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ABSTRACT 

 

The more-electric aircraft (MEA) concept is widely viewed as the next evolutionary step 

towards enabling the industry goal of developing optimised, fuel efficient aircraft. MEA 

have an increased dependency on electrical energy for distribution to secondary systems and, 

in order to service this increased dependence, the electrical power systems (EPS) are more 

complex with increased voltage distribution levels, power conversion stages and safety 

critical components compared with their conventional counterparts. These complexities will 

only increase in future platforms as they further embrace the MEA concept - the migration to 

increasingly novel, critical and complex EPS will incur several development and integration 

challenges.  

This thesis considers the fundamental challenge of maintaining high reliability standards 

within future aircraft EPS through the development of accurate and discriminative real-time 

protection systems which will react during fault conditions. Specifically, the thesis 

researches novel methods that improve real-time aircraft EPS protection and health 

management systems by 1) accurately diagnosing degraded faults before their progression to 

critical failure and 2) diagnosing faults that are difficult to detect using only conventional 

protection methods – in particular, series arc faults are considered.  

Within future aircraft EPS, the volume of operational data is expected to significantly 

increase beyond that of the conventional systems; consequently, the thesis focuses on the use 

of data-driven, machine learning based methods, to enable these extended functionalities of 

the EPS protection and health management systems. The types of machine learning 

modelling techniques that were chosen are explained and justified. Conventional protection 

methods are described, including a discussion on the difficulties in using them to detect both 

degraded fault modes and arcing conditions.  The necessity to detect these types of faults in 

an accurate and timely manner is also discussed. 

One of the main contributions of the thesis is the proposal of the EPSmart method that can 

autonomously diagnose and isolate a multitude of degraded faults within an aircraft 

representative EPS. These degraded faults include intermittent and incipient conditions, 

which, in comparison to overcurrent faults, often lack the energy to be detected by 

conventional means. Early, and accurate, detection of these conditions will improve overall 

system health management and reliability and ensure safe operation of the aircraft.  

Further contribution is the design of the IntelArc method that can detect series arc faults 

within direct current supplied systems. Accurate detection of series arc faults is extremely 
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challenging as, despite their presence being a serious fire hazard, they result in a decrease of 

load current. Although methods do exist for diagnosis of series arcing, there remain 

challenges with regards to accurate detection across different system configurations and 

operating conditions. The thesis shows the potential for IntelArc to provide accurate 

detection across a variety of configurations and operating conditions. 

While the thesis only describes the initial development of these novel methods, the 

significant conclusions are that application testing has shown the potential for them to 

enhance real-time network protection, fault tolerance and health management of aircraft EPS 

through detection of degraded fault and arcing conditions. 
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1.  INTRODUCTION 
 

 

 

ince the notion of utilising machines to fly was first realised, designers and engineers 

have continually strived to advance and improve the air vehicles, or aircraft, that enable 

this capability.  The 20th century saw significant development and evolution of aircraft, from 

pioneers the Wright brothers developing the first successful heavier than air machine in 

1903, through to the inception of the jet engine during World War II, and the subsequent 

dawn of the jet age and rise in commercial aviation in the 1950’s. The latter part of the 

century saw a shift of focus, from increasing the speed and distance of flight, towards an 

evolution of aircraft design, manufacturing techniques and avionics.  

Economic and social incentives, coupled with enabling technology, have been the main 

drivers for the mass changes that have occurred within aircraft since the jet age. Such factors 

have culminated in modern aircraft, most notably Airbus’ 380 (A380) and Boeing’s 787 

Dreamliner (B787), being able to carry up to 850 passengers with flight ranges of 15,700 km 

and wingspans of 80m. During 2012, civilian aircraft transported an estimated 2.9 billion 

passengers worldwide [1].   

Evidence of the next progression in development can be found when considering the 

reformed secondary power system architectures of Airbus’ and Boeings’ flagship aircraft. 

The conventional form of providing secondary power through combinations of pneumatic, 

hydraulic and electrical energy has been converted in the A380 and B787 to a system that is 

S 
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more dependent on utilising electrical energy for distribution to aircraft subsystems. This 

alternative method of power distribution means such aircraft can be termed a more-electric 

aircraft (MEA) [2, 3, 4]. 

Figure 1-1 illustrates the electrical generator power ratings of various aircraft along with 

their associated maximum take-off weights (ToW). The A380 and, in particular, the B787 

have a greater total generating capacity than their predecessors; with consideration to ToW, 

it could be surmised that the A380 is partially more-electric whereas the B787 has made 

significant advancements. Nevertheless, the migration from constant frequency (CF) to 

variable frequency (VF) systems, as well as higher operating voltages, has meant that both 

aircraft have gained more-electric status. The A380 and B787 are revolutionary in that they 

are the first civil MEA to enter service and, in so doing, confirmed that the future for aircraft 

is electrical. 

 

Figure 1-1: Electrical Generator rating and Maximum ToW of various commercial aircraft  

The MEA principle is not a new idea – indeed, looking as far back as World War II, 

military aircraft used electrical power for functions that, according to conventional wisdom, 

would be powered by other means [5]. Despite this precedent, the lack of electrical power 

generation capabilities and the volume requirements of the power conditioning equipment 

meant that efforts were focused on providing secondary power on civil aircraft with a 

combination of sources. Up to the late 1970’s, electrical power was restricted to avionics and 

utility functions, with hydraulics used for most actuation functions and pneumatics for air 

conditioning/pressurisation and ice protection.  

However, increasing pressure on airline economics due to rising fuel prices and increased 

competition through low cost carriers, incentivised manufacturers to further optimise the 

operational efficiency of aircraft. The conventional secondary systems posed a number of 

challenges with respect to optimisation, mainly due to the complexities and 
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interdependencies that existed within the hybrid networks. These issues, coupled with 

technological advancements in power electronics (PE), fault tolerant electrical machines and 

electrically driven primary flight control actuator systems [6, 7] have enabled the MEA 

concept to begin to be realised within the B787 and A380. 

There are various reasons why MEA are desirable, including; improved fuel consumption 

and efficiency; elimination/reduction of inefficient and costly pneumatic and hydraulic 

systems [8]; improved reliability [9]; and an increased potential for global optimisation of 

the secondary power system. The main, high-level objectives of aircraft system design are to 

reduce overall weight, reduce operational cost and increase reliability - the MEA option is 

widely viewed as the most viable and attractive option for meeting such objectives.  

A number of research projects dedicated to addressing the challenge of meeting these 

objectives have been established in both Europe and the United States, including; 

Northrop/Grumman’s MADMEL project [10], the Power Optimised Aircraft (POA) 

programme [11] and the Totally Integrated More Electric Systems (TIMES) programme 

[12]. POA confirmed the feasibility of MEA and showed more focus had to be placed on 

management of electrical loads and enabling technologies. The TIMES programme 

integrated the outputs of various standalone generation, actuation and load enabling 

technology programmes to formulate their collective impact at a system level. The objective 

of MADMEL was to design and demonstrate an advanced electrical generation and 

distribution system for MEA; the project developed a ground demonstrator that highlighted a 

particular architecture that provides fail-op fault tolerance for mission critical loads.  

The perceived benefits of the MEA lead to the logical conclusion that eventually the all-

electric aircraft (AEA) will be implemented i.e. secondary distribution networks that are 

fully composed of electrical systems [13]. While this eventuality is realistic, the relatively 

static nature of the aerospace industry dictates that such advancements, at least within civil 

aircraft, would not be likely for at least another three generations [14]. The increasing trend 

of unmanned aerial vehicles (UAV) for military applications, and the less stringent safety 

standards they entail, has facilitated deeper opportunities for the AEA concept to be 

developed, implemented and tested [43]. This aids the acceleration of the technologies and 

architectures that will eventually be implemented within such concepts. 

1.1 More Electric Aircraft Development and Integration Challenges 

Migrating to increasingly novel, complex and critical EPS architectures will incur several 

development and integration challenges. This thesis considers two fundamental research 

challenges pertinent to the MEA: 
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1. Maintaining reliability standards in EPS with increased complexity and diversity of 

fault modes. 

2. Fault protection in higher voltage, DC systems. 

The MEA/AEA future poses significant challenges in terms of developing electrical systems 

that fulfil the unique functions required by aircraft. Reliability is at the forefront of system 

development, and it is essential that components, both individually and collectively, perform 

with minimal probability of failure. Aircraft reliability standards [15] dictate that safety 

critical systems on-board civil aircraft have a probability of failure in the order of 1 × 10−9 

per flight hour, equating to a mean time between failure (MTBF) for an aircraft fleet of 1 

billion flight hours. 

The MEA has led to a greater dependence on electrical distribution for the provision of 

power to such safety critical systems. Accordingly, the complexity of electrical power 

systems (EPS) has increased, with a diversity of power conversion stages and more 

demanding loads now present [16]. As future aircraft will further utilise EPS to meet 

functionality, this complexity and dependence will continue to increase. A key challenge 

associated with the increased dependency on electrical energy in aircraft is how the EPS 

health management system (HMS), which monitors and responds to undesirable network 

conditions, can be enhanced to enable fault tolerance [17] within more diverse and 

demanding systems. Greater EPS complexity will not only increase the number of failure 

modes which have to be managed but also introduce new faults which were not readily 

considered within conventional EPS. Also, the manner in which HMS manage, process and 

interpret the increased volumes of system data1 is imperative for the real-time detection of 

system faults and trends, implementing control system reconfigurations and, generally, 

providing optimally reliable and secure electrical systems [18]. This motivates research for 

challenge 1. 

In considering the second challenge, EPS protection and control is a critical aspect of 

HMS. The MEA evolution has led to growing research in the protection domain, particularly 

in the areas of direct current (DC) protection and solid-state power controllers (SSPC). DC 

protection is inherently more difficult to achieve than alternating current (AC) protection, as 

the lack of a natural voltage or current zero crossing affects circuit breaker (CB) operation 

during fault conditions [35]. SSPC technology is seen as the preferred option for the 

replacement of electromechanical circuit breakers (CB), which offer poor performance at 

higher levels of DC voltage [19]. 

                                                      
1 The B787 transmits 28 times more data than the B777 and it is estimated there will be a 14,000% 

increase in the total amount of data being transmitted from global fleets by 2030 [18]. 
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The issue of DC arc fault protection has also become prevalent in the aerospace industry 

with the migration to higher magnitude DC voltages and the fact that traditional overcurrent 

protection practices do not detect such anomalies [36]. Electrical arcing is a product of the 

breakdown of wire insulation - breakdown can occur with exposure to moisture, vibration 

and chafing against other wires/hard surfaces or simply through the ageing process where 

wires become brittle and crack. Damaged wiring is extremely difficult to detect, and the 

resulting arcs and electromagnetic emissions pose a major concern to aircraft safety. Two 

separate fatal accidents – Swissair 111 near Nova Scotia in 1998 and TWA 800 off Long 

Island in 1996 – attributed faulty wiring as the cause for both aircraft grounding [37].    

Traditional CBs are heat sensitive elements that trip only when a large current passes 

through the circuit long enough to heat the element. The duration of arcing faults may only 

be 1.25 milliseconds (ms), with a series of events lasting 25-30ms, and are invariably too 

fleeting to trip ordinary CBs despite having the ability to cause catastrophic local damage to 

wires - fires have been known to break out with the breaker still intact [38]. Arc Fault Circuit 

Breaker (AFCB) technology has been developed [19]. AFCB operation involves the use of 

sophisticated electronics to sample the current flow through wires at sub-millisecond 

intervals and extract arc fault signatures using both time-domain and frequency domain 

filtering. Despite this technology improving security levels and limiting the damage caused 

by arcing, these devices suffer similar monitoring and control problems as the CB, and can 

only be applied within AC power distribution systems. 

Arc fault detection issues highlight that, with the migration to alternative methods of 

electrical power distribution throughout aircraft which utilise higher operating voltages and 

place greater emphasis on DC systems, there is the requirement to develop advanced 

protection methods that can overcome shortfalls in conventional practices. This motivates 

research on Challenge 2.  

1.2 Intelligent Fault Diagnosis and Isolation for Aircraft EPS  

With these two research challenges in mind, this thesis researches methods that advance EPS 

protection systems and maintain the high overall reliability standards through autonomous 

and accurate identification of various aircraft EPS faults. In particular, the thesis develops 

and evaluates the use of new, intelligent fault diagnostic and isolation (FDI) methods [39] to: 

1) Diagnose multiple degraded fault conditions prior to their progression to critical 

failure – this includes autonomous diagnosis of intermittent and incipient faults, as 

well as distinguishing between faults in the monitored system and sensor failures.  
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2) Diagnose ‘difficult to detect’ series arc faults within DC supplied systems – 

diagnosis methods should be generalised to react to such faults across a range of 

operating conditions.   

Fundamentally, intelligent methods have the ability to perform tasks normally requiring 

human cognition and knowledge. There is a wide variety of relevant intelligent FDI 

applications within the general EPS domain. Typical applications comprise:  

 The condition monitoring, diagnostics and prognostics of transformers [21], 

electrical machines [22] and rotating plant assets [23]. 

 Real-time health monitoring of distribution systems with automated anomaly 

detection and diagnosis using supervisory control and data acquisition (SCADA) 

telemetry data [24, 25].  

With respect to aircraft EPS, intelligent systems have previously been proposed to monitor 

system behaviour and aid both real-time network operation [20, 26] and the initial design 

process [27]. Various stages of aircraft operation have to be considered with the integration 

of intelligent FDI systems, which include: flight operation, maintenance, logistics and fleet 

management. In order to positively impact each stage of operation, there is a variety of top-

level requirements that intelligent FDI based systems have to meet. These requirements are 

outlined as follows: 

 Minimise false alarm rates – this is critical if an FDI method is to be effective. Even 

low false alarm rates will induce an extra burden due to the need to evaluate the 

alarm while also dealing with recovery options. 

 Specific fault identification/location – this is essential for efficient allocation of the 

resources needed to confirm and rectify a fault. 

 Earliest warning of failure – information on the likelihood of impending failure is 

desirable. 

 Minimise information overload – it is essential for FDI methods to eliminate 

frequent fault messages, or large blocks of alternate messages. In this sense, some 

form of prioritizing and filtering is required. An intelligent method will also need to 

distinguish between critical and non-critical faults over both immediate and long-

term time frames. The need to distinguish between hardware faults in the monitoring 

system itself (i.e. sensors) and faults within the base system is another necessity.  

Theoretically, the extension of intelligent FDI to aircraft EPS is based on techniques that 

can automatically isolate the source(s) of system malfunction. Techniques typically collect 

information on system behaviour using measurements, tests and other information sources 
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(e.g. observed symptoms), and then analyse this information to determine if and why system 

anomalies are present. Various methods exist for collating and analysing the information; 

methods are usually classified as either model based [29] or data based [28].  

This thesis concentrates on the data based intelligent FDI methods. More specifically, the 

application of machine learning techniques [30] to the domain of aircraft EPS health 

monitoring is considered. The thesis focuses on intelligent data based methods as they have 

the potential to simplify health management in EPS that produce large amounts of 

operational data. Critically, the thesis attempts to evaluate how intelligent FDI methods 

based on machine learning techniques can enhance the understanding of complex EPS 

dynamics throughout normal and faulted operating conditions to improve health 

management and fault protection. 

1.3 Research Objectives 

With the ever growing complexity and criticality of aircraft EPS, there comes the need to 

consider the development of intelligent FDI methods which will aid system health 

monitoring and real-time protection as well as automatically interpret system status through 

the analysis of data. The objectives of the research described in this thesis were to determine 

if, and how, intelligent data based FDI methods operating within the unique aircraft EPS 

context can:  

1. Manage historical system data to develop protection systems that can accurately 

detect and diagnose both critical and degraded system anomalies to supplement and 

improve the protection of aircraft EPS. The diagnosis of degraded faults has the 

potential to improve system reliability by ensuring corrective remedies are pursued 

prior to the development of critical network failures.   

2. Handle a multitude of both nominal operating and complex system failure modes in 

order to quickly detect anomalies and therefore aid both understanding of network 

conditions and fault management. This includes the implementation of scalable 

intelligent methods that can be updated to handle additional fault modes. 

3. Fill the gap where conventional electrical protection practices fall short in order to 

produce optimally reliable, fault tolerant MEA EPS with highly accurate FDI. 

Specifically, the detection and isolation of intermittent and self-sustained DC arc 

faults are considered. 

Intelligent FDI methods that have the potential to meet these objectives can be based on an 

array of different data based machine learning techniques. These include artificial neural 

networks (ANN) [31], support vector machines (SVM) [32], Bayesian networks (BN) [33] 
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and hidden Markov models (HMM) [34]. The majority of these techniques are classically 

applied for speech, handwriting and gesture recognition [40, 41]. However, further 

theoretical evolution and exposure has seen applications expand to mechanical, electrical and 

process engineering fields [34, 42]. The thesis will consider machine learning techniques that 

would be most suitable to meet the objectives described above.  

The form of data used for the development of novel methods proposed within the thesis 

included both EPS test bed datasets as well as datasets synthesised through model 

simulations. A significant development issue is the extraction of unique fault signatures from 

the data. This feature extraction stage is imperative for accurate fault discrimination, 

particularly when multiple fault modes exist. As such, a further objective of the research is to 

determine optimum features from data for accurate fault diagnosis.  

The ultimate objective of the work was to develop accurate and scalable intelligent EPS 

FDI methods which can assist health management and improve real-time network protection 

through the diagnosis of critical and degraded fault modes as well as faults which are 

difficult to detect using conventional protection practices.  

1.4 Summary of Key Contributions 

A number of contributions are made within the thesis. These are outlined as follows. 

1) Degraded EPS fault conditions, such as intermittent and incipient failures, often lack 

the energy to be detected by conventional protection methods. Detection and 

diagnosis of these faults prior to critical failure is important for maintaining reliable 

operation as well as improving health management and maintenance scheduling. 

This thesis describes the design and development of EPSmart, a novel FDI method 

that provides autonomous diagnosis of multiple degraded system faults, including 

sensor failures, within compact, hybrid AC/DC aircraft EPS. A published journal 

article [44] is an outcome of this contribution. 

 

2) Despite the catastrophic damage series arc faults have the potential to cause, the 

reduction of electrical current during such events means that traditional protection 

methods and overcurrent protection devices generally do not detect their occurrence. 

This thesis describes the design and development of a novel series DC arc FDI 

method, IntelArc, for application to aircraft DC systems.  The thesis demonstrates 

that IntelArc is capable of accurately discriminating between arc fault onset and 

normal network transients. The method is generalised to be implemented in systems 
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where a variety of DC voltage distribution levels, sources and loads are present. An 

accepted journal article [45] is an outcome of this contribution.  

 

3) Resolving discriminative features is fundamental to the design of accurate series arc 

FDI methods that minimise false positive/negative diagnoses. This thesis determines 

discriminative time-frequency domain and time domain features that are used within 

IntelArc to optimise diagnostic accuracy. Features were selected through analysing 

and comparing the distribution of extracted features across different nominal and 

faulted system conditions.  

 

4) The relative lack of historical fault data poses a significant problem throughout the 

development of data-driven FDI methods. This thesis demonstrates feature 

extraction and sensor fusion techniques that enable EPSmart to provide accurate FDI 

of multiple system anomalies when fault data is limited. Explorative analysis of 

multi-dimensional sensor data enabled significant fault features to be maintained for 

system development. This analysis was also used to identify and discard redundant 

features within the data, thus simplifying both method development and application. 

 

5) The thesis establishes the shortcomings of conventional protection methods for 

diagnosis of degraded and series arc fault conditions and outlines the requirement for 

intelligent methods to improve real-time protection and health management systems. 

A comprehensive review of existing intelligent FDI techniques and methods is 

provided in the thesis, with specific focus on their application to diagnosing faults 

within an aircraft system domain.  

 

6) Construction of a DC series arc fault simulation model is described in the thesis. The 

model was utilised for the generation of synthetic data for use in development of the 

series DC arc fault detection system. The model captures the complex characteristics 

of series arcing phenomenon and can be implemented within any DC electrical 

system model. Model accuracy was validated by comparing model outputs with 

previous studies described in the literature. 
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1.5 Thesis Outline 

There are a total of 7 chapters in the thesis. An introduction to the work has been provided in 

this chapter.  

Chapter 2 introduces aircraft EPS architectures, components and technologies which will 

be referred to throughout the thesis. Conventional protection practices during fault 

conditions, including the devices used to isolate faults, are described. A discussion on EPS 

fault formation, and the different types of faults within aircraft EPS, is provided.  The 

difficulties in protecting against a variety of degraded faults and arc faults using only the 

conventional protection methods are established. The chapter emphasises the motivation for 

development of intelligent FDI methods within MEA EPS to detect these types of faults and 

improve overall network protection and health management. 

 Chapter 3 describes intelligent FDI concepts and techniques. The chapter summarises 

model based and data based FDI before going on to discuss machine learning techniques in 

detail. Attributes of machine learning techniques are compared and the reasons for selecting 

certain techniques to meet the research objectives of this thesis are outlined. A review of 

previous aircraft FDI methods proposed within the literature, including systems applied to 

NASAs ADAPT network, is provided. Relevant machine learning based FDI methods 

applied to the general EPS domain are also summarised.  

 Chapter 4 describes arc faults in significant detail. This includes a description of their 

electrical characteristics through a summary of numerous previous studies that have 

attempted to define the complex phenomenon.  A series DC arc fault simulation model that 

was developed using MATLAB’s Simulink and used for generation of synthetic fault data is 

described. This model is validated by comparing its outputs with the previous studies and 

models. A review of existing arc fault detection methods is then provided, including the 

benefits and limitations of each. 

 Chapter 5 details the two novel FDI methods that are the main outcome of the work of this 

thesis. EPSmart is developed for autonomous FDI of a multitude of critical and degraded 

fault modes, while IntelArc is developed for FDI of series DC arc faults. The main aspects, 

and challenges, of developing each method are discussed, including; describing EPS data 

used throughout development; data processing and analysis; feature extraction and selection; 

overcoming a lack of available fault data; sensor fusion; on-line application issues; and 

model training. Alongside the proposition of the two FDI methods, another main 

contribution of Chapter 5 is the determination of optimal time-frequency domain features for 

accurate diagnosis of series DC arc faults. 
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Chapter 6 outlines four separate case studies that were used to test the application and 

accuracy of EPSmart and IntelArc. The first case study describes applying EPSmart for 

autonomous FDI within NASA’s ADAPT network; this includes testing its ability to 

diagnose intermittent and incipient fault modes as well as discriminate between faults in the 

underlying system and sensor faults. The second case study describes application testing of 

IntelArc for FDI of sustained series DC arc fault events while the third case study describes 

testing the ability of IntelArc to diagnose intermittent arcing events. The fourth case study 

experimentally validates IntelArc on a DC testbed. Results of each case study are presented 

and analysed, and recommendations for practical application of the proposed methods are 

provided. 

Finally, Chapter 7 draws together the conclusions, describes possible avenues for future 

work and highlights the contributions of this thesis. 

