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Abstract 

Despite the widespread use of optical spectroscopy for monitoring polymerisation 

processes, significant challenges remain for its successful application on suspension 

polymerisation reactions. The high heterogeneity and viscosity of such reaction 

media make sampling a challenging task and deteriorates the accuracy of reference 

and spectroscopic measurements. In this thesis, this problem is tackled by taking 

advantage of the stronger scattering susceptibility of the visible spectral range and 

the deeper penetration depth offered by the near infrared region. An investigation is 

carried out to evaluate whether the predictive capability of multivariate calibration 

models could be improved by introducing new variations in measurement 

configuration, in particular, spatially and angularly resolved illumination. An 

empirical approach based on multivariate calibration methods and chemometrics is 

also proposed for the extraction, pre-processing, fusing and modelling of such multi-

dimensional information. How well these different measurements are integrated and 

how accurate the multivariate models can be, are one of the main questions of this 

thesis. They are first studied through a two-component system composed of 

polystyrene and water, followed by full suspension polymerisation reactions.  

The results suggest that the accuracy of multivariate calibration models can be 

improved by (i) including angularly orientated fibres, (ii) fusing information from 

two or more source-detector separations, (iii) by how data is fused or manipulated, 

and (iv) by the quality of the measurements. To the best of my knowledge, this work 

is the first attempt to employ spatially and angularly resolved diffuse reflectance 

spectroscopy as a Process Analytical Technology (PAT) tool for monitoring 

suspension polymerisation reactions, and also the first in which a data fusion 

approach based on Multiblock Partial Least Squares regression (MB-PLS) is 

evaluated for this purpose. 
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Chapter 1 

1 Introduction 

Despite the widespread use of optical spectroscopy for monitoring a diverse range of 

polymerisation processes, significant challenges remain for its successful application 

on suspension polymerisation reactions. The high heterogeneity and viscosity1 in 

such reaction media make sampling a challenging task, and reference and 

spectroscopic measurements less accurate2. Moreover, as light is heavily scattered by 

polystyrene beads, spectroscopic measurements are affected in different extensions at 

each reaction phase. This causes a non-linear variation on their intensity, shape and 

baseline, which deteriorates the estimation of chemical properties by multivariate 

calibration models. 

Spatially Resolved Diffuse Reflectance measurements (SRDR) and light propagation 

models based on first principles have been proposed for separating scattering effects 

from absorption information in particulate systems. Although such approach allows 

access to knowledge on the interplay of scattering and absorption, it involves 

complex mathematical operations3 and intensive computational calculations4, most 

of the times unsuitable for real-time applications5, where fast and autonomous 

analyses are preferred.  

A less rigorous approach for modelling particulate media with spatially resolved 

diffuse reflectance spectroscopy is based on the development of empirical 

multivariate calibration models on the averaged signal from a number of source-

detector distances or combinations of it6. This strategy, however, may hinder the 

extraction of spatial resolution, which is the focal point of the technique.  
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In another slightly different approach, but which would potentially preserve the 

information regarding different penetration depths and scattering behaviour, instead 

of using the co-added measurement, the information from individual source-detector 

distances or combinations of it6,7 are fused together, being such information 

represented by spectra or by linear combinations of it, the score values. These 

combined measurements may be based on raw spectra or on measurements subjected 

to empirical light scattering pre-processing. This approach, although not separating 

the absorption and scattering components, has the potential to provide real time 

measurements is a fast way, and may allow calibration models less affected by poor 

signal-to-noise measurements than the first principles based approach.   

In this thesis, this problem is addressed by integrating spectral datasets collected at 

different angles, source-detector distances and fibre geometries. The combined 

information should reveal more insight into the sample than that obtained if each 

spectral dataset is analysed individually. A data fusion strategy based on Multiblock 

Partial Least Squares (MB-PLS) will be explored to yield a more accurate estimation 

of critical quality parameters of polymer beads, modelling the relationship between 

the different source-detector separations and angles of incidence, and establishing the 

contribution of each of them to the final model. Specifically, the aim is to evaluate 

the sensing abilities of both visible and Near-Infrared (NIR) spectroscopy, the 

possible benefits of including information from angularly orientated fibres to the 

combinations of normal incident ones and the impact on the predictive capability of 

the multivariate calibration models. How well the data fusion strategies will cope 

with the heterogeneity inherent to such reactions is also of great interest. To the best 

of my knowledge, this is the first attempt to employ spatially and angularly resolved 

diffuse reflectance spectroscopy (SARDR) for monitoring suspension polymerisation 

reactions. 
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1.1 Motivation  

We have recently celebrated the UNESCO International Year of Light and Light-

based Technologies (IYL 2015), a worldwide series of events showing how 

important optical technologies are in our daily lives8. In fact, light-based 

technologies are vital for existing and future advances in a range of fields of 

knowledge, from laser surgeries in medicine9 to Light-Emitting Diode (LED) 

illumination in farming 10, from chemistry to data storage11. 

In manufacturing industries, light-based technologies are in the spotlight, among 

other reasons, by allowing analytical measurements to be made real-time, a condition 

that is central to Process Analytical Technology (PAT)12 and Process Intensification 

(PI) approaches to quality.  

In the polymer industry, which is the particular case studied in this thesis, the 

motivation for the implementation of PAT and PI tools to monitor and control of 

polymerisation reactions is manifold. Besides the economic incentives, new 

worldwide market requirements are being put in place for tighter product 

specifications and stricter safety and environmental constraints13. These incentives 

are moving polymer manufacturing from a post-production quality control set-up 

towards a quality by design approach, where the quality is directly built into process 

design12. Especially for product-by-process materials like polymers, where the 

quality and properties of the final product is largely dictated by the reaction profile, 

comprehensive process and product knowledge are important to obtain a reliable 

process profile that is less likely to have quality issues, supplying products with 

improved performance1. The rationale behind this evolution is that by gathering more 

information about a process, we can better understand it and, consequently, be better 

prepared to monitor and control it.  
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1.2 PAT in the polymer industry: spectroscopic sensors for 

monitoring polymerisation processes 

Fibre-optic spectroscopic sensors are key enablers of PAT and PI implementations in 

industry. Indeed, spectroscopic techniques like near infrared and Raman are used 

almost as a synonym for PAT. Such techniques have been successfully implemented 

in a varied range of polymerisation process, among other reasons, for allowing 

measurements to be made without handling the reaction media outside the reaction 

vessel, an essential requirement for monitoring of polymerisation reactions due to 

their high viscous and unstable nature. Furthermore, together with advanced 

multivariate data analysis methods14,15, spectroscopic sensors provide simultaneous 

determination of several process quality attributes, all in a fast, reliable and cost 

efficient way16. Such characteristics are especially important to allow rapid decisions 

to be made on time whenever deviations are found, or for fast transition between 

different operation conditions to reduce off-spec production1. This ultimately may 

allow real-time release of batches, saving resources by speeding up the production 

cycle17.  

Important quality attributes monitored in polymerisation reactions are the conversion 

degree of monomer into polymer and the size of the produced polymer beads. 

Monitoring monomer conversion is relevant because it is directly related to 

productivity. Particle size monitoring is also important for economic reasons, since 

fractions too below or above the required diameter range lead to losses of product 

and resources in the post-reaction processing. Furthermore, as the intended 

applications of polystyrene beads are dependent on their diameter, polystyrene is 

normally produced at tailor made diameter fractions on demand.  
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Monomer conversion and bead size have been successfully monitored in a range of 

polymerisation reactions by different spectroscopies, as example of the ultraviolet-

visible (UV-VIS)18,19, near infrared (NIR)20, middle infrared (MIR)21 and Raman 

spectroscopies. Especially, NIR and Raman have been extensively studied for 

monitoring monomer conversion, whereas the visible and NIR spectroscopy for 

mean bead size monitoring. 

Emulsion polymerisation has been by far the most studied polymerisation regarding 

the application of spectroscopic methods. Early works22 employed off-line or at-line 

measurements, and were mainly based in one or a few wavelengths. Although good 

models can be obtained by using univariate models, especially for Raman, such 

models tend to be biased due to the heterogeneity of the reactions23.  

In the last decade, several applications of on-line methods started to be proposed. 

Reis et al27 published a comprehensive comparison of Raman and NIR for a range of 

homo- and co-polymerisation emulsion reactions. Although not pointing out which 

technique is better, they suggest that both techniques are suitable for on-line 

monitoring. Recently, by comparing Raman and NIR for monitoring a mini-emulsion 

polymerisation, Ambrogi et al24 identified NIR spectroscopy as a reliable tool for 

monitoring simultaneously monomer conversion and particle size.  

In particular, NIR spectroscopy has been widely applied to monitor conversion on 

several different polymerisation processes. Applications were developed for 

emulsion copolymerisation and polymerisation reactions25,26, bulk27 and solution 

polymerisation of methyl methacrylate28, polyurethane step-growth polymerization29, 

ethane/1-hexene solution copolymerization30, and many others. However, 

applications in styrene suspension polymerisations are scarce. Lousberg et al31 

employed short-NIR online measurements to determine conversions up to 35% in 

bulk styrene batch polymerisation reactions. Although the results were good, the 
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conversion range was limited and a small bias in low and high monomer conversion 

was detected. Silva et al 32used a NIR interactance probe to monitor the evolution of 

monomer and copolymer concentrations during batch acrylic acid and vinyl acetate 

suspension co-polymerisations. They were able to develop calibration models based 

on PLS giving good estimations.  

Santos et al33 developed PLS cross-validation models relating in-line measured NIR 

spectra and mean bead diameter. Although the authors did not validate the models 

using external reactions, the work was important since it was one of the first to take 

advantage of the NIR sensitivity to changes in particle size distributions. Later, the 

same authors34 developed a control strategy for monitoring mean bead size along the 

reaction.  

Faria Junior et al35,36 devised a control strategy for control of Polyvinyl Chloride 

(PVC) particle size and morphological properties of its resins in suspension 

polymerisations. The authors successfully predicted dynamic trajectories of 

morphological properties based on NIR, which can be used as reference for 

monitoring and control during batch operation. 

There is a no work in the literature that is concerned to the application of spatially 

resolved measurements to monitor polymerisation reactions of any kind, despite its 

advantages compared to the standard single point diffuse reflectance NIR 

measurements. In particular, its ability to probe the beads at different points and 

angles, improving the amount of information gathered, and potentially providing a 

more comprehensive assessment of the reaction components. 
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1.3 Objectives and Contributions 

The overarching goal of the present thesis is to propose spatially and angularly 

resolved diffuse reflectance spectroscopy as a PAT tool for in-situ monitoring of 

polymerisation reactions. The aim is to investigate whether the individual or 

combined information gathered from spectroscopic measurements collected from 

different wavelength regions, fibre geometries, source-to-detector distances and 

angles of incidence could improve the predictive capability of multivariate 

calibration models.  

In order to fulfil this objective, the aim is to develop the required multivariate 

calibration and data fusion strategies for the extraction, interpretation, visualisation, 

fusing and modelling of information collected, first, from a two-component system 

composed of polystyrene and water, and later from full suspension polymerisation 

reactions. 

The following are the primary contributions of the present thesis: 

• Implementation of the data acquisition routines and data processing strategies 

for the optimum extraction of information from spectroscopic measurements; 

• Development of statistical multivariate calibration modelling strategies for 

the estimation of bead size and concentration in a two-component system and 

monomer conversion in full suspension polymerisation reactions; 

• Implementation of a data fusion modelling strategy, evaluating its potential 

for integrating spectroscopy data, and the benefits of doing so; 

• Implementation of a robust validation scheme based on the repeated double 

cross validation and on external data, studying the several factors which can 

affect the predictive capability of the models; 

• Evaluation of alternative optical probe configurations and their potential for 

estimation of polymer quality parameters. 
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The secondary contributions are: 

• Implementation of methods and protocols for running suspension 

polymerisations at the Measurements and Analytics Team Laboratory; 

 
• Implementation of the methods and protocols for collecting reference and 

spectroscopic measurements from polymerisation reaction; 

 

1.4 Thesis Overview 

This thesis is organised in eight chapters. The first introduced the thesis objectives 

and contributions, presenting why and how spectroscopy is being adopted by the 

polymer industry as an important Process Analytical Technology tool. 

The second chapter covers the theoretical background on optical sensors and 

chemometrics, whereas Chapter 3 presents the proposed spectroscopic measurement 

system, describing the prototype optical probes, experiments, equipments, and 

methodologies used to evaluate the models and sensors proposed in this thesis.  

In Chapters 4 and 5 the results based on a two-component system are described, in an 

attempt to obtain a better understanding of the spectra behaviour and the modelling 

strategies studied here. Chapter 4 studies the impact of each individual source-

detector distance on the predictive models developed for visible and near infrared 

spectroscopy, whereas in Chapter 5 the fusion of two or more source-detector 

distances and angles of incidence are evaluated for both spectroscopies. 

In Chapter 6, the modelling strategies studied in Chapter 4 and 5 are applied to the 

monitoring of conversion on suspension polymerisation reactions. Models are first 
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evaluated by fusing individual normal incident source-detector distances, and later 

the impact of angularly resolved information is evaluated.  

In Chapter 7, potential improvements in the spectra acquisition are evaluated by 

proposing alternative fibre geometry. For this, a prototype dual-ring diffuse 

reflectance probe is evaluated by using the two-component system, and the results 

compared to the ones obtained by using the SARDR probe. 

Chapter 8 completes the thesis by listing the overall conclusions, making 

considerations based on all results and setting up directions for future work. 
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Chapter 2 

2 Spectroscopy methods & multivariate data analysis 

 

This chapter covers the theoretical background on 

spectroscopy and multivariate data analysis. It is divided into 

three parts. In the first one, after a short historical overview, 

the theoretical bases of visible and NIR spectroscopies are 

presented, introducing how light scattering in particulate 

systems affects the predictive capability of multivariate 

calibration, and describing the methodologies involved in its 

correction. The practical aspects for their implementation are 

covered at the end of this first part. The second part presents 

the multivariate data analysis methods and approaches used 

for extracting chemical and physical information from 

spectral measurements, whereas the procedures taken for the 

validation of these models are described in the third part. 
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“Measure what can be measured and  
make measurable what cannot be measured” Galileo Galilei  

 

 

2.1 Visible and near-infrared spectroscopy 

 

Throughout this thesis, I will work specifically with radiation in the wavelengths 

within the electromagnetic spectrum range of 500 to 1800 nm, which includes the 

visible, short-near infrared, and part of the near-infrared region. By choosing this 

region, I want to take advantage of the stronger scattering susceptibility of the visible 

spectral range, and the deeper penetration depth offered by the NIR region, in an 

attempt to simultaneously extract physical and chemical information from a 

particulate system. I envisage to combine spatial and angular information collected 

as multi-point measurements, either by individual spatially and angularly resolved 

fibres or as rings of fibres. The purpose is to obtain a more complete picture of the 

particulate system studied here, and ultimately, improve the predictive capability of 

multivariate calibration models. 

Before presenting the theoretical and practical aspects of the visible and NIR diffuse 

reflectance spectroscopies and its associated modelling approaches, I will first 

introduce the shared historic context of NIR spectroscopy and chemometrics. 
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2.1.1 A bit of history 

Visible spectroscopy has been used for analytical measurements well before the 

near-infrared was discovered for this purpose. Its origins go back to Sir Isaac 

Newton’s experiments with a prism, but it was only around 1860 that visible 

spectroscopy was employed in chemical analysis, when Gustave Kirchhoff stated 

that any substance that was a good light emitter of some particular wavelength would 

also absorb light of the same wavelength1.  

While visible spectroscopy and even mid-infrared spectroscopy were gaining 

acceptance as analytical techniques, the NIR range was merely a not well-understood 

region between the visible and infrared, and of not much use to analysts2. The 

absence of definite peaks, as opposed to infrared spectroscopy (IR), was certainly a 

limiting factor, especially because analysts were accustomed to looking at the peaks 

in order to give inferences about quantity and presence of a certain chemical 

compound. Another reason why NIR spectral region took so long to be perceived as 

a relevant analytical tool was the lack of proper instrumentation2.  

Although few applications involving NIR measurements can be found in the 

literature in the early twentieth century, NIR spectroscopy only became a trend as 

analytical technique in the early 1970’s, thanks to the work of Karl Norris from the 

United Stated Department of Agriculture (USDA), on agricultural particulate 

samples3. His group pioneered the use of diffuse reflectance, working on the 

modeling approaches and instrumental modifications needed for its implementation.  

Phil Williams, who recently was awarded the Karl Norris award in recognition of his 

major contribution to the science of near-infrared spectroscopy4, was one of the first 

to use a commercial NIR instrument, but also contributed with many developments 

in research and development of new NIR technologies5. Rapidly the usage of NIR 
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spectroscopy spread to other areas like fuel, food, polymers, and especially the 

pharmaceutical sector, where the technique gained maturity.  

Advances in instrumentation and computational power contributed to the maturity of 

the field. Instrumental noise, accuracy and sensitivity were greatly reduced in 

modern spectrometers, especially due to better manufacturing of its components, like 

detectors, power supply, and circuitry. As the first NIR spectrometers were filter 

based, calibrations were mostly done by Multiple Linear Regression (MLR) on a few 

wavelengths6. With the development of scanning spectrometers, the Vis and NIR 

wavelength range was fully available for calibration, paving the way to a new 

revolution introduced by Harald Martens, Svante Word and Bruce Kowalski, on the 

PLS regression and related chemometrics techniques. Improvements on the hardware 

came accompanied by the development of integrated and dedicated data analysis 

software developed in most cases by spin-out companies from the academic world, 

like CAMO (Unscrambler®, from Martens), Umetrics (SIMCA®, from Word), and 

Infometrics (ARTHUR® and Piroutte®, from Kowalski), to name a few.  

NIR development always came hand-in-hand with chemometrics. Indeed, it can be 

said that chemometrics was the driving force that brought NIR-based methods from 

theory to the industrial plant floor. The development and maturity of chemometrics 

and NIR spectroscopy are a prime example of a successful industry-academia 

partnership. NIR was reborn in industry and grew up from industry-academia 

partnerships, like the important initiatives of the Centre for Process Analysis & 

Control (CPAC-Washington) and the Centre for Process Analytical and Control 

Technology (CPACT-UK), from which the latter this thesis is associated. These 

consortia played a crucial role in spreading the NIR technology for a varied range of 

industries around the world, and helped such fields to reach the actual levels of 

maturity. 
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2.1.2 Principles  

As with most of the spectroscopic techniques, difference in energy, frequency or 

wavelength, sets the visible and NIR apart7, and dictates most of their properties. 

Figure 2.1, together with equations 2.1 and 2.2 show how the energy is related to 

wavelength and frequency along the electromagnetic spectrum from ultraviolet to 

infrared, and highlights the spectral region used throughout this thesis.  

 

Figure 2.1 The electromagnetic region from ultra-violet to infrared. The range of 
interest studied in this thesis is highlighted in red. Plank’s constant = 6.626x10-34 J.s. 
Speed of light = 2.998x108 m/s 

 
As can be seen from Figure 2.1, the energy in the visible region is higher than in the 

NIR region, which, in its turn, is higher than in the mid-infrared. The opposite 

happens with wavelength, as it is inversely proportional to frequency, and 

consequently, to energy (Equations 2.1 and 2.2). Despite being neighbour regions, 

the energy differences in the Vis and NIR are sufficient to provoke distinctive 

properties. Figure 2.2 illustrates the impact of energetic levels in the vibrational 

transitions of these three regions. 
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Figure 2.2 Absorption of radiation by a molecule in the visible, near-infrared and 
mid-infrared. Blue arrows indicate the transition between different vibrational and 
electronic levels.  

 

When a molecule absorbs infrared radiation, the atoms start to vibrate by 

simultaneously increasing and decreasing their bond lengths. Such change in the 

vibrational state excites the molecular bond from a resting energy level to a discrete 

higher quantum level3. The absorption only occurs if the difference in energy 

between the resting level and the excited state is equal to the photon’s energy.  

Generally, the energy in the mid-infrared is not strong enough to excite bonds to 

further higher vibrational quantum levels. Consequently, the absorptions in the mid-

infrared region are mainly due to fundamental vibrations, which involves a transition 

between the ground state and the first vibrational quantum level8. Transitions to 

higher energy levels may happen due to anharmonicity, since the energy between 

levels can vary. This give rise to overtone bands, which in the mid-infrared region 

occur at approximately twice the fundamental frequency (first overtone), but are 

predominantly found in both visible and near-infrared regions.  
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In the visible region, as the energy required to excite a molecule is much higher, 

transitions are not restricted only to the vibrational level. When radiation is absorbed, 

one of the electrons of valence is promoted to a more energetic electronic level7,9 

(Figure 2.2). The transition energy will depend on the types of orbitals these valence 

electrons move from and to. The superposition of rotational and vibrational 

transitions on the electronic transitions gives rise to combination bands, which 

together with overtones explain the characteristic broad and superimposed bands in 

the Vis range. To illustrate how the fundamental absorptions are related to overtones 

and combination bands, the aromatic C-H bond in styrene will to be used as example. 

Figure 2.3 presents the near-infrared and mid-infrared spectra of styrene. For the 

sake of clarity, only a short mid-infrared wavelength range is shown. For the mid-

infrared, the wavenumber (units of cm-1) is preserved as a frequency unit, which is 

usually used by the infrared community, but the correspondent wavelengths (units of 

nm), usually used in the NIR, are also shown. The difference in scale compared to 

the NIR wavelengths can also be noted. Wavenumbers and wavelengths are related 

by equation 2.3, shown in Figure 2.3.  
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Figure 2.3 Relationship between fundamental, combination and overtone absorption. 
The case of styrene C-H aromatic stretching bonds.  

 

The aromatic C-H bond vibrates by stretching, generating a few weak-to-moderate 

bands centred at around 3000 cm-1. By exciting the same molecule with radiation in 

the near-infrared region, the C and H bonds will vibrate by stretching as well, but as 

the near-infrared light carries more energy, an absorption band (a first overtone) will 

appear in the NIR spectrum at 1680 nm10, twice the wavenumber of the fundamental 

(2 x 3000 cm-1  = 6000 cm-1 = 1680 nm), and its second overtone at 1143 nm (3 x 

3000 cm-1  = 9000 cm-1 = 1143 nm). Most of the overtone bands in the NIR spectrum 

arise from X-H stretching modes (O-H, C-H, S-H, and N-H). It is important to note 

that only the vibrations that cause a change in the dipole moment of the molecule 

give rise to absorptions, and the larger the dipole moment is, stronger the intensity of 

the absorption band will be. Therefore, the absorption intensity will usually decrease 

by a factor of 10 to 100 from the fundamental to the subsequent overtones11, since 
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these transitions are quantum mechanically forbidden, and consequently, have a 

lower probability to happen12. 

Another type of absorption band found in the near-infrared region is the combination 

band, which are sum of difference bands due to transitions from energy states higher 

than the ground state8. A combination band happens at around 2400 nm for the C-H 

aromatic bond, therefore, outside the working range studied in this thesis. 

The frequency or wavelength at which a molecule absorbs energy is dependent on 

the type of the vibrational and electronic transitions happening, and the amplitude of 

such absorption is determined by its absorptivity and how many molecules can be 

encountered within the light beam path.  From that follows the Lambert-Beer Law, 

which states that the concentration of a substance in solution is directly proportional 

to the absorbance of the solution. Figure 2.4 presents the equations for the 

calculation of absorbance by the Beer’s law and shows how the absorbance is related 

to the transmittance. 

 

Figure 2.4 Schematic illustration of the Lambert-Beer Law and equations for 
converting transmittance to absorbance. 
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2.2 Absorption and scattering in particulate systems 

As discussed in the last section, absorption of light predominantly generates 

electronic transitions if it happens in the visible electromagnetic region, or molecular 

vibrations in the wavelengths within the near-infrared region. These electronic or 

vibrational transitions are then translated into spectral bands, which are the visual 

assignment of what is happening at the electronic and molecular levels and from 

which the concentration of the constituents present in a sample are deduced through 

the use of Lambert-Beer’s law. 

The problem is that not all light is absorbed, some photons are scattered or 

transmitted. Indeed, visible and near-infrared light propagation in particulate and 

turbid systems like the polystyrene suspension is generally dominated by scattering, 

which happens due to differences in the refractive index caused by variations in bead 

size and concentration (packing). This introduces non-linearity in the measurements, 

since light may travel different paths lengths, deteriorating the predictive capability 

of multivariate calibration models.  

When a beam of light is incident upon polystyrene beads suspended in water, for 

example, it penetrates the surface of the polystyrene beads for a short depth, excites 

the aromatic C-H bonds of the molecules of styrene, and is then scattered at all 

angles due to refractive index mismatches between the beads and the voids between 

them. The average of the number of times a photon changes it direction can be 

described by the scattering coefficient, µs, which measures the probability of 

scattering per unit length. The absorption component, similarly, can be described by 

the absorption coefficients, µa, which measures the probability of absorption per unit 

path length.  

Given that the scattering and absorption optical properties contain rich information 

on physical and chemical characteristics of the suspension, extracting them from 
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diffuse reflectance measurements may improve our understanding of the suspension 

as a whole, providing better conditions for monitoring such systems. However, 

scattering and absorption properties are closely intertwined, so their extraction from 

diffuse reflectance spectral measurements is not a straightforward task.  Most 

approaches aiming for it are based on light propagation models and a combination of 

multiple reflectance measurements.  

The propagation of light in any media can be described by solving the Maxwell 

equations. Because it requires complex and intensive calculations, especially in 

situations of multiple scattering, simplified models are usually performed based on 

the Radiative Transfer Equation (RTE) or approximations derived from it. These 

implementations require less computational time and provide results accurate enough 

for many applications13-15. These methods require a combination of multiple 

reflectance measurements, like reflectance spectra taken at varying distances from 

the detector (spatially resolved), different time frames (time resolved), or multiple 

collection modes (diffuse transmittance, diffuse reflectance and collimated 

transmittance), as the ones collected by an integrating sphere16. The rationale is that 

absorption and scattering will be affected differently in each of these measurements, 

and that light propagation models are able to account for such differences.  

The integrating sphere is the standard method because it provides accurate estimation 

of the optical properties. However, it is not suitable for real-time measurements. 

Time-resolved spectroscopy has provided interesting applications, but the 

instrumentation is complicated and expensive. Spatially resolved diffuse reflectance 

measurements have been extensively investigated for extracting optical properties in 

medical applications17-20, especially  due to its simple instrumentation, which is 

relatively inexpensive and easy to use.  
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2.2.1 Spatially resolved diffuse reflectance measurements 

The determination of optical properties from spatially resolved spectral data is 

normally based on the use of at least two channels at different source-detector 

distances, from which the absorbance coefficients are computed on the absorbance 

spatial gradient21. Spatially Resolved Spectroscopy (SRS) can be used either as a 

multi-probe or imagery-sensing mode.  

Although the first spatially resolved spectra were measured almost seventy years 

ago22, it was only in the 90’s that Vis-NIR-Spatially Resolved Spectroscopy emerged 

as an important on-line analytical sensor. The dissemination of the technique, 

however, increased after Farrell et al proposed an analytical diffusion equation 

solution which provided straightforward and accurate separation of absorption and 

scattering coefficients (µa and µs, respectively) from a single measurement of the 

spatially resolved diffused reflectance23. More recently, inspired on the 

developments on the medical sector, interesting applications started to be developed 

for quality control of food24,25 and agricultural products26,27,28-30, and in the 

pharmaceutical industry 31 32.  

Although these developments allow access to knowledge on the interplay of 

scattering and absorption in such systems, many difficulties related to the 

spectroscopic measurements and due to the light propagation models33 have been 

faced when evaluating then for quantitative prediction of quality attributes from 

particulate samples. Moreover, the measurement and processing time is yet to be 

reduced sufficiently for real-time applications, which is important for translating 

these techniques to other fields which require faster processing times, as in process 

analysis. 

Another less rigorous approach for modelling particulate media with spatially 

resolved diffuse reflectance is based on the development of empirical multivariate 
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calibration regression models on the combined or fused measurements from the 

individual source-detector distances34,35 and angles. The combined measurement may 

capture the information regarding different penetration depths and scattering 

behaviour in a more efficient way than using measurements from an individual SD 

distances, as in standard NIR spectroscopy. They may be based on raw spectra or 

based on measurements subjected to empirical light scattering pre-processing. This 

approach, although not separating the absorption and scattering components, can 

provide real time measurements is a fast way, and may allow calibration models less 

affected by poor signal-to-noise measurements than the first principles based 

approach.  

 

2.2.2 Empirical scatter correction methods 

Another commonly used approach for accessing the absorption and scattering 

information from spectral measurements is the application of empirical pre-

processing methods, such as Standard Normal Variate (SNV), Multiplicative Signal 

Correction (MSC) and Extended Multiplicative Signal Correction (EMSC)36. As 

these methods do not take into account the propagation of light in the sample, they 

do not completely separate the absorption and scattering components. Instead, they 

attempt to correct the signal against the scattering component, which for particulate 

samples is represented by systematic variations in the spectra caused by light 

scattering and differences in the path length travelled by the photons. Take for 

example the spectra collected from polystyrene beads suspended in water at varying 

bead size diameters, as shown in the Figure 2.5. The spectral offset along the whole 

spectral region is evident, as it is the baseline inclination as the wavelength increases.  
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Figure 2.5 Non-linear variation in the NIR spectra from 56 samples of polystyrene 
beads suspended in water at varying sizes and concentrations. 

 

As the pathlength is largely dependent on the size of the beads, it will be longer in 

samples containing smaller polystyrene beads, whereas shorter in samples of larger 

beads. This variability in pathlength causes an additive effect that manifests itself by 

a baseline inclination or shift of the spectra37. Moreover, as the probability of a 

photon to be absorbed increases with the pathlength, a multiplicative effect is also 

observed. These non-linear variations can complicate the interpretation of the spectra 

and the development of calibration models. 

 

2.2.2.1 Standard Normal Variate (SNV) 

Among the most applied empirical scatter correction methods, the SNV is the 

simplest one. It is applied to each individual spectrum by subtracting its absorbance 

average and dividing the difference spectrum by the standard deviation from all 

absorbances38,39, as it can be seen in equation 2.7 presented in Figure 2.6. 
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Consequently, not all points contribute to the normalization equally, meaning that 

values away from the average absorbance will be weighted more than the values near 

the average. The procedure is then similar to an auto-scaling of the rows instead of 

the columns of the matrix40. 

In Figure 2.6 it can be seen that the offset variation was significantly reduced in the 

spectra after SNV correction, although the curvilinear trend still persists. This 

inclination of the baseline is a common feature on spectra from solids, and is 

influenced by particle size and packing density. To correct the spectrum against this 

curvilinear trend, the SNV is sometimes performed together with a de-trending 

normalisation step, which can be a second-degree polynomial38. 

