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Abstract

This thesis concerns the theoretical modelling and analysis of the evolution of, and the

deposition from, an evaporating sessile droplet. In particular, the thesis focuses on

the diffusion-limited situation in which the diffusive transport of vapour away from the

droplet in the atmosphere is the rate-limiting mechanism for evaporation.

First, the evolution of a thin droplet in a shallow well of rather general shape is

described both before and after the free surface of the droplet touches down on the

well. In particular, it is shown that, depending on the shape of the well, touchdown

can occur at the lip of the well, everywhere within the well simultaneously, or at the

centre of the well. The mathematical model is validated by finding good agreement

between the theoretical predictions and the results of physical experiments performed

by collaborators at Durham University for the special case of a cylindrical well.

Second, the effect of gravity on the shape, evolution, and lifetime of thin sessile

and pendant droplets is studied for four different modes of evaporation. Droplets

of arbitrary volume are investigated and the limiting behaviours for small and large

droplet volumes are determined. In particular, the mathematical model confirms that

the contact radius of, and the total evaporative flux from, a sessile droplet is always

larger than that for a pendant droplet of the same volume. It is also shown that the

lifetime of a pendant droplet is always greater than that of a sessile droplet of the same

initial volume for all four modes of evaporation studied.

Finally, the effect of spatial variation in the local evaporative flux on the deposition

of particles from an evaporating sessile droplet is considered. A one-parameter family

of spatially-varying local evaporative fluxes that captures a wide range of qualitatively

different behaviours is investigated. It is shown that the flow within, and the deposition
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from, an evaporating droplet depends strongly on the local evaporative flux profile. In

particular, the mathematical model predicts three qualitatively different deposit types

depending on the spatial variation in the local evaporative flux, namely, a ring deposit,

a paraboloidal deposit, and a deposit at the centre of the droplet.
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Chapter 1

Introduction

1.1 Droplets

A droplet (or drop) is a small volume of fluid which, as illustrated in Figure 1.1, can

occur in several different forms, for example, on a substrate (i.e. a sessile or a pendant

droplet), free-falling (e.g. a rain droplet or a droplet ejected from the nozzle of an inkjet

printhead), or in the air (e.g. in aerosols or sprays). The dynamics of droplets have

been of scientific interest for more than 200 years because of their widespread relevance

in nature, biology and industry. In particular, various aspects of droplet behaviour

have been investigated, including the impact, wetting and spreading of droplets on

substrates (see, for example, the review articles by Hardt and McHale [107], Khojasteh

et al. [137], and Tadmor [278,279]), the falling of droplets in air under gravity (Szakáll

et al. [276]), the inkjet printing of droplets (Hoath [114], Wijshoff [299]), the collision

and coalescence of droplets (Kamp et al. [131]), the transport of respiratory droplets

and aerosols in the atmosphere (Jayaweera et al. [123], Sun et al. [274]), as well as

drop-wise condensation (El Fil et al. [76]) and icing phenomena (Zhoa et al. [319]).

This thesis concerns the evaporation of droplets that are on a substrate (i.e. sessile

or pendant droplets, as shown in Figures 1.1a,b). In this Chapter we discuss the

importance of droplet evaporation, and describe how various properties of the system,

such as droplet size and the nature of the substrate, affect the evaporation process. We

also describe the deposition of particles from an evaporating droplet and discuss the
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Chapter 1. Introduction

(a) (b)

(c) (d)

Figure 1.1: Examples of droplets occuring in several different forms: (a) Sessile droplets
on a car. Reproduced from Kallerna [130]. (b) Sessile and pendant rain droplets on
a plant stem. Reproduced from Karim [136]. (c) A falling droplet. Reproduced from
Traianou [286]. (d) A spray of saliva droplets expelled during a sneeze. Reproduced
from Gathany [97].

large body of ongoing research that investigates the mechanisms that can influence and

control particle deposition.

1.2 Droplet evaporation

When a droplet is deposited onto a substrate, the fluid is in contact with the atmosphere

along the droplet–atmosphere interface, hereafter referred to as the free surface of the

droplet. The curve along which the droplet, substrate, and atmosphere meet is termed

the contact line of the droplet (sometimes referred to as the three-phase line), and

the angle that the free surface of the droplet makes with the substrate is termed the

contact angle of the droplet. In general, the contact angle may vary along the contact

2



Chapter 1. Introduction

line, such as for asymmetric droplets; however, in this thesis we are only concerned

with axisymmetric droplets in which the contact angle is the same all the way along

the contact line. Additionally, for axisymmetric droplets the distance between the

centre of the droplet and the contact line is termed the contact radius of the droplet.

As the droplet evaporates, there is a net loss of fluid molecules from the free surface

of the droplet in the form of vapour, the mass of vapour in the atmosphere increases,

and the volume of the droplet decreases. The evaporation is characterised by the local

evaporative mass flux, i.e. the mass of fluid escaping into the atmosphere per unit area

per unit time, and the total evaporative mass flux, i.e. the total mass of fluid escaping

into the atmosphere per unit time, from the droplet. The droplet evaporates completely

in what we term the lifetime of the droplet, after which time all of the fluid initially

contained within the droplet has been converted into vapour.

The process of droplet evaporation occurs in a wide variety of physical contexts,

with practical applications in agricultural spraying (Taylor [285], Tredenick et al. [288]),

chemical and biological assays (Garcia-Cordero and Fan [94]), and inkjet printing

(Kuang et al. [146]). There have therefore been extensive experimental, numerical, and

theoretical investigations on the evaporation of a droplet in recent years (see, for exam-

ple, the review articles by Brutin and Starov [35], Cazabat and Guéna [40], Erbil [79],

Giorgiutti-Dauphiné and Pauchard [101], Kovalchuk et al. [144], Lohse and Zhang [166],

Routh [229], Talbot et al. [280], Wilson and D’Ambrosio [302], Zang et al. [317], and

Zhong et al. [321], and the many references therein).

The importance of the deposition of particles from an evaporating droplet will be

discussed in the next Section.

1.3 The deposition of particles from an evaporating droplet

In practice, droplets often contain non-volatile solutes and/or particles in suspension

(hereafter, referred to simply as “particles”). In many industrial and scientific processes

a primary concern is the spatial distribution of the particles left behind on the substrate

after the droplet has completely evaporated, hereafter referred to as the final deposit. In

particular, the ability to control the distribution of particles within the droplet during

3



Chapter 1. Introduction

the drying process is key, often with the aim of obtaining uniform deposits for numerous

applications such as inkjet printing (Lim et al. [162], Park and Moon [209]) and DNA

chip manufacturing (Dugas et al. [69]). However, other deposit types are also of interest,

such as rings in disease diagnostics (Trantum et al. [287]) or for conductive coatings

(Layani et al. [151]), multiple or concentric rings in the production of resonators in

optical communications (Hong et al. [115]), or small concentrated deposits in mass

spectrometry (Kudina et al. [147]) with applications in drug testing and carbon dating.

Figure 1.2 shows examples of different deposition patterns that may be observed after

the complete evaporation of a droplet, such as single, multiple or concentric rings,

uniform deposits, small concentrated or “inner” deposits, “spoke-like” deposits, and

patterned deposits.

As a consequence of the wide variety of practical applications, the deposition from

an evaporating droplet has been subject to extensive investigation in recent years (see,

for example, the review articles by Al-Milaji and Zhoa [6], Anyfantakis and Baigl [9],

Giorgiutti-Dauphiné and Pauchard [101], Kolegov and Barash [142], Kuang et al. [146],

Larson [150], Mampallil and Eral [176], Parsa et al. [212], Shao et al. [251], Sefiane [242],

Yang et al. [311], Zang et al. [317], and Zhong et al. [321], and the many references

therein), much of it building upon the pioneering work of Deegan et al. [63, 64] and

Deegan [62]. There has been particular attention paid to the well-known “coffee-ring

effect” (sometimes also called the “coffee-stain effect”) described by Deegan et al. [64],

in which a ring deposit is formed near the contact line of a pinned evaporating droplet

(i.e. a droplet in which the contact line remains fixed in position). The dynamics

of the coffee-ring effect and the mechanisms that control particle deposition from an

evaporating droplet will be discussed further in Sections 1.9 and 1.10, respectively.

1.4 Mathematical modelling of droplet evaporation

A key ingredient to understanding droplet evaporation is, of course, to capture the

appropriate physical mechanism(s) controlling the evaporation from the free surface

of the droplet into the surrounding atmosphere. Depending on the physical situation,

different physical mechanisms can control the evaporation. In particular, as Murisic

4
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 1.2: Examples of different deposition patterns after the complete evaporation of
a droplet: (a)–(b) Ring deposits, (c)–(d) multiple or concentric ring deposits, (e)–(f)
uniform deposits, (g)–(h) small concentrated or “inner” deposits, (i)–(j) “spoke-like”
deposits, and (k)–(l) patterned deposits. (a) Reprinted figure with permission from
Deegan et al. [64]. Copyright 2000 by the American Physical Society. (b) Reprinted
with permission from Sommer [265]. Copyright 2004 American Chemical Society. (c)
Reprinted with permission from Bhardwaj et al. [23]. Copyright 2010 American Chem-
ical Society. (d) Reprinted with permission from Li et al. [158]. (e) Reprinted from Cho
et al. [50], Copyright (2020), with permission from Elsevier. (f) Reprinted by permis-
sion from Springer Nature: Yunker et al. [316], Copyright (2011). (g) Reproduced from
Ta et al. [277] with permission from the Royal Society of Chemistry. (h) Reprinted with
permission from Li et al. [158]. (i) Republished with permission of the Royal Society of
Chemistry, from Yang et al. [312]; permission conveyed through Copyright Clearance
Center, Inc. (j) Reprinted by permission from Springer Nature: Sefiane [241], Copyright
(2010). (k) Republished with permission of the Royal Society, from Harris et al. [108];
permission conveyed through Copyright Clearance Center, Inc. (l) Reprinted with
permission from Malinowski et al. [173] (https://doi.org/10.1021/acs.jpclett.7b02831).
Further permissions related to the material excerpted should be directed to the ACS.
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and Kondic [193] discuss, the rate-limiting mechanism may be the transport of vapour

away from the droplet in the atmosphere, the phase transition at the free surface of the

droplet, the transport of heat through the droplet, the conduction of heat through the

substrate, or a combination thereof.

1.4.1 The diffusion-limited model

For a droplet evaporating in a quiescent atmosphere, it can be shown that the transfer

of molecules from the fluid into the vapour across the free surface is typically much

faster than the transport of vapour away from the droplet in the atmosphere (see, for

example, Popov [220]). In this case, the gradient from the high (saturated) concentra-

tion of vapour at the free surface to the low (ambient) concentration of vapour in the

atmosphere drives a diffusive flux of vapour away from the free surface of the droplet.

Models that describe the evaporation of a droplet in a quiescent atmosphere are there-

fore called “diffusion-limited” models, as the diffusive transport of vapour away from

the droplet in the atmosphere is the rate-limiting mechanism for the evaporation. Ad-

ditionally, it can be shown that the diffusion of vapour in the atmosphere is typically on

a much shorter timescale than that of the timescale for the free surface of the droplet to

adjust due to evaporation (see, for example, Popov [220]). Therefore, the evaporation

process may be considered to be quasi-steady.

Picknett and Bexon [217] pioneered the modelling of droplets evaporating in a

quiescent atmosphere, obtaining expressions for the evolution, and hence the lifetime,

of a droplet undergoing diffusion-limited evaporation for the full range of initial contact

angles. Following Picknett and Bexon [217], many subsequent authors, including Birdi

et al. [24], Bourgès-Monnier and Shanahan [33], Dash and Garimella [57], Deegan [62],

Deegan et al. [63, 64], Dunn et al. [71, 72], Hu and Larson [116, 117, 119], Masoud

et al. [182], McHale et al. [184,185], Nguyen and Nguyen [196], Nguyen et al. [194,197],

Popov [220], Sáenz et al. [232], Schofield et al. [238–240], Stauber et al. [267–270],

Wray et al. [305,306], and Zigelman and Manor [324] have obtained exact, asymptotic,

approximate, and numerical descriptions of the evolution, and hence the lifetime, of a

droplet undergoing diffusion-limited evaporation in a wide range of situations.

6
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We give a full description of a theoretical model for the diffusion-limited evapora-

tion of a sessile droplet in Chapter 2. In particular, for the model described in Chapter

2, the evaporation of the droplet is controlled by the diffusion of vapour from its con-

stant saturated value, denoted by ĉsat, on the free surface of the droplet to its constant

ambient value, denoted by ĉ∞. In this situation the evaporative problem for the con-

centration of vapour in the atmosphere is decoupled from the thermal problem for the

temperature distribution in the system.

1.4.2 Generalisations of the diffusion-limited model

The evaporation of a droplet requires latent heat, and so, in general, evaporative cool-

ing occurs as the droplet evaporates. For situations in which significant evaporative

cooling occurs, the diffusion-limited model may need to be extended to include coupling

between the evaporative and thermal problems. In particular, various models have been

proposed that couple the evaporative and thermal problems by acknowledging that the

local value of the surface tension (see, for example, Hu and Larson [117] and Ristenpart

et al. [227]) and/or the saturation concentration (see, for example, Ait Saada et al. [3],

Dunn et al. [71, 72], Nguyen et al. [194], Schofield et al. [238], and Sefiane et al. [243])

will, in general, depend on the local temperature of the free surface. Furthermore, when

the substrate has a very high thermal resistance and/or the saturation concentration

depends very strongly on temperature, the rate-limiting mechanism controlling evapo-

ration is the conduction of heat through the droplet and the substrate rather than the

diffusion of vapour in the atmosphere (see, for example, Dunn et al. [73] and Schofield

et al. [239]). We note that when the local value of the surface tension of the free surface

depends on the local temperature the (in general, spatially non-uniform) evaporative

cooling of the free surface of the droplet will give rise to a thermocapillary-driven (i.e.

a Marangoni) flow, which is of particular interest because of the role it can play in the

deposition from an evaporating droplet; this will be discussed further in Section 1.10.

There can also be situations in which the effects of buoyancy-driven convection

in the atmosphere play a significant role (see, for example, Carle et al. [37], Dunn

et al. [72], and Shahidzadeh-Bonn et al. [247]). Numerical solutions of a generalised

7
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version of the diffusion-limited model for a droplet of water including both evaporative

cooling and buoyancy-driven convection in both the droplet and the atmosphere by

Pan et al. [205, 206] have clarified the influence of these effects and the limitations of

the diffusion-limited model.

1.4.3 The one-sided model

For the case when the rate of transfer of fluid molecules into vapour across the free sur-

face of the droplet is the rate-limiting mechanism, the evaporation may be described by

the so-called “one-sided” model (see, for example, Ajaev [4,5], Anderson and Davis [8],

Burelbach et al. [36], Cazabat and Guéna [40], Craster and Matar [52], Espin and Ku-

mar [82], Haut and Colinet [111], Murisic and Kondic [193], and Sodtke et al. [263,264]).

This model assumes that the density, dynamic viscosity, and thermal conductivity of

the vapour in the atmosphere are small compared to those in the fluid (see, for example

Burelbach et al. [36]), and may be expected to apply for situations in which a droplet

with a contaminated free surface evaporates very slowly, for the forced evaporation of

a droplet on a significantly heated substrate, and for a droplet evaporating in an at-

mosphere of its pure vapour (see, for example, Cazabat and Guéna [40]). In addition,

generalised models that include both the diffusion-limited model and the one-sided

model as limiting cases have also been developed by, for example, Sultan et al. [273].

However, this thesis concerns droplets undergoing diffusion-limited evaporation, and so

the one-sided model will not be discussed further in this work.

1.5 Modes of evaporation

The evolution, and hence the lifetime, of an evaporating droplet depends on the manner

in which it evaporates. As a droplet evaporates its volume will decrease and therefore

the contact radius R̂ = R̂(t̂) and/or the contact angle θ̂ = θ̂(t̂) of the droplet change

with time t̂. The manner in which the geometry of the droplet changes as it evaporates

is called its mode of evaporation. Four different modes of evaporation will be described

in this Section.
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(a) (b)

Figure 1.3: Sketch of a sessile droplet evaporating in the (a) constant contact radius
(CR) mode and (b) constant contact angle (CA) mode.

1.5.1 The extreme modes of evaporation

In their pioneering work, Picknett and Bexon [217] identified two “extreme” modes

of evaporation for a droplet, namely, the constant contact radius (CR) mode and the

constant contact angle (CA) mode, which are sketched in Figure 1.3. For a droplet evap-

orating in the CR mode, the contact line of the droplet is pinned to the substrate (i.e.

it remains fixed in position) due to surface roughness and/or chemical heterogeneities.

Therefore, the contact radius remains constant at its initial value R̂ = R̂(0) ≡ R̂0

throughout evaporation and the contact angle θ̂ decreases in time from its initial value

θ̂(0) ≡ θ̂0 to zero, at which time the droplet has completely evaporated. On an ideal

substrate, i.e. a perfectly smooth, chemically homogeneous, rigid, impermeable, and

insoluble substrate, a droplet evaporates in the CA mode, and the contact line is un-

pinned (i.e. it is free to move). Therefore, the contact angle θ̂ of the droplet remains

constant at its initial value θ̂0, and the contact line de-pins and recedes, the contact

radius R̂ decreasing from its initial value R̂0 to zero, at which time the droplet has

completely evaporated. Table 1.1 provides examples of experimental investigations

that observed droplets evaporating in the extreme modes of evaporation for most or all

of their lifetime.

In practice, the mode in which a droplet evaporates will depend on the properties

of the substrate, including surface structure and roughness, chemical heterogeneities,

permeability, and porosity, with droplets often evaporating in mixed modes (i.e. modes

in which both the contact radius R̂ and contact angle θ̂ decrease). We will now describe

9
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Mode of evaporation References

CR and CA modes [12,13], [16], [80], [93], [95], [98], [102], [103], [152], [163],
[208], [261,262], [250], [254,255], [281], [289]

SS mode [7], [33], [45], [46], [57], [58], [81], [90], [112], [121], [140],
[152], [163], [190], [191], [196,197], [218], [245], [266],
[289], [308]

SJ mode [1], [7], [14–16], [26], [28], [61], [67], [103], [112], [155],
[171], [184], [188,189], [200], [213], [224], [249], [257],
[307]

Table 1.1: Examples of experimental investigations that observed droplets evaporating
in the CR, CA, SS, and SJ modes.

two commonly-reported mixed modes of evaporation in the two subsequent Subsections.

The effect of the substrate on the evaporation of a droplet will be discussed further in

Sections 1.6 and 1.7.

1.5.2 The stick–slide (SS) mode of evaporation

Bourgès-Monnier and Shanahan [33] described a mixed mode of evaporation for the

case of an evaporating water droplet on a polished epoxy substrate, identifying four

stages in the evolution of the geometry; their results are reproduced in Figure 1.4. In

their experiments the droplet is initially surrounded by a saturated atmosphere and

so, in stage I, evaporation is negligible. In stage II the droplet evaporates in a CR

phase, in which the contact line is pinned and the contact angle decreases, in stage

III the droplet evaporates in a CA phase, in which the contact line recedes and the

contact angle is constant, and in stage IV the contact radius and the contact angle of the

droplet decrease simultaneously, as shown in Figure 1.4. We note that the simultaneous

decrease of the contact radius and the contact angle of a droplet, as described in stage IV

by Bourgès-Monnier and Shanahan [33], is typically observed for a short time (relative

to the lifetime of the droplet) in the final stage of droplet evaporation (see, for example,

Gao et al. [93], Gatapova et al. [96], Semenov et al. [245], and Xu et al. [308]) and so

is often neglected when modelling the evolution of an evaporating droplet.

Stages II and III in the work of Bourgès-Monnier and Shanahan [33] correspond

to one of the most commonly reported mixed modes of evaporation, namely the stick–

10
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Figure 1.4: Evolutions of the contact diameter (2R̂), height, and contact angle θ̂ of
an evaporating 4µL sessile water droplet on a polished epoxy substrate. Reprinted
with permission from Bourgès-Monnier and Shanahan [33]. Copyright 1995 American
Chemical Society.
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slide (SS) mode. In the SS mode the droplet initially evaporates in a CR (i.e. “stick”)

phase with R̂ ≡ R̂0, θ̂ = θ̂(t̂) until a time t̂ = t̂∗ at which a critical receding angle θ̂∗

(0 ≤ θ̂∗ ≤ θ̂0) is reached, after which the droplet evaporates in a CA (i.e. “slide”) phase

with R̂ = R̂(t̂), θ̂ ≡ θ̂∗. Table 1.1 also provides examples of experimental investigations

that observed droplets evaporating in the SS mode in various contexts. In particular,

the SS mode has been reported by authors investigating the effect of initial droplet

volume (Dash and Garimella [57], Erbil et al. [81], Fukai et al. [90], Kim et al. [140]),

substrate wettability (Anantharaju et al. [7], Bourgès-Monnier and Shanahan [33], Chen

et al. [46], Dash et al. [58], Erbil et al. [81], He et al. [112], Kim et al. [140], Lee

et al. [152], Moore et al. [191], Nguyen et al. [197], Pittoni et al. [218], Soolaman

and Yu [266], Trybala et al. [289], Xu et al. [308]), substrate temperature (Mollaret

et al. [190]), droplet orientation (Moore et al. [191]), polymers (Hwang et al. [121]),

surfactants (Semenov et al. [245]), and nanoparticle suspensions (Fukai et al. [90],

Nguyen and Nguyen [195], Trybala et al. [289]) on the evolution of an evaporating

droplet.

The evolution of a droplet evaporating in the SS mode has been theoretically investi-

gated by many authors (see, for example, Dash and Garimella [57], Nguyen and Nguyen

[195, 196], Nguyen et al. [197], Semenov et al. [244], and Stauber et al. [268, 270]). In

particular, Stauber et al. [268] analysed the evolution of a droplet evaporating in the

CR, CA, and SS modes, and analytically determined the evaporation rate (i.e. the total

evaporative flux) and the lifetime of the droplet in each of these modes. They identified

six possible orderings of the lifetimes of initially identical droplets evaporating in the

CR, CA, and SS modes depending on the values of the initial θ̂0 and critical receding θ̂∗

contact angles of the droplets, and verified the model by comparing their results with

experimental data in the literature. Stauber et al. [270] then went on to describe the

evolution, and hence the lifetime, of a droplet evaporating in the SS mode taking into

account a physically-plausible relationship between the initial θ̂0 and critical receding

θ̂∗ contact angles of the droplet based on the pinning/de-pinning force at the contact

line of the droplet.

There are other situations in which the contact line of the droplet does not recede

12
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continuously as observed in the SS mode. One of these is the stick–jump (SJ) mode

described in the next Subsection.

1.5.3 The stick–jump (SJ) mode of evaporation

The SJ mode of evaporation consists of a number of CR (i.e. “stick”) phases, in which

the contact line is pinned and the contact angle of the droplet decreases, separated

by a number of short “jump” phases, in which the contact line rapidly recedes and

the contact angle rapidly increases. Table 1.1 also provides examples of experimental

investigations that observed droplets evaporating in the SJ mode in various contexts. In

particular, the SJ mode has been reported by authors investigating evaporating droplets

containing suspended particles (Adachi et al. [1], Bodiguel et al. [26], Shmuylovich

et al. [257]), including nanoparticles (Askounis et al. [14–16], Li et al. [155], Moffat

et al. [188, 189], Orejon et al. [200]) and DNA (Maheshwari et al. [171]), droplets

containing suspended particles evaporating on heated substrates (Parsa et al. [213]),

as well as pure droplets evaporating on pillared (Anantharaju et al. [7], Guan et al.

[103], McHale et al. [184], Xu et al. [307]), micro-patterned (Debuisson et al. [61], He

et al. [112]), heated (Putnam et al. [224]), and rough polymer (Bormashenko et al. [28],

Shanahan and Sefiane [249]) substrates. Additionally, Dietrich et al. [67] studied the

dissolution of alcohol droplets in water, observing the SJ mode for microscale droplets.

In particular, they showed that if the potential-energy barrier overcome in each jump

is the same then the relative change in the contact radius of a droplet after a jump

phase is proportional to 1/R̂1/2, which therefore increases as the size of the droplet

decreases, making the SJ mode easier to observe for small droplets. Figure 1.5 shows

examples of droplets evaporating in the SJ mode in the experiments by (a) Xu et al.

[307] in which a water droplet evaporates on a substrate with non-uniform micro-pillar

arrays with gradient spacings varying from 10µm to 70µm, (b) Debussion et al. [61] in

which a deionized water droplet evaporates on a micro-patterned SU-8 substrate that

contains concentric circular troughs every 50µm, and (c) Orejon et al. [200] in which

water droplets containing different concentrations of TiO2 nanoparticles evaporate on

a CYTOP substrate. In particular, Figure 1.5 shows that the number of jump phases
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(a) (b)

(c)

Figure 1.5: Examples of experimental observations of droplets evaporating in the SJ
mode. Evolution of the contact radius R̂ and the contact angle θ̂ of: (a) A water
droplet on a substrate with non-uniform micro-pillar arrays with gradient spacings
varying from 10µm to 70µm. Reprinted from Xu et al. [307], with the permission
of AIP Publishing. (b) A deionized water droplet evaporating on a micro-patterned
SU-8 substrate that contains concentric circular troughs every 50µm. Reprinted with
permission from Debussion et al. [61]. Copyright 2016 American Chemical Society. (c)
Water droplets containing different concentrations of TiO2 nanoparticles evaporating
on a CYTOP substrate. Reprinted with permission from Orejon et al. [200]. Copyright
2011 American Chemical Society.
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and the duration of each stick phase is dependent on the properties of the substrate

and the concentration of the particle suspension within the droplet. It also shows that

the contact angle of the droplet jumps approximately between two critical values and

that a jump phase is of very short duration compared to the stick phases. Therefore

this rapid jump is often considered instantaneous when modelling the evolution of an

evaporating droplet in the SJ mode.

The SJ mode was first described theoretically by Shanahan [248], who used an

argument based on the Gibbs free energy to describe the pinning and de-pinning of the

contact line of the droplet. This theory was the basis for subsequent energy-barrier

equations describing the evolution of evaporating droplets containing a suspension of

nanoparticles (see, for example, Askounis et al. [14–16], Oksuz and Erbil [198], Orejon

et al. [200], and Shanahan and Sefiane [249]). Further theoretical and numerical studies

have investigated the pinning and de-pinning of the contact line of an evaporating

droplet containing a suspension of particles (Adachi et al. [1]), and on a chemically

patterned substrate (Kusumaatmaja and Yeomans [148]). Dietrich et al. [67] modelled

the dissolution of sessile alcohol droplets in water by considering the mathematically

equivalent problem of the evaporation of a water droplet. They developed a model in

which the contact line of the droplet de-pins once a critical contact angle is reached, and

instantaneously jumps inwards and re-pins with the contact angle then taking the value

of the (larger) initial contact angle of the droplet. Stauber [267] derived a mathematical

model that is similar to, but more general than, that of Dietrich et al. [67]. In this

model for the SJ mode the droplet initially evaporates in a CR phase with R̂ ≡ R̂0 and a

contact angle θ̂ that decreases from θ̂0 to a critical minimum angle θ̂min (0 ≤ θ̂min ≤ θ̂0),

at which time the contact angle jumps instantaneously from θ̂min to a critical maximum

angle θ̂max (0 ≤ θ̂min ≤ θ̂max ≤ θ̂0) and the contact radius jumps instantaneously to a

lower value R̂ = R̂1. Since θ̂ is bounded below by θ̂min in this model, the process of a

CR phase followed by an instantaneous jump phase then repeats an infinite number of

times until the droplet completely evaporates in a finite time.
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Figure 1.6: Sketch of droplets in different wetting states on different types of substrates.

1.6 The importance of the substrate

In this Section we will describe various aspects of the substrate that can affect the

dynamics of an evaporating droplet.

How a droplet sits on a substrate is dependent upon, among other things, the

substrate chemistry, roughness, and topography. In particular, substrates are often

classified into four different types depending on their affinity to be wetted by the

fluid, namely, superhydrophilic (sometimes also referred to as super-wetting or super-

wettable), hydrophilic, hydrophobic, and superhydrophobic (sometimes also referred to

as ultrahydrophobic) substrates, corresponding to a substrate on which a droplet forms

a contact angle θ̂ that is small θ̂ � 1, between 0 and π/2, between π/2 and 5π/6,

and between 5π/6 and π, respectively (see, for example, the review articles by Drelich

et al. [68], Roach et al. [228], and Shirtcliffe et al. [256]), as sketched in Figure 1.6.

Previous experimental, numerical, and theoretical studies have shown that the evo-

lution, and hence the lifetime, of a droplet will depend on the size of its initial contact

angle, and therefore the wettability of the substrate (see, for example, Nguyen and

Nguyen [196], Nguyen et al. [197], Picknett and Bexon [217], Shin et al. [255], Sobac

and Brutin [261], and Stauber et al. [268,269]). In particular, Stauber et al. [269] showed

that the local evaporative flux from a droplet undergoing diffusion-limited evaporation

is qualitatively different depending on the value of the contact angle. Specifically,

Stauber et al. [269] showed that the local evaporative flux is largest (theoretically sin-

gular) at the contact line and smallest at the apex of the droplet when 0 ≤ θ̂ < π/2,
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uniform when θ̂ = π/2, and largest at the apex of the droplet and zero at the contact

line when π/2 < θ̂ ≤ π; their results are reproduced in Figure 1.7. Additionally, they

obtained asymptotic expressions for the evolutions and lifetimes of droplets evaporat-

ing in the CR and CA modes on hydrophobic substrates, and described the manner in

which the extreme modes of evaporation become indistinguishable on superhydrophobic

substrates. Furthermore, it has been shown that the size of the contact angle can affect

the flow within the droplet (see, for example, Chen et al. [47] and Pan et al. [205,207]),

as well as the evaporative cooling of the system (see, for example, Pan et al. [205,207]).

In addition, the thermal properties of the substrate, as well as those of the fluid

of the droplet and the atmosphere, can affect the evolution, and hence the lifetime, of

an evaporating droplet. In particular, as discussed in Section 1.4, there are situations

for which the rate-limiting mechanism controlling evaporation is the conduction of

heat through the droplet and the substrate. In general, the evaporation rate of a

droplet on a poorly-conducting substrate, such as a plastic, can be significantly less

than that of the same droplet on a highly-conducting substrate, such as a metal (see,

for example, David et al. [59], Dunn et al. [72], Schofield et al. [238,239], and Sobac and

Brutin [262]). Schofield et al. [238] used a fully coupled model for the evaporative and

thermal problems to analyse the evolution of a sessile droplet evaporating in the CR,

CA, SS, and SJ modes, and showed that the lifetimes of a droplet of water evaporating

in one of the extreme modes on a poorly-conducting substrate made of PTFE can be

significantly longer than that of the same droplet on a highly-conducting substrate made

of aluminium, as well as that predicted by the diffusion-limited model, with a greater

difference for droplets with large initial contact angles; their results are reproduced in

Figure 1.8.

Moreover, it has been shown both experimentally (see, for example, Lopes and

Bonaccurso [167,168]) and theoretically (see, for example, Charitatos and Kumar [41])

that a droplet evaporating on a soft substrate will have a shorter lifetime than the same

droplet evaporating on a hard substrate since the deformation of the soft substrate at

the contact line promotes contact-line pinning which increases the evaporation rate

from the droplet. On the other hand, a lubricated substrate promotes contact-line

17



Chapter 1. Introduction

(a) (b)

(c) (d)

Figure 1.7: Plots of four droplets, each with the same volume, but different con-
tact angles, namely, (a) θ̂ = π/18, (b) θ̂ = π/2, (c) θ̂ = 17π/18, and (d)
θ̂ = π, together with the corresponding local evaporative flux from the free sur-
face, shown by the arrows. Reprinted with permission from Stauber et al. [269]
(https://pubs.acs.org/doi/10.1021/acs.langmuir.5b00286). Further permissions related
to the material excerpted should be directed to the ACS.
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Figure 1.8: Scaled lifetimes of droplets of water with initial contact radius R̂0 = 1 mm
evaporating in (a) the CR mode and (b) the CA mode into an atmosphere of air at an
ambient temperature of 295 K on substrates of aluminium (circles), HDPE (stars) and
PTFE (squares) plotted as functions of the scaled initial contact angle. The solid lines
show the corresponding lifetimes predicted by the diffusion-limited model. Adapted
with permission from Schofield et al. [238]. Copyright 2021.

de-pinning (see, for example, Armstrong et al. [12] and Guan et al. [103]) which will

decrease the evaporation rate from the droplet.

1.7 Non-planar substrates

So far, we have discussed situations in which droplets evaporate on planar (i.e. flat)

substrates. In this Section we will describe the effect that substrate geometry has on

the evolution of an evaporating droplet.

Droplet evaporation on non-planar substrates is of interest in a variety of appli-

cations, such as on curved (e.g. concave or convex) substrates in the fabrication of

flexible displays (Kuang et al. [145]), electrochemical sensors (Pu et al. [222,223]), and

microlenses (Bonaccurso et al. [27]). Additionally, in recent years, inkjet-printing of

materials (dissolved in one or more carrier solvents) into small cavities, hereafter re-

ferred to as “wells”, in the substrate, the solvent thereafter evaporating to leave the

desired deposit of material in the well, has become of increasing interest in the manufac-

ture of technological displays, such as Organic-Light-Emitting-Diode (OLED) displays

(see, for example, Halls [104], Levermore et al. [154], Madigan et al. [170], Shimoda

et al. [253], Singh et al. [259], and Walker et al. [294]). Figure 1.9 shows a sketch of the
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Figure 1.9: (a) A sketch of the inkjet-printing method that is used to create RGB pixels
for technological displays, and (b) examples of different pixel patterns that are used in
Active Matrix OLED (AMOLED) displays. Microscopic images of a Galaxy S2, S3, S4
and a Nexus 6 screen (from top to bottom). Reproduced from French [89].

inkjet-printing method that is used to create RGB pixels for technological displays, and

examples of different pixel patterns that are used in Active Matrix OLED (AMOLED)

displays. Inkjet printing of droplets into wells also arises in other contexts, such as,

in biotechnology (see, for example, Jackman et al. [122] and Marizza et al. [180]) and

the fabrication of organic transistors (see, for example, Kwak et al. [149]). Moreover,

cylindrical wells have been used in experimental studies of the particle deposition from

an evaporating droplet to ensure contact-line pinning at the lip of the well (see, for

example, Jung et al. [126] and Kajiya et al. [129]). While there is a substantial body of

work on the inkjet-printing process and, in particular, on the ejection of the droplets

from the printheads and the subsequent dynamics of the detached droplets (see, for

example, Hoath [114]), far less work has been done on the evolution of the droplets

once they have been deposited into the wells.