 

1.6 Publications 

The following publications have been completed during the course of this PhD: 

Journal Articles 

R. Telford, S. Galloway, B. Stephen and I. Elders, ‘Diagnosis of series DC arc faults: A 

machine learning approach’, IEEE Transactions on Industrial Informatics, Advance Online 

Publication, doi: 10.1109/TII.2016.2633335 

 

R. Telford and S. Galloway, ‘Fault classification and diagnostic system for unmanned aerial 

vehicles based on hidden Markov models’, IET Electrical Systems in Transportation, vol. 5, 

no. 3, pp. 103-111, September 2015 

 

Conference Papers 

R. Telford, C. Jones, P. Norman and G. Burt, ‘Analysis tool for initial high level assessment 

of candidate more-electric aircraft architectures’, SAE Technical Paper, September 2016 

 

R. Telford, S. Galloway and G. Burt, ‘Evaluating the reliability and availability of more-

electric aircraft power systems’, in Universities Power Engineering Conference, London, 

UK, Sep. 2012, doi: 10.1109/UPEC.2012.6398542 

 

https://doi.org/10.1109/TII.2016.2633335
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2. AIRCRAFT ELECTRICAL POWER 

SYSTEMS: ARCHITECTURES, 

TECHNOLOGIES & PROTECTION 
 

 

 

he requirement for future aircraft designs to have optimal operational efficiency, and 

the proposed migration to MEA (and eventually AEA) as a means of fulfilling this 

requirement, will inevitably result in more complex, demanding and safety critical EPS. This 

chapter introduces aircraft EPS and familiarises the reader with system designs and the 

elements that compose such systems. 

The chapter begins with a general overview of aircraft secondary power systems, where 

conventional topologies through to present day more-electric distribution topologies are 

discussed. A review is then provided of MEA enabling technological advances in electrical 

generation sources, loads, power conversion, and how these sub-systems combine to form 

advanced EPS distribution architectures.  

The chapter also reviews conventional methods for ensuring fault tolerance within EPS, 

with discussions on the HMS in general as well as the conventional philosophies and devices 

used to protect the network throughout fault conditions. Fault formation and the various 

types of network faults that impact operation are also described and the chapter concludes by 

T 
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elaborating on the difficulties of using conventional methods to detect and isolate particular 

faults. 

2.1 Aircraft Secondary Power System Overview 

The majority of power – or ‘primary power’ - on an aircraft is used in the form of fuel to 

produce the required thrust from the engines to propel the aircraft. ‘Secondary power’ refers 

to all other non-propulsive power systems on board aircraft. Conventionally secondary 

power systems are driven by a combination of different energy sources including hydraulic, 

pneumatic, electrical and mechanical [46]. Secondary power is drawn from the aircraft’s 

main engines2 in two forms:  

1) Bleed air is tapped from one or more points along the engine compressor to provide 

pneumatic power.  

2) Drive Shafts, from the engines high-pressure shaft, drive an accessory gearbox 

where electrical generators and hydraulic pumps are mounted.  

A simplified schematic of a generic twin engine conventional secondary power distribution 

system (SPDS) is shown in Figure 2-1.  This form of distribution, with three separate types 

of power, was standardized in both civil and military aircraft when the increasing speed and 

size of aircraft meant that ‘power’ functions, which previously could be manually operated 

by pilots, had to be automated [48]. In these conventional SPDS, hydraulics is generally used 

for most actuation functions, pneumatics for air conditioning/ pressurisation and electrics for 

avionics and utility functions. 

                                                      
2 When the main engines are non-operational, power can also be supplied by an auxiliary power 

unit (APU), an external ground power unit (GPU) or a ram-air turbine (RAT).  
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Figure 2-1: Simplified Schematic of a conventional Aircraft Secondary Power Distribution System 

 

The hybrid distribution system illustrated in Figure 2-1 shows the main users of secondary 

power throughout the aircraft, which include: 

 Environmental Control Systems 

 Ice & Rain Protection 

 Landing Gear 

 Primary and Secondary Flight Controls 

 Avionics (e.g. navigation and communication systems) 

 Galley loads (e.g. entertainment systems) 

The pneumatic and hydraulic systems within conventional SPDS are summarised in 

Appendix D. The following section describes aircraft EPS to highlight the various features 

unique to the aircraft environment. A summary of the main drivers and circumstances that 

have dictated a shift from conventional to more-electric SPDS is also provided in Section 

2.3.1. 
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2.2 Electrical Distribution System 

There has been significant evolution of electrical distribution systems since the beginning of 

the jet age. Typical systems of the 1940s and 50s’s comprised 28VDC levels distributing 

~12kW of power from two separate engines. The changes since this period have been 

marked, with an overall increase in both voltage distribution levels and power extracted from 

the main engines – as an example, the A380 has four main engine driven generators rated at 

150 kVA each.  

The next electrical system evolution has come in the form of the MEA, where significant 

changes, in terms of both demand and architecture, have been implemented within the EPS. 

This sub-section provides an introduction to aircraft EPS and describes both system elements 

and the main users of electrical power. Building upon this introduction, the various 

motivations and drivers for MEA adoption and the resultant EPS advancements that will 

entail, are outlined. 

2.2.1 Conventional Aircraft EPS 

The design and operation of Aircraft EPS is split into four inter-connected sub-systems [46]: 

 Power Generation  

 Primary power distribution and protection 

 Power conversion and energy storage 

 Secondary power distribution and protection  

A generic EPS architecture in terms of each constituent sub-system is illustrated in Figure 

2-2.  A summary of each sub-system is provided in the following. Refer to Appendix D for a 

detailed example of the Boeing 777 EPS. 
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Figure 2-2: Generic Conventional Aircraft EPS architecture 

2.2.1.1 Power Generation 

Electrical power can be generated in both DC and AC forms. DC generators are typically 

self-excited, where energy is generated using electro-magnets, and supply a regulated 

28VDC output via an electrical commutator. DC generation is only preferable within smaller 

aircraft with minimal power requirements and, as such, was phased out with the introduction 

of larger scale aircraft.  

AC generation is favoured within larger, more power demanding vehicles. AC generators 

are driven from the aircraft’s main engines and provide sine waves of rated voltage and 

constant frequency (CF) [47]. Nominally, AC power is three-phase with phase voltage levels 

of 115VAC (200VAC line-to-line, star connected) at 400Hz. CF voltage is attained using 

compound generators, where variable frequency, variable voltage power is converted into 

regulated CF constant voltage power. Compound generators contain several complex 

conversion stages.  These stages include raw power being generated directly from the 

engine’s variable speed drive using permanent magnet generators (PMG). This raw power is 

then used to provide DC excitation current, from which a frequency regulated AC voltage is 

induced, and used to supply the aircraft systems. Other means of providing CF power 

include integrated drive generators (IDG)[48], where the variable speed engine shaft is 

converted to constant speed using automatic gearboxes. The constant speed shaft then 

directly drives an electrical generator, which outputs CF electrical power. 

The various sources of electrical power are described in Appendix D. 
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2.2.1.2 Primary Power Distribution System 

The primary power distribution system (PPDS) accepts the electrical generation sources as 

input. In civil aircraft, these sources include: the main engine driven generators, alternate 

backup generators in the event of failure, APU and ground power, and the RAT generator in 

emergency situations. These sources supply power to a primary distribution busbar. The 

PPDS manages and controls the input to the primary busbar by using magnetically latched 

power contactors (generator circuit breakers (GCB)) to switch between alternate sources 

either during generator fault conditions, or when paralleling generators throughout normal 

operating periods.  

The PPDS also controls the supply of power to high rated loads (typically defined as > 7 

kVA) which are connected to the primary busbar. Electronic load control units (ELCU) are 

connected between the busbar and loads for undertaking the high current switching. The 

ELCUs also perform protection functions, using current transformers to detect and isolate the 

loads from overcurrents. 

 

2.2.1.3 Power Conversion and Energy Storage 

The PPDS functions not only to supply high power loads, but also to further distribute 

energy to secondary distribution systems. To supply loads throughout the aircraft that 

operate with different power ratings, it is necessary to convert the power distributed by the 

PPDS from one level to another. The PPDS is directly supplied with 115VAC from the main 

generators within the aircraft. Generally, this voltage is converted to different levels with the 

use of converting units. Such operations are generally described as follows: 

 Conversion from 115VAC to 28VDC using transformer rectifier units (TRU)[49]. 

TRU’s convert three phase AC power to DC power. Often, the output voltage is not 

regulated to 28VDC, and voltage may deviate depending on load requirements. 

 Conversion from 115VAC to 26VAC. This AC conversion stage uses auto 

transformers to step-down the voltage.  

Further power conversion functions involve the charging of, and energy extraction from, 

the battery system. The battery acts as an electrical storage medium which is independent of 

the primary generation sources [50]. It provides additional power for both system start-up 

and during emergency conditions while alternative sources are brought online. It also assists 

in damping load transients to enhance power quality during normal switching events. Battery 

chargers maintain the state of charge throughout flight. The chargers are similar to TRU’s, 

where 115VAC is converted to the 28VDC charging voltage.  
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When acting as a source of start-up and/or backup power, conversion of the 28VDC 

battery output back to 115VAC is required. Inverter units undertake this DC-AC conversion 

stage, where a single phase AC voltage is output - in civil applications, this backup AC 

power is used as a source for critical flight instruments. Inverter technology development has 

meant that conversion is now realised with semi-conductors rapidly switching to produce a 

synthesised AC waveform [51]. 

2.2.1.4 Electrical Secondary Power Distribution System 

The electrical SPDS ensures the correct provision of power from the secondary busbars to 

medium and low rated electrical loads. This includes both the switching of power to meet the 

systems functional requirements and the protection of circuits in the event of electrical 

overloads. Relays are used for switching operations in the electrical SPDS where currents do 

not exceed 20A – these operate in a similar manner to the high power contactors in the PPDS 

although are lighter, simpler and less expensive. In low power applications, where load 

current is <<20A, simple switches may be used for switching functions. 

Circuit breakers (CBs) protect the loads from over currents. These are graded to trip 

according to the current carrying capacity of nominal operation within each circuit, and there 

may be as many as 500-600 utilised throughout the aircraft [46]. The CBs operate by 

mechanically opening contacts when an overcurrent is detected, thus ensuring power is 

removed from the circuit. Solid state power controllers (SPPC), which combine the function 

of relays and CBs, are deemed as viable alternatives for the provision of both load switching 

and protection functionality [19]. Higher trip accuracy and the elimination of mechanical 

switching are the main advantages of SSPC over the traditional CB and relay.  

 The various types of electrical loads within conventional EPS are described in detail in 

Appendix D. 

 

2.3 More Electric Aircraft Concepts and Technologies 

The operation and design of conventional aircraft SPDS, which consist of combinations of 

pneumatic, hydraulic and electrical forms of distribution, have been described. The MEA has 

also previously been briefly discussed. This section aims to fully introduce the MEA in terms 

of why the concept has been pursued, how MEA SPDS differ from the conventional systems, 

and what are the main advantages of its adoption. 
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2.3.1 Why the need for Change? 

Transportation as a whole is estimated to be responsible for over 20% of the world’s 𝐶𝑂2 

emissions. The Intergovernmental Panel on Climate Change claims that global aviation 

contributes 2% of total 𝐶𝑂2 discharges caused by human activities [52]. Despite the 

relatively small output caused by aviation, emissions from high altitude are deemed to have a 

particularly damaging effect on the environment. Accordingly, the Advisory Council for 

Aeronautics Research in Europe has set several goals to be achieved by 2020 for air 

transportation [53]. These include: a 50% reduction of 𝐶𝑂2 emissions through decreased fuel 

burn, an 80% reduction in 𝑁20 emissions; a 50% reduction of external noise, and a green 

product life cycle in terms of design, manufacturing, maintenance and disposal [54]. These 

targets have resulted in the aerospace industry facing significant challenges to drastically 

improve aircraft fuel efficiency and emissions [55]. 

In order to address these challenges and meet designated targets, the conventional design 

and operation of aircraft is no longer deemed viable for future generations of aircraft, and 

alternative solutions are required. Although the primary propulsion system of an aircraft 

consumes ~ 40MW power, improving non-propulsive SPDS efficiency, which consumes a 

comparatively less ~ 1.7MW of power3 [56], is still vital to achieving these targets. A 

promising solution to the improvement of aircrafts SPDS efficiency is to remove the need for 

on-engine hydraulic power generation and bleed air off-takes. Hydraulic power systems tend 

to be complex, heavy and maintenance intensive while the use of bleed air increases fuel 

consumption as high-speed air, primarily used for producing thrust from the engines, is 

diverted for environmental control system (ECS) and anti/de-icing functions. 

This significant SPDS redesign would require all power off-takes to be electrical in nature 

– hence the term all electric aircraft. As mentioned in Chapter 1, the AEA concept is not 

new and was previously considered by military aircraft designers in World War II. However, 

until recently, the lack of electrical generation capability and volume of power conditioning 

equipment which is required rendered the concept unfeasible. Since the 1980’s and the 

introduction of a variety of research projects [13, 57, 58] advancements in enabling 

technology have allowed incremental steps towards the AEA goal. As such, the B787 and 

A380 MEA are examples where bleed air off takes and hydraulic generation have been 

reduced, but not entirely eliminated.  

It should be considered at this point that the AEA/MEA notion is not simply organising the 

aircraft in a different manner. The concept aims to implement more energy efficient methods 

                                                      
3 Power consumption figures for aircraft relative to the size of A330 or B777. 
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of converting and distributing power across all non-propulsion subsystems – realising this 

will have a far reaching effect upon overall aircraft performance [59]. 

2.3.2 Benefits of Electrical Power 

Historically there has been a desire to use electrical power as the motive force for all non-

propulsion systems [46]. The disadvantages of hydraulic and bleed air power distribution 

were briefly discussed in the previous section. This section outlines why utilising electrical 

power to a greater extent throughout the aircraft has the potential to improve global aircraft 

efficiency. The high level benefits are apparent when considering the replacement of 

centralised hydraulic networks and bleed air systems with electrically powered systems– the 

advantages of having only one distribution system as opposed to three, each with their own 

redundancy, is clear in terms of simplicity of design, maintenance and optimisation potential. 

Specific advantages of aircraft having greater dependency on electrical energy include [9, 

60] : 

 Electrical wires are lighter than hydraulic pipes. Specific weight gains may not be 

immediately apparent with the introduction of large generators and power 

convertors. However, electrical systems tend to offer more flexibility than hydraulic 

systems for further weight savings. 

 This greater design flexibility of electrical systems allows further, and perhaps 

continual, opportunity to enhance operational performance/system efficiency. 

 Losses in electrical wires are lower than those in hydraulic and pneumatic piping. 

 Switching within electrical systems means they function only when required. 

Hydraulic systems remain energised throughout the entire flight despite the fact that 

larger users of hydraulic power, such as landing gear and secondary flight control, 

only require power for short periods at a time. 

 Electrical systems can be designed to provide the exact quantity of energy to each 

load. This is not the case in hydraulic and pneumatic systems, where 

excess/insufficient power is often supplied to loads. 

 Elimination of inefficient air pre-coolers and hydraulic restrictors will reduce fuel 

burn. 

 Hydraulic fluid leaks are difficult to locate leading to increased aircraft downtime, 

maintenance and ground support. 

 Elimination of high temperature air ducts and flammable hydraulic fluids required in 

traditional aircraft. 
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These factors have culminated in the design of modern SPDS being more electrically based 

and it is anticipated that technological evolution will enable future aircraft generations to 

further embrace this concept. 

2.3.3 MEA SPDS 

The conventional design of SPDS previously described in Section 2.1 will be altered to 

accommodate the greater dependency on electrical distribution. The extent to which SPDS 

are transformed over time is conditional on the maturity of the enabling technology. Figure 

2-3 illustrates a time line of expected advancements within the SPDS. 

 

Figure 2-3: Time line of SPDS advancements [61] 

  

The B787 and A380 are MEA presently in service. The B787 has eliminated the bleed air 

network whilst the A380 has focused on a more de-centralised hydraulic system design 

utilising remote, electrically controlled hydraulic actuators. Figure 2-3 shows that future 

advancements include the complete elimination of both hydraulic and pneumatic systems 

and the development of the more electric and all electric engines. Figure 2-4 demonstrates 

how power demands differ between conventional and more-electric SPDS. The MEA will 

depend on ~ 1MW of electrical power - a five-fold increase in comparison to conventional 

levels. 
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Figure 2-4: Comparison of power demands between conventional and more-electric SPDS 

 

It is the purpose of this section to detail the evolution of electrical system technology 

which has enabled current MEA, spanning generation, conversion and distribution 

architectures. Appendix D provides detailed examples of A380 and B787 EPS to illustrate 

these changes within a system wide context. Novel MEA loads are also discussed in 

Appendix D. 

2.3.3.1 Power Generation 

Significant changes in electrical generation strategies of MEA include an increase in power 

and voltage ratings and the migration from a constant to variable AC frequency output. The 

increased power/voltage ratings are relatively self-explanatory – the higher electrical demand 

within MEA dictates greater power availability from the primary generators. Higher 

generation capability is evident in the B787, which has four main engine driven 250kVA 

generators with 230VAC output – double that of the conventional 115VAC levels, with a 

significantly higher power output.   
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Moving to a variable frequency (VF) generator output is a consequence of the 

inefficiencies of IDG constant speed drives (CSD) (described previously in Section 2.2.1.1). 

The CSD is a gearbox that maintains constant speed of the generator shaft to produce a 

constant 400 Hz frequency output, where engine speeds vary at a 2:1 ratio between 

maximum power and ground idle. The main drawbacks of the CSD are its space and 

intensive maintenance requirements. The rationale behind a move to VF systems was that 

power conversion technological improvements would eradicate the necessity for CSDs.  

VF output from generators is generally in the range 380-760 Hz. The frequency of power 

provided to the primary distribution bus is dependent on the conversion stage between 

generator and busbar. For example, the VF can be converted back to CF using DC link 

methods or cyclo-converter units [46], or even rectified directly to DC for primary 

distribution. Table 2-1 summarises the generation strategies of various aircraft, including the 

B787 and A380.  

Table 2-1: Main electrical power generation of various aircraft [46] 

Generation Type Civil Application Military Application 

IDG/CF B777 2 x 120kVA Eurofighter  

[115VAC / 400Hz] A340 4 x 90kVA   

 B737 4 x 90kVA   

 B747 4 x 120kVA   

 B717 2 x 40kVA   

 B767 2 x 120kVA   

VSCF Cyclo-converter   F-18 C/D 2 x 45kVA 

[115VAC / 400Hz]   F-18 E/F 2 x 65kVA 

VSCF (DC Link) B777 2 x 20kVA   

[115VAC / 400Hz] (backup)    

 MD-90 2 x 75kVA   

VF A380 4 x 150kVA Boeing JSF X-32 2 x 50kVA 

[115VAC /380-760Hz] Horizon 2 x 25kVA   

VF B787 4 x 250kVA   

230VAC     

270VDC   F-22 Raptor 2 x 70kVA 

   F35  

 

The migration to MEA has given significant scope to redesign and optimise the aircraft’s 

engines. The power optimised aircraft (POA) programme was initiated to address and 

integrate technologies for a more efficient aircraft [62]; in doing so, the programme 

demonstrated the feasibility of the more electric engine (MEE). The MEE essentially 

replaces the current hydraulic, pneumatic and lubrication system with electrical systems, 

where the main features include:  
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 An electrical machine mounted on the high pressure shaft functions as both a 

generator and an engine start unit, while the main generator is connected to the low 

pressure shaft.  

 All oil, fuel and hydraulic pumps are driven by electric motors 

 No external gearbox 

A comprehensive overview of the MEE design and features is provided by Hirst et al. [63]. 

2.3.3.2 Power Conversion 

There is a critical requirement for power conversion within MEA EPS. Increased voltage 

distribution levels and VF output from the main generators means that the number of 

conversion stages in MEA is significantly higher.  It is widely accepted [46, 51, 55, 64] that 

conversion technology, particularly in the power electronics domain, has given significant 

impetus to the growth of the MEA. Advances in power electronic conversion systems have 

enabled a more efficient and reliable means of converting capability.  

An example of power conversion importance is illustrated using the MEA EPS distribution 

system in Figure 2-5.  

 

Figure 2-5: Potential Future MEA EPS architecture [55] 

This example is a potential future trend, with power off-takes from each engine shaft and 

load sharing between the high voltage DC primary buses. The three phase active rectifiers 

allow paralleling of generators operating with different frequency and voltage on the DC 
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side. The DC primary bus can drive high power loads either directly or with further power 

conditioning. Inverters convert the DC voltage to AC for distribution and DC/DC converters 

are used to step down the DC voltage. The number of conversion stages in such a topology is 

in marked contrast to the conventional topologies described in Section 2.2.1. This highlights 

that, in order to distribute energy more efficiently throughout the EPS, converters are 

essential components to achieving this.  

In general, the role of converters within MEA is to: 

 Convert higher voltage distribution levels (DC/DC; DC/AC; AC/DC) to 

conventional levels for supply to legacy loads 

 Convert generated AC voltage to higher magnitude 270 VDC for primary power 

distribution  

 Control frequency and voltage supply to accessory AC electrical motor loads using 

DC/AC inverters 

 Convert power to/from battery and energy storage systems 

Despite the significant advances made in power electronic converter technology, further 

refinement is required in: mitigating electromagnetic interference (EMI); improving power 

quality by reducing harmonic distortion; reducing the reliance on passive components; and 

developing fault-tolerant topologies. The addition of heat to the aircraft system as a result of 

their implementation also has knock-on effects to SPDS efficiency through increasing ECS 

requirements. In general, though, the development of converter technology has been vital to 

MEA development. 

2.3.3.3 High Voltage DC Systems 

Higher operating voltages in both AC and DC distribution systems are beneficial in terms of 

reduced cable sizes and reduced electrical losses [65]. The higher levels of voltage allow a 

decrease in current whilst still maintaining the same quantity of power. Lower current 

magnitudes enable smaller cable diameters and a minimisation of 𝐼2𝑅 losses – desirable 

characteristics for the development of energy efficient systems with significant electrical 

power demand. 

In particular, there has been growing interest around the development of high voltage DC 

(HVDC) distribution systems. HVDC power distribution of 270VDC provides a mass and 

volume advantage over three phase AC systems as the number of feeders can be reduced 

from three to one. Also, as discussed in the previous section, the use of DC primary 

distribution allows generators to operate at variable frequency before being converted to DC, 

as well as paralleling and load sharing between generators.  
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US military agencies extensively researched and developed HVDC systems over a number 

of years. The initial deployment of these systems within combat military platforms [66] 

enabled the progression to the civil sector, where the B787 now utilises this form. 

Challenges do still remain with the integration of HVDC architectures. The increased voltage 

levels require greater insulation thickness to avoid the risk of partial discharge. Also, the 

inherent problems involved in protecting DC circuits with no natural current zero crossing 

have already been discussed – this problem is amplified in higher voltage systems. In 

general, there are significant challenges surrounding DC protection systems. These range 

from the development of advanced, less bulky contactor/switching/circuit breaking 

technology to the determination of DC fault characteristics and behaviours. IntelArc, the 

novel method described as part of the work of this thesis addresses the challenge of detecting 

series arc faults in HVDC systems. 

The benefits of HVDC should be viewed from a system wide context. For example, 

reducing the weight of electrical wires does not necessarily result in a global system weight 

reduction when considering the increased insulation required and reliance on power 

converters. Managing the various design trade-offs in terms of both the integrated system 

and the individual components is vital to realising the benefits of HVDC implementation. 

What is certain is that, as the amount of electrical power to be distributed is of the order of 

MW, the use of HVDC will increase the potential for system optimisation.  

