.05% 

100-110% 

SLR 

RMSE 41.6 33.2 41.4 30.8 

Improve. 28.75% 20.44% 12.92% 18.99% 

110-120% 

SLR 

RMSE 40.0 36.6% 40.8 34.7 

Improve. 30.63% 15.18% 21.85% 15.96% 

>120% 

SLR 

RMSE 55.2 39.3 45.5 36.2 

Improve. 9.10% 9.35% 13.68% 9.71% 

 

 
Fig. 5-12. Distributions of errors of 3-step-ahead DLR forecasts, the wind speed observations and 

their 3-step-ahead forecasts at weather stations 5 and 6 corresponding to the rating level below 110% 

SLR for circuit C3. 
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Fig. 5-13. Distributions of errors of 3-step-ahead DLR forecasts, the wind speed observations and 

their 3-step-ahead forecasts at weather stations 6 and 7 corresponding to the rating level below 90% 

SLR for circuit C6. 

5.3.3. Forecast precision of critical span for an overhead line 

The critical span that limits the rating of an entire OHL at a particular future time is 

identified in each of the 104 scenarios. The probability of each span within a circuit 

being the critical span is then defined as the frequency of the span having the 

minimum DLR forecast among all spans in the 104 scenarios. Fig. 5-14 shows the 

probabilities of each span within the circuit C3 being the critical span for 3 steps 

(half hour) ahead during 00:00–00:20 on 27/03/2013. For a particular future moment, 

the five most frequent critical spans could be predicted. The forecast precision of 

each most frequent critical span is defined here as the ratio of the number of the case 

where the frequent critical span accurately predicts the actual critical span when the 

time comes to the total amount of cases. The forecast precision of each most frequent 

critical span and their total precision that is the percentage of cases that the actual 

critical span is accurately forecast by any of the five most frequent critical spans for 

3 steps ahead along each circuit are plotted in Fig. 5-15. 
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Fig. 5-14. Probabilities of each span within circuit C3 being the critical span for 3 steps ahead during 

00:00–00:20 on 27/03/2013 

 

Fig. 5-15. Forecast precisions of the five most frequent critical spans for 3 steps (half hour) ahead 

along each circuit 

The experimental results indicate that the location of critical span is accurately 

predicted by the 5 most frequent critical spans in greater than 70% of cases for most 

overhead circuits. The forecast precision of critical span is influenced by a number of 

factors in a complex way, e.g. forecast accuracies of the measured weather variables, 

numbers and orientations of spans within a circuit, etc. The number of spans within 

an OHL and the variation in line’s orientation are important factors that are discussed 

here. An OHL having a large number of spans usually covers a long distance and 

crosses different terrains, which may increase the difficulty of predicting the location 

of critical span. As shown in Fig. 5-15, the forecast precision of critical span for C1 

that consists of 153 spans and covers a long distance of 42𝑘𝑚 is relatively lower 
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than other circuits, while circuit C3 that consists of 22 spans and covers 6.7𝑘𝑚 has 

the most accurate predictions of critical spans. 

The large variation in orientation of circuit C1 from 132kV bus B1 (in proximity to 

weather station WS1) to B2 (in proximity to WS4), as shown in Fig. 1-3, may be an 

additional reason for the less precise prediction of the critical span. Since it is the 

angle between line orientation and wind direction that affects the convection cooling 

on conductors, an error in wind direction forecast can result in very different effects 

on two spans which are perpendicular to each other, i.e. maximum convection 

cooling on one span and minimum cooling on the other. Therefore, the differences in 

wind direction between forecasts and actual values may easily lead to an incorrect 

prediction of the critical span for a circuit which has significant variations in 

orientation. If the spans within a circuit are of similar orientations, the influence of 

forecast errors of wind direction on the critical span prediction may be reduced to 

some extent. There are only minor changes in orientation of circuit C5 from bus B5 

(in proximity to WS2) to B4 (in proximity to WS6) as shown in Fig. 5-16. Though 

C5 consisting of 94 spans covers a large area, the forecast precision of critical span is 

similar to that for C6 (from B4 to B6 in proximity to WS7) and C7 (from B6 to B7 in 

proximity to WS9) which are both made up of only 50 spans but have relatively large 

variations in orientations as shown in Fig. 5-16. Furthermore, the differences in 

orientation between particular spans within each of circuits C6 and C7 almost reach 

90𝑜, increasing the influence of wind direction forecast error on the precision with 

which the critical span is identified. 
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Fig. 5-16. Orientations (in degree) of spans within circuits C5, C6 and C7 

5.3.4. Effectiveness of using lower percentiles for an overhead line 

As noted above, a particular lower DLR percentile, e.g. the 5th percentile (P5 value) 

is likely to be adopted from a probabilistic DLR forecast and regarded as the thermal 

limit for an OHL so as to avoid the risk of using overestimated point forecasts of 

DLRs. Since the upgrading of ratings is usually limited to around 25% above the 

SLRs in practical applications, the effectiveness of using P5 values as thermal limits 

for OHLs are verified for two different situations, i.e. 𝑃5 < 125% 𝑆𝐿𝑅 and 𝑃5 ≥

125% 𝑆𝐿𝑅. Fig. 5-17 shows the differences between the P5 forecasts for 3 steps 

(half hour) ahead and the actual ratings when the time comes for circuits C2 and C3. 

For circuit C2, the actual rating exceeds the P5 value in 2.01% of the former cases 

and in 4.72% of the latter. For circuit C3, the actual rating is less than the P5 forecast 

in 3.17% of cases that forecast a small uprating and in 4.3% otherwise. 
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Fig. 5-17. The distributions of differences between the 5th percentile forecasts for half hour ahead and 

their corresponding actual ratings and the proportion of positive differences for cases (a) when the 5 th 

percentile forecast is less than 125% of SLR and (b) when it is greater than or equal to 125% for 

circuits C2 and C3 

It is interesting that a significant proportion of differences between the actual ratings 

and the P5 forecasts that provide a small uprating are concentrated around zero. This 

might be because, in some particular cases, probability densities at the lower end of 

predictive distributions of DLRs are so high that values of the lower DLR percentiles 

are quite similar. For example, the differences between P25 (the 25th percentile) and 

P5 forecasts are less than 10𝐴 and 5𝐴 in 951 cases and 439 cases respectively (i.e. 

11.25% and 5.19% of the cases where 𝑃5 < 125% 𝑆𝐿𝑅) for C2, and in 397 cases 

and 152 cases respectively (i.e. 6.8% and 2.6% of the cases where 𝑃5 < 125% 𝑆𝐿𝑅) 

for C3. Therefore, the actual ratings may be very close to the P5 forecasts though 

their corresponding PIT values are greater than 0.05. 

The percentages of time that the actual ratings are less than the P1 (the 1st percentile), 

P3 (the 3rd percentile) and P5 forecasts for 3 steps (half hour) ahead are evaluated to 

be mostly smaller than their corresponding theoretical values, meaning that the 

predictive lower DLR percentiles are conservative on average. When the upgrading 

of ratings is limited to 125% of the SLRs, the percentages of time for which the 

actual ratings exceed the corrected lower DLR percentiles are smaller than those for 
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the original percentiles, as listed in Table 5-6. Therefore, the corrected lower DLR 

percentile for a reasonable calibration has the potential to be employed in system 

operation decision making. 

Table 5-6. The percentages of time for which the actual ratings exceed the 3-step-ahead P1, P3 and P5 

forecasts and those that are limited to 125% of SLRs for each circuit 

% Time below 

Percentiles 

P1 Forecasts P3 Forecasts P5 Forecasts 

Original Corrected Original Corrected Original Corrected 

C1 0.75% 0.75% 1.78% 1.74% 2.92% 2.89% 

C2 0.36% 0.34% 1.17% 1.04% 2.19% 1.95% 

C3 0.82% 0.62% 2.14% 1.47% 3.57% 2.46% 

C4 0.63% 0.62% 1.78% 1.73% 3.07% 2.97% 

C5 1.00% 1.00% 2.21% 2.19% 3.30% 3.27% 

C6 0.99% 0.99% 2.27% 2.21% 3.44% 3.27% 

C7 0.83% 0.69% 2.22% 1.70% 3.50% 2.58% 

C8 1.03% 1.01% 2.24% 2.17% 3.23% 3.11% 

The average additional capacities (AAC) above SLRs (in %) released by the original 

(ORIG) and corrected (CORR) P1, P3 and P5 forecasts for 3 steps ahead and the 

percentages of time for which these percentiles are above SLRs are estimated for 

each circuit as tabulated in Table 5-7. Except for circuit C3 comprising ‘Poplar’ 

AAAC conductors only, the predictive lower DLR percentiles at the other circuits are 

usually below the SLRs. The extra thermal headroom that can be exploited by lower 

percentiles for C3 is much higher than those for the other circuits. Furthermore, the 

slight reductions in AAC at some circuits (e.g. C1) due to the limitations on uprating 

mean that the original forecasts of lower DLR percentiles do not often exceed 125% 

of SLRs. 
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Table 5-7. The average additional capacities (AAC) above SLRs (%) for the original (ORIG) and 

corrected (CORR) P1, P3 and P5 forecasts for 3 steps ahead and the percentage of time for the 

percentiles above SLRs 

% 

above 

SLR 

P1 Forecasts P3 Forecasts P5 Forecasts 

AAC 

ORIG 

AAC 

CORR 
Time 

AAC 

ORIG 

AAC 

CORR 
Time 

AAC 

ORIG 

AAC 

CORR 
Time 

C1 -9.80% -9.81% 5.25% -8.34% -8.37% 9.87% -7.30% -7.35% 13.56% 

C2 -2.65% -2.76% 32.12% 0.07% -0.17% 41.10% 1.69% 1.33% 46.10% 

C3 17.38% 14.09% 99.08% 20.31% 15.80% 99.49% 22.06% 16.77% 99.67% 

C4 -7.29% -7.37% 13.27% -4.97% -5.11% 22.04% -3.35% -3.54% 28.38% 

C5 -8.64% -8.78% 8.35% -6.73% -6.96% 15.02% -5.39% -5.67% 19.78% 

C6 -3.24% -3.57% 28.72% -0.86% -1.36% 35.90% 0.53% -0.08% 40.65% 

C7 5.20% 3.50% 50.62% 8.49% 6.02% 58.54% 10.34% 7.37% 62.52% 

C8 -3.61% -3.79% 27.79% -1.31% -1.63% 34.18% 0.03% -0.39% 38.35% 

5.3.5. Effects of interpolation errors of weather variables on DLRs 

As was detailed above, probabilistic forecasts of steady-state DLRs estimated for a 

particular future time for a complete line have considered the uncertainty of weather 

forecasts only. However, the uncertainty of spatial interpolation of weather variables 

cannot be modelled by the inverse distance weighting or kriging methods developed 

in Chapter 4 and was not reflected on the distributions of steady-state DLRs for a line. 

Therefore, it should be noted that the above analysis of steady-state DLR forecasting 

for a complete line, e.g. calibration and accuracy of probabilistic DLR forecasts and 

possible critical spans, is based on an assumption of perfect spatial interpolation of 

weather variables. In order to examine influences of spatial interpolation errors of 

weather variables on the accuracy of DLR estimates, the interpolation value of a 

particular weather variable at a particular station inferred from observations at other 

stations by the spatial interpolation method selected in Chapter 4 and measurements 

of other weather variables at the station are used to calculate the steady-state DLR 
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for a span in the vicinity of the station. Fig. 5-18 shows percentage errors of DLR 

estimates for spans CQ34-CQ35 and AC102-AC101B that are affected by the spatial 

interpolation errors of each weather variable respectively. 

 

Fig. 5-18: Percentage errors of steady-state DLR estimates at different spans that are calculated from 

interpolation values of each weather variable and observations of other variables. 

As noted in Section 3.3.5, the accuracy of steady-state DLR estimates is generally 

more sensitive to the errors of wind speed and attack angle between wind direction 

and line orientation. This can also be summarised from Fig. 5-18. Furthermore, the 

maximum magnitudes of spatial interpolation errors of weather variables are shown 

to be higher than those for weather forecast errors, leading to more significant errors 

of DLR estimates. Table 5-8 tabulates RMSEs of steady-state DLRs calculated for 
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nine spans that are in close proximity to nine weather stations respectively based on 

interpolation values of weather variables inferred from observations at the other eight 

stations by the spatial interpolation models chosen in Chapter 4 when taking each 

station as the target location. Comparing RMSEs of DLRs for spans CQ34-CQ35 and 

AC102-AC101B due to spatial interpolation errors (as shown in Table 5-8) to those 

due to forecast errors (as listed in Table 5-1), the uncertainty of spatial interpolation 

between weather variables is likely to cause more significant errors of DLR estimates 

on average. Therefore, quantifying the possible sizes of spatial interpolation errors of 

weather variables and reflecting this uncertainty on the distribution of DLR estimates 

should be addressed in future research. 

Table 5-8: RMSEs (𝐴) of steady-state DLRs estimated for nine spans in the vicinity of nine weather 

stations respectively based on interpolation values of weather variables. 

Span (Closest Weather Station) Conductor Type RMSE (𝐴) of DLR Estimates 

AD90-AD89 (WS1) Poplar 226.25 

AD2-AC193 (WS2) Lynx 115.30 

AC177-AC178 (WS3) Lynx 103.19 

CQ34-CQ35 (WS4) Lynx 122.50 

AC137-AC138 (WS5) Lynx 118.41 

AC102-AC101B (WS6) Poplar 114.37 

AC301-AC302 (WS7) Lynx 96.95 

AC33-AC34 (WS8) Lynx 124.78 

AC6-AC7 (WS9) Lynx 110.70 

5.4. Conclusions 

This chapter has described weather based approaches to probabilistic forecasts of 

steady-state dynamic line rating (DLR) for both a single span and an entire overhead 

line (OHL) based on a combination of a thermal model of overhead conductors and a 

Monte Carlo method where random weather inputs are sampled from the modelled 
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predictive distributions of the measured weather variables and then paired to have a 

correlation close to that computed from recent observations. The spatial interpolation 

models refined in Chapter 4 are additionally used to infer possible ambient 

conditions at each span within an OHL from random weather samples at weather 

stations for the DLR prediction for the entire OHL. 

The proposed approaches have been tested on two spans comprising different types 

of overhead conductors and eight 132kV OHLs in the research area. The point 

forecasts of steady-state DLRs estimated by the conditionally heteroscedastic (CH) 

forecasting models have shown a significant improvement over persistence for up to 

half hour (3 steps) ahead. However, the overestimation of wind speed forecasts at 

lower values by auto-regressive (AR) models leads to unsatisfactory performance of 

DLR forecasting at low rating levels for both a single span and an entire OHL. In 

practice, a risk averse system operator is likely to adopt a policy in which there is a 

small probability of an actual rating being lower than the limit applied to power 

flows. Such a policy could use a certain lower percentile from a probabilistic DLR 

forecast and, for the case study discussed, this overcomes the low wind speed 

problem to some extent. 

The predictive DLR percentiles for a particular span derived from independent 

random weather samples generated from AR-CH forecasting models and the DLR 

percentiles for an OHL derived from the paired (correlated) samples of air 

temperature and wind speed and independent wind direction samples are preferred in 

this study due to their good calibration at lower percentiles. The correlations added 

into random weather samples (especially between wind speed and wind direction) 

narrow the predictive distributions of DLRs for a particular span, which become 

more concentrated. When determining predictive DLR percentiles for an entire OHL, 

significant positive correlations added into random weather samples of the same 

parameters at different stations expand the range of sampled values of DLR forecasts 

at a particular future time, which mitigates the overconcentration of the distribution 
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of DLR forecasts derived from the independent weather samples. In addition, the 

correlations added into random samples between air temperature and wind speed and 

those among air temperature samples at different weather stations seem to have slight 

impact on the concentration of predictive distributions of DLRs due to the relatively 

high accuracy of air temperature prediction. 

In practice, although heat transfer around each span of an OHL might suggest 

possible uprating of 100% or more relative to the seasonal static line rating (SLR) at 

a particular future time, the upgrading of ratings will usually be limited to 125% of 

SLRs due to the settings of protection on the circuit and other considerations. The 

corrected lower DLR percentiles have been shown to be conservative since the 

percentage of time for the actual ratings exceeding the lower DLR percentiles is 

mostly smaller than the theoretical value. 

The critical span within an OHL at a particular future time is also predicted in Monte 

Carlo simulation. The location of the critical span is accurately predicted for the five 

most frequent critical spans in greater than 70% of cases for most circuits. A high 

forecast precision of critical span is generally achieved for the OHL that covers a 

short distance and comprises a small number of spans of similar orientation. 

Perfect spatial interpolation of weather variables are assumed during the analysis of 

probabilistic forecasts of steady-state DLR for a complete line and possible critical 

spans. However, spatial interpolation errors of weather variables are found to cause 

more significant errors of steady-state DLR estimates than weather forecast errors on 

average. Although the weather-based model developed here for DLR forecasting for 

an OHL has successfully considered the uncertainty of weather forecasts, the sizes of 

possible errors of spatial interpolation between weather variables should be modelled 

and reflected on the distribution of DLR estimates in future research.  
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6. PROBABILISTIC FORECASTING OF 

TRANSIENT-STATE DYNAMIC LINE RATING 

6.1. Introduction 

Most reported studies on the application of weather-based dynamic line ratings 

(DLRs) consider continuous or steady-state DLRs only. Less attention has been 

given to short-term or transient-state DLRs, partly due to the increased computation 

time required. The conventional approach to tracking the transient-state conductor 

temperature within a specified time period is to divide the time period (typically 10 

minutes) into several sufficiently small time intervals (e.g. 10 seconds) and then 

calculate the change in conductor temperature over each time interval [3, 4]. Clearly, 

if a time period of 10 minutes is divided into a series of 10-second time intervals, the 

estimation of conductor temperature change has to be carried out 60 times. IEEE 

Standard (Std.) 738 [3] and CIGRE Technical Brochure (TB) 601 [4] have both 

developed analytical methods to calculate the transient-state conductor temperature 

as an exponential function of time which can reduce computation time compared 

with the conventional approach. However, the analytical method developed in IEEE 

Std. 738 [3] only considers a step change in line current and requires the conductor to 

be in thermal equilibrium before the step occurs. In an example of transient-state 

conductor temperature calculation given in [4] where the conventional approach was 

adopted as a benchmark, the CIGRE analytical method was shown to underestimate 

the final conductor temperature by around 0.76℃ when an initial steady-state 

condition was not achieved. 

