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Abstract

An emerging area of free electron laser development concerns tailoring the transverse

and phase profile of the light, which can result in the radiation acquiring orbital angular

momentum. This thesis studies the development of novel techniques for free electron

lasers with consideration of the generation of higher-order orbital angular momentum

modes acting as a starting point for this research. Three new techniques are presented

in this thesis. The first examines altering mode competition in a free electron laser

to induce radiation of a dominant orbital angular momentum mode. The next is a

scheme to produce light with spatially varying states of polarisation - obtained through

the overlap of different coherent transverse light distributions. The third technique

produces trains of short radiation pulses where the properties of the pulses alternate.

The goal of this research is to increase the diversity of radiation from free electron lasers

in order to offer something new and unlock new areas of scientific research.
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Chapter 1

Introduction

Free electron lasers, FELs, provide radiation with properties that are not available

through alternative sources. FELs are widely tuneable devices operating at wavelengths

that range from microwaves to x-rays. FELs operating at x-ray wavelengths, notably,

provide x-ray radiation which is billions of times brighter and thousands of times shorter

than other x-ray sources [1]. The development of these radiation sources has had

a significant impact on research capabilities, driving progress in numerous scientific

areas, from imaging to studying matter in extreme conditions [2].

It has been just over a decade since the first successful demonstration of x-ray

FELs [3], in which time FEL technology has seen significant advancement allowing FEL

operation at ever increasing brightness and powers as well as shortening wavelengths.

Techniques that customise the FEL output have been and continue to be developed,

including control over the polarisation of the light [4], ultra-short pulse generation [5]

and multi-colour operation [6]. There is much interest in tailoring the FEL output to

new exotic regimes with the expectation that this will enable new scientific research.

This thesis presents novel FEL techniques which further diversify FEL radiation

with an emphasis on the tailoring of the transverse intensity and phase profile of the

light, which can result in the radiation acquiring Orbital Angular Momentum, OAM.

The current literature demonstrating OAM generation in a FEL is covered in Chapter 4

and acts as a starting point for the new research in this thesis.
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Chapter 1. Introduction

1.1 Thesis Outline

The subsequent sections of this chapter are used to give a brief outline of FEL oper-

ation followed by an historical overview of the development of FELs. Chapters 2-4,

introduce the physics on which this thesis is based. New research is included in Chap-

ters 5-7 where three novel FEL techniques are presented. A summary of each chapter

is now included.

Chapter 2 sets out the basic theory of FELs. The chapter starts by deriving the

motion of a single electron propagating through an undulator with a given magnetic

field. The path of the electrons determines the properties of the radiation sponta-

neously emitted by the electron. Using the derived motion of an electron, the resonant

wavelength is derived and the spectrum of emission is discussed. The FEL equations

are then derived in this chapter and used to form a description of the underlying FEL

mechanisms.

Chapter 3 develops an introduction to the physics of light which carries orbital an-

gular momentum. The Laguerre-Gaussian and Hermite-Gaussian modes are introduced

in this chapter as solutions to the paraxial wave equation.

Chapter 4 reviews existing methods for the generation of FEL radiation which car-

ries orbital angular momentum. The off-axis harmonic emission from helical undulators

is investigated and shown to carry orbital angular momentum.

Chapter 5 investigates a scheme to produce light with orbital angular momentum

at the fundamental wavelength of the undulator. It is demonstrated - using FEL sim-

ulations - that selected longitudinal and transverse-rotational shifts repeated between

the FEL’s undulator sections will a cause dominant orbital angular momentum mode

to self-select for amplification.

Chapter 6 presents a scheme where the higher-order transverse modes emitted in

harmonic undulator radiation are superimposed to generate light where the polarisa-

tion state of the radiation varies transversely across the photon beam. Beams with

structured polarisation are called Poincaré beams; a theoretical description of this light

3



Chapter 1. Introduction

is developed and FEL simulations are presented.

Chapter 7 presents a method for generating pulse trains where the properties of

the pulses alternate. This is demonstrated for a pulse train with alternating orthogonal

linear or circular polarisation. The chapter concludes with a discussion of how this can

be adapted to create pulse trains where the pulse trains carry OAM with alternating

handedness.

Chapter 8 concludes the thesis and discusses future work.

Appendix A lists the publications arising from the work contained in this thesis.

1.2 FEL Operation

When a relativistic charged particle’s path is altered by a magnetic field it will radiate

electromagnetic radiation which is termed synchrotron radiation. There are many light

sources that use this effect to provide researchers with radiation over a wide range of

wavelengths. The free electron laser, FEL, is one of these sources which converts the

energy from a relativistic electron beam into electromagnetic radiation.

FELs pass relativistic electron beams through a periodic magnetic field from a mag-

netic undulator or wiggler. Simple undulator designs are planar and helical undulators;

these undulators cause electrons propagating through them to travel a sinusoidal or he-

lical path. The transverse oscillations of the electrons in the undulator induce radiation

emission from the electrons. Since the electrons travel at relativistic velocity, the wave-

length of the forward emission from electrons is contracted. This effect is called Doppler

frequency shifting, where the frequency of the light being observed is higher than the

frequency of light being emitted. The frequency up-shifting allows FELs to generate ra-

diation at wavelengths as short as hard x-rays; current facilities operate at wavelengths

as short as 0.5Å [7].

Near the start of the undulator, the radiation emitted after multiple undulator

periods is monochromatic, however, since the electrons are randomly distributed in the

electron beam, the light is not coherent and therefore low energy. Coherence in a FEL is

achieved by a positive feedback process between the electrons and the radiation. As the

electrons are travelling close to the speed of light, they co-propagate with the radiation

4



Chapter 1. Introduction

field and interact with the field via electrons’ transverse oscillations. This interaction

causes the electrons to exchange energy with the field. There is a modulation of the

electron beam energy where some electrons then gain and some lose energy. As the

electrons propagate, the energy modulation is converted to density modulation at the

scale of the radiation wavelength, which is termed micro-bunching. The electrons are

periodically grouped together which causes them to emit with greater coherence as

illustrated in Figure 1.1. There is a self-consistent process: as the electrons bunch

together the intensity of the light they radiate grows, which in turn increases the

micro-bunching.

Figure 1.1: Schematic showing how self-organisation of the electrons leads to ampli-
fication of the radiation. Left: electrons are randomly distributed and the radiation
emitted is low intensity. Right: electrons are micro-bunched at the resonant wave-
length. The radiation emitted is coherent and constructively interferes and is therefore
high intensity.

The self-organisation of electrons enables FELs to generate x-ray pulses many times

brighter than other synchrotron radiation, with multi-GW peak powers. The wave-

length of the FEL is controlled by changing either the electron energy, undulator period

or undulator magnetic field strength. This makes FELs easily tunable, with current

shorter wavelength facilities operating from the VUV down to hard x-rays [3, 8–12].
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Chapter 1. Introduction

The radiation output is typically a transverse Gaussian mode with nearly full trans-

verse coherence and a spatially homogeneous polarisation that is determined by the

magnetic undulator fields.

1.3 History of FELs

1.3.1 Synchrotron Radiation

Predating the FEL is the synchrotron light source which utilises the radiation emitted

by high energy electrons as they circulate in a synchrotron. Originally developed for

nuclear physics research, synchrotrons accelerate electrons in a large ring. In 1947,

white light from electrons travelling through a bend in a synchrotron at General Elec-

tric Research Laboratory [13] was the first observed case of radiating electrons, hence

naming the radiation from relativistic electrons - synchrotron radiation. This radiation

was originally seen as a negative as it causes the electrons to lose energy, limiting the

maximum electron energy achievable with the accelerators. In the 1960s, the exper-

imental possibilities of synchrotron radiation were recognised and facilities began to

allow access to users wanting to exploit the radiation for scientific research. The qual-

ity of the radiation produced advanced quickly as facilities transitioned from utilising

light from electrons travelling around a bend to inserting undulators and wigglers in

the straight sections between the bends.

Synchrotron light sources are a useful source of V-UV and x-ray radiation which

are currently in use all over the world. The light produced by this source is inco-

herent, which is useful for many applications, however, some experiments ask for a

coherent source of x-ray radiation. The development of the x-ray FEL reached the long

sought after goal of generating coherent x-ray radiation, improving the properties of

synchrotron sources by orders of magnitude.

1.3.2 Development of the Free Electron Laser

Moltz [14] first proposed inducing radiation emission from an electron moving through

a stationary electric or magnetic field with undulating polarity, describing the Doppler

6



Chapter 1. Introduction

frequency shift that would result from shifting from the moving frame of the high energy

electron to the laboratory frame. Moltz then demonstrated generating incoherent light

at visible and millimeter wavelengths from undulator experiments at Stanford [15].

Many of the key FEL ideas were demonstrated by Phillips, who introduced an undulator

source to generate microwaves called a ubitron [16]. However, the device used low

energy electron beams and therefore did not produce a significant Doppler frequency

shift.

It is Madey who is credited with the invention of the FEL. Madey published his

original quantum description of the FEL in 1971, suggesting that such a system could

be used to produce coherent x-ray radiation. The first low gain amplification of an

external seed [17] was subsequently demonstrated by Madey and colleagues followed by

demonstrating lasing in a FEL oscillator system [18].

A significant breakthrough was made, simplifying the analysis of FELs, when it

was demonstrated that the FEL could be described by classical physics in addition

to the previous quantum approach. Two major contributors to the classical theory of

FELs are Colson [19] and Hopf et al. [20]. Colson’s work described the low gain FEL

regime where the FEL can be described by coupled differential equations equivalent to

the pendulum equations. Hopf et al. concluded that the FEL is a completely classical

problem and the amplification previously attributed to the Compton recoil is actually

due to electron bunching. The classical description provides a good approximation of

the FEL at wavelengths as short as hard x-rays. At wavelengths as short as gamma

rays, however, the quantum contribution, namely the electron recoil, impedes the FEL

process.

With the FEL now described classically, the theory of the high gain FEL was

developed through multiple works [21–25]. The high gain regime allows exponential

amplification of the FEL in a single pass of the electron beam through the undulator.

This removed the need for mirrors which create an oscillator cavity and allowed the

FEL to move towards x-ray wavelengths. It was also shown that the exponential gain

of the FEL could be started by a small source such as the noise in an electron beam.

This also increased the wavelength range possible with a FEL by removing the need
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Chapter 1. Introduction

for an initial seed laser.

1.3.3 Current Facilities

The high gain FEL was demonstrated at first at microwaves [26] then, starting from

noise, in the infrared and visible spectral regions [27, 28]. The first VUV/soft x-ray

FEL, FLASH [8], was completed in 2005; operating at wavelengths in the range 6.5 to

50nm.

LCLS, the world’s first hard x-ray FEL, is powered by the SLAC linear accelerator.

The accelerator was originally conceived as a discovery machine for particle physics and

had spent most of its life being used to explore subatomic particles, but in the early

2000s the final third of the linac was repurposed to provide relativistic electors for the

x-ray FEL. First lasing of LCLS was observed at a wavelength of 1.5 Å in 2009 [3].

Following LCLS, many more hard x-ray FEL facilities have been established, includ-

ing the European XFEL at DESY in Germany [29], SACLA in Japan [9], SwissFEL

in Switzerland [30] and PAL-XFEL in South Korea [31]. The development of Hard

x-ray FELs marked a significant advancement in research capabilities and have been

and continue to be utilised in numerous research areas including atomic and molecular

physics, chemistry, biology and matter in extreme conditions.

FEL technology continues to evolve and facilities such as LCLS are upgrading in

order to keep up with scientific demand [32], e.g. to meet the need for higher rep rates.

There is also a push to establish new facilities, for example, the proposed UKXFEL [7],

which hopes to offer capabilities beyond what is possible today.
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Chapter 2

FEL Theory

This chapter looks at FEL theory in greater detail than Section 1.2. Starting with the

motion of electrons in an undulator, the resonance condition and FEL equations are

derived and the main FEL mechanisms are discussed.

2.1 Electron Trajectory Through the Undulator

Considered first is the trajectory of an electron propagating through the magnetic

undulator, which ultimately determines the properties of the undulator radiation. The

electron enters and travels through the undulator with a relativistic velocity along the

z-axis. The electron experiences a force from the undulator’s transverse magnetic field

which accelerates the electron transversely - altering its path and inducing radiation

emission.

The radiation field’s effect on the electron’s motion is small compared to the motion

due to the magnetic undulator and is ignored for the moment. The Lorentz force on

an electron in the absence of a radiation field (E = 0) is

F = −e(cβ ×B), (2.1)

where e = |e| is the electron charge, cβ is the electron’s velocity and c is the speed of

light.

9
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2.1.1 Helical Undulator

On-axis, the magnetic field from a helical undulator with period λu can be expressed

as

B = B0(cos (kuz)êx ∓ sin (kuz)êy + 0êz), (2.2)

where B0, ku = 2π/λu and êx,y,z are, respectively, the maximum magnetic field ampli-

tude, the undulator wavenumber and unit vectors pointing in the x, y and z directions.

The upper sign refers to a left-handed undulator and the lower sign refers to a right-

hand undulator.

Equation (2.2) gives the magnetic field on-axis ignoring the off-axis variation. This

expression for the field does not satisfy Maxwell’s equations for a static magnetic field;

notably ∇ × B = 0 is not satisfied. A physical description of the field which does

satisfy Maxwell’s equations includes a longitudinal component which is zero on-axis

but non-zero off-axis. Equation (2.2) therefore provides an adequate description of

the undulator’s magnetic field despite violating Maxwell’s equations, provided that the

electrons propagate close to the longitudinal axis.

The force is the rate of change of momentum,

F =
dp

dt
, (2.3)

where the relativistic momentum p = γm0cβ with γ = (1 − β2)−1/2 and m0 the rest

mass of the electron. The distance along the undulator axis, z, can be exchanged with

the variable time, t though the transform dt = 1/(cβz)dz. On the right-hand side of

the Lorentz force equation, the cross product gives β × B = −βzByêx + βzBxêy +

(βxBy − βyBx)êz. Taking only the transverse components first, gives

dβ⊥
dz

= − eB0

cm0γ
(± sin (kuz)êx + cos(kuz)êy). (2.4)

Integration with respect to z finds the transverse velocity component

β⊥ =
K

γ
(± cos (kuz)êx − sin(kuz)êy), (2.5)

10
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where the undulator parameter K is introduced as

K =
eB0

m0cku
. (2.6)

The electron travels a helical path in the undulator, completing one orbit every

undulator period λu. The helical path taken by one electron in a left-handed undulator

is shown in Figure 2.1 . The magnetic field from a right-handed undulator will reverse

the transverse direction of the particle.

Evaluation of the êz component of the Lorentz force equation using the transverse

velocity components shows dβz/dz = 0. The electron therefore travels at a constant

velocity cβz along the z-axis. βz can be derived from

1

γ2
= 1− (β2

x + β2
y + β2

z ), (2.7)

to show

βz = 1− 1 +K2

2γ2
. (2.8)

Figure 2.1: An electron propagating through a helical undulator spirals along the z-axis.
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2.1.2 Planar Undulator

The planar undulator case is now considered. The planar undulator has a magnetic

field only in one of either the x or y direction as opposed to the helical undulator with

magnetic field components in both directions. Choosing the magnetic field to be in the

x-direction, near the axis the field is described as

B = B0 cos (kuz)êx + 0êy + 0êz. (2.9)

An electron travelling through this magnetic field will oscillate in the y-direction with

velocity

βy =
K

γ
sin (kuz). (2.10)

There is no oscillation in the x-direction, βx = 0. From equation 2.7, the longitudinal

is given by

β2
z = 1− 1

γ2
− K2

γ2
sin2(kuz). (2.11)

Propagating in a planar undulator, the electrons oscillate along z at twice the fre-

quency of the transverse oscillation. This gives rise to odd harmonics on-axis. There is

no z dependence on βz in the helical undulator case and therefore no on-axis harmonics.

Off-axis harmonics arise in both cases which is discussed later.

Averaging the z oscillation over an undulator period finds the average longitudinal

velocity

β̄z =

√
1− 1

γ2
− K2

2γ2
. (2.12)

Since 1/γ2 � 1 the approximation (1− x)n ' 1− nx can be applied to give

β̄z ' 1− 1

2γ2

(
1 +

K2

2

)
. (2.13)

This result will be used later when calculating the resonance condition for the radiation.

The path of the electrons in a planar undulator is shown in Figure 2.2. Since the

maximum deflection angle, θmax, from the undulator axis is small it can be found using

12
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the approximation βx,max/β = sin(θ) ' θ where βx,max = K/γ and β ' 1 to give

θmax =
K

γ
. (2.14)

The K parameter then defines the deflection angle scaled to the electron energy.

Figure 2.2: An electron propagating through a planar undulator takes a sinusoidal path
along the z-axis with oscillations perpendicular to the magnetic field.

2.2 Resonance Condition

With the electron trajectory known, the radiation emitted can now be considered. A

primary consideration is the wavelength of the light emitted. As electrons are particles

with mass, their velocity is close to but less than the speed of light. The transverse

motion, due to the undulator, further decreases an electron’s longitudinal velocity.

This means the electrons slip backwards relative to the radiation field. This slippage

determines the wavelength of radiation. Over many undulator periods, in order for

radiation emitted to constructively interfere, it must be phase matched to the electron

trajectory. Wavelengths that are phase matched must slip ahead of an electron an

integer number of wavelengths every undulator period. By equating the time of flight,

te = λu/cβ̄z, for one electron to travel one undulator period with the time, tr =

(λu + hλh)/c, for the radiation to travel one undulator period plus an integer number,

13
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h, of resonant wavelengths, λh, the resonance condition can be derived as follows,

λu + hλh
c

=
λu
β̄zc

, (2.15)

λh =
λu
h

(
1− β̄z
β̄z

)
. (2.16)

The longitudinal velocity was derived above for a helical undulator, equation (2.1),

and the planar undulator, equation (2.13). The longitudinal velocity in a planar undu-

lator has a factor of 1/2 associated with the K2 term not present in the expression for

the helical undulator case. When substituting longitudinal velocity into the expression

for resonant wavelength it is then convenient to use the rms undulator parameter, au,

instead of K to give

λh =
λu

2hγ2
(1 + a2

u). (2.17)

au is defined in terms of the rms magnetic field instead of the peak field used to

define K. For a helical undulator au = K and for a planar undulator au = K/
√

2.

Helical and planar undulator with the same au will delay the electrons by the same

amount, ensuring the resonance condition is the same for different undulator types

when expressed in terms of au.

Equation (2.17) only holds for on-axis radiation. Further examination of the time

of flight for radiation emitted off-axis as shown in Figure 2.3 modifies the resonance

condition to

λh =
λu

2hγ2
(1 + a2

u + θ2γ2
r ). (2.18)

This equation for the resonant wavelengths demonstrates the tunability of a FEL.

The wavelength of a FEL can be adjusted by changing the resonant energy, undulator

period and undulator strength. The integer, h, gives the harmonics of the fundamental

wavelength, λ1. In the next section, further analysis will show that different undulators

will have different frequency spectrums and not all of the harmonics are emitted on-axis.
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Figure 2.3: Illustration of the condition of resonance. Frequencies that do not slip
ahead of an electron beam by an integer number of wavelengths every undulator period
experience destructive interference. The resonance condition can be found by equating
the time for an electron to travel an undulator period with the time for the light to
travel the distance nλn + λu cos(θ) where θ is the emission angle.

2.3 Interference of Spontaneous Emission

For relativistic energies, γ � 1, the radiation emitted by the electrons is primarily

confined to a cone with a half opening angle ∼ 1
γ about the actual path. It is now seen

that the previously introduced parameter K, equation (2.1.2), which gave a measure

of the deflection angle is important for determining the radiation spectrum. The K

parameter then determines the distinction between a wiggler and an undulator where

K ≈ 1 is the boundary above which the magnetic device is referred to as a wiggler.

The wiggler spectrum has fewer interference effects than the undulator though strong

interference effects may still be notable up to K ∼ 10. These effects have led to a

modern definition of an undulator as a device where the spectral brightness scales with

the square of the undulator periods.

Wiggler (K � 1)

If K � 1 then the deflection angle of the electron is larger than the cone of radiation

emission, θmax � 1
γ . This means an observer on-axis will only receive radiation emitted

in a small window of the electron trajectory near the extrema of the electron transverse

motion as shown in Figure 2.4. The on-axis electric field observed consists of equally
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spaced electric field peaks with alternating polarity. Photons with energies at even

harmonics of the resonant frequency arrive out of phase and destructively interfere -

there is no even harmonic emission on-axis. The Fourier transform of the field gives

the radiation spectrum featuring only odd harmonics. A larger K will produce sharper

electric field peaks which results in a larger number of harmonics.

Figure 2.4: Top: The electron path (red) and radiation emitted (green) in a wiggler
where K � 1. Radiation is emitted into a narrow cone of angle ∼ 1

γ . On-axis an ob-
server will only revive photons from parts of the electron trajectory near the extrema
of electron motion. Bottom: Illustration of the typical time dependence for the elec-
tric field on-axis (left) shows the electric field peaks are equally spaced with opposite
polarity. Fourier transform of the field produces the frequency spectrum (right) with
odd harmonics of the fundamental frequency.

Undulator (K ≤ 1)

If K is decreased, more parts of the electron trajectory contribute to the radiation field,

reducing the intensity and number of the higher harmonics. When K ≤ 1, radiation

emitted at all parts of the electrons trajectory interfere. For K � 1, the electron

trajectory is negligible compared to the angular deviation and the almost coherent su-
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perposition from all parts of the trajectory leads to a continuous sinusoidal electric field

and the spectrum consists of only the fundamental frequency as shown in Figure 2.5.

Figure 2.5: Top: The electron path (red) and radiation emitted (green) in an undulator
where K ≤ 1 and radiation from all parts of the electron trajectory interfere. Bottom:
For K � 1 the electric field (left) approaches a continuous sin function and the Fourier
transform gives a radiation spectrum (right) with only the fundamental frequency.