 

Figure 2.6 SNV pre-processing (a) mean value and standard deviation are calculated 
from all absorbances of an NIR spectrum. (b) Raw and (c) corrected spectra from 56 
samples of polystyrene suspended in water. 
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The SNV and SNV-De-trending (SNV-DT) do not require a reference spectrum, 

since they are performed on a per-spectrum basis41. That simplifies their application, 

especially when validating models in future samples, since a reference spectrum 

from the calibration dataset is mandatory when using MSC and related versions. 

 

2.2.2.2 Multiplicative signal correction (MSC) and related versions 

In the MSC, the correction is performed in the whole dataset, instead of in each 

spectrum, as in the SNV method. It employs a two-step procedure, where for each 

spectrum the individual spectral absorbance values are fitted against the reference 

spectrum (Figure 2.7 a and Equation 2.8), and the resultant intercept and slope are 

used to correct the raw spectra from additive and multiplicative effects (equation 

2.9), respectively. A reference spectrum is required in the MSC, but the mean 

spectrum from the dataset is normally sufficient and practical for most situations. 

In Figure 2.7a, the spectral values from the reference spectrum are plotted against the 

individual spectral values from the following four polystyrene samples containing: 

• Sample 1 = less beads / smaller beads = 15% w/w / 415 um 

• Sample 2 = less beads / bigger beads = 15% w/w / 1115 um 

• Sample 3 = more beads / smaller beads = 50% w/w / 415 um 

• Sample 4 = more beads / bigger beads = 50% w/w / 1115 um 

 

In this figure, the resultant best fit for each sample lies close to a straight line, which 

can be interpreted as the scattering spectrum of the sample. Thus, their differences 

are due to scatter effects, while the deviation on each of them are due to chemical 

information (water and polystyrene) contained in each sample.  
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Figure 2.7 MSC pre-processing (a) individual versus average values obtained from 
NIR spectra of four samples, and the equations used for the two-step MSC 
calculation. (b) Raw and (c) corrected spectra from 56 samples of polystyrene 
suspended in water at varying concentrations and mean bead sizes. 

 

For this example, it can then be observed from Figure 2.7 that the concentration of 

beads, i.e., their quantity, had a stronger impact in the scattering that their mean size, 

since scattering profiles from samples with higher and lower concentrations are far 

apart than the profiles from samples of different mean bead size.  

Moreover, as expected, samples containing bigger beads were much more affected 

by scattering than the smaller beads, in both concentration regimes.  
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By inspecting Figure 2.7 b and c, it can be seen that the spectral offset was 

considerably reduced, and consequently, would be suitable to be used for estimation 

of concentration of chemical species. However, the removed part can also be useful. 

Recently, the nature of the information contained in the MSC coefficients was 

investigated aiming for determining mean particle diameter42. The authors found that 

the MSC parameters are strongly influenced not only by particle size but also by 

particle concentration and the refractive index of the medium.  

Several variations of the MSC have been proposed, the most used being the 

Extended MSC, which was proposed by the same authors, and also generated several 

other versions. In the original version, the wavelength dependency of light-scattering 

effects was taken into account through a second-order polynomial. Other variations 

include the incorporation of physics-based models proposed by Thennadil et al43, a 

version for correction of Mie scattering/dispersion artefacts in biological samples 

called Resonant Mie Scattering (RMieS)44 correction, among many others. Further 

information about the EMSC and related versions can be found in excellent reviews 
36,45.  
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2.3 Practical aspects  

2.3.1 Sampling modes 

In most applications, sample preparation is not needed when making analytical 

measurements by using visible or NIR spectroscopy. This is one of the main 

advantages of these techniques, not only due to the savings related to reagents and 

time involved in preparing a sample, but especially because it allows measurements 

to be made in systems where sample preparation is not possible, or when the errors 

resultant of it are too high, as it is the case of chemical reactions and biological 

fermentations.  

Vis-NIR light can be measured in reflectance, transmittance or transflectance, 

depending on the sample properties (liquids, solids or gases) and on the intended 

application. When visible or near-infrared light strikes polystyrene beads or styrene 

droplets, all the incident photons are reflected, transmitted or absorbed.  

In diffuse reflectance, the objective is to detect the light that is diffusely reflected 

from the surface of the sample, after it has undergone multiple scattering inside the 

sample. The diffuse reflected light is normally collected at an angle of 5 to 85 

degrees. In reflectance mode the absorbance is defined as: 

 !"#$%"!&'( ! = log 1
!"#$"%&'(%" 2.10 

In diffuse transmittance measurements, light is detected after passing through the 

sample and leaving from the opposite side. Standard transmission is the conventional 

way of measuring a spectrum, but is normally used for analysis of transparent 

liquids, where light is not scattered. However, its diffuse version is also possible, 



Chapter 2 
 

 

33 

giving good results especially due to its bigger pathlength. In transmission mode, the 

absorbance is defined as: 

 !"#$%"!&'( ! = log 1
!"#$%&'!!#$() = ! ! ℓ 2.11 

where, ! is the molar absorptivity, c represents the concentration of chemical species 

and ℓ is the pathlength. In practical terms, an absorbance of 1 means that 10% of the 

photons were detected whereas an absorbance of 2 means that only 1% of them was 

detected, relative to the standard.  

Transmittance and diffuse light can also be collected by means of an integrating 

sphere, allowing light collection over all reflected angles, and isolation of the light 

which is reflected from the one that is transmitted46. The basic principle is that light 

enters the sphere and is reflected multiple times by the highly reflective coating (over 

99% reflection) and is scattered uniformly around the interior of the sphere.  

Due to the high scattering nature of the polystyrene beads, diffuse reflectance is 

normally the method of choice for accounting for these photons, but applications can 

be found in diffuse transmittance as well13,47. Figure 2.8 shows how light travels 

through the sample in the diffuse reflectance and transmission setups.  
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Figure 2.8 Schematic illustration of the diffuse reflectance and transmission 
acquisition in a polystyrene bead suspension. 

 

2.3.2 Sampling interfaces 

Sampling in polymerisation reactions is a challenging task due to the high 

heterogeneity and viscosity of the reaction media. Several sources of errors can 

deteriorate dramatically the quality of the measurements: 

- Sample may not be representative of the whole media; 

- Rapid evaporation of the monomer due to the high temperature of the sample; 

- Reaction continues to run in the sample until quenching; 

- Uncertainties related to the addition of chemicals for quenching; 

- Uncertainties related to weighting of chemicals, and sample before and after 

evaporation, freezing, etc. 

On-line or in-line measurements have the potential to optimise the monitoring and 

control of such reactions, since they allow non-destructive and non-invasive 

measurements to be acquired at faster pace, allowing a more efficient, reliable and 
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representative sampling.  Figure 2.9 presents a schematic illustration of the sampling 

modes that can be chosen for polymerisation reactions. 

 

Figure 2.9 Schematic illustration of the measurement models available for Vis and 
NIR measurements 

 

On-line and in-line monitoring are the fastest ways of obtaining information from 

polymerisation reactions, providing real-time data for process monitoring and 

control. Besides savings with time, transport of sample, and chemicals involved in 

the quenching, for example, their measurements are more accurate because the 

source of errors associated to manipulation and sample preparation are avoided. 

Because the sample is diverted from the process in on-line measurement systems, 

they are non-invasive. While this may be relevant in some biotech applications, due 

to GMP regulations for avoiding contamination, in polymerisation reactions this type 

of measurement brings uncertainties related to the diversion of the sample, especially 

in regard to its representativeness. For these systems, in-line measurements would be 
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preferable, because they allow analysis to be done in-situ48, with the spectroscopic 

sensors mounted directly inside the reactor vessel, in contact with the reaction media.  

Fibre optic sensors are the responsible for the versatility of these spectroscopic 

process analytical measurement modes. The spectrometer can be placed remotely, 

and light conveyed through the fibres from the source to the sample, where it is 

absorbed, reflected or transmitted, and taken to the detector by another fibre, or even 

the same. These fibres can be multiplexed, allowing several measurements to be 

acquired simultaneously, and several similar or different sensors to analyse multiple 

properties from the process. 

 

2.3.3 Considerations on optical probe geometry  

When designing an optical probe, a few considerations need to be made for obtaining 

an optimum performance for the desired application. Besides physical 

characteristics, materials and strength of the probe, important properties are the core 

diameter, numerical aperture, fibre packing and source-to-detector distances. 

Numerical aperture determines the range of angles at which the fibre can accept or 

emit light. It is defined by the difference in the refractive indices of the core and the 

cladding material. A fibre with higher numerical aperture will be able to collect more 

light than a fibre with a lower numerical aperture.  

A smaller core diameter is desired in order to obtain an optical fibre as small as 

possible. However, bundle geometry and fibre packing usually determine the core 

diameter for most of the applications. Figure 2.10 below presents a few fibre bundle 

geometries commonly used for standard and spatially resolved Vis-NIR 

spectroscopy. The geometries studied in this thesis are also shown. 
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Figure 2.10 Different fibre bundle geometries. 

 

A basic optical probe consists of two separate fibres for illumination and collection 

(Figure 2.10 a). A single-fibre probe would also be possible, but the measurement 

can be contaminated by background signals produced by the illumination49. One of 

the most common configurations for NIR optical probes is presented in b). It is a 6-

around-1-bundle configuration, where six illuminating fibres circle a central 

collecting fibre.  

In spatially resolved optical probes, fibres are normally arranged in linear arrays, 

where the detecting fibres are placed at varying distances from the illumination fibre. 

An example is the optical probe used by Nguyen Do Trong et al50 for monitoring 

apples. In this configuration, as illustrated in Figure 2.10 c, five 200 mm detecting 

fibres were placed at increasing distances from the illuminating fibre, all with a 

numerical aperture of 0.22. Very recently, Bogomolov et al35 used a similar probe, 

but this time consisting of 8 fibres, for monitoring fat and protein in milk. Bevilacqua 

et al51 presented another example of linear array configuration, aimed at medical 
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applications. The probe geometry is shown in d), where two illuminating fibres are 

disposed symmetrically in relation to the collecting fibres. The small SD distances 

(<1.4 mm) adopted in this design were able to probe a smaller volume of tissue, 

providing better differentiation between different types of tissue.  

Fibres can also be arranged as two crossing rows of fibres (Figure 2.10 e), where 

several illuminating fibres are placed at similar distances from a central detecting 

fibre, being the reverse order also possible, i.e., one central illuminating fibre 

surrounded by detecting fibres. With this design, more light collected at each SD 

distance reaches the detector, improving the S/N ratio.  

A more elaborate fibre design is commercialised by Indatech (Clapiers, France) for 

pharmaceutical applications. In this probe, illustrated in Figure 2.10 f, the 

illuminating is made by three fibres placed in a row at the centre of the probe head, 

which are surrounded by six collecting fibres in each side.  This design allows good 

sensitivity to local chemical heterogeneity and differences in density or mean particle 

size at the cost of reduced sampling area of the sample32. Finally, the last two 

examples are custom made probes proposed in the scope of this thesis, which will be 

discussed in the following chapters. 

 

2.3.4 Instrumentation 

As mentioned in the beginning of this chapter, the basic NIR and Visible 

spectrometers are not significantly different from each other.   The basic components 

consist of a radiation source, a wavelength selection device, sample holder and a 

detector. Based on this, multiple possibilities of configurations are possible, and 

several other components can be added depending of the desired application. For 

research applications, for example, benchtop spectrometers like the Fourier 

transform (FT) based ones are commonly used due to their high spectral resolution 
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and better signal-to-noise ratio3. For real-time applications in a plant factory, 

miniaturised spectrometers are becoming more common due to their compactness 

and low costs. Furthermore, in recent years, advances have been made in their 

technology allowing improved precision 52 53 54.  

There are several ways of categorising the measurement devices, but let’s follow 

here the one recommended by Ciurczak and Igne46 as a guide for choosing a 

measurement system. According to these authors, the measurement configurations 

can be divided in these categories: 

• Filter-based instruments  

• Scanning grating monochromators  

• Interferometer-based instruments  

• Acousto-optic tunable filters  

• Photodiode arrays  

• Specialty and custom instruments  

• Optical parameter instrumentation  

 

Spatially resolved spectroscopy is an example of optical parameter instrumentation, 

along side the integrating sphere-based measurements, time-resolved spectroscopy, 

and frequency domain photo migration. Such configurations are required for the 

separation of absorption and scattering. Spatially resolved measurement systems 

require a portable spectrometer which can be connected to fibre optics, or a Charge-

Coupled Device (CCD) camera. Miniature photodiode arrays and CCD-based 

spectrometers are normally used due to its ruggedness and speed. For most of the 

applications, a multiplexer is also required in order to probe light separately from 

each of the fibres.  
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2.4 Multivariate latent variable modelling 

The development and consolidation of chemometrics and near-infrared spectroscopy 

are closely intertwined55. Without chemometrics, the NIR region would probably still 

be an obscure and unexplored region, and without NIR, chemometrics would not 

have reached the maturity and wide acceptance it has nowadays. 

This close relationship may be in part explained by the indirect nature of the NIR 

method. Quantitative analysis based on NIR spectroscopy cannot rely on 

assignments of single absorption bands, as other spectroscopies do, but rather 

requires the development of a regression model relating the NIR spectra and the 

analyte of interest, measured by the reference method. In fact, multivariate 

calibration based on latent variables is a major cornerstone of chemometrics56. But 

chemometrics in near-infrared spectroscopy is not restricted to multivariate 

calibration; its tools are present in all phases of method development and application. 

It starts in the design of experiments, follows to signal processing, selection of 

spectral ranges and samples, pattern recognition, development of predictive models, 

data fusion, calibration transfer, until validation and model maintenance. In each of 

these steps the development and research of new methods have seen an increase over 

the years. 

 

2.4.1 Data organisation in chemometrics 

Chemometrics relies heavily in linear algebra, hence data are organised in matrices 

of n rows and k columns, where rows represent samples and columns the variables 

describing the system. For example, near-infrared data taken during a full 

polymerisation reaction are organised as a matrix (X), where the n rows contains 

NIR spectra collected at different sampling intervals, and the k columns contains the 
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absorption intensities in the wavelengths from a specific spectral region. When 

quantitative analysis is involved, the readings for the quality parameter of interest, let 

us say the monomer conversions obtained by gravimetric analysis for each sample, 

are organised in a column vector (Y), since only one conversion percentage is 

measured for each sample. Throughout this thesis, we will refer to the Y vector as 

the reference matrix, or reference values. Taken together, the X matrix and the Y 

vector comprise a dataset.  

 

Figure 2.11 Matrix representation of spectroscopic based methods 

 

Visible and near-infrared spectroscopic data are normally affected by 

multicollinearity, which happens when the absorption intensities at two or more 

wavelengths are not independent of each other. Multivariate latent variables methods 

like Principal Component Analysis (PCA) and Partial Least Squares (PLS) are 

widely used in spectroscopy data because they can handle very well that high 

multicollinearity in a straightforward manner, by converting the information 

contained in hundreds of wavelengths into a few latent variables, which are easily 

interpretable. They provide a visual guide of the wavelengths or combinations of 
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wavelengths that are affected by a variation on the reference values, and show how 

such variations are impacted by the process operating conditions.  

 

2.4.2 Principal Component Analysis (PCA) 

PCA aims to extract all relevant information from a multitude of variables, 

representing it as a reduced set of new orthogonal variables called principal 

components, or latent variables. The new coordinates are represented by the scores 

and loadings, which allow us to visualise multivariate spectral information in a 

simpler way, by uncovering the relationship among samples and variables, showing 

which variables are correlated between each other and which of them are the most 

significant in describing the complete dataset. Figure 2.12 shows the components of 

PCA decomposition, presenting the basic equation of multivariate latent variable 

analysis. 

 

Figure 2.12 PCA decomposition of the spectra in scores, loading and residuals, 
represented in an equation (equation 2.12) and in matricial form. 

 

The scores and loadings simplify the visualisation of similarities and differences 

within the data, which can be difficult to see on a higher dimensional set up. The 

scores values allow us to see the correlation between the samples whereas the 
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loadings values show us the correlation within the variables. As they are 

complementary and superimposable, patterns seen in a specific direction of the score 

plot can be interpreted by looking at the same direction in the loading plot. 

By using the scores and loading information simultaneously, we can understand 

better the causes of variation and their magnitudes. Furthermore, detection of outliers 

is straightforward, and in a process perspective, detecting anomalous variations or 

unconformities is easier as well.  

Each latent variable, made of one score and one loading value, is ordered according 

to their decreasing variance. Hence, the first latent variable describes most of the 

variability in the data, while the second one, being orthogonal to the first LV, carries 

the second highest amount of variability in the data, and so forth. Depending on the 

nature of the data, further latent variables may describe less structure of the original 

dataset, so they can be discarded without losing important information. 

 

2.4.3 Partial least squares (PLS) regression 

Projection to latent structures by means of partial least squares, or simply PLS 

regression, is a regression extension of the PCA where both X and Y matrices are 

used for modelling purposes. Its aims to extract the latent variable scores that best 

describe the variation in the X dataset that is most influential on the Y data set.  

As opposed to other regression techniques like Principal Component Regression 

(PCR) and Multiple Linear regression (MLR), in PLS the dimensionality of the X 

matrix is reduced by maximizing its covariance with Y. Consequently, it takes in 

account the errors of both spectroscopic and reference methods. PCR and MLR 

methods model Y only through the correlation of X, so they assume the reference is 

error free, which is definitively not the case in analytical applications. Moreover, 



Chapter 2 
 

 

44 

PLS can analyse collinear, noisy and numerous X-variables57, as opposed to MLR, 

which can model only less variables than samples and it is severely affected by 

multicollinearity and noise. For those reasons, PLS is the regression technique of 

reference in process analytical applications, being extensively investigated by the 

chemometrics and NIR spectroscopy communities, which can be seen by the 

innumerous version of the original algorithm already implemented. 

The basic PLS algorithm used in this work is the Non-linear Iterative Partial Least 

Squares (NIPALS). The procedure is illustrated in the Figure 2.13 through an array 

scheme. 

 

Figure 2.13 Schematic illustration of the PLS algorithm’s main steps. 

 

The algorithm starts by choosing a start score vector u, which can be any vector from 

the Y matrix, for example. This initial score vector is (1) then regressed on X to 

obtain the variable weights, w, which are then normalized to unity length. (2) By 

multiplying the normalised weights to X, a first approximation of the score vector t 

is obtained.  The score vector is (3) regressed on Y to give the q weights, which are 

also normalised to unity length. A new u score vector can now be (4) calculated 
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based on the q weights and the Y vector. This cycle is repeated until the score vector 

converges. When a convergence is reached, the (5) loadings P are calculated based 

on X and the t scores. A regression is performed between u and t, to obtain the 

regression coefficients b. The residual matrices (E and F) are then obtained by 

subtracting the X loading and scores from X, and Y loadings, scores and weights 

from Y, respectively. The next set of latent variables is calculated by using E and F 

instead of X and Y to start the iteration. 

A PLS model is represented by both loading matrices, P and Q, together with the 

weight matrix W. Based on them, the estimations for new samples are calculated. 

The number of latent variables that describe the model can be found by cross-

validation. 

 

2.4.4 Multiblock PLS 

MB-PLS is an extension of the ordinary PLS regression method, with the difference 

being that it is performed relating several blocks for the purpose of prediction or 

interpretation. Multiblock PLS operates in two distinct levels58: a sub-level, which 

works similarly as individual PLS models, where the features of each block are 

modelled separately; and a super level, which aggregates this summarised 

information from each block to form a super block.  

There are several variants of the MB-PLS method59,60, two of them widely used in 

the multi-block community. They differ mainly on the chosen deflation procedure. 

While Wangen and Kowalski61 proposed the use of the block scores for the deflation 

of the blocks, Westerhuis and Coenegracht 60 suggested the use of the super score for 

the deflation step, to avoid loss of information in the deflation process. This variant 

of the Multiblock PLS will be used in this work. More information about the MB-

PLS and data fusion will be given in Chapter 5. 
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2.5 Validation 

‘‘With great power comes great responsibility’’ 

 

As Charles Whelan said in his naked statistics book62, ‘‘regression analysis is the 

hydrogen bomb of the statistical arsenal’’. It is indeed a very powerful technique, 

and as such, need to be used with caution. Therefore, a robust validation is essential 

to avoid developing models that yield misleading results, and to evaluate their 

usefulness in real life applications. 

When validating multivariate calibration models, especially those ones based on 

PLS, we usually concern on three mains aspects56: 

1 How many latent variables are enough for characterising a dataset 

2 How reliable is the prediction 

3 How representative are the data used to produce a model. 

 

To properly answer these questions, a minimum of two sets of samples are needed, 

one for calibration, where a calibration model evaluating the model parameters is 

built, and another one where the predictive capability of such calibration model is 

evaluated. How these subsets of samples are chosen and used for validation is what 

sets apart the two main approaches for validation: test set and cross-validation. 

 

2.5.1 Test set validation 

The test set validation is a more rigorous type of validation because it is performed 

in an independent set of samples, not used in the calibration phase63. The calibration 

model is built solely based on samples from the calibration set, and validated against 
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the samples from the validation, or test set. The performance of the models can then 

be accessed by the calculation of the root mean square error of prediction (RMSEP), 

which is done according to the equation 2.13. 

RMSEP = !! − !! !!
!!!
!!"#$

 (2.13) 

The RMSEP is an estimate of the variation of the reference values, !!, and their 

respective estimated values, !!, divided by the number of samples found in the 

prediction set. Despite its advantages, it may not be easy to select these independent 

samples, and more importantly, not enough samples may be available for building 

two distinct sets of samples in real applications. In those cases, cross-validation 

methods are normally adopted for model evaluation. 

 

2.5.2 Cross-validation 

Cross-validation offers a more practical approach to validation, since it is iteratively 

performed in subsets of the calibration set. In its simplest version, the leave-one-out 

cross-validation, the validation set consists of just one sample that is removed from 

the calibration set containing ncal samples. The model is then built based on this 

ncal-1 calibration set, and validated upon the removed sample (validation set). This 

procedure is repeated by re-incorporating the deleted sample to the calibration set, 

being replaced by another one, until all samples are validated once. The performance 

of the models is accessed by the root mean square error of cross-validation 

(RMSECV), which is done according to the equation 2.14. 

RMSECV = !! − !! !!
!!!

 !"#$  

 

(2.14) 
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Alternatively, the validation set can consist of block of samples, as it is in the case of 

the n fold-cross validation, where more than one sample is deleted from the 

calibration set and used in the validation set. This option is normally preferable than 

the leave-one out cross-validation, and the number of samples of each fold is usually 

set to five to ten samples.  

It is important to highlight that besides assessing a model performance, the 

RMSECV estimates are also used to choose the optimum parameters for the model, 

as example of the number of latent variables needed to describe the data variance. It 

follows that the optimised errors may be an over optimistic measure, even in the case 

of the test set calibration, since when tuning the calibration model the test set may be 

used also in the training set. Solutions to the over-optimism of cross-validation have 

been proposed, as example of bootstrapping, Monte-Carlo cross-validation64 and 

double cross validation and its repetition version, the repeated double cross-

validation. 

 

2.5.3 Double cross validation 

Double cross-validation combines both model selection and model assessment by 

using two nested cross-validation loops65. The outer loop is used to estimate the 

prediction performance of the models. It works like an external validation, because 

the Y values for the test sets are estimated based on calibration sets that were not 

used for selecting the model parameters, as example of number of latent variables 

required to build the models. The model complexity is chosen based on the inner 

loop, which also estimates the model’s errors. It consists of splitting the calibration 

samples defined in the outer loop in two subsets of validation and training sets (one 

segment as validation set and the remaining as training set). Both inner and outer 



Chapter 2 
 

 

49 

loops are repeated nSEG times, with nSEG being the number of segments used to 

split the datasets. Usually, sample sets in both loops are divided in 4 to 10 segments. 

 

2.5.4 Repeated Double Cross Validation  (rdCV) 

Filzmoser et al66 proposed a version of the double cross-validation where repetitions 

of the whole double cross validation procedure is performed many times. It was 

initially proposed for NIR data67, but since has been applied in data from a variety of 

analytical techniques67.68 

 

Figure 2.14 Schematic illustration of the rdCV method. 

 

The repeated double cross validation (rdCV) advantage resides in the large numbers 

of estimates obtained, allowing a better estimate the prediction performance and its 
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variability. A central point in the rdCV approach proposed by Filzmoser is the 

selection of the optimum number of latent variables (step 4), which is performed 

based on the standard error method. In step 3 of the Figure 2.14, for each one of the 

inner loop’s iterations, cross-validation is performed for a chosen number of latent 

variables (20, for example) and the models are validated upon the validation samples. 

For each one of these twenty latent variables, the mean squared error (MSE) is 

obtained from the residuals between the estimated and measured values for the 

quality parameter, the Y values. In the standard error method, it is assumed that these 

estimates of MSE values are prone to errors, thus instead of selecting the latent 

variable that gave the minimum MSE value, the smallest number of LV that is 

distant one standard deviation of the MSE value is the one selected as the optimum 

LV. This is done nSEG x nREP times (500 for 5 segments and 100 repetitions, for 

example), and the LV selected more frequently is chosen as the optimum LV to be 

used in the test set. The MSE and the standard error method are described by 

equations 2.15 and 2.16. 

mean square error = 1
!!"!

! !"#$%&"' − ! !"#$%&#!'! !
!!"#

!!!
 

 

(2.15) 

!"#$!"# <  min!"#$!"# +  !"#$%&'() !"#$%&. !"#$%#&% !"#$%&$'(!"#
!"#$%& !" !"#$%&! !" !ℎ! !"#$%&"'$() !"#

 

 

(2.16) 

It can be seen in equation 2.15 that the mean standard error is a more conservative 

way of selecting the number of latent variables, aiming to avoid overfitting. How 

much conservative it is can be regulated by the parsimony factor. By choosing one 

standard error, it gives a 68% confidence interval. A bigger parsimony factor (larger 

confidence interval) may result in an unrealistic low number of LVs, potentially 

causing underfitting, but much lower confidence may lead to results similar to the 

minimum MSE.  
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Other approaches for selecting the model complexity can also be studied. The 

simplest way chooses the latent variable that results in the minimum MSE69, or any 

other measure like RMSECV or Prediction Error Sum of Squares (PRESS). 

However, for the reason stated earlier, although simpler, this approach can 

potentially overfit the estimations. Another commonly applied method was proposed 

by Haaland and Thomas70, in which the optimum LV is the lowest possible provided 

that it gives a PRESS value not significantly different from the minimum PRESS. 

For this, the F statistic is calculated to obtain the statistical significance 

determination. 

Independent of the method for selecting the optimum number of latent variables, the 

rdCV is robust choice especially when dealing with small datasets. It is superior to 

conventional leave-out approaches for cross-validation, since it reduce chances of 

obtaining accidental performance results, due to the high number of splits of the data 

into calibration and test sets66. Moreover, the complexity of the models is optimised 

for each one of the calibration sets in the inner loop, and the prediction performance 

is estimated on independent test sets. 
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Chapter 3 

3 Experiments & Methods 

 

 

This chapter presents the experiments, equipments, 

methods and data analysis procedures that will be 

explored throughout this thesis. First, the experiments 

performed for the evaluation of the optical probes, 

spectroscopic measurement modes and modelling 

strategies are discussed in detail. The spectroscopic 

systems and their individual components are presented, 

followed by the strategies involved in the extraction 

and manipulation of the data generated by them. 

Finally, the methods for multivariate calibration model 

building and validation are shortly described.  
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3.1 Experiments  

Solid spherical polystyrene beads are the final product of a suspension 

polymerisation reaction1. Such very heterogeneous reaction is difficult to monitor 

even by the reference methods2, hence, comparing the efficiencies of the different 

optical probes, source-detectors distances and angles of incidence would prove to be 

very difficult. It would make sense, though, to evaluate these effects separately, 

without the influence of the reaction media. For this, before analysing the 

information from full suspension polymerisation reactions, we first devised a simpler 

experiment in which post-production polystyrene beads were suspended in water at 

varying concentrations and sizes. The knowledge acquired from this controlled 

experiment may lead to a better understanding of the impact of physical and 

chemical information on spectroscopic measurements, and allow an easier 

comparison of the performance of different optical probes, spectroscopic modes and 

modeling strategies. That, ultimately, may be relevant for the analysis and 

interpretation of the models developed on actual suspension polymerisation 

reactions.  

Figure 3.1 Polystyrene beads produced by suspension polymerisation reaction 
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3.1.1 Two-component system 

Post-production expandable polystyrene (EPS) beads obtained from several batches 

of suspension polymerisation reactions were gathered to enable a broad range of 

bead sizes with sufficient quantity to explore different concentrations. After dried, 

the beads were sieved by using a series of stainless steel woven wire sieves 

(Endecotts Ltd., London) in different mesh sizes, in conjunction with a Minor M200 

Automatic shaker (Endecotts Ltd., London). 

 

Figure 3.2 Minor M200 automatic shaker with a set of stainless steel woven wire 
sieves from Endecotts. 

 

These beads were subjected to sieving in order to obtain several narrowed size 

ranges, yielding a total of seven portions, from 0.090 to 2.0 mm in diameter, as 

described in Table 3.1. The content of each sieve was then weighted and the particle 

size distribution calculated. For each of these portions, the mean bead diameter and 

its particle size distribution were also measured by using a Camsizer® dynamic 

image analysis system (Retsch Technology GmbH, Germany), performed by BASF. 

The D50 cumulative distribution was taken as a measure of the mean.  
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Table 3.1 Mean bead sizes and their span calculated for each diameter range 

Range  Diameter range, mm D50, mm 

1  0.300:0.500 0.405 ± − 

2  0.500: 0.630 0.565 ± 0.190 

3  0.630: 0.800 0.699 ± 0.222 

4  0.800: 1.000 0.890 ± 0.201 

5  1.000: 1.250 1.108 ± 0.187 

6  1.250: 1.400 1.314 ± 0.115 

7  1.400: 1.600 1.540 ± 0.264 

 

3.1.1.1 Experimental procedure 

The experiments were performed in a 1 L stirred borosilicate jacketed reaction vessel 

(Figure 3.3 a). The temperature was controlled at 24ºC (±2º) by a thermostatic bath 

(Figure 3.3 b) connected to a PT-100 temperature sensor. A polytetrafluorethylene 

(PTFE) anchor stirrer (Radleys) was used and the agitation speed adjusted at 250 

rpm. 
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Figure 3.3 a) Reaction vessel and the anchor impeller used in all experiments and (b) 
reaction system containing with heating bath, temperature controller and stirrer 
controller.  