This chapter first describes conventional approaches and analytical methods that are 

developed in [3] and [4] to track transient-state conductor temperatures. Then the 

IEEE analytical method is enhanced to consider changes in weather variables and 

fulfil the requirement of the conductor’s thermal equilibrium at the start of a given 
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time period. Based on the experimental data used in the calculation example given in 

[4], the influence of the time interval length used in the conventional approach on the 

transient-state conductor temperature modelling is investigated. The accuracies of the 

enhanced analytical method and the CIGRE analytical method are then assessed 

using the conventional approach as a benchmark. Furthermore, a fast-computational 

approach is developed to estimate probabilistic forecasts of transient-state DLRs for 

time horizons of 10, 20 and 30 minutes for two particular spans CQ34-CQ35 and 

AC102-AC101B based on the predictive distributions modelled for the weather 

variables measured at stations 4 and 6 for up to three 10-minutes time steps ahead 

respectively along with use of the enhanced analytical method. The histograms of 

probability integral transform (PIT) for probabilistic transient-state DLR forecasts 

calculated based on the independent or correlated weather samples are compared to 

determine whether the correlations among different weather variables at different 

future moments should be added into random weather samples. 

6.2. Methodology 

6.2.1. Conventional approaches to conductor temperature modelling 

A specified time period after step changes in line current and weather variables is to 

be divided into several sufficiently small time intervals, ∆𝑡, in the conventional 

approach to the transient-state conductor temperature modelling. The variation in 

conductor temperature over each ∆𝑡 is then calculated by the non-steady-state heat 

balance equation [3]: 

𝑇𝑐𝑓,∆𝑡 − 𝑇𝑐𝑖,∆𝑡 =
∆𝑡

𝑚 ∙ 𝐶𝑝(𝑇𝑐𝑖,∆𝑡)
{𝐼2 ∙ 𝑅(𝑇𝑐𝑖,∆𝑡) + 𝑄𝑠 − 𝑄𝑐(𝑇𝑐𝑖,∆𝑡) − 𝑄𝑟(𝑇𝑐𝑖,∆𝑡)} (6-1) 

where terms 𝐼2 ∙ 𝑅, 𝑄𝑠, 𝑄𝑐 and 𝑄𝑟 represent the rates of Joule heat gain, solar heat 

gain, convection heat loss and radiation heat loss per unit length respectively. Terms 

𝑇𝑐𝑓,∆𝑡 and 𝑇𝑐𝑖,∆𝑡 are the final and initial conductor temperatures of ∆𝑡. The term 
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𝑚 ∙ 𝐶𝑝 in 𝐽 (𝑚 ∙ ℃)⁄  represents the total heat capacity of the conductor per unit 

length and is estimated as the sum of heat capacities of different materials [3]: 

𝑚 ∙ 𝐶𝑝 = ∑𝑚𝑗 ∙ 𝐶𝑝,𝑗  (6-2) 

where terms 𝑚𝑗 and 𝐶𝑝,𝑗 are the mass per unit length (in 𝑘𝑔 𝑚⁄ ) and the specific 

heat (in 𝐽 (𝑘𝑔 ∙ ℃)⁄ ) for the 𝑗𝑡ℎ conductor material respectively. The ac conductor 

resistance 𝑅, 𝑄𝑐, 𝑄𝑟 and 𝐶𝑝,𝑗 are all dependent on conductor temperature 𝑇𝑐 and 

were evaluated at 𝑇𝑐𝑖,∆𝑡 of each 1-minute ∆𝑡 in the calculation examples given in 

[3] and [4]. IEEE Std. 738 [3] suggests that it is usually sufficient to select ∆𝑡 equal 

to 1% of the conductor thermal time constant (according to [3], the latter is typically 

5 – 20 minutes) and that ∆𝑡 of 10 seconds or less is mostly a reasonable choice. 

An alternative approach is to evaluate the 𝑇𝑐 dependent variables at the average 

𝑇𝑐𝑎𝑣,∆𝑡  of 𝑇𝑐𝑖,∆𝑡  and 𝑇𝑐𝑓,∆𝑡  over each ∆𝑡. Because of the dependency of some 

variables on 𝑇𝑐, the latter is iteratively adjusted over each ∆𝑡 until both sides of the 

non-steady-state heat balance equation (6-1) are equal. This approach is expected to 

give more accurate estimates of 𝑇𝑐, at a cost of extra computation time. 

6.2.2. Analytical methods for conductor temperature modelling 

6.2.2.1. IEEE analytical method [3] 

The forced convection heat loss rate per unit length 𝑄𝑐𝑓, 𝐼2 ∙ 𝑅 and 𝑄𝑠 are linear 

with 𝑇𝑐, whereas the natural convection heat loss rate 𝑄𝑐𝑛 and 𝑄𝑟 are nonlinear 

with 𝑇𝑐 [3]. As noted in Section 2.1.4, 𝑄𝑐 is determined as the larger value between 

𝑄𝑐𝑛 and 𝑄𝑐𝑓 in [3]. Therefore, 𝑄𝑐 will be non-linear with 𝑇𝑐 if it is (a) determined 

by 𝑄𝑐𝑛 throughout a specified time period, or (b) determined by 𝑄𝑐𝑓 at the start of 

the time period and then determined by 𝑄𝑐𝑛 at the conductor temperature which 

occurs long after the step change (i.e. the steady-state final conductor temperature). 

Assuming these nonlinear terms to be linear with 𝑇𝑐 , an analytical method is 

developed in IEEE Std. 738 [3] to estimate the transient-state conductor temperature 
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as an exponential function of time after the step change in line current based on the 

assumption that the conductor is in thermal equilibrium prior to the step occurs: 

𝑇𝑐(𝑡) = 𝑇𝑐𝑖𝑠𝑠 + (𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑐𝑖𝑠𝑠) ∙ (1 − 𝑒
−𝑡 𝜏⁄ ) (6-3) 

where 𝑇𝑐(𝑡) is the transient-state conductor temperature at time 𝑡. 𝑇𝑐𝑖𝑠𝑠 and 𝑇𝑐𝑓𝑠𝑠 

represent the steady-state conductor temperatures corresponding to the initial current 

𝐼𝑖 prior to the step occurs and the final current 𝐼𝑓 after the step change respectively. 

The term 𝜏 is a thermal time constant at which the change in conductor temperature 

(𝑇𝑐(𝜏) − 𝑇𝑐𝑖𝑠𝑠) reaches 63.2% of (𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑐𝑖𝑠𝑠) and is approximately equal to [3]: 

𝜏 =
(𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑐𝑖𝑠𝑠) ∙ 𝑚 ∙ 𝐶𝑝(𝑇𝑐𝑎𝑣𝑠𝑠)

𝑅(𝑇𝑐𝑎𝑣𝑠𝑠) ∙ (𝐼𝑓
2 − 𝐼𝑖

2)
 (6-4) 

where 𝑅 and 𝑚 ∙ 𝐶𝑝 are evaluated at the average 𝑇𝑐𝑎𝑣𝑠𝑠 of 𝑇𝑐𝑖𝑠𝑠 and 𝑇𝑐𝑓𝑠𝑠. The 

IEEE analytical method only considers the step change in line current and requires 

the conductor to be in thermal equilibrium at the start of the given time period [3]. 

6.2.2.2. CIGRE analytical method [4] 

The CIGRE analytical method estimates 𝑇𝑐(𝑡) as an exponential function of time, 

like the IEEE analytical method does, but calculates the thermal time constant for the 

change in each of the heating and cooling terms separately: 

𝜏𝑥 = |
(ß𝑓 − ß𝑖) ∙ 𝑚 ∙ 𝐶𝑝(𝑇𝑐𝑖)

∆𝑄𝑥
| (6-5) 

where, 

ß𝑖 is the rise of the initial conductor temperature 𝑇𝑐𝑖 above air temperature 𝑇𝑎; 

ß𝑓 is the rise above 𝑇𝑎 for 𝑇𝑐𝑓𝑠𝑠 that is estimated from 𝐼𝑓; 

∆𝑄𝑥 represents the step change in a particular heating or cooling term 𝑄𝑥; 

𝑚 ∙ 𝐶𝑝(𝑇𝑐𝑖) is the total heat capacity of the conductor evaluated at 𝑇𝑐𝑖. 
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The rise ß(𝑡) of 𝑇𝑐(𝑡) above 𝑇𝑎 is then modelled as an exponential function of 

time: 

ß(𝑡) = ß𝑓 − (ß𝑓 − ß𝑖) ∙ 𝑒
−𝑡 𝜏𝐽⁄ ∙ 𝑒−𝑡 𝜏𝑠⁄ ∙ 𝑒−𝑡 𝜏𝑐⁄ ∙ 𝑒−𝑡 𝜏𝑟⁄   (6-6) 

where terms 𝜏𝐽, 𝜏𝑠, 𝜏𝑐 and 𝜏𝑟 represent the thermal time constants for the changes 

in Joule heat gain rate ∆𝑄𝐽, solar heat gain rate ∆𝑄𝑠, convection heat loss rate ∆𝑄𝑐 

and radiation heat loss rate ∆𝑄𝑟 respectively. Equation (6-6) can be equivalently 

written as: 

ß(𝑡) = ß𝑖 + (ß𝑓 − ß𝑖) ∙ (1 − 𝑒
−𝑡 𝜏𝐽⁄ ∙ 𝑒−𝑡 𝜏𝑠⁄ ∙ 𝑒−𝑡 𝜏𝑐⁄ ∙ 𝑒−𝑡 𝜏𝑟⁄ )  (6-7) 

or, 

𝑇𝑐(𝑡) = 𝑇𝑐𝑖 + (𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑐𝑖) ∙ (1 − 𝑒
−𝑡 𝜏𝐽⁄ ∙ 𝑒−𝑡 𝜏𝑠⁄ ∙ 𝑒−𝑡 𝜏𝑐⁄ ∙ 𝑒−𝑡 𝜏𝑟⁄ )  (6-8) 

which is similar to the form of equation (6-3). 

6.2.2.3. Enhanced analytical method 

The IEEE analytical method is enhanced here to additionally consider variations in 

weather conditions and fulfil the requirement of the conductor’s thermal equilibrium 

at the start of a specified time period. Given 𝑇𝑐𝑖 and weather conditions 𝑤𝑐 over a 

specified time period 𝑡𝑝, the conductor’s thermal equilibrium at the beginning of 𝑡𝑝 

is created by inference of an equivalent steady-state initial line current 𝐼𝑖,𝑒𝑞 based on 

the steady-state heat balance equation [3]: 

𝐼𝑖,𝑒𝑞
2 = {𝑄𝑐(𝑇𝑐𝑖, 𝑤𝑐) + 𝑄𝑟(𝑇𝑐𝑖, 𝑤𝑐) − 𝑄𝑠(𝑤𝑐)} 𝑅(𝑇𝑐𝑖)⁄  (6-9) 

In this manner, the transient-state impact of the actual line current and weather 

conditions prior to 𝑡𝑝 on the conductor is converted into the steady-state influence 

of 𝐼𝑖,𝑒𝑞 and 𝑤𝑐. As a result, the enhanced analytical method successfully takes 

changes of weather conditions into account. 

It is noted that a negative 𝐼𝑖,𝑒𝑞
2  may be obtained in some particular cases where, for 

example, there is a significant increase in solar radiation or a reducing cooling effect 
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due to an increment in air temperature or a decrease in the ‘effective’ wind speed 

perpendicular to the conductor. A negative value of 𝐼𝑖,𝑒𝑞
2  means that 𝑤𝑐 over 𝑡𝑝 

are less conducive to cooling the conductor and 𝑇𝑐 will increase rapidly at an earlier 

stage of 𝑡𝑝. Due to that an imaginary value of 𝐼𝑖,𝑒𝑞 is obtained from a negative 𝐼𝑖,𝑒𝑞
2 , 

the inferred 𝐼𝑖,𝑒𝑞
2  is directly used to determine the thermal time constant: 

𝜏 =
(𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑐𝑖) ∙ 𝑚 ∙ 𝐶𝑝 (

𝑇𝑐𝑓𝑠𝑠 + 𝑇𝑐𝑖
2 )

𝑅 (
𝑇𝑐𝑓𝑠𝑠 + 𝑇𝑐𝑖

2 ) ∙ (𝐼𝑓
2 − 𝐼𝑖,𝑒𝑞

2 )

 (6-10) 

where terms 𝑚 ∙ 𝐶𝑝 and 𝑅 are approximately evaluated at the average conductor 

temperature (𝑇𝑐𝑓𝑠𝑠 + 𝑇𝑐𝑖) 2⁄ . Please refer to Appendix C which gives formula 

derivations of the thermal time constant 𝜏 in the enhanced analytical method. It is 

found that the final conductor temperature at the end of 𝑡𝑝 would be overestimated 

by the enhanced analytical method under the assumption that 𝑄𝑐 and 𝑄𝑟 linearly 

changed with 𝑇𝑐. As detailed in Appendix C, this is because the enhanced analytical 

method evaluating the ac resistance 𝑅 at (𝑇𝑐𝑓𝑠𝑠 + 𝑇𝑐𝑖) 2⁄  leads to a non-negative 

difference between the overestimations in the heat gain rate ∆𝐺𝑎𝑖𝑛  and the 

linearized heat loss rate ∆𝐿𝑜𝑠𝑠𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 (n.b. a negative ∆𝐺𝑎𝑖𝑛 or ∆𝐿𝑜𝑠𝑠𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 

means an underestimation) at 𝑇𝑐 which varies between 𝑇𝑐𝑖 and 𝑇𝑐𝑓𝑠𝑠: 

∆𝐺𝑎𝑖𝑛(𝑇𝑐) − ∆𝐿𝑜𝑠𝑠𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑(𝑇𝑐) 

= (𝐼𝑓
2 − 𝐼𝑖,𝑒𝑞

2 ) ∙ [
𝑅(𝑇𝑐𝑓𝑠𝑠) − 𝑅(𝑇𝑐𝑖)

2
] ∙ (1 −

𝑇𝑐 − 𝑇𝑐𝑖
𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑐𝑖

)   
(6-11) 

However, in actuality, the change rate of 𝑄𝑟 is not constant but increases with 𝑇𝑐. 

Furthermore, as noted in Section 6.2.2.1, 𝑄𝑐  may also be non-linear with 𝑇𝑐 . 

Therefore, the enhanced analytical method may underestimate the final conductor 

temperature at the end of the time period given a considerable overestimation in the 

cooling terms after the linearization. 
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6.2.3. The secant method 

Since 𝑇𝑐𝑓𝑠𝑠 cannot be directly solved from the final line current 𝐼𝑓 and weather 

conditions 𝑤𝑐 via the steady-state heat balance equation [3], the value of 𝑇𝑐𝑓𝑠𝑠 has 

to be iteratively adjusted until the calculated line current equals the given 𝐼𝑓, which 

will increase computation time of the analytical method. The use of a root-finding 

algorithm can quickly determine 𝑇𝑐𝑓𝑠𝑠 and effectively reduces computation time. 

The bisection method [151] is a simple, but relatively slow root-finding algorithm 

which halves the search space at each iteration. Newton’s method [152] has a faster 

convergence process but requires the derivative of the function to be known. 

Newton’s method may be not applicable in this case since it is difficult to evaluate 

the derivative of the steady-state heat balance equation with respect to conductor 

temperature. Just as the derivative of the function is represented by tangent lines in 

Newton’s method, the secant method approximates the derivative by secant lines 

[152]. Though the secant method is likely to require more iterations than Newton’s 

method, it does not need to calculate the derivative and has a faster converge process 

than the bisection method. 

When using the secant method to determine 𝑇𝑐𝑓𝑠𝑠 , the function 𝐹1 of 𝑇𝑐𝑓𝑠𝑠  is 

defined as the difference between the square of the given 𝐼𝑓 and the square of the 

steady-state line current estimated from an assumed 𝑇𝑐𝑓𝑠𝑠 and 𝑤𝑐. A termination 

criterion of |𝐹1(𝑇𝑐𝑓𝑠𝑠)| < 0.1𝐴2 is found in the tests conducted here to be sufficient 

for the secant method to produce an accuracy of 1 × 10−4℃. Two initial iterations 

are carried out at the air temperature and a maximum allowable conductor 

temperature 𝑇𝑐𝑚𝑎𝑥 respectively. 

The secant method is also employed to adjust the transient-state DLR 𝐼𝑡𝑠 until the 

calculated transient-state final conductor temperature 𝑇𝑐𝑓𝑡𝑠 reaches 𝑇𝑐𝑚𝑎𝑥  at the 

end of a specified future time period (i.e. 10, 20 and 30 minutes in this study). The 

function 𝐹2(𝐼𝑡𝑠) in the secant method is defined as the deviation between 𝑇𝑐𝑚𝑎𝑥 
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and 𝑇𝑐𝑓𝑡𝑠 that is estimated from an assumed 𝐼𝑡𝑠, 𝑇𝑐𝑖 and weather forecasts using 

the enhanced analytical method. The iterative calculation is terminated when 

|𝐹2(𝐼𝑡𝑠)| < 0.001℃. 