 

2.3.3.5 Distributed System Architecture 

In conventional aircraft designs the EPS has a centralised architecture of the form illustrated 

in Figure 2-6 (a) [8]. Primary and secondary distribution units are situated in a main 

electrical/electronics (E/E) bay which is located at the front of the aircraft. Cables transfer 

power from the main generators to the E/E bay upon which all load feeders have to leave 

their respective distribution units to service the various loads throughout the aircraft.  
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Figure 2-6: Centralised v Distributed EPS Networks [8] 

Also, all control wires for the contactors and switches have to be joined together in the 

forward bay. This conventional design is sub-optimal in terms of space and weight as heavy 

cables have to be routed over the large distances between distribution centres and load 

terminals.  

In contrast, MEA support a more physically distributed form of generation, where the 

aircraft is divided into different zones according to location (Figure 2-6 (b)). This distributed 

form features two (E/E) bays– one in the front and one in the aft. A limited number of higher 

power loads are supplied directly from the E/E bays with the majority of power being further 

distributed to various remote power distribution units (RPDU) throughout the aircraft. The 

RPDUs contain SSPCs instead of thermal CBs/relays and can be remotely controlled, 

allowing them to be strategically located to minimise aircraft wiring, weight and cost. Other 

advantages include higher redundancy in primary power distribution paths and decreased 

voltage drops, and hence lower losses, across the shorter feeders [7]. 

2.4 Fault Tolerant EPS and Protection Methods 

This section reviews current practices for protecting and managing aircraft EPS during fault 

conditions. This includes a discussion on the limitation of conventional protection methods 

for diagnosing certain types of fault and emphasises the motivation for the work undertaken 

in this thesis. 

The safety critical nature of aircraft requires the design, operation and reliability of all sub-

systems to conform to strict certification standards and directives [33]. As such, a hierarchy 

(a) (b) 
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of sub-system criticality is established in order to determine optimal network designs which 

maximise reliability through increased redundancy of supply and components, whilst also 

considering the associated weight impact of redundancy measures.  

In the event of system failures, a redundant system design has to be complemented with 

accurate and robust real-time health monitoring, protection and control systems so as to 

maintain highly reliable, fault tolerant EPS. A significant challenge concerns the 

development of real-time monitoring systems for operation within more complex MEA EPS. 

Greater EPS complexity is a result of increased generation, loads, variation of distribution 

levels and volume of conversion technology – these factors will not only increase the 

number of failure modes which have to be managed but also introduce new faults which 

were not readily considered within conventional EPS. 

The following sections introduce various aspects of EPS monitoring and protection 

systems which detect and react during system failures – this includes a discussion on power 

management, state-of-the art health management systems, protection devices and methods 

and fault types.  

2.4.1 Power Management Systems 

Power management functions ensure that the power generated in any instant in time is equal 

to the consumed power. The various elements of a power management system include [67]: 

 Load Management - The control of electrical loads. Electrical loads can at least be 

cut-off or reconnected and some may be regulated continuously or incrementally. 

The demand for a set of loads can be split across several bus bars. 

 Source Management – The control of multiple electrical sources where primary bus 

bars can asynchronously accept power inputs from multiple sources. 

 Energy storage devices, if available, providing/absorbing power.  

Source management is undertaken using generator control units (GCU) and bus power 

control units (BPCU). GCUs control the operation of the main generator circuit breaker and 

can thus open the CB in the event of a non-tolerable overload. The bus power control unit 

(BPCU) closes or opens bus tie breakers (BTB) and auxiliary power breakers to connect two 

bus bars together. 

The load management system involves the greatest complexity in terms of balancing load 

demand with available generation. Each controllable load has a fixed, pre-determined 

priority depending on its criticality to flight safety and mission function. In civil aircraft, 

loads are classified as vital, essential and non-essential and are connected to specific busbars 

according to their classification. Safety certification dictates that electrical loads should 
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conform to specific levels of reliability. Reliability levels vary between aircraft type and 

mission and are typically quantified in terms of failure rates (number of failures/hour) for an 

entire fleet of components/sub-systems. Reliability objectives for civil and military aircraft 

are summarised in Table 2-2 [71, 72, 73]. 

 

Table 2-2: Civil and military aircraft electrical load reliability targets 

Aircraft Type Load Classification Probability of Failure 

(Qualitative) 

Probability of Failure 

(Quantitative) 

 Vital Extremely Improbable < 1𝑥10−9 
Civil Essential Improbable < 1𝑥10−5 

 Non-Essential Probable > 1𝑥10−5 

  Improbable < 1𝑥10−6 

  Remote < 1𝑥10−3 
Military - Occasional < 1𝑥10−2 

  Probable < 1𝑥10−1 

  Frequent > 1𝑥10−1 

 

A simple load hierarchy in civil aircraft is illustrated in Figure 2-7.  The Load Management 

system will load shed in accordance with the load classifications; non-essential loads will be 

shed first to ensure that as many possible essential loads are powered. In the event of there 

still being power imbalance, the essential loads will be shed in turn to ensure as many vital 

loads as possible can get power. Prior to systems with automatic hierarchical disconnection 

of loads, CB boards were used which had to be reconnected via manual checklist. 

 

Figure 2-7: Simple electrical load hierarchy for civil aircraft 
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Advanced systems which integrated power distribution and load management were first 

introduced in the B777 [46]. The B777 load management system uses seven different power 

panels. Three primary power panels distribute to and protect higher power loads. The 

remaining four power panels distribute and protect loads for the left, right and standby 

channels and ground handling services. These four panels each have modular electronic units 

which receive data4  regarding the availability of functions throughout the entire aircraft. The 

ability to receive real-time system data enables a sophisticated load management system 

which can configure the loads to give optimum distribution of available power throughout 

nominal and emergency operational periods. 

2.4.2 Health Management Systems 

Real-time data transference is also pivotal to the development of state-of-the-art HMS which 

detect and diagnose system anomalies [18, 69]. HMSs consist of an aircraft condition 

monitoring system which records data from the on-board systems and engines, including 

variations of flight and operating conditions. The HMS combines data and information into 

an integrated decision support tool for: 

 Real-time fault management - communicates in-flight faults/alarms from the aircraft 

to the ground, allowing real-time operational decisions regarding maintenance. 

 Performance monitoring – analyses and trends cruise performance data e.g. fuel 

efficiency and emission levels. 

The availability of system data can aid fault management in both real-time and 

maintenance scheduling. However, there are associated challenges involved in accurately 

detecting, diagnosing and classifying faults within growing volumes and complexities of 

system data [70]. Part of the work of this thesis was to design novel methods that 

autonomously, and accurately, diagnose faults within large volumes of data. 

2.4.3 EPS Protection  

The protection system is an integral component of HMS that detects the occurrence of 

system faults and acts accordingly to mitigate potentially catastrophic events. 

Fundamentally, the main objectives of a protection system are to be [75]: 

 Reliable – Accurately detect fault conditions and only operate when required. 

 Selective – Minimise disruption to healthy portions of system by only tripping CBs 

required for isolating the fault. 

                                                      
4 Digital data is transferred between each electronic unit using a data bus system – the system is 

designed so that each terminal can transmit data to, and receive data from, every terminal connected to 

the bus [68]. 
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 Fast acting – Isolate faults as quickly as possible to reduce damage. 

 Dependable – Ensure that the system will operate when required, and at the designed 

speed, when a fault is detected.  

Systems are based on either Non-Unit or Unit methods [35]. Before summarising each 

method, the protection devices that physically isolate network faults in conventional systems 

[77] are briefly described. SSPC technology is also summarised, including the advantages it 

offers to the protection of future EPS.  

2.4.3.1 Protection Devices 

Electrical faults are generally characterised by an increase in system current. The current 

carrying capacity of cables5 is determined by length and cross sectional area; cable size is 

therefore designed around rated current values of each circuit. Throughout normal service 

life, cable abrasion can cause insulation to degrade, exposing open conductors and enabling 

potential low resistance paths to ground (the aircraft frame) or between other conductors. 

Low resistance paths cause current to increase, possibly beyond rated values, resulting in 

increased heat and eventually fire.  Protection against this, whilst also considering normal 

overcurrent transients, is vital to aircraft safety.  

Fuses 

Fuses are wire links connected in series with loads. Current carrying capacity for each fuse is 

pre-determined and the wire will melt and break the circuit when this capacity is reached. 

Fuses are typically encased within glass or ceramic with end caps providing the fusing point 

to cables - they should be located close to source to maximise the length of protected wire. 

Materials determine the speed at which the wire melts, and introduce a form of time delay 

within each device. Time graded settings in this sense are generally referred to as energy let 

through or 𝐼2𝑡 protection [78], where the device will trip if energy exceeds a threshold. 

Despite being relatively low cost items, fuses can only be used once and have to be replaced 

once blown. 

Circuit Breakers 

CBs are electromechanical devices which interrupt and isolate a circuit in the event of 

excessive current. Unlike fuses, CB’s can be manually reset once a fault condition has been 

cleared. In conventional systems, CB’s are located in the forward bay and are the most 

common wire protection device in the 28VDC and 115VAC systems.   

                                                      
5 Distinction should be made between wires and cables. A wire is a single solid conductor while 

cables are two or more wires contained within the same insulation sheath. 
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Relays control the operation of CBs. Relay settings coordinate times at which each CB in 

the system trips to maintain supply to healthy sections of the network - overcurrent relays 

typically have an inverse time current setting [75], where trip time is inversely proportionate 

to current. 

There are significant drawbacks of CBs in terms of their deployment in MEA. These 

include: 

 Limitation to localised control. This requires all CBs to be located in centralised 

front electronic bays and hence requires long runs of heavy load feeders. Within the 

last decade, this issue has been overcome with the development of remote control 

circuit breakers (RCCB) [74] that are controlled using a lightweight signal wire that 

runs to the cockpit. This means they can be placed closer to the system they are 

protecting to limit load feeder weight. 

 The fundamental electromechanical feature of CBs is a significant hurdle to their 

implementation in future high voltage DC systems [77]. There is no natural zero 

crossing in the fault current waveform of a DC system and as such, the increased 

size and weight necessary for breaking higher current magnitudes means CBs are 

impractical for DC application above conventional levels. 

 Traditional CBs cannot detect arc faults [19]. AFCB technology, which can protect 

against the arc fault, has been developed. These devices are limited in application to 

AC systems only and cannot be implemented in DC based systems. Arc faults are 

discussed in Section 2.4.5.3 and also extensively in Chapter 4. Chapter 5 describes 

IntelArc, a novel DC arc fault detection method and is one of the main outcomes of 

the work of this thesis. 

Solid State Power Controllers 

The development of solid state power controller (SSPC) technology [79] has been a major 

driver towards the realisation of the MEA. SSPCs are based on power semiconductors such 

as MOSFETs and IGBTs and effectively combine the function of load switching and wire 

protection within one device. The principle of switching operation is based on software 

control of electronic gate signals to the semiconductor within the device. 

Significant advantages of SSPC over conventional protection devices include [19]: 

 Their application to high voltage DC systems as a result of solid state switching as 

opposed to mechanical switching - SSPCs can be connected directly between a 

270VDC bus and load. 

 Remote control of multiple load switching and circuit protection. This enables 

distributed system architecture as SSPCs can be located closer to loads.  
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 Reduced switching time of ~3µs, compared to ~10ms for CBs. 

 Built in 𝐼2𝑡 time grade settings for wiring protection. 

 Lower weight in comparison to relay and CB combinations. 

 Lower susceptibility to in-flight vibrations and the reduction of bounce effect 

produced in the contacts of conventional contactors. 

 Increased number of switching life cycles (~50000 compared to ~1000 for CB). 

Issues do still remain with EMI causing instant shutdowns and affecting downstream loads. 

However, the advantages outlined show that SSPC technology will enable greater design 

flexibility and improve operational performance of aircraft EPS. 

2.4.4 Conventional Protection Methods 

Conventional Methods for detecting and isolating faults are classified as either non-unit or 

unit protection. Non-unit protection aims to correctly isolate faults by determining the 

thresholds at which multiple protection devices across the entire network should trip – 

determining correct thresholds is referred to as protection settings. In contrast, unit 

protection protects a clearly bounded zone and will only operate for faults within that 

respective zone. Each method is briefly summarised. 

2.4.4.1 Non-Unit Protection  

Current and/or voltage measurements are assessed from a single point in the network. The 

operation of the protection device at each point depends on a comparison of measurements 

with a pre-determined threshold setting. Protection settings throughout the system are 

designed so that only devices closest to a fault will trip to isolate that portion of the network 

and minimise disruption to the rest of the network. Non-Unit methods include overcurrent, 

rate of change of current, distance and loss-of-mains protection [76].  

Overcurrent protection is illustrated in Figure 2-8. Faults further upstream and hence closer 

to supply will induce greater current magnitudes. Inverse current time relay settings enable 

CBs closer to supply to have a higher threshold and CBs further downstream to have lower 

current thresholds, thus maximising supply to healthy sections during fault events. Within 

compact aircraft EPS with shorter cable lengths, it is often difficult to correctly determine 

overcurrent protection settings as current magnitudes may be similar for faults at different 

locations. Shorter cable lengths also mean distance protection methods are unfeasible for 

aircraft EPS application.  
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Figure 2-8: Simple example of non-unit overcurrent protection method. Relays with different 

protection settings isolate only the faulted section of the network to minimise disruption to healthy 

sections. Top: Examples of different inverse current-time relay settings. Settings for each relay are 

dependent on proximity to the electrical source. 

 

2.4.4.2 Unit Protection  

Protects a clearly bounded zone and will not operate for faults external to the zone. This 

method is commonly referred to as ‘differential protection’ as it principally detects a 

difference between currents entering and leaving a specified zone. Figure 2-9 illustrates unit 

protection of a generator feeder and busbar.  

Measurements are taken at the boundaries of the zone using current transformers (CT) – 

CT2 at the generator busbar and CT1 at the earth return. In the event of a short circuit fault to 

earth, a (large) portion of current would flow directly to earth and not flow through CT2 to 

the load feeder. This results in a difference between current supplied to the load (leaving the 

zone) and current returning through earth to the generator through CT1 (entering the zone). 



35 

 

In this event, the GCU will trip the CB to avoid overheating. In contrast, if the fault is 

outside the protected zone (Figure 2-9 (b)), the same current magnitude (albeit greater than 

rated load current) would flow through each CT and the GCU would not trip the CB. Unit 

protection of the generator feeder and busbar is implemented in aircraft EPS.  

 

Figure 2-9: Examples of unit protection of a generator feeder and busbar for (a) A fault inside the 

protected zone and (b) A fault outside the protected zone.  
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2.4.5 EPS Faults – Limitations of Conventional Protection Methods 

The limitations of conventional protection methods in detecting certain types of faults are 

described in this section. In Section 2.4.3.1 EPS faults were generally characterised by an 

increase in system current through live conductors directly contacting either earthed 

conductors or other phase conductors. The systems protecting against such hard faults are 

designed around detecting and isolating significant increases in system current.  This section 

further describes system faults, including variations which, despite not resulting in sudden 

increases in sustained current, still have the potential to be equally catastrophic. Challenges 

with regard to protecting against electrical faults and the design of health monitoring and 

fault detection systems in the context of MEA are also elaborated throughout. 

2.4.5.1 Fault Types 

Adverse events can be categorised into five classes [80]: 

 Incipient Fault – characterised by an extremely slow degradation and is very difficult 

to detect. 

 Slow progression fault – gradual degradation in performance. 

 Intermittent fault – faults that do not degrade but instead manifest themselves in a 

recurring fashion.  

 Cascading fault – has a single root cause but progresses to create faults in other 

systems, sub-systems or components. 

 Fast progression fault – faults that have limited detection signature but show rapid 

degradation. 

Note that this thesis considers a slow progression fault to be of similar class to an incipient 

fault and any further reference throughout to an incipient fault should be considered to be 

either an extremely slow degradation or a gradual degradation. Furthermore, a cascading 

fault is referred throughout the thesis as a multiple fault condition while a fast progression 

fault is henceforth considered as an overcurrent fault.  

 In many cases, overcurrent faults begin as incipient low current faults [81]. Cables may be 

bundled and secured to the aircraft structure, which also acts as the electrical ground, for 

support. Insulation prevents metal-to-metal contact; this insulation may degrade causing high 

impedance paths to be established. It is desirable to detect faults in the high impedance/ 

incipient stage prior to their progression to an overcurrent condition. High impedance fault 

current levels are typically too low to trip overcurrent relays/fuses. 

On-board EPS are exposed to harsh operating conditions, and in-flight vibrations can cause 

intermittent fault contact between two conductors or between loose terminal connections.  
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The intermittent nature means there is not enough sustained energy to trip protection devices 

and they may go undetected by ground maintenance as they cannot be replicated out-of-

flight. 

Despite these types of degraded faults not having enough energy to trip conventional 

protection devices, they are typically accompanied with electrical arcing, which is a potential 

fire hazards - see Section 2.4.5.3. Thus, detection is imperative for real-time fault tolerance 

and long term aircraft safety, particularly in more complex EPS. Chapter 5 of this thesis 

proposes EPSmart, a novel intelligent FDI method which detects a range of degraded failure 

types.  

2.4.5.2 Fault Locations 

US Air Force data [82], illustrated in Figure 2-10, reveal the distribution of electrical 

systems and components which fail in aircraft. The data were recorded for military aircraft 

between 1989 and 1999 – similar data were recorded between 1986 and 1989 and published 

in [83]. 

The majority of component failures occur in interconnecting cables, connectors and 

generators. Interestingly, for many years, the only attention given to electrical systems on 

aircraft was limited to key avionics and control systems [84]. The extended service of both 

military and civil platforms due to the retrofitting of new sub-systems resulted in a greater 

attention to the health of the interconnecting system. In particular, arcing as a consequence 

of wiring and interconnecting failures has fatal consequences [37]. Migrating to higher 

voltage (where arcing is more likely to occur) and DC systems (where arcing events are 

sustained and more difficult to detect than AC systems) requires the development of accurate 

and discriminative detection systems. Arcing faults are described in the following section. 

Overall, the distribution of failures in the EPS highlights the necessity for autonomous, and 

scalable, FDI methods that can accurately detect failures of various components of the 

system – the EPSmart method, described as part of the work of this thesis in Chapter 5, is 

highly scalable and designed to autonomously detect a range of fault types at different 

locations.  
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Figure 2-10: Distribution of aircraft electrical system failures across both systems (top) and 

components [82] 
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2.4.5.3 Arc Faults 

Most faults will include arcing at some stage, typically at the point of fault and between the 

contacts of CBs which isolate the fault. Arc faults are defined as current flow through 

ionized gas between two ends of a broken conductor or at: a faulty contact or connector; 

between two conductors supplying a load; or between a conductor and ground [85]. Normal 

arcing events occur during mechanical switching operation of circuit breakers and contactors 

[169] – these devices are designed to withstand arc formation and normal arcing is typically 

highly transient and unsustainable. Conversely, arc current through ionized gas during fault 

events may be fully sustained; the high heat generated can lead to partial volatilization of the 

conductors and increases the risk of fire to surrounding insulation [170].  

There are many conditions which may cause an arc fault, including [84]: 

 Chemical, electrical and mechanical deterioration of wiring and interconnections.  

 Presence of moisture or fluids on the insulation enabling leakage currents to create 

small electrical discharges across voids to other conductors (referred to as wet arc 

tracking [86]). 

 Loose terminal connections. 

 Wiring damaged during routine maintenance e.g. nails or staples through insulation. 

Arc faults are categorised as either parallel or series.  

 Parallel Arc Fault 

Parallel arcing involves the flow of current through ionised air (or other dielectric 

medium) between either two phase conductors, or a phase conductor and ground, as 

illustrated in Figure 2-11. These are typically the result of wet arc tracking formed 

when two conductors are brought into close proximity, or by degraded insulation. 

The fault is parallel to the electrical load and is considered a form of high impedance 

short circuit. The arc current levels are reduced by the impedance of both the system 

and the ionised path which forms the arc, which typically exhibits higher impedance 

in comparison to regular short circuit events. The high impedance nature of parallel 

arcing events often results in conventional protection devices not detecting their 

occurrence due to fault current levels being below the trip curve of the relays.  

 Series Arc Fault 

Series arcing, illustrated in Figure 2-12, often begins with either chemical corrosion 

in pin-socket connections or loose connections in series with electrical loads. In-

flight vibration causes intermittent connection/disconnection cycles within loose 

terminals. These cycles begin with small voltage drops which can eventually 

pyrolize the surrounding media and induce small arcs across the gap as the contacts 
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move away from each other. Single arc cycles will only dissipate a small amount of 

energy. However, if the vibrations produce many broken connections within a 

sufficiently short duration, the voltage will increase to create a build-up of localized 

dissipated energy and hence rapid temperature increase. Such instances produce a 

serious risk of fire within the surrounding insulation. A significant detection issue 

with the series arc fault is the fact that, because it is in series with the load, fault 

current actually decreases below load rated current and therefore well below relay 

trip curves.  

Arc fault characteristics for both AC and DC systems, detection difficulties and arc fault 

modelling are all discussed extensively throughout Chapter 4. IntelArc, a novel series DC arc 

fault detection method is proposed in Chapter 5. 

 

 

Figure 2-11: Illustration of phase-phase and phase-ground parallel arc faults 

 

 

Figure 2-12: Illustration of a series arc fault 
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2.6 Protection and Health Management Issues Addressed in this Thesis 

According to the various faults described, the protection and health management issues 

specific to this thesis include: 

 Real-time monitoring and detection of faults where current levels either do not trip 

conventional circuit protection (incipient and intermittent faults) or actually fall 

below rated current (series arc faults) 

 The development of scalable health management systems which can autonomously 

detect and diagnose a range of faults through analysis of large volumes of data 

These challenges become more pertinent within MEA architectures, where there is:  

 A general increase in safety-critical electrical systems 

 An increase of PE components which affect fault behaviour [87] 

 A greater emphasis on higher voltage, DC distribution 

The remainder of this thesis describes the initial development of advanced methods which 

address these issues to enhance protection and health management. This includes the 

proposal of two novel FDI methods in Chapter 5: EPSmart, which diagnoses multiple critical 

and degraded faults within hybrid AC/DC networks, and IntelArc, which provides 

generalised detection and isolation of series DC arc faults. 

2.7 Chapter 2 Conclusions 

The chapter outlined the basis of the research by emphasising the motivation for 

development of advanced methods to improve protection and health management systems 

within aircraft EPS. In order to describe specific fault detection and management issues, the 

chapter described both conventional and MEA secondary power systems, not only to 

highlight the differences between them, but also to illustrate the specifics of aircraft based 

EPS. An understanding of these aspects enables comprehension of the importance and 

difficulty of detecting certain types of intermittent, incipient and arcing faults, as well as to 

reasons that the traditional protection approaches do not always suffice. The chapter 

identified and described various degraded fault modes that the remainder of the thesis will 

focus on and which novel methods for their detection are proposed in Chapter 5 – these 

include incipient, intermittent and arc faults.  This chapter lays the groundwork for Chapter 3 

to discuss advanced intelligent techniques that have the potential to enable accurate fault 

detection and diagnosis of these fault types within aircraft EPS. 

 



42 

 

 

 
 

 

3. INTELLIGENT FAULT 

DIAGNOSIS: THEORY & 

APPLICATION TO AIRCRAFT EPS 
 

 

 

he necessity for advanced intelligent fault diagnostic methods to detect degraded and 

arcing faults that may not be identified using conventional protection methods was 

emphasised in Chapter 2. Detection and diagnosis of degraded fault conditions before their 

potential progression to critical failure will improve overall aircraft health management. This 

chapter builds on Chapter 2 and introduces intelligent fault diagnosis.  