 

In order to obtain sample runs with different concentrations of polystyrene beads, the 

amount of polystyrene beads was maintained the same for every bead size range, and 

only the amount of water was changed. This procedure was chosen to have a defined 

mean bead size and bead size distribution for every concentration range. The 

following procedure was repeated for every bead size range: 

• Add 200g of water into the empty reactor; 

• Add 200g of polystyrene beads to obtain a concentration of 50% w/w; 

• Acquire spectra; 

• Add water until the concentration was lowered to 45% w/w; 

• Acquire spectra; 

• Lower the concentration in 5% steps by adding water until a final 

concentration of 15% w/w is obtained, acquiring spectra after each 

increment. 
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Previously, a similar preliminary experiment was prepared with polystyrene beads 

supplied by BASF. In this experiment, instead of adding water to obtain decreasing 

concentrations, the total volume was kept constant at 600mL. In order to obtain 

different concentrations, an amount of water was removed by using a pipette and the 

same amount of beads were added to reach the desired concentration at each 

increment. In this experiment, the mean bead diameter and bead diameter 

distribution may be different for every concentration, which could potentially add an 

extra source of error to the models to be developed. The results for this experiment 

are not shown in this thesis. 

A total of 56 sample runs were performed in the system illustrated in the Figure 3.4, 

spanning the mean bead diameter range from 0.400 to 1.540 mm and the 

concentration range from 15 to 50%, at 5% intervals. The experimental runs were 

randomly performed over several days. 

 

Figure 3.4 Schematic illustration of the experimental system. 

 

Measurements in the near infrared region were obtained by a NIR spectrometer 

(NIRQuest-512, Ocean Optics) while the spectra in the visible region were registered 

by a visible range spectrometer (USB-4000, Ocean Optics), connected to the 

proposed SARDR probe. A multiplexer was employed for the coupling of fibres. A 
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detailed description of the optical system and its components will be given in the 

Section 3.2, later in this chapter. 

The SARDR probe was positioned between the vessel wall and the impeller, deep 

enough into the media in order to avoid unstirred spots that could potentially result in 

fouling at the probe head when actual polymerisation reactions are developed3. 

Furthermore, as the probe head is in permanent contact with the stream of particles 

being carried by the mechanical stirrer, it allows for a representative bulk sample 

continuously being probed. 

 

Figure 3.5 Positioning of the SARDR probe in the reactor vessel. 
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3.1.2 Styrene suspension polymerisation reactions 

3.1.2.1 Process description 

The suspension polymerisation process investigated in this work is a laboratory-scale 

batch reaction for the production of expandable polystyrene beads. The reaction lasts 

approximately seven hours, where a full conversion from styrene to polystyrene is 

achieved. A standard polymerisation recipe was used and the reaction conditions 

were obtained through assistance from BASF (Ludwigshafen, Germany). Both 

reaction conditions and recipes, however, are different to those employed at BASF 

owing to safety issues, lack of availability of equipment at the university lab to 

perform reactions under pressure and due to confidentiality restrictions.  

Since our group had no previous experience on running such reactions, before 

performing experiments, all the equipment had to be designed and ordered, including 

the glass reactor and a glass reactor lid which could fit all probes. After the 

equipment was ready, a long learning time was needed to master the reaction 

running. The first reactions failed completely, resulting in a sticky mass of melted 

plastic. The first complete reactions produced beads with sizes comparable to those 

produced at BASF using their normal operating conditions, but there were issues 

with agglomeration of beads during the reaction. This caused problems in terms of 

sampling and also probe fouling. After further modifications of the reaction 

conditions and recipe it was possible to produce polystyrene beads with sizes in the 

expected range (0.3 – 2.0 mm), and with no agglomeration or fouling issues.  

3.1.2.2 Chemicals 

Deionized water was used as the suspending medium and styrene as the monomer. 

Luperox® benzoyl peroxide (BPO) with moisture content of 25% was used as the 

initiator and sodium dodecyl benzene sulfonate (SDBS) was employed as ionic 

emulsifier. Tricalcium phosphate (TCP) was used as the stabilizing agent and was 
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supplied by BASF. Toluene and para-benzoquinone were used in the samples 

withdrawn for gravimetric analysis, for dissolving the polystyrene and quenching the 

reaction, respectively. All reactants, unless otherwise stated, were supplied by 

Sigma-Aldrich and used as supplied. 

3.1.2.3 Set-up 

Styrene suspension polymerization reactions were performed in a 1 L stirred boro-

silicate jacketed reaction vessel, especially designed for this project and supplied by 

Radleys. The temperature was controlled by a thermostatic bath (Huber GmbH) 

connected to a PT–100 temperature sensor. A PTFE Anchor stirrer (Radleys) was 

used and the agitation speed adjusted at the desired speed before the start of each 

reaction.  

3.1.2.4 Procedure 

Approximately 300 g of styrene was poured into the sealed vessel through an 

aperture in the lid and the stirrer speed set to approximately 100 rpm. Once the 

temperature inside the vessel had reached approximately 30°C, 8 g of solid 

polystyrene beads were added through the aperture to seed the reaction. When the 

beads had dissolved, a solution of the remaining styrene (approximately 104 g) and 

the initiator DBPO were added to the vessel. As the temperature of the media in the 

vessel reached 40°C, 650 g of water with an appropriate amount of TCP dispersed 

throughout was added to the vessel and the stirrer speed was set to the desired level. 

Spectral acquisition began 5 minutes after the temperature of the media reached 80 

°C and this temperature was maintained within ± 0.5°C throughout the remainder of 

the reaction. Spectra were taken at every 10 minutes and samples for gravimetric 

analysis were taken at every 20 minutes. After 1 hour and 15 minutes from the 

reaction beginning, 1 mL of 2.5% SDBS solution was added to the vessel. During the 

reaction, samples were collected from the reactor at regular intervals for 
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characterisation by the conventional gravimetric analysis and particle size 

measurements. The reaction finished after around 7 hours from its initiation. The 

reaction mixture was then removed from the reaction vessel, cooled and suction 

filtered through a glass vacuum funnel.  

3.1.2.5 Gravimetric Analysis 

For offline estimation of monomer conversion, samples were taken throughout each 

reaction for gravimetric analysis, which is the technique routinely used throughout 

the polymer industry. This work used an adapted version of the sampling procedure 

proposed by Santos et al. The procedure involves removing approximately 5 mL of 

reaction media, immediately weighing it in an aluminium pan, and adding 5 mL of 

0.1% w/w para-benzoquinone inhibitor in toluene to quench the reaction. Both the 

pan and the volume of the para-benzoquinone solution are weighed beforehand. To 

further ensure that the reaction stopped completely, the pan containing the sample is 

then put into a freezer for approximately 2 minutes before being weighed once more. 

Once the cool weight is obtained, the sample is placed in an oven at 45°C for several 

days to evaporate any solvents. The solid samples are taken from the oven and 

weighed once a day until an approximately constant weight is achieved. Then, the 

theoretical weights of all known solid constituents – surfactant, stabiliser, para-

hydroquinone and initiator – are subtracted, leaving the weight of polystyrene in the 

sample. This is then taken as a percentage of the theoretical weight of polystyrene at 

100% conversion to give the estimated percentage conversion at each sample point. 

The use of p-benzoquinone allows faster diffusion into the beads as it is more 

hydrophobic than hydroquinone; therefore, faster quenching of the reaction in the 

sample is possible and a more accurate estimation can be achieved.  
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3.2 Spectroscopic system 

Figure 3.6 presents a diagram showing various components of the spatially and 

angularly resolved Vis-NIR diffuse reflectance spectroscopic system used in this 

thesis. It consists of two miniaturised spectrometers, a light source, a multiplexer, a 

multi-fibre probe, optical fibres, an integrating sphere and a computer integrated to a 

graphical interface. Each component of the system is described in the following 

sections of this chapter. 

Light is propagated via an optical fibre from the light source to the multiplexer, 

where it is channeled to the individual fibres on the probe placed in contact with the 

sample. The light reflected by the sample is collected by a collecting fibre and 

guided towards the spectrometer, where a spectrum is obtained, further processed 

and stored by a computer. An integrating sphere is used for collection of the 

reference spectrum. 

 

 

Figure 3.6 Vis and NIR SARDR spectroscopic system: a) spectrometers, b) light 
source, c) multiplexer, d) computer and graphical interface, e) optical fibres, f) 
optical probe and g) integrating sphere. 
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3.2.1 Spectrometers 

Measurements in the near-infrared region were obtained by a NIR spectrometer 

(NIRQuest-512, Ocean Optics) whereas the spectra in the visible region were 

registered by a visible range spectrometer (USB-4000, Ocean Optics). The NIRQuest 

512 spectrometer has a Hamamatsu G9206-512W InGaAs array detector and is 

responsive from 900-2200nm4. It contains a Thermo Electric Coller (TEC) to reduce 

noise and maintain a stable operating temperature. The USB-4000 spectrometer uses 

a Toshiba TCD1304AP Linear CCD array detector, responsive from 350 to 1100 nm 

and operated at room temperature5. Both spectrometers are connected to a computer 

via USB ports. A comparison of the specifications for both equipments is shown in 

the Table 3.2. 

 

Table 3.2 Comparison of the NIR and Vis spectrometers used in this experiment 

Specifications NIR Quest USB 4000 

Detector Hamamatsu G9206-512W 
InGaAs linear array 

Toshiba TCD1304AP 
Linear CCD array  

Optical Resolution 5 nm 0.34 nm 

Pixels 512 pixels 3648 pixels 

Pixel size 25x250 um 8 um x 200 um 

Wavelength range 900-2200 nm 200-1100 nm 

Integration time 1ms-1s 10us-10s 

Dynamic range 7.5x106 (system); 10000:1 
for a single acquisition 

3.4x106; 1300:1 for a 
single acquisition 

Signal-to-noise ratio 10000:1 @ 100ms integration 300:1 at full signal 

Dark noise 6 RMS counts @ 100ms 50 RMS counts 
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3.2.2 Light Source 

The light source used for emitting the radiation uses a 400W tungsten-halogen lamp 

positioned in a modified lamp house (LSH-T100, Horiba Jobin-Yvon) and powered 

at 29V, 10A. The lamp house couples the light into the source fibres in a ferrule 

which illuminates the incident light at the end of optical fibre probe. The lamp house 

also provides a shutter for blocking the incident light entering the optical fibre. 

 

3.2.3 Multiplexer 

A fibre-optic multiplexer is used to couple the light from a single fibre sequentially 

into a set of other fibres6. In this experiment, a 16x2 FOM-Vis-NIR optical 

multiplexer (Avantes Inc.) was employed for coupling the seven illuminating fibres 

of the SARDR probe into the light source to provide timely and sequential 

illumination. The multiplexer has sixteen different output channels coupled by one 

input channel. A controlled stepper motor and a rotator block switch the fibres 

according to pre-defined sequence and time intervals by the user in the software 

interface. The multiplexer is connected to the computer through a serial port 

communication, RS-232. 
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3.2.4 Optical Probes 

The design of an optical probe affects directly the optimal illumination and light 

collection in spectroscopic applications7. Probe geometry, source-detector distance 

and angle of incidence are important factors to consider when building or choosing a 

probe with a specific application in mind.  

In this work, the sensing abilities of two different probes and their intrinsic 

characteristics were analysed for their potential for extracting qualitative and 

quantitative information from spectroscopic measurements on a polymer industrial 

application.  

3.2.4.1 Probe 1 – Spatially and angularly resolved diffuse reflectance probe 

With this probe the aim is to investigate the impact of different source-detector 

separations and angles of incidence on the information extracted from the two 

spectroscopic measurement modes analysed in this thesis. The schematic diagram of 

the probe head can be seen in Figure 3.7. 

 

 

Figure 3.7 Schematic diagram of the SARDR probe head, showing the fibre’s ends 
and their distances in micrometers. 

 

 

The SARDR probe is a cylindrical probe containing two parallel rows of 400 µm 
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Vis-NIR low-OH fibres, each row having a different numerical aperture. Row one 

has two angular fibres (30° and 45°) and seven normal incident fibres with a 

numerical aperture of 0.22. Row two has the same number and type of fibres, but 

with a 0.11 numerical aperture. The fibre core-to-core separation is 600 µm and the 

array separation is 7.5 mm. In this thesis, only the row containing the 0.22 numerical 

aperture fibres was used. 

The fibre length is 3 m, with a 0.4 m common end made of stainless steel tube and a 

black PEEK (VictrexTM plc., UK) ferrule to hold all the fibres at the probe end using 

black epoxy for adhesion. All fibres were polished to the surface of the probe end. 

The bundle is made of PTFE braided stainless steel interlock conduit, 10 mm OD, 

and the legs with a PVC furcation tubing 3.00 mm OD. The split point is 2m from 

the back of the probe, encased in 40-50 mm long brass junctions. The leg ends are 

composed of 18 SMA 905 strain relief endings. The results obtained by this probe 

are presented in Chapters 4, 5 and 6. 

 

3.2.4.2 Probe 2 – Dual-ring diffuse reflectance optical probe 

This prototype probe was specifically developed for OPTICO FP7 European Project 

by Fibre Photonics Ltd, in partnership with the Measurements and Analytics Team at 

University of Strathclyde. 

The probe consists of a central collecting fibre surrounded by two illumination rings. 

The inner ring is composed of six fibres and the outer ring has twelve fibres. All 

fibres have a 400 um diameter and are held together and bonded in to a ceramic 

ferrule. The geometry of the probe head can be found in Figure 3.8. 
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Figure 3.8 Schematic illustration of the dual-ring Diffuse Reflectance probe 

 

3.2.5 Graphical Interface – Spatially resolved system 

A graphical interface developed in MATLABTM (R2012b, Mathworks) was used to 

manage the acquisition of measurements by synchronising the spectral acquisition 

and the switching of the multiplexer channels. It works by interfacing the 

spectrometers, multiplexer and computer, allowing a quick visualisation of the 

spectrum while it is being recorded. The step-by-step acquisition process by using 

the interface is shown in Figure 3.9.  
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Figure 3.9 Spectral acquisition process by using the graphical interface. 

 

After the graphical interface is loaded in MATLAB, the program initialises by 

identifying and loading the spectrometers and the multiplexer, which are connected 

to the computer through USB ports and a serial port communication, RS-232, 

respectively. As input for the software, the user must define the experiment name, 

the number of scanning repetitions and a file containing the settings for the spectra 
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acquisition. The settings include the multiplexer positions and integrating times to be 

applied for each fibre and spectroscopic mode. After the settings are uploaded, the 

program is ready to run. As the spectral repetitions are acquired the signal is 

continually updated and displayed in the computer screen. For each fibre and 

spectroscopy technique a .mat file is created containing the spectra collected for all 

repetitions.  

 

3.2.6 Software 

All software programs were written and implemented in MATLAB (Mathworks 

Inc.).  Repeated double cross validation8 was adapted from the LibPLS library 

developed by Li et al9.  Multi-block PLS10 was adapted from a routine kindly 

supplied by Dr João A. Lopes, from the Chemometrics & Process Analytical 

Technology Unit, University of Porto, Portugal. Wavelet denoising routines were 

implemented by this author by using the Wavelet Toolbox. Principal component 

analysis (PCA) models were implemented by using PLS Toolbox (Eigenvector Inc). 

A MATLAB-based graphic user interface was developed to integrate the algorithms 

and routines developed for spectral acquisition in the spatially and angularly resolved 

spectroscopy system.  
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3.3 Spectra acquisition and processing 

3.3.1 Spectra acquisition 

The SARDR system was switched on for at least an hour before collecting any 

measurements, in order to warm up the spectrometers and stabilise the light source. 

In the experimental set up used in this thesis, in addition to the spectra taken from 

actual samples, three other measurements are collected at each acquisition cycle:  

• reference spectrum 

• background reference spectrum 

• sample background spectrum  

The reference spectrum is taken from a highly reflecting Spectralon® 99% surface, 

which acts as an almost perfect Lambertian surface. In this work, a 150 mm diameter 

integrating sphere (Labsphere, USA) was used for this purpose. The reference 

spectrum and its background spectrum are collected before the beginning of the 

measurement cycle, by placing the probe head at the entrance port of the integrating 

sphere. The sample background spectrum is measured with the probe inside the 

reaction vessel, at the beginning of the measurement cycle.  

The background spectrum is basically a spectrum taken when no light is coming 

from the light source. It is subtracted from the sample and/or reference spectrum to 

eliminate possible bias relative to the electronic noise from the system. For this, in 

our experimental set up the light source shutter was turned off and the room 

darkened. Although both background spectra are quite similar, spurious light from 

the experimental environment may contaminate the sample and reference spectra 

differently. Hence, by acquiring their background spectrum independently, it is 

possible to cancel out any of this contamination. 

The quality of the spectrum is directly influenced by the integration time chosen for 

its acquisition. Thus, the choice of an adequate integration time for each 
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configuration is crucial for acquiring a reliable spectrum. However, such task is not 

straightforward, since it requires a compromise to be made between acquisition time 

and spectral sensitivity. Setting it too short may result in a poor signal-to-noise ratio, 

since less photon will be able to reach the detector, but having it too long, there may 

be some region of the spectrum that becomes saturated, yielding incorrect data. The 

spectrometers used in this work allow integrating times in the range between 3.8 ms 

and 10s for the USB-4000 spectrometer and 1ms to 1s for the NIR Quest 

spectrometer4. Within these ranges, several tests were performed for each application 

(two-component system and polymerisation reactions). The chosen integrating times 

for the experiments performed in this thesis are summarised in Table 3.3. 

 

Table 3.3  Integration times and number of repetitions used for all probes 

 Integration time (repetitions), milliseconds 

SARDR probe NIR NIR reference Visible Vis reference 

Individual fibres 6000-8000 (8) 10000 (8) 20-100 (8) 60-300 (8) 

Dual ring probe     

Inner/outer ring 4000 (8) 8000 (8) 50 (8) 100 (8) 

 

From Table 3.3 one can notice that the NIR Quest spectrometer required an 

integration time that is up to 80 times longer than in the USB-4000. Consequently, 

the noise component is much stronger in NIR than in Vis spectrum. To improve the 

signal-to-noise ratio, the measurements were signal-averaged from eight 

measurements. The sample and reference spectra from both spectroscopy techniques 

were also denoised by wavelet transform. 

By using a spatially resolved system, it is even more difficult to set up a standard 

integration time that suits all conditions, especially because each individual fibre 
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may respond differently with regards to spectral intensity. Moreover, the signal 

intensity varies considerably along the experiment due to the different concentrations 

and size of beads. During our experiments, the integrating time had to be shortened 

in a few instances to allow a reliable measurement to be obtained. 

 

3.3.2 Signal processing 

The raw measurements obtained by the spectrometers used in this experiment present 

considerable noise. Reducing this noise contribution is essential for extracting useful 

information from analytical data. The following steps were performed for each 

spectral data set. 

3.3.2.1 Wavelet denoising 

Smoothing and denoising strategies based on Wavelet transform were investigated in 

this work. A wavelet smoothing strategy based on the Coiflet 5 wavelet mother was 

employed for all measurements, with a crude threshold chosen for the removal of 

high-frequency components. Four decomposition levels were required for proper 

noise suppression.  

3.3.2.2 Normalisation and background subtraction 

The spectral measurements obtained from both spectrometers are recorded in digital 

count intensity units. After denoising, these measurements were converted to 

reflectance units through normalisation of the sample measurement (Is) by the 

reference spectrum (Iis), after their respective background subtraction (Ioff and Iisoff) is 

performed. This normalisation is done as follows: 

 

! = !! − !!""
!!" − !!"#$$

 
3.1 
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Although the Visible and NIR reflectance spectra can be used in reflectance units, 

general practice recommends using it in logarithmic units, log (1/R)11,12. It is 

believed that the log (1/R) presents more linearity with regards to the analyte 

concentration.  

3.3.2.3 Excluding non-informative regions and downsizing 

Although the wavelength range of the visible spectrum (346-1010 nm) obtained by 

the USB-4000 is much narrower than in the NIR spectrum (899-2217 nm), it presents 

a higher resolution and increased wavelength sampling. This happens because while 

a spectral count was collected for every 2.23 nm in the NIR, in the Vis region the 

acquisition was performed with a 0.21 nm interval. Consequently, it has a higher 

number of variables (3648) than in the NIR signal (512). Considering future 

application of data fusion, this large difference may bring difficulties for comparison 

of both techniques. Consequently, it was decided to downsize the Vis spectrum by a 

factor of four, leaving one variable for every 0.8447 nm. It is important to highlight 

that this procedure has not affected the spectral character and information contained 

on it. 

The extremities in both spectra are very noisy due to the detector insensitivity. These 

non-informative regions were removed to avoid degradation of the models that will 

be developed in the next chapters. The resultant region for NIR is 1000 to 1800 nm, 

and 500 to 938 nm in the visible region. 

 

3.3.2.4 Signal processing overview 

Figure 3.10 presents the spectral processing procedure adopted in this work. The 

process is illustrated for NIR spectroscopy, but the steps and methods are the same 

used for Visible spectroscopy.  
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The signal processing procedure starts with the sample spectrum (blue profile in 

Figure 3.10 a) and its background measurement (grey profile in the same figure), 

which are normally difficult to distinguish due to the strong stochastic noise, as well 

as the reference spectrum and its background spectrum (Figure 3.10 b). The 

background spectra are subtracted from their respective sample and reference spectra 

(grey curves in Figure 3.10 c and d. The resultant subtracted spectrum is denoised by 

using wavelet denoising (blue curves in Figure 3.10 c and d). After the normalisation 

is performed according to the Equation 3.1, the reflectance spectrum is obtained 

(Figure 3.10 e). Finally, the reflectance spectrum is converted to the absorption 

spectrum, shown as a grey curve in the Figure 3.10 f, and the final wavelength region 

represented by the blue curve. 
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Figure 3.10 NIR spectra pre-processing procedure: (a and b) sample and reference 
spectra (blue) and their background spectrum (grey), (c and d) subtracted spectrum 
and its denoised version (blue), e) reflectance spectrum and f) full log(1/R) spectrum 
in grey and the wavelength selected version in blue. 
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3.4 Methods 

All regression models developed throughout this thesis are based on partial least 

squares method. For the data fusion models, when more than one X matrix was 

employed, multiblock PLS was adopted as the regression method. 

In order to guarantee that the models predictive capability will hold true for future 

unseen samples, a PLS strategy based on repeated double cross-validation was 

employed for model validation. Moreover, since the output of several different 

models will be compared in this work, this technique was also chosen to allow a 

reliable comparison among them8.  

The outputs for every model are the root mean squared error of cross validation 

(RMSECV), root mean square error of prediction (RMSEP) and their distributions, 

squared coefficient of correlation (R2), optimum number of PLS components and its 

frequency plot, and the residuals for all estimations. The confidence intervals (CI 

95%) are calculated for RMSECV and RMSEP based on their values obtained from 

all estimations from nrep test sets. 
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Chapter 4 

 

4 Investigating the influence of source-detector 

separation and angle of incidence on the predictive 

capability of models 

 

 

The system, methods and experiments presented in the previous 

chapter are used here to evaluate the analytical potential of visible 

and near-infrared spatially and angularly resolved diffuse 

reflectance measurements on the estimation of quality attributes of 

a polymer-based system. Main interest is placed on the quality and 

type of information gathered from each of the different source-

detectors distances and spectroscopic techniques, and their impact 

on predictive models. The results are based on a new SARDR 

optical probe developed in house, especially designed for this 

application. 
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4.1 Introduction  

Although the first spatially resolved spectra were measured almost seventy years 

ago1, it was only in the 90’s that Vis-NIR-Spatially Resolved Spectroscopy (SRS) 

emerged as an important on-line analytical sensor. The technique gained maturity in 

the biomedical field2,3, but has only recently been used in Process Analytical 

Technology, mostly in food4,5 and pharmaceutical applications6. Despite being a 

well-accepted analytical tool in the polymer industry, its spatially resolved 

implementation has been overlooked, which can be perceived by the scarcity of 

publications.  

The main advantage of SRS over the classical approach for Vis-NIR spectroscopy 

comes from the ability to retrieve information on the distance travelled by the 

photons through the sample. Photons that have travelled shorter distances with less 

penetration can be differentiated from photons that have travelled further with a 

deeper penetration through the sample. That extra layer of information helps us to 

better understand how deep light can penetrate into the sample, and which type of 

interaction takes place, whether mainly absorption or scattering. Consequently, this 

allows the extraction of chemical and physical information from the sample. 

The simplicity and affordability of its instrumentation is also a great attraction of the 

technique. As one author mentioned, SRS sits at the interface between hyperspectral 

imaging and single-point spectroscopy6, but with the advantage of being easy to 

implement and cost efficient. In fact, apart from the optical probe, only a 

spectrometer and a multiplexer, or a combination of spectrograph and CCD camera 

are required to acquire reliable measurements. Portable spectrometers are suitable for 

the task and can be found in the market at a fraction of the price of hyperspectral 

imaging systems.  
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In this chapter, we will limit our focus to explore reflectance measurements obtained 

from fibres with normal and angular incident illumination, evaluating their potential 

in estimating quality attributes of a system based on expandable polystyrene beads 

suspended in water at different concentrations and sizes.  

The information obtained from this controlled experiment may lead to a better 

understanding of the various phenomena involved in such systems, allowing a clearer 

evaluation of the (1) new optical probe proposed, (2) the sensing abilities of each 

spectroscopic mode, and (3) the impact of different source-detector separations and 

angles of incidence on the predictive capability of the resultant models. That would 

potentially give the insight needed before up-scaling the strategy to monitor full 

polymerisation reactions. 
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4.2 Source-detector distances: does it really matter? 

In short, spatially resolved diffuse reflectance spectroscopy (SRDR) works by 

collecting reflectance measurements at different distances from the illuminating 

fibre. The principle behind SRDR spectroscopy is illustrated in the Figure 4.1, 

below. 

 

Figure 4.1 Schematic illustration of the measurement principle of spatially resolved 
spectroscopy in the polystyrene bead system.  

 

For the present application, light delivered by each illuminating fibre is scattered and 

absorbed by the polystyrene beads and water molecules, and then detected via 

collecting fibre. The reflectance intensities obtained when the illumination comes 
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from the closest illuminating fibre are naturally stronger (red arrow and trajectory), 

since photons have had a shorter path to travel and, consequently, were less affected 

by scattering or absorption. As the separation between the collecting and the 

detecting fibres increases, the reflectance intensities become weaker, since now the 

pathlength is longer and the probability of absorption/scattering events is much 

higher at each increasing SD separation. Such variation of pathlength results in 

another important advantage of the SRS measurements: multiple source-detectors 

distances allow measurements at different penetration depths. As the pathlength 

increases by the wider SD separations, the probability of photons penetrating deeper 

in the sample becomes higher, hence, information from chemical or physical traits 

not readily available at the surface of the sample may be now uncovered.  

From the above explanation, it is clear that the selection of the source-separation 

distances in an optical probe design demands a trade-off between penetration depth 

and signal quality. If the separation is too wide, it may result in a spectrum with an 

unsatisfactory signal-to-noise ratio, but having it too short may limit the probing to 

the surface of the sample, due to the shallower penetration depth. 

Another less explored way to maximise the extraction of information from the 

differences in chemical and physical characteristics of a sample is by acquiring 

diffuse reflectance at different angles of incidence. Together to the collected spatial 

information, such measurements may offer a better representation of the sample 

scattering and absorption behaviour. 

In order to investigate the impact of the angular incidence and source-detector 

separation in the Vis and NIR spectra, a new SARDR probe designed in house is 

evaluated here. Specifically, the objective is to understand the influence of the SD 

separation and the angle of incident on the predictive performance of multivariate 

regression models developed for the polymer based system in study. For this, to each 
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spectroscopy technique, the spectral data acquired from five normal incident fibres 

placed at different distances from the collecting fibre will be analysed. Moreover, 

spectra will also be obtained from two angularly incident fibres, 30° and 45° to the 

normal. The SARDR probe head is illustrated in Figure 4.2 below, depicting the 

configuration of optical fibres and their distances for both Visible and NIR spectral 

collection.  

 

Figure 4.2 Schematic illustration of the source-detectors distances and angles of 
incidence in the SARDR probe head. The distances given are the ones from the Vis 
and NIR collecting fibres (detector) to each illuminating fibre (source).  

 

Any of the fibres could be assigned for light collection or illumination. The 

configuration presented in Figure 4.2 was chosen to maximise the number of SD 

distances available for NIR and Visible spectra acquisition, providing similar 

grounds of comparison between both techniques, and to allow both spectrometers to 

be connected at the same time. In this way, two diametrically opposed collecting 

fibres were chosen, one connected to the Visible spectrometer (yellow circle) and 

another one to the NIR spectrometer (green circle). Each of them collects light from 

five normal incident fibres placed at increasing distances (0.6 to 3.0 mm) and from 

two angularly incident fibres (0.6 and 4.2 mm). Note that the light illuminated from a 

specific fibre is detected at different distances by the Visible and NIR collecting 
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fibres, with the exception of the central fibre, which is located at similar distance, 1.8 

mm, from both Visible and NIR collecting fibres.  

As it was explained earlier, a natural consequence of collecting spectra at different 

source-detector distances is the monotonically decrease of signal strength as the 

separation widens. That happens because fewer photons travelling a longer path will 

be able to reach the detector without being absorbed. This behaviour is exemplified 

in Figure 4.3 which shows a series of (a) Visible and (b) NIR spectra acquired by the 

SARDR probe using normal incident 400 µm fibres at five different SD distances.  

 

Figure 4.3 (a) NIR and (b) visible spectra taken at different source detector distances, 
from 0.6 to 3.0 mm. The spectra were acquired from the EPS bead system with a 
mean bead size of 0.69 mm and concentration of 50 % w/w. 
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In this figure, spectra are shown in reflectance units for better visualisation of their 

differences. The reflectance values are higher than 1 because the reference spectrum 

collected by the integrating sphere has intensities lower than the ones observed in the 

sample spectrum. 

It can be seen that the reflectance values for all wavelengths decay rapidly as the SD 

separation increases. In the NIR region, the wavelength bands of water (around 1450 

nm) and polystyrene (around 1670 nm) become subtler at wider separations, whereas 

shorter wavelengths the signal is better preserved, despite slightly decaying as well.  

Nevertheless, it is important to highlight that signal strength solely may not directly 

translate in better or worse predictive models. Since those photons travelling farther 

have a generally higher chance of interacting with a larger volume of EPS beads, 

being scattered or absorbed, or penetrating deeper in the sample. Indeed, longer SD 

separations result in deeper light penetration7, which may result in better 

sensitivities.  

Differences in sensitivity, scattering and absorption for each distance bring extra 

layers of chemical and physical information from samples and may impact the 

predictive ability of multivariate calibration models. Thus, the SARDR probe has 

potential to obtain measurements under different penetration depths, absorption 

levels and scattering properties, amplifying the range of information available for 

analysis. What is relevant to understand is the type and quality of information 

obtained by each SD separation, screening the best situations for maximising the 

synergism obtained by their combination. 