6.2.4. Transient-state DLR forecasts and constraints 

Changes in weather forecasts at each future time (up to three 10-minutes time steps 

ahead) are considered to predict transient-state DLRs. Given an assumed 30-minute 

transient-state DLR forecast 𝐼𝑡𝑠,3, the 10-minute-ahead weather forecasts 𝑤𝑓1 are 

first used to estimate the growth in 𝑇𝑐 from the initial temperature 𝑇𝑐𝑖 to 𝑇𝑐10 at 

the end of the first future 10 minutes, which then increases to 𝑇𝑐20 at the end of the 

second future 10 minutes under the 20-minute-ahead weather forecasts 𝑤𝑓2; the 

30-minute-ahead weather forecasts 𝑤𝑓3 are finally used to determine the increase in 

𝑇𝑐 from 𝑇𝑐20 to 𝑇𝑐30. 

A higher level of transient-state DLR is generally obtained for a shorter time period. 

The relationships among transient-state DLRs for up to a half hour ahead, 𝐼𝑡𝑠,1, 𝐼𝑡𝑠,2 

and 𝐼𝑡𝑠,3 , should be such that 𝐼𝑡𝑠,1 ≥ 𝐼𝑡𝑠,2 ≥ 𝐼𝑡𝑠,3 . Otherwise, 𝑇𝑐𝑚𝑎𝑥  would be 

exceeded. In some extreme cases where, for example, 𝑤𝑓3  provides more 

significant cooling on the conductor than 𝑤𝑓2, the calculated 𝐼𝑡𝑠,3 may be greater 

than 𝐼𝑡𝑠,2, which leads to 𝑇𝑐 exceeding 𝑇𝑐𝑚𝑎𝑥 at the end of the 20 minute period 

and then reducing to 𝑇𝑐𝑚𝑎𝑥 at the end of 30 minutes. Table 6-1 shows that the 

steady-state DLR at span CQ34-CQ35 calculated for 12:10 – 12:20 on 28/03/2013 

was much higher than that for 12:00 – 12:10, meaning that weather conditions over 

12:10 – 12:20 were much more conducive to cooling the conductor. In this extreme 

case, 𝐼𝑡𝑠,3 estimated for the period of 11:50 – 12:20 was greater than 𝐼𝑡𝑠,2 estimated 

for the period of 11:50 – 12:10. Fig. 6-1 shows that the conductor temperature of 

span CQ34-CQ35 operated at the unrestricted 𝐼𝑡𝑠,3 would exceed 𝑇𝑐𝑚𝑎𝑥 at 12:10 

and then decrease to 𝑇𝑐𝑚𝑎𝑥 at 12:20. Therefore, values of 𝐼𝑡𝑠,2 and 𝐼𝑡𝑠,3 must be 
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limited to the calculated 𝐼𝑡𝑠,1 and the calculated or restricted 𝐼𝑡𝑠,2 respectively so as 

to avoid the risk of 𝑇𝑐𝑚𝑎𝑥 being exceeded in such extreme cases. 

Table 6-1. The 10-minute, 20-minute and 30-minute transient-state DLRs (𝐴) and the steady-state 

DLR (𝐴) for each 10-minute period during 11:50 – 12:20 on 28/03/2013 for span CQ34-CQ35. 

Time period Steady-state DLR Time horizon Transient-state DLR 

11:50 – 12:00 620.6𝐴 10 minutes 695.1𝐴 

12:00 – 12:10 567.9𝐴 20 minutes 598.0𝐴 

12:10 – 12:20 602.0𝐴 30 minutes 600.9𝐴 

 
Fig. 6-1. Transient-state conductor temperatures of span CQ34-CQ35 operated at the unrestricted 

30-minute transient-state DLR derived from weather observations during 11:50 – 12:20 on 28/03/2013 

In Monte Carlo simulation, sampled values of 10-minute, 20-minute and 30-minute 

transient-state DLR forecasts for a particular span in proximity to a weather station 

are determined from random weather samples that are generated from the modelled 

predictive distributions for up to 3 steps (half hour) ahead in each of 104 generated 

scenarios. Two initial iterations in the secant method for determining 𝐼𝑡𝑠,1  are 

carried out at the 10-minute-ahead steady-state DLR 𝐼𝑠𝑠,1  and 1.5𝐼𝑠𝑠,1 . When 

determining 𝐼𝑡𝑠,2 and 𝐼𝑡𝑠,3, two initial iterations are carried out at the calculated 

20-minute-ahead steady-state DLR 𝐼𝑠𝑠,2  and 𝐼𝑡𝑠,1 , and the 30-minute-ahead 

steady-state DLR 𝐼𝑠𝑠,3 and 𝐼𝑡𝑠,2 respectively. 
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6.3. Results and Model Validation 

The accuracies of conventional approaches and analytical methods in transient-state 

conductor temperature modelling are first assessed based on the experimental data 

for a ‘Drake’ conductor used in the transient-state calculation example given in [4] 

and also the measured weather data and line currents for two particular spans, i.e. 

CQ34-CQ35 and AC102-AC101B, comprising different conductors and in proximity 

to weather stations. The process of estimating probabilistic forecasts of 10-minute, 

20-minute and 30-minute DLRs is then detailed, followed by an assessment in terms 

of the forecast accuracy and the calibration of probabilistic forecasts. 

6.3.1. Assessment of conventional and analytical methods 

The influence of time interval ∆𝑡  on the two conventional approaches, i.e. 

evaluating the 𝑇𝑐 dependent variables at the initial conductor temperature 𝑇𝑐𝑖,∆𝑡 or 

the average conductor temperature 𝑇𝑐𝑎𝑣,∆𝑡 = (𝑇𝑐𝑖,∆𝑡 + 𝑇𝑐𝑓,∆𝑡) 2⁄  over each ∆𝑡, is 

assessed here based on the experimental data used in the calculation example given 

in [4], as tabulated in Table 6-2. 

Table 6-2. Weather data and line currents in three subsequent 10-minute periods in the calculation 

example given in [4] 

Time Periods 

(ℎℎ:𝑚𝑚) 

Air Temperature 

(℃) 

Wind Speed 

(𝑚 𝑠⁄ ) 

Attack Angle 

(𝑑𝑒𝑔𝑟𝑒𝑒) 

Solar Radiation 

(𝑊 𝑚2⁄ ) 

Current 

(𝐴) 

Prior to 00:00 24.0 1.9 55 0 802 

00:00 – 00:10 23.7 1.7 62 0 819 

00:10 – 00:20 23.5 0.8 37 0 856 
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The transient-state conductor temperatures estimated by different conventional 

approaches that use 𝑇𝑐𝑖,∆𝑡  or 𝑇𝑐𝑎𝑣,∆𝑡  with a 10-second or 1-minute ∆𝑡  are 

compared in Fig. 6-2. 

 

Fig. 6-2. Transient-state temperatures of the ‘Drake’ conductor modelled by different conventional 

approaches 

The analysis results show that (a) given a relatively significant growth in current 

and/or reduction in wind cooling on the conductor, the 𝑇𝑐𝑖,∆𝑡-based conventional 

approach with a 1-minute ∆𝑡  will overestimate 𝑇𝑐  due to the cooling terms 

evaluated at 𝑇𝑐𝑖,∆𝑡 being underestimated over each ∆𝑡; and (b) the use of 𝑇𝑐𝑎𝑣,∆𝑡 

results in the conventional approaches with different ∆𝑡 being both reasonably 

accurate and conservative in this case. 

Fig. 6-3 shows the transient-state temperatures of the ‘Drake’ conductor modelled by 

the CIGRE analytical method and the enhanced analytical method. Both analytical 

methods calculate the heating and cooling terms in equations (6-5) and (6-9) using 

the formulae provided in IEEE Std. 738 [3]. 
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Fig. 6-3. Transient-state temperatures of the ‘Drake’ conductor modelled by analytical methods 

The transient-state 𝑇𝑐  at 00:20, 𝑇𝑐(00: 20), estimated by the CIGRE analytical 

method is found to be 0.7℃ lower than that tracked by the conventional approach 

using 𝑇𝑐𝑖,∆𝑡 with a 1-minute ∆𝑡. The deviation is very close to the error obtained in 

the calculation example given in [4] which used the CIGRE formulae to evaluate 

heating and cooling terms. Compared with the benchmark adopted here, the 

enhanced analytical method shows a higher accuracy than the CIGRE analytical 

method. Furthermore, the enhanced analytical method overestimates 𝑇𝑐(00: 20) by 

around 0.1℃ in this case where the cooling on the conductor is dominated by the 

forced convection heat loss rate which linearly changes with 𝑇𝑐. The enhanced 

analytical method’s overestimation has been explained in Section 6.2.2.3 and also in 

Appendix C. 

It is noted that the total heat capacity 𝑚 ∙ 𝐶𝑝 of the conductor which should increase 

with 𝑇𝑐 [4] is assumed to be a constant value evaluated at (𝑇𝑐𝑖 + 𝑇𝑐𝑓𝑠𝑠) 2⁄  in the 

enhanced analytical method. This assumption may have little impact on the 𝑇𝑐 

modelling since an increment of 50℃  in 𝑇𝑐  increases 𝑚 ∙ 𝐶𝑝  of the ‘Drake’ 

conductor slightly by around 1.62%, which is much smaller than the corresponding 

increase of 20.35% in the ac resistance. 
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6.3.2. Transient-state conductor temperature modelling 

The transient-state conductor temperatures 𝑇𝑐 of spans CQ34-CQ35 (‘Lynx’ ACSR 

175𝑚𝑚2 conductors) and AC102-AC101B (‘Poplar’ AAAC 200𝑚𝑚2 conductors) 

in proximity to weather stations 4 and 6 are studied. Since the direct monitoring of 

𝑇𝑐 is not available, the transient-state 𝑇𝑐 estimated from the measured line current 

and weather data by the 𝑇𝑐𝑎𝑣,∆𝑡-based conventional approach with a 10-second ∆𝑡 

is regarded as the actual 𝑇𝑐 and used as a benchmark. The 30-minute average line 

current used in [10] is converted to 10-minute intervals, in common with that of the 

weather data, using a linear interpolation [153]. The variation in 𝑇𝑐  over each 

10-minute period is tracked by the 𝑇𝑐𝑖,∆𝑡 -based conventional approach with a 

10-second ∆𝑡 and also by the enhanced analytical method based on the ‘actual’ 𝑇𝑐 

at the start of the period that is combined with the corresponding measured line 

current and weather data. Fig. 6-4 shows distributions of errors of the transient-state 

final conductor temperature 𝑇𝑐𝑓𝑡𝑠 at the end of each 10-minute period modelled by 

the two methods during 28/01/2013 to 31/03/2013 for different spans. The average 

computation time used by the 𝑇𝑐𝑖,∆𝑡-based conventional approach with a 10-second 

∆𝑡 and the enhanced analytical method is around 4.5 × 10−3𝑠 and 5.4 × 10−4𝑠 

respectively. (The computer being used for the transient calculation has a 64-bit 

operating system, 4GB of RAM, and an Intel Core i5-3470, 3.2GHz processor). 

 

Fig. 6-4. Distributions of 𝑇𝑐𝑓𝑡𝑠 errors modelled by the 𝑇𝑐𝑖,∆𝑡-based conventional approach with a 

10-second ∆𝑡 and the enhanced analytical method for spans CQ34-CQ35 and AC102-AC101B 
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The 𝑇𝑐𝑖,∆𝑡-based conventional approach is found to overestimate the growth or 

reduction in 𝑇𝑐𝑓𝑡𝑠 to different extents, depending on the level of variations in line 

current and weather conditions. The enhanced analytical method is generally shown 

to produce more accurate estimates of 𝑇𝑐𝑓𝑡𝑠. Furthermore, 𝑇𝑐𝑓𝑡𝑠 modelled by the 

enhanced analytical method is mostly greater than or equal to the actual value. As 

noted in Section 6.2.2.3, 𝑇𝑐𝑓𝑡𝑠 would be overestimated by the enhanced analytical 

method under the assumption that the cooling terms linearly varied with 𝑇𝑐. Given a 

slight overestimation in the cooling terms after the linearization in most cases, 𝑇𝑐𝑓𝑡𝑠 

would then be overestimated. 

In some particular cases, however, the enhanced analytical method underestimates 

𝑇𝑐𝑓𝑡𝑠 of CQ34-CQ35 by greater than 0.02℃. It is found that, in these particular 

cases, the convection heat loss rates 𝑄𝑐 evaluated at 𝑇𝑐𝑖 and 𝑇𝑐𝑓𝑠𝑠 are determined 

by the forced convection heat loss rate 𝑄𝑐𝑓(𝑇𝑐𝑖) and the natural convection heat loss 

rate 𝑄𝑐𝑛(𝑇𝑐𝑓𝑠𝑠) respectively. Fig. 6-5 compares the growths of 𝑄𝑐𝑛, 𝑄𝑐𝑓 and the 

linearlized 𝑄𝑐 (denoted by 𝑄𝑐,𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑) with 𝑇𝑐 ∈ [𝑇𝑐𝑖 , 𝑇𝑐𝑓𝑠𝑠] and also shows the 

overestimation in 𝑄𝑐 in a particular case where 𝑇𝑐𝑓𝑡𝑠 of CQ34-CQ35 over 18:20 – 

18:30 on 16/03/2013 is underestimated by the enhanced analytical method. 

 

Fig. 6-5. The forced, natural and linearized convection heat loss rates and the overestimation after the 

linearization in a particular case where 𝑇𝑐𝑓𝑡𝑠 of span CQ34-CQ35 over 18:20 – 18:30 on 16/03/2013 

is underestimated by the enhanced analytical method 
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Fig. 6-6 compares the overestimations in 𝑄𝑐(𝑇𝑐) and 𝑄𝑟(𝑇𝑐) with the values of 

(∆𝐺𝑎𝑖𝑛(𝑇𝑐) − ∆𝐿𝑜𝑠𝑠𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑(𝑇𝑐)) in this case. Before 𝑇𝑐 reaches 𝑇𝑐𝑓𝑡𝑠 = 9.88℃, 

(∆𝐺𝑎𝑖𝑛(𝑇𝑐) − ∆𝐿𝑜𝑠𝑠𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑(𝑇𝑐))  is much greater than the overestimation in 

𝑄𝑟(𝑇𝑐), but significantly exceeded by the overestimation in 𝑄𝑐(𝑇𝑐) when 𝑇𝑐  is 

above a certain level. The total overestimation in (𝑄𝑐 + 𝑄𝑟) after the linearization 

exceeding (∆𝐺𝑎𝑖𝑛 − ∆𝐿𝑜𝑠𝑠𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑) over a given time period would lead to an 

underestimated 𝑇𝑐𝑓𝑡𝑠 at the end of the time period. 

 

Fig. 6-6. Comparison of (∆𝐺𝑎𝑖𝑛 − ∆𝐿𝑜𝑠𝑠𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑) against overestimations in 𝑄𝑐 and 𝑄𝑟  after the 

linearization in a particular case where the enhanced analytical method underestimates 𝑇𝑐𝑓𝑡𝑠 of span 

CQ34-CQ35 over 18:20 – 18:30 on 16/03/2013. 

6.3.3. Enhanced analytical method based transient-state DLR estimation 

As noted above, the enhanced analytical method is likely to overestimate the growth 

in 𝑇𝑐𝑓𝑡𝑠 after an increase in line current. Therefore, the short-term or transient-state 

DLR determined for a given short period based on the enhanced analytical method 

may be underestimated due to the actual 𝑇𝑐𝑓𝑡𝑠 not increasing to the maximum 

allowable limit 𝑇𝑐𝑚𝑎𝑥. Fig. 6-7 shows the distributions of deviations between 𝑇𝑐𝑚𝑎𝑥 

and the ‘actual’ 𝑇𝑐𝑓𝑡𝑠 at the end of the given time periods under the 10-minute, 

20-minute and 30-minute DLRs that are estimated from weather observations using 
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the enhanced analytical method for the two spans. (The cases of 20-minute and 

30-minute DLRs being restricted are omitted here simply for brevity). 

 

Fig. 6-7. Distributions of differences between 𝑇𝑐𝑚𝑎𝑥  and the ‘actual’ 𝑇𝑐𝑓𝑡𝑠 at the end of 10-minute, 

20-minute and 30-minute periods under the corresponding enhanced analytical method based 

transient-state DLRs for two spans 

The final temperature 𝑇𝑐𝑓𝑡𝑠 of the conductor operated at the level of the enhanced 

analytical method based transient-state DLR, especially the 10-minute rating, does 

not reach 𝑇𝑐𝑚𝑎𝑥 for most of the time. A smaller deviation from 𝑇𝑐𝑚𝑎𝑥 is mostly 

observed at the end of the 30-minute period since the conductor has a long time to 

respond to the significant increase in line current. Therefore, transient-state DLRs 

estimated on the basis of the enhanced analytical method are usually conservative. It 

is noted that 𝑇𝑐𝑚𝑎𝑥 is slightly exceeded in a few cases due to the overestimated 

cooling on the conductor after the linearization which has been discussed in Section 

6.3.2. Fortunately, the created 5℃ safety buffer relative to the original maximum 

limit [10] is greater than these exceedances. 

6.3.4. Assessment of probabilistic forecasting of transient-state DLR 

In Monte Carlo simulation, random samples of air temperature and wind speed 

generated from the modelled predictive distributions for up to 30 minutes (3 steps) 

ahead over a particular future half-hour period are paired to have rank correlations 

similar to those among their observations within the most recent 15 days. Figs. 6-8 

and 6-9 show that the paired random weather samples at the same and different 

future moments have rank correlations quite close to those computed from their 

recent observations at spans CQ34-CQ35 and AC102-AC101B. Furthermore, the 
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paired random samples of the same weather parameter at different future moments 

show a significant correlation. 