Experimental studies have been undertaken to investigate the evolution of an evapo-

rating droplet in a cuboidal well by van den Doel and van Vliet [290], and in a cylindrical

well by Chen et al. [43, 45], Jung et al. [126], Kajiya et al. [129], Rieger et al. [226],

and Vlasko-Vlasov et al. [291]. In particular, van den Doel and van Vliet [290] and

Rieger et al. [226] studied the evolution of the free-surface profile of an ethylene glycol
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Figure 1.10: A series of top view images of a droplet evaporating in a cylindrical well
of radius 250µm and depth 65µm. Reprinted from Chen et al. [45], Copyright (2006),
with permission from Elsevier.

droplet before it touches the bottom of the well, hereafter referred to as “touchdown”,

and showed that the volume of the droplet decreases at a rate that is approximately

constant in time and proportional to the length of the contact line (rather than the

surface area) of the droplet (which is consistent with predictions of a diffusion-limited

model). Chen et al. [45] investigated the evolution of a water droplet after touchdown

and found that, at least for the situations they investigated, a new inner contact line

appears at the centre of the well at touchdown which then recedes outwards towards

the lip of the well at an approximately constant speed; their results are reproduced

in Figure 1.10. Chen et al. [43] showed that the wettability properties of the well can

have a strong effect on the evolution of the shape of the droplet, including the time of

touchdown, and hence on the spatial distribution of the final deposit left in the well

after a water droplet containing polystyrene particles has completely evaporated. Jung

et al. [126] studied the evolution of, and the final deposit from, a droplet of a polymer

solution whose contact line is pinned at the lip of the well, and Kajiya et al. [129] ex-

tended this work to investigate the effect of adding various surfactants to the droplet.

More recently, Vlasko-Vlasov et al. [291] performed a detailed investigation of a final

deposit in the form of concentric rings arising from a stick–slip motion of the receding

inner contact line of a water droplet containing gold nanoparticles.

In addition to these primarily experimental studies, a number of theoretical inves-

tigations of the evaporation of a droplet in a well have also been performed. Okuzono
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et al. [199] assumed the local evaporative flux from the droplet to be spatially uniform

and used a thin-film approximation to analyse the evolution of, and the final deposit

from, a two-dimensional droplet in a rectangular well. Subsequently, Eales et al. [74]

used the same approach to investigate the final deposit from an axisymmetric droplet in

an axisymmetric (but, in general, non-cylindrical) well. However, both of these works

concern droplets of a polymer solution in which gelation (i.e. solidification) effects play

a key role and so, unlike in the experimental observations by Rieger et al. [226] and

Chen et al. [43, 45], touchdown never occurs. Ahn and Son [2] used a sharp-interface

level-set method to simulate numerically the evolution of an evaporating water droplet

in both cuboidal and cylindrical wells, respectively. They investigated the evolution

of the shape of the droplet for situations in which both the contact line at the lip of

the well and the new inner contact line at the centre of the well recede simultaneously

after touchdown. They studied a range of non-zero receding contact angles θ̂∗ and

observed an increase in the evaporation rate of the droplets as θ̂∗ decreases. Wang and

Fukai [295] used a finite-element method to calculate numerically the local and total

evaporative flux from a droplet in a cylindrical well before touchdown. They considered

the situation in which the contact line is pinned at various points on the vertical side of

the well (rather than at the lip of the well), and found that the confining effect of the

side of the well can significantly suppress the evaporation in the vicinity of the contact

line and lead to a substantial reduction in the total evaporative flux.

In related work on non-evaporating droplets, the impact and evolution of a droplet in

a cuboidal well has been investigated experimentally and numerically (see, for example,

Liou et al. [164,165], Subramani et al. [272], Yang et al. [309], and Zhang et al. [318]),

while Kant et al. [133,134] used a combination of experimental and analytical methods

to analyse the spreading of both a single droplet and a sequence of partially overlapping

droplets in a “stadium-shaped” well.

Motivated by the increasing interest in inkjet-printing droplets directly into wells

in the substrate during the manufacture of OLED displays, in Chapter 3 we formulate

and analyse a mathematical model for the evolution of a thin droplet in a shallow ax-

isymmetric well of rather general shape both before and after touchdown that accounts
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for the spatially non-uniform evaporation of the fluid.

1.8 Gravity effects

So far, the majority of the studies discussed consider the evaporation of small (i.e.

capillary-dominated) droplets in which gravitational effects are neglected. Specifically,

they consider droplets where the appropriate characteristic length scale of the droplet

L̂ is much smaller than the capillary length ˆ̀ =
√
σ̂/ρ̂ĝ, i.e. L̂ � ˆ̀, corresponding

to a small Bond number Bo = (L̂/ˆ̀)2 � 1, where σ̂ and ρ̂ are the constant surface

tension and fluid density, respectively, and ĝ denotes the magnitude of acceleration

due to gravity. In this case the free-surface profile of a droplet takes the form of a

spherical cap, and the shapes of sessile and pendant droplets are identical. While in

many cases this is the appropriate limit and this approach has given great insight into

the evaporation of small droplets, there are situations in which gravitational effects are

significant and it leaves the question of the effects of gravity on the evaporation of large

(i.e. gravity-dominated) droplets unresolved.

In the following two Subsections we will discuss the effect of gravity on droplet

shape and droplet evaporation in turn, with particular interest in the influence of

droplet orientation, i.e. whether the droplet is sessile or pendant.

1.8.1 Droplet shape

The shape of static sessile and pendant droplets under the effect of gravity is a classical

problem that has been studied for over 150 years (see, for example, Bashforth and

Adams [21], Boucher and Evans [30], Boucher et al. [31], Fordham [85], Middleman

[186], Padday [202, 203], Padday and Pitt [204], and Worthington [304]). Figure 1.11

shows a sketch of the static shapes of sessile and pendant droplets for increasing volume

with small contact angle θ̂ � 1.

Early numerical calculations of the static shapes of axisymmetric droplets by, for

example, Boucher and Evans [30], Padday [202, 203], and Padday and Pitt [204] show

that, for droplets on planar substrates, the volume of a sessile droplet may become
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Figure 1.11: Sketch of the static shapes of (a) sessile and (b) pendant droplets for
increasing volume with small contact angle θ̂ � 1.

arbitrarily large, with the contact radius increasing and the free-surface profile flatten-

ing with increasing volume, whereas, there is a finite maximum volume of a pendant

droplet (hereafter referred to as the detachment volume), at which the droplet will fall

off the substrate. Padday [203] showed that, for any 0 < θ̂ < π, the height at the

centre of a sessile droplet increases with volume until a maximum value is reached at

an intermediate volume, and thereafter decreases to a limiting value as volume of the

droplet becomes large. Wente [297] conducted a rigorous mathematical investigation

of the stability of axisymmetric pendant droplets proving that, for any 0 < θ̂ < π, the

free-surface profile of the droplet increases everywhere and the contact radius of the

droplet increases with volume until a maximum contact radius is reached; thereafter

the droplet becomes unstable, and the contact radius then decreases until the detach-

ment volume is reached. Additionally, Wente [297] showed that, in general, a stable

pendant droplet will not have more than one inflection point (sometimes also referred

to as a “neck”) in its free-surface profile and that for the case of thin droplets, i.e.

for droplets with small contact angle θ̂ � 1, the volume of the droplet will reach the

detachment volume before the appearance of the inflection point in the free-surface

profile. The stability of sessile and pendant droplets for situations in which the contact
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radius of the droplet is limited by the radius of the substrate (sometimes referred to as

the R̂-limited case), e.g. for droplets on rods, in which both sessile and pendant droplets

have a detachment volume, has also been investigated (see, for example, Padday and

Pitt [204]).

More recently, in related work, the effect of gravity on the the spreading of non-

evaporating droplets has been investigated theoretically and numerically (see, for ex-

ample, Bartashevich et al. [20], Brochard-Wyart et al. [34], de Gennes [60], Lubarda

and Talke [169], Mistry and Muralidhar [187], and Savva and Kalliadasis [236]). In

particular, Brochard-Wyart et al. [34] analysed the spreading of sessile droplets on a

planar substrate, quantifying three different regimes depending on the size of the con-

tact radius R̂ in which capillary forces, gravity forces, and viscous dissipation compete

to determine the shape of the free surface.

1.8.2 Droplet evaporation

Experimental studies have been undertaken to investigate the effect of gravity on the

evolution of evaporating sessile droplets by Kadhim et al. [127] and Carle et al. [37].

In particular, Kadhim et al. [127] studied the evaporation of small and large sessile

water droplets on hydrophobic and hydrophilic heated substrates and compared the

results with numerical solutions for the evolution based on the crude assumption that

the droplet is a spherical cap. The numerical solutions are in agreement with the

experimental results for a sessile droplet evaporating on hydrophilic substrate in which

the droplet remains approximately spherical. However, the numerical results do not

accurately predict the evaporation rate of large droplets evaporating on hydrophilic

substrates, which they attribute to deviations of the droplet shape from a spherical

cap. Carle et al. [37] investigated the evaporation of pinned sessile ethanol droplets in

normal (terrestrial) and reduced gravity conditions on a heated aluminium substrate.

Their study shows that the diffusion-limited model is appropriate for ethanol droplets

evaporating in microgravity; however, in normal gravity, natural convection is enhanced

and its effect on evaporation increases with substrate temperature.

The evaporation of sessile and pendant droplets has been compared experimentally
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to determine the effect of droplet orientation on the evolution of an evaporating droplet

(see, for example, Moore et al. [191]) and on the flow within an evaporating droplet

(see, for example, Edwards et al. [75], Li et al. [157], Masoudi and Kuhlmann [183],

and Prahdan and Panigrahi [221]). In particular, Moore et al. [191] experimentally

studied the evaporation rates of sessile and pendant droplets of different fluids evap-

orating on substrates of varying wettability. They showed that the de-pinning time

of a droplet evaporating in the SS mode depends on whether the droplet is sessile

or pendant, and that sessile droplets evaporate approximately 16 − 35% faster than

pendant droplets, depending on the fluid and substrate used, even for relatively small

droplets of volume 4–8µL, corresponding to a Bond number of order between 10−2 and

10−1. They attribute this difference to a combination of buoyancy effects in the atmo-

sphere and gravitational effects on the shape and contact-line pinning of the droplet.

Edwards et al. [75] and Li et al. [157] investigated the flow within small (microlitre-

sized) evaporating binary sessile and pendant droplets. Both studies observed droplet

orientation-dependent flow which they attribute to buoyancy effects from density gra-

dients within the droplets that arise due to the different evaporation rates of the two

components of the binary droplets. In addition, Edwards et al. [75] did not observe flow

reversal in the later stages of evaporation (i.e. when the more volatile fluid has com-

pletely evaporated), showing that buoyancy-driven convection in the atmosphere does

not influence the flow in this situation. In addition, the effect of droplet orientation on

the deposition from evaporating droplets has also been investigated (see, for example,

Devlin et al. [66], Hampton et al. [106], Li et al. [156], Sandu and Fleaca [234], Sandu

et al. [233,235], and Sommer [265]).

There have been a few theoretical investigations of the effect of gravity on the

evolution of an evaporating sessile droplet. Barash et al. [19] numerically investigated

the evaporation of a sessile toluene droplet undergoing diffusion-limited evaporation

with a pinned contact line and contact radius R̂ approximately equal to the capillary

length ˆ̀. They showed that the local evaporative flux from the droplet under the effect

of gravity is smaller near the apex of the droplet and larger near the contact line of

the droplet in comparison with the solution when the droplet is assumed to take the
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shape of a spherical cap (corresponding to a small droplet, as shown in Figure 1.7(a),

or a droplet in a low-gravity environment), but that the total evaporative flux from the

droplet agrees well with the spherical-cap approximation. Kolegov and Lobanov [143]

modelled the evolution of a thin pinned sessile evaporating droplet under the effect of

gravity. They proposed an idealised expression for the local evaporative flux to mimic

diffusion-limited evaporation and performed numerical calculations to determine the

behaviour of the flow within the droplet. The study shows that while for a droplet with

large Bo, i.e. Bo � 1, the free surface of the droplet is far from the typical spherical-

cap shape, the qualitative behaviour of the radially-outward flow within the droplet

does not change. As far as we are aware, there have been no theoretical studies that

investigate the effect of gravity on the evolution of a droplet evaporating in other modes

of evaporation.

In Chapter 4 we formulate and analyse a mathematical model for the shape, evolu-

tion, and lifetime of thin sessile and pendant droplets evaporating in the CR, CA, SS,

and SJ modes under the effect of gravity.

1.9 The coffee-ring effect

As previously discussed in Section 1.3, the coffee-ring effect is the formation of a ring

deposit near the contact line after the complete evaporation of a pinned droplet con-

taining suspended particles. As explained by Deegan et al. [64] for the case of a thin

pinned droplet evaporating according to the diffusion-limited model, the ring deposit

is a consequence of radially outward capillarity-driven flow inside the droplet that ad-

vects particles towards its pinned contact line. In particular, as the fluid evaporates,

the free-surface profile of the droplet diminishes and fluid that has evaporated near the

contact line must be replenished by fluid from the bulk of the droplet. Thus, there

is an outward flow that carries the particles to the contact line. Boulogne et al. [32]

obtained the exact solution for the flow within a thin pinned droplet evaporating ac-

cording to the diffusion-limited model; typical instantaneous streamlines of the flow are

shown in Figure 1.12. In addition, the solutions for the flow within a non-thin pinned
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Figure 1.12: Instantaneous streamlines of the flow within a thin pinned droplet evapo-
rating according to the diffusion-limited model.

droplet evaporating according to approximate and modified versions of the diffusion-

limited model have been obtained by, for example, Hu and Larson [118] and Masoud

and Felske [181].

Previous studies have quantified the growth of the ring deposit analytically for

diffusion-limited evaporation (Deegan et al. [64], Boulogne et al. [32]) and for spatially-

uniform evaporation (Boulogne et al. [32]), under the assumption that the particles are

passive and are simply advected by the flow (sometimes referred to as “tracer parti-

cles”). In addition, Boulogne et al. [32] compared the theoretical predictions for the

growth of the ring deposit with experimental observations for both diffusion-limited

and spatially-uniform evaporation, finding good agreement. The geometry and density

of the ring deposit have also been investigated. Popov [220] modelled the width and

height of the deposit for diffusion-limited evaporation by considering an incompress-

ible “deposit phase” in which the concentration of deposited particles remains constant

after reaching some maximum packing value, resulting in a ring deposit whose inner

boundary moves radially inwards. Zheng [320] extended the work of Popov [220] by

considering a deposit phase in which the deposit that is formed assumes the same

shape as the droplet, compressing vertically as the droplet evaporates, such that the

concentration of deposited particles varies in both space and time. Zheng [320] ob-

tained an analytical expression for the radially-varying density of the ring deposit, and

compared the results for diffusion-limited and spatially-uniform evaporation. Kajiya

et al. [128] conducted experiments to visualize the concentration profile inside an evap-

orating droplet and showed that the thickness of the ring deposit is dependent on the

qualitative form of the local evaporative flux, with a broader ring and larger film thick-
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ness at the centre of the droplet for nearly spatially-uniform evaporation in comparison

with diffusion-limited evaporation. Berteloot et al. [22] experimentally studied the dif-

ferent growth phases of the ring, including the initial growth of the deposit near the

contact line, the motion of the deposition front that moves inwards from the contact

line to the centre of the droplet, and the cracks and delamination that were observed

to occur at the inner boundary of the ring deposit towards the end of evaporation.

Marin et al. [178, 179] conducted experiments to investigate the final structure of the

ring, concluding that the rapid acceleration of particles towards the contact line during

the final stages of evaporation, which they termed “the rush-hour effect” due to an in-

crease in the magnitude of flow towards the contact line (see, for example, Hamamoto

et al. [105]), results in a lack of order of the particles at the inner boundary of the ring

deposit.

As discussed in Section 1.3, a wide variety of other types of deposit have been ob-

served and so before discussing the deposition further we seek to clarify the terminology

regarding these different deposit types. Figure 1.13 shows a sketch of the different de-

posit types described in the literature and the terminology that will be used to describe

them throughout the remainder of this thesis.

There have been several extensions to the model proposed by Deegan et al. [64]

for the deposition from an evaporating droplet that have been used to investigate the

dynamics of the evaporation and fluid flow near the contact line of the droplet when

the concentration of particles becomes large. Tarasevich et al. [283] and Vodolazskaya

and Tarasevich [292] modelled and numerically investigated an evaporating droplet on a

planar substrate taking into account the gelation of solutions by proposing an expression

for the local evaporative flux which decreases as the concentration of particles increases,

and by considering the viscosity of the solution as a function of particle concentration.

Their model predicts a transition from ring deposits to near-uniform deposits depending

on the initial concentration of particles and the strength of capillary effects. Kaplan

and Mahadevan [135] proposed a multiphase model that couples evaporation-driven

flow in the bulk of the droplet, where the concentration of particles is relatively low, to

a region of Darcy flow near the contact line, forming an effective porous medium, where
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Ring deposit

(a)

Concentric-ring
deposit

(b)

Broad-band
deposit

(c)

Inner-ring
deposit

(d)

Scattered inner
deposit

(e)

Small concentrated/
inner deposit

(f)

Uniform deposit

(g)

Near-uniform deposit

(h)

Central bump/Mountain/Peak deposit

(i)

Figure 1.13: A sketch of different deposit types described in the literature: Top view
schematic of (a) a ring deposit, (b) a concentric-ring deposit, (c) a broad-band deposit,
(d) an inner-ring deposit, (e) a scattered inner deposit, and (f) a small concentrated
or inner deposit, and cross-sectional views of (g) a uniform deposit, (h) a near-uniform
deposit, and (i) three different deposit types that are more concentrated at the centre
of the droplet than at the contact line, typically termed a central bump, mountain, or
peak deposit. The dashed lines in (d)–(f) indicate the initial contact line of the droplet.

the concentration of particles is relatively high. This model predicts various deposit

types, such as uniform deposits, single or concentric rings, and broad bands, depending

upon the initial concentration of particles and the relative magnitude of viscous forces

to capillary forces. Recently, Moore et al. [192] performed an asymptotic analysis for

the concentration of particles in the limit of small particle diffusion, accounting for the

effects of particle diffusion in a boundary layer near the contact line of the droplet in

which the concentration of particles is large but not yet at its maximum packing value.

Their study shows that particle diffusion drives the formation of the ring deposit and

that a droplet undergoing diffusion-limited evaporation will produce a thinner ring

shape in the concentration profile than for spatially-uniform evaporation.

In addition, whilst the majority of the literature focuses on single axisymmetric

droplets, recently there have been advances in modelling the deposition from a non-

axisymmetric droplet (see, for example, Sáenz et al. [232]) and from multiple droplets

(see, for example, Hu et al. [120] and Wray et al. [306]).

The studies discussed in this Section show that factors such as the local evaporative

flux and particle concentration can have an effect on the shape of the final deposit from
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an evaporating droplet. In the next Section we will further discuss the mechanisms

that control particle deposition.

1.10 Controlling particle deposition

As discussed in Section 1.3, the ability to control the shape of the final deposit from

an evaporating droplet is key in numerous applications, and therefore a variety of

methods of control have been explored in the literature (see, for example, the review

articles by Al-Milaji and Zhao [6], Anyfantakis and Baigl [9], Kolegov and Barash

[142], Kuang et al. [146], Larson [150], Mampallil and Eral [176], Parsa et al. [212],

Sefiane [242], Shao et al. [251], Yang et al. [311], and Zhong et al. [321], and the many

references therein). In general, control over deposition can be achieved by influencing

the flow within the droplet through, for example, contact-line de-pinning, the presence

of Marangoni flow, or manipulation of the vapour field, as well as by promoting particle

trapping or gelation through, for example, particle–free-surface, particle–particle and

particle–substrate interactions. Table 1.2 provides examples of different methods used

in experimental investigations to control the deposition from an evaporating droplet.

Four mechanisms that can be manipulated to change the shape of the final deposit

from an evaporating droplet are discussed below.

1.10.1 Contact-line de-pinning

A pinned contact line is required for a ring deposit to form, and so, a simple and

effective way of changing the shape of the final deposit is through controlling contact-

line de-pinning. The final deposit observed after the complete evaporation of a droplet

in the CR, CA, SS, and SJ modes is typically a ring deposit near the contact line of the

droplet (see, for example, Deegan et al. [64]), a small concentrated deposit or a mountain

deposit (see, for example, Patil et al. [214] and Willmer et al. [301]), an inner-ring or

a small concentrated deposit (see, for example, Li et al. [160, 161]), and multiple ring

deposits (see, for example, Askounis et al. [16] and Orejon et al. [200]), respectively.

Table 1.2 includes examples of experimental investigations that use contact-line de-
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Mechanism manipulated Method Example references

Contact line de-pinning Electrowetting [77]
Particle properties [25], [125], [312]
Substrate coatings [56], [92], [158]
Substrate wettability [25], [49], [153], [160], [158],

[214]

Marangoni flow Binary fluids [139], [209], [282], [323]
External vapour source [113], [172], [173]
Heating [42], [159], [175], [211,213],

[214], [277], [313], [322]
Surfactants [129], [139], [246], [271]

Vapour field Ambient pressure [16]
Controlled airflow [310]
Liquid bath [64], [128]
Masking/confinement [64], [108–110], [230]
Relative humidity [29], [48]

Particle interactions Base fluid composition [11], [23], [54], [65], [70],
[139], [231]

Electrowetting [201]
Particle concentration [10], [153], [174]
Particle material [10], [65]
Particle shape [70], [315,316]
Particle size [18], [153], [174,175], [231]

Table 1.2: Examples of different methods used in experimental investigations to control
the deposition from an evaporating droplet.
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pinning to control the deposition from an evaporating droplet. In particular, transitions

from ring or concentric-ring deposits for droplets evaporating in the CR and the SJ

modes of evaporation (i.e. when contact-line pinning occurs) to small concentrated

deposits for droplets evaporating in the CA mode of evaporation (i.e. when no contact-

line pinning occurs) have been reported by authors allowing droplets to evaporate

on substrates of different wettability (see, for example, Biswas et al. [25], Chhasatia

and Yun [49], Lee et al. [153], and Patil et al. [214]) or on oil-coated substrates (see,

for example, Das et al. [56], Goa et al. [92] and Li et al. [158]), and by applying an

electric field to an evaporating droplet, to induce electrowetting (see, for example, Eral

et al. [77]). Additionally, it has been shown that particle properties such as size and

concentration can have an effect on the motion of the contact line, and hence on the

deposition from an evaporating droplet. Orejon et al. [200] showed that nanoparticles

promote contact-line pinning, and therefore ring deposits, on hydrophilic substrates,

and SJ contact-line motion, and therefore concentric-ring deposits, on hydrophobic

substrates. Yang et al. [312] observed a transition from a ring deposit to a concentric-

ring deposit from a droplet evaporating on a hydrophilic substrate by increasing the

initial concentration of nanoparticles within the droplet. Yang et al. [312] also showed

a transition from ring and concentric-ring deposits to spoke-like deposits by increasing

the size of the particles from 20 nm to 200 nm, which they attribute to partial contact-

line pinning when the particles are larger. On the other hand, a scattered inner deposit

or an inner-ring deposit is typically observed after the complete evaporation of droplets

containing microparticles due to an absence of contact-line pinning for most or all of

the lifetime of the droplet (see, for example, Biswas et al. [25] and Jung et al. [125]).

In addition, the deposition from an evaporating droplet with a moving contact line

has been studied theoretically and numerically (see, for example, Freed-Brown [88], Man

and Doi [177], and Zigelman and Manor [324]). Freed-Brown [88] analysed a droplet

undergoing spatially-uniform evaporation in the CA mode. As the droplet evaporates,

the flow advects particles inwards towards the centre of the droplet. However, the

receding contact line moves faster than the flow and so some particles are “caught”

by the moving contact line at which point they are then deposited. Therefore deposi-

33



Chapter 1. Introduction

tion occurs gradually throughout evaporation, and the model predicts a peak deposit.

Subsequently, Man and Doi [177] showed a transition from ring deposits to the peak

deposits predicted by Freed-Brown [88] for a droplet undergoing spatially-uniform evap-

oration in the CA mode when the mobility of the contact line is increased. Zigelman

and Manor [324] analysed the deposition from a droplet evaporating in the SJ mode,

predicting concentric-ring deposits in which the spacing between the rings decreased

logarithmically towards the centre of the droplet. In related work, Fraštia et al. [86,87]

numerically investigated the deposition of line structures from an evaporating thin film

with SJ contact-line motion and showed that the number and regularity of the de-

posited lines depend on the evaporation rate of the film and the initial concentration

of particles within the film.

1.10.2 Marangoni flow

The coffee-ring effect is driven by radially-outward capillary flow, and so one natural

way to change the shape of the final deposit is to induce a radially-inwards or a recircu-

lating flow. Marangoni flow is driven by surface-tension gradients along the free surface

of a droplet. This surface-tension gradient can be induced by either a temperature gra-

dient or a concentration gradient at the free surface of the droplet, corresponding to

thermal and solutal Marangoni flow, respectively. Hu and Larson [119] observed ex-

perimentally that, while the coffee-ring effect was present after the evaporation of a

water droplet, some particles were deposited onto the substrate at the centre of the

droplet after the evaporation of an octane droplet. They showed that a non-uniform

distribution of the local temperature was present within the octane droplet due to

strong evaporative cooling, which led to a recirculating thermal Marangoni flow that

carried particles towards the centre of the droplet. They concluded that Marangoni

flow must be suppressed in order to observe the coffee-ring effect after the complete

evaporation of a pinned droplet. Following Hu and Larson [119], Ristenpart et al. [227]

demonstrated experimentally and theoretically the effect of the thermal conductivity

of the substrate and the fluid on the magnitude and circulation direction of the ther-

mal flow, and hence on the deposition from an evaporating droplet. Table 1.2 includes
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examples of experimental investigations that used Marangoni flow to control the de-

position from an evaporating droplet. In particular, authors have reported transitions

in the shape of the final deposit by inducing Marangoni flows through the addition

of a more/less volatile fluid (see, for example, Kim et al. [139], Park and Moon [209],

Talbot et al. [282], and Zhong and Duan [323]), the presence of an external vapour

source (see, for example, Hedge et al. [113], Majumder et al. [172], and Malinowski

et al. [173]), substrate heating (see, for example, Li et al. [159], Malla et al. [175], Parsa

et al. [211, 213], Patil et al. [214], and Zhong and Duan [322]), heating the fluid prior

to evaporation (see, for example, Chatterjee et al. [42]) or during evaporation via an

external laser (see, for example, Ta et al. [277] and Yen et al. [313]), and the addition

of surfactants (see, for example, Kajiya et al. [129], Kim et al. [139], Seo et al. [246],

and Still et al. [271]).

1.10.3 Manipulation of the vapour field

Another method that can be used to disturb the radially-outward capillary flow within

a pinned evaporating droplet is manipulation of the vapour field, and hence the local

and total evaporative fluxes from the droplet. This method has the advantage that

it does not require modification of the substrate or fluid composition. Table 1.2 in-

cludes examples of experimental investigations that manipulate the form of the vapour

field to control the deposition from an evaporating droplet. In particular, authors have

reported a change in the shape of the final deposit from an evaporating droplet by

reducing the ambient pressure in the atmosphere to increase the evaporation rate from

the droplet (see, for example, Askounis et al. [16]), using a controlled airflow above the

droplet to enhance evaporation from its centre (see, for example, Yang et al. [310]),

surrounding the droplet with a liquid bath and/or confining the droplet within a cham-

ber to suppress evaporation near the contact line (see, for example, Deegan et al. [64]

and Kajiya et al. [128]), placing the droplet underneath a mask in order to achieve

a desired pattern of evaporation enhancement/suppression (see, for example, Harris

et al. [108–110]), and increasing the relative humidity of the atmosphere to decrease

the evaporation rate from the droplet (see, for example, Bou Zeid and Brutin [29]
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and Chhasatia et al. [48]). Other studies have explored manipulating the form of the

vapour field of an evaporating thin film through the use of a controlled airflow (see,

for example, Wedershoven et al. [296]) and masking (see, for example, Cavadini [39],

Parneix [210], and Routh and Russell [230]). Figure 1.14 shows examples of control-

ling the deposition from an evaporating droplet through manipulation of the form of

the vapour field in experiments by (a) Askounis et al. [16] in which a water droplet

containing SiO2 nanoparticles evaporated under decreasing values of the atmospheric

pressure, (b) Yang et al. [310] in which a water droplet containing polytetrafluoroethy-

lene (PTFE) nanoparticles evaporated without and with a controlled airflow above the

droplet, (c) Chhasatia et al. [48] in which a deionized water droplet evaporated un-

der increasing values of the relative humidity, and (d) Deegan et al. [64] in which a

water droplet containing polystyrene particles evaporated in a quiescent atmosphere,

surrounded by a liquid bath, and confined by a chamber with a small hole above the

centre of the droplet. In particular, Figure 1.14 shows that the shape and characteris-

tics of the final deposit depend upon both the total evaporative flux from the droplet

and the spatial variation of the local evaporative flux.

The concept of masking was first explored by Routh and Russell [230] for evapo-

rating thin films, and subsequently by Deegan et al. [64] for evaporating droplets, as a

simple way of controlling the deposition process. Deegan et al. [64] carried out three

experiments involving a droplet evaporating under different conditions; their results are

reproduced in Figure 1.14(d). They found that when the droplet evaporated in a qui-

escent atmosphere and surrounded by a liquid bath, corresponding to diffusion-limited

and spatially-uniform evaporation, respectively, there is a radially-outward flow that

causes a ring deposit to form near the contact line. However, when a droplet was con-

fined by a chamber with a hole in the centre, producing a local evaporative flux profile

that was proportional to the rate of decrease of the height of the droplet, the deposit

shape was nearly uniform. Harris et al. [109] further investigated the effect of manipu-

lating the spatial variation of the local evaporative flux by evaporating droplets under

a mask with multiple holes. The mask induced periodic variations in the local evapo-

rative flux profile and produced deposits that were concentrated below the holes in the
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(a)

(b)

(c) (d)

Figure 1.14: Examples of controlling the deposition from an evaporating droplet
through manipulation of the form of the vapour field. Final deposit after the com-
plete evaporation of: (a) A water droplet containing SiO2 nanoparticles under 750,
500, 250 and 100 mbar atmospheric pressure (left to right). Reprinted from Askounis
et al. [16], Copyright (2014), with permission from Elsevier. (b) A water droplet con-
taining polytetrafluoroethylene (PTFE) nanoparticles without (left) and with (right) a
controlled airflow above the droplet. Reprinted from Yang et al. [310], with the permis-
sion of AIP Publishing. (c) A deionized water droplet containing polystyrene particles
for increasing values of the relative humidity. Reprinted from Chhasatia et al. [48],
with the permission of AIP Publishing. (d) A water droplet containing polystyrene
particles allowed to evaporate in a quiescent atmosphere, surrounded by a liquid bath,
and confined by a chamber with a small hole above the centre of the droplet (top to
bottom in the left column). A schematic plot of the local evaporative flux (solid lines)
and the rate of decrease of the free surface of the droplet (dashed lines) is shown in
the right column. Reprinted figure with permission from Deegan et al. [64]. Copyright
2000 by the American Physical Society.
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mask, i.e. the mask provided a template for the shape of the final deposit. Tarasevich

et al. [284] then developed a theoretical model using an idealised local evaporative flux

to mimic the influence of a mask with three or four circular holes above the droplet to

simulate the behaviour observed experimentally by Harris et al. [109]. Vodolazskaya

and Tarasevich [293] generalised this model to account for the diffusion of vapour in the

atmosphere, used this model to calculate the local evaporative flux numerically, and

investigated the effects of the distance between the mask and the droplet, the radius of

the holes in the mask, and the spacing between the holes, on the local evaporative flux

and the shape of the final deposit. Parneix et al. [210] experimentally and numerically

investigated the effect of placing an obstacle above an evaporating thin film and found

that the evaporation, and therefore the deposition, was reduced under the masked re-

gion. One restriction on the practical uses of masking is that it reduces the evaporation

rate from the droplets and therefore lengthens the total drying time. A combination

of masking and heating via an infra-red lamp has been investigated experimentally by

Georgiadis et al. [99, 100] and numerically by Kolegov [141] who confirmed that the

heating increases the evaporation rate of the droplet.

In Chapter 5 we investigate the effect of spatial variation in the local evaporative

flux on the deposition from an evaporating droplet. In particular, we identify when

suppression of evaporation near the contact line of the droplet is sufficient to change

the shape of the final deposit.