For the case of the helical undulator, the electron orbits its propagation axis with a

constant radius. For a helical undulator, all parts of the radiation, in particular those

from higher harmonics, are off-axis but only the fundamental radiates on-axis.

Off-axis spontaneous emission

Off-axis the spectrum is different. The electric field spikes are no longer evenly spaced

and the even harmonics survive. Different positions away from the optical axis receive

radiation from different parts of the electron trajectory. This results in a transverse

phase variation in the off-axis harmonic radiation - an important consequence exploited

in the work contained in this thesis. Further discussion of the off-axis radiation prop-

erties is found in Chapter 4.
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2.4 The FEL Interaction

2.4.1 Energy Exchange

Section 2.1 described the motion of an electron propagating through an undulator in

the absence of a radiation field. Now, the transfer of energy between the electron

and a co-propagating radiation field is considered. The radiation is either spontaneous

radiation generated by the electrons or can be injected into the undulator from an

external source. Consider an electron interacting in a right-handed helical undulator

with radiation that is circularly polarised and has spin in the same direction as the

electron motion.

A plane circularly polarised electromagnetic field is described by

E = E0(sin(krz − ωrt+ φr)êx + cos(krz − ωrt+ φr)êy), (2.19)

where E0 is the field amplitude. kr = 2π/λ, ωr and φr are, respectively, the wavenum-

ber, angular frequency and phase. The Lorentz force, now including the electric field,

is

F = −e(E + cβ ×B). (2.20)

The electric field couples with the transverse electron motion. The corresponding

change in energy is found by taking the scalar product of both sides of the Lorentz

force equation with the transverse velocity, β⊥ from equation 2.5. The magnetic field

does not couple and exchange energy with the electron as (cβ × B) · β⊥ = 0. This

leaves

mc
dγ

dt
= −eE · β⊥ =

eK

γ
E0 sin((kr + ku)z − ωrt+ φr). (2.21)

The exchange of energy can be positive or negative depending on the electron’s

position relative to the phase of the wave on the right-hand side of equation (2.20)

which is known as the pondermotive wave. If dγ
dz > 0, the electron gains energy from

the field and for dγ
dz < 0, the electron gives energy to the radiation field, increasing the

radiation field amplitude. The many electrons making up an electron beam will have

different positions and some electrons will gain energy while others will lose energy.
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There is a continuous exchange in energy between an electron and the field if the

electron velocity matches the phase velocity of the pondermotive wave and therefore

dθ

dt
= 0, (2.22)

where

θ = (kr + ku)z − ωrt+ φr (2.23)

is the pondermotive phase, with (kr + ku)z−ωrt the phase of the electron with respect

to the pondermotive wave and φr the phase of the radiation which is allowed to evolve.

Now,

dθ

dt
= (kr + ku)cβz − ckr,

= c(kr + ku)

(
1− 1 +K2

2γ2

)
− ckr,

= ckr

(
ku
kr
− 1 +K2

2γ2

)
.

(2.24)

Setting this equal to zero, rearranging and using ku/kr = λ/λu recovers the on-axis

resonance condition found in Section 2.2. This is rewritten here for clarity as

λ =
λu
2γ2

r

(1 +K2), (2.25)

where γr has been introduced as the resonant electron energy. Electrons with energy

near the resonant energy will have a slow but sustained exchange of energy with the

radiation field over many undulator periods. An electron’s energy will deviate from the

resonant energy while interacting with the field in the undulator. Therefore the param-

eter, η, describing an electron’s energy deviation from the resonant energy normalised

to the resonant energy is introduced. This electron energy variable is given by

η =
γ − γr
γr

� 1. (2.26)

The exchange of energy of the electron and the radiation can now be expressed in
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terms of the rate of change of η. γr is a fixed value so

dη

dt
=

1

γr

dγ

dt
. (2.27)

Using equation (2.21), along with changing the dependent variable of the differential

from t to z, gives
dη

dz
= ε sin(θ), (2.28)

where

ε =
eKE0

mc2γ2
r

. (2.29)

Substituting γ = γr(η+ 1) into equation (2.24) (and using approximation 1/(1−x)2 ≈
1 + 2x for small x) it is straightforward to show

dθ

dz
= ku

(
1− 1

(η + 1)2

)
,

= 2kuη.

(2.30)

Equations (2.28) and (2.30) describe the evolution of the electron energy and phase

along the undulator axis when interacting with a constant field and are the familiar

pendulum equations.

The equivalent equations for a planar undulator are the same except

ε =
eK̃E0

2mc2γ2
r

, (2.31)

for the planar undulator case. The equation now contains the modified undulator

parameter K̃, defined as

K̃ = K

[
J0

(
K2

4 + 2K2

)
− J1

(
K2

4 + 2K2

)]
, (2.32)

where J0(x) and J1(x) are Bessel functions. This modified undulator parameter arises

from the oscillation in z which reduces the coupling between the electrons and the

radiation. The parameter K̃ is used in equations that involve the interaction strength

but not the resonant wavelength calculation which is independent of FEL interaction.
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2.4.2 The Wave Equation

The pendulum equations do not offer a full picture of the FEL as they assume the field

is constant. To have a complete description of the FEL, the field must be allowed to

evolve. Maxwell’s wave equation for the electric field from a moving charge is

(
∂2

∂z2
− 1

c2

∂2

∂t2
+∇2

⊥

)
E = µ0

∂J⊥
∂t

+
1

ε
∇ρe, (2.33)

where ∇ is the Laplacian and J is the current density. The underlying physics of the

FEL interaction is adequately described without diffraction and space charge terms and

these terms are dropped. The wave equation, now expressed in the 1D approximation,

is (
∂2

∂z2
− 1

c2

∂2

∂t2

)
E = µ0

∂J⊥
∂t

, (2.34)

where the transverse current is

J⊥ = −ec
N∑

j=1

β⊥jδ(r − rj(t)). (2.35)

As the many electrons in the beam contribute to the current, the subscript j is intro-

duced to indicate quantities belonging to the jth electron in the beam. The current then

includes the sum over the number, N , of electrons in the electron beam with positions

rj(t). (A typical electron beam contains a very large number of electrons, N ≈ 109)

The delta function can be expressed as δ(r − rj(t)) = δ(x− xj)δ(y − yj)δ(z − zj).
To follow previous derivations [33, 34] the electric field in equation (2.19) is now

expressed in exponential form

E =
−i√

2

(
Ẽ(z, t)ei(krz−ωrt)ê− Ẽ∗(z, t)e−i(krz−ωrt)ê∗

)
. (2.36)

The field is decomposed into two parts: a slowly varying field envelope describing the

amplitude and phase, Ẽ(z, t) = E0e
iφr and a fast oscillatory term ei(krz−ωrt). The unit

vector is defined as, ê = x̂+iŷ√
2

and then ê · ê = 0 and ê · ê∗ = 1. Equation (2.36) can be

substituted into equation (2.34). Integrating over the transverse plane and taking the
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scalar product with ê∗ gives [35]

−i√
2

(
∂2

∂z2
− 1

c2

∂2

∂t2

)
Ẽ(z, t)ei(krz−ωrt) =

µ0

σ

∂Jê
∂t

, (2.37)

where σ is the cross sectional area which is assumed to be equal for the radiation and

electron beam. The delta functions, δ(x−xj) and δ(y− yj), integrate to unity and the

current term is

Jê = −ec
N∑

j=1

βêjδ(z − zj(t)). (2.38)

Equation (2.5) gives the electron’s velocity in a helical undulator without the radi-

ation field contribution. Using βêj = β⊥j · ê∗, the electron velocity in exponential form

is inserted into equation 2.38 to give

Jê =
ecK√

2

N∑

j=1

1

γj
e−ikuzδ(z − zj(t)). (2.39)

2.4.3 The Slowly Varying Envelope Approximation

Typical analysis of the FEL equations apply the slowly varying envelope approxima-

tion (SVEA). This approximation states that the radiation envelope varies slowly with

respect to the radiation wavelength in both space and time. This allows the statements

∣∣∣∣∣
∂Ẽ

∂z

∣∣∣∣∣�
∣∣∣kẼ

∣∣∣,
∣∣∣∣∣
∂Ẽ

∂t

∣∣∣∣∣�
∣∣∣ωẼ

∣∣∣. (2.40)

This approximation allows the second derivatives in the wave equation to be dropped.

Applying this approximation to the LHS of equation (2.37) gives

−i√
2

(
∂2

∂z2
− 1

c2

∂2

∂t2

)
Ẽ(z, t)ei(krz−ωrt) '

√
2kr

[(
∂

∂z
+

1

c

∂

∂t

)
Ẽ

]
ei(krz−ωrt). (2.41)

Using this result, equation (2.37) becomes

(
∂

∂z
+

1

c

∂

∂t

)
Ẽ =

µ0√
2krσ

∂Jê
∂t

e−i(krz−ωrt). (2.42)
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The SVEA restricts any frequency dependent change in the evolution of the field

amplitude to frequencies around the resonance frequency, 2π/λr. To establish a slowly

varying current, equation (2.42) is averaged over the time interval ∆t = nλr/c : for n

an integer. It is assumed that the amplitude of the envelope is approximately constant

over the integration window and the LHS is unchanged by the integration. Taking the

RHS side and applying the product rule gives [36]

µ0√
2krσ∆t

∫ t+∆t/2

t−∆t/2

∂Jê
∂t

e−i(krz−ωrt)dt ≈ −µ0√
2krσ∆t

∫ t+∆t/2

t−∆t/2
iωJêe

−i(krz−ωrt)dt. (2.43)

Jê is substituted into this equation and the variable in the delta function is changed

using δ(z − zj(t)) = δ(t− tj(z))/cβz. The delta function has the property

∫ a+ε

a−ε
f(x)δ(x− a)dx = f(a). (2.44)

The integration thus picks out the N electrons passing a fixed plane of z in the time

interval ∆t. The slowly varying equation is now

(
∂

∂z
+

1

c

∂

∂t

)
Ẽ =

−ieKne
2ε0γr


 1

N

N∑

j=1

e−iθj


 , (2.45)

where θj = (kr + ku)z − ωtj(z) and ne is the number density. It was assumed that the

electrons all have similar energy and thus γj is taken out of the sum and relabelled γr.

The term in the brackets is the bunching parameter, b,

b =
1

N

N∑

j=1

e−iθj . (2.46)

The bunching parameter gives a measure of the micro-bunching in the electron

beam. If the electrons are uniformly distributed in phase, |b| = 0 and there is no net

gain to the field. If |b| > 0, there is a net gain to the field. An electron beam where

all the electrons in a slice have the same phase has a bunching parameter |b| = 1, this

is the maximum bunching possible and describes a fully bunched electron beam. Note

that for the planar undulator case, the average values of the electrons’ velocity and
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phase must be used due to the oscillation along z. As with the pendulum equations,

the modified undulator parameter, defined in equation (2.32), is used when describing

a planar undulator.

Equations (2.28), (2.30) and (2.45) make up the FEL equations. These are a set

of coupled differential equations describing the evolution of the electron phase and

radiation field. Before solving these equations, it is helpful to scale them via the

universal scaling developed by Bonifacio et al. [37].

2.5 Universal Scaling

Universal scaling is commonly applied to the FEL equations to produce a simpler de-

scription of the FEL mechanism without consideration of specific operating parameters.

In later chapters, examples of experimentally relevant parameters are provided (see Ta-

ble 5.1 and Table 6.1.) To scale the equations, dimensionless variables are defined which

are normalised to the FEL or Pierce parameter, ρ, defined as

ρ =
1

γ

(
auωp
4cku

)2/3

, (2.47)

where the plasma frequency, ωp is

ωp =

√
e2np
ε0m

(2.48)

and np is the peak electron number density of the electron bunch.

Scaled co-ordinates

The scaled coordinates z̄ and z̄1 replace z and t on the FEL equations. The distance

through the undulator is scaled using

z̄ =
4πρ

λu
z. (2.49)
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z̄1, is the scaled coordinate in the frame moving the velocity of the pondermotive wave.

z̄1 replaces the time coordinate and is defined as

z̄1 =
4πρ

λr
(z − cβ̄zt). (2.50)

The derivatives in the FEL equations can then be transformed using

d

dz
=

4πρ

λu

d

dz̄
and

(
∂

∂z
+

1

c

∂

∂t

)
=

4πρ

λu

(
∂

∂z̄
+

∂

∂z̄1

)
. (2.51)

Scaled FEL equations

The FEL equations are now rewritten replacing η with the scaled energy parameter

pj =
γj−γr
ργr

and replacing the Ẽ with the scaled complex field envelope A = aueẼ
4mc2kuρ2γ2

.

The universally scaled FEL equation are then given by

dpj
dz̄

= −i
(
Aeiθj −A∗e−iθj

)
, (2.52)

dθj
dz̄

= pj , (2.53)

(
∂

∂z̄
+

∂

∂z̄1

)
A = −ib. (2.54)

2.6 Steady-state Analysis

The equations can be further simplified by assuming that the electron beam is continu-

ous, with no beginning or end, and that the properties of the electron beam are uniform

across the beam. This is called the ‘steady state’ approximation. In this approximation,

the radiation field will only have a spatial dependence and no time dependence which

allows the derivative with respect to z̄1 to be dropped in equation (2.54). This as-

sumption is used in the following section to examine the FEL instability which leads to

amplification of the radiation field, however, it does not take into account the slippage

between the radiation field. The effect of slippage is examined further in Section 2.7.

. In the steady-state regime, the FEL equations are easily solved numerically. The
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scaled intensity and bunching parameter are plotted in Figure 2.6 for a uniformly dis-

tributed electron beam and small initial field. The FEL process can be considered in

three stages. In the first stage, z̄ . 2, there is little growth of the radiation field, this is

referred to as the lethargy region. After this region, the field experiences exponential

growth up until the last region, where saturation effects occur. In first two regions -

lethargy followed by exponential growth - the output power scales linearly with input

power and these regions are well described by linear theory [37]. Exponential growth

cannot continue indefinitely and nonlinear saturation effects act in the final region to

limit growth.

Figure 2.6: Numerical evaluation of the steady-state FEL equations with an initial
radiation field |A0| = 10−4. Left: The scaled intensity vs z̄. Right: The bunching
parameter vs z̄.

McNeil and Thompson [38] give a clear description of the FEL mechanism, which

shows how the electron bunching can drive the FEL interaction. To follow this descrip-

tion, the FEL equations are stated with the radiation field separated into a magnitude

and phase term A = |A|eiφr . In order for the FEL equations presented here to match

the equations in [38], a phase offset is introduced so that φr → (φr − π/2). The steady

state wave equation is now given by

dA

dz̄
+ |A|idφr

dz̄
= 〈e−i(θj+φr)〉, (2.55)

where 〈...〉 = 1
N

∑N
j=1. Equating the real and imaginary parts gives the evolution of
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the fields amplitude and phase as

dA

dz̄
= 〈cos(θj + φr)〉, (2.56)

dφr
dz̄

= − 1

|A| 〈sin(θj + φr)〉. (2.57)

With the phase offset, the rate of change of energy becomes

dpj
dz̄

= −2|A| cos(θj + φr). (2.58)

For an electron beam with uniformly distributed electrons, dA
dz̄ = 0, dφ

dz̄ = 0 and the

field is not driven. However, the introduction of a small radiation field will change the

energy of the electrons. From equation (2.58), electrons with a phase π/2 < θ < 3π
2

will gain energy and electrons with a phase 0 < θ < π/2 or 3π/2 < θ < 2π will lose

energy. The energy modulation of electrons transfers to a density modulation and the

electrons start to bunch about θ = 3π/2. The radiation is not immediately amplified as

dA
dz̄ = 0. However, inspection of equation (2.57) shows that this bunching will drive the

radiation phase and, since the initial field is very small, this phase change is significant.

Now φr > 0, then the amplitude of the radiation field increases, which in turn increases

the bunching in the field. The electron bunching continues to drive the radiation phase

and subsequently the field amplitude until saturation. At saturation |A| ∼ 1, and the

rate of phase change is slowed down and the electrons will regain some of the energy

from the field.

From the scaling of A it can be shown that [37]

ρ|A|2 =
Prad
Pbeam

, (2.59)

where Prad and Pbeam are the power in the radiation field and the electron beam,

respectively. The FEL power saturates when |A|2 ≈ 1 and so the above relation shows

that ρ gives the efficiency of the FEL, i.e. the fraction of electron beam power converted

to radiation power.

To explore the exponential gain of the radiation further, the FEL equations can
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be linearised by considering the evolution of the equations with small perturbations

applied to their initial conditions. This is not included in this thesis; however, we do

note an important result that FEL amplification is characterised by the gain length,

lg, which is given by

lg =
λu
4πρ

. (2.60)

Revisiting the universal scaling, equation (2.49), it is seen that the distance through

the undulator was scaled to the gain length.

2.7 SASE

The above analysis considered FEL amplification in the steady-state regime where the

initial seed for amplification came from an initial radiation field. A more complete

picture includes slippage of the light relative to the electrons as well as variation of the

electron density along the bunch. The bunch variation, which arises from shot noise

from the electron gun, means that the initial bunching parameter along the beam is

non-zero and therefore can act as the initial seed to start up the FEL process. This

is particularly important at short wavelengths where radiation seeds are not available.

Starting the FEL process with the random density fluctuations in the electron beam is

called Self Amplified Spontaneous Emission (SASE).

The temporal structure of SASE radiation is initially spiky with very little temporal

coherence, however, the slippage in the electron beam acts to increase the temporal

coherence in the beam. A measure of the influence that the slippage has on the temporal

coherence is defined by the cooperation length [39],

lc =
λr

2πρ
. (2.61)

This is the length the radiation field slips ahead of the electrons in one gain length.

Figure 2.7 shows an example of SASE output at saturation. An electron beam that is

much longer than lc will have a spiky radiation profile at saturation with a maximum

peak separation ≈ 2πlc.
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Figure 2.7: Typical SASE radiation profile of a FEL.
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Chapter 3

Orbital Angular Momentum of

Light

The starting point for the work in this thesis was to consider FEL radiation carrying

orbital angular momentum. This chapter develops a theoretical basis for the orbital

angular momentum, OAM, of light. In Chapter 4, generation of light carrying OAM

using a FEL is discussed.

3.1 Orbital Angular Momentum

Since the 1600s, it has been understood that light carries angular momentum. In 1909,

Poynting [40] explained that as well as linear momentum, circularly polarised light also

carries spin angular momentum. Before a seminal paper from Allen et al. in 1992 [41],

OAM was thought to be a property of light confined to only being concerned with

higher-order atomic transitions. Allen et al. corrected this notion, showing that light

beams with helical wavefronts also carry OAM. These helically phased beams could

readily be generated with standard optics and, in fact, had already been generated and

studied for many of the previous years without recognition of the OAM. Instead, it was

the beams’ intensity profile, which is null on-axis, that was of interest to researchers.

Allen et al.’s paper was a breakthrough not only for recognising that light carries

OAM but also that it is quantized, with each photon carrying a discrete value of
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OAM. Since 1992, OAM has received considerable attention, with applications such as

optical tweezers [42], and in the fields of quantum optics [43], imaging [44] and optical

communication [45], to list a few examples. A more in-depth look at the diverse range

of application areas involving light’s OAM is provided in Ref. [46].

3.1.1 Helically-phased beams

The amplitude distribution of helically-phased beams can be expressed in cylindrical

coordinates as [47],

u(r, φ, z) = u0(r, z) exp(i`φ) (3.1)

where `, an integer, is the azimuthal mode number and φ is the angular coordinate.

Compared to the usual plane waves, where ` = 0, the phase of radiation has now

acquired a new component, so the total phase of the wave is kz − ωt + `φ. The

result of this new phase term is that the phase front of the radiation is twisted into

a helix. Figure 3.1 shows the surface of constant phase for different values of `. The

magnitude and sign of ` determine, respectively, the number of intertwined helixes and

the handedness of the helixes. Unlike spin momentum, which is limited between the

values ±1, the magnitude of ` is theoretically unbounded. This is of particular interest

as it suggests the potential for light to carry more information per photon.

Figure 3.1: Wavefronts for waves with azimuthal index (left to right) ` = 1, 2, 3.
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Instead of considering the phase fronts of these beams, the phase of a cross section

of an ` = 1 beam is shown in Figure 3.2. It is seen that travelling around the azimuth of

the beam changes the phase of the light. ` thus defines the number of times the phase

changes from 0 to 2π in one rotation. This means that a change in φ is indistinguishable

from time - travelling around the azimuth of the beam is equivalent to a change in time.

Another consequence of this phase structure is that at the centre of the beam there is a

phase singularity and, associated with this singularity, the intensity of the light is zero.

This produces a ring intensity profile, with no intensity at the centre and the radius of

the maximum intensity increasing with |`| as
√
`/2w, where w is the beam waist when

` = 0.

Figure 3.2: Phase (left) and normalised intensity (right) cross section of a helically
phased ` = 1 beam.

Angular momentum

It is understood that light carries momentum which can interact with physical systems.

The twisted wavefronts described above means some of the momentum carried by the

radiation is OAM. To see how this specific angular momentum arises, consider the

direction of the flow of energy of a light beam. The flow of energy of an electromagnetic

beam is described by the Poynting Vector, S,

S =
1

µ0
E ×B (3.2)

where µ0 is the permeability of free space. In free space, the Poynting vector also

describes the flow of momentum. This vector points in the direction which is the
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surface normal of the wavefront. For plane waves, ` = 0, this vector is directed solely

along z, the direction of propagation. When the phase front twists - as in Figure 3.1

- then the Poynting vector is no longer parallel to the optical axis and acquires an

azimuthal component. The light then carries an angular momentum in the direction

of propagation, which appears as a consequence of the phase gradient and is unrelated

to the spin momentum which results from the rotating polarisation vector in circularly

polarised light.

Perhaps it is easiest to understand the difference between the momentum types by

considering the effect it has when transferred to a trapped particle [42, 48]. Linear

momentum parallel to the optical axis when transferred to a particle will push it away

in the direction of the radiation propagation. Spin momentum causes a rotation around

the centre of the particle, whereas the orbital angular momentum will rotate the particle

at a radius, r, round the centre of the beam.

