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Abstract

At the most basic level, forecasts are needed when decisions must be made in the

present but are based on future conditions. There are many uses for forecasts within

the energy industry, and in particular in relation to renewable generation types where

future generation is uncertain and depends on weather conditions, be that wind, so-

lar irradiation, cloud cover or sea conditions. Thus, forecasts are an essential part of

the running of the electricity system, from day-to-day scheduling and trading decisions

to long-term system planning. This thesis selects and aims to address three current

problems in the practical implementation of wind power forecasting methods: firstly,

the affect of several different occurrences of missing data in the forecasting process and

how this can be mitigated; secondly, the difficulty in producing a forecast that accu-

rately predicts ramps; and thirdly, the need for skilful site- and task-specific forecasts

weeks ahead to inform maintenance decisions. Missing data is the result of incomplete

datasets, data latencies and new sites lacking historic power data. Missing historic

values affect the ability of statistical models to learn site characteristics and fit an ac-

curate model while data latencies mean forecast inputs are not always available when

new forecasts are issued. Several different mitigation methods for each occurrence of

missing data are explored via case studies for a Vector Autoregressive model implemen-

tation. Complex relationships between wind speed and power, sudden ramps in power

and imperfect models can reduce the skill of individual forecast models. Improvements

through combination of several different forecasting models is explored and a forecast

combination method that explicitly incorporates forecasts of ramp rate proposed to

improve power forecasts around times of ramps. A lack of suitably tailored forecasts

for a given decision also reduces the likelihood of uptake of a new model or data source
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for certain applications. A novel job-specific index of ‘number of useful hours’ is fore-

cast for subseasonal-to-seasonal timescales and its calibration and usefulness for the

case of crane hire for maintenance decisions is assessed. This work has also produced

guidance and recommendations for the implementation of a very short-term statistical

forecasting system for Natural Power Consultants.
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Chapter 1

Introduction

Arrhenius first discovered that carbon dioxide released from burning of fossil fuels exac-

erbates the atmospheric greenhouse effect in 1896 [6]. Between 1750 and 2021, humans

have emitted over 1.65 trillion tonnes of CO2 [7], resulting in an average temperature

rise of 1.19◦C above pre-industrial levels [8]. In 2018 the Intergovernmental Panel on

Climate Change published a special report on the impacts of global warming exceeding

1.5◦C [9], detailing climate projections for both 1.5 and 2◦C of warming above pre-

industrial levels. They find limiting warming to 1.5◦C is necessary to keep sea level

rise, ocean acidification, species loss (both in the oceans and on land) and security of

food and water supply within safe limits. Modelled pathways staying within or very

close to 1.5◦C require reaching net zero emissions by 2050 with a 45% reduction in an-

thropogenic CO2 emissions from 2010 levels by 2030. This scale of reduction requires

large scale international change across all sectors. The UK has the 8th largest cumula-

tive carbon emissions by country [7] and as such has an even stronger responsibility to

rapidly reduce emissions than countries in the global south.

Reducing dependence on fossil fuels and moving to renewable energy generation

is a significant part of the transition to net zero. Most methods of renewable energy

generation are methods of electricity production. While the overall share of energy

provided by electricity in the UK was 17% in 2019 [10], this is forecast to increase

as technologies such as electric vehicles and the electrification of heat are more widely

adopted. Table 1.1 shows the lifetime carbon intensity of different electricity generation
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Table 1.1: Total lifetime carbon intensity estimates for electricity by generation type,
including direct emissions, infrastructure, and methane. From the IPCC AR5 report [1];
this was published in 2014 so technological improvements and decarbonisation of the
grid are likely to have decreased emissions further from these figures.

Technology Carbon footprint (gCO2eq/kWh)

Coal 740–910
Gas 410–650

Nuclear 5.5–26
Solar PV 18–180

Onshore wind 7–56
Offshore wind 8–35

Marine 5.6–28
Geothermal 6–79
Hydropower 1–2200

methods, and it is clear that coal and gas produce significantly more emissions per kWh

generated than other technologies. Wind, marine and nuclear show the lowest carbon

footprints and efficiency improvements in technologies since this data was published in

2014 may well lower these further. Nuclear projects, however, are significantly more

expensive than new wind power capacity (the 2021 strike price agreed for Hinckley point

C, the newest nuclear plant being built in the UK, is £106/MWh [11] whereas all the

strike prices in the latest wind Contracts for Difference round are below £50/MWh [12])

and marine energy technologies are not yet mature enough to be built at scale.

One of the primary benefits of renewable energy is its role in displacing energy

generation by fossil fuels and the associated effects not only on the climate but also on

health and wellbeing. Air pollution from fossil fuel-related emissions was responsible

for 3.61 million excess deaths worldwide in 2015 [13]. Reducing consumption of fossil

fuels also reduces demand on shipping: an estimated 40% of all goods transported

by the shipping industry are just fossil fuels for burning elsewhere in the world [14].

The shipping industry is itself responsible for 2.8% of global emissions [15], so simply

reducing transport of fossil fuels would have a significant impact on global emissions

even before a reduction in emissions from the end fossil fuel use is taken into account.

Fossil fuels also have wide ranging negative effects on ecosystems, from both routine

pollution for example groundwater contaminated by coal mines [16] and from one-off
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events like the Deepwater Horizon oil spill which caused serious harm to all species in the

area, from ‘unprecedented’ deaths in marine mammals to record sea turtle strandings

and developmental abnormalities in fish, with both deep and shallow water coral reefs

and more than 2100km of coastal habitat also affected [17]. Aerosol pollutants from

burning of fossil fuels also disrupt hydrological cycles. The complete phase out of fossil

fuels is estimated to increase rainfall by up to 70% in regions of India, up to 30% in

China and 40% over the Sahel, giving additional drought resilience and agricultural

benefits for large portions of the global population [13].

In recent years there has been growing public awareness and momentum behind

environmental campaigns, not least from the ‘Fridays for Future’ protests started by

Greta Thunberg in 2018. Around 100,000 people attended the climate march in Glas-

gow during COP26 [18] and subsequent campaigning led to oil giant Shell dropping out

of plans to drill in the Cambo oil field, with the project now put on hold [19].

While more and more renewable generation is being commissioned and built, this

alters the power system: the variability of renewable-based power production impacts

operators’ ability to manage the power system effectively [20], where many operational

decisions rely on accurate forecasts [21]. As the proportion of energy generated from

renewable sources increases, forecasting has become a ‘central tool’ [22] for the oper-

ation of the power system and trading of energy [23], with applications ranging from

unit commitment and economic dispatch to management of grid constraints to alloca-

tion of reserves [22]. Wind energy is beginning to offer other ancillary services beyond

power production, for example frequency response [24] and even black start capabil-

ity [25]. However, there are still challenges and changes needed to allow operation of a

grid with near 100% renewables. Four main conditions were outlined by Holttinen et

al. [24]: system stability, system adequacy, revision of reserves and the balancing sys-

tem (including ‘continual improvemfis aents’ to forecasting methods for renewables),

and finally development of grid infrastructure. Along these lines, forecast accuracy

measured through Mean Absolute Error (MAE) has been improving for all horizons

over the last decade [24].

One system where forecasts are required in the UK is the Balancing Mechanism
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(BM), the system operator’s system for ensuring supply and demand balance and that

grid constraints are respected. Wind farms over a certain capacity are required to

participate in the BM and must submit a ‘Physical Notification’ (PN) of their power

output to the Electricity System Operator (ESO) for every half-hour settlement period

for the next 24 hours. The forecast value for each settlement period may be updated up

to one hour before it begins. Thus the production of very short-term forecasts up to 3

hours ahead (when including time to generate and accept new values) are an obligation

for these sites. Currently, generators are “required to use reasonable endeavours to

ensure that the data held by the ESO . . . is accurate at all times” [26]. However, there

is no defined maximum error stipulation, although it is possible that poor forecasts

could incur fines from the regulator OFGEM and preclude sites from providing other

ancillary services in the future. Forecast performance from BM data shows a bias

to overforecasting at many sites (Figure 1.1), possibly due to financial compensation

incentives during curtailments: curtailed sites are paid for the difference in energy

between their PN value for power and curtailed power. The ESO also produces its own

in-house forecasts with incentive from OFGEM to minimse the error of these.

1.1 Research motivation, aims and objectives

There are key qualities a forecast must have in order to be adopted as a useful source

of information about the future. Three main properties are:

• functional: able to produce forecasts under real-life operating conditions

• accurate: forecast skill is high enough to warrant its use, including skill at the

model’s worst-performing times

• relevant: the quantity that is being forecast gives useful information for the given

application - generally that means information that allows subsequent decisions

to be made.

This thesis identifies times or applications where forecasts within the wind industry

might not meet some of these criteria, and aims to address current issues by proposing
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Figure 1.1: Difference between forecast power (PN) and metered power for a selection
of sites participating in the UK BM. Data from Elexon (bmreports.com), covering
the time period January 2014–July 2016. Overforecasting is much more common than
underforecasting.

novel methods to improve the functionality, accuracy and relevance of forecasts. Ex-

amples of models that are not functional would include one that requires data that is

not available at the point a forecast is generated, or that takes longer to run than the

forecast horizon. A less extreme example would be a forecast where some of the data

is missing which may result in no value, or a nonsensical value, being returned by the

forecast model if not anticipated and addressed appropriately. This is very common

in live forecasting, but not often studied in detail in the academic literature. There

are many unavoidable data quality issues that may mean a forecast is not produced

or gives an unrealistic value, so these potential sources of error in the forecast must

be identified and methods put in place to avoid negative impact on the final forecast

6
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accuracy where possible. While continuous development of forecasting models has seen

improvement in forecast accuracy over the last decade [24], there can still be times

when forecast accuracy is lowered. This may be due to data quality issues, or at times

that are particularly difficult to forecast. Times of ramps, rapid changes in power, are

one such time that is difficult to forecast accurately. Furthermore, accuracy criteria

are often more stringent at times of larger financial risk (or reward). For example,

curtailment payments to wind farms through the UK’s Balancing Mechanism are pro-

portional to the difference between forecast power and the requested curtailment level.

Therefore, underforecasting at these times would reduce the payment the wind farm

receives. Large underforecasts, especially at times of high power when curtailments are

more likely, are therefore much less desirable than large overforecasts. It was deter-

mined from work in Chapter 3 that these types of forecast errors often occur at times

of upwards ramps, where the forecast ramp is slower or later than observed. Therefore,

methods to improve the accuracy of power forecasts around times of ramps is addressed

in Chapter 4. The final key forecast functionality is relevance. This is particularly ap-

plicable when generic forecasts are used, rather than a forecast tailored to the site and

specific purpose. For wind energy, standard publicly available weather forecasts display

ground-level wind speeds but turbines can experience quite different wind speeds at hub

height, at the top of the tower nearly 100m high. Discussions with industry identified

on-site maintenance work as an area where a generic publicly available weather forecast

is often used. While this is an accessible forecast, it is not tailored to the exact wind

farm location or the purpose. Maintenance activities often set a safety limit on wind

speed and so it is the amount of time below the safety limit, rather than the exact

wind speed, that is crucial for these decisions. Thus, a gap in the currently available

forecasting products was identified and Chapter 5 addresses this.

1.2 Outline of approach

The first identified motivation to address is the treatment of missing data in the fore-

cast generation process. To understand this problem, real-world data was analysed

for amounts and type of missing data, including missing data patterns and the rela-
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tionship between missing points and other values in the dataset. Three different areas

where missing data occurs were identified and missing data patterns were replicated in

a complete dataset to enable mitigation approaches to be tested and compared against

forecasts made with ‘perfect’ data.

To address forecast accuracy at critical times of ramps in power, a combination ap-

proach was developed that takes not only individual forecasts from different models

but also explicit information about ramps through a forecast ramp rate feature. This

method was tested for its ability to forecast ramp events as well as its overall skill as a

power forecast.

Finally, wind turbine maintenance scheduling was identified as an application currently

lacking forecasts of relevant quantities. A new index related to useful hours within

weather windows was proposed and forecasts of this quantity produced to allow equip-

ment hiring decisions on these timescales. This is demonstrated through a case study

for crane hire.

1.3 Overview of operational forecasting system at Natural

Power

Informed by my PhD work, Natural Power have updated their operational forecasting

system with the aim of providing increased accuracy in the very short-term forecasts

that form part of the PN submission. As a forecast provider for a group of sites, they

were able to implement a spatio-temporal model to take advantage of information from

multiple locations. My work on missing data informed the input features used, strength

of regularisation and methods to accommodate for missing data built into this model,

taking into account the logistical constraints (server space available and other data

feeds besides power). I also suggested inclusion of a lognormal transform to reduce the

forecast bias at high and low powers seen in the initial model.

8
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1.4 Thesis structure

Chapter 2 presents a literature review of very-short-term methods for wind and so-

lar power forecasting, drawing comparisons between the two fields and ending with a

case study benchmarking contrasting methods and setting out good practice in forecast

evaluation. Chapter 3 analyses the properties of missing data relevant for wind power

forecasting and proposes methods to mitigate this. Chapter 4 sets out a method for

forecast combination tailored to improve power forecasts around times of ramps. Chap-

ter 5 details a site- and task-specific metric for use in maintenance scheduling when

operations are subject to wind speed safety limits. Finally, Chapter 6 summarises the

conclusions from this work.
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Chapter 2

Review of wind and solar

forecasting literature

The contents of this chapter are reproduced from the published literature review, ‘A re-

view of very short-term wind and solar power forecasting’ in Renewable and Sustainable

Energy Reviews [3].

Abstract

Installed capacities of wind and solar power have grown rapidly over recent years, and

the pool of literature on very short-term (minutes- to hours-ahead) wind and solar

forecasting has grown in line with this. This chapter reviews established and emerging

approaches to provide an up-to-date view of the field. Knowledge transfer between wind

and solar forecasting has benefited the field and is discussed, and new opportunities

are identified, particularly regarding use of remote sensing technology. Forecasting

methodologies and study design are compared and recommendations for high quality,

reproducible results are presented. In particular, the choice of suitable benchmarks and

use of sufficiently long datasets is highlighted. A case study of three distinct approaches

to probabilistic wind power forecasting is presented using an open dataset. The case

study provides an example of exemplary forecast evaluation, and open source code

allows for its reproduction and use in future work.
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2.1 Introduction

The increasing penetration of wind and solar energy in power systems around the

world necessitate new ways of operating energy systems and markets. The variability

and limited predictability of the wind and solar resource introduces uncertainty for

planners and operators on all time scales, from seconds and minutes ahead, to decadal

variability [27,28] and climate change [29].

Forecasting plays a central role in minimising this uncertainty on operational time

scales from real-time to a few days ahead [22]. Quantifying uncertainty is also nec-

essary for ‘optimal’ decision-making and risk management. Forecast uncertainty is

quantified in probabilistic forecasts which most commonly take the form of predic-

tion intervals, predictive probability density functions (univariate or multivariate), or

trajectories/scenarios, though other formats exist.

It is important to distinguish between short-term forecasting, with lead-times of

hours to days ahead, and very short-term forecasting, with lead-times of minutes to

hours ahead. The World Meteorological Organisation defines the very short-term range

as up to 12 hours ahead [30], but in energy forecasting the distinction is generally

methodological rather than at fixed lead time although neither convention is consis-

tently applied. The term nowcasting is also used to refer to very short-term forecasting

in the meteorology community, but here we will use very short-term throughout for

consistency. The main source of predictability on short-term time scales comes from

Numerical Weather Prediction (NWP), whereas the main sources of predictability on

very short-term time scales are recent observations. NWP is not well suited to very

short-term forecasting because of the time required for data assimilation and compu-

tation, and additional uncertainty introduced by weather-to-power conversion which is

greater than natural variability on very short-term time scales. For the purposes of this

review, which focuses on very short-term forecasting, we are concerned with forecasting

methods based on recent observations and timescales where NWP adds limited or no

value.

Wind and solar forecasts of the minutes and hours ahead are required by power
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system operators to manage the balance of supply and demand, and electricity market

participants to trade energy. For instance in Denmark, the country with the highest

penetration of wind energy in the world, the Transmission System Operator’s forecasts

“are in five minute resolution and are updated every few minutes using all the latest

information available” [31]. While countries such as Denmark are employing best prac-

tices such as leveraging real-time power production data, novel methods for producing

increasingly accurate forecasts are continually being proposed, new sources of obser-

vational data are becoming available, and new ways of sharing data between parties

are emerging. Current large collaborative forecasting projects include the European

Smart4Res project [32] and several studies commissioned by the US Department of

Energy’s Solar Forecasting 2 program, such as the open-source solar forecast arbiter

for forecast evaluation and benchmarking [33]. This article reviews these advances be-

yond current state-of-the-art operational forecasting systems and discusses their relative

merits and potential evolution.

The expansion of wind and solar energy and research necessitates regular reviews

and synthesis of advances, yet despite sharing many common features, wind and so-

lar forecasting are often reviewed in isolation, perhaps a result of the relatively later

development of solar power forecasting compared to wind [34]. Both wind speed and

solar irradiance exhibit spatio-temporal correlation as a result of their dependence on

large-scale meteorological phenomena. As such, some methods are effective for both

wind and solar applications, such as time-series methods supplemented with exogenous

inputs or multi-variate extensions which capture spatial correlations between multiple

sites. In the recent history of very short-term wind and solar power forecasting one

field has learned from the other. In this paper we identify potential opportunities for

further advances in the same vein.

Both solar power forecasting [35–40] and wind power forecasting [41–45] have been

reviewed recently individually. However, very short-term horizons have received little

attention in these reviews and neither have advances in very short-term wind and solar

forecasting been compared. There are only two exceptions we are aware of: Sweeney et

al. [46] who consider wind, solar and hydro power together and discuss very short-term
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lead-times briefly, but do not systematically review the field and instead provide a vision

for renewable energy forecasting in the future; and Barbieri et al. [47] whose primary

focus is very short-term solar but who also briefly mention transferable approaches

from wind literature.

Previous reviews provide detailed analysis of various modelling approaches; for solar

forecasting, Antonanzas et al. [35] examine several approaches to persistence models

for solar forecast benchmarks, Inman et al. [37] cover clear sky models in depth, and

Ahmed et al. [39] include particular detail on deep learning models and sky imaging.

There have been several reviews of combined, or hybrid, models [41,44,48] while Giebel

et al. [42] provide an overview of the history of very short-term forecasting as well as

models using NWP inputs. Jensen et al. [49] detail a wide range of solar evaluation

metrics, including for event-based forecasts, e.g. forecast performance for ramps. Foley

et al. [43] give average values for error metrics for different forecast horizons. Current

state of the art and future directions suggested include greater prevalence of probabilis-

tic forecasting [35,50], increased focus on the economic impact of forecasts on decision

making [35, 49], weather classification or regime-based approaches [39, 46], and use of

high resolution — including turbine level — data and data marketplaces [46]. Yang et

al. [40] use a text mining approach to map forecasting and model terminology, before

also highlighting six key recent works. Inman et al. [37] identify the forecasting of

ramp events as a particular challenge for renewable energy integration in general. Key

recommendations from these reviews include the need for a general database of geo-

graphically dispersed sites to test models on [51], consistent benchmarking approaches

across research papers [36] and common evaluation metrics [35]. Lauret et al. [52]

recommend the Continuous Ranked Probability Score (CRPS) score for probabilistic

forecast evaluation.

This review proceeds with a description of the systematic literature search that has

been performed and a high-level bibliometric analysis (Section 2.2), after which very

short-term solar (Section 2.3) and wind (Section 2.4) power forecasting are reviewed

before a summary of common research methods and comparisons between the wind and

solar literature are drawn in Section 2.5. While this review is by no means exhaustive,
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it is intended to give an overview of the variety of approaches that have been proposed

in recent years. A case study based on an open dataset is presented in Section 2.6 in

order to reproduce and compare three distinct classes of statistical model commonly

employed for wind and solar forecasting but that are seldom compared to one another.

The findings of this review and advances in very short-term wind and solar power

forecasting are discussed in Section 2.7 which also speculates as to the direction of

future research in this area.

2.2 Summary of papers reviewed

We used Web of Science to conduct a literature search1, up to and including the end

of 2020, for publications on short-term and very-short-term wind and solar forecasting.

The number of works in this area has clearly been increasing substantially throughout

the last decade, in line with the increases seen in both wind and solar generation

globally (Fig 2.1). This suggests the importance of forecasting these variable generation

technologies increases as their penetration on the grid increases [42].

For short-term methods where lagged on-site measurements are the predominant

data input, models often fall into two broad types: traditional time series regression,

and Machine Learning approaches. Of the papers examined in this review, we found

24% included some type of regression or time series model, and 62% included a Machine

Learning (ML) model. A list of all papers included is given in Table A.1 of Appendix A.

Figure 2.2 shows a general summary of forecasting approaches across the literature.

The subsequent sections 2.3 and 2.4 cover the top 50 most cited results stratified

by the number of publications in each year and selected by the Web of Science search1.

This selection has been limited to publications in 2014 or later, as the aim of this

work is to focus on recent trends and developments in wind and solar forecasting. The

literature from this search has also been supplemented with other references and works

already known to the authors.

1The search query used was ((TS=(((”wind speed” OR ”wind power” OR ”solar” OR ”renewable
generation”) NEAR/5 (”forecast*” OR ”predict*”)) AND (”short term” OR ”short-term” OR ”very-
short-term”) NOT( ”hydro” OR ”thermal”)))) AND LANGUAGE: (English)
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Figure 2.1: Forecasting publications broken down by wind and solar as a stacked
bar chart, also plotted with global energy generation through time. Generation data
provided under CC BY 4.0, Hannah Ritchie & Max Roser, ourworldindata.org/

renewable-energy.

2.3 Solar power forecasting

Solar projects tend to have smaller installed capacities relative to wind projects: in the

UK as of May 2020, the average solar installation has a capacity of 1.29 kW, with only

1.8% of these exceeding 4kW [53]. Of the larger UK projects requiring planning appli-

cations, the average installed capacity across 1171 projects was 7.2 MW, compared to

an average of 29.6 MW across 778 wind projects [54]. As such, solar generation tends

to consist of a greater number of smaller projects than wind. Sweeney et al. [46] note

that decentralised small scale energy sources often contribute to localised grid conges-

tion problems, increasing the importance of accurate forecasts for grid management.

Very small solar systems such as household installations are often ‘behind-the-meter’,

with no power production data available to forecasters and as such are often instead

incorporated in ‘net demand’ (rather than power production) forecasts [35].

15

ourworldindata.org/renewable-energy.
ourworldindata.org/renewable-energy.


Chapter 2. Review of wind and solar forecasting literature

Forecasting
models

Imaging/Sensing Statistical Machine Learning Decomposition

Sky
Camera

Satellite
Data

LIDAR/
Dual

Doppler

Time
Series/AR

(Sparse)
VAR

Markov
Chain

Analog
Ensemble

Neural
Networks

Support
Vector

Machine

(Boosted)
Decision

Tree

Gaussian
Processes

Empirical
Mode

Variational
Mode

Wavelet

Fourier

Figure 2.2: Diagram of forecasting model techniques. Neural Networks include ELM,
RNN, CNN, LSTM etc; Decision tree methods include Random Forest and Gradient
Boosted Trees. Methods may also be implemented in an adaptive or online frame-
work, or include regime switching. They may also be used for probabilistic as well as
deterministic forecasts.

Solar power production follows strong seasonal and diurnal patterns due to the

changing path of the sun, which defines the maximal possible irradiation for a given

location, time and date. This is known as ‘clear sky’ irradiation, which can be well

defined by various models [37]. In addition, the passage of clouds create shadows that

introduce stochastic variability in the power time series and is much more challenging

to predict [35]. Atmospheric aerosols may also reduce surface irradiation and therefore

power output. This may be caused by natural phenomenon such as salt from sea spray,

dust storms and soot from wildfires, or man-made pollution. A case study in West

Africa found a reduction in power in the range 13-37% due to dust aerosols [55]. The

physical condition of the panels can also affect production. For example, accumulation
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of dirt and dust have been shown to reduce energy production by 2-6%, and snow cover

can also reduce power output completely if thick enough [56].

2.3.1 Image-based methods

Imaging techniques may be applied to either ground-based systems or satellite images

to determine and predict future cloud cover, used in turn to forecast solar irradiance

or solar power directly. Ground based sky imaging has mainly been used for high

temporal resolution forecasts up to 30 minutes ahead. For a cloud at an altitude of

2km and a speed of 10 ms−1, this represents a field of view of 154◦. The focus of

this method on very short time horizons is two fold: field of view and cloud formation

and dissipation limit the skill of this method out to longer horizons [57], while it also

fills a gap that several other data sources don’t currently have the spatial or temporal

resolution to match [58] (satellite images generally have a 15 minute or slower update

time for example). Methods using propagation of current observed cloud conditions are

common such as cloud motion displacement [59] or determination and propagation of

shadow position using cloud base height measurements in conjunction with images [60].

In this work clouds were also classified by type, although persistence still outperformed

this method at a horizon of 25 minutes. Pitfalls of sky imaging systems may include

errors due to perspective, image saturation in pixels close to the sun and soiling of the

cameras [40]. There is also additional expense associated with maintaining a camera

system on site.

Lago et al. [61] train an irradiance model using satellite and weather forecast data

as inputs and ground measurements of solar irradiance at a group of sites in the Nether-

lands as the target variable. The learned model may then be used more generally at

other sites without the need for ground measurements, and in fact this generalised

model also outperformed models trained with local ground data. This approach is

perhaps more suited to forecasting a group of sites rather than a single location, as a

small subset of sites that do have ground-based measurements is also needed for model

training. It would be interesting to test the generalisation of this approach to other

climate regimes and more geographically dispersed sites. Harty et al. [62] also use both
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satellite and NWP data. However, they take a slightly different approach, producing

cloud motion vector fields from both information sources and combing these via ensem-

ble Kalman filter. Their method improves upon using a single information source for

intra-hourly forecasts for a city region. Bellinguer et al. [63] modelled spatio-temporal

dependencies, with different models fitted conditional on NWP geopotential height.

A combination of satellite data, where the 10 most informative pixels are chosen via

mutual information, and on-site power measurements are used as inputs. Carriere et

al. [64] note that different information sources tend to be most beneficial at different

forecast lead times, so proposed an approach including several information sources. Ir-

radiance time series from satellite data, NWP forecasts and lagged on-site power and

temperature are supplied to the model, leading to good performance across a range of

horizons up to 36 hours ahead. Non-parametric probabilistic forecasts were produced

through an analog ensemble, using sets of similar past observations.

2.3.2 Probabilistic methods

Probabilistic methods allow quantification of uncertainty in the forecast and can facili-

tate proper risk analysis in applications. However, only a portion of the solar forecast-

ing literature considers probabilistic forecasts and within this there is still sometimes a

focus on general prediction intervals rather than full predictive densities.

Prediction interval approaches include a method using the variability of a time

series about its mean [65]. Alternatively an ‘uncertainty metric’ may be determined

from ensemble forecasts for points in a reference dataset, which is then used to look

up the expected error (then used as a prediction interval) using a nearest neighbours

approach [66].

Full density forecasts may be parametric, where the predictive distribution is spec-

ified by a small number of parameters (e.g. the mean and variance of a Gaussian

distribution), or non-parametric with no assumed distributional shape. Golestaneh

et al. [67] find that solar forecast error distributions are not easily fitted by any com-

mon parametric distribution, so propose non-parametric quantile forecasts using lagged

power alongside meteorological measurements in an improved Extreme Learning Ma-
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chine (ELM) model. This was demonstrated on a high resolution (1 minute) dataset

which may not always be available. Gaussian process regression has also been proposed

with an extension to give less weight to the observations that were more likely to be

outliers [68].

2.3.3 Machine learning

Various machine learning techniques have been proposed for solar forecasting as they

can allow for nonlinear relationships [69, 70] and learn from data without the need to

make assumptions about the relationships between variables. For the very short term

(up to one hour ahead), Rana et al. [71] showed that on-site power measurements can

provide skilful forecasts and NWP inputs (solar irradiance, temperature, humidity and

wind speed) don’t further improve forecast skill. They used an ensemble of Neural

Networks, which outperformed a Support Vector Regression (SVR) model. In other

work, Sivaneasan et al. [72] found that feature engineering of a ‘cloud cover index’ from

humidity and rainfall measurements and use of previous forecast errors as Neural Net-

work (NN) inputs showed improved performance compared to a NN trained without

these. Long Short-term Memory (LSTM) networks are a common choice for time series

problems; Lee et al. [66] demonstrate their use with the dropout technique to produce

ensemble forecasts. Alternative techniques to generate an uncertainty interval were

also compared in this work. ELM models may overcome problems of overfitting and

local minima associated with NN approaches. To reduce computational complexity,

Majumder et al. [69] used a low rank kernel ELM along with variational mode de-

composition to address the nonstationarity of solar time series. This model was tested

across a range of horizons (15 minutes to 1 day ahead). In other work using a cost

function based on generalised correntropy for the ELM improved performance, possi-

bly due to increased robustness to outliers [73]. Tang et al. [74] also used an ELM

to forecast solar power, in combination with pre-processing of inputs using an entropy

method. The probabilistic approach of Golestaneh et al. [67] is also based on ELM and

performs favourably in comparison to both persistence and climatology as well as other

ELM variants.
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Abuella et al. [75] used an ensemble of SVR models to generate day-ahead fore-

casts from NWP data; the 24 different forecasts are then combined to give the final

probabilistic forecast via a Random Forest (RF). This approach shows improvement

over individual models and could be appropriate for combining shorter-term forecasts.

Eseye et al. [76] also used NWP variables as inputs to an Support Vector Machine

(SVM) model, additionally applying wavelet decomposition. However, the number of

decomposed series were chosen based on previous literature rather than optimised on

the given data.

For models with multiple data processing steps as well as model fitting, it may

be advantageous to optimise all hyper-parameters for all parts of the model process

simultaneously: Li et al. [77] found a 53% improvement just by using simultaneous

optimisation.

Spatio-temporal relationships have been considered by including irradiance mea-

surements from nearby sites as forecast inputs [70]. Not only is the proposed model

shown to outperform Autoregressive (AR) methods, but boosted regression trees out-

perform both NN and SVR models. These models were developed only on times where

clear sky irradiance exceeded a threshold, limiting their applicability to forecasts for

dawn and dusk times.

2.3.4 Other methods

There has also been focus on utilising spatio-temporal dependencies between sites for

solar forecasting. Agoua et al. [78] propose a Vector Autoregressive (VAR) model

normalising the input power time series by simulated power to make the time series

stationary. They find Least Absolute Shrinkage and Selection Operator (LASSO) is

the most effective variable selection procedure, and that conditioning on surface wind

speed also adds skill to the forecasts.

The Sun4Cast system developed in the USA utilises several data sources and diverse

models before producing a final forecast through a weighted combination [79]. The very

short-term models include a sky imaging system, regression tree on pyranometer data,

satellite imaging with advection and an NWP model tailored to solar forecasting with
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a high refresh rate [80]. They found benefits from each model for different lead times

or climate scenarios, giving an effective combined model.