 



Chapter 4 

 

92 

4.3 Experiments and methods 

A total of 56 sample runs were performed in the system illustrated in the Figure 4.4 

below, spanning the mean bead diameter range from 0.400 to 1.540 mm and the 

concentration range from 15 to 50%, at 5% intervals.  

 

Figure 4.4 Schematic illustration of the experimental system. 

 

For all sample runs, temperature and stirrer rate were maintained constant at 24oC 

and 250 rpm, respectively. Measurements in the near-infrared region were obtained 

by a NIRQuest-512 spectrometer and in the visible region by the USB-4000 

spectrometer, both from Ocean Optics. The spectrometers were connected to the 

SARDR probe, and a multiplexer was employed for the coupling of fibres. Further 

details of the experiment can be found in Chapter 3, section 3.1. 
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4.4 Model development and validation 

PLS multivariate regression models were developed between the two quality 

parameters namely, particle concentration and particle diameter and each 

spectroscopy mode and source detector distance. Prior to modelling, each spectral 

data set was subject to normalisation, background correction, de-noising and 

conversion from reflectance to logarithmic units, as detailed in the Chapter 3 Section 

3.3. For all models, both spectra (X data) and the property of interest (y data) were 

autoscaled.  

To guarantee that the predictive capability of all models will hold true on future 

unseen samples, a PLS strategy based on repeated double cross-validation was 

employed for model validation. Moreover, since the output of several different 

models will be compared in this work, this technique was also chosen to allow for a 

reliable comparison among them. Within the rdCV, a 5-fold cross validation was 

carried out for a maximum of 20 latent variables, to determine the optimum number 

of PLS components. The whole iteration (inner and outer loops) was repeated 100 

times. In this way, the predicted performance and its variability can be better 

estimated, since the number of available test set y-values is enormously increased. 

Moreover, by having an optimum number of components in each of these iterations, 

its overall variability can be estimated and a final optimum number of components 

can be derived for a model containing all objects 12 . The outputs for every model are 

the root mean squared error of cross validation (RMSECV), root mean square error 

of prediction (RMSEP) and their distributions, squared coefficient of correlation 

(R2), optimum number of PLS components and its frequency plot, and the residuals 

for all estimations, as it was already explained in Chapter 2 section 2.5. 
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4.5 Impact of different source-detector distances and angles of 

incidence in the predictive ability of Vis and NIR models 

The model system used for evaluation of the SARDR optical probe and modelling 

strategies discussed in this chapter is composed of expandable polystyrene beads 

suspended in water. Hence, water and polystyrene are the sole chemical entities that 

affect the NIR and visible spectra in this study. Chemical effects, however, are not 

the only manifestation in this system, since physical effects also have a strong 

influence over the spectrum. By varying the distance between the detector and the 

light source, these manifestations may be detected differently by the Vis and NIR 

sensors, which may contribute to a richer extraction of information from the samples. 

The information captured by the Vis and NIR spectra collected at each SD distance 

and angle of incidence will be evaluated for the determination of polystyrene 

concentration and EPS bead size.  

 

4.5.1 Determination of polystyrene concentration 

In order to evaluate the spectroscopic techniques and calibration models without the 

disturbances present in a typical reaction, fully converted EPS beads suspended in 

water are analysed through an experiment run under controlled temperatures and 

stirrer speeds. SARDR Vis and NIR spectra were acquired from 56 sample runs 

spanning a range of 15 to 50 weight per cent of EPS beads, from each of the seven 

illuminating fibres placed at different distances and angles. After spectral correction, 

normalisation with the integrating sphere spectrum, denoising, and conversion from 

reflectance to logarithmic units, the spectra were ready for the development of the 

PLS multivariate calibration models. 
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4.5.1.1 Visible region 

Visible spectroscopy is not a natural choice when the goal is to monitor polystyrene 

concentration in polymers, especially due to the absence of related absorption bands 

in this region. Despite this, since the concentration of beads affects the spectral 

baseline, it may be possible to correlate the shifts in the spectra with the 

concentration of polystyrene in the sample. This is exemplified in the Figure 4.5, 

which shows the visible spectra from samples of same mean bead size distribution 

but under four different polystyrene concentrations (15, 25, 35 and 45%). 

 

Figure 4.5 Vis spectra taken from four sample runs under different polystyrene bead 
concentrations and the same mean bead diameter of 0.890 mm. 

 

Indeed, the figure clearly shows that the visible spectrum is affected by changing the 

concentration of polystyrene beads. The spectrum of each sample is shifted up as the 

bead concentration is increased and their absorbances become stronger as the 

wavelengths widens, since less light is scattered. The visible spectrum may not 

explicitly contain chemical information, but since it can be affected by the size of 
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beads, it may be correlated to their concentration. That happens because the number 

of particles per unit volume, i.e., the particle number density, can also affect the bead 

concentration. This can lead to a situation where it is possible to have the same bead 

concentration in three different situations: different bead sizes but same number 

density, same bead size but different number density or a combination of both.  

Although the effect of changing concentration can be clearly seen on the spectra, it 

remains to be seen whether there is a consistent pattern and if the modelling 

strategies are able to capture such information. For this, regression models were 

developed between Vis spectra and polystyrene bead concentration for every one of 

the seven illuminating fibres of the SARDR probe. The statistical summary of all 

models is shown in Table 4.1. 

Table 4.1 Summary of results of rdCV PLS regression models for the determination 
of EPS bead concentration in water by using the SARDR probe in the visible range. 
RMSECV and RMSEP are shown with their 95% confidence interval.  

 PLS Repeated Double CV 

Distance   
mm 

RMSECV 
% w/w ±CI95% 

RMSEP 
% w/w ±CI95% R2 LV 

0.6 / 45° 6.4 ± 0.06 6.5 ± 0.14 0.88 6 

0.6 6.2 ± 0.08 7.7 ± 0.27 0.88 4 

1.2 6.7 ± 0.05 6.7 ± 0.14 0.84 6 

1.8 3.3 ± 0.02 3.4 ± 0.07 0.95 5 

2.4 3.2 ± 0.04 3.5 ± 0.08 0.95 4 

3.0 2.7 ± 0.02 2.9 ± 0.05 0.96 4 

4.2 / 30° 4.5 ± 0.04 4.4 ± 0.10 0.93 4 

Bead concentration range: 15 – 50 % w/w 
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In Table 4.1, a comparison of SD distances and angles of incidence based on the 

average RMSECV and RMSEP obtained by rdCV models, reveal a clear distinction 

between longer and shorter source-detector distances. While wider separations 

resulted in lower errors and better predictive ability, models for the shortest distances 

provided poorer predictions and lower coefficients of correlation, R2. The lowest 

error was obtained by the illuminating fibre located 3.0 mm distant from the 

detecting fibre, i.e., the widest separation among the normal incident fibres, 

estimating bead concentration with an error lower than 3% ± 0.02. The same pattern 

was found for the angular incident fibres, where the farthest fibre also achieved a 

lower error and required a lesser number of latent variables to explain the data 

variance.  

It is important to remember that these metrics presented in Table 4.1 were obtained 

from 100 repetitions of double cross validations, each of them having different 

random splits of the data into test and calibration sets. In this way, the optimum 

number of latent variables could be derived from 100 sub-models. 

For the model that gave the best results (distance 3.0 mm), most of the sub-models 

have shown similar complexity by selecting four latent variables as the optimum 

number (almost 70% of them). This is shown in Figure 4.6 a and b, where the 

frequency distribution is depicted, followed by a scree plot showing the RMSECV 

values as a function of the number of latent variables (LV) for all 100 repetitions. In 

Figure 4.6 b, the blue curve is the average RMSECV for every latent variable 

number while the grey shadow represents the errors for all 100 individual models.  
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Figure 4.6 a) Frequency distribution of the optimum number of LVs chosen from 100 
repetitions of double cross validation models. b) average RMSECV (blue curves) as 
a function of LVs obtained for the bead concentration model based on Vis spectra 
(SD distance = 3.0 mm). The grey shadow represents the RMSECV obtained from 
all repetitions.  

 

For the same model, the estimated versus measured polystyrene concentration is 

shown in Figure 4.7 below, where the blue circles represent the mean estimates 

calculated from 100 double cross validation repetitions, and the grey crosses 

represent the 5600 estimated values (12 prediction samples versus 5 cross validation 

segments versus 100 repetitions). A good fit between the measured and estimated 

values can be observed, with a squared coefficient of correlation of 0.96.  
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Figure 4.7 a) Measured versus estimated bead concentration obtained by models 
developed based on Vis spectra (SD distance = 3 mm) and b) probability density plot 
from all residuals from the rdCV models. 

 

The distribution of the prediction errors is shown as light grey curves in Figure 4.7 b, 

whereas the blue curve represents the average Probability Density Function (PDF) 

from 100 double cross validation repetitions. These PDF curves provide important 

information about model performance, indicating how far the estimated values are 

from the reference ones. 
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4.5.1.2 Near-infrared region 

The presence of strong polystyrene absorption bands in the NIR region makes the 

technique relevant for monitoring polymer concentration. Figure 4.8 presents a 

typical NIR spectrum taken from the system in question, spanning the wavelength 

region of 1000 to 1820 nm.  

 

Figure 4.8 NIR spectra of EPS beads suspended in water at four different 
concentrations. 

 

The most important NIR region for monomer-polymer conversion monitoring8 is 

located in a window between 1580 to 1680 nm. While polystyrene absorbs mainly 

around 1640 and 1684 nm due to the first overtone of the aromatic C-H stretch, 

styrene bands can be visualised centred around 1580 nm and 1670 nm. 

Consequently, in a polymerisation progresses, as the styrene is continuously 

converted in polystyrene, the intensity of the absorption at the styrene C-H vibration 

bonds vanishes (1580 and 1670 nm) through out the reaction, at the same time that 
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the aromatic C-H stretch in the first overtone has its absorption intensity (1640 and 

1684 nm) increasing continuously. A weaker, but not less important, second overtone 

band of the aromatic C-H stretch can also be seen around 1142 nm. The spectrum is 

also dominated by the overtone of water between the 1400-1600 nm, but since the 

strong water influence is confined to this region, the polystyrene-styrene fingerprint 

region is not affected. 

Based on previously published applicability9,10 of near-infrared spectroscopy for 

monitoring styrene-polystyrene conversion in polymerisation reactions, it was 

expected that models developed here for polystyrene concentration by using the 

NIR-SARDR probe would provide good results. However, that was not the case for 

most of the source-detectors distances, as can be seen in Table 4.2, which 

summarises the results obtained by the developed rdCV regression models. 

Table 4.2 Summary of results of rdCV PLS regression models for the determination 
of EPS bead concentration in water by the SARDR probe in the NIR range. 
RMSECV and RMSEP are shown with their 95% confidence interval. 

 PLS Repeated Double CV 

Distance 
mm 

RMSECV 
% w/w (±CI95%) 

RMSEP 
% w/w (±CI95%) 

R2 LV 

0.6 / 30° 5.4 ± 0.04 5.6 ± 0.11 0.87 4 

0.6 5.1 ± 0.06 5.4 ± 0.12 0.90 5 

1.2 7.4 ± 0.08 7.7 ± 0.19 0.78 6 

1.8 7.1 ± 0.04 7.1 ± 0.13 0.74 4 

2.4 6.8 ± 0.05 7.0 ± 0.12 0.78 4 

3.0 7.8 ± 0.05 7.9 ± 0.14 0.70 4 

4.2 / 45° 7.0 ± 0.05 7.2 ± 0.13 0.74 4 

Bead concentration range: 15 – 50 % w/w 
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All models provided errors higher than 5% for bead concentration. In fact, the best 

model was able to estimate bead concentration by using five latent variables with an 

error of 5.4%, whereas in the poorest result, the RMSEP obtained was 7.9 %, with a 

coefficient of determination of 0.70, indicating a poor fit of the model.  

Contrary to expectations, the errors in general were higher at wider SD separations. 

The information gathered by the NIR spectra acquired on wider distances tend to be 

richer, since photons that were able to reach the detector generally have a bigger 

probability of travelling deeper in the sample. At the same time, this deeper 

penetration depth normally may come at the expense of a lower signal-to-noise ratio, 

since fewer photons may be able to reach the detector, per unit time, without being 

absorbed. Therefore, light intensity needs to be strong enough to reach all available 

distances on the probe with sufficient power, and that may have been one of the 

problems faced by the NIR models developed here. Although 400 µm fibres were 

employed in the SARDR probe, light strength may have not been sufficient, affecting 

negatively the sensitivities of the spectra collected at the wider distances.  

To exemplify this argument, the NIR spectra obtained from four different bead 

concentrations (15, 25, 35 and 45%) are plotted for each of the five normal incident 

source-detector distances (Figure 4.9). The spectra from different SD distances are 

presented with an offset to facilitate visualization of their differences.  
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Figure 4.9 NIR spectra from four different bead concentrations taken from five 
source-detector distances.  

 

By inspecting the Figure 4.9, it is clear that the spectra from short SD distances are 

of much better quality. As the SD distance increases, the variance of the spectra 

increases, and the their character become anomalous, especially in the region above 

1400 nm. It is interesting to remember that longer wavelengths in the NIR spectrum 

penetrate the medium in a greater extent than do shorter wavelengths. This may 

partly explain the better quality of the signal until 1400 nm for all distances, since at 

shorter wavelengths the penetration depth is shallower and the scattering higher. 

However, the main contributing factor is the weaker light throughput observed at 

wider SD distances, resulting in a lower signal-to-noise ration for those 

measurements.  
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4.5.2   Determination of mean EPS bead diameter 

Obtaining reliable estimates of the mean EPS size and its distribution along a 

reaction allows the production of a final product with fewer losses and an easier post-

production processing11. In this section, similarly to the determination of bead 

concentration, the SARDR spectra from 56 sample runs spanning the mean diameter 

range of 0.4 to 1.54 mm were collected for all SD distances and angles of incidence. 

A large quantity of post-production beads was sieved to obtain several narrowed size 

ranges, from which the mean bead diameter and its distribution were measured, as 

discussed in Chapter 3 Section 3.1, and shown Table 4.3, below. 

 

Table 4.3 Mean bead sizes and their span calculated for each diameter range 

Range  Diameter range, mm D50, mm 

1  0.300:0.500 0.405 ±   -   

2  0.500: 0.630 0.565 ± 0.190 

3  0.630: 0.800 0.699 ± 0.222 

4  0.800: 1.000 0.890 ± 0.201 

5  1.000: 1.250 1.108 ± 0.187 

6  1.250: 1.400 1.314 ± 0.115 

7  1.400: 1.600 1.540 ± 0.264 
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4.5.2.1 Visible region 

The spectrum in the Visible range is strongly affected by light scattering coming 

from the polymer beads. It contains information on the scattering behaviour of the 

samples, and, therefore, on the particle size. It has been used extensively for particle 

sizing applications12, especially due its susceptibility to light scattering. Table 4.4 

presents the summary of the rdCV regression models developed for mean EPS bead 

diameter based on the Visible spectra of every source-detector separation and angle 

of incidence.  

 

Table 4.4 Summary of results of rdCV PLS regression models for the determination 
of EPS bead size by the SARDR probe in the visible range. RMSECV and RMSEP 
are shown with their 95% confidence interval. 

 PLS Repeated Double CV  

Distance 
mm 

RMSECV 
mm ±CI95% 

RMSEP 
mm ±CI95% R2 LV 

0.6 / 45° 0.123 ±0.001 0.132 ±0.003 0.94 4 

0.6 0.079 ±0.001 0.091 ±0.005 0.99 6 

1.2 0.201 ±0.002 0.204 ±0.004 0.89 6 

1.8 0.081 ±0.001 0.083 ±0.002 0.98 6 

2.4 0.098 ±0.001 0.098 ±0.002 0.97 5 

3.0 0.077 ±0.001 0.076 ±0.002 0.97 4 

4.2 / 30° 0.151 ±0.001 0.155 ±0.003 0.96 7 

Mean bead diameter range: 0.400 to 1.540 mm.   
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It can be seen from Table 4.4 that apart from one fibre (1.2 mm), all other normal 

incident fibres resulted in good predictive capabilities by showing low errors of 

prediction. Similarly to what happened with the bead concentration models, the best 

model was obtained for the longest distance (3.0 mm). However, in this case, the 

errors obtained from the other distances were not remarkable different. The 3.0 mm-

distant fibre was able to estimate mean bead diameter with an error lower than 0.08 

mm ± 0.002. Both angular fibres provided poorer models when compared to the 

normal incident fibres. Figure 4.10 a and b shows the measured versus estimated 

values obtained by the rdCV models for the source-detector distances which 

provided the best (3.0 mm) and the poorer (1.2 mm) performance. Here, the blue 

circles represent the mean estimated value calculated from 100 repetitions of PLS 

double cross validations, and the light grey circles represents the results from all 

those 100 models 

 

Figure 4.10 Measured vs. estimated mean bead size for the SD distances which 
resulted in the (a) best and (b) worst performance.  

 

The model built when the illuminating fibre was placed 3.0 mm distant from the 

collecting fibre obtained an excellent fit. The coefficient of correlation reached 0.97 

using only four latent variables to describe the data variance. Furthermore, the results 

for this fibre and most of the other ones were better than the method of reference, as 
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can be seen from Table 4.3, which shows that the reference errors for the individual 

sample size ranges vary from 0.115 to 0.264 mm. The fibre placed at 1.2 mm from 

the collecting fibre provided the poorer results, but still shows a relatively good fit, 

as it can be seen in the right hand side plot of Figure 4.10. The variation of results 

obtained by all 100-model repetitions is much wider than the one from distance 3.0 

mm, but show relatively good linearity. Other evaluation tools for these two models 

can be seen in Figure 4.11 a to d, below. 

 

Figure 4.11 Diagnostic plots for the SD distances that provided the best (a and b) and 
the poorest (b and c) performance. The probability density functions calculated from 
100 repetitions are shown in a and c. Blue curves represent the mean residuals and 
the grey ones the 5600 residuals from 100 repetitions. The RMSECV vs LVs selected 
by all models are shown in b and d. Blue circles represent the mean values and the 
light blue shadow all 100 models.  

 



Chapter 4 

 

108 

The residuals obtained from all models for both SD distances are presented in Figure 

4.11 a and c, and corroborate the previous results by showing that the best model has 

a much narrower distribution. Besides, it needed a lower number of latent variables 

and obtained RMSECVs varying tightly around the mean errors (Figure 4.11 b and 

d). It is important to note that the residual distribution for the 1.2 mm distant fibre 

differs from a normal distribution by presenting two slightly different distributions, 

which may be an indicative of an outlier sample or group of samples that are 

skewing the estimations. 

4.5.2.2 Near- infrared region 

Similarly to the NIR models for polystyrene concentration, the PLS models for mean 

EPS bead diameter have also provided poorer results for most of the SD distances, as 

it can be seen in Table 4.5, below, which summarises the results.  

Table 4.5 Summary of results of PLS regression models for the determination of EPS 
bead diameter based on the NIR-SARDR probe. Results from rdCV are compared to 
the ones from a PLS model built with all samples 

 PLS Repeated Double CV 

Distance 
mm 

RMSECV 
mm ±CI95% 

RMSEP 
mm ±CI95% R2 LV 

0.6 / 30° 0.153 ±0.002 0.165 ±0.004 0.92 4 

0.6 

0.6 Range 
(% w/w) 

RMSECV 
(CI 95%) 

RMSEP 
(CI 95%) R2 LV 

      
0.6 A 15-50 0.118 (0.001) 0.113 (0.003) 0.97 9 

0.6  0.101 (0.001) 0.105 (0.003) 0.98 8 
1.2  0.143 (0.002) 0.142 (0.004) 0.97 8 
1.8  0.164 (0.002) 0.168 (0.004) 0.93 6 
2.4  0.228 (0.004) 0.213 (0.007) 0.93 6 
3.0  0.204 (0.003) 0.186 (0.005) 0.93 6 

4.2 A  0.157 (0.002) 0.154 (0.003) 0.96 7 
      

VIS      
0.6 A  0.05 (0.0006) 0.05 (0.0011) 0.89 4 

0.6  0.03 (0.0006) 0.03 (0.0018) 0.97 5 
1.2  0.04 (0.0004) 0.04 (0.0009) 0.94 4 
1.8  0.03 (0.0006) 0.04 (0.0013) 0.95 4 
2.4  0.06 (0.0008) 0.06 (0.0015) 0.93 7 
3.0  0.06 (0.0006) 0.08 (0.0012) 0.85 5 

4.2 A  0.07 (0.0004) 0.07 (0.0009) 0.83 5 

0.120 ±0.002 0.144 ±0.006 0.95 7 

1.2 0.207 ±0.002 0.220 ±0.005 0.85 6 

1.8 0.318 ±0.004 0.362 ±0.010 0.59 4 

2.4 0.302 ±0.003 0.307 ±0.006 0.64 4 

3.0 0.306 ±0.002 0.311 ±0.006 0.61 4 

4.2 / 45° 0.314 ±0.003 0.325 ±0.007 0.63 5 

Mean bead diameter range: 0.400 to 1.540 mm.   
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The predictive power of the NIR models generally decreased with the widening of 

the SD distance, and the models were more complex at the shortest distances, i.e., 

they needed more latent variables to describe the data variance. The best result was 

obtained by the shortest distance (0.6 mm), which needed seven latent variables to 

describe the model with an error of 0.120 ± 0.002 mm and squared coefficient of 

correlation of 0.95, indicating a reasonably good fit. Although the errors are still 

acceptable when compared to the reference errors, they are much poorer than the 

ones obtained by visible spectroscopy. All the remaining SD distances did not 

provide sufficient predictive power, as evidenced by the high errors and poorer 

squared coefficients of determination, R2.  
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4.6 Conclusions and Outlook 

The goal of this chapter was to investigate the performance of the visible and near-

infrared SARDR probe on estimating composition and size of expandable 

polystyrene beads. Particular interest was placed on studying the effect of source-

detector separation and angle of incidence on the spectral sensibility. A controlled 

experiment based on polystyrene beads suspended in water under different sizes and 

concentrations was devised to better isolate the impact of pathlength variation and 

spectral sensitivities of each source-detector separation on the spectra and the models 

derived from them. 

As discussed earlier, signal strength solely may not be a good indicator of the 

feasibility for predictive quality. Although the quality of the signal may be poorer 

when acquiring spectra at longer SD distances, those photons travelling farther have 

had a higher chance of interacting with a larger volume of EPS beads, being 

scattered or absorbed, or penetrating deeper in the sample, which may result in better 

sensitivities and better models. 

In general, modelling based on longer SD separations in the visible range resulted in 

better outputs, providing lower errors and simpler models. Polystyrene beads are 

scatterers par excellence, and since scattering is stronger at lower wavelengths, 

spectrum in the visible range is naturally more affected by it. Furthermore, as the 

distance from the collecting fibre is increased, scattering tends to be stronger. 

Particle sizing applications can take full advantage of that. 

On the contrary, near infrared models developed with spectra collected by the 

SARDR probe were not able to provide results up to the potential of the technique. 

Although 400 µm fibres were employed in the SARDR probe, the light throughput 

may have not been stronger enough to reach all detecting fibres with sufficient 
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signal-to-noise ratio, which affected negatively the sensitivities of the spectra 

collected, as shown in Figure 4.9. 

It is important to remember from the experimental description in Chapter 3, that the 

integrating time needed to generate the NIR spectrum was 80 to 100 times higher 

than that required by the visible spectrum. Consequently, the NIR signal obtained 

before normalisation was very noisy. The background spectrum acquired in the 

integrating sphere was even poorer, lower than those acquired on the sample, which 

may have contributed to the low quality reflectance signals obtained after 

normalisation. 

Overall, visible models provided better models for both mean bead diameter and 

bead concentration. For most of the SD distances, models based on visible spectra 

were able to provide estimates with much lower errors, tighter residual distributions, 

and a lesser number of latent variables needed to describe the models.  

 

4.6.1 Outlook 

In this chapter individual models were developed for each source-detector distance in 

order to extract the information collected from each of them. The results have shown 

that each distance probes a different depth of information, being it on scattering, 

absorption or deeper levels of penetration. But what would be the impact of 

integrating these different sources of information in just one model? Could we 

enhance the predictive ability of multivariate calibration models by just combining 

them? In the next chapter I will investigate ways of integrating information from 

different SD distances in order to improve the predictive performance of models.  
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Chapter 5 

5. On fusing spatially and angularly resolved spectra 

 

The previous chapter has shown that spectroscopic measurements 

acquired at different source-detector separations and angles of 

incidence capture distinct information about the composition and 

size of polystyrene beads, diversely influencing the predictive 

capability of individual models developed with such 

measurements. 

In the present chapter, it is investigated whether predictive 

improvements can be obtained by combining these different pieces 

of complementary information. For this purpose, a sensor data 

fusion strategy based on multiblock PLS is proposed.  

The overall results demonstrated a better performance for all 

models when one or more extra blocks of SD distances are fused 

together, and especially when an angular incident fibre is included. 

Enhanced predictive power and reduced errors of prediction were 

achieved, allowing reliable estimates for polystyrene concentration 

and bead size in a polymer particulate system. 
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5.1. Data Fusion 

According to an excellent definition given by Hall and Llinas1, “data fusion 

techniques combine data from multiple sensors and related information from 

associated databases to achieve improved accuracy and more specific inferences than 

could be achieved by the use of a single sensor alone.” It therefore seems natural to 

link data fusion tools to the process analytical technology framework. In fact,	multi-

sensor data fusion has been widely applied in PAT, with most of the applications 

being concerned with combining data from multiple spectroscopic sensors2,3, process 

phases4,5, and or process parameters6-9. 	

For fusing information from different spectroscopy sensors, which is the interest of 

the present piece of work, the literature is vast for a wide range of industrial areas. In 

a biotech industrial application previously published by this author2, a data fusion 

strategy was employed to combine NIR, mid-infrared and 2D-fluorescence spectra of 

two important process raw materials for production of therapeutics protein, enabling 

predictive models that outperformed any other models involving either one raw 

material alone, or only one type of spectroscopic tool for both raw materials.  

In a similar fashion, Lee et al10 used Ensemble PLS (EPLS) to combine information 

from four different spectroscopic techniques, NIR, Raman, 2D-fluorescence, and X-

ray fluorescence (XRF), to predict raw material quality in mammalian cell culture. 

Again, data fusion models provided better estimates when compared to any of the 

single spectroscopic techniques.  

NIR and Raman were also combined by multiblock methods for the quantitative 

prediction of multiple Active Pharmaceutical Ingredient (API) solid dosage forms11, 

showing that each spectroscopy may contain information not present or captured 

with the other spectroscopic technique. 
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In food industry, where data fusion has seen most of its applications, the benefits of 

combining NIR and mid-infrared spectra were described for estimation of soybean 

flour quality properties3, cultivar identification on virgin oils12, and coffee varietal 

identification13, amongst others. 

Workman Jr. was one of the first to use data augmentation for fusing spectroscopic 

data in the polymer/chemical industry14. He combined NIR and Raman spectra for 

measuring blend composition in polymer films. Nonetheless, although fewer 

polymer applications of fusing spectroscopic data could be found, it was in the 

chemical and polymer industry that multiblock and multi-way techniques gained 

attention due to the developments from Professor Macgregor’s group in Canada, 

especially on modelling different process phases and parameters15-17. Together with 

Professor Kiparissides in Greece, they were the first to apply PLS and PLS related 

multiblock techniques to monitoring and control of polymerisation reactions17.  

Despite the multitude of applications of data fusion on vibrational spectroscopic 

sensors, limited work has been published on fusing spatially resolved spectra. 

Spatially resolved data presents a tri-linear relationship between the sample, the 

wavelength and the SD distance modes, being represented by a three-dimensional 

hypercube, X (n x k x λ), where n refers to the sample mode, k the SD distance, and 

λ the wavelength mode, as demonstrated in Figure 5.1. Therefore, several ways of 

handling such data structure for modelling purposes are available.  

Modelling strategies can be developed directly based on the (a) three-way array, (b) 

on blocks of data from different source-detector separations, (c) augmented data or 

(d) co-added spectra from each SD distance. For each of these data handling types, 

different modelling approaches may apply. 
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Figure 5.1 Handling SRS data: a) three-way, b) multiblock, c) data augmentation and 
d) co-adding approaches.  

 

Models developed directly in the three-way array are built by using multi-way 

decomposition methods like Parallel Factor Analysis (PARAFAC). Tsuta et al 18 

modelled the degradation of chlorophyll in apple skin during ripening and storage by 

using PARAFAC to decompose spatially resolved spectra from seven different 

source-detector distances. The authors were able to qualitatively differentiate 

between flesh and skin of intact apples based on the PARAFAC wavelength 

loadings, as well as differences in skin color and chlorophyll content. Bogomolov et 

al19 applied tri-linear PLS to determine fat and protein in milk based on vis-NIR 

spectra collected from six SD distances. However, for their object of study, the three-

way data structure did not present any advantage compared to the augmentation 

approach. 
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Alternatively, the hypercube data can be treated as a two dimensional dataset, which 

is accomplished by unfolding it into one large matrix (n*k x λ), where the spectral 

datasets for each SD distance are concatenated side-by-side Figure 5.1 c). In this 

way, each row of the resultant unfolded matrix represents the spectra acquired from 

every SD distance for a specific sample, and the columns represent the wavelengths. 

The advantage of using the unfolded matrix is the simplicity. In fact, handling all 

data blocks in a single matrix allows the use of standard partial least squares 

Regression (PLSR) for model building. However, the influence of each SD distance 

can be hidden by other SD distances’ influence20, also not allowing an evaluation of 

each block’s influence to the overall model. Despite of this, Bogomolov et al19 used 

this method for fusing information from different source-detector distances and 

obtained improved results when compared to the tri-linear PLS results. 

Spatially resolved spectra, although measuring distinct locations and depths of 

penetrations, have similar shape and nature. This similarity allows the combination 

of the spectra at different SD distances by simple averaging their absorbances for 

each wavelength. Such procedure is commonly adopted due to its simplicity, and was 

employed by Benoit et al21 for assessing pharmaceutical active principle ingredients 

within tablets by using averaging spectra collected from different multi-point fibres. 

However, the spatial information may be flattened and lost by averaging process, 

decreasing the amount of knowledge that can be extracted from the spectra. 

Although applications of multiblock methods on spatially resolved measurements 

could not be found in the literature, the technique has potential to extract 

complementary information from such measurements. Multiblock PLS was first 

proposed for monitoring and diagnosing of separate process phases22, or any 

conceptually meaningful blocks 23, but the advantages for combining data from 

spectroscopic datasets were soon explored.  
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In predictive terms, MB-PLS provides similar results than the data augmentation 

approach23,24.  Its advantage over data augmentation resides in the improved 

interpretability of models7 and easier diagnostic procedures25. This happens because 

in MB-PLS, the features of each block are initially modelled separately, and the 

summarised information is then aggregated from each block to form a super block, 

containing the relationship between the blocks.  