A simple picture of the azimuthal component of momentum flow has been provided.

A more in-depth look at how this property arises and how, less intuitively perhaps,

helically phased beams carry discrete values of OAM equivalent to `~ per photon is

now needed.

3.1.2 Spin and OAM Separation in the Paraxial Approximation

OAM was first studied in the paraxial approximation. The following sections will

also utilise this approximation as, in the paraxial regime, spin momentum and orbital

angular momentum are easily separated. Paraxial waves provide a close description

of real laser amplification [49] and propagation including FEL radiation. The paraxial

approximation assumes that changes in transverse beam profile change particularly

slowly in z such that the terms ∂2u/∂z2 and |∂u/∂z| can be ignored in the derivation

of the wave equation. The paraxial wave equation is then

2i
∂u(r, φ, z)

∂z
= −1

k

(
∂2

∂x2
+

∂2

∂y2

)
u(r, φ, z). (3.3)
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First, the vector potential of a laser mode is defined as

A = u(r, φ, z) exp(ikz)ê⊥, (3.4)

where ê⊥ is the transverse polarisation vector. u(r, φ, z), is the amplitude distribution

which is given by equation (3.1). The electric and magnetic fields expressed in terms

of the vector potential via the Lorenz gauge are [50]

E = iω

(
A+

1

k2
∇(∇ ·A)

)
, (3.5)

B = ∇×A. (3.6)

The real part of the time averaged linear momentum density is [51]

p = ε0〈E ×B〉,

=
ε0
2

[(E∗ ×B) + (E ×B∗)],

=
ωε0
2

[
i
(
u(r, φ, z)∇u∗(r, φ, z)− u∗(r, φ, z)∇u(r, φ, z)

)
+ σ

∂|u0(r, z)|2
∂r

êφ

+ 2k|u0(r, z)|2êz
]
,

(3.7)

where σ = ±1 gives the polarisation of the radiation and ε0 is the permittivity of free

space. Using, ∇ = ( ∂∂r êr + 1
r
∂
∂φ êφ + ∂

∂z êz), to evaluate the first two terms revels an

OAM term in the azimuthal component of linear momentum

p =
ωε0
2

[
i
(
u0(r, z)∇u∗0(r, z)− u0(r, z)∗∇u0(r, z)

)
+
(2`

r
|u0(r, z)|2 + σ

∂|u0(r, z)|2
∂r

)
êφ

+2k|u0(r, z)|2êz
]
.

(3.8)

The φ component of the linear momentum now has two terms, the first relates to

the orbital angular momentum and depends on the azimuthal mode number `. The

second term relates to the spin momentum and depends on the polarisation σ. This
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is consequential as the cross product of linear momentum with r̂ gives the angular

momentum density

j = r̂ × p (3.9)

and therefore the angular momentum in the direction of propagation is

jz = rpφ =
ε0ω

2

(
2`|u0(z, r)|2 + rσ

∂|u0(r, z)|2
∂r

)
. (3.10)

In the paraxial approximation, most of the energy of the field is concentrated in the

longitudinal direction, the time averaged energy density can therefore be defined as

w ' cpz = cωkε0|u0(r, z)|2 (3.11)

and then the local ratio of angular momentum to total energy is

jz
w

=
`

ω
+

σr

2ω|u0(r, z)|2
∂|u0(r, z)|2

∂r
. (3.12)

The total angular momentum, Jz, and total energy, W , ratio can be found by

integrating across the beam to give

Jz
W

=

∫ ∫
rjzdrdφ∫ ∫
rwdrdφ

=
`+ σ

ω
. (3.13)

Equations (3.12) and (3.13) demonstrate that orbital and spin momentum are sep-

arated - at least in the paraxial regime. Right-handed and left-handed polarisation are

indicated when, respectively, σ = −1 and σ = +1. For σ = 0 the light is linear po-

larised; it is seen that the OAM is independent of the polarisation and linear polarised

light can carry OAM. Similarly, light without OAM, ` = 0, can still carry angular

momentum through the polarisation.

Another important result is found through multiplying equation (3.13) by the energy

of one photon, ~ω. This shows that the OAM along z carried per photon is ~`. It also

follows that the spin momentum is ±~ as expected.
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Non-paraxial beams

A similar result for non-paraxial beams can be derived directly from Maxwell’s equa-

tions [50, 52]. However, out of the paraxial regime, there is an additional correction

term in the energy ratio equation. This demonstrates that there is not such a simple

separation between the spin and orbital angular momentum. However, it does show

that the appearance of the orbital angular momentum is not an artefact of the paraxial

approximation. The correction term has a dependence on σ only, when σ = 0 the

correction term disappears and the ratio of Jz and W is exactly equation (3.13). This

confirms that out of the paraxial regime, a light beam can carry orbital and not spin

momentum.

3.2 Solutions to the Paraxial Wave Equation

The Laguerre-Gaussian and Hermite-Gaussian modes are solutions to the paraxial wave

equation when solved with cylindrical or Cartesian coordinates, respectively. Both

families of modes will be referenced throughout this thesis and so they are presented

in the following section.

3.2.1 Laguerre-Gaussian Modes

The Laguerre-Gaussian, LG, modes were the first radiation beams discussed in the

context of OAM. Although OAM is a property carried by all radiation beams with a

helical phase structure, the LG modes are ubiquitous in the literature as they are a

complete set of orthogonal modes. These modes have an amplitude defined as [47]

LGp,` =

√
2p!

π(p+ |`|)!
1

w(z)

[
r
√

2

w(z)

]|`|
exp

[ −r2

w2(z)

]
L|`|p

( 2r2

w2(z)

)
exp[i`φ]

exp

[
ik0r

2z

2(z2 + z2
R)

]
exp

[
− i(2p+ |`|+ 1) tan−1

( z
zR

)]
,

(3.14)

where the beam waist w0 evolved as w(z) = w0(1 + z2/z2
R)1/2 along z. The variable zR

is the Rayleigh range and the functions L
|`|
p are associated Laguerre polynomials. The
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mode numbers p and ` give, respectively, the radial mode and the azimuthal mode.

Figures 3.3 and 3.4 give the intensity and phase profiles for the first three p and ` mode

numbers. The lowest order mode of this set is found with p = ` = 0 which is the simple

Gaussian distribution. For |`| > 1, LG modes have a well defined angular momentum

as they have an azimuthal dependence ei`φ.

The LG modes also make up a complete basis set which means that any arbitrary

radiation field can be expressed as a complete sum of the different LG modes. As the

modes are mutually orthogonal then

∫ ∫
LGp,`LG

∗
p′,`′dxdy = δp,p′δ`,`′ . (3.15)

This will be used later in this thesis to decompose the radiation from FEL simulations

into the different LG modes in order to examine the OAM content.

3.2.2 Hermite Gaussian Modes

Another complete set of orthogonal modes are the Hermite-Gaussian, HG, modes.

These modes have amplitude distributions defined by

HGm,n =

√
21−(n+m)

πn!m!

1

w(z)
exp

[−(x2 + y2)

w2(z)

]
Hm

( x
√

2

w(z)

)
Hn

( y
√

2

w(z)

)

exp
[−ik0(x2 + y2)z

2(z2 + z2
R)

]
exp

[
− i(m+ n+ 1) tan−1

( z
zR

)]
.

(3.16)

Figure 3.5 displays the intensity profile for the first three n and m numbers. The

intensity profiles have different intensity nodes which are π out of phase with each

other. The mode numbers m and n are positive integers, they indicate the number of

nodal lines in, respectively, the x and y directions. As with the LG modes, the lowest

order mode, n = m = 0 is the Gaussian mode.

A single HG mode does not contain OAM. However, there is transverse variation in

the phase profile of the higher-order HG modes. Any radiation beam can be considered

to be a superposition of the HG modes; therefore any LG modes can be expressed in

terms of the HG modes. For example, the LG0,1 mode is equivalent to the coherent
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Figure 3.3: Normalised intensity distributions for the Laguerre-Gaussian modes when
z = 0.

combination HG0,1 and HG1,0 modes with a π/2 phase shift i.e.

1√
2
HG0,1 +

i√
2
HG1,0 = LG0,1. (3.17)

This superposition is shown in Figure 3.6.

3.2.3 Gouy Phase Shift

The Gouy phase shift, ψG(z), is associated with any wave passing through a focus or

coming from a small source point. For the transverse modes described above, this phase
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Figure 3.4: Phase distributions for the Laguerre-Gaussian modes when z = 0.

shift depends on the mode indexes. The Gouy phase shift for an LG mode is given by

ψG,p,`(z) = (2p+ |`|+ 1) tan−1
( z
zR

)
(3.18)

and for a HG mode, it is

ψG,n,m(z) = (m+ n+ 1) tan−1
( z
zR

)
. (3.19)

This phase shift can be quite substantial, for example, a Gaussian beam passing

though a focus will acquire a π phase shift. The Gouy effect can be seen in conventional

laser cavities where the higher-order modes have different resonant frequencies [49].
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Figure 3.5: Normalised intensity distributions for the Hermite-Gaussian modes when
z = 0.

3.3 Generation of OAM light

Conventional methods which produce light carrying OAM use different optical elements

which impose the helical phase structure on a plane wave. An intuitive method to do

this is with a spiral phase plate [53–55]. This optical element has an optical thickness

that varies with azimuthal position. The light is delayed according to azimuthal po-

sition, which twists the phase distribution. Although a simple concept, execution is

difficult, as extreme precision is required to make the element and spiral phase plates

are not used for light at wavelengths shorter than visible wavelengths.

The method used by Allen et al. in the seminal OAM paper [41] was based on the

mode conversion of HG to LG modes through a cylindrical lens telescope. As discussed
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Figure 3.6: Schematic showing that the combination of Hermite-Gaissian modes HG0,1

and HG1,0 modes produce a Laguerre-Gaussian mode LG0,1. Top: Intensity plots.
Bottom: corresponding phase profiles.

in the previous section, the LG modes can be transformed into HG modes and vice

versa. The method works due to the fact an HG mode at 45◦ can be decomposed into

a set of HG modes. The cylindrical lenses then re-phase the HG modes - via the Gouy

phase shift - to form an LG mode [47].

The cylindrical lens and spiral phase plate methods are both examples of refrac-

tive optics. However, before Allen et al.’s paper and without recognition of angular

momentum of the light, an alternative technique was developed [56]. In this method,

which uses computer generated holography, refractive optics such as the spiral phase

plate are mimicked by diffracted optical elements. Combining the desired helical phase

distribution with the phase of a diffraction grating (to separate out the zeroth order)

results in a forked diffraction grating. Diffracting a Gaussian light beam through this

hologram then converts the light into the desired helical beam, where the number of

prongs on the ‘fork’ determines |`|. Further development of this method produced the

spatial light modulators (SLMs), which are pixellated liquid crystal devices that will

display an image generated by a computer. This allows the design displayed on the

device to be easily changed, providing active programming of the phase of the light.
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Free Electron Laser Radiation

Carrying Orbital Angular

Momentum

The conventional techniques used to generate light carrying orbital angular momen-

tum, discussed in Section 3.3, use optical elements that alter the phase of a Gaussian

beam. These techniques have been developed to use with conventional lasers available

in laboratories and, as a result, work best at the wavelengths and intensities offered by

these lasers. FELs are used when the desired radiation has a shorter wavelength and/or

higher intensity than that available with traditional sources and the traditional routes

to convert the phase of radiation do not work. In particular, the damage threshold of

the optical elements restricts the brightness and wavelength of the light they transmit.

In order to provide researchers with OAM radiation with the properties available from

FELs, new techniques have been developed.

S Sasaki and I McNulty [57,58] were the first to identify that the harmonic radiation

emitted in a helical undulator has a helical phase and thus carries an OAM. Preceding

experiments observed ring and spiral intensity distributions from FEL radiation sug-

gesting the presence of OAM. Sasaki and McNulty theoretically demonstrated that the

harmonic radiation carries OAM, characterised by the OAM index ` = ±(h−1) with h

the harmonic number and sign dependent on the handedness of the undulator. Intense
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radiation carrying OAM is therefore accessible with helical undulators. Experiments

confirming the theoretical work measured the OAM in spontaneous undulator radia-

tion [59] and then in the coherent emission from a bunched electron beam radiating at

the second harmonic [60]. At Fermi FEL [61], OAM radiation was demonstrated from

both the coherent second harmonic emission as well as a spiral zone plate which takes

a more traditional approach to convert radiation outside of the FEL. The spiral zone

plate was constructed out of silicon in order to not be damaged by the XUX (26 nm

wavelength) radiation emitted in the FEL. Most recently, a FEL oscillator was used to

generate coherent superposition of two Laguerre-Gaussian modes with azimuthal mode

numbers of equal magnitude and opposite sign [62].

E Hemsing, along with colleagues, has produced a large body of theoretical and ex-

perimental work concerning OAM radiation in a FEL [63–67]. This includes describing

the development of different modes in a FEL and how these modes are affected due to

parameters such as diffraction and energy spread. Hemsing has also provided the first

method by which OAM radiation is carried by the fundamental frequency of undula-

tor radiation [66]. The method works by pre-bunching the beam into a helix before

entering the FEL via harmonic interaction with a seed laser in a helical undulator.

4.1 OAM Content in the Harmonics of Helical Undulators

In Chapter 2, it was shown that there is no harmonic radiation on-axis for all the har-

monics of a helical undulator and the odd harmonics of the planar undulator. Off-axis,

however, the radiation received is emitted at different points in the electron’s trajec-

tory and the harmonics survive. It turns out that the phase of the off-axis harmonic

radiation has a dependence on the azimuthal position at which is is observed. The

properties of the spontaneous emission by electrons in an undulator is now discussed.
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Figure 4.1: Geometry of off-axis emission.

4.1.1 Spontaneous Emission

The electric field radiated from a single electron in the frequency domain can be written

as (in SI units) [68]

E(ω) =
ieωeiωr

4π
√

2πcε0r

∫ ∞

−∞
n̂× (n̂× β)eiω(t−n·re(t)/c)dt, (4.1)

where r is the distance from the undulator and n̂ = r/r = sin θ cosφx̂+ sin θ sinφŷ +

cos θẑ is the unit vector pointing from the origin to the observer. The electron travels

through the undulator along the path re(t) = c
∫
βdt where, for a helical undulator,

transverse and longitudinal components of β are given in equations (2.5) and (2.8).

The electric field gives the angular spectral energy distribution in the far field via

d2W

dωdΩ
= 2ε0cr

2|E(ω)|2. (4.2)

Substituting in equation (4.1) gives

d2W

dωdΩ
=

e2ω2

16π3cε0

∣∣∣∣
∫ ∞

−∞
n× (n× β)eiω(t−n·r(t)/c)dt

∣∣∣∣
2

. (4.3)
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For a helical undulator with Nu periods, this can be expressed for the different

harmonic frequencies, h, as [69]

d2Wh

dωdΩ
≈ µ0

8πc

(
eωNuK

kwγ

)2

sinc2

[
Nuπ

(
ω(1− βz cos θ)

kwc
− h
)]

J2
h−1

(
ωK sin θ

γkwc

)
,

(4.4)

where Jh−1 is the Bessel function of the first kind. This term is zero on-axis for all

values of h except h = 1.

Figure 4.2: On-axis (top) and off-axis (bottom) spectrum of a helical undulator. The
parameters used are: Nu = 6, K = 2.634, λu = 0.039 m, γ = 7869

Using equation (4.1.1), the spectrum of emission is plotted for the different har-

monics shown in Figure 4.2. On-axis, θ = 0, the radiation spectrum contains only

the fundamental frequency. Moving off-axis, the spectrum now contains harmonics. In

Section 2.2 the resonance condition was derived which has a dependence on θ. This

is seen in the figure where the peaks of the spectrum are shifted for θ 6= 0. The
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sinc2(x) function is peaked when x = 0, and thus the peak of the spectrum is found at

frequencies

ωh(θ) =
hkwc

1− βz cos(θ)
. (4.5)

From this - for small θ - the resonance condition, equation (2.18), is recovered. The

sinc2(x) function’s FWHM is found when x = ±1.39, and so the FWHM of each

frequency peak is

∆ωh =
0.88

hNu
ωh(θ). (4.6)

Increasing the number of undulator periods therefore narrows the frequency bandwidth.

Similarly, for small angles, the spatial distribution FWHM at the peak frequencies is

∆θ ' 1/γ

√
0.88

hNu

ωh(0)

ωh(θ)
. (4.7)

Increasing the number of undulator periods therefore also narrows the spatial distribu-

tion.

Following [67], numerical calculation of equation (4.1) for second harmonic emission

of an electron in a helical undulator is included in Figure 4.3, where the integral is

taken over the limits ±Nuλu/2c. The phase profile of the harmonic emission has an

azimuthal variation, which indicates the presence of OAM. There is a slight asymmetry

in the intensity profile which indicates that this is not a single ` = ±1 mode, but that

there are small contributions from other modes, notably the ` = 0 modes.

Explicit calculation of equation (4.1) presented in [67] finds the transverse electric

fields to be (for small forward angles)

Ex ≈ ∓
ieω

4π
√

2πcε0r

Nuπ

wu
eiωrsinc

[
Nuπ

(
ω(1− βz cos θ)

kwc
− h
)]

(4.8)

×J2
h−1

(
ωK sin θ

γkwc

)
(±1)h−1e±i(h−1)φ

and

Ey = ∓iEx. (4.9)
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Figure 4.3: Second harmonic emission from an electron in a helical undulator, where
emission is given by equation (4.1). Parameters used are: Nu = 32, K = 2.3, λu =
0.039 m, γ = 7869. Top: An LHU produces an ` = −1 vortex beam with right-hand
circular polarisation. Bottom: An RHU produces an ` = 1 vortex beam with left-hand
circular polarisation.

An azimuthal dependence on the phase has been revealed for h > 1. It is shown

that the higher harmonics have acquired a phase term ei(h−1)φ and so the harmonics

have an OAM index ` = ±(h − 1). The transverse components have a fixed ±π/2
difference as radiation emitted is circularly polarised and so also carry a spin angular

momentum σ = ∓. The OAM arises separately from the polarisation, however, both

are consequences of the trajectory of the electron through the undulator and thus it is

not possible to flip the handedness of the OAM without also flipping the handedness of

the polarisation. Table 4.1 summarises the polarisation and transverse modes profiles

for different undulator configurations.

In the Table, the radiation is described in terms of the transverse modes introduced

in Chapter 4. For a single electron, the emitted radiation is not strictly the LG modes.

However, for an electron beam with a Gaussian transverse profile with beam waist

σx > γ
√
Nu/k, the angles of electron emission are restricted by the electron beam
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Table 4.1: The polarisation and transverse modes emitted in different undulator con-
figurations.

Undulator Polarisation Transverse mode

LH Helical RH circular LG0,−(h−1)

RH Helical LH circular LG0,+(h−1)

x-Poled Planar y linear HM0,(h−1)

y-Poled Planar x linear HM(h−1),0

waist and, for large Nu and K, the field becomes a close approximation of the LG

modes.

The higher harmonic radiation from planar undulators also has transverse phase

variation. This radiation is best described by the HG modes with nodal lines along the

same axis as the electron oscillation. The HG modes and the corresponding polarisation

emitted by different undulators are also included in Table 4.1.

4.1.2 Accessing Harmonic Radiation

The fundamental wavelength, which has a Gaussian transverse profile, dominates the

undulator radiation spectra after several gain lengths. However, an electron beam can

be prepared with a micro-bunching structure in order to stimulate emission at the

higher harmonics.

Afterburner undulators

Undulators which are placed downstream of a main - usually planar - undulator am-

plification section once micro-bunching has been established, are called ‘afterburners’.

Afterburners are increasingly being explored as a method to tailor FEL output in dif-

ferent ways and provide solutions to enable specific experimental output requirements

(e.g. provide polarisation control [4]) with minimal changes to an existing facility and

therefore at relatively low cost. Much of the research in this thesis will focus on differ-

ent afterburner configurations due to the feasibility of implementing afterburner type

setups at real facilities. For OAM generation, pre-bunching electron beam at a har-

48



Chapter 4. Free Electron Laser Radiation Carrying Orbital Angular Momentum

monic of a helical afterburner means the coherent radiation emitted in the afterburner

will be in an LG mode.

The coherent emission for a beam of Ne electrons is given by

d2WC

dωdΩ
= N2

eF (ω)
d2W

dωdΩ
, (4.10)

where F (ω) is the form factor for the electron beam. The form factor for a Gaussian

electron beam is [67]

F (ω) = b2sinc2
[τ

2
(ωb − ω cos θ)

]
e−σ

2
x
ω2

c
sin2 θ, (4.11)

where τ is the length of the beam. The form factor picks out part of the spontaneous

emission spectrum as well as limiting the angles of emission to θ < c/σxω where ωb is

the frequency of the bunching. If ωb is a harmonic of the undulator then the radiation

emitted is also at the second harmonic and will have the form of an LGh−1
0 mode.

Detuning the helical afterburner so that the bunching is lower than ωh(0) > ωb will

push the radiation off-axis which can improve the purity of the LG mode emitted as

well as the intensity.

For a single helical afterburner emitting OAM radiation at the second harmonic the

radiated coherent power

P = 4Pbb
2 I0

γIA

(
K2

1 +K2

)2

ln

(
1 + 4N2

4N2

)
, (4.12)

where Pb is the peak electron beam power, IA= 17 kA is the Alfven current, and N =

kσ2
x/Lu is the Fresnel number of the electron beam with k = 2π/λb, and Lu = Nuλu

the length of the undulator. This is orders of magnitude lower than the power that

would be emitted if the afterburner was emitting at the fundamental wavelength.
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4.2 Modelling OAM Radiation with the FEL Simulation

Code Puffin

The most prevalent FEL simulation code is Genesis [70]. This code, like many others,

applies several approximations, which substantially decreases the code’s computation

time. Significant to this thesis is the approximation that the FEL equations can be

averaged over an undulator period. Genesis solves the FEL equations for individual res-

onant period length slices of radiation and electron beam, adding slippage between the

electrons and the radiation field after every one resonant period of numerical integra-

tion. This averaging gives sufficient modelling of basic FEL operation, however, it limits

the resolution of processes to the resonant wavelength scale and above (although some

functionality has been added to model higher harmonics of planar undulators [71]).