 The topic is extensive, and intelligent diagnostic methods can be based on a variety of 

models, concepts and techniques which are summarised in this chapter. The methods 

proposed in this thesis for diagnosing aircraft EPS faults are based on machine learning 

(ML) techniques and these techniques are discussed in more detail. The attributes of each 

ML technique are summarised, and the motivations for selecting certain techniques to meet 

the objectives of this thesis explained. Previous applications of intelligent diagnostic 

methods to the aircraft EPS domain are described to place in context the contribution of this 

research.  

 

T 
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3.1 Fault Diagnosis – A Definition 

 

It is important to understand the general idea of fault6 diagnosis before introducing 

intelligent fault diagnosis in more detail. The semantics of the subject can easily result in 

confusion as often there are a variety of accompanying terms, including: fault detection; fault 

tolerant control; fault classification; and, fault isolation.  

 Fekih [88] states that “Fault Diagnosis is the primary stage of fault tolerant control 

systems. Its goal is to perform two main decision tasks: fault detection, consisting of 

deciding whether or not a fault has occurred, and fault isolation, consisting of deciding 

which element of the system has failed.” Fenton [39] summarises that “Fault diagnosis 

isolates the source (s) of a system malfunction by collecting and analysing information on 

system status using measurements, tests and other information sources (e.g. observed 

symptoms)”.   

These two statements summarise fault diagnosis rather well; definitions of the various 

terminology are provided, and a description of the processes involved, including means of 

achieving diagnosis, are succinctly described. Essentially, a system that has the capacity to 

detect, classify (or identify) and isolate a fault is termed a fault diagnosis system [89]. 

This thesis defines an intelligent fault diagnostic system as one that extends the 

functionality of traditional EPS protection systems (described in Chapter 2) by using more 

advanced methods for decision making. For clarity, intelligent fault diagnosis and isolation 

(FDI) is used throughout the thesis to describe advanced methods that enable systems to 

provide combinations of fault detection, classifying and isolating functionalities. 

The thesis focuses more so on diagnosis, although it is important at this elementary stage 

to also briefly summarise prognosis. Prognostics are concerned with calculating or 

predicting the future through rational study and analysis of system data. While diagnosis is 

the process of detecting and diagnosing a failure mode within a system or sub-system once it 

has occurred, prognosis is the process of generating a rational estimation of the remaining 

useful life and/or remaining performance until complete failure occurs. For further 

information on prognostics please refer to the review provided by Lee et al. [125]. 

 

 

 

                                                      
6 A fault is defined as a departure from an acceptable range of an observed variable, or a calculated 

parameter, associated with a process. 
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3.2 Fault Diagnosis & Fault Tolerant Control – General Process 

 

This section considers the general environment in which fault diagnosis systems operate, 

including how they combine with other system elements to detect, diagnose and isolate 

failures.  

Fault diagnosis is often married with the concept of Fault tolerant control (FTC) - FTC 

reflects the ability to generate reconfigurable control action within systems in the presence of 

fault conditions. This is a necessity in safety critical systems such as aircraft EPS. A generic 

FTC process is illustrated in Figure 3-1 - the importance of fault diagnosis in this process is 

conveyed.  

The four main components in Figure 3-1 are: 

 The monitored plant, including sensors and actuators.  

 The fault diagnosis system. 

 The feed-forward controller.  

 The supervision system.  

Potential faults can occur within the plant, the sensors and the actuators. The fault 

diagnosis system utilises information provided by the sensors to inform the supervision 

system about the onset, location and severity of any faults. Based on this information, and 

the system inputs and outputs, the supervision system will reconfigure the sensor set and/or 

actuators to isolate the faults and adapt the controller to accommodate the fault effects [89, 

90].  

A conventional feedback control system without means of fault diagnosis may be less 

reliable, as the supervision and control system will not detect and reconfigure the system 

after the occurrence of malfunctions in sensors, actuators and other plant components [92].  

 

 

Figure 3-1: Generic FTC Process [89] 
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3.3 Fault Diagnosis – Desirable Characteristics 

 

The importance of fault diagnosis systems for detecting and isolating faults, and generally 

maintaining reliable operation of a monitored system, was emphasised in the previous 

section. However, an inaccurate and poorly designed diagnosis system has the potential to 

negatively impact the reliability of the monitored system [91]. In order to avoid this scenario, 

there are various desirable characteristics a diagnosis system should possess that optimise 

operation and performance. These characteristics are summarised as follows: 

 Quick detection and diagnosis – a real-time diagnosis system should respond quickly 

in detecting and diagnosing failures. One issue with a system designed for quick 

detection is that it is more susceptible to noise; the probability of false alarms during 

normal operation is therefore increased. 

 Provision of fault classification/discrimination – should have the ability to 

distinguish between different failures. 

 Ability to identify multiple-faults – an important, but difficult, requirement as 

different faults may interact making accurate identification of multiple anomalies 

highly complex. 

 Robustness – system should be robust to noise and uncertainty. 

 Classification error estimate – system should have the ability to quantify the 

reliability of diagnostic decisions. Ideally, this would include the probability of a 

prescribed fault. 

 Adaptability – should maintain accurate performance throughout changing operating 

conditions. 

 Explanation facility – besides the ability to identify the source of failure, a diagnostic 

system should also provide explanation on how the fault originated and propagated 

to the current situation. 

 Modelling requirements – the modelling stage should be minimised for fast and easy 

deployment of real-time diagnostic systems. 

 Computational requirements – quick, real-time solutions typically require algorithms 

and implementations which are computationally less complex. 

The development of methods that enable diagnostic systems to possess all characteristics 

would be, if not unrealistic, extremely difficult. The novel intelligent FDI methods proposed 

in Chapter 5 were designed in an attempt to maximise these desirable characteristics - this is 

elaborated on throughout Chapter 5.  
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3.4 Intelligent Fault Diagnostic Methods – A Summary 

 

This section discusses the methods that intelligent fault diagnostic systems use to analyse 

available information and detect and isolate system faults. There is a broad range of methods 

for diagnosing faults. The classification of each method can vary throughout literature - the 

categorisations provided in this section seem to be the most common.  

Existing FDI methods and techniques are summarised in Figure 3-2.  

 

 

Figure 3-2: Summary of FDI Methods [91] 

Methods are generally classified into two categories: model based and data based. The 

distinction between these two groups is summarised in the following sections.  

3.5 Model Based Methods 

 

Model based approaches can be broadly defined as either quantitative [91] or qualitative 

[97].  

3.5.1 Quantitative Models 

 

A quantitative model is usually developed based on some understanding of the physics of the 

monitored system. This understanding is expressed in terms of mathematical functional 

relationships between the inputs and outputs of the system. The models are usually discrete 

black-box system models or state space models [91], and assume linearity of the plant. Using 

quantitative models to diagnose faults usually requires two steps. Within the first step, 

inconsistencies are generated throughout fault conditions between actual, observed, 
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behaviour and expected normal behaviour from the model - these inconsistencies are known 

as ‘residuals’. Residuals are close to zero throughout nominal conditions, and increase only 

during fault conditions.  

The second step involves the development of decision rules for classifying faults in the 

presence of residuals. For example, residual generation within state-based models concerns 

divergence from expected values of state variables and/or model parameters. Classification is 

then determined by observing what state variables or model parameters have significant 

residuals.  

Quantitative models have been used extensively within the aerospace domain. In 

particular, the Kalman filter, a form of state based model, has been applied for diagnosis of 

actuator failures [93, 94] and flight control during failures [95]. The main disadvantages of a 

quantitative modelling approach are that several factors render it very difficult, even 

impractical, to develop an accurate mathematical model of the system. These factors include 

system complexity, non-linearity, and high dimensionality. Consequently, they are not 

considered within this thesis. 

3.5.2 Qualitative Models 

 

The relationships between system inputs and outputs in qualitative models are expressed in 

terms of qualitative functions for the different sub-systems/components of the monitored 

system. For example, phrases that describe behaviour are used for detection, and model 

variables are usually binary with minimal discrete values. Qualitative modelling is often used 

to represent deep knowledge of a system [98], as they simplify systems that contain 

numerous variables and also reduce computation – this is in contrast to shallow knowledge 

based diagnosis which only captures the relationships between observed abnormalities and 

the associated fault, and does not contain detailed information on the underlying physics of 

the monitored system. Qualitative models can be classified as either causal or abstraction 

hierarchy [97].  

Causal models are formed using signed digraphs [39]. Digraphs contain ‘nodes’, which 

represent system events or variables, and ‘edges’, which represent the relationship between 

the nodes. They provide an excellent means of representing models graphically and describe 

the effect or influence that certain entities (e.g. variables, faults) have on other entities. Fault 

diagnosis is performed by combining the observed system deviations and relating the 

combinations to a root cause. Studies within literature [96] describe the use of fault trees, a 

form of digraph, for fault diagnosis.  
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Within abstraction hierarchies, the monitored system is broken into a hierarchy of separate 

sub-systems and components. This decomposition allows a general representation of the 

functionality of a system in terms of the inputs and outputs of the constituent sub-systems. 

Fault diagnosis is a top down approach from a higher, sub-system level abstraction to a 

lower, component level abstraction. Each node in the hierarchy represents the intended 

function of each subsystem/component in the hierarchy. Comparison of the current 

performance of each node with the intended function enables the diagnosis of anomalies.    

The main limitation of qualitative models is that they require detailed a priori knowledge 

of the monitored systems structure, components and functionality. Expert knowledge may 

not be available and, even if it is, the elicited knowledge may be specific to exact system 

conditions and configurations. Such specific knowledge will complicate the development of 

generalised models.  

 

3.6 Data Based FDI 

 

In contrast to model-based approaches, which require a priori knowledge (either quantitative 

or qualitative) about the monitored system, the data based approaches require sufficient 

volumes of system data [28] to be available. Raw data of this type can subsequently be 

transformed in a variety of ways and presented to the diagnostic systems as knowledge – this 

process is known as ‘feature extraction’. 

Similar to model based fault diagnosis, data based approaches can also be classified as 

either quantitative or qualitative. As part of this thesis, special consideration is given to ML 

techniques, a form of quantitative data based approach, as the novel FDI methods proposed 

in Chapter 5 of this thesis utilise these techniques. This discussion includes detail on their 

design and operation, as well as motivation for their adoption within the proposed methods. 

Particular issues with the design and development of data based FDI methods for application 

to an aircraft system domain are also discussed in Section 3.10. 

3.6.1 Qualitative Data Based FDI 

 

Forms of qualitative methods include; expert systems [99, 100, 101]; fuzzy logic [105]; and 

qualitative trend analysis (QTA) [108]. The development, operation and application of these 

methods are summarised in the following sections. 
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3.6.1.1 Expert Systems 

 

An expert system is a specialised system that solves diagnostic problems in a narrow domain 

of expertise [28]. These systems apply expert knowledge to system data in an autonomous 

and programmatic manner to provide FDI. Application of expert knowledge is typically in 

the form of a rule based method, which analyses the data and classifies anomalies using 

prescribed rules. Expert systems are based on shallow knowledge, as only knowledge 

surrounding faults within the system is required [98].  

Knowledge elicitation, where knowledge of the domain expert is gathered through some 

form of direct interaction, is pivotal to system development. The systems are designed in two 

principal parts: the knowledge base and the reasoning, or inference, engine. The knowledge 

base contains both factual and heuristic knowledge. Factual knowledge is commonly agreed 

upon within the domain community - i.e. well known, documented facts. Heuristic 

knowledge is more a result of the expert’s experiences, and is therefore largely 

individualistic. The inference engine analyses and processes the rule base. Essentially, the 

inference engine traces its way through a grouping of rules to arrive at a conclusion [102]. 

Expert systems are advantageous for fault diagnosis systems as they: 

 Possess vast quantities of domain specific knowledge to minute detail;  

 Have a high explanation capability where reasoning can be reviewed and decisions 

explained; 

 Can provide high quality performance in solving difficult programs as, or better 

than, human experts.  

Expert systems have been developed and proposed for application within the aerospace 

domain for real-time fault diagnosis of aircraft engine failures [99], fuel system failures 

[100] and the diagnosis of problems immediately after the manufacturing process of combat 

aircraft [101].  In each case they have shown potential for accurate and efficient fault 

diagnosis within their respective applications. However, in all applications, the limitations of 

an expert system approach are relatively self-explanatory: knowledge based systems 

developed from expert rules are very system-specific and they are often difficult to update 

and generalise [28].  

3.6.1.2 Fuzzy Logic 

 

An important feature of expert systems is their ability to deal with incorrect or uncertain 

information [103]. Uncertainty within expert systems can manifest in two forms: linguistic 
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uncertainty and evidential uncertainty. Linguistic uncertainty occurs when there are vague 

statements to describe the data (e.g. “the value is near 20”), while evidential uncertainty 

occurs if the relationship between an observation and a conclusion is not entirely certain. 

Evidential uncertainty is commonly handled using conditional probability [103]. Linguistic 

uncertainty is commonly handled using fuzzy set theory [104].  

Fuzzy set theories assume that the transition between different classes of a system is 

gradual rather than abrupt. Fuzzy logic quantifies this concept by using the qualitative data to 

define the probability of the system being in a certain class and arrive at a diagnostic 

conclusion. These concepts enable expert systems to deal with ambiguous observations and 

are often important to their application – fuzzy logic based expert systems have been 

developed for transformer fault diagnosis [106]. With respect to the aerospace domain, an 

expert system utilising fuzzy logic for FDI on the Airbus 340 was proposed by Wu [105].  

3.6.1.3 Qualitative Trend Analysis 

 

QTA represents measured time-series signals as a sequence of basic symbols [107]. The 

simplest qualitative representation of a signal uses three symbols: increasing, constant and 

decreasing. These symbols correspond to the derivatives of the signal - more complex 

symbols based on second derivatives, such as sharp increase, can also be used. The symbols 

are often termed ‘primitives’. 

The basic idea of QTA is to represent the measured signal as a trend using the primitives. 

QTA involves two main processes [108]: 

1) Trend extraction – this involves fitting either a constant, first-order or second order 

polynomial function (in that order) to a period of data. The period of data in which 

the function is fitted is determined by comparing the noise in the signal to the fit 

error. If the error is significant in comparison to noise, the interval is halved until an 

acceptable limit is reached. A primitive is assigned to the period based upon the sign 

of the first and second order derivatives of the function. This process is applied to 

the remainder of the data until the entire signal is transformed into a sequence of 

primitives. 

2) Trend matching – QTA for fault diagnosis involves matching the trend extracted 

from the current window of time-series data to previously determined abnormal 

trends. This includes matching both the trends of single sensors within the monitored 

system, and also trends of all sensors throughout the complete system. 
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The main benefits of QTA include its simplicity and its ability to provide quick fault 

diagnosis. However, the increased computational complexity and requirement for multiple 

sensor deployment prohibits its real-time application for very large scale plants. 

 

3.6.2 Quantitative Data Based FDI 

 

This section introduces quantitative data based approaches to fault diagnosis before going on 

to discuss ML techniques in more detail.  

The quantitative methods are often summarised as being a pattern recognition problem 

where the main goal is to classify new data points into a pre-determined class of the 

monitored system [28]. Monitored systems tend to exhibit stochastic behaviour and, as such, 

quantitative methods usually adopt a probabilistic approach. Generally, utilising such an 

approach involves data observations during normal system operation having a certain 

distribution. During fault conditions, these distributions will change – fault diagnosis 

involves determining when, and how, the distributions change.  

When a parametric distribution is used, the probability distributions are characterised by 

their parameters - for example, the parameters of a Gaussian distribution are its mean and 

standard deviation. During on-line system monitoring, changes in these parameters can be 

indicative of fault conditions. Methods that observe changes in distribution parameters are 

usually classified as statistical.  

This thesis focusses on ML based FDI methods. ML combines the ideas of pattern 

recognition and learning, probabilistic methods and statistics for development and 

application of diagnostic systems.  

One of the main reasons for this thesis focusing on ML based FDI is that the volume of 

data that future aircraft EPS will generate is expected to increase significantly in future 

platforms [18]. It is imperative that this additional information is utilised efficiently, and 

does not impede the reliable operation of these systems.  The employment of intelligent ML 

based methods for interpreting the behaviour/condition of the system through analysis of 

data will ensure that efficient and reliable operation of future aircraft EPS will be 

maintained, if not enhanced.  

The following sections discuss these ideas in more detail. 
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3.7 Machine Learning 

 

Murphy [30] defined ML as “a set of methods that can automatically determine patterns in 

data, and then use the uncovered patterns to predict future data, or to perform other kinds of 

decision making under uncertainty”. This section describes some of these methods as well as 

the general design and operation of ML based FDI methods.  

Murphy’s definition covers the basic aspects of such methods. Automatically determining 

patterns in data is essentially training models using historical system data. Predicting future 

data refers to using the trained models to diagnose new system data. ML methods rely on 

using cases or examples to solve a diagnostic problem, rather than using a predefined 

mathematical model of the monitored system or a set of rules.  

The development and application of ML based FDI methods are summarised in Figure 3-3. 

 

 

 

 

 

 

Methods are developed using historical system data - alternatively, system data generated 

using representative test beds and/or software models of the monitored system may also be 

used [109]. Data used throughout development is termed training data. Feature extraction 

from system data is a significant aspect of development – this process extracts the most 

significant features, in terms of discriminatory power, from raw system data. Feature 

Figure 3-3: Development and application processes of ML based FDI methods 
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extraction is extremely important for the development of accurate methods, and is discussed 

further in Section 3.7.1.  

The next stage of development involves using the extracted features to learn patterns, or 

signatures, of various system conditions. The process of pattern learning depends upon the 

type of modelling technique utilised – different ML modelling techniques are discussed in 

Section 3.8. The learning stage results in either a single model relating to nominal system 

condition, or a library of models corresponding to different nominal and fault conditions. 

The learning process is also dependent on the type of approach used. The two main learning 

approaches are supervised and unsupervised – these are described in Section 3.7.2. 

Fault diagnosis is determined by comparing online behaviour with the modelled behaviour 

of each condition. Measures for these comparisons are again dependent on the modelling 

techniques used, and are discussed throughout Section 3.8. Interpretation of these 

comparisons is performed using some form of decision making tool or algorithm. Such tools 

may involve expert knowledge and/or fuzzy logic.  

3.7.1 Feature Extraction 

 

Feature extraction is the transformation of raw data from its original form to a new form 

from which suitable information can be extracted. This process ensures that fault diagnostic 

systems can be trained to realise significant features within data that relate to certain 

conditions. As discussed in the previous section, feature extraction is important for accurate 

diagnosis as it simplifies operation (by focusing only on a subset of the data) and increases 

discriminatory power. 

Features may be directly extracted from the original data (e.g. using statistical measures 

such as RMS values) or from a transformed domain (e.g. Fourier and Wavelet Transforms). 

The Fourier transform (FT) [156] extracts the frequency components of time-domain data 

and has been used for discriminating between fault conditions that exhibit different 

frequency bands [85]. The advantage of the Wavelet transform (WT) [163] over the FT is 

that it provides both time and frequency information about a signal (i.e. what frequencies 

occur and at what time) – this is ideal for extracting information from highly transient 

signals. 

A significant challenge involved with development of FDI methods is determining the 

features that optimise accuracy and discrimination – this process is often termed feature 

selection. Chapter 5 discusses feature extraction and selection for the novel FDI methods 

proposed as part of the work of this thesis.  
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3.7.2 Supervised and Unsupervised Learning 

 

Learning patterns in data (or extracted features) using the various ML modelling techniques 

can be useful in two contexts. In the first context, the patterns of a specific, and known, 

condition described within the training data is learned - knowledge of these patterns can then 

be used in future to determine the presence of the same condition. This is termed as 

supervised learning as the features presented for learning relate to a known system condition. 

In the second context, patterns within data that does not describe a known system condition 

are learned. This is termed unsupervised learning, where the goal is to discover interesting 

patterns that could have potential meaning – this is a less defined problem, as it is difficult to 

determine what the patterns relate to and there is no obvious error metric (unlike supervised 

learning where predictions of system conditions can be compared to the known condition). 

The EPSmart and IntelArc FDI methods designed as part of the work of this thesis were 

developed using a supervised learning approach. This approach required examples of system 

data throughout different system conditions to be both available and labelled. This aspect of 

development is discussed further in Chapter 5. 

3.8 Machine Learning Modelling Techniques 

 

A selection of ML modelling techniques utilised for pattern learning are outlined in this 

section. The selected techniques include: 

 Hidden Markov models (HMM) 

 Bayesian networks (BN) 

 Artificial Neural networks (ANN) 

 Support vector machine (SVM) 

The ways in which these techniques can detect and diagnose faults are elaborated. The 

attributes of each technique are discussed in Section 3.9. The motivation for using certain 

techniques over others, to meet the objectives of this thesis, is also explained in Section 3.9. 

3.8.1 Hidden Markov Model 

 

A HMM [127] is a statistical Markov model, in which the system being modelled is assumed 

to be a Markov process [110] with unobserved (hidden) states. They also assume that the 

system data is a noisy observation of this process. HMM are trained by extracting 

information from existing data and developing stochastic models of the signals. They can be 

used to solve classification problems associated with time series input data such as speech 
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signals, and can provide an appropriate solution by means of their modelling and learning 

capability, even though they do not have exact knowledge of the problems [42]. Traditional 

applications of HMM are in areas such as speech, handwriting and gesture recognition [30]. 

More recently, HMMs have been applied in classifying patterns in process trend analysis 

[111] and machine condition monitoring [112]. 

 

3.8.1.1 Elements of HMM 

 

Usually HMM contain a finite number of states, where each state generates an observation at 

a certain point in time. The hidden state is characterised by two sets of probabilities: a 

transition probability and an observation probability distribution. The initial state distribution 

(i.e. the probability of the modelled process beginning in each of the hidden states) has to 

also be defined.  In summary, the complete specification of an HMM includes the following 

elements [41]: 

 set of hidden states: 

 

𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑁} ,  

 

 

where N is the number of states in the model; 

 

 state transition probability distribution:  

 

𝐴 = {𝑎𝑖𝑗}, 

 

where 𝑎𝑖𝑗 = 𝑃[𝑞𝑡+1 = 𝑆𝑗|𝑞𝑡 = 𝑆𝑖], for 1 ≤ 𝑖, 𝑗 ≤ 𝑁. 𝑞 is the hidden state sequence 

throughout time: 𝑞𝑡 represents the hidden state at time t and  𝑞𝑡+1 represents the 

hidden state at time t+1; 

 

 set of observations: 

 

𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑀}, 

 

(3.1) 

(3.2) 

(3.3) 
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where M is the number of observations per state. These observations relate to the 

physical output of the system being modelled, and each hidden state produces an 

associated set of observations; 

 

 observation probability distribution which maps observations to hidden states: 

 

𝐵 = {𝑏𝑗(𝑘)}, 

 

where 𝑏𝑗(𝑘) = 𝑃[𝑣𝑘  𝑎𝑡 𝑡|𝑞𝑡 = 𝑆𝑗] for 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀. In continuous density 

HMM, 𝐵 represents a particular continuous distribution (e.g. Gaussian distribution) 

over the set of observations, 𝑉, for hidden state 𝑗;   

 

 initial state probability distribution: 

 

 = {𝑖}, 

 

where 𝑖 = 𝑃[𝑞1 = 𝑆𝑖], for 1 ≤ 𝑖 ≤ 𝑁. 

 

For convenience an HMM can be represented by the notation: 

𝜆 = (𝐴, 𝐵,), 

to indicate the complete parameter set. 