Several of the studies mentioned in previous sections may also be classified as hy-

brid methods. The term ‘hybrid forecast’ is often used to refer to methods where more

than one forecasting method is combined into a final forecast: this may be simply

through combining forecasts from different models [66, 75], applying some form of de-

composition to the original time series and fitting different models to each resulting

series [76], or where multiple different input data sources are processed separately be-

fore being combined [62, 80], for example satellite data and irradiation measurements.

Hybrid methods often outperform a single model method, especially where a diverse

set of individual models are combined. A full recent review of hybrid models for solar

forecasting is given by Guermoui et al. [48].

2.4 Wind power forecasting

The very nature of the wind presents forecasting challenges: the state of the atmo-

sphere can never be fully known, meaning wind speed is treated as a stochastic process

affected by many factors, from large scale weather systems down to local terrain. Of

course the variable of interest in forecasting is often not wind speed but power. The

relationship between wind speed and power is dynamic and nonlinear [20] which adds

complexity and makes forecast power particularly sensitive to wind speed in between

cut-in and rated wind speed. Wind power forecast errors are typically heteroscedastic

and auto-correlated. Furthermore, production is bounded between zero and the rated

capacity of a turbine or farm. These properties violate common assumptions in sta-

tistical modeling, such as independent and identically normally distributed errors, and

should receive careful treatment in sophisticated forecasting methods.

Wake effects can influence the power output of turbines in the ‘shadow’ of others

and this is highly related to wind direction. A power drop of around 30% of capacity

was seen between the first and second row at Horns Rev when the wind direction is

such that a turbine is directly behind another [81]. In cold climates, icing can reduce
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power output by as much as 40% [82]. Losses in operating efficiency over time could

also affect forecast accuracy: turbine aging is estimated to cause a typical decrease in

output of 0.2% per year in the first 5 years [83], although this also includes losses due

to increased downtime. Data feed quality also affects the performance of models where

site measurements are used as model inputs [4].

2.4.1 Regression-based methods

Past on-site measurements are widely collected by wind farm owners and are often valu-

able inputs when forecasting a few hours ahead. Simple time series methods based on

Autoregressive moving average (ARMA) models are well established [42] and still form

the basis of ongoing research. Zhou et al. [84] showed that a dynamic combination of an

Autoregressive integrated moving average (ARIMA) model with recent measurements

as inputs and an AR model with inputs from NWP models is an improvement over

either individual model. Other approaches using Autoregressive models in conjunction

with other models are detailed in Section 2.4.4 on hybrid methods.

VAR models have been proposed to capitalise on spatial dependencies between geo-

graphically dispersed sites; since the number of model coefficients grows with the square

of the number of sites, sparse models have been employed to reduce computational time

and model complexity while improving forecast performance. For the case study pre-

sented by Cavalcante et al. [85], a standard VAR model with no regularisation is shown

to give improvement of around 5.9% over an AR model for a 2-hour ahead forecast,

while introducing sparsity through LASSO regularisation gives a further 1% improve-

ment. Grouping the LASSO penalty by whether an input is a lag of the predictor or

not (i.e. diagonal vs off-diagonal elements) seemed to give the best results. An adap-

tive LASSO estimation algorithm is proposed by Messner et al. [86] to track potential

changes in the VAR coefficients in an online fashion, yielding improvements relative to

the equivalent static model for 15-minute resolution data and lead-times greater than

30-minutes.

Dowell et al. [87] developed probabilistic forecasts based on the logit-normal dis-

tribution in a VAR framework for 5-minute ahead wind power forecasting; training on
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a window of most recent data allowed for changes in the sparsity through time. In

a deterministic setting without the logit-normal transformation, and based on hourly

mean powers, this method was outperformed by the LASSO-VAR approach. Correla-

tion between farms has also been used to determine the sparsity of a VAR model [88],

where the overall sparsity and number of non-zero coefficients for each farm can also

be controlled. This was shown to outperform a standard LASSO-VAR model, but not

compared against the sparsity structured LASSO in [85].

Capturing changes in VAR coefficients over time has been considered in adaptive

frameworks where changes are tracked in an online setting [85, 87]. These adaptive

methods improve over static equivalents, but inherently track changes with some lag and

smoothing. Explicitly conditioning VAR coefficients on large-scale weather patterns

was found to improve wind speed predictions from 1–6 hours ahead [89] but has not

been applied to wind power.

For sites that wish to benefit from the improvements of spatio-temporal forecasting

without revealing potentially commercially sensitive information, privacy preserving

approaches have been developed. These may be grouped into three broad categories,

each with their own disadvantages [90]: data transformation that may lead to a trade-off

between privacy and model accuracy; multi-party computation [91] which may require

a central coordinator and where similarity between model inputs and targets may lead

to a breach in data confidentiality, or where using encryption techniques significantly

increases computation time; and decomposition into parallel sub-problems which re-

quire iterative solutions - and each iteration progressively reveals more information to

the participating data owners.

2.4.2 Machine learning

As with solar forecasting, various machine learning techniques have been applied to

very short-term wind power forecasting. A comparison of SVR, decision trees and

Random Forest models found Random Forest to give the lowest mean absolute per-

centage error [92] although no feature engineering was explored, which has been shown

to play a significant role in good model performance in other works [93]. Correction of
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the output of an SVM using a Markov Chain showed improvement over a basic SVM

approach [94]. The probabilistic output of a Markov Chain appears to be discarded

in favour of a point forecast with ‘fluctuation intervals’. A combination of two kernels

(wavelet and polynomial) in an SVM model improved wind speed forecasts relative

to the use of just a wavelet kernel [95]. The recent trend in wind speed (increasing,

decreasing or stable) was also used to train separate models for these regimes, giving a

slight improvement over a single model for all conditions.

Wang et al. [96] applied a multi-objective approach to NNs, having separate ob-

jective functions for bias and variance. Similar multi-objective approaches have also

been used on decomposed time series and are detailed in the section on decomposition

methods [97,98]. Khodayar et al. [99] used autoencoders for unsupervised feature learn-

ing and ‘rough’ neurons to better process noisy data, showing superior performance to

other NN models. To its credit, forecast evaluation is based on a full year of out-of-

sample data using the open source Western Wind dataset [100]. Neural Networks were

also used by Rodŕıguez et al. [101] for 10-minute-ahead microgrid control.

Graph Neural Networks were used along with an LSTM for feature extraction to

identify and utilise spatio-temporal relationships between sites by Khodayar et al. [102],

giving improvement over both persistence and other ML benchmarks. Inclusion of other

metrics such as maximum observed error and correlation matrix of forecasts as well as

usual average error metrics enhanced the analysis in this work, and the use of an open

dataset is also a good step towards replication and comparison of research methods.

Hossain et al. [103] also used convolutional NNs and Gated Recurrent Unit (GRU)

layers for feature selection and processing of multiple input data sources respectively.

They found improvement over other ML approaches at two case study sites.

De-noising of wind speed time series using Singular Spectrum Analysis (SSA) along

with a fuzzy Neural Network model outperformed ARIMA and other NN implementa-

tions for a group of sites in China [104]. A novel neighbourhood LSTM network was

proposed by Zhang et al. [105] and claims to take causality, rather than just correlation,

between variables into account, outperforming other ML methods in the study. Chen

et al. [106] compared artificial intelligence methods with Autoregressive models, finding
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that both an artifical Neural Network and an Adaptive Neuro-Fuzzy Inference System

(ANFIS) marginally outperform an ARMA model for 10 minutes ahead forecasts, but

that the ARMA model has superior performance for hour-ahead forecasts.

Many of the hybrid and decomposition approaches detailed in the following sections

also make use of machine learning models.

2.4.3 Decomposition methods

Decomposition methods are based on the premise that the wind speed or power time se-

ries contain different frequency signals with different characteristics, and that modelling

each of the decomposed series separately can lead to overall improvement in forecast

skill [107–109]. Empirical Mode Decomposition (EMD) is based purely on the data and

splits the original time series into several Intrinsic Mode Functions (IMFs), which can

each have time varying frequency. As such, this method is applicable to nonlinear and

non-stationary data [110].

Ensemble EMD, adding a noise term to the original signal before the decomposi-

tion, may be used to minimise mode mixing between the IMFs. Using ensemble EMD,

Zhang et al. [109] applied an ANFIS model to those IMFs classed as ‘nonlinear’ and

a seasonal ARIMA model to those classed as ‘periodic’. However, the judgement of

which model to apply seems to have been made manually which may not be appropri-

ate for real-world applications. Similarly, IMFs may be classed as high or low frequency

signals, with different models applied to each; Liu et al. [107], used an LSTM network

for low frequency signals to capture longer-term trends, with an Elman NN for higher

frequency IMFs. Similarly, a combination of ARIMA and NNs has been demonstrated

to fit probabilistic forecasts to decomposed series [111]. An alternative approach fit-

ted multiple different NNs to each IMF, with the final forecast for each IMF being a

weighted combination of these [112].

To reduce the number of models estimated, Lu et al. [108] used permutation entropy

to group similar IMFs. An SVM was then used to forecast each series, outperforming

both methods with no decomposition and those with decomposition but not using the

permutation entropy approach. Decomposition has been combined with multi-objective
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optimisation for both accuracy and stability. This has been implemented with both

Elman [97] and wavelet Neural Networks [98]. In both works the proposed methods

outperformed single objective models.

Wavelet decomposition also results in the decomposition of a time series into multi-

ple signals with different typical frequencies; it was found that further decomposing the

highest frequency of these series improved forecasts [113]. Variational Mode Decom-

position (VMD) is another decomposition technique, where each mode has a limited

bandwidth. Zhang et al. [114] found this outperforms EMD for the sites analysed.

2.4.4 Hybrid (combination) models

Hybrid models are based on the premise that a combination of several forecasts from

different models, or where models use different information sets as inputs, commonly

outperform a single model [115]. This does rest on the assumption that no model is the

true representation of the underlying data generating process, as this single model, if

known, would outperform any combination of ‘misspecified’ forecasts [116]. However,

in many ‘real-life’ applications, either the true process is not known or no individual

forecaster or model has access to the complete information needed to generate the

‘perfect’ model. This is certainly true of wind power forecasts, where the final value

of power output is the result of complex physical interactions to produce the wind

speed seen by the turbine, as well as the performance of the individual turbine and any

imposed control actions.

The simplest method of forecast combination is a linear weighting approach where

forecasts are combined as a simple weighted sum, often with the restriction of non-

negative weights that sum to one. This approach was used for the combination of an

SVM and radial basis function NN, where weights were found via forecast correlation

with the actual time series for four different wind speed regimes for each month [117].

While specifying the model weights according to a correlation measure eliminates the

need for estimation of the weights as free parameters, it may not guarantee the optimal

combination.

Xiao et al. [118] used linear weights to combine five different models, with the
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weights optimised both by minimising forecast errors (‘traditional’ approach) and using

a particle swarm optimisation. Including all five individual models in the final combi-

nation consistently gave best results as opposed to dropping some model(s) completely,

with the particle swarm optimised weights outperforming the traditional approach for

this case. Zhou et al. [84] found improvement using a small sliding window of previ-

ous forecast errors to adaptively combine forecasts, although only linear ARIMA type

models were considered.

Nonlinear combination of an ensemble of neural network forecasts was achieved by

a genetic programming algorithm [119]. Both lagged power measurements and NWP

variables were used as inputs for one hour ahead forecasts, with feature selection to find

the subset of ‘informative’ inputs although the results of this were not reported. Ouyang

et al. [120] takes a slightly different approach, determining significant input variables

by Granger causality and building a separate univariate model for each of these. A

multilayer perceptron was found to be best for combining the univariate predictions in

the second stage of the model, and outperformed multivariate models. Lin et al. [121]

proposed a probabilistic forecast combination method, also using a weight coefficient for

each model and combining both parametric and nonparametric forecast distributions.

It is based on open data from GEFcom2014 [122]. Deterministic forecasts from a range

of ML models have also been used as inputs for probabilistic combined forecasts [123].

While none of the individual models showed improvement over persistence for 1 hour

ahead forecasts, the final combined model gave a significant (30%) improvement and

beat persistence at all sites tested.

2.4.5 Probabilistic methods

A quantile loss function with an LSTM network was used to generate interval fore-

casts [124]. Attention mechanisms for automatic weighting of input features and ex-

tracting trends through time appear to improve the sharpness of the forecasts.

Jiang et al. [125] used separate objective functions to maximise the interval cover-

age and minimise the interval width of a forecast power interval independently. This

allows the user to choose from a set of pareto-optimal solutions according to their pre-
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ferred trade-off between coverage and interval width. A deep learning approach using a

convolutional Neural Network was found to outperform persistence and other shallow

networks across seasons, quantile levels and for a wide range of forecast horizons [126].

A Markov Chain (MC) approach where transition probabilities between discrete

power levels are modelled gives probabilistic forecasts without assuming a distributional

shape [127]. A large number of power levels may lead to transition probabilities of zero

in this method simply because they are not observed in the training data; a Bayesian

approach where prior transition probabilities can be specified would mitigate this.

The Weibull distribution is commonly used to model wind speed distributions;

Bracale et al. [128] propose a mixture of two Weibull distributions to allow for bimodal

distributions, fitting the mean with an ARIMA model and the remaining parameters

through Bayesian inference. This approach outperformed both persistence and single

distribution models for hour ahead forecasts.

The point forecast accuracy of an LSTM and the good probabilistic reliability of a

Gaussian Process regression model were combined and found to outperform other time

series methods both on point forecast accuracy and probabilistic performance [129].

2.4.6 Turbine-level data and remote sensing

Wind farms comprise multiple, sometimes hundreds, of individual wind turbines, form-

ing a hierarchy which may be exploited to improve forecast performance [130]. Fur-

thermore, if spread over a sufficiently large area, up-wind turbines may detect changes

in wind speed early enough to inform very short-term forecasts for the farm as a whole.

Similarly, measuring the wind speed up-wind of the wind farm using remote sensing

may provide valuable information for very short-term forecasts.

Jiang et al. [131] proposed use of time series from a neighbouring turbine and

selection of forecast inputs via grey correlation analysis to improve individual turbine’s

forecasts. Along with an SVM model and cuckoo search for parameter optimisation,

this does appear to improve forecasts relative to persistence, ARIMA and other SVM

models. This model doesn’t take account of the changing relationships between turbines

as wind direction changes, for which a dynamic model may be more suitable.
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A spatio-temporal Gaussian Process has also been proposed to predict turbine- and

farm-level power production for 1- to 12-hours ahead [132], improving over non-spatial

approaches to a comparable degree as spatio-temporal models on multiple wind farms.

To its credit, this study is based on an open dataset [133]. One month of training data

is used to train models on on a 6-hour rolling basis, which may impact some methods

more than others.

Turbine-level forecasting using inputs from similar turbines (found through cluster-

ing algorithms) and an LSTM network showed promise over other ML benchmarks for

90-minutes ahead forecasts [134], although there was no discussion of how this translates

to farm-level forecasts or consideration of hierarchical approaches for this.

Both lidar and radar technologies have been deployed at wind farms to measure

the wind resource, though forecasting has not been the primary motivation. Wurth

et al. [135] review minute-scale forecasting, with scanning lidar and radar identified as

promising technologies; while use cases exist they are underdeveloped. Valledcabres et

al. [136] use dual doppler radar observations of up-wind wind speed to improve 5-minute

ahead predictions of 1-minute mean power. Scanning lidar have also shown potential

to improve forecasts for minutes-ahead horizons [137] but suffer from data reliability

issues in fog or rainy conditions.

2.5 Research methods

While very short-term power forecasting is an evolving area, certain methods are ap-

plied more commonly for different lead times. This is partly due to physical restrictions

(for example cloud formation and dissipation and changes in wind direction limit the

predictability of image based methods to long horizons) but also due to practical limita-

tions, such as the latency in data assimilation, low temporal resolution, and low refresh

rate typical of NWP models. However, higher spatial and temporal resolution NWP

products are becoming available with hourly re-fresh rates, as provided by NOAA’s

High Resolution Rapid Refresh [138] and the UK Met Office’s UKV [139] and MO-

GREPS systems [140], for example. Higher resolution and refresh rates are offered by

emerging technologies such as Whiffle’s so called ‘finecasting’ approach and NOAA’s
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experimental ‘Warn-on-Forecast’ product [141]. These advances bring the ability of

NWP to model and predict physical processes to ever shorter lead-times where they

have not traditionally out-performed statistical methods based on local observations.

The two approaches are complimentary and state-of-the-art, site-specific forecasting

systems combine both NWP and statistical processing of live site data.

Imaging techniques for minutes-ahead applications have had greater attention in

the solar literature, whilst models including spatio-temporal relationships have focused

more on wind power forecasting. Methods producing a forecast as a probability dis-

tribution are becoming more widespread, although there is more focus on probabilis-

tic forecasting in the wind community. Solar forecasts sometimes only give a single

confidence interval which might not have a formal definition in terms of probability

coverage [65, 66]. Probabilistic forecasts are not always evaluated using probabilistic

metrics, or only for one interval rather than the whole distribution [68,72,124].

Confidence in the significance of results may be undermined by use of limited case

study datasets with a length of days to weeks rather than a year or more [142]. In

particular, results of model evaluation carried out entirely on data from one season

at one site may not generalise to other seasons, weather conditions or other loca-

tions. The shorter the dataset, the smaller the probability the data contains a wide

range of weather (cloud or wind) conditions; this increases the risk of poor perfor-

mance when forecasting for conditions not included in the training set. A long dataset

covering multiple sites would be expected to allow more robust conclusions on model

performance to be drawn. Use of small datasets is seen in both solar [72, 74, 77] and

wind [94,95,104,107,109,111,118,129,131] studies.

Papers on novel methods do not always include appropriate benchmarks such as

naive models or established best-in-class methods; we found both solar and wind papers

which only compare models to their own variations [65,66,69,74,84,94–96,101,125,127]:

this is in line with a survey by Doubleday et al. [36], who find that 8 of 42 solar

forecasting papers surveyed did not include a benchmark other than variants of the same

model. They recommend comparison to two benchmarks, one highly reliable but more

naive approach and one closer to state-of-the-art. Testing against benchmarks that are
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significantly different from the proposed model would allow for a clear comparison with

other methods. Consistent benchmarks across papers and publishing code alongside

for reproducibility would not only strengthen confidence in reported results, but allow

easy comparison of state-of-the-art approaches.

We have found it is sometimes unclear how, or if, data has been partitioned to

perform out-of-sample evaluation [92,97,98,105,112,113,117]. A brief clear description

of the training and testing sets or cross validation approach used would be beneficial

in these cases.

For wind power forecasting, a proportion of work is based on wind speed, rather than

power, forecasts [89,99,111]: while wind speed forecasts may well be more appropriate

for some applications, it is worth noting that grid or trading decisions require power

forecasts. The conversion from wind speed to wind power is complex and nonlinear

in itself and so models reporting skill in forecasting wind speeds are not guaranteed

to provide the same level of skill if used to forecast power instead. Likewise, papers

based on wind speed datasets where a power variable has been simulated by passing

values through a power curve will not be representative of the noisy power data seen

operationally [101, 106]. Open source wind power datasets [34, 122] now allow testing

of models on power (rather than wind speed) data when that best fits with the aim

of the study. For solar power, solar irradiation forecasts are analogous to wind speed

forecasts in that they forecast a proxy for power, but not power itself. Although the

relationship between irradiance and power output for solar is less complex than the

wind speed-power relationship, results of studies based on irradiance forecasts are not

guaranteed to generalise to power forecasts.

One of the strengths of Machine Learning based research papers seems to be the

general prevalence of data preprocessing including data cleaning and variable transfor-

mations such as principal component analysis [102, 104]. Preprocessing is also seen in

ML approaches to solar forecasting [72,74].
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2.6 Case study

The following case study is provided, along with underlying data and code, to serve as

an example of good practice, and to highlight features of different approaches to very

short-term forecasting. Three distinct methods found in the preceding literature review

are implemented and evaluated using data from the wind track of GEFcom2014 [122].

The Vector Autoregressive (VAR) method was chosen to demonstrate modelling of

spatio-temporal dependencies for a set of sites, while the Markov Chain (MC) method is

a computationally simple nonparametric approach where no distributional shape is as-

sumed. Finally, the decomposition (Empirical Mode Decomposition (EMD)) approach

was chosen as a contrasting method and is often only benchmarked against other de-

composition approaches. The GEFcom2014 data is publicly available and comprises

two years (2012 and 2013) of hourly resolution data, including both wind power mea-

surements and Numerical Weather Predictions (NWPs) of wind speed at 10 and 100m

for ten wind farms in Australia. However, here we only use the wind power and lagged

values thereof for very short-term methods. The data is separated into the same train-

ing and testing sets for each method to allow fair comparison of the forecast errors. The

first third of the data (up to 2012-08-31) is used for model training and hyperparameter

optimisation while the remaining 16 months are used for forecast evaluation. Forecasts

are generated for 1 to 6 hours ahead.

All data and code for this case study is available at doi.org/10.5281/zenodo.

5070758 for reference or to use as benchmarks for other research. All methods imple-

mented in this case study produce probabilistic forecasts to allow full description of

the forecast distributions. For the Vector Autoregressive (VAR) and Empirical Mode

Decomposition (EMD) approaches, parametric probabilistic forecasts were produced

by log-transforming the data and fitting a Gaussian distribution to the transformed

values. The log transform is defined as

y = ln

(
x

1− x

)
, 0 < x < 1. (2.1)

Power values x in the range [0, ε] are rounded to x = ε (and likewise for high powers
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[1 − ε, 1] rounded to x = 1 − ε) to prevent infinities in the transformed data. This is

effectively the same as putting all the probability mass from these boundary regions at

ε and 1 − ε. The mean of the distribution of the transformed values is modelled with

VAR or EMD, and the variance of the distribution is also modelled (in transformed

space) to fully specify the Gaussian predictive distribution. Both a constant value for

the variance, and a simple exponential smoothing model, were tested and the approach

that minimised the pinball score chosen at each forecast horizon. Once the mean and

variance are specified, quantile forecasts may be generated from the forecast Gaussian

distribution, before applying the inverse transform

x = (1 + e−y)−1 (2.2)

to produce quantile forecasts for the wind power.

2.6.1 Vector Auto-Regression

A simple vector autoregressive model with Least Absolute Shrinkage and Selection Op-

erator (LASSO) has been implemented, using the log normal transformation in the

same way as set out by Dowell et al. [87]; after transformation, the data is modelled as

normally distributed and forecasts are defined by the mean and variance of this distri-

bution. In the transformed space, the mean of the distribution is modelled by a vector

autoregressive process whereby the previous m lags from all sites are included as inputs

and the regularisation parameter λ allows control over the strength of regularisation

(and therefore the number of non-zero input coefficients) in the model. λ and m were

optimised through cross validation on the training set, before the final model was fitted

on the training data and used to forecast for all of the test set. The value of ε was set

to 0.01. The variance of the forecast distribution was modelled as constant, and found

using the variance of the residuals for the training folds (found via cross validation).

An exponential smoothing model for the variance was also tested but did not provide

any improvement over the constant variance model.
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2.6.2 Empirical Mode Decomposition

Empirical Mode Decomposition allows a signal to be separated into different sub-series

(called Intrinsic Mode Functions (IMFs)), each with different characteristic frequen-

cies. Because it is an empirical approach based on the data, it allows for time-varying

frequencies in the decomposed series and, by definition, the individual IMFs (plus the

final residual) sum to the original signal for all time points. This allows different models

to be fit on the different series, with the aim of improving the overall model fit. For

example, one model may be better suited to forecasting the higher frequency IMFs,

and a different model for the low frequency ones.

Following Zhang et al. [109] we chose Autoregressive (AR) and Adaptive Neuro-

Fuzzy Inference System (ANFIS) models as candidate models for each IMF. We fit a

separate model to each IMF with no grouping of IMFs. We implement Complete En-

semble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) to minimise

mode mixing and to improve the spectral separation of modes [143].

A sliding window approach was implemented, with sliding windows over the training

data used to find the optimal number of lags to include as inputs in the ANFIS model,

the best performing model for each IMF (AR or ANFIS), the optimal number of IMFs

and the optimal window length. Finding the ‘best’ model for each IMF relies on the

assumption that better IMF forecasts will also sum up to a better overall forecast for

the original series. CEEMDAN was applied to each window separately as the values

of individual IMFs can change, particularly at the boundaries, for different windows.

Although this is computationally more expensive than decomposing the entire series

at once and all decomposed series are still guaranteed to sum to the original time

series under this simpler approach, decomposing the series separately for each window

guarantees no ‘information leakage’ from future values occurs in the decomposition.

Once the types of model (AR or ANFIS), number of IMFs to use and sliding window

length has been found, forecasts can be generated for all sliding windows in the testing

set.

We found that the ANFIS model performed worse than an AR model for all IMFs.

It is possible that increasing the number of inputs to the ANFIS model would give
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improvement, but this also results in a significantly higher computational cost. Five or

six IMFs were found to give the best results.

It should be noted that due to the computational time associated with fitting several

different models to all IMFs for many windows, choice of the optimal model for each

IMF and optimisation of parameters was only done for one step ahead forecasts, rather

than optimising separately for every forecast horizon.

2.6.3 Markov chain method

Similar to AR methods where the forecast is dependent on previous values, Markov

Chains assume the Markov property: the state at time t+ 1 depends only on the state

at time t. Power values are discretised into a finite number of states and the transi-

tion probabilities between states result in a forecast probability for each power state,

given the previous power observation. These probabilities may then be converted into

quantiles to produce a nonparametric probabilistic forecast distribution. A frequentist

approach to building a MC model would involve the calculation of a ‘transition matrix’

of probabilities of transitioning from each (discrete) state at time t, to each state at

time t + 1. The maximum likelihood estimates for transition matrix entries are found

using counts of transitions between states from the training data [127]. This produces

a transition matrix entirely dependent on the observed training data and may lead

to transition probabilities equal to zero between certain states, simply because that

transition was not observed over the training period. The uncertainty on the transition

matrix entries is not accounted for. A Bayesian approach introduces priors to help

account for this; the end forecast probabilities for each state are then effectively an

integral over all possible values for the transition matrix entries, taking prior estimates

and observed transitions into account. We follow Chen et al. [144] and use a Dirich-

let prior which allows for a neat analytic solution. In the Bayesian formulation, the

forecast distribution is

p(y|x) ∝
∫
p(y|Θ)p(Θ)p(x|Θ)dΘ (2.3)
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where x is the training data and Θ are the transition matrix values: θij represents the

probability of transitioning from state i to state j. p(Θ) are the prior probabilities,

given by the Dirichlet distribution; for a MC with K discrete states the lth row is given

by

p(Θ) =
1

B(α)

K∏
j=1

θ
αj−1
lj . (2.4)

p(x|Θ) is the likelihood function:

p(x|Θ) =

K∏
i=1

K∏
j=1

θ
nij

ij (2.5)

The value of αlj has to be specified for each lj element in the transition matrix,

i.e. there are K2 prior values for a MC with K discrete states. It is reasonable to

assume that a transition to a more similar (closer) state is more likely than a large

jump in power between time steps, so we constrained the prior values to adhere to this

by defining

αlj = K − |l − j|. (2.6)

To be able to optimise the importance of the observed data relative to the priors, a

‘scaling factor’ c was also introduced. For a forecast input state l, the final forecast

probabilities are then

p(y|x) ∝



cNl1 + αl1 − 1

cNl2 + αl2 − 1

cNl3 + αl4 − 1

...

cNlK + αlK − 1


(2.7)

Finally, this vector is normalised so that the elements sum to 1 (i.e. the total probability

across all states is one). The full details of this derivation are given in Appendix B.

Transition probabilities may change over time, so a sliding window using only the

most recent data points was employed. The length of this sliding window was optimised

over the training set, as well as the number of discrete states K and the scaling factor c

giving the relative importance placed on the counts versus the priors. Forecasts could
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then be produced for the testing period.

2.6.4 Persistence

Persistence models are a common benchmark for time series forecasting methods [42],

as they are very simple but often hard to beat on short time scales. Forecasts based on a

Gaussian distribution are used, where the mean is equal to the most recent observation

and the standard deviation is found from the standard deviation of residuals in the

training set:

ŷt+k|t ∼ N (yt, σt) , where σt =

√√√√ 1

T

T∑
t=k+1

(yt − yt−k)2 . (2.8)

2.6.5 Forecast evaluation

When developing new forecasting methods and tools it is necessary to establish some

criteria by which success and improvement upon existing practice are defined. Error

metrics such as Mean Absolute Error (MAE) or Root Mean Squared Error (RMSE)

are regularly used in academic literature and practice, with the forecast with the best

score declared the best. In this case study, as well as exploring three distinct forecasting

methods from the literature, we also offer an exemplary comparative evaluation of their

performance. We focus on quantitative evaluation, following Messner et al. [142] in par-

ticular, but also comment on other important qualitative issues, such as computational

time and interpretability [145]. In what follows we briefly introduce the metrics and

scores we will employ, and direct readers to [49, 142, 145] and other sources referenced

therein for more detailed discussion.

Evaluating deterministic forecasts

We employ two established metrics to evaluate deterministic forecast performance:

MAE and RMSE. In both cases, metrics are defined for specific lead-times k steps

ahead. For T forecasts ŷt+k|t, t = 1, ..., T of yt made k steps ahead at time t, MAE
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and RMSE are given by

MAEk =
1

T

T∑
t=1

|yt+k − ŷt+k|t| , and (2.9)

RMSEk =

√√√√ 1

T

T∑
t=1

(yt+k − ŷt+k|t)2 . (2.10)

MAE is favoured by many practitioners due to its ease of interpretation, whereas

those in the modelling community may prefer RMSE as it is analogous to the loss func-

tion used in model estimation when the objective is to produce conditional expectations

as forecasts. Similarly, MAE corresponds to the conditional median. The preference

for MAE or RMSE may depend on the individual application and whether the related

cost function of the decision scales linearly or quadratically with forecast error. In

any case, the ranking of forecasts by performance would not change if one metric were

used instead of the other. Normalised forms of MAE and RMSE, where the error is

expressed as a proportion of total power capacity, are also frequently used.

Evaluating probabilistic forecasts

Probabilistic forecasts are evaluated according to the principle of minimising sharpness

subject to reliability. Reliability is verified using reliability diagrams, and then reliable

forecasts may be discriminated using the Pinball Loss (also known as the ‘quantile

score’). Pinball loss for probability level α and lead-time k is given by

Pinballα,k =
1

T

T∑
t=1

(
q̂

(α)
t+k|t − yt+k

)(
1(yt+k ≤ q̂(α)

t+k|t)− α
)

(2.11)

where q̂
(α)
t+k|t is the predictive quantile of yt+k with probability level α made at time t.

Pinball loss is typically averaged across probability levels α to give a single score for

the forecasting method being evaluated. It is a proper score, i.e. the minimum score

coincides with the optimal estimate of that quantile. As it is estimated per quantile, it

is possible to investigate the relative performance of the forecasts across the distribution

as well as overall performance across a set of quantiles.
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Comparing forecasts

Skill scores are a useful way of comparing forecasting methods because they are unit-

free. For a given metric, the skill of the candidate method with performance metric M

relative to a reference method with performance Mref is given by

Mref −M
Mref −Mpref

(2.12)

where Mpref is the ‘perfect’ score for the given metric, which is zero in many cases.