The OAM content contained in the second harmonic of coherent spontaneous emission

is washed out in the process of averaging. Therefore codes which apply this averaging

are not suitable for modelling many OAM/FEL schemes.

The simulations presented in this thesis use the FEL simulation code Puffin [72,73].

In contrast to most other FEL codes, Puffin does not average the electron motion over

an undulator period, allowing modelling of both planar and helical harmonic emission

arising from electron motion at the sub-undulator period scale. The Puffin code also

does not utilise the slowly varying envelope approximation, although the paraxial ap-

proximation is made. The omission of many of the approximations used by other codes

makes Puffin ideal for modelling many novel FEL schemes including the ones presented

in this thesis.

The Puffin code is developed and available on GitHub [74]. Puffin is a parallel

numerical solver for unaveraged FEL equations, it is written in Fortran 90 and uses MPI

and OpenMP. The Puffin code was modified to allow simulation of the FEL methods

presented in this thesis. To model the work included in Chapter 5, the code was

modified to apply a transfer matrix to the electrons which represent skew quadrupole

magnets and a rotation to the electrons along the longitudinal axis. To model the work

included in Chapter 6, the code was given the functionality to change the handedness
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of the helical undulators simulated.

4.2.1 Time-saving Modes

Since Puffin does not employ the same approximations as other FEL codes, it uses

significantly more computation time which is expensive as well as time-consuming. In

order to save computational resources, Puffin provides two optional time-saving modes

which can be turned on and off. The first employs the plane wave approximation

- essentially modelling the FEL in 1D. This is useful for fast simulations when the

temporal properties of the FEL radiation pulse are being investigated, however, as

OAM is a property of radiation with transverse phase variation, 1D simulations cannot

model OAM beams.

The second time-saving option is to model a slice of the electron beam by imposing

periodic boundaries. The simplest option is to model one resonant wavelength of elec-

tron beam - this is the steady-state approximation. This allows modelling of radiation

with OAM, however, the simulations are time-independent and temporal effects are not

modelled. The length of the slice modelled can be increased to better simulate density

variations across the electron beam, but full temporal simulations will provide the most

accurate picture.

4.2.2 OAM Content at the Second Harmonic

Figures 4.4and 4.5 shows the 2D and 3D radiation field of the second harmonic of

helical undulators. The simulations utilised Puffin’s periodic mode and use parameters

inspired by CLARA [75] with planar undulators exchanged for helical undulators. The

plots are shown close to saturation with the second harmonic of the radiation filtered

from the full radiation field. The spiral pattern in the field indicates the presence of

(diffracted) OAM radiation.
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Figure 4.4: 2D plot of the 2nd harmonic radiation field from a helical undulator. The
FEL is modelled using the FEL simulation code Puffin.
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Figure 4.5: 3D plot of the 2nd harmonic radiation field from a helical undulator. The
FEL is modelled using the FEL simulation code Puffin.
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Investigating OAM Radiation

Start-up from SASE

This chapter investigates a scheme to produce OAM light at the fundamental wave-

length of the undulator. Whereas previous methods generating fundamental wavelength

OAM light have relied on seeding the FEL, either with an OAM seed or with a pre-

bunched electron beam, this chapter proposes a method where the initial seed comes

from the shot noise in the electron beam. For methods requiring the FEL to be seeded,

the output is restricted by the quality of seeds available. This can mean very short

wavelengths are unavailable through seeding schemes as a suitable seed laser may not

be accessible at the required wavelength with an intensity large enough to overcome

the initial shot noise in the beam. Here, the feasibility of selecting for radiation with

OAM through a method that works in situ is considered, which would generate high

powered OAM radiation at the full wavelength range of FELs.

The method presented here relies on the rotation of an electron beam. This proved

a difficult task, and, although a rotation of the electron beam was demonstrated, phys-

ical rotation of the electron beam caused a debunching effect in the electron beam

which washed out any FEL gain. Although ultimately unsuccessful, the work is still

presented here as it is an interesting demonstration of the mechanisms for transverse

mode selection in a FEL.
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5.1 Competing Modes

Electrons enter the undulator with random phases due to shot noise in the electron

gun. In the self amplified spontaneous emission (SASE) mode of operation, the initial

amplitude due to the noise acts as a seed for the FEL interaction and is amplified.

The incoherence of the electrons is mimicked by the radiation they produce. This

incoherent radiation can be described as a superposition of all the modes which make

up an orthogonal basis set. As they carry OAM, the LG modes are chosen and the

radiation is expressed as

E(φ, r̂) =
∞∑

`=−∞

∞∑

p=0

ap,`LGp,`(φ, r̂), (5.1)

where ap,l is the initial mode amplitude. The noise in the electron beam seeds all

modes. However, the coupling between the electron beam and the radiation modes

reduces with increasing |`| due to the null intensity at the centre of the higher-order

modes - which is larger for larger |`|. Therefore, the transverse profile of the higher-order

modes means they have longer gain lengths [64] with the shortest gain length belonging

to the Gaussian mode. The Gaussian mode, consequently, dominates FEL interaction,

suppressing the higher-order modes, leading to the Gaussian mode of operation typical

of a FEL.

5.2 Suppression of the Gaussian Mode

It is possible to disrupt the interaction between electrons and radiation by imposing a

relative phase shift between the electrons and the radiation field. Through successive

phase shifts between short undulator modules, the FEL interaction can be suppressed.

In a paper by Brian McNeil and colleagues [76], it was proposed that this could be

used to induce harmonic lasing in a FEL. It was shown that a longitudinal delay

of electrons, which can be imposed by chicane modules, will cause different relative

phase shifts between the electrons and the different harmonic wavelengths emitted in

a FEL. A longitudinal delay that causes a phase shift, ∆θ, relative to the fundamental
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wavelength will then cause a phase shift, n∆θ, relative to the nth harmonic. The

exponential gain of radiation at the fundamental frequency was suppressed by repeated

shifts when ∆θ was chosen to be non-integer multiples of 2π. The disruption of the

fundamental wavelength then allows growth in the power of the harmonic radiation.

Instead of considering higher frequency harmonics of the radiation emitted in a FEL,

this chapter considers the LG modes emitted at the fundamental frequency.

The transverse phase structure of the LG modes provides an additional route to

impose a phase shift on the light. An electron rotated round the longitudinal axis of

a higher-order LG beam experience the same phase shift as from a longitudinal shift.

For a rotational shift, ∆φr, of the electron beam, the electrons experience a phase shift,

`∆φr, relative to an LG mode.

For an LG mode with OAM index `, the total phase change, ∆Ψ`, between radiation

and the electrons from the combination of a longitudinal and rotational shift is therefore

∆Ψ` = ∆θ + `∆φr. (5.2)

It is clear from equation (5.2) that through careful selection of ∆θ and ∆φr, different

relative phase changes between the electrons and the OAM modes can be achieved.

Notably, a rotational shift in the electron beam has no effect on radiation with a

Gaussian profile. If successive repetition of the shifts are chosen to cause the exponential

gain of the Gaussian mode to be disrupted - such that the gain length of the Gaussian

mode is longer than of the higher-order modes - then a dominant OAM mode will

self-select for amplification. This is modelled in the next section.

5.3 Simulations

The simulations presented in this sections use parameters based on the LCLS facility [3],

given in Table 5.1. The selected parameters mean that the radiation emitted is in the

hard x-ray wavelength range.
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5.3.1 Rotation

The Puffin code was modified in order to add a rotation to the electrons along the

longitudinal axis according to the rotation matrix,

R(∆φr) =




cos ∆φr 0 − sin ∆φr 0

0 cos ∆φr 0 − sin ∆φr

sin ∆φr 0 cos ∆φr 0

0 sin ∆φr 0 cos ∆φr



, (5.3)

which acts on the phase space vector constructed from the vaiables (x, px, y, py), where

x and y are the transverse co-ordinates, and px and py are the conjugate of momenta.

Table 5.1: Parameters based on LCLS

Parameter Value

Electron beam energy [GeV] 13.6
Peak current, I0 [kA] 3
rms energy spread σγ/γ 1.0× 10−4

Normalised emittance [mm-mrad] 0.4
rms beam size σx [µm] 16
Undulator period λu[cm] 3.0
rms undulator parameter au 2.48
Resonant wavelength λr [Å] 1.5
Number of undulator periods per module 144
Number of undulator modules 17

5.3.2 Results

The rotation is applied - along with a longitudinal shift - between undulator modules

each around a gain length long. In order to alter mode competition to select for a LG01

mode, the shift pairs are chosen so that ∆Ψ1 = 2π. The setup utilizes three alternating

pairs of shifts, the longitudinal shifts, ∆θ = π/2, π and 3π/2 and the corresponding

rotational shifts ∆φr = 3π/2, π and π/2 respectively. These sections are repeated until

the radiation reached saturation.

The relative electron/radiation phase change for the Gaussian and ` = −1 modes

57



Chapter 5. Investigating OAM Radiation Start-up from SASE

from these shifts are non-integer multiples of 2π. It can be seen from Figure. 5.1 that the

gain in these modes has been disrupted. Suppressing the competing transverse modes

means the LG0,1 mode dominates the interaction. This causes the LG0,1 mode to grow

over an order of magnitude above the Gaussian mode. Also included in Figure. 5.1 is

the bunching factor for the different helical modes which is defined as [77]

b` = 〈exp(iθj − i`φ)〉, (5.4)

where the brackets indicate the ensemble average over the whole electron beam. The b1

factor has exponential growth as the electrons propagate through the undulator. The

electrons are bunched in a helical distribution which translates to a helical distribution

in the radiation the electrons emit. This phase distribution is plotted in Figure. 5.2 at

a point close to saturation. The intensity of the radiation is also included in the figure

displaying the ring structure typical of helically phased beams.

Figure 5.3 compares growth in the LG0,0 and LG0,1 modes with and without the

phase shifts introduced. The figure shows how the LG0,1 mode increases when the

LG0,0 mode is reduced. This demonstrates that the OAM operation is not solely from

a reduction in the power in the Gaussian mode but an increase in power ` = 1 mode.

The suppression of the interaction of the Gaussian modes has induced exponential

interaction with the higher-order transverse modes. Importantly, the final power of the

FEL is similar regardless of the dominant mode.

5.4 Issues with Rotating an Electron Beam

The simulations which have been presented used the point transform given by equa-

tion (5.3). A beamline that will rotate an electron beam through an arbitrary angle

was developed with collaborators and presented in [78]. Although the required rota-

tion was achieved, the method requires several skew quadrupole magnets with strong

fields and the total length of the rotation beamline, approximately 5 m, is significant.

Ultimately, it was found that the effect of the beamline on the longitudinal phase (z)

of the electrons had the effect of washing out all bunching in the beam. Variations in
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Figure 5.1: Power decomposition into Laguerre-Gaussian modes (top) and heli-
cal micro-bunching factor (bottom) when the phase shifts ∆θ = π, ∆φr = π and
∆θ = 3π/2, ∆φr = π/2 are imposed between undulator modules. This results in the
most power being contained in the LG0,1 mode.

the transverse components of momentum change the z component of momentum pz.

Since the electrons will have different transverse momentum, depending on their dis-

tance from the beam radius, this causes a different longitudinal momentum variation

for different electrons and leads to a debunching of the electron beam.

The debunching of the electrons is likely to be the outcome for any method used to

rotate the electron beam as the transverse displacement of the electrons, when rotated,

is dependent on the distance from the centre of the electron beam. As the radius of

the electron beam is many orders of magnitude greater than the radiation wavelength,

the variation in longitudinal position resulting from a rotation will be significant in

the scale of the radiation. It may still be possible to reduce the effect of debunching

59



Chapter 5. Investigating OAM Radiation Start-up from SASE

by compensating for the transverse variation in longitudinal momentum; however, this

wasn’t achieved in this work.

Figure 5.2: Phase (left) and intensity (right) at z = 55.25m when the phase shifts
∆θ = π, ∆φr = π and ∆θ = 3π/2, ∆φr = π/2 are imposed between undulator
modules.

Figure 5.3: Comparison of the power growth in the LG00 and LG01 with and without
phase shift introduced between undulator modules.
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Poincaré Beam Generation

The higher-order transverse modes are examples of light which is spatially structured

in both intensity and phase. Superimposing two of these modes with orthogonal po-

larisation will produce beams which will have an additional spatial structure in the

polarisation. Polarisation is important when considering light’s interaction with mat-

ter. The majority of past research has concentrated on light with polarisation which

does not vary with transverse spatial coordinate, such as linear, elliptical or circular po-

larisation. However, as research has progressed, there has been an increase in the need

for the generation of custom light fields and there has been growing interest in vector, or

Fully Structured Light (FSL), beams with spatially-varying polarisation states [79–81].

As discussed in Chapter 4, the higher harmonics of the FEL radiation are well described

by the LG or HG modes - the work presented in this chapter investigates exploiting

the structure of harmonic FEL radiation to generate light which is also structured in

polarisation.

6.1 Motivation

Polarisation can be structured in different polarisation distributions. The different dis-

tributions give the beams additional, beneficial properties which are useful in a number

of applications. For example, beams with radially orientated linear polarisation can be

focused more tightly than those with spatially homogeneous linear polarisation, with
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applications in laser machining, optical nano-probing, and nano-lithography [79,82,83].

Beams with transversely structured polarisation have also been shown to propagate

more stably in self-focussing nonlinear media [84]. In general, the ability to control

both the intensity and the polarisation of FSL beams may provide a useful method for

applications in material processing [85], microscopy [86], and in atomic state prepara-

tion, manipulation and detection [87,88].

The generation of FSL beams commonly relies upon methods that use external

conversion optics to superimpose orthogonally-polarised transverse modes, including

interferometric techniques [89, 90]. While earlier works have produced OAM vortex

beams in the x-ray [91,92], there are, as yet, insufficient optical methods to superimpose

OAM beams to generate the Poincaré x-ray beams described here. Generation of a class

of FLS beams called cylindrical vector beams has been demonstrated in the ultraviolet

using higher harmonic generation [93] and vector beams from synchrotron light sources

have been demonstrated using crossed helical undulators and band-pass filter which

filters out the second harmonic radiation [94].

Generation of FSL in the X-ray using Free Electron Lasers is predicted to open up

new unexplored areas of atomic and molecular science. One such area is in the field

of mirror image chiral molecules, either left or right handed, also called enantiomers.

When subjected to FSL, a discriminatory optical force in opposite directions can result

for each enantiomer [95].

6.2 Structured Light

Before a method for producing FSL at modern FEL facilities is presented, background

material detailing the form of these beams is needed. To start, consider what happens

when Laguerre-Gaussian modes are combined.
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6.2.1 The Scalar Combination of Laguerre-Gaussian Modes

The superposition of two LG beams with equal amplitude, ε, the same polarisation

vector ê can be expressed as

E = ε(LG0,`1 + LG0,`2)ê. (6.1)

The structured phase profile of the different LG beams means the transverse intensity

profile sees areas of constructive and destructive interference. An interesting case arises

when the two beams have azimuthal mode numbers with equal magnitude and opposite

sign, `1 = −`2. The phase profiles then are mirror images of each other; changing in

opposite azimuthal directions. The intensity of the combined field is plotted in Figure

6.1; the result is an intensity profile structured in a petal pattern where the number of

petals is 2|`1| = 2|`2| [96, 97]. These patterns can be used to quantify the ` of a beam

by interfering it with itself reflected in a mirror.

The interference of two transverse modes with the same polarisation can generate a

new structure in the intensity and phase of the radiation, but the polarisation remains

constant across the beam. In order to structure the polarisation, transverse modes with

different polarisation must be superimposed.

Figure 6.1: Scalar combination of two Laguerre-Gaussian beams with ±` for (left to
right) |`| = 1, 2, 3
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6.2.2 The Vector Combination of Laguerre-Gaussian Modes

In the simplest form, FSL beams can be described by a vector superposition of two

orthogonally polarised spatial eigenmodes

E(r,φ) = E1(r,φ)ê1 + eiβE2(r,φ)ê2, (6.2)

where β is the phase between the two modes and ê1 and ê2 are orthogonal polarisation

vectors.

For cylindrically symmetric beams, the LG set of tansverse modes and circular

polarisation basis is adopted, where ê1 = êL = (êx + iêy)/
√

2 and ê2 = êR = (êx −
iêy)/

√
2 correspond to left and right handed circular polarisation vectors, respectively.

The resultant spatial distribution of the polarisation is controlled by the superposition

of the modes

E1(r,φ) = εLLGpL,`L ,

E2(r,φ) = εRLGpR,`R , (6.3)

where εL and εR are the field mode amplitudes [47]. If either E1 or E2 is zero, then the

resultant beam is an LG mode with spatially uniform circular polarisation. However, if

E1 or E2 represent different LG modes, the resultant beam will have spatially variant

states of polarisation. Two classes of light are considered in this work - cylindrical

vector beams and full Poincaré beams.

Cylindrical Vector Beams

If the two modes have equal amplitudes and the same OAM (`L = `R), the resultant

beam will have spatially uniform linear polarisation. If they have equal amplitudes and

equal but opposite OAM (`L = −`R), however, the resultant Cylindrical Vector (CV)

beam [79, 81] will have an azimuthally varying linear polarisation distribution. The

phase difference β determines the distribution. For β = 0, π, π/2, the CV beam will

have a radial, azimuthal or spiral distribution respectively.
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Full Poincaré Beams

If the two modes have different magnitudes of OAM, the resultant ‘full Poincaré’ beam

will carry a net OAM and the polarisation will vary in both the azimuthal and radial co-

ordinates and may contain all states of polarisation: linear; elliptical; and circular [80].

Typical examples are the so-called ‘lemon’ and ‘star’ beams [98].

Ideal LG beams, described by equation 3.14, are combined computationally and

plotted in Figure 6.2. Examples of both CV and Full Poincaré beam are included.

The polarisation ellipse is plotted in order to map the polarisation distribution of the

different beams. Further detail on the mapping of polarisation is provided in Section.

6.2.3.

The examples above described FSL in terms of the LG modes. But, of course, the

LG can be transformed into HG modes and vice versa. For beams with Cartesian

symmetry, the profiles may be better expressed as HG modes [99] and with linear

polarisation vectors ê1 = êx, ê2 = êy.

6.2.3 Mapping Polarisation

In order to understand the polarisation structure in the beam, there needs to be a

method for mapping the polarisation across the beam. By plotting a polarisation

ellipse, the state of polarisation can be plotted at each point on the field. A polarisation

ellipse provides a method to visualise the state of polarisation, however, the ellipticity

and the orientation of the ellipse are not easily measurable. The Stokes parameters

are observables that can be used to define the polarisation of field and from them, the

polarisation ellipse can be created.
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Figure 6.2: The vector combination of two spatial eigenmodes produces different po-
larisation distributions for different mode combinations. The polarisation distributions
are visualised by plotting the polarisation ellipse on top of the intensity profile.
Top: Cylindrical vector beams are produced by the superposition of beams where
`L = 1, `R = −1. The phase β = 0, π, π/2 between the two beams changes the dis-
tribution to either (left to right) radial, azimuthal or spiral respectively. Bottom: Full
Poincaré beams with the distributions (left to right) ‘lemon’ and ‘star’ where, respec-
tively, `L = 0, `R = 1 and `L = 1, `R = 0.

The Stokes parameters can be directly measured from a field as

S0 = |Ex|2 + |Ey|2 = |E45|2 + |E135|2 = |ER|2 + |EL|2,

S1 = |Ex|2 − |Ey|2 = 2 Re(E∗45E135) = 2 Re(E∗REL),

S2 = 2 Re(E∗xEy) = |E45|2 − |E135|2 = 2 Im(E∗REL),

S3 = 2 Im(E∗xEy) = 2 Im(E∗45E135) = |ER|2 − |EL|2, (6.4)

where the subscripts denote the appropriate field components of: linear; linear ro-
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tated at angles 45◦ and 135◦; and circular polarised lights [100]. The linear horizon-

tal/vertical, diagonal linear, and circular polarisation are described by S1, S2, and S3,

respectively. The Stokes parameters can be normalised to the intensity Stokes param-

eter via

si =
Si
S0
, (6.5)

for i = 0, 1, 2, 3. If the light is fully polarised then s2
0 = s2

1 +s2
2 +s2

3 = 1. The normalised

Stokes parameters can be arranged into a column matrix, which gives the normalised

Stokes vector

s =
1

S0




S1

S2

S3


 =




s1

s2

s3


 . (6.6)

The normalised Stokes vector can be visualised as a unit vector that points to the

position on the Poincaré sphere where the polarisation lies. The Poincaré sphere is a

method to visualise light’s polarisation by plotting the normalised Stokes parameters

for polarisation in 3D space. Pure states of polarisation then lie on a sphere with radius

equal to 1, where the poles of the sphere represent right or left circular polarisation and

the equator represents linear polarisation states with varying orientation. Figure 6.3

provides a plot of the Poincaré sphere and a normalised Stokes vector with arbitrary

polarisation.

Figure 6.3: Poincaré sphere and normalised Stokes vector for an arbitrary polarisation.
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As well as being a useful visualisation tool in itself, the Poincaré sphere provided a

method for translating the Stokes parameters into angles which can be used to create a

polarisation ellipse. For a single polarisation at a point on the surface of the Poincaré

sphere, the nomalised Stokes parameters can be expressed in tems of the latitude angle,

2χ, and longitude angle, 2ψ as

s1 = cos(2χ) cos(2ψ),

s2 = cos(2χ) sin(2ψ),

s3 = sin(2χ). (6.7)

These equations can then be rearranged to find the ellipticity, −π/4 ≤ χ ≤ π/4, and

the orientation, 0 ≤ ψ ≤ π, of a polarisation ellipse [101],

χ =
1

2
sin−1(s3), (6.8)

ψ =
1

2
tan−1(

s2

s1
). (6.9)

Figure 6.4 shows how these values construct the ellipse which can then be plotted

at each point in the field map polarisation as in Figure 6.2. If the light is linearly

polarised, χ = 0, the polarisation ellipse is plotted as a straight line, whereas pure

circular polarisation produces a circle. The handedness of the polarisation is not dis-

played in the shape of the ellipse and so it is common to colour the ellipses to indicate

handedness.