Despite the cited advantages, integrating data from different sensors, however, does 

not necessarily guarantee that results will improve for all applications. In the 

literature, there are several examples of fusing strategies that did not bring 

improvements in the predictive performance26, or even deteriorate the results. The 

same data integration may work for one analyte but not for another27. Thus, the type 

and object of fusion needs to be analysed with regard to their complementary 

characteristics and potential synergism, and ultimately tested with real data. 

In this chapter, we will address this problem by integrating spatially and angularly 

resolved spectral datasets by using a strategy based on MB-PLS, which will be 

investigated in its potential to yield a more accurate estimation of important polymer 

quality attributes, modelling the relationship between the different source-detector 

separations, and establishing the contribution of each of them to the final model. To 

the best of my knowledge, this is the first attempt to employ multiblock PLS as a 

data fusion strategy on SARDR spectra. Moreover, the application of such data 

fusion approach in polymer particulate systems is also a new contribution. 
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 Multiblock PLS  5.1.1

MBPLS is an extension of the ordinary PLS regression method, with the difference 

being that it is performed relating several blocks for the purpose of prediction or 

interpretation. Multiblock PLS operates in two distinct levels7: a sub-level, which 

works similarly as individual PLS models, where the features of each block are 

modelled separately; and a super level, which aggregates this summarised 

information from each block to form a super block.  

In the sub-level, each spectral block (SD distances spectral datasets) and the response 

block (polystyrene concentration or mean bead diameter) are decomposed into a sum 

of components for every latent variable, according to the equations below. 

 

 ! = ! !!  + ! 5.1 

 

 ! = ! !!  + ! 5.2 

This decomposition generates the scores (t and u), loading (p and q) and the 

residuals (e and f) for X and y, respectively, for each block. The basic multiblock 

procedure is illustrated in the Figure 5.2 through an array scheme. 
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Figure 5.2 Array scheme of the basic Multiblock PLS. The procedure described is 
repeated until convergence of the super scores, tT. Adapted from Westerhuis et al 
(1998). 

 

A score u taken from the response vector is regressed on all blocks to give their 

block variance weights, which are very useful for interpreting block importance. 

These block weights are then multiplied through their respective X block to give the 

block score. The block scores group data features from each block, which are 

aggregated in a super block, obtained by unfolding all block scores side-by-side.  

Predictions for new samples are obtained by applying the calibration scaling factors 

and the regression coefficients (bPLS) to the unfolded super scores matrix, according 

to the equation below. 

 !!!"  = !new  !!"# 5.3 
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There are several variants of the MB-PLS method4,6, two of them widely used in the 

multiblock community. They differ mainly on the chosen deflation procedure. While 

Wangen and Kowalski22 proposed the use of the block scores for the deflation of the 

blocks, Westerhuis and Coenegracht4 suggested the use of the super score for the 

deflation step, to avoid loss of information on the deflation process. This variant of 

the multiblock PLS will be used in this work. 

 

 Software 5.1.2

All software programs were written and implemented in MATLABTM programming 

language (Mathworks Inc.). For repeated double cross validation, the Integrated 

Library for Partial Least Squares and Discriminant Analysis (libPLS)28 was used 

with adaptations made by this author. The libPLS is open source and freely available 

at www.libpls.net. Multiblock PLS8 was adapted from a routine kindly supplied by 

Dr João A. Lopes, of the Chemometrics & Process Analytical Technology Unit, 

University of Porto, Portugal. Calculations and data analysis were performed in an 

iMac 21.5-inch with 2.7 GHz Intel Core i5 processor and 8 GB 1600 MHz memory.  
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5.2. Integrating diffuse reflectance spectra from different source-

detector separations and angles of incidence 

For the MB-PLS, each source-detector separation spectral dataset is treated as one 

block. For each of the spectroscopy modes, visible and NIR, seven predictor blocks 

were available for modelling, consisting of five normal incident SD separations (0.6, 

1.2, 1.8, 2.4 and 3.0 mm), and two angularly incident SD separations (30° and 45°). 

Moreover, two response blocks were also available, the mean bead diameter and EPS 

concentration, which were used one at a time.  

Spectral blocks were fused in several different combinations between them. These 

combinations were based on the results obtained for each individual SD distance, as 

seen in the previous chapter, and also on probe design requirements. First, fused 

models were built based on the blocks of normal incident fibres, by adding one block 

at a time, until all SD distances were added to the modelling strategy. The purpose 

was to evaluate how the increase in the SD distance can impact the predictive ability 

of models. Fused models were then built with both blocks of angularly resolved 

spectra, and finally, an angularly incident fibre was combined to all normal incident 

blocks to investigate whether the addition of angularly orientated information could 

improve the results. When building the models, every block was mean centred and 

divided by their standard deviation. Further normalisation was not needed since all 

blocks are similar, sharing the same type and quality of measurements. 

Similarly to the individual models seen in Chapter 4, MB-PLS models were built and 

validated by using a strategy based on repeated double cross-validation. Five-fold 

cross validation was performed in both loops. The whole procedure was repeated 100 

times in an additional loop where calibration and test sets are randomly created. The 

output for every model are the RMSECV, RMSEP, optimum number of PLS 

components and its frequency plot, the distribution of RMSECV and RMSEP errors. 
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5.3.  Determination of polystyrene bead concentration 

In Chapter 4, PLS models were developed between each individual source-detector 

distance spectral datasets and EPS bead concentration for both visible and NIR 

spectroscopies. Overall, the results indicated that NIR models were better when the 

illuminating fibre was placed closer to the detecting fibre, whereas visible models 

were better at longer separations, as can be seen in Figure 5.3, which summarises the 

results for polystyrene concentration. 

 

Figure 5.3 Prediction performance of rdCV PLS models developed by using visible 
and NIR spectra at different SD distances to estimate polystyrene concentration.  
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The PLS models developed with the best performing distance for NIR obtained an 

average error of 5.4 % w/w. For Visible, the best result yielded an average error of 

only 2.9 weight %. Based on these conclusions, the best performing distances for 

NIR and Vis will be used as a benchmark for comparison with the results obtained 

by data fusion. In this case, the shortest separation between the illuminating fibre and 

the NIR collecting fibre (SD distance=0.06 mm) will be selected for NIR and the 

farthest illuminating fibre from the Visible detector (SD distance =3.0 mm) for the 

Vis models.  

 

 NIR-SARDR data fusion 5.3.1

As discussed previously, near infrared models had a weaker performance when built 

using individual source-detector separations. Nevertheless, important information 

present in each spectral dataset, although individually not sufficient to estimate 

polystyrene concentration with good accuracy, may be complementary if analysed 

together. In order to investigate whether combining these individual datasets could 

improve the predictive power of the models, multiblock PLS models were developed 

with several combinations of fibres. First, a two-block model was built and validated 

by integrating spectra from just one extra fibre (SD distance = 1.2 mm) to the 0.6 

mm distant fibre. A further fibre (SD distance = 1.8 mm) was then added and the 

MB-PLS model updated, and subsequent distances added one at a time, until all of 

the normal incident fibres were included in the model, ending with a five-block 

model. 

A summary of the results obtained by the data fusion strategy for estimation of bead 

concentration is shown in the Table 5.1 
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Table 5.1 Prediction performance of MB-PLS models for determination of EPS bead 
concentration from fused NIR-SARDR spectra collected at different normal incident 
SD distances. Average RMSECV and RMSEP were obtained from rdCV models. 

 PLS Repeated Double CV 

SD Distance 
mm 

number 
of blocks 

RMSECV 
% w/w CI95% 

RMSEP 
% w/w CI95% R2 LV 

0.6 1 5.1 ±0.06 5.4 ±0.14 0.90 5 

0.6 / 1.2 2 5.2 ±0.05 5.8 ±0.14 0.89 6 

0.6 / 1.2 / 1.8 3 5.1 ±0.05 5.5 ±0.12 0.91 8 

0.6 / 1.2 / 1.8 / 2.4 4 5.6 ±0.05 5.9 ±0.12 0.89 5 

0.6 / 1.2 / 1.8/ 2.4 / 3.0 5 5.4 ±0.05 5.7 ±0.11 0.90 5 

Bead concentration range: 15 – 50 % w/w 

 

The integration of normal incident fibres did not significantly influence the 

prediction performance of the models. The best result was achieved when fusing 

three distances (0.6/1.2/1.8 mm), yielding similar predictive performance than the 

individual SD distance model, but at a cost of three extra latent variables. Instead of 

five latent variables, eight were needed to describe the variance with similar 

coefficient of determination, around 0.90. The addition of the closer angularly 

incident fibre, however, yielded improved results, as shown in the Table 5.2.  

When the closer angularly incident fibre (0.6 mm) was combined to the normal 

incident fibre combinations, the errors dropped for all of them, especially the shorter 

SD distances. 
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Table 5.2 Prediction performance of MB-PLS models for determination of 
polystyrene concentration from fused NIR-SARDR spectra collected at different 
normal incident SD distances and from a 0.6 mm angularly incident fibre. Average 
RMSECV and RMSEP were obtained from rdCV models. 

 

This behaviour becomes even clearer when the information from Table 5.1 and Table 

5.2 is compared in the Figure 5.4, which better illustrates the impact of adding the 

angularly incident fibre on the prediction errors. In this figure, the blue circles 

represent the mean RMSEPs obtained by MB-PLS models developed with the 

normal incident fibre combinations, starting from the individual 0.6 mm distance, 

towards the fusion with the subsequent distances. The grey circles represent the 

errors obtained when the 0.6 mm angular incident fibre is fused to the respective 

combinations of normal incident fibres. 

 PLS Repeated Double CV 

SD Distance 
mm nb** RMSECV 

% w/w CI95% 
RMSEP 
% w/w CI95% R2 LV 

0.6 A* / 0.6 2 4.0 ±0.03 4.1 ±0.08 0.94 6 

0.6 A / 0.6 / 1.2 3 4.6 ±0.05 4.6 ±0.11 0.95 8 

0.6A / 0.6 / 1.2 / 1.8 4 4.8 ±0.05 5.0 ±0.11 0.94 9 

0.6A / 0.6 until 2.4 5 5.2 ±0.05 5.7 ±0.12 0.91 5 

0.6 A / 0.6 until 3.0 6 5.4 ±0.04 5.5 ±0.10 0.90 5 

Bead concentration range: 15 – 50 % w/w 
*SDD=0.6 mm at 30° to the normal 
**nb= number of blocks 
 
 
 
 
 
dfd 

When the closer angularly incident fibre (0.6 mm) 

was joined to the normal incident fibre 

combinations, the errors dropped for all of them, 

especially the shorter SD distances. This becomes 

even clearer when the information from Table 4.1. 

Table 4.1 and Error! Reference source not 

found. is compared in the Figure 5.4, which better 

illustrates the impact of the angularly incident 

fibre to the prediction errors. In the diagram, the 

blue circles represent the mean RMSEPs obtained 

by MB-PLS models developed with the normal 

incident fibre combinations, starting from the 

individual 0.6 mm distance, towards the fusion 

with the subsequent distances. The grey circles 

represent the errors obtained when fusing the 0.6 

mm angular incident fibre together to the 
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Figure 5.4 Improvement of the prediction performance of MB-PLS models when an 
angularly incidence fibre is fused to the normal incident combinations. Blue circles 
represent the average RMSEP values obtained by fusing only normal incident fibres 
whereas grey circles represent the inclusion of an angular incident fibre. Arrows 
represents the addition of blocks of spectra.  

 

It is evident from the above illustration that the level of improvement by adding an 

angularly incident fibre decreases as more normal incident distances were added to 

the model. Other fibre combinations were also analysed, for example, by using the 

angular 4.2 mm distant fibre instead of the 0.6 mm one, but did not bring any 

improvement to the results. Those results are not shown here for sake of clarity. 

In the best result, by using both normal and angular incident 0.6 mm fibres, the error 

dropped from 5.4 to 4.1 % by weight. Since the individual models for these fibres 

yielded an error of 5.4 and 5.6 % w/w, respectively (Table 5.1), the integration of 

information from these two fibres improved the predictive capability of the model. 

This is even more evident when looking at the residuals calculated for both models, 

as shown in Figure 5.5. The blue line represents the distribution from all 5600 

residuals, while the grey lines represent the distribution for each of the 100 

repetitions of the double cross validation. 
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Figure 5.5 Probability density functions calculated from 100 repetitions of double 
cross validation models based on a) 0.6 mm distance fibre and b) when adding an 
angularly incident fibre (0.6mm). The blue curve represents the mean residuals while 
the grey curves represents the 5600 residuals from all 100 repetitions. 

 

The residuals for the models built by using the individual 0.6 mm distant fibre 

clearly have a higher prediction uncertainty, shown by the wider distribution, when 

compared to the one observed when the angularly incident fibre is added to the 

model. Therefore, the data fusion strategy was able to improve the predictive power 

of the NIR models, providing better accuracy and stable estimations of polystyrene 

concentration.  
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 Visible-SARDR data fusion 5.3.2

Visible models built with individual fibres were much better at longer SD distances. 

For this reason, in contrast to the methodology employed for NIR data fusion 

models, firstly a model was built with the longest normal incident distance (3.0 mm), 

and subsequently decreased distances were fused together until all normal incident 

fibres were contemplated by the fused model. Afterwards, the best performing 

angularly incident fibre was added to each of the fused models to evaluate the impact 

of detecting photons that were emitted at a different angular orientation. The results 

obtained when fusing only normal incident fibres is shown in the Table 5.3 below. 

 

Table 5.3 Prediction performance of MB-PLS models for determination of bead 
concentration from Vis-SARDR spectra collected at different SD distances. Average 
RMSECV and RMSEP were obtained from rdCV models. 

 

MB-PLS Repeated Double CV 

Distance 
mm 

Number 
of blocks 

RMSECV 
% w/w ± CI95% 

RMSEP 
% w/w ± CI95% R2 LV 

3.0 1 2.7 ±0.02 2.9 ±0.05 0.96 4 

fused to 2.4 2 2.7 ±0.03 3.0 ±0.06 0.98 5 

and 1.8 3 2.8 ±0.03 3.0 ±0.06 0.98 11 

and 1.2 4 3.1 ±0.03 3.1 ±0.07 0.98 10 

and 0.6 5 2.9 ±0.03 3.0 ±0.07 0.98 12 

3.0 fused to 1.8 and 0.6 3 2.5 ±0.02 2.6 ±0.05 0.98 8 

3.0  fused to 0.6 2 2.6 ±0.02 2.7 ±0.06 0.98 7 

Bead concentration range: 15 – 50 % w/w 
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The errors do not seen to improve by adding consecutively shorter distances. In fact, 

they are similar, even slight increased for some combinations, including their 

confidence intervals. Furthermore, as the number of blocks increased, the models 

needed more latent variables to describe the data variability. However, when 

increasing the spacing of fibre, for example, by using only the 3.0, 1.8 and 0.6 

distances, or the 3.0 and 0.6 distances, the results improved significantly. When 

using the three-block model, a prediction error of 2.6 ± 0.05 mm was obtained by 

requiring eight latent variables to explain the data variance. 

In order to investigate whether adding an angularly orientated light can improve the 

predictive capability of the MB-PLS models, they were updated by adding one block 

of spectra collected by the angularly incident fibre places 4.2 mm distant to the 

detector. The results are shown in Figure 5.6 a and b below, by showing the average 

RMSEP obtained by each combination containing or not the 4.2 mm distant angular 

incident fibre. In this case, the blue bars represent the prediction errors for the fusion 

of normal incident fibres whereas the grey bars represent the addition of the 

angularly incident fibre. The number of latent variables needed to describe the 

models is shown in Figure 5.6 b.  

It can be observed that the addition of an angularly incident fibre to the combinations 

of normal incident fibres improved the predictive capability of all models. The errors 

decreased considerably, although less remarkably than the ones obtained by NIR 

models, where the improvement was more evident. Most of the models, however, 

required a higher number of latent variables by adding an extra fibre.  
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Figure 5.6 Improvement of the prediction performance of MB-PLS models when an 
angularly incidence fibre is fused to the normal incident combinations. The bars 
represent the errors obtained by fusing only normal incident fibres (blue) and when 
an angular incident fibre is added to the models (grey). Average RMSEP values were 
obtained from rdCV models. (b) number of LVs needed to describe the variability on 
each combination of fibres, without (blue) and with the addition (grey) of an 
angularly incident fibre. 

 

When models were build with more spaced distances, i.e., 1.2 mm intervals, instead 

of 0.6 mm, the improvement of the models was more significant, as an example of 

the models built with the combinations 0.6, 1.8 and 3.0 mm, or the extreme distances 

(0.6 and 3.0 mm). The multiblock model developed by fusing the 0.6 and 3.0 mm 

distant fibre together to the 4.2 angularly incident fibre was able to provide the most 

accurate and stable estimations, with a mean RMSEP of 2.3% ± 0.05 and requiring 

ten latent variables. 
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5.4. Mean bead size determination 

Visible spectra are more sensitive to scattering, which in its turn, is more affected by 

physical properties. As a consequence, models based on visible spectra tend to 

provide better estimates for mean bead size. In Chapter 4, we could see that this was 

the case, since visible models outperformed the NIR models for determining mean 

bead size. The overall predictive results obtained in Chapter 4 for bead size models 

are summarised in Figure 5.7.  

 

Figure 5.7 Prediction performance of rdCV PLS models developed by using Visible 
and NIR spectra at different SD distances to estimate mean bead diameter. The first 
two results are from angularly incident fibres whereas the remaining from normal 
incident fibres. 

 



Chapter 5 

 

134 

It can be seen that the best result obtained by Visible spectroscopy was achieved by 

the 3.0 mm distant fibre, yielding an error of 0.076 mm, while the best estimates for 

NIR were obtained by the closest of its fibres, with an error of 0.144 mm. 

Although the quality of the NIR spectra from some SD distances was rather low, it 

would be interesting to see whether they may still hold complementary information 

that could improve the results if combined with each other.  

 

 NIR-SARDR data fusion 5.4.1

Similar to the bead concentration models, MB-PLS models were first developed by 

adding one distance at a time, starting from the shortest distance, which has also 

resulted in the best performance among the individual distance models. Table 5.4 

below presents a summary of the statistics obtained from the MB-PLS models 

developed for the fibre combinations.  

Table 5.4 Prediction performance of MB-PLS models for determination of mean EPS 
bead diameter from fused NIR-SARDR spectra collected at different normal incident 
SD distances. Mean RMSECV and RMSEP values were obtained from rdCV 
models. 

 MB-PLS Repeated Double CV  

SD distances 
mm 

Number 
of blocks 

RMSECV 
mm (± CI95%) 

RMSEP 
mm (± CI95%) R2 LV 

0.6 1 0.120 ±0.002 0.144 ±0.006 0.95 7 

fused with 1.2 2 0.111 ±0.002 0.114 ±0.003 0.98 11 

and 1.8 3 0.129 ±0.002 0.134 ±0.003 0.97 10 

and 2.4 4 0.127 ±0.001 0.125 ±0.003 0.98 11 

and 3.0 5 0.143 ±0.001 0.146 ±0.004 0.97 10 

Mean bead diameter range: 0.405 to 1.540 mm  
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Table 5.4 presents the mean cross validation and prediction errors decreasing after 

fusing the two closest distances from the detecting fibre, 0.6 and 1.2 mm. When 

more distances are added to the fused model, the improvement of prediction error 

becomes lesser and the cross validation error increases. The best result would then be 

obtained by just adding one more block to the model, yielding a prediction error of 

0.114 ± 0.003 mm.  

Notwithstanding the decrease in errors when performing data fusion, they are still 

high compared to the errors produced by the visible models, although still better than 

the reference method. Therefore, further MB-PLS models were developed based on 

these same combinations, but now adding one block of angular incident spectra to 

the models. The closest incident fibre (0.6 mm) was chosen due to the best results 

obtained when compared to further away 4.2 mm fibre. Figure 5.8 below illustrates 

the RMSEP errors obtaining by adding or not the 0.6 mm angular information to the 

MB-PLS combination of SD distances.  

 

Figure 5.8 Improvement of the prediction performance of MB-PLS models for mean 
bead size when an angularly incident fibre is fused to the normal incident 
combinations. Open circles represent the errors obtained by fusing only normal 
incident fibres (blue circles) and when an angular incident fibre is added to the 
models (grey circles). Arrows represents the addition of blocks of spectra. Average 
RMSEP values were obtained from rdCV models. 
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Figure 5.8 clearly shows that adding information from angular incident light to all 

MB-PLS models improved their predictive capability. In the best result, the average 

RMSEP dramatically dropped from 0.114 ± 0.003 mm to only 0.076 ± 0.002 mm, 

possible with a parsimonious model by using only three blocks comprised of both 0.6 

mm distances (normal and angular orientated) and the 1.2 mm distant fibre.  

The addition of more blocks deteriorated the models, but still provided better results 

when compared to the MB-PLS models built only using normal incident fibres.  

It is worth mentioning that the addition of an extra block did not increase the 

complexity of the model for most of the combinations.  For the best result mentioned 

above, the model complexity slightly decreased, since the model only needed 10 

latent variables, instead of nine. These results as well as the full summary of statistics 

are show in Table A1 in the Appendix. 
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 Vis-SARDR data fusion 5.4.2

The models developed for mean bead diameter with visible SARDR spectra followed 

the same procedure adopted by the ones built for polystyrene concentration. It started 

by modelling the longest normal incident distance (3.0 mm), and subsequently 

adding decreased distances until all normal incident fibres were fused together. Table 

5.5 below shows the results obtained when fusing normal incident fibres.  

Table 5.5 Prediction performance of MB-PLS models for determination of mean EPS 
bead diameter from fused Vis-SARDR spectra collected at different normal incident 
SD distances. Mean RMSECV and RMSEP were obtained from 100 rdCV models. 

PLS Repeated Double CV 

Distance 
 mm 

number 
of blocks 

RMSECV 
mm ± CI95% 

RMSEP 
mm ± CI95% 

R2 LV 

3.0 1 0.077 ±0.001 0.076 ±0.002 0.97 4 

3.0 / 2.4 2 0.074 ±0.001 0.079 ±0.002 0.98 6 

3.0 / 2.4 / 1.8 3 0.076 ±0.001 0.076 ±0.002 0.99 8 

3.0 / 2.4 / 1.8 / 1.2 4 0.086 ±0.001 0.079 ±0.003 0.99 11 

3.0 / 2.4 / 1.8 / 1.2 / 0.6 5 0.050 ±0.001 0.048 ±0.001 0.99 11 

3.0 / 1.8 / 0.6 3 0.048 ±0.001 0.046 ±0.001 0.99 10 

3.0 / 0.6 2 0.057 ±0.001 0.057 ±0.001 0.99 9 

Mean bead diameter range: 0.405 to 1.540 mm 

 

Here, the performance of fused models for the three longest distances showed no 

significant improvement over what had been achieved by the individual 0.6 mm fibre 

model. However, lower errors were obtained when all normal incident fibres were 

integrated together, dropping considerably from 0.076 ± 0.001 to 0.048 ± 0.001. This 

same level of errors, but with a more parsimonious model, was obtained when using 
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a fibre-to-fibre distance of 1.2 mm, by fusing the shortest, middle and largest 

distances, 0.6, 1.8 and 3.0 mm. Figure 5.9 a and b shows the measured versus 

estimated mean bead diameter regression plots for the models developed by using the 

a) individual fibre which presented the best results (3.0 mm) and the b) MB-PLS 

fused model.  

  

Figure 5.9 Measured versus estimated mean EPS bead diameter for rdCV models 
developed for the (a) fibre 3.0 mm distant from the detector and the (b) MB-PLS 
models developed by fusing three fibres, 0.6, 1.8 and 3.0 mm. The blue circles 
represent the mean estimation from a total of 100 model repetitions, while the grey 
circles represents all the estimations. 
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Despite the good model developed by using the individual fibre place at 3.0 mm 

distance for the detector, the fused model clearly provided much better results. Its 

measured versus estimated values shown in Figure 5.9 b shows a much better fit with 

a R2 of 0.99, and a mean error of 0.048 ± 0.001 mm. 

Contrary to what happened for the polystyrene concentration models, there was no 

gain in adding the angularly orientated fibre to the fused models, considering the 

parsimony of the models and magnitude of errors obtained. The results are not 

included here, but can be seen in the Table A2 in the Appendix.  

 

5.5. Summary of results 

Overall, for both polymer quality parameters studied herein, the MB-PLS data fusion 

strategy provided similar or lower errors of calibration and prediction when 

compared to the PLS models developed on individual source-to-detector distances.  

For the determination of mean bead size, the modelling strategies allowed prediction 

errors lower than 0.1 mm to be reached. The improvements obtained by the data 

fusion strategy were more pronounced for the NIR spectroscopy models, which lead 

to mean bead size errors dropping by almost half, from 0.144 mm to 0.076 mm, 

when an angularly orientated fibre was added to the shortest SD distance. Thus, only 

two fibres were required, and only one extra latent variable was needed to describe 

the variance in the data. Although the improvement obtained by Visible models was 

less remarkably than the NIR ones, errors decreased from 0.076 to 0.046 mm, by 

needing only three blocks of normal incident fibres.  

Likewise, for the determination of polystyrene bead concentration, Visible models 

were also better than the NIR ones, improving estimations from 2.9% to 2.6%, 

whereas in the NIR the RMSEP decreased from 5.4% to 4.1 %.  
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It becomes clear that the stronger scattering present in the Visible range contains 

important information related to the number of beads and their size, which also 

carried information about the concentration. 

 

5.6. Conclusion and Outlook 

The goal of this chapter was to investigate the impact of fusing information from 

different source-detector distances on the predictive capability of Visible and Near-

infrared SARDR models to estimate composition and size of expandable polystyrene 

beads. Multiblock PLS was applied to several combinations of SD distances, and the 

repeated double cross validation was used to select the number of latent variables for 

each model and to estimate the variability of results. The controlled experiment used 

in Chapter 4 was again evaluated here, in order to better isolate the impact of the 

modelling strategies evaluated here. 

Overall, when fusing normal incident fibres, all models provided good results. 

However, the biggest improvement happened when an angularly incident fibre was 

added to the fused models. The information captured for the angularly incident fibre 

improved the sensibility of the techniques and resulted in lower errors and better 

predictive power, especially for NIR models. The only exception was the bead size 

models built with Visible spectra, where the addition of the angularly incident fibre 

did not surpass the results obtained only with fused normal incident ones, but were 

still better than using only the individual fibre. In general, although the data fusion 

resulted in remarkable improvements for NIR data, the best models were the ones 

developed based on Visible spectra.  

Visible and NIR spatially and angularly resolved spectroscopy proved to be a reliable 

technique for the estimation of polymer critical quality attributes, and have a great 

potential for online monitoring and control of polymerisation processes. 
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Chapter 6 

6 Spatially and angularly resolved spectroscopy for 

in-situ monitoring of monomer conversion in 

suspension polymerisation reactions 

In this chapter, I wish to propose a spatially and angularly resolved 

measurement system for in-situ monitoring of suspension 

polymerisation reactions. I propose an empirical approach for 

manipulating the spatially and angular resolved information based on 

multivariate statistical methods and chemometrics. Specifically, I am 

interested on the sensing abilities of each source-detector distance for 

both visible and near-infrared spectroscopies, and in exploring 

whether introducing new variations in measurement configurations 

could improve the predictive capability of multivariate calibration 

models. How well these different measurements are integrated and 

how accurate the multivariate models can be, are the main questions 

of this chapter. To the best of my knowledge, this work is the first 

attempt to employ spatially and angularly resolved diffuse reflectance 

spectroscopy on the monitoring of suspension polymerisation 

reactions, and also the first in which a multiblock data fusion 

approach will be evaluated for this purpose.  
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6.1 Styrene suspension polymerisation reactions  

Styrene suspension polymerisation is one of the preferred methods for the production 

of polystyrene beads, a polymer used as raw material in a wide range of applications, 

from thermal insulation boards in construction industry to food packaging. The 

reaction to produce polystyrene beads was first proposed in 1909 1, but the market 

for polystyrene and expanded polystyrene is stronger as ever has been, being among 

the biggest commodity polymers produced in the world. Other important polymers 

also manufactured by suspension polymerisation include poly(vinyl chloride) 

(PVC)2, poly (methyl methacrylate) (PMMA)3, poly(vinyl acetate) (PVA), styrene–

acrylonitrile copolymers and a variety of ion exchange resins of great commercial 

value.  

In suspension polymerisation, the reaction occurs inside of monomer droplets, which 

are progressively transformed in sticky monomer-polymer droplets and finally into 

solid spherical polymer beads 1 (Figure 6.1). 

 

 

Figure 6.1 Reaction to produce the polymer polystyrene from the monomer styrene. 
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As the initiator is soluble in styrene, which in its turn is insoluble in water, droplets 

of monomer containing the initiator are formed as soon as suspended in water, the 

continuous phase throughout the reaction. The system is continuously dispersed by 

agitation and stabilised by the addition of an insoluble stabiliser 4.  

Droplet stability is very important in a suspension polymerisation. As the suspended 

droplets collide with each other at fast speeds, they might be fused (coalesce) or 

divided (break-up), forming bigger or smaller droplets 5. As the reaction progresses 

and the droplets viscosity increases, coalescence events become more probable than 

break-up ones, which may lead to coagulation if the stability is not properly 

controlled, especially between 25 and 75 % of conversion. The addition of the 

stabiliser acts by creating an interfacial layer around the droplets, reducing the rate of 

coalescence. After this stickier phase, breakage and coalescence are ceased, the 

Particle Point of Identification (PIP) 6 is reached and the droplets become solid 

spherical beads. 

One of the main advantages of suspension polymerisation is the good thermal 

control1. As each droplet acts as polymerisation reactor, the internal viscosity of the 

droplets increases along the reaction, but the overall viscosity of the suspension 

remains low, allowing a good heat transfer. Moreover, higher conversions of 

monomer into polymer are achieved inside the droplets 7, and fast reaction times are 

obtained. 

Suspension polymerisation normally produces large beads, in the range of a few 

micrometres to a few millimetres, although 0.2 to 2 mm is the predominant diameter 

for most applications. Specific bead size ranges are produced based on the intended 

application by manipulating several parameters like stirring speed, reactor and 

impeller design, the monomer-water ratio, and concentration of stabiliser and 

initiator 8, although the stirrer speed has the biggest impact on the bead size9. 
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6.1.1 On-line monitoring of polymer quality 

As demands for polystyrene beads rise, the need for highly effective and robust 

monitoring tools for polymerisation processes increases. Monitoring conversion of 

styrene to polystyrene is highly relevant because it is directly related to productivity. 