1.10.4 Particle interactions

So far, we have discussed control of the deposition from an evaporating droplet through

manipulation of the flow within the droplet. In reality, the shape of the final deposit

will be determined by both the flow within the droplet and the particle interactions

present, with various forces, such as capillary, electrostatic, and van der Waals forces,

contributing to the particle interactions. Table 1.2 includes examples of experimental

investigations that control the deposition from an evaporating droplet by promoting

particle–free-surface, particle–particle, and particle–substrate interactions. In particu-

lar, authors have reported a change in the shape of the final deposit from an evapo-
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rating droplet through particle trapping and/or gelation by modifying the composition

of the fluid through the addition of polymers (see, for example, Kim et al. [139] and

Ryu et al. [231]), proteins (see, for example, Devineau et al. [65]), and surfactants

(see, for example, Anyfantakis et al. [11] and Crivoi et al. [54]), or by changing the

acidity/basicity (i.e. the pH) of the fluid (see, for example, Bhardwaj et al. [23] and

Dugyala et al. [70]), and through the properties of the particles within the droplet such

as particle concentration (see, for example, Anyfantakis et al. [10], Lee et al. [153],

and Malla et al. [174]), material (see, for example, Anyfantakis et al. [10] and Devineau

et al. [65]), shape (see, for example, Dugyala et al. [70] and Yunker et al. [315,316]), and

size (see, for example, Bansal et al. [18], Lee et al. [153], Malla et al. [174,175], and Ryu

et al. [231]). In addition, Orejon et al. [201] showed that electrowetting on dielectrics

promotes particle–substrate interactions, termed electrophoresis. They observed tran-

sitions from concentric-ring deposits from droplets containing TiO2 nanoparticles evap-

orating in the SJ mode of evaporation to uniform deposits from droplets evaporating in

the CA mode under a direct current (DC) voltage. They attribute the uniform deposits

to a shorter timescale for electrophoretic mobility of particles towards the substrate than

the evaporation-driven particle advection towards the contact line. Figure 1.15 shows

examples of controlling the deposition from an evaporating droplet through particle

interactions in experiments by (a) Anyfantakis et al. [11] in which a water droplet con-

taining anionic polystyrene particles (PS-AA) evaporated without and with the addi-

tion of a charged surfactant dodecyltrimethylammonium bromide (DTAB), (b) Yunker

et al. [316] in which a water droplet containing spherical and ellipsoidal polystyrene

particles evaporated, (c) Bhardwaj et al. [23] in which a water droplet containing ti-

tania particles of different pH values evaporated, and (d) Kim et al. [138] in which

an ethanol and water droplet containing polystyrene particles evaporated without and

with the addition of substrate-absorbent polymers. In particular, particle–free-surface,

particle–particle, and particle–substrate interactions can promote transitions from ring

or concentric-ring deposits to more uniform deposits, as illustrated in Figures 1.15(a),

(b), and (c,d), respectively.

In addition, there have been various theoretical and numerical studies that investi-
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(a) (b)

(c) (d)

Figure 1.15: Examples of controlling the deposition from an evaporating droplet
through the promotion of particle interactions. Final deposit after the complete evapo-
ration of: (a) A water droplet containing anionic polystyrene particles (PS-AA) without
(left) and with (right) the addition of a charged surfactant dodecyltrimethylammonium
bromide (DTAB). Adapted with permission from Anyfantakis et al. [11]. Copyright
2015 American Chemical Society. (b) A water droplet containing spherical (left) and
ellipsoidal (right) polystyrene particles. Reprinted by permission from Springer Nature:
Yunker et al. [316], Copyright (2011). (c) A water droplet containing titania particles
with pH values of 11.7 (left) and 1.4 (right). Reprinted with permission from Bhardwaj
et al. [23]. Copyright 2010 American Chemical Society. (d) An ethanol and water
droplet containing polystyrene particles without (left) and with (right) the addition of
substrate-absorbent polymers. Reprinted figure with permission from Kim et al. [139].
Copyright 2016 by the American Physical Society.
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gate the deposition from an evaporating droplet that incorporate particle interactions

(see, for example, Crivoi and Duan [53], Crivoi et al. [54], Pham and Kumar [216], Ren

et al. [225], Siregar et al. [260], Sung et al. [275], Widjaja and Harris [298], and Zigelman

and Manor [325,326]). In particular, Zigelman and Manor [325,326] studied the effect of

particle–substrate adsorption and particle–particle aggregation on the deposition from

a pinned droplet undergoing spatially-uniform evaporation. They showed that, as the

rate of particle–substrate adsorption increases, the shape of the final deposit transitions

from a ring deposit to a deposit that is more concentrated at the centre of the droplet,

termed a central bump deposit, and identified the special case in which the deposit is

uniform.

In Section 6.2.3 we discuss preliminary work investigating the effect of particle–

substrate adsorption on the deposition from an evaporating sessile droplet.

1.11 Overview of thesis

In this thesis we use a combination of analytical and numerical techniques to investigate

the evolution of, and the deposition from, an evaporating sessile droplet.

In Chapter 2 we give a derivation of the diffusion-limited model for the evaporation

of a sessile droplet.

In Chapter 3 we consider the evaporation of a thin droplet in a shallow well. We

formulate and analyse a mathematical model for the evolution of a droplet in a well of

rather general shape both before and after touchdown. We then validate the mathe-

matical model by comparing the theoretical predictions with physical experiments for

the special case of a cylindrical well.

In Chapter 4 we consider the evaporation of sessile and pendant droplets under

the effect of gravity. We formulate and analyse a mathematical model for the shape,

evolution, and lifetime of thin sessile and pendant droplets evaporating in the CR, CA,

SS and SJ modes of evaporation.

In Chapter 5 we consider the effect of spatial variation in the local evaporative flux

on the deposition of particles from an evaporating sessile droplet. We investigate the

evaporation for a particular one-parameter family of spatially-varying local evaporative
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fluxes that captures a wide range of qualitatively different behaviours. We show that the

flow within, and deposition from, an evaporating droplet depends strongly on the local

evaporative flux profile. In particular, the model predicts three qualitatively different

deposit types depending on the spatial variation in the local evaporative flux, namely,

a ring deposit, a paraboloidal deposit, and a deposit at the centre of the droplet.

In Chapter 6 we summarise the results obtained, draw conclusions, and discuss open

questions and possible directions for future work.

1.12 Publications and presentations

The work in Chapter 3 has recently been published in the Journal of Fluid Mechan-

ics (D’Ambrosio et al. [55]), as well as being presented as an oral presentation by

my primary supervisor Prof. Stephen K. Wilson at the “Fundamental Fluid Dynamics

Challenges in Inkjet Printing” Workshop, July 2019, Lorentz Center, Leiden; at the

ICMS Continuum Mechanics Seminar Series, February 2021, Edinburgh (virtually);

and at the American Physical Society Division of Fluid Dynamics 74th Annual Meet-

ing, November 2021, Phoenix (virtually). Various aspects of this work have also been

presented by me as a poster presentation at Droplets 2019, September 2019, Durham

University, and as an oral presentation at the 24th Merck Annual Case Conference,

April 2018, Southampton; at the UK Fluids Network Droplet Dynamics Special In-

terest Group Meeting, September 2018, Wadham College, Oxford; at the 61st British

Applied Mathematics Colloquium, April 2019, University of Bath; and at the 32nd

Scottish Fluid Mechanics Meeting, May 2019, Dundee University.

Aspects of the work in Chapter 4 are currently being prepared for publication and

have been presented by myself at the UK Fluids Conference 2021, September 2021,

University of Southampton (virtually).

The work in Chapter 5 is currently being prepared for publication and has also

been presented as an oral presentation by myself at the American Physical Society Di-

vision of Fluid Dynamics 73rd Annual Meeting, November 2020, Chicago (virtually); at

the 62nd British Applied Mathematical Colloquium, April 2021, University of Glasgow

(virtually); at the 34th Scottish Fluid Mechanics Meeting, May 2021, Robert Gor-
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don University (virtually); and at Droplets 2021, August 2021, Technische Universitat

Darmstadt (virtually).

Furthermore, aspects of Chapters 1 and 5 will be published as part of a review

article co-authored with my primary supervisor Prof. Stephen K. Wilson that is to

appear in the Annual Review of Fluid Mechanics (Wilson and D’Ambrosio [302]).
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Chapter 2

A Theoretical Model for the

Diffusion-Limited Evaporation of

a Sessile Droplet

2.1 Introduction

In this Chapter we outline a theoretical model of a sessile droplet undergoing quasi-

static diffusion-limited evaporation. First we summarise the classical description of

a small axisymmetric static sessile droplet, and the diffusion-limited model for the

evaporation of such a droplet, and then we describe the special case of a thin droplet.

For clarity we use hats to denote the dimensional quantities and unscaled angles, and

a superscript “a” to denote quantities associated with the atmosphere; the absence of

a superscript denotes quantities associated with the droplet.

2.2 The droplet geometry

We consider a sessile droplet of incompressible Newtonian fluid with known constant

density ρ̂, surface tension σ̂, and viscosity µ̂. The droplet is deposited onto a substrate

within an atmosphere with constant pressure p̂a, and undergoes diffusion-limited evapo-

ration; we denote the subsequent (unknown) concentration of vapour in the atmosphere
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Substrate

Droplet

Atmosphere

σ̂ds σ̂sa

σ̂

θ̂

Figure 2.1: Sketch of the region near the contact line of a droplet on an ideal substrate
with equilibrium contact angle θ̂ < π/2.

by ĉ.

2.2.1 Wetting

After the droplet is deposited onto the substrate, the free surface of the droplet rapidly

adopts a quasi-equilibrium shape with an equilibrium contact angle θ̂ (0 ≤ θ̂ ≤ π). As

discussed in Chapter 1, the value of the contact angle depends upon the properties of

the system.

The equilibrium contact angle of a droplet on an ideal substrate is described by the

Young equation [314]:

σ̂ cos θ̂ = σ̂sa − σ̂ds (2.1)

where σ̂, σ̂sa, and σ̂ds denote the surface tensions at the droplet–atmosphere, substrate–

atmosphere, and droplet–substrate interfaces, respectively, as sketched in Figure 2.1 for

θ̂ < π/2. In particular, equation (2.1) shows that a droplet on an ideal substrate has a

unique equilibrium contact angle θ̂. However, in practice, substrates are not ideal, and

the equilibrium contact angle can achieve a range of values due to contact-line pinning

by substrate roughness and/or chemical heterogeneities. The difference between the

largest and smallest possible equilibrium contact angles is called contact-angle hysteresis

(see, for example, Eral et al. [78]).

45



Chapter 2. A Theoretical Model for the Diffusion-Limited Evaporation of a Droplet

ẑ

r̂
Substrate

Atmosphere

Droplet

O R̂

ẑ = ĥ

θ̂

Figure 2.2: A cross-sectional view of an axisymmetric droplet with contact radius R̂,
contact angle θ̂, and free surface ĥ.

2.2.2 Determining the free surface

In this thesis we will consider the evaporation of axisymmetric droplets only, and so

we work in cylindrical polar coordinates (r̂, ϕ̂, ẑ) with Oẑ along the axis of the droplet,

perpendicular to the substrate at ẑ = 0, as sketched in Figure 2.2. The contact radius,

contact angle, volume, and free surface of the droplet are denoted by R̂ = R̂(t̂), θ̂ = θ̂(t̂),

V̂ = V̂ (t̂), and ĥ = ĥ(r̂, t̂), respectively, where t̂ denotes time. The initial values of R̂,

θ̂, and V̂ at t̂ = 0 are denoted by R̂(0) = R̂0, θ̂(0) = θ̂0, and V̂ (0) = V̂0, respectively.

We generally consider situations in which the droplet is sufficiently small that the

effect of gravity is negligible, and the surface tension is sufficiently strong that the

free surface of the droplet is quasi-static. More specifically, we consider situations

in which the appropriately defined Bond number Bo, which characterises the ratio of

gravitational and surface-tension effects, and capillary number Ca, which characterises

the ratio of viscous and surface-tension effects, namely

Bo =

(
L̂

ˆ̀

)2

� 1 and Ca =
µ̂Û

σ̂
� 1, (2.2)

are small, where ˆ̀ =
√
σ̂/ρ̂ĝ denotes the capillary length, ĝ denotes the magnitude of

acceleration due to gravity, L̂ is an appropriate characteristic length scale of the droplet,

and Û is the appropriate characteristic velocity scale. We note that for diffusion-
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limited evaporation the characteristic velocity scale is given by Û = L̂/τ̂ , where τ̂ is

the appropriate characteristic time scale for evaporation, namely τ̂ =
(
ρ̂/2D̂(ĉsat −

ĉ∞)
)
(3V̂0/2π)2/3 (see, for example, Stauber et al. [267]).

For Bo � 1 and Ca � 1, the Stokes equations reduce to the statement that the

pressure p̂ = p̂(r̂, ẑ, t̂) within the droplet satisfies

∇̂p̂ = 0, (2.3)

subject to the Young–Laplace equation [314] at the free surface of the droplet, namely

p̂− p̂a = −σ̂∇̂ · n̂ = σ̂κ̂ on ẑ = ĥ, (2.4)

where p̂a denotes the atmospheric pressure, n̂ is the unit outward normal to the free

surface, and κ̂ is the mean curvature of the free surface of the droplet. Equation (2.3)

shows that the pressure p̂ within the droplet is independent of r̂ and ẑ, and therefore,

from (2.4), the mean curvature of the droplet κ̂ is spatially uniform.

We note that we will consider a small capillary number Ca � 1 throughout this

thesis and a small Bond number Bo � 1 in Chapters 3 and 5. However, in Chapter

4 we consider the situation in which the droplet is sufficiently large that the effect of

gravity is not negligible and so the Bond number is not small, i.e. Bo = O(1).

2.3 The diffusion-limited model

As discussed in Chapter 1, the local and total evaporative fluxes from a sessile droplet

depend on the rate-limiting mechanism(s) of evaporation. In this thesis we consider

diffusion-limited evaporation, i.e. evaporation in which the rate-limiting mechanism is

the diffusive transport of vapour in the atmosphere. More specifically, we consider situ-

ations in which the appropriately defined mass Péclet number Pem, which characterises

the ratio of diffusive and advective mass transport, and mass Fourier number Fom,
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which characterises the ratio of the evaporative and mass diffusion timescales, namely

Pem =
L̂Û

D̂
� 1 and Fom =

τ̂ D̂

L̂2
� 1, (2.5)

are small and large, respectively, where D̂ is the constant diffusivity of vapour in the

atmosphere. We note that, as discussed in the previous Subsection, for diffusion-limited

evaporation Û = L̂/τ̂ and therefore Pem = 1/Fom in this regime.

For Pem � 1 and Fom � 1, the concentration of vapour ĉ = ĉ(r̂, ẑ, t̂) in the

atmosphere is governed by Laplace’s equation

∇̂2ĉ = 0 in the atmosphere, (2.6)

subject to

ĉ = ĉsat on ẑ = ĥ for 0 ≤ r̂ ≤ R̂, (2.7)

ĉ→ ĉ∞ as r̂2 + ẑ2 →∞, (2.8)

∂ĉ

∂ẑ
= 0 on ẑ = 0 for r̂ > R̂, (2.9)

where ĉsat is the constant saturation concentration and ĉ∞ = R̂Hĉsat is the constant

ambient concentration, where R̂H (0 ≤ R̂H ≤ 1) is the relative humidity of the atmo-

sphere (see, for example, Deegan et al. [64], Hu and Larson [116], and Popov [220]).

The local evaporative mass flux from the free surface of the droplet, denoted by

Ĵ = Ĵ(r̂, t̂), is given by

Ĵ = −n̂ · D̂∇̂ĉ on ẑ = ĥ for 0 ≤ r̂ ≤ R̂, (2.10)

and integrating Ĵ over the free surface of the droplet gives the total evaporative mass

flux from the droplet, denoted by F̂ = F̂ (t̂), namely

F̂ =

∫
Ĵ dŜ. (2.11)
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The droplet evolves according to the global-mass conservation condition

− ρ̂dV̂

dt̂
= F̂ =

∫
Ĵ dŜ. (2.12)

We note that, as discussed in Chapter 1, for the diffusion-limited model described

here, the evaporative problem for the concentration of vapour in the atmosphere is

decoupled from the thermal problem for the temperature distribution in the system.

Despite this, the evaporation of a droplet requires latent heat, and so, in general,

evaporative cooling will occur. The, in general, non-uniform temperature within the

droplet, substrate, and atmosphere can be determined once the evolution of the droplet

has been determined (see, for example, Dunn et al. [71]); however, we do not explicitly

consider the thermal problem in this thesis.

2.4 A thin droplet

Throughout this thesis we will consider the evaporation of thin droplets only, i.e.

droplets with sufficiently small aspect ratio ĥ/R̂ � 1, corresponding to droplets with

sufficiently small contact angle θ̂ � 1. For this case we nondimensionalise and scale

the variables according to

r̂ = L̂r, ẑ = θ̂0L̂z, R̂ = L̂R, θ̂ = θ̂0θ, ĥ = θ̂0L̂h, V̂ = θ̂0L̂
3V,

∆p̂ =
σ̂θ̂0

L̂
p, t̂ =

ρ̂θ̂0L̂
2

D̂(ĉsat − ĉ∞)
t, ĉ = ĉ∞ + (ĉsat − ĉ∞)c,

Ĵ =
D̂(ĉsat − ĉ∞)

L̂
J, F̂ = D̂(ĉsat − ĉ∞)L̂F,

(2.13)

for the droplet, and similarly for the atmosphere except that

ẑ = L̂za. (2.14)

In particular, we note that the appropriate characteristic time scale for diffusion-limited

evaporation of a thin droplet is given by τ̂ = ρ̂θ̂0L̂
2/D̂(ĉsat − ĉ∞) (see, for example,

Wilson and Duffy [303]).
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For sufficiently small droplets, as considered here and in Chapters 3 and 5, the

appropriate characteristic length scale of the droplet L̂ is the initial radius of the droplet,

i.e. L̂ = R̂0, corresponding to Bond number Bo = (R̂0/ˆ̀)2 � 1 from (2.2a). On

the other hand, for sufficiently large droplets, as considered in Chapter 4, we take

the appropriate length scale of the droplet to be the capillary length, i.e. L̂ = ˆ̀,

corresponding to Bond number Bo = 1 from (2.2a).

2.4.1 The droplet geometry

At leading order in the limit θ̂0 → 0, from equations (2.3) and (2.4), the spatially

uniform pressure p = p(t) within the droplet satisfies

p = κ = −1

r

∂

∂r

(
r
∂h

∂r

)
, (2.15)

and so using ∂p/∂r = 0 from (2.3), the free-surface profile h = h(r, t) of the droplet

satisfies
∂

∂r

(
1

r

∂

∂r

(
r
∂h

∂r

))
= 0. (2.16)

The free-surface profile given by (2.16) must satisfy h(R, t) = 0 and ∂h/∂r = −θ at

r = R; in addition, h must be finite at r = 0, and is therefore given by the familiar

paraboloidal form

h =
θ
(
R2 − r2

)
2R

, (2.17)

or, equivalently,

h = hm

(
1− r2

R2

)
, hm =

θR

2
, (2.18)

where hm = h(0, t) is the height of the free surface at the middle of the droplet. The

volume V = V (t) of the droplet is given by

V = 2π

∫ R

0
h r dr =

πθR3

4
. (2.19)
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2.4.2 The evaporative problem

At leading order in the limit θ̂0 → 0, from equations (2.6)–(2.9), the evaporative prob-

lem for the concentration of vapour c = c(r, za, t) in the atmosphere becomes

∇2c = 0 for za > 0, (2.20)

subject to

c = 1 on za = 0 for 0 ≤ r ≤ R, (2.21)

c→ 0 as r2 + za2 →∞, (2.22)

∂c

∂za
= 0 on za = 0 for r > R. (2.23)

The local evaporative flux J = J(r, t) from (2.10) is given by

J = − ∂c

∂za
on za = 0 for 0 ≤ r ≤ R, (2.24)

and the global mass-conservation condition (2.12) reduces to

dV

dt
= −F where F = −2π

∫ R

0
J r dr. (2.25)

We note that (2.21) and (2.24) are applied on za = 0 at leading order in θ̂0 → 0 rather

than on the free surface for a thin droplet. The solution for the concentration c may

be written in the form (see, for example, Carslaw and Jaeger [38])

c =
2

π
sin−1 2R[

(R+ r)2 + za2
]1/2

+
[
(R− r)2 + za2

]1/2
, (2.26)

which, using (2.24), leads to the well-known expression for the local evaporative flux

J , namely

J =
2

π(R2 − r2)1/2
, (2.27)

which is singular (but integrable) at the contact line of the droplet at r = R (see, for

example, Popov [220]).
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Substituting the expression for V from (2.19) and the expression for J from (2.27)

into (2.25) yields the following equation for the evolution of a thin evaporating droplet:

d
(
θR3

)
dt

= −16R

π
. (2.28)

We note that equation (2.28) is not sufficient to determine how R and θ evolve and,

in the absence of more detailed modelling of the physics in the vicinity of the contact

line, appropriate idealised assumptions about the behaviour of R and/or θ must be

made. As discussed in Chapter 1, a simple and common approach is to investigate the

evolution of the droplet in different modes of evaporation.
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The Evaporation of a Thin

Droplet in a Shallow Well

3.1 Introduction

In this Chapter, motivated by the increasing interest in inkjet printing droplets directly

into wells in the substrate during the manufacturing of OLED displays, as discussed

in Chapter 1, we consider the evaporation of a thin droplet in a shallow axisymmetric

well of rather general shape. In Section 3.2 we formulate a mathematical model for the

evolution, and hence the lifetime, of the droplet that accounts for the spatially non-

uniform evaporation of the fluid. In Section 3.3 we analyse the evolution of the droplet

before touchdown and in Section 3.4 we describe the subsequent evolution of the droplet

after touchdown. We then describe physical experiments performed for the special case

of a cylindrical well by T. Colosimo, L. Yang, and C. D. Bain at Durham University

in Section 3.5, and compare the theoretical predictions with these experimental results

in Section 3.6, as well as with experimental results obtained by previous authors in

Section 3.7. All of the work described in this Chapter has recently been published in

the Journal of Fluid Mechanics (D’Ambrosio et al. [55]).
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3.2 Problem formulation

We consider a droplet of fluid in an axisymmetric well in the otherwise dry, planar sur-

face of a substrate undergoing quasi-static diffusion-limited evaporation in a quiescent

atmosphere. As in Chapter 2, we refer the description to cylindrical polar coordinates

(r̂, ϕ̂, ẑ), with Oẑ along the axis of the well, perpendicular to the surface of the sub-

strate at ẑ = 0, as sketched in Figure 3.1. We denote the maximum depth of the well,

which occurs at r̂ = 0, by Ĥ0, and the radius of its lip by R̂0, so that the lip is located

at r̂ = R̂0, ẑ = 0. The droplet is deposited into the well at t̂ = 0, and thereafter its

volume decreases due to evaporation until it has completely evaporated, which occurs

at t̂ = t̂lifetime, where t̂lifetime is the lifetime of the droplet.

We consider situations in which the droplet is thin and the well is shallow such that

the aspect ratio of the droplet and the well, ε = Ĥ0/R̂0 � 1, is small. Additionally, as

in Chapter 2, we consider situations in which the droplet is sufficiently small that the

effect of gravity is negligible, and the surface tension is sufficiently strong that the free

surface of the droplet evolves quasi-statically. More specifically, we consider situations

in which the appropriately defined Bond number Bo and scaled capillary number Ca∗

from (2.2), namely

Bo =

(
R̂0

ˆ̀

)2

� 1 and Ca∗ =
Ca

ε3
=
µ̂Û

ε3σ̂
� 1, (3.1)

are small. We note that the capillary number Ca defined in (2.2) arises when the

characteristic radial and vertical length scales of the droplet are the same and that a

scaled capillary number Ca∗ arises when we consider situations in which the radial and

vertical length scales of the droplet are different.

The mean curvature of the free surface of the droplet is therefore spatially constant,

and so at leading order in the limit ε→ 0 its free-surface profile ĥ satisfies

∂

∂r̂

(
1

r̂

∂

∂r̂

(
r̂
∂ĥ

∂r̂

))
= 0, (3.2)
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Figure 3.1: Sketch of snapshots of the free-surface profile ẑ = ĥ(r̂, t̂) of a thin droplet
evaporating in a shallow axisymmetric well with profile ẑ = Ĥ(r̂) = −Ĥ0(1− (r̂/R̂0)n)
in the otherwise dry, planar surface ẑ = 0 of a substrate, for (a) either Ĥ0 = 0 or n = 0
(i.e. a planar substrate with no well), (b) 0 < n < 1, (c) n = 1 (i.e. a conical well),
(d) 1 < n < 2, (e) n = 2 (i.e. a paraboloidal well), (f) 2 < n <∞, and (g) in the limit
n → ∞ (i.e. a cylindrical well). In (b)–(g) the free-surface profile at t̂ = t̂touchdown

is indicated with a dashed curve. Note that the dashed curve is not visible in (e) as
touchdown occurs everywhere simultaneously within the well in the special case n = 2.
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and hence takes the general form

ĥ = c1r̂
2 + c2 log r̂ + c3, (3.3)

where the ci = ci(t) for i = 1, 2, 3 are yet to be determined.

We consider a shaped well with profile ẑ = Ĥ(r̂) (≤ 0), where

Ĥ = −Ĥ0

(
1−

(
r̂

R̂0

)n)
for 0 ≤ r̂ ≤ R̂0, (3.4)

in which the exponent n (≥ 0) is a constant. The volume of the well (i.e. its volume

below the plane ẑ = 0) is given by

V̂well =
πnĤ0R̂

2
0

2 + n
, (3.5)

and any three of the four quantities V̂well, R̂0, Ĥ0 and n may be prescribed. Cases

with either Ĥ0 = 0 or n = 0 in (3.4), sketched in Figure 3.1(a), correspond to the

familiar case of a droplet on a planar substrate with no well, as described in Chapter

2. The cases n = 1, n = 2 and in the limit n → ∞, also included in Figure 3.1,

correspond respectively to a conical well, a paraboloidal well (which will turn out to

be an important special case), and a cylindrical well with vertical side r̂ = R̂0 and flat

bottom ẑ = −Ĥ0. The latter case, which, as discussed in Chapter 1, is of particular

interest from a practical point of view, is the subject of the experimental investigation

described in Section 3.5. At its lowest point located at r̂ = 0, ẑ = −Ĥ0 the profile of

the well (3.4) has a cusp when 0 < n < 1, has a corner when n = 1, and is flat when

n > 1; also its curvature there is infinite when 0 < n < 2, takes the value 4Ĥ0/R̂
2
0 when

n = 2, and is zero when n > 2. The slope of the well at its lip is nĤ0/R̂0.

We assume that, at least in the first stage of the evolution, the contact line is pinned

at the lip of the well located at r̂ = R̂0, ẑ = 0. The initial volume of the droplet, V̂0,

could be greater than, equal to, or less than the volume of the well, V̂well, in which

case the initial free surface of the droplet would be respectively above, at, or below the

plane ẑ = 0. Although all of these cases could be analysed by the present approach, for
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definiteness we take V̂0 to be greater than V̂well, so that initially the well is completely

filled and the free surface is above ẑ = 0.

At some time t̂ = t̂touchdown (0 < t̂touchdown ≤ t̂lifetime) the free surface makes contact

tangentially (i.e. at zero contact angle) with the surface of the well. As shown by the

dashed curves in Figure 3.1, when 0 < n < 2 touchdown occurs at the lip of the well,

and when n > 2 it occurs at the centre of the well. In the special case n = 2 touchdown

occurs everywhere simultaneously within the well, and so the dashed curve is not visible

in Figure 3.1(e). Before touchdown the behaviour of the droplet is the same in all three

cases, which may therefore be analysed together, but after touchdown the behaviour is

different, and it is then convenient to consider the three cases separately.

In the special case n = 2 the droplet has completely evaporated at t̂ = t̂touchdown,

and so t̂lifetime = t̂touchdown. However, in the general case n 6= 2 the droplet has not

completely evaporated at t = t̂touchdown, and the nature of its subsequent evolution

depends on whether 0 < n < 2 or n > 2. When 0 < n < 2 we assume that, as

sketched in Figure 3.1(b)–(d), the contact line de-pins from the lip of the well, and

thereafter the contact line recedes (i.e. moves inwards towards the centre of the well)

with decreasing radius R̂ = R̂(t̂) until R̂(t̂lifetime) = 0, at which time the droplet has

completely evaporated. On the other hand, when n > 2 we assume that, as sketched

in Figure 3.1(f,g), a new inner contact line appears at the centre of the well (i.e. at the

centre of the droplet, which then becomes annular), and thereafter the inner contact

line recedes (i.e. moves outwards towards the lip of the well, where the outer contact

line remains pinned) with increasing radius R̂ = R̂(t̂) until R̂(t̂lifetime) = R̂0, at which

time the droplet has completely evaporated.

In the next two Sections we analyse the evolution of the droplet before and after

touchdown, respectively.

3.3 Evolution before touchdown

We nondimensionalise and scale the variables according to (2.13) with L̂ = R̂0 for

the droplet, and similarly for the atmosphere except that ẑ = R̂0z
a; in addition we
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introduce the scalings

Ĥ = θ̂0R̂0H, Ĥ0 = θ̂0R̂0H0, (3.6)

for the well.

Before touchdown, i.e. for 0 ≤ t ≤ ttouchdown, the contact line is pinned at the lip

of the well, and so the free-surface profile given by (3.3) must satisfy h(1, t) = 0; in

addition, h must be finite at r = 0, and is therefore of the familiar paraboloidal form

h = hm

(
1− r2

)
, hm =

θ

2
, (3.7)

where hm = hm(t) = h(0, t) is the height of the free surface at the centre of the well,

and θ = θ(t) is the angle that the free surface at the lip of the well makes with the

plane za = 0, i.e. θ = −∂h/∂r at r = 1. We note that equation (3.7) corresponds to

the familiar solution for a thin droplet on a planar substrate given by (2.17) in Chapter

2 when R ≡ 1. However, unlike for a droplet on a planar substrate for which both

hm and θ must be non-negative, for a droplet in a well they may be positive, zero or

negative. The volume V = V (t) of the droplet is related to Vwell, H0, n and θ by

V = Vwell +
πθ

4
=
πnH0

2 + n
+
πθ

4
. (3.8)

The problem for the (static) concentration c = c(r, za) of vapour in the atmosphere

before touchdown is given by (2.20)–(2.25) when R ≡ 1, namely

∇2c = 0 in za > 0, (3.9)

with

c = 1 on za = 0 for 0 ≤ r ≤ 1, (3.10)

c→ 0 as r2 + za2 →∞, (3.11)

∂c

∂za
= 0 on za = 0 for r > 1, (3.12)
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J = − ∂c

∂za
on za = 0 for 0 ≤ r ≤ 1, (3.13)

dV

dt
= −2π

∫ 1

0
J r dr. (3.14)

The initial values of θ, hm, and V are given by

θ = 1, hm =
1

2
, V =

πnH0

2 + n
+
π

4
at t = 0. (3.15)

The solution for the concentration c may be written in the form

c =
2

π
sin−1 2[

(1 + r)2 + za2
]1/2

+
[
(1− r)2 + za2

]1/2
, (3.16)

which, using (3.13), leads to the solution for the local evaporative flux J , namely

J =
2

π(1− r2)1/2
, (3.17)

which exhibits the familiar (integrable) square-root singularity at the contact line r = 1

even when the free surface is below the plane za = 0. Equations (3.16) and (3.17)

correspond to the familiar solutions for a thin droplet on a planar substrate given by

(2.26) and (2.27) in Chapter 2 when R ≡ 1. We note that for 0 ≤ t ≤ ttouchdown the

concentration c and hence the local flux J are independent of t, whereas for ttouchdown <

t ≤ tlifetime they depend on t via their dependence on R = R(t).

Substituting the expression for V given in (3.8) and the expression for J given in

(3.17) into (3.14) yields
dV

dt
=
π

4

dθ

dt
= −4, (3.18)

and so the evolution of the droplet before touchdown is given by

h = hm(1− r2), θ = 1− 16t

π
, hm =

1

2
− 8t

π
, V =

πnH0

2 + n
+
π

4
− 4t. (3.19)

The free surface is instantaneously flat (i.e. θ = 0, hm = 0 and V = Vwell) at some
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time t = tflat given by

tflat =
π

16
' 0.1963. (3.20)

As well as being of interest in its own right, the occurrence of a flat free surface is

relatively easy to observe experimentally.

When 0 < n < 2 touchdown occurs when θ = −H ′(1) = −nH0, where a dash

denotes differentiation with respect to argument, showing that

t = ttouchdown =
π(1 + nH0)

16
, hm = −nH0

2
, V =

πn(2− n)H0

4(2 + n)
(3.21)

at touchdown. As we have already stated, in the special case n = 2 touchdown occurs

everywhere simultaneously within the well, and so tlifetime = ttouchdown = π(1+2H0)/16.

When n > 2 touchdown occurs when hm = −H0, showing that

t = ttouchdown =
π(1 + 2H0)

16
, θ = −2H0, V =

π(n− 2)H0

2(n+ 2)
(3.22)

at touchdown. When either H0 = 0 or n = 0 equations (3.21) and (3.22) give tlifetime =

ttouchdown = tflat = π/16, recovering the familiar expression for the lifetime of a pinned

droplet on a planar substrate (see, for example, Stauber et al. [268,270]).