The HMM elements are illustrated in Figure 3-4 using a directed graphical model (DGM)7.  

 

Figure 3-4: Graphical representation of HMM elements 

 

                                                      
7 A DGM is a way to represent joint probability distributions of system/model variables by making 

assumptions about the conditional independence of each variable. See reference [30] for further detail. 

(3.4) 

(3.6) 

(3.5) 
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Figure 3-4 illustrates the relationships between the HMM state and observation variables – 

the observational data is dependent on the (hidden) system state, while the current system 

state is dependent only on the previous system state. The observations in an HMM can be 

discrete or continuous. If they are discrete, it is common for the observation model to be an 

observation matrix. If they are continuous, the observation model will usually be a 

conditional Gaussian [30]. Please refer to [41] for further reading on HMM theory. 

3.8.1.2 HMM Parameter Training 

 

Training refers to the characteristics of the input patterns to be modelled by the set of 

parameters 𝜆 = (𝐴, 𝐵,). A HMM is applied to a classification problem under the 

assumption the model parameters can be determined given the observation data. The 

complexity of this problem means this is difficult to achieve. However, it is possible to find 

local optima through maximum likelihood estimation [42]. The Expectation-Maximization 

(EM) algorithm [113] is used to solve the training problem and determine the likelihood of 

the parameters, given an observation sequence. 

3.8.1.3 Expectation-Maximisation Algorithm 

 

The EM algorithm [113], also known as the Baum-Welsh algorithm, is used in statistics for 

finding maximum-likelihood estimates of parameters in probabilistic models, where the 

models depend on hidden variables. The algorithm can compute maximum-likelihood 

estimates of the HMM parameters when given only a set of observation training data. The 

algorithm involves two steps: an Expectation, or E step, and a Maximization, or M step. The 

general EM algorithm is summarised in the following. 

Given a joint distribution 𝑃(𝑉, 𝑄|𝜆) over observed variables 𝑉and latent variables 𝑄, 

governed by parameters 𝜆, the goal is to maximize the likelihood function 𝑃(𝑉|𝜆) with 

respect to 𝜆.  

The algorithm can be generalised as follows:  

1. Choose an initial setting for the parameters 𝜆𝑜𝑙𝑑. 

 

2. E step - Evaluate P(Q|V, λold)    

 

3. M step - Evaluate 𝜆𝑛𝑒𝑤 given by 

λnew = 𝑎𝑟𝑔𝑚𝑎𝑥𝜆 Ǫ(𝜆, 𝜆𝑜𝑙𝑑) 

Where 

(3.7) 

(3.8) 

(3.9) 
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Ǫ(𝜆, 𝜆𝑜𝑙𝑑) = ∑ 𝑃(𝑄|𝑉,

𝑄

𝜆𝑜𝑙𝑑) ln 𝑃(𝑉, 𝑄|𝜆) 

4. Check for convergence of the log likelihood. If the convergence criterion is not 

satisfied, then let 

 

𝜆𝑜𝑙𝑑 ← 𝜆𝑛𝑒𝑤 

and return to Step 2. 

3.8.1.4 Using Trained HMM for FDI 

 

HMMs can be trained to diagnose unlabelled sequential data. In many applications [42] it is 

popular to establish several trained HMM models corresponding to the different conditions 

under consideration. Within such an approach, the unlabelled data would be applied to each 

trained HMM. Classification would regard choosing the model that gives the maximum 

probability (or, more specifically, the log-likelihood) of the observational data, given the 

trained parameters. That is, network condition, C, can be classified by  

𝐶 = 𝑎𝑟𝑔𝑚𝑎𝑥(ln  𝑃(𝑉|𝜆𝑠))       1 ≤ 𝑠 ≤ 𝐻 

where H is the number of network conditions considered within the FDI system - argmax 

refers to the model with parameters 𝜆𝑠 that provides the maximum LL value and not the 

maximum value itself.   

A general framework of this method is illustrated in Figure 3-5. 

 

Figure 3-5: Framework of HMM based FDI system 

(3.10) 

(3.11) 
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The Viterbi algorithm (VA) [30] can be used for inferring from an observation sequence the 

most likely sequence of hidden underlying states that might have generated it. For each 

observation point in the sequence, an associated hidden state can be determined. HMM may 

be trained in a context where the hidden variables represent physical quantities of interest, 

such as specific fault states. In this context, the VA may be used for FDI by using the 

observational data to infer the sequence of physical states in which the monitored system has 

evolved. However, often HMM are trained in the context where the hidden states have no 

physical meaning and diagnosis is achieved by using the framework illustrated in Figure 3-5 

(see, for example, references [78-81]). 

For reasons outlined in Section 3.9, the novel FDI methods proposed in Chapter 5 are 

based on HMM. Consequently, Section 3.11.3 provides a review of HMM based FDI 

methods described within the literature. 

3.8.2 Bayesian Networks 

 

A BN is a form of directed graphical model used to represent the joint probability 

distribution of variables within a system. In Section 3.5.2 there has already been a discussion 

on qualitative causal graphs, that model the interaction of system variables using qualitative 

relationships and deep knowledge. BNs are similar to this concept, although they use system 

data to learn both graph structure and the joint probability distributions that quantify the 

relationships between system variables. BN’s include both observed and hidden variables, 

and can be used to combine observed data with the joint distributions to infer hidden 

variables [114].  
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Figure 3-6: Basic structure of a naive BN 

The most simplistic form is the naïve BN [30], illustrated in Figure 3-6. This form assumes 

the observed variables, 𝑋1  to 𝑋𝑁, are all independent and conditional on the hidden class 

variable, 𝑌 – thus, in terms of diagnosis, the hidden variable can be inferred by considering 

each of the observed variables separately. This type of BN is termed naïve as it does not 

assume any relationship between observed variables – a more advanced form of BN would 

model correlation between the observed variables. There may also be correlation between 

multiple hidden variables (if they exist). Development of advanced BNs that capture these 

correlations requires sufficient domain/system knowledge. Application is widespread in the 

medical diagnostics domain [115]. Engineering based applications include fault diagnosis of 

rotating machines [116] and road vehicles [117]. Examples of BN based FDI methods for 

application to aircraft EPS are discussed in Section 3.11.2. 

 

3.8.3 Artificial Neural Networks 

 

ANNs are non-linear, multivariable models which are developed using a set of input/output 

training data. They were originally inspired by the neural circuitry of the human brain, which 

has billions of interconnected cells [39]. ANNs are represented by a set of nodes with 

connections between them. The connections have weights associated that represent the 

strength of each connection between the nodes. In the training phase, the weights between 

each node are learned. Within a supervised approach the labelled training data is used to 

attribute specific combinations of learned weights to particular conditions/faults. 
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ANNs are organised into different layers [118]. The ‘input’ layer relates to observable 

data, where each node represents a single variable/feature. The input nodes are connected to 

multiple hidden nodes in the ‘hidden’ layer. The hidden nodes perform a non-linear mapping 

from the input space into a new space – these nodes are connected to output nodes in the 

‘output’ layer.  The output of the network is a linear combination of the hidden nodes. This 

architecture is illustrated in Figure 3-7. Inference of new data is determined through the 

status of output nodes. Each output node, which relates to a specific system condition, has a 

binary output [119] – an output of 1 indicates presence of the condition. 

 

Figure 3-7: General architecture of an ANN 

ANN’s have been extensively applied for diagnosis of power quality problems within the 

general EPS domain [39, 119, 120]. Examples of their application to EPS within aircraft and 

shipboard systems are described in Section 3.11.2.2. 

3.8.4 Support Vector Machines 

 

SVMs are a relatively new supervised machine learning technique [126]. SVM learn the 

location of decision boundaries, or hyperplanes, that produce optimal separations of classes 

within observed data. Finding the optimal separation of linearly separable data is relatively 

simple – essentially the SVM searches for the optimal hyperplane that correctly classifies the 

data. This concept is illustrated in Figure 3-8 (a). Determining the optimal hyperplane is 

equivalent to maximising the distance separating each class, as shown in Figure 3-8 (b). The 

support vectors are training data points that lie on the margin. These are the most significant 
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points, as classification of new data points involves determining their position relative to the 

support vectors. 

 

Figure 3-8: (a) Searching for optimal hyperplanes between two linearly separable classes of data (b) 

Optimal margin criteria for determining hyperplane 

SVM can also be extended to classify data that is not linearly separable. In this extension, 

training data is mapped into a high dimensional feature space using kernel functions. 

Transformation to an alternative feature space enables linear separation of classes - [121] 

provides more information on this process and SVM in general. 

SVM have been proposed for fault diagnosis in series compensated electrical transmission 

lines [122] and high voltage circuit breakers [123]. Applications particularly relevant to this 

thesis include their use for high impedance fault/arc fault detection [124] (this is described 

further in Chapter 4), and FDI and prognosis of aircraft engine degradations [164]. 

3.9 Comparison of Machine Learning Modelling Techniques 

 

Section 3.8 described various ML modelling techniques that utilise system data to diagnose 

system faults. Each technique has the potential to be applied for fault diagnosis within an 

aircraft EPS environment – indeed, as is elaborated in Section 3.11.2, various techniques 

have previously been applied in this context.  

The main objectives of the novel aircraft EPS FDI methods proposed in this thesis are to:  

 Autonomously, and accurately, detect a multitude of fault conditions.  
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 Detect the onset of degraded fault conditions (i.e. intermittent and incipient faults) in 

an appropriate timeframe.   

 Detect series arc faults in DC supplied systems that are difficult to detect using 

conventional protection methods. 

The following section outlines the attributes of the potential ML techniques that could be 

applied to meet these objectives. Summarising these attributes helps to explain the 

motivation for the choices that were made. 

3.9.1 Attributes of Machine Learning Techniques 

 

The various attributes of the selected ML techniques are summarised in Table 3-1 [125, 

129]. 

It was explained in Section 3.8.1.4 that the novel FDI methods proposed as part of the 

work of this thesis would be based on the use of HMM to infer the presence of faults using 

system data. Each potential technique outlined in Table 3-1 has associated advantages and 

disadvantages. According to the aims outlined in the previous section, the main motivations 

for basing the FDI methods on HMM include: 

 Their suitability for detection of transient signals – this makes them ideal for series 

DC arc faults which exhibit highly transient, non-stationary behaviour.  

 Their ability to provide a log-likelihood metric that quantifies the probability of 

various fault hypotheses. This form of diagnostic explanation means HMMs are 

more suitable for multiple fault diagnosis than ANNs, which only provide a binary 

decision. 

 HMM based FDI methods are highly scalable and can be readily updated to include 

models of emergent system conditions. 

 SVM can provide excellent fault diagnostic accuracy. However, they are usually 

suitable for classifying between only two system conditions and thus multiple fault 

diagnosis is complicated. 

 The accuracy of naïve BN classifiers is debatable. To improve accuracy, more 

advanced BNs can be developed, although this requires significant a priori 

system/domain knowledge.  

 ANN training is complicated by the fact there is no standard method for determining 

network structure. In comparison, the number of hidden states within HMM can be 

determined through simple plotting and visualisation of the training data. 
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Table 3-1: Attributes of various ML modelling techniques [125] 

Technique Advantages Disadvantages General 

Accuracy 

Speed of 

Learning 

Speed Of 

Classification 

Explanation 

Ability 

Capability 

to 

Generalise 

Multiple 

Fault 

Handling 

Tolerance to Noise 

 

 

HMM 

-Appropriate for multiple 

fault diagnosis. 

-Good for detection of 

degradations within non-

stationary/transient signals. 

- Need sufficient 

training data for 

accurate modelling. 

- Issues with over 

fitting training data. 

 

 

Very Good 

 

 

Good 

 

 

Excellent 

 

 

Good 

 

 

Good 

 

 

Very Good 

 

 

Excellent 

 

 

 

 

BN 

– Visualises dependency 

links between system 

variables. 

- Naïve networks do not 

require iterative parameter 

learning algorithms and 

can be applied to large 

feature sets.  

 

- Learning unknown 

structures can be 

complex.  

- Rely on certain 

amount of a priori 

domain knowledge. 

- Naïve networks not 

optimally accurate. 

 

 

 

 

Average 

 

 

 

 

Excellent 

 

 

 

 

Excellent 

 

 

 

 

Excellent 

 

 

 

 

Good 

 

 

 

Naturally 

Extended 

 

 

 

 

Very Good 

 

 

 

ANN 

- Suitability for complex, 

non-linear systems. 

- Require minimum 

knowledge about variable 

and class relationships. 

- Successful on several real 

world applications.  

- Lack of diagnostic 

explanation 

ability/metric. 

-No standard method 

to determine network 

structure. 

 

 

 

Very Good 

 

 

 

Average 

 

 

 

Excellent 

 

 

 

Average 

 

 

 

Average 

 

 

Naturally 

Extended 

 

 

 

Good 

 

 

 

 

SVM 

 

-Requires minimal training 

examples. 

-Less prone to over fitting 

than other techniques. 

- Maximised decision 

boundary improves overall 

accuracy. 

- Lack of diagnostic 

explanation 

ability/metric. 

- No standard method 

to choose kernel 

function. 

-Difficulty in 

extending to multiple 

fault diagnosis. 

 

 

 

 

Excellent 

 

 

 

 

Average 

 

 

 

 

Excellent 

 

 

 

 

Average 

 

 

 

 

Average 

 

 

 

Only Binary 

Classifier 

 

 

 

 

Good 

 



65 

 

The main drawbacks of HMM are their susceptibility to over fitting, as well as the 

requirement for relatively large volumes of training data. Approaches do exist that can 

minimise these drawbacks. A lack of training data can be compensated by selection of 

features from the data that generalise fault conditions and do not focus on intricacies of the 

specific training examples. Over fitting can be minimised with the use of the Bayesian 

Information Criterion (BIC) [30] – the BIC essentially optimises the number of parameters in 

a model to ensure the fit is not overly representative of the training examples. These issues 

are described throughout Chapter 5. ANNs suffer with regards to generalisation as there are 

no such formalisms for ensuring models are not over fitted.  

Overfitting and generalisation are relative in that a model that is over-fitted to the training 

examples will perform poorly at providing a generalised diagnosis. This relationship is 

simplistically illustrated in Figure 3-9 – as generalisation improves, the fit of the model is 

reduced. Generalisation is dependent not only on the particular modelling technique but also 

on the features of the data that are presented for detection. Hence, a technique that 

theoretically can improve generalisation may in practice perform poorly at inference of new 

examples as a result of poor feature selection. The issues of feature selection for the methods 

proposed as part of the work of this thesis are also described throughout Chapter 5.  

 

Figure 3-9: Relationship between generalisation and model fit 
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3.10 Domain Considerations 

 

This section discusses specific issues for FDI within aircraft systems. These issues are not 

wholly unique and some are shared with most real world operation domains. There does 

though remain the necessity to adapt FDI methods to suit domain considerations – the most 

pertinent considerations for aircraft systems are described in the following: 

Sensor Failure – In highly engineered systems, such as aircraft EPS, the sensors are often 

more likely to fail than the monitored system itself. Hence, a FDI method needs to be able to 

identify sensor failures and to distinguish such failures from faults in the underlying system. 

Systems may employ a 3-fold sensor redundancy to identify sensor failure, although this 

approach is expensive in terms of weight and maintenance. Sensor fusion [128] is another 

viable solution that merges and interprets information from multiple sensors. Chapters 5 and 

6 highlight the ability of the EPSmart method to utilise sensor fusion techniques to 

accurately identify sensor failures. 

Fleet Variation – Aircraft EPS operate in extreme, highly variable environments. These 

extremities mean that specific vehicles in a fleet of aircraft may develop individual nominal 

and faulty behaviour. Additionally, maintenance inspection and repair standards may diverge 

from standards, potentially introducing new faults or altering the signature of nominal 

operating modes. Variations within conceptually identical systems emphasises the 

requirement for generalised FDI methods that can accurately operate across different 

operating conditions. 

System Transients – Nominal transients are inevitable in aircraft EPS. Transients are 

typically a result of: inductances generating large voltage excursions when circuits are 

switched on and off; in-rush currents during the start-up of electrical motors; and, nominal 

load changes causing potentially large, and sudden, changes in current magnitude. FDI 

methods must be robust to nominal transients and have the ability to discriminate between 

true faults and normal system dynamics. The potential for the IntelArc method to be robust 

against nominal system transients is described in Chapters 5 and 6. 

Mode Drift – Any complex system can be subject to drift in observables associated with 

single operating modes. In aircraft systems, the majority of drifts in observables during 

nominal conditions are a result of sensor degradation/ageing. A FDI method must identify 

these conditions to avoid false trips. Also, they should deal with the potential for fault modes 

to fall within the extended normal mode operations, and thus not be detected. 

Multiplicity of Modes – A variety of flight phases and functional requirements means that 

aircraft systems have multiple nominal operating modes. FDI methods must account for 
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different modes of operation to maintain accuracy. Multiple modes may also experience drift 

which may mask true operational conditions. The multiple model approach of the novel FDI 

methods proposed in Chapter 5 of this thesis will improve a health management systems 

realisation of different modes. 

These issues reveal some of the challenges involved with applying accurate FDI methods 

within an aircraft EPS environment. The methods proposed in this thesis, despite only being 

at a conceptual/prototype stage of development, address these challenges.  

3.11 Review of Significant Literature 

 

The chapter, so far, has described various FDI methods, where particular focus was given to 

data driven ML methods. The attributes of different ML techniques were described, and the 

motivations for basing the FDI methods proposed as part of the work of this thesis on HMM 

were explained. The previous section elaborated on the specific challenges of applying 

accurate FDI methods within an aircraft systems domain.  

Building on these discussions, this section reviews FDI methods available within the 

literature that have previously been proposed for application to aircraft systems. This begins 

with a general review, before going into greater detail on aircraft EPS FDI methods.  The 

section also reviews HMM applications; this includes a brief discussion on their use in 

solving more traditional problems [41], as well as how they have been adopted for FDI 

within engineering systems.  

This review of previous work contextualises the contributions of this thesis.  
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3.11.1 FDI Methods for Application to Aircraft Systems 

 

The majority of FDI within the aircraft systems domain is centred on assessing hardware 

faults in the flight control surfaces. There are numerous methods described within the 

literature for detection of: 

 locked ailerons [130];  

 sensor failures in accelerometers [131] and internal navigation systems [132];  

 failure of electromechanical control surfaces [133];  

 tail and wing damage [134].  

The rise in UAV has seen an increase in diagnosis of communication link failures [135]. 

All of these methods use a variety of model based and data based approaches, which have 

been summarised in Sections 3.4 - 3.8. Reference can be made to the extensive review in 

[136] for further reading on FDI methods for general aircraft system applications. 

Although a number of methods have been proposed in the literature, there still remains a 

wide gap between state-of-the-art intelligent FDI research and industry practice [136]. 

Aircraft fault diagnosis and protection methods are usually part of an integrated vehicle 

health management system that relies on either hardware redundancy or simple limit 

checking of sensor outputs with threshold values fixed on the basis of recorded flight data.  

Clearly, such approaches would not meet the objectives for FDI of degraded and arcing 

faults outlined in this thesis. Also, in general, there is a distinct lack of FDI methods 

proposed for application to aircraft EPS, possibly due to the perceived impact on 

certification. Considering the fact that EPS will become more critical for safe flight (see 

Chapter 2), there will be an increased requirement within future platforms for EPS 

faults/degradations to be diagnosed quickly and accurately.  

The following section describes FDI methods for specific application to aircraft EPS. 

3.11.2 FDI Methods for application to Aircraft EPS 

 

The majority of aircraft system FDI research has been focused on flight control surfaces and 

communication failures, with limited development of EPS specific methods. Within the 

general EPS domain, numerous intelligent FDI methods have been developed [39]. 

However, EPS deployed on aircraft, and other similar environments such as shipboards, 

exhibit different challenges to that of typical land based systems. Such unique challenges 

include harsh operating environments, a hybrid AC and DC distribution, and high 

penetration of power electronic conversion technology. 
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In an effort to support and accelerate the research of aircraft EPS health management 

technologies in a real world setting, NASA Ames Research Center developed the advanced 

diagnostic and prognostic test bed (ADAPT) [137]. The ADAPT is an EPS test bed that 

incorporates off-the-shelf components connected in a system topology that provides the 

functions typical of aerospace EPS. The test bed is capable of controlled insertion of faults in 

repeatable failure scenarios. The development of a diagnostic framework enabled various 

algorithms to be tested and compared and, in 2009, the First International Diagnostic 

Competition (DXC09) [138] used this framework to test FDI methods applied to the 

ADAPT. The competition was run again in 2010 (DXC10) [139]. The EPSmart method 

proposed in Chapter 5 was developed using data that was released by DXC10 – Chapter 5 

can be referred to for further information on ADAPT. Section 3.11.2.1 discusses a variety of 

methods that were proposed in DXC09 and DXC10.  

The review is not limited to discussion on methods for application to ADAPT. Significant 

aircraft EPS FDI methods previously described, including a dedicated program for such 

research, are discussed in Section 3.11.2.2. The discussion is extended to include FDI 

methods for EPS that have similar topologies, and challenges, as those deployed on aircraft, 

such as shipboard systems.   

3.11.2.1 FDI on ADAPT 

 

This section summarises selected FDI methods for application to the ADAPT. These systems 

were entered into the DXC09 and DXC10 diagnostic competitions. 

Daigle et al. [140] described a methodology that combined qualitative and quantitative 

models for fault diagnosis and classification.  Primarily, a quantitative observer model based 

on extended Kalman filters and bond graphs generates residuals for fault detection by 

comparing actual and predicted system behaviours. After the detection of a fault, a 

qualitative model employing symbolic representations of changes in impedance (similar to 

the QTA concept described in Section 3.6.1.3 is used for fault classification. The main 

advantage of this method is its ability to diagnose both AC and DC faults. A particular 

benefit is the detection of AC faults using sensors with only limited sampling frequency. The 

main issue with the proposed methodology is the requirement for extensive a priori 

knowledge of the ADAPT system, as the bond graphs model the physical connections of all 

components in the system. Also, the method was not extended for the detection of incipient 

fault conditions. 
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Narasimhan and Brownston [137, 141] proposed the hybrid diagnosis engine (HyDE), a 

form of model based diagnosis. The complete model contained 86 separate electrical 

component models connected according to the configuration of ADAPT. Component models 

consisted of variables (e.g. voltage/current/relay positions), different operating modes, and 

transitions between different modes. Updating the parameters of each component model 

using sensor observations enabled HyDE to infer system behaviour. This reasoning engine 

involved maintaining a set of fault candidates that are consistent with observations. Each 

candidate is tested for consistency as new observations become available. The drawbacks of 

HyDE are fairly self-explanatory – developing component models requires significant effort 

and knowledge. Also, the accuracy of HyDE in diagnosing incipient and intermittent faults 

was reduced by a high false positive rate. 

Mengshoel et al. [33] developed a probabilistic approach based on BNs and arithmetic 

circuits (ACI). The ADAPT topology was primarily described using a novel high-level 

modelling language; a program then automatically converted the high-level specification into 

a BN. The BN of the ADAPT network had 503 discrete nodes (sensor observations were 

discretised) and 579 edges. Nodes included health and evidence nodes. The BN was 

compiled into an ACI – converting to an ACI reduces the computational resources required 

during on-line inference, as the number of parameters and nodes are minimised. All of these 

stages were conducted off-line. Online FDI is achieved by clamping evidence to observed 

nodes and inferring the probability of various health nodes. The proposed method showed 

excellent diagnostic coverage over a range of fault types. However, once again, development 

involved detailed knowledge of system structure. Also, component failure rates, required for 

implementation of their approach, may not always be available. 