Moreover, new worldwide market requirements are being put in place for tighter 

product specifications and stricter safety and environmental constraints10, especially 

concerned in limiting the residual monomer in the final product11.  

Considerable progress has been made in on-line instrumentation since Kiparissides 

and Morris 12 considered it to be the weakest link in polymer reactor control. Fibre 

optical technologies have been developed and applied to different spectroscopies for 

on-line monitoring of conversion since the 90’s, as example of UV-VIS13,14, NIR15, 

MIR16 and Raman17 spectroscopies, especially because they allow non-invasive 

analytical measurements to be made real-time, a condition that is central to 

implementations of Process Analytical Technology (PAT)18 and Process 

Intensification (PI).  

NIR spectroscopy has been successfully used for real-time monomer conversion in 

several different polymerisation processes. Applications were developed for 

emulsion copolymerisation and polymerisation reactions19,20, bulk21 and solution 

polymerisation of methyl methacrylate22, polyurethane step-growth polymerization23, 

and ethane/1-hexene solution copolymerization24. 

Despite the widespread use of visible and near-infrared spectroscopy in 

polymerisation processes, significant challenges remain in its successful use for 

monitor and control of suspension polymerisation reactions, which may explain the 

shortage of applications for this specific reaction. Obtaining analytical measurements 

from suspension polymerisation media is difficult especially due to its high 

heterogeneity and viscosity, which turns sampling a challenging task and makes 
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reference and spectroscopic measurements less accurate. Furthermore, as the media 

is agitated, monomers are continually dispersed in small spherical droplets, which 

scatter light in different extensions at each reaction phase, adversely affecting 

spectroscopic measurements. 

In fact, light scattering heavily affects optical based measurements in particulate 

media such as polymerisation reactions. Visually, it manifests in a spectrum by a 

non-linear variation on its intensity, shape and baseline, which can compromise the 

estimation of chemical and physical properties based on the spectrum. Those non-

linear variations are normally corrected or at least reduced by using empirical scatter 

correction methods, like Standard Normal Variate (SNV)25, Multiplicative Scatter 

Correction (MSC)26 and its extended version (EMSC)27, which are among the most 

used ones. 

Spatially resolved diffuse reflectance measurements have been used for extracting 

the scattering effects from the spectra. The technique allows probing particulate 

media at several source-detector separations, accessing different penetration depths 

and scattering/absorption interactions. Such information, if efficiently extracted from 

the complex interplay of absorption and scattering effects, may enhance our 

knowledge about the process. However, despite its advantages over the classical 

approach for Vis and NIR spectroscopy, application in the literature on spatially 

resolved spectroscopy for the monitoring of polymerisation reactions could not be 

found. One of the reasons may be the difficulty faced when modelling the optical 

properties or inverting the measurements to extract them. These procedures involve 

complex mathematical operations28 and intensive computational calculations29, 

unsuitable for real-time applications30.  
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In this chapter, the suitability of the spatially and angular resolved measurements for 

in-situ monitoring of suspension polymerisation reactions is investigated. Instead of 

the usual approach employed in Spatially Resolved Spectroscopy (SRS) data, in 

which the absorption and scattering spectra are extracted from multiple 

measurements31 by invoking the computationally intensive radiative transfer 

theory29, I propose an empirical approach for manipulating the spatially and angular 

resolved information based on multivariate statistical methods and chemometrics32. 

Specifically, I am interested in the sensing abilities of each SD distance for both 

visible and near-infrared spectroscopies, and in exploring whether introducing new 

variations in measurement configurations could improve the predictive capability of 

multivariate calibration models. To this aim, I will evaluate combinations of fibres 

placed at different distances from the detector, and at different angles of incidence. 

How well these different measurements will be integrated and how accurate the 

resultant multivariate calibration models will be are also of great interest in this 

chapter.  

To the best of my knowledge, this work is the first attempt to employ spatially and 

angularly resolved diffuse reflectance spectroscopy on the monitoring of suspension 

polymerisation reactions, and also the first where a multi-block data fusion approach 

will be evaluated for this purpose.  
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6.2 Process description  

The suspension polymerisation process investigated in this work is a laboratory-scale 

batch reaction for the production of expandable polystyrene beads. Each reaction 

lasts approximately seven hours, where a full conversion from styrene to polystyrene 

is achieved. In order to guarantee variability in the process profiles, different 

combinations of stirrer speed and amounts of initiator and stabiliser were employed 

to run eight full polymerisation batches, according to the recipes presented the Table 

6.1. The amount of styrene and water were held constant for all reactions. The 

conditions for each parameter were varied inside the boundaries of a practical 

operational space designed during previous test reactions. 

Table 6.1 Experimental conditions for the eight suspension polymerisation reactions.  

Reaction run Stirrer speed, 
rpm 

Initiator, 
g/L 

Stabiliser, 
g/L 

R1 250 3.00 2.50 

R6* 250 3.50 2.50 

R7* 250 4.00 2.50 

R5* 300 3.00 1.50 

R2 300 3.00 2.50 

R8* 300 3.00 3.00 

R3 300 3.50 3.00 

R4 300 4.00 3.00 

* reactions performed after probe retrofitting. 

 

During every reaction, samples were withdrawn from the reactor at every 20 minutes 

for characterisation by conventional gravimetric analysis and particle size 

measurements. Spectroscopic measurements were collected in situ at every 10 
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minutes with the probe head inside the reactor. At every two measurement cycles, 

the spectra acquisition was done just before a sample was withdrawn for reference 

analysis. The experimental system is illustrated in Figure 6.2, which shows how the 

optical probes are connected to the spectrometers and the reaction vessel. 

Experimental details are outlined in the next sections and are thoroughly discussed in 

Chapter 3 

 

 

Figure 6.2 Experimental set-up for the suspension polymerisation reactions 

 

6.2.1 Spectral acquisition 

Measurements in the near infrared region were obtained by a NIR spectrometer 

(NIRQuest-512, Ocean Optics) while the spectra in the Visible region were 

registered by a visible range spectrometer (USB-4000, Ocean Optics.  For interfacing 

the spectrometers with the reaction vessel, a prototype spatially and angularly 

resolved diffuse reflectance optical probe was directly immersed in the reaction 

media for in situ measurements. The probe head is illustrated in the Figure 6.3 

below, which also shows the fibre optical disposition and distances.  
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Figure 6.3 Schematic illustration of the SD distances in the SARDR probe head. The 
distances given are from Vis and NIR collecting fibres (detector) to each illuminating 
fibre (source).  

 

6.2.2 Gravimetric Analysis 

The styrene-polystyrene conversion was determined by gravimetric analysis, which 

is the technique routinely used throughout the polymer industry. Samples were taken 

from the reaction vessel at every 20 minutes, by using an automatic pipette with long 

length pipette tips. After weighing the extracted sample, 5mL of a solution of toluene 

containing 1% of the inhibitor para-benzoquinone was added to the sample for 

reaction quenching, and was then placed in a vacuum oven until a constant weight 

was obtained. The dry mass was weighed and the conversion determined. The use of 

p-benzoquinone allows faster diffusion into the beads as it is more hydrophobic than 

hydroquinone; therefore, faster quenching of the reaction in the sample is possible 

and a more accurate estimation can be achieved.  
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6.3 Data manipulation and model development 

6.3.1 Data fusion methods 

A large amount of data is produced when using spectroscopic techniques to monitor 

batch processes. The batch data itself is a three-dimensional data array containing the 

intensities at different wavelengths across both reactions and time dimensions. On 

top of that, unlike standard spectroscopic techniques that provide one spectrum per 

sample, in the spatially resolved data an extra dimension is added by having several 

spectra for the different source-detectors separations and angular incidences. A 

proper manipulation of such amount of data is fundamental for the successful 

viability of the technique. 

Several ways of handling multi-dimensional data are available for quantitative 

analysis. Usually, SRS spectra from different fibres are subjected to co-adding, and 

the final averaged spectra used for regression purposes33,34. Data augmentation or 

unfolding is another way of handling this type of data. The advantage of using the 

unfolded and the co-adding approaches is the simplicity. In fact, handling all data 

blocks in a single matrix allows the use of standard Partial Least Squares Regression 

(PLSR) for model building. However, the influence of each block can be hidden by 

other block’s influence35, which means that spatial information may be flattened, 

causing loss of block related knowledge. 

In Chapter 5, a data fusion strategy based on multi-block was employed giving 

improved results when compared with the models built from individual fibres. Here, 

besides the multi-block method, the co-adding approach will also be investigated.  
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6.3.2 Spectra pre-processing 

Vis and NIR SARDR spectra were acquired from each one of the 7 collecting fibres. 

Before analysis, data were subjected to spectral correction, normalisation with the 

integrating sphere spectrum, smothing by wavelet transform, conversion from 

reflectance to logarithmic units, and autoscaling of variables.  

To remove baseline distortions among the different batches, as well as scattering 

effects, a few empirical pre-processing techniques were investigated, namely SNV, 

SNV-DT25, MSC and EMSC. 

 

6.3.3 Model development and validation 

Similar to the previous chapters, the repeated double cross-validation (rdCV)36 was 

employed for both model building and validation. This approach was chosen because 

repeated instances of the double cross validation allow a reliable comparison of the 

predictive capability and parsimony of models. In the scope of this chapter this 

property is highly relevant, especially for comparing the output of the several 

different combinations of fibres, spectroscopy modes, and model parameters.  

The validation in the rdCV approach is performed on test set samples not used in the 

calibration phase, ensuring the estimations are not biased. However, as we are 

dealing with process data in this chapter, the test set samples may not be completely 

independent from the calibration set, since they are withdrawn from the same 

reaction runs used in the model building phase, and consequently, make part of the 

same population. Hence, to increase the robustness of the models developed here, 

and to guarantee that estimations based on such process data are not biased by 

reaction or sample information, an external validation step based on full independent 

reactions, not individual samples, was performed. In this particular case, the 
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calibration set was extended to incorporate all samples from the rdCV sample sets 

(calibration, validation and test sets). The updated calibration set was then used to 

estimate the conversion from the independent full reactions, based on the number of 

latent variables chosen by the rdCV approach. A schematic illustration of the model 

calibration and validation procedure used here is shown in the Figure 6.4 below. 

 

 

Figure 6.4 Schematic illustration of the rdCV technique. 

 

The predictive ability in each of the calibration and validation phases is assessed by 

the root mean squared error of cross validation (RMSECV), root mean square error 

of prediction (RMSEP) and their distributions, squared coefficient of correlation 

(R2), optimum number of PLS components and its frequency plot, and the residuals 

for all estimations. The confidence intervals (CI 95%) are calculated for RMSECV 

and RMSEP based on their values obtained from all estimations from 100 Test sets.  
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6.4 Number of segments and Latent Variables selection  

In both model building and validation by using the rdCV, the number of sample 

segments in the outer and inner loops is important since it affects the size of the 

sample sets, and the number of values from which the statistics are calculated. In this 

work, segment sizes from 4 to 10 were evaluated in their influence on the RMSECV 

and in the number of latent variables used to build the models.  

In the same experiment, the criterion for selecting the number of latent variables was 

also investigated. In the original repeated double cross validation, the optimum 

number of latent variables is chosen in the inner loop by using the one-standard-error 

rule, where the most parsimonious model is selected within one standard error of the 

minimum Mean Square Error (MSE), obtained from cross validation within the 

calibration set. In preliminary work on the suspension polymerisation reaction data, 

it was found that this approach for latent variable selection might be too 

conservative, selecting a low number of latent variables, but resulting in high 

prediction errors, which might be an indication of under fitting.  An alternative 

would be to select a number of latent variables that resulted in the minimum mean 

square error, which can be sometimes too optimistic, over fitting the results. Another 

alternative is the Haaland Thomas37 method, which consists in selecting the model 

with the fewest number of latent variables such that the Prediction Error Sum of 

Squares (PRESS) for that model is not significant greater than the PRESS for the 

model with the minimum PRESS.  

In this work, the standard error rule was evaluated by using five different parsimony 

factors, namely 1.00, 0.75, 0.50, 0.25 standard errors. The results were compared to 

the Haaland Thomas method and to the global minimum MSE criterion (which is 

equivalent of using a parsimony factor of zero standard error). The evaluation was 



Chapter 6 

 

157 

performed on models developed based on the simplest fibre combination comprising 

the closest normal and angularly incident fibres (0.6 mm). 

Table 6.2 Selecting model complexity. Optimum number of latent variables for the 
PLS models developed by varying the number of sample segments in the cross-
validation and parsimony factors for the MSE and Haaland Thomas criteria. RMSEP 
values are highlighted in green. 

 PLS Repeated Double CV 

Segments/ 
parsimony factor zero 0.25 0.50 1.00 HT 

 RMSECV/ RMSEP, % 

4 5.1/6.3

1 

5.9/7.5 6.6/7.5 

6 

7.8/7.3 5.6/5.9 

7 4.8/6.3 5.6/7.1 6.2/7.5 

9 

7.3/5.7 5.3/5.7 

10 4.8/6.3 5.5/5.7 6.1/7.5 

10 

7.1/5.7 5.2/5.5 

 Number of latent variables 

LV 4 20 11 10 7 

14 

12 

7 20 11 10 8 13 

10 20 12 10 8 14 

 

Model complexity in the standard error method is regulated by the parsimony factor. 

As can be seen in Table 6.2, by increasing the parsimony factor from zero to 1.00 

SD, the number of latent variables naturally decreases, since the selection becomes 

more conservative. As a consequence, the RMSECV tends to increase. However, this 

change in model complexity does not seem to have impacted the estimation of 

monomer conversion on external reactions, since the RMSEP maintained stable at 

around 7.5 %, regardless of the parsimony factor, as it is the case when using 4 

segments. This finding may indicate the models built with low parsimony factor 

were overfitted. When using 7 or 10 segments, a contrary effect was found. The 
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RMSECV errors were higher in a few cases, potentially indicating under fitting. The 

best case was obtained by using 10 segments and 0.25 SD, resulting in similar 

predictive capability in both cross validation and external predictions.  

The best overall results, in terms of model predictive capability and complexity, were 

obtained when applying the Haaland Thomas criteria. A reasonable choice for the 

number of latent variables was reached, presenting the lowest RMSECV values. By 

testing the model against external reactions, the RMSEP obtained were similar to the 

calibration errors, which may indicate a correctly assigned model complexity, 

avoiding under or overfitting. Furthermore, the Haaland Thomas criterion was able 

to select a reasonable number of latent variables, closer to the ones obtained by the 

standard error rule using a reduced parsimony factor of 0.25 standard deviation. This 

indicates that the original one standard error method is too conservative for the data 

in question, and that the HT method allows a proper selection without requiring 

additional heuristics to find the best parsimony factor. 

In the context of cross-validation, higher the number of segments, higher the 

numbers of models to be developed, since cross validation will be iterating more 

times. Because the number of segments has not significantly affected the results, and 

taking in consideration the higher computation time needed for running the models 

with higher number of segments, it was decided to use the Haaland Thomas criteria 

and only four segments throughout this chapter. 
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6.5 Spectral evolution along the reaction 

In chapters 4 and 5 it was demonstrated that polystyrene concentration could be 

estimated with good accuracy by NIR spectroscopy. In those experiments, the system 

used was well controlled and made of only water and polystyrene beads, facilitating 

the interpretation and analysis of the results. In suspension polymerisation reactions, 

on the other hand, the media is much more heterogeneous, which brings new 

challenges for the statistical methods and the spectroscopic technique itself. To 

evaluate whether the SARDR probe can sense styrene consumption and polystyrene 

formation with satisfactory accuracy, despite the heterogeneity and disturbances 

found in the reaction system, quantitative models were developed for the online 

monitoring of styrene conversion into polystyrene. Before discussing the models, an 

overview of the NIR spectral behaviour throughout the course of full suspension 

polymerisation reactions is presented. 

 

6.5.1 Near-infrared spectral evolution along the reaction 

Both styrene and polystyrene have important absorption bands in the NIR region, 

mostly arising from aromatic CH overtones. In the past, their overlapping nature 

hindered the development of on-line NIR spectroscopic monitoring of 

polymerisation reactions, since a clear separation of the absorbance bands was 

necessary 38. Nowadays, advanced chemometrics methods for spectral pre-processing 

and calibration are able to tackle this problem efficiently. Figure 6.5 below shows an 

NIR spectrum taken at a particular time from a suspension polymerisation reaction.  
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Figure 6.5 Near-infrared spectrum taken from a suspension polymerisation reaction. 

 

In the NIR spectrum from Figure 6.5, the broad absorptions due to the O-H 

absorption from water39 can clearly be identified around 1440 nm, dominating the 

spectrum. The regions of interest for styrene-polystyrene conversion are the 

absorption bands around 1200 nm, due to the aromatic CH and CH2 stretch of the 

second overtone40 and around 1640 nm, due to the aromatic CH and stretch of the 

first overtone41. The latter one presents a much stronger absorption in the collected 

spectrum, being able to clearly indicate qualitatively the conversion of monomer into 

polymer. In order to better illustrate this behaviour, the evolution of a complete 

seven hours long suspension polymerisation is shown in the Figure 6.6 a. In this 

case, the first derivative of the log (1/R) spectrum is shown for easier identification 

of the bands. Moreover, only the spectral region from 1580 to 1740 nm is presented, 

which contains the stronger bands of interest.  
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Figure 6.6 Evolution of the first derivative of near-infrared spectra collected 
throughout a suspension polymerisation reaction. Spectra collected with the 
illuminating fibre place at 0.6 mm from the collected fibre. Only the region between 
1580 and 1740 nm is shown for clarity. 
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As the reaction progresses, the styrene is being continuously converted in 

polystyrene, having 8% conversion at 45 minutes and reaching 80% at 425 minutes, 

when the reaction finishes. It is very clear that the intensity of the absorption at the 

styrene C-H vibration bonds vanishes through out the reaction, at the same time that 

the aromatic C-H stretch in the first overtone has their absorption increasing 

continuously. The same plot is shown for a few samples of increasing conversion 

degree (8, 25, 45, 65, 75 and 80%) for clear visualisation of the polystyrene bands 

(Figure 6.6b). By comparing the first and last samples, 8% at 45 minutes and 80% at 

425 minutes, respectively, it becomes clear that the intensity of the absorption bands 

centred around 1610 nm and 1670 nm decrease, as a result of the monomer 

depletion, while the bands around 1640 and 1690 nm have their absorptions 

increased due to the polymer production. 

 

6.5.2 Visible spectral evolution along the reaction 

Visible spectroscopy is not a natural method of choice for this application, especially 

due to the absence of absorption bands related to styrene and polystyrene in the 

visible spectrum. However, multivariate calibration models may capture information 

from possible indirect correlations between the concentration and size of beads, 

mainly through the susceptibility to scattering effects characteristic from the Visible 

region. By having multiple fibres measuring the flow of beads at different distances 

and sample depths, as it is the case of our SARDR probe, it may be possible to 

enhance the mining of the required information. This possibility was already 

presented and successfully executed in Chapters 4 and 5, where predictive models 

developed with Visible spectra for estimation of polystyrene concentration provided 

excellent results. Such models, though, were based in a simple system, consisting 
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only of polystyrene and water. In actual reactions, where the level of complexity is 

much higher, the validity of the predictions of these models remains to be proved.  

A qualitative evaluation of the spectral features was first performed by means of 

Principal Component Analysis (PCA) and spectral inspection. For this example, 

spectra from six polymerisation reactions were gathered, comprising 211 samples 

and 355 wavelengths, ranging from 500 to 800 nm. Only the spectra collected from 

the farthest normal incident (3.0 mm) fibre were used, since it provided good results 

in the two-component system. Data from each block were mean centred before 

model building. Figure 6.7 below presents a PCA score plot from the two first latent 

variables. The score plot reveals the relationship between samples by providing a 

sample map for the reactions, allowing an easier identification of patterns and 

differences between samples or group of samples.  

 

Figure 6.7 PCA score plot built with Visible spectra of 211 samples from six 
polymerisation reactions, represented by coloured circles and squares. Grey line 
connectors are plotted for sake of clarity only. 
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In the score plot of the Figure 6.7, the first principal component dominates the 

spectral information, explaining almost 100 % of the data variance. All reactions are 

clearly separated by the scores values in the PC1. Notwithstanding its low explained 

variance, PC2 is still able to describe a rough process trajectory for each reaction. 

The initial samples from each reaction have more negative PC2 score values, and are 

clearly separated from the remaining of the reaction. Those samples are from the first 

reaction phase, prior to the addition of stabiliser, where the droplets are in constant 

coalescence and breakage.  

It is also evident from the score plot that the scores from samples represented by 

coloured circles are spread more than the scores from samples represented by 

coloured squares. As explained in the Experiments section, the measurement 

protocol changed after a few reactions were performed due to a probe retrofit. This 

experimental difference can be clearly seen in the score plot, as well as in the score 

versus reaction time plot, in the Figure 6.8. It can be found that the reactions run 

before (coloured circles) the probe retrofit are much more scattered and widely 

spread than the reactions performed after (coloured squares) the probe retrofit.  
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Figure 6.8 Scores versus reaction time for six polymerisation reactions. Circles and 
squares represent samples taken at different time from polymerisation reactions. 

 

This behaviour can directly influence the model development and compromise the 

predictive capability of the resultant models if not taken in account in all phases of 

the validation strategy. In this experiment, this difference will work as a challenge 

test of the robustness of the models developed after experimental modifications. 
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6.6 Estimating monomer conversion on suspension polymerisation 

reactions 

PLS-based regression models were developed based on the fused diffuse reflectance 

spectra taken at different source-detector separations and angular incidences. The 

aim was to evaluate whether spatially and angularly resolved Vis and NIR diffuse 

reflectance measurements could provide reliable in situ estimates of monomer 

conversion throughout suspension polymerisation reactions.  

Initially, only normal incident fibres were considered. For the development of 

models based on different fibre combinations, two different data arrangement 

approaches were studied with regards to their influence on the model’s predictive 

capability: multi-block and co-adding approaches. In the multi-block approach, data 

were organised in blocks of spectra, each of them containing information from one 

specific fibre. For the co-adding approach, a single-block data set was obtained by 

averaging the absorbances of each sample for more than one fibre. This approach is 

similar to the standard NIR or Vis spectroscopic methods, where a unique spectrum 

per sample is available.  

For each of these approaches, PLS rdCV models were developed based on NIR and 

Vis spectra obtained from six full polymerisation reactions. For NIRS, the 223 

samples obtained were randomly divided in calibration (192) and test sets (31), since 

a 4-fold cross validation was adopted based on the tests performed in Section 6.4. 

The calibration set was further divided in two sets for cross-validation (164 and 28 

samples, respectively). For Vis models, 12 samples were discarded due to saturation 

in their spectra. Hence, 211 samples were randomly divided in calibration (159) and 

test sets (52), with the calibration set being divided in two sets for cross-validation 

(120 and 39 samples). In this way, predictions were made based on non-sequential 

samples from several different reactions. The procedure was repeated 100 times for a 
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reasonable evaluation of models. When building all models, every block/matrix was 

mean centred and divided by their standard deviation. Further normalisation for the 

multi-block approach was not needed since all blocks shared the same type and 

quality of measurements.  

After rdCV calibration and validation phases, an updated calibration set containing 

all samples used in the rdCV (223 for NIR and 211 for Vis) was used to estimate the 

conversion from two independent full reactions. For this, the number of latent 

variables used was the ones chosen by the rdCV method.  

It is worth remembering from the experimental chapter that the polymerisation 

reactions were run at different days and weeks and have a particular instrumental 

distinction. The probe needed maintenance half way through the experiment, since 

its fibre ends became misaligned. This unexpected event led to two different groups 

of reactions; the ones run before and after the probe was repaired. For the model-

building phase, both reaction groups were included to the models to evaluate the 

robustness of the method upon small changes in the equipment, and to guarantee a 

higher number of samples in the modelling strategy. One reaction from each group 

was allocated for the external validation. Reaction R3 was run before the repair, 

whereas reaction R5 after it. 

For the NIRS models, the fusion strategy started by integrating spectra from the two 

shortest source-detector distances (0.6 and 1.2 mm), to which all subsequent 

distances (1.8, 2.4 and 3.0 mm) were added one at the time, until a final fused model 

was built including all five available SD separations. Vis based models adopted the 

inverse order, i.e., started with the two longest SD separations (3.0 and 2.4 mm), 

followed by the addition of subsequent closer fibres, one at the time. The rationale 

behind this sequence was to guarantee that a good performing fibre was included on 

all fused models. It was chosen based on the findings shown in Chapter 4 on the 
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polystyrene-water system, where it was found that the shortest SD distance led to the 

best result for NIRS, whereas the longest SD distance to the lowest error among the 

Vis models. Such trend was confirmed on the polymerisation process data, as shown 

in Figure 6.9, which presents the RMSECV values obtained by rdCV PLS models 

developed on each individual source-detector distance, for both NIR (blue circles) 

and Vis (orange circles) spectra collected along six full polymerisation reactions. 

 

 

Figure 6.9 Averaged RMSECV obtained by the rdCV method on models developed 
with NIR (blue circles) and Vis (orange circles) spectra, taken from six 
polymerisation reactions by using a SARDR probe with different SD distances, from 
0.6 to 4.2 mm. 

 

By analysing the results from models built with spectra from individual SD 

distances, it is clear that the predictive capability becomes poorer as the distance 

between the source and the NIR detector increases. Models developed with SD 

distances beyond 1.2 mm did not provide good results, reaching prediction errors 

higher than 10% and coefficient of determinations below 0.90. Meanwhile, Vis-
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based models achieved similar predictive capability for most of the SD distances, 

with the exception of the closest fibre (SD distance = 0.6 mm), which generated 

errors higher than 11 % for both normal and angularly incident fibres. The full 

summary of statistics for the models built for individual fibres are presented in 

Appendix 6.1. 

 

6.6.1 Integrating spectra taken at multiple source-detector separations 

Table 6.3 presents the summary of results obtained from the rdCV and external 

validation PLS models developed by combining normal incident fibres by using the 

multi-block and co-adding approaches. For the rdCV models, the table presents the 

root mean square error of cross validation (RMSECV) and prediction (RMSEP) and 

their respective confidence interval based on the standard errors of prediction. The 

coefficient of determination (R2) and the number of latent variables are also shown. 

The statistics of the external validation models are highlighted in light blue columns 

for both multi-block and co-adding approaches. They contain the calibration errors 

(RMSEC) obtained by the updated calibration set and the RMSEP values achieved 

by validating the external reactions R3 and R5. The number of blocks (nb) used to 

build each model is also shown. 
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Table 6.3 Summary of results from SARDR-NIRS PLS-based models built by using the multi-block and co-adding approaches for the o 
determination of monomer conversion in suspension polymerisation reactions. For the rdCV calibration and validation results, the 
RMSECV and RMSEP values are shown with their confidence interval for every SD distance, together with their respective coefficient 
of determination, R2, and the optimum number of latent variables. For the external validation, the RMSEC and RMSEP values are also 
shown for each SD distance. nb = number of blocks 

Multi-block Co-adding 

  PLS Repeated Double CV External validation   PLS Repeated Double CV External validation 

SD distance 
combination nb RMSECV      RMSEP 

% ±CI95% R2 lv RMSEC 
% 

RMSEP 
% 

SD distance 
combination nb RMSECV       RMSEP 

% ±CI95% R2 lv RMSEC 
% 

RMSEP 
% 

       R3 R5        R3 R5 

0.6 1 5.2 ± 0.02 5.1 ± 0.04 0.97 9 4.8 7.6 5.6 0.6 1 5.2 ± 0.02 5.1 ± 0.04 0.97 9 4.8 7.6 5.6 

fused to 1.2 2 5.5 ± 0.03 5.4 ± 0.06 0.97 12 4.4 7.8 4.0 co-added to 1.2 1 5.8 ± 0.03 5.7 ± 0.06 0.96 9 5.0 6.6 5.0 

and 1.8 3 6.0 ± 0.03 5.8 ± 0.07 0.96 12 4.7 6.9 6.3 and 1.8 1 7.6 ± 0.04 7.6 ± 0.07 0.92 8 6.6 7.0 8.1 

and 2.4 4 6.4 ± 0.04 6.3 ± 0.07 0.96 12 5.2 6.3 6.1 and 2.4 1 8.4 ± 0.04 8.3 ± 0.08 0.91 7 7.6 8.1 17.3 

and 3.0 5 6.8 ± 0.04 6.6 ± 0.07 0.96 13 5.1 5.9 6.9 and 3.0 1 9.1 ± 0.05 9.0 ± 0.09 0.89 7 7.9 11.7 18.7 
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Overall, for most of the fibre combinations, the rdCV calibration models estimated 

conversion with sufficient accuracy, and were successfully validated upon test 

samples. However, the predictive power of these fibre combinations decreased as 

farther fibres were included to the models, no matter which data arrangement 

approach was employed.  

Fibre combinations containing fibres with SD distances larger than 1.8 mm provided 

less accurate models, especially for the models built by using the co-adding 

approach. In fact, by fusing four extra fibres (SD distance = 1.2, 1.8, 2.4 and 3.0 mm) 

to the 0.6 mm fibre, the RMSEP values increased from 5.2 to 9.1 % in the co-adding 

model, and to 6.8% in the multi-block one. For all fibre combinations, models 

developed by the co-adding approach provided poorer estimations of monomer 

conversion than the ones developed by the multi-block approach.  

The fibre combination comprising the two shortest SD distances (SD distance = 0.6 

and 1.2 mm) provided the best results when validation was performed on the external 

reactions, as shown in the grey background columns from Table 6.3. Despite the 

increasing errors in the rdCV calibration, in the external validation, the calibration 

errors (RMSEC) decreased from 4.8 to 4.4 % by including one extra SD distance to 

the starting model. This combination provided a good predictive capability by 

estimating monomer conversions with errors around 7.8 % for the reaction R3 and 

4.4%, for the reaction R5, while for the co-adding approach an error of 6.6% and 5.0 

% were achieved, respectively.  

Although providing slightly higher errors, co-adding models were much simpler than 

the multi-block ones, requiring three less latent variables to describe data variance. 

One possible explanation for this better parsimony is the lower number of X 

variables in the co-added models, because their input block has the same number of 

variables independent of the number of fibres co-added, i.e., 335 variables in this 
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case. In multiblock PLS, although the blocks are initially treated separately, their 

scores vectors are concatenated forming a super scores matrix, which has multiples 

of 335 variables according to the number of blocks, hence the number of X variables 

ranges from 670 in the two-block model to 1675 variables, in the five-block model. 

As a consequence, PLS modelling requires additional latent variables to describe the 

information contained in these extra X variables. However, this argument alone does 

not explain why the latent variables numbers decrease by adding further fibres in the 

co-adding approach. 