3.4 Evolution after touchdown

3.4.1 0 < n < 2

When 0 < n < 2 the free surface touches down at the lip of the well located at r = 1,

z = 0 at t = ttouchdown, and after touchdown, i.e. for ttouchdown < t ≤ tlifetime, the

non-annular droplet has a receding circular contact line of radius R = R(t) which

satisfies R(ttouchdown) = 1 and R(tlifetime) = 0. We must specify a condition in addition

to h = H at the moving contact line. Since the (paraboloidal) free surface (3.19)

for 0 ≤ t ≤ ttouchdown touches down with zero contact angle at r = 1, we make the

modelling assumption that the contact angle at the receding contact line remains at the
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value zero throughout the subsequent evolution. Thus we have the boundary conditions

h = H = −H0(1−Rn),
∂h

∂r
= H ′ = nH0R

n−1 at r = R. (3.23)

The solution (3.3) for h satisfying (3.23) with h finite at r = 0 takes the form

h = H(R)− nH0R
n−2

2

(
R2 − r2

)
, (3.24)

or, equivalently,

h = hm +
nH0R

n−2r2

2
, where hm = −H0 +

(2− n)H0R
n

2
, (3.25)

for 0 ≤ r ≤ R, and V is given by

V =
πn(2− n)H0R

2+n

4(2 + n)
. (3.26)

The (now quasi-static) concentration c = c(r, za, t) of vapour in the atmosphere still

satisfies Laplace’s equation (3.9) and the boundary condition (3.11), but conditions

(3.10) and (3.12)–(3.15) must be replaced with

c = 1 on za = 0 for 0 ≤ r ≤ R, (3.27)

∂c

∂za
= 0 on za = 0 for r > R, (3.28)

J = − ∂c

∂za
on za = 0 for 0 ≤ r ≤ R, (3.29)

dV

dt
= −2π

∫ R

0
J r dr, (3.30)

R = 1, V =
πn(2− n)H0

4(2 + n)
at t = ttouchdown, (3.31)

respectively; in addition, we have

R = 0, V = 0 at t = tlifetime. (3.32)
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We note that the problem for the concentration c in this case corresponds to the familiar

problem for a thin droplet on a planar substrate given by (2.20)–(2.25) in Chapter 2

since, just as (3.27) and (3.29) are applied on za = 0 at leading order in θ̂0 → 0 rather

than on the free surface for a thin droplet, as discussed in Chapter 2, similarly (3.28)

for R < r ≤ 1 is applied on za = 0 rather than on the well for a shallow well. The

solution for the concentration c of the problem defined by (3.9), (3.11), (3.27) and

(3.28) is analogous to (3.16) and is given by

c =
2

π
sin−1 2R[

(R+ r)2 + za2
]1/2

+
[
(R− r)2 + za2

]1/2
, (3.33)

which, using (3.29), leads to the solution for the flux J analogous to (3.17), namely

J =
2

π(R2 − r2)1/2
. (3.34)

Both (3.33) and (3.34) correspond to the solutions for a thin droplet on a planar

substrate given by (2.26) and (2.27) in Chapter 2.

Substituting (3.26) and (3.34) into (3.30) yields

RndR

dt
= − 16

πn(2− n)H0
, (3.35)

leading to an explicit solution for R after touchdown, namely

R =

[
1

n(2− n)H0

(
1 + n+ 3nH0 −

16(1 + n)t

π

)]1/(1+n)

, (3.36)

with h given by (3.24) and V given by (3.26), i.e.

V =
π

4(2 + n) [n(2− n)H0]1/(1+n)

(
1 + n+ 3nH0 −

16(1 + n)t

π

)(2+n)/(1+n)

. (3.37)

Figure 3.2 shows the evolution of the free-surface profile h for n = 1 and n = 2 with

H0 = 1. Figure 3.3 shows plots of R and V as functions of t for a range of values of

n, again with H0 = 1. Note that dR/dt → ∞ and (although not very easy to see in

Figure 3.3(b)) dV/dt→ 0+ in the limit t→ t−lifetime.
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(a) (b)

Figure 3.2: Evolution of the free-surface profile h given by (3.19) for 0 ≤ t ≤ ttouchdown

and by (3.24) for ttouchdown < t ≤ tlifetime for (a) a conical well with n = 1 and H0 = 1,
and (b) a paraboloidal well with n = 2 and H0 = 1. In (a) the curves are drawn at
intervals of ttouchdown/16 = π/128 ' 0.0245, and the lifetime is tlifetime = 5π/32 '
0.4909, while in (b) the curves are drawn at intervals of ttouchdown/15 = π/80 ' 0.0393,
and the lifetime is tlifetime = ttouchdown = 3π/16 ' 0.5890.

(a) (b)

Figure 3.3: Plots of (a) the radius R of the receding contact line given by (3.36),
and (b) the volume V of the droplet given by (3.19) for 0 ≤ t ≤ ttouchdown and by
(3.37) for ttouchdown < t ≤ tlifetime as functions of t for n = 0, 1/10, 1/5, . . . , 2 in
the case H0 = 1. The vertical dashed lines in (a) correspond to the limits n → 0+

and n → 2−, and the dots in (b) correspond to touchdown (at the lip of the well) at
t = ttouchdown = π(1 + nH0)/16.
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Figure 3.4: Plot of the lifetime of the droplet, tlifetime, given by (3.38) for 0 ≤ n ≤ 2
and by (3.50) for n > 2, as a function of n for H0 = 0, 1/10, 1/5, . . . , 1. The dots
denote the values tlifetime = ttouchdown = π(1 + 2H0)/16 for n = 2. The curves approach
the asymptotic values tlifetime = π[1 + 2(1 + 8α∞)H0]/16 ' 0.1963 + 0.8228H0 in the
limit n→∞.

The lifetime of the droplet, tlifetime, which corresponds to R = 0 and V = 0, is given

by

tlifetime =
π(1 + n+ 3nH0)

16(1 + n)
, (3.38)

which is linear in H0. Figure 3.4 includes a plot of tlifetime given by (3.38) as a function

of n for 0 ≤ n ≤ 2 (i.e. to the left of the dots) for a range of values of H0. For

a given value of H0, the shortest lifetime is π/16, corresponding to n = 0, and the

longest lifetime is π(1 + 2H0)/16, corresponding to n = 2; also the longest life after

touchdown (i.e. the largest value of tlifetime− ttouchdown) is (2−
√

3)πH0/8 ' 0.1052H0,

corresponding to a well with n =
√

3− 1 ' 0.7321.

3.4.2 n > 2

When n > 2 the free surface touches down at the centre of the well located at r = 0,

z = −H0 at t = ttouchdown, and after touchdown, i.e. for ttouchdown < t ≤ tlifetime,

the annular droplet has a pinned circular outer contact line r = 1 and a receding

circular inner contact line of radius R = R(t) which satisfies R(ttouchdown) = 0 and

R(tlifetime) = 1. We must again specify a condition in addition to h = H at the moving

contact line. Since the (paraboloidal) free surface (3.19) for 0 ≤ t ≤ ttouchdown touches
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down with zero contact angle at r = 0, we again make the modelling assumption that

the contact angle at the receding contact line remains at the value zero throughout the

subsequent evolution, and so the boundary conditions (3.23) again hold. The solution

(3.3) for h satisfying (3.23) and h = 0 at r = 1 takes the form

h =
H0

[(
−2R2 + nRn − (n− 2)Rn+2

)
log r − (1−Rn + nRn logR)(1− r2)

]
1−R2 + 2R2 logR

(3.39)

for R ≤ r ≤ 1, and V is given by

V = πH0f(R), (3.40)

where we have defined the function f = f(R) by

f =
n
[
4− (n+ 2)Rn−2 + (n− 2)Rn+2

]
4(n+ 2)

−
(
1−R2

)2 [
(n− 2)Rn − nRn−2 + 2

]
4 (1−R2 + 2R2 logR)

.

(3.41)

It is useful to note that f → (n−2)/[2(n+2)] in the limit R→ 0+ (in agreement with the

expression for V at touchdown given in (3.22)), and that f ∼ n2(n−2)(1−R)4/36→ 0+

in the limit R→ 1−.

The (again quasi-static) concentration c of vapour in the atmosphere still satisfies

Laplace’s equation (3.9) and the boundary condition (3.11), but in this case conditions

(3.10) and (3.12)–(3.15) must be replaced with

c = 1 on za = 0 for R ≤ r ≤ 1, (3.42)

∂c

∂za
= 0 on za = 0 for 0 ≤ r < R and r > 1, (3.43)

J = − ∂c

∂za
on za = 0 for R ≤ r ≤ 1. (3.44)

dV

dt
= −F (R), where F = 2π

∫ 1

R
J r dr, (3.45)

R = 0, V =
π(n− 2)H0

2(n+ 2)
at t = ttouchdown, (3.46)

respectively, where F = F (R) denotes the total evaporative flux from the droplet; in
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addition, we have

R = 1, V = 0 at t = tlifetime. (3.47)

Perhaps surprisingly, no simple closed-form solution of the problem for c defined by

(3.9), (3.11), (3.42) and (3.43) is available (see Section 10.1.1 of Popov et al. [219] for an

overview of previous work on this problem in the context of contact mechanics). The

problem was reformulated as equivalent integral equations by, for example, Cooke [51],

Williams [300], and Fabrikant [83], and the last of these also gave an iteration-based

infinite-series solution to their formulation. Since our primary concern is with the

total flux F , we obtained this numerically in two independent ways, namely by solving

the integral equation of Cooke [51] by means of Chebyshev–Gauss quadrature with

typically 200 nodes, and by solving Laplace’s equation for c using the finite-element

package COMSOL Multiphysics 5.3a (COMSOL Inc.), from which J and hence F were

obtained; the values of F obtained using these two different approaches were found

to be in good agreement. In particular, the values of F agreed to within 0.3% for

0 < R < 0.9 and to within 1% for 0.9 ≤ R < 0.99. For 0.99 < R < 1 the mesh

refinement in COMSOL must be altered due to the thinness of the annulus and so less

confidence is placed in the values of F obtained using this method for these extreme

values of R.

Figure 3.5 shows an example of contours of c in the r-za plane for an annular droplet

obtained using COMSOL Multiphysics, Figure 3.6 shows a plot of the local flux J from

an annular droplet as a function of r (R ≤ r ≤ 1) for a range of values of R, as well as

that from a non-annular droplet, and Figure 3.7 shows the total flux F from an annular

droplet as a function of R (0 ≤ R ≤ 1). Intriguingly, as Figure 3.6 shows, the local

flux J from a non-annular droplet is smaller than that from an annular droplet with

the same outer radius, though, of course, the former is effective over a larger area than

the latter (i.e. over 0 ≤ r ≤ 1 rather than R ≤ r ≤ 1), and so leads to a larger value

of the total flux F . Figure 3.6 also shows that J → ∞ as r → R+ and r → 1−, and

a local analysis shows that J has square-root singularities at both contact lines (i.e.

the same singularity as a non-annular droplet). This is true even in the limit R→ 0+,

showing that the local flux J due to an annular droplet with a vanishingly small hole
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Figure 3.5: Plot of contours of the concentration c in the r-za plane for an annular
droplet in the case R = 1/2. The contours are drawn at intervals of 0.04.

Figure 3.6: Plot of the local flux J from an annular droplet as a function of r (R ≤ r ≤ 1)
in the cases R = 0.2, 0.4, 0.6 and 0.8, as well as that from a non-annular droplet given
by (3.17).
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Figure 3.7: Plot of the total flux F from an annular droplet as a function of R (0 ≤
R ≤ 1).

at its centre is different from that due to a non-annular droplet (for which J given by

(3.17) is well behaved at r = 0); the difference is, however, confined to a small region

near to r = R→ 0+ whose contribution to the total flux F is small, leading to F → 4−

as R → 0+, in agreement with the value F = 4 in the case of a non-annular droplet

which appears in (3.18). Note that, as Figure 3.6 shows, J is asymmetric about the

midpoint (R+ 1) /2 between the contact lines, and, as Figure 3.7 shows, F → 0+ as

R→ 1−, i.e. as the width of the annulus approaches zero.

As Figure 3.7 shows, the total flux F is nearly independent of R until R gets close

to 1, showing that the increase of the perimeter 2πR of the receding inner contact

line (where the local flux J is singular), which tends to increase the total flux, almost

compensates for the decrease of the surface area π(1−R2) of the annular droplet, which

tends to decrease the total flux, for most of the lifetime of the droplet. It is only near

to the complete evaporation of the droplet, i.e. when R gets close to 1, that F rapidly

decreases to zero.

With the total flux F now known, equations (3.40) and (3.45) give

πH0f
′(R)

dR

dt
= −F (R), (3.48)

where again a dash denotes differentiation with respect to argument, leading to an
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(a) (b)

Figure 3.8: Evolution of the free-surface profile h given by (3.19) for 0 ≤ t ≤ ttouchdown

and by (3.39) for ttouchdown < t ≤ tlifetime for (a) a well with n = 9 and H0 = 1, and
(b) a cylindrical well (i.e. in the limit n → ∞) with H0 = 1. In (a) the curves are
drawn at intervals of ttouchdown/10 ' 0.0589, and the lifetime is tlifetime ' 0.8454, while
in (b) the curves are drawn at intervals of ttouchdown/10 ' 0.0589, and the lifetime is
tlifetime ' 1.0193.

(a) (b)

Figure 3.9: Plots of (a) the radius R of the receding inner contact line given by (3.49),
and (b) the volume V of the droplet given by (3.19) for 0 ≤ t ≤ ttouchdown and by (3.40)
for ttouchdown < t ≤ tlifetime as functions of t for n = 2, 3, 4, . . . , 10, 20, 40, 60, 80
and 100, and in the limit n → ∞, in the case H0 = 1. The vertical dashed line in (a)
corresponds to the limit n→ 2+, and the dots in (b) correspond to touchdown (at the
centre of the well) at t = ttouchdown = π(1 + 2H0)/16 ' 0.5890.
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Figure 3.10: Plot of α given by (3.51) as a function of n for n ≥ 2. The dashed line
shows the asymptotic value α = α∞ ' 0.1369 in the limit n→∞.

implicit solution for R after touchdown, namely

t = ttouchdown − πH0

∫ R

0

f ′(R̃)

F (R̃)
dR̃, (3.49)

with h given by (3.39) and V given by (3.40).

Figure 3.8(a) shows the evolution of the free-surface profile h for n = 9 with H0 = 1.

Figure 3.9 shows plots of R and V as functions of t for a range of values of n, again with

H0 = 1. The nearly linear dependence of V on t for ttouchdown < t ≤ tlifetime evident in

Figure 3.9(b) is a consequence of the fact that the total flux F is nearly independent

of R until R gets close to 1, discussed above. Note that dR/dt → ∞ and (although

impossible to see in Figure 3.9(b)) dV/dt→ 0+ in the limit t→ t−lifetime (i.e. the same

behaviour as when 0 < n < 2).

The lifetime of the droplet, which corresponds to R = 1 and V = 0, is given by

tlifetime = ttouchdown + παH0 =
π

16
[1 + 2 (1 + 8α)H0] , (3.50)

where the function α = α(n) (≥ 0) is given by

α = −
∫ 1

0

f ′(R)

F (R)
dR, (3.51)

which varies monotonically from α = 0 when n = 2 to α = α∞ ' 0.1369 in the limit
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n → ∞. Note that, like the corresponding expression for 0 < n < 2 given by (3.38),

tlifetime given by (3.50) is linear in H0. Figure 3.10 shows a plot of α as a function of n

for n ≥ 2, and Figure 3.4 includes a plot of tlifetime given by (3.50) as a function of n

for n > 2 (i.e. to the right of the dots) for a range of values of H0.

3.4.3 The limit n→∞

In the limit n → ∞, corresponding to a cylindrical well with vertical side r = 1 and

flat bottom z = −H0, after touchdown the annular droplet again has a pinned circular

outer contact line r = 1 and a receding circular inner contact line r = R. The solution

for h given by (3.39) reduces to

h = −H0

(
1− r2 + 2R2 log r

)
1−R2 + 2R2 logR

(3.52)

for R ≤ r ≤ 1, and V is again given by (3.40), where the function f reduces to

f =
1−R4 + 4R2 logR

2 (1−R2 + 2R2 logR)
. (3.53)

The evolution of the droplet in this limit is as described in Section 3.4.2, with, in

particular, the lifetime of the droplet given by (3.50) with α = α∞, namely tlifetime =

π[1 + 2(1 + 8α∞)H0]/16 ' 0.1963 + 0.8228H0. Figure 3.8(b) shows the evolution of the

free-surface profile h in the limit n→∞ with H0 = 1.

3.4.4 The critical times tflat, ttouchdown and tlifetime

Figure 3.11 shows a plot of the critical times tflat, given by (3.20), ttouchdown, given

by (3.21) and (3.22), and tlifetime, given by (3.38) and (3.50), as functions of n in

the case H0 = 1. In particular, Figure 3.11 illustrates that tflat is independent of n,

ttouchdown increases linearly with n for 0 ≤ n ≤ 2 but is independent of n for n > 2,

tlifetime increases non-linearly with n, tlifetime = ttouchdown = tflat = π/16 when n = 0,

tlifetime = ttouchdown = π(1+2H0)/16 when n = 2, and tlifetime → π[1+2(1+8α∞)H0]/16

in the limit n→∞.
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Figure 3.11: Plot of the critical times tflat, given by (3.20) (dotted line), ttouchdown, given
by (3.21) for 0 ≤ n ≤ 2 and by (3.22) for n > 2 (dash-dotted line), and tlifetime, given
by (3.38) for 0 ≤ n ≤ 2 and by (3.50) for n > 2 (solid line), as functions of n in the case
H0 = 1. The dashed line shows the asymptotic value tlifetime = π[1+2(1+8α∞)H0]/16 '
1.0191 in the limit n→∞.

3.5 Physical experiments

In this Section we give a brief summary of the physical experiments carried out by

T. Colosimo, L. Yang, and C. D. Bain at Durham University for the special case of

cylindrical wells. A complete account of the experimental procedure, including the well

fabrication process and the image analysis, can be found in D’Ambrosio et al. [55].

3.5.1 Experimental procedure

The experimental procedure employed involved depositing single droplets of the volatile

solvent methyl benzoate into shallow axisymmetric cylindrical wells and observing their

behaviour as they evaporated. Methyl benzoate is sufficiently volatile that the experi-

ments could be conducted within a reasonable time frame, and its physical properties

are consistent with the assumptions of the mathematical model. A schematic diagram

of the experimental set-up used is shown in Figure 3.12.

The experiments were carried out under ambient conditions with a relative humidity

of methyl benzoate vapour of R̂H = 0 (and a relative humidity of water vapour of R̂H =

0.34± 0.10). The atmospheric pressure was uncontrolled and the ambient temperature

was controlled only to within 1◦C of 22◦C. The temperature of the substrate was
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Figure 3.12: Schematic diagram of the experimental set-up used.
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accurately maintained at 22◦C by means of a Proportional-Integral-Derivative (PID)

Peltier controller.

The experiments were performed using three shallow wells with radii 29 µm, 50 µm

and 75 µm and depths 2.38 µm, 1.87 µm and 2.39 µm, respectively. The wells were

fabricated in spin-cast films of photo-resist deposited onto glass substrates coated with

indium tin oxide (ITO). Because of the nature of the manufacturing process, the sides of

the wells are not perfectly vertical, but, given their small aspect ratios, it is reasonable to

regard the wells as being cylindrical for the purpose of comparison with the theoretical

predictions of the mathematical model described in Sections 3.2–3.4.

Picolitre droplets of methyl benzoate were ejected into the wells from a MicroFab

print head (MJABP-01, Microfab Technologies Inc.) with a circular orifice of diameter

50 µm under a bipolar waveform generated by a MicroFab controller (JetDrive III CT-

M3-02, Microfab Technologies Inc.). The droplet was illuminated from underneath by

a cold LED at a wavelength of 470 nm (M470L3, Thorlabs Inc.). The reflected light

from the sample was collected by a 50× objective lens (TU Plan ELWD, Nikon) with an

image resolution of 0.4 µm/pixel, and captured through a bandpass filter (bandwidth

10± 2 nm, Thorlabs Inc.) with a high-speed camera (FASTCAM SA4, Photron). The

experiments were performed six times for each well to verify the reproducibility of the

results.

3.5.2 Experimental results

Thin-film interferometry was used to measure the evolution of the free surface of the

droplet during its evaporation. Figure 3.13 shows a typical interferometric pattern

observed during the present experiments. In particular, the high degree of axisymmetry

shown in Figure 3.13 was found in all of the experiments. The initial time, t̂ = 0, was

arbitrarily chosen to be a time at which well-resolved interference fringes were observed

and the contact line of the droplet coincided with the lip of the well (taken to be at

the boundary of the outermost bright fringe, as indicated by the circle in Figure 3.13),

i.e. no fluid overflow.

Table 3.1 shows experimental values of the radius R̂0, the depth Ĥ0, and the aspect
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10 µm

Figure 3.13: A typical interferometric pattern observed during the present experiments.
The circle indicates the lip of the well, the cross the centre of the well, and the line the
cross-section along which the fringes are analysed.

R̂0 Ĥ0 ε =
Ĥ0

R̂0

θ̂0
dV̂

dt̂

∣∣∣∣∣
t̂=0

t̂flat t̂touchdown t̂lifetime

(µm) (µm) (rad) (pL s−1) (s) (s) (s)

29 2.38 0.083 5.59× 10−3 −1.58 0.060 1.888 3.976

50 1.87 0.037 6.73× 10−3 −2.86 0.210 2.838 5.438

75 2.39 0.032 5.78× 10−3 −4.38 0.408 5.056 10.392

Table 3.1: Experimental values of the radius R̂0, the depth Ĥ0, and the aspect ratio
ε = Ĥ0/R̂0 of the three wells investigated, together with values of the initial angle θ̂0

and the initial evaporation rate dV̂/dt̂
∣∣∣
t̂=0

, and the critical times t̂flat, t̂touchdown and

t̂lifetime, for a representative droplet in each well.
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ratio ε = Ĥ0/R̂0 of the three wells investigated, together with values of the initial angle

θ̂0 and the initial evaporation rate dV̂/dt̂
∣∣∣
t̂=0

, and the critical times t̂flat, t̂touchdown and

t̂lifetime, for a representative droplet in each well. Note that since the experimental values

of the critical times depend on the arbitrarily chosen initial time, t̂ = 0, as well as on the

values of the ambient temperature and the atmospheric pressure, representative (rather

than average) results are given for each well. A parameter-free quantity involving the

relative values of the critical times will be discussed in Section 3.6.

Figure 3.14 shows experimental results for the free-surface profile ĥ of a droplet

before touchdown and paraboloidal fits to these values as functions of r̂ for all three wells

at equally spaced times. All of the paraboloidal fits intersect to within ∆r̂ = ±1 µm of

the value of R̂0 and to within ∆ĥ = ±0.05 µm of each other, indicating that the contact

line of the droplet remains pinned at the lip of the well before touchdown. The depth

Ĥ0 of each well was determined by the position of the average intersection point of the

paraboloidal fits. The initial angle θ̂0 of the droplet was calculated from the average

of the derivatives of the paraboloidal fit to the initial free-surface profile at the lip of

the well. The time at which the free surface is instantaneously flat, t̂flat, was calculated

from the average intersection point of the free-surface profile ĥ for a range of values of

r̂. The uncertainty in the measurement of tflat is ±0.006 s†.

Figure 3.15 shows experimental results for the normalised height of the free surface

at the centre of the well, ĥm/Ĥ0, and linear fits to these values as functions of t̂ for

all three wells. For each well, the time at which the free surface touches down at the

centre of the well, t̂touchdown, was calculated from the intersection point of the linear

fit shown in Figure 3.15 with the bottom of the well. However, note that whereas for

the 29 µm well the behaviour of ĥm is nearly linear until very close to touchdown, and

hence the value of t̂touchdown calculated from the linear fit will be very close to the true

value, for the 50 µm and 75 µm wells the behaviour of ĥm shows a pronounced slowing

down as touchdown is approached, and so the values of t̂touchdown calculated from the

linear fits will be underestimates of the true values.

After touchdown, the interference fringes become increasingly closely spaced, mak-

†C. D. Bain, personal communication
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(a)

(b)

(c)

Figure 3.14: Experimental results for the free-surface profile ĥ of a droplet before
touchdown (symbols) and paraboloidal fits to these values (solid black lines) as functions
of r̂ for wells of radius (a) 29 µm at times t̂ = 0, 0.18, . . . , 1.62 s, (b) 50 µm at times
t̂ = 0, 0.26, . . . , 2.34 s, and (c) 75 µm at times t̂ = 0, 0.56, . . . , 4.48 s. The experimental
values are denoted by circles, diamonds and squares for the 29 µm, 50 µm and 75 µm
wells, respectively. The dashed lines correspond to the radius R̂0, the depth Ĥ0, and
the position of the dry substrate for each well.
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Figure 3.15: Experimental results for the normalised height of the free surface at the
centre of the well, ĥm/Ĥ0, (symbols) and linear fits to these values (solid black lines)
as functions of t̂ for wells of radius (a) 29 µm at times t̂ = 0, 0.12, . . . , 3.96 s, (b) 50 µm
at times t̂ = 0, 0.12, . . . , 5.40 s, and (c) 75 µm at times t̂ = 0, 0.16, . . . , 10.24 s. The
experimental values are denoted by circles, diamonds and squares for the 29 µm, 50 µm
and 75 µm wells, respectively. The dashed line corresponds to the normalised depth of
the wells.

Figure 3.16: Experimental results for the normalised volume of a droplet, V̂/V̂0, (sym-
bols) and linear fits to these values (solid black lines) as functions of t̂ for wells of
radius 29 µm at times t̂ = 0, 0.20, . . . , 2.00 s, 50 µm at times t̂ = 0, 0.16, . . . , 3.84 s,
and 75 µm at times t̂ = 0, 0.32, . . . , 6.40 s. The experimental values are denoted by
circles, diamonds and squares for the 29 µm, 50 µm and 75 µm wells, respectively. The
symbols on the t̂-axis correspond to t̂ = t̂lifetime.
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Figure 3.17: Experimental results for the normalised radius of the inner contact line,
R̂/R̂0, as functions of t̂ for wells of radius 29 µm at times t̂ = 2.32, 2.38, . . . , 3.76 s, 50 µm
at times t̂ = 3.38, 3.46, . . . , 5.30 s, and 75 µm at times t̂ = 6.24, 6.40, . . . , 10.24 s. The
experimental values are denoted by circles, diamonds and squares for the 29 µm, 50 µm
and 75 µm wells, respectively. The symbols on the t̂-axis correspond to t̂ = t̂touchdown,
and those at R̂/R̂0 = 1 to t̂ = t̂lifetime.

ing it increasingly difficult to resolve the free-surface profile near to the lip of the well.

The resulting lack of experimental results means that the free surface cannot be accu-

rately determined for very long after touchdown, and, in particular, that there is no

certainty that the contact line remains pinned at the lip of the well after touchdown (as

assumed in the mathematical model). However, given the good agreement between the

experimental results and the theoretical predictions of the mathematical model which

will be described in Section 3.6, we hypothesize that the effect of any de-pinning that

does occur is minimal.

Figure 3.16 shows experimental results for the normalised volume of a droplet, V̂/V̂0,

obtained by calculating the volumes of the paraboloidal fits to the free-surface profiles,

and linear fits to these values as functions of t̂ for all three wells. Note that the difficulty

of resolving the free-surface profile near to the lip of the well after touchdown means

that the experimental values shown in Figure 3.16 stop shortly after t̂ = t̂touchdown for

each well. However, Figure 3.16 does show that the behaviour of V̂ is nearly linear

until shortly after touchdown.

Despite the interference fringes becoming increasingly closely spaced after touch-
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down, the radius of the inner contact line can still be measured accurately by applying

an appropriate threshold value to the intensity of the images of the droplets captured

during the experiments. However, it should be noted that when the slope of the free

surface is very small, this method is sensitive to the value of the threshold used and

tends to overestimate the true value of R̂. Figure 3.17 shows experimental values for

the normalised radius of the inner contact line of a droplet, R̂/R̂0, as functions of t̂ for

all three wells.

The lifetime of the droplet, t̂lifetime, was determined visually from the images of

the droplet captured during the experiments as the time at which no further change is

observed in the contrast at the contact line. The uncertainty in the measurement of

tlifetime is ±0.02 s††.

3.6 Comparison between theory and experiment

We now present comparisons between the theoretical predictions of the mathematical

model described in Sections 3.2–3.4 in the case of a cylindrical well (i.e. in the limit

n→∞) and the experimental results presented in Section 3.5. Specifically, we compare

the evolution of the free-surface profile ĥ, the volume of the droplet V̂ , and the radius

of the inner contact line R̂, as well as the critical times t̂flat, t̂touchdown and t̂lifetime. The

theoretical predictions were calculated using the parameter values ρ̂ = 1.087 × 103 kg

m−3, ĉsat = 2.251 × 10−3 kg m−3, and D̂ = 6.899 × 10−6 m2 s−1 for methyl benzoate

at the temperature 22◦C. The values of ρ̂ and vapour pressure p̂v, the latter of which

was used to obtain ĉsat, were calculated from Perry et al. [215] (Tables 2-30 and 2-6,

respectively), and the value of the diffusion coefficient D̂ was calculated from Fuller

et al. [91] (Table 1). We note that there are no free parameters in the mathematical

model, and no “tuning” of the parameter values has been performed in order to improve

the agreement between the experimental results and the theoretical predictions.

As described in Section 3.2, the mathematical model is based on the assumptions

that both the Bond number Bo and the scaled capillary number Ca∗ are small (so

that the effect of gravity is negligible and the free surface of the droplet evolves

††C. D. Bain, personal communication
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quasi-statically, respectively). Taking the radial velocity scale to be Û = D̂(ĉsat −
ĉ∞)/(ρ̂θ̂0R̂0), and using the values µ̂ = 1.851× 10−3 Pa s and σ̂ = 3.720× 10−2 N m−1

for methyl benzoate at 25◦C given by Sheu and Tu [252], confirms that the values of Bo

and Ca∗ are indeed small for all of the experimental results presented in Section 3.5.

Specifically, the values of Bo are approximately 10−4, 10−3 and 10−3 for the 29 µm,

50 µm and 75 µm wells, respectively, and the values of Ca∗ are approximately 10−2 for

all three wells.

Figure 3.18 shows a comparison between the experimental results and the theoretical

predictions for the free-surface profile ĥ of a droplet as functions of r̂ for all three

wells, while Figures 3.19 and 3.20 show comparisons between the experimental results

and the theoretical predictions for the normalised volume of a droplet, V̂/V̂0, and

the normalised radius of the inner contact line, R̂/R̂0, respectively, as functions of t̂

for all three wells. In particular, Figures 3.18–3.20 show that, while the theoretical

predictions are generally in good agreement with the experimental results (especially

for the 50 µm well), the theoretical predictions lag slightly behind the experimental

results for the 29 µm and 75 µm wells. We believe that this slight lag is due to the

sensitivity of the theoretical predictions to the precise values of ĉsat and D̂ used, as

well as to the calculated values of θ̂0. In particular, as already mentioned, the ambient

temperature was controlled only to within 1◦C and the value of ĉsat is rather sensitive to

the precise value of the temperature at which it is evaluated; specifically, ĉsat changes

by 6–8% for a 1◦C change in temperature. Fitting the value(s) of ĉsat, D̂ and/or

θ̂0 would eliminate the lag between the theoretical predictions and the experimental

results, especially given that the same values of ĉsat and D̂ are currently used across

all of the experiments, but we deliberately chose not to do this in order to provide a

sterner test for the mathematical model.

In addition, we note that the mathematical model assumes that a new inner contact

line appears at the centre of the well at touchdown, and so does not capture the very

thin film left briefly on the bottom of the well in the experiments, which is most visible

in the experimental results for the 75 µm well shown in Figure 3.18(c). However,

the good agreement between the theoretical predictions and the experimental results
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(a)

(b)

(c)

Figure 3.18: Comparison between the experimental results (symbols) and the theoreti-
cal predictions (solid black lines) for the free-surface profile ĥ of a droplet as functions
of r̂ for wells of radius (a) 29 µm at times t̂ = 0, 0.18, . . . , 2.70 s, (b) 50 µm at times
t̂ = 0, 0.26, . . . , 4.16 s, and (c) 75 µm at times t̂ = 0, 0.56, . . . , 7.84 s. The experimental
values are denoted by circles, diamonds and squares for the 29 µm, 50 µm and 75 µm
wells, respectively. The dashed lines correspond to the radius R̂0, the depth Ĥ0, and
the position of the dry substrate for each well.
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Figure 3.19: Comparison between the experimental results (symbols) shown in Figure
3.16 and the theoretical predictions (solid black lines) for the normalised volume of a
droplet, V̂/V̂0, as functions of t̂ for all three wells. The experimental values are denoted
by circles, diamonds and squares for the 29 µm, 50 µm and 75 µm wells, respectively.

Figure 3.20: Comparison between the experimental results (symbols) shown in Figure
3.17 and the theoretical predictions (solid black lines) for the normalised radius of the
inner contact line, R̂/R̂0, as functions of t̂ for all three wells. The experimental values
are denoted by circles, diamonds and squares for the 29 µm, 50 µm and 75 µm wells,
respectively.
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R̂0 t̂flat t̂touchdown t̂lifetime T
(µm) (s) (s) (s)

29
Experimental Values 0.060 1.888 3.976 2.142

Theoretical Prediction 0.065 1.962 4.039 2.095
Percentage Error 8% 3.9% 1.6% −2.2%

50
Experimental Values 0.210 2.838 5.438 1.989

Theoretical Prediction 0.231 2.801 5.615 2.095
Percentage Error 10% −1.3% 3.3% 5.3%

75
Experimental Values 0.408 5.056 10.392 2.148

Theoretical Prediction 0.447 5.373 10.769 2.095
Percentage Error 10% 6.3% 3.6% −2.5%

Table 3.2: Comparison between the experimental values and the theoretical predictions
for the critical times t̂flat, t̂touchdown and t̂lifetime, and the parameter-free quantity T
given by (3.54) for all three wells.

shown in Figures 3.18–3.20 indicates that the presence of this film has very little effect

on the overall evolution of the droplet. At first sight, it might seem surprising that the

most noticeable deviations from the quasi-static free-surface profiles predicted by the

mathematical model occur for the shallowest well (i.e. for the well with the smallest

value of ε). However, while, as already mentioned, the values of Ca∗ are small for all

three wells, the capillary number is inversely proportional to ε3, and so larger values of

Ca∗, and hence more significant deviations from quasi-static free-surface profiles, are

to be expected for wells with smaller values of ε.