A skill score of zero indicates no improvement relative to the reference method and

positive skill score indicates superior performance. A common reference method in

wind and solar power forecasting is persistence (or smart persistence in the case of

solar) and provides a robust benchmark for very short-term forecasts. On longer lead-

times climatology is a more common reference method, e.g. the seasonal average for a

given time of year.

A practical limitation on forecast evaluation is the finite number of forecast-observation

pairs available when calculating metrics and skill scores. As a result, it can be difficult

to establish whether any observed difference in performance will generalise or whether it

is the result of sampling variation. Bootstrapping is a popular non-parametric method

for quantifying the impact of sampling variation [146] involving re-sampling forecast

errors and calculating error metrics multiple times in order to estimate sampling vari-

ation. To get bootstrapped confidence intervals for a given forecast metric for a set

of forecast errors, bootstrap resampling will produce n groups of forecast errors where

each group is the same size as the original set of forecast errors by random sampling

with replacement. The desired forecast metric is calculated for each of these groups

separately to produce a list of n values of the metric. The desired confidence intervals

are quantiles of this set of sampled metrics, so the 95% confidence interval would be

defined by the 2.5% and 97.5% quantiles. If variation in metrics/skill scores overlap

then any difference in performance is unlikely to generalise and may be a result of

sample variation. Additionally, bootstrapped skill scores provide greater discrimina-

tion than independently re-sampled metrics [142]. However, care must be taken where
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serial correlation is present, which is often the case in forecasting tasks. Failure to

account for serial correlation, e.g. by employing a block bootstrap, would result in

over-confident results. Alternative tests for the significance are also available, such as

the Diebold-Mariano test [147].

Results

Skill scores were calculated for all zones, using timestamps with forecast-observation

pairs available for all zones and averaging the skill score from each zone. Figure 2.3

shows the variation in skill score with forecast horizon for all three models in this

case study, relative to probabilistic persistence. For deterministic measures (MAE and

RMSE) – which are based only on the q50 value – the VAR model outperforms both

persistence and the other models tested, for all horizons. However, the MC model has

the best pinball score for one step ahead forecasts, perhaps due to its nonparametric

nature and therefore lack of distributional assumptions. The decomposition (EMD)

approach is significantly worse than persistence for all horizons.
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Figure 2.3: Skill scores of case study models, relative to probabilistic persistence model.
The 95% interval of bootstrap samples is shown. Positive values indicate improvement
over persistence. VAR=Vector Autoregressive, MC=Markov Chain, EMD=Empirical
Mode Decomposition.

It is also beneficial to compare each model to each other model; matrices of the

mean skill score between models are presented in Figure 2.4 for a 2 hour ahead horizon.

A positive value indicates the model on the y-axis outperforms that of the model on
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the x-axis. This clearly shows the EMD approach has the most extreme skill scores,

whereas the relative performance of the other models are closer. The VAR model is

the only one to outperform all other models. RMSE shows almost identical skill scores

to MAE, and pinball skill scores are also similar.

Persistence VAR MC EMD

Persistence

VAR

MC

EMD

0.0 -0.11 -0.02 0.27

0.1 0.0 0.08 0.34

0.02 -0.09 0.0 0.28

-0.37 -0.51 -0.39 0.0

(a) Matrix of skill scores of MAE

Persistence VAR MC EMD

Persistence

VAR

MC

EMD

0.0 -0.1 -0.05 0.24

0.09 0.0 0.05 0.31

0.04 -0.06 0.0 0.28

-0.32 -0.46 -0.38 0.0

(b) Matrix of Pinball skill scores

Figure 2.4: Matrices of MAE (left) and Pinball (right) skill scores for the 2h-ahead
forecast produced by all combinations of models implemented. A positive value indi-
cates the model on the y-axis outperforms that of the model on the x-axis. The VAR
model outperforms all others in terms of both MAE and Pinball metrics at this horizon.
VAR=Vector Autoregressive, MC=Markov Chain, EMD=Empirical Mode Decomposi-
tion.

For probabilistic forecasts, the best forecast should be sharp, subject to reliability.

This cannot be judged from a single score value such as pinball loss, and so reliability

diagrams also play an important role in probabilistic forecast evaluation. Relative

Empirical frequency has been plotted, so that a perfect forecast would have a value

of zero. For example, it would be expected that in a perfect forecast distribution,

the observed power would be less than the q20 quantile forecast 20% of the time and

the difference between expected and observed frequencies (the relative empirical value)

would be zero. Figure 2.5 shows the reliability across the q5-q95 quantiles for the case

study models. Both persistence and to a lesser extent the VAR forecasts display the s-

shaped curve associated with too broad a forecast distribution, while the MC and EMD

forecasts show bias (under and over-forecasting respectively). The confidence intervals

derived from bootstrap resampling show the deviations from ‘perfect’ reliability are

significant for all models.
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Figure 2.5: Relative reliability of two hour ahead forecasts for the case study models at
zone 4. A relative empirical frequency of zero represents ideal reliability. VAR=Vector
Autoregressive, MC=Markov Chain, EMD=Empirical Mode Decomposition.

2.6.6 Summary

This case study shows examples of contrasting methods for very short-term wind power

forecasting and their relative performances, with the VAR approach proving the most

skilful. This is perhaps not surprising given it is the only model to use inter-site

dependencies in the forecasts. The Markov Chain model produces a nonparametric

forecast, meaning no prior knowledge or assumption of the forecast distribution is

needed. It shows superior performance for one step (one hour) ahead forecasts, but its

skill is lesser for longer horizons, likely due to the fact it only uses one forecast input

(the lag one power value). Decomposition models seem unlikely to provide competitive

performance to other methods unless very different models are optimal for the different

IMFs, and it can be unclear how best to choose which model to fit to each series.

Grouping the IMFs before model fitting was not explored in this work; while this may

improve forecast performance, it requires an additional step of forecast setup tuning
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which would significantly increase the time and effort needed to optimise the forecast

setup.

The MC model is the most computationally fast of the models, effectively only

requiring to discretise the power values and count the number of transitions between

each level. In this study we have fixed the structure of the priors and only tuned their

strength relative to the observations, as tuning each prior individually would be much

more complex, but other structures could also be explored. While the VAR model

takes slightly longer to fit (around a second to train once, tested with 25 different

regularisation strengths for 6 different numbers of lags, for each forecast horizon), it

fits one model for all locations simultaneously and predicting from a fitted model is

still fast. However, the EMD model is significantly more complex both to train and to

predict from, due to the additional decomposition step and then models fit separately

for all of the decomposed series.

None of these models are perfect, but are intended to serve as open source examples

for benchmarking future research and a demonstration of good practice in forecast

evaluation. While this case study is only demonstrated for wind data, the code has

been made available and could also be applied to solar data, although care must be

taken when preparing the data to account for the diurnal and annual cycles. Models

that augment inputs (e.g. sky images and other weather data) show improvements [46]

but such data were not available here.

2.7 Discussion and future work

Demand for ever more accurate very short-term wind and solar power forecasts has

motivated a growing volume of research over the past decade, a trend which shows

no signs of slowing. The vast majority of published research focused on wind power

in the first half of the decade, but solar has been catching up and in 2019 there was

one solar publication for every two in wind. In both cases there has been a shift to

probabilistic forecasting, with authors citing benefits for users that become more acute

as penetration of wind and solar increases.

The parallel development of very short-term wind and solar forecasting has benefited
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both fields. Approaches initially developed for wind power, such as exploiting spatio-

temporal dependency, have been successfully adapted for solar. Similarly, the relatively

well established use of remote sensing data in solar is showing potential for wind.

Satellite images capture cloud motions on relevant time scales offering significant benefit

for solar forecasting, but no equivalent for surface wind speeds has been demonstrated.

A comparison may also be drawn between sky cameras and LIDAR; both are dedicated

hardware for measuring the approaching solar or wind resource, respectively. Sky

cameras are established tools for very short-term solar forecasting whereas only a few

examples of scanning LIDAR for wind exist, likely due in part to significant differences

in hardware and maintenance costs. If a sufficient economic incentive (or regulatory

necessity) emerges for more accurate very short-term wind power forecasts, remote

sensing may represent a suitable opportunity for forecast improvement.

There has also been an increase in the number of proposed methods involving

some form of forecast combination from multiple individual models or contrasting data

sources, particularly for wind but also for solar power forecasting as the field becomes

more mature. The potential for improvement through forecast combination is explored

in Chapter 4 of this thesis. In addition to theoretical advances, practical considerations

have been the subject of recent research, including handling quality issues and data

sharing. Data quality may be compromised by communications failures or operator

actions, such as curtailment or integration with co-located storage. When a wind or

solar farm is curtailed or metered alongside a co-located battery, its power output is

no longer representative of local weather conditions with negative consequences for

training forecast models and operational forecasts based on live power data. Where

there is a broad literature on this topic in general, application to very short-term wind

forecasting has only been considered in work that forms the basis of Chapter 3 of this

thesis [4]. A related challenge which has received almost no attention in the literature

is the prediction and/or utilisation of power available signals from curtailed wind and

solar farms on very short-term forecast horizons. Plant controllers can typically produce

accurate predictions of present power available but not forecasts of future values. Data

sharing between wind and solar farms is necessary in order to capitalise on spatio-
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temporal information for very short-term and regional forecasting. Some data owners

prefer not to share data they consider to be commercially sensitive or private, but it may

be possible for them to do so in such a way that improves forecast performance while

preserving privacy. In the absence of open data or a central forecast provider, privacy

preserving sharing for spatio-temporal very short-term wind power forecasting was

first proposed by Pinson et al. [148], later developed by Zhang et al. [91], and recently

reviewed by Gonçalves et al. [90]. Furthermore, data markets have been proposed to

provide a financial incentive to share data in this way for renewables forecasts [149].

Further development is required to refine such algorithms, which can be demanding

in terms of both computation and communication requirements, to develop compelling

business models for data markets, and to ensure that they are cyber-secure.

Time-series based methods for both wind and solar forecasting have benefited from

contributions from a range of disciplines including statistics, signal processing and

machine learning among others. The application and adaptation of optimisation tech-

niques capable of scaling to high-dimensional time series prediction is a good example

of this. The significance of proposed methods risks being undermined when case studies

are evaluated on small private datasets (hours to days, rather than months to years)

and only compared to variations on the same approach. Often methods are evaluated

for wind speed forecasting and their suitability for application wind power forecasting

is not discussed or verified. Guidance and recommendations for forecast evaluation, in-

cluding dataset size and properties, benchmarks and significance testing may be found

in [36,142,145].

The reproducibility of energy forecasting research has improved in general over

the past decade with use of open datasets and publication of code becoming more

common. The Western Wind dataset [100] covers a large number of US locations,

but power data is simulated (using wind speeds and a manufacturer power curve)

rather than direct measurement; for this reason it might not be the most appropriate

dataset to validate forecasting models on. A number of forecasting competitions have

also released datasets, notably the GEFcom series which also publish descriptions of

top performing methods and their performance, which may serve as benchmarks for
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future innovations. However, none of these competitions have featured very short-

term forecasting to date, instead focusing on day-ahead time scales where the main

task is post-processing numerical weather predictions. Competition formats based on

providing training data comprising input-output pairs and a test set of only inputs

(with corresponding output held by the organisers for evaluation) does not translate

well to time series forecasts where lagged values are a necessary input. A competition

focused on very short-term forecasting would be more challenging to run (e.g. running

truly live, or requiring participants to submit software) but could make a valuable

contribution to the field.

Finally, it is worth noting that methods discussed in this chapter have primarily been

developed for use forecasting on very short-term time scales; other methods and input

data become more skilful at longer time scales. Chapter 5 discusses the production

of forecasts on subseasonal-to-seasonal timescales (2 weeks to a month ahead) where

large scale atmospheric patterns become the dominant source of predictability and both

different methods and different data sources are used.
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Chapter 3

Missing data in wind power time

series: Properties and effect on

forecasts

This chapter is based on the work presented in the paper ‘Missing data in wind farm

time series: properties and effect on forecasts’ published in Electric Power Systems

Research [4]. The text from this article has been edited and extended here.

Abstract

Missing or corrupt data is common in real-world datasets; this affects the estimation and

operation of analytical models where completeness is assumed or required. Statistical

wind power forecasts utilise recent turbine data as model inputs, and must therefore

be robust to missing data. We find that wind power data is ‘Missing Not at Random’,

with missing patterns also related to the forecast output. Approaches for dealing with

this missing data in training and operation are proposed and evaluated through a

case study, leading to a suggested forecasting methodology in the presence of missing

data. In the training set, missing data was found to have significant negative impact

on performance if simply omitted but this can be almost completely mitigated using

multiple imputation. Greater increase in forecast errors is seen when input data are
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missing operationally, and re-training forecast models using the remaining inputs is

found to be preferable to imputation.

3.1 Introduction

In a real world setting data is not always tidy and complete; this can cause problems for

models that are designed only to work with complete datasets. There are three main

instances of missing data that occur in the normal course of the production of a wind

power forecast, all with different best approaches for being overcome and consequences

if not dealt with properly. Firstly, a large dataset of input/output cases are needed to

train the model. Any missing historic values will affect the completeness of this training

dataset; statistical models like autoregression require a large complete training set for

model fitting and if this training set contains missing values, model fitting may return

unexpected or NaN values if no method of treating them is implemented. For example,

if ordinary least squares is used to find the minimum of the error function through

matrix multiplication and NaNs are retained in the X matrix, they will propagate

into the final matrix of model coefficients. This type of ‘operational’ missing data

is expected at the majority of sites and encompasses all missing data that may be

routinely expected, including both times when values are actually missing e.g. due

to a data recording failure, but also times when the recorded power output is not

reflective of unconstrained generation. These times include when a turbine is down for

maintenance or during curtailments. While operational missing data is common, the

level is expected to be low enough that reasonable mitigation is possible with suitable

methods. The second instance of missing data is in the inputs to the forecast generation

process once a model has been trained. The intention is to regularly re-issue forecasts

using the most up-to-date site information: however, data arrival latencies can vary by

site and through time. In general, more remote sites or older sites with a slower data

connection are likely to have longer average latencies but also data arrival times can

vary from a few minutes to over 24 hours for the same site. This means there is no

guarantee of what information will be available to use as a forecast input at the time of

issue. Again, simply adding a ‘NaN’ for any missing values will result in a ‘NaN’ value

48



Chapter 3. Missing data in wind power time series: Properties and effect on forecasts

being issued as a forecast, which is clearly not appropriate. Thirdly, newer wind farms

will have very limited historic on-site data which is needed for model training and so

methods to reproduce these measurements for a long single time period are needed.

This is particularly important when a setting up a forecast model for multiple sites

where it is guaranteed the historic data will be of different lengths at different sites. In

these cases other data sources may be useful to fill long gaps. The optimal methods

are likely to depend on the length and number of missing periods across all variables.

It is clear that missing data in each of these three areas must be addressed in order to

set up an operational forecasting model. As there are several possible approaches for

missing data treatment in each case, it is important to identify the most appropriate

option. This work focusses on the generation of forecasts for multiple sites within one

model, allowing development of missing data methods that take advantage of inter-site

dependencies which also improve overall forecast accuracy.

While it is possible to make intuitive predictions about what missing data methods

are likely to result in the best forecasts, an empirical case study is needed to test out the

techniques on real data. It is expected that methods that result in information loss (e.g.

dropping rows with missing values and thus reducing the size of the training dataset)

will perform more poorly than those that use all the available data. The availability of

datasets from multiple sites has advantages in the process of missing data as indepen-

dent locations are less likely to be missing concurrently, meaning techniques that infer

missing values based on the remaining data from the same time point are applicable.

In theory, access to both wind speed and power measurements allows inference of one

from the other through a power curve, though the mechanisms for missing data mean

both variables will often be missing simultaneously. The disadvantage of missing data

from multiple site data streams is the increased likelihood of a given time point expe-

riencing missing data at one or more locations, meaning a much higher proportion of

time points will experience some missing data compared to a single site time series.

After a review of existing missing data methods across subject areas (Section 3.1.1),

the properties of missing data across a set of example sites are found in Section 3.2. Case

studies for all of the missing data instances described above are presented in Sections 3.4
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and 3.5, exploring forecast performance under various missing data scenarios and with

selected mitigation techniques.

3.1.1 Previous literature

There has been little work to describe the general missing properties seen in wind farm

operational data, and while some works have considered missing data in wind power

time series for other applications, its impact on forecasts has not been assessed. The

impact of missing data on monthly and annual average measurements was discussed

for wind energy resource assessments [150] along with the corresponding impact on

revenue [151]. Other applications include power curve estimation [152], wind farm

control [153] and fatigue assessment [154], sensor fault diagnostics [155] and site-level

data for wind integration studies [156].

In very short-term wind power forecasting studies, subsets of data with missing val-

ues are often simply omitted, which may bias model estimates and is not an option when

producing operational forecasts. Recent works have focused on high dimensional mod-

elling [86], dynamic models [89] and data sharing via privacy preserving algorithms [91],

for example, but with the implicit assumption of data completeness.

Other research has presented methods for filling missing data in a wind time series;

however, the simulated missing values are selected randomly throughout the time se-

ries [157] which does not reflect real patterns of missing data. Lotfi et al. [158] uses

imputation by simple autoregressive or moving average models which are not suited to

filling extended periods of missing data. The purpose of filling in a time series is gen-

erally to allow further analysis, for example to calculate energy yields from power or to

detect sensor failures. By only reporting the accuracy of the imputation process itself,

the financial or decision-making consequences of the proposed imputation methods are

not addressed.

Fields that often utilise longitudinal studies, such as medical trials and political

behaviour studies, have traditionally encountered significant levels of missing data [159]

and as such have developed methods to quantify and account for its effects on study

outcomes. Central to these methods is the classification of missing data into one of three
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types [160]: Missing Completely at Random (MCAR), Missing at Random (MAR) and

Missing Not at Random (MNAR). For a set of observed values of an input variable

Xobs, and missing observations Xmiss, the probability that any single observation xt is

missing is p(xt ∈ Xmiss) and may, in general, depend on the values of any variables in

the dataset (both observed and unobserved, input and predictor variables). Allowing

the probability of missingness to depend on variable values means the probability is

now conditional on these other factors:

p(xt ∈ Xmiss) = p(xt ∈ Xmiss|xt, yt) (3.1)

where yt represents other variables measured at the same time point. The three types

of missing data may be expressed in terms of the dependences (or lack of) on xt and

yt.

Data may be classified as MCAR when the probability of a data point being missing

is completely independent of any variables in the dataset, that is to say, there is a

constant probability of missingness for all values and Equation 3.1 becomes

p(xt ∈ Xmiss) = C. (3.2)

In this case, the remaining complete data has the same distribution as the original

population with missing data and so there will be no bias introduced to the model

estimation. However, this type of missing data is unusual in reality as the mechanisms

that produce missing values are very rarely completely random.

MAR data occurs when ‘missingness’ in one variable is independent of its own value

but does depend on the value of another variable. An example of this would be prices

on a stock market that is closed at weekends: these missing points are conditional on

another variable such as day of the week but don’t depend on what the actual stock

values would have been if the stock market was open on that day. A MAR condition

is expressed as

p(xt ∈ Xmiss) = p(xt ∈ Xmiss|yt) (3.3)
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Many commonly used methods described in later sections assume the MAR condition;

however, it is often impossible to positively verify a MAR pattern in data [161].

Finally, if the probability of a point being missing is dependent on the value it would

have taken, then the missing pattern is classified as MNAR. In this case, the distribution

of values in the remaining observed cases is not the same as that in the missing data

points and so any model analysis ignoring this discrepancy will produce biased results.

In reality, many cases of missing data do in fact depend on - or display correlation

with - the missing value itself; for example in a health study, individuals who are more

susceptible to disease are more likely to miss an interview due to illness. In this case

there is a dependency between the missing value and the probability of missingness, and

thus any method designed for data analysis or model fitting must take this into account.

This is usually done through some knowledge of the mechanism for missingness for

that given scenario, or information about the prior distribution [162,163]. An incorrect

assumption of MAR or MCAR patterns will introduce bias to final results, as the

properties of the observed dataset are not representative of the whole population. As

such, this situation is often described as ‘non-ignorable’ due to the need for direct

modelling of the missing mechanism and Equation 3.1 cannot be simplified.

Since the possible subset of methods used to deal with missing data depends on the

type of missingness, it is important that researchers are aware of the differences and

begin any data analysis with an attempt at characterising their missing data. Often

knowledge of the circumstances of data collection and any underlying processes will give

a good idea of the type of missingness likely present; however, given the importance of

correct classification for all further data analysis, a formal categorisation is desirable.

The likelihood ratio test first proposed by Little [164] distinguishes between MAR and

MCAR data; however, a conclusive categorisation of data as non-ignorable missing is

much more complex and often not practically possible. Beyond contextual justification,

sensitivity analysis may be used where different missing data models are applied and the

categorisation inferred from the accuracy of the final model results [162,165]; however,

this can quickly become labour-intensive when considering several complex models. For

regression models, the missing indicator method provides a suggestion of the significance
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of a difference in distribution between observed and missing values [166]. For this, an

extra binary variable is created to indicate whether the corresponding data point in

the original variable is missing (if all variables are to be tested, this will result in a

matrix the same size as the original training matrix, but with a 1 in place of every

present value and a 0 in place of every missing value). The indicator variable(s) are

then included in the regression analysis in addition to all the original variables: if

the regression coefficient for the indicator variable(s) is significant, the missing data

follows a different distribution from the observed data and it is therefore classed as

non-ignorable missing.

Shmueli [167] distinguishes between approaches for causal explanation versus pre-

diction at all stages in the modelling process, and notes that when dealing with missing

data in a prediction setting, the relationship between the missing points and the re-

sponse variable is the dominant factor in determining the best method to use. Previous

work has compared the performance of missing data methods on classification trees

for binary response data [168] with a short extension to logistic regression. However,

there is very little work showing the performance of missing data methods on forecasts

of a continuous response variable. Further, the ability to utilise dependencies between

variables (such as modelling multiple wind farms in the same VAR model) may affect

the relative performance of missing data methods.

The extent of missing data and the variable structure within a study or application

may also determine the effectiveness of various techniques; for example, a large pro-

portion of missing data or missing points spread across many variables will result in

a small subset of the data being complete. Large information losses may affect some

forecasting methods more than others. The application of statistical models to short

term forecasting uses a historic dataset to train a model, before the fitted model is

applied to the most recent data to obtain forecasts. As such, there are two data sets

used in the generation of a forecast: a historical set of all available past measurements

and a set of forecast input measurements to generate the new forecast. Missing data in

a forecast input cannot just be deleted as the input is necessary to generate a forecast.

Because the number of forecast inputs is generally orders of magnitude smaller than
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the number of data points in the historic training dataset, a missing point in the fore-

cast inputs represents a larger proportional loss of information and may be expected

to have a greater detrimental effect on the forecast error than a single missing point

in the training data. Of course, a larger number of missing points are also expected in

the larger training dataset. The large size of the training dataset allows the modelling

of overall trends and dependencies so the model is able to capture the general, typical

relationships in the data with minimal disturbance from noise or abnormal values in

individual time points. The main methods found in the literature are outlined below

and deal with missing data in a static dataset such as the training data for a statistical

model. ‘forecast input imputation’ and ‘forecast re-training’ methods describe methods

for dealing with missing forecast inputs.

Complete and available case analysis

The two simplest methods commonly used are complete and available case analyses.

Complete case analysis involves ignoring any time points or study members with only

partial information [165] (Figure 3.1). As discussed earlier, this method will produce

biased results if data is not MCAR because the sub-sample of observed data is no

longer a random sample from the whole population. Available case analysis aims to

reduce the amount of information lost through the systematic deletion used in com-

plete case analysis, and uses all observed values of any single variable to compute its

properties. However, it is not clear when this will produce unbiased statistics, and val-

ues in covariance matrices lose physical meaning through the treatment of all variables

individually [166]. Weightings based on a model for the probability of a point being

missing may be used to counteract the bias induced by these simple missing data treat-

ments [169] (Figure 3.2), but where missing values are spread over many variables the

reduction in size of the training data set may still contribute to degradation in forecast

performance.
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Figure 3.1: Rows with missing data are deleted in complete case analysis

Imputation

Another popular ad-hoc method is mean imputation, where any missing values are

simply filled with the mean value for that variable [170]. This allows for preservation of

the sample means, but sample variance is reduced as the real variance of the unknown

values will be greater than zero. For an application in forecasting where quantification

of the uncertainty in a value is perhaps even more important than the value itself, this

is clearly inappropriate. Mean imputation constitutes one case of single imputation,

the procedure of filling any missing value with an informed guess. This class of models

also includes hot-deck imputation, used for time series data and where a missing value

is filled with the last observed value. While this may be an acceptable method for

individual missing points, this is not suited to data with long spans of missing data as

in the case of a turbine down for maintenance.

Because filling values results in an apparently complete data set, uncertainty esti-

mates that do not take into account additional error from loss of information at missing

values will produce consistently over-confident results. However, imputation does re-

tain all the non-missing data points while creating a complete rectangular data set for

model training. Multiple imputation reconciles the need for complete data with an

accurate estimation of final uncertainty in any results derived from the data by filling
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Figure 3.2: Rows with missing data are deleted and the remaining rows are weighted
by the inverse of their modelled probability of containing missing data

the data set several times according to a probability distribution for the missing val-

ues [162,166,171,172]. This produces multiple completed data sets, each of which may

then be used for any further analysis with the ultimate result becoming a combination

of those from each imputed data set. This process carries the additional uncertainty

from missing values throughout all analysis, giving accurate estimates for desired quan-

tities and their confidence levels. The distribution of missing values must be known to

allow multiple imputation, or more involved statistical methods such as a Markov chain

Monte Carlo algorithm [173, 174] should be utilised. Multiple imputation is versatile

and independent of subsequent models used for data analysis; however, care must be

taken to correctly identify the distribution of missing values [175]. It also assumes vari-

ables follow a multivariate normal distribution; while this is generally not strictly true,

it has been shown that estimates found assuming a multivariate normal distribution

are generally as good as those from more complex and rigorous alternatives [171].

Maximum likelihood

The alternative to filling in missing values is to develop a forecast model that incor-

porates the possibility for missing values. As the name suggests, maximum likeli-

hood methods involve maximising the probability of the real data (including the points
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Figure 3.3: Points with missing data are filled with the column mean.

classed as missing) arising from the model fitted to it. Maximum likelihood techniques

are applied in statistics outside of missing data scenarios by formulating an expression

for the probability of observing the real data, given the underlying parameters. The

maximum of this expression with respect to the model parameters then gives the max-

imum likelihood estimate of the model. Missing data adds an extra element to this

maximisation problem. The EM (Expectation Maximisation) algorithm was developed

by Dempster and allows calculation of maximum likelihood in the presence of missing

values [163]. It involves iterating over two steps: for the first step, the expected val-

ues of the population distribution parameters are assumed, allowing computation of the

complete data likelihood conditional on these parameter guesses. This likelihood is then

used in the maximisation step to recalculate the population distribution parameters.

This process of alternate steps is repeated until all estimates converge to stable values.

More recent work suggests contemporary algorithms and machine learning techniques

may produce faster convergence than the EM algorithm [176]. In a forecasting con-

text, a PEM (prediction error minimisation) approach may be preferred as it directly

optimises the end forecast errors [177].
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Figure 3.4: Points with missing data are filled with an estimate of the value, sampled
from a probability distribution. This is repeated n times to get n complete training
datasets that together retain uncertainty about the values at the missing points.

Other approaches

Signal processing applications have used dimensionality reduction of the large matrix

of data using Hankel structures [178, 179]. This has been implemented on data from

phasor sensors monitoring electricity grid frequency but is not commonly used in a

forecasting context. This method also relies on collinearity between variables which

may not be strong between certain wind farm sites, and may also vary through time

depending on weather regimes and prevailing wind directions. Methods based on ma-

chine learning have also been put forward [180–183] but may be less interpretable and

more computationally complex to implement and run.

3.2 Missing data properties

It is important to first establish the amount and type of missing data seen in real wind

turbine Supervisory Control and Data Acquisition (SCADA) datasets, in order to select

appropriate mitigation techniques to test in the following case studies and to ensure

the missing data cases studied are realistic scenarios.

For wind turbines, any measurements taken during non-routine operation may be

considered invalid or missing as they are not representative of the unconstrained be-

haviour that data analysis is generally aiming to capture, i.e. power production may
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not match what the wind farm or turbine is normally capable of in those wind con-

ditions. As such, three main sources of missing data were identified: data missing in

the raw time series due to sensor measurement, recording or communications failures;

missing periods due to site-wide maintenance works; and curtailments (when controller

action is taken to limit power output). The shutdown of individual turbines may be

compensated for by renormalising site power production and so is not considered as

missing data. Curtailment here means times when the site has accepted a BOA (Bid

Offer Acceptance) instruction from the Electricity System Operator (ESO), requiring

the entire site output to be limited to a set power value below what it would be pro-

ducing under unconstrained operation. This is generally due to grid constraints or

lower demand than supply. The proportion of time points in the series affected by each

of these missing sources was found separately in addition to the combined effect. It

was assumed that wind speed measurements were still valid when the turbine was not

operational for maintenance or during curtailments, although it should be noted that

the anemometry system on the turbines has been designed for accurate measurement

during normal operation through the use of a nacelle transfer function and thus the

accuracy of these measurements will be reduced when the turbine rotor is not turn-

ing [184]. The distributions of lengths of missing data are also found, giving insight

into the likely missing data mechanism.

3.2.1 Testing for MNAR patterns

Planned maintenance activities are often scheduled for times with lower wind speeds

and any work on a turbine will have an associated maximum safe wind speed over

which activities will be cancelled; this suggests a correlation between times of missing

data due to planned maintenance and the value of missing variables, making the data

MNAR. Wind farm sites may be more likely to be curtailed close to rated power from

grid constraints limiting power flows; again this would cause an MNAR data pattern

from curtailments. In addition to the physical justifications given above, an MNAR

pattern was tested for using the missing indicator method [166] for each site wind speed

and power variable. Neither contextual justification nor the missing indicator method
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give a definitive classification of the data as MNAR [161], but they do give a suggestion

of whether it is reasonable to assume MNAR as the most likely missing data type. The

missing indicator method involves adding a binary indicator variable into a regression

model to encode whether the original variable is present or missing for every time step.

A missing indicator is included for every input and a linear regression using one lag at

each site is performed. The model is then formulated as

y = XβX + ZβZ , (3.4)

where Z is the matrix of indicators, with one for each element in X. An example input

matrix for a regression, and its corresponding indicator variables, is:

X =


6 4 NaN 6

9 8 0 3

3 NaN 6 9

8 NaN 1 2

 ; Z =


0 0 1 0

0 0 0 0

0 1 0 0

0 1 0 0

 (3.5)

Missing elements in X are then filled with zeros to allow model computation. Be-

cause all variables are also normalised to zero mean, this is equivalent to mean impu-

tation. The main effect of this is the decreased relative significance of that particular

variable’s coefficient (zero contribution from that variable to the end forecast for that

input/output pair implies greater contribution from the other variables). This only

serves to slightly decrease the significance of the variable coefficient in βX which is

then used to rule out site forecasts where the variable’s coefficient is not significant,

making the end results slightly more stringent if anything. The desired output from

this test is the significance of the coefficients rather than an accurate forecast, when the

use of mean imputation in this way may be of more concern. Coefficients in βZ that are

significantly different from zero imply that the mean of the missing data points is not

equal to that of the non-missing data. Therefore, the observed and unobserved data

follow different distributions and the data for this variable can be said to be MNAR at

the chosen significance level.