Gorinevsky et al. [142] developed a mathematical model based method for diagnosis of 

sensor and DC load faults on the ADAPT. The linear model combined state equations and 

observation equations. The state equations were modelled using Kirchhoff’s voltage and 

current laws; the observation equations were modelled using the voltage and current 

observations. Fault vectors are used in the state and observation equations to model the 

impact of load and sensor faults respectively - online FDI involves estimating these fault 

vectors. Testing results showed overall high diagnostic accuracy with an average time to 

diagnosis of 20ms. However, there were issues with incorrect diagnoses as a result of power 

converter dynamics. This suggests that the mathematical model may have to be extended to 

include nominal system transients. 

Other methods proposed for fault diagnosis on the ADAPT include SystemicsC and 

TARDEC [139]. SystemicsC combined a system model with case based reasoning for 
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inference – the method is based on the General Diagnostic Engine described by de Kleer and 

Williams [143]. The model generates conflicts when observed behaviour is not consistent 

with model behaviour. The hypotheses for generation of such conflicts are refined by 

mapping known conflicts to known faults.  

TARDEC is a two-tier method which primarily utilises statistical models to categorise 

sensor faults.  All detected sensor faults and other sensor observations are aggregated and a 

rule based system then infers the most likely cause of a fault. Fault parameters are also 

estimated to determine fault severity. Unfortunately, the nature of the TARDEC method - it 

was developed by a branch of the US Army - means that detailed information surrounding its 

operation is not in the public domain. 

While each method had associated benefits, the main overarching drawback of the majority 

of methods was the requirement for significant a priori knowledge on the topology and 

components of the ADAPT – none of the systems were entirely developed using system data 

alone. The novel EPSmart and IntelArc methods proposed in Chapter 5 of this thesis address 

this issue as development and application does not require such a priori knowledge and only 

system data is required.  

3.11.2.2 General Review of Aircraft and Shipboard EPS Fault Diagnosis 

 

A summary of relevant FDI methods proposed in the literature is described in this section. 

The section discusses the application of FDI methods to other compact, power dense EPS; 

such systems include general spacecraft and shipboard EPS. 

The aircraft electrical power systems prognostics and health management program [144] 

was developed by Dual Use Science and Technology and sponsored by the Air Force 

Research Laboratory. The objective of the program was to demonstrate health management 

technologies that ease real-time and maintenance issues to improve mission readiness of 

military aircraft, and dispatch reliability of commercial aircraft. The first phase of the 

program addressed FDI of electrical actuators, fuel pumps/valves and arc faults. The second 

phase addressed faults within the generation systems. A major objective of the program was 

to identify the data required to accurately diagnose fault conditions and retain a desired level 

of health management. This involved researching the generation of fault data using 

laboratory tests and the integration of diagnostic and prognostic algorithms into health 

management systems.  

Diagnostic systems for 135VDC brushless motor actuators and 270VDC supplied fuel 

pumps were developed based on the analysis of vibration and frequency signatures. 
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Integrating traditional off-line arc fault FDI methods into the power distribution units for 

online application was proposed. A prototype of this method was demonstrated for the 

detection of series and parallel DC arcing – Chapter 4 can be referred to for detailed 

discussions on arc fault diagnosis. Overall, the program stressed the requirement for 

intelligent FDI methods within aircraft EPS and researched ways in which this can be 

practically achieved [144]. 

Liu et al. [145] proposed an intelligent built-in-test system based on wavelet analysis and 

ANN. Built-in-test [146] provides an on-board, automated test capability to detect, diagnose 

and isolate faults – the general idea is similar to the health management system described in 

Chapter 2, Section 2.4.2. Essentially, it enables faults to be diagnosed without the 

requirement for external test equipment. The system proposed by Liu et al. used the WT for 

feature extraction and an ANN for classification of various generator and converter faults 

within an MEA representative EPS. Initial testing results showed the proposed system had an 

average accuracy of 98%. 

Cao et al. [147] proposed the combination of fault trees and an expert system for aircraft 

EPS fault diagnosis. Fault tree models of the power supply systems were developed. At the 

detection of a failure, or top event, the expert system is used to analyse the most probable 

cause of the fault. The limitations of expert systems were discussed in Section 3.6.1.1. 

FDI within a general EPS spacecraft system was proposed by Gonzalez et al. [152]. They 

outlined an intelligent power controller prototype with the ability to protect the EPS from 

degraded and overcurrent faults. To minimise real-time constraints, the proposed method 

acts as primary protection for degraded faults and backup for overcurrent faults. The method 

was developed for the ‘space station module power management and distribution 

breadboard’, a NASA DC test bed representative of a space station power system. A model 

of the test bed system was developed using Kirchhoff’s current law to determine current 

values throughout the network under a range of nominal scenarios. The model is used for 

FDI by analysing and applying expert knowledge following discrepancies between expected 

and observed system current values. The paper summarised tests which showed the methods 

ability to accurately isolate faults and enable recovery of power to critical loads if required. 

The paper also highlighted the requirement for global control of the system - where a single 

controller receives all sensor measurements – as opposed to local control, for FDI of 

degraded faults. 

Akin to the trend of MEA, shipboard systems have become more focused on the use of 

electrical energy for distribution to secondary sub-systems. Increasing dependence on 

electrical energy has resulted in a range of FDI methods being proposed for shipboard EPS. 
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Liu et al. [148] proposed a multi-agent system, where each agent monitors separate 

components within the EPS. Each agent in the system utilises model based diagnosis to 

determine both sensor and component faults. The paper also discusses the use of separate 

agents for different tasks (such as power quality monitoring, load shedding and network 

reconfiguration) to ensure reliable and optimal operation. 

A FDI method for medium voltage multi-terminal DC shipboard systems was proposed by 

Weillin et al. [149]. Similar to the method proposed for aircraft EPS described in [145], the 

method is based on WT for feature extraction and ANN for feature classification. The paper 

emphasises the challenges involved with FDI in multi-terminal DC systems - challenges 

include diagnosis of faults within compact networks with different distribution zones, as well 

as the overall higher safety requirements within such networks. The method proposed within 

the paper is developed to diagnose short circuit faults on the main DC bus and AC side of a 

rectifier and ground faults within the high-resistance grounded network. Energy levels of the 

extracted WT coefficients were selected as suitable input features for the ANN to classify. 

The method was trained using data from a real-time digital simulator, and was tested online 

using an experimental test bed. Testing showed high accuracy. The lack of explanation 

capabilities from the binary ANN output (see Section 3.9) is one limitation of the multiple 

fault diagnostic method.  

Weillin et al. [149] also give an excellent overview of proposed fault detection method for 

medium voltage DC networks - this includes discussion on other ANN based methods [150], 

active impedance estimation [151], and the use of power electronic converters for detecting 

and isolating short circuit faults [153]. 

3.11.3 HMM Applications 

 

The EPSmart and IntelArc FDI methods proposed as part of the work of this thesis are based 

on HMM. Consequently, this section briefly reviews previous HMM applications described 

within literature.  

HMM theory was first introduced by Baum and Petrie [161] in the late 1960’s, and the 

technique was first implemented for speech processing applications by IBM [162] in the 

early 1970’s. However, the fact that the theories were both difficult to apply in practice and 

confined to purely mathematical journals, meant that it was not until the mid-1980’s that 

they became a popular tool for solving a variety of problems. The more traditional 

applications of HMM are in areas such as speech, handwriting and gesture recognition [40, 

41, 154]. The tutorial by Rabiner [41] is recommended for a complete description of the use 

of HMM in these applications. 



74 

 

Attractive features, including: their inherent scalability; potential to infer the probability of 

multiple hypotheses; and, suitability for classifying time series input data under minimal 

computational burden, inevitably resulted in their application to other domains.  Examples of 

some applications include: 

 Rotating machine condition monitoring [42, 155]. 

 Classifying patterns in process trend analysis [111]. 

 Anomaly detection in nuclear reactor cores [157]. 

HMM based methods particularly relevant to this thesis are outlined in references [34, 158-

160]. These methods were all developed for FDI within either transmission or distribution 

network line disturbances. Each system is briefly described as follows. 

Abdel-Galil et al. [34] proposed a multiple-model HMM approach, where a separate HMM 

is trained for each class of power quality disturbance (similar to the framework illustrated in 

Figure 3-5). Disturbances included sags, swells, and transients within land based distribution 

networks. An unrecognised disturbance sequence is matched to each of the trained models. 

Classification is determined by the HMM which attains the highest score in the matching 

process. The paper describes the use of a discrete-density HMM, where a vector quantisation 

technique is used to discretise either WT or FT continuous feature vectors. The authors claim 

the discretisation process enables the system to distinguish between both slow and fast 

transient phenomena. They also claim the HMM based system is advantageous in terms of 

the minimal computation time, and the lack of re-training required (as a new disturbance 

class can be included readily in the classification procedure with the addition of a new 

HMM). The paper compared using FT and WT for extracting features from network voltage 

data. While both transformations provided high accuracy, they concluded that the WT was 

more suitable. 

Perrera and Rajapaske [158] also proposed a multiple-model HMM based method 

developed to determine if the presence of transients observed in transmission networks were 

a result of fault conditions. Training data was generated using simulations of a 765kV 

transmission network, and two separate HMM were trained corresponding to fault and non-

fault transient conditions respectively.  Fault transients included various phase-phase and 

phase-ground conditions. Non-fault transients included line switching, load switching and 

transformer in-rush. The classification system uses a range of WT decomposition and 

approximate coefficients as discriminative features. Application of the proposed system was 

tested in a hardware environment using a real-time playback waveform generator. Results 

showed 100% accuracy for non-fault test cases and 88% accuracy for fault test cases. 
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Average response time of the system was 6ms, although the majority of this time was 

calculating wavelet coefficients. 

Chung et al. [159] outlined a wavelet-packet based HMM method to diagnose fast 

capacitor switching, normal capacitor switching and impulse disturbances in a 7.2kV 

distribution line. Wavelet packet is an extension of the WT, where additional coefficients are 

extracted to obtain extra time-frequency information. The proposed method used wavelet 

packet coefficients extracted throughout each disturbance to train a separate HMM – a total 

of 11 HMM were trained for each condition. The system was tested using over 500 actual 

disturbance events recorded on a digital fault recorder – average accuracy across all tests was 

98.7%. 

These methods are important in the context of this thesis as they have shown the potential 

for HMM to accurately diagnose faults and classify disturbances in EPS. There was concern 

within the diagnostic community that applying HMM in less traditional application 

environments would yield less accurate systems. However, these papers have shown that 

high accuracy can be achieved on top of the benefits they have over other potential 

techniques (see Section 3.9).  

While the papers described in this section are important for highlighting their application 

to EPS, they only described diagnosis of AC based systems. Aircraft EPS have hybrid 

distribution and, as described in Chapter 2, DC is likely to become more prevalent. Chapter 5 

of this thesis describes EPSmart and IntelArc, HMM based methods for FDI of both 

intermittent and incipient faults within hybrid distribution environments and series arc faults 

within DC supplied systems. Utilising HMM for solving such problems has not previously 

been researched.  

3.12 Chapter 3 Conclusions 

 

This chapter introduced the theory of fault diagnostic systems based on intelligent FDI 

methods. This included a general description on the main objectives of fault diagnostic 

systems and the different methods that enable such objectives. The increased volume of EPS 

data expected to be generated within MEA has resulted in the thesis focusing on quantitative, 

data driven methods. The chapter emphasised that intelligent FDI methods based on ML 

techniques have the potential to efficiently, and reliably, interpret network 

behaviour/condition through analysis of the extensive volumes of generated data. The 

attributes of various ML techniques were compared, and the chapter summarised why HMM 

were selected as the basis for the FDI methods proposed in this thesis.  
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Existing FDI methods applied to an aircraft EPS domain were reviewed to help place in 

context the contributions of this thesis. This review established that there is a lack of FDI 

methods specific to this domain and the majority of EPS still rely on local control and basic 

overcurrent fault protection methods.  The review focused on methods developed and 

applied to NASAs ADAPT test bed, which was designed to accelerate development of 

diagnostic algorithms for aircraft EPS - the EPSmart method proposed in Chapter 5 this 

thesis was validated using data from the ADAPT. The majority of methods reviewed were 

model based, which have the specific disadvantage of requiring a priori knowledge of 

system topology and components - data based methods are beneficial in this sense as they do 

not require this form of a priori knowledge. FDI methods for application to shipboard and 

other similar microgrid topologies were briefly discussed. The chapter also reviewed HMM 

based methods applied for FDI and disturbance classification within the general EPS 

domain; these methods were all developed for main grid transmission and distribution 

applications, and thus focused only on AC distribution. The FDI methods proposed as part of 

the work of this thesis are developed for both hybrid AC/DC aircraft EPS and for series DC 

arc fault diagnosis. 

Overall, the chapter has described important theories of FDI methods based on data driven 

ML techniques, particularly HMM. This facilitates easier understanding of the EPSmart and 

IntelArc methods proposed in Chapter 5. 
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4. ARC FAULT CHARACTERISTICS, 

MODELLING & DETECTION 
 

 

 

he arc fault was introduced in Chapter 2. The main causes of such events occurring in 

aircraft and difficulties in protecting against them were outlined. The IntelArc method 

described in Chapter 5 is proposed specifically for diagnosis of series arc conditions and, to 

provide further insight into this particular type of fault, this chapter fully elaborates on them.   

This includes: 

 A description of their electrical characteristics. Present knowledge of arcing has been 

largely developed based on the observation and analysis of electrical measurements 

during test conditions. The electrical characteristics are essential to defining the 

complex arcing phenomenon in power systems [165]. Numerous studies, spanning 

decades of research, are available in literature – the main studies relevant to this 

research are summarised within the chapter. 

 The description, and validation, of a series DC arc fault model. The model was used 

for generation of synthetic current and voltage data during simulated arcing events. 

Appreciation of electrical characteristics of arcing described within literature is 

necessary for validation of model accuracy. 

 A summary of existing arc fault detection methods. 

T 
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Synthetic data generated from the fault model was used throughout development of the 

IntelArc method, and fault model validation is necessary to confirm the accuracy of 

simulated arc fault data. The discussion on existing detection method enables deeper 

understanding of the IntelArc method proposed as part of the work of this thesis.   

4.1 The Arc Fault 

An arc fault is a self-sustaining luminous discharge of electricity through conductive ionized 

gas across a gap in a circuit or between conductors. This process is simplistically illustrated 

in Figure 4-1. Arc faults are initiated when there is sufficient ionisation of the air gap 

between two conductors such that their voltage difference exceeds the dielectric breakdown 

voltage.  

 

Figure 4-1: Arc fault across an air gap between conductors 

 

 

Figure 4-2: Ionisation in the column as a result of increased temperature frees electrons from atoms. 

Free electrons flow to the anode and positively charged ions flow to the cathode. The anode and 

cathode regions are accumulations of electrons and ions respectively – they are typically about 

0.01mm with a potential difference of 10V. Arc current in the form of positive ions in the gas is 

transitioned to the metal conductor cathode where current flow is in the form of electrons. 
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Electrical properties of an arc are illustrated in Figure 4-2 [166]. The arc consists of three 

regions: the anode region, the plasma column, and the cathode region. The electrode regions 

form the transition regions between the gaseous plasma cloud and the solid conductors. 

Thermal ionisation within the gas column frees electrons from atoms that, under the force of 

an electric field (voltage), create a flow of current between the conductors [167].  

The voltage profile across an arc consists of voltage drops across the anode and cathode 

regions and across the column itself. Voltage across the arc column depends on the arc 

length – as convection forces the conductive plasma to bow upwards, arc length will usually 

be longer than the electrode gap itself [165]. 

Arc faults are usually initiated when two conductors are separated8 and a large electric 

field appears across the small air gap. ‘Normal’ arcing occurs during mechanical switching 

operation of CBs and contactors [169]. These devices are designed to withstand arc 

formation and normal arcing is typically highly transient and unsustainable.  

Conversely, arc current through the gas column during fault events may be fully sustained 

between two separated conductors. High heat generated during fault events often leads to 

partial volatilization of the conductors and increases the risk of fire [170].  

 The separation of conductors can occur in a variety of ways and, accordingly, arc faults are 

classified as follows [171]: 

 Constant Speed Fault – Electrodes are separated at a constant speed with 

incrementally increasing distance. 

 Fixed Distance Fault – Constant speed fault where the electrode gap eventually 

dwells at a fixed distance. 

 Accelerated Fault – Fast separation of electrodes e.g. a conductor physically 

breaking. 

Arc faults are also classified in terms of their location with respect to load. 

Series arc faults occur in series with loads at unintended points of discontinuity within an 

electrical circuit [84]. These circuit imperfections often emerge as a contact separation or 

loose connection– in aircraft, vibration often results in series arcing being intermittent. These 

faults are particularly difficult to detect as low values of arc resistance produce only minimal 

changes in system current and voltage levels [171] – the novel IntelArc method is designed 

to detect these faults and is a main contribution of this thesis. 

                                                      
8 In the case of wet arc tracking [168], conductors may not have to contact at any point 
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Parallel arc faults occur between two conductors in parallel with the load. These can be a 

result of wet arc tracking, or of wires with damaged insulation temporarily contacting. These 

events primarily lead to a high impedance arc that melts and carbonises the insulator. This 

forms a low impedance path between the conductors [172] and effective short circuit of the 

load. 

4.1.1 Comparison of AC and DC arc faults 

Behaviour throughout arcing events is dependent on the nature of the electrical source. AC 

power has a natural current and voltage zero. In the time-domain, a distinct characteristic of 

an AC arc is the arc extinguishing after current zero. This feature is illustrated in the current 

waveforms in Figure 4-3. 

Zero current flows in the time between arc extinguishing and re-ignition. Duration of zero-

current flow depends mainly on electrode gap distance and the condition of the plasma itself. 

Plasma resistivity decreases in the presence of previous arcing, resulting in a decreased re-

strike voltage and therefore shorter current gaps. Highly inductive loads reduce the duration 

of the current gap through limiting the rate of change of current through the gap [173].  

Re-strike voltage is also dependent on the distance between electrodes – increased 

electrode distance usually requires a greater voltage to re-ignite the arc. Arc re-ignition 

involves steep current edges, where rate of change depends on current gap duration and on 

the connected load.  

In series AC arcing (Figure 4-3 (b)), where the electrode gap is usually much smaller, 

current flow may not be interrupted during current zeros as drops of molten copper from the 

previous arc may bridge the gap [173]. Also, rate of change of current after re-ignition is less 

stable in comparison to parallel faults. 

In DC supplied systems, there is no natural current zero. As a result, arcing conditions are 

more sustainable and, potentially, more dangerous [174, 175]. A typical arc current 

waveform in a DC system is illustrated in Figure 4-4 where arcing over a sustained period is 

evident.  

Natural arc extinction in DC systems is usually a result of: 

• Excessive cooling of the plasma under high-voltage, low current conditions. 

• Increase in distance between electrodes. 

• Increase of arc voltage above supply voltage. 

The accurate detection of arcing events in both AC and DC systems is vital to minimising 

the risk of fire to surrounding insulation or other flammable materials. 
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Figure 4-3: Typical arc current waveforms for AC faults of (a) Parallel fault and (b) Series fault 

 

 

Figure 4-4: Typical arc current waveform for a series DC fault 

(a) 

(b) 
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4.1.2 Detection Issues within Aircraft EPS 

Current magnitudes of series and parallel arc faults relative to typical nominal load current 

ratings are illustrated in Figure 4-5. Series arc fault current is limited by load impedance and 

is therefore within the range of rated current and significantly below relay thresholds. 

Parallel arc fault current is usually characterised by a high impedance (lower fault current) 

stage preceding the formation of a low impedance short circuit path. 

 

Figure 4-5: Fault ranges for parallel and series arc faults [176]. Lower current magnitudes often result 

in traditional overcurrent protection devices (CB's and relays) not detecting arc faults 

Fault current levels, particularly during series events, highlight the detection challenges. 

Fault current magnitudes being within, or even below, rated values leads to the requirement 

for detection methods to discriminate between fault events and normal load transients. In 

conventional aircraft EPS, this challenge is theoretically simplified as the majority of loads 

on a given circuit are fixed by design and transient variations are minimised [85]. This is not 

the case for MEA EPS, where loads are likely to be more dynamic to meet varying demand 

throughout flight phases.  

Altitude impacts the nature of arcing events, particularly in DC systems. High altitude 

reduces the number of gas molecules in the arc column and induces rapid diffusion of the 

localised, high-temperature ionized gases needed to sustain the arc. This results in arcs 

extinguishing at shorter gap lengths at lower pressure, and therefore greater difficulty in 

detection [192]. Less sustainable, intermittent series arcing in DC systems can also be a 

result of in-flight vibrations.  

With respect to parallel arcing, the absence of a neutral conductor within aircraft means 

arcing to ground is particularly difficult to detect. AFCBs [85], which detect arcing shorts 

from line-to-line, have been developed. AFCB devices monitor line voltages and currents to 

detect parallel arcing signatures and incorporate the signatures of normal transient events 

such as arcing at motor brushes/CBs, inrush starting currents and load changes to minimise 

false detection rates of arcing events. However, AFCB’s are limited to application in AC 

distribution systems. 
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This limitation highlights the importance of developing arc fault diagnostic methods that 

can be applied accurately within DC systems. Aircraft will increasingly rely on DC 

distribution. Technology that can determine the presence of difficult to detect, and 

potentially dangerous, events within this form of distribution is critical to its evolution. 

This research focuses, as one of its objectives, on the design and development of IntelArc, 

a series DC arc FDI method. Some of the challenges of meeting this objective have been 

outlined. Section 4.3 describes a validated series DC arc fault model that was used 

throughout development of IntelArc.  

To validate the simulation model, it is necessary to first outline arcing characteristics and 

models that have previously been defined within literature. 

4.2 Arc Fault Electrical Characteristics and Modelling 

Arc faults are modelled in terms of either their underlying physical processes [177] or their 

electrical characteristics [165]. Physics based models combine electromagnetic, fluid 

dynamic and thermodynamic equations to form systems of differential equations. The 

physics of arcing phenomenon is complex and the constants are hard to define for real-world 

arcing faults in power systems.  

Electrical based models [178] capture arc effects on electrical circuits and are developed 

around electrical characteristics that have been defined through observation of empirical data 

[171]. They are more simplistic and useful in the power system context in comparison to 

physics based models. 

Usually a ‘black box’9 technique is used, where the arc is modelled as an equivalent 

electrical circuit/component, usually impedance. This technique often adopts a heuristic 

approach [171], where mathematical relationships are used to correlate V-I model outputs 

with empirical observations. 

This section summarises both the electrical characteristics of arc faults and various 

electrical models that have been developed.  

4.2.1 Electrical Characteristics 

Arcs existing at fault points are described as ‘long arcs in still air’ [169] that exhibit highly 

complex, non-linear behaviour.  

In general, electrical characteristics of arcs depend on a variety of factors, including: 

 Length of electrode gap 

                                                      
9 A black box model is viewed in terms of only its inputs and outputs and the internal processes of the 

model are not required for use/application. 
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 Electrode material  

 Ambient conditions (e.g. air pressure and type of gas) 

Arcs are commonly associated with a voltage profile across the arc plasma that is 

dependent on the length of the arc. Voltage gradients (Volts/Arc length) were defined by 

Strom [179] for various arc currents - these are outlined in Table 4-1. Limited variation in 

voltage gradients across large ranges of currents led many researchers to the conclusion that 

it is essentially independent from arcing current.  