As previously noted in Section 3.5, the experimental values of the critical times

depend on the arbitrarily chosen initial time, t̂ = 0, as well as on the values of the

ambient temperature and the atmospheric pressure. Moreover, as also previously noted,

the theoretical predictions for the critical times are sensitive to the precise values of ĉsat,

D̂ and θ̂0. In order to remove all of these dependencies, we consider a parameter-free

quantity involving the relative values of the critical times, namely

T =
t̂lifetime − t̂flat

t̂touchdown − t̂flat

, (3.54)

which, using the theoretical values of the critical times given by (3.20), (3.22) and (3.50)

in the limit n → ∞ takes the same (purely numerical) value, namely T = 1 + 8α∞ '
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2.095, regardless of the values of the parameters. Table 3.2 shows a comparison between

the experimental values and the theoretical predictions for t̂flat, t̂touchdown, t̂lifetime and

T for all three wells. Table 3.2 shows that the theoretical predictions are in good

agreement with the experimental values, with average absolute errors of approximately

9%, 3.8%, 2.8% and 3.3% in t̂flat, t̂touchdown, t̂lifetime and T , respectively.

The comparisons presented in this Section show that, despite the inevitable ex-

perimental errors and uncertainties about the precise values of the parameters, the

mathematical model captures the evolution of a thin droplet in a shallow cylindrical

well rather well. The agreement is especially good given that, as already mentioned,

there are no free parameters in the mathematical model, and no tuning of the parameter

values has been performed in order to improve the agreement.

3.7 Comparison with previous experimental results

While the experimental results presented in Section 3.5 provide the most comprehensive

test for the theoretical predictions of the mathematical model, it is also of interest to

consider how well the present model is able to capture experimental results reported

by previous authors. Making these comparisons is, unfortunately, hampered by a lack

of complete information about the experiments.

Rieger et al. [226] studied the evaporation of ethylene glycol droplets in cylindrical

nanoliter wells of various radii. In particular, they reported the evolution of the free-

surface profile of a droplet before touchdown in a well with radius 100 µm and depth

6.13 µm, and concluded that it was a quasi-static spherical cap that was pinned at

the lip of the well. Rieger et al. [226] gave the experimental values t̂flat = 20 s and

t̂touchdown = 160 s, but not the experimental value of t̂lifetime, for this droplet, and

so, unfortunately, we cannot calculate the experimental value of the parameter-free

quantity T given by (3.54). The authors also did not give the value of the initial angle

θ̂0, but if we calculate it in exactly the same way as we did in Section 3.6, we obtain

θ̂0 = 0.0144. The value of the ambient temperature was also not reported, but if we

assume that it was 20◦C, then using the parameter values ρ̂ = 1.114 × 103 kg m−3,

ĉsat = 2.042 × 10−4 kg m−3, and D̂ = 1.098 × 10−5 m2 s−1 calculated from Perry
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et al. [215] (Tables 2-30 and 2-6, respectively) and Fuller et al. [91] (Table 1) in exactly

the same way as we did in Section 3.6, the theoretical predictions are t̂flat = 14.05 s and

t̂touchdown = 133.7 s, which are in error by 30% and 16%, respectively, compared to the

experimental values. It should, however, be noted that, in addition to the uncertainties

about the precise values of ĉsat, D̂ and θ̂0 already mentioned, some of this discrepancy

may be due to the fact that ethylene glycol is hygroscopic, and so the droplet will absorb

water vapour from the atmosphere, which will presumably lead to longer critical times

than those predicted by the present mathematical model. Rieger et al. [226] did not

investigate the evolution of the droplet after touchdown.

Subsequently, Chen et al. [45] studied the evaporation of water droplets in cylindri-

cal nanoliter wells of various radii. The experiments were carried out in an atmosphere

of air with relative humidity of water vapour of R̂H = 0.60 and an ambient temperature

of 25◦C. Chen et al. [45] reported quantitative data for the evolution of the radius of the

inner contact line R̂, but not for the evolution of the free-surface profile h or the volume

of the droplet V̂ . Furthermore, they did not report the values of the initial angle θ̂0.

They did, however, give the critical times for a droplet in a well with radius 250 µm

and depth 65 µm to be t̂flat = 9±1 s (estimated from their Figure 9), t̂touchdown = 31 s,

and t̂lifetime = 55 s. In the absence of the value of θ̂0, the only theoretical prediction

that can be compared with these experimental results is that for T for the well with

radius 250 µm, for which we find that the experimental value T = 2.09±0.05 is in very

good agreement with the theoretical value T = 2.095.

3.8 Conclusions

Motivated by the industrial manufacture of OLED displays, in this Chapter we for-

mulated and analysed a mathematical model for the evolution of a thin droplet in a

shallow axisymmetric well with profile ẑ = Ĥ(r̂) = −Ĥ0(1− (r̂/R̂0)n) both before and

after touchdown that accounts for the spatially non-uniform evaporation of the fluid,

described physical experiments performed at Durham University using three cylindri-

cal wells with different small aspect ratios, and validated the mathematical model by
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comparing these experimental results with the corresponding theoretical predictions for

a cylindrical well (i.e. in the limit n→∞).

The mathematical model describes how as the droplet evaporates its free surface

becomes instantaneously flat at t = tflat and then touches down at t = ttouchdown

before the droplet completely evaporates at t = tlifetime. In the special case n = 2

(i.e. a paraboloidal well) touchdown occurs everywhere simultaneously within the well,

and so tlifetime = ttouchdown = π(1 + 2H0)/16. However, in the general case n 6= 2

the droplet has not completely evaporated at t = ttouchdown, and the nature of its

subsequent evolution depends on the shape of the well. If the slope of the well at its lip

is sufficiently small, specifically when 0 < n < 2, then touchdown occurs at the lip of

the well at t = ttouchdown given by (3.21), at which instant the contact line de-pins from

the lip of the well, and thereafter recedes towards the centre of the well, finally reaching

it at t = tlifetime given by (3.38). On the other hand, if the slope of the well at its lip is

sufficiently large, specifically when n > 2, then touchdown occurs at the centre of the

well at t = ttouchdown given by (3.22), at which instant a new inner contact line appears

at the centre of the well, and thereafter recedes towards the lip of the well (where the

outer contact line remains pinned), finally reaching it at t = tlifetime given by (3.50). In

particular, we found that tflat is independent of H0 and n, ttouchdown increases linearly

with H0 and with n for 0 ≤ n ≤ 2 but is independent of n for n > 2, and tlifetime also

increases linearly with H0 but non-linearly with n.

The physical experiments involved depositing single droplets of methyl benzoate in

three cylindrical wells with different small aspect ratios and observing the evolution of

the droplets as they evaporated. We found good agreement between the experimental

results and the corresponding theoretical predictions for a cylindrical well. While the

present mathematical model does not capture the very thin film left briefly on the

bottom of the well in the experiments, the good agreement between the theoretical

predictions and the experimental results indicates that the presence of this film has

very little effect on the overall evolution of the droplet.
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Chapter 4

The Effect of Gravity on the

Shape, Evolution, and Lifetime of

an Evaporating Droplet

4.1 Introduction

In this Chapter we study the effect of gravity on the shape, evolution, and lifetime

of evaporating sessile and pendant droplets. Specifically, in Section 4.2 we formulate

a mathematical model describing the evaporation of thin sessile and pendant droplets

under the effect of gravity. In Section 4.3 we analyse the shape of sessile and pendant

droplets of arbitrary volume and determine the limiting behaviours for small and large

droplet volumes. In Section 4.4 we give theoretical predictions for the evolution, and

hence the lifetime, of sessile and pendant droplets evaporating in the extreme modes

of evaporation, namely in the CR and CA modes. In Sections 4.5 and 4.6 we ex-

tend the investigation of droplet evolution, and hence lifetime, to two mixed modes of

evaporation, specifically to the SS and SJ modes, respectively.
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r̂

ẑ

R̂−R̂

θ̂(t̂)

ẑ = ĥ(r̂, t̂)

O

Ĵ(r̂, t̂)

ĝ

(a)

r̂

ẑ

R̂−R̂
θ̂(t̂)

ẑ = ĥ(r̂, t̂)

O

Ĵ(r̂, t̂)

(b)

Figure 4.1: Sketch of a thin (a) sessile and (b) pendant droplet with contact radius R̂(t̂),
contact angle θ̂(t̂), and free surface ẑ = ĥ(r̂, t̂) evaporating on a horizontal substrate
under the effect of gravity ĝ. The arrows indicate the local evaporative flux Ĵ(r̂, t̂).

4.2 Problem formulation

We consider an axisymmetric sessile or pendant droplet on a horizontal substrate un-

dergoing quasi-static diffusion-limited evaporation in a quiescent atmosphere. As in

Chapter 2, we refer the description to cylindrical polar coordinates (r̂, ϕ̂, ẑ), with Oẑ

along the axis of the droplet, perpendicular to the substrate at ẑ = 0, pointing upwards

or downwards for a sessile or a pendant droplet, respectively, as sketched in Figure 4.1.

After the droplet is deposited at t̂ = 0, its volume will decrease due to evaporation into

the atmosphere. We denote the time at which the droplet has completely evaporated,

i.e. the lifetimes of the droplet, by t̂CR, t̂CA, t̂SS, and t̂SJ for a droplet evaporating in

the CR, CA, SS, and SJ modes, respectively.

4.2.1 The droplet geometry

As in Chapter 2, we consider situations in which the droplet is thin and, in particular,

in which the initial contact angle of the droplet, θ̂0 � 1, is small. In the present

Chapter, however, we consider situations in which the droplet is sufficiently large that

the effect of gravity is not necessarily negligible, but in which surface tension is again

sufficiently strong that the free surface of the droplet evolves quasi-statically. More

specifically, we consider situations in which the the appropriately defined characteristic

length scale of the droplet is L̂ = ˆ̀, and the appropriately defined Bond number Bo
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and scaled capillary number Ca∗ from (2.2), namely

Bo =

(
L̂

ˆ̀

)2

= 1 and Ca∗ =
Ca

θ̂3
0

=
µ̂Û

θ̂3
0σ̂
� 1, (4.1)

are unity and small, respectively, where again ˆ̀=
√
σ̂/ρ̂ĝ denotes the capillary length.

The pressure p̂ = p̂(r̂, ẑ, t̂) within the droplet therefore satisfies

∇̂p̂ = ∓ρ̂ĝ ez, (4.2)

where, here and throughout this Chapter, the upper and lower signs correspond to a

sessile and a pendant droplet, respectively, and ez denotes the unit vector in the z-

direction. As in Chapter 2, the pressure p̂ is subject to the Young–Laplace equation at

the free surface, namely

p̂− p̂a = σ̂κ̂ at ẑ = ĥ, (4.3)

where, at leading order in the limit θ̂0 → 0, the mean curvature of the free surface of

the droplet κ̂ is given by

κ̂ = −1

r̂

∂

∂r̂

(
r̂
∂ĥ

∂r̂

)
. (4.4)

Solving (4.2) subject to (4.3) yields the governing equation for the free-surface profile

ĥ:

σ̂
∂

∂r̂

(
1

r̂

∂

∂r̂

(
r̂
∂ĥ

∂r̂

))
∓ ρ̂ĝ ∂ĥ

∂r̂
= 0. (4.5)

We note that in the absence of (or neglect of) gravitational effects, i.e. for ĝ = 0, (4.5)

recovers the familiar governing equation for ĥ for a small thin droplet given by (2.16)

in Chapter 2 which, throughout this Chapter, will be referred to as the zero-gravity

droplet.

4.2.2 The evaporative problem

We nondimensionalise and scale the variables according to (2.13) with L̂ = ˆ̀ for the

droplet, and similarly for the atmosphere except that ẑ = ˆ̀za. We note that, by using

the capillary length ˆ̀ as the appropriate radial length scale for the droplet, the initial
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value of the contact radius R0 is not scaled to 1 as it was for the zero-gravity droplet,

as presented in Chapters 2 and 3, but the initial value of the contact angle is still unity.

At leading order in the limit θ̂0 → 0 the problem for the concentration c = c(r, za, t)

of vapour in the atmosphere is therefore given by (2.20)–(2.25), namely

∇2c = 0 for za > 0, (4.6)

with

c = 1 on za = 0 for 0 ≤ r ≤ R, (4.7)

c→ 0 as r2 + za2 →∞, (4.8)

∂c

∂za
= 0 on za = 0 for r > R, (4.9)

J = − ∂c

∂za
on za = 0 for 0 ≤ r ≤ R, (4.10)

dV

dt
= −F where F = 2π

∫ R

0
J r dr. (4.11)

The solution for the concentration c from (4.6)–(4.9) is given by

c =
2

π
sin−1 2R[

(R+ r)2 + za2
]1/2

+
[
(R− r)2 + za2

]1/2
, (4.12)

which, using (4.10), leads to the solution for the local evaporative flux J = J(r, t),

namely

J =
2

π(R2 − r2)1/2
. (4.13)

Equations (4.12) and (4.13) correspond to the solution for the zero-gravity droplet

given by (2.26) and (2.27) in Chapter 2. We note that, as in Chapters 2 and 3,

the concentration c and hence the local flux J depend on t via their dependence on

R = R(t).

Substituting (4.13) into (4.11) and evaluating the integral yields the following equa-

tion describing the evolution of the droplet:

dV

dt
= −4R. (4.14)
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4.3 The shape of the droplet

For both sessile and pendant droplets the free-surface profile obtained by solving (4.5)

must satisfy the contact-line conditions

h = 0,
∂h

∂r
= −θ at r = R, (4.15)

and the volume V = V (t) of the droplet is given by

V = 2π

∫ R

0
h r dr. (4.16)

We will now derive the solutions for the shape of a sessile and a pendant droplet in

turn.

4.3.1 A sessile droplet

For a sessile droplet, the solution for the free-surface profile h = h(r, t) satisfying (4.5)

subject to (4.15) and the condition that h is finite at r = 0 takes the form

h =
θ [I0 (R)− I0 (r)]

I1 (R)
, (4.17)

where In denotes the modified Bessel function of the first kind of order n. In particular,

the height at the middle of the droplet hm = hm(t) = h(0, t) is given by

hm =
θ [I0 (R)− 1]

I1 (R)
. (4.18)

From (4.16) the volume V of the droplet is

V =
πθR2I2 (R)

I1 (R)
. (4.19)
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(a) (b)

Figure 4.2: Plot of h/θ as a function of r for a sessile droplet when (a) V/θ = 10,
20, . . . , 100 and (b) V/θ = 100, 200, . . . , 1000. The arrows indicate the direction of
increasing V/θ.

The initial values of θ, R, hm, and V are given by

θ = 1, R = R0, hm = hm0 =
I0 (R0)− 1

I1 (R0)
, V = V0 =

πR2
0I2 (R0)

I1 (R0)
at t = 0.

(4.20)

Any one of the three initial values R0, hm0 , or V0 may be prescribed, with the other two

determined from (4.20). We note that, although we could compare sessile and pendant

droplets of the same initial contact radius R0 or initial height at the middle of the

droplet hm0 , we will compare sessile and pendant droplets of the same scaled volume

V/θ or initial volume V0 throughout this Chapter.

Figure 4.2 shows scaled droplet profiles h/θ for a range of values of the scaled

volume V/θ. As the scaled volume of the droplet increases, the contact radius increases

and the scaled free surface flattens. Figure 4.3 shows plots of the scaled height at the

middle of the droplet hm/θ and the contact radius R as functions of the scaled volume

V/θ according to (4.18) and (4.19). In particular, as Figure 4.3(a) shows, hm/θ is

non-monotonic in V/θ, increasing from zero at V/θ = 0 to a maximum value hm/θ =

hm,max/θ ' 1.081 at V/θ ' 73.175, corresponding to R ' 5.586, and subsequently

decreasing to 1 as V/θ → ∞. This non-monotonic behaviour in hm is in agreement

with the numerical results of Padday [203] for the case of a non-thin sessile droplet, as
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(a) (b)

Figure 4.3: Plots of (a) hm/θ and (b) R as functions of V/θ for a sessile droplet. The dot
and the dashed line in (a) correspond to the maximum value hm/θ = hm,max/θ ' 1.081
at V/θ ' 73.175 and the limiting value hm/θ → 1 as V/θ →∞, respectively.

discussed in Chapter 1; in addition, this behaviour has been observed for the similar

problem of liquid marbles (i.e. non-wetting droplets) by Aussillous and Quéré [17]. The

contact radius R increases monotonically from zero at V/θ = 0 to infinity as V/θ →∞,

as indicated in Figure 4.3(b).

In the limit of small contact radius (R → 0+), corresponding to the limit of small

volume (V → 0+), surface-tension effects dominate over gravity and the sessile droplet

becomes narrow and thin according to

h

θ
=

1

2R

(
R2 − r2

) [
1−

(
R2 − r2

)
16

]
+O

(
R2 − r2

)3 → 0+, (4.21)

hm

θ
=
R

2

(
1− R2

16

)
+O

(
R5
)
→ 0+, (4.22)

V

θ
=
πR3

4

(
1− R2

24

)
+O

(
R7
)
→ 0+. (4.23)

In particular, at leading order in the limit R → 0+, (4.21)–(4.23) recover the familiar

solutions for the zero-gravity droplet, given by (2.17)–(2.19) in Chapter 2, i.e. h is

parabolic, hm is linear in R, and V is proportional to the cube of the contact radius

(i.e. to R3).

In the limit of large contact radius (R → ∞), corresponding to the limit of large
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volume (V →∞), surface-tension effects are negligible away from the contact line, and

the sessile droplet becomes wide and flat according to

h

θ
∼ hm

θ
, (4.24)

hm

θ
= 1 +

1

2R
+

3

16R2
+O

(
1

R3

)
→ 1+, (4.25)

V

θ
= πR2

(
1− 3

2R
+

3

8R2

)
+O

(
1

R

)
→∞. (4.26)

In particular, at leading order in the limit R→∞, h has uniform thickness away from

the contact line, hm is finite, as indicated by the dashed line in Figure 4.3(a), and

corresponds to the familiar solution for non-thin droplets in the small-angle limit (see,

for example, Padday [203]), and V is proportional to the square of the contact radius

(i.e. to R2).

4.3.2 A pendant droplet

For a pendant droplet, the solution for the free-surface profile h = h(r, t) satisfying

(4.5) subject to (4.15) and the condition that h is finite at r = 0 takes the form

h =
θ [J0 (r)− J0 (R)]

J1 (R)
, (4.27)

where Jn denotes the Bessel function of the first kind of order n. There are infinitely

many branches of solutions for h for a pendant droplet; however, only the lowest/first

branch provides physically relevant solutions with h ≥ 0 for 0 ≤ r ≤ R. The height at

the middle of the droplet hm is given by

hm =
θ [1− J0 (R)]

J1 (R)
, (4.28)

and the volume V from (4.16) is

V =
πθR2J2 (R)

J1 (R)
. (4.29)
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(a) (b)

Figure 4.4: Plot of h/θ as a function of r for a pendant droplet when (a) V/θ = 10,
20, . . . , 100 and (b) V/θ = 100, 200, . . . , 1000. The arrows indicate the direction of
increasing V/θ. We note that the vertical scales differ by an order of magnitude.

The initial values of θ and R are the same as those for a sessile droplet, with the initial

values of hm and V given by

hm = hm0 =
1− J0 (R0)

J1 (R0)
, V = V0 =

πR2
0J2 (R0)

J1 (R0)
at t = 0. (4.30)

Figure 4.4 shows scaled droplet profiles h/θ for a range of values of the scaled volume

V/θ on the lowest branch of solutions. Figure 4.5 shows plots of the scaled height at the

middle of the droplet hm/θ and the contact radius R as functions of the scaled volume

V/θ according to (4.28) and (4.29). In particular, hm/θ increases monotonically from

zero at V/θ = 0 to infinity as V/θ → ∞, as indicated by Figure 4.5(a). As Figure

4.5(b) shows, the contact radius R increases monotonically from zero at V/θ = 0 to

a maximum value R → Rmax ' 3.832, corresponding to the first zero of J1(R), as

V/θ → ∞. Therefore, the contact radius R of a pendant droplet has a maximum

value Rmax and, in addition, we note that the contact radius R of a pendant droplet

given by (4.29) is always smaller than that of a sessile droplet given by (4.19) for the

same volume V which, as we shall see in Sections 4.4–4.6, is an important factor in the

evolution, and hence the lifetimes, of evaporating sessile and pendant droplets.

In the limit of small contact radius (R → 0+), corresponding to the limit of small
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(a) (b)

Figure 4.5: Plots of (a) hm/θ and (b) R as functions of V/θ for a pendant droplet. The
dashed line in (b) corresponds to the maximum value R→ Rmax ' 3.832 as V/θ →∞.

volume (V → 0+), the pendant droplet becomes narrow and thin according to

h

θ
=

1

2R

(
R2 − r2

) [
1 +

(
R2 − r2

)
16

]
+O

(
R2 − r2

)3 → 0+, (4.31)

hm

θ
=
R

2

(
1 +

R2

16

)
+O

(
R5
)
→ 0+, (4.32)

V

θ
=
πR3

4

(
1 +

R2

24

)
+O

(
R7
)
→ 0+, (4.33)

which are analogous to the corresponding solutions for a sessile droplet (4.21)–(4.23)

and are identical at leading order but differ at higher order. In particular, at leading

order in the limit R→ 0+, (4.31)–(4.33) recover the same solutions as that for a sessile

droplet from (4.21)–(4.23), corresponding to the familiar solutions for the zero-gravity

droplet, given by (2.17)–(2.19) in Chapter 2. Therefore, for sufficiently small droplets

(V → 0), or droplets in a low-gravity environment (ĝ → 0), surface-tension effects

dominate and the orientation of the droplet does not affect the shape at leading order.

In the limit of the maximum contact radius (R→ R−max), corresponding to the limit

of large volume (V →∞), the pendant droplet approaches a finite width and becomes

deep according to
h

θ
∼ J0 (r)− J0 (Rmax)

J2 (Rmax) (Rmax −R)
, (4.34)
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hm

θ
∼ 1− J0 (Rmax)

J2 (Rmax) (Rmax −R)
→∞, (4.35)

V

θ
∼ πR2

max

Rmax −R
→∞. (4.36)

In particular, hm is unbounded and V is proportional to 1/ (Rmax −R). As discussed in

Chapter 1, the stability and existence of a pendant droplet has been studied extensively,

and there is a volume at which the droplet becomes unstable and an upper bound on

the volume of a pendant droplet, i.e. a detachment volume. However, analysing the

stability of a pendant droplet is beyond the scope of this Chapter.

In the next three Sections we analyse the evolution of both sessile and pendant

droplets evaporating in the extreme modes of evaporation, i.e. in the CR and CA

modes, in the SS mode, and in the SJ mode, respectively.

4.4 Evaporating in the extreme modes

We consider the evolution of an evaporating droplet using the model described in Sec-

tion 4.2. Specifically, the evolution, and hence the lifetime, of the evaporating droplet is

governed by (4.14). As discussed in Chapter 1, the evolution of an evaporating droplet

depends upon the mode in which it is evaporating. We will now describe the evolution

of both sessile and pendant droplets under the effect of gravity evaporating in the CR

and the CA mode, in turn.

4.4.1 Evolution of a droplet evaporating in the CR mode

For a droplet evaporating in the CR mode, i.e. with R ≡ R0, θ = θ(t), equation (4.14)

becomes
∂V

∂θ

dθ

dt
= −4R0. (4.37)

Solving (4.37) yields the general (implicit) solution for the evolution of the droplet,

namely

t =
V (R0, 1)− V (R0, θ)

4R0
. (4.38)
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where, here and throughout the rest of this Chapter, we express the volume V = V (t) =

V (R, θ) as a function of the contact radius R and the contact angle θ of the droplet.

Substituting the expression for V from (4.19) into (4.38) and re-arranging shows that

the evolution of a sessile droplet is given explicitly by

R ≡ R0, θ = 1− 4I1(R0)

πR0I2(R0)
t, hm =

I0(R0)− 1

I1(R0)

(
1− 4I1(R0)

πR0I2(R0)
t

)
,

V =
πR2

0I2(R0)

I1(R0)

(
1− 4I1(R0)

πR0I2(R0)
t

)
.

(4.39)

In particular, this solution shows that the lifetime of a sessile droplet in the CR mode

is given by

tCR =
πR0I2(R0)

4I1(R0)
. (4.40)

The corresponding evolution of a pendant droplet is given by

R ≡ R0, θ = 1− 4J1(R0)

πR0J2(R0)
t, hm =

1− J0(R0)

J1(R0)

(
1− 4J1(R0)

πR0J2(R0)
t

)
,

V =
πR2

0J2(R0)

J1(R0)

(
1− 4J1(R0)

πR0J2(R0)
t

)
,

(4.41)

and the lifetime of a pendant droplet in the CR mode is given by

tCR =
πR0J2(R0)

4J1(R0)
. (4.42)

At leading-order in the limit V0 → 0 both (4.40) and (4.42) recover the expression for

the lifetime of a zero-gravity droplet, namely tCR = πR2
0/16 (see, for example, Wilson

and Duffy [303]). Figure 4.6 shows tCR plotted as a function of the initial volume V0

for a sessile, zero-gravity, and pendant droplet. As Figure 4.6 shows, the lifetime of a

pendant droplet is always greater than that of a zero-gravity droplet of the same initial

volume, which is in turn greater than that of a sessile droplet. This is because the

total evaporative flux from a droplet, F , is proportional to the contact radius R0 from

(4.37) and, as discussed in Subsection 4.3.2, the contact radius of a pendant droplet is

always smaller than that of a sessile droplet of the same volume. Figure 4.7 shows the

evolutions of R, θ, hm, and V as functions of t for a sessile, zero-gravity, and pendant
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Figure 4.6: Plot of tCR as a function of V0 for a sessile (solid line), zero-gravity (dotted
line) and pendant (dashed line) droplet.

droplet evaporating in the CR mode for an illustrative value of V0 = 10. The contact

radius R0 of the droplet remains constant throughout the evaporation and θ, hm, and

V for a sessile and a pendant droplet, given by (4.39) and (4.41) respectively, are linear

functions of t, as shown in Figures 4.7(b–d). In particular, Figure 4.7 confirms that for

a zero-gravity droplet, the value of R0 and the evolutions of θ, hm, and V lie between

those for a sessile and a pendant droplet of the same volume.

In the limit of an initially narrow droplet (R0 → 0), corresponding to a droplet

with small initial volume (V0 → 0), the evolutions of θ, hm, and V and the lifetime

of a sessile and a pendant droplet, from (4.39) and (4.40) and from (4.41) and (4.42)

respectively, are given by

θ = 1− 16

πR2
0

(
1± R2

0

24

)
t+O

(
R4

0

)
, (4.43)

hm =
R0

2

[
1∓ R2

0

16
− 16

πR2
0

(
1∓ R2

0

48

)
t

]
+O

(
R5

0

)
, (4.44)

V =
πR3

0

4

(
1∓ R2

0

24
− 16

πR2
0

t

)
+O

(
R7

0

)
, (4.45)

tCR =
πR2

0

16

(
1− R2

0

24

)
+O (R0)6 , (4.46)

where we note again that the upper and lower signs correspond to a sessile and a

pendant droplet, respectively. In particular, at leading order in the limit R0 → 0,
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(a) (b)

(c) (d)

Figure 4.7: Evolutions of (a) R, (b) θ, (c) hm, and (d) V as functions of t for a sessile
(solid line), zero-gravity (dotted line), and pendant (dashed line) droplet evaporating
in the CR mode for V0 = 10. The squares in (a) correspond to tCR.
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(4.43)–(4.46) recover the familiar solutions for the zero-gravity droplet (see, for example,

Wilson and Duffy [303]).

In the limit of an initially wide sessile droplet (R0 →∞), corresponding to a sessile

droplet with large initial volume (V0 →∞), the leading-order evolutions (4.39) and the

lifetime (4.40) are given by

θ ∼ 1− 4

πR0
t, hm ∼ 1− 4

πR0
t, V ∼ πR2

0

(
1− 4

πR0
t

)
, (4.47)

tCR ∼
πR0

4
. (4.48)

In the limit of a pendant droplet with an initial contact radius close to the maximum

value (R0 → Rmax), corresponding to a pendant droplet with large initial volume

(V0 →∞), the leading-order evolutions (4.41) and the lifetime (4.42) are given by

θ ∼ 1− 4 (Rmax −R0)

πRmax
t, (4.49)

hm ∼
1− J0(Rmax)

J2(Rmax) (Rmax −R0)

(
1− 4 (Rmax −R0)

πRmax
t

)
, (4.50)

V ∼ πR2
max

Rmax −R0

(
1− 4 (Rmax −R0)

πRmax
t

)
, (4.51)

tCR ∼
πRmax

4 (Rmax −R0)
. (4.52)

4.4.2 Evolution of a droplet evaporating in the CA mode

For a droplet evaporating in the CA mode, i.e. with R = R(t), θ ≡ 1, equation (4.14)

becomes
∂V

∂R

dR

dt
= −4R. (4.53)

Solving (4.53) and using integration by parts yields the general (implicit) solution for

the evolution of the droplet, namely

t =
V (R0, 1)

4R0
− V (R, 1)

4R
+

∫ R0

R

V (R̃, 1)

4R̃2
dR̃. (4.54)
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Substituting the expression for V from (4.19) into (4.54) gives an implicit expression

for the evolution of the contact radius R = R(t) of a sessile droplet:

t =
π

4

(
R0I2(R0)

I1(R0)
− RI2(R)

I1(R)
+ log

[
RI1(R0)

R0I1(R)

])
, (4.55)

with the evolution of hm and V given by (4.18) and (4.19), respectively. The lifetime

of a sessile droplet in the CA mode is then found by taking the limit of (4.55) as R→ 0

which gives

tCA =
π

4

(
R0I2(R0)

I1(R0)
+ log

[
2I1(R0)

R0

])
. (4.56)

Similarly, for a pendant droplet, substituting the expression for V from (4.29) into

(4.53) gives an implicit expression for the evolution of the contact radius R and the

lifetime of the droplet:

t =
π

4

(
R0J2(R0)

J1(R0)
− RJ2(R)

J1(R)
+ log

[
R0J1(R)

RJ1(R0)

])
, (4.57)

tCA =
π

4

(
R0J2(R0)

J1(R0)
+ log

[
R0

2J1(R0)

])
, (4.58)

with the evolution of hm and V given by (4.28) and (4.29), respectively. At leading-order

in the limit V0 → 0 both (4.56) and (4.58) recover the expression for the lifetime of a

zero-gravity droplet, namely tCA = 3πR2
0/32 (see, for example, Wilson and Duffy [303]).

Figure 4.8 shows tCA plotted as a function of the initial volume V0 for a sessile,

zero-gravity, and pendant droplet. In particular, Figure 4.8 confirms that the lifetime

tCA of a pendant droplet is always greater than that of a zero-gravity droplet of the

same initial volume, which is in turn greater than that of a sessile droplet, as in the

CR case discussed in the previous Subsection for droplets evaporating in the CR mode.

In addition, we note that the lifetime of a sessile, zero-gravity, and pendant droplet in

the CA mode is always greater than the corresponding lifetime in the CR mode, i.e.

tCA > tCR for each case. This is because the total evaporative flux from the droplet,

F , remains constant at 4R0 for a droplet evaporating in the CR mode from (4.37),

whereas, in the CA mode, it is a decreasing function of time 4R(t) from (4.53), and

therefore a droplet evaporating in the CA mode will always take longer to evaporate in
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Figure 4.8: Plot of tCA as a function of V0 for a sessile (solid line), zero-gravity (dotted
line), and pendant (dashed line) droplet.

this context. Figure 4.9 shows the evolutions of R, θ, hm, and V as functions of t for a

sessile, zero-gravity, and pendant droplet evaporating in the CA mode for an illustrative

value of V0 = 10. The contact angle of the droplet remains constant and equal to unity

throughout the evaporation and R and V for a sessile and a pendant droplet, given by

(4.55) and (4.19) and by (4.57) and (4.29) respectively, are monotonically decreasing

functions of t, as shown in Figures 4.9(a), (b) and (d). We note that hm is always a

monotonically decreasing function of t for a pendant droplet given by (4.28); however, as

discussed in Section 4.3, for a sessile droplet hm/θ, given by (4.18), is non-monotonic in

V/θ with a maximum value when R ' 5.586. Therefore, for a sessile droplet evaporating

in the CA mode with initial contact radius R0 > 5.586, corresponding to V0 > 73.175,

hm is non-monotonic in t. Figure 4.10 shows the evolution of hm as a function of t for

a sessile droplet evaporating in the CA mode for a range of values of V0 significantly

greater than 73.175 showing the non-monotonic behaviour.

In the limit of an initially narrow droplet (R0 → 0), corresponding to a droplet

with small initial volume (V0 → 0), the implicit evolutions of the contact radius R for

a sessile and a pendant droplet, from (4.55) and (4.57) respectively, are given by

t =
3πR2

0

32

[
1− R2

R2
0

∓ 5R2
0

144

(
1− R4

R4
0

)]
+O

(
R6

0

)
. (4.59)

In particular, at leading order in the limit R0 → 0, (4.59) recovers the familiar solution

for the zero-gravity droplet (see, for example, Wilson and Duffy [303]).
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(a) (b)

(c) (d)

Figure 4.9: Evolutions of (a) R, (b) θ, (c) hm, and (d) V as functions of t for a sessile
(solid line), zero-gravity (dotted line), and pendant (dashed line) droplet evaporating
in the CA mode for V0 = 10. The squares in (b) correspond to tCA for a sessile (left),
zero-gravity (middle), and pendant (right) droplet.
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Figure 4.10: Evolution of hm as a function of t for a sessile droplet evaporating in
the CA mode when V0 = 200, 400, . . . , 1000. The arrow indicates the direction of
increasing V0.