It is not necessary to include more than one lag of each variable, as the pattern of
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missing data will be the same in each lag (each is a shifted copy of the original time

series). P-values from a t-test are used to determine significance of the regression coeffi-

cients at the 5% confidence level. As a Vector Autoregressive (VAR) model framework

is used, each variable has a significance associated with its use in the forecast for each

site separately. The proportion of site forecasts for which the indicator variable is sig-

nificant then gives a suggestion of the likelihood that variable displays MNAR missing

data.

3.3 Missing data mitigation methods

Data may be missing from the training dataset in both the forecast input (X) and tar-

get variable (Y ) matrices, compromising parameter estimation, or input data required

to generate a forecast may be missing, compromising the production of operational

forecasts. In addition to the ideal case with no missing data, the following missing

data scenarios are simulated to evaluate the effect of different types of missing data on

forecast performance:

• Missing training data: five levels of missing training data in X are synthesised,

mimicking patterns seen in real life datasets

• Missing spatial forecast inputs at a single time instance, i.e. the columns in X

for multiple sites with the same time lag are missing when generating a forecast

(after a model is trained)

• Missing temporal forecast inputs from a single location: the columns in X for

multiple lags from a given target site are missing when generating a forecast

(after a model is trained)

From this, five cases are tested. Cases 1-4 represent missing live forecast inputs

needed to generate a forecast, whereas case 5 examines the effect of missing training

data with three treatment methods tested. A forecast is output for all sites and the

percentage difference (‘worsening’) from the full case with no missing data is calculated

at each site before being averaged over all sites.
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Case 1: varying the number of sites included as model inputs

Case 2: varying the length of time a single site has been unavailable for (lags are missing

cumulatively, from the most recent one)

Case 3: varying the single lag that is missing, i.e. comparing the effect of missing infor-

mation at one site from 30 minutes versus 60 or 90 minutes ago.

Case 4: varying the number of sites with the most recent piece of information missing.

This is important for deciding whether to issue a new forecast that includes very

recent information at one or two sites, or whether to stick with an older forecast

where information is known for all sites.

Case 5: Varying the amount of missing data in the training dataset, trialled with three

different methods for mitigating it.

The structure of the forecasting process, including the missing data methods tested,

is set out in Figure 3.5. The methods listed are described in detail in the next two

sections. Table 3.1 shows the various case studies and the reasons for choosing these

particular scenarios.
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start
X, Y training arrays
with top 100 features

Missing values
in X or Y ?

a) Complete case
b) Inverse probability weights

c) Mean imputation
d) Multiple imputation

Any forecast
inputs missing?

a) ‘Re-train’ method
b) ‘Impute’ method

Train model on X, Y

Cross validation for
forecast evaluation

Yes

No

Yes

No

Figure 3.5: Flowchart of the process for identifying and dealing with missing data within
forecasts. Multiple methods a), b), c), d) were applied to find the optimal approach
for each stage.
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Case
study

Where
missing?

Description Why chosen Shows

1 live inputs Whole
sites are
completely
excluded

Study the effect of
number of sites in
the model.

More sites = more com-
plex model but greater
probability of similar
sites, improving skill.
Effect of distance between
sites was not explicitly
tested.

2 live inputs Different
lengths of
missing data
tested

How much worse is
a long period of-
fline than short?

Effect of a longer missing
period is cumulative but
greatest loss in skill from
missing the most recent
information

3 live inputs Different sin-
gle missing
lags tested

How important is
the most recent in-
formation?

The most recent lag is
the largest contributor to
forecast skill.

4 live inputs How many
sites missing
most recent
lag

Can other sites
compensate af-
fected when many
sites drop out
simultaneously?

Forecasts do worsen when
more sites are missing but
the effect is quite gradual

5 all
through
training
data

Missing data
in historic
set from
data quality
issues and
curtailments

This occurrence
of missing data is
almost inevitable;
case study in-
vestigates what
methods mitigate
it best

Imputation methods per-
form best and multiple
imputation beats mean
imputation, though it
is more computationally
complex

6 large
chunks of
training
data

Replicates
sites with
limited his-
toric data,
eg new sites

To find out which
alternative infor-
mation sources
may be valuable
for filling long
histories

No one best method but
both reanalysis and Bal-
ancing Mechanism (BM)
data can help.

Table 3.1: Summary of case study cases, their purpose and main results. The results
of cases 1-5 are described in Section 3.4.2 and case 6 is described in Section 3.5.
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3.3.1 Missing values in training data

Due to the large size of the training dataset needed for model fitting, the likelihood of

any given variable (column in X) containing any missing data is high. Because variables

originate at different sites, it is unlikely that missing values will be simultaneous across

sites. This means the proportion of individual time points (rows in X) that contain any

missing values is higher than the overall proportion of missing data. Starting with a

complete dataset so that a comparison with the ‘ideal’ case can be made, the levels and

patterns of missingness seen in real datasets must be reproduced. The dataset display-

ing real patterns of missing values is labelled as dataset A, and the complete dataset

where missing patterns are replicated is labelled dataset B. The missing data patterns

observed in dataset A were replicated in dataset B in the case study to allow compar-

ison to the complete data case through the use of the same dataset but with missing

values introduced in a realistic pattern. Although the creation of MNAR missing data

patterns has been studied [51], the methods focus on datasets with a small number of

variables or where the ‘rules’ for missingness can be simply simulated. The availability

of a dataset with ‘real’ missing data allowed for a nearest neighbours approach to re-

produce missing patterns. The two pairs of most correlated sites between datasets A

and B were found using the R2 correlation coefficient and then used to calculate the

Euclidean distance between power values in Y in datasets A and B. For each row in Y

in dataset B, the most similar row (nearest neighbour) for the two most correlated sites

in Y in dataset A was found. The missing data pattern from the corresponding row in

X in dataset A was then reproduced in that input/output pair of dataset B to give the

‘closest’ reproduction of missing data, labelled ‘medium’. Datasets with deliberately

higher and lower levels of missing data were created following the same procedure but

using a different number of nearest neighbours and picking the highest or lowest missing

data pattern within this subset as the one to replicate (Table 3.2, ‘knn’ column). An

approach using the probability of missing data in a certain variable given the output

power was also tested but resulted in all input/output pairs containing missing data,
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leaving no training data for the complete case analysis. This is perhaps due to the lack

of dependency between missing data across variables in this method.

knn missing data % % rows with missing data

low 3 1.36% 42%

low-medium 2 2.48% 56%

medium 1 6.15% 76%

medium-high 2 9.57% 94%

high 3 11.65% 99%

Table 3.2: Missing data created in the complete dataset. ‘knn’ gives the number of
nearest neighbours selected from and ‘% rows with missing data’ indicates the reduction
in size of the available dataset when using complete case analysis.

Forecasts are now generated using dataset B, both using the complete unaltered

dataset to get the ‘ideal’ forecast performance, and with missing data applied and the

four different missing data techniques set out in Figure 3.5 are tested. Using complete

case analysis [165] will result in a large amount of information loss and a greatly reduced

number of time points for model training - loss of up to 99% of rows with high levels of

missing data (Table 3.2). As the missing data is likely MNAR, complete case analysis

will result in a biased training dataset as the fitted model is not representative of all

behaviour seen over the training period. However, complete case analysis is widely

used in practice as it is a very simple method to implement and thus it is included in

the case study to understand the potential detrimental effect of this common method.

Since complete case analysis is often used and well understood, the extended method of

correction by applying inverse probability weights to counteract bias is also tested [169].

In this method, the probability of a row being complete is first found through logistic

regression (the model is trained on the same inputs as the final forecast, but with a

binary output representing whether that set of inputs is complete or contains missing

values). Rows that have a low probability of being complete (high probability of being

missing) are likely to be under-represented in the remaining complete case set, so a

high weight (calculated as the reciprocal of the probability of being complete) is used

to correct the skewed representation of the population by the complete cases. Due
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to the importance of variable selection for this model, principal component analysis

was used to ensure no linear dependencies between inputs. Care must be taken that

a probability of zero or less is not returned for any rows that are actually complete

as this would result in an infinite or negative weight as well as being nonsensical (the

probability of being complete must be greater than zero for every row that is observed

to be complete). It is expected that this method will outperform complete case analysis

due to the additional steps taken to correct sample bias, but may still not be ideal as

information in partially missing training rows is still completely discarded in the final

model fit. Mean imputation, where all missing values assume the mean value for that

variable, is another commonly used and easily understandable technique. While it does

preserve all the available information for use in the model fitting process, all missing

points on a given variable are filled with a single value (the mean), resulting in a lower

overall variance than the true values would have had. In the case of MNAR missing

data, the mean of the missing values is not equal to the mean of the remaining values,

so mean imputation will introduce a population bias into the training dataset.

Multiple imputation is also implemented; this method requires assumption of the

distribution of the missing values to pick replacement values from. By repeating the

whole imputation process n times, n complete datasets are created with the variation

in the imputed values between them. By conducting all subsequent analysis using

each imputed dataset separately, n final forecast errors are produced with the variation

between them giving the additional uncertainty introduced by the presence of missing

values. However, in practice the distribution of missing values is rarely known, as is the

case for missing SCADA values. When the shape of the missing values’ distributions are

not known, assumption of a multivariate normal distribution is generally sufficient even

if not strictly correct [171]. In a multivariate model like this case study, other related

variables are available to form a model to predict the missing values within a Markov

Chain Monte Carlo (MCMC) framework based on that described by Schunk [174].

Assuming missing values are spread across all variables (columns in X), missing points

must first be filled in with an initial value to allow the iterative process of imputing

values to take place. Commonly the mean is taken as the starting value. If only one
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variable in X has missing values then no initialisation is needed and the imputation

step need only be carried out once.

For the iterative process, each of the missing values of each variable are imputed in

turn (starting with the variable with the lowest amount of missing data), by modelling

the probability distribution for each missing value and picking a value from this as

the new imputed value. The whole process of imputing all missing points across all

variables is repeated until some convergence criteria is met. For this case study a

regression model is used to predict the mean of the missing values, µ̂ = Xβ where β

is found by ordinary least squares and X includes all the other model variables. The

imputed value y is then picked from the normal distribution

N(µ̂, σ̂2) , where (3.6)

σ̂2 =
1

n− k (Y TY − Y TX(XTX)−1XTY ) ; (3.7)

n is the number of observations (number of rows in X) and k is the number of

variables (number of columns in X). Y are the values for the variable we are trying to

impute, for all the complete rows, with X containing the other available variables for

the same rows. Care must be taken to ensure σ̂2 is positive; negative values can result

from an ill conditioned XTX matrix, meaning its inverse is not precisely calculable:

(XTX)(XTX)−1 6= I. Reducing or removing collinear variables or using principal

component analysis can solve this issue.

Convergence may be judged on mean change in imputed values for a chosen variable

between each iteration, or other criterion metrics taking position and dispersion into

account [174]. Figure 3.6 shows convergence of the MCMC process, measured as the

average difference in imputed values between iteration steps for the variable with the

highest level of missing data.
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Figure 3.6: Convergence of the MCMC imputation algorithm.

3.3.2 Missing inputs for forecast generation

Missing input data (when incoming data feeds with the most recent information are

down) mean a new forecast cannot be generated without model adjustments or addi-

tional steps. Data arrival latencies vary both between sites and through time, meaning

the particular variables with most recent measurements available will vary. Some sim-

plified cases are tested to examine the effect of different scenarios. For each different

case 1-4 of missing data as laid out in Section 3.3, two approaches to deal with missing

inputs are considered. In the first approach, alternative models are fit which do not

require the missing value(s), and in the second, missing data are filled with estimates.

In the first case, named the ‘re-train’ method, the linear model is re-configured and

re-trained without the missing forecast input (columns are dropped from X and cor-

responding elements from β). Forecast training is not computationally expensive as

long as the number of forecast inputs (number of columns in X) is not too large, hence

the selection of the most informative 100 inputs as a precursor step in the forecasting

process to allow fast re-estimation. In the second case (the ‘impute’ method), a regres-

sion model is fitted to predict the missing values(s) using the available forecast inputs.
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The original forecasting model with all forecast inputs is then used. This model also

requires training and evaluation of a new regression model to impute values for every

different combination of variables missing, but again this requires no more than a few

seconds of extra computational time. If multiple forecast horizons at multiple sites are

being trained in one model as is the case with the VAR model used in the case studies

in this chapter, the re-train approach involves re-estimating ( (ninputs-1) × nsites ×
nhorizons) coefficients when one forecast input is dropped, while the impute method

uses the previously trained main forecasting model and the secondary model used to

find the value of the missing input only requires estimation of (ninputs-1) coefficients.

3.4 Case study: SCADA datasets with missing values

The dataset used to study the missing data properties in real SCADA is labelled as

‘dataset A’, and comprises wind speed and power time series with missing data from 30

European wind farms (though with the majority in the UK). The set has a mean site

capacity of 41.8 MW and a range between the different sites of 129.8 MW. Two years

of 10-minute resolution data was re-sampled to 30-minute resolution in line with the

time resolution used in the case study. The dataset of complete time series at half-hour

resolution for 10 UK wind power sites is labelled ‘dataset B’.

First the properties of missing values in dataset A are investigated: Figure 3.7

shows the levels of missing data seen at the sites analysed. Although the majority of

sites displayed low levels of missing data with medians of 2.70% and 1.57% for power

and wind speed respectively, there are several sites with much larger proportions of

missing data, even over 30% at one site. Some sites may have a much larger proportion

of missing data from curtailments if their bid price is favourable so they are asked to

curtail more frequently. Older sites may experience higher rates of sensor failures and

have less capable data transfer infrastructure. More remote sites may also see longer

data latencies and possible more instances of missing data. The proportion of data

missing is broken down by cause (no data recorded, maintenance or curtailments) in

Table 3.3. This shows raw data missing is the main cause, followed by curtailments

and then maintenance activities.
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Power Wind Speed

raw data 5.32% 4.86%
maintenance 0.57% 0%
curtailments 2.89% 0%

Overall 5.71% 4.86%

Table 3.3: Mean missing data proportions by type, averaged across all sites. Due to
overlap between different missing data causes, the total proportion of missing data is
less than the sum of each individual type.

0 5 10 15 20 25 30 35
% Missing Data

Power

Wind
Speed

Figure 3.7: Percentages of missing data seen overall in power and wind speed variables
for a group of 30 wind farms. The dashed purple line represents the mean value.

Figure 3.8 shows the distributions of lengths of missing values as well as the distri-

butions of times between missing values. It is important to note the long tail of the

distributions is omitted from the figure for clarity; however, the maximum observed

missing lengths extended to 29 days for both wind speed and power. The mean length

of a period of missing values is 3 hours, with a mean length of non missing periods

(i.e. mean time between instances of missing data) of 48 hours. The presence of long

sections of missing data strengthen the hypothesis that the mechanism causing missing

data is not completely random. The distributions of missing data for power and wind

speed are also similar, as the dominant cause of missing data is raw points missing

which is likely to affect both measured variables.

The percentage of site forecasts where the corresponding missing indicator variable

was classed as significant was found (Figure 3.9). On average across all variables, the

missing indicator was significant in the forecast 60.8% of the time. This suggests it is

likely the MNAR data pattern applies to both wind speed and power measurements

across the majority of sites studied. Any model that ignores MNAR missing data will
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Figure 3.8: Distributions of the lengths of gaps in the data (missing lengths) and lengths
between any missing entries (complete lengths), for power (ap) and wind speed (ws).

under-represent behaviour seen under missing data scenarios in the training dataset

and therefore might be expected to perform worse under these conditions.

0 20 40 60 80 100
% of Forecasts Where Variable Was Significant

Figure 3.9: Percentage of forecasts where the original variable is classed as MNAR by
the missing indicator test. Dashed purple line represents the mean.

In order to test the effect of missing data at different points relative to the ideal

case of complete data, a case study covering a range of missing data scenarios is con-

ducted. A VAR forecasting model was used to test the effect of different types of

missing data, with errors evaluated through 5-fold cross-validation. Input variables
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comprised 60 lags (representing 30 hours) of both power and wind speed, two-hourly

mean and standard deviation measures, and monthly and diurnal dummy variables to

account for seasonality and day/night variations. LASSO regularisation was used to

perform feature selection as a precursor step to the model fitting [185], with the top

100 features kept as inputs for the final model. The optimum regularisation parame-

ter value for each fold combination is found through nested cross validation prior to

forecast training and testing, using the top 100 most significant features. Forecasts are

evaluated using Normalised Mean Absolute Error (NMAE), where MAE is divided by

site capacity in order to compare sites of different sizes. For all the missing data cases,

a 2.5-hour ahead horizon is used as statistical forecasts tend to outperform both persis-

tence and numerical weather model based methods on this time scale, and thus this is

a typical horizon for use of this type of model. An example application is the UK BM

where gate closure (after which forecasts may not be modified) is 1 hour before the

given half-hour settlement period; forecast horizons used are generally 1.5 to 3 hours

ahead to include time to send and receive the forecasts.

As a benchmark to compare worsening in performance due to missing data, the fore-

cast model with no missing inputs was evaluated and compared to a simple persistence

model. The VAR model outperforms persistence at every site for all forecast hori-

zons beyond 30 minutes ahead, with improved relative performance at longer forecast

horizons as displayed in Figure 3.10).

3.4.1 Forecasting process assumptions

A preliminary step to select out the most informative 100 features is employed, which

allows faster calculation of the final step of model training and testing with a set value

of regularisation parameter. However, re-running only the final step of model training

and testing when different inputs are missing requires two assumptions:

1. Missing a small number of the top 100 features makes negligible difference to the

final forecast error

2. The optimum regularisation parameter is the same.
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Figure 3.10: Model error relative to the persistence model, at varying forecast hori-
zons, when no data is missing. Positive ∆ NMAE represents model error lower than
persistence error. Error bars represent the variation over different sites.

Both these assumptions must be tested in the presence of missing data, and also

for producing forecasts at different horizons. Given the high computation time (on the

order of hours) needed to re-run all steps of feature selection for the final model, a

small increase in error for a drastically faster model would still be preferred. When

the complete forecasting process was run with missing data present, an improvement

in error of 0.02% at the missing site was seen compared to re-running only the final

step using forecast inputs determined by the complete case. An even smaller difference

of 0.002% was seen at the other sites with no direct missing inputs. For the case with

no missing data, the standard deviation of NMAE of the forecast errors found through

bootstrap resampling is 0.026%. Given the error differences between re-running the

whole forecasting process and just the last step are smaller than the standard deviation

of the forecast errors, we can conclude there is no significant difference in forecast

performance between these two approaches. As such, retraining only the final model

without repeating the feature selection process is justified in the presence of missing

data. It is also assumed the optimal set of forecast inputs is independent of forecast

horizon. It was found that forecasts with a longer horizon display very little difference
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in error (0.001%) between a model trained specifically for that horizon and one using

the features and regularisation parameter optimised for a 1-step-ahead forecast. Both

scenarios result in a change in the optimum regularisation parameter of more than

20% but in both cases this clearly has a negligible impact on final forecast error. The

coefficients affected most by regularisation are those with small magnitude, which by

definition will also be the ones with the smallest impact on the final forecast.

3.4.2 Case study results

Missing inputs for forecast generation

In the first case tested, all forecast inputs for one or several sites are missing, seen for

example during a long communications failure with a site. Forecast performance at

a missing site clearly benefits from the inclusion of other sites with complete inputs

in the forecasting model as seen in Figure 3.11. Increasing the number of sites in

the model may increase the probability of a complete site similar to the missing site,

therefore improving forecast errors. Explicit testing of the impact of distance between

sites and the impact this has on forecast skill was not investigated, although this would

be an interesting extension to this work. In particular, showing the added value gained

for forecast accuracy by including a nearby site as a forecast input might encourage

participation in data sharing and data market mechanisms. Filling missing forecast

inputs using the complete forecast inputs (the ‘impute’ method) shows slightly worse

performance than retraining a model without them, as the extra step of predicting the

missing values adds to the uncertainty in the final forecast.

Case 2 examines the effect of the length of a missing period at a single site and is

plotted in Figure 3.12; as may be expected, removing the most recent lags makes the

greatest difference to forecast error as these lags tend to carry the highest weight in

the regression model (indicating they are the best predictors). Forecasts continue to

worsen with increasing length of missing period, but the largest proportion of the loss

of forecast skill comes from missing the most recent information.

Case 3 evaluates the impact of a single piece of information loss. Figure 3.13

shows a 2% increase in forecast error at the missing site when the most recent piece of
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Figure 3.11: Case 1: Impact of number of sites included in VAR model on forecast
error. Forecast error improves when more sites are included in the model, particularly
for sites that are missing forecast input data.

information is missing, but other lags missing have negligible impact. The increase in

forecast error of approximately 3% that is seen at the other sites with no data missing

may be due to time delays between weather conditions at different sites. Imputing

missing forecast inputs made no significant difference to the forecast skill.

In Case 4, the effect of data missing simultaneously across sites is shown by eval-

uating forecast performance with lag 1 missing at a number of sites. As expected, an

increased number of sites with the most recent information missing results in a worsen-

ing of forecast performance across all sites, but notably more so at missing sites, shown

in Figure 3.14.

Missing values in training data

The effect of data missing in the training set used to fit the forecasting model is shown

in Figure 3.15. Forecast performance is evaluated for complete case analysis, inverse

probability weightings, mean imputation and multiple imputation. A greater propor-

tion of missing data significantly reduces the number of complete rows remaining in
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Figure 3.12: Case 2: Impact of cumulative number of lags missing from one site on
forecast error (normalised to site capacity). Forecasts at missing sites are worse for
longer missing periods.

the training dataset (Table 3.2), decreasing the accuracy of the model fit. This dis-

proportionately affects the methods where incomplete rows are not used for model fit-

ting, leading to much worse performance of the complete case and inverse probability

weights methods at higher missing data levels. At 11.65% missing data, forecasts using

a complete case approach are 19% worse than when the training dataset is complete.

Correcting the bias of the complete case approach through inverse probability weight-

ings improved forecasts at missing data levels of 9% or more, although care must be

taken to choose a suitable number of components in the principal components analysis

used for this. Mean imputation benefits from use of all available information, leading

to a worsening in foreecast NMAE of only 1.27% when 11.65% of data is missing.

Multiple imputation, where a complete dataset is recreated before model estimation,

shows the best performance with worsening of only 0.72% at a missing data proportion

of 11.65%. The benefit of multiple imputation is particularly pronounced at high levels

of missing data, although even more modest improvements in forecast skill for lower

missing data levels can still be worthwhile. Multiple imputation also results in more
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Figure 3.13: Case 3: Impact of an individual lag missing from one site on forecast error
(normalised to site capacity).

consistent forecast errors across the set of sites analysed; 80% of sites displayed the

lowest forecast errors when multiple imputation was used, and the worsening for mul-

tiple imputation at the remaining two was less than 0.3% greater than the worsening

for mean imputation.

3.5 Case study: creating artificial historic datasets

While most sites are expected to provide on-site measurements on a live basis in order

for a forecast to be generated, in some cases this information is not available. If a

site is newly constructed or has recently changed ownership, the site owner may not

have access to historic SCADA measurements. Smaller sites may also lack the capa-

bility to, or choose not to, share live data feeds with an external forecast vendor. In

these cases, other alternative information sources are available. Numerical Weather

Prediction (NWP)-based reanalysis models estimate and then propagate forward the

atmospheric state through a gridded physics-based atmospheric model. For sites that

are not newly built and that are large enough to participate in the UK BM, another data
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Figure 3.14: Case 4: Impact on forecast error of number of sites with lag 1 missing.
The more sites missing data simultaneously, the worse the error, and the sites with
data missing are most affected. Legend is the same as for Figures 1.11–1.13.

source is half-hourly resolution metered power data that is publicly available through

Elexon’s BM reporting site (bmreports.com/bmrs/). This is expected to be more accu-

rate than power values generated from renalysis data as it is a direct measurement from

the site, rather than a post-processed output from a coarse simulation model. However,

this only provides power and not wind speed values. A case study is conducted on nine

UK sites that participate in the BM, to determine the practicality of either reanalysis

or BM data in supplementing historic site data for model training (case 6 in Table 3.1).

Forecasts were evaluated for 1, 3 and 5 sites having no, 3 or 6 months’ worth of SCADA.

Where available, it was assumed the SCADA was for the time period directly before

the forecast evaluation period. For the time points where ‘no SCADA’ was simulated,

all values in the forecast training and testing inputs as well as the training output for

that site were replaced with the ‘artificial’ (reanalysis based or BM based) values. Only

the SCADA values were preserved in Ytest so that all the data supplied to the forecast

model uses the artificial data, but the forecasts themselves are evaluated against the

‘real’ values.

79



Chapter 3. Missing data in wind power time series: Properties and effect on forecasts

0 2 4 6 8 10 12
% Missing Data

0

5

10

15

20

%
W

or
se

n
in

g

Complete Case

Inverse Probability Weights

Mean Imputation

Multiple Imputation

Figure 3.15: Case 5: Missing data in the training dataset.

Examples of global, publicly available reanalysis datasets include MERRA-2 from

NASA and ERA5 from the European Centre for Medium-range Weather Forecasts

(ECMWF). Analysis by Olauson [186] compares the accuracy of these datasets for both

country-wide and individual turbine’s wind power generation. They found the ERA5

data displayed higher correlations with real measurements, with 20% lower errors than

MERRA-2. ERA5 provides hourly wind speed and direction on a 0.25◦ × 0.25◦ grid

(roughly 28 × 15 km in Scotland), which is twice the resolution provided by MERRA-5.

The ERA5 reanalysis dataset is available to download from the Copernicus climate data

store 1. Reanalysis datasets require several steps of post-processing to get from wind

speeds at fixed heights and grid points, to wind speed and power at the site location

and at hub height. First, bi-linear interpolation was used to obtain a wind speed value

at the site co-ordinate from the four closest grid points. Wind speeds are available

at both 10 and 100m, allowing fitting of a logarithmic wind profile to scale the wind

speeds to hub height. The log law relates mean wind speed ū(z) and height z [187]:

1cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land
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ū(z) =
u∗

κ

[
ln

(
z

z0

)
+ Ψ

]
(3.8)

where the component Ψ depends on atmospheric stability, and can be neglected under

an assumption of neutral wind conditions. z0 is the roughness length, u∗ is the friction

velocity and κ is the von Karman constant. In a plot of ln(z) against ū(z), u∗/κ is given

by the gradient and the intercept denotes −u∗/κ ln(z0). Once u∗/κ and z0 are known,

Equation 3.8 may be used to find the wind speed at hub height. A bias correction

may be applied to wind speeds by a fit of reanalysis wind speed versus SCADA wind

speed values [188]. While this is designed to remove any biases in the reanalysis model

and go some way to accounting for site-specific properties like terrain, this is only

possible in practice if SCADA is available to make this comparison. For this case

study, no bias correction is included due to the assumption that this process would

only be used for sites with very little or no SCADA data available. Finally, wind

speeds are passed through a power curve to produce power as well as wind speed

values for forecast inputs. Manufacturer power curves are smoothed to better represent

whole-farm output through application of a Gaussian kernel with standard deviation

of 1.5ms−1, as suggested by Olauson [186].

The dataset used for this case study is labelled ‘dataset C’ and comprises 9 sites

with a 19-month history available for training in a 5-fold cross-validation framework.

These sites were chosen as they all have SCADA datasets spanning the same 19-month

time period and also participate in the BM. Table 3.4 shows the forecast errors for all

simulations, comparing the substitution of missing history with ERA5 and BM data,

as well as an option labelled ‘drop’. This alternative approach doesn’t include any

forecast input from the site(s) with limited historic data, instead training a model with

only inputs from other sites with the output forecast(s) for the missing site(s) trained

on BM data. The general relationship between length of training dataset and forecast

errors is displayed in Figure 3.17.

For sites where missing historic data is simulated, the forecast error is compared

with the case with complete historic data and worsening is calculated at each site

before the averaging across all missing sites. For simulations where more than one site is
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Figure 3.16: Manufacturer power curve and curve smoothed with a Gaussian kernel.
Standard deviation of the Gaussian kernel was taken to be 1.5 ms−1.

missing historic data, a random subset of sites is chosen 10 times and the results of each

simulation are also averaged. The standard deviation, found through bootstrapping, of

forecast errors in the case where all sites have complete history is 0.33%. As such, any

difference in forecast error of less than 0.33 % is deemed not significant, and therefore

recorded in brackets in Table 3.4.

In general, it can be seen that filling the training dataset with ERA5 produces the

lowest errors in most forecast scenarios; however, for a low number of sites (1 or 2)

with no historic data, filling with BM values is the best method. The advantage of BM

data is that it comprises measurements of actual power at the wind farm; the several

additional preprocessing steps needed to get power values from raw reanalysis outputs

are likely to add to any inherent model error. However, ERA5 data has the advantage

of providing an estimate of wind speed that is not available from BM data. When a

large proportion (5 out of 9) of sites have limited historic datasets, the ‘drop’ method

gives the best end forecasts. While some general patterns for the optimal way to extend

training datasets by large portions are given in this case study, it is based on a small set

of simplified scenarios and the optimal approach may vary with geographic location,
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Table 3.4: Forecast errors when the training dataset at some site(s) has been artificially
generated. The figures shown are the percentage worsening between the error in this
case and the error when all sites have historic SCADA available. Ns is the number of
sites with limited or no historic data, while m is the number of months of historic data
available for those site(s). Values in brackets are smaller than the standard deviation
of ideal forecasts.

Ns m ERA5 BM drop

1 0 11.6 10.32 24.19

1 3 (' 10−3) 3.46 3.79

1 6 (' 10−3) 1.99 1.60

2 0 17.18 14.76 26.4

2 3 2.37 6.22 3.79

2 6 1.40 4.03 1.60

5 0 13.67 16.61 36.15

5 3 5.63 8.50 3.79

5 6 3.47 5.91 1.60

dataset resolution and overall available length at all sites.

3.6 Conclusions

The properties of missing data in real SCADA time series have been found, before

the effect of various missing data scenarios on forecast skill were simulated through

case studies. Real wind power data is shown to have typical median levels of missing

data of 2.70% for the power variable and 1.57% for wind speed. However, some sites

may display levels up to 36%, greatly reducing forecast skill. Data is Missing Not at

Random, meaning care must be taken to use an appropriate missing data technique.