 

Fig. 6-8. Rank correlations between unpaired, paired random samples of air temperature and wind 

speed forecasts for up to 3 steps ahead (i.e. 𝑇𝑎𝑖  and 𝑤𝑠,𝑖, 𝑖 = 1, 2, 3) and their historic observations 

within the most recent 15 days at weather station 4 (span CQ34-CQ35) 

 

Fig. 6-9. Rank correlations between unpaired, paired random samples of air temperature and wind 

speed forecasts for up to 3 steps ahead (i.e. 𝑇𝑎,𝑖 and 𝑤𝑠,𝑖, 𝑖 = 1, 2, 3) and their historic observations 

within the most recent 15 days at weather station 6 (span AC102-AC101B) 

The sampled values of the 10-minute, 20-minute and 30-minute transient-state DLR 

forecasts are determined from the correlated and independent samples of air 

temperature and wind speed separately that are combined with independent wind 

direction samples and point forecasts of solar radiation for up to a half hour ahead 

over a particular future half-hour period in each of the 104 generated scenarios. The 
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calculations of 10-minute, 20-minute and 30-minute DLR forecasts for 2 × 104 

scenarios are simultaneously processed through the matrix calculation realised in 

MATLAB, which require around 2 seconds. The cumulative distribution function 

(CDF) extracted from sampled values of the transient-state DLR forecast is then 

smoothed by kernel density estimation [148] to determine predictive percentiles for 

each time horizon. Figs. 6-10 and 6-11 show the ratios of the correlated weather 

samples based 5th – 95th percentiles, 25th – 75th percentiles, point forecasts of 

10-minute and 30-minute DLRs and weather observation based transient-state DLRs 

to the static line ratings (SLRs) on 27/03/2013 for the two spans respectively. 

 

Fig. 6-10. Probabilistic forecasts of 10-minute and 30-minute transient-state DLRs on 27/03/2013 for 

span CQ34-CQ35 

 

Fig. 6-11. Probabilistic forecasts of 10-minute and 30-minute transient-state DLRs on 27/03/2013 for 

span AC102-AC101B 
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The 10-minute DLR forecast is shown to offer a higher additional headroom in the 

conductor’s ampacity, though lasting for a shorter period, than the 30-minute DLR 

forecast. In addition, the predictive distributions of the 30-minute DLR are less 

concentrated than that of the 10-minute DLR on average. This is because the forecast 

accuracy decreases with increasing look ahead and the uncertainties of weather 

forecasts for up to a half hour ahead are all included for estimation of the possible 

errors of a 30-minute DLR prediction. 

The transient-state DLRs estimated from persistence forecasts of weather conditions 

are adopted as benchmarks to assess the accuracy of the point DLR forecasts 

generated by the conditionally heteroscedastic (CH) forecasting models based on 

correlated (CH-C) random weather samples. Since persistence forecasting supposes 

that weather forecasts in the future are equal to present values [102], weather 

predictions will be constant with the upcoming 30 minutes. The point forecasts of the 

CH-C model based 10-minute and 30-minute transient-state DLRs having root mean 

square errors (RMSEs) of around 35.8𝐴 and 46.8𝐴 respectively give 11% and 

18.2% improvements over the persistence forecast based transient-state DLRs for 

span CQ34-CQ35. The corresponding RMSEs for span AC102-AC101B are 47.5𝐴 

and 61.8𝐴 respectively which give 9% and 17.5% improvements over persistence. 

Although the transient-state DLRs predicted by the CH-C model are more accurate 

than the persistence forecast based DLRs on average, it is found that the CH-C 

forecasting models usually overestimates transient-state DLRs for both spans at the 

levels of their respective lower ratings (e.g. the smallest 5% of weather observation 

based transient-state DLRs) as shown in Fig. 6-12. Therefore, the lower percentiles 

of transient-state DLRs should be applied so as to avoid the risk of using the 

overestimated point forecasts of the CH-C model based transient-state DLRs. 



195 

 

 

Fig. 6-12. Box plots of errors of 10-minute and 30-minute transient-state DLR forecasts estimated by 

the CH-C models and persistence forecasting for two spans at the low rating levels 

In order to assess the calibration of probabilistic forecasts of transient-state DLR, 

histograms of probability integral transform (PIT) are plotted for DLR forecasts of 

two spans for different time horizons which are modelled from the independent 

(CH-I) and correlated (CH-C) random weather samples separately, as shown in Figs. 

6-13 and 6-14. The relative frequency of 0.01 per percentile for a uniform PIT 

histogram which reveals probabilistic forecasts to be fully calibrated is denoted by a 

black solid line. 

 

Fig. 6-13. PIT histograms of probabilistic forecasts of 10-minute, 20-minute and 30-minute transient 

state DLRs for span CQ34-CQ35 
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Fig. 6-14. PIT histograms of probabilistic forecasts of 10-minute, 20-minute and 30-minute transient 

state DLRs for span AC102-AC101B 

The relative frequencies at both ends of PIT histograms of 10-minute DLR forecasts 

derived from the correlated weather samples are similar to those for the independent 

samples. Though the paired samples of one-step-ahead air temperature and wind 

speed forecasts showing long-term positive correlations have opposite cooling effects, 

their correlations may have a slight impact on the concentration of predictive 

distributions of 10-minute DLRs due to the relatively high accuracy of air 

temperature prediction. For 20-minute and 30-minute time horizons, the significant 

deviations from the ideal relative frequency of 0.01 at both ends of PIT histograms 

for the independent weather samples are successfully mitigated in the correlated 

samples based PIT histograms. The paired random samples of the same weather 

parameter at different future moments (up to 30 minutes ahead) that show significant 

positive correlations, in each of the 104 scenarios, will be at similar levels with 

respect to their respective ranges of the 104 random samples. The low wind speed 

forecasts or the high air temperature forecasts assigned to different future moments in 

a particular scenario would therefore lead to the calculated 20-minute and 30-minute 

DLR forecasts being at a certain low level, and vice versa. This means that the 

predictive distributions of 20-minute and 30-minute DLRs estimated from the paired 

weather samples are commonly more dispersive than those based on the unpaired 
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(independent) random samples. Therefore, predictive percentiles of transient-state 

DLRs modelled based on the correlated (paired) random weather samples generated 

from the CH forecasting models are preferred due to their improved calibration, 

especially at lower percentiles. 

As noted in Section 5.2.3, a particular lower DLR percentile, e.g. the 5𝑡ℎ percentile 

(P5 value) is likely to be selected from a probabilistic forecast and regarded as the 

thermal limit of the conductor to avoid any significant probability of the maximum 

allowable conductor temperature being exceeded. If the adopted P5 value works well, 

the actual transient-state DLR should exceed the thermal limit in no more that 5% of 

cases on average. To check the effectiveness of using the P5 forecast as the thermal 

limit, differences between the actual transient-state ratings and the 30-minute P5 

forecasts that are limited to 25% above SLRs are examined. As shown in Fig. 6-15 

where a negative value indicates the actual rating is greater than the P5 forecast, the 

P5 value limited to 125% of SLR exceeds the actual rating in only 2.95% and 1.62% 

of cases for spans CQ34-CQ35 and AC102-AC101B respectively. 

 

Fig. 6-15. Distributions of differences between the actual 30-minute ratings and the 30-minute P5 

forecasts limited to 125% SLRs for different span. 
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6.3.5. Effects of uncertainty in coefficients of conductor’s characteristics 

on transient-state calculations 

Due to lack of direct measurements of conductor temperature, the transient-state 𝑇𝑐 

estimated from the measured line current and weather observations by the 𝑇𝑐𝑎𝑣,∆𝑡 

based conventional approach with a 10-second ∆𝑡 is regarded as the actual 𝑇𝑐. In a 

thermal model of the conductors that weather-based models rely on, the parameters 

describing the conductor’s emissivity 𝜀𝑒 and solar absorptivity 𝜀𝑠 that respectively 

determine rates of radiation heat loss and solar heat gain are usually coarsely 

estimated. Although the transient-state DLR estimated by the enhanced analytical 

method is mostly conservative in the work conducted here, an overestimated 𝜀𝑒 or 

an underestimated 𝜀𝑠 may lead to the transient-state final conductor temperature 

𝑇𝑐𝑓𝑡𝑠 exceeding 𝑇𝑐𝑚𝑎𝑥 at the end of the specified time period. Fig. 6-16 shows 

cumulative frequency distributions of deviations between 𝑇𝑐𝑚𝑎𝑥 and 𝑇𝑐𝑓𝑡𝑠 that are 

modelled by the conventional approach using 𝑇𝑐𝑎𝑣,∆𝑡 with a 10-second ∆𝑡 under 

the weather observation based transient ratings for different time horizons for the two 

spans, assuming the actual values of 𝜀𝑒 or 𝜀𝑠 to be 0.1 or 0.2 smaller or greater 

than that used in this study as listed in Table 3-6. Since 𝜀𝑒 of energized conductors 

is highly correlated with 𝜀𝑠 and generally considered to be slightly higher than 𝜀𝑠 

[74], the combinations of 𝜀𝑒  and 𝜀𝑠  tested here (i.e. 𝜀𝑒 /𝜀𝑠  equaling 0.5/0.7 or 

0.4/0.6 for CQ34-CQ35 and 0.8/0.9 or 0.7/0.9 for AC102-AC101B) are expected to 

give the worst cases of 𝑇𝑐𝑚𝑎𝑥  being exceeded. Therefore, a reasonable safety 

margin relative to the original maximum temperature limit is necessary for the 

transient-state DLR calculation in this research. 

In practical application, some form of conductor temperature monitoring technique 

(e.g. Power Donut [37] that measures 𝑇𝑐 at the fixed point) should be available to 

validate the ‘actual’ 𝑇𝑐 calculated by the 𝑇𝑐𝑎𝑣,∆𝑡-based conventional approach and 

calibrate the conductor characteristic coefficients (e.g. 𝜀𝑒  and 𝜀𝑠 ) used in the 
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thermal model of the conductors. For example, the value of 𝜀𝑒 was determined to 

minimize the average difference between the measured and simulated 𝑇𝑐  for 

night-time periods in [154]. CIGRE Technical Brochure 299 [74] recommended that 

the value of 𝜀𝑠 could be set to be 0.1 higher than the estimated value of 𝜀𝑒. 

 

Fig. 6-16: Cumulative frequency distributions of deviations between 𝑇𝑐𝑚𝑎𝑥  and 𝑇𝑐𝑓𝑡𝑠 tracked by the 

𝑇𝑐𝑎𝑣,∆𝑡-based conventional approach with a 10-second ∆𝑡 under the enhanced analytical method 

based transient rating for different time horizons considering estimation errors in the conductors’ 

emissivity 𝜀𝑒 or absorptivity 𝜀𝑠 for the two spans. 

6.4. Conclusions 

This chapter has proposed a weather-based approach to probabilistic forecasting of 

short-term or transient-state dynamic line rating (DLR) for a particular span based on 

an enhanced analytical method for transient-state conductor temperature calculation. 

The enhanced analytical method considers changes of weather conditions and fulfils 

the assumption of the conductor’s thermal equilibrium at the start of a specified time 

period required by the IEEE analytical method. Using the conventional approach that 

evaluates heating and cooling terms at the average conductor temperature over each 

10-second time interval as a benchmark, the enhanced analytical method is shown to 
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give more accurate estimates of transient-state conductor temperatures on average 

than the CIGRE analytical method and the conventional approach that estimates the 

associated terms at the initial conductor temperature over each time interval. 

To reduce computation time, a fast root-finding algorithm, i.e. the secant method, is 

employed to determine the steady-state final conductor temperature corresponding to 

the final line current and weather conditions after step changes, and to adjust the 

transient-state DLR until the conductor temperature reaches the maximum allowable 

limit at the end of a specified time period. The weather-based approach developed 

here has been tested on two spans comprising different types of conductors. The 

enhanced analytical method based transient-state DLR is usually conservative since 

the conductor temperature is overestimated by the enhanced analytical method for 

most of the time. Although the point forecasts of transient-state DLRs show a higher 

accuracy than those that are calculated from persistence forecasts of weather 

parameters, they are generally overestimated at low rating levels. This problem can 

be overcome by adopting a certain low percentile from a probabilistic forecast of 

transient-state DLR. The percentiles of transient-state DLR forecasts for a particular 

span derived from the correlated random weather samples that are generated from the 

conditionally heteroscedastic auto-regressive forecasting models are preferred in this 

research due to their improved calibration at the lower percentiles for time horizons 

of 20 and 30 minutes. This is because the significant positive correlations among 

random samples of the same weather parameters (i.e. wind speed and air temperature) 

at different future moments expand the predictive distributions of 20-minute and 

30-minute DLRs. 

The weather-based approach to probabilistic forecasting of transient-state DLR 

requires around two seconds to calculate the 10-minute, 20-minute and 30-minute 

DLR forecasts for 2 × 104 scenarios. The short time required for the transient-state 

DLR calculation increases the practicability of applying the lower percentiles of 

transient-state DLR forecasts. 
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Forecast horizons of 30 minutes (three 10-minutes time steps) have been examined in 

the work conducted here. Given time for SCADA measurements to be received, a 

system state estimation to be updated and some consideration of the implications of 

the system’s state relative to prevailing and anticipated ratings, this is sufficient time 

for a system operator to take action based on the forecast result. However, actions 

that might be taken to reduce loading if the forecast DLR would otherwise be 

exceeded are, in effect, limited to generation re-dispatch, most obviously curtailment 

of output at or near the sending end of the critical line, or some demand reduction in 

the vicinity of the receiving end, e.g. where possible, by switching demand to another 

substation through distribution network reconfiguration. (Where this is not possible, 

to avoid interruptions to demand that have not been contracted in advance, it might 

only be possible to effect modest reductions through changes to voltage targets 

within the distribution network.)  
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7. WIND POWER INTEGRATION WITH 

PROBABILISTIC FORECASTING OF  

DYNAMIC LINE RATING 

7.1. Introduction 

This chapter will illustrate the potential application of DLR forecasting to increase 

the utilisation of wind generation on the 132kV transmission network in North Wales 

as shown in Fig. 7-1. 

 

Fig. 7-1. The 132kV network in North Wales 

The lower percentiles of steady-state DLR forecasts for up to 3 steps (half hour) 

ahead and real-time ratings have been estimated for eight 132kV overhead circuits 

(C1 – C8) that connect seven 132kV buses (B1 – B7); this analysis uses data from 

the period from 28/01/2013 to 31/03/2013. The 132kV network is supplied from the 

400kV National Grid transmission system through 400kV/132kV super grid 

transformers at three 132kV substations B1, B4 and B7. The power at each 132kV 

substation is then fed into the 33kV distribution networks which are interconnected. 

For example, the 33kV substation L2 supplied from the 132kV substation B2 is 

connected with the 33kV substation L3 that is supplied from the 132kV substation 
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B5. The configuration and technical parameters of the 132kV network and 33kV 

interconnected distribution networks and the maximum load at each 33kV substation 

for the period 2012/2013 are available from ‘Distribution Long Term Development 

Statement for the years 2013/14 to 2017/18’ [155]. 

The ampacity of an overhead line (OHL) provided in real time can only tell a system 

operator or a wind farm operator the concurrent maximum allowable rating. However, 

using only the real-time ratings may lead to a risk related to limited generation ramp 

rates in some particular cases. For example, there can be an issue if a significant 

reduction in the real-time rating over 10 minutes exceeds the maximum volume that 

a generator can ramp down in that period or, if it is available and needed, 

replacement generation in another location can ramp up. Therefore, providing the 

system operator with forecasts of ratings can effectively avoid this risk by providing 

sufficient time for a re-dispatch action to be started and completed. This chapter will 

estimate the degree to which wind generation curtailment can be alleviated through 

use of the lower percentiles of steady-state DLR forecasts in place of the static line 

ratings (SLRs) for each 132kV OHL over the evaluated period, based on which the 

impact from probabilistic DLR forecasting on wind power integration is assessed. 