In the limit of an initially wide sessile droplet (R0 →∞), corresponding to a sessile

droplet with large initial volume (V0 →∞), the implicit evolution of R from (4.55) and

the lifetime tCA from (4.56) are given by

t ∼ π

4

(
2R0 −

RI2(R)

I1(R)
+ log

[
R

(2πR3
0)1/2I1(R)

])
, (4.60)

tCA ∼
π

4

(
2R0 +

1

2
log

[
2

πR3
0

])
. (4.61)

We note that the contact radius R is close to its initial value R0, and is therefore

large, at the beginning of evaporation but will eventually become small as the droplet

evaporates. The implicit evolution of R given by (4.60) therefore includes the behaviour

of R throughout the evaporation. Moreover, away from t = tCA, i.e. for R = O(R0),

the contact radius R is simply linear in t for a sessile droplet, and tCA ∼ πR0/2 ∼ 2tCR

at leading order in this limit.

In the limit of a pendant droplet with initial contact radius close to the maximum

value (R0 → Rmax), corresponding to a pendant droplet with large initial volume

(V0 →∞), the implicit evolution of R from (4.57) and the lifetime tCA from (4.58) are
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given by

t ∼ π

4

(
R0

Rmax −R0
− RJ2(R)

J1(R)
+ log

[
RmaxJ1(R)

R (Rmax −R0) J2(Rmax)

])
, (4.62)

tCA ∼
π

4

(
R0

Rmax −R0
+ log

[
Rmax

2 (Rmax −R0) J2(Rmax)

])
. (4.63)

We note that, as for the case of a sessile droplet, (4.62) includes the behaviour of R

throughout the evaporation and that away from t = tCA, i.e. for R = O(R0), the

contact radius R simply remains constant at its initial value R0 for a pendant droplet,

and tCA ∼ πR0/(4(Rmax − R0)) ∼ tCR at leading-order in this limit. We also note

that the lifetime of a pendant droplet evaporating in the CA mode in the limit of

large initial volume is the same as that for the droplet evaporating in the CR mode

at leading-order. Thus, it is necessary to include higher-order terms to distinguish

between the lifetimes of a pendant droplet in the CA and the CR modes in the limit

of large initial volume. As we shall see in subsequent Sections, this is also true for a

pendant droplet evaporating in the mixed modes.

4.5 Evolution of a droplet evaporating in the SS mode

In the SS mode, the evolution of a droplet consists of a CR phase until a time t = t∗

at which the critical receding contact angle θ = θ∗ (0 ≤ θ∗ ≤ 1) is reached, followed by

a CA phase.

Solving (4.14) yields (4.38) for 0 ≤ t ≤ t∗, and

t =
V (R0, 1)

4R0
− V (R, θ∗)

4R
+

∫ R0

R

V (R̃, θ∗)

4R̃2
dR̃, (4.64)

for t∗ < t ≤ tSS. The evolution of a sessile droplet for 0 ≤ t ≤ t∗ is thus given by (4.39),

where

t∗ =
πR0I2(R0)

4I1(R0)
(1− θ∗) . (4.65)

Substituting the expression for V from (4.19) into (4.64) gives an implicit expression

for the evolution of the contact radius R = R(t) of a sessile droplet for t∗ < t ≤ tSS,
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Figure 4.11: Plot of tSS as a function of V0 comparing a sessile and a pendant droplet
when θ∗ = 1/4, 1/2, 3/4 (solid lines). The dotted and dashed lines correspond to θ∗ = 0
(CR mode) and θ∗ = 1 (CA mode), respectively.

namely

t =
π

4

(
R0I2(R0)

I1(R0)
+ θ∗

{
log

[
RI1(R0)

R0I1(R)

]
− RI2(R)

I1(R)

})
. (4.66)

The lifetime of a sessile droplet in the SS mode is then found by taking the limit of

(4.66) as R→ 0 to obtain

tSS =
π

4

(
R0I2(R0)

I1(R0)
+ θ∗ log

[
2I1(R0)

R0

])
, (4.67)

which satisfies tCR ≤ tSS ≤ tCA for 0 ≤ θ∗ ≤ 1. Figure 4.11 includes (as the lower set

of curves) a plot of the lifetime tSS as a function of V0 for a sessile droplet for a range

of values of θ∗. As Figure 4.11 shows, the lifetime of a sessile droplet in the SS mode

is smallest when θ∗ = 0, i.e. in the CR mode, and is greatest when θ∗ = 1, i.e. in the

CA mode. Figure 4.12 shows a plot of the free-surface profile h as a function of r at

various times for an illustrative value of V0 = 10, and the evolutions of R, θ, hm, and

V as functions of t for a range of values of V0 for a sessile droplet evaporating in the

SS mode when θ∗ = 1/2. For 0 ≤ t ≤ t∗, the contact radius is constant R ≡ R0 and

θ, hm, and V decrease linearly in t, and for t∗ < t ≤ tSS the contact angle is constant

θ = θ∗ = 1/2, R and V decrease monotonically in t, and hm decreases monotonically

in t for 0 < R0 < 5.586 (corresponding to 0 < V0 < 73.175) and is non-monotonic in t

for R0 > 5.586, as shown in Figure 4.12.
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(a)

(b) (c)

(d) (e)

Figure 4.12: Plot of (a) the free-surface profile h as a function of r at times t = 0, t∗/2,
t∗, 2(tSS− t∗)/5, 3(tSS− t∗)/4, 29(tSS− t∗)/30 for V0 = 10, and the evolutions of (b) R,
(c) θ, (d) hm, and (e) V as functions of t for V0 = 10, 20, . . . , 100 for a sessile droplet
evaporating in the SS mode when θ∗ = 1/2. The dashed line in (a) corresponds to h at
t = t∗, and the symbols in (b)–(e) correspond to t = t∗ (circles) and t = tSS (squares).
The arrow in (a) indicates the direction of increasing t.
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Similarly, for a pendant droplet the evolution for 0 ≤ t ≤ t∗ is given by (4.41),

where

t∗ =
πR0J2(R0)

4J1(R0)
(1− θ∗) . (4.68)

Substituting the expression for V from (4.29) into (4.64) gives an implicit expression

for the evolution of R of a pendant droplet for t∗ < t ≤ tSS, namely

t =
π

4

(
R0J2(R0)

J1(R0)
+ θ∗

{
log

[
R0J1(R)

RJ1(R0)

]
− RJ2(R)

J1(R)

})
, (4.69)

and the lifetime of a pendant droplet is given by

tSS =
π

4

(
R0J2(R0)

J1(R0)
+ θ∗ log

[
R0

2J1(R0)

])
, (4.70)

which, as for a sessile droplet, satisfies tCR ≤ tSS ≤ tCA for 0 ≤ θ∗ ≤ 1. At leading-

order in the limit V0 → 0 both (4.67) and (4.70) recover the expression for the lifetime

of a zero-gravity droplet, namely tSS = πR2
0(2 + θ∗)/32 (see, for example, Wilson and

Duffy [303]). We also note that the time of contact-line de-pinning t∗ and the lifetime

tSS of a pendant droplet in the SS mode are always greater than those of a zero-gravity

droplet of the same initial volume V0 and critical receding contact angle θ∗, which are

in turn greater than those of a sessile droplet, for the reasons discussed in Section

4.4. However, unlike in Section 4.4, the evolutions and the lifetime for the zero-gravity

droplet are not plotted in this Section for clarity in the Figures.

Figure 4.11 includes (as the upper set of curves) a plot of the lifetime tSS as a

function of V0 for a pendant droplet for a range of values of θ∗. As for a sessile droplet,

the lifetime of a pendant droplet in the SS mode is smallest when θ∗ = 0, i.e. in the

CR mode, and is greatest when θ∗ = 1, i.e. in the CA mode, as shown in Figure 4.11.

We also note that as V0 increases, the change in the lifetime tSS for each value of θ∗

is greater for a sessile droplet than it is for a pendant droplet, as may be seen by

comparing the lower and upper sets of curves in Figure 4.11. Therefore, the lifetime

of a sessile droplet is more sensitive than a pendant droplet of the same volume to the

mode in which it is evaporating. Figure 4.13 shows a plot of the free-surface profile h as
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a function of r at various times for an illustrative value of V0 = 10, and the evolutions

of R, θ, hm, and V as functions of t for a range of values of V0 for a pendant droplet

evaporating in the SS mode when θ∗ = 1/2. For 0 ≤ t ≤ t∗, the contact radius is

constant R ≡ R0 and θ, hm, and V decrease linearly in t, and for t∗ < t ≤ tSS the

contact angle is constant θ = θ∗ ≡ 1/2, and R, hm, and V decrease monotonically in t,

as shown in Figure 4.12.

In the limit of an initially narrow droplet (R0 → 0), corresponding to a droplet

with small initial volume (V0 → 0), the evolutions of θ, hm, and V for a sessile and a

pendant droplet evaporating in the SS mode for 0 ≤ t ≤ t∗ are given by (4.43)–(4.45)

with

t∗ =
πR2

0

16
(1− θ∗)

(
1∓ R2

0

24

)
+O

(
R6

0

)
. (4.71)

For t∗ < t ≤ tSS, the implicit evolutions of R for a sessile and a pendant droplet, from

(4.66) and (4.69) respectively, are given by

t =
πR2

0

32

[
2 + θ∗ − 3θ∗R2

R2
0

∓ R2
0

48

(
4 + θ∗ − 5θ∗R4

R4
0

)]
+O

(
R6

0

)
. (4.72)

In particular, at leading order in the limit R0 → 0, (4.72) recovers the familiar solution

for the zero-gravity droplet (see, for example, Wilson and Duffy [303]).

In the limit of an initially wide sessile droplet (R0 → ∞) and a pendant droplet

with initial contact radius close to the maximum value (R0 → Rmax), corresponding

to a droplet with large initial volume (V0 → ∞), the leading-order evolutions of θ,

hm, and V for 0 ≤ t ≤ t∗ are given by (4.47) and by (4.49)–(4.51), respectively. For

t∗ < t ≤ tSS, the implicit evolution of R from (4.66) and the lifetime tSS from (4.67)

for a sessile droplet are given by

t ∼ π

4

(
R0 (1 + θ∗) + θ∗

{
log

[
R

(2πR3
0)1/2I1(R)

]
− RI2(R)

I1(R)

})
, (4.73)

tSS ∼
π

4

(
R0 (1 + θ∗) +

θ∗

2
log

[
2

πR3
0

])
. (4.74)

We note that, as in Subsection 4.4.2, (4.73) includes the behaviour of R throughout

the evaporation and that away from t = tSS, i.e. for R = O(R0), the contact radius
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(a)

(b) (c)

(d) (e)

Figure 4.13: Plot of (a) the free-surface profile h as a function of r at times t = 0, t∗/2,
t∗, 2(tSS− t∗)/5, 3(tSS− t∗)/4, 29(tSS− t∗)/30 for V0 = 10, and the evolutions of (b) R,
(c) θ, (d) hm, and (e) V as functions of t for V0 = 10, 20, . . . , 100 for a pendant droplet
evaporating in the SS mode when θ∗ = 1/2. The dashed line in (a) corresponds to h at
t = t∗, and the symbols in (b)–(e) correspond to t = t∗ (circles) and t = tSS (squares).
The arrow in (a) indicates the direction of increasing t.
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is simply linear in t for t∗ < t ≤ tSS, and tSS ∼ πR0(1 + θ∗)/4 ∼ (1 + θ∗)tCR at

leading-order in this limit.

For t∗ < t ≤ tSS, the implicit evolution of R from (4.69) and the lifetime tSS from

(4.70) of a pendant droplet are given by

t ∼ π

4

(
R0

Rmax −R0
+ θ∗

{
log

[
RmaxJ1(R)

R (Rmax −R0) J2(Rmax)

]
− RJ2(R)

J1(R)

})
, (4.75)

tSS ∼
π

4

(
R0

Rmax −R0
+ θ∗ log

[
Rmax

2 (Rmax −R0) J2(Rmax)

])
. (4.76)

As for the case of a sessile droplet, (4.75) includes the behaviour of R throughout the

evaporation and away from tSS, i.e. for R = O(R0), the contact radius simply remains

constant at its initial value for t∗ < t ≤ tSS, and tSS ∼ tCA ∼ tCR at leading-order in

this limit. Thus, as discussed in Subsection 4.4.2, it is necessary to include higher-order

terms to distinguish between the lifetimes of a pendant droplet in the different modes

of evaporation in the limit of large initial volume.

We note that setting either θ∗ = 0 or θ∗ = 1 in (4.74) or (4.76) recovers the lifetime

of a sessile and a pendant droplet evaporating in the CR or the CA mode, respectively,

as discussed in Section 4.4, in the limit of large initial volume (V0 →∞).

4.6 Evolution of a droplet evaporating in the SJ mode

In the SJ mode, the evolution of a droplet consists of an infinite series of CR (stick)

phases separated by an infinite series of jump phases in which the contact angle jumps

instantaneously from θmin to θmax, where 0 ≤ θmin ≤ θmax ≤ 1, with a corresponding

jump decrease in the contact radius. We denote the constant value of the pinned contact

radius during the nth CR phase by Rn, which lasts from t = tn−1 to t = tn.

We assume that mass is conserved during the nth jump, i.e. V (Rn, θmin) = V (Rn+1, θmax)

at t = tn. Therefore, from (4.19), the contact radius R = Rn of a sessile droplet satisfies

R2
n+1

I2(Rn+1)

I1(Rn+1)
=

(
θmin

θmax

)
R2

n

I2(Rn)

I1(Rn)
=

(
θmin

θmax

)n

R2
0

I2(R0)

I1(R0)
. (4.77)
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Similarly, from (4.29), the contact radius R = Rn of a pendant droplet satisfies

R2
n+1

J2(Rn+1)

J1(Rn+1)
=

(
θmin

θmax

)
R2

n

J2(Rn)

J1(Rn)
=

(
θmin

θmax

)n

R2
0

J2(R0)

J1(R0)
. (4.78)

During the first CR phase R1 = R0 from t = t0 = 0 to t = t1, with θ, hm, and V

given by (4.39) and (4.41) for a sessile and a pendant droplet, respectively. The time t1

at which the droplet first jumps satisfies θ(t1) = θmin and for a sessile droplet is given

by

t1 =
πR0I2(R0)

4I1(R0)
(1− θmin) , (4.79)

and for a pendant droplet by

t1 =
πR0J2(R0)

4J1(R0)
(1− θmin) . (4.80)

During the nth CR phase, lasting from t = tn−1 to t = tn, the evolution of a sessile

droplet is given by

R = Rn, θ = θmax −
4I1(Rn)

πRnI2(Rn)
(t− tn−1) , (4.81)

hm =
I0(Rn)− 1

I1(Rn)

(
θmax −

4I1(Rn)

πRnI2(Rn)
(t− tn−1)

)
, (4.82)

V =
πR2

nI2(Rn)

I1(Rn)

(
θmax −

4I1(Rn)

πRnI2(Rn)
(t− tn−1)

)
, (4.83)

where

tn = tn−1 + (θmax − θmin)
πRnI2(Rn)

4I1(Rn)

=
πR0I2(R0)

4I1(R0)
(1− θmin) + (θmax − θmin)

n∑
k=2

πRkI2(Rk)

4I1(Rk)
. (4.84)

The lifetime of a sessile droplet in the SJ mode is then found by taking the limit of
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Figure 4.14: Plot of tSJ as a function of V0 comparing a sessile and a pendant droplet
when θmax = 1 and θmin = 1/4, 1/2, 3/4 (solid lines). The dotted and dashed lines
correspond to θmin = 0 (CR mode) and θmin = θmax = 1 (CA mode), respectively.

(4.84) as n→∞, which gives

tSJ =
πR0I2(R0)

4I1(R0)
(1− θmin) + (θmax − θmin)

∞∑
k=2

πRkI2(Rk)

4I1(Rk)
, (4.85)

which satisfies tCR ≤ tSJ ≤ tCA for 0 ≤ θmin ≤ θmax ≤ 1. Additionally, we note that

tSJ → tSS when θmax → θmin = θ∗.

There are no explicit expressions for the sums involving the Bessel functions in

equations (4.84) and (4.85) and so the evolution, and hence the lifetime, of a sessile

droplet must be calculated numerically for this mode of evaporation. Additionally, to

perform the numerical calculations for tSJ from (4.85) we replace the infinite sum with

a finite sum to N terms, where N is chosen to be sufficiently large that the answer does

not change (to within some tolerance) for larger N . In practice, we imposed a relative

tolerance of 10−3, which corresponds to evaluating tSJ from (4.85) with N = 35. Figure

4.14 includes (as the lower set of curves) a plot of the lifetime tSJ as a function of V0

for a sessile droplet for θmax = 1 and a range of values of θmin. As Figure 4.14 shows,

the lifetime of a sessile droplet in the SJ mode is smallest when θmin = 0, i.e. in the CR

mode, and is greatest when θmin = θmax = 1, i.e. in the CA mode. Figure 4.15 shows a

plot of the free-surface profile h as a function of r and the evolutions of R, θ, hm, and

V as functions of t for a sessile droplet evaporating in the SJ mode when θmin = 1/2,

θmax = 1, and V0 = 10 for n = 35 jump phases. For tn−1 < t < tn, the contact radius
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Rn is constant and θ, hm, and V decrease linearly in t, and at t = tn, R jumps to a

lower value, θ and hm jump to higher values, and V is conserved, as shown in Figure

4.15.

Similarly, the evolution of a pendant droplet during the nth CR phase is given by

R = Rn, θ = θmax −
4J1(Rn)

πRnJ2(Rn)
(t− tn−1) , (4.86)

hm =
1− J0(Rn)

J1(Rn)

(
θmax −

4J1(Rn)

πRnJ2(Rn)
(t− tn−1)

)
, (4.87)

V =
πR2

nJ2(Rn)

J1(Rn)

(
θmax −

4J1(Rn)

πRnJ2(Rn)
(t− tn−1)

)
, (4.88)

where

tn = tn−1 + (θmax − θmin)
πRnJ2(Rn)

4IJ(Rn)

=
πR0J2(R0)

4J1(R0)
(1− θmin) + (θmax − θmin)

n∑
k=2

πRkJ2(Rk)

4J1(Rk)
. (4.89)

The lifetime of a pendant droplet in the SJ mode is then given by

tSJ =
πR0J2(R0)

4J1(R0)
(1− θmin) + (θmax − θmin)

∞∑
k=2

πRkJ2(Rk)

4J1(Rk)
, (4.90)

which, as for a sessile droplet, satisfies tCR ≤ tSJ ≤ tCA for 0 ≤ θmin ≤ θmax ≤ 1 and

tSJ → tSS as θmax → θmin = θ∗. At leading-order in the limit V0 → 0+, both (4.85) and

(4.90) recover the expression for the lifetime of a zero-gravity droplet, namely

tSJ =
πR2

0

16

(
1− θmax + (θmax − θmin)

θ
2/3
max

θ
2/3
max − θ2/3

min

)
, (4.91)

(see, for example, Wilson and Duffy [303]). We also note that the time of the nth jump

tn and the lifetime tSJ of a pendant droplet in the SJ mode are always greater than

those of a zero-gravity droplet of the same initial volume V0 and critical angles θmin

and θmax, which are in turn greater that those of a sessile droplet, for the same reasons

as those discussed in Section 4.4. However, unlike in Section 4.4, the evolutions and
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(a)

(b) (c)

(d) (e)

Figure 4.15: Plot of (a) the free-surface profile h as a function of r and the evolutions
of (b) R, (c) θ, (d) hm, and (e) V as functions of t for a sessile droplet evaporating in
the SJ mode when θmin = 1/2, θmax = 1 and V0 = 10 for n = 35 jump phases. The
solid and dash-dotted lines in (a) correspond to h at t = tn−1 when θ = θmax and at
t = tn when θ = θmin, respectively, the dotted and dashed lines in (b)–(e) correspond
to θmin = 0 (CR mode) and θmin = θmax = 1 (CA mode), respectively, and the dots in
(e) correspond to t = tn. The arrow in (a) indicates the direction of increasing t.
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the lifetime for the zero-gravity droplet are not plotted in this Section for clarity in the

Figures.

As for a sessile droplet, the evolution, and hence the lifetime, of a pendant droplet

must be calculated numerically for this mode of evaporation, and we replace the infinite

sum in (4.90) for tSJ with a finite sum to N = 35 terms. Figure 4.14 includes (as the

upper set of curves) a plot of the lifetime tSJ as a function of V0 for a pendant droplet

for θmax = 1 and a range of values of θmin. As for a sessile droplet, the lifetime of a

pendant droplet in the SJ mode is smallest when θmin = 0, i.e. in the CR mode, and

greatest when θmin = θmax = 1, i.e. in the CA mode, as shown in Figure 4.14. We also

note that, as in Section 4.5, as V0 increases, the change in the lifetime tSJ for each value

of θmin is greater for a sessile droplet than it is for a pendant droplet, as may be seen

by comparing the lower and upper sets of curves in Figure 4.14. Figure 4.16 shows a

plot of the free-surface profile h as a function of r and the evolutions of R, θ, hm, and

V as functions of t for a pendant droplet evaporating in the SJ mode when θmin = 1/2,

θmax = 1 and V0 = 10 for n = 35 jump phases. The evolutions of R, θ, hm, and V for a

pendant droplet in the SJ mode are qualitatively similar to the evolutions of a sessile

droplet in the same mode.

In the limit of an initially narrow droplet (R0 → 0), corresponding to a droplet with

small initial volume (V0 → 0), the leading-order solution for Rn and the evolutions of

θ, hm, and V for a sessile and a pendant droplet during the nth CR phase, from (4.77),

(4.81)–(4.83) and (4.78), (4.86)–(4.88) respectively, are given by

Rn+1 ∼
(
θmin

θmax

)n/3

R0, (4.92)

θ ∼ θmax −
16

πR2
n

(t− tn−1) , (4.93)

hm ∼
Rn

2

[
θmax −

16

πR2
n

(t− tn−1)

]
, (4.94)

V ∼ πR3
n

4

[
θmax −

16

πR2
n

(t− tn−1)

]
, (4.95)
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(a)

(b) (c)

(d) (e)

Figure 4.16: Plot of (a) the free-surface profile h as a function of r and the evolutions
of (b) R, (c) θ, (d) hm, and (e) V as functions of t for a pendant droplet evaporating
in the SJ mode when θmin = 1/2, θmax = 1, and V0 = 10 for n = 35 jump phases. The
solid and dash-dotted lines in (a) correspond to h at t = tn−1 when θ = θmax and at
t = tn when θ = θmin, respectively, the dotted and dashed lines in (b)–(e) correspond
to θmin = 0 (CR mode) and θmin = θmax = 1 (CA mode), respectively, and the dots in
(e) correspond to t = tn. The arrow in (a) indicates the direction of increasing t.
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where

tn ∼
πR2

0

16

1− θmax + (θmax − θmin)

[
1−

(
θmin

θmax

)2n/3
]

[
1−

(
θmin

θmax

)2/3
]
 . (4.96)

In particular, (4.92)–(4.96) correspond to the solutions for the zero-gravity droplet (see,

for example, Wilson and Duffy [303]).

In the limit of an initially wide sessile droplet (R0 →∞), corresponding to a sessile

droplet with large initial volume (V0 → ∞), the leading-order solution for Rn from

(4.77) and the evolutions of θ, hm, and V from (4.81)–(4.83) during the nth CR phase

are given by

Rn+1 ∼
(
θmin

θmax

)n/2

R0, (4.97)

θ ∼ θmax −
4

πRn
(t− tn−1) , (4.98)

hm ∼ θmax −
4

πRn
(t− tn−1) , (4.99)

V ∼ πR2
n

(
θmax −

4

πRn
(t− tn−1)

)
, (4.100)

where

tn ∼
πR0

4

1− θmax + (θmax − θmin)

[
1−

(
θmin

θmax

)n/2
]

[
1−

(
θmin

θmax

)1/2
]
 . (4.101)

The leading-order solution for the lifetime of a sessile droplet from (4.85) in this limit

is then

tSJ ∼
πR0

4

(
1− θmax + (θmax − θmin)

θ
1/2
max

θ
1/2
max − θ1/2

min

)
. (4.102)

We note that, unlike for a droplet evaporating in the CA and SS modes discussed

previously in which higher-order terms in this limit were considered, only leading-order

solutions have been obtained for the SJ mode since the higher-order contributions would

be unwieldy because of the dependence on Bessel functions.

In the limit of a pendant droplet with initial contact radius close to the maximum
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value (R0 → Rmax), corresponding to a pendant droplet with large initial volume

(V0 → ∞), the leading-order solution for Rn from (4.78) and evolutions of θ, hm, and

V from (4.86)–(4.88) during the nth CR phase are given by

Rn+1 ∼ Rmax −
(
θmax

θmin

)n

(Rmax −R0) , (4.103)

θ ∼ θmax −
4 (Rmax −Rn)

πRmax
(t− tn−1) , (4.104)

hm ∼
1− J0(Rmax)

J2(Rmax) (Rmax −Rn)

(
θmax −

4 (Rmax −Rn)

πRmax
(t− tn−1)

)
, (4.105)

V ∼ πR2
max

Rmax −Rn

(
θmax −

4 (Rmax −Rn)

πRmax
(t− tn−1)

)
, (4.106)

where

tn ∼
πRmax

4 (Rmax −R0)

1− θmax + (θmax − θmin)

[
1−

(
θmin

θmax

)n]
[
1−

(
θmin

θmax

)]
 . (4.107)

The leading-order solution for the lifetime of a pendant droplet from (4.90) in this limit

is then

tSJ ∼
πRmax

4 (Rmax −R0)
, (4.108)

which is independent of θmin and θmax. In particular, from (4.103), Rn+1 → R−max as

R0 → R−max and so tSJ ∼ tSS ∼ tCA ∼ tCR at leading-order in this limit.

4.7 Conclusions

In this Chapter we have studied the effect of gravity on the shape, evolution, and lifetime

of sessile and pendant droplets undergoing diffusion-limited evaporation. In particular,

we formulated and analysed a mathematical model describing the dependence of the

evaporation of a thin droplet on droplet volume, droplet orientation, and mode of

evaporation.

The mathematical model describes how the shape of a droplet depends on its volume
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and whether it is sessile or pendant. In particular, the model predicts that a sessile

droplet will become wide and flat as the volume of the droplet increases, i.e. R → ∞
and hm → 1+ as V → ∞, whereas a pendant droplet will approach a finite width

and become deep as the volume of the droplet increases, i.e. R → R−max and hm →∞
as V → ∞. In addition, hm is non-monotonic in V for a sessile droplet, whereas hm

increases monotonically in V for a pendant droplet. Furthermore, the predicted contact

radius R of a sessile droplet is always larger than that for a pendant droplet of the same

volume and, as a consequence of this, so is the total evaporative flux from the droplet,

F , namely 4R from (4.14).

The evolution and lifetime of evaporating sessile and pendant droplets were analysed

for four different modes of evaporation, namely the CR, CA, SS, and SJ modes. In the

CR mode, the contact radius R ≡ R0 remains constant throughout the evaporation

and the evolutions of θ, hm, and V are linear functions of t for both sessile and pendant

droplets. In the CA mode, the contact angle θ ≡ 1 remains constant throughout the

evaporation and R and V decrease monotonically in t for both sessile and pendant

droplets. For a pendant droplet hm is always a monotonically decreasing function

of t; however, for a sessile droplet, hm decreases monotonically in t for R0 < 5.586,

corresponding to V0 < 73.175, and is non-monotonic in t for R0 > 5.586. In addition,

we have shown that the solutions for the evolution, and hence the lifetime, of a zero-

gravity droplet always lie between those for a sessile and a pendant droplet. In the SS

mode, the evolution of a droplet is as described by the CR and the CA mode in each

phase. In the SJ mode, in each CR phase, i.e. for tn−1 < t < tn, the contact radius Rn

is constant and θ, hm, and V decrease linearly in t, and at each instantaneous jump,

i.e. at tn, R jumps to a lower value, θ and hm jump to higher values, and V is conserved

for both sessile and pendant droplets. The predicted lifetimes of the droplets in each

mode of evaporation, as well as the critical times t∗ and tn, are always greater for a

pendant droplet than those for a zero-gravity droplet of the same initial volume and

critical angles, which are in turn greater than those for a sessile droplet.

The solutions for the evolutions, and hence the lifetimes, of evaporating sessile and

pendant droplets were also analysed for the limiting cases of initially small (V0 → 0+)
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and initially large (V0 →∞) droplets. In particular, in the limit of a small droplet the

leading-order behaviour corresponds to the solutions for a zero-gravity droplet and is

independent of the orientation of the droplet, whereas, in the limit of a large droplet

the behaviour depends on whether the droplet is sessile or pendant.
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Chapter 5

The Effect of Spatial Variation in

the Local Evaporative Flux on

the Deposition from a Pinned

Particle-Laden Sessile Droplet

5.1 Introduction

In this Chapter, motivated by the increasing interest in controlling the shape of the

final deposit from an evaporating droplet, as discussed in Chapter 1, we consider the

effect of spatial variation in the local evaporative flux on the deposition from a pinned

particle-laden sessile droplet. Specifically, in Sections 5.2–5.5 we formulate and analyse

a mathematical model for the evolution of, flow within, and transport of particles

within, a thin sessile droplet with a general steady local evaporative-flux profile Ĵ =

Ĵ(r̂). In Section 5.6 we investigate a particular one-parameter family of spatially-

varying local evaporative fluxes of the form Ĵ = Ĵ(r̂;n) that captures a wide range

of qualitatively different behaviours and examine the asymptotic behaviour in three

particular limits in detail in Section 5.7. In Section 5.8 we describe the behaviour of

the particle paths when the transport of particles within the droplet is governed purely

by advection.
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r̂

ẑ

R̂0−R̂0

θ̂(t̂)φ̂(r̂, ẑ, t̂)

ẑ = ĥ(r̂, t̂)

O

Ĵ(r̂)

Figure 5.1: Sketch of a thin pinned sessile droplet with constant contact radius R̂0,
contact angle θ̂(t̂), and free surface ẑ = ĥ(r̂, t̂), containing a suspension of particles,
evaporating on a planar substrate. The arrows indicate the local evaporative flux Ĵ(r̂),
and the concentration of particles within the droplet is denoted by φ̂(r̂, ẑ, t̂).

5.2 Problem formulation

We consider the evaporation of an axisymmetric sessile droplet with a pinned contact

line of constant radius R̂0 containing a suspension of particles on a planar substrate.

As in Chapter 2, we refer the description to cylindrical polar coordinates (r̂, ϕ̂, ẑ) with

Oẑ along the axis of the droplet, perpendicular to the substrate at ẑ = 0, as sketched

in Figure 5.1. After the droplet is deposited at t̂ = 0, its volume will decrease due to

evaporation into the atmosphere until the time at which it has completely evaporated,

i.e. the lifetime of the droplet, denoted by t̂ = t̂lifetime.

As in Chapter 2, we consider situations in which the droplet is thin, the droplet

is sufficiently small that the effect of gravity is negligible, and the surface tension

is sufficiently strong that the droplet evolves quasi-statically. More specifically, we

consider situations in which the initial contact angle of the droplet, θ̂0 � 1, is small, as

are the appropriately defined Bond number Bo and scaled capillary number Ca∗ from

(2.2), namely

Bo =

(
R̂0

ˆ̀

)2

� 1 and Ca∗ =
Ca

θ̂3
0

=
µ̂Û

θ̂3
0σ̂
� 1. (5.1)

The mean curvature of the free surface of the droplet is therefore spatially constant,

and so at leading order in the limit θ̂0 → 0 its free surface profile ĥ satisfies

∂

∂r̂

(
1

r̂

∂

∂r̂

(
r̂
∂ĥ

∂r̂

))
= 0. (5.2)
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As discussed in Chapter 1, the local evaporative flux Ĵ from the free surface of

the droplet is dependent upon the process of evaporation and can take various forms

depending on the physics of the problem. In this Chapter we shall assume that the

droplet undergoes quasi-steady evaporation for which the local evaporative flux takes

the general form Ĵ = Ĵ(r̂), where Ĵ is a known function of r̂. As we shall see in this

Chapter, it is convenient to define the indefinite radial integral of the local evaporative

flux, denoted by Î = Î(r̂), as

Î =

∫ r̂

0
Ĵ(r̃) r̃ dr̃. (5.3)

As also discussed in Chapter 1, manipulation of the vapour field is often used as

a way to control the deposition from an evaporating droplet, as this can enhance or

suppress the local and total evaporative fluxes from the droplet. Motivated by this,

in Section 5.6 we consider a particular one-parameter family of spatially-varying local

evaporative fluxes of the form Ĵ = Ĵ(r̂;n) which captures a wide range of qualita-

tively different behaviours. In particular, this will include the spatially-uniform and

diffusion-limited fluxes as special cases. In Appendix A we demonstrate that the anal-

ysis presented in this Chapter may be generalised to a separable time-dependent local

evaporative flux of the form Ĵ = Ĵ(r̂, t̂) = f̂(r̂)ĝ(t̂), of the kind explored numerically

by Fischer [84].

The evaporation induces a flow within the droplet that transports the particles

within it. The goal of this Chapter is to determine the flow within the droplet, the

resultant dynamics of the particles, the nature of the final deposit left behind on the

substrate after the droplet has completely evaporated, and how each of these depend

upon the spatial variation of the local evaporative flux. In the next three Sections we

analyse the evolution of the droplet, solve the hydrodynamic problem for the fluid flow

that is induced inside the droplet, and solve the problem for the motion of the particles

within the droplet for a general Ĵ = Ĵ(r̂).