The impact of missing data on wind power forecasts in an autoregressive framework

has been demonstrated, with the most appropriate mitigation methods identified. The

key results are summarised:

• Missing training data can have a significant impact on results if not dealt with

appropriately; multiple imputation is found to be the best of the methods con-

sidered here to compensate for this

• If inputs to an operational forecast model are missing, retraining the model with-
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Figure 3.17: Variation in forecast error with the length of available training dataset

out these inputs results in better performance than filling the missing values using

a regression model based on available inputs

• Forecast error improves across all sites when more sites are included in the model,

with particular improvement at sites that are missing forecast input data; there-

fore, spatio-temporal models including a greater number of sites are generally

more robust to missing data

• Forecasts continue to worsen with increasing length of missing period, but the

largest proportion of the loss of forecast skill comes from missing the most recent

information

• When a subset of sites have a short historic dataset available, ERA5 reanalysis

data scaled to site location and hub height and passed through a power curve

provides a good substitute. Where applicable and only one or two sites have

short datasets, Balancing Mechanism data may be used.

While these results are from case studies using a VAR forecasting model, future

work could extend this to other models. It is expected the results would be similar,
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as the change in forecast skill is likely related more to the loss of information from

the missing variable(s) than the modelling framework itself. In summary, awareness of

the properties of missing data, its potential impact on model performance and use of

suitable mitigation techniques is essential to realise that model’s full potential.

85



Chapter 4

Forecast combination with

adaptation for improved ramp

forecasts

Abstract

Ramps in power are some of the most important times for decision making, where severe

ramps may require actions such as curtailment of turbines to limit a fast ramp up, or

utilisation of energy storage or even load curtailment to balance a severe downward

ramp [189]. Meanwhile, forecast skill is often lower around power ramps due to timing

and amplitude errors, reducing ability to manage the power system optimally. Previous

research [190,191] has developed specialised ramp forecasts that predict the probability

of ramp events and their characteristics, but this is often separate from a power forecast.

It has also been suggested that combined forecasts may serve to smooth out power

fluctuations such as ramps [189].

This chapter presents a forecast combination approach with the aim of improved

performance around times of ramps. Ramps are explicitly modelled through forecasts of

ramp rate, which are passed to the forecast combination step along with the individual

model power forecasts. Day-ahead forecasts based on the outputs of physical weather

models are able to predict the presence of a ramp ahead of its arrival at a site but may
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include magnitude or timing errors. In contrast, very short-term (up to 6 hours ahead)

models based on site power measurements are sensitive to recent changes in observed

conditions but do not have ‘awareness’ of incoming weather fronts until they arrive.

The resulting forecasts are evaluated not only on overall performance but also ability

to correctly forecast ramps.

4.1 Introduction

Forecast combination can be important in a number of scenarios: commonly, differ-

ent models perform best at different forecast horizons so it makes sense to blend them,

particularly at the crossover horizon. A statistical model which uses recent on-site mea-

surements is likely to perform best for very short-term horizons (up to 6 hours ahead),

and a Numerical Weather Prediction (NWP) model generally performs better for longer

horizons, with skill up to 10 days ahead [192]. In the very short-term, conditions are

most likely to equal present measurements plus some variation. NWP takes a large

number of global atmospheric measurements and uses a sophisticated physics-based at-

mospheric model to propagate these conditions forward in time. The relatively longer

computation time of NWP models means the time difference between input informa-

tion and output forecasts is necessarily longer than for statistical models, reducing their

skill at very short-term horizons. However, they have greater skill for longer horizons,

although there are uncertainties present in both the initial conditions and the model

parameters. On even longer scales, subseasonal-to-seasonal (S2S) forecasts make use of

atmosphere-sea-ice-land interactions to capture longer term variations in atmospheric

conditions; forecasts on these horizons are not included in combination work in this

chapter but are explored in Chapter 5.. It has been found that a combination of sev-

eral forecasts from different models, or where models use different information sets as

inputs (as statistical and NWP models do), often outperforms a single model [115].

This does rest on the assumption that no model is the true representation of the un-

derlying data generating process, as this single model, if known, would outperform any

combination of ‘misspecified’ forecasts [116]. However, in many ‘real-life’ applications
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either the true process is not known or no individual forecaster or model has access to

the complete information needed to generate the ‘perfect’ model. This is certainly true

of wind power forecasts, where the final value of power output is the result of complex

physical interactions to produce the wind speed seen by the turbine, as well as the

performance of the individual turbine and any imposed control actions. In addition

to improved forecasts in terms of a lower error metric (or sharper forecast densities

while maintaining reliability), it has been suggested the error distribution of combined

forecasts may be closer to Gaussian than that of the individual forecasts [193].

The simplest of forecast combination methodologies is the equally weighted linear

opinion pool, ELP. This is equivalent to taking a simple average of all forecasts, so that

the value from each of the forecasts contributes equally to the combined forecast value.

Alternatively, the optimally weighted linear opinion pool (OLP) method uses a weighted

average of the model forecasts where the combining weights wi may be optimised for the

best final forecast. The set of weights wi ∀ i = 1, 2, ...N may be constrained such that

all wi ≥ 0 and
∑N

i wi = 1 to guarantee that the resultant combined forecast falls in the

same range as the member forecasts - but this may place unnecessary restrictions on the

parameters. Thus, two benchmarks based on the Optimal Linear Pool (OLP) are tested:

constrained and unconstrained OLP. In the literature, an intercept to correct for overall

bias has also been proposed [194] and Bordley shows this is equivalent to the inclusion

of a Gaussian prior in a Bayesian framework [195]. Estimation of optimal weights may

be achieved through minimisation of the variance of the forecast errors [196] which

takes into account forecast covariances, maximisation of a likelihood function [197] (or

minimisation of a score function), or by simply weighting forecasts in a ratio given by

the inverse of the individual forecast’s error [198].

In practice it has been shown that ELP often outperforms an OLP forecast combi-

nation; this has been dubbed the ‘forecast combination puzzle’ [199,200]. This may be

due to increased variance from the estimation of the weights for OLP, particularly with

small sample sizes. Weights are optimised over a training sample, while these values

may not be optimal over out-of-sample forecasts. Further work has aimed to classify
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cases where OLP should be used over ELP, finding that equal weights provide improved

performance when sample size is small, the model forecasts have similar variances or

there is correlation between the errors of different forecast models [201]. Equal weights

are also preferred when there has been a structural change within the time series, for

example a location shift, as this means the optimal weights are further from the true op-

timal combination. Recursively estimating the weights based on forecast performance

over a window of the most recent time points addresses this problem and has been

shown to outperform ELP on inflation forecasts [202].

Other pooling variations have also been proposed, including trimming (where the

outlying forecasts are discarded) [203], explicit inclusion of a persistence forecast (or

other lagged values) even though this information is contained in other forecasts [204],

automatic selection of best combination strategy [205], or a logarithmic opinion pool [206].

The generation of different forecasts from the same model using different windows of

training data has also been investigated [207], showing robustness against structural

breaks.

Most of the aforementioned literature deals with point forecasts, whereas proba-

bilistic forecast performance must be evaluated over the whole distribution. Quantile

forecasts may be produced by combining point forecasts [208]; this may be useful where

only point forecasts are available from individual models, but it is not clear how this

method performs relative to combining full probability forecasts. Hall et al. [206] sug-

gest a method for combining the forecast moments (mean and variance), applying these

to an assumed distributional shape for the final forecast. Unless there is good reason for

specifying the shape of the forecast distribution, this seems like a potentially restrictive

approach. The same paper also suggests a direct Bayesian combination of the densities,

allowing more flexible final distributions, although this method involves estimation of

covariance matrices for both the mean and variance moments.

For quantile forecasts, the quantiles may be combined independently of each other

(assuming the same probability levels have been forecast for all individual models), or

as a whole distribution. For a given time point t, probability level α and individual

quantile forecasts for that level y
(α)
t,i , the OLP combination of N individual forecasts is
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given by

ŷ
(α)
t,comb =

N∑
i

w
(α)
i ŷ

(α)
t,i . (4.1)

This is effectively finding a weighted average of points on the Cumulative Distribution

Function (CDF) with the same y-value (averaging by quantile) as seen in Figure 4.1.

From here on, this will be referred to as ‘OLP by quantile’.
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Figure 4.1: Forecast combination by probability level; the final α-quantile of the com-
bined distribution is a combination of the α-quantiles of the individual forecasts.

Combining forecasts by CDF value has also been proposed [197]. This may be done

analytically in some simple cases such as combination of Gaussian distributions, but

where this is not possible or where the distribution is nonparametric and defined by

quantiles it may be done using a set of points on the CDF. In this case, the combination

is a weighted sum of CDF values for a set of common y values — or in the context

of wind power forecasts, power levels. This is shown graphically in Figure 4.2 and is

expressed mathematically as

F (ŷt)comb =
N∑
i

wiFi(ŷt) (4.2)
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where F (y) is the Cumulative Distribution Function of the forecast distribution for a

power value y.
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Figure 4.2: Forecast combination by power level; quantile forecasts must be interpolated
to set y-values (power in this case) before combining

Ranjan’s theoretical results show that any linear opinion pool will lack both sharp-

ness and calibration [197], even when the individual model forecasts were calibrated.

A beta-transformed linear opinion pool is proposed instead, allowing for a nonlinear

relationship between the individual and combined forecasts and incorporating recalibra-

tion into the forecast combination process. This method has been shown to successfully

combine calibrated and uncalibrated forecasts in a range of applications including wind

power forecasting [197,209]. The beta transformed OLP may also be applied by quantile

or by power. For OLP by power, Equation 4.2 is updated to

F (ŷt)comb = B

(
N∑
i

wiFi(ŷt)|α, β
)

(4.3)

where B(x|α, β) is the CDF of the beta distribution with parameters α and β.
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4.2 Very short-term forecasts

In order to test forecast combination methods, a set of forecasts from individual models

must first be created. The forecasts presented in the case study in Chapter 2 are used as

the base forecasts in this chapter. All methods implemented in this case study produce

probabilistic forecasts, allowing testing of forecast combination methods specifically for

combining probability distributions.

4.3 Day-ahead forecasts

Methods utilising output of an NWP weather model generally outperform very short-

term methods (based only on the recent site power measurements) for horizons beyond

3 to 6 hours [42]. NWP models are able to predict major future events such as a

weather front passing over a site that would not be picked up in site power data in

advance. As such, they contain additional information about future weather conditions

not encapsulated in very short-term forecasts and may provide benefit in a combination

scheme. Day-ahead forecasts are also produced for the same zones and times as very

short-term forecasts, based on the 100m wind speed and direction forecasts provided

in the GEFcom2014 data [122]. Directly modelling power from wind speed requires a

complex nonlinear relationship to be fitted; a Gradient Boosted Machine (GBM) is a

suitable choice for this as it is able to incorporate conditional dependencies between

variables as well as feature selection through the boosting procedure. Nonparametric

probabilistic forecasts may be produced through the use of a quantile loss function.

This approach was used very successfully by Landry [93] who won the wind track of

GEFcom2014 with a GBM approach and extensive feature engineering. The day ahead

forecasts produced here are produced for only one forecast horizon (24 hours ahead)

and follow a very similar two stage methodology, where an initial GBM model is trained

using engineered features to produce single site ŷ
(0.5)
t forecasts (stage 1). Then in stage

2, inter-site dependencies are included in the final GBM forecasts by using the ŷ
(0.5)
t

forecasts from all other sites as additional inputs. Sparse regression trees were used

to filter out the most uninformative features before both stages. Of all the features
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engineered, only those with a feature importance greater than 1 at key probability

levels (α = 0.1, 0.5, 0.9) were kept. If one of the sinusoidal inputs (sin/cos of either the

hour of day or month of year) or one of the U or V wind components was selected, the

other variable in the pair was also retained as a GBM input. Since NWP models are

typically run for horizons out to at least 10–15 days ahead and a new set of forecasts is

commonly generated every 6 hours, it is assumed that NWP for the leading 4 hours (28

hours ahead for a day ahead forecast) will also always be available for use as features.

Table 4.1 details the inputs tested and their average feature importances across all

zones. Features labelled ‘energy’ are produced by passing wind speed through a basic

power curve.

4.4 Evaluation of individual forecasts

Skill scores were calculated for all zones, using timestamps with forecast-observation

pairs available for all zones and averaging the skill score from each zone. Figure 4.3

shows the variation in skill score with forecast horizon for all individual forecast mod-

els, relative to probabilistic persistence. The decomposition (EMD) approach is signif-

icantly worse than persistence for all horizons. The day-ahead model using a Gradient

Boosted Machine shows inferior performance for the very shortest horizons (less than

three hours ahead) but its performance relative to the very short-term models rapidly

improves with forecast horizon. The two hour ahead forecast horizon in particular has

no one model that is clearly the best. While the results in Figure 4.3 are for zone 1,

the same general patterns are seen across all ten zones. It is also worth noting that

knowledge of curtailments at a site is essential, to avoid evaluating the forecasts on

times when you ‘see’ a ramp in the on-site data (the beginning or end of a curtailment)

that isn’t due to weather conditions and therefore couldn’t (and arguably shouldn’t)

have been forecast.

Probabilistic forecasts should be sharp, subject to reliability. This cannot be judged

from a single score value such as Pinball loss, and so reliability diagrams also play an

important role in probabilistic forecast evaluation. Relative Empirical frequency has

been plotted, so that a perfect forecast would have a value of zero. For example, it
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Figure 4.3: Skill scores of case study models for zone 1, relative to probabilistic persis-
tence model. The 95% interval of bootstrap samples is shown. Positive values indicate
improvement over persistence. While only a single 24-hour ahead forecast is produced
for the GBM model, the skill score varies with horizon as this is calculated relative to
persistence at each forecast horizon.

would be expected that in a perfect forecast distribution, the observed power would be

less than the q20 quantile forecast 20% of the time and the difference between expected

and observed frequencies (the relative empirical value) would be zero. Figure 4.4 shows

the reliability across the q5–q95 quantiles for the case study models. At the shorter

forecast horizons, Vector Autoregressive (VAR) forecasts and at 1 hour ahead Empirical

Mode Decomposition (EMD) display the s-shaped curve associated with too broad a

forecast distribution, while the Markov chain and EMD forecasts show bias (under and

over-forecasting respectively). While the GBM forecasts are closest to being calibrated,

the confidence intervals derived from bootstrap resampling show the deviations from

‘perfect’ reliability are significant for all models.

4.5 Combination benchmarks

Four variations of common models discussed in the introduction are used as combination

benchmarks: constrained OLP, unconstrained OLP, beta-transformed OLP by quantile

and beta-transformed OLP by power.
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Figure 4.4: Relative reliability for the individual model forecasts at zone 1. A rel-
ative empirical frequency of zero represents ideal reliability. Intervals show the 95%
bootstrapped interval.

Parameter estimation

Each of these methods based on a linear pool involves a set of parameters (the weights

wi and, in the case of a beta transformation, the shape parameters α and β) that

must be optimised. Ranjan [197] gives the likelihood function over which to maximise

when combining by power (as in Equation 4.2) — but both the CDF and Probability

Density Function (PDF) must be known for this, and thus is suited better to parametric

forecasts. To follow this method for quantile forecasts, an estimate of the PDF would

have to be found from the quantile points of the CDF, so instead parameters are

estimated by directly minimising the Pinball score. For combination by power level,

the function contCDF from the R package ProbCast [210] was used to interpolate CDF

values, with exponential tails fitted beyond the lowest and highest quantiles [211].

4.6 Novel combination method for improvement of fore-

casts around ramps

A combination approach that allows for inclusion of information about upcoming ramps,

as well as combination of single-model forecasts is proposed. In this chapter, a set

of distinct very short-term models is supplemented with a day-ahead model to gain
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the benefits of diverse forecast inputs. This method extends previous research in the

following ways:

• Using probabilistic, rather than deterministic, forecasts as inputs to the combi-

nation and ramp adjustment stage, with feature selection to determine the most

informative quantiles

• Working in a quantile regression framework to produce calibrated quantile fore-

casts without the restriction of a parametric distribution: this is done using a

GBM with quantile loss function, also allowing interaction between inputs

• Including forecasts of ramp rate that are conditional on the power level and also

capture inter-site dependencies

• Comprehensive evaluation of both general model skill and performance around

ramp events, distinguishing also between upwards and downwards ramps as these

events lead to different general actions within the power system

• Benchmarking against other forecast combination approaches where forecasts are

not adapted for ramp events

4.6.1 Ramp rate forecasts

Ramp rates were forecasted and provided as an additional feature to the novel forecast

combination method. The ramp rate r, which is the gradient of the power time series

pt, was calculated for every time point as rt = pt − pt−1. A rolling average was then

applied to produce a smooth time series of ramp rate where sudden spikes in gradient

are averaged out while changes in gradient that are consistent across neighbouring

times (i.e. a ramp event) are retained. Both 5-hour and 10-hour rolling averages were

calculated and then forecast to be used as forecast combination inputs.

Ramp forecasts were produced via a Generalised Additive Model (GAM) [212],

allowing for nonlinear smooth relationships between inputs and the target variable. In

general GAMs can include linear functions and both univariate and bivariate smooth

functions of inputs. Here all inputs were bivariate smooths, allowing each ramp rate
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feature to be conditional on the power level at that time. For J input ramp rate features

xr1, x
r
2, ...x

r
J and their corresponding power values xp1, x

p
2, ...x

p
J ,

y =

J∑
j

fj(x
r
j , x

p
j ) (4.4)

where all fj are smooth functions, in this case cubic splines. Splines are made up

of a number of basis functions which, when summed with different weights on each

basis function, are able to produce a wide range of shapes of smooth functions. For a

bivariate spline composed of K basis functions bk,

f(xr, xp) =

K∑
k=1

βkbk(x
r, xp) . (4.5)

Each input was a lag of ramp rate coupled with the corresponding power value for

that lag, resulting in a ramp rate forecast conditional on power level. Lags up to 12

hours for the forecast site plus lag 1 from all nine other sites (coupled with the power

level of lag 1 at that site) were included, making a total of 21 splines each made up of

several basis functions. The package glmnet was used to fit a linear model with Least

Absolute Shrinkage and Selection Operator (LASSO) to the basis functions, allowing

for regularisation over the supplied inputs. Optimal regularisation penalty was found

via cross validation on the training set, before ramp rate forecasts were generated for

the test set used in the forecast combination stage.

4.6.2 Forecast combination

A GBM was chosen as the base method for combining quantile forecasts and ramp rate

forecasts from the individual models. As the inputs themselves are now quantile fore-

casts, the input features that will be most important for each final quantile forecast are

expected to be quite different across the probability levels. As such, preliminary fea-

ture selection and model parameter optimisation is conducted independently for each

probability level. The lightgbm [213] implementation of GBM is used for efficiency in

fitting all the separate models needed. The out of sample test set quantile forecasts
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Figure 4.5: Forecast vs actual ramp rates for 1 hour ahead forecasts at zone 1.

from each individual model were supplied as features and GBM parameters (maximum

tree depth, maximum number of leaves) were optimised using a grid search and nested

cross validation over these time points to maximise the number of out of sample final

combined forecasts available for evaluation. The number of iterations was also checked

to make sure it was in line with the minimum point of training error, avoiding both

under and overfitting. Sparse decision trees were used to determine the most important

features in the same way as for the day ahead forecasts; here, the 30 most important

features were retained and passed as inputs to the combination model. GBM combina-

tions both with and without the ramp features were produced to evaluate the benefit

from the inclusion of ramp rate forecasts. The most recent observed ramp rate was

also included in the ramp rate combination model as well as forecasts for the 5- and

10-hour rolling mean ramp rates.
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4.7 Results and discussion

The final combined forecasts were evaluated for all the points in the testing set and

again Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and Pinball

loss are evaluated as well as reliability on its own. The best individual model at each

site and each horizon is also included for comparison. The plots shown in this section

are all for zone 1, but plots for the other zones are displayed in Appendix C.

Firstly, overall forecast performance across all time points is evaluated. Figure 4.6

shows model skill scores relative to persistence for each forecast horizon. Only MAE

and Pinball skill scores are shown for brevity, but the results for RMSE are almost

identical to those for MAE. Compared to the best individual model, all the combined

models give greatest improvement at the two hour ahead horizon, which is the horizon

at which no single model was significantly more skilful than any other. It is difficult

to tell from this plot alone whether any of the combination models are significantly

better than others. To evaluate this more clearly, a matrix of skill score where each

combination model is directly compared to each other one is plotted in Figure 4.7. A

Diebold-Mariano test [116] for each pair of models is also conducted and the significance

level of the result indicated on the same plot.

For the shortest forecast horizons (up to 3 hours ahead), the lightgbm with ramps

model is generally the best performing model. This is particularly true at the one hour

ahead horizon, where it is significantly better than all other models at the majority

of sites. However, the difference in performance between the lightgbm-ramps model

and the other combination schemes lessens and becomes less significant with increasing

forecast horizon. All the forecast combination methods significantly outperform the

best individual model for the shortest forecast horizons, showing benefit from the pool-

ing of different forecasting methods. For the longer horizons (4 to 6 hours ahead), the

relative performance of each combination scheme is more variable across the different

locations and is much less likely to be statistically significant than for shorter horizons.

The gbm-based combination methods (both with and without ramps) are significantly

worse at 6 of the 10 zones for the longer horizons and they are not significantly bet-
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ter than any other methods at the remaining four locations. Given the variability of

wind, the most recent ramp rate is much less valuable for longer horizons and the

skill of ramp rate forecasts also decreases with increasing forecast horizon. It may also

be that the strength of complex relationships between features and output power is

so much weaker at longer horizons that a simpler method is more favourable. There

are no real significant differences between the three OLP based combination methods

for longer horizons either. None of the combination methods are consistently better

than the best individual model, but neither are the OLP methods worse than the best

individual model.

Choosing the forecast with the best Pinball score is not necessarily the best option

if that forecast is not reliable; it is important to check reliability by itself as well.

The general patterns seen across all horizons at each zone tend to be similar for all

combination models. However, the beta transformed OLP methods tend to give the

best reliability across the whole forecast distribution, especially for longer forecast

horizons (3 hours ahead and longer). In fact, reliability seems to improve with forecast

horizon. This may be related to the fact that the day-ahead GBM model displayed

the best reliability of all the individual models, and is the best performing model at

longer horizons (therefore recieving greater weight than other models at these horizons).

While the GBM based combination methods (lightgbm and lightgbm-ramps) tend not

to be as well calibrated overall, they show better reliability relative to the other models

at the 1 hour ahead forecast horizon. This matches with the skill score results. All

combination methods show better reliability than the best individual model at 6 of the

10 zones, while there is almost always at least one combination model that outperforms

the best individual model at the remaining zones too. Confidence intervals are omitted

for clarity.

So far forecast evaluation has focused solely on overall average performance across

all timestamps; while it is important that any forecast model has good general skill,

there are also times where having forecast skill may be especially valuable. One example

of this is times of ramps in power, where having foresight allows better electricity system

planning for grid operators. Forecast of ramps may also have implications for electricity
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Figure 4.6: Skill scores of combination models at zone 1, relative to probabilistic persis-
tence model. The 95% interval of bootstrap samples is shown. Positive values indicate
improvement over persistence. Constrained OLP is omitted as it is outperformed by
unconstrained OLP for every zone and horizon.
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Figure 4.7: Matrices of skill scores for each pair of forecast combination methods. A
positive value indices the model on the y-axis outperforms that on the x-axis. β-OLP
(p) denotes the beta-transformed OLP by power, and (q) by quantile. Asterisks denote
significance level of Diebold-Mariano test values: *=0.05; **=0.01; ***=0.001.
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Figure 4.8: Relative reliability for the combined model forecasts at zone 1. A relative
empirical frequency of zero represents ideal reliability.

traders and turbine operators. Therefore, the performance of each forecast combination

method is also evaluated at times of ramps. A ramp may be defined as any time period

with a change greater than a certain percentage of capacity, within a certain period of

time. Figure 4.9 shows the distribution of ramps occurring within a 4-hour window.

It can be seen that the distribution of upwards and downwards ramps is generally

symmetrical, and that larger ramps are less common as might be expected.

Initial results discussed below are presented for a ramp with a change in power

greater than 50% of site capacity, within a period of four hours. Upwards and down-

wards ramps are also distinguished, as these can result in quite different actions by the

system operator [214]. Using this ramp definition, all time points in the forecast eval-

uation set can be classified as either an upwards ramp, downwards ramp or no ramp.

The same classification is also applied to the actual power. We can then distinguish the

times the forecast correctly predicted each type of ramp event via a confusion matrix.

This may be done separately for each zone, combination model and forecast horizon.

For example, the confusion matrix for the 1 hour ahead OLP forecast at zone 1 is

shown in Table 4.2. Several metrics can be calculated from each confusion matrix; four

relevant ones have been selected for analysis. They are based on True Positive (TP),

104



Chapter 4. Forecast combination with adaptation for improved ramp forecasts

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
∆P within 4 hours

0.0

0.5

1.0

1.5

2.0

2.5
F

re
q
u

en
cy

d
en

si
ty

Figure 4.9: Distribution of ramps at zone 1.Each ramp is the maximum observed change
in power within a 4-hour time window.

False Negative (FN) and False Positive (FP) counts. These may be calculated sepa-

rately for upwards and downwards ramps. For example, TP(u) is the number of true

positives for upwards ramps, i.e. an upwards ramp was forecast and an upwards ramp

occurred. Similarly FP(d) would be the number of false positives for downwards ramps

(the number of instances where a downwards ramp was forecast but didn’t occur): this

is a sum of times where a downwards ramp was forecast, and either no ramp or a posi-

tive ramp occurred. The number of false negative upwards ramps, FN(u) would be the

total number of times an upwards ramp was not forecast (so either no ramp or a down-

wards ramp was forecast) but an upwards ramp did occur. For the example confusion

matrix in Table 4.2, TP(u) = 262; FP(d)=6+29=35; FN(u)=173+6=179. Then we can

define a set of metrics which assess the skill of the forecasts in capturing upwards and

downwards ramps separately. Three of these metrics are calculated separately for up

and down ramps: the True Positive Rate (TPR), Positive Predictive Value (PPV) and
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F1-score are calculated separately for upwards and downwards ramps. Their general

definitions are

TPR =
TP

TP + FN

PPV =
TP

TP + FP

F1-score = 2
PPV× TPR

PPV + TPR
.

(4.6)

Actual
Up Ramp Not Ramp Down Ramp

Forecast
Up Ramp 262 27 17
Not Ramp 173 7526 188

Down Ramp 6 29 230

Table 4.2: Confusion matrix for 1 hour ahead OLP forecast for zone 1

Each of these metrics is given for each forecast combination model and forecast

horizon in Figure 4.10 for zone 1. The perfect score for all metrics is one, when all

events are either true positives or true negatives. It should be noted that values of zero

are included in brackets as these represent times where no true positives were observed

in the evaluation set. While techniques such as cross validation were used to maximise

the size of both the forecast model training dataset and the evaluation set, there are

still some sites where few ramps were seen in the available data and therefore some of

the metrics are based on few counts. In the case of no events at all, a ‘nan’ value is

displayed.

The TPR, also known as the recall or sensitivity of the forecast, gives the proportion

of true events (up or down ramps) that were correctly forecasted. The changes in TPR

with model and forecast horizon are similar for both upwards and downwards ramps,

with slightly lower values for negative (downwards) ramps. For the 1 hour ahead

horizon, the best individual model has the best TPR for all zones; this model is the

Markov Chain model which is built on transition probabilities so might be expected
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Figure 4.10: Confusion matrix scores for all combination models and forecast horizons
for zone 1 separated by upwards (top row) and downwards (bottom row) ramp events

to capture ramps well. The only exception to this is the lightgbm-ramps model which

slightly outperforms at zone 10 for positive ramps. For horizons of 2 or more hours

ahead, the TPR rate is much lower (around 0.06 or 6% for positive ramps and 3% for

negative ramps at zone 1). The best individual and lightgbm-ramps models still tend

to outperform the OLP combination methods at these longer horizons. The lightgbm-

ramps model shows the best TPR rate for all longer horizons at 6 of the 10 sites, and is

best for at least some of the horizons for the remaining 4 sites. The TPR score for the

lightgbm-ramps model tends to decrease more slowly with forecast horizon than the

other models, suggesting slightly more true events are being picked up in the forecasts

through the inclusion of ramp rate forecasts in the combination method. Finally, while

the relative performance of the models is similar across locations, the absolute TPR

value varies with location. This may suggest ramps at some locations are easier to

detect than at others, although the number of ramps observed will also influence these
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results.

Positive predictive value (PPV), or precision, gives the proportion of forecasted

ramps that were forecasted correctly. This is one of the most relevant metrics, as it

gives a measure of confidence in the forecast when a ramp is predicted. Again, PPV

is higher for the shorter forecast horizons. Scores are generally higher than than those

for TPR, suggesting while the ramps that are forecast tend to be more accurate, the

forecast still misses a significant portion of real ramps. There is no consistent difference

in PPV between upwards and downwards ramps, across all the sites. The OLP-based

methods, particularly OLP and β-OLP by power, tended to perform slightly better

although this is not clear cut at all zones and all models performed quite similarly.

The lightgbm-ramps model performs worse in particular at zones 7 and 8, suggesting

it over-predicts ramps here.

The F1-score is defined as the harmonic mean of TPR and PPV, combining two

desirable attributes: high levels of detecting true ramps, and high levels of positive

forecast accuracy (when a ramp is forecast, it occurs). As such, the patterns seen in

the F1-score are also a combination of those seen in the TPR and PPV. TPR, PPV and

F1-score are all concerned with the quality of the forecast for positive events (upwards

or downwards ramps) and while these are the events that have the most serious system

consequences if they are not prepared for, the forecast performance at times of no ramps

is also important. Other metrics that cover this, such as True Negative Rate (TNR)

may also be evaluated but have been left out of this analysis for brevity.

Finally, the Accuracy score (Figure 4.11) gives the proportion of all events that

were forecasted correctly (the sum of the diagonal elements in the confusion matrix,

divided by the sum of all elements). This may be the least useful metric as it is mostly,

but not entirely, dominated by instances of non-ramp events. Accuracy is around 0.9

or above for all zones and horizons except zone 10. No particular forecast combination

model is considerably more accurate than any other.

So far ramp scores have been presented for one definition of a ramp, whereas different

real-life applications may depend on different definitions of a ramp. Both the time

interval and the magnitude of the power change may affect the power system actions
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Figure 4.11: Accuracy scores for all combination models and forecast horizons for zone
1

taken to prepare for the ramp. Figure 4.12 shows the F1-score for a range of ramp

magnitudes and durations. As might be expected, the most severe ramps (bottom left

corner) show the lowest scores and the smallest changes in power over the longest time

period have the highest score. In general the more severe the ramp, the less frequently

they will occur. A very small number of extreme ramps, and a large number of time

points with no or small ramps, in the training set is likely to lead to a model with poor

performance for the extreme events. If an application requires high quality forecasts

of extreme events, other approaches, for example using extreme value theory, may be

more appropriate.

4.8 Conclusions

Four individual model forecasts were created, three based on recent measurements and

one on NWP. None of these models showed good calibration before forecast combina-

tion. Four benchmark combination methods were employed: both constrained and un-

constrained OLP, and a beta-transformed OLP combined by both quantile and power.

A new nonlinear forecast combination method based on a GBM is proposed, including

a variant that explicitly takes forecasts of ramp rate as well as individual power fore-
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casts into the combination model. All forecast combination models showed higher skill

scores (on both MAE and Pinball score) than the best individual model for horizons

1-3 hours ahead, with the greatest improvement for 2 hours ahead where the skill of

individual models was most similar. The benefit of forecast combination was less clear

4-6 hours ahead where the individual GBM model performed much better than the

other individual models.