7.2. Modelling of Available Wind Power 

Four wind farms were located around the 132kV and 33kV distribution networks 

over the evaluated period from 28/01/2013 to 31/01/2013. The 90MW Rhyl Flat 

offshore wind farm was connected to the 132kV bus B3 and the other three wind 

farms (a 60MW offshore wind farm and two onshore wind farms with installed 

capacities of 15.6MW and 21.25MW) were connected to the local 33kV substations 

[155]. The available wind power of each wind farm is modelled based on the wind 

speed 𝑤𝑠,ℎ𝑢𝑏 at the hub height combined with a generic power curve model which 

defines the available wind power output 𝑊𝑃𝑎𝑣(𝑤𝑠,ℎ𝑢𝑏) as a function of the rated 

power 𝑊𝑃𝑟𝑎𝑡𝑒𝑑 and 𝑤𝑠,ℎ𝑢𝑏 [156, 157]: 
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𝑊𝑃𝑎𝑣(𝑤𝑠,ℎ𝑢𝑏) = 

{

0 𝑓𝑜𝑟 𝑤𝑠,ℎ𝑢𝑏 ≤ 𝑤𝑠,𝑖𝑛 𝑜𝑟 𝑤𝑠,ℎ𝑢𝑏 > 𝑤𝑠,𝑜𝑢𝑡

𝑊𝑃𝑟𝑎𝑡𝑒𝑑(𝑎𝑤𝑝 + 𝑏𝑤𝑝 ∙ 𝑤𝑠,ℎ𝑢𝑏 + 𝑐𝑤𝑝 ∙ 𝑤𝑠,ℎ𝑢𝑏
2 ) 𝑓𝑜𝑟 𝑤𝑠,𝑖𝑛 < 𝑤𝑠,ℎ𝑢𝑏 ≤ 𝑤𝑠,𝑟𝑎𝑡𝑒𝑑

𝑊𝑃𝑟𝑎𝑡𝑒𝑑 𝑓𝑜𝑟 𝑤𝑠,𝑟𝑎𝑡𝑒𝑑 < 𝑤𝑠,ℎ𝑢𝑏 ≤ 𝑤𝑠,𝑜𝑢𝑡

 

(7-1) 

where 𝑤𝑠,𝑖𝑛 , 𝑤𝑠,𝑜𝑢𝑡  and 𝑤𝑠,𝑟𝑎𝑡𝑒𝑑  represent the cut-in, cut-out and rated wind 

speeds respectively for a wind turbine, and constants 𝑎𝑤𝑝, 𝑏𝑤𝑝 and 𝑐𝑤𝑝 are only 

dependent on 𝑤𝑠,𝑖𝑛 and 𝑤𝑠,𝑟𝑎𝑡𝑒𝑑 [156]: 

𝑎𝑤𝑝 = −
𝑤𝑠,𝑖𝑛 ∙ (𝑤𝑠,𝑖𝑛 +𝑤𝑠,𝑟𝑎𝑡𝑒𝑑) ∙ (𝑤𝑠,𝑖𝑛

2 + 2𝑤𝑠,𝑖𝑛𝑤𝑠,𝑟𝑎𝑡𝑒𝑑 −𝑤𝑠,𝑟𝑎𝑡𝑒𝑑
2 )

2(𝑤𝑠,𝑖𝑛 −𝑤𝑠,𝑟𝑎𝑡𝑒𝑑)
2
∙ 𝑤𝑠,𝑟𝑎𝑡𝑒𝑑

2
 (7-2) 

𝑏𝑤𝑝 =
𝑤𝑠,𝑖𝑛
4 + 4𝑤𝑠,𝑖𝑛

3 𝑤𝑠,𝑟𝑎𝑡𝑒𝑑 + 6𝑤𝑠,𝑖𝑛
2 𝑤𝑠,𝑟𝑎𝑡𝑒𝑑

2 − 2𝑤𝑠,𝑖𝑛𝑤𝑠,𝑟𝑎𝑡𝑒𝑑
3 −𝑤𝑠,𝑟𝑎𝑡𝑒𝑑

4

2(𝑤𝑠,𝑖𝑛 −𝑤𝑠,𝑟𝑎𝑡𝑒𝑑)
2
∙ 𝑤𝑠,𝑟𝑎𝑡𝑒𝑑

3
 (7-3) 

𝑐𝑤𝑝 = −
𝑤𝑠,𝑖𝑛
3 + 3𝑤𝑠,𝑖𝑛

2 𝑤𝑠,𝑟𝑎𝑡𝑒𝑑 + 3𝑤𝑠,𝑖𝑛𝑤𝑠,𝑟𝑎𝑡𝑒𝑑
2 − 3𝑤𝑠,𝑟𝑎𝑡𝑒𝑑

3

2(𝑤𝑠,𝑖𝑛 −𝑤𝑠,𝑟𝑎𝑡𝑒𝑑)
2
∙ 𝑤𝑠,𝑟𝑎𝑡𝑒𝑑

3
 (7-4) 

Fig. 7-2 shows an example of a generic power curve estimated for a wind turbine that 

has technical parameters of 𝑤𝑠,𝑖𝑛 = 4𝑚 𝑠⁄ , 𝑤𝑠,𝑜𝑢𝑡 = 25𝑚 𝑠⁄ , 𝑤𝑠,𝑟𝑎𝑡𝑒𝑑 = 13.5𝑚 𝑠⁄  

and 𝑊𝑃𝑟𝑎𝑡𝑒𝑑 = 3.6𝑀𝑊 based on equation (7-1). 

 

Fig. 7-2: A generic power curve for a 3.6MW wind turbine with cur-in, cut-out and rated wind speeds 

of 4𝑚 𝑠⁄ , 25𝑚 𝑠⁄  and 13.5𝑚 𝑠⁄  respectively. 
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The hub height wind speed 𝑤𝑠,ℎ𝑢𝑏 at the centre of the wind farm is estimated from 

wind speeds measured at weather stations using the spatial interpolation models 

developed in Chapter 4. The trend surfaces of wind speeds at a reference level (300m 

above sea level) in terms of distance to ocean (DTO) at offshore wind farms are 

calculated for 𝐷𝑇𝑂 = 0. The technical parameters of wind turbines and the useful 

information for each wind farm are provided in [158 – 165]. 

7.3. Permitted Outputs of Renewable Generation Plants 

To investigate the impact of DLR forecasting on alleviating wind generation 

curtailment, the reductions in curtailment of wind power from Rhyl Flats wind farm 

through the replacement of the SLRs by the lower percentiles of steady-state DLR 

forecasts for eight 132kV OHLs are determined. This is because Rhyl Flats is the 

wind farm connected to the 132kV bus B3 and the produced electricity can be 

dispatched to 132kV substations B2 and B4 through two 132kV OHLs C2 and C3 for 

which probabilistic DLR forecasts for up to a half hour (3 steps) ahead have been 

estimated. It is assumed that the connection of Rhyl Flats to B3 is sufficient for the 

transfer of power available from Rhyl Flats. In addition to thermal limits of OHLs, 

the planned wind output is limited by the maximum allowable ramp rate and the 

expected available wind power. Table 7-1 and Fig. 7-3 show the procedure used to 

calculate the maximum output of a renewable generation plant such as a wind farm 

that is permitted to inject into the connected grid, taking into account the maximum 

allowable ramp rates of wind generation and the forecasts of available wind powers 

and lines’ ratings for up to three 10-minutes time steps ahead: 
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Table 7-1. Procedure used to calculate the planned power output of a wind farm 

Computation 

sequence 
 (3) (2) (1) 

Time period 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 

Expected available 

wind power 
 𝑊𝑃1

𝑎𝑣 𝑊𝑃2
𝑎𝑣 𝑊𝑃3

𝑎𝑣 

Line rating forecast  𝐷𝐿𝑅1 𝐷𝐿𝑅2 𝐷𝐿𝑅3 

Minimum wind 

farm output 
 𝑚𝑎𝑥 {

𝑊𝑃0 − ∆𝑊𝑃
−

0
} 𝑚𝑎𝑥 {

𝑊𝑃0 − 2 ∙ ∆𝑊𝑃
−

0
} 𝑚𝑎𝑥 {

𝑊𝑃0 − 3 ∙ ∆𝑊𝑃
−

0
}* 

Maximum wind 

farm output 
 𝑚𝑖𝑛 {

𝑊𝑃0 + ∆𝑊𝑃
+

𝑊𝑃1
𝑎𝑣

𝑊𝑃2 + ∆𝑊𝑃
−
} 𝑚𝑖𝑛 {

𝑊𝑃0 + 2 ∙ ∆𝑊𝑃
+

𝑊𝑃2
𝑎𝑣

𝑊𝑃3 + ∆𝑊𝑃
−
} 𝑚𝑖𝑛 {

𝑊𝑃0 + 3 ∙ ∆𝑊𝑃
+

𝑊𝑃3
𝑎𝑣 }* 

Planned wind farm 

output 
𝑊𝑃0 𝑊𝑃1 𝑊𝑃2 𝑊𝑃3 

* ∆𝑊𝑃+ or ∆𝑊𝑃−: the maximum volume that a wind farm is allowed to ramp up or ramp down in a 

10-minute period given its maximum allowable ramp rate. 

 

Fig. 7-3. A diagram showing the procedure of calculating the planned power output of a wind farm. 

(1) The planned wind farm output after 30 minutes 𝑊𝑃3 (at 𝑡 = 3) is calculated 

under the constraints of the steady-state rating forecasts 𝐷𝐿𝑅3  with a 

maximum limit that is the lower value of the expected available wind power 

𝑊𝑃3
𝑎𝑣 for half hour (3 steps) ahead or the sum of the present wind farm 
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output 𝑊𝑃0 (at 𝑡 = 0) and the maximum volume that the wind farm can 

ramp up in three subsequent 10-minute periods (3 ∙ ∆𝑊𝑃+ ) given its 

maximum allowable ramp rate. A minimum limit for 𝑊𝑃3 is determined as 

the larger value of zero or the difference between 𝑊𝑃0 and the maximum 

volume that the wind farm is allowed to ramp down in three subsequent 

10-minute periods (3 ∙ ∆𝑊𝑃−). The planned power output 𝑊𝑃3  of each 

generating plant and the powers at the three 132kV substations (B1, B4 and 

B7) fed by the 400kV National Grid transmission system at 𝑡 = 3 are 

calculated by Optimal Power Flow (OPF) [166] with the objective of 

maximising the utilisation of renewable generation; 

(2) The planned wind output after 20 minutes 𝑊𝑃2 (at 𝑡 = 2) is limited by the 

2-step-ahead rating forecasts 𝐷𝐿𝑅2 with a maximum limit that is the lowest 

value among the expected available wind power 𝑊𝑃2
𝑎𝑣 (at 𝑡 = 2), the sum 

of 𝑊𝑃0 and the maximum allowable ramp-up volume for the wind farm in 

two 10-minute periods (2 ∙ ∆𝑊𝑃+), and the sum of 𝑊𝑃3 and the maximum 

allowable ramp-down volume in 10 minutes (∆𝑊𝑃−) given its maximum 

allowable ramp rate. This would ensure that the planned wind farm output 

𝑊𝑃2 at 𝑡 = 2 can ramp down to the planned power output 𝑊𝑃3 at 𝑡 = 3 

in 10 minutes. A minimum limit for 𝑊𝑃2 is determined as the difference 

between 𝑊𝑃0  and the maximum allowable ramp-down volume in two 

10-minute periods (2 ∙ ∆𝑊𝑃−). If 𝑊𝑃0  is smaller than (2 ∙ ∆𝑊𝑃− ), the 

minimum limit for 𝑊𝑃2 is set to be zero; 

(3) The minimum limit for the planned wind output after 10 minutes 𝑊𝑃1 (at 

𝑡 = 1) equals the difference between 𝑊𝑃0 (at 𝑡 = 0) and ∆𝑊𝑃− so that a 

10-minute period is sufficient for wind generation to ramp down from 𝑊𝑃0 

to 𝑊𝑃1. A minimum limit of zero is applied if (𝑊𝑃0 − ∆𝑊𝑃
−) is negative. 

The maximum limit for 𝑊𝑃1 is determined as the lowest value among the 

expected available wind power 𝑊𝑃1
𝑎𝑣  (at 𝑡 = 1), the sum of 𝑊𝑃2  and 
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∆𝑊𝑃−, and the sum of 𝑊𝑃0 and the maximum allowable ramp-up volume 

in 10 minutes (∆𝑊𝑃+). This would ensure that the wind generation can ramp 

down from 𝑊𝑃1 to 𝑊𝑃2 and ramp up from 𝑊𝑃0 to 𝑊𝑃1 in 10 minutes 

given its maximum allowable ramp rate; and that the increased wind farm 

output would not exceed the expected available value. The 1-step-ahead 

steady-state rating forecasts 𝐷𝐿𝑅1 are additionally used as thermal limits of 

132kV OHLs for the estimation of 𝑊𝑃1; 

(4) When the time 𝑡 = 1 comes, the estimated value of 𝑊𝑃1 is used as the 

present wind power output 𝑊𝑃0 and the previous three steps are repeated. 

7.4. Reduction in Wind Generation Curtailment by Applying 

DLR Forecasts 

The 132kV and 33kV interconnected distribution networks in North Wales are 

represented in MATPOWER [167], including 182 buses and 222 branches. The 

layout and technical parameters of distribution lines such as impedances and SLR 

values can be found in [155]. The loads at 33kV buses are assumed to vary according 

to the normalised data which is extracted from historic time series of total electricity 

demand in England and Wales [168] for the year 2012/13. 

Other types of renewable generation plants connecting to the 33kV interconnected 

distribution networks such as hydro and landfill are all included in the whole system 

model. It is assumed here that the hydroelectric plant is run-of-river with a limited 

amount of water storage and the landfill is combined heat and power plant that has a 

particular heat demand. These assumptions mean that, in effect, the run-of-river 

hydroelectricity and landfill generation cannot be re-dispatched like wind farms. 

Since power outputs from these generating plants are not provided, they are assumed 

to be constant at their ratings which are provided in [155]. The total capacity of these 

renewable generation plants excluding wind generators is 53.8MW, supplying around 
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12.3% of the total system demand (i.e. 435.8MW). Furthermore, it is assumed that all 

the renewable generation plants have ‘perfect’ forecasts of the expected available 

powers, i.e. the forecasts being equal to the actual values. 

The maximum allowable ramp rates at which generating plants are required to be 

able to limit the changes of power outputs depend on region as listed in Table 7-2 

[169]. Though the research area is in North Wales, the standards used in Scotland are 

adopted in this study for academic purposes as the maximum allowable ramp rates 

used in England & Wales rarely limit the outputs of Rhyl Flats. As a result, all the 

connected generating plants with an installed capacity over 15MW would be required 

to operate under the maximum allowable ramp rate limits. In addition to the ramp 

rate limits for renewable generation, the variations in steady voltages from the 

declared 33kV and 132kV should not exceed 6 per cent and 10 per cent respectively 

[155] and a ±3% voltage step change limit [170] is also used to constrain the step 

change in voltage from the present steady-state value in 10 minutes. 

Table 7-2. The maximum ramp rates that generating plants are required to limit changes of power 

outputs at in different areas [169] 

Ireland England & Wales Scotland 

∙ 1 to 30MW/minute 

(1 minute average) 

∙ 1 to 30MW/minute 

(10 minute average) 

 

(values specified by 

the TSO to each 

wind farm) 

∙ No limit for a change 

of up to 300MW 

∙ 50MW/minute for a 

change between 300MW 

and 1000MW 

∙ 40MW/minute for a 

change over 1000MW 

∙ For Power Park Modules <15MW 

No limit 

∙ For Power Park Modules from 15MW to 150MW 

20% of rated output/minute (1 minute average) 

7% of rated output/minute (10 minute average) 

∙ For Power Park Modules above 150MW 

30MW/minute (1 minute average) 

10MW/minute (10 minute average) 

Based on the procedure described in Table 7-1 and Fig. 7-3, the planned wind farm 

outputs after 10 minutes and the volumes of wind generation curtailment at Rhyl 

Flats over the period from 28/01/2013 to 31/03/2013 are calculated when the power 

transfer limits of eight 132kV OHLs are determined by the SLRs, the 1st, 3rd and 5th 

percentiles of steady-state DLR forecasts (denoted by P1, P3 and P5) and the ‘perfect’ 
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rating forecasts which are equal to the actual ‘real-time’ ratings (RTRs) respectively. 

It is found that Rhyl Flats would not be curtailed even when the 132kV OHLs are 

limited by SLRs. This is because the installed capacity of Rhyl Flats, i.e. 90MW, is 

smaller than the SLRs of either the circuit C2 or C3. Therefore, in order to test the 

probabilistic rating method, the installed capacity of Rhyl Flats is scaled up to 

180MW, 270MW and 360MW to estimate how much curtailment could be avoided 

by using DLR forecasts. The volumes (GWh) of wind generation curtailments at 

Rhyl Flats for different installed capacities under different thermal limits of 132kV 

OHLs over the evaluated period are shown in Fig. 7-4. 

 

Fig. 7-4. Volumes (GWh) of wind generation curtailment at Rhyl Flats for different installed 

capacities subject to different thermal limits of 132kV OHLs over the evaluated period. 

It is found that the levels of curtailment of Rhyl Flats under different thermal limits 

of 132kV OHLs are the same when Rhyl Flats has an installed capacity of 180MW. 

This suggests that Rhyl Flats may be curtailed due to other reasons (e.g. the ramp 

rate limit) rather than the ampacities of circuits C2 and C3. The electricity produced 

by Rhyl Flats can be dispatched to 132kV substations B2 and B4 through C2 and C3 

(as shown in Fig. 7-1) which have the SLRs of 111MVA and 139MVA in winter 
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(January and February) and 100MVA and 133MVA in spring (March) respectively. 

Regardless of the limits of ramp rates, the maximum permitted power output of Rhyl 

Flats could reach 250MVA in winter or 233MVA in spring which is still higher than 

the 180MW installed capacity of Rhyl Flats. Therefore, there would be no 

curtailment with 180MW of wind capacity at Rhyl Flats caused by the thermal limits 

of C2 and C3. 

To quantify the wind generation curtailment caused by line ampacity constraints only, 

the amounts of curtailment at Rhyl Flats due to other reasons are estimated through 

increasing power transfer capacities of the eight 132kV OHLs to infinity and then 

subtracted from the total volumes of wind generation curtailment. Fig. 7-5 shows the 

volumes (GWh) of wind curtailment at Rhyl Flats for different installed capacities 

caused by power transfer limits of 132kV OHLs only that are determined by the 

SLRs, lower percentiles of DLR forecasts and real-time ratings (RTRs) respectively. 

 

Fig. 7-5. Volumes (GWh) of wind generation curtailment at Rhyl Flats for different installed 

capacities caused by thermal limits of 132kV OHLs only that are determined by SLRs, P1, P3, P5 

values and real-time ratings (RTRs) over the evaluated period 
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The simulation results demonstrate that (a) the power transfer capacities of 132kV 

OHLs would not limit the outputs of Rhyl Flats with installed capacities of 90MW 

and 180MW; (b) when Rhyl Flats is scaled up to 270MW, the 1.92GWh curtailment 

caused by the SLRs of 132kV OHLs is reduced by 1.79GWh (92.9%), 1.84GWh 

(95.7%) and 1.86GWh (96.8%) through the use of the P1, P3 and P5 values of DLR 

forecasts as the power transfer limits of 132kV OHLs; (c) when the installed capacity 

is increased to 360MW, the 5.35GWh wind curtailment due to the current-carrying 

capacities of 132kV OHLs limited by the SLRs is reduced by 4.4GWh (82.1%), 

4.64GWh (86.7%) and 4.75GWh (88.7%) for the P1, P3, P5 forecasts respectively; 

and (d) when the current-carrying capacities of 132kV OHLs are determined by the 

‘perfect’ DLR forecasts (i.e. ‘real-time’ ratings), a higher volume of reduced wind 

generation curtailment could be achieved, i.e. 99.7% for a 270MW installed capacity 

and 95.6% for a 360MW installed capacity. 

As noted in Chapter 5, the upgrading of ratings relative to SLRs is usually limited to 

25% due to various practical issues. When DLR forecasts are limited to 125% of 

SLRs, the 5.35GWh wind curtailment at 360MW Rhyl Flats caused by the SLRs of 

132kV OHLs is reduced by 4GWh (74.8%), 4.15GWh (77.5%), 4.22GWh (78.7%) 

and 4.43GWh (82.8%) for the P1, P3, P5 and ‘perfect’ DLR forecasts respectively. 