126



Chapter 5. The Deposition from an Evaporating Droplet

5.3 Droplet evolution

We nondimensionalise and scale the variables according to (2.13) with L̂ = R̂0 for

the droplet, and similarly for the atmosphere except that ẑ = R̂0z
a; in addition we

introduce the scaling

Î = D̂(ĉsat − ĉ∞)L̂I. (5.4)

We take the droplet to evaporate with a pinned contact line, i.e. in the CR mode,

and so the free-surface profile given by (5.2) must satisfy h(1, t) = 0 and ∂h/∂r = −θ at

r = 1; in addition, h must be finite at r = 0, and is therefore of the familiar paraboloidal

form

h =
θ(1− r2)

2
. (5.5)

For the purpose of this Chapter, it is convenient to write h as a separable function of

r and t, namely

h(r, t) = θ(t)η(r) where η =
1− r2

2
, (5.6)

and to define the incomplete radial integral of η, denoted by H = H(r), as

H =

∫ r

0
η(r̃) r̃ dr̃ =

1− (1− r2)2

8
, (5.7)

and we note that H(1) = 1/8. The volume V = V (t) of the droplet is given by

V = 2π

∫ 1

0
h r dr = 2πθH(1) =

πθ

4
. (5.8)

We note that (5.5) and (5.8) correspond to the solutions given by (2.17) and (2.19) in

Chapter 2 when R ≡ 1. The droplet evolves according to the global mass-conservation

condition
dV

dt
= −2π

∫ 1

0
J r dr = −2πI(1), (5.9)

so that, in particular, the (constant) total evaporative flux is given by

F = 2πI(1). (5.10)
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The initial values of θ and V are given by

θ = 1, V = V0 =
π

4
at t = 0. (5.11)

Substituting the expression for V given in (5.8) into (5.9) yields

dV

dt
= 2πH(1)

dθ

dt
=
π

4

dθ

dt
= −2πI(1), (5.12)

and so the evolution of the droplet is given by

h = θη, θ = 1− I(1)

H(1)
t, V =

π

4

(
1− I(1)

H(1)
t

)
. (5.13)

The droplet has completely evaporated (i.e. θ = V = 0) at t = tlifetime given by

tlifetime =
H(1)

I(1)
. (5.14)

5.4 The hydrodynamic problem

So far in this thesis we have considered only leading-order solutions in the limit Ca∗ → 0.

As discussed in Chapter 2, for Bo � 1 and Ca∗ � 1 the Stokes equations reduce to

the statement that the (scaled) leading-order pressure p satisfies ∇p = 0. However, in

order to determine the flow within the droplet, we must consider terms that are at first

order in Ca∗ � 1. At leading order in θ̂0 � 1 and Bo� 1 and at first order in Ca∗ � 1,

the Stokes equations reduce to the statement that the (scaled) leading-order velocity

and first-order pressure within the droplet, denoted by u = (u(r, z, t), 0, w(r, z, t)) and

p(1) = p(1)(r, z, t), respectively, satisfy (see, for example, Wray et al. [306])

∂2u

∂z2
=
∂p(1)

∂r
,

∂p(1)

∂z
= 0, (5.15)

in which the velocity û = (û, 0, ŵ) of the fluid has been scaled according to

û =
D̂(ĉsat − ĉ∞)

ρ̂θ̂0R̂0

u, ŵ =
D̂(ĉsat − ĉ∞)

ρ̂R̂0

w. (5.16)
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In particular, equation (5.15) shows that p(1) is independent of z, i.e. p(1) = p(1)(r, t).

As we shall see, p(1) is the only first-order term required to describe the leading-order

problems for the hydrodynamic fluid flow and the transport of particles within the

droplet. Therefore, we do not introduce superscripts “(0)” on the leading-order velocity

components u and w for brevity.

The velocity u is subject to the usual mass-continuity condition, namely

1

r

∂(ru)

∂r
+
∂w

∂z
= 0, (5.17)

as well as no-slip and no-penetration conditions on the substrate, i.e. u(r, 0, t) =

w(r, 0, t) = 0. In addition, the governing equations (5.15) are subject to the inter-

facial stress-balance condition

∂u

∂z
= 0 at z = h, (5.18)

as well as the kinematic condition

∂h

∂t
+

1

r

∂(rQ)

∂r
= −J, (5.19)

where Q = Q(r, t), defined by

Q =

∫ h

0
u dz, (5.20)

is the local radial fluid flux. For the purpose of this Chapter, it is convenient to express

Q in terms of I and H given by (5.3) and (5.7), respectively; integrating the kinematic

condition (5.19) with respect to r and rearranging gives

Q = −1

r

∫ r

0

(
J +

∂h

∂t

)
r̃ dr̃ = −1

r

(∫ r

0
J(r̃) r̃ dr̃ +

dθ

dt

∫ r

0
η(r̃) r̃ dr̃

)
, (5.21)

and hence

Q =
I(1)H(r)−H(1)I(r)

rH(1)
. (5.22)
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The depth-averaged radial velocity, denoted by ū = ū(r, t), is defined by

ū =
1

h

∫ h

0
u dz =

Q

h
. (5.23)

Solving equations (5.15) and (5.17), subject to (5.18), and the no-slip and no-

penetration conditions on the substrate, leads to (see, for example, Boulogne et al. [32])

u =
1

2

∂p(1)

∂r

(
z2 − 2hz

)
, w =

z2

6r

[
∂p(1)

∂r

(
3r
∂h

∂r
+ 3h− z

)
+ r

∂2p(1)

∂r2
(3h− z)

]
.

(5.24)

Substituting the expression for u given in (5.24a) into (5.20) yields the solution for Q,

namely

Q = −h
3

3

∂p(1)

∂r
. (5.25)

For a given local evaporative flux J , the evolution of the droplet may be calculated

from (5.12). Then, the solution for Q is given by (5.22), the solution for p(1) is obtained

by integrating (5.25), and u and w are given by (5.24).

5.5 The particle-transport problem

We will now derive the equations governing the transport of the particles within the

droplet as it evaporates. Specifically, we investigate the transport of particles via the

evolution of the concentration of particles and the evolution of the total mass of particles

in the droplet.

5.5.1 Concentration of particles

The concentration of particles within the droplet, denoted by φ̂ = φ̂(r̂, ẑ, t̂), satisfies

the (scaled) advection-diffusion equation

Pe∗p

(
∂φ

∂t
+ u

∂φ

∂r
+ w

∂φ

∂z

)
= θ̂2

0

(
1

r

∂

∂r

(
r
∂φ

∂r

))
+
∂2φ

∂z2
, (5.26)

in which φ̂ has been nondimensionalised according to φ̂ = φ̄0φ, where φ̄0 is the volume-

averaged initial concentration of particles within the droplet, and Pe∗p is the appropri-
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ately defined scaled particle Péclet number, namely

Pe∗p = θ̂2
0Pep = θ̂2

0

L̂Û

D̂p

=
θ̂0D̂ (ĉsat − ĉ∞)

ρ̂D̂p

, (5.27)

where D̂p is the constant diffusivity of the particles in the fluid. We note that, similarly

to the mass Péclet number in Chapter 2, the particle Péclet number Pep characterises

the ratio of diffusive and advective particle transport.

The governing equation (5.26) is subject to conditions of no flux of particles at the

substrate,
∂φ

∂z
= 0 on z = 0, (5.28)

or through the free surface of the droplet,

n · ∇φ = Pep φJ on z = h, (5.29)

where n denotes the outward unit normal to the free surface of the droplet.

We consider situations in which the vertical diffusion of particles within the droplet

is fast relative to evaporation. More specifically, we consider situations in which the

scaled particle Péclet number satisfies

θ̂2
0 � Pe∗p � 1, (5.30)

corresponding to a large (but not too large) particle Péclet number, i.e. 1� Pep � θ̂−2
0

(see, for example, Wray et al. [306]). We therefore seek asymptotic solutions for φ of

the form

φ = φ(0) + Pe∗pφ
(1) +O

(
Pe∗p

2
)
, (5.31)

in the limit Pe∗p → 0. In Section 5.8 we will consider situations in which both the radial

and vertical diffusion of particles within the droplet is slow relative to evaporation,

corresponding to Pep � θ̂−2
0 and Pe∗p � 1.
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In the limit θ̂0 → 0 and at leading-order in Pe∗p � 1, (5.26), (5.28), and (5.29) give

∂2φ(0)

∂z2
= 0, (5.32)

∂φ(0)

∂z
= 0 on z = 0 and z = h, (5.33)

which shows that φ(0) is independent of z, specifically

φ(0) = φ(0)(r, t). (5.34)

At first order in Pe∗p � 1, (5.26), (5.28), and (5.29) give

∂2φ(1)

∂z2
=
∂φ(0)

∂t
+ u

∂φ(0)

∂r
, (5.35)

∂φ(1)

∂z
= 0 on z = 0, (5.36)

∂φ(1)

∂z
= φ(0)J on z = h. (5.37)

Integrating (5.35) with respect to z, subject to the boundary conditions (5.36) and

(5.37), and dropping the superscript “(0)” on φ for clarity, yields the following governing

equation for the leading-order concentration of particles φ (see, for example, Deegan

et al. [64], Wray et al. [306]):
∂φ

∂t
+ ū

∂φ

∂r
=
φJ

h
, (5.38)

where ū is given by (5.23). We note that determining the leading-order evolution of the

concentration of particles from (5.38) does not require the solution for u = (u, 0, w).

Equation (5.38) may be solved via the method of characteristics:

dφ

dt
=
φJ

h
on the characteristics determined by

dr

dt
= ū, (5.39)

subject to a prescribed initial condition φ(r, 0) = φ0(r). Using the expressions for h
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and dθ/dt given by (5.6) and (5.12), equations (5.39) can be expressed as

dr

dθ
=

dr/dt

dθ/dt
= −H(1)Q(r)

θI(1)η(r)
,

dφ

dr
=

dφ/dt

dr/dt
=
J(r)φ

Q(r)
. (5.40)

Integration of (5.40) yields the implicit solution

log θ = −
∫ r

r0

I(1)η(r̃)

H(1)Q(r̃)
dr̃, log

φ

φ0
=

∫ r

r0

J(r̃)

Q(r̃)
dr̃, (5.41)

where r0 = r0(r, t) denotes the initial radial position of a particle at time t = 0 that

subsequently travels to position r at time t, which is determined by solving (5.41a).

To simplify the solution for φ, we note that adding the two equations in (5.41), and

recalling that Q may be expressed in the form (5.22), yields

log θ + log
φ

φ0
= −

∫ r

r0

I(1)η(r̃)−H(1)J(r̃)

H(1)Q(r̃)
dr̃

= −
∫ r

r0

1

r̃Q(r̃)

d (r̃Q(r̃))

dr̃
dr̃

= log
r0Q(r0)

rQ(r)
, (5.42)

and hence the solution of the characteristic equations for the concentration of particles

φ from (5.38) may be written in the form

∫ r

r0

I(1)η(r̃)

H(1)Q(r̃)
dr̃ = − log θ,

φ

φ0
=
r0Q(r0)

θrQ(r)
. (5.43)

Equations (5.43) will be used for calculating the concentration of particles φ in Sec-

tion 5.6. The corresponding analysis for the case of a separable time-dependent local

evaporative flux of the form J = J(r, t) = f(r)g(t) is given in Appendix A.

5.5.2 Mass of particles

If a particle is advected by the flow to the contact line before the end of evaporation

(i.e. for 0 < t < tlifetime) then the particle is deposited onto the substrate in a deposit

ring at the contact line. If a particle is not advected to the contact line, then, in

the absence of additional effects (such as particle adsorption onto the substrate) the
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particle is deposited elsewhere on the substrate at the end of the evaporation (i.e. at

t = tlifetime). Therefore, depending on the nature of the flow, the total mass of particles

within the bulk of the droplet may either be constant or a decreasing function of time.

The mass of particles in the bulk of the droplet at time t̂, denoted by M̂drop =

M̂drop(t̂), satisfies

Mdrop = 2π

∫ 1

0
φ(r, t)h(r, t) r dr, (5.44)

where M̂drop has been nondimensionalised according to M̂drop = φ̄0θ̂0R̂
3
0Mdrop and φh

is the mass of particles per unit area within the footprint of the droplet. Alternatively,

Mdrop may be expressed as

Mdrop = 2π

∫ r0(1,t)

0
φ0(r)h(r, 0) r dr, (5.45)

where r0(1, t) denotes the initial radial position of a particle that has subsequently

travelled to the contact line at r = 1, where it has then been deposited at time t,

determined by solving (5.43a).

The initial mass of particles in the droplet, defined by Mdrop(0) = M0, is given by

M0 = 2π

∫ 1

0
φ0(r)h(r, 0) r dr. (5.46)

The mass of particles in the deposit ring at time t, denoted by Mring = Mring(t), is

given by

Mring = 2π

∫ t

0

(
φ(r, t̃)Q(r, t̃) r

)∣∣∣
r=1

dt̃, (5.47)

where (φQr)|r=1 is the flux of particles into the contact line r = 1 at time t. Alterna-

tively, Mring may be expressed as (see, for example, Deegan et al. [64])

Mring = 2π

∫ 1

r0(1,t)
φ0(r)h(r, 0) r dr. (5.48)

Adding equations (5.45) and (5.48) confirms that the total mass of particles is conserved

(i.e. M0 = Mdrop +Mring).

For simplicity, throughout the remainder of this Chapter we will assume that the
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initial concentration of particles within the droplet is spatially-uniform, which therefore

takes the value φ0 ≡ 1, since φ is scaled by the volume-averaged initial concentration

of particles φ̄0. In this case the initial mass of particles in the droplet from (5.46) is

M0 = 2π

∫ 1

0
h(r, 0) r dr =

π

4
. (5.49)

5.6 A one-parameter family of spatially-varying local evap-

orative fluxes

In this Section we investigate the behaviour of the solutions described in Sections 5.2–

5.5 for a general one-parameter family of prescribed spatially-varying local evaporative

fluxes of the form J = J(r;n). In particular, we will discuss the general qualitative

behaviour of the solutions for the evolution of, flow within, and transport of particles

within, an evaporating sessile droplet depending on the parameter n.

5.6.1 The prescribed local evaporative flux J = J(r;n)

We consider the one-parameter family of local evaporative fluxes of the form

J = J0(n)(1− r2)n, (5.50)

where the exponent n satisfies n > −1, so that the total evaporative flux from (5.10),

namely F = 2πI(1), is finite. The local evaporative flux (5.50) has been chosen because

it captures a wide range of qualitatively different behaviours depending upon the choice

of the parameter n. In particular, it includes diffusion-limited evaporation when n =

−1/2, spatially-uniform evaporation when n = 0, evaporation that is proportional to

the time derivative of the free-surface profile (where there is no resultant fluid flow, as

explored experimentally by Deegan et al. [64]) when n = 1, and evaporation that is

concentrated at the centre of the droplet, as observed, for example, through masking

(see, for example, Vodolazskaya and Tarasevich [293]), in the limit n→∞.
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(a) (b)

Figure 5.2: Plot of the local evaporative flux J given by (5.52) for (a) n = −3/4, −1/2,
. . . , 3 and (b) n = 4, 8, . . . , 40. The arrows indicate the direction of increasing n and
the dashed line in (a) corresponds to n = 1.

To facilitate comparisons for different values of n, we choose the pre-factor

J0(n) =
4(n+ 1)

π
, (5.51)

so that the total evaporative flux is equal to the value in the diffusion-limited case,

corresponding to F = 4. In particular, as we shall see, this means that the lifetime of

the droplet is the same for all n > −1.

The one-parameter family of local evaporative fluxes that we shall investigate in

detail therefore takes the form

J =
4(n+ 1)

π
(1− r2)n. (5.52)

Figure 5.2 shows the behaviour of J for a range of values of n > −1. As Figure 5.2

shows, J increases monotonically with r from the centre of the droplet and diverges at

the contact line for −1 < n < 0, is constant for n = 0, and decreases monotonically

from the centre of the droplet to zero at the contact line for n > 0. In particular, at

the centre of the droplet

J(0, n) = J0(n) =
4(n+ 1)

π
, (5.53)

which simply increases linearly with n, and near the contact line the behaviour of J
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depends on the value of n as follows:

J =
22+n(n+ 1)

π
(1−r)n +O(1−r)n+1 →


∞ for − 1 < n < 0

4

π
for n = 0

0+ for n > 0


as r → 1−.

(5.54)

In the limits n → −1+ and n → ∞, the local evaporative flux J approaches zero

everywhere except in regions near r = 1 and r = 0, respectively. We will explore the

asymptotic behaviour of the evaporation in these particular limits in Section 5.7.

We also note the simple behaviour in the special case n = 1, in which J = −∂h/∂t =

8(1−r2)/π. In this case there is no resultant flow within the droplet and hence no local

radial fluid flux, i.e. u ≡ w ≡ ū ≡ Q ≡ 0. The concentration of particles φ from (5.43)

therefore takes the simple form φ = 1/θ, remaining spatially uniform and increasing

with t as the droplet evaporates. The distribution of the mass of particles per unit

area within the footprint of the droplet φh = h(r, 0) = (1 − r2)/2 is independent of t,

the mass of particles within the bulk of the droplet from (5.44), Mdrop ≡M0, remains

constant at its initial value throughout the evaporation, and all of the particles are

deposited onto the substrate at their initial radial position, forming a paraboloidal

deposit that is proportional to the initial profile of the droplet.

We will now discuss the solutions for a general value of n (> −1). As we shall see,

the solutions undergo a qualitative change in behaviour around the special case n = 1.

We will explore the asymptotic behaviour of the evaporation in the limit n → 1± in

Section 5.7.

5.6.2 Droplet evolution

With (5.52), the radially-integrated flux I defined by (5.3) is

I =

∫ r

0

4(n+ 1)(1− r̃)nr̃
π

dr̃ =
2

π

[
1− (1− r2)n+1

]
, (5.55)
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and we note that I(1) = 2/π. Substituting the expression for I(1) given in (5.55)

and H(1) given in (5.7) into (5.12) and (5.14) yields the evolution and lifetime of the

droplet, namely

h = θη, V =
π

4
− 4t, θ = 1− 16

π
t, (5.56)

tlifetime =
π

16
. (5.57)

In particular, due to the choice of the pre-factor J0(n) given in (5.51), V , θ, and tlifetime

are independent of the parameter n. In addition, (5.56) and (5.57) are simply the well-

known solutions for a pinned droplet undergoing diffusion-limited evaporation (see, for

example, Wilson and Duffy [303]).

5.6.3 The flow within the droplet

The solution (5.22) for the local radial fluid flux Q is

Q =
2(1− r2)

πr

[
(1− r2)n − (1− r2)

]
, (5.58)

which, with (5.25), leads to the solution for the first-order pressure p(1), namely

p(1) = − 24

πθ3

[
(2− n)r2

3F2

(
1, 1, 3− n; 2, 2; r2

)
+ log (1− r2)

]
, (5.59)

where 3F2 (a1, a2, a3; b1, b2;x) is the generalised hypergeometric function defined by

3F2 (a1, a2, a3; b1, b2;x) =
∞∑
k=0

(a1)k (a2)k (a3)k
(b1)k (b2)k

xk

k!
where (p)k =

Γ(p+ k)

Γ(p)
, (5.60)

and Γ(p) is the Gamma function defined by

Γ(p) =

∫ ∞
0

qp−1 e−q dq. (5.61)

Figure 5.3 shows the behaviour of Q for a range of values of n > −1.

Substituting the expressions for h given in (5.5) and p(1) given in (5.59) into the
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(a) (b)

Figure 5.3: Plots of the local radial fluid flux Q given by (5.58) for (a) n = −3/4, −1/2,
. . . , 1 and (b) n = 2, 4, . . . , 20. The arrows indicate the direction of increasing n.

expressions (5.24) leads to the solutions for u and w, namely

u =
24

πθ3(1− r2)2r

[
(1− r2)n − (1− r2)

][
θ(1− r2)z − z2

]
, (5.62)

and

w = − 8z2

πθ3(1− r2)3

[
2(1− r2)z + (1− r2)n

{
3θ(1− n)(1− r2)− 2(2− n)z

}]
. (5.63)

It is straightforward to deduce from (5.62) that u is positive, corresponding to radially-

outward flow, for −1 < n < 1, is zero, i.e. no flow, for n = 1, and is negative,

corresponding to radially-inward flow, for n > 1, for all 0 < r < 1 and 0 < t < tlifetime.

It may also be shown from equation (5.63) that the flow in the z direction is downward

for −1 < n < 1 and is zero for n = 1. For n > 1, the sign of w is dependent on the

values of r, z, n, and t as follows:

w


> 0 for 0 < z < zcrit,

= 0 for z = zcrit,

< 0 for zcrit < z < h.

 where zcrit =
3θ(1− n)(1− r2)

2 (2− n− (1− r2)1−n)
. (5.64)

Figure 5.4 shows instantaneous streamlines of the flow within a droplet for (a) n = −1/2

and (b) n = 2 at an illustrative time t = tlifetime/2 = π/32; these are typical values of n
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(a) (b)

Figure 5.4: Instantaneous streamlines of the flow within a droplet for (a) n = −1/2
and (b) n = 2 at t = π/32.

which represent the qualitatively different behaviour for (a) −1 < n < 1 and (b) n > 1,

respectively.

As we have already described in Section 5.5, the depth-averaged radial velocity ū

is sufficient to describe the evolution of the concentration of particles at leading-order,

and hence the evolution of the total mass of particles in the droplet. Substituting the

expressions for h given in (5.5) and Q given in (5.58) into the solution (5.23) for ū

yields

ū =
4

πθr

[
(1− r2)n − (1− r2)

]
. (5.65)

Figure 5.5 shows the behaviour of ūθ, which is independent of t, for a range of values

of n > −1. Equation (5.65) shows that ū is strictly positive for −1 < n < 1, as shown

in Figure 5.5(a), is identically zero when n = 1, and is strictly negative for n > 1, as

shown in Figure 5.5(b), for all 0 < r < 1. In addition, (5.65) shows that ū diverges with

t as t → t−lifetime for n > −1 and n 6= 1. The local evaporative flux J and local radial

fluid flux Q are constant in time t; however, as the droplet evaporates, the contact

angle θ, and hence the free-surface profile h, of the droplet decrease and, in order to

replenish the fluid to maintain a constant fluid flux, ū must increase with t, eventually

diverging as h → 0+. This divergence in the depth-averaged radial velocity towards

the end of the lifetime of the droplet (sometimes referred to as the rush-hour effect)

has been previously identified as a feature of evaporation-induced radially-outward
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(a) (b)

Figure 5.5: Plots of ūθ given by (5.65) for (a) n = −3/4, −1/2, . . . , 1 and (b) n = 2,
4, . . . , 20. The arrows indicate the direction of increasing n.

flow, for example, in the special case of diffusion-limited evaporation when n = −1/2,

experimentally by Hamamoto et al. [105] and Marin et al. [178, 179], as discussed in

Chapter 1, as well as analytically by Deegan et al. [64].

Near the centre of the droplet

ū =
4r(1− n)

πθ
+O(r3)→


0+ for − 1 < n < 1

0 for n = 1

0− for n > 1

 as r → 0+. (5.66)

Near the contact line the behaviour of ū depends on the value of n as follows:

ū→



∞ for − 1 < n < 0

4

πθ
for n = 0

0+ for 0 < n < 1

0 for n = 1

0− for n > 1


as r → 1−. (5.67)

Equation (5.67) shows that ū exhibits three qualitatively different behaviours at the

contact line; specifically, ū is singular for −1 < n < 0, finite and non-zero for n = 0,

and zero for n > 0, in line with the corresponding behaviour of J near the contact line.
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5.6.4 The transport of particles within the droplet

For the chosen one-parameter family of fluxes (5.52), the integral in (5.43a) can be

evaluated in closed form to give an implicit solution for the time t = t(r0, r) it takes

for a particle at initial radial position r0 to travel to the radial position r, namely

r0(r, t) =

[
1− θ1/2

(
θ(n−1)/2 − 1 + (1− r2)1−n

)1/(1−n)
]1/2

. (5.68)

For the case of radially-outward flow when −1 < n < 1, the time at which a particle

at initial radial position r0 is deposited at the contact line, denoted by t(r0, 1) =

tCLdeposit(r0), is obtained by evaluating equation (5.68) at r = 1 as follows:

r0(1, t) =

[
1−

(
1− θ(1−n)/2

)1/(1−n)
]1/2

for − 1 < n < 1, (5.69)

which recovers the solution for tCLdeposit obtained by Deegan et al. [64] and Boulogne

et al. [32] for the special cases of diffusion-limited evaporation when n = −1/2 and

spatially-uniform evaporation when n = 0, respectively. For the case of no radial flow

when n = 1 only a particle that is initially at the contact line is deposited at the contact

line at the end of evaporation, i.e. tCLdeposit = tlifetime for r0 = 1, and for the case of

radially-inward flow when n > 1 no particles are deposited at the contact line. Figure

5.6 shows the behaviour of tCLdeposit/tlifetime as a function of r0 for a range of values

of −1 < n < 1. For the case of radially-outward flow when −1 < n < 1, all of the

particles are eventually transferred to the deposit ring at the contact line throughout

the evaporation. In particular, as Figure 5.6 shows, particles that are initially close to

the contact line are deposited first and particles that are initially close to the centre

of the droplet are deposited towards the end of evaporation, i.e. tCLdeposit decreases

monotonically from tCLdeposit = tlifetime at r0 = 0 to tCLdeposit = 0 at r0 = 1, as

expected.

Substituting the expressions for Q given in (5.58) and r0 given in (5.68) into (5.43b)
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Figure 5.6: Plot of tCLdeposit/tlifetime as a function of r0 for n = −3/4, −1/2, . . . , 3/4.
The arrow indicates the direction of increasing n.

yields an explicit solution for the concentration of particles φ, namely

φ =

[
1 +

θ(n−1)/2 − 1

(1− r2)1−n

](n+1)/(1−n)

, (5.70)

which recovers the solutions obtained by Zheng [320] for the special cases of diffusion-

limited evaporation when n = −1/2 and spatially-uniform evaporation when n = 0.

Figure 5.7 shows the profile of φ at an illustrative time t = tlifetime/2 = π/32 for a

range of values of n > −1. The concentration of particles φ increases monotonically

from the centre of the droplet to infinity at the contact line for −1 < n < 1, as shown

in Figure 5.7(a), is spatially-uniform for n = 1, and decreases monotonically from the

centre of the droplet to 1 at the contact line when n > 1, as shown in Figure 5.7(b),

for all 0 < t < tlifetime. In particular, at the centre of the droplet

φ(0, t) =
1

θ(n+1)/2
, (5.71)

which increases monotonically with n, and throughout the evaporation, and near the
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(a) (b)

Figure 5.7: Profile of the concentration of particles φ given by (5.70) at t = π/32
plotted as a function of r for (a) n = −3/4, −1/2, . . . , 1 and (b) n = 3/2, 2, . . . , 6.
The dashed lines indicate the initial concentration of particles at t = 0. The arrows
indicate the direction of increasing n.

contact line the behaviour of φ depends on the value of n, as follows:

φ→


∞ for − 1 < n < 1

1

θ
for n = 1

1+ for n > 1


as r → 1−. (5.72)

From (5.5) and (5.70), the distribution of the mass of particles per unit area within

the droplet is given by

φh =
θ(1− r2)

2

[
1 +

θ(n−1)/2 − 1

(1− r2)1−n

](n+1)/(1−n)

. (5.73)

Figure 5.8 shows the evolution of φh throughout the evaporation for (a) n = −1/2, (b)

n = 0, (c) n = 1/2, and (d) n = 2; these are typical values of n which represent the

qualitatively different behaviour for (a) −1 < n < 0, (b) n = 0, (c) 0 < n < 1, and (d)

n > 1. As previously discussed, for the special case when n = 1, φh is independent of

t and so is omitted because of its simplicity. Near the centre of the droplet

φ(0, t)h(0, t) =
θ(1−n)/2

2
, (5.74)
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(a) (b)

(c) (d)

Figure 5.8: The distribution of the mass of particles φh at times t = (0, 1/10, . . . ,
9/10) × tlifetime for (a) n = −1/2, (b) n = 0, (c) n = 1/2, and (d) n = 2. The dashed
lines indicate the initial distribution of the mass of particles within the droplet at t = 0
given by h(r, 0). The arrows indicate the direction of increasing t.
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which decreases monotonically with t for −1 < n < 1 as particles are advected towards

the contact line, as shown in Figures 5.8(a–c), is constant for n = 1, and increases

monotonically for n > 1 as particles are advected towards the centre of the droplet, as

shown in Figure 5.8(d). Near the contact line φh exhibits different behaviour depending

on the value of n, as follows:

φh→



0 for − 1 < n < 0
√
θ − θ
2

for n = 0

∞ for 0 < n < 1

0 for n ≥ 1


as r → 1−. (5.75)

Equation (5.75) shows that φh = 0 at the contact line for −1 < n < 0 and n ≥ 1. The

result for −1 < n < 0 may seem counter-intuitive because of the radially-outward flow;

however, in this case the rate at which particles are advected towards the contact line is

balanced by the rate at which particles are transferred to the deposit ring. For n = 0,

φh is a non-zero function of t at the contact line for all 0 < t < tlifetime, as shown in

Figure 5.8(b), and for 0 < n < 1, φh is singular at the contact line, as shown in Figure

5.8(c). In both of these cases, the rate at which particles are advected towards the

contact line is greater than the rate at which particles are transferred to the deposit

ring.

Substituting the solution for r0(1, t) given by (5.69) into the solutions for Mdrop

(5.45) and Mring (5.48) yields

Mdrop = M0


1− (1− θ(1−n)/2)2/(1−n) for − 1 < n < 1

1 for n ≥ 1

 , (5.76)

Mring = M0


(1− θ(1−n)/2)2/(1−n) for − 1 < n < 1

0 for n ≥ 1

 , (5.77)

where we recall that M0 = π/4 from (5.49). Figure 5.9 shows the evolutions of

Mdrop/M0 and Mring/M0 as functions of t/tlifetime for a range of values of n. In par-
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(a) (b)

Figure 5.9: Evolution of (a) Mdrop/M0 from (5.76) and (b) Mring/M0 from (5.77) as
functions of t/tlifetime for n = −9/10, −8/10, . . . , 1. The arrows indicate the direction
of increasing n.

ticular, as Figure 5.9 shows, for −1 < n < 1, Mdrop is a decreasing function of time,

reaching zero at t = tlifetime, i.e. all of the particles are eventually transferred to the

deposit ring at the contact line, whereas for n ≥ 1, Mdrop remains constant at its initial

value, i.e. all of the particles remain within the footprint of the droplet throughout

the evaporation. From (5.76) and (5.77) the final distribution of the particles after the

droplet has evaporated is given by Mdrop = 0 and Mring = M0 when −1 < n < 1, and

by Mdrop = M0 and Mring = 0 when n ≥ 1.

We note that for −1 < n < 1, the transfer of particles to the deposit ring, i.e. the

growth of Mring, becomes increasingly “rushed” towards the end of the lifetime of the

droplet as n increases, approaching an instantaneous transfer at t = tlifetime as n→ 1−,

as shown in Figure 5.9. For 0 < n < 1, J is zero at the contact line and the depth-

averaged radially outward flow is positive for 0 < r < 1 and is zero at the contact line.

In this case, a particle is advected radially-outward towards the contact line; however,

as it gets closer to the contact line, it slows down. Therefore, particles build up near

the contact line which results in a non-zero value of φh locally. The divergence in ū as

t→ t−lifetime causes the eventual “rushed” transfer of particles to the deposit ring.
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5.7 Asymptotic behaviour in three particular limits

We will now examine the asymptotic behaviour of the evaporation for three particular

limits in detail. Specifically, we shall describe the behaviour when the local evaporative

flux J approaches zero everywhere except in a narrow region near the contact line,

the time derivative of the free-surface profile −∂h/∂t, and zero everywhere except in

a narrow region near the centre of the droplet, corresponding to the limits n → −1+,

n→ 1, and n→∞, respectively.

5.7.1 The limit n→ −1+

In the limit n→ −1+ the local evaporative flux J given by (5.52) takes the form

J =
4(n+ 1)

π(1− r2)
+

4

π(1− r2)
log (1− r2)(n+1)2+O(n+1)3 → 0+ as n→ −1+. (5.78)

In this limit J approaches zero everywhere except in a narrow boundary layer of thick-

ness O(n + 1) near the contact line and is singular at r = 1. The corresponding

behaviour of ū given by (5.65) is

ū =
4r(2− r2)

πθ(1− r2)
+

4 log (1− r2)

πθr(1− r2)
(n+ 1) +O(n+ 1)2 → 4r(2− r2)

πθ(1− r2)

−
as n→ −1+,

(5.79)

which is independent of n at leading order. At leading order, the evaporation from the

boundary layer near r = 1 induces a flow within the droplet for which ū is non-zero and

monotonically increases from 0 at the centre of the droplet to infinity at the contact

line. Figure 5.10 shows the behaviour of J and ūθ for n = −9/10, comparing the exact

expressions with the leading-order asymptotic expressions in the limit n→ −1+.

The behaviour of φ from (5.70) is

φ = 1 +
1

2
log

[
θ−1 − 1 + (1− r2)2

(1− r2)2

]
(n+ 1) +O(n+ 1)2 → 1+ as n→ −1+. (5.80)

Away from r = 1, φ is spatially uniform and constant at leading order, but the expan-

sion in (5.80) is non-uniform and φ diverges logarithmically at first order as r → 1−.

148



Chapter 5. The Deposition from an Evaporating Droplet

(a) (b)

Figure 5.10: Plot of (a) J and (b) ūθ for n = −9/10, comparing the exact expressions
from (5.52) and (5.65) (solid lines) with the leading-order asymptotic expressions in
the limit n→ −1+ from (5.78) and (5.79) (dashed lines).