Because the absorbances are summed up in the co-adding approach, models are more 

sensible to problematic samples or measurements with poorer signal-to-noise ratio, 

which happens when increasing SD distance in the NIR range. This information may 

explain why the co-adding approach presented lower performance than the multi-

block one, especially in the longer SD distances. 

 

In a similar fashion adopted for the NIRS models, PLS models based on repeated 

double cross validation (rdCV) were developed between Vis spectra taken from 

samples of six polymerisation reactions and their respective monomer conversions. 

As explained earlier, Vis spectroscopy is not a natural method of choice for this 

application, especially due to the absence of absorption bands related to styrene and 

polystyrene in the visible range. Despite its limitations, models based on the visible 

range were successfully used for monitoring particle concentration in Chapters 4 and 

5. Such models, though, were based in a simple system, consisting only in 

polystyrene and water. In actual reactions, where the level of complexity is much 

higher, the validity of the predictions from these models needs to be further analysed. 

Table 6.4 presents the results obtained by the PLS-based models developed by using 

the visible spectral range. 



 

173 

Table 6.4 Summary of results from SARDR-Vis PLS-based models built by using the multi-block and co-adding approaches for the 
determination of monomer conversion in suspension polymerisation reactions. For the rdCV calibration and validation results, the 
RMSECV and RMSEP values are shown with their confidence interval for every SD distance, together with their respective coefficient 
of determination, R2, and the optimum number of latent variables. For the external validation, the RMSEC and RMSEP values are also 
shown for each SD distance. nb = number of blocks 

 

Multi-block Co-adding 

  PLS Repeated Double CV External validation   PLS Repeated Double CV External validation 

SD distance 
combination nb RMSECV      RMSEP 

%  ±CI95% R2 lv RMSEC 
% 

RMSEP 
% 

SD distance 
combination nb RMSECV       RMSEP 

% ±CI95% R2 lv RMSEC 
% 

RMSEP 
%  

       R3 R5        R3 R5 

3.0 1 8.8 ± 0.05 8.8 ± 0.09 0.89 5 8.4 28.1 11.9 3.0 1 8.8 ± 0.05 8.8 ± 0.09 0.89 5 84 28.1 11.9 

fused to 2.4 2 7.5 ± 0.04 7.4 ± 0.06 0.92 8 6.6 12.3 12.6 co-added to 2.4 1 7.4 ± 0.04 7.3 ± 0.06 0.92 6 6.9 19.1 13.5 

and 1.8 3 7.4 ± 0.04 7.2 ± 0.07 0.93 10 6.0 14.4 13.6 and 1.8 1 7.0 ± 0.04 6.9 ± 0.06 0.93 7 6.1 11.1 9.0 

and 1.2 4 7.6 ± 0.04 7.4 ± 0.08 0.93 11 6.4 7.3 18.9 and 1.2 1 7.1 ± 0.03 7.0 ± 0.06 0.93 6 6.5 6.5 15.8 

and 0.6 5 7.3 ± 0.04 7.1 ± 0.09 0.94 13 5.7 29.1 12.6 and 0.6 1 7.3 ± 0.03 7.3 ± 0.06 0.92 6 6.7 22.1 17.5 
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As expected, the errors obtained by the VIS models were in general higher than the 

ones obtained by NIRS. However, unlike NIRS models, for both co-adding and 

multi-block approaches, the accuracy improved when including information from 

extra source-detector distances. In the multi-block models, RMSECV values 

decreased from 8.8 % to 7.3% by including four extra SD distances, whereas for the 

co-adding approach an improvement from 8.8 to 7.0 % was possible by adding two 

SD distances. However, despite being successfully validated upon rdCV test sets, all 

Vis-based models were unable to estimate the monomer conversion on the external 

reactions with sufficient accuracy, resulting in RMSEP values beyond 10%. This 

may be explained by the fact that Vis models are not based on chemical information 

contained in the spectra, but indirect one related to the scattering of beads. The 

scattering baseline characteristic from the external reactions may be different from 

that one modelled in the rdCV calibration phase, resulting in poor estimations of 

monomer conversion.  

 

6.6.2 Can we improve model performance by adding angularly resolved 

measurements? 

In the previous section, diffuse reflectance spectra collected from a normal incident 

source-fibre were used as the starting block for integrating measurements taken at 

different source-detector distances. To this spectral block, the output from all 

subsequent farther (for the NIRS) or closer (for the VIS) normal incident fibres was 

added one-at-the time, and PLS-based regression models were built and validated by 

using two different data fusion approaches. The aim was to evaluate the potential of 

spatially resolved measurements for the in situ monitoring of suspension 

polymerisation reactions.  
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In this section, to investigate whether the addition of angularly incident 

measurements could improve the predictive capability of such models, diffuse 

reflectance spectra collected from a 30° angularly incident fibre (SD distance = 0.6 

mm for NIR and 4.2 mm for Vis) were added to all normal incident fibre 

combinations discussed in the previous section. Likewise, PLS-based models were 

developed for each combination in the same fashion done for the normal incident 

fibres.  

Figure 6.10 shows the impact on the RMSECV caused by adding an angularly 

orientated fibre to the combinations of normal incident fibres, for both multi-block 

and co-adding approaches. The RMSEPs are not shown in this figure, but are similar 

or better than the cross-validation errors. The complete summary of results can be 

found in Appendix 6.2. 

 

Figure 6.10 Impact on the RMSECV by adding an angular incident fibre to the 
combinations of normal incident measurements. RMSECV obtained from (a) multi-
block and (b) co-adding PLS models based on NIR spectra. The grey closed bars 
represent the combinations of normal incident fibres of increasing SD distance, while 
the red open bars represent the same combinations with the fused angular orientated 
fibre.  
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The rdCV results for the multi-block models show no significant improvement in the 

estimation of monomer conversion when including angularly incident measurements 

to the normal incident combinations. The RMSECVs obtained by the models 

containing spectra from the angularly orientated fibre (grey bars) were slightly 

higher than the ones built with only normal incident fibres, and, in general, required 

more latent variables to describe the variance in the data. However, as more fibres 

were included to the model, the difference in performance decreased, becoming 

similar in terms of error and parsimony when all five normal incident fibres were 

included to the model.  

By contrast, when the co-adding approach was used to build the models, the addition 

of an angular orientated fibre provided similar or improved accuracy. The 

complexity of the models did not increase as more blocks were added, and the errors 

were slightly lower than when using only normal incident fibres. However, by 

adding information from longer SD distances, co-adding models provided poorer 

results than the multi-block ones. Moreover, despite the improvement by the addition 

of the angular fibre, the calibration and prediction errors are still appreciably higher 

than the ones obtained by using shorter SD distances.  

The benefit of including an angularly orientated fibre becomes evident when the 

extended calibration set was used to validate the two external reactions. Figure 6.11 

shows the RMSEPs obtained for the external reactions R3 and R5, by both multi-

block and co-adding approaches. The 30o angularly incident fibre was added to each 

combination of normal incident fibres (grey circles), starting with the individual 0.6 

mm distant fibre.  

Figure 6.11 clearly shows that the inclusion of the 30o angular incident fibre 

improved the estimation of monomer conversion on both reactions for most of the 

fibre combinations, regardless of the data fusion approach used. 
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Figure 6.11 External validation. RMSEP for the two external reactions, R3 and R5, 
for both multiblock and co-adding approaches based on NIR spectra. Gray circles 
represent the models developed by using only normal incident fibres, while red ones 
represent the addition of the 30o angular incident fibre. 

 

The multi-block approach provided consistent results for most of the models. The 

extended calibration model was able to estimate both reactions with satisfactory 

results for most of the fibre combinations, especially when the angularly incident 

fibre was included to the models. In particular, the model developed by combining 

the three shortest SD distances (0.6, 1.2 and 1.8 mm) to the angularly orientated fibre 

provided the best results. This combination was able to accurately estimate the 

monomer conversion for both reactions with errors of 5.2 and 3.8%, respectively.  



Chapter 6 

 

178 

 

Figure 6.12 NIR predicted monomer conversion (blue circles) versus reference 
values (black curves) throughout two suspension polymerisation reactions, a) R3 and 
b) R5, not used in calibration development. Predictions based on the multi-block 
fused diffuse reflectance spectra obtained by adding an angularly incident fibre (30o 
– 0.6mm) to three normal incident fibres (SD distance = 0.6, 1.2, 1.8 mm). 

 

Figure 6.12 shows that monomer conversions were better estimated along the 

reaction R5. It presents the monomer conversion measured by gravimetric analysis 

(black curves) through out the reaction, together with the estimated values by NIR 

spectroscopy (blue dotted circles connected by blue curves). Apart from samples at 

the very beginning of the reaction, and other two samples around 320 minutes, the 

agreement between the reference values and the NIR estimations was excellent. 

When the reaction reached 120 minutes, the stabiliser SDBS was added to the 

reaction vessel, altering the reaction media and consequently, affecting reference and 

spectroscopic measurements. Note that the NIR measurements were able to detect 

these changes, but overestimated the monomer for these initial samples. The samples 

at the end of the reaction, which are very important for end point detection, were 

estimated with excellent accuracy. For the reaction R3, the NIR predictions 

overestimated the monomer conversion, especially for the first 200 minutes, but 

stabilised after that obtaining reliable estimates. 
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Important to highlight that without the inclusion of the angular measurements, the 

RMSEP for this fibre combination would be 6.9 and 6.3 %, respectively. Moreover, 

if only the closer fibre (SD distance = 0.06mm) was used, RMSEP of 7.6 and 5.6 %, 

respectively, would be obtained. 

Despite the poorer results obtained in the calibration phase, the co-adding approach 

estimates were particularly good, reaching optimum results when combining the two 

shortest normal incident fibres to the angular incident one. This combination allowed 

an estimation of conversion with errors of 5.0 and 4.7%, for the reactions R3 and R5, 

respectively. Models containing fibres with SD distances higher than 1.2 mm 

provided poor estimates. For the reaction R5, the RMSEP obtained for a combination 

containing SD distance farther than 1.8 was higher than 15%, and so it was not 

shown here.  

Considering the better parsimony of the co-adding models, we are tempted to 

conclude that its best performing model is superior than the one obtained by the 

multi-block approach. The co-adding models using only three fibres was able to 

estimate conversion well, and needed only 9 latent variables, compared to the 13 

needed for the 4-block multiblock model. 

 

For the visible spectroscopy modelling, the improvement caused by adding angularly 

resolved measurements was more evident in both rdCV and external validation 

phases. Figure 6.13 presents the summary of statistics for all model combinations 

containing the 30o angular incident fibre, for both multi-block and co-adding 

approaches.  
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Figure 6.13 Impact on the RMSECV by adding an angular incident fibre to the 
combinations of normal incident measurements. RMSECV obtained from (a) multi-
block and (b) co-adding PLS models based on Vis spectra. Grey closed bars 
represent the combinations of normal incident fibres of increasing SD distance, while 
the red open bars represent the same combinations with the fused angular orientated 
fibre. 

 

Unlike NIRS models, by adding angular incident measurements, the rdCV cross-

validation and prediction errors decreased for both multi-block and co-adding 

approaches, as can be seen by the smaller red bars in Figure 6.13 a and b. The fusion 

of one extra fibre to the 3.0 mm distant starting fibre improved considerably the 

accuracy of the models. However, as more fibres were added to the model, the 

performance of visible models were not significantly affected, since the RMSECV 

values obtained held constant around 7 %. 

Despite the similar performance in the rdCV calibration and validation phases, multi-

block and co-adding approaches provided contrasting results when subjected to 

external validation. Figure 6.14 presents the validation of the extended calibration set 

upon the two external reactions, R3 and R5, for both data fusion approaches.  
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Figure 6.14 External validation. RMSEP for the two external reactions, R3 and R5, 
for both multiblock and co-adding approaches based on Vis spectra. Gray circles 
represent the models developed by using only normal incident fibres, while red ones 
represent the addition of the 30o angular incident fibre. 

 

The multi-block PLS models were unable to provide reliable results for any 

combination of fibres, whether or not the angularly incident fibre was added. 

Monomer conversion was poorly estimated in both reactions, but estimations for 

reaction R3 were particularly poorer.  

Co-adding models also provided poor predictive capability for both reactions, 

especially for the combinations of normal incident fibres. However, the addition of 

the angularly incident fibre dramatically improved the RMSEP values in both 

reactions. Considering the joint results for both reactions, the combination of the 
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three farther SD distances (1.8, 2.4 and 3.0 mm) to the angular incident fibre 

provided the better predictive capability, presenting RMSEP values of 5.6 and 9.6 %. 

Important to remember that for the reaction R3, the RMSEP values obtained by the 

individual 0.6 mm distant fibre and by the combination of the three normal incident 

fibres were 28.1 and 11.1 %, respectively, and for the reaction R5, 11.9 and 9.0 %, 

respectively. Thus, a considerable improvement was achieved by adding angularly 

incident measurements to the combinations of normal incident fibres. Furthermore, 

the calibration models needed only six latent variables to describe the variability in 

the data. Although better results were achieved by NIR based models, these results 

for visible spectroscopy deserve attention. 
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6.6.3 Impact of scattering correction  

In this chapter, a large quantity of models was developed for the comparison of 

spectroscopy techniques, fibre combinations and modelling strategies. For didactic 

reasons, the results discussed so far were based only on diffuse reflectance spectra 

linearised to absorbance (log 1/R). However, although models based on the 

absorbance spectra provided satisfactory predictive capability, the results might be 

improved by a further pre-processing step focused on light scattering effects.  

Light scattering manifests in the diffuse reflectance spectra as non-linear distortions 

like baseline fluctuations, additive and multiplicative scattering. These uncertain 

non-linear variations are caused mainly by differences in the shape and size of beads 

in the medium. In turbid media like polymerisation reactions, these uncertain non-

linear variations are even more complicated, because the size distribution of droplets 

and polystyrene beads changes along the polymerisation, together with the viscosity 

of the reaction media. Such variation in the spectra deteriorate the predictive 

efficiency of PLS models for estimating monomer conversion along the reaction. 

To evaluate the impact of pre-processing on the predictive capability of the VIS and 

NIR models, each dataset was pre-processed by using the SNV, SNV-Detrending, 

MSC and EMSC techniques, and PLS-based models were developed for all fibre 

combinations discussed in the previous sections. For multi-block data sets, the pre-

processing techniques were applied to each block separately to preserve the inherent 

information captured by each of them, whereas for the co-added data sets, the pre-

processing was applied before the co-adding step. To simplify the discussions, only 

the best results for each pre-processing technique are shown and compared to the one 

obtained by the absorbance spectral dataset. Table 6.5 presents the statistic summary 

of results obtained for NIR based models developed for both data fusion approaches.
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Table 6.5 Impact of pre-processing to the predictive capability of SARDR-NIR PLS-based models. Summary of the best results obtained 
from pre-processing the absorbance spectra by using the SNV, SNV-DT, MSC and EMSC techniques. For the rdCV calibration and 
validation results, the RMSECV and RMSEP values are shown with their confidence interval for every SD distance, together with their 
respective coefficient of determination, R2, and the optimum number of latent variables. For the external validation, the RMSEC and 
RMSEP values are also shown for each SD distance. nb = number of blocks 

 

Multi-block Co-adding 

PLS Repeated Double CV External validation PLS Repeated Double CV External validation 

SD distance nb Pre-
processing 

RMSECV 
% ±CI95% R2 lv RMSEC 

% w/w 
RMSEP 

% w/w SD distance nb Pre-
processing 

RMSECV 
% ±CI95% R2 lv RMSEC 

% w/w 
RMSEP 

% w/w 

      R3 R5        R3 R5 

0.6A-1.8 4 none 6.1 ± 0.03 0.96 13 5.1 5.2 3.8 0.6A-1.2 1 none 5.8 ± 0.03 0.96 9 5.2 5.0 4.7 

0.6A-1.8 4 SNV 5.2 ± 0.03 0.97 11 3.8 9.9 4.2 0.6A-0.6 1 SNV 5.6 ± 0.03 0.96 13 4.3 5.1 5.8 

0.6A-0.6 2 SNV-DT 4.9 ± 0.03 0.97 10 4.1 5.6 4.3 0.6A-1.8 1 SNV-DT 6.3 ± 0.03 0.96 7 5.6 3.9 7.4 

0.6A-1.8 4 MSC 5.5 ± 0.03 0.97 11 4.0 8.6 4.2 0.6A-1.8 1 MSC 6.3 ± 0.03 0.95 7 5.8 6.4 7.8 

0.6A-1.8 4 EMSC 5.9 ± 0.04 0.96 7 4.9 6.4 6.4 0.6 1 EMSC 5.4 ± 0.04 0.90 8 4.8 9.2 5.6 
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The four-block combination resulted in the best predictive capability for all pre-

processing techniques, excepting the SNV-DT, which best result was achieved by the 

two-block combination of angular and normal incident 0.6 mm fibres. The models 

developed on the spectra pre-processed by using both SNV variants provided the best 

performance on the rdCV calibration, obtaining RMSECV values of 5.2 % and 4.9 

%, for the SNV and SNV-DT. However, only the SNV-DT was able to provide good 

estimation for both reactions in the external validation.  

Although the model developed with the unprocessed absorbance spectra obtained the 

poorest performance in the rdCV phase, it worked well in the external validation. 

This model based on absorbance spectra presented errors of 5.2 and 3.8 %, slightly 

better than the ones obtained by the SNV-DT technique, which errors were 5.6 % 

and 4.3 %. Figure 6.15 presents the RMSECV curves of the best performer models 

built by the different pre-processing techniques.  

 

Figure 6.15 rdCV RMSECV curves for estimating monomer conversion by using the 
(a) multi-block and (b) co-adding approaches on data processed by different pre-
processing techniques.  

 

The scree plot profiles for both approaches present similarities. First, they show that 

the application of pre-processing is usually beneficial compared to using only the 
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absorbance spectra. For the first latent variables, the models based on absorbance 

data resulted in the highest errors, meaning that for the absorbance data, these first 

latent variables are not directly related to the styrene-polystyrene conversion. 

Second, MSC and SNV presented similar results for both approaches, which is 

normally expected to happen42,43. EMSC initially provided the lowest errors, 

however, as the number of latent variables increased, both approaches have shown 

differences. In the multi-block approach, after nine latent variables, the errors 

obtained for the EMSC stabilised at around 6%, whereas the SNV and MSC they 

continued to decrease. In the co-adding approach, the EMSC maintained the lowest 

errors for all latent variables, and the unprocessed spectra reached similar accuracy 

as the SNV and MSC-treated spectra at around 7 latent variables.   

Models based on SNV-DT pre-processed spectra were the simplest ones for both 

multi-block and co-adding approach. In only required 10 and 7 latent variables, 

respectively, to describe the variance in the data. In the multi-block models, although 

SNV-DT needed three extra latent variables than the EMSC, it only required two 

blocks of spectra to achieve superior performance.  

In general, the predictive power and parsimony of the rdCV models were improved 

by pre-processing. A few of these models were able to predict the monomer 

conversion from the external reaction with satisfactory accuracy, obtaining 

RMSECV errors among the better ones. However, most of the pre-processed models 

had difficulties in the external validation, especially when estimating the monomer 

conversion for the reaction R3. Considering that this reaction was performed before 

probe maintenance, as discussed earlier, this may indicate that the pre-processing 

tools were not robust enough to discern or correct for the undesired effects in the 

spectra on the face of two different levels of baseline effects.   
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Although the absorbance spectra did not provide the best results in terms of 

RMSECV, a comprehensive analysis of the results indicate they obtained the most 

consistent performance on all scenarios and combinations, obtaining errors in the 

external validation similar to the rdCV errors. Hence, it provided a simplified model 

with results as accurate as the pre-processing ones.  
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6.7 Conclusions and Outlook 

The goal of this chapter was to evaluate the potential of Visible and NIR spatially 

resolved diffuse reflectance measurements for the in situ monitoring of suspension 

polymerisation reactions. Instead of the usual approach employed in Spatially 

Resolved Spectroscopy (SRS) data, in which the absorption and scattering spectra 

are extracted from multiple measurements by invoking the computationally intensive 

radiative transfer theory, we proposed an empirical approach for manipulating the 

spatially and angular resolved information. Particular interest was placed on studying 

whether introducing new variation in measurement configurations could improve the 

predictive capability of multivariate calibration models. For this, several issues 

regarding the manipulation of the multidimensional data, its pre-processing and 

modelling parameters were investigated here.  

For this purpose, PLS based models were developed on a range of combinations of 

SD distances and angles of incidence. All models were subjected to a robust 

calibration and validation procedure based on the repeated double cross validation. 

Furthermore, the capability of the models to estimate monomer conversion from 

future samples was evaluated and validated by using an external validation data set. 

Selecting the best model complexity I investigated different approaches for selecting 

the optimum model complexity in the scope of the repeated double cross validation. 

Different parsimony levels were studied in the one-standard deviation rule, which 

were compared to the Haaland Thomas procedure. The results indicated that in the 

one-standard deviation rule with a one standard deviation, as proposed by Filzmoser 

et al 36, the choice of the optimum number of latent variables was too conservative, 

leading to underfitting. The results improved by relaxing the parsimony factor to 

0.25 SD. However, by using the zero SD parsimony factor, which is in fact the 

minimum MSE method, the method overfitted the models, and required a large 
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number of latent variables. The Haaland Thomas criterion obtained similar fit in both 

calibration and external validation, selecting an acceptable number of latent 

variables.  

Data fusion approaches I investigated whether the manner in which the SRS data 

are combined might impact the predictive capability and parsimony of the models. 

For this, we compared the performance of the multi-block and the co-adding 

approaches. Although the co-adding approach outperformed the multi-block 

approach in a few cases, in general, multi-block based models provided the best 

accuracy. In terms of parsimony, the co-adding approach provided models needing 

less latent variables.  

Impact of pre-processing The advantage of pre-processing was clear in the rdCV 

results. However, most of the pre-processed models were not able to estimate 

monomer conversion from the external reaction, especially for the reactions 

performed before the major probe maintenance. While their performance was good, 

this may indicate that the pre-processing tools were not robust enough to discern or 

correct for the undesired effects in the spectra, especially considering that the 

calibration and external validation sets may present different levels of baseline 

effects.  

Adding SD distances  

For the NIRS based models, the higher errors obtained by adding information from 

longer source-detector distances in both multi-block and co-adding approaches could 

be a consequence of their low signal-to-noise ratio, since the intensity of collected 

light becomes weaker as the SD distance is increased. Indeed, in Chapter 4 it was 

shown that the farthest fibres provided poor quality near infrared spectra. Another 

contribution factor is the increase in the path length travelled by the photons, which 

increases the number of scattering events. 
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Adding angular information 

When the monomer conversion from external reactions were estimated by the 

models, improved predictive capability was obtained by adding angular incidence 

measurements to the combinations of normal incident fibres, regardless the adopted 

data fusion approach, spectroscopy method and pre-processing technique.  

 

Outlook 

The results show that the Visible and NIR Spatially and Angularly resolved 

spectroscopies are able to provide reliable online estimates of monomer conversion 

from suspension polymerisation reactions. The technique is cost-efficient, non-

invasive and allows in-situ measurements.  

Although this chapter focused on the determination of monomer conversion, the 

techniques studied here have great potential for particle size characterisation. In 

special, due to the its higher tendency for light scattering, Visible spectroscopy has a 

strong potential for providing reliable estimations. Unfortunately this application will 

not be explored in this thesis due to the lack of reliable particle size measurements in 

our experiment. 

In the next chapter, a new probe configuration will be tested in order to evaluate if 

better signal-to-noise ratio could improve model predictive capability. In this probe, 

besides the stronger light source, instead of individual illuminating fibres, two rings 

of fibres at two different distances from the detecting fibre will be used to improve 

signal acquisition. This probe will be tested on the two-component system studied in 

the Chapters 4 and 5. This experiment may suggest possible alterations to be done in 

a next version of the SARDR probe. 
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Chapter 7 

7 Dual-ring diffuse reflectance probe  

 

In this chapter, I wish to investigate an alternative optical geometry, 

simpler in design and smaller in outer diameter, for improving the 

amount of light that is collected by the detector. In this proposed 

design the illumination is carried out by rings of fibres, instead of 

individual illuminating fibres. Based on the results from previous 

chapters, it is envisaged that the consequent increase in the intensity 

of the signal may improve the accuracy of models, especially for NIR. 

Thus, the prototype fibre-optic multi-sensor probe for simultaneous 

measurements of polymer properties is evaluated by using the two-

component polystyrene-water experiment used in Chapters 4 and 5, 

and the results are compared with the ones obtained by the SARDR 

probe.  
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7.1 Introduction  

Process Analytical Technology research is moving towards analytics that allow 

monitoring a process through multiple simultaneous measurements1 collected at 

different sampling locations or by different measuring principles. The rationale 

behind this trend is that by gathering complementary information about a process, we 

can better understand it and, consequently, be better prepared to monitor it2,3.  

In previous chapters, I evaluated whether spectroscopic measurements collected at 

different spatial distances and angles of incidence could be used as a PAT tool for in-

situ monitoring of suspension polymerisation reactions. The results pointed out to 

models with improved predictive capability when incorporating such information on 

modelling. Nevertheless, further development and optimisation of Vis and NIR 

sensors are still required, especially concerning the quality of the measurements. In 

fact, the signal-to-noise ratio offered by the prototype SARDR probe limited the 

accuracy of the predictive models, especially for longer source-detector distances in 

the near-infrared range. The results suggested that a modification in the optical 

geometry of the probe would be required for optimised results. In this chapter, I wish 

to investigate an alternative optical geometry, simpler in design and smaller in outer 

diameter, for improving the amount of light that is collected by the detector. In this 

proposed design the illumination is carried out by rings of fibres, instead of 

individual illuminating fibres. It is envisaged that the consequent increase in the 

intensity of the signal has the potential to improve the accuracy of the models. For 

this purpose, the proposed prototype will be evaluated on the two-component system 

studied in Chapters 4 and 5, for the estimation of composition and size of polymer 

beads. As the probe is still an early prototype, it was not possible to use it on 

polymerisation reactions, owing to incompatibility between the reactions constituents 

and the adhesive used to attach the window to the probe head. 
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7.1.1 Dual-ring diffuse reflectance probe 

The prototype probe used in this chapter was specifically developed for the OPTICO 

FP7 European Project. It was designed and built by Fibre Photonics Ltd., under 

specifications by the Measurements and Analytics Team at University of Strathclyde. 

The probe head is illustrated in Figure 7.1, which also shows the fibre optical 

geometry and sizes. 

 

Figure 7.1 Schematic illustration of the dual-ring diffuse reflectance probe 

 

Similarly to the SARDR probe, the 400 µm core diameter was maintained for all 

fibres. To improve signal-to-noise ratio, the probe geometry consists of a central 

fibre surrounded by two concentric illumination rings in a diameter ratio close to 2:1. 

The inner illumination ring is formed from six fibres bundled together, whereas the 

outer ring uses twelve. Both bundles are separately connected to the light source. The 

fibres are held together and bonded in to a ceramic ferrule. The complete fibre 

assembly is 4 m in length and trifurcates after 3 metres into a signal fibre and two 

separate illumination bundles. The probe head is 8 mm in diameter, which is much 

smaller compared to the 30 mm in diameter SARDR probe head.  
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7.2 Experiments and methods 

The two-component system studied in Chapters 4 and 5 is investigated here. A total 

of 56 sample runs were performed, spanning a mean bead diameter range of 0.400 to 

1.540 mm and a concentration range of 15 to 50%, at 5% intervals (Table 3.1). The 

experimental runs were randomly performed over several different days. Further 

details of the experiment can be found in section 3.1.1 of Chapter 3. 

 

Table 7.1 Mean bead sizes and their span calculated for each diameter range 

Range Diameter range, mm D50, mm 

1 0.300:0.500 0.405 ± - 

2 0.500: 0.630 0.565 ± 0.190 

3 0.630: 0.800 0.699 ± 0.222 

4 0.800: 1.000 0.890 ± 0.201 

5 1.000: 1.250 1.108 ± 0.187 

6 1.250: 1.400 1.314 ± 0.115 

7 1.400: 1.600 1.540 ± 0.264 

 

7.2.1 Spectral acquisition and pre-processing 

Measurements in the near infrared region were obtained by a NIR spectrometer 

(NIRQuest-512, Ocean Optics) whereas spectra in the Visible region were registered 

by a visible range spectrometer (USB-4000, Ocean Optics).  Each of the fibre 

bundles was connected to the port of a specific spectrometer.  
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Vis and NIR spectra were acquired from each one of two illuminating rings. For this 

test phase, the spectrometers were switched manually by removing and inserting the 

probe bundle from the spectrometer port. Reference and background spectra were 

also recorded from each illuminating ring. Further details of the spectral acquisition 

procedure can be found in Chapter 3, section 3.3.1. 

After acquisition, all spectra were subjected to correction, normalisation with the 

integrating sphere spectrum, denoising by wavelet transform {Galvao:2004ie}, 

conversion from reflectance to logarithmic units, and variable scaling.  

 

7.2.2 Model development and validation 

Similarly to the previous chapters, repeated double cross-validation (rdCV)4 was 

employed for PLS regression, in both model building and validation steps. The 

validation in the rdCV approach is performed on test set samples not used in the 

calibration phase, ensuring the estimations are not biased. A total of 100 repetitions 

of the double cross validation were performed, based on which the optimum number 

of latent variables was selected. 
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7.3 Integrating diffuse reflectance spectra from different fibre 

geometries and spectroscopy modes  

As the collecting fibre can detect light from each of the two rings of fibres 

separately, it is possible to obtain four different combinations that make use of 

information acquired from both rings. The probe can be used as a single-sensor 

probe, exclusively collecting either (a) NIR or (b) Vis spectra, or as a multi-sensor 

probe, by collecting both spectroscopy modes, each of them in a separate ring (c,d). 

 

Figure 7.2 Different uses of the dual-ring diffuse reflectance probe. Using the probe 
for acquiring VIS or NIR spectra exclusively (a and b), or by using each ring for 
either NIR or Visible illumination (c and d).  

 

Based on the combinations depicted in Figure 7.2, MB-PLS models were built by 

using the rdCV method for estimating bead concentration and size. The predictive 

capability of these models was compared to the ones obtained from standard PLS 

models developed on each spectroscopy and individual rings, to evaluate the impact 

of integrating different measurement geometries and spectroscopic modes. For all 

models, every spectral dataset was mean centred and divided by their standard 

deviation. Further normalisation was not needed since all blocks have the same 

number of wavelengths and share similar intensities. The results obtained by the 

dual-ring diffuse reflectance probe were also compared to the best models obtained 

by the SARDR probe, as discussed in Chapters 4 and 5. 
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7.3.1 Determination of EPS bead concentration 

Before discussing the fusion of different spectroscopic sensors in the dual-ring 

diffuse reflectance probe, I will first present the results obtained when detecting the 

light from each illuminating ring independently by Vis and NIR spectroscopy. Table 

7.2 summarises the results for the determination of bead concentration. It shows the 

root mean square error of cross validation (RMSECV) and prediction (RMSEP), 

their confidence interval based on the standard errors of prediction, together with 

their coefficient of determination (R2) and the optimum number of latent variables 

chosen by the rdCV method. 