6.3 Method of Generating Poincaré Beams in a FEL

The proposed method for generating Poincaré beams is simple; control of the polar-

isation in the transverse plane is obtained through the overlap of different coherent

transverse light distributions radiated from a bunched electron beam in two consec-

utive orthogonally polarised undulators. Different transverse profiles are obtained by

emitting at a higher harmonic in one or both of the undulators. This method enables

the generation of beams structured in their intensity, phase, and polarisation - so-called
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Figure 6.4: A polarisation ellipse defined in terms χ and ψ which are calculated using
the Stokes vectors.

Poincaré beams - at high powers with tunable wavelengths.

The radiation output from a FEL is typically a transverse Gaussian mode with

nearly full transverse coherence and a spatially homogeneous polarisation that is de-

termined by the magnetic undulator fields (planar, helical, or elliptical). A typical

X-ray FEL facility uses planar undulators to micro-bunch the electrons, which there-

fore generates linear polarised light. One method to enable polarisation control is

adding additional undulators placed downstream of the main planar undulator ampli-

fication section once micro-bunching has been established [102]. In Chapter 4, it was

shown that the higher-order transverse modes can be accessed by a similar afterburner

configuration by tuning the afterburner to a sub-harmonic of the electron bunching.

It follows that FSL can be generated in a FEL afterburner by combining the meth-

ods for polarisation control and transverse mode generation. The proposed method is

outlined in Figure 6.5. The electron beam is first sent through a long undulator section

which established bunching in the electron beam. The primary FEL radiation pulse

energy emitted in this section can also be strongly suppressed (but the electron beam

bunching preserved) by using an undulator with reverse tapering [4] and by electron

beam steering [103], so that only the radiation pulse generated in the afterburner is
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delivered to experiments.

Figure 6.5: Schematic of the method. A relativistic electron beam is initially bunched
using a reverse tapered undulator. This suppresses the generation of linearly polarised
radiation. A dipole kicker (or off-axis quadrupole lattice) then redirects the electron
beam into two Delta undulators tuned so that the electron bunching is at an harmonic
of their fundamental resonant wavelength. The Delta undulators can then be adjusted
for different polarisations and tuning to generate light with transversely inhomogeneous
polarisation - Fully Structured Light

Proposed for the afterburner extension is then two consecutive orthogonally po-

larised afterburners, individually adjustable in their strength, polarisation, and relative

phase. The two radiation pulses emitted from each of the two undulators overlap

spatially and temporally. Previous versions of this crossed undulator setup have ex-

perimentally demonstrated polarisation control at the fundamental [104, 105]. In the

method described here, the electrons emit higher-order transverse modes at the second

harmonic in one or both of the afterburners. This results in an FSL beam with an

output field described by the superposition of modes, as in equation 6.2. The phase

difference, β, between the two modes can also be controlled by using a small magnetic

phase-shifter between the two afterburners. This also allows phase-shifts due to the

slippage between modules to be compensated, or the polarisation pattern to be mod-
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ified or rotated. Such a setup can be constructed from two Delta-type (or Apple-II)

afterburner undulators [106,107], provided that they have sufficient adjustment of their

K parameters to access harmonics - extending the practicality of these undulators to

enable transverse polarisation control.

6.4 Simulations

Puffin simulations of the proposed method used the parameters, given in Table 6.1,

which are based on the parameters for the LCLS-II project at SLAC [32]. These pa-

rameters are used to highlight the feasibility of implementing the setup at existing FEL

facilities. The wavelength simulated is in the soft X-ray region of the frequency spec-

trum, though this not the limit of wavelengths possible with the scheme. It may be

possible to utilise this method to generate beams structured in polarisation in wave-

lengths as short as hard X-rays, but this is left for future work.

Table 6.1: Parameters based on LCLSII

Parameter Value

Bunching Stage
Electron beam energy [GeV] 4
Peak current, I0 [kA] 1
rms energy spread σγ/γ 1.25× 10−4

Normalised emittance [mm-mrad] 0.45
rms beam size σx [µm] 26
Undulator period λu[cm] 3.9
Resonant wavelength λr [nm] 1.25
Modulation wavelength λm[nm] 40.0
Modulation amplitude γm/γ0 1.2× 10−3

rms undulator parameter au 1.72
ρ parameter 1.2× 10−3

Afterburner Delta 1 Delta 2
Number of periods 20 20
Cylindrical vector λr [nm] 2.5 2.5
Poincare vector λr [nm] 2.5 1.25

Time-independent (steady-state) simulations were used to demonstrate the method.

This mode does not model the full temporal duration of the electron beam. However,
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as demonstrated in other crossed undulator methods, temporal pulse effects should not

significantly affect the results, as the bunching factor on entering the afterburners is

orders of magnitude larger than any beam shot-noise, and the relative slippage between

electrons and radiation pulses is less than the coherence length [108].

6.4.1 Reverse Tapered Undulator

The electrons are first pre-bunched in a reverse tapered FEL section with λb = 1.25 nm.

Figure 6.6 plots the radiation power and bunching for an untapered undulator and

an undulator with a reverse taper introduced. From the figure, the growth rate of

the bunching is slightly inhibited when the reverse taper is introduced, but with the

advantage of a significant decrease in the power of the radiation. The crosses in the

figure mark the power when the bunching factor |b| = 0.45; this is the bunching achieved

before the electrons were extracted for input to the afterburner. Strong bunching can

be achieved using a reverse tapered undulator while reducing the FEL output power

to 10 MW, two orders of magnitude lower than without the undulator taper.

The process for pre-bunching electrons in a reverse tapered undulator has been de-

scribed previously [4]. The electron beam bunching process does not differ significantly

from the standard FEL process, with the exception of the reduced radiation power.

Steering the electron beam to further reduce the contribution from the background

power is not modelled [103], and the radiation generated in the FEL section is simply

removed in the second part of the simulation.

6.4.2 Afterburner

The pre-bunched beam then enters the afterburner Delta undulators, which can be

adjusted for linear or circular polarisation and tuned so that the electron bunching

is at either the fundamental or second harmonic. FSL beams with three different

polarisation distributions that are generated using this setup are now presented.
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Figure 6.6: Comparison of the the power and bunching of undulator with and without
a reverse taper. The blue crosses indicate the power at which the bunching factor
|b| = 0.45

FEL Generated Vector Beams

In the first example, a pair of cross-polarised planar afterburners is simulated. They

are both tuned to a fundamental resonance of λr = 2.5 nm, so that the electron beam

is bunched and radiates at the second harmonic. In the far field, the setup generates

the field

E(r,φ) = ε1HG1,0êx + eiβε2HG0,1êy. (6.10)

With ε1 = ε2, this superposition is seen in Figure. 6.7 to create an annular intensity

profile with a radial polarisation distribution for β = 0.

The normalised Stokes vector capturing the spatial polarisation for these crossed

planar harmonic undulators can be written as

s =




cos(2φ)

cos(β) sin(2φ)

sin(β) sin(2φ)


 . (6.11)
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Note that for β 6= 0, the polarisation distribution can also contain circular components.

Similarly, with crossed helical undulators tuned so that the bunching is at the second

harmonic, one obtains `R = −1 and `L = 1. If the undulators are the same length and

the bunching factor does not change significantly between them, the modes have equal

amplitude, εL = εR. The Stokes vector obtained is then

s =




cos(β − 2φ)

sin(β − 2φ)

0


 . (6.12)

The S3 parameter vanishes, so the beam has only linear polarisation states which vary

with φ. The generated vector ‘vortex beam’ is also shown in Figure 6.7.

In order for this description to accurately model the final FSL output, the radiation

emitted in each undulator should be well-described by a pure mode. In Ref. [109], it was

shown that with sufficiently large K and periods Nu in a helical afterburner, coherent

radiation from a pre-bunched electron beam is well approximated by an LG mode in

the limit that the electron beam radius satisfies σx > γz
√
Nu/k, such that the emission

angles are dominated by the electron beam and not the undulator emission. The

undulators must also be kept relatively short to reduce the diffraction of the radiation

so that the transverse sizes of the modes do not significantly differ.

FEL Generated Full Poincaré Beams

The second class of light with spatially inhomogeneous polarisation considered is full

Poincaré beams created from a superposition of LG0,±1 and LG0,0 (Gaussian) radiation

with orthogonal circular polarisations. From equation (6.2.2), the Stokes vector then

becomes

s =




2
√

2rw0

2r2+w2
0

cos(β − φ)

2
√

2rw0

2r2+w2
0

sin(β − φ)

±2r2−w2
0

2r2+w2
0


 , (6.13)

where the + and − signs correspond to (`L, `R) = (1, 0) and (`L, `R) = (0,−1), re-

spectively. On-axis, r = 0, the polarisation is purely circular while the at the radius
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Figure 6.7: Simulation of cylindrical vector polarisation. The electrons are bunched at
the second harmonic of the Delta undulators to give orthogonal linear (top) and circular
(bottom) polarisation. The radiation polarisation emitted from each Delta undulator
is plotted schematically on the (left) two plots and the combined field simulated from
both undulators on the (right) plot. Red, blue and white lines correspond to linear,
right-circular and left-circular polarisation respectively.
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Figure 6.8: Poincaré polarisation distribution downstream of the afterburner. The
Delta undulators are set to have orthogonal circular polarisations. The electrons are
bunched at the second harmonic of the first undulator and the fundamental of the
second undulator. The radiation emitted in each Delta undulator is plotted (left) along
with the combined field from both undulators (right).

r = w0/
√

2, the polarisation is purely linear, with orientation depending on φ. Fig-

ure 6.8 shows the ‘star’ Poincaré beam output generated in the (`L, `R) = (1, 0) case.

To achieve this combination, the second undulator is tuned so that its fundamental res-

onance matches the bunching wavelength at λr = 1.25 nm and the radiation emitted

is Gaussian. The first undulator is tuned to λr = 2.5 nm, radiating at the second har-

monic as before. The electrons radiate with higher power at the fundamental than at

the second harmonic. To compensate and balance the powers between the two radiation

beams, the Delta undulator emitting at the fundamental is detuned from resonance to

reduce its power output. Detuning the undulator will affect the mode size and therefore

polarisation structure. Specific undulator detuning is a topic for future studies and will

depend on the specific application.
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Unavailable polarisation distributions

Due to the relationship between the polarisation and the transverse modes, only certain

distributions are available with this setup. Table 4.1 summarised the possible transverse

and polarisation combinations. This means that the spiral, azimuthal and ‘lemon’

polarisation distributions are not enabled through the setup. Delaying the y-polarised

field Ey with optics would allow transformation of the beams presented into these

distributions. However, since this requires optics, this is not included.

6.5 Future Possibilities of FEL Generated FSL

The three x-ray polarisation topologies demonstrated here are not the full range of

pulses available with the two Delta undulator arrangement. In addition to varying

the polarisation and undulator resonance, other factors can change the polarisation

distribution. Both the phase and power ratio between the different transverse modes

can be adjusted which, for example, could be used to create elliptical vector beams.

Slightly detuning the resonance of one undulator will push the radiation further off-axis,

which can be used to control the mode overlap [104]. Finally, radiating at even higher

harmonics of a helical undulator will generate the higher-order LG modes producing

yet more variants, though the power drops with increasing harmonic number [109].

This method can generate Poincaré beams at any operational wavelength of a FEL

facility. The advantage of the afterburner configuration is that it is both simple and

cost effective to implement as the afterburners can be added to existing FEL facilities,

or may already exist as the last couple undulator sections. Furthermore, the method

could be combined with other methods. For example, consideration of temporal or short

pulse effects can be envisaged that alter the FSL in the temporal domain (e.g., [110])

adding a further dimension for potential experimental exploitation.
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Alternating Pulse Properties

This chapter describes a method developed which will create a train of radiation pulses

where the properties of the pulses alternate. As discussed in Section 3.3, typical OAM

generation methods use static devices which transform the phase of the radiation. In

addition to limiting the wavelength and intensity of radiation with OAM, this means it

is difficult to alternate the OAM of a radiation pulse at ultra-fast timescales using con-

version optics. This problem also arises for modulation of the polarisation of radiation

as conventional polarising elements are quasi-static devices at ultra-fast timescales. On

route to developing a method for modulating the OAM of radiation, a simple method

for modulating the polarisation was found. This work uses a technique for generating

trains of pulses in a FEL called mode-locking. A description of mode-locking in a FEL

is provided before presenting the scheme for alternating the pulses’ polarisation. A dis-

cussion on how this can then be adapted to modulate the handedness of OAM carried

by each pulse is included at the end of this chapter along with promising first results.

7.1 Mode-locking

7.1.1 Description of Mode-Locking in a FEL

Trains of short pulses can be created in a FEL through a process called mode-locking,

analogous with mode-locking in a conventional cavity laser [49]. The mode-locked FEL

concept was first proposed by Brian McNeil and Neil Thompson in their initial paper
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on the mode-locked FEL amplifier [5]. In collaboration with Dave Dunning, the authors

subsequently adapted the work into an afterburner configuration [111]. Mode-locking

in FELs has not been demonstrated experimentally, although plans to test the method

at FEL facilities should be implemented in the near future.

Mode-locking is a method to obtain trains of ultra-short radiation pulses by syn-

thesising a set of axial radiation modes which can be ‘locked’ by the introduction of

an additional modulation. In a FEL, frequency modes can be generated, without a

cavity, by separating short undulator modules with chicanes which add extra slippage

between the electrons and the radiation field by delaying the electrons. Analysis in [5]

showed this additional slippage affects the frequency spectrum of the radiation. The

spontaneous emission for a series of undulator and chicane modules has a spectrum

described by a sinc2 function envelope multiplied by an interference term. The width

of the sinc2 function defines the bandwidth, which is equal to that of an individual

undulator module (∆ωFWHM ' 1/Nw). Interference of radiation radiated in multiple

undulator sections means that only wavelengths of radiation that slip ahead of elec-

trons by an integer number of wavelengths between undulator modules survive. The

sinc2 function is then modulated by a comb of discrete frequency modes centred on

the resonant frequency, ωr. For a combined slippage, s = δ + l, from the slippage in

one undulator module, l, plus the slippage in the subsequent chicane, δ, the frequency

mode spacing is

∆ωs =
2πc

s
, (7.1)

equivalently,

∆ωs =
2π

Ts
, (7.2)

where Ts = s/c is the time taken for radiation to travel the slippage length.

The slippage enhancement factor, Se, is defined as the ratio of the total slippage

between undulator modules and the slippage in one undulator module,

Se =
s

l
. (7.3)
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It is found that the number of modes, N0, which fit into the frequency bandwidth is

N0 = 2Se − 1. (7.4)

From the equations above, to increase the number of frequency modes there are two

options. Either increase the bandwidth by decreasing l while keeping s constant or -

for a fixed undulator length - decrease the mode spacing by increasing δ. For Se = 1,

the spectrum is the normal undulator spectrum for the total undulator length and not

an individual undulator module.

The synthesised frequency comb transforms into a temporal train of radiation in-

tensity spikes. However, the frequency modes have no fixed phase and therefore the

pulse separation and duration are irregular. In order to fix the phase relationship be-

tween the different frequency modes, an interaction modulation is introduced with the

modulation frequency, ∆ωm, equal to the mode spacing frequency (∆ωm = ∆ωs). The

required modulation can be applied to the electron beam as either a current [112] or

energy [5] modulation. The result of phase-locking the frequency modes is that they

will constructively interfere at defined times given by

t = nTs, (7.5)

where n is an integer. In addition to even spacing of pulses in the temporal pulse train,

the pulses also have equal duration. The full width at the base of each pulse is 2Ts/N .

The FWHM pulse duration, τp, is then approximately

τp ≈ Ts/N0. (7.6)

7.1.2 The Mode-locked Afterburner

Mode-locking in a FEL was first devised as a mode-locked amplifier setup where the

additional slippage is applied between all sections of undulator. Implementation of

this scheme would involve large changes to existing facilities in order to insert many

chicanes between short undulator modules. The mode-locked afterburner was proposed
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as a solution to generating the same short pulse radiation trains as the mode-locked

amplifier but using a method that can be easily implemented at existing accelerator

facilities.

The mode-locked afterburner can be split into three sections, the first is a modulator

that imposes a sinusoidal energy modulation on the electron beam. Second, an amplifier

section that bunches the electrons; this section makes use of the standard undulator

lines available at user facilities. A micro-bunching comb develops in the amplifier due

to the energy modulation on the electron beam. Close to saturation, the electrons enter

the final section - the afterburner. Here, short undulator modules separated by chicane

delays map the micro-bunching comb onto the temporal structure of the radiation.

Each of these three sections is now discussed.

Modulation

A sinusoidal modulation is imposed on an electron beam through interaction in a un-

dulator with a resonant laser field. This modulation takes the form

γ(t) = γ0 + γm cos(ωmt), (7.7)

where γ0 is the mean energy, γm is the modulation amplitude and ωm the modulation

frequency. The modulation period, λm = ωm/2πc, is set to be an integer number of

the FELs resonant wavelength. Since it is much longer than the FEL radiation, HHG

sources [113] could be used as the modulating seed laser for mode-locking at soft and

hard x-ray wavelengths.

Amplifier Stage

The modulated electron beam enters a long undulator where the FEL interaction

bunches the electrons together. The energy modulation on the electron beam means

that there are large energy gradients in the electron beam. If the gradient, ∆γ, is large

enough, the FEL interaction is suppressed and the electrons won’t micro-bunch. Near

the extrema of the energy modulation, the energy gradient is much smaller and micro-
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bunching is expected. In fact, micro-bunching develops significantly more strongly at

the minima of the modulation than the maxima as discussed in [111, 114]. Only sec-

tions of the electron beam close to the minima of the modulation micro-bunch together

creating a periodic bunching structure in the electron beam. Increasing the amplitude

of the energy modulation decreases the length of the bunched sections. Matching this

length to the length of the slippage from the individual modules in the afterburner

minimises the duration of the radiation pulses without significantly suppressing the

growth rate.

The Afterburner

With the micro-bunching comb established, the electron beam enters the ‘afterburner’

which produces the radiation pulse train. Although here and in the remainder of this

chapter this section is referred to as an ‘afterburner’ (following the language used in

Ref. [111]), it is noted that this section is longer than undulator sections commonly

deemed afterburners such as the one used in Chapter 6. Although the afterburner

section used to mode-lock the radiation is shorter than the preceding amplifier section,

the majority of the FEL amplification takes place in the afterburner and therefore is

not a true afterburner.

In the mode-locked afterburner, chicanes - placed between undulator modules -

maintain the overlap between sections of high micro-bunching and the developing radi-

ation train and the radiation spikes are therefore amplified. The radiation pulse train

generated in the afterburner dominates the final radiation structure; this is because the

radiation growth is suppressed in the amplifying section - due to the energy modulation

- and exponential in the afterburner as the rephasing of the electron beam by chicanes

maintains the interaction between sections of high beam quality. Additionally, the

chicanes have a dispersive effect on the electrons which increases the electron beam’s

micro-bunching. This is the ‘optical klystron’ effect [115].
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7.2 Polarisation Modulation

7.2.1 Motivation

Current experiments can demand greater spatial [83] and/or temporal [116] control and

flexibility of the polarisation than the generation of purely circular, elliptical or linearly

polarised light. In particular, fast temporal switching of light’s polarisation is desirable

for techniques such as polarisation modulation spectroscopy, notably, X-ray magnetic

circular dichroism (XMCD) [117–119] and may offer control over material excitations

including lattice vibrations [120], charge and spin [121,122].

Ultra-fast switching of the polarisation properties of light is a non-trivial task as

conventional polarising elements are quasi-static devices at ultra-fast timescales. While

some conventional polarising elements can be controlled by electric currents [123], these

are limited by their electronic components to gigahertz switching speeds and also see

large energy losses.

In the drive to further decrease switching rates, recent research using plasmonic

technologies has further decreased linear polarisation switching to 800fs [124] and cir-

cular polarisation switching to pico-second timescales [125]. However, these techniques

are based on the active control of polarising elements and operate primarily at visible

wavelengths or longer. As wavelengths shorten beyond the ultraviolet, polarising optics

are more limited with modulation timescales being determined primarily by the light

generation method.

In electron accelerator based light sources, which can generate light into the hard X-

ray, it is the motion of the radiating electrons propagating through magnetic undulators

that determines the polarisation of the photon beam. For example, circular polarisa-

tion modulation with a ∼ 2ns switching rate has been demonstrated in a synchrotron

by controlling electron bunch orbits through twin undulators [126]. Methods of gen-

erating X-rays with temporally varying polarisation from the output of FELs include

100fs switching using a chirped electron beam [127]. Femto-second isolated pulses with

different polarisation can be generated with the fresh slice method described in [128].

It can be envisaged that significant improvement on temporal polarisation switching
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timescales to those comparable to atomic processes will enable experimental investiga-

tion of these processes. In XMCD, for example, the polarisation switching rate of X-rays

limits the observable processes to those occurring slower than the switching cycle [119].

In this thesis, a method is described which could improve the polarisation switching

rate of both linear and circularly polarised high brightness X-rays towards the attosec-

ond timescale regime and comparable to the period of a ground state electron in the

Bohr hydrogen atom, the atomic unit of time ≈ 24as. We speculate that pulses of such

timescales could be used to develop novel methods, perhaps similar to XMCD, that

can improve temporal resolutions to below that of the exchange interaction responsible

for magnetic order [129].