7.5. Risks of Using Dynamic Line Rating Percentiles 

The lower percentiles of steady-state DLR forecasts estimated for 132kV OHLs have 

been found to be conservative since the percentages of time that the actual ratings 

exceed the lower DLR percentiles are generally less than the theoretical values as 

listed in Table 5-6. For example, the actual ratings are smaller than the 3-step-ahead 

P5 forecasts in only 2.2% of cases for circuit C2 and in 3.6% of cases for circuit C3. 

In practice, the probability of the line load scheduled by the P5 forecasts exceeding 

the actual rating will be smaller than the probability that the actual rating is below the 

P5 forecast since the line current cannot always reach the level of the P5 forecast. 
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To examine the risk of the line current exceeding the actual rating under the 

schedules derived from the P5 forecasts, the power flows passing through each 

132kV OHL are compared with their actual ratings over the period from 28/01/2013 

to 31/03/2013. The differences between the line currents and the actual ratings for 

circuits C2 and C3 are shown in Fig. 7-6 where Rhyl Flats is scaled up to 270MW 

and 360MW respectively. The line loads on circuit C2 are found to be always smaller 

than the actual ratings. When Rhyl Flats has 270MW and 360MW installed 

capacities, the line loads on circuit C3 exceed the actual ratings in 3 cases (0.03%) 

and 15 cases (0.17%) respectively. 

 
Fig. 7-6. Differences (𝑀𝑉𝐴) between line loads and actual ratings on circuits C2 and C3 under the 

schedules derived from the P5 forecasts for different scales of Rhyl Flats wind farm 

Though the actual ratings are shown to be smaller than the P5 forecasts in around 2% 

and 3% of cases for C2 and C3 respectively, the loads carried by C2 and C3 rarely 

exceed the actual ratings. When the power transfer limits of 132kV lines are removed 

(i.e. infinite power transfer capacities) during the OPF calculation, C3 is found to be 

overloaded in 85 cases (0.94%) where Rhyl flats is assumed to have an installed 

capacity of 360MW. The low probability of overloading on the two OHLs may be in 
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part due to relatively significant positive correlations between the available wind 

powers from Rhyl Flats and real-time ratings of C2 and C3 (i.e. 0.76 and 0.48 

respectively). This is because they are all derived from the wind speed measurements 

at weather stations. The high current-carrying capacities of the connected circuits that 

coincide with the high available wind power are mostly sufficient to transfer the 

power outputs from Rhyl Flats with assumed installed capacities of 270MW and 

360MW. Furthermore, the growth in the assumed installed capacity at Rhyl Flats is 

shown to increase the risk of overloading on the connected circuits. 

The static rating itself is not without risk since the SLRs are found to be greater than 

the actual ratings in 1835 cases (20.23%) for C2 and in 3 cases (0.03%) for C3. 

However, the use of the SLRs as the thermal limits of 132kV OHLs does not result in 

C2 or C3 being overloaded. Due to the relatively significant positive correlations 

between the modelled available wind powers and the calculated line ratings, the high 

wind outputs at Rhyl Flats in the overloading cases are found to be accompanied by 

the actual real-time ratings of C3 that are higher than the SLRs. Therefore, when the 

SLRs are adopted as the thermal limits, the line overloading in these cases is avoided, 

but at a cost of losing a certain headroom for Rhyl Flats to generate over the 

complete evaluated period. This can be inspected in Fig. 7-5. 

 

 

 

 

 



215 

 

7.6. Conclusions 

This chapter has evaluated the use of the lower percentiles of steady-state dynamic 

line rating (DLR) forecasts with respect to alleviating wind generation curtailment of 

differing wind farm capacities at Rhyl Flats wind farm (90MW and also a series of 

upscaled wind farms) that has a connection to the 132kV network in North Wales. 

The reductions in wind generation curtailment at Rhyl Flats achieved by using the 

lower percentiles of DLR forecasts of eight 132kV overhead lines (OHLs) in place of 

the static line ratings (SLRs) are estimated based on the assumptions of the available 

wind power forecasts being equal to their actual values and the connection of Rhyl 

Flats to the 132kV bus being sufficient for the transfer of power available from the 

wind farm. 

The 132kV network and 33kV interconnected distribution networks in North Wales 

are represented in MATPOWER. Using Optimal Power Flow, the planned power 

outputs from wind farms are maximised under the constraints of the maximum 

allowable wind generation ramp rates, the expected available wind powers and 

forecasts of power transfer capacities of OHLs. The DLR forecasts for up to three 

10-minutes time steps ahead are all considered to avoid the risk of the reduction in 

wind farm output required to meet the line ampacity constraint exceeding the 

maximum volume that the wind farm is allowed to ramp down in 10 minutes given 

its maximum allowable ramp rate. When Rhyl Flats is scaled up to 270MW and 

360MW, the use of the lower percentiles (i.e. the 1st, 3rd and 5th percentiles) of 

steady-state DLR forecasts shows the potential to reduce the wind generation 

curtailment due to the thermal limits of 132kV OHLs determined by SLRs by greater 

than 90% (i.e. 92.9%, 95.7% and 96.8% for the three DLR percentiles) and 80% (i.e. 

82.1%, 86.7% and 88.7% for the three DLR percentiles) respectively over the period 

from 28/01/2013 to 31/03/2013. When current-carrying capacities of 132kV OHLs 

are determined by the ‘perfect’ rating forecasts, i.e. real-time ratings, the wind 
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generation curtailment at Rhyl Flats with 270MW and 360MW installed capacities 

caused by the SLR based thermal limits is reduced by 99.7% and 95.6% respectively 

over the evaluated period. 

In the modelling, the expected available wind power is approximately estimated 

based on inference of wind speed at hub height at the centre of the wind farm from 

wind speeds observed at weather stations combined with a generic power curve for a 

single turbine. This may lead to the correlations between the calculated available 

wind powers and the ratings of the connected lines derived from wind speed 

measurements being higher than in actuality. When the correlations are higher than 

actual values, conservatively set limits to transfer on the connected lines will often be 

high at the same time as there are high exports from Rhyl Flats. Thus, the reduction 

in wind generation curtailment achieved by using the lower DLR percentiles as the 

thermal limits of 132kV OHLs may be overestimated in the work conducted here. In 

addition, their significant positive correlations reduce the risk of overloading on the 

connected lines since the actual ratings of the connected OHLs are mostly sufficient 

to transfer the power outputs from Rhyl Flats even if they are smaller than the 

adopted DLR percentiles. Although the SLRs exceed the actual ratings in some cases, 

using the SLRs as line ampacity constraints would not result in the connected circuits 

being overloaded in this work, at a cost of losing a certain headroom for Rhyl Flats to 

deliver additional electricity to the network over the evaluated period.  
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8. CONCLUSIONS AND FUTURE WORK 

The thesis has presented weather-based approaches to probabilistic forecasting of 

dynamic line rating (DLR) for overhead lines (OHLs). Conditionally heteroscedastic 

auto-regressive models have been developed to determine predictive distributions of 

the measured weather variables for a number of 10-minutes time steps ahead from 

historic weather observations recorded at weather stations along the route of OHLs. 

For a particular overhead span in proximity to a weather station, the distribution of 

continuous or steady-state DLR forecasts at a particular future moment is calculated 

from the predictive distributions identified for the measured weather variables using 

Monte Carlo simulation combined with a thermal model of overhead conductors. 

When estimating probabilistic forecasts of steady-state DLRs for an entire OHL, 

possible weather conditions at each span within the line are inferred from random 

samples of the measured weather variables at weather stations using suitable spatial 

interpolation models. The minimum value of steady-state DLR forecasts among all 

spans is identified as the DLR forecast for the entire OHL in each of the generated 

scenarios, from which predictive DLR percentiles of the OHL are estimated. The 

approach to probabilistic forecasting of transient-state or short-term DLRs for a 

particular span considers changes of weather forecasts at each future time step and 

the thermal inertia of the conductors. Using an enhanced analytical approach to the 

transient-state conductor temperature modelling, the transient-state DLR forecast is 

calculated as that which yields the maximum allowable conductor temperature at the 

end of a specified time period under weather predictions at different future moments 

in each generated scenario. The proposed weather-based DLR forecasting approaches 

have been tested on 132kV OHLs composed of different types of overhead 

conductors along which nine weather stations have been installed in North Wales. 

This chapter will conclude by summarising findings from the work undertaken on 

probabilistic weather forecasting, spatial interpolation of weather variables, 

probabilistic forecasting of both steady-state and transient-state DLRs and potential 
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application of probabilistic DLR forecasts for wind power integration. Future 

research that can further enhance the weather-based DLR forecasting model 

developed here is also discussed. 

8.1. Probabilistic Steady-State DLR Forecasting for a Span 

8.1.1. Probabilistic weather forecasting 

Different time series forecasting models have been compared for the purpose of 

providing a probabilistic weather forecast, i.e. one that does not simply give a single 

point estimate but instead quantifies the range of future values and their likelihood. 

Univariate auto-regressive (AR) models and vector auto-regressive (VAR) models 

with different model orders and lengths of sliding training window are separately 

developed to determine point forecasts of the measured weather variables as a sum of 

a linear combination of historic de-trended data and temporal trends extracted from 

the training window by Fourier series. The suitable auto-regressive model along with 

model order and training window length is determined for each weather variable as 

that which gives the best improvement in root mean square error (RMSE) over 

persistence forecasting for each forecast time horizon. VAR forecasting models have 

been selected for air temperature and solar radiation since they give a more 

significant improvement in RMSE over persistence than AR models. For wind speed 

and wind direction, a higher-order AR model is preferred since it performs similarly 

to or even better than a VAR model of a lower order and has fewer model parameters 

which saves computation time in the process of minimising continuous ranked 

probability score (CRPS) value. Furthermore, to address the circular properties of 

wind direction, wind directions are decomposed into the northerly and easterly 

components before de-trending and the application of the AR model; then wind 

directions are predicted based on forecasts of the two separate components. 
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The predictive distributions of air temperature, wind speed and wind direction are 

assumed to be normal, truncated normal with a cut-off at zero and von Mises 

respectively. The adopted AR and VAR forecasting models are developed further to 

determine distributions of weather forecasts through modelling the predictive spread 

or concentration parameter as time variable, reflecting conditional heteroscedasticity. 

This spread is modelled as a linear function of the root mean square of recent 

changes in de-trended data within one hour for air temperature and wind speed or the 

concentration of historic observations within the most recent two hours for wind 

direction. The model parameters are determined to minimise the average value of 

CRPS (a summary indicator to assess probabilistic forecasts with respect to 

calibration and sharpness) in the training window. Probabilistic forecasts of weather 

variables produced by the conditionally heteroscedastic (CH) models show a smaller 

average CPRS value, a better calibration and a more concentrated distribution over 

half of the time than simply modelling the predictive spread or concentration 

parameter as a constant (as with homoscedasticity). Furthermore, point forecasts or 

expected values of probabilistic forecasts estimated by the VAR-CH or AR-CH 

models show higher accuracies than persistence forecasts for each weather variable. 

Moreover, a more significant improvement in RMSE over persistence is achieved 

with increasing look ahead. Therefore, suitable AR or VAR forecasting models 

combined with conditional heteroscedasticity are employed to produce predictive 

distributions of the measured weather variables. 

8.1.2. Probabilistic steady-state DLR forecasts for a span 

For a particular span in proximity to a weather station, predictive distributions of the 

measured weather variables can be directly used to calculate probabilistic forecasts 

of steady-state DLRs for the span by a combination of the Monte Carlo method, 

where random weather samples are independently generated from the modelled 

predictive distributions at a particular future time, and a thermal model of overhead 

conductors. Point forecasts of solar radiation are used in this research instead of 
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probabilistic forecasts since conductor temperature is insensitive to the change in 

solar radiation when wind speeds are above a modest level or conductor temperatures 

are relatively high. A rank correlation based pairing method is adopted to pair the 

independent weather samples so as to have correlations similar to those calculated 

from weather observations within the most recent 15 days. The rank correlations of 

the paired random weather samples are close to those among their recent 

observations, especially for linear variables, i.e. air temperature and wind speed. 

The probabilistic forecasts of steady-state DLRs for a particular span estimated from 

independent random weather samples show a better calibration than those that are 

derived from correlated weather samples, especially at lower and higher percentiles. 

The overconcentrated distributions of DLR forecasts calculated from the paired 

weather samples are mainly due to the correlations added into random samples of 

wind speed and wind direction. Although positive correlations between samples of 

air temperature and wind speed can also narrow predictive distributions of DLRs, 

their impact on the concentration of probabilistic DLR forecasts is limited by the 

relatively high accuracy of air temperature prediction. 

8.2. Probabilistic Steady-State DLR Forecasts for an OHL 

8.2.1. Spatial interpolation models 

To estimate probabilistic forecasts of steady-state DLRs for a complete OHL, 

suitable spatial interpolation models are required to infer possible weather forecasts 

experienced at each span within the OHL from random weather samples generated 

from the predictive distributions that are modelled for the measured weather 

variables at weather stations. An appropriate spatial interpolation model has been 

determined for each weather parameter from different combinations of an inverse 

distance weighting (IDW) model or a kriging interpolation model and the modelling 

of spatial trends in terms of the associated geographic variables. 
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In order to eliminate the influence of elevation, measurements of air temperatures 

and wind speeds at original levels are converted to those at their respective reference 

levels (i.e. the sea level for air temperature and 300 meters above sea level for wind 

speed) by using the lapse rate and the log-law wind profile respectively. After the 

spatial and temporal de-trending, the residuals of weather variables at the reference 

levels are used to model the semi-variograms which clearly present spatial variability 

between weather variables compared to those extracted from original data and are 

applied to determine parameters of the kriging models. The spatial trends estimated 

for target locations, e.g. all spans, are then added back into the interpolations at the 

end of the IDW or kriging process. The interpolation results for each span at the 

reference levels are converted back to the elevation of the span. 

The use of lapse rate for air temperature and the modelling of spatial trends of wind 

speeds at 300m above sea level in terms of distance to ocean significantly improve 

the interpolation accuracy in RMSE over the spatial interpolation models used in 

previous work undertaken by Durham University which did not consider the change 

of air temperature with elevation and used 200m above ground level as the reference 

level for wind speed. The de-trended data of air temperature at sea level show similar 

spatial correlations (or semi-variances) at short distance lags, which weaken the 

kriging weight assigned to the nearest sampled location and lead to a higher accuracy 

of air temperature interpolation than IDW. For wind speed and solar radiation, the 

kriging models perform slightly better than the IDW methods at most target locations. 

This may be because (a) the limited number of weather stations increases the 

difficulty in accurately modelling spatial relationships among weather variables, 

especially at short distance lags and (b) their fairly even distribution constrains 

kriging’s advantage of compensation for cluster effects, i.e. weakening the weights 

assigned to what are effectively duplicate measurements in similar locations. In 

addition, the nugget effect in the kriging model will weaken the weight assigned to 

the nearest sampled location. This may reduce the interpolation accuracy for wind 
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speeds that are very close to a sampled location since wind speeds generally have 

strong correlations at short distance lags. Therefore, the IDW models that show 

similar accuracies and require less computation time than kriging are used for 

interpolation of wind speed and solar radiation in this work. The IDW model has also 

been applied to the northerly and easterly components of wind directions separately 

due to the circular properties of wind direction. This achieves a higher accuracy than 

the direct application of IDW to original wind directions.  

8.2.2. DLR forecasts and predictions of critical span for an OHL 

The random samples of air temperature and wind speed generated from the modelled 

predictive distributions at different weather stations are first paired to have rank 

correlations quite close to those among their historic observations within the most 

recent 15 days before the application of spatial interpolation models. Then 

probabilistic forecasts of steady-state DLRs for each OHL are produced from the 

possible weather forecasts at all spans within the OHL that are inferred from the 

independent or correlated random samples of the measured weather variables by 

suitable spatial interpolation models. The significant positive correlations added into 

random samples of the same weather parameters (i.e. air temperature and wind speed) 

at different stations expand the distribution of DLR forecasts for an OHL at a 

particular future time. This alleviates the problem of overconcentration of predictive 

distributions of DLRs that are derived from the independent weather samples. 

Furthermore, the critical span for each OHL at a particular future time has been 

predicted based on the frequency of each span having the minimum DLR forecast 

among all spans within the OHL in the generated scenarios. The location of the 

critical span is accurately predicted for the five most frequent critical spans in greater 

than 70% of cases for most lines. The OHL covering a short distance and comprising 

a small number of spans of similar orientation generally has more accurate forecasts 

of the critical span in this work. 



223 

 

8.3. Probabilistic Transient-State DLR Forecasting for a Span 

8.3.1. Enhanced analytical method for conductor temperature modelling 

The transient-state conductor temperatures within a specified time period after step 

changes in line current and weather variables are separately modelled by (a) 

conventional approaches that use the non-steady-state heat balance equation to track 

the variation in conductor temperature over each sufficiently small time interval 

(typically 10 seconds) and (b) analytical methods that estimate the conductor 

temperature as an exponential function of time by assuming the cooling terms in the 

non-steady-state heat balance equation to be linear with conductor temperature. The 

analytical method developed in IEEE Standard 738 is enhanced here to additionally 

consider changes in weather variables and fulfil the requirement of the conductor 

being in thermal equilibrium prior to the point when the step occurs through 

inference of an equivalent steady-state initial line current from the initial conductor 

temperature and weather conditions over a given time period. To reduce computation 

time, the secant method (a fast root-finding algorithm) is used to find the steady-state 

final conductor temperature corresponding to the line current and weather variables 

after step changes. 