The new combination approach based on a lightgbm model with ramp features gave

significantly better skill than all other combination models 1 hour ahead (and up to

3 hours ahead at some locations), but the simpler linear combinations outperformed

it at longer (4-6 hours) horizons. While forecast combination clearly did result in

improvements in forecast skill over individual model forecasts, there are still limitations

to this approach. It was observed that horizons with one much more skilful individual

model saw little benefit from forecast combination. Inclusion of a very poor individual

forecast may worsen the final combination so care should still be taken to ensure the

individual forecasts are sufficiently skilful that they add value to the final forecast. The

diversity of forecast inputs and computation methods is also likely to affect the size

of benefit gained from combination. The proposed forecast combination model does

not account for structural changes in the skill of the individual models; an adaptive

forecast combination approach would be needed for this. This may be more important

for other applications like demand forecasting where sudden changes in behaviour are

more likely.

Times of ramps were also identified and the ability of the forecast to predict these

assessed. It was found that the lightgbm-ramps model correctly forecasts the highest

proportion of true ramps 2 or more hours ahead at 6 of the 10 locations tested, but

also has a tendency to over-predict the frequency of ramps at non-ramp times. Overall,

there is no one model that is consistently better at forecasting ramps across all locations

and horizons.

The choice of combination model will depend on the individual site characteristics

and the specifics of the wider problem (for example, if there is a greater penalty for

missing a ramp than forecasting a false positive). A larger dataset would be needed with
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significance tests employed to fully understand differences between models. Integrating

these forecasts with the financial consequences of system actions would better define

their usefulness and limitations.
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Table 4.1: Table of GBM input features and their relative feature importances averaged
across the q10, q50 and q90 models and also averaged across all zones.
* Calculated using the Yamartino method [2]

Input Average feature importance

U10 1.21
V10 1.03
U100 3.64
V100 2.68

10m energy 0
100m energy lag 4 1.06
100m energy lag 3 0.36
100m energy lag 2 1.10
100m energy lag 1 18.59

100m energy 0
100m energy lead 1 2.48
100m energy lead 2 0.59
100m energy lead 3 1.28
100m energy lead 4 1.83

100m energy / 10m energy 0.39
average energy over lags 1:4 27.44
average energy over leads 1:4 12.74

10 m windspeed 1.63
100m windspeed lag 4 0.07
100m windspeed lag 3 0.03
100m windspeed lag 2 0.14
100m windspeed lag 1 0.06

100m windspeed 14.40
100m windspeed lead 1 0.08
100m windspeed lead 2 0.02
100m windspeed lead 3 0.02
100m windspeed lead 4 0.05

percentage change in 100m windspeed since lag 1 0.14
wind shear 2.63

st dev of wind direction* 0.39
sin(hour of day) 1.03
cos(hour of day) 0.06

sin(month of year) 0.32
cos(month of year) 2.48
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Figure 4.12: F1 scores for varying ramp definitions, for all combination models at zone
1. Values are for a 1 hour ahead forecast.
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Chapter 5

Subseasonal to seasonal

forecasting for wind turbine

maintenance scheduling

This chapter is based on the work presented in the paper ‘Subseasonal-to-seasonal fore-

casting for wind turbine maintenance scheduling’ which has been accepted for publication

in Wind. The text from this article has been edited and extended here.

Abstract

Certain wind turbine maintenance tasks require specialist equipment, such as a large

crane for heavy lift operations. Equipment hire often has a lead time of several weeks

but equipment use is restricted by future weather conditions through wind speed safety

limits, necessitating an assessment of future weather conditions. This chapter sets out

a methodology for producing subseasonal-to-seasonal (up to 6 weeks ahead) forecasts

that are site- and task-specific. Forecasts are shown to improve on climatology at

all sites, with fair skill out to six weeks for forecasts of both variability and weather

windows. For the case of crane hire, a cost-loss model identifies the range of electricity

prices where the hiring decision is sensitive to the forecasts. While there was little

difference in the hiring decision made by the proposed forecasts and the climatology
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benchmark at most electricity prices, the repair cost per turbine is reduced at lower

electricity prices.

5.1 Introduction

While the skill of traditional Numerical Weather Prediction (NWP)-based forecasts

generally decreases with increasing forecast horizon, there are some applications where

decisions must be made at longer horizons and therefore longer-range forecasts may

be beneficial. In the case of wind energy, turbines must be maintained, through both

annual servicing campaigns and ad-hoc maintenance of worn or failed parts to ensure

maximum operating time and efficiency, and therefore energy output, from the turbine.

Most of the mechanical equipment for the turbine is housed in the nacelle at the top

of the tower, and so a large proportion of maintenance tasks require a technician to

physically climb the turbine and enter the nacelle. Once a wind farm has been built,

Operations and Maintenance (O&M) is the largest ongoing cost for the wind farm

owner and as such it is in their interests to minimise these costs while maximising

turbine availability. . Activities such as work in the nacelle or crane use have strict

safety limits on the wind speed so work may only be carried out below these limits.

Maintenance tasks also often require the hire of cranes, contractors and other equipment

that must be booked in advance often with a wait time of several weeks. Knowledge of

the likely weather conditions can allow for improved scheduling, by allowing an initial

decision to be made further ahead or by giving more information than just relying on

the average conditions for the time of year. For example, knowing if a given week is

expected to be more or less windy than average would allow planning of the number of

jobs to schedule for that week. Extended spells of unusually low wind, sometimes also

coupled with high demand due to cold weather, can make power system management

more difficult (and expensive); Subseasonal-to-Seasonal (S2S) forecasts can give an

indication of these unusual conditions further in advance, allowing preparations and

corrective actions to be taken [215].

Subseasonal forecasts are generally defined as 10 days to one month ahead, with sea-

sonal forecasts covering one to seven months ahead [215]. They cover the ‘gap’ between
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conventional weather models and longer-term seasonal predictions. NWP-based fore-

casts typically have low accuracy beyond the two week horizon due to imperfect knowl-

edge of atmospheric conditions, imperfect physical model and chaotic nature of the

atmosphere. However, atmospheric interactions with other systems such as the ocean,

ice and soil moisture produce ‘forcing’ effects, and therefore atmospheric changes, on

longer timescales [216] which S2S forecasts aim to capture through atmosphere-ocean-

ice-land coupling. The output S2S forecast from a weather forecast provider such as the

European Centre for Medium-range Weather Forecasts (ECMWF) is a set of ensem-

bles. These are produced through perturbations to both the model initial conditions

and to the model physics. ECMWF provides 50 perturbed ensemble members plus one

un-perturbed one for example. Taken together, this set of ensemble members includes

the uncertainty in the forecast and can be used for further probabilistic analysis of the

future conditions. While the skill of S2S forecasts is not high enough to produce a

calibrated probabilistic forecast for a specific hour or day, there is some skill in fore-

casts averaged over longer periods (e.g. weekly mean conditions) and determining if

conditions are likely to be more or less windy than average for that time of year. While

by no means a complete description of future conditions, partial information can still

aid decision making and planning on these timescales [192,217].

The potential for S2S forecasts spans a wide range of sectors with varying levels

of familiarity in using forecast information [192, 217]. The agricultural sector is quite

familiar with the use of forecasts to make decisions on when to irrigate, apply fertilizer

and pesticides, and when to harvest, but could still benefit from information on the

S2S timescale. Meanwhile public health decision makers are generally less familiar

with the use of forecasts but could benefit from advance warning of a likely heatwave

or cold snap, or disease outbreaks such as malaria where there is a strong weather

dependence. Other sectors that could benefit from forecasts on the S2S timescale

are preparation for extreme events such as floods and droughts, water management

including onset of rainy seasons, and other energy applications such as hydropower and

system operator planning. White et al. [217] detail a variety of case studies spanning

all these applications.
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Methods for forecasting persistent and extreme cold events include trajectory anal-

ysis of the two main Empirical Orthogonal Functions (PCs) of 500 hPa geopotential

height to represent mid-tropospheric flow [218]. The impact of the Madden-Julian Os-

cillation (MJO) for forecasts across Europe was found to be asymmetric, with negative

phases of the MJO showing positive skill but little skill associated with positive MJO

phases. They demonstrate the use of trajectories in EOF phase space to show tran-

sitions between atmospheric states as the forecast evolves. The MJO was also found

to be a source of predictability for heavy tropical precipitation; Specq [219] found

that ‘MJO phases are typically precursors of rainfall east of the positive convective

anomaly’. They found an improved hit rate for predicting onset of heavy rains across

the Western Pacific and Africa for week 2 of the forecasts but not elsewhere, further,

an increased hit rate was also accompanied by an increase in false alarms. A statisti-

cal model using feature engineered inputs from S2S weather models was developed to

forecast North Atlantic tropical cyclones, giving improvement over purely NWP model

based forecasts [220]. Other work on forecasting of tropical cyclones has focussed on

the predictability of storm surges [221]. Using 10m wind speed and sea level pressure

as forcing variables coupled with a hydrodynamic model, they found some skill for past

extreme events (hurricanes Katrina and Isabel) but this was limited to 4-10 days ahead.

They found skill is sensitive to model initialisation conditions, the number of ensemble

members and the horizontal resolution of the model.

Research in S2S forecasts for energy applications is a relatively new and grow-

ing field; the S2S prediction project has been working to ‘improve forecast skill and

understanding on the subseasonal-to-seasonal scale’ since 2013 [222] and the S2S4E

(Subseasonal-to-seasonal forecasting for energy) project [223] has produced a body of

work specific to energy applications in the last 4 years. One of the project’s main

outputs was a decision support tool tailored to wind, solar, hydropower and demand

forecasts and displaying forecast skill on a coarse grid across the globe. While this will

hopefully encourage potential users in the energy industry to consider the benefits of

S2S forecasts, the economic value and range of applications and therefore the potential

of S2S forecasts in the energy industry has not been fully investigated [224]. The same
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work also notes some of the key challenges for S2S forecasting such as: the terminology

gap between forecasters and decision makers; the best use of probabilistic informa-

tion in decision making; the long-term benefits delivered by S2S forecasts versus the

immediate benefits demanded by business; and current meteorolgical modelling limits.

Meteorological organisations produce forecasts on subseasonal-to-seasonal timescales

from sophisticated models put together by experts. This involves not only understand-

ing and modelling of physical atmospheric processes but also, for S2S forecast models,

modelling of slower-varying interactions between the atmosphere and other physical

systems such including land (e.g. soil moisture), ice, and the ocean. Moreover, weather

models require assimilation of a huge number of measurements representing the initial

state of the atmosphere and also simulation across a global grid with a large number

of points. Understanding of physical processes that drive certain weather patterns and

teleconnections can improve NWP models and aid in developing good forecasts.

Beerli et al [225] show that a particularly extreme (weak or strong) polar vortex is

related to strong coupling between the troposphere and stratosphere, leading to more

persistent phases of the North Atlantic Oscillation (NAO), which is in turn associated

with certain patterns of wind speed across Europe. They focus only on winter months

where predictability is higher, however. The Quasi-biennial Oscillation (QBO) consists

of alternating westerly and easterly winds in the tropical stratosphere and this has been

found to improve prediction of the Northern hemisphere stratospheric polar vortex a

month ahead [226]. Jung [227] note that understanding of polar atmospheric processes

is limited compared to processes at lower latitudes; an experiment where models are

‘relaxed’ towards reanalysis data in the polar region shows that improved polar forecasts

would lead to improvements in subseasonal midlatitude forecasts, but only for some

regions. Benefit was shown for northern areas of North America, Eastern Europe and

Northern Asia in particular.

The work on seasonal forecasting for energy focuses on transforming forecasts of

weather variables into more relevant energy system specific quantities, applying various

postprocessing correction methods and evaluating the skill of these forecasts for specific

energy applications. A common approach involves implementing Principal Component
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Analysis (PCA) on the forecasts from all grid points over a large geographical region

(for example the North Atlantic and Europe). This identifies key regimes, or patterns,

that can then be linked to variables of interest at the chosen location. This may simply

involve finding the variable’s distribution conditional on one of the principal compo-

nents [228], or making some kind of ‘weather index’, be that an index representing the

current phase or amplitude of a certain atmospheric mode like the NAO or MJO [229],

or a value calculated for local conditions from the principal components [230].

One of the first works to investigate subseasonal-to-seasonal predictability for wind

speeds was Lynch et al [231], who found skill in country-wide weekly mean wind speed

out to 14-20 days. A recent review [232] found that while the body of academic research

on subseasonal forecasting for wind has expanded in the last few years, there is still

work to be done to transfer this research into useable forecasting products. They

summarised that the NAO, East Atlantic (EA) and Scandinavian Pattern (SCA) are

the main patterns that explain weather conditions, but that different patterns are most

important at different times of year and for different weather variables. In agreement

with [225] they identify the polar vortex as another important source of predictability

for European winter forecasts.

Lledò et al. [228] show that forecasts of the MJO can lead to skilful probabilistic

daily mean wind speed forecasts up to 36 days ahead. However, they find that the

current numerical weather model used to produce S2S forecasts at the ECMWF does

not reproduce the teleconnections from the MJO phases to European weather and

that currently, strong MJO events are not skilfully predicted more than 10 days ahead.

Although the North Atlantic Oscillation accounts for approximately a third of European

circulation variability, Lledò et al. [229] examined a wider range of teleconnection indices

and found forecast skill from all four tested (the NAO, EA, East Atlantic Western

Russia (EAWR) and SCA). They also note that combining forecasts from different

providers improves ensemble mean correlation, and that results can be sensitive to

hindcast period length and number of ensemble members. While seasonal forecasting

linked to wind speeds often focuses on the most windy winter months [233], Lledò et

al. [228,229] examine skill for all seasons separately.
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Alonzo et al. [230] used polynomial regression on PCA components to produce a site-

specific index with which to produce conditional forecast distributions. Recalibration

of the forecast ensembles improved the results and led to calibrated forecasts that were

30% sharper than climatology for their French case study. Cortesi et al. [234] uses

clustering to identify regimes and maps locations and times of year where each regime

had particularly strong skill in reproducing wind speeds. Wind energy production has

also been forecast on a subseasonal-to-seasonal timescale using capacity factors for three

main turbine classes [216]. While this technique allows forecasts to be made for any

location without on-site data, this may result in lower skill compared to site-tailored

forecasts.

Gonzalez et al [235] apply an adaptive linear combination approach to produce final

forecasts that use multiple forecast models as inputs along with features like climatology

and persistence derived from reanalysis datasets. They find skill relative to climatology,

the best individual NWP model and other non-adaptive combination benchmarks for

forecasts 2-5 weeks ahead with particular improvement further out, when forecasting

national electricity demand from 2m temperatures. The adaptive nature ensures the

model is able to adjust to relative changes in skill of the inputs, such as when a model

update is released. Hwang [236] presents an alternative approach to S2S forecasting,

focussing on statistical methods. They present two statistical models using customised

feature selection and a nearest neighbours-based approach that are averaged to produce

final forecasts. This methodology proved successful in NOAA’s Subseasonal Climate

Forecast Rodeo, with 40-169% improvements over the competition benchmarks for

temperature and precipitation forecasts.

Work has also been done on larger geographical scales, which is needed for elec-

tricity system planning or studying whole country renewable penetration. National

demand, wind and solar forecasts were produced for 28 European countries [237] with

consistent skill at the 5–11 days horizon but variable skill for longer horizons, depend-

ing on location and specific distribution of renewables. On national aggregation levels,

the complex interactions between the electricity system and the weather require a con-

sidered approach: Bloomfield et al. [233] used ‘targeted circulation types’ to identify
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weather drivers for the electricity system in Europe. They note that the strength of

response between a weather pattern and the electricity system is strongly dependent on

the capacity and location of renewable generation installed. Van der Wiel et al. [238]

also defined regimes by their impact on energy variables, rather than the traditional

approach that maximises circulation variance explained. They reconstruct 2000 years

of data over Europe to examine the skill of S2S forecasts at identifying extreme energy

shortfall events (where there is high demand but low renewable generation).

Existing research on maintenance scheduling focuses heavily on decisions specific

to offshore wind farms such as vessel choice [239–242] or route planning between tur-

bines [240, 241, 243]. Optimisation of the installation phase which involves hire of

specialist equipment [244], optimisation of downtime relative to whole power system

concerns like reserves [245], and prioritisation of maintenance by component type [246]

have also been studied. However, perhaps due to the relatively lower cost of main-

tenance for onshore farms compared to offshore, there has been much less of a focus

on maintenance planning for onshore operations. Methods based on maximising usage

of weather windows that have been applied offshore also apply to onshore operations

where wind speed safety limits apply, such as crane usage or work in the turbine nacelle.

Barlow et al. [247] note a distinction between ‘performance’ and ‘condition’ of an

asset — for example, an old component that is still operating well may not have resulted

in any loss of generation efficiency but its risk of failure has increased. They propose an

approach that takes both performance and condition into consideration when deciding

when to repair or replace assets. Pelajo et al. [248] combine wind and electricity price

forecasts up to 7 days ahead to make a decision on when to take turbines offline for

annual maintenance using a cost benefit approach. Their results show a 30% reduction

in costs compared to going offline at a random point in the maintenance season. A cost-

loss model has also been used for day-ahead go/no go decisions by Browell et al. [249].

They showed probabilistic forecasts of access windows, as opposed to deterministic,

increased the number of days worked and decreased lost revenue. They also note that

other works assume perfect forecasts [241,243].

Aside from strategic decisions in the design stage, none of these works consider
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decisions that must be made weeks ahead such as crane or additional crew hire. Thus,

there is no overlap between the maintenance scheduling literature and the work done

on S2S forecasting for renewables.

Given the identified lack of tailored forecasts for wind turbine maintenance decisions

weeks ahead, this chapter aims to demonstrate the production of forecasts of relevant

quantities and assess their skill, both as raw forecasts compared to a benchmark, and

also whether use of these forecasts can result in improved decision-making for problems

such as equipment hire. A methodology for this is presented through a case study,

where forecasts are developed and evaluated for eight wind farms in Scotland.

5.2 Methodology

The case study presented here aims to evaluate the presence (or lack) of skill in post-

processed S2S wind speed forecasts at hub height for use by the wind energy industry

(the hub is the section where the blades attach to the turbine body). Several possible

forecast metrics are investigated along with a demonstration of possible forecast use in

decision making. Essentially, the two main questions this case study aims to answer

are: is there skill in S2S wind speed forecasts downscaled to a wind farm?, and does

this skill translate into improved decision making for maintenance scheduling tasks?

The overall modelling process is laid out in Figure 5.1 and the individual steps and

data partitioning is further explained in the subsequent individual sections. Raw S2S

forecasts are available for a grid of locations covering the whole globe and multiple

vertical levels in the atmosphere. The methodology presented in this work produces

forecasts for task-relevant metrics at the site of interest from this large scale data with

forecasts of specific weather variables.

5.2.1 Data

The case study for this section focusses on onshore wind farms in Scotland as this

is a geographical area with a relatively high concentration of onshore wind. Onshore

wind in Scotland is a relatively mature sector, so there are several sites with fairly
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S2S fore-
casts

Principal
Component

Analysis

Site index
model

Ensemble
Model
Output

Statistics

Model
evaluation

Site data
(MIDAS

or ERA5)

ERA5
correction

to site

Figure 5.1: Flowchart of data and modelling steps to produce the final site index fore-
casts. The Principal Component Analysis step identifies large-scale weather patterns
in the grid of forecasts over a whole European and North Atlantic area; the ERA5 cor-
rection to site fits a Generalised Additive Model (GAM) to correct ERA5 windspeeds
to more closely match the short history of observed site wind speeds. The site index
model takes the S2S principal components as inputs and is trained to forecast a site
specific index given by the site data for the training set. The Ensemble Model Output
Statistics step corrects any bias or dispersion problems with the ensemble of site index
forecasts before forecasts are evaulated.

long historical datasets available. Eight such sites are used in this study. ECMWF

forecasts of key variables on a grid covering the North Atlantic and Europe region

(80◦N/−90◦W/20◦S/30◦E) were downloaded via the S2S database1 [250]. New forecast

runs are produced twice a week and all forecasts available since the 2019 model update

were used, from June 2019 to May 2021. Forecast values were downloaded for horizons

0–42 days ahead in 24 hour increments. In addition, the same horizons were downloaded

for 20 years of hindcasts for each forecast date, i.e. for a forecast on the 1st January

2020, the hindcast dates of 1st January 2019, 2018, etc are also downloaded. This

gives a set of hindcasts over the ‘hindcast times’ 1999–2019 and then a two-year set

of forecasts over the ‘forecast times’ June 2019–May 2021. When forecasts are later

averaged into weekly values, 1 week ahead includes forecasts with horizon 1–7 days

ahead, 2 weeks ahead includes the 8–14 day ahead forecasts and so on.

Geopotential height or mean sea level pressure are the most common meteorological

1https://apps.ecmwf.int/datasets/data/\gls{s2s}
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variables used to study S2S weather patterns as they describe large scale atmospheric

processes on these timescales [228–230,234,238]. In addition to this, we included other

variables related to hub height wind speed. As the S2S forecasts do not currently have

a specific 100 m wind speed variable, several variables related to this (both 1000 and

925 hPa wind speeds and mean sea level pressure) were included as well as 10 m wind

speed.

5.2.2 Site wind speed data

In an ideal world, there would exist measured wind speed data for the site of interest

at hub height, possibly at all turbine locations, and for the same time period (1999–

2021) as for the ECMWF hindcasts and forecasts. However, very few wind farms

have been operating this long and so measured wind farm datasets tend to be much

shorter. Therefore, two approaches have been tested: first we have used wind speed

time series from the Met Office Integrated Data Archive System (MIDAS) dataset [251]

for weather stations where a complete history over the time period is available. This

allows assessment of the skill of the forecasts when trying to model measured wind

speeds without extra simulated data. However, the majority of these weather stations

measure wind speed at 10 m as opposed to the much taller hub heights of turbines that

are of interest. To also quantify the ‘real-life’ skill and usefulness of S2S forecasts we

also used ERA5 reanalysis data from the nearest grid point to selected wind farms and

corrected this long time series with the shorter measured time series available from the

site itself. A comparison of various reanalysis products for surface and near surface wind

speeds found the ERA5 data provides the closest agreement with observations [252].

Both of the MIDAS and ERA5 datasets provide mean wind speeds at hourly resolution,

allowing for not only calculation and forecasting of weekly mean wind speed but also of

other quantities such as standard deviation of the hourly wind speed values across the

week and metrics relating to specific wind speed thresholds, for example proportion of

the time wind speed is below the safe threshold for work in the nacelle.

All the eight wind farms assessed are in Scotland, with two single farms (WF 1

and 3) and two groups of three geographically close farms (2a, 2b, 2c and 4a, 4b, 4c).
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The four MIDAS stations selected are those geographically closest to these 4 areas that

also recorded wind speed measurements for the required time period and are labelled

numerically to match the wind farms (so MIDAS 1 is close to WF 1, etc). Table 5.1

describes the general location and terrain of the wind farms used.

Wind Farm Description

1 South-West Scotland, moorland with some forestry
nearby

2a, b, c Mid Scotland, close to East coast, rolling hills

3 Aberdeenshire, forestry land

4 Moray, open moorland

Table 5.1: Summary of case study wind farms, and their general locations.

5.2.3 Initial transformations and corrections

The ERA5 wind speed time series vERA5 required correction to the site wind speeds

vs through a GAM, with a cubic spline of the ERA5 wind speed along with a cyclical

cubic spline (fc(·)) of the day of the year (doy) to account for seasonal variability:

vs = f(vERA5) + fc(doy) . (5.1)

This was implemented with the gam function from the mgcv package in R, using

its default numerical optimisation method. The basis dimension of the splines, k, was

checked with gam.check to ensure it was sufficiently large. All available time points

were used for training the GAM before predicting the corrected wind speed for all times

in the hindcast and forecast sets.

The first step in processing the raw S2S forecasts was to identify the large scale pat-

terns and atmospheric ‘modes’ present. Principal Component Analysis allows reduction

of multi-dimensional data to fewer dimensions, where the new components are all or-

thogonal and components account for a sequentially decreasing proportion of variance

in the original data. If D is a t× v matrix containing all the forecast values for a given

variable with each spatial grid point in a separate column (normalised to zero mean)

and each time point for a given forecast horizon in a separate row, the transformation
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Figure 5.2: ERA5 wind speeds compared to site wind speeds before and after correction.
Shown for WF1.

matrix F to produce the principal components will have dimensions v × v (or v × n
if only the first n components are kept) and is made up of the column eigenvectors

of the covariance matrix of D, such that the eigenvector corresponding to the largest

absolute eigenvalue is in the first column and so on. Then the transformed principal

components T are given by

T = DF. (5.2)

The first n columns of T give the first n principal components; n was selected so

the retained principal components explain 90% or more of the variance in the original

data — this is typically 20–40 components for the weather variables used here. Since

forecasts are not available for 100m wind speed directly and several related weather

variables are used instead, we have performed PCA on each of these separately as well

as a PCA with them all together, to determine the optimal approach. The zero-hour

ahead forecasts for the hindcast times were used to fit the PCA transformation before it

was applied to the 1–42 days ahead forecasts for all the available times (both hindcast

and forecast times).

We can also use the ‘reverse’ transformation to project single principal components
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back onto ‘map’ space, using TF−1 = D with T being the ith eigenvector to get a map

of the ith principal component. This allows us to observe the spatial patterns associated

with the principal components as seen in Figure 5.3.

PC1 PC2

PC3 PC4

January

PC1 PC2

PC3 PC4

July

Figure 5.3: Principal components of 500 hPa geopotential height mapped back to
geographical space, for January and July.
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5.2.4 Site-specific index models

While the transformed Principal Component (PC) data now represents the main at-

mospheric patterns, this is still general to the whole North Atlantic-European region.

Therefore, a model is needed to relate the whole-region regimes (represented by the

PCs) to the local wind conditions at the site of interest. A similar approach was used

by Alonzo et al. [230] with a polynomial regression model to generate site indices. In-

dex models are trained for three different metrics, weekly mean wind speed, weekly

standard deviation of wind speed and a ‘useful hours’ index tied to the safety limit for

a given task.

Index forecasts for the hindcast time points are required for recalibration of the

ensemble index forecasts (the Ensemble Model Output Statistics step), so we must

produce out of sample index forecasts for the hindcast times as well as the forecast

times. As such, cross validation is used where the 20-year hindcast dataset is broken into

folds of 2 years each. Index forecasts for each fold of the hindcast times are generated

by training on all the remaining hindcast data, however, the year immediately after the

test fold is left out of the training folds as there can exist some long-term patterns or

correlations in the atmospheric conditions. For example, to generate index forecasts for

2000–2001, all the remaining hindcast times apart from 2002 are used as the training

set. To generate index forecasts for the forecast (as opposed to hindcast) times, the

entire set of hindcasts is used as the training set. Models are fitted separately for each

weekly forecast horizon and forecasts are made for each ensemble member.

Mean wind speed index

Weekly mean wind speed is derived from the hourly wind speeds within the week

{wT , wT+1, ..., wT+168} and is defined as

WT =
1

168

T+168∑
t=T

wt . (5.3)

for the week beginning t = T . The forecast index of weekly mean wind speed is

produced by fitting a linear model where the input features are the principal components
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of the weather variables. If the weekly mean of the ith principal component of the jth

weather variable is denoted as PC(i, j),

ŴT = β0 +
3∑
j=1

n∑
i=1

βi,jPCT (i, j) . (5.4)

A linear model is used to generate indices; as there are many input features (tens

of PCs for 3–6 different weather variables), a Least Absolute Shrinkage and Selection

Operator (LASSO) approach using regularisation for feature selection is used. This

means instead of finding the optimal β coefficients by purely minimising the squared

errors, an additional penalty term proportional to the sum of the magnitudes of the β

coefficients is added to the loss function:

minβ L1 =

W − β0 −
3∑
j=1

n∑
i=1

βi,jPC(i, j)

2

+ λ

|β0|+
3∑
j=1

n∑
i=1

|βi,j |

 . (5.5)

This extra penalty serves to shrink the absolute size of coefficients, which introduces

sparsity, and the value of λ determines the ‘severity’ of this penalty. This is optimised

through nested cross validation on the training set. Different configurations of inputs

for the index model are tested: extra weekly features (weekly standard deviation, min

and max of wind speed) are engineered and included as inputs; and the three weather

variables related to 100 m wind speed are transformed into PCs separately to produce

three sets of PC, or all together in one transformation. The optimal configuration in

terms of whether to group weather variables for the PC transformation, and whether

to use extra features, was determined separately for each final index metric using the

MIDAS dataset as the ‘real’ wind speeds and is given in Table 5.2. It is assumed that the

relative performance of these different model configurations will be very similar when

an index model is trained on the corrected ERA5 data instead of the MIDAS wind

speed data, so the same optimal model configurations were used for the remainder of

the work.
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Variability index

On the day of a maintenance activity, the measured hub (or crane) height wind speed is

the deciding factor as to whether it is safe for a job to go ahead or not. However when

these activities are planned weeks ahead and in whole-week chunks, there is significant

uncertainty in the mean wind speed forecast and information about the conditions

within the week is lost. Two weeks could have the same mean wind speed while one

contains very stable weather for the whole week and one varies between periods of very

low and very high wind speeds within the week. Thus, a forecast of the variability of

wind conditions within each week is also useful, giving another point of information

to base decisions on. This may be particularly relevant when the mean wind speed

forecast is close to the safety threshold for the given activity. Standard deviation is

used as the measure of inter-week variability and is calculated from the hourly data for

that week:

ST =

√∑T+168
t=T |wt −WT |

168
. (5.6)

Extra weekly features are derived from the hourly principal components, including

weekly standard deviation PC(σ), weekly minimum PC(min) and weekly maximum

PC(max). These are also included in the linear model as linear features with coeffi-

cients γ, δ and ε respectively:

ŜT = β0 +

3∑
j=1

n∑
i=1

βi,jPCT (i, j) +

3∑
j=1

n∑
i=1

γi,jPC
(σ)
T (i, j)

+
3∑
j=1

n∑
i=1

δi,jPC
(min)
T (i, j) +

3∑
j=1

n∑
i=1

εi,jPC
(max)
T (i, j) .

(5.7)

Regularisation in the form of a LASSO penalty shrinks coefficients, leading to a

more sparse model. The lasso penalty is applied to all βi,j , γi,j , δi,j and εi,j coefficients

in the same way.
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Weather window indices

The third site index forecast produced links the weather conditions to a specific main-

tenance task of interest by forecasting the number of hours in the week that are safe to

do that task. Each maintenance activity has a safe wind speed limit associated with it

and takes a certain amount of time to perform. Therefore, we need a window of at least

x hours where the wind speed is always below y ms-1 to perform a given activity. Two

obvious metrics to measure this on a weekly basis would be the number of hours in the

week below the wind speed threshold, or the number of weather windows in the week.