7.3 Method for Generating Pulse Trains with Alternating

Polarisation

Section 7.1 details a FEL technique that produces a train of radiation spikes. In the fol-

lowing section, a method to produce a pulse train where the polarisation of each pulse

alternates is presented. Figure 7.1 shows a schematic overview of the technique. The

initial two stages of the setup - the modulator and amplifier - are the same as for the

mode-locked amplifier and are used to generate a micro-bunching comb. The electron

bunching structure is then mapped to an alternating polarised pulse train by alter-

nating orthogonal polarised undulators - the afterburner section. Both of the different

polarised radiation fields emitted in the afterburner are mode-locked and therefore are

emitted in pulse trains. The two pulse trains are shifted temporally with respect to

each other so that the combined pulse train consists of alternating polarised pulses.

The polarisation of the pulses generated depend on the undulator modules which make

up the afterburner. They can be either planar or helical undulators to generate, respec-

tively, linear or circular polarisation. However, the polarisation emitted in the different

undulators must be orthogonal to each other.

Figure 7.2 shows a schematic of just the afterburner section which the electrons enter

close to saturation after a micro-bunching comb structure is developed in the electron
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Figure 7.1: Schematic layout to generate pulse trains with alternating pulse properties.
The method uses three sections: an electron energy modulator, long FEL amplifier
and an afterburner section consisting of short undulator sections which alternate in
polarisation separated by electron chicane delays.

beam. The chicanes placed between undulator modules delay the high micro-bunched

regions of the electron beam to ensure they overlap with the developing pulse train

in the undulator radiating corresponding polarised light - amplifying the short pulses

of radiation. Radiation will not interact with electrons in an orthogonally polarised

undulator and experience free propagation. The undulators then effectively act like

additional chicane modules to the orthogonally polarised radiation.

Figure 7.2: Schematic layout of a section of afterburner used to generate a radiation
pulse train with alternating x and y linear polarisation. In each undulator, those regions
of the electron beam with modulated micro-bunching emit coherently. Chicanes delay
the electron beam between undulator modules so that those sections of high micro-
bunching overlap with the appropriately polarised pulse for the undulator in which
they are propagating.

The combined slippage with respect to the radiation wavefront from the chicanes

plus undulators emitting the same polarisation is the modulation period λm. This

maintains the overlap between the radiation pulse structure and electron beam which

mode-locks the radiation. The temporal separation of pulses of radiation with the same
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polarisation is then Ts = λm/c and the relative times of the pulses are

t1 = nTs. (7.8)

The orthogonally polarised pulses will then have pulse peaks at relative times

t2 = t0 + t1 + ∆T, (7.9)

where ∆T = λm/2c is the time for the radiation to travel half the modulation period

through the bunch. t0 is a constant which may shift the radiation pulse trains rela-

tive to each other. This relative shift is controlled by adjusting the slippage between

consecutive orthogonally polarised undulators to be

s12 = λm/2 + ct0 (7.10)

and

s21 = λm/2− ct0. (7.11)

When t0 = 0, there is equal slippage between undulator modules and therefore equal

spacing between all pulses.

7.4 Simulations

Simulations of alternating pulse generation were carried out in Puffin with the same

LCLS-II type parameters listed in Table. 6.1. The method was modelled, first, with the

plane wave approximation (1D simulations) to save computation time, then repeated

for full 3D simulations.

7.4.1 Modulator

An electron beam, with a Gaussian current profile, is first prepared with a sinusoidal en-

ergy modulation of period λm = 40 nm = 32λr. This is applied via the initial conditions

of the beam before any FEL interaction is simulated. Start to end simulations with full
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modelling of the energy modulation is left for future work. However, pre-modulation

at longer wavelengths is relatively straightforward and similar modulation as presented

here for a non-ideal electron beam has previously been demonstrated [130,131].

7.4.2 Amplifier

As with the mode-locked afterburner of [111], the electron micro-bunching comb is then

developed in a SASE FEL ‘pre-amplifier’. The simulation modelled an x-polarised un-

dulator similar to that found at most current FEL facilities. The power growth in this

pre-amplifier stage is inhibited by the electron beam energy modulation. On subse-

quent injection into the afterburner, the power growth in the pulsed regions becomes

exponential due to their overlap with the high quality electron beam regions being main-

tained. There is therefore much greater radiation power generated in the afterburner

than in the pre-amplifier. The point at which the electron beam is extracted from the

pre-amplifier is chosen so that the radiation is two orders of magnitude smaller than

the final saturated radiation power in the following afterburner. For 1D simulations,

the electrons are extracted after 550 undulator periods and the electrons are extracted

after 900 undulator periods for the full 3D simulations.

7.4.3 Alternate Linear Polarisation Afterburner

The method is demonstrated, first, using an afterburner with alternating x and y pla-

nar undulators that will emit correspondingly linearly polarised light. Both the x and

orthogonal y polarised undulator modules in the afterburner are 8 periods long, each

separated by a chicane that delays the electrons by a further 8 resonant wavelengths.

The total electron delay is then, s = 16λr = λm/2 between successive undulator mod-

ules and λm between undulators of the same polarisation. This maintains overlap

between the electron micro-bunching comb and the alternating orthogonally polarised

radiation.
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1D results

1D simulations are used to track the overlap between the electron beam bunching and

the different radiation fields. Figure. 7.3 plots a window of radiation and electron

beam at different positions in the afterburner. The top panel shows the electrons and

field before the electron beam enters the afterburner. Electrons at the minima of the

modulation have micro-bunched in the amplifier stage and there is a small amount of

x-polarised radiation from the amplifier. The remaining panels are plots from different

positions through the amplifier. The second and third panels are, respectively, plots

from the middle y and x polarised undulators and the last two plots are the last

two undulator modules. In the different undulator modules, the micro-bunched comb

overlaps with the corresponding radiation spike. The micro-bunching increases rapidly

and the radiation spikes are amplified.

3D results

The results from the 3D simulations are now presented. Figure. 7.4 shows a section

of the radiation power profiles and the spectrum of the x and y polarised fields after

36 afterburner undulator modules (16 of each polarisation). The additional slippage

between undulator modules leads to a frequency spectrum that is broader than typical

FEL output and discretized into frequency modes with mode spacing, ∆ωs, determined

by the time taken for the radiation to travel the total slippage length between the same

polarised undulators. The radiation pulse peaks arise from the constructive interference

between the frequency modes whose phase has been fixed by the modulation, ∆ωm =

∆ωs. This is the principle of mode-locking as described in [5, 49].

As the undulator modules have equal lengths, both the x and y polarised fields have

approximately the same pulse FWHM duration of τp ≈ 19 as and with peak powers of

Ppk ≈ 1 GW. The separation between each pulse is approximately 67 as corresponding

to a polarisation switching rate of 15 PHz. The radiation spikes with different po-

larisation do not interfere with each other due to their orthogonal polarisation. Each

pulse train has power fluctuations typical of SASE output. However, as both fields

are emitted by the same electron beam source, which sees only small changes between
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Figure 7.3: Plot of electron energy and radiation power vs time for a window of
radiation. Starting at the electrons’ entry into the undulator, panels from top to bottom
follow the evolution of the electron beam propagating through the afterburner. The
minima of the electron beam’s energy modulation maintains overlap with the radiation
spikes of the polarised field corresponding to the undulator they are in.

89



Chapter 7. Alternating Pulse Properties

Figure 7.4: Power vs relative time t for the x and y polarised fields (top) and the
corresponding spectra (bottom) after 36 undulator-chicane modules.

undulator modules, fluctuations in the power of one pulse train envelope should be

similar to its orthogonal counterpart.

A normalised Stokes parameter, s1 - defined by equations (6.4) and (6.5) - is used

to examine the degree of linear polarisation in the pulses. Values of s1 = ±1.0 then

indicate fully linear x or y polarisation, respectively. This Stokes parameter is plotted

as a function of time in Figure 7.5. From the figure, it is shown that the polarisation

is highly modulated, flipping between the two polarisation states. The high degree of

polarisation contrast is seen at the peak powers, |s1| ≈ 1.0. Across the full pulse train,

|s1| > 0.95 at the peak powers, demonstrating a high degree of polarisation modulation.
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Figure 7.5: The on-axis normalised Stokes parameter s1 as a function of relative
time t after 36 undulator-chicane modules. It is seen that s1 flips between positive
and negative values with extremes at |s1| ≈ 1.0, indicating high degree of polarisation
modulation.

7.4.4 Alternate Circular Polarisation Afterburner

Pulses with polarisation alternating between left and right hand circular polarisation

have also been modelled. The amplifier section, which pre-bunches the electrons using

SASE, remains an (x-polarised) planar undulator similar to that above. The afterburner

now consists of orthogonal left and right circularly polarised helical undulators.

Figure 7.6 shows the power profiles for the left-hand circular, LCP, and right-hand

circular, RCP, polarisation. The pulses now alternate between orthogonal circular po-

larisation with the same FWHM pulse duration τp and rate as the linearly polarised

case above. The Stokes parameter, s3, which gives the degree of circular polarisation is

plotted in Figure 7.7. The additional noise seen in this figure, compared to the linear

polarised case (Figure 7.5), is a numerical artifact of analysing the circular polarisa-

tion content of the field from the Puffin code which natively splits the field in linear

polarisation. Across the pulse peaks, there is a high degree of circular polarisation,

|s3| > 0.9. This is very promising as many ultra-fast polarisation switching techniques

cannot achieve full handedness reversal.
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Figure 7.6: Power Spectrum for left and right hand polarisation vs relative time at the
end an afterburner with alternating polarised helical undulator modules.

7.5 Future Adaptations

The simulation parameters used considered soft X-ray pulses similar to the LCLS-II,

however, this is by no means the limit of the wavelengths available with this setup.

Extrapolating from the simulations of a hard X-ray mode-locked afterburner as pre-

sented in [111], the same parameters adapted to generate alternating polarised pulses

here would generate pulse separation times of 5 as, approximately one fifth of the

atomic unit of time. Discussion of scaling the mode-locked afterburner to yet higher

photon energies provided in [111] should also apply to the methods described here.

Given the broad scaling of FEL wavelength operation, the method described will also

be applicable to longer wavelengths, again opening up new experimental opportunities.

As well as operating across a broad range of wavelengths, the method could be

adapted to meet other specific experimental requirements. The temporal shift between

pulse trains of orthogonal polarisations may be controlled via the chicane slippage

as defined in equations (7.10)-(7.11). This could be used to bring alternating pulses

close together followed by a longer time interval. The time duration of the different

pulse types may also be altered by the length of the different types of undulators to

generate pulse trains with a pulse of one polarisation followed by a shorter pulse with
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Figure 7.7: The on-axis normalised Stokes parameter s3 as a function of relative
time t after 36 undulator-chicane modules. It is seen that s3 flips between positive
and negative values with extremes at |s3| ≈ 1.0, indicating high degree of polarisation
modulation.

the orthogonal polarisation. However, it is noted that this will also result in different

pulse powers and bandwidths which would need further consideration.

7.6 Alternating OAM Pulse Trains

Future work will look at adapting the method presented in this chapter to produce

pulse trains where the handedness of the OAM in the pulse alternates. The method

for alternating the properties of pulses in a pulse train originated from the desire to

alternate the OAM by utilising OAM emission at the second harmonic. Alternating the

polarisation was studied first for two reasons. First, the simulations of the polarisation

modulation method could utilise the 1D mode in Puffin whereas simulations of OAM

pulses cannot. The second reason, alternating the polarisation requires a setup which

is closer to the original mode-locked afterburner than for alternating the OAM.

To adapt the method to modulate the handedness of OAM, the helical afterburner

undulators should be tuned so that the frequency of the electron beam bunching is at the

second harmonic of the undulators. The bunching established in the amplifier section

must be greater than for polarisation modulation as no additional FEL interaction

occurs in the afterburner.
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An important consideration to adapt the setup for OAM modulation is the fre-

quency spectrum of the OAM radiation. Mode-locking the radiation increases the

bandwidth to that of an individual undulator module. Equation (4.6) gave the width

of the frequency spectrum for the different harmonics. For a fixed bunching frequency,

the width of the spectrum decreases with increasing harmonic number, h. In each

afterburner tuned to a sub-harmonic of the electron bunching, the electrons now slip

behind the radiation field two wavelengths per undulator period which means that the

slippage enhancement factor, equation (7.3), and therefore the number of frequency

modes established, equation (7.4), is less than for the undulators tuned to radiate at

the fundamental wavelength with the same number of periods. This would suggest

that the undulator modules should be kept short in order to increase the width of the

spectrum and therefore the number of nodes. However, shorter undulators have greater

coupling to the fundamental azimuthal mode and pure OAM modes are only generated

for sufficiently large Nu - for further details see reference [67]. A solution is to increase

the energy modulation period and therefore decrease the frequency mode spacing. This

restricts the minimum pulse duration and switching rate of alternating OAM pulses.

Future work will fully develop the method to produce pulse trains. However, in-

cluded now is the result of an initial simulation where an electron beam with a micro-

bunching comb structure is sent through alternating handedness helical undulators.

The electron beam was first prepared with a sinusoidal modulation of period λm = 90

nm = 72λr and sent through a long amplifier section which established a maximum

bunching factor |b| ≈ 0.6 at the minima of the modulation. The radiation emitted in

the amplifier was removed and the electron beam, now with a comb of micro-bunching,

was sent through a short afterburner consisting of 6 helical undulators (3 of each hand-

edness) each 18 periods long.

Figure 7.8 shows the power of the radiation, decomposed into a set of Laguerre-

Gaussian modes. The pulses are each 150as in duration. This shows the handedness of

OAM can be modulated through an adaption of the method used to flip the handedness

of circular polarisation.

Future studies will look at refining this method and consider the minimum pulse
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Figure 7.8: Power vs relative time t discomposed into azimuthal modes.

duration and maximum switching rate enabled in the scheme. It is also important that

the radiation emitted in the amplifier section is removed from the final radiation pulse

train. It may be possible to use reverse tapering and electron steering as was discussed

in Chapter 6. However, this has not been demonstrated for an electron beam with an

energy modulation and so requires further examination.
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Conclusion

This thesis presented three different schemes to diversify FEL output with a focus on

the generation of higher-order transverse modes which carry OAM. Radiation emitted

from an electron beam propagating through an undulator will carry OAM either if the

electrons are bunched into a helix or when electrons are radiating at a higher harmonic

in a helical undulator. This radiation is structured in phase and intensity which vary

transversely.

The first novel method investigated in this thesis looked at altering mode compe-

tition in order to get a dominant OAM mode, where the initial seed for amplification

came from initial shot noise in the electron beam. Interaction between the electrons

and the Gaussian mode was suppressed through a longitudinal delay of the electrons

equivalent to a phase shift. The longitudinal shift was combined with a rotational shift

which allowed disruption of the Gaussian mode without suppressing a higher-order,

|`| > 0, mode. Simulations of the method showed that this allowed the OAM mode

to self-select for amplification. This scheme suggests that FELs can be used to emit

OAM radiation at the fundamental wavelength without the need for an external seed,

however, physical realisation of the rotation could not be achieved without debunching

the electron beam. Although this scheme is not currently feasible, it does demonstrate

the mechanisms of transverse mode selection in a FEL.

The harmonic emission of a helical undulator is emitted off-axis with transverse

phase distributions which closely resemble the Laguerre-Gaussian modes. Similarly,
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the higher harmonics of planar undulators are emitted as Hermite-Gaussian modes. In

Chapter 6 this was exploited in order to produce radiation where the polarisation state

of the radiation varies transversely. Beams with transverse polarisation distributions

are called Poincaré beams; structuring the spatial polarisation state of light can result in

additional beneficial properties, such as the ability to focus more tightly. Three different

polarisation topologies were simulated, chosen by changing the type of undulator and

the phase change between them. Generation of these beams in a FEL increases the

wavelength range over which this radiation is available and the results presented in

this thesis are a major advance in the type and properties of beams that may be

created by FELs and we expect it to lead to significant advances in FEL applications,

opening up hitherto inaccessible research possibilities in important new areas such as

the discrimination of chiral enantiomer molecules.

The final method proposed in this thesis is a technique which, for the first time, ex-

tends the capabilities of a FEL to include polarisation modulated output at timescales

that approach the atomic unit of time. This is a significant improvement to current

polarisation switching rates and has the benefit of being available at a wide range of

tunable wavelengths into the hard X-ray. In Chapter 7 FEL simulations demonstrate

trains of FEL-generated radiation pulses in which each pulse alternates between or-

thogonal linear or circular polarisation states. The technique is demonstrated in the

soft X-ray, generating pulse trains that alternate polarisation in tens of attoseconds.

This is a profound improvement on that currently available. This is an important re-

sult, providing new output uniquely enabled by FELs, and it is expected to lead to

significant advances in FEL applications. As discussed in Section 7.6, future work will

focus on extending this method to produce pulse trains where the handedness of the

OAM of each pulse alternates.

The work in this thesis has aimed to increase the diversity of radiation available at

FEL facilities. Providing new output uniquely enabled by FELs is expected it to lead

to significant advances in FEL applications. As such, there is much interest in tailoring

the FEL output to new exotic regimes and the work covered in this thesis contributes

to this goal.

97



Bibliography

[1] B. W. McNeil and N. R. Thompson, “X-ray free-electron lasers,” Nature Photon-

ics, vol. 4, pp. 814–821, 2010.

[2] P. Abbamonte, F. Abild-Pedersen, P. Adams, M. Ahmed, F. Albert, R. A. Mori,

P. Anfinrud, A. Aquila, M. Armstrong, J. Arthur, et al., “New science opportu-

nities enabled by lcls-ii x-ray lasers,” tech. rep., SLAC National Accelerator Lab.,

Menlo Park, CA (United States), 2015.

[3] P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann,

P. Bucksbaum, R. Coffee, F.-J. Decker, et al., “First lasing and operation of an

ångstrom-wavelength free-electron laser,” Nature Photonics, vol. 4, no. 9, p. 641,

2010.

[4] E. A. Schneidmiller and M. V. Yurkov, “Obtaining high degree of circular polar-

ization at x-ray free electron lasers via a reverse undulator taper,” Phys. Rev. ST

Accel. Beams, vol. 16, p. 110702, Nov 2013.

[5] N. R. Thompson and B. W. J. McNeil, “Mode locking in a free-electron laser

amplifier,” Phys. Rev. Lett., vol. 100, p. 203901, May 2008.

[6] L. T. Campbell, B. W. J. McNeil, and S. Reiche, “Two-colour free electron laser

with wide frequency separation using a single monoenergetic electron beam,” New

Journal of Physics, vol. 16, p. 103019, oct 2014.

[7] A. Burnett, M. Borghesi, A. Comley, M. Dean, S. Diaz-Moreno, D. Dye,

J. Greenwood, A. Higginbotham, A. Kirrander, J. Marangos, M. McMahon,

R. Minns, M. Newton, A. Orville, T. Penfold, A. Regoutz, I. Robinson, D. Rugg,

98



Bibliography

S. Schroeder, J. van Thor, S. Vinko, S. Wall, J. Wark, A. Z. Julia Weinstein, and

X. Zhang, “UK XFEL science case,” 2020.

[8] W. Ackermann, G. Asova, V. Ayvazyan, A. Azima, N. Baboi, J. Bähr, V. Ba-
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Wright, J. M. Girkin, P. Öhberg, and A. S. Arnold, “Optical ferris wheel for

ultracold atoms,” Opt. Express, vol. 15, pp. 8619–8625, Jul 2007.

[97] A. S. Arnold, “Extending dark optical trapping geometries,” Opt. Lett., vol. 37,

pp. 2505–2507, Jul 2012.

[98] J. F. Nye, “Lines of circular polarization in electromagnetic wave fields,” Proc.

R Soc. Lond. A, vol. 389, p. 279, 1983.

[99] M. Beijersbergen, L. Allen, H. van der Veen, and J. Woerdman, “Astigmatic laser

mode converters and transfer of orbital angular momentum,” Optics Communi-

cations, vol. 96, no. 1, pp. 123 – 132, 1993.

[100] K. O. M. Dennis and M. Padgett, “Singular optics: optical vortices and polar-

ization singularities,” Prog. Opt., vol. 53, pp. 293–363, 2009.

[101] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. Wiley, New York,

2007.

109



Bibliography

[102] A. A. Lutman, J. P. MacArthur, M. Ilchen, A. O. Lindahl, J. Buck, R. N. Coffee,

G. L. Dakovski, L. Dammann, Y. Ding, H. A. Dürr, et al., “Polarization control
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Abstract
To reach very short wavelengths and high intensities of

light, free-electron lasers, FELs, are used which produce
radiation from amplified noise in an electron beam. In this
SASE regime, mode competition dictates that the dominant
transverse mode of the radiation will be Gaussian. A method
is proposed to suppress the Gaussian mode via phase shifts
which allows higher order Laguerre-Gaussian modes to be
amplified. These modes are of interest as they carry orbital
angular momentum, OAM. Techniques for generating OAM
radiation with a FEL have been proposed previously, how-
ever, this is the first look at altering mode competition in
order to get a dominant OAM mode starting from the initial
shot noise in the electron beam.

INTRODUCTION
Recently, much attention has been paid to light which

carries OAM. This light has helical phase-fronts character-
ized by eilφ , where ϕ is the azimuthal coordinate and l is an
integer number named the topical charge. The magnitude
of l gives the number of intertwined helices in the phase
front and the sign of l gives the handedness of these helices.
Conventional methods for generating OAM light require
downstream optics which convert the radiation from a stan-
dard laser [1]. This has its limitations. The optical elements’
damage threshold limits the brightness and wavelength of
light which is transmitted and constraints arise from the
lasers themselves. In contrast, in the FEL, the phase struc-
ture of light can be controlled through the manipulation of
the electrons themselves and offers the benefit of having a
wide range of wavelengths accessible.

Previous work has shown that OAM can be produced
in a FEL through a variety of methods. Recently, OAM
radiation has been produced at FERMI through harmonic
lasing schemes involving helical undulators as well as using
a spiral zone plate to convert the radiation downstream from
normal FEL output [2]. Another method from Hemsing and
colleges creates OAM radiation by first bunching electrons
into a helix through second harmonic interaction with a
helical undulator. [3].