The conventional approach that evaluates heating and cooling terms at the average 

conductor temperature over each 10-seconds time interval is considered here to 

provide accurate estimates of transient-state conductor temperatures since field 

measurements of conductor temperatures are not available. Based on the 

experimental data used in a calculation example given in CIGRE Technical Brochure 

601, the conventional approach that evaluates heating and cooling terms at the initial 

conductor temperature over each 1-minute time interval is found to overestimate the 

increase in conductor temperature given a relatively significant growth in line current. 

This means that the conventional approach using the initial conductor temperature to 

evaluate associated variables over each time interval requires a very small time 
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interval to ensure the accuracy in iterative calculations. When tracking transient-state 

conductor temperatures for two particular spans over each 10-minute period, the 

enhanced analytical method requires less computation time and generates more 

accurate estimates of conductor temperatures on average than the conventional 

approach that uses the initial conductor temperature with a 10-seconds time interval. 

Furthermore, the conductor temperatures are mostly overestimated by the enhanced 

analytical method that evaluates the ac resistance at the average of the initial and 

steady-state final conductor temperatures. However, in some particular cases, the 

enhanced analytical method may underestimate the conductor temperature at the end 

of a specified time period due to the linearized convection heat loss rates being much 

greater than the actual values. 

8.3.2. Probabilistic transient-state DLR forecasts for a single span 

The secant method is used here to adjust the transient-state DLR until the conductor 

temperature modelled by the enhanced analytical method reaches the maximum 

allowable limit at the end of a 10-minute, 20-minute or 30-minute period. The 

20-minute DLR and 30-minute DLR are limited to the calculated 10-minute DLR 

and the calculated or restricted 20-minute DLR respectively so as to avoid the risk of 

the conductor temperature exceeding the maximum allowable limit over a specified 

time period and reducing back to the limit by the end of the time period. Under the 

transient-state DLR calculated from weather observations through the enhanced 

analytical method, the final conductor temperature estimated by the conventional 

approach using the average conductor temperature with a 10-seconds time interval 

does not reach the maximum allowable limit for most of the time due to the enhanced 

analytical method’s overestimation in the growth of conductor temperature. 

Furthermore, the deviation from the maximum allowable conductor temperature 

decreases with an increased length of the specified time period. Therefore, the 
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transient-state DLRs estimated on the basis of the enhanced analytical method are 

usually conservative. 

Random samples of air temperatures and wind speeds generated from the modelled 

predictive distributions at the same and different future moments over a particular 

future half-hour period are all paired to have rank correlations quite close to those 

that are computed from their recent weather observations. The changes of weather 

forecasts at each 10-minutes time step are all considered for the predictions of 

10-minute, 20-minute and 30-minute transient-state DLRs in each generated scenario. 

The significant positive correlations among random weather samples of the same 

parameters at different future moments expand the distributions of 20-minute and 

30-minute DLR forecasts which have better calibration at the lower and higher 

percentiles than those derived from the independent weather samples. 

8.4. Accuracy and Effectiveness of Probabilistic DLR Forecasts 

The point forecasts of steady-state and transient-state DLRs for a particular span or 

an entire OHL calculated from random weather samples that are generated by the 

conditionally heteroscedastic auto-regressive (AR-CH) forecasting models mostly 

show greater than 10% improvements in RMSE over those computed from 

persistence forecasts of weather variables. However, the AR forecasting models’ 

overestimation at lower levels of wind speeds leads to unsatisfactory performance of 

the AR-CH models at the lower rating levels, e.g. the levels below the static line 

ratings (SLRs) for a particular span and below 90% SLRs for an OHL for 

steady-state DLRs, where the DLR forecasts are significantly overestimated by the 

AR-CH models. The adoption of a certain lower percentile from a probabilistic DLR 

forecast can mitigate the risk of using the overestimated point forecasts of the 

AR-CH models based DLRs. 
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The effectiveness of adopting a particular lower DLR percentile, e.g. the 5th 

percentile (P5 value), as the thermal limit for a particular span or an OHL has been 

assessed through an examination of the differences between the actual ratings and the 

P5 forecasts. The experimental results show that the P5 forecasts exceed the actual 

ratings in no more than 5% of cases on average. 

8.5. Application of Probabilistic DLR Forecasting 

The potential application of DLR forecasting to increase the use of wind generation 

on the 132kV network in North Wales has been investigated through an estimation of 

the degree to which wind generation curtailment can be alleviated by using certain 

lower percentiles of steady-state DLR forecasts in place of the SLRs for each 132kV 

OHL. The wind generation curtailment at Rhyl Flat wind farm that has a connection 

to the 132kV network in North Wales has been studied. The planned power outputs 

of various assumed wind farm capacities at Rhyl Flat (90MW and also a series of 

upscaled wind farms) are maximised using Optimal Power Flow under the 

constraints of the maximum allowable wind generation ramp rates, the expected 

available powers of Rhyl Flats and steady-state DLR forecasts of OHLs for up to 

three 10-minutes time steps ahead. 

The replacement of the SLRs by the lower percentiles (i.e. the 1st, 3rd and 5th 

percentiles) of DLR forecasts and the ‘perfect’ rating forecasts (i.e. real-time ratings) 

for eight 132kV OHLs shows the potential to reduce the wind generation curtailment 

due to power transfer capacities of 132kV OHLs by 92.9%, 95.7%, 96.8% and 99.7% 

respectively for a 270MW Rhyl Flats wind farm and 82.1%, 86.7%, 88.7% and 95.6% 

respectively for a 360MW Rhyl Flats wind farm over an evaluated period of around 

two months from 28/01/2013 to 31/03/2013. Since the expected available wind 

powers and DLR forecasts of the connected 132kV OHLs are all inferred from wind 

speed measurements at weather stations, their positive correlations may be higher 

than in actuality. This may lead to that conservatively set limits to transfer on the 
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connected lines are usually high at the same time as there are high exports from Rhyl 

Flats. Therefore, the significant reduction in wind generation curtailment achieved by 

using DLR forecasts in place of SLRs may be overestimated in the work conducted 

here. Furthermore, the actual ratings of the connected OHLs are found to be mostly 

sufficient to deliver the outputs from Rhyl Flats due to their relatively significant 

positive correlations. This reduces the risk of overloading on the connected OHLs 

when the adopted lower DLR percentiles are greater than the actual ratings. The use 

of the relatively conservative SLRs is found to avoid the overloading on the 

connected OHLs, but at a cost of losing a certain headroom for Rhyl Flats to put 

additional electricity onto the network. 

8.6. Future Work 

8.6.1. Improving weather forecasting models 

Building on the present work, future research can develop other probabilistic 

forecasting models for weather variables and assess their performance with respect to 

the calibration and sharpness of probabilistic forecasts so as to determine the most 

suitable models to produce distributions of weather forecasts. When developing the 

weather-based DLR forecasting approaches for different cases, the types of weather 

forecasting models should be carefully determined, including the model order, length 

of sliding training window, how often the model’s parameters being updated, etc. 

Computation time is another issue to be considered. For example, a VAR forecasting 

model is found here to require longer time than an AR model to determine model’s 

parameters during the process of CRPS minimisation (i.e. about 22.5 and 3.7 seconds 

on average for VAR(2) and AR(4) models respectively for wind speed forecasting). A 

univariate AR model of a higher order that has fewer auto-regressive parameters than 

a lower-order VAR model is then used for wind speed and wind direction forecasting 

due to the reduction in computation time and the similar forecasting performance. 
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Point forecasts of solar radiation have been used instead of probabilistic forecasts to 

estimate the distributions of DLR forecasts in this work. Future research can develop 

a probabilistic forecasting model for solar radiation and examine the histograms of 

probability integral transform for DLR forecasts that are derived from predictive 

distributions of solar radiation so as to estimate the degree to which the calibration of 

probabilistic DLR forecasts can be improved over use of point forecasts of solar 

radiation. 

8.6.2. Modelling uncertainties of spatial interpolation 

The uncertainties of weather forecasts have been successfully included in predictive 

distributions of DLRs in the present work. For a particular span in close proximity to 

a weather station, the uncertainty of DLR forecasts is mainly influenced by the size 

of errors of weather predictions. For an entire OHL, the spatial interpolation models 

used in the weather-based DLR forecasting model proposed here cannot model the 

uncertainties of spatial interpolations of weather variables for each span within the 

line though they have been improved to give more accurate point estimates than the 

methods employed in previous work undertaken by Durham University. Since spatial 

interpolation errors of weather variables are found to cause more significant errors of 

steady-state DLR estimates than weather forecast errors on average in this research, 

it is recommended that modelling the uncertainties of spatial interpolation between 

weather variables and reflecting their effects on DLR forecasts for a complete line 

should be addressed in future research. 

8.6.3. Validation of DLR calculations 

Probabilistic forecasts of steady-state and transient-state DLRs estimated from the 

AR-CH forecasting models have been assessed based on the ratings estimated via the 

weather observations when the time comes. A practical consideration is validation of 

both steady-state and transient-state DLR calculations. Since the weather-based DLR 
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forecasting model mainly relies on the thermal model of overhead conductors, the 

parameters (e.g. representing conductor material properties) in the steady-state and 

non-steady-state heat balance equations should be calibrated based on the accurate 

real-time measurements provided by some form of DLR monitoring techniques in 

future research. For example, conductor temperatures calculated from the measured 

weather data and line currents by the conventional approach that uses the average 

conductor temperature with a time interval of 10 seconds can be compared with what 

the monitoring (e.g. Overhead Transmission Line Monitoring [34] or Power Donut 

[37]) suggests they actually are. 

8.6.4. Further enhancement in transient-state calculations 

The analytical method enhanced here for the transient-state conductor temperature 

modelling has shown its adequate accuracy and fast-computational ability. However, 

the enhanced analytical method is likely to overestimate the growth in conductor 

temperature when there is a significant transient increase in line current. This will 

result in an underestimation in the enhanced analytical method based transient-state 

DLR, especially for the time horizon of 10 minutes. Future research can further 

refine the analytical method enhanced here to improve the accuracy of conductor 

temperature estimation. Furthermore, the approach to probabilistic forecasting of 

transient-state DLRs for a particular span should be extended for a complete OHL, 

using spatial interpolation models to infer possible weather predictions experienced 

at all spans. Moreover, future research can test the approaches’ performance over 

longer forecast time horizons. However, given a longer time for a conductor to 

respond to the change in line current and an increase in the forecast error with an 

increased time horizon, a long time horizon forecast of transient rating is unlikely to 

give much enhancement over the steady-state DLR. In addition, the extra thermal 

headroom which can be exploited by the lower percentiles of steady-state DLR 

forecasts for a longer forecast horizon will decrease due to the increased forecast 
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error. For the steady-state DLR forecasting beyond around 6 hours, it would most 

likely depend on use of numerical weather prediction by specialist meteorologists 

rather than statistical models, though statistics can help in the evaluation of ensemble 

forecasts. 

8.6.5. Challenges regarding the DLR application 

When evaluating the potential application of probabilistic DLR forecasting for wind 

power integration, it is more reasonable to use an average power curve for multiple 

turbines within a wind farm to calculate the available wind powers rather than using 

a generic power curve for a single turbine which may have led to an overestimation 

in the available wind power in this work. If actual records of available power outputs 

from wind farms are provided, the relatively significant positive correlations between 

the expected available wind powers and power transfer capacities of the connected 

OHLs which are estimated from the wind speed measurements at weather stations in 

the work conducted here can be avoided. Furthermore, uncertainties in forecasts of 

system demands and available wind powers should be addressed and included in the 

scheduling in future research. It is also of value to compare the line current scheduled 

by the adopted percentiles of steady-state DLR forecasts with the transient-state DLR 

of each span to examine whether the maximum allowable conductor temperature will 

be exceeded over a specified time period. 

For transmission systems operated to be N-1 or N-2 secure, the loading on most of 

their OHLs may be much lower than the SLR. This will lead to the extra thermal 

headroom exploited by the DLR techniques not being frequently used and constrain 

the benefits that can be brought by the DLR. For a heavily loaded network, system 

operators will tend to be risk averse and incur the penalty of, for example, higher 

congestion costs rather than exposed to any significant probability of a conductor’s 

temperature exceeding its limit. The comfort zone of system operators is based on 

their hands-on knowledge of how the network responds to changes in a dynamic 
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event and which actions have greater reliability for this type of event and ambient 

conditions. Therefore, operations’ risk averse is a constraint that has to be overcome 

before the wide application of DLR techniques. If the DLR forecasting methodology 

is such that the forecast percentiles can be regarded with confidence, they then give a 

probability of the actual rating being lower than the value being assumed by a system 

operator. The choice of percentile should be informed by the impact of exceedance, 

the corrective actions likely to be required and their costs [88]. This would allow the 

system operator to feel suitably confident about the risk associated with the selected 

DLR percentile. Future research should explore the nature of risk in relation to use of 

different percentiles of DLR forecasts and assess the costs of corrective actions when 

power transfers exceed the real-time ratings. 

Another issue with the DLR application concerns the operator display integration. 

The display of information relevant to DLR required by different system operators 

vary widely based on the type of application and operating practice, etc. [17]. A basic 

requirement is to inform the rise of the real-time rating above the actual loading on 

an OHL. In the case of the line load exceeding the real-time steady-state rating, the 

time available for the system operator to sort out the overloading before violating a 

minimum required clearance (or the time when conductor temperature would reach a 

maximum permissible limit) should be displayed [17]. Furthermore, system operators 

can be informed with the transient rating that would last for 30 minutes or a longer 

period [171] based on the present state of the conductors (e.g. conductor temperature) 

and weather forecasts. To enable the application of the DLR forecasting methodology 

developed here, future research should develop effective displays that help system 

operators know the possible consequences of adopting each lower percentile of DLR 

forecasts and the corrective actions required if the real-time ratings are exceeded. 

One other challenge regarding the DLR application is the accuracy of DLR estimates 

provided to system operators which may be degraded due to measuring errors of the 

monitoring devices. For the weather-based model developed here, a correction factor 
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can be applied to weather measurements based on the equipment specification sheets 

to ensure a conservative rating estimation [10]. As was discussed in Section 8.6.2, the 

weather-based model is likely to suffer from spatial interpolation errors of weather 

variables, especially for OHLs located in complex terrains. Therefore, it is necessary 

to place additional conductor temperature or sag/tension monitoring devices to cover 

microclimate regions or to monitor a circuit if it is highly critical or its loss of service 

would have a large impact. These monitoring technologies generally estimate ratings 

based on an effective perpendicular wind speed (EPWS) which is derived from the 

measured or inferred conductor temperature combined with the measured line current, 

air temperature and solar radiation. However, as noted in Section 2.6, the accuracy of 

the EPWS-based DLR would be reduced to varying extents due to measuring errors 

of different variables being monitored. A reasonable safety margin relative to the 

EPWS-based DLR estimate should be quantified for each specific case depending on 

the levels of the monitored variables and their measuring errors.  
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APPENDIX 

Appendix A. Formula Derivation for a Level Span [172] 

For a static level span as shown in Fig. A-1, the net force is zero so that the net forces 

along the horizontal and vertical directions are both zero. That is, horizontal tensions 

at two attachments 𝐻𝐴 and 𝐻𝐵 are equal to a common value 𝐻; the sum of their 

vertical tensions 𝑉𝐴 and 𝑉𝐵 equals the total weight of the line that is the product of 

the line length 𝐿𝑐 and the weight per unit length 𝑤: 

𝐻𝐴 = 𝐻𝐵 = 𝐻 (A-1) 

𝑉𝐴 = 𝑉𝐵 = 𝑤𝐿𝑐 2⁄  (A-2) 

 

Fig. A-1. A level span [25] 

The net torque ∑𝑀𝑜 at any point along the static line, e.g. that has a horizontal 

distance 𝑥𝑐 and a vertical distance 𝑦𝑐(𝑥𝑐) from the left attachment is also zero: 

∑𝑀𝑜 = 𝐻𝐴 ∙ 𝑦𝑐(𝑥𝑐) + 𝑤 ∙ 𝑥𝑐 ∙
𝑥𝑐

2
− 𝑉𝐴 ∙ 𝑥𝑐 = 0  (A-3) 

Taking equations (A-1) and (A-2) into equation (A-3), it can be obtained that: 

𝐻 ∙ 𝑦𝑐(𝑥𝑐) = 𝑥𝑐 ∙
𝑤

2
∙ (𝐿𝑐 − 𝑥𝑐) (A-4) 
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The length of a line is assumed nearly equal to its span length in the parabolic 

approximation, i.e. 𝐿𝑐 ≅ 𝑆𝑐, which leads to: 

𝐻 ∙ 𝑦𝑐(𝑥𝑐) ≅ 𝑥𝑐 ∙
𝑤

2
∙ (𝑆𝑐 − 𝑥𝑐) (A-5) 

The vertical distance 𝑦𝑐(𝑥𝑐 = 𝑆𝑐 2⁄  ) from the lowest point 𝑥𝑐 = 𝑆𝑐 2⁄  to the level 

of attachment points is the sag 𝐷𝑚 for a level span: 

𝐷𝑚 ≅
𝑤𝑆𝑐

2

8𝐻
 (A-6) 

Based on equations (A-5) and (A-6), a function of the horizontal distance from the 

left attachment point 𝑥𝑐 representing the shape of the span can be defined as: 

𝑦𝑐(𝑥𝑐) =
4𝑥𝑐 ∙ (𝑆𝑐 − 𝑥𝑐) ∙ 𝐷𝑚

𝑆𝑐2
 (A-7) 

Appendix B. Formula Derivation for an Inclined Span [172] 

An inclined span of two attachment points being at different levels, as shown in Fig. 