 

Table 4-1: Average voltage gradients defined by Strom 

Arc Current Average Voltage Gradient 

< 5kA 12.2 – 13.0V/cm (31-33V/in.) 

10 kA – 20 kA 15.0V/cm (38V/in.) 

68 A – 21.75kA 13.4V/cm (34V/in.) 

 

However, extensive research has proven that V-I behaviour for fixed length gaps is both 

inverse and non-linear at very low current levels. 

4.2.1.1 Arc V-I Relationships 

Figure 4-6 illustrates the general V-I characteristic for an arc with fixed length electrode gap.  

 

Figure 4-6:  V-I characteristic for arc with fixed electrode gap. Note the two distinct regions and the 

current transition level that marks the boundary between the regions. 
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Two distinct regions exist in the V-I characteristic: 

1) Inverse region – at lower current magnitudes, the voltage drops as arc current 

increases. 

2) Constant Voltage region – at higher current magnitudes, voltage increases slightly as 

arc current increases (in agreement with Strom’s theory). 

Within the inverse region, arc power remains relatively constant. In the constant voltage 

region, power increases with arc current. Indeed, instantaneous arc power tends to exhibit 

greater stability in comparison to arc current and voltage. Voltage and current can fluctuate 

significantly – a minor fluctuation in arc voltage is accompanied by an opposite fluctuation 

in current delivered by the power supply. However, when power is taken as the measure, the 

voltage and current instabilities are cancelled out, and the measure is more constant.  

Differences in V-I behaviour at low and high values of arc current are mainly attributed to 

the dominance of natural convection forces at lower current levels being overtaken by 

magnetic convection at higher current levels [180, 184]. Stokes [180] quantified the 

transition level, 𝐼𝑡, between low current behaviour and high current behaviour as: 

 

𝐼𝑡 = 10 + 0.2𝐸𝑔𝑎𝑝 

 

Where 𝐸𝑔𝑎𝑝 is the distance between electrodes in millimetres (mm). For shorter gap 

lengths (≈ 0.01 to 30mm), the current transition level is ≈ 10-13 Amps. This level is in 

agreement with Solver [165], who determined that, for shorter gap lengths, arc voltage is 

almost entirely dominated by the anode and cathode voltage drops, and therefore exhibits 

constant magnitudes for a range of currents above roughly 10A.  

Other research [181, 182] determined the transition level to be higher (≈ 50-100A), and not 

related to electrode gap. Tendency to overemphasise inverse V-I characteristics was 

probably a consequence of the difficulty for early researchers to measure high current arcing. 

The availability of low-power supplies meant most studies were conducted in low current 

ranges and results read across to higher current scenarios. 

Other factors affecting V-I behaviour includes: 

 Electrode material – different materials affect overall arc voltage. Minimum voltage 

required for stable arcing is also dependent on electrode material. 

 Electrode configuration – horizontal and vertical arcs in air are affected differently 

by convection forces. 

(4.1) 
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V-I characteristics derived from the research cited within this section are summarised in 

Section 4.2.2. 

4.2.1.2 Impedance Characteristics 

The majority of experimentation (see Section 4.2.2) observed near simultaneous changes in 

arc current and arc voltage. This indicates that arc impedance is mostly resistive in nature.  

The main characteristics of arc impedance include: 

 Non-linear resistance-current (R-I) behaviour, with significantly increased resistance 

at lower current levels. 

 Near constant resistance for a given electrode gap at high current magnitudes.   

 For a given arc current, arc resistance increases linearly with electrode gap. 

These characteristics are illustrated in Figure 4-7. 

Arc resistance for current levels above and below a transition level, were quantified by 

both Stokes [180] and Paukert [181]. These are described in Section 4.2.2. Comparison 

between these empirically derived arc resistance formulas and arc resistance from the 

developed MATLAB Simulink [227] fault model is also provided in Section 4.3.3.3.  

 

 

Figure 4-7: Arc R-I characteristics 
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4.2.1.3 Time & Frequency Domain Characteristics 

Time domain examples of AC and DC arcing current were illustrated in Figures 4.3 and 4.4 

respectively. These simple examples highlight the chaotic and random behaviour of arcing 

events, particularly in DC systems. In AC systems, natural current zeros result in more 

consistent, even periodical, time domain signatures. DC arcing behaviour is characterised by 

random unsuccessful arc quenches [171, 174] throughout more sustained arcing periods. Arc 

voltages and currents are often highly unstable, where voltage spikes and current notches 

represent unsuccessful quenching. 

Such chaotic time domain features translate to arcing events exhibiting an expansive 

frequency range, which extends from the lowest DC components up to radio, microwave, 

infrared and light spectra. Numerous detection methods are based on the identification of 

high frequency components which may be indicative of arcing events. These are discussed 

further in Section 4.4.4.2. An excellent discussion on the frequency domain characteristics of 

arcs is provided in [183]. 

4.2.2 Significant Arc Fault Studies & Models 

Table 4-2 summarises some of the key studies that have contributed to knowledge of 

electrical characteristics of arcing and determined specific equations and models. The 

summary includes a description of the types of experiments conducted within each study. 

The majority of studies outlined in Table 4-2 are particularly relevant to this research as 

they included DC arcing conditions. Other models based on electrical characteristics have 

been developed, most notably Cassie and Mayr models [218]. Mayr assumed a constant 

power loss in the arc, while Cassie assumed a constant arc voltage. The research in this 

thesis is focused on series DC arc faults, where contacts are drawn apart. Changing arc 

length means both arc voltage and power are not constant. The Cassie and Mayr models are 

therefore not suitable for the considered fault cases. 

Within the described studies, only Uriarte [171] designed test conditions exclusively 

concentrating on both DC and series arc faults.  Consequently, the Simulink fault model that 

was developed for generation of synthetic arc current and voltage data was significantly 

based on Uriarte’s derived model.  

The following section describes the fault model and validates its output against the other 

studies. 
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Table 4-2: Outline of Key Selected Arc Fault Studies and Models 

Study (Year) Experiments Arcing Characteristics Derived Models 

Ayrton  

(1902) [185] 

Arcs initiated between carbon electrodes 

separated by a few mm. Formulated first 

known equation to model electrical 

properties of arc. All early arc models [24] 

were based on a limited number of low-

current tests.  

Early research assumed empirical constants 

affect arcing behaviour. This was later 

disproved [25] in research that showed 

constants are in-fact dependent on arc 

conditions. 

𝑉𝑎𝑟𝑐 = 𝐴 + 𝐵𝐿 +
𝐶 + 𝐷𝐿

𝐼𝑎𝑟𝑐

 

 

Where A is electrode voltage drop, B is voltage 

gradient, L is arc length and C and D are the 

empirical constants that model the non-linear 

characteristic.  

Hall, Myers & Vilicheck [182] 

(1978) 

Evaluated arc faults on DC trolley systems 

used in the mining industry. Over 100 tests 

using 300VDC supply with currents 

ranging from 300-2400A and electrode gap 

widths from 4.8 to 152mm 

Non-Linear V-I characteristic. Voltage 

remained constant at ≈ 50V for arcing 

currents over 800A. Once an arc was 

established, gap increased sufficiently to 

self-extinguish. Current and voltage 

contained high frequency components. 

Inductance in circuit reduced high 

frequencies in current. 

Modelled V-I characteristic with inverse 

behaviour below 500A and extremely inverse 

behaviour below 200A.  

Stokes & Oppenlander [180] 

(1990) 

Arc current and voltage recorded for 

vertical and horizontal DC arcs burning 

with exponentially decaying current from 

1000 to 0.1A and 50Hz AC arcs with 

currents ranging from 20kA to 30A. 

Voltage supply ranged from 6kV to 

100kV. 

Significant fluctuations in arc current and 

voltage. Inverse V-I characteristic below a 

transition current, which is determined by 

electrode gap and is ≈ 10-12A for small gaps 

-  arc voltage increase slightly for currents 

above the threshold. Formulated minimum 

arc voltages required for stable arcing. 

𝑉𝑎𝑟𝑐 = (20 + 0.534𝐸𝑔𝑎𝑝)𝐼𝑎𝑟𝑐
0.12 

 

𝑅𝑎𝑟𝑐 =
20 + 0.534𝐸𝑔𝑎𝑝

𝐼𝑎𝑟𝑐
0.88

 

 

Where 𝐼𝑎𝑟𝑐  > transition current 

Paukert [181] 

(1993) 

Compiled published arcing fault data from 

seven researchers who conducted a wide 

range of DC and AC tests. Arcing currents 

ranged from 0.3A to 100kA and electrode 

gaps ranged from 1 to 200mm. 

Inverse V-I and R-I characteristics across the 

range of electrode gaps for lower current 

values (<100A). Transition arc current of ≈ 

100A, at which characteristics become 

positive. 

Formulated arc-voltage and arc resistance 

equations for various electrode gap widths. Two 

sets of equations- one for arcing currents below 

transition value and the other for above. 

Uriarte et.al. [171, 188] 

(2012) 

Staged series arc faults on a DC microgrid 

at voltage levels up to 1kV and currents in 

excess of 100A. 

At fault onset, initial arc voltage is equal to 

the anode and cathode voltage drops – as 

electrode gap increases, voltage across the 

arc column also increases. Several voltage 

spikes are observed in the voltage trajectory 

which represents unsuccessful arc quenches. 

Eventually, a critical gap distance is reached, 

and the arc extinguishes. 

Modelled the dynamic components of arc 

voltage and current with a hyperbolic 

approximation, which represents contacts 

separating, and a rectangular pulse, which 

represents the electrode voltage drops. 
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4.3 DC Series Arc Fault Model – Design and Validation 

The fault model described within this section is based on the empirically derived model 

developed by Uriarte et al. [171].  The mathematical model (detailed in [171]) was 

developed to correlate its output with experimental observations. Experimental data was 

generated through the staging of faults on a DC microgrid test bed [188, 189]. The horizontal 

series faults were initiated through the separation of two conductors that were previously 

contacting - this is a method commonly applied within literature [190] and is recommended 

in arc fault detection standard UL1669B [191]. Voltage and current trajectories from the 

numerous faults staged on the test bed were used to develop a generalised fault model that 

showed consistency across various source and load conditions.  

This section describes the development of a fault model in MATLAB Simulink that was 

based on the mathematical equations determined by Uriarte et al. Comparison of the 

developed fault model with the other arc models described in Section 4.2.2 allowed 

validation of model accuracy.  

4.3.1 Summary of Empirically Derived Model  

The arc model is essentially a hyperbolic approximation of the dynamic arc voltage and 

current.  Basic elements of the model - voltage, current, and resistance - are illustrated in 

Figure 4-8 and described in the following.

 

Figure 4-8: Basic elements of arc fault model 

4.3.1.1 Gap Voltage 

Gap voltage, 𝑉𝑔𝑎𝑝 is decomposed into a non-linear hyperbolic tangent function 𝑉𝑞 and an 

electromotive force (EMF) pulse term, 𝑒𝑔𝑎𝑝: 
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𝑉𝑔𝑎𝑝 = 𝑉𝑞 + 𝑒𝑔𝑎𝑝 

The decomposition of 𝑉𝑔𝑎𝑝 is shown in Figure 5-9. The contribution of both the hyperbolic 

function and EMF pulse to total gap voltage is dependent on a distance ratio, 𝑞, where: 

𝑞 =
𝑋𝑔𝑎𝑝

𝑋𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
 

𝑋𝑔𝑎𝑝 is the electrode gap and 𝑋𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 marks the boundary between the arcs burning and 

quenching stages. At the point where 𝑋𝑔𝑎𝑝 = 𝑋𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 𝑞 = 1, and the arc quenches.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑉𝑔𝑎𝑝 is dominated initially by 𝑒𝑔𝑎𝑝 – as 𝑞 increases and the arc begins to collapse, the 

voltage profile then becomes dominated by 𝑉𝑞. In this sense, 𝑒𝑔𝑎𝑝 represents the electrode 

voltage drops while 𝑉𝑞 represents voltage across the column increasing as the electrode gap 

increases. 

Both 𝑉𝑞 and 𝑒𝑔𝑎𝑝 are modelled mathematically and are dependent, not only on distance 

ratio, but also on supply voltage, 𝑉𝑑𝑐 : 
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𝑉𝑔𝑎𝑝 = 𝑉𝑞 + 𝑒𝑔𝑎𝑝  

 

𝑉𝑞  

𝑒𝑔𝑎𝑝  

 

Figure 4-9: Decomposition of 𝑽𝒈𝒂𝒑 

(4.2) 

(4.3) 



91 

 

 𝑉𝑞 is approximated with a hyperbolic tangent function 

 

𝑉𝑞 = 𝑉𝑑𝑐  (
1

2
+

1

2
tanh(𝛼(𝑞 − 1))) = 𝑉𝑑𝑐 (

𝑒2𝑞𝛼

𝑒2𝛼+𝑒2𝑞𝛼) 

where α is a variable that controls the slope of 𝑉𝑞. 

 𝑒𝑔𝑎𝑝 is approximated as a rectangular pulse of amplitude 𝑎 + 𝑏𝑋𝑔𝑎𝑝: 

 

𝑒𝑔𝑎𝑝 =
1

2
(𝑎 + 𝑏𝑋𝑔𝑎𝑝)(tanh(𝜆𝑞) − tanh(𝜆(𝑞 − 1))) 

 

where λ controls the rate at which 𝑒𝑔𝑎𝑝 rises and decays. 

A description on modelling the voltage functions in Simulink, as well as suitable values for 

the control variables α and λ, is provided in Section 4.3.2 and Appendix A. 

4.3.1.2 Gap Current 

Gap current, 𝑖𝑔𝑎𝑝, is similarly decomposed into a non-linear hyperbolic tangent function, 𝑖𝑞, 

and a step function 𝑗𝑔𝑎𝑝, where:  

𝑖𝑔𝑎𝑝 = 𝑖𝑞 − 𝑗𝑔𝑎𝑝 

These components are illustrated in Figure 4-10. 
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Figure 4-10: Decomposition of 𝒊𝒈𝒂𝒑 
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𝑖𝑔𝑎𝑝 exhibits an opposite effect to 𝑣𝑔𝑎𝑝, where current decreases with increasing distance 

ratio. Accordingly, 𝑖𝑞, is approximated with a negative hyperbolic function: 

𝑖𝑞 = 𝐼𝑙𝑜𝑎𝑑  (
1

2
−

1

2
tanh(𝛼(𝑞 − 1))) = 𝐼𝑙𝑜𝑎𝑑 (

1

1 + 𝑒2𝛼(𝑞−1)
) 

where 𝐼𝑙𝑜𝑎𝑑 is load current prior to the fault.  

𝑗𝑔𝑎𝑝 models the decrease in current as a result of 𝑒𝑔𝑎𝑝 and is approximated by: 

𝑗𝑔𝑎𝑝 =
𝑒𝑔𝑎𝑝

(𝑅𝑔𝑎𝑝 + 𝑅𝑙𝑜𝑎𝑑 + 𝑅𝑠𝑦𝑠𝑡𝑒𝑚)
≈

𝑒𝑔𝑎𝑝𝐼𝑙𝑜𝑎𝑑

𝑉𝑑𝑐
 

where 𝑅𝑔𝑎𝑝 is  the gap impedance and 𝑅𝑠𝑦𝑠𝑡𝑒𝑚 is the generator and line impedances. 𝑅𝑙𝑜𝑎𝑑 is 

significantly greater than both 𝑅𝑔𝑎𝑝 and 𝑅𝑠𝑦𝑠𝑡𝑒𝑚 ,  allowing 𝑗𝑔𝑎𝑝 to be fully approximated by 

load current and supply voltage. 

4.3.1.3 Gap Impedance 

𝑅𝑔𝑎𝑝 is resistive and is approximated by: 

𝑅𝑔𝑎𝑝 =
𝑉𝑞

𝑖𝑔𝑎𝑝
=

𝑉𝑞

𝑖𝑞 − 𝑗𝑗𝑎𝑝
≈

𝑉𝑑𝑐

𝐼𝑙𝑜𝑎𝑑
𝑒2𝛼(𝑞−1) 

The influence of 𝑗𝑔𝑎𝑝 in 𝑅𝑔𝑎𝑝 was found to be negligible, allowing a much simpler 

expression without loss of accuracy. Note, from Figure 4-8, 𝑅𝑔𝑎𝑝 only considers the non-

linear impedance and not the impedance associated with the EMF pulse term. 

4.3.1.4 Arc Randomness 

Non-intermittent fluctuations in both 𝑉𝑔𝑎𝑝 and 𝑖𝑔𝑎𝑝 are a result of unsuccessful arc quenches 

(see Figure 4-12). The unsuccessful arc quenches result in a sudden increase in arc voltage 

and a corresponding decrease in arc current. These fluctuations are modelled by randomising 

the distance ratio, 𝑞, to produce rapid changes in voltage and current. As the electrode gap is 

a measurable distance, randomising q essentially randomises the critical distance at which 

the arc quenches (where successful arc quenching is modelled if 𝑞 ≥ 1). 

Details on modelling a random 𝑞 value in Simulink are provided in the following section 

and in Appendix A. 

(4.7) 

(4.8) 

(4.9) 
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4.3.2 Simulink Series DC Arc Fault Model 

An outline of the arc fault model developed in Simulink is provided in Figure 4-11. 

 

Figure 4-11: Outline of Simulink arc fault model 

The model accepts user inputs of various electrical system and arc fault parameters – these 

are used to calculate 𝑉𝑞 and 𝑒𝑔𝑎𝑝, which are combined to model the arc voltage. The arc is 

modelled solely as a voltage - the arc current and resistance can be effectively deduced from 

the voltage. The model process is updated at each simulation time step to model the highly 

dynamic arc voltage. 

The Simulink model is described fully in Appendix A.    

4.3.2.1 Model Outputs 

An example of modelled voltage during a fixed distance arc fault is illustrated in Figure 4-12 

(a). Corresponding arc current and power are shown in Figure 4-12 (b) and 4-12 (c).  

Prior to the series fault developing, voltage across the conductor represents line impedance 

losses – voltage loss is usually < 0.001 p.u.. At fault onset, the development of a conductive 

gap within the conductor results in an arc voltage of 0.05 - 0.1 p.u.. This voltage gradually 

increases as the electrodes separate – the rate of increase is relative to speed of electrode 

separation. As the electrodes dwell at a fixed distance, voltage remains at a constant base 
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level, with spikes representing unsuccessful arc quenches. When the arc extinguishes, the 

gap becomes an open circuit, and supply voltage (1 p.u.) is impressed across the gap.  

A distinct arc current feature is the reduction in current at fault onset. The series nature of 

arc faults means that arc current and load current are the same entity. Before a fault 

develops, current is limited by load and line impedance, and current is ≈ 1 p.u. At fault onset, 

current decreases in proportion to the arc voltage increase across the gap – the arc current 

notches represent the unsuccessful arc quenches, and are simultaneous to the arc voltage 

spikes. With the arc becoming an open circuit upon extinction, current ceases to flow 

through the gap. 

Arc power is a product of arc voltage and arc current. The corresponding increase and 

decrease of these elements results in arc power being limited – typically arcs will not be 

sustained beyond 0.25 p.u. range although this level may slightly increase with the presence 

of reactive elements providing stored energy to the arc.     

The arc voltage, current and power features described are typical of the model output. 

However, it should be noted that the features illustrated in Figure 4-12 are just one example 

– the random elements in the model mean that, whilst maintaining the same general 

characteristics, certain model outputs (e.g. duration of arc, frequency of quenching) vary 

between separate simulations.  

The general characteristics of the model are validated in the following section. 
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Figure 4-12: Plots of simulated fixed distance arc fault data. (a) Arc Voltage (b) Arc Current (c) Arc Power 
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4.3.3 Simulink Arc Fault Model Validation 

Model validation is necessary to confirm the accuracy of fault data generated from the 

model. Previous arc fault models were outlined in Table 4-2 – this section compares those 

models (and others) with the developed Simulink model to validate accuracy. 

4.3.3.1 Voltage Gradient 

Arc voltage gradients were defined by both Strom (Table 4-1) and Browne [184]. Strom 

defined an average voltage gradient in the arc column of 13.4V/cm while Browne 

determined arc column voltages of 12V/cm above an arc current transition level. Figure 4-13 

illustrates a comparison of these levels against the average voltage gradient of the developed 

Simulink model. 

 

Figure 4-13: Comparison of model voltage gradient against gradients defined by Strom and Browne 

 

Average voltage gradient of the model was ≈ 10V/cm. Despite exhibiting slightly lower 

values, there is good agreement with both Browne and Strom’s models, particularly for 

smaller electrode gaps.  
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4.3.3.2 V-I Characteristics 

V-I characteristics of fixed length arcs were described as having inverse non-linear 

behaviour below a current transition level; for currents above this level, voltage increased 

only minimally with current. Conflicting transition values were defined in the literature (see 

Table 4-2). Stokes and Solver defined this value to be in the region of 10-13A for small 

electrode gaps, while other research determined levels significantly higher.  

Evaluation of model V-I behaviour showed minimal agreement with the lower arc current 

characteristics - non-linear inverse behaviour was not evident below a current transition 

level. In general, arc voltage remained relatively stable across increasing current ranges for 

fixed electrode gaps.  

Figure 4-14 outlines model V-I outputs; voltage stability across the range of current levels 

is illustrated. Although it does not possess inverse non-linear behaviour at low current levels, 

the model does still accurately characterise voltage for higher current ranges. In this sense, 

an associated caveat of the model is that voltage output at currents below roughly 10A are 

less accurate.  

This would be a significant issue if gaps sufficiently greater than 30mm were being 

considered (as current transition level would be >> 10A – see Equation (4.1)). As such, the 

model should ideally be used for conditions with arcing current greater than 10A and 

electrode gaps limited between 1 to 30mm. 

  

Figure 4-14: Model V-I Characteristics 
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4.3.3.3 Arc Impedance 

Arc impedance characteristics were outlined in Section 4.2.1.2. Paukert [181] and Stokes 

[180] defined models that quantified the arc impedance.  Comparisons between model 

impedance and Paukert and Stokes formulas for various electrode gaps are provided in 

Figures 4-15 and 4-16 respectively. 

 

Figure 4-15: Comparison of Model Impedance with Paukert’s Empirical Formula 
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1mm Gap Arc Resistance - Model
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5mm Gap Arc Resistance - Model

5mm Gap Arc Resistance - Stokes Empircial Formula
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Figure 4-16: Comparison of Model Impedance with Stokes’ Empirical Formula 
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The general non-linear characteristic of arc impedance is captured within the model - 

resistance increases significantly at lower current values and becomes almost constant at 

higher currents levels. There is also acceptable agreement with both Paukert and Stokes’ 

empirical models, albeit with modelled resistance lower for corresponding current 

magnitudes. A lower resistance suggests that arc voltage magnitude is slightly lower than the 

empirical formulas propose.  

As resistance was calculated across fixed electrode gaps, the contribution of 𝑒𝑔𝑎𝑝 to overall 

arc voltage is likely smaller than expected. In other words, electrode voltage drops are 

underestimated in the model, which results in a slightly reduced arc resistance. However, 

overall, the modelled arc resistance provides a relatively good representation. 