The current methods for producing OAM radiation in
a FEL have their limitations. The intensity of light from
harmonic lasing schemes is less than that at the fundamental
frequency [2]. Other methods rely on seeding the FEL either
with an OAM seed laser for amplification or with a pre-
bunched electron beam. When a FEL is seeded in this way,
the output is restricted by the quality of seeds available. This

causes difficulty at very short wavelengths as a seed may
not be available at the required wavelength and the intensity
of the seed must be large to overcome the initial shot noise
in the beam. It would be useful, instead, for the initial seed
for amplification to come from the shot noise in the electron
beam itself. This work looks at the feasibility of just this,
generating OAM through suppression of the Gaussian mode.

THEORY
Electrons enter the undulator with random phases due

to shot noise in the electron gun. In the self-amplified-
spontaneous emission (SASE) mode of operation, the initial
amplitude due to the noise acts as a seed for the FEL inter-
action and is amplified. The incoherence of the electrons is
mimicked by the radiation they produce. This radiation can
be described by a superposition of the orthogonal Laguerre-
Gaussian beams, LGpl(ϕ, r̂),

E(ϕ, r̂) =
∞∑

l=−∞

∞∑
p=0

aplLGpl(ϕ, r̂), (1)

where apl is the initial mode amplitude. The Laguerre-
Gaussian, LG, modes are chosen as they provide a conve-
nient mode basis and are often used in the study of OAM
beams. These modes are written in terms of their OAM index
l and the radial mode index p. The fundamental Gaussian
mode is found when p = l = 0.

All of the modes will have a contribution from the initial
electron density. However, due to their transverse profile,
the higher order modes have longer gain lengths [4] with
the shortest gain length belonging to the Gaussian mode.
The Gaussian mode, therefore, dominates FEL interaction,
suppressing the higher order modes, leading to the Gaussian
mode of operation typical of a FEL. Here we demonstrate
that suppressing the Gaussian mode will lead to the amplifi-
cation of the higher order modes.

Suppression of the Gaussian Mode
It is possible to disrupt the interaction between electrons

and radiation through a relative phase shift. A longitudi-
nal delay of the electrons which shifts the electron phase
relative to the fundamental wavelength by ∆θ will shift the
electrons relative to the nth harmonic by n∆θ. It has been
demonstrated that the exponential gain of the fundamen-
tal wavelength can be suppressed when ∆θ is a non-integer
multiple of 2π and can increase the power in higher har-
monics [5]. Instead of considering the higher harmonics of
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the radiation, this work looks at the higher order transverse
modes at the fundamental wavelength.

Examination of the transverse phase profile of the
Laguerre-Gaussian modes indicates that a rotational shift,
∆ϕr , of the electron beam about the longitudinal axis results
in a relative phase shift between the electrons and the trans-
verse modes of l∆ϕr . The total phase change, ∆Ψl , between
the electrons and the different l modes from the combination
of longitudinal and rotational shifts is, therefore,

∆Ψl = ∆θ + l∆ϕr (2)

Eq. 2 describes how, through careful selection of ∆θ and
∆ϕr , different relative phase changes between the electrons
and the OAM modes can be achieved. If successive repeti-
tion of the shifts causes the exponential gain of the Gaussian
mode to be disrupted - such that the gain length of the Gaus-
sian mode is longer than of the higher order modes - then a
dominant OAM mode will self-select for amplification.

RESULTS
Initial Results

The FEL is modeled using the FEL simulation code Puffin
[6]. Presented first, is the result of rotating the electrons
along the longitudinal axis according to the rotation matrix,

R(ϕr ) =


cos ϕr 0 − sin ϕr 0

0 cos ϕr 0 − sin ϕr
sin ϕr 0 cos ϕr 0

0 sin ϕr 0 cos ϕr

 (3)

which acts on the phase space vector constructed from the
vaiables (x, px, y, py), where x and y are the transverse co-
ordinates, and px and py are the conjugate of momenta. The
rotation is applied - along with a longitudinal shift - between
undulator modules each around a gain length long. In order
to alter mode competition to select for a LG01 mode, the
shift pairs are chosen so that ∆Ψ1 = 2π. The set-up uti-
lizes three alternating pairs of shifts, the longitudinal shifts,
∆θ = π/2, π and 3π/2 and the corresponding rotational
shifts ∆ϕr = 3π/2, π and π/2 respectively. These sections
are repeated until the end of the undulator lattice.

The results of this set-up are displayed in Fig.1. Decom-
position of the power into the different Laguerre-Gaussian
modes demonstrates that suppressing the competing trans-
verse modes means the LG01 mode dominates the interac-
tion. This causes the LG01 mode to grow over an order of
magnitude above the Gaussian mode. Also included in the
figure is the bunching factor of the different helical modes
calculated using [7],

bl = ⟨exp(iθ j − ilϕ)⟩, (4)

where the brackets indicate the ensemble average over the
whole electron beam. The b1 factor has exponential growth
as the electrons propagate through the undulator while the
bunching factors for the competing modes b0 and b−1 grow

Figure 1: Time-averaged power decomposition of the fun-
damental frequency into Laguerre-Gaussian modes (top)
and mean helical microbunching factor (bottom) when the
phase shifts ∆θ = π, ∆ϕr = π; ∆θ = 3π/2, ∆ϕr = π/2;
and ∆θ = π/2, ∆ϕr = 3π/2 are applied between undulator
modules. This results in the most power being contained in
the LG01 mode.

Figure 2: Intensity (left) and phase (right) at z = 55.28 m
when the phase shifts ∆θ = π, ∆ϕr = π; ∆θ = 3π/2,
∆ϕr = π/2; and ∆θ = π/2, ∆ϕr = 3π/2 are applied be-
tween undulator modules.

at a slower rate. This set has not been optimized and further
disruption of the Gaussian mode may be possible. Further
evidence of the OAM mode is provided in Fig. 2 which
shows a snapshot of the phase and intensity of radiation near
saturation. The phase of the radiation has a transverse profile
typical to the LG01 mode and the intensity is the expected
doughnut structure of OAM modes.

How to Rotate an Electron Beam
The results presented above use a point transform to rotate

the electron beam. Investigated here is a physical method to
achieve such a transform. A beamline for rotating a beam
through an arbitrary angle around the longitudinal axis can
be constructed from a set of quadrupoles with appropriate
tilt angles around that axis. The design that we present here
is based on that of Talman [8], who used a similar system
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for achieving a "Möbius" transformation in a storage ring.
The rotation matrix described by (3) can be created from,

M̄
(ϕr

2
+
π

4

)
M̄
(
−
π

4

)
= R(ϕr ) (5)

The matrices M̄ are defined as,

M̄(θ) = R(θ)MR−1(θ) (6)

where:

M =


cos µ β sin µ 0 0

− 1
β sin µ cos µ 0 0

0 0 − cos µ −β sin µ
0 0 1

β sin µ − cos µ

 (7)

represents a phase advance through angles µ and µ + π
in the transverse and horizontal spaces, respectively. The
required transformation M can be achieved using a set of 5
quadrupoles arranged symetrically:

M = Q1DAQ2DBQ3DBQ2DAQ1 (8)

where Qn is the transfer matrix for a quadrupole of focusing
strength k1Ln and DA(B) is the transfer matrix for a drift of
length LA(B). A transformation M̄(θ) can be constructed
using the same set of quadrupole magnets, but with each set
of quadrupoles tilted by an angle, θ, around the longitudinal
axis.

Using the thin-lens approximation for the quadrupole mag-
nets, the matrix M in (8) can be expressed in terms of the
quadrupole strengths and drift lengths. Equation (7) then
provides a set of constraints from which the quadrupole
strengths and drift lengths can be found for a given µ and
β. Not all values of µ and β admit physical solutions. How-
ever, a solution can be found for µ = π/2, in which case the
required focusing strengths are,

k1L1 =
LBξ

L2
A
− L2

B

k1L2 = −k1L3 =
ξ

LB
(9)

and the drift length LB is given by:

LB =
2
3

(
η +

1
2
+

1
η

)
LA (10)

The quantities ξ and η are defined as:

ξ2 = 1 +
LB

LA
η3 =

27
16
β2

L2
A

©«1 +

√
1 −

32
27

L2
A

β2
ª®¬ − 1 (11)

A system to rotate a beam with the transfer matrix (3), can
be constructed from two sets of five quadrupoles, with each
set having the same drift length and quadrupole strength. In
the first set, the quadrupoles are tilted by an angle ϕr/2+π/4
around the longitudinal axis, where ϕr is the desired rotation
angle in the beam; in the second set, the quadrupoles are
tilted by an angle −π/4. To change the beam rotation angle

requires changing the tilt angle of the first 5 quadrupoles:
this may be done either mechanically or by constructing
each magnet so as to resemble octupole magnets but with
the current in the coils arranged to allow an arbitrary super-
position of normal and skew quadrupole fields. A rotation
of the field is then achieved by changing the ratio of normal
to skew quadrupole field strengths.

An example of a rotation system has LA = 0.35 m,
µ = π/2 and β = 1 m, the overall rotational beamline
length is approximately 5 m and the maximum quadrupole
strength is 2.53 m−1. In practice, the length of the beam-
line is likely to increase when physical lengths are used for
quadrupoles. Since there is no drift on either side of the set
of five quadrupoles, the adjacent quadrupoles in the first and
second sets may be combined into a single quadrupole.

DISCUSSION
Initial trials of the rotation system have been unsuccess-

ful. The first issue concerns the total length of the rotation
beamline. If the radiation diffracts too much between undu-
lator modules, the interaction between the electrons and the
radiation field is diminished and the Gaussian mode is not
suppressed. This may not be a significant concern when the
radiation wavelength is short and diffraction is low. There
are also practical concerns due to the added length of the
FEL, as the undulator line more than doubles in length due
to the added shifts.

The second issue arising comes from the change in the
longitudinal phase (z) position for different electrons. Varia-
tions in the transverse components of momentum change the
z component of momentum pz . Since the electrons will have
different transverse momentum, depending on their distance
from the beam radius, this causes a different longitudinal
momentum variation for different electrons and leads to a
debunching of the electron beam. Further work will examine
if this debunching effect can be reduced.

CONCLUSION
The feasibility of generating light with OAM in a FEL

from amplified shot noise in an electron beam is investigated.
Trials in which a rotation of the electron beam is used to
manipulate the relative phases between the electrons and the
different OAM modes showed that suppressing a Gaussian
mode will allow growth in the higher order |l | = 1 modes.
However, although physical realisation of the transform ma-
trix (3) has been demonstrated, the resulting transverse mo-
mentum changes debunched the electron beam. Further work
is needed to design a system which could be implemented.
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Abstract
An optics-free method is proposed to generate x-ray radiation with spatially variant states of
polarization via an afterburner extension to a free electron laser. Control of the polarization in the
transverse plane is obtained through the overlap of different coherent transverse light distributions
radiated from a bunched electron beam in two consecutive orthogonally polarised undulators.
Different transverse profiles are obtained by emitting at a higher harmonic in one or both of the
undulators. This method enables the generation of beams structured in their intensity, phase, and
polarization—so-called Poincaré beams—at high powers with tunable wavelengths. Simulations
are used to demonstrate the generation of two different classes of light with spatially
inhomogeneous polarization—cylindrical vector beams and full Poincaré beams.

1. Introduction

Polarization is important when considering light’s interaction with matter. The majority of past research
has concentrated on light with polarization which does not vary with transverse spatial coordinate, such as
linear, elliptical or circular polarization. However, there has been growing interest in vector, or fully
structured light (FSL) beams with spatially-varying polarization states [1–3] which can have additional,
beneficial properties for a number of applications. For example, beams with radially orientated linear
polarization can be focused more tightly than those with spatially homogeneous linear polarization, with
applications in laser machining, optical nano-probing, and nano-lithography [1, 4, 5]. Beams with
transversely structured polarization have also been shown to propagate more stably in self-focussing
nonlinear media [6]. In general, the ability to control both the intensity and the polarization of FSL beams
may provide a useful method for applications in material processing [7], microscopy [8], and in atomic
state preparation, manipulation and detection [9, 10]. In this paper, a relatively simple method to generate
tunable FSL into the x-ray using free electron lasers (FEL) [11] is described, opening up new, unexplored
areas of atomic and molecular science. One such area is in the field of mirror image chiral molecules, either
left or right handed, also called enantiomers. When subjected to FSL, a discriminatory optical force in
opposite directions can result for each enantiomer [12].

In the simplest form, FSL beams can be described by a vector superposition of two orthogonally
polarised spatial eigenmodes:

E(r, φ) = E1(r, φ)ê1 + eiβE2(r, φ)ê2 (1)

where β is the phase between the two modes and ê1 and ê2 are orthogonal polarization vectors. For
cylindrically symmetric beams, a Laguerre–Gaussian (LG) set of spatial eigenmodes and circular
polarization basis is adopted, where ê1 = êL = (êx + iêy)/

√
2 and ê2 = êR = (êx − iêy)/

√
2 correspond to

left and right-handed circular polarization vectors, respectively. The resultant spatial distribution of the
polarization is controlled by the superposition of the eigenmodes:

E1(r, φ) = εLLG�L
pL

; E2(r, φ) = εRLG�R
pR

(2)

© 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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where εL and εR are the field mode amplitudes, p is the radial index, and � is the orbital angular momentum
(OAM) index of the mode [13]. Taking the modes at the beam waist w0 and assuming p = 0, the LG modes
may be written as [14]:

LG�
0(r, φ) =

√
2

πw2
0 |�|!

(√
2r

w0

)|�|

exp

(
− r2

w2
0

+ i�φ

)
, (3)

where: r =
√

x2 + y2 is the radial coordinate, and φ = tan−1(y/x) is the azimuthal coordinate.
If either E1 or E2 is zero, then the resultant beam is an LG mode with spatially uniform circular

polarization. If the two modes have equal amplitudes and the same OAM (�L = �R), the resultant beam will
have spatially uniform linear polarization. If they have equal amplitudes and equal but opposite OAM
(�L = −�R), however, the resultant cylindrical vector (CV) beam [1, 3] will have an azimuthally varying
linear polarization distribution that may be radial, azimuthal or spiral, depending on the phase difference β.
If the two modes have different magnitudes of OAM the resultant ‘full Poincaré’ beam will carry a net OAM
and the polarization will vary in both the azimuthal and radial coordinates and may contain all states of
polarization: linear; elliptical; and circular [2]. Typical examples are the so-called ‘lemon’ and ‘star’ beams
[15]. Note that for beams with Cartesian symmetry, the profiles may be better expressed in as
Hermite–Gaussian (HG) modes [16] and with linear polarization vectors ê1 = êx, ê2 = êy.

The generation of such beams commonly relies upon methods that use external conversion optics to
superimpose orthogonally-polarised transverse modes, including interferometric techniques [17, 18],
q-plates [6, 19], and liquid crystal spatial light modulators [20]. While earlier works have produced OAM
vortex beams in the x-ray [21, 22], there are, as yet, insufficient optical methods to superimpose OAM
beams to generate the Poincare’ x-ray beams described here. CV beams have been demonstrated in the
ultraviolet using higher harmonic generation [23].

2. Generation of Poincaré beams using a free electron laser

In this paper, a new FEL method for generating bright, tunable, coherent Poincaré beams is proposed
without the need for any external conversion optics. This optics-free method allows the extension of
Poincaré beam generation into the x-ray regime for the first time. It is shown that by combining techniques
of polarization and transverse mode shaping with FEL ‘afterburners’, coherent harmonic emission processes
can be used to generate several classes of Poincaré beams—including radially polarized CV beams and ‘star’
Poincaré beams—with minimal changes to the overall facility layout. This approach enables the generation
of wavelength-tunable, narrowband x-ray FSL beams in modern FEL facilities providing, for example, high
resolution spectroscopy or scanning over narrow atomic/molecular resonances with structured light pulses.

FELs use highly relativistic electron beams (e-beams) propagating through undulating magnetic fields
(undulators) to generate intense, tunable pulses of light. The wavelength range of FELs is broad and easily
tunable, with current shorter wavelength facilities operating from the VUV down to hard x-rays [24–29].
The radiation output is typically a transverse Gaussian mode with nearly full transverse coherence and a
spatially homogeneous polarization that is determined by the magnetic undulator fields (planar, helical, or
elliptical). Polarization control is thus enabled by undulators with tunable polarity (e.g. [30–32]), or by a
short tunable undulator section placed immediately downstream. This ‘afterburner’ undulator uses an FEL
e-beam that has a strong coherent bunching from the previous lasing stage to generate coherent light with a
high degree of adjustable polarization [33]. The primary FEL radiation pulse energy can also be strongly
suppressed (but the e-beam bunching preserved) by using an undulator with reverse-tapering [34] and by
e-beam steering [35], so that only the radiation pulse generated in the afterburner is delivered to
experiments.

Currently, such schemes rely on transverse Gaussian afterburner emission at the first harmonic in which
the e-beam bunching wavelength, λb, matches the fundamental afterburner radiation wavelength resonance,
λb = λr = λu(1 + K2)/2γ2, where λu is the afterburner period, K is its rms undulator parameter, and γ is
the e-beam relativistic factor. By radiating at harmonics however, where λb = λr/h with h > 1 an integer,
the transverse mode properties of the afterburner emission can be tailored to enable the generation of FSL
beams. For example, in helical undulators that generate circularly polarized light, the coherent emission at
harmonics is well-characterized by an LG mode with a helical phase and OAM index � = ∓(h − 1) [36].
Both the sign of � and the circular polarization vector (êx ∓ iêy)/

√
2 of the radiation are determined by the

direction of the e-beam trajectory and therefore on the left (−) or right (+) handedness of the undulator.
For planar undulators, the emission is linearly polarised, and the harmonic intensity profiles resemble an
HG mode basis set.

2
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Here, we propose extending this concept to two consecutive orthogonally polarised afterburners,
individually adjustable in their strength, polarization, and relative phase. The two radiation pulses emitted
from each of the two undulators overlap spatially and temporally. Previous versions of this crossed
undulator setup have experimentally demonstrated polarization control at the fundamental [37, 38]. In the
method described here, the electrons emit higher-order transverse modes at the second harmonic in one or
both of the afterburners. This results in an FSL beam with an output field described by the superpostion of
modes, as in equation (1). The phase difference, β, between the two modes can also be controlled by using a
small magnetic phase-shifter between the two afterburners. This also allows phase-shifts due to the slippage
between modules to be compensated, or the polarization pattern to be modified or rotated. Such a setup
can be constructed from two Delta-type (or Apple-II) afterburner undulators [39, 40], provided that they
have sufficient adjustment of their K parameters to access harmonics—extending the practicality of these
undulators to enable transverse polarization control.

3. Simulations results

The FEL simulation code Puffin [41] is used to model the setup shown in figure 1. In contrast to most other
FEL codes, Puffin does not average the electron motion over an undulator period, allowing modeling of
both planar and helical harmonic emission arising from electron motion at the sub-undulator period scale.
The setup is modeled using parameters based on the LCLS-II project at SLAC [42], with electron beam
energy 4 GeV, peak current I0 = 1 kA, and beam radius σx = 26 μm. The undulator period is λu = 3.9 cm
and each afterburner section has Nu = 20 undulator periods.

Time-independent (steady-state) simulations were used to demonstrate the method. This mode does not
model the full temporal duration of the electron beam. However, as demonstrated in other crossed
undulator methods, temporal pulse effects should not significantly affect the results, as the bunching factor
on entering the afterburners is orders of magnitude larger than any beam shot-noise, and the relative
slippage between electrons and radiation pulses is less than the coherence length [43]. The electrons are first
pre-bunched in a reverse-tapered FEL section with λb = 1.25 nm. This achieves a bunching factor
|b| = 0.45, while also reducing the FEL output power to 1 MW, three orders of magnitude lower than
without the undulator taper. The process for pre-bunching electrons in a reverse tapered undulator has
been described previously [34]. The electron beam bunching process does not differ significantly from the
standard FEL process with the exception of the reduced radiation power. Steering the e-beam to further
reduce the contribution from the background power is not modeled [35], and the radiation generated in
the FEL section is simply removed. The pre-bunched beam then enters the afterburner Delta undulators,
which can be adjusted for linear or circular polarization and tuned so that the electron bunching is at either
the fundamental or second harmonic. Three polarization distributions that generate FSL beams are now
presented using this setup.

3.1. Vector beams
In the first example, a pair of cross-polarized planar afterburners is simulated. They are both tuned to a
fundamental resonance of λr = 2.5 nm, so that the e-beam is bunched and radiates at the second harmonic,
generating the field E(r, φ) = ε1HG10êx + eiβε2HG01êy. With ε1 = ε2, this superposition is seen in figure 2
to create an annular intensity profile with a radial polarization distribution for β = 0. The polarization map
was constructed by calculating the Stokes parameters:

S0 = |Ex|2 + |Ey|2 = |ER|2 + |EL|2,

S1 = |Ex|2 − |Ey|2 = 2 Re(E∗
REL),

S2 = 2 Re(E∗
xEy) = 2 Im(E∗

REL),

S3 = 2 Im(E∗
xEy) = |ER|2 − |EL|2,

(4)

where the subscripts denote the appropriate linear or circular field components [44]. S0 is the parameter
describing temporal intensity. The linear horizontal/vertical, diagonal linear, and circular polarization are
described by S1, S2, and S3, respectively.

The ellipticity, χ, and the orientation, ψ, of a polarization ellipse at each point on the transverse plane
can then be calculated [45], where:

χ =
1

2
sin−1

(
S3

S0

)
, ψ =

1

2
tan−1

(
S2

S1

)
. (5)
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Figure 1. Schematic of the method. A relativistic electron beam is initially bunched using a reverse-tapered undulator. This
suppresses the generation of the linearly polarised radiation. A dipole kicker (or off-axis quadrupole lattice) then redirects the
electron beam into two Delta undulators tuned so that the electron bunching is at an harmonic of their fundamental resonant
wavelength. The Delta undulators can then be adjusted for different polarizations and tuning to generate light with transversely
inhomogeneous polarization—fully structured light.