However, there are pitfalls to both of these. Counting the total number of ‘safe’ hours

in the week doesn’t tell us anything about the length of weather windows available,

so that 10 hours below the wind speed threshold could mean a continuous block of 10

hours available, or 10 separate blocks of 1 hour windows which is much less useful for a

task that takes several hours. If we instead report the number of weather windows of a

certain minimum time length, a value of 1 window in a week could mean a single win-

dow of the minimum time duration, or that the wind speed is below the threshold for

the entire week; the second of these scenarios would allow a lot more work to be done

in practice than the first. The final metric used is therefore a combination of these:

the number of hours in the week contained in a weather window of a certain minimum

length. This way, every hour that is counted is valuable for work as it is guaranteed to

be in a usefully long window and there is still a distinction between a single long and

a single short weather window. This metric doesn’t differentiate between one long and

several shorter windows, but the minimum duration constraint ensures each window

counted is long enough for maintenance activities to be performed in it. Thus, the two

parameters defining the weather windows (duration and wind speed threshold) are both

determined by the maintenance activity of interest. All weather windows are counted,

regardless of whether they fall within the usual working week (9–5 Mon-Fri) or not, as

the decision to work at nights or weekends will depend on other factors including the

urgency of the job and availability of staff to work other hours. The number of useful

hours metric H
(p,q)
T is the number of hours in the week where wind speed is below p

ms-1 for q hours or more at a time and is modelled as
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Ĥ
(p,q)
T = β0 +

3∑
j=1

n∑
i=1

βi,jPCT (i, j) . (5.8)

As for the mean wind speed and variability indices, LASSO regularisation is em-

ployed for feature selection.

Table 5.2: Table of index model input features. gph=geopotential height; ws=wind
speed. *925 and 1000hPa wind speed and mean sea level pressure are all included in
one PC transform together.

Variable(s)
PCs
kept

Features
Index models

Mean
ws

Variability Weather
window

weekly mean X X X
500 hPa gph 20 weekly sd X

weekly min,max X
weekly mean X X X

10 m ws 40 weekly sd X
weekly min,max X
weekly mean X X X

100m
variables*

20 weekly sd X

weekly min,max X

5.2.5 Ensemble Model Output Statistics

The ECMWF S2S forecasts provide 51 ensemble members, generated through per-

turbations to the intial conditions for the model run and the model physics. This

encapsulates uncertainty information about the forecast as well as just the ‘best’ single

forecast. However, there may still be bias, or over or under dispersion of the ensemble

members, or both. Ensemble Model Output Statistics (EMOS) aims to correct this

to provide a final unbiased, calibrated forecast. From Figure 5.4 we can see the index

forecasts have virtually no bias, while a time series plot (Figure 5.5) shows the ensem-

ble members are significantly under dispersed — this is also shown by the U-shaped

verification rank histogram (Figure 5.6).

In this work, the EMOS method used is similar to that in Schuhen et al. [253]

and is based on fitting of a parametric distribution to features of the ensemble mem-
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Figure 5.4: Weekly mean wind speed index forecast versus observed weekly mean fore-
cast, for 2 weeks ahead forecasts at the MIDAS 4 station.

bers in the framework of a Generalised Additive Model of Location, Scale and Shape

(GAMLSS) [254] — so all distributional parameters, not just the mean, can be mod-

elled explicitly. The choice of parametric distribution to fit was aided by the R function

fitDist from the gamlss package, which allows fitting of a group of possible distri-

butions with the optimal distribution having the lowest AIC score. In fitDist, all

distributions are fit with constant values for all parameters; this is then used to select

a distribution that more closely matches the overall distribution of the target variable.

For the mean wind speed and variability indices, the set of ‘realplus’ distributions were

considered, as wind speeds (and their standard deviations) may only take real positive

values. The gamma distribution was found to most closely fit the real distribution

of weekly mean wind speeds and variabilities so this was used as the base parametric

distribution to fit the EMOS correction model (a GAMLSS). The gamma distribution

has two parameters, location µ and scale σ. First we define two metrics of the K

ensemble index forecasts xk, their mean value x and mean difference ∆x [255]. This
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Figure 5.5: Time series of all individual ensemble member 2 weeks-ahead index forecasts
(light grey), overlaid with the actual weekly mean wind speeds (black). There is clear
underdispersion in the set of ensemble members.

value of mean difference takes into account the distance between each pair of ensemble

members, and is less sensitive to outliers compared to measures like standard deviation.

xt =
1

K

K∑
k=1

xk,t (5.9)

∆xt =
1

K2

K∑
k=1

K∑
k′=1

(xk,t − xk′,t) (5.10)

The two gamma distribution parameters µt and σt can then be modelled as functions

of x and ∆x

log(µt) = βµ,0 + βµ,1xt (5.11)

log(σt) = βσ,0 + βσ,1xt + βσ,2∆xt , (5.12)
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Figure 5.6: Verification rank histogram of all 2 weeks ahead ensemble member index
forecasts, showing the ‘U’ shape characteristic of underdispersion.

giving the final forecast distribution

ŷt ∼ Gamma(µ̂t, σ̂t) . (5.13)

The β coefficients are estimated by maximum likelihood using the gamlss function .

Log link functions in equations (5.11) and (5.12) ensure positive values for µt and σt.

A different distribution was needed for the weather window index forecasts, as

the number of available hours in a week is bounded at zero and 168. This can be

normalised to span [0,1] and will have probability masses on the bounds, as any week

with a consistently high wind speed will have zero available hours and there are also

weeks where the whole week is in a weather window. Therefore the zero- and one-

inflated Beta distribution (BEINF) is chosen as the parametric distribution to fit in

the EMOS stage for the weather window index forecasts. The BEINF distribution

has 4 parameters, which in R are the location µ, scale σ and two parameters related
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to the amount of probability assigned at zero and one, ν and τ . These are modelled

as functions of the same ensemble mean xt and ensemble mean difference ∆xt as in

Equations (5.9) and (5.10):

logit(µt) = βµ,0 + βµ,1xt (5.14)

logit(σt) = βσ,0 + βσ,1xt + βσ,2∆xt (5.15)

log(ν) = βν,0 (5.16)

log(τ) = βτ,0 . (5.17)

If the relations

αt = µt(1/σt − 1)

βt = (µt − 1)(σt − 1)/σt

p0 = ν/(ν + τ + 1)

p1 = τ/(ν + τ + 1)

(5.18)

are used to convert from location and scale parameters used in R to those more com-

monly used to describe the beta distribution and the boundary probabilities, the final

forecast distribution is given by

BEINF(x|αt,βt, p0, p1) = p0δ(x) + (1− p0 − p1)fB(x|αt,βt) + p1δ(x− 1) (5.19)

where 0 ≤ x ≤ 1 and p0 + p1 ≤ 1.

5.2.6 Benchmark climatology

It is important to benchmark any proposed method to be able to quantify its perfor-

mance relative to other methods. For seasonal forecasts, the most common benchmark

is climatology — where the forecast is an average of historic values for that particular

time of year, in this case month of the year. We use the time points equivalent to the

range of S2S hindcasts (i.e. 1999–2019) to produce the distribution of target values

(e.g. weekly mean wind speed) for each month of the year — this is then the forecast
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climatology for the forecast times matching those we produce model forecasts for from

the S2S forecasts. Climatology forecasts are produced for both the MIDAS data and

the corrected ERA5 site data so S2S forecasts trained on each may be compared to cli-

matology produced with the same data. Anecdotally, industry users who work on-site

use their personal experience of past site conditions at different times of year to inform

their work and decisions — this could be described as an informal type of climatology

informed decision.

5.3 Results and analysis

5.3.1 Mean wind speed forecasts trained on MIDAS data

Firstly, two main variations to the model configuration are tested: grouping the weather

variables related to 100m wind speed in one Principal Component transform, and cal-

culating separate sets of PCs for each of these variables. Secondly, we have to choose

the features derived from these PCs that are used as inputs to the index model: while

PCs and MIDAS data/site measurements are of hourly resolution, index forecasts are

produced for weekly intervals. All model configurations take weekly mean values of

the PCs as inputs, but it is also possible to provide other features such as weekly stan-

dard deviation and minima/maxima for each PC. This may be more relevant when

modelling certain metrics such as measures of variability rather than mean values. All

these modelling configurations were tested for all the MIDAS sites, with very similar

results displayed at all sites and shown for one location in Figure 5.7. This and all

following skill scores are calculated relative to climatology. Confidence intervals are

calculated through bootstrap resampling as detailed in Section 2.6.5. This shows no

significant difference in skill between model configurations, a result which holds across

all the MIDAS sites. This initial evaluation of skill also indicates skill above zero up

to and including three weeks ahead, which is promising. The metric of Pinball loss

used to calculate these skill scores is a function of both the reliability and sharpness

of the forecasts. However, a calibrated forecast with a slightly lower skill score is still

preferable over forecast with a better skill score but that is not calibrated. The Pin-

137



Chapter 5. Subseasonal to seasonal forecasting for wind turbine maintenance
scheduling

ball score is chosen as it is a proper score, i.e. the minimum score coincides with the

optimal estimate of that quantile. As it is estimated per quantile, it is possible to inves-

tigate the relative performance of the forecasts across the distribution as well as overall

performance across a set of quantiles. For example, figure 5.12 shows skill relative to

climatology for the more extreme quantiles estimated as well as skill in the central part

of the forecast distribution.Calibration (or reliability) is displayed in Figure 5.8. This

shows that all variations of linear model tested display very similar reliability to each

other. Since using the 100m PCs together and not including extra features results in

a faster runtime, this model is adopted for the weekly mean wind speed index. How-

ever, the extra features are always included for a variability index forecast as the extra

features are directly related to inter-week variability which is the target for this index.

The exact features and numbers of principal components used are given in Table 5.2.
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Figure 5.7: Pinball skill score of weekly mean wind speed index, at MIDAS 1 and rela-
tive to climatology. The three index model configurations are with separate Principal
Components, with extra weekly features (standard deviation, min and max) of the PCs
inputs, and where all 100m weather variables are transformed into PCs together. Error
bars show 95% bootstrapped confidence intervals.
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Figure 5.8: Normalised reliability diagram for mean wind speed index and the equiva-
lent climatology forecast, at MIDAS 1. The forecast labelled ‘linear model’ is calculated
with separate PCs and no extra engineered features. Horizons are in number of weeks.

5.3.2 Mean wind speed forecasts trained on ERA5 data

It is assumed that the optimal model configurations for forecasts trained on MIDAS

data ( grouping 100m windspeed-related variables and only including inter-week stan-

dard deviation as a feature for variability forecasts) also holds for forecasts trained on

ERA5 data. The skill of the forecasts trained on corrected ERA5 data (for the actual

wind farm sites) is presented grouped by location, with area 1 shown in Figure 5.9

and the remaining three areas in Appendix D. Forecasts with skill 0 < x < 0.15 are

described as ‘fair’, 0.15 < x < 0.3 are ‘good’ and > 0.3 are ‘very good’. This follows

the descriptions for skill levels given by the S2S4e project’s decision support tool [217]2;

however, these are purely indicative based on expert judgement and the skilfulness of a

forecast depends on its usefulness in decision making. All the wind farm site forecasts

show very good skill one week ahead, fair skill between 0.1 and 0.15 2 weeks ahead

and continuing fair skill 3 weeks ahead. The ERA5 forecasts show similar skill to the

MIDAS forecasts, with slight increases in skill over the MIDAS forecasts for areas 2

and 4 for the shorter horizons. Reliability diagrams for the MIDAS 1 site and Area 1

2\gls{s2s}4e-dst.bsc.es/#/
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(based on ERA5 data at WF1) are shown in Figures 5.10 and 5.11 respectively. On

these plots, a perfectly reliable forecast would lie on the line y = 0. Both climatology

and linear model forecasts are reliable across the forecast distribution, the only excep-

tion being some of the higher quantiles in the one week ahead linear model forecast.

This horizon is not the main focus for S2S decision making and typically, alterna-

tive data sources and forecasting methods (based on a standard NWP forecast) would

be used for this shorter horizon so this slight lack of calibration is not hugely important.
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Figure 5.9: Pinball skill score of weekly mean wind speed index relative to climatology.
The forecasts labelled ‘WF 1’ are based on corrected ERA5 data for that wind farm.
Error bars show 95% bootstrapped confidence intervals. MIDAS skill score is calculated
relative to climatology of the MIDAS wind speed data and WF1 skill score is calculated
relative to climatology of the corrected ERA5 data.

The Pinball skill scores shown in Figures 5.7 and 5.9 are an average of the Pin-

ball score across the forecast distribution. However, there may be more skill relative to

climatology in different parts of the distribution, for example the centre vs the tails. Cli-

matology is calculated for both MIDAS and corrected ERA5 data so each index model

is compared to climatology that has been produced from the same data. Figure 5.12
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Figure 5.10: Reliability of weekly mean wind speed forecast at MIDAS 1. Intervals
show 95% bootstrapped confidence bands.

shows the skill for a 2 week ahead forecast for each quantile level of the distribution.

This is still a skill score relative to climatology rather than absolute Pinball values, and

shows there is skill across the whole distribution with only slightly decreased skill at

the most extreme (q5 and q95) quantiles assessed.

For the geographically close groups of sites at areas 2 and 4, it is possible to share

resources such as cranes, parts and people easily between sites. As such, it is useful to

understand any correlations in forecast performance between these sites. For example,

when forecasts are underpredicting at site A, what does that likely mean for forecast

performance at site B? To examine this, the realisation value is passed through the

inverse cumulative distribution function to get the forecast probability of that value

occurring. These ‘realisation probabilities’ should be uniformly distributed if the fore-

casts are calibrated. Because they indicate where in the distribution the real value

fell, they can show times of under or overforecasting. A scatter plot of these values

shows the correlation in the forecast bias between neighbouring sites. Figure 5.13 shows

strong positive correlations between sites, indicating similar simultaneous forecast bi-
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Figure 5.11: Reliability of weekly mean wind speed forecast at WF1. Intervals show
95% bootstrapped confidence bands.

ases. The least strong correlations (site 4a with 4b and 4c) also correspond to the

largest geographical distance between wind farms.

5.3.3 Variability indices

The variability index is trained on the standard deviation of measured hourly wind

speeds within the week. Figure 5.14 shows the skill of variability index forecasts for

area 1. As for mean wind speed, the MIDAS-based and ERA5-based forecasts give

very similar skill, except for area 2 at shorter horizons. In general, the skill of the

variability forecasts is lower than that of mean wind speed forecasts for 1-2 week ahead

forecasts; however, some skill persists to the longer (4-6 weeks ahead) horizons at all

sites. Perhaps this is driven by a relationship between large scale weather patterns and

variability — for example the NAO phase (the sea level pressure difference anomaly

between Iceland and the Azores) is related to the number and strength of winter storms

in Europe.

The reliability diagrams for variability forecasts again for both MIDAS (Figure 5.15)

and ERA5 at the wind farm (Figure 5.16) show generally calibrated forecasts that don’t

display any consistent forecast bias or over or under-dispersion. The one week ahead
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Figure 5.12: Pinball skill score of weekly mean wind speed index relative to climatology
at WF 1, across the forecast distribution. The two week ahead forecast is shown here.

horizon again tends to show the greatest departure from perfect reliability. These ob-

servations apply to all locations, with the plots for other areas presented in Appendix C.

5.3.4 Weather window indices and economic value of forecasts

The weather window indices and subsequent cost-loss analysis is based on an example

where a crane is needed for a maintenance task. The safe wind speed threshold for

crane use depends on the crane model and object being lifted, but is assumed to be 7

ms-1 in this work3. It is also assumed that a minimum of an 8 hour window is needed

to complete a maintenance task. As an indicative figure, in the 20 years of hindcast

data at one site, 50.8% of time points were below the 7 ms-1 threshold. Of the 5003

unique weather windows, 2582 of them lasted 8 hours or longer.

3Exact limits are tied to the specific job and equipment and are set out in the ‘authorised work
procedure’. Interviews with site operations teams indicated typical crane lift limits are between 5 and
8 ms−1.
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Figure 5.13: Scatter plots of inverse probability of realisations. The solid black line
shows y=x.

A fan plot of the weather window index (Figure 5.17) shows the forecasts follow

seasonal trends well and do also have some sensitivity to shorter term spikes although

the forecast distribution is generally quite broad. The weather window index forecasts

have very good skill at all sites for 1 week ahead, fair skill for 2-3 weeks ahead and

some skill at most sites beyond that (Figure 5.18). All forecasts are calibrated across

all horizons with the exception of the 1 week ahead forecasts for the area 4 sites.

To perform a cost-loss calculation, the form of the losses incurred for the crane

maintenance problem must be determined. It is assumed that any turbines that need
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Figure 5.14: Pinball skill score of weekly variability (weekly standard deviation of
hourly wind speeds) relative to climatology. The forecasts labelled ‘WF 1’ are based on
corrected ERA5 data for that wind farm. Error bars show 95% bootstrapped confidence
intervals.

to be fixed are currently not operational, so that losses consist of the lost energy whilst

the turbine is down. Then the expectation value of lost energy for the week can be

calculated. An alternative assumption would be that the turbines can continue to

operate before the repair, in which case lost energy is only incurred from the downtime

while the repair takes place. The expected lost energy is given by

∫ 1

0
L(x)p(x) dx (5.20)

where x denotes the number of useful window-hours in the week, L(x) is the loss

function and p(x) is the forecast distribution. L(x) represents the losses incurred when

a turbine is not fixed; in this case, this is assumed to be the value of lost energy. To

calculate this, the hourly resolution site wind speeds are passed through a turbine power

curve before being summed into a value for weekly lost energy per turbine. Figure 5.20

shows the relationship between number of useful hours x and the lost energy for that

145



Chapter 5. Subseasonal to seasonal forecasting for wind turbine maintenance
scheduling

0.0 0.5 1.0

−0.1

0.0

0.1

Horizon=1

0.0 0.5 1.0

−0.1

0.0

0.1

Horizon=2

0.0 0.5 1.0

−0.1

0.0

0.1

Horizon=3

0.0 0.5 1.0
Nominal

−0.1

0.0

0.1

R
el

at
iv

e
E

m
p

ir
ic

al

Horizon=4

0.0 0.5 1.0

−0.1

0.0

0.1

Horizon=5

0.0 0.5 1.0

−0.1

0.0

0.1

Horizon=6

Climatology

Linear model

Figure 5.15: Reliability of variability forecast at MIDAS 1. Intervals show 95% boot-
strapped confidence bands.

week L(x). This relationship is modelled as quadratic, so the loss function becomes

L(x) = ax2 + bx+ c (5.21)

and the expected lost energy (Equation 5.20) becomes

∫ 1

0

(
ax2 + bx+ c

)
[p0δ(x) + (1− p0 − p1)fB(x|α,β) + p1δ(x− 1)] dx (5.22)

where fB is the beta distribution with parameters α,β and δ(x) is the dirac delta

function centred at 0. Using the properties
∫ x2
x1
f(x)δ(x−a) = 0 when a ≤ x1 or a ≥ x2

and the recursion relation for the beta functionB(α + 1,β) = αB(α,β)/(α + β),

Equation 5.22 evaluates to

(1− p0 − p1)

[
a αt(αt + 1)

(αt + βt)(αt + βt + 1)
+

b αt

αt + βt
+ c

]
. (5.23)

Here a, b and c are estimated from a quadratic fit to the relationship shown in Fig-
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Figure 5.16: Reliability of variability forecast at WF1. Intervals show 95% boot-
strapped confidence bands.

ure 5.20. µt, σt, ν and τ are the BEINF parameters estimated through GAMLSS model

fitting following Equations 5.14 – 5.17 and are then converted to p0, p1, αt and βt using

the relations in Equation 5.18.

Figure 5.21 shows the various possible scenarios, given three turbines need to be

repaired. The expected cost from not hiring the crane includes the lost energy for the

week plus a terminal penalty given by the average energy loss in subsequent weeks

before the next opportunity to repair all remaining turbines. If a crane is hired, there

are several different numbers of turbines that could get fixed depending on the actual

weather conditions that week. The end cost of a scenario where n turbines are fixed

and m turbines remain down is the cost of energy for the portion of the week before

the n turbines are fixed, plus the lost energy for the entire week for the m turbines

that aren’t fixed, plus the cost of the crane, plus a final terminal penalty of the average

energy loss in subsequent weeks before the next opportunity to repair the m remaining

turbines. The overall expected cost of hiring the crane is the sum of these scenarios,

weighted by their probabilities of occurrence. These probabilities of occurrence are

derived from the forecast distribution of x, the number of useful hours in the week.

Then a decision on whether to hire a crane may be made, based on which option has
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Figure 5.17: Fan plot of 2 weeks ahead weather window index forecasts

the lowest expected cost given the forecast. This decision is sensitive to two costs: the

cost of crane hire, and the cost of lost power production, which depends on electricity

price. The expected costs of hiring or not hiring are plotted in Figure 5.22. All points

below the y = x line represent times where hiring a crane is cheaper than not hiring

one.

At very high electricity prices, the expected cost of lost energy is always greater than

the expected costs incurred if a crane is hired (the curve in Figure 5.22 is shifted so it lies

entirely below the y = x line), so the decision is always to hire the crane. Conversely at

very low electricity prices, the cost of lost energy is much less than the cost of the crane

and so it is never beneficial to hire the crane. In reality, there may be other contractual

penalties for failure to repair any turbines but this is not included in the cost loss model

used here, as the financial cost of this may be linked to maintenance of the whole wind

farm across a whole season rather than individual maintenance decisions. For the cost-

loss model in this example, for a given crane hire cost, there exists a range of electricity

prices where the decision to hire or not hire depends on the forecast number of useful
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Figure 5.18: Pinball skill score of weather window index relative to climatology. for
area 1.Error bars show 95% bootstrapped confidence intervals.

hours in the week (equally, for a set electricity price there would be a range of crane

hire prices where this also holds). The range of electricity prices where the decision to

hire or not hire a crane is sensitive to the forecast number of useful hours is shown in

Figure 5.23. Further analysis is based on WF3, where the range of electricity prices is

the greatest.

The true cost of crane hire decisions is evaluated by comparison to what the actual

weather would have allowed. The number and timings of actual weather windows in

the ERA5 site wind speed data give the first available times each turbine may be fixed

and the corresponding actual lost energy before those times. Then the ‘actual’ cost

of hiring or not hiring can be calculated. The total cost calculated assumes there are

always either 2 or 3 turbines down, across all 200 weeks evaluated. However, in reality

this scenario will only apply for a portion of weeks, and the more relevant metrics

are the number of turbines fixed and the average cost per turbine. These metrics are

plotted in Figures 5.24 and 5.25 respectively. As might be expected, the total number
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Figure 5.19: Reliability of weather window index forecast at WF1. Intervals show 95%
bootstrapped confidence bands.

of turbines fixed increases with electricity price as the decision to hire a crane is made

a higher proportion of the time when the cost of lost energy is higher. There is no

clear difference in number of turbines fixed between decisions based on climatology or

the S2S index forecasts. Again there is little difference between climatology or S2S

forecasts in cost per turbine, apart from at the lowest electricity price considered where

no turbines were fixed under climatology. Above £60/MWh for 3 turbines or £90/MWh

for 2 turbines, the cost per turbine is relatively stable. Comparing the decisions made

at each timestamp by the climatology or S2S index forecasts, both forecasts made the

same hiring decision at 189 of the 200 weeks analysed, which perhaps explains why the

costs associated with both forecasts are so similar.
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Figure 5.20: Relationship between number of hours in a weather window and weekly
total lost energy at WF1. Both axes are normalised by their maximum (i.e. number of
hours in a week and maximum weekly energy output).
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Figure 5.21: Flowchart of crane hire decision and resulting costs, assuming three tur-
bines are broken. The week starts at time t=0 and ends at time t=w. E is the expected
cost of lost energy for one turbine for the whole week, given the weather window index
forecast (see Equations 5.20 - 5.23). C denotes the cost of crane hire for the week, J
denotes the job time for repair of one turbine and Tm is a terminal cost representing
the average energy loss in subsequent weeks before the next opportunity to repair the
m unfixed turbines. x is the number of useful hours. Where one or more turbines are
repaired, the times of repair are assumed to be divided evenly throughout the week.
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Figure 5.22: Expected cost of hiring crane, vs expected cost of not hiring crane, for
2-week ahead forecasts of number of available hours in the week. Colour shows the q50
forecast value of normalised number of hours within a weather window.
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Figure 5.23: Range of electricity prices at each site where crane hire decision is sensitive
to the forecast number of weather window hours, for either 2 or 3 turbines down. Marker
shows the median price and whiskers show the minimum and maximum electricity prices
where the hire decision is sensitive to the forecast.
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Figure 5.24: Number of turbines fixed when index forecasts or climatology forecasts
are used to make crane hiring decision, dependent on electricity price, at WF3.
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Figure 5.25: Cost of crane hire and lost energy when index forecasts or climatology
forecasts are used to make hiring decision, for a range of electricity prices, at WF3.
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5.4 Conclusions

Forecasts of weekly mean wind speed, weekly wind speed variation and number of

useful work hours within the week have been shown to be skilful on S2S timescales.

While this has been demonstrated for sites in Scotland, the methodology presented

could be applied to any location. Skill would have to be checked on a site-by-site

basis but it is hoped that the presence of skill shown in this case study would also be

found at other locations. Future improvements in the accuracy, resolution and relevant

variables available (e.g. 100m wind speed) from S2S forecast products may be expected

to further increase the skill of these forecasts. Mean wind speed forecasts showed skill

out to three weeks ahead. Variability forecasts had lower skill for one or two week

horizons, but retain fair skill out to 6 weeks ahead. A new ‘weather window index’ of

the number of useful hours in a week was proposed to inform activity-specific decision

making, for example crane hire. This new useful-hours metric could be applied for

any problem where an activity depends on a weather condition threshold and requires

a minimum amount of time, such as crew transfers for offshore wind which depends

on significant wave height. These weather window index forecasts showed very good

skill one week ahead and fair skill out to 6 weeks. A cost-loss model was implemented

to determine the economic benefit of forecasts, but found little difference between the

decisions made under climatology and the decisions made by the S2S forecasts. The

availability of historical S2S forecasts of many important weather variables through the

S2S database would allow users interested in this methodology to test its viability and

potential for better decision-making within their sector before investing in production

of a live system.

Training forecasts on reanalysis data corrected to the site showed no significant

worsening in forecast skill compared to forecasts trained on a long measured time series

of MIDAS data. When correcting reanalysis data to site measurements, accounting

for seasonal variations improves the corrected time series by 0.8%. Due to the lack

of 100m wind speed variable in the ECMWF S2S forecasts, several weather variables
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related to 100m wind speed were used in place. Performing one principal component

analysis on all these variables together had little effect on the final forecast skill but

improved computation times by decreasing the number of model inputs. A linear

model with regularisation was used to generate site-specific index forecasts at weekly

resolution; including standard deviation, min and max of all principal components (the

input features to this model) as well as mean gave no improvement in mean wind speed

forecast but was included for variability forecasts. Index forecasts were generated for

each ensemble member, before EMOS was applied to correct for the underdispersion

seen in the ensemble.

Original contributions of this work include:

• A comparison between forecasts generated with a complete measured time series

and those using reanalysis data corrected with a limited history of site data.

This bridges the gap between common methods for desk-based studies and those

necessary to apply models to real world sites.

• Determination of the skill of S2S forecasts across three different metrics that are

relevant for maintenance planning.

• Implementation of a cost-loss model and investigation of the sensitivity of hiring

decisions to electricity price

To further extend this work, it would be beneficial to investigate the performance

of other models to produce the index forecasts, especially nonlinear models such as

GAMLSS or gradient boosted trees that can also learn interactions between input

features. Besides the simple linear model used here or a polynomial regression ap-

proach [230], no other types of model have been explored for this purpose. Further

feature engineering could also prove beneficial. Weather window index forecasts were

only generated for one wind speed threshold and weather window length. The safe

limit for work in the nacelle is much higher and therefore ‘unsafe’ times will form a

much smaller proportion of the dataset in this case; it would be interesting to explore

how this affects the skill of the weather window forecasts and how this translates to

decision making. Additionally, whole site servicing campaigns require many individual
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but possibly interdependent decisions to be made. Allowing sharing of resources be-

tween sites also adds complexity as well as opportunities for cost reduction that were

not considered here. Whole-campaign planning would also lend itself more easily to the

inclusion of contractual penalties in the cost-loss model. The calculation of expected

lost energy could also be improved by modelling the relationship between useful hours

and lost energy (Figure 5.20) as heteroscedastic, although a careful choice of distribu-

tion would be needed to evaluate the subsequent integration exactly without numeric

integration.
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Conclusions

Chapters 3, 4 and 5 have investigated current problems faced in operational wind power

forecasting and suggested possible solutions. Three distinct problems were identified,

linked to important properties of a useful and useable forecast.Firstly, the problem of

how to deal with missing data both in training and in the live running of a forecast

model was explored, as a forecasting system that doesn’t consider data quality will not

always function to produce sensible forceasts. Secondly, the problem of how to improve

forecasting accuracy of power forecasts around times of ramps was investigated through

a novel forecast combination approach. Finally, forecasts on subseasonal-to-seasonal

timescales were tailored to time and wind speed limits specific to certain maintenance

activities to provide relevant forecasts for these use-cases, namely crane use.

Missing data

In the work on missing data, the properties of missing data in real SCADA time series

were found, before the effect of various missing data scenarios on forecast skill were

simulated through case studies. Real wind power data is shown to have typical median

levels of missing data of 2.70% for the power variable and 1.57% for wind speed. How-

ever, some sites may display levels up to 36%, greatly reducing forecast skill. Data is

Missing Not at Random (MNAR), meaning care must be taken to use an appropriate

missing data technique. The impact of missing data on wind power forecasts in an au-
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toregressive framework has been demonstrated, with the most appropriate mitigation

methods identified. The key results are summarised:

• Missing training data can have a significant impact on results if not dealt with

appropriately; multiple imputation is found to be the best of the methods con-

sidered here to compensate for this

• If inputs to an operational forecast model are missing, retraining the model with-

out these inputs results in better performance than filling the missing values using

a regression model based on available inputs

• Forecast error improves across all sites when more sites are included in the model,

with particular improvement at sites that are missing forecast input data; there-

fore, spatio-temporal models including a greater number of sites are generally

more robust to missing data

• Forecasts continue to worsen with increasing length of missing period, but the

largest proportion of the loss of forecast skill comes from missing the most recent

information

• When a subset of sites have a short historic dataset available, ERA5 reanalysis

data scaled to site location and hub height and passed through a power curve

provides a good substitute. Where applicable and only one or two sites have

short datasets, Balancing Mechanism data may be used.

While these results are from case studies using a Vector Autoregressive (VAR)

forecasting model, future work could extend this to other models. It is expected the

results would be similar, as the change in forecast skill is likely related more to the

loss of information from the missing variable(s) than the modelling framework itself.

In summary, awareness of the properties of missing data, its potential impact on model

performance and use of suitable mitigation techniques is essential to realise that model’s

full potential.
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Limitations

This study presented results based on just one forecasting method, the VAR model

and at a single group of sites. While it is expected the results would generalise to

other models and sites, the exact performance of the proposed missing data methods

may vary. It is assumed that all instances of missing data are captured by excluding

curtailments and site-wide maintenance activities. However, the maintenance logs vary

in their detail and accuracy and so capturing the exact start and end of these may not

be possible. Other instances where data is not explicitly missing, but data quality may

be affected, were not considered but in reality this would have an impact on forecast

performance. For example, if one turbine’s sensors become stuck on a single value but

this is not flagged and only the whole site power is checked for data quality issues. This

case study relies on a method where multiple sites are forecast within one model, which

allows inter-site dependencies to be exploited in the missing data mitigation methods.