B-1 is considered to consist of half sections of two level spans with different sags 𝐷𝐿 

and 𝐷𝑅 which are calculated as: 

𝐷𝐿 =
𝑤(2𝑋𝐿)

2

8𝐻
=
𝑤𝑋𝐿

2

2𝐻
 (B-1) 

𝐷𝑅 =
𝑤(2𝑋𝑅)

2

8𝐻
=
𝑤𝑋𝑅

2

2𝐻
 (B.2) 

 
Fig. B-1. An inclined span [25] 
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where the sum of 𝑋𝐿 and 𝑋𝑅 representing the horizontal distances from the lowest 

point to left and right attachment points is equal to the horizontal distance between 

two attachment points 𝑆𝑐. Then the vertical distance between two attachment points 

is defined as: 

ℎ𝑐 = 𝐷𝐿 − 𝐷𝑅 =
𝑤

2𝐻
(𝑋𝐿 − 𝑋𝑅)(𝑋𝐿 + 𝑋𝑅) =

𝑤𝑆𝑐
2𝐻

(𝑋𝐿 − 𝑋𝑅) (B-3) 

Based on 𝑆𝑐 = 𝑋𝐿 + 𝑋𝑅 and equation (B-3), 𝑋𝐿 and 𝑋𝑅 are solved to be: 

𝑋𝐿 =
𝑆𝑐
2
+
𝐻ℎ𝑐
𝑤𝑆𝑐

=
𝑆𝑐
2
(1 +

8𝐻ℎ𝑐
4𝑤𝑆𝑐2

) =
𝑆𝑐
2
(1 +

ℎ𝑐
4𝐷𝑚

) (B-4) 

𝑋𝑅 =
𝑆𝑐
2
−
𝐻ℎ𝑐
𝑤𝑆𝑐

=
𝑆𝑐
2
(1 −

8𝐻ℎ𝑐
4𝑤𝑆𝑐2

) =
𝑆𝑐
2
(1 −

ℎ𝑐
4𝐷𝑚

) (B-5) 

 

where 𝐷𝑚 = 𝑤𝑆𝑐
2 8𝐻⁄  can be considered to be the sag of a level span that has a 

span length equal to 𝑆𝑐, or the midpoint sag of an inclined span that has a horizontal 

span length equal to 𝑆𝑐. 

The following derivations are to prove the midpoint sag of an inclined span equalling 

the sag of a level span with the same horizontal span length 𝑆𝑐. As shown in Fig. B-1, 

the midpoint sag 𝐷𝑚 of an inclined span is the difference between 𝑃𝑚𝑃𝑚
′ , i.e. the 

vertical distance from the horizontal midpoint of the span to the level of left 

attachment point, and ℎ𝑐 2⁄ , i.e. half of the vertical distance of two attachment points 

which has been defined in equation (B-3). The value of 𝑃𝑚𝑃𝑚
′  can be estimated 

based on equation (A-7): 

𝑃𝑚𝑃𝑚
′ =

4 ∙
𝑆𝑐
2 ∙ (2𝑋𝐿 −

𝑆𝑐
2 )

(2𝑋𝐿)2
∙
𝑤(2𝑋𝐿)

2

8𝐻
=
𝑤𝑆𝑐 ∙ (2𝑋𝐿 −

𝑆𝑐
2 )

4𝐻
 (B-6) 

Based on equations (B-3) and (B-6), the midpoint sag 𝐷𝑚 for an inclined span is: 

𝐷𝑚 = 𝑃𝑚𝑃𝑚
′ −

ℎ𝑐
2

 

=
𝑤𝑆𝑐
4𝐻

(2𝑋𝐿 −
𝑋𝐿 + 𝑋𝑅

2
− 𝑋𝐿 + 𝑋𝑅) =

𝑤𝑆𝑐
4𝐻

∙ (
𝑋𝐿 + 𝑋𝑅

2
) =

𝑤𝑆𝑐
2

8𝐻
 

(B-7) 

which equals the sag of a level span with a span length 𝑆𝑐. 
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Appendix C. Enhanced Analytical Method 

In a non-steady-state heat balance equation for overhead conductors [3], the radiation 

heat loss rate per unit length 𝑄𝑟 is non-linear with conductor temperature 𝑇𝑐, and 

the convection heat loss rate per unit length 𝑄𝑐 will be non-linear with 𝑇𝑐 if (a) 𝑄𝑐 

is determined by the natural convection heat loss rate 𝑄𝑐𝑛 throughout a specified 

time period or (b) 𝑄𝑐 evaluated at the initial conductor temperature 𝑇𝑐𝑖 and the 

steady-state final temperature 𝑇𝑐𝑓𝑠𝑠 are determined by the forced convection heat 

loss rate 𝑄𝑐𝑓 and 𝑄𝑐𝑛 respectively. Assuming the cooling terms to be linear with 

𝑇𝑐 ∈ [𝑇𝑐𝑖 , 𝑇𝑐𝑓𝑠𝑠], the non-steady-state heat balance equation can be written as: 

∆(𝑇𝑐(𝑡) − 𝑇𝑎)

∆𝑡
= −

𝐾𝑐 ∙ (𝑇𝑐(𝑡) − 𝑇𝑎)

𝑚 ∙ 𝐶𝑝
+
𝐼2 ∙ 𝑅(𝑇𝑐(𝑡)) + 𝑄𝑠

𝑚 ∙ 𝐶𝑝
 (C-1) 

where ∆(𝑇𝑐(𝑡) − 𝑇𝑎) ∆𝑡⁄  is the change rate of the rise of 𝑇𝑐 above air temperature 

𝑇𝑎 at time 𝑡; terms 𝐼2 ∙ 𝑅, 𝑄𝑠 and 𝑚 ∙ 𝐶𝑝 represent the Joule heat gain rate, solar 

heat gain rate and total heat capacity of the conductor per unit length. The sum of 𝑄𝑐 

and 𝑄𝑟 is assumed to linearly increase with (𝑇𝑐 − 𝑇𝑎) at a rate 𝐾𝑐 over the given 

time period. As discussed in Section 6.2.2.3, the conductor’s thermal equilibrium at 

the start of a given time period is created by inference of an equivalent steady-state 

initial line current 𝐼𝑖,𝑒𝑞 from 𝑇𝑐𝑖 and weather conditions 𝑤𝑐 over the time period 

using a steady-state heat balance equation [3]. Under the assumption that (𝑄𝑐 + 𝑄𝑟) 

linearly varied with (𝑇𝑐 − 𝑇𝑎) at a rate 𝐾𝑐, the steady-state heat balance equation at 

the start of the time period is written as: 

𝐼𝑖,𝑒𝑞
2 ∙ 𝑅(𝑇𝑐𝑖) + 𝑄𝑠(𝑤𝑐) = 𝑄𝑐(𝑇𝑐𝑖, 𝑤𝑐) + 𝑄𝑟(𝑇𝑐𝑖, 𝑤𝑐) = 𝐾𝑐 ∙ (𝑇𝑐𝑖 − 𝑇𝑎) (C-2) 

When 𝑇𝑐 reaches the steady-state final conductor temperature 𝑇𝑐𝑓𝑠𝑠 corresponding 

to the final line current 𝐼𝑓 and 𝑤𝑐 after the step changes, the steady-state heat 

balance equation is written as: 
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𝐼𝑓
2 ∙ 𝑅(𝑇𝑐𝑓𝑠𝑠) + 𝑄𝑠(𝑤𝑐) = 𝑄𝑐(𝑇𝑐𝑓𝑠𝑠, 𝑤𝑐) + 𝑄𝑟(𝑇𝑐𝑓𝑠𝑠, 𝑤𝑐) = 𝐾𝑐 ∙ (𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑎) (C-3) 

The value of 𝐾𝑐 can then be estimated from equations (C-2) and (C-3): 

𝐾𝑐 =
𝐼𝑓
2 ∙ 𝑅(𝑇𝑐𝑓𝑠𝑠) − 𝐼𝑖,𝑒𝑞

2 ∙ 𝑅(𝑇𝑐𝑖)

𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑐𝑖
 (C-4) 

The equation (C-1) can be considered as a first-order linear time invariant (LTI) 

system which has a time constant 𝜏 and has the solution [173]: 

𝑇𝑐(𝑡) − 𝑇𝑎 = (𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑎) + ((𝑇𝑐𝑖 − 𝑇𝑎) − (𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑎)) ∙ 𝑒
−𝑡 𝜏⁄  (C-5) 

which can also be written as: 

𝑇𝑐(𝑡) = 𝑇𝑐𝑖 + (𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑐𝑖) ∙ (1 − 𝑒
−𝑡 𝜏⁄ ) (C-6) 

provided that the increase in Joule heat gain rate after the step occurs is a step input. 

This requires the value of the ac resistance to be assumed as a constant over the time 

period. According to [3], the constant ac resistance is evaluated at the average 𝑇𝑎𝑣𝑔 

of 𝑇𝑐𝑖 and 𝑇𝑐𝑓𝑠𝑠, denoted by 𝑅(𝑇𝑎𝑣𝑔). Thus, the steady-state heat balance equations 

in (C-2) and (C-3) are re-defined as: 

𝐼𝑖,𝑒𝑞
2 ∙ 𝑅(𝑇𝑎𝑣𝑔) + 𝑄𝑠(𝑤𝑐) = 𝐾𝑐

′ ∙ (𝑇𝑐𝑖 − 𝑇𝑎) (C-7) 

and, 

𝐼𝑓
2 ∙ 𝑅(𝑇𝑎𝑣𝑔) + 𝑄𝑠(𝑤𝑐) = 𝐾𝑐

′ ∙ (𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑎) (C-8) 

Therefore, the enhanced analytical method assumes that the sum of the cooling terms 

linearly changes with (𝑇𝑐 − 𝑇𝑎) at a rate 𝐾𝑐
′: 

𝐾𝑐
′ =

𝐼𝑓
2 ∙ 𝑅(𝑇𝑎𝑣𝑔) − 𝐼𝑖,𝑒𝑞

2 ∙ 𝑅(𝑇𝑎𝑣𝑔)

𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑐𝑖
 (C-9) 

According to [173], the time constant 𝜏  of the first-order LTI system is then 

calculated as: 
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𝜏 =
𝑚 ∙ 𝐶𝑝

𝐾𝑐
′
=
𝑚 ∙ 𝐶𝑝 ∙ (𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑐𝑖)

(𝐼𝑓
2 − 𝐼𝑖,𝑒𝑞

2 ) ∙ 𝑅(𝑇𝑎𝑣𝑔)
 (C-10) 

The Joule heat gain rate 𝐼𝑓
2 ∙ 𝑅(𝑇𝑐) over the given time period, in actuality, changes 

with 𝑅(𝑇𝑐) which is approximately estimated by linear interpolation between the 

given resistance values specified at two particular conductor temperatures [3]. Fig. 

C-1 compares (a) the actual and assumed variations in 𝐼𝑓
2 ∙ 𝑅(𝑇𝑐) with 𝑇𝑐  that 

increases from 𝑇𝑐𝑖 to 𝑇𝑐𝑓𝑠𝑠 and also (b) the changes of the linearized (𝑄𝑐 + 𝑄𝑟) 

with 𝑇𝑐  from 𝐾𝑐 ∙ (𝑇𝑐𝑖 − 𝑇𝑎)  to 𝐾𝑐 ∙ (𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑎)  and from 𝐾𝑐
′ ∙ (𝑇𝑐𝑖 − 𝑇𝑎)  to 

𝐾𝑐
′ ∙ (𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑎). Since 𝑄𝑠 is a constant value over the given time period, it is not 

considered in the following analysis for simplicity. Then the values of cooling terms 

𝐾𝑐 ∙ (𝑇𝑐𝑖 − 𝑇𝑎) , 𝐾𝑐 ∙ (𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑎) , 𝐾𝑐
′ ∙ (𝑇𝑐𝑖 − 𝑇𝑎)  and 𝐾𝑐

′ ∙ (𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑎)  equal 

𝐼𝑖,𝑒𝑞
2 ∙ 𝑅(𝑇𝑐𝑖), 𝐼𝑓

2 ∙ 𝑅(𝑇𝑐𝑓𝑠𝑠), 𝐼𝑖,𝑒𝑞
2 ∙ 𝑅(𝑇𝑎𝑣𝑔) and 𝐼𝑓

2 ∙ 𝑅(𝑇𝑎𝑣𝑔) respectively. 

 

Fig. C-1. The actual and assumed Joule heat gain rates evaluated at 𝑇𝑐 and the variations in the 

linearized cooling terms with 𝑇𝑐 at different rates. 
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The difference between the assumed Joule heat gain rate per unit length (the first 

term on the right-hand side of equation (C-11)) and the actual value (the second term) 

evaluated at 𝑇𝑐 is calculated as: 

∆𝐺𝑎𝑖𝑛(𝑇𝑐) = 𝐼𝑓
2 ∙ 𝑅(𝑇𝑎𝑣𝑔) − [𝐼𝑓

2 ∙ 𝑅(𝑇𝑐𝑖) +
𝐼𝑓
2 ∙ 𝑅(𝑇𝑐𝑓𝑠𝑠) − 𝐼𝑓

2 ∙ 𝑅(𝑇𝑐𝑖)

𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑐𝑖
∙ (𝑇𝑐 − 𝑇𝑐𝑖)] (C-11) 

A positive ∆𝐺𝑎𝑖𝑛(𝑇𝑐) means an overestimated heat gain rate, and vice versa. (The 

overestimation in Joule heat gain rate means the overestimation in the total heat gain 

rate due to the constant 𝑄𝑠 over the specified time period). The difference between 

the linearized cooling terms (𝑄𝑐 + 𝑄𝑟) evaluated at 𝑇𝑐 which vary with (𝑇𝑐 − 𝑇𝑎) 

at 𝐾𝑐
′ (the first term on the right-hand side of equation (C-12)) and 𝐾𝑐 (the second 

term) is calculated as: 

∆𝐿𝑜𝑠𝑠𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑(𝑇𝑐)

= [𝐼𝑖,𝑒𝑞
2 ∙ 𝑅(𝑇𝑎𝑣𝑔) +

𝐼𝑓
2 ∙ 𝑅(𝑇𝑎𝑣𝑔) − 𝐼𝑖,𝑒𝑞

2 ∙ 𝑅(𝑇𝑎𝑣𝑔)

𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑐𝑖
∙ (𝑇𝑐 − 𝑇𝑐𝑖)]

− [𝐼𝑖,𝑒𝑞
2 ∙ 𝑅(𝑇𝑐𝑖) +

𝐼𝑓
2 ∙ 𝑅(𝑇𝑐𝑓𝑠𝑠) − 𝐼𝑖,𝑒𝑞

2 ∙ 𝑅(𝑇𝑐𝑖)

𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑐𝑖
∙ (𝑇𝑐 − 𝑇𝑐𝑖)] 

(C-12) 

A positive ∆𝐿𝑜𝑠𝑠𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑(𝑇𝑐) means an overestimation in the linearized heat loss 

rate, and vice versa. The difference between ∆𝐺𝑎𝑖𝑛(𝑇𝑐) and ∆𝐿𝑜𝑠𝑠𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑(𝑇𝑐) at 

𝑇𝑐 is then calculated from equations (C-11) and (C-12): 

∆𝐺𝑎𝑖𝑛(𝑇𝑐) − ∆𝐿𝑜𝑠𝑠𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 

      = (𝐼𝑓
2 − 𝐼𝑖,𝑒𝑞

2 ) ∙ [𝑅(𝑇𝑎𝑣𝑔) − 𝑅(𝑇𝑐𝑖)] ∙ (1 −
𝑇𝑐−𝑇𝑐𝑖

𝑇𝑐𝑓𝑠𝑠−𝑇𝑐𝑖
)  

  = (𝐼𝑓
2 − 𝐼𝑖,𝑒𝑞

2 ) ∙
𝑅(𝑇𝑐𝑓𝑠𝑠)−𝑅(𝑇𝑐𝑖)

2
∙ (1 −

𝑇𝑐−𝑇𝑐𝑖

𝑇𝑐𝑓𝑠𝑠−𝑇𝑐𝑖
)    ∀𝑇𝑐 ∈ [𝑇𝑐𝑖, 𝑇𝑐𝑓𝑠𝑠]  

(C-13) 

Equation (C-13) is also applied to the case where 𝑇𝑐 decreases from 𝑇𝑐𝑖 after a 

reduction in line current from 𝐼𝑖,𝑒𝑞 to 𝐼𝑓. The right-hand side of equation (C-13) is 

found to be always greater than or equal to zero. This means that, under the 

assumption of a linear variation in (𝑄𝑐 + 𝑄𝑟)  from 𝐾𝑐 ∙ (𝑇𝑐𝑖 − 𝑇𝑎)  to 𝐾𝑐 ∙
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(𝑇𝑐𝑓𝑠𝑠 − 𝑇𝑎), the overestimation in heat gain rate is greater than that in the linearized 

heat loss rate (or the underestimation in heat gain rate is smaller than that in the 

linearized heat loss rate). In other words, the enhanced analytical method that 

evaluates the ac resistance 𝑅  at 𝑇𝑎𝑣𝑔 = (𝑇𝑐𝑖 + 𝑇𝑐𝑓𝑠𝑠) 2⁄  would overestimate 

conductor temperature at the end of the given time period if the (𝑄𝑐 + 𝑄𝑟) did 

linearly vary with (𝑇𝑐 − 𝑇𝑎) over the time period. 

However, as noted above, the actual change rate of (𝑄𝑐 + 𝑄𝑟) is not constant but 

increases with 𝑇𝑐. This means that the linearized heat loss rate 𝐾𝑐 ∙ (𝑇𝑐 − 𝑇𝑎) is 

always greater than or equal to the actual (𝑄𝑐 + 𝑄𝑟) evaluated at 𝑇𝑐 ∈ [𝑇𝑐𝑖 , 𝑇𝑐𝑓𝑠𝑠]. 

The total overestimation in (𝑄𝑐 + 𝑄𝑟) after the linearization exceeding (∆𝐺𝑎𝑖𝑛 −

∆𝐿𝑜𝑠𝑠𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑) over a specified time period will lead to an underestimated final 

conductor temperature at the end of the time period. The analysis results in Sections 

6.3.2 and 6.3.3 have shown that the transient-state final conductor temperature is 

overestimated by the enhanced analytical method for most of the time and slightly 

underestimated in a few cases. 