Table 7.2 Summary of results of rdCV PLS regression models for the determination 
of EPS bead concentration in water by using the dual-ring diffuse reflectance probe 
in the Visible and NIR ranges. Mean RMSECV and RMSEP values calculated from 
100 repetitions of the double cross validation are shown, together to their respective 
standard error at 95% confidence interval. 

models 
PLS Repeated Double CV 

RMSECV 
% w/w (± CI95%) 

RMSEP 
% w/w (± CI95%) R2 LV 

Visible     

inner 2.2 ± 0.01 2.2 ± 0.03 0.97 4 

outer 1.9 ± 0.03 1.7 ± 0.05 0.99 8 

Near-infrared     

inner 2.0 ± 0.03 1.8 ± 0.05 0.99 9 

outer 2.0 ± 0.02 1.9 ± 0.03 0.98 7 

Bead concentration range: 15 – 50 % w/w 

 

By considering solely the predictive power of the models, it can be noted that Vis 

and NIR models were not significantly affected by the two different illumination 

regimes, having obtained errors around 2% by weight. The main difference was in 
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the parsimony of the visible models. Despite the slightly smaller errors obtained by 

the outer ring, the model required twice the number of latent variables to describe the 

variance in the data. In fact, by comparing the trajectories in the RMSECV scree plot 

of Figure 7.3 a, where the RMSECV values are plotted against the number of latent 

variables selected for modelling, it can be seen that errors obtained by the outer ring 

between the latent variables three and eight do not follow a steady decrease as would 

be preferable.  

 

Figure 7.3 Performance of the a) Vis and b) NIR sensors on each illumination ring of 
the dual-ring reflectance probe. RMSECV values obtained by the first 25 latent 
variables from rdCV PLS models for estimating bead concentration.  

 

Because the experiment under study in this chapter consists of water and polystyrene 

only, we would expect that no more than two latent variables would be needed to 

explain the variance in the data. However, since the polystyrene beads absorb and 

scatter light, it requires extra latent variables due to the nonlinear effects of multiple 

light scattering. Moreover, as the size and number density of beads - or a 

combination of both - influence differently the concentration of particulate species, 

more latent variables may be needed to account for this complex interplay. As visible 

spectroscopy can be more affected by scattering, and this being a result of the change 

in physical traits, this may explain why the Visible inner ring was more efficient in 
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concentrating on the first latent variables the direct or indirect information on the 

concentration of polystyrene in the suspension. 

Another important reason for requiring extra latent variables may be the influence 

that water absorption has on the models. By inspecting the loadings plot for the first 

four latent variables for both NIR inner and outer rings (Figure 7.4), we can see that 

the main water absorption band around 1450 nm is present in the loading spectra for 

all latent variables.  

 

Figure 7.4 Loading curves for the four first latent variables obtained by NIR models 
developed on the a) inner and b) outer rings. 

 

The first latent is similar for both rings, presenting little influence on both water and 

polystyrene absorption. Please note that although resembling a flat line, they present 

features related to water and polystyrene, but smaller when compared to the further 

latent variables. The outer ring seems to capture more information on the polystyrene 

concentration, which can be observed by the positive loadings for the first latent 

variables around the 1680 nm region, due to the C-H stretching vibrations of 

polystyrene. In the inner ring, the LV 3 captures more information about polystyrene, 

whereas the latent variable 4 has strong negative loadings in the water region.  
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The predictive capability of NIR models was equivalent, although the outer ring 

needed a lesser number of components and provided a slightly smoother RMSECV 

curve (Figure 7.3 b). Since the intensity of light shone through the outer ring is twice 

of that which leaves the inner ring, we would expect measurements from the outer 

ring to have better signal-to-noise ratio, and consequently, to provide better models. 

However, because the outer ring is located at a farther distance to the collecting fibre, 

more scattering and absorption events may take place, influencing the amount of 

light that reaches the detector. These two effects may explain why both rings 

provided similar results in terms of accuracy. 

As shown in Figure 7.2, Vis and NIR spectra collected from both rings can be 

combined together in four different ways. In the Table 7.3, we present the results 

obtained by combining these ring combinations by using the multi-block method. 

When fusing the same spectroscopic data on both rings, the co-adding approach was 

also used and the results were compared to the multi-block ones. The results obtained 

by the dual-ring diffuse reflectance probe are compared to the best models developed 

by using the SARDR probe, as discussed in Chapter 5.  These results are highlighted 

in light grey coloured cells.  
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Table 7.3 Summary of results of PLS models based on the MB-PLS and co-adding 
approaches, for the determination of EPS bead concentration in water by using the 
dual reflectance probe in the visible and NIR ranges. The best results obtained by the 
SARDR probe are also presented  (gray cells) for comparison. 

Model  

PLS Repeated Double CV 

Fusion 
approach nb RMSECV 

% w/w ± CI95 
RMSEP 
% w/w ± CI95 R2 LV 

NIR inner/outer multi-block 2 1.6 ± 0.02 1.5 ± 0.04 0.99 9 

NIR inner/outer co-adding 1 1.4 ± 0.01 1.3 ± 0.03 0.99 7 

Vis inner/outer multi-block 2 1.3 ± 0.02 1.2 ± 0.03 0.99 10 

Vis inner/outer co-adding 1 2.0 ± 0.01 2.0 ± 0.03 0.95 5 

NIR-inner / Vis-outer multi-block 2 1.9 ± 0.03 1.7 ± 0.05 0.99 9 

Vis-inner / NIR-outer multi-block 2 1.7 ± 0.02 1.6 ± 0.04 0.99 10 

Vis-0.6/3.0/3.0A multi-block 3 2.3 ± 0.05 2.3 ± 0.05 0.96 10 

0.6A/0.6 NIR multi-block 2 4.0 ± 0.03 4.1 ± 0.08 0.94 6 

Bead concentration range: 15 – 50 % w/w 

 

The first conclusion we can draw from Table 7.3 is that the dual reflectance probe 

presented significantly better predictive capability than the SARDR probe. The 

prediction and calibration errors obtained by the SARDR best models for Vis and 

NIR (including combinations) were significantly higher than the ones obtained by 

any ring combination of the dual reflectance probe.  

The second main finding is that the fusion models built by using the co-adding 

approach were simpler than the ones built by multi-block. The number of latent 

variables needed to describe the data decreased from 9 to 7 in the NIR models, while 

decreasing by half in the Vis based models, as it is also shown in the RMSECV scree 

plots of Figure 7.5.  
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In the NIR fusion model, the co-added model obtained estimations for bead 

concentration with better accuracy and precision, obtaining an average cross 

validation error of 1.4 % + 0.01, while the multi-block model estimates had an 

average error of 1.6 % + 0.02. However, for the fused Vis based model, the co-

adding models had errors much higher than the ones obtained by the multi-block 

approach, and also higher than the models based on individual rings. 

 

Figure 7.5 Performance of the dual-ring reflectance probe being used as a single-
sensor probe for a) Vis and b) NIR. RMSECV values obtained by the first 25 latent 
variables from rdCV MB-PLS and co-adding PLS models for estimating bead 
concentration. Solid lines represent the multi-block RMSECV curves whereas dotted 
lines the co-adding approach. 

 

The results in Figure 7.5 shows that the co-adding approach was better in capturing 

most of the relevant information in the first latent variables than the multi-block 

approach. However, for Vis based models, the use of more latent variables was 

justified for a better accuracy on multi-block models. 

Figure 7.6 presents the RMSECV scree plot obtained by all models developed based 

on the dual-ring fibre. In Figure 7.6 a, we describe models developed when the probe 

has multi-spectroscopies, whilst in Figure 7.6 b, only one spectroscopy is used in 

both rings. For this case, both co-adding and multi-block curves are shown. For 
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comparing the performance of fusion models against the individual ones, the 

RMSECV curves obtained by the individual rings are also shown.  

 

Figure 7.6 Performance of the dual-ring reflectance probe being used as a a) multi-
sensor probe and as a b) single-sensor probe, being compared to individual ring 
models (light dotted line). RMSECV values obtained by the first 25 latent variables 
from rdCV MB-PLS and co-adding PLS models for estimating bead concentration. 
Solid lines represent the multi-block RMSECV curves whereas dotted bold lines the 
co-adding approach. 

 

By analysing Figure 7.6 together with Table 7.3, it can be noted that the integration 

of spectra from both rings improved the performance of the models. The errors in the 

first latent variables decreased considerably, meaning that captured more useful 

information than the single ring models. For the multi-block models, although the 

errors obtained by using the same spectroscopy were lower than using different 

spectroscopies in both rings, the overall trend of the RMSECV was not remarkably 

different, especially in the first latent variables, which concentrates most of the 

useful information. However, for the co-adding models, the first latent variables 

captured more direct or indirect information about the polystyrene concentration.  
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7.3.2 Determination of EPS bead size 

Similarly to the previous section, the results obtained by detecting light by Vis and 

NIR spectroscopy from each ring independently are presented. Table 7.4 summarises 

the results for the determination of mean bead size.  

Table 7.4 Summary of results of PLS regression models for the determination of EPS 
bead size by using the dual reflectance probe in the visible and NIR ranges, and the 
best results from the SARDR probe. 

Model  

PLS Repeated Double CV 

fusion 
approach nb RMSECV 

mm ± CI 95% 
RMSEP 
mm ± CI 95% R2 LV 

Vis inner - 1 0.091 ± 0.001 0.086 ± 0.002 0.97 7 

Vis outer - 1 0.054 ± 0.001 0.053 ± 0.001 0.99 6 

NIR inner - 1 0.056 ± 0.001 0.056 ± 0.001 0.99 7 

NIR outer - 1 0.046 ± 0.001 0.045 ± 0.001 0.99 7 

NIR inner/outer multiblock 2 0.033 ± 0.001 0.030 ± 0.001 0.99 10 

NIR inner/outer co-adding 1 0.042 ± 0.001 0.042 ± 0.001 0.99 7 

Vis inner/outer multiblock 2 0.032 ± 0.001 0.031 ± 0.001 0.99 10 

Vis inner/outer co-adding 1 0.065 ± 0.001 0.064 ± 0.001 0.99 8 

NIR-inner / Vis-outer multiblock 2 0.039 ± 0.001 0.039 ± 0.001 0.99 9 

Vis-inner / NIR-outer multiblock 2 0.025 ± 0.001 0.023 ± 0.001 0.99 11 

Vis-3.0/1.8/0.6 multiblock 3 0.050 ± 0.001 0.048 ± 0.001 0.99 11 

NIR-0.6A/0.6/1.2 multiblock 1 0.081 ± 0.001 0.076 ± 0.002 0.99 10 

 Bead size range: 0.405 to 1.540 mm  

 

Again, the accuracy from the models developed by using the dual-ring reflectance 

probe was superior to the one obtained by the SARDR probe. The outer ring 

provided the best accuracy among the dual reflectance probe based models, obtaining 
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errors around 0.050 mm, and needing 6 and 7 latent variables to describe the data, for 

VIS and NIR, respectively. The performance of the models are better illustrated in 

Figure 7.7, which presents the RMSECV scree plot obtained for all individual ring 

models.  

 

Figure 7.7 Performance of individual sensors on each illumination ring. RMSECV 
values along 25 latent variables obtained by the rdCV models for estimating bead 
size by using individual illuminating rings for (a) visible and (b) near-infrared 
spectroscopy based on the dual reflectance probe. 

 

It is clear from Figure 7.7 a and b that the inner ring provided poorer models, 

especially for the visible spectroscopy. For the NIR models, the first latent variables 

had a much higher error, but equalised the outer ring when the model selected 7 

latent variables. Again, for all models, a relatively high number of latent variables 

were needed to describe the data variance. 

The results improved when spectra collected from both rings are combined, either by 

using the same spectroscopy mode in each ring, or alternating them in both rings. 

Whereas the RMSECV for the best model using one-ring-one-spectroscopy was 

0.046 mm, as obtained by the NIR outer rings, when we combine them, the errors 

dropped to 0.025 mm for the best case, reaching 0.039 mm in the worst case.  



Chapter 7 

 210 

When we compare the performance of multi-block and co-adding one-probe-one-

spectroscopy models, it is clear that the multi-block provided better accuracy for the 

Visible models. For the NIR models, the overall RMSECV curve for the co-adding 

method was smoother, despite its first latent variable accounting for less information 

on mean bead size. In fact, equalising the number of latent variables to the same 

chosen for multi-block, i.e., 10 latent variables, the performance would be similar. 

Overall, the Visible model built by multi-block gave similar results than the co-

adding NIR model. 

 

Figure 7.8 Performance of the dual-ring reflectance probe being used as a single-
sensor probe for a) Vis and b) NIR. RMSECV values obtained by the first 25 latent 
variables from rdCV MB-PLS and co-adding PLS models for estimating mean bead 
size. Solid lines represent the multi-block RMSECV curves whereas dotted lines the 
co-adding approach. 

 

 The RMSECV scree plots including the fusion models exemplifies better the 

improvement, as shown in Figure 7.9 a and b for different spectroscopies in both 

rings, and same spectroscopy in both rings, respectively. 
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Figure 7.9 Performance of the dual-ring reflectance probe being used as a a) multi-
sensor probe and as a b) single-sensor probe, being compared to individual ring 
models (light dotted line). RMSECV values obtained by the first 25 latent variables 
from rdCV MB-PLS and co-adding PLS models for estimating mean bead size. Solid 
lines represent the multi-block RMSECV curves whereas dotted bold lines the co-
adding approach. 

 

Interestingly, all RMSECV curves from fused multi-sensor probe mode crossed each 

other on the ninth latent variable, but followed different trajectories. The 

combination made by NIR in the inner ring and Vis in the outer ring provided the 

lowest errors until the ninth latent variable, but maintained the same error level after 

it, while the errors continued to decrease for other combinations. Although the latent 

variable selection criterion has chosen 9 LV for this particularly combination, 6 

latent variables would suffice. In fact, almost 24 % of the 100 repetitions of the 

double cross validation models selected 6 latent variables.  
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Figure 7.10 Relative frequency of the optimum number of latent variables obtained 
from 100 repetitions of the double cross validation. 

 

When the ring order was inverted, i.e., NIR spectra were collected from the outer 

ring whereas Vis spectra from the inner ring, the errors dropped to 0.025 mm. 

However, for this model, eleven latent variables were required. Figure 7.11 a and b 

presents the measured versus estimated bead size plots for these two combinations.  

 

Figure 7.11 Measured versus estimated bead sizes obtained from fused models 
between (a) outer NIR spectra and inner Visible spectra and (b) inner NIR spectra 
and outer Visible spectra. Grey coloured circles are all the individual measurements, 
whereas the coloured circles are the mean values obtained by 100 models. 
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Although better fit was obtained by the combination of outer NIR and inner Visible 

spectra is clear, it required more latent variables to describe the variance in the data. 

Since the difference in the errors may be not significant, and based on the RMSECV 

curves from Figure 7.9, we conclude that the combination of inner NIR/Outer Visible 

was a preferable choice for bead size determination. 

 

7.3.3 Best results 

For the determination of bead concentration, the co-added NIR spectra obtained from 

inner and outer rings results in the best model, considering the better parsimony and 

low errors. It provided estimations with an average error of 1.4 %, needing only 7 

latent variables to describe the variance contained in the data.  

For mean bead size determination, all models provided excellent accuracy. By 

evaluating their parsimony, and analysing the RMSECV scree plot, the inner 

NIR/Outer Visible was the preferable combination. However, by using the probe as a 

single-sensor Vis probe, comparable results were also obtained. Due to fast 

measurements, the probe can be used to acquire NIR and Visible spectra in both 

rings for optimum results on both bead size and concentration. 
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7.4 Conclusions and Outlook 

The goal of this chapter was to evaluate whether improving light throughput would 

enhance the accuracy of multivariate calibration models based on Vis and NIR 

spectroscopy. For this, an alternative optical probe design was presented for the 

estimation of polymer properties. PLS based models were developed on the spectra 

collected from the light shone through each of the illuminating rings, first 

independently, and later, fused as a single-sensor or multi-sensor probe.  

When compared to the SARDR probe, the results obtained in this chapter show that 

the predictive capability of models can be largely improved by enhancing the quality 

of the measurements. The findings here confirm that the poor signal-to-noise ratio of 

the NIR SARDR measurements compromised their predictive capability, limiting 

their potential on estimating bead concentration, a property for which NIR is 

normally a par excellence choice. When stronger light throughput is available, which 

is the case of the multi-fibre rings of the dual-ring reflectance probe, the NIR 

measurements resulted in models with excellent predictive power, surpassing the 

Visible models.  Overall, the performance of the models was influenced by different 

combinations of sensors and rings used, as well as by the data fusion approach, 

especially concerned to the parsimony. 

 

Combinations of rings/sensors Both single-sensor or multi-sensor use of the dual-

ring diffuse reflectance probe provided reliable estimates of bead size and 

concentration. The accuracy of the models increases by combining information from 

both illumination ring and or both sensors. 
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Data fusion approaches Data fusion by using the co-adding approach outperformed 

the multi-block approach only in the NIR models. For Visible models, the multi-

block provided improved results. In terms of parsimony, the co-adding approach 

provided models needing less latent variables for both Visible and NIR models. 

As the probe is still in early days of development, it was not possible to use it on 

polymerisation reactions, owing to incompatibility between the reactions constituents 

and the adhesive used to attach the window to the probe head. However, since the 

models developed by using SARDR measurements were up scaled very well from 

the simple two-component system to the complex and heterogeneous full 

polymerisation reactions, it is expected that the dual-ring reflectance probe would 

perform even better on the polymerisation system. 
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Chapter 8 

8 Conclusions and Future Work  

This thesis proposed for the first time the use of spatially and angularly resolved 

diffuse reflectance spectroscopy as a PAT tool for in-situ monitoring of suspension 

polymerisation reactions. For this, multivariate calibration and data fusion modelling 

strategies were also proposed for optimum extraction, interpretation, visualisation, 

fusing and modelling of such multi-dimensional spectroscopic information 

The proposed SARDR probe, measurement system and modelling strategies were 

experimentally evaluated by using a two-component system composed of 

polystyrene beads suspended in water at varying concentrations and mean bead sizes 

(Chapter 4 and 5), and by full batch styrene suspension polymerisation reactions 

(Chapter 6). In Chapter 7, a prototype multimode probe based on a dual ring 

geometry was also proposed and evaluated on the two-component system, and its 

performance compared to the one obtained by the SARDR probe. 

Throughout this thesis, by using these two experimental systems, I aimed to 

investigate to what extent the predictive capability of multivariate calibration models 

is affected by different wavelength regions, source-to-detector distances, angles of 

incidence, rings of fibres, and probe geometries. But mainly, I was interested in 

whether combining such complementary information could improve the estimation 

of chemical and physical properties from polymer products. 
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8.1 Individual measurements and their integration  

The benefits of integrating complementary spectroscopic information were clearly 

demonstrated. Compared to the best predictive models developed based on 

individual measurements, data fusion models have shown improved predictive 

capability, either by integrating different (i) source-detectors distances; (ii) angular 

incidences; (iii) spectroscopic regions; or (iv) rings of fibres. 

i) Source-detector separations 

Source-detector separation largely influences the quality and amount of information 

captured by diffuse reflectance measurements, especially in the NIR wavelength 

range. Although longer SD distances tend to capture richer information coming from 

deeper layers in the sample, the best NIR models were obtained by using shorter SD 

distances. While these models may have been aided by any inherent information 

contained in such shorter pathlength, the main reason for their improved performance 

may reside in the quality of the measurements. Although 400 µm fibres were 

employed in the SARDR probe, NIR light throughput from farther illuminating 

fibres was not strong enough to reach the detecting fibre with sufficient signal-to-

noise ratio, affecting negatively the sensitivities of the acquired spectra readings, as 

demonstrated in Chapter 4. This finding is also corroborated by experiments from 

Chapter 7, where considerably lower errors of prediction were obtained by using 

stronger illumination.   

It is important to remember from the experimental description in Chapter 3, that the 

integrating time needed to record a SARDR NIR spectrum was 80 to 100 times 

higher than the one for a visible spectrum. Consequently, the NIR signal obtained 

before normalisation was very noisy. The background spectrum acquired by using 

the integrating sphere was even poorer, which contributed to the low quality of the 

reflectance signals obtained after normalisation. Hence, in the visible range the 
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impact of SD distance was much weaker, although longer SD separations tended to 

give simpler models and lower prediction errors.  

Overall, the predictive capability of Vis and NIR models was improved upon fusing 

spectra from more than one normal incident fibre. The main effect was achieved by 

combining spectra from two or three SD distances, with Visible spectroscopy being 

the one that benefited the most. By fusing the spectra from three fibres (SDD = 0.6, 

1.8 and 3.0 mm), errors dropped for both mean bead size and concentration 

determination. For NIR, bead size estimation was improved by using the two closest 

fibres (SDD = 0.6 and 1.2 mm), but no improvement was obtained for bead 

concentration. When monomer conversion was estimated along full suspension 

polymerisation reactions, Visible calibration models benefited by fusing information 

from different SD distances, although they were not able to successfully estimate 

monomer conversion from external reactions. Unlike Visible, NIR fused models 

were able to provide improved estimations of conversion from external reactions, 

although not presenting advantages in the rdCV calibration and prediction phases, 

when compared to the individual SD distance.  

ii) Individual angles of incidence 

Angularly incident fibres, when modelled individually, did not surpass the predictive 

capability of normal incident fibres. Relative to their respective SD separation, the 

results follow the ones obtained by using normal incident fibres, with NIR 

performing better at shorter SD distances (0.6 mm), whereas Vis at longer distances 

(SDD=4.2 mm). In this case, the fibre with the incidence 30° to the normal provided 

the best results for both Visible and NIR.  

The inclusion of the 30° angularly incident fibre to the combinations of normal 

incident ones largely improved the predictive capability for most of the models in 

both two-component system and polymerisation reactions, regardless the adopted 
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data fusion approach, spectroscopy method and pre-processing technique. The 

inclusion of the 45° angularly incident fibre did not bring any improvements, 

especially due to its wider SD distance (4.2mm) for the NIR. 

iii) Spectroscopic regions 

Predictive models based on Visible spectra were better when the only factor 

changing was the proportion of beads to water. For most of the SD distances, models 

based on visible spectra were able to yield estimates with considerably lower errors, 

tighter residual distributions, and a lower number of latent variables to describe the 

variability in the data. However, when such models were developed and evaluated in 

a highly heterogeneous system containing, with more chemical and physical 

variations coming into play, NIR models were able to better capture information 

from such variations related to monomer conversion.  

In the dual reflectance probe, which was only evaluated in the two-component 

system, NIR and Visible models had more comparable performance, with the Visible 

ones providing similar or slightly better predictive capability than NIR models. 

iv) Rings of fibres (dual-reflectance probe) 

Both single-sensor and multi-sensor use of the dual-ring diffuse reflectance probe 

provides reliable estimates of bead size and concentration. The accuracy of the 

models increases by combining information from illumination rings or spectroscopic 

modes. 

When modelled independently, Visible spectra acquired by using the outer ring 

yielded better estimations than the inner ring. For NIR, both rings obtained similar 

results. 
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8.2 Data fusion approaches  

The ways in which SRS data can be combined were investigated in their impact on 

the predictive capability and parsimony of the models. For this, the performance of 

the multi-block and the co-adding approaches were compared in Chapters 6 and 7. 

Although the co-adding approach outperformed the multi-block approach in a few 

cases, in general, multi-block based models provided better accuracy. In terms of 

parsimony, however, the co-adding models required less latent variables.  

The multi-block approach was employed here instead of the data augmentation 

approach since it allows a better model interpretation. However, in cases where the 

only purpose is predictive modelling, data augmentation can be used as a simpler 

alternative since it gives similar results than the multi-block approach. 

 

8.3 Selecting the best model complexity  

An investigation was performed to evaluate the different approaches for selecting the 

optimum model complexity in the scope of the repeated double cross validation. 

Different parsimony levels were studied in the one-standard deviation rule, which 

were compared to the Haaland Thomas procedure. It was found that in the one-

standard deviation rule, as proposed by Filzmoser et al, the choice of the optimum 

number of latent variables was too conservative, leading to underfitting. The results 

were improved by relaxing the parsimony factor to 0.25 SD, but required careful 

choice, since lowering it too much may cause overfitting and a selection of a higher 

number of latent variables. In fact, this is the case when using the minimum MSE. 

The Haaland Thomas criterion obtained similar fit in both calibration and external 

validations, selecting an acceptable number of latent variables.  
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8.4 Impact of empirical scatter correction 

The advantage of pre-processing was clear in the rdCV results. However, most of the 

pre-processed models were not able to estimate monomer conversion from the 

external reaction, especially for the reactions performed before the major probe 

maintenance. While their performance was good, this may indicate that the pre-

processing tools were not robust enough to discern or correct for the undesired 

effects in the spectra in the presence of different levels of baseline effects. 

8.5 Recommendations for Future Work 

In view of the conclusion that the signal-to-noise ratio of NIR measurements was a 

limiting factor of the predictive capability of the NIR models, further research could 

be done in the following aspects: 

• Optimisation of the probe geometry: as it was demonstrated that the 

addition of an angularly incident fibre can improve the predictive power of 

PLS models, a new probe geometry could be developed by adding several 

angularly incident fibres at the same SD distance, as well as normal incident 

fibres, increasing the intensity of light that reaches a central collecting fibre. 

The fibres could be placed in a cross geometry, allowing four illuminating 

fibres for each SD distance, as the example presented in Figure 8.1. 
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Figure 8.1 Schematic illustration of a potential geometry for the optical fibre bundle. 

 

• Optimisation of the optimum integrating time selection: In this thesis, 

integrating times for spectral collection were defined at the beginning of the 

experiment. As the spectral intensities change considerably throughout the 

reaction, the selected integrating time can be too low or too high at certain 

samples, decreasing the signal-to-noise ratio or causing saturation. In the 

present experiment, the instances of saturation were manually corrected by 

repeating the measurement at a lower integrating time. An automatic 

procedure for updating the integrating time is important to obtain the best 

possible measurement during the whole reaction. 

 

Bead size monitoring. Considering the good results obtained in the two-component 

system for the determination of mean bead size, there is a large potential for 

monitoring mean bead size in suspension polymerisation reactions.  

How general is the approach? The experiments for this thesis were carried out at a 

laboratory scale. Further investigation on the scale-up for spectroscopic models 

could be performed to assess their performance in a pilot plant. 
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The proposed technique can be extended and applied to other polymerisation 

reactions. For example, it would be interesting to see how the spectroscopic system 

and related modelling strategies will work in the nano scale, which is the size scale 

of the particles produced by emulsion polymerisation reactions. Applications can be 

developed for other industries, as an example of the food and pharmaceutical 

particulate systems.  

Extraction of absorption and scattering coefficients. As the efficacy of the scatter 

correction methods was limited in the results obtained in this thesis, it would be 

interesting to evaluate how models based on first principles would cope with the 

polymerisation spectral data. The extraction of absorption and scattering coefficients, 

and their use for predictive modelling of monomer conversion and mean bead size, 

respectively, would be an important addition to the research. 
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Appendix 

 

Table A1 Prediction performance of MB-PLS models for determination of mean EPS 
bead diameter from fused NIR-SARDR spectra collected at different normal incident 
source-detector distances and from a 0.6 mm angularly incident fibre. RMSECV and 
RMSEP were obtained from rdCV models. 

 

 

 

 

 

 

 

 

 PLS Repeated Double CV 

SD Distance 
mm 

nb** RMSECV 
% w/w CI95% 

RMSEP 
% w/w CI95% 

R2 LV 

0.6-30° fused to 0.6 2 0.091 ±0.001 0.100 ±0.003 0.99 8 

and 1.2 3 0.081 ±0.001 0.076 ±0.002 0.99 10 

and 1.8 4 0.092 ±0.001 0.088 ±0.003 0.99 13 

and 2.4 5 0.092 ±0.001 0.091 ±0.002 0.99 11 

and 3.0 6 0.105 ±0.001 0.106 ±0.003 0.98 9 

Bead concentration range: 15 – 50 % w/w 
*SD distance = 0.6 mm at 30° to the normal 
**nb= number of blocks 
 
 
 
 
 
dfd 

When the closer angularly incident fibre (0.6 mm) 

was joined to the normal incident fibre 

combinations, the errors dropped for all of them, 

especially the shorter SD distances. This becomes 

even clearer when the information from Table 4.1. 

Table 4.1 and Error! Reference source not 

found. is compared in the Figure 5.4, which better 

illustrates the impact of the angularly incident 

fibre to the prediction errors. In the diagram, the 

blue circles represent the mean RMSEPs obtained 

by MB-PLS models developed with the normal 

incident fibre combinations, starting from the 
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Table A2 Prediction performance of MB-PLS models for determination of mean 
bead size from fused Visible-SARDR spectra collected at different normal incident 
source-detector distances and from a 4.2 mm 30° angularly incident fibre. RMSECV 
and RMSEP were obtained from rdCV models. 

PLS Repeated Double CV 

SD Distance 
mm 

nb 
 

RMSECV 
% w/w ± CI95% 

RMSEP 
% w/w ± CI95% 

R2 LV 

3.0 1 0.077 ±0.001 0.076 ±0.002 0.97 4 

4.2 30° 1 0.151 ±0.001 0.155 ±0.003 0.96 7 

4.2 30° / 3.0 2 0.077 ±0.001 0.076 ±0.002 0.98 7 

4.2 30° / 3.0 / 2.4 3 0.071 ±0.001 0.070 ±0.002 0.99 8 

4.2 30° / 3.0 / 2.4 / 1.8 4 0.077 ±0.001 0.075 ±0.002 0.99 10 

4.2 30° / 3.0 / 2.4 / 1.8 / 1.2 5 0.087 ±0.001 0.084 ±0.003 0.99 13 

4.2 30° / 3.0 / 2.4 / 1.8 / 1.2 / 0.6 6 0.069 ±0.001 0.063 ±0.001 0.99 15 

4.2 30° / 3.0 / 1.8 / 0.6 4 0.063 ±0.001 0.061 ±0.001 0.99 11 

4.2 30° / 3.0 / 0.6 3 0.057 ±0.001 0.057 ±0.001 0.99 9 

Mean bead diameter range: 0.405 to 1.540 mm 
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