Figure 5.11 shows the behaviour of φ for n = −9/10, comparing the exact expression

with the asymptotic expression in the limit n→ −1+ up to and including the O(n+ 1)

term. We note that, since the leading-order behaviour of φ is independent of n, we plot

the asymptotic expression including the next order term. From (5.5) and (5.80), the

leading-order term of φh ∼ h is simply equal to the free-surface profile of the droplet in

this limit. Therefore, at leading order, the rate at which particles are being advected

radially outward by the flow matches the rate at which particles are transferred to the

deposit ring, as well as the rate at which the free-surface profile of the droplet decreases

due to the evaporation.

The corresponding behaviours of Mdrop and Mring, from (5.76) and (5.77), respec-

tively, are

Mdrop = M0θ −
M0

2

[
(1− θ) log (1− θ) + θ log θ

]
(n+ 1) +O(n+ 1)2, (5.81)

Mring = M0(1− θ) +
M0

2

[
(1− θ) log (1− θ) + θ log θ

]
(n+ 1) +O(n+ 1)2, (5.82)

and hence

Mdrop →M0θ
+ and Mring →M0(1− θ)− as n→ −1+, (5.83)
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Figure 5.11: Plot of φ for n = −9/10, comparing the exact expression from (5.70) (solid
lines) with the asymptotic expression in the limit n → −1+ up to and including the
O(n + 1) term from (5.80) (dashed lines) for t = (0, 1/10, . . . , 9/10) × tlifetime. The
arrow indicates the direction of increasing t.

which are independent of n at leading order. Figure 5.12 shows the leading-order

evolutions of Mdrop/M0 and Mring/M0 as functions of t/tlifetime. At leading order,

Mdrop and Mring vary linearly in t via their dependence on θ, as shown in Figure 5.12,

and satisfy Mdrop → 0+ and Mring → M−0 as t → t−lifetime, i.e. all of the particles are

transferred to the deposit ring at the contact line.

5.7.2 The limit n→ 1

As previously discussed, there is a qualitative change in the behaviour of the solutions

described in Section 5.6 at the value n = 1. In the limit n → 1, the local evaporative

flux J from (5.52) takes the form

J =
8(1− r2)

π
+

4(1− r2)

π

[
1 + 2 log (1− r2)

]
(n− 1) +O(n− 1)2, (5.84)

and hence

J →


8(1− r2)

π

±
for 0 ≤ r < rcrit

8(1− r2)

π

∓
for rcrit < r ≤ 1

as n→ 1±, (5.85)

where

rcrit = (1− e−1/2)1/2 ' 0.6273 (5.86)
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Figure 5.12: Leading-order evolutions of Mdrop/M0 and Mring/M0 as functions of
t/tlifetime in the limit n→ −1+ from (5.83).

is the critical value of r at which the local evaporative flux J is equal to −∂h/∂t at

leading-order. The corresponding behaviour of ū given by (5.65) is

ū =
4(1− r2) log (1− r2)

πθr
(n− 1) +O(n− 1)2 → 0∓ as n→ 1±, (5.87)

which changes sign depending upon the direction of approach to the value n = 1.

Figure 5.13 shows the behaviour of J and ūθ for n = 4/5 and 6/5, comparing the exact

expressions with the asymptotic expressions in the limit n → 1± up to and including

the O(n− 1) terms. We note that, since J and ūθ are equal to the exact solution when

n = 1 at leading-order, we plot the asymptotic expressions including the next order

terms. We have chosen to evaluate the expressions at n = 4/5 and n = 6/5 to show a

discernible difference between the asymptotic and exact expressions.

The behaviour of φ from (5.70) is

φ =
1

θ
+

log θ

2θ

[
1 + 2 log (1− r2)

]
(n− 1) +O(n− 1)2, (5.88)

and hence

φ→


1

θ

±
for 0 ≤ r < rcrit

1

θ

∓
for rcrit < r < 1

as n→ 1±. (5.89)

Figure 5.14 shows the behaviour of φ for n = 4/5 and n = 6/5 at an illustrative

151



Chapter 5. The Deposition from an Evaporating Droplet

(a) (b)

Figure 5.13: Plots of (a) J and (b) ūθ at n = 4/5 and n = 6/5 comparing the exact
expressions from (5.52) and (5.65) (dashed lines) and the asymptotic expressions in the
limit n → 1± up to and including the O(n − 1) terms from (5.84) and (5.87) (dashed
lines). The dotted lines correspond the exact solution when n = 1.

time t = tlifetime/2 = π/32, comparing the exact expressions with the asymptotic

expressions in the limit n → 1± up to and including the O(n − 1) term. Again, since

φ is equal to the exact solution when n = 1 at leading-order, we plot the asymptotic

expression including the next order term. From (5.88), φ is spatially-uniform at leading

order, increasing with t via the dependence on θ, but the expansion is non-uniform and

diverges logarithmically near the contact line as n → 1− and approaches the initial

concentration 1 near the contact line as n→ 1+, as shown in Figure 5.14. The change

from positive ū when n → 1− to negative ū when n → 1+ results in the qualitative

change in behaviour of the concentration of particles within the droplet.

The corresponding behaviour for Mdrop and Mring from (5.76) and (5.77), respec-

tively, is

Mdrop = M0

[
1− θ1/2

(
(n− 1)

2
log θ

)2/(1−n)
]

+O (n− 1)→M−0 as n→ 1−,

(5.90)

Mring = M0

[
θ1/2

(
(n− 1)

2
log θ

)2/(1−n)
]

+O (n− 1)→ 0+ as n→ 1−, (5.91)

with Mdrop ≡ M0 and Mring ≡ 0 for any n ≥ 1. Figure 5.15 shows the evolutions of

Mdrop/M0 and Mring/M0 for n = 4/5, comparing the exact expressions with the leading-
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Figure 5.14: Plot of φ for n = 4/5 and n = 6/5 at t = π/32 comparing the exact
expressions from (5.70) (dashed lines) with the the asymptotic expressions in the limit
n→ 1± up to and including the O(n− 1) term from (5.88) (dashed lines). The dotted
lines correspond the exact solution when n = 1.

order asymptotic expressions in the limit n → 1−, where the dotted lines correspond

to the solution for any n ≥ 1. At leading order, Mdrop and Mring approach M0 and 0,

respectively, as n→ 1−. However, the expansions in (5.90) and (5.91) are non-uniform,

and the mass of particles within the droplet decreases to zero as t→ t−lifetime, as shown

in Figure 5.15(a).

5.7.3 The limit n→∞

We will now consider the limit n→∞, in which J approaches zero everywhere except

in a narrow region near the centre of the droplet. The local evaporative flux J from

(5.52) takes the form

J ∼ 4n

π
e−nr

2
as n→∞ (5.92)

at leading order, which shows that there is a narrow internal layer of width r =

O(1/
√
n) � 1 near the centre of the droplet in which J = O(n) � 1 and outside

of which J is exponentially small. The corresponding leading-order behaviour of ū

given by (5.65) is

ū ∼ − 4

πθr

(
1− r2 − e−nr

2
)

as n→∞, (5.93)
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(a) (b)

Figure 5.15: Evolutions of (a) Mdrop/M0 and (b) Mring/M0 as functions of t/tlifetime

for n = 4/5 comparing the exact expressions from (5.76) and (5.77) (solid lines) with
the leading-order asymptotic expressions in the limit n → 1− from (5.90) and (5.91)
(dashed lines). The dotted lines correspond to the exact solution when n = 1, i.e. (a)
Mdrop = M0 = π/4 and (b) Mring = 0.

which shows that ū = O(
√
n) → −∞ in the narrow internal layer of width r =

O(1/
√
n) � 1 near the centre of the droplet and ū ∼ −4(1 − r2)/(πθr) = O(1) away

from r = 0. Figure 5.16 shows the behaviour of J and ūθ for n = 10, comparing the

exact expressions with the leading-order asymptotic expressions in the limit n→∞.

The leading-order behaviour of φ from (5.70) is

φ ∼
[
1− e−nr

2
(

1− θ(n−1)/2
)]−1−2/n

as n→∞, (5.94)

which shows that φ increases monotonically with t via its dependence on θ in the narrow

internal layer of width r = O(1/
√
n) � 1 near the centre of the droplet, and remains

constant at the initial value of 1 away from r = 0. Figure 5.17 shows the behaviour

of φ for n = 10, comparing the exact expression with the leading-order asymptotic

expression in the limit n → ∞. In accordance with the behaviour for all n > 1,

Mdrop(t) ≡M0 and Mring(t) ≡ 0 in this limit.

5.8 Particle paths

So far in this Chapter we have considered the transport of particles within the droplet

for situations in which the scaled particle Péclet number Pe∗p satisfies (5.30), correspond-
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(a) (b)

Figure 5.16: Plots of (a) J and (b) ūθ for n = 10 comparing the exact expressions from
(5.52) and (5.65) (solid lines) with the leading-order asymptotic expressions in the limit
n→∞ from (5.92) and (5.93) (dashed lines).

Figure 5.17: Plot of φ for n = 10, comparing the exact expression from (5.70) (solid
lines) with the leading-order asymptotic approximation in the limit n→∞ from (5.94)
(dashed lines) for t = (0, 1/10, . . . , 9/10)× tlifetime. The arrow indicates the direction
of increasing t.
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ing to a particle Péclet number Pep that is large (but not too large), i.e. 1� Pep � θ̂−2
0 .

In this situation the vertical and radial transport of particles within the droplet are

dominated by diffusion and advection, respectively, as described in Subsection 5.5.1. In

this Section we will consider situations in which both the radial and vertical diffusion

of particles within the droplet are slow relative to evaporation. More specifically, we

consider situations in which the scaled particle Péclet number satisfies

Pe∗p � 1, (5.95)

corresponding to a sufficiently large particle Péclet number, i.e. Pep � θ̂−2
0 .

For Pe∗p � 1 and Pep � θ̂−2
0 the transport of particles within the droplet is governed

purely by advection and we investigate the transport of particles via the paths of the

particles. In particular, the path (r, z) = (r(t), z(t)) taken by a particle as it is advected

by the flow within the droplet is governed by the ordinary differential equations (see,

for example, Kang et al. [132]):

dr

dt
= u,

dz

dt
= w for 0 ≤ z < h, (5.96)

for 0 < r < 1, subject to initial conditions of the form (r(0), z(0)) = (r0, z0), where

(r0, z0) is the initial position of a particle, and where u and w are given in (5.24).

Motivated by experimental observations for the motion of spherical particles (see, for

example, Yunker et al. [316]), we make the natural modelling assumption that if a

particle reaches the free surface of the droplet, then it thereafter stays on (but moves

along) the free surface, according to

dr

dt
= u|z=h,

dz

dt
= (w − J)|z=h =

∂h

∂t
+ u|z=h

∂h

∂r
on z = h, (5.97)

without disturbing the shape of the droplet or the flow within. We shall hereafter refer

to a particle reaching the free surface of the droplet as free-surface capture.

For the one-parameter family of spatially-varying local evaporative fluxes given by

(5.52), the particle paths satisfy the governing equations (5.96), and (5.97) if the particle
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reaches the free surface, where u and w are given by (5.62) and (5.63), respectively.

The nature of the solutions for u and w means that the governing equations for the

particle paths are coupled non-linear differential equations that must, in general, be

solved numerically for all n 6= 1.

For the special case n = 1 there is no flow within the droplet, i.e. u ≡ w ≡ 0, and so

particles remain at their initial positions (r0, z0). However, as the droplet evaporates

the free surface moves downward, and a particle initially at r = r0 and z = z0 is

captured by the free surface at time t = tcapture given by

tcapture =
π
(
1− r2

0 − 2z0

)
16(1− r2

0)
. (5.98)

Thereafter the particle moves vertically downwards on the descending free surface (i.e.

with no lateral motion), and is deposited onto the substrate at the end of the evap-

oration at r = r0 and z = 0. Therefore, as a consequence of the spatially-uniform

initial concentration of particles within the paraboloidal droplet, the particles form a

paraboloidal deposit at t = tlifetime.

For the general case −1 < n < 1 and n > 1 the governing equations (5.96) and

(5.97) were solved numerically. Figure 5.18 shows the path taken by a representative

particle that starts at the initial position (r0, z0) = (3/10, 3/10) for a range of values of

n > −1, and Figure 5.19 shows an example of twelve representative particle paths for (a)

n = −1/2 and (b) n = 2; these are typical values of n which represent the qualitatively

different behaviour for (a) −1 < n < 1 and (b) n > 1. Figure 5.18 confirms that the

particles end up at the contact line for −1 < n < 1 and at the centre of the droplet

for n > 1. Figure 5.19 shows that all particles will be captured by the free surface of

the droplet at time t = tcapture (denoted by the squares) before they are deposited onto

the substrate at time t = tdeposit, i.e. tcapture < tdeposit, for all n > −1. In particular,

for −1 < n < 1 the particles are advected downward and outward by the flow, as

illustrated in Figure 5.19(a); however, all of the particles are eventually captured by

the descending free surface, and thereafter move downward and outward towards the

contact line along the descending free surface. The same qualitative behaviour (i.e.
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Figure 5.18: Paths taken by a representative particle that starts at the initial position
(r0, z0) = (3/10, 3/10) for n = −3/4, −1/2, . . . , 1, 3/2, . . . , 6. The vertical dashed
line corresponds to the particle path for n = 1. The arrow indicates the direction of
increasing n.

(a) (b)

Figure 5.19: Twelve representative particle paths for (a) n = −1/2 and (b) n = 2. The
dots and squares correspond to the initial position (r0, z0) of each particle at t = 0
and the time of free-surface capture at t = tcapture, respectively. The dashed lines
correspond to the profile of the free surface of the droplet at t = 0.
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all of the particles being captured by, and thereafter moving towards the contact line

along, the descending free surface) is in agreement with the numerical study of non-

thin droplets for the special case of diffusion-limited evaporation by Kang et al. [132].

In particular, Kang et al. [132] found that the cumulative number of particles being

captured by the free surface is directly proportional to the volume lost from the droplet

due to evaporation. The study also considered the concentration of particles within

the bulk of the droplet and on the free surface of the droplet separately and found that

the concentration of particles in the bulk of the droplet remains spatially-uniform and

constant at its initial value, and that it is the flow at the free surface of the droplet that

controls deposition. For n > 1, the particles are initially advected upward and inward

by the flow, as illustrated in Figure 5.19(b). Analogously to the case −1 < n < 1, all

of the particles are eventually captured by the descending free surface, and thereafter

move downward and inward towards the centre of the droplet along the descending free

surface. The particles are deposited onto the substrate at the end of evaporation at the

centre of the droplet, i.e. tdeposit = tlifetime.

5.9 Conclusions

In this Chapter we have studied the effect of spatial variation in the local evaporative

flux on the deposition from a pinned particle-laden sessile droplet. In particular, we

formulated and analysed a mathematical model describing the evolution of, flow within,

and transport of particles within, a thin sessile droplet with a general steady local

evaporative flux profile J = J(r). Using this model we investigated the behaviour for

a particular one-parameter family of spatially-varying local evaporative fluxes given

by J = 4(1 + n)(1 − r2)n/π and gave details of the qualitatively different behaviours

depending upon the parameter n.

For the one-parameter family of spatially-varying local evaporative fluxes, the model

describes how, as the droplet evaporates, the direction of the flow within the droplet,

and hence the evolution of both the concentration of particles and the total mass of

particles within the droplet, depend upon the parameter n, with a qualitative change in

behaviour around the value n = 1. In particular, the model predicts that for −1 < n <
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1 the evaporation induces a positive depth-averaged radial velocity ū which advects

particles towards the contact line of the droplet. The concentration of particles φ near

the contact line therefore increases, and all of the particles are eventually transferred to

the deposit ring at the contact line, i.e. Mring(tlifetime) = M0. For the special case n = 1,

there is no resultant flow within the droplet. Therefore, the concentration of particles

φ remains spatially-uniform and increases with t, and all of the particles remain within

the droplet where they are deposited at the end of evaporation, i.e. Mring(tlifetime) =

0 and Mdrop(tlifetime) = M0. For n > 1 the evaporation induces a negative depth-

averaged radial velocity ū which advects particles towards the centre of the droplet.

The concentration of particles φ near the centre of the droplet therefore increases, and

all of the particles remain within the droplet where they are deposited at the end of

evaporation, i.e. Mring(tlifetime) = 0 and Mdrop(tlifetime) = M0. In particular, we have

illustrated the sometimes overlooked result of Deegan et al. [64] that a singularity in

the local evaporative flux at the contact line of the droplet is not required for a ring

deposit to form. Specifically, the model predicts ring deposits even in the case of local

evaporative fluxes that are zero at the contact line, i.e. for 0 < n < 1. The asymptotic

behaviour for the evaporation was also analysed for three particular limits, namely for

n→ 1−, n→ 1∓, and n→∞.

The particle paths within the droplet were determined numerically for the case

when the transport of particles is governed purely by advection. It was found that all

of the particles are eventually captured by, and thereafter move along, the descending

free surface. In particular, when n = 1, the particles are motionless until some time

when they are reached by the free surface, thereafter moving downwards to deposit

onto the substrate, forming a paraboloidal deposit. In addition, for −1 < n < 1 and

n > 1, particles move along the descending free surface towards the contact line to form

a ring deposit and towards the centre of the droplet where they are then deposited,

respectively.
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Conclusions and Future Work

6.1 Conclusions

In this thesis we have used a combination of analytical and numerical techniques to

investigate the evolution of, and the deposition from, an evaporating sessile droplet.

In Chapters 1 and 2 we discussed relevant work by previous authors and formulated

the diffusion-limited model of an evaporating sessile droplet, respectively.

In Chapter 3 we considered the evaporation of a thin droplet in a shallow axisym-

metric well with profile ẑ = Ĥ(r̂) = −Ĥ0(1−(r̂/R̂0)n) both before and after touchdown

that accounts for the spatially non-uniform evaporation of the fluid, described physical

experiments performed at Durham University using three cylindrical wells with dif-

ferent small aspect ratios, and validated the mathematical model by comparing these

experimental results with the corresponding theoretical predictions for a cylindrical

well (i.e. in the limit n → ∞). We found that, depending on the shape of the well,

touchdown can occur at the lip of the well for 0 < n < 2, everywhere simultaneously

for n = 2, or at the centre of the well for n > 2. We described the dependence of the

predicted critical times on the shape of the well. In particular, we found that tflat is

independent of H0 and n, ttouchdown increases linearly with both H0 and with n for

0 ≤ n ≤ 2, but is independent of n for n > 2, and that tlifetime also increases linearly

with H0 but non-linearly with n. We found good agreement between the experimental

results and the corresponding theoretical predictions for the evolution, and hence the
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critical times, of methyl benzoate droplets evaporating in cylindrical wells.

In Chapter 4 we considered the evaporation of thin sessile and pendant droplets

under the effect of gravity evaporating in the CR, CA, SS, and SJ modes of evaporation.

The mathematical model describes how the shape of a droplet depends on its volume

and whether it is sessile or pendant. In particular, we found that for a sessile droplet

the height at the middle of a droplet hm is non-monotonic in V , with R → ∞ and

hm → 1 as V → ∞, whereas for a pendant droplet, hm increases monotonically in

V , with hm → ∞ and R → Rmax as V → ∞. Additionally, the mathematical model

confirms that the contact radius R of a sessile droplet is always larger than that for

a pendant droplet of the same volume and, as a consequence of this, so is the total

evaporative flux from the droplet, namely F = 4R. Therefore, we found that the

predicted lifetimes of the droplets in each mode of evaporation, as well as the critical

times t∗ and tn, are always greater for a pendant droplet than those for a zero gravity

droplet of the same initial volume and critical angles, which are in turn greater than

those for a sessile droplet. The solutions for the evolutions, and hence the lifetimes,

of evaporating sessile and pendant droplets were also analysed for the limiting cases of

initially small (V0 → 0) and initially large (V0 → ∞) droplets. In particular, in the

limit of initially small droplets, the leading-order behaviour corresponds to the solution

for a zero-gravity droplet and is therefore independent of the orientation of the droplet,

whereas in the limit of initially large droplets, the behaviour depends on whether the

droplet is sessile or pendant.

In Chapter 5 we considered the effect of spatial variation in the local evaporative

flux on the deposition of particles from an evaporating sessile droplet. We investigated

the evaporation for a particular one-parameter family of spatially-varying local evap-

orative fluxes given by J = 4(1 + n)(1 − r2)n/π and gave details of the qualitatively

different behaviours depending upon the parameter n. In particular, the mathematical

model predicts that for −1 < n < 1 the evaporation induces a positive depth-averaged

radial velocity ū which advects particles towards the contact line of the droplet, and

all of the particles are eventually transferred to the deposit ring at the contact line,

i.e. Mring(tlifetime) = M0. For the special case n = 1, there is no flow within the
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droplet, all of the particles remain within the droplet throughout evaporation, and

are deposited onto the substrate at the end of evaporation to form a paraboloidal de-

posit, i.e. Mring(tlifetime) = 0 and Mdrop(tlifetime) = M0. For n > 1 the evaporation

induces a negative depth-averaged radial velocity ū which advects particles towards

the centre of the droplet, all of the particles remain within the droplet throughout

evaporation, and are deposited at the centre of the droplet at the end of evaporation,

i.e. Mring(tlifetime) = 0 and Mdrop(tlifetime) = M0. We illustrated the sometimes over-

looked result of Deegan et al. [64] that a singularity in the local evaporative flux at the

contact line of the droplet is not required for a deposit ring to form at the contact line.

Specifically, the mathematical model predicts ring deposits for local evaporative fluxes

that are singular (−1 < n < 0), finite and non-zero (n = 0), and zero (0 < n < 1) at

the contact line. The asymptotic behaviour for the evaporation was also analysed for

three particular limiting cases, namely for n→ −1+, n→ 1±, and n→∞. In addition,

the particle paths within the droplet were determined numerically for the case when

the transport of particles is governed purely by advection. We found that all of the

particles are eventually captured by, and thereafter move along, the descending free

surface.

6.2 Future work

The work described in this thesis suggests many possible directions for future study.

We will first briefly outline various possible extensions to the mathematical models

presented in this thesis and then describe three specific avenues for future work in detail,

namely, the evolution of, and the deposition from, an evaporating annular droplet, the

effect of gravity on the flow within, and the deposition from, an evaporating droplet,

and the effect of particle interactions on the deposition from an evaporating sessile

droplet.

It should, of course, first be emphasised that the mathematical models for the

evaporation of a droplet presented in this thesis are based on various assumptions

which are particularly amenable to theoretical analysis and that future work could

focus on relaxing some of these assumptions. For example, although many practical
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situations involve thin droplets (θ̂0 � 1) with strong surface tension (Ca∗ � 1), there

are certainly applications in which the evaporation of droplets on hydrophobic and/or

superhydrophobic substrates with θ̂0 = O(1) and the evaporation of more volatile

fluids with Ca∗ = O(1) are of interest, and capturing such behaviours will require

generalisations of the mathematical models presented in this thesis. In addition, the

mathematical model for the transport of particles presented in Chapter 5 is not able to

quantify the shape of the final deposit, and to do so would require an extension to the

present model by, for example, accounting for particle volume through particle packing

or gelation (see, for example, Popov [220] and Zheng [320]).

Moreover, in industrial applications a variety of additional physical effects which

are not included in the present mathematical models may be important. For example,

as discussed in Chapter 1, in situations in which significant evaporative cooling occurs,

temperature-dependent surface tension (see, for example, Hu and Larson [117] and

Ristenpart et al. [227]) and/or temperature-dependent saturation concentration (see,

for example, Dunn et al. [72], Schofield et al. [238], and Sefiane et al. [243]) effects can

be important, while in other situations buoyancy effects within the atmosphere (see,

for example, Carle et al. [37], Dunn et al. [72], and Shahidzadeh-Bonn et al. [247]) may

play an important role.

6.2.1 The evolution of and the deposition from an evaporating annu-

lar droplet

For obvious reasons, the vast majority of previous work on evaporating droplets has

focussed on the case of an axisymmetric droplet with a single circular contact line.

However, as we discussed in Chapter 3, an annular droplet, i.e. an axisymmetric droplet

with two circular contact lines, arises in the evaporation of a droplet in a well, which

is of relevance to the manufacture of OLED displays. The evaporation of an annular

droplet is of scientific interest in its own right, and arises in a number of other industrial

contexts, such as in microfluidics, lab-on-chip devices, and electric conductors (see, for

example, Chen and Hung [44], Jokinen et al. [124], and Schäfle et al. [237]), as well

as in the study of bacterial colonies (see, for example, Si et al. [258]). Therefore, one
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direction for future work is to investigate the evolution of, and the deposition from, an

evaporating annular droplet.

We have carried out preliminary work in this direction using the numerical results

for the spatially non-uniform local evaporative flux J obtained in Chapter 3 to describe

the evolution of a thin annular droplet undergoing diffusion-limited evaporation in

which both contact lines are pinned, as well as the masses of the deposit rings that

form at both the inner and outer contact lines. The next step would be to explore

the evolution of, flow within, and transport of particles within, an annular droplet for

other modes of evaporation. We note that this inevitably becomes more complicated

than for the typical case of an axisymmetric droplet with one circular contact line since

there are two contact lines and two contact angles and hence more possible modes of

evaporation.

6.2.2 The effect of gravity on the flow within and deposition from an

evaporating droplet

In Chapter 4 we described the effect of gravity on the shape, evolution, and lifetime

of an evaporating droplet, and so a natural direction for future work is to extend this

study to investigate the flow within, and the deposition from, an evaporating droplet

under the effect of gravity.

We have carried out preliminary work in this direction, obtaining analytical solu-

tions for the depth-averaged radial velocity ū and numerical solutions for the evolution

of the mass of particles within thin sessile and pendant droplets undergoing diffusion-

limited evaporation in the CR mode, as described by the evaporative model in Chapter

4. Figure 6.1 shows the behaviour of ūθ as a function of r/R0 for a thin sessile, zero

gravity, and pendant droplet for an illustrative value of V0 = 100. In particular, ū

is quantitatively different, but qualitatively similar, for sessile and pendant droplets

under the effect of gravity, in agreement with the results of Kolegov and Lobanov [143]

for a sessile droplet evaporating with a modified diffusion-limited evaporative flux.

The next steps would be to explore the behaviour of the flow and the transport

of particles within sessile and pendant droplets evaporating in the CR, CA, SS, and
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Figure 6.1: Plot of ūθ as a function of r/R0 for a thin sessile (solid line), zero gravity
(dotted line), and pendant (dashed line) droplet undergoing diffusion-limited evapora-
tion in the CR mode for V0 = 100.

SJ modes. However, we note that, in general, modelling the deposition from a droplet

undergoing diffusion-limited evaporation in the CA, SS, and SJ modes is typically more

complex than that for a droplet evaporating in the CR mode, even for the case of small

droplets. Therefore, future work could investigate the deposition from a small droplet

undergoing diffusion-limited evaporation in the different modes, or use a simpler model

for J , such as a spatially-uniform evaporative flux, to gain insight on the deposition

from a droplet under the effect of gravity.

6.2.3 The effect of particle interactions on the deposition from an

evaporating droplet

Another direction for future work is to extend the mathematical model for the transport

of particles within an evaporating droplet described in Chapter 5 to include one or more

kinds of particle interactions. As discussed in Chapter 1, particle interactions, such as

particle–free surface, particle–particle, and particle–substrate interactions, can play a

key role in the deposition from an evaporating droplet and are often promoted to control

the shape of the final deposit.

We have carried out preliminary work in this direction, investigating the effect of

particle–substrate adsorption on the deposition from a thin sessile droplet evaporating

in the CR mode with a general local evaporative flux profile J = J(r). Figure 6.2
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(a) (b)

(c)

Figure 6.2: Evolution of (a) Mdrop/M0, (b) Msubstrate/M0, and (c) Mring/M0 as func-
tions of t/tlifetime for a thin sessile droplet undergoing diffusion-limited evaporation in
the CR mode for Da∗ = 0, 0.4, . . . , 2.

shows an example of the evolutions of Mdrop/M0, the (scaled) mass adsorbed onto the

substrateMsubstrate/M0, andMring/M0 as functions of t/tlifetime for a droplet undergoing

diffusion-limited evaporation with different values of the (scaled) Damköhler number

Da∗, which is a nondimensional measure of the particle–substrate adsorption rate.

Unlike the mathematical model for the transport of particles presented in Chapter

5, in the presence of particle–substrate adsorption particles may be deposited onto the

substrate throughout the evaporation. In particular, for diffusion-limited evaporation,

for larger values of Da∗, more particles are deposited within the footprint of the droplet

throughout evaporation, and fewer particles are transferred to the deposit ring at the

contact line at the end of evaporation. Since, in this mathematical model, particles

may be deposited onto the substrate throughout the evaporation, future work could

167



Chapter 6. Conclusions and Future Work

investigate the effect of the time dependence in the local evaporative flux profile on

the deposition from an evaporating droplet. For example, the mathematical model

provides the potential to study the effect of intermittent masking above the droplet,

e.g. J = J(r;n(t)).

In conclusion, we believe that the results described in this thesis make a worthwhile

contribution to the study of evaporating sessile droplets; however, as indicated here,

there are several open questions and many interesting aspects of this problem which

future work should seek to address.
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Appendix A

The Deposition from an

Evaporating Droplet: A

Separable Time-Dependent Local

Evaporative Flux

The purpose of this Appendix is to demonstrate that the analysis described in Sections

5.2–5.5 in Chapter 5 for the evolution of, flow within, and transport of particles within, a

thin pinned sessile evaporating droplet for the case of a purely r-dependent evaporative

flux J = J(r) may be generalised to a separable time-dependent evaporative flux J =

J(r, t) = f(r)g(t), where f and g are prescribed functions of r and t respectively.

In particular, we consider the same situation as that described in Sections 5.2–5.5 in

Chapter 5, except that the local evaporative flux may be decomposed as J = f(r)g(t).

The indefinite radial integral of the local evaporative flux, I = I(r, t), is defined as

I = F(r)g(t), where F(r) =

∫ r

0
f(r̃) r̃ dr̃. (A.1)

The global mass-conservation condition may therefore be written as

dV

dt
= −2πF(1)g(t). (A.2)
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The evolution of the droplet is then given by

h = θη, V =
π

4

(
1− K(t)

H(1)

)
, θ = 1− K(t)

H(1)
, (A.3)

where K = K(t) is the indefinite time integral of the radially-integrated flux, namely

K(t) = F(1)G(t), G(t) =

∫ t

0
g(t̃) dt̃. (A.4)

Unlike in the case in which J is independent of t, the evolutions of the h, V , and θ are

no longer linear in t.

The local radial fluid fluxQ = Q(r, t) is found by integrating the kinematic condition

(5.19) with respect to r and rearranging, which gives:

Q = q(r)g(t), q(r) =
F(1)H(r)−H(1)F(r)

rH(1)
. (A.5)

The expression for Q in (A.5) is separable in r and t and differs from the corresponding

expression in the case when J = J(r) = f(r) from (5.22) through a multiplying factor

of g(t).

As in Chapter 5, for a given local evaporative flux J , the evolution of the droplet

may be calculated from (A.3). Then, the solution for Q is given by (A.5), the solution

for p(1) is obtained by integrating (5.25), and u and w are given by (5.24).

The leading-order concentration of particles φ = φ(r, t) satisfies (5.38), which may

be solved via the characteristic equations (5.39). Using the expressions for h and dθ/dt

given by (5.6) and (A.3), respectively, the characteristic equations can be expressed as

dr

dθ
=

dr/dt

dθ/dt
= − H(1)q(r)

θF(1)η(r)
,

dφ

dr
=

dφ/dt

dr/dt
=
f(r)φ

q(r)
. (A.6)

Integration of (A.6) yields the implicit solution

log θ = −
∫ r

r0

F(1)η(r̃)

H(1)q(r̃)
dr̃, log

φ

φ0
=

∫ r

r0

f(r̃)

q(r̃)
dr̃, (A.7)

where, as in Chapter 5, r0 = r0(r, t) denotes the initial radial position of a particle at
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t = 0 that has subsequently travelled to position r at time t, determined by solving

(A.7a). As in Chapter 5, we simplify the solution for φ by adding the two equations in

(A.7), and recalling that Q may be expressed in the form (A.5), to yield

log θ + log
φ

φ0
= −

∫ r

r0

F(1)η(r̂)−H(1)f(r̂)

H(1)q(r̂)
dr̂

= −
∫ r

r0

1

r̂q(r̂)

d
(
r̂q(r̂)

)
dr̂

dr̂

= log
r0q(r0)

rq(r)
. (A.8)

Hence the solution of the characteristic equations for the concentration of particles φ

from (5.38) may be written in the form

∫ r

r0

F (1)η(r̂)

H(1)q(r̃)
dr̃ = − log θ,

φ

φ0
=
r0q(r0)

θrq(r)
, (A.9)

where θ(t) is given by (A.3) and q(r) is given by (A.5). Surprisingly, the function

g(t) does not appear in the final solution for φ. In addition, the solution for φ when

J = J(r, t) = f(r)g(t) differs from the solution when J = J(r) = f(r) only through the

time-dependence of θ which will in turn affect the solution for r0 = r0(r, t). Therefore,

the solution for φ for a separably time-dependent evaporative flux has similar behaviour

to the solution found in Chapter 5 for a local evaporative flux that is solely a function

of r, given that they have the same r-dependence.

The evolution of the mass of particles in the bulk of the droplet Mdrop and in the

deposit ring Mring are then given by (5.45) and (5.48), respectively.

The solutions given in this Appendix for the evolution of the droplet, Q, and φ

are consistent with those given in Chapter 5 for the case when J = J(r) = f(r) for

g(t) ≡ 1.
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