In reality, many forecasters will have access to a very limited set of sites, generally only

the sites belonging to the same operator, which will limit the improvement gained from

the methods outlined here.

Future research questions

Do other forecasting methods show the same level of improvement using the

missing data methods as the VAR case study in this thesis does? While the

relative performance of the different missing data methods is expected to remain the

same using different forecasting methods and different datasets it would be valuable to

demonstrate this.

Quantifying the effect of distance between sites: As an extension to case 1,

where a random subset of sites were included in the forecast model, further work is

needed to explicitly test the benefit of nearby sites and if distance between sites, or

some other measure of similarity, can anticipate the ‘added value’ of inclusion of the

other site. This could also help to demonstrate a use-case for data sharing and data

markets.

The work set out in Chapter 3 only analyses the effect of missing data
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on deterministic forecasts. Extending these results and methods to probabilistic

forecasts would be valuable future work.

Forecast combination

Four individual model forecasts were created, three based on recent measurements and

one on Numerical Weather Prediction (NWP) forecasts. None of these models showed

good calibration before forecast combination. Four benchmark combination methods

were employed: both constrained and unconstrained Optimal Linear Pool (a linear

weighted combination), and a beta-transformed Optimal Linear Pool (OLP) combined

by both quantile and power. A new nonlinear forecast combination method based on

a Gradient Boosted Machine (GBM) is proposed, including a variant that explicitly

takes forecasts of ramp rate as well as individual power forecasts into the combination

model. All forecast combination models showed higher skill scores (on both Mean

Absolute Error (MAE) and Pinball score) than the best individual model for horizons

1–3 hours ahead, with the greatest improvement for 2 hours ahead where the skill of

individual models was most similar. The benefit of forecast combination was less clear

4–6 hours ahead where the individual GBM model performed much better than the

other individual models.

The proposed combination approach based on a lightgbm model with ramp features

gave significantly better skill than all other combination models 1 hour ahead (and up

to 3 hours ahead at some locations), but the simpler linear combinations outperformed

it at longer (4–6 hours) horizons.

Time points were identified as either a ramp or non-ramp, and the ability of the

forecast to predict these assessed. It was found that the lightgbm-ramps model correctly

forecasts the highest proportion of true ramps 2 or more hours ahead at 6 of the 10

locations tested, but also has a tendency to over-preedict ramps at non-ramp times.

Overall, there is no one model that is consistently better at forecasting ramps across

all locations and horizons.

The choice of combination model will depend on the individual site characteristics

and the specifics of the wider problem (for example, if there is a greater penalty for
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missing a ramp than forecasting a false positive). A larger dataset would be needed with

significance tests employed to fully understand differences between models. Integrating

these forecasts with the financial consequences of system actions would better define

their usefulness and limitations.

Limitations

In the case study for forecast combination presented in this thesis, none of the individual

models were calibrated. It is possible that forecast combination methods would perform

differently (possibly better) with more reliable individual forecasts as inputs. The

amount of benefit gained for employing a forecast combination approach will depend

on the diversity of the individual models used and how complementary they are to

each other. There is also a requirement for relatively large amounts of training data,

and that forecast input training data from different sources covers at least some of the

same time period to allow for both training of the individual forecast models while

also producing out of sample forecasts to use to train the forecast combination step.

No one best approach was found in this work; testing of different forecast combination

approaches and the conditions under which each are preferred would be necessary but

time consuming to operationalise. Similarly, setting up and producing forecasts from

multiple different models especially with different data sources is more time consuming

and expensive than relying on one model, so the benefits would have to be clear.

Future research questions

The cost function for action taken to mitigate ramps in power can be asym-

metric. How can this be incorporated with forecasts to provide the best

information for decision makers? As an example, for a downward ramp in power

the consequences of procuring too much reserve, while expensive, are less severe than

the consequences of customer disconnection in the worst case where the grid can’t meet

demand. This contextual knowledge must be incorporated into decisions alongside the

forecasts. Actions taken when upwards ramps are expected are also different from

downwards ramps so these must be treated differently.
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Modelling of the most extreme ramps: The most extreme ramps (with the

largest change in power or over a very short time) are the most difficult conditions under

which to manage the power system. As such, advance warning of these times would be

beneficial. Rare or extreme events like this require a different approach to forecasting,

for example using extreme value theory, than forecasts of average quantities.

Subseasonal-to-seasonal forecasting

Forecasts of weekly mean wind speed, weekly wind speed variation, and number of

useful work hours within the week have been shown to be skilful on S2S timescales.

Mean wind speed forecasts showed skill out to three weeks ahead. Variability forecasts

had lower skill for one or two week horizons, but retain fair skill out to 6 weeks ahead.

A new ‘weather window index’ of the number of useful hours in a week was proposed to

inform activity-specific decision making, for example crane hire. These weather window

index forecasts showed very good skill one week ahead and fair skill out to 6 weeks. A

cost-loss model was implemented to determine the economic benefit of forecasts, but

found little difference between the decisions made under climatology and the decisions

made by the S2S forecasts.

Training forecasts on reanalysis data corrected to the site showed no significant

worsening in forecast skill compared to forecasts trained on a long measured time series

of MIDAS data. When correcting reanalysis data to site measurements, accounting

for seasonal variations improves the corrected time series by 0.8%. Due to the lack of

100m wind speed variable in the European Centre for Medium-range Weather Forecasts

(ECMWF) S2S forecasts, several weather variables related to 100m wind speed were

used in place. Performing one principal component analysis on all these variables

together had little effect on the final forecast skill but improved computation times by

decreasing the number of model inputs. A linear model with regularisation was used to

generate site-specific index forecasts at weekly resolution; including standard deviation,

min and max of all principal components (the input features to this model) as well as

mean gave no improvement in mean wind speed forecast but was included for variability
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forecasts. Index forecasts were generated for each ensemble member, before Ensemble

Model Output Statistics (EMOS) was applied to correct for the underdispersion seen

in the ensemble.

Original contributions of this work include:

• A comparison between forecasts generated with a complete measured time series

and those using reanalysis data corrected with a limited history of site data.

This bridges the gap between common methods for desk-based studies and those

necessary to apply models to real world sites.

• Determination of the skill of S2S forecasts across three different metrics that are

relevant for maintenance planning.

• Implementation of a cost-loss model and investigation of the sensitivity of hiring

decisions to electricity price.

To further extend this work, it would be beneficial to investigate the performance of

other models to produce the index forecasts, especially nonlinear models such as Gen-

eralised Additive Model of Location, Scale and Shape (GAMLSS) or gradient boosted

trees that can also learn interactions between input features. Besides the simple linear

model used here or a polynomial regression approach [230], no other types of model have

been explored for this purpose. Further feature engineering could also prove beneficial.

Weather window index forecasts were only generated for one wind speed threshold and

weather window length. The safe limit for work in the hub is much higher and therefore

‘unsafe’ times will form a much smaller proportion of the dataset in this case; it would

be interesting to explore how this affects the skill of the weather window forecasts and

how this translates to decision making. Additionally, whole site servicing campaigns

require many individual but possibly interdependent decisions to be made. Allowing

sharing of resources between sites also adds complexity as well as opportunities for cost

reduction that were not considered here. Whole-campaign planning would also lend

itself more easily to the inclusion of contractual penalties in the cost-loss model. The

calculation of expected lost energy could also be improved by modelling the relation-

ship between useful hours and lost energy as heteroscedastic, although a careful choice
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of distribution would be needed to evaluate the subsequent integration exactly without

numeric integration.

Limitations

Forecasts for maintenance decisions were produced for a small set of sites in a fairly

limited geographical area, due to data availability. However, this limits the confidence

in the generalisation of these results to other sites outwith the study area. It was found

the decision to hire or not hire a crane was only sensitive to the forecasts for a range of

electricity prices; outside this range the decision was always the same. Therefore there

may be some sites where electricity price is outside this range and so the forecasts would

not aid decision making. The cost loss model presented does not represent whole-year

penalties, only the penalty due to lost energy before a turbine is fixed. This type of

long term penalty would be more complex to integrate for making single decisions. In

addition, the cost loss model assumes a constant known electricity price. Whilst this

may be the case for sites with subsidies or a Power Purchase Agreement, increasingly

new subsidy-free sites would be exposed to varying electricity prices. In reality, the

decision whether to hire equipment or not, and for which exact days, will be revised

closer to the booking date. However, this revision decision is asymmetrical: it would

be possible to cancel a booking made earlier but much less likely to be able to put in

a booking at short notice when the earlier decision on Subseasonal-to-Seasonal (S2S)

timescales had been to not book equipment. This is currently not accounted for in the

S2S decision making methodology.

Future research questions

Refining of index model step and future improvements to S2S forecast prod-

ucts: Only a linear model was used to go from principal components on a large geo-

graphical scale to a site-specific index forecast in this work. Future work could explore

the use of more sophisticated models that include nonlinear relationships for example.

It is also anticipated that future developments in S2S products from providers such as

ECMWF may also increase skill. It is hoped that increasing interest from the energy
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community in this field may also spur provision of further relevant weather variables

such as 100 m wind speed which may also be used in future work to improve forecast

skill for wind energy applications.

Application of a similar methodology to other decisions: Here only the use

of S2S forecasts for equipment hire decisions have been tested with a cost-loss model.

The useful hours metric used here could be extended to other applications with different

cost-loss functions.

Fully representing all penalties in cost-loss modelling: Developing a method

to include long-term penalties in the cost-loss based decision methodology laid out in

this work would be valuable for use cases such as annual servicing campaigns across

many turbines.

6.1 Final remarks

This thesis has identified three areas within forecasting for wind energy where it was

felt further development of methodologies would be of benefit. A review of recent

work in the field was undertaken, where parallels were drawn between wind and solar

literatures and recommendations for good practice in forecast development and testing

identified. Chapter 3 gives a guide to suitable strategies for dealing with missing data

when implementing a live forecasting system. This has already informed decisions made

in the design of a new very short-term forecasting model at Natural Power and it is

hoped it will draw attention to this aspect of forecasting which is often not given a lot

of attention. A novel forecast combination approach has been presented in Chapter 4

to improve very short-term forecasts at times of ramps. While this work did show

slight improvements in both accuracy of power forecasts and identification of ramps

an hour or two ahead, it is clear this is a difficult task that requires further refining.

Finally, a new metric for use in wind turbine equipment hire decisions for maintenance

tasks was proposed. This work demonstrates the potential of S2S forecasts for this

new application and encourage both interest from industry in using such a forecast

product and also from academia to develop future improvement to forecast accuracy

and applicability on these timescales. The research outputs listed in the next section
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serve as a record of this research for others to refer to and build on.

Future improvements in forecast performance may come from greater availability of

a wider range of data sources such as satellite data and sky-imaging systems for solar.

Higher resolution NWP using improved atmospheric models will also improve renew-

able energy forecasts. Wider use of probabilistic forecasts would benefit the energy

sector and forecasts for new ancillary services will be required. While the focus of this

thesis has been on forecasts for wind energy applications, similar approaches could be

applied for solar too - although normalisation of solar to remove diurnal variations is

an additional challenge.

6.2 Research outputs
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Summary of papers

Table A.1: Table of papers reviewed for the literature review in Chapter 2 and broad
categorisation of types of methods used. Forecast horizons are given in this table when
specified in the paper but otherwise left blank.
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Lee (2019) [66] X X X
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Rana (2016) [71] 5-60min X X
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Fu (2020) [258] 10min–1hr X X X X
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Jiang (2017) [131] X X

Jiang (2019) [125] 10–60min X X X X

Khodayar (2017) [99] 10min–3hrs X X

Khodayar (2019) [102] 1–24hrs X X
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Ma (2017) [104] 10–60min X X
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Noorollahi (2016) [259] X
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Valledecabres (2018) [136] 5min X X X X

Wang (2017) [126] 1hr X X X X

Wang (2017) [96] 10–30min X X X

Wurth (2019) [135] 1hr X X

Xiao (2015) [118] X X

Ye (2017) [260] X
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Yu (2019) [134] 90min X X X

Zameer (2017) [119] 1hr X X X

Zhang (2017) [112] X X X X

Zhang (2017) [114] X X X

Zhang (2017) [109] 3–24hrs X X X X X

Zhang (2018) [91] ≤24hrs X X X

Zhang (2019) [105] X X

Zhang (2019) [129] X X X

Zhao (2018) [88] ≤90min X X

Zhou (2016) [84] 15min–4hrs X X X

totals (% of studies) 29% 71% 26% 64% 24% 18% 25% 7% 11%
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Bayesian Markov chain derivation

For a Bayesian approach, forecasts are generated by integrating over the whole distri-

bution of values for the transition matrix parameters:

p(y|x) =

∫
p(y|Θ)p(Θ|x)dΘ (B.1)

with

p(Θ|x) ∝ p(Θ)p(x|Θ) (B.2)

by Bayes theorem. p(Θ) is the prior distribution, and p(x|Θ) is the likelihood function

(eq. 2.5). p(y|Θ) is the multiplication of the (observed) forecast input state by the

transition matrix.

A Dirichlet prior is chosen [144] as it is the conjugate prior of the multinomial

distribution (i.e. it takes the same form as the likelihood function) and incorporates

the constraint that the row-wise sum of transition matrix probabilities is one. The

dirichlet distribution for row l of the transition matrix is defined as

p(Θ) = f(θl1, ..., θlK ;α1, ..., αK) =
1

B(α)

K∏
j=1

θ
αj−1
lj ; (B.3)

∑K
j=1 θlj = 1 and all θlj ≥ 0. Ignoring normalisation constants and substituting Equa-

tions 2.5 and B.3 into eq. B.1, assuming we know the previous forecast state is l,
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p(y|x) ∝
∫


θl1

θl2

...

θl(K−1)

θlK


K∏
i

K∏
j

θ
Nij+αij−1
ij dΘ . (B.4)

For an arbitrary forecast input state, the integral in Equation B.1 would be over all

K2 elements of the transition matrix; however, if we know the input state is l and set

the transition matrix up directly for the desired forecast horizon (rather than iteratively

forecasting multiple steps ahead), we need only integrate over elements of Θ in row l

(since all other elements are not contained in the vector element of the integral, they

integrate to a constant and therefore can be ignored as long as the state probabilities

are normalised after the integration). Also including the constraint that the row-wise

sum of elements in Θ is equal to one, Equation (B.4) reduces to the integral over K−1

parameters:

p(y|x) ∝
∫


θl1

θl2

...

θl(K−1)

1− θl1 − θl2...− θl(K−1)


×

θNl1+αl1−1
l1 × θNl2+αl2−1

l2 ...(1− θl1 − θl2...− θl(K−1))
NlK+αlK−1 dθl1dθl2...dθl(K−1) .

(B.5)

Each element in the vector integration is of the general form

∫
θal1 × θbl1...× (1− θl1 − θl2...− θl(K−1))

j dθl1dθl2...dθl(K−1) . (B.6)

Each parameter may then be integrated over. The following example purely considers

the integration over θl1 and in the case where K=4, but the integrals over all other

parameters and for other values of K follow the same process. The integration limits
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are from 0 to (1− θl2− θl3) since the sum of all parameters must be one. We can make

the substitution θl1 = (1− θl2 − θl3)× u where all θlj parameters yet to be integrated

are included on the RHS. This leads to

θbl2 θ
c
l3

1− θl2 − θl3

∫ u=1

0
[(1− θl2 − θl3)u]a × [(1− θl2 − θl3)(1− u)]d du (B.7)

= θbl2 θ
c
l3 (1− θl2 − θl3)a+b−1

∫ u=1

0
ua(1− u)ddu . (B.8)

Now this is in the same form as the definition of the Beta distribution, so we get

= θbl2 θ
c
l3 (1− θl2 − θl3)a+d−1 B(a− 1, d− 1) (B.9)

which can then be further integrated over the remaining θl2,θl3. Writing the beta func-

tion in terms of gamma functions gives the result for the general integral in Equation

(B.6):

Γ(a− 1)Γ(b− 1)Γ(c− 1)...Γ(j − 1)

Γ(a+ b+ c+ ...+ j − (K − 1)
. (B.10)

Combining this with the vector in Equation B.5, using the recursion relation Γ(a) =

(a − 1)Γ(a − 1) and cancelling common factors between the vector elements, the un-

normalised state vector resulting from the integration is

p(y|x) ∝



Nl1 + αl1 − 1

Nl2 + αl2 − 1

Nl3 + αl4 − 1

...

NlK + αlK − 1


(B.11)

and this then just has to be normalised so that the elements sum to 1 (i.e. the total

probability across all states is one). To specify the K2 prior values needed we utilise

the assumption that transitions to more similar, or closer, power levels are more likely
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than large jumps in power between time steps. Then the priors are constrained by

αlj = K − |l − j| . (B.12)

These don’t need to be normalised as αlj is combined with transition counts in Equa-

tion B.11 before the whole vector is normalised. This constraint on the priors defines

the relative size of each αlj to the others, but we can still optimise the relative size of

the priors to the counts as a whole by introducing a ‘scaling factor’ c:

p(y|x) ∝



cNl1 + αl1 − 1

cNl2 + αl2 − 1

cNl3 + αl4 − 1

...

cNlK + αlK − 1


. (B.13)

This means we can control the importance of the observed transition counts, relative

to the priors, with just one parameter c.

209



Appendix C

Forecast combination evaluation

at all zones

210



Appendix C. Forecast combination evaluation at all zones

1 2 3 4 5 6
Horizon (hrs)

0.0

0.1

0.2

0.3

0.4

M
A

E
sk

il
l

sc
or

e

best individual

(unconstrained) OLP

beta OLP by quantile

lightgbm

lightgbm with ramp features

(a) MAE skill score against forecast horizon

1 2 3 4 5 6
Horizon (hrs)

0.0

0.1

0.2

0.3

0.4

P
in

b
al

l
sk

il
l

sc
or

e

best individual

(unconstrained) OLP

beta OLP by quantile

lightgbm

lightgbm with ramp features

(b) Pinball skill score against forecast horizon

Figure C.1: Skill scores of combination models at zone 2, relative to probabilistic persis-
tence model. The 95% interval of bootstrap samples is shown. Positive values indicate
improvement over persistence. Constrained OLP is omitted as it is outperformed by
unconstrained OLP for every zone and horizon.
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Figure C.2: Skill scores of combination models at zone 3, relative to probabilistic
persistence model
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Figure C.3: Skill scores of combination models at zone 4, relative to probabilistic
persistence model
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Figure C.4: Skill scores of combination models at zone 5, relative to probabilistic
persistence model
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Figure C.5: Skill scores of combination models at zone 6, relative to probabilistic
persistence model
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Figure C.6: Skill scores of combination models at zone 7, relative to probabilistic
persistence model
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Figure C.7: Skill scores of combination models at zone 8, relative to probabilistic
persistence model
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Figure C.8: Skill scores of combination models at zone 9, relative to probabilistic
persistence model
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(a) Matrix of MAE skill scores. (Figure continues onto next page)
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Figure C.9: Matrices of skill scores for each pair of forecast combination methods for
zone 2. Asterisks denote significance level of Diebold-Mariano test values: *=0.05;
**=0.01; ***=0.001.
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(a) Matrix of MAE skill scores. (Figure continues onto next page)
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Figure C.10: Matrices of skill scores for each pair of forecast combination methods
for zone 3. Asterisks denote significance level of Diebold-Mariano test values: *=0.05;
**=0.01; ***=0.001.
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(a) Matrix of MAE skill scores. (Figure continues onto next page)
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(b) Matrix of Pinball skill scores

Figure C.11: Matrices of skill scores for each pair of forecast combination methods
for zone 4. Asterisks denote significance level of Diebold-Mariano test values: *=0.05;
**=0.01; ***=0.001.
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(a) Matrix of MAE skill scores. (Figure continues onto next page)
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(b) Matrix of Pinball skill scores

Figure C.12: Matrices of skill scores for each pair of forecast combination methods
for zone 5. Asterisks denote significance level of Diebold-Mariano test values: *=0.05;
**=0.01; ***=0.001.
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(a) Matrix of MAE skill scores. (Figure continues onto next page)
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(b) Matrix of Pinball skill scores

Figure C.13: Matrices of skill scores for each pair of forecast combination methods
for zone 6. Asterisks denote significance level of Diebold-Mariano test values: *=0.05;
**=0.01; ***=0.001.
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(a) Matrix of MAE skill scores. (Figure continues onto next page)
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Figure C.14: Matrices of skill scores for each pair of forecast combination methods
for zone 7. Asterisks denote significance level of Diebold-Mariano test values: *=0.05;
**=0.01; ***=0.001.
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(a) Matrix of MAE skill scores. (Figure continues onto next page)
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Figure C.15: Matrices of skill scores for each pair of forecast combination methods
for zone 8. Asterisks denote significance level of Diebold-Mariano test values: *=0.05;
**=0.01; ***=0.001.
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(a) Matrix of MAE skill scores. (Figure continues onto next page)
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Figure C.16: Matrices of skill scores for each pair of forecast combination methods
for zone 9. Asterisks denote significance level of Diebold-Mariano test values: *=0.05;
**=0.01; ***=0.001.
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(a) Matrix of MAE skill scores. (Figure continues onto next page)
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Figure C.17: Matrices of skill scores for each pair of forecast combination methods for
zone 10. Asterisks denote significance level of Diebold-Mariano test values: *=0.05;
**=0.01; ***=0.001.
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Figure C.18: Relative reliability for the combined model forecasts at zone 2. A relative
empirical frequency of zero represents ideal reliability.
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Figure C.19: Relative reliability for the combined model forecasts at zone 3.
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Figure C.20: Relative reliability for the combined model forecasts at zone 4.
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Figure C.21: Relative reliability for the combined model forecasts at zone 5.
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Figure C.22: Relative reliability for the combined model forecasts at zone 6.
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Figure C.23: Relative reliability for the combined model forecasts at zone 7.
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Figure C.24: Relative reliability for the combined model forecasts at zone 8.
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Figure C.25: Relative reliability for the combined model forecasts at zone 9.
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Figure C.26: Relative reliability for the combined model forecasts at zone 10.
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Figure C.27: Distribution of ramp magnitudes over a 4 hour window for zones 2-10.
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Figure C.28: Confusion matrix scores for all combination models and forecast horizons
for zone 2.
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Figure C.29: Confusion matrix scores for all combination models and forecast horizons
for zone 3.
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Appendix C. Forecast combination evaluation at all zones
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Figure C.30: Confusion matrix scores for all combination models and forecast horizons
for zone 4.
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Appendix C. Forecast combination evaluation at all zones
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Figure C.31: Confusion matrix scores for all combination models and forecast horizons
for zone 5.
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Appendix C. Forecast combination evaluation at all zones
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Figure C.32: Confusion matrix scores for all combination models and forecast horizons
for zone 6.
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Appendix C. Forecast combination evaluation at all zones
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Figure C.33: Confusion matrix score for all combination models and forecast horizons
for zone 7.
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Appendix C. Forecast combination evaluation at all zones
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Figure C.34: Confusion matrix scores for all combination models and forecast horizons
for zone 8.
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Appendix C. Forecast combination evaluation at all zones
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Figure C.35: Confusion matrix scores for all combination models and forecast horizons
for zone 9.
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Figure C.36: Confusion matrix scores for all combination models and forecast horizons
for zone 10.
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Figure C.37: Accuracy scores for all combination models and forecast horizons for zone
2
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Figure C.38: Accuracy scores for all combination models and forecast horizons for zone
3
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Figure C.39: Accuracy scores for all combination models and forecast horizons for zone
4
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Figure C.40: Accuracy scores for all combination models and forecast horizons for zone
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Figure C.41: Accuracy scores for all combination models and forecast horizons for zone
6
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Figure C.42: Accuracy scores for all combination models and forecast horizons for zone
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Figure C.43: Accuracy scores for all combination models and forecast horizons for zone
8
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Figure C.44: Accuracy scores for all combination models and forecast horizons for zone
9
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Figure C.45: Accuracy scores for all combination models and forecast horizons for zone
10
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Figure C.46: F1 scores for varying ramp definitions, for all combination models at zone
2. Values are for a 1 hour ahead forecast.
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Figure C.47: F1 scores for varying ramp definitions, for all combination models at zone
3. Values are for a 1 hour ahead forecast.
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Figure C.48: F1 scores for varying ramp definitions, for all combination models at zone
4. Values are for a 1 hour ahead forecast.
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Figure C.49: F1 scores for varying ramp definitions, for all combination models at zone
5. Values are for a 1 hour ahead forecast.
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Figure C.50: F1 scores for varying ramp definitions, for all combination models at zone
6. Values are for a 1 hour ahead forecast.
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Figure C.51: F1 scores for varying ramp definitions, for all combination models at zone
7. Values are for a 1 hour ahead forecast.
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Figure C.52: F1 scores for varying ramp definitions, for all combination models at zone
8. Values are for a 1 hour ahead forecast.
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Figure C.53: F1 scores for varying ramp definitions, for all combination models at zone
9. Values are for a 1 hour ahead forecast.
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Figure C.54: F1 scores for varying ramp definitions, for all combination models at zone
10. Values are for a 1 hour ahead forecast.
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Figure D.1: Pinball skill score of weekly mean wind speed index relative to climatology.
The forecasts labelled ‘WF 2’ are based on corrected ERA 5 data for that wind farm.
Error bars show 95% bootstrapped confidence intervals.
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Figure D.2: Pinball skill score of weekly mean wind speed index relative to climatology.
The forecasts labelled ‘WF 3’ are based on corrected ERA 5 data for that wind farm.
Error bars show 95% bootstrapped confidence intervals.
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Figure D.3: Pinball skill score of weekly mean wind speed index relative to climatology.
The forecasts labelled ‘WF 4’ are based on corrected ERA 5 data for that wind farm.
Error bars show 95% bootstrapped confidence intervals.
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Figure D.4: Reliability of weekly mean wind speed forecast at MIDAS 2. Intervals
show 95% bootstrapped confidence bands.
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Figure D.5: Reliability of weekly mean wind speed forecast at MIDAS 3. Intervals
show 95% bootstrapped confidence bands.
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Figure D.6: Reliability of weekly mean wind speed forecast at MIDAS 4. Intervals
show 95% bootstrapped confidence bands.

270



Appendix D. S2S Appendix

0.0 0.5 1.0

−0.10

−0.05

0.00

0.05

0.10
Horizon=1

0.0 0.5 1.0

−0.10

−0.05

0.00

0.05

0.10
Horizon=2

0.0 0.5 1.0

−0.10

−0.05

0.00

0.05

0.10
Horizon=3

0.0 0.5 1.0
Nominal

−0.10

−0.05

0.00

0.05

0.10

R
el

at
iv

e
E

m
p

ir
ic

al

Horizon=4

0.0 0.5 1.0

−0.10

−0.05

0.00

0.05

0.10
Horizon=5

0.0 0.5 1.0

−0.10

−0.05

0.00

0.05

0.10
Horizon=6

Climatology

Linear model

Figure D.7: Reliability of weekly mean wind speed forecast at WF2a. Intervals show
95% bootstrapped confidence bands.
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Figure D.8: Reliability of weekly mean wind speed forecast at WF2b. Intervals show
95% bootstrapped confidence bands.
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Figure D.9: Reliability of weekly mean wind speed forecast at WF2c. Intervals show
95% bootstrapped confidence bands.
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Figure D.10: Reliability of weekly mean wind speed forecast at WF3. Intervals show
95% bootstrapped confidence bands.
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Figure D.11: Reliability of weekly mean wind speed forecast at WF4a. Intervals show
95% bootstrapped confidence bands.
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Figure D.12: Reliability of weekly mean wind speed forecast at WF4b. Intervals show
95% bootstrapped confidence bands.
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Figure D.13: Reliability of weekly mean wind speed forecast at WF4c. Intervals show
95% bootstrapped confidence bands.
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Figure D.14: Pinball skill score of weekly variability (weekly standard deviation of
hourly wind speeds) relative to climatology. The forecasts labelled ‘WF 2’ are based
on corrected ERA 5 data for that wind farm. Error bars show 95% bootstrapped
confidence intervals.
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Figure D.15: Pinball skill score of weekly variability (weekly standard deviation of
hourly wind speeds) relative to climatology. The forecasts labelled ‘WF 3’ are based
on corrected ERA 5 data for that wind farm. Error bars show 95% bootstrapped
confidence intervals.
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Figure D.16: Pinball skill score of weekly variability (weekly standard deviation of
hourly wind speeds) relative to climatology. The forecasts labelled ‘WF 4’ are based
on corrected ERA 5 data for that wind farm. Error bars show 95% bootstrapped
confidence intervals.
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Figure D.17: Reliability of variability forecast at MIDAS 2. Intervals show 95% boot-
strapped confidence bands.
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Figure D.18: Reliability of variability forecast at MIDAS 3. Intervals show 95% boot-
strapped confidence bands.
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Figure D.19: Reliability of variability forecast at MIDAS 4. Intervals show 95% boot-
strapped confidence bands.
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Figure D.20: Reliability of variability forecast at WF2a. Intervals show 95% boot-
strapped confidence bands.
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Figure D.21: Reliability of variability forecast at WF2b. Intervals show 95% boot-
strapped confidence bands.
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Figure D.22: Reliability of variability forecast at WF2c. Intervals show 95% boot-
strapped confidence bands.
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Figure D.23: Reliability of variability forecast at WF3. Intervals show 95% boot-
strapped confidence bands.
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Figure D.24: Reliability of variability forecast at WF4a. Intervals show 95% boot-
strapped confidence bands.
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Figure D.25: Reliability of variability forecast at WF4b. Intervals show 95% boot-
strapped confidence bands.
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Figure D.26: Reliability of variability forecast at WF4c. Intervals show 95% boot-
strapped confidence bands.
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Figure D.27: Pinball skill score of weather window index relative to climatology. for
area 2. Error bars show 95% bootstrapped confidence intervals.
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Figure D.28: Pinball skill score of weather window index relative to climatology. for
area 3. Error bars show 95% bootstrapped confidence intervals.
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Figure D.29: Pinball skill score of weather window index relative to climatology. for
area 4. Error bars show 95% bootstrapped confidence intervals.
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Figure D.30: Reliability of weather window index forecast at WF2a. Intervals show
95% bootstrapped confidence bands.
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Figure D.31: Reliability of weather window index forecast at WF2b. Intervals show
95% bootstrapped confidence bands.
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Figure D.32: Reliability of weather window index forecast at WF2c. Intervals show
95% bootstrapped confidence bands.
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Figure D.33: Reliability of weather window index forecast at WF3. Intervals show 95%
bootstrapped confidence bands.
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Figure D.34: Reliability of weather window index forecast at WF4a. Intervals show
95% bootstrapped confidence bands.
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Figure D.35: Reliability of weather window index forecast at WF4b. Intervals show
95% bootstrapped confidence bands.
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Figure D.36: Reliability of weather window index forecast at WF4c. Intervals show
95% bootstrapped confidence bands.
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