The polarization ellipses are then plotted at various points across the intensity profile. The normalised
stokes vector capturing the spatial polarization for these crossed planar harmonic undulators can be written
as,

s =
1

S0

⎛
⎝

S1

S2

S3

⎞
⎠ =

⎛
⎝

cos(2φ)
cos(β) sin(2φ)
sin(β) sin(2φ)

⎞
⎠ . (6)

Note that for β �= 0, the polarization distribution can also contain circular components.
Similarly, with crossed helical undulators tuned so that the bunching is at the second harmonic, one

obtains �R = −1 and �L = 1. If the undulators are the same length and the bunching factor does not change
significantly between them, the modes have equal amplitude, εL = εR. We then obtain,

s =

⎛
⎝

cos(β − 2φ)
sin(β − 2φ)

0

⎞
⎠ . (7)

The S3 parameter vanishes, so the beam has only linear polarization states which vary with φ. The generated
vector ‘vortex beam’ is also shown in figure 2.

We note that, in order for this description to accurately model the final FSL output, the radiation
emitted in each undulator should be well-described by a pure modes. In reference [46], it was shown that
with sufficiently large K and periods Nu in a helical afterburner, coherent radiation from a pre-bunched
e-beam is well approximated by an LG mode in the limit that the e-beam radius satisfies σx > γz

√
Nu/k,

such that the emission angles are dominated by the e-beam and not the undulator emission. The undulators
must also be kept relatively short to reduce the diffraction of the radiation so that the the transverse sizes of
the modes do not significantly differ.

It is seen from figure 2 that CV beams are generated when the orthogonal afterburners both radiate at
the second harmonic. Due to the relationship between the polarization and the transverse modes, only
certain CV polarization distributions are available using this setup. For example, the second harmonic
emission does not produce y-polarised HG10 modes, or �L = −1 modes with left-circular polarization (i.e.,
no ‘lemon’ beams) [47, 48].

The power of the final radiation pulses in figure 2 is of the order of 0.3 MW, which is consistent with the
second harmonic power calculated in [46]. For a single helical afterburner the radiated coherent power is

P = 4Pbb2 I0

γIA

(
K2

1 + K2

)2

ln

(
1 + 4N2

4N2

)
(8)

where Pb is the peak e-beam power, IA = 17 kA is the Alfven current, and N = kσ2
x/Lu is the Fresnel

number of the e-beam with k = 2π/λb, and Lu = Nuλu the length of the undulator. This power is the same
magnitude as the radiation emitted at the fundamental of the upstream reverse-tapered FEL, highlighting
the need to steer the pre-bunched electron beam to avoid overlap with the radiation emitted during

4
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Figure 2. Simulation of cylindrical vector polarizations. The electrons are bunched at the second harmonic of the Delta
undulators to give orthogonal linear (top) and circular (bottom) polarization. The radiation polarization emitted from each
Delta undulator is plotted schematically on the (left) two plots and the combined field simulated from both undulators on the
(right) plot. Red, blue and white lines correspond to linear, right-circular and left-circular polarization respectively.

pre-bunching. We note from equation (8) that with strong focusing to reduce σx < 26 μm, the power
output can be greatly improved. As the electrons are bunched before the afterburner, the short undulators
needed to account for diffraction still provide high powers, although the power scaling for a single
undulator favors small N. If a longer afterburner section is desirable, or if required parameters lead to
greater diffraction, one solution is to split the first Delta undulator into two sections and sandwich the
second Delta undulator between these two sections. This leads to better overlap of the two polarised beams.

3.2. Full Poincaré beams
The second class of light with spatially inhomogeneous polarization considered is full Poincaré beams
created from a superposition of LG±1

0 and LG0
0 (Gaussian) radiation with orthogonal circular polarizations.

From equation (2), the Stokes vector then becomes,

s =

⎛
⎜⎜⎜⎜⎜⎜⎝

2
√

2rw0

2r2 + w2
0

cos(β − φ)

2
√

2rw0

2r2 + w2
0

sin(β − φ)

±2r2 − w2
0

2r2 + w2
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (9)
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Figure 3. Poincaré polarization distribution downstream of the afterburner. The Delta undulators are set to have orthogonal
circular polarizations. The electrons are bunched at the second harmonic of the first undulator and the fundamental of the
second undulator. The radiation emitted in each Delta undulator is plotted (left) along with the combined field from both
undulators (right).

where the + and − signs correspond to (�L, �R) = (1, 0) and (�L, �R) = (0, −1), respectively. On axis, r = 0,
the polarization is purely circular while the at the radius r = w0/

√
2, the polarization is purely linear, with

orientation depending on φ. Figure 3 shows the ‘star’ Poincaré beam output generated in the (�L, �R)
= (1, 0) case. To achieve this combination, the second undulator is tuned so that its fundamental resonance
matches the bunching wavelength at λr = 1.25 nm and the radiation emitted is Gaussian. The first
undulator is tuned to λr = 2.5 nm, radiating at the second harmonic as before. The electrons radiate with
higher power at the fundamental than at the second harmonic. To compensate and balance the powers
between the two radiation beams, the Delta undulator emitting at the fundamental is detuned from
resonance to reduce its power output. Detuning the undulator will affect the mode size and therefore
polarization structure. Specific undulator detuning is a topic for future studies and will depend on the
specific application.

4. Conclusion

The three x-ray polarization topologies demonstrated here are not the full range of pulses available with the
two Delta undulator arrangement. In addition to varying the polarization and undulator resonance, other
factors can change the polarization distribution. Both the phase and power ratio between the different
transverse modes can be adjusted which, for example, could be used to create elliptical vector beams.
Slightly detuning the resonance of one undulator will push the radiation further off axis, which can be used
to control the mode overlap [37]. Finally, radiating at even higher harmonics of a helical undulator will
generate the higher order LG modes producing yet more variants, though the power drops with increasing
harmonic number [46].

We note that this method can generate Poincaré beams at any operational wavelength of an FEL facility.
The advantage of the afterburner configuration is that it is both simple and cost effective to implement as
the afterburners can be added to existing FEL facilities, or may already exist as the last couple undulator
sections. Furthermore, the method could be combined with other methods. For example, consideration of
temporal or short pulse effects can be envisaged that alter the FSL in the temporal domain (e.g., [49])
adding a further dimension for potential experimental exploitation.
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A new method to generate short wavelength free-electron laser output with modulated polarization at
attosecond timescales is presented. Simulations demonstrate polarization switching timescales that are four
orders of magnitude faster than the current state of the art and, at x-ray wavelengths, approaching the
atomic unit of time of approximately 24 attoseconds. Such polarization control has significant potential in
the study of ultrafast atomic and molecular processes. The output alternates between either orthogonal
linear or circularly polarized light without the need for any polarizing optical elements. This facilitates
operation at the high brightness x-ray wavelengths associated with FELs. As the method uses an afterburner
configuration it would be relatively easy to install at existing FEL facilities, greatly expanding their
research capability.
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I. INTRODUCTION

The polarization of light is a fundamental property which
affects its interactions with matter. These interactions are
used experimentally to investigate various properties of
matter such as the chirality of molecules and crystal
structures [1,2]. Additionally, light’s polarization is essen-
tial in the study of magnetism, for example, short polarized
pulses can be used to manipulate magnetic moments and
investigate the timescales of angular momentum exchange
[3]. Current experiments can demand greater spatial [4]
and/or temporal [5] control and flexibility of the polariza-
tion than the generation of purely circular, elliptical or
linearly polarized light. In particular, fast temporal switch-
ing of light’s polarization is desirable for techniques such as
polarization modulation spectroscopy, notably, x-ray mag-
netic circular dichroism (XMCD) [6–8] and may offer
control over material excitations including lattice vibrations
[9], charge and spin [10,11].
Ultrafast switching of the polarization properties of light

is a nontrivial task as conventional polarizing elements are

quasistatic devices at ultra-fast timescales. While some
conventional polarizing elements can be controlled by
electric currents [12], these are limited by their electronic
components to gigahertz switching speeds and also see
large energy losses.
In the drive to further decrease switching rates, recent

research using plasmonic technologies has further
decreased linear polarization switching to 800 fs [13]
and circular polarization switching to pico-second time-
scales [14]. However, these techniques are based on the
active control of polarizing elements and operate primarily
at visible wavelengths or longer. As wavelengths shorten
beyond the ultraviolet, polarizing optics are more limited
with modulation timescales being determined primarily by
the light generation method.
In electron accelerator based light sources, which can

generate light into the hard x-ray, it is the motion of the
radiating electrons propagating through magnetic undula-
tors that determines the polarization of the photon beam.
For example, circular polarization modulation with a ∼2 ns
switching rate has been demonstrated in a synchrotron by
controlling electron bunch orbits through twin undulators
[15]. Methods of generating x-rays with temporally varying
polarization from the output of free-electron lasers, FELs,
include 100 fs switching using a chirped electron beam
[16]. Femto-second isolated pulses with different polari-
zation can be generated with the fresh slice method
described in [17].
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It can be envisaged that significant improvement on
temporal polarization switching timescales to those com-
parable to atomic processes will enable experimental
investigation of these processes. In XMCD, for example,
the polarization switching rate of x-rays limits the observ-
able processes to those occurring slower than the switching
cycle [8]. In this paper, a method is described which could
improve the polarization switching rate of both linear and
circularly polarized high brightness x-rays toward the
attosecond timescale regime and comparable to the period
of a ground state electron in the Bohr hydrogen atom, the
atomic unit of time ≈24 as. We speculate that pulses of
such timescales could be used to develop novel methods,
perhaps similar to XMCD, that can improve temporal
resolutions to below that of the exchange interaction
responsible for magnetic order [3].
The method modulates the polarization of light radiated

from a free-electron laser. Trains of radiation pulses are
generated in which each pulse alternates between orthogo-
nal linear or circular polarization states. FELs are widely
tuneable devices operating down to the hard x-ray wave-
length range [18] and the method reported here should be
applicable over this full range. Simulations are carried out
here in the soft x-ray generating radiation pulse trains with
alternate orthogonal polarization pulse timescales of tens of
attoseconds.

II. FEL THEORY

In a high-gain FEL a relativistic electron beam prop-
agates through magnetic undulators and emits electromag-
netic radiation (light) with a resonant wavelength
λr ¼ λuð1þ ā2uÞ=2γ20, where λu is the undulator period,
āu is the rms undulator parameter and γ0 is the electron
beam’s relativistic factor. The light is amplified via a
collective interaction which causes the electrons to
micro-bunch at the resonant wavelength and to emit
coherently [18]. The initial nonuniform phase distribution
of electrons, or shot-noise, can provide the initial
seed which is subsequently amplified in the process of

self-amplified spontaneous emission, giving a temporally
noisy output [19]. The relative propagation of a radiation
wavefront through the electrons of one λr every λu, referred
to as “slippage,” allows interaction between different
regions of the electron bunch and radiation pulse. This
correlates the phase of the radiation output at a length
determined by the cooperation length lc ¼ λr=4πρ—the
relative slippage in an exponential gain length through the
undulator lg ¼ λu=4πρ. Here ρ, the FEL parameter, deter-
mines the strength of the FEL interaction [19].
The FEL process generates high-power radiation with its

polarization determined by the magnetic undulator field—
either planar, elliptical or helical. A typical X-ray FEL
facility uses planar undulators to micro-bunch the elec-
trons. Polarization control can be enabled by adding
additional undulators placed downstream of the main
planar undulator amplification section once microbunching
has been established [20]. Such additional downstream
undulators, or “afterburners,” are increasingly being
explored as a method to tailor FEL output in many ways
not limited to polarization control, e.g., short pulse gen-
eration [21,22] and transverse phase manipulation [23].
They provide solutions to enable specific experimental
output requirements with minimal changes to an existing
facility and therefore at relatively low cost.

III. POLARIZATION MODULATED PULSE
TRAINS: METHOD

To generate FEL output with modulated polarization, we
propose an afterburner design consisting of a series of few
period, alternate orthogonally polarized undulator modules
as shown in Fig. 1. The undulators are separated by electron
delay chicanes which can introduce additional slippage
between the electron bunch and the radiation field. Both of
the orthogonal, polarized radiation fields emitted in the
afterburner are mode-locked which creates trains of short
pulses [21]. The orthogonally polarized pulse trains are
shifted temporally with respect to each other so that the

FIG. 1. Schematic layout of a section of afterburner used to generate a radiation pulse train with alternating x and y linear polarization.
In each undulator, those regions of the electron beam with modulated microbunching emit coherently. Chicanes delay the electron beam
between undulator modules so that those sections of high microbunching overlap with the appropriately polarized pulse for the
undulator in which they are propagating.
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combined pulse train consists of a series of alternate,
orthogonally polarized pulses.
Mode-locking in a FEL, first proposed in [21] and

compacted into a mode-locked afterburner configuration
in [22], creates trains of short radiation pulses via a process
analogous with mode-locking in conventional cavity lasers
[24]. In the mode-locked afterburner, normal FEL ampli-
fication occurs first in an electron beam prepared with an
energy modulation, γðtÞ ¼ γ0 þ γm cosðωmtÞ. This gener-
ates a periodic microbunching structure in the electron
beam at the energy modulation period by creating higher
FEL gain at the minima of the energy modulated beam.
Chicane delays between the short undulator sections in the
afterburner then map the electron beam microbunching
comb onto the radiation modal pulses.
Here, a similar mapping of the microbunched comb to

the mode-locked radiation generated in the orthogonally
polarized afterburner modules is used to generate alter-
nately polarized pulse trains. Figure 1 shows a schematic of
how these pulse trains are generated in a planar undulator
afterburner. Chicanes placed between undulator modules
are chosen to delay the high microbunched regions of the
electron beam to the polarized radiation pulses correspond-
ing to the similarly polarized undulator in which they
interact. The orthogonally polarized radiation pulses do not
interact with the electrons in this undulator module so that
they simply experience free propagation. The orthogonally
polarized undulators then effectively behave as additional
alternate chicane delays.
The combined slippage of the electrons with respect to a

radiation wavefront between undulator modules of the
same polarization should therefore be the modulation
period λm. The temporal separation of the pulses of
radiation with the same polarization is then T ¼ λm=c
and the relative times of these pulses are

t1 ¼ nT: ð1Þ

The orthogonally polarized pulses will then have pulse
peaks at relative times:

t2 ¼ t0 þ t1 þ ΔT ð2Þ

where ΔT ¼ s=c is the time for the radiation to propagate
the slippage length, s ¼ λm=2, through the electron bunch.
t0 is a constant which may shift the radiation pulse trains
relative to each other. This relative shift is achieved by
adjusting the slippage between consecutive orthogonally
polarized undulators to be sþ ct0 and s − ct0. Here, we
chose t0 ¼ 0 representing the case where we have equal
slippage between undulator modules and therefore there is
equal spacing between all pulses.

IV. SIMULATIONS

The method is modeled using the FEL simulation code
PUFFIN [25] using the parameters based on the LCLS-II
project at SLAC [26] as listed in Table I. Dispersion effects
within the chicanes are included in the model although
chicanes which reduce dispersion and dispersionless chi-
canes are being developed [27,28].

A. Alternating linear polarization

The method is first demonstrated using an afterburner
with alternating x and y planar undulators that will emit
correspondingly linearly polarized light. An electron
beam, with a Gaussian current profile, is first prepared
with a sinusoidal energy modulation of period λm ¼
40 nm ¼ 32λr. This is applied via the initial conditions
of the beam before any FEL interaction is simulated. Start to
end simulationswith fullmodeling of the energymodulation
is left for future work. However, pre-modulation at longer
wavelengths is relatively straightforward and similar modu-
lation as presented here for a nonideal electron beam has
previously been demonstrated [29,30].
As with the mode-locked afterburner of [22], the electron

microbunching comb is then developed in a SASE FEL
“preamplifier.” The simulation modeled an x-polarized
undulator similar to that found at most current FEL
facilities. The power growth in this preamplifier stage is
inhibited by the electron beam energy modulation. On
subsequent injection into the afterburner, the power growth
in the pulsed regions becomes exponential due to their
overlap with the high quality electron beam regions being
maintained. There is therefore much greater radiation
power generated in the afterburner than in the preamplifier.
The point at which the electron beam is extracted from the
preamplifier—after 900 undulator periods—is chosen so
that the radiation is two orders of magnitude smaller than

TABLE I. Simulation parameters.

Parameter Value

Electron beam energy [GeV] 4
Peak current, I0 [kA] 1
rms energy spread σγ=γ 1.25 × 10−4

Normalized emittance [mm-mrad] 0.45
rms beam size σx [μm] 26
Undulator period λu [cm] 3.9
Resonant wavelength λr [nm] 1.25
Modulation wavelength λm [nm] 40.0
Modulation amplitude γm=γ0 1.2 × 10−3

rms undulator parameter āu 1.72
ρ parameter 1.2 × 10−3

Afterburner
Number of undulator periods per module 8
Chicane Delays [nm] 10
Number of undulator modules 36
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the final saturated radiation power in the following
afterburner.
Both the x and orthogonal y polarized undulator modules

in the afterburner are 8 periods long, each separated by a
chicane that delays the electrons by a further 8 resonant
wavelengths. The total electron delay is then s ¼ 16λr ¼
λm=2 between successive undulator modules and λm
between undulators of the same polarization. This main-
tains overlap between the electron microbunching comb
and the alternating orthogonally polarized radiation as
shown in Fig. 1, leading to the amplification of radiation
spikes. The orthogonal radiation spikes so generated should
not interfere with each other due to their orthogonal
polarization. However, as both fields are emitted by the
same electron beam source, which sees only small changes
between undulator modules, fluctuations in the power of
one pulse train envelope should be similar to its orthogonal
counterpart.
Figure 2 shows a section of the radiation power profiles

and spectrum of the x and y polarized fields after 36
afterburner undulator modules (16 of each polarization).
The additional slippage between undulator modules leads
to a frequency spectrum that is broader than typical FEL
output and discretized into frequency modes with modes
spacing, Δωs, as determined by the time taken for the
radiation to travel the total slippage length between the
same polarized undulators. The radiation pulse peaks arise
from the constructive interference between the frequency
modes whose phase has been fixed by the modulation,
Δωm ¼ Δωs. This is the principle of mode-locking as
described in [21,24].

As the undulator modules have equal lengths, both the
x and y polarized fields have approximately the same pulse
FWHM duration of τp ≈ 19 as and with peak powers of
Ppk ≈ 1 GW. The separation between each pulse is approx-
imately 67 as corresponding to a polarization switching rate
of 15 PHz.
A normalized Stokes parameter, s1, is used to examine

the degree of linear polarization in the pulses, where: s1 ¼
ðjExj2 − jEyj2Þ=ðjExj2 þ jEyj2Þ is the intensity difference
between the x and y polarized fields normalized to the total
intensity of the field. Values of s1 ¼ �1.0 then indicate
fully linear x or y polarization, respectively. This is plotted
as a function of time in Fig. 3 where it is seen that the
polarization is highly modulated, flipping between the two
polarization states. The high degree of polarization contrast
is seen at the peak powers, js1j ≈ 1.0. Across the full pulse
train, js1j > 0.95 at the peak powers, demonstrating a high
degree of polarization modulation.

B. Alternating circular polarization

Pulses with polarization alternating between left and
right-hand circular polarization have also been modeled.
The amplifier section, which pre-bunches the electrons
using SASE, remains an (x-polarized) planar undulator
similar to that above. The afterburner now consists of
orthogonal left and right circularly polarized helical
undulators.
Figure 4 shows the power profiles for the left-hand

circular, LCP, and right-hand circular, RCP, polarization.
The pulses now alternate between orthogonal circular
polarization with the same FWHM pulse duration τp and
rate as the linearly polarized case above. The stokes
parameter, s3 ¼ ðjERj2 − jELj2Þ=ðjERj2 þ jELj2Þ, which
gives the degree of circular polarization is plotted in
Fig. 5. Across the pulse peaks, there is a high degree of
circular polarization, js3j > 0.9. This is very promising as
many ultrafast polarization switching techniques cannot
achieve full-handedness reversal.

FIG. 2. Top: power vs relative time t for the x and y polarized
fields and Bottom: the corresponding spectra after 36 undulator-
chicane modules.

FIG. 3. The on-axis normalized Stokes parameter s1 as a
function of relative time t after 36 undulator-chicane modules.
It is seen that s1 flips between positive and negative values with
extremes at js1j ≈ 1.0, indicating high degree of polarization
modulation.
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V. CONCLUSIONS

This paper demonstrates a novel method to generate
attosecond polarization modulation in a short wavelength
FEL without the need for any optical components. This
represents a considerable improvement in wavelength and
timescales over any other methods currently available, and
could be expected to drive forward new experimental
opportunities in fundamental science. The simulation
parameters used considered soft x-ray pulses similar to
the LCLS-II, however, this is by no means the limit of the
wavelengths available with this set up. Extrapolating from
the simulations of a hard x-ray mode-locked afterburner as
presented in [22], the same parameters adapted to generate
alternating polarized pulses here would generate pulse
separation times of 5 as, approximately one fifth of the
atomic unit of time. Discussion of scaling the mode-locked
afterburner to yet higher photon energies provided in [22]
should also apply to the methods described here. Given the
broad scaling of FEL wavelength operation, the method
described will also be applicable to longer wavelengths,
again opening up new experimental opportunities.
As well as operating across a broad range of wave-

lengths, the method could be adapted to meet other specific
experimental requirements. The temporal shift between

pulse trains of orthogonal polarizations may be controlled
to bring alternating pulses close together followed by a
longer time interval. The time duration of the different
pulse types may also be altered by the length of the
different types of undulators to generate pulse trains with
a pulse of one polarization followed by a shorter pulse with
the orthogonal polarization. However, it is noted that this
will also result in different pulse powers and bandwidths
which would need further consideration.
This method also provides a promising broader avenue to

tailor FEL output and provide bespoke radiation for experi-
ments. Further development of the method will include
alternating other pulse properties such as the wavelength,
e.g., using the work of [31], or orbital angular momentum of
the pulses [32]. While experimental implementation of
mode-locking has not yet been trialed, it may be advanta-
geous to consider alternating pulse structure capabilities
when upgrading FELs to include mode-locking.
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