4.3.3.4 Frequency Characteristics 

Arc current and voltage signals exhibit an expansive frequency range spanning from DC up 

to MHz range (see Section 4.2.1.3). To understand the frequency components of the 

developed arc fault model, a fast Fourier transform (FFT) [222] was applied to generated arc 

current data. Frequency spectra in the range 0-200kHz for a variety of arcing conditions are 

illustrated in Figure 4-17.    

The DC nature of the model results in: 

 Fundamental frequency being equal to zero. 

 Greater energy content in the lower harmonics, where energy decreases inversely 

with harmonic frequency. 

The main point of interest is the energy content at higher frequencies under arcing 

conditions. There is significant increase in higher frequency energy in comparison to 

nominal background noise. Indeed, there is roughly a 25dB disparity at a frequency as low as 

10 kHz.  

These results show that the contribution of high harmonic energy is significantly increased 

under arcing conditions. Arc current frequency spectra output from the model are consistent 

with those described in literature. Readers should refer to a comprehensive study undertaken 

on DC arcing spectra by Johnson [192] for further information. 

4.3.3.5 Validation Summary 

Comparison of the Simulink fault model outputs with various arc characteristics and models 

defined within literature has, on the whole, validated model accuracy. The main 
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inconsistency concerned V-I characteristics at low current levels. However, voltage 

gradients, arc impedance and frequency characteristics showed relatively good agreement.   

The validated model was used for the generation of accurate series DC arc fault data. This 

data was used to develop the IntelArc FDI method, described in Chapter 5. 

 

Figure 4-17: Examples of arc fault current frequency spectra. Nominal noise is illustrated in green 

4.4 Arc Fault Diagnosis & Isolation Systems  

Challenges involved with the detection of arc faults within aircraft were outlined in Section 

4.1.2. Numerous detection methods have been developed to attempt to overcome these 

challenges. Such methods are generally classified in terms of the extracted arc features 

utilised for detection. This section introduces the different types of detection methods, before 

discussing in more detail systems specifically related to detection of series DC faults.  

4.4.1 Classification of Arc Fault Detection Methods 

Figure 4-18 summarises the various types of arc FDI methods [193]. 
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Figure 4-18: Classification of arc fault detection methods 

Low impedance arc FDI can be realised with conventional protection devices. However, low 

impedance parallel arc faults are typically preceded by a high impedance, low fault current 

stage. It is desirable to detect and isolate arc faults before the development of high system 

currents – this means conventional protection devices are not suitable for arc FDI purposes. 

High impedance arc fault detection is based on either mechanical or electrical methods. 

Electrical based methods extract arc fault features either in the time, frequency or time-

frequency domains and algorithms analyse the extracted features to determine the presence 

of arcing events. Mechanical and electrical arc FDI methods, including examples, are 

summarised in Sections 4.4.3 and 4.4.4.  

Before specific methods are described, the main objectives of arc FDI in aircraft systems 

are outlined. 

4.4.2 Arc FDI Objectives 

Understanding the objectives of arc FDI in aircraft systems further emphasises the 

development challenges. The high level objective of arc FDI in aircraft is to have high 
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accuracy and sensitivity to arc fault events in order to maintain system reliability and 

minimise interruption to safety critical loads. This includes the minimisation of false alarms.  

With respect to series arc conditions, where faults are often highly intermittent and current 

levels actually decrease, this general requirement poses a significant development challenge. 

Being able to discriminate between true fault events and normal system transients within 

increasingly dynamic aircraft EPS is another significant challenge.  

These objectives and challenges motivate the need for advanced arc FDI methods (see 

Section 4.4.5). More simplistic methods which assign constant thresholds for fault detection 

are not suitable as determining threshold values which account for normal transient 

behaviour, as well as provide accurate fault detection coverage, is very difficult.  

Advanced arc FDI methods should possess the following characteristics: 

 Effective – the ability to detect, and locate, faults accurately without any false alarms 

or non-detection. 

 Non-Intrusive – should not disturb normal operation. 

 Real-Time – detect and locate faults online before overcurrent faults occur. 

 Low-cost – should be inexpensive while computation burden for data acquisition and 

signal processing should not be too heavy. 

The novel IntelArc method proposed in Chapter 5 aimed to meet these objectives and 

address the challenges.  

4.4.3 Mechanical Arc FDI Methods 

Mechanical methods determine fault conditions through the use of special sensors which 

detect thermal and pressure rises [194] or specific light/infrared radiation [195]. Pressure and 

photo sensors have been extensively deployed for detection of switchboard arc faults on 

board US Navy submarines [196]. 

The main limitations of mechanical methods include:  

 High installation and maintenance costs incurred from specialised sensors. 

 Impracticality for complete system coverage as sensors must be set near arc location 

for reliable detection.  

 Susceptibility to noise increases the probability of false detection. 

An in depth discussion on mechanical arc FDI methods is out with the scope of this thesis.  

4.4.4 Electrical Arc FDI Methods 

Arc FDI systems based on electrical methods, which detect faults according to abnormality 

in current and voltage signals, are more relevant to this thesis. Time, frequency and time-
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frequency domain features of electrical signals were outlined in Figure 4-18. Methods may 

be based on algorithms that analyse the extracted features directly to determine fault 

presence, while other, more advanced methods, are based on the development of models of 

normal and/or fault conditions for detection.   

Further discussion on arc FDI methods, that utilise various features of electrical signals, is 

provided in this section. 

4.4.4.1 Time Domain Arc FDI 

Numerous time domain arc FDI methods have been presented in the literature [193]. These 

methods tend to involve analysis of three-phase current imbalance [197], voltage imbalance 

along a feeder [198], differential current [199] and arc fault energy [200].  Analysis of phase 

current imbalance and differential current characteristics is only applicable for the detection 

of parallel arc faults (and mainly confined to AC systems). Also, the lack of a neutral 

conductor within aircraft EPS increases the difficulty in detection of parallel arcing to 

ground.  

Series arc fault detection and location methods [198] that monitor voltage across a feeder 

require multiple voltage sensors across a single conductor – associated weight increases 

result in such systems not being ideal for aircraft application. An off-line non-contact series 

arc fault diagnosis device was developed for aircraft wiring systems, which comprises 

capacitive probes measuring voltages across a conductor at two reference points [201].   

A method for the detection of DC parallel arcs [202] was developed, based on averaging 

multiple current measurements over a specific time period - averaged measurements across 

consecutive time periods are compared and a fault is detected if the difference in 

measurements exceeds a pre-determined threshold. 

SSPC based protection from arcing faults has also been described [203, 204]. Each SSPC 

protects its own downstream load – dynamic load characteristics are pre-programmed and 

the SSPC trips if measured load current is outside an allowable signature range. 

The main limitations of time-domain arc FDI include difficulty in: 

 Determining threshold values.  

 Finding features that accurately distinguish between true arcing events and 

mimicking events (such as load inrush and switching transients). 
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4.4.4.2 Frequency Domain Arc FDI 

Frequency characteristics of arc events were discussed in Sections 4.2.1.3 and 4.3.3.4 – 

frequency domain arc FDI methods exploit unique features of arc voltage and current spectra 

to determine the presence of faults. The FFT provides a computationally efficient method for 

mapping time-domain signals to the frequency domain. Analysis of harmonic content 

enables discrimination between normal transients and faults. 

Scott et al. [85] described a method for application to aircraft EPS based on determining 

the presence of broadband noise in the load current of a monitored circuit - if a broadband 

spectrum is evident, the energy level of harmonics in a predetermined range of frequencies 

indicates fault presence.  A similar method that focused on the order of harmonics relative to 

supply frequency is proposed in [205], while Kwon et al. [206] described a high impedance 

fault detection method based on even order harmonics only. 

Frequency bands that contain all essential information for discrimination of arc events 

were extensively discussed by Parker et al. [183]. Within the discussion, Parker suggests that 

frequency-domain based arc FDI methods focus on sub-bands that are either too narrow or in 

higher frequency ranges which are more susceptible to radio interference. Indeed, it is 

suggested that fractal sub-bands in the 200-3500Hz range, below voice frequency range, may 

be more suitable for frequency based arc FDI. 

The main disadvantage of using the FFT to map the frequency spectrum of a signal is the 

inability to decipher the time at which certain harmonic frequencies are present. It is 

therefore ideal for fault events that are continuous and stationary. However, in aircraft EPS, 

arcing faults are likely to be highly intermittent in nature. High intermittence will result in 

the energy content of particular arc signature harmonics being attenuated across the entire 

sampled signal.  

These disadvantages of frequency domain methods highlight the attributes of time-

frequency domain arc FDI. 

4.4.4.3 Time-Frequency Domain Arc FDI 

Time frequency domain methods determine how the frequency behaviour changes over time. 

The WT (refer to Chapter 3) can provide the frequency of a signal, as well as the time 

associated with each frequency – this makes it ideal for dealing with non-stationary, highly 

transient signals. 

High impedance fault detection methods utilising WTs for feature extraction from current 

and voltage data are described in [207, 208].  A major challenge associated with WT based 
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detection methods is evaluating the generated wavelet coefficients to decide if faults are 

present. Often systems will use advanced, intelligent, models and techniques to determine 

the probability of fault presence from WT features.   

4.4.5 Intelligent arc FDI methods 

Combining extracted electrical signal features with advanced models and probabilistic 

classifiers enables more effective discrimination between arc faults and normal transient 

events. Intelligent methods have been developed that are based on combinations of: 

harmonic feature extraction and Kalman filters [209]; time-domain features and neural 

networks [210]; and WT coefficients and support vector machines [124]. Various adaptive 

expert algorithms have also been developed [211]. Detection methods based on advanced 

electrical models have been described. Yaramasu [212] utilised a transmission model (or 

ABCD model) to derive both nominal and fault models for AC and DC aircraft EPS - this 

modelling method is limited to parallel arc fault detection. 

These methods are by no means 100% accurate. They also involve significant development 

challenges. However, the potential for increased detection accuracy in comparison to more 

simplistic algorithms or threshold systems makes advanced arc FDI methods an attractive 

option for aircraft systems.  

The IntelArc system proposed as part of the work of this thesis in Chapter 5 combines time 

domain and time-frequency domain features with HMM. 

4.4.6 Series DC Arc FDI  

Previous sections provided a general discussion on arc FDI methods. The discussion did not 

necessarily distinguish between detection of parallel or series faults or between AC and DC 

supplied systems.  

The IntelArc method proposed in Chapter 5 is applied specifically for detection of series 

DC arcing conditions. As such, this section discusses significant research of, and methods 

developed for, the detection of series DC arc faults.  Previous methods have been developed 

based on time, frequency and time-frequency domain features. 

Guo et al. [175] defined a method that identifies a period of time between a sudden drop in 

load current and arc ignition as an arc precursor time. Detection of precursor events, which 

typically only last tens of microseconds, theoretically enables isolation before the presence 

of arcing. The detector circuit uses a toroidal inductor, which outputs a sharp voltage 

increase, and hence fault alarm, when current suddenly decreases. The requirement for 

additional hardware circuitry is one limitation of the proposed method. Discriminating 
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between true arcing events and normal drops in load current in such short time frames is also 

extremely difficult using this method. 

Kilroy et al. [202] developed a method based on averaging load current signal values over 

multiple time periods. Series arc faults are detected by determining if the difference in 

average values across the multiple time windows is greater than a pre-determined threshold. 

Observation of current features over multiple time periods enables higher discrimination 

between normal transients and arcing events although there is trade-off between increased 

detection accuracy and detection time. 

Dargatz et al. [213] developed a series arc FDI method for Photovoltaic (PV) systems. 

Current and voltage at the output terminal of a power converter are sampled and analysed for 

potential arc fault signatures. Rapid changes in current slope (≈ 0.1 amp/microsecond) are 

indicative of fault conditions - normal transients typically have a slower rate of change of 

current. 

Zeurcher et al. [214] detected series faults through analysing load current after a sudden 

decrease. In this sense, load current is actually momentarily turned off after the sudden 

decrease – if current magnitude is at a similar level as when it was turned off, it is concluded 

some other phenomenon was a result of the sudden decrease. However, an arc fault is 

diagnosed if current has further decreased or has returned to a nominal value. The 

application of this method to aircraft EPS is unsuitable as power may be unnecessarily 

interrupted to critical loads.   

In terms of frequency domain methods, Kojori et al. [215] developed a method that used a 

sliding window FFT to extract, in real-time, the DC component of load current. Amplitude 

variation of the DC component across each window indicated series arc fault presence – 

level of variation was determined by counting the number of maxima over a certain period 

and comparing with a threshold. The method also measured non-stationary changes in load 

current for detection - statistical analysis of inter-harmonics and high frequency components 

quantified the degree of load current distortion.  Consideration of DC component amplitude 

and current distortion increased the potential for accurate fault detection. A similar method 

based on frequency spectrum characteristics is proposed by Ohta [216]. 

Momoh [217] proposed an intelligent detection method that used spectral energy from 

nominal and fault events to train separate artificial neural networks (ANNs) - the fault data 

was collected on a test rig with voltage supply in the range 50-150VDC. Elementary testing 

proved real-time fault detection across a variety of conditions.  The main drawback of using 

ANNs for arc fault detection concerns the difficulties associated with model development 

and, in particular, determining the type and structure of neural network [220]. Also, a 
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significant disadvantage of frequency domain feature extraction is the lack of time resolution 

– this is particularly the case when extracting features of highly transient signals, such as 

series DC arc faults (see Section 4.4.4.2).  

In theory, time-frequency domain signatures provide increased discrimination capability. 

Yunmei et al. [221] analysed time-frequency signatures of series arc fault current data using 

the WT. The data was recorded throughout experiments on a 28VDC network. Their 

research determined that calculation of the energy values of five consecutive wavelet 

coefficients enabled discrimination between series arc faults and normal load transients. 

Yao et al. [219] developed a method based on time and time-frequency domain features for 

application to representative DC microgrid networks. The detection algorithm calculated 

statistics from 25ms windowed time domain arc current data; statistics included maximum 

and minimum current levels and the difference between them. These measures were coupled 

with calculation of the RMS values of wavelet coefficients within the 25-50 kHz fractal sub-

band. When both current difference and RMS values exceed a threshold value, a flag is 

raised indicating a potential series arc fault. One issue of the method surrounded setting the 

number of consecutive flags to accurately indicate a fault and also avoid nuisance trips. The 

authors concluded that four consecutive flags would enable this for the system under test – it 

was inconclusive if four is an optimal number that generalises across a variety of system 

configurations and normal transients.  

4.4.6.1 Remaining Challenges 

Various methods for FDI of series DC arc faults have been described. Despite the 

development of multiple methods, major challenges still exist with regards to accuracy of 

fault detection, not least within aircraft EPS. Increasing detection accuracy is the primary 

goal of any fault detection method. However, the development of highly accurate and 

discriminative series arc FDI methods within an aircraft EPS context is particularly 

challenging as: 

 Decreased current levels make it difficult to discriminate between fault current and 

nominal current transients/load switching.  

 High intermittence, as a result of in-flight vibration, results in decreased fault 

duration and greater likelihood of non-detection. 

 PE circuits/converters introduce high frequency electromagnetic interference that 

may result in false tripping. 

Ideally, a generalised detection method can handle these challenges across a variety of 

network configurations, voltage levels and loads. The issue of generalisation highlights the 
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problem with algorithms that rely on more simplistic statistical analysis of extracted features. 

Methods developed around basic statistical analysis and associated thresholds have proven to 

be accurate within limited network configurations and test conditions; nevertheless, the 

ability to define threshold values for generalised detection performance is extremely 

difficult, if not impossible. 

The development of intelligent arc FDI methods should increase the potential for 

generalised, accurate and discriminative performance. The development of intelligent 

systems is not trivial, and performance is based on utilisation of correct features for model 

training. Chapters 5 and 6 describe the development and testing of the IntelArc method that 

is proposed to address the challenges outlined.   

4.5 Chapter 4 Conclusions 

The chapter described a validated Simulink series DC arc fault model that was used for the 

generation of fault data. Model accuracy was validated by comparing the model outputs (arc 

voltage, arc current, arc resistance and frequency spectra) to electrical characteristics defined 

in literature. There are numerous studies that attempt to characterise the arc. The chapter 

summarised the main studies relevant to DC arcing, including electrical models and 

relationships that have been derived from empirical data. Overall, there was relatively good 

agreement between the Simulink model outputs and the derived models described in 

literature. 

The chapter also discussed challenges in detecting series DC arc faults within aircraft – 

these include dealing with fault current that decreases below nominal rating, high 

intermittence and discriminating between true fault events and normal transients. Existing 

detection methods developed to meet these challenges were discussed, including benefits and 

limitations of each. Overall, it was concluded that there is a requirement for the development 

of advanced, and generalised, detection methods to discriminate series DC faults within a 

variety of system architectures and configurations.  

The novel IntelArc method, described in the following chapter, aimed to meet these 

objectives.  The method is designed and tested using data generated from the validated 

Simulink arc fault model. 
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5. NOVEL FDI METHODS TO 

SUPPORT PROTECTION & HEALTH 

MANAGEMENT OF AIRCRAFT EPS 
 

 

his chapter proposes two novel FDI methods that have the potential to support 

protection and health management of aircraft EPS through the diagnosis of various 

fault conditions. The first novel method, EPSmart, is proposed for FDI of intermittent, drift 

and abrupt and sensor faults within a general aircraft EPS environment. Design and testing of 

EPSmart has been published in [44]. The second novel method, IntelArc, is proposed for FDI 

of series arc faults in DC supplied systems. Design and testing of IntelArc has been 

published in [45].  The difficulties of detecting these fault types using conventional 

protection methods have been described in Chapters 2 and 4.  These two methods vary in 

terms of feature extraction and are thus described in turn throughout this chapter. Both 

methods are based on ML techniques, specifically HMM. EPSmart and IntelArc are the main 

contributions of this thesis. 

 

T 
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5.1 EPSmart – FDI of Abrupt, Intermittent & Incipient Faults 

The EPSmart method is proposed to detect a range of fault types within an aircraft EPS 

environment. Within this thesis, the ability of EPSmart to autonomously detect, classify and 

diagnose the severity of diverse EPS faults is validated with its application to NASAs 

advanced diagnostic and prognostic test bed (ADAPT), a representative aircraft EPS [137]. 

EPSmart is a data-driven HMM based FDI method and, in this case, network data from the 

ADAPT is used for both HMM training and application testing. 

The main objectives of EPSmart are to: 

 Improve EPS network protection and health management through autonomous 

diagnosis of multiple critical and degraded fault modes 

 Accurately discriminate between faults in the underlying system and sensor failures 

These objectives are both broad and demanding.  The capability of autonomously, and 

accurately, isolating a range of degraded and critical faults will enhance both real-time 

protection and overall system health management. As the majority of failures in aircraft 

systems are accredited to faults in the sensors themselves, it is also important to identify 

‘true’ faults in the monitored system to eliminate unnecessary interruption of supply to 

system loads.   

Section 5.1.1 describes the ADAPT in more detail, including network topology and 

characteristics of the faults injected into the testbed. A general outline of the EPSmart 

method is provided in Section 5.1.2. Further details on the method, including HMM training, 

feature extraction, and severity diagnosis algorithms are provided in Section 5.1.3.  

5.1.1 ADAPT Network – Topology and Fault Modes 

The NASA ADAPT [139] is a unique facility designed to test, measure, evaluate and help 

mature diagnostic and prognostic health management technologies. The ADAPT is 

representative of the topology of an EPS vehicle system, in that it provides energy 

generation/conversion, energy storage, power distribution and power management functions. 

A schematic of the ADAPT network is shown in Figure 5-1. It is a hybrid architecture and 

delivers DC and AC power to the electrical loads. Within an aerospace vehicle 

contextualisation of ADAPT, typical loads would include appropriate sub-systems such as 

avionics, propulsion, life support, environmental controls and science payloads. The DC 

loads in APADT are directly powered from the 24VDC battery. An inverter converts the 

24VDC power to 120VAC to power the AC loads. There are multiple redundant paths 

connecting the three batteries to the two load banks. 
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A data acquisition and control centre commands the test bed into different configurations 

using the circuit breakers (CBs), and records data from system variables such as voltages, 

currents, temperatures and switch positions.  The system is limited by the data collection rate 

at which these variables are monitored – sampling rates are low and range from 2-10 Hz.  

 

Figure 5-1: Simplified schematic of the ADAPT network with sub network ADAPT-Lite highlighted  

 

A subset of the ADAPT network, the ADAPT-Lite (ADL), was used for validating the 

proposed EPSmart method as only single faults occurring throughout any observed period of 

system operation are being considered at this stage. The ADL subset is highlighted in Figure 

5-1. The network is a non-redundant configuration of the ADAPT and includes a single 

battery, two AC loads, one DC load, an inverter and associated sensor and control circuitry. 

EPSmart was designed and tested using ADL data which was publicly distributed by the 

DXC10 competition [139].  
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EPS data (voltage and current levels) was recorded by NASA AMES research centre 

throughout individual controlled experiments on the ADL. Within a number of these 

experiments, failure scenarios were included. In the absence of true fault conditions this was 

captured by injecting representative fault behaviour into the network [137].  

5.1.1.1 ADL Fault Modes 

The injected failure scenarios on the ADL network were characterised by the location of the 

fault and the fault mode. Faults were injected to all components within the network, 

including sensors. Fault modes included abrupt, intermittent and incipient failures. The 

severity of the injected fault was classified by two conditions: either network critical or 

degraded. Examples of ADL fault characteristics are illustrated in Figure 5-2. 

 

 

Figure 5-2: Outline of faults injected into the ADL network. Faults are characterised by their mode, 

location and severity. 

 

Faults were injected into the ADL using both software and hardware techniques. For 

example, the incipient resistance load faults were simulated using software to apply an offset 

to sensor data that starts at zero and grows linearly with time. An abrupt load fault is injected 

by applying a constant offset to the true data value. Faults physically injected into the 
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hardware include; inverter faults, where the power settings are manually adjusted; and 

various load and sensor faults, where the connecting load feeders/control wires are short 

circuited or disconnected. 

Sensor data recorded during each experiment by NASA on ADL was used to develop and 

validate EPSmart. Data from each experiment was labelled with fault location and mode, 

which enabled a supervised learning approach to be used (see Chapter 3, Section 3.7.2). 

In designing EPSmart, the aim was to have the ability to accurately and autonomously 

detect, diagnose and classify a variety of critical and degraded AC load, DC load and 

converter faults. Furthermore, the system should also have the ability to discriminate 

between underlying system faults and sensor failures. The following sections describe the 

methodology of EPSmart for meeting these challenges. 

5.1.2 EPSmart Method Outline 

The EPSmart method is outlined in Figure 5-3. There are two distinct stages of the method: 

Stage 1 classifies network condition, and, once the network condition has been classified, 

Stage 2 diagnoses the severity of any fault that may have occurred. This section describes 

these stages in the context of applying the EPSmart to the ADL. This application highlights 

the potential for the method to differentiate between multiple EPS network conditions and 

identify both critical and degraded fault modes. 

  

Stage 1 – Fault Classification 

A framework of multiple trained HMM corresponding to separate conditions within the ADL 

network enables the classification of candidate system data. For application of EPSmart to 

the ADL network, a total of 15 conditions, described in Table 5-1, are modelled within the 

framework. A decision on network condition is made by primarily calculating the log-

likelihood (LL) of the input data, given each models trained statistical parameters; 

classification then involves selecting the labelled model that returns the highest LL. This 

form of framework with multiple HMMs was described in Chapter 3, Section 3.8.1.4. The 15 

ADL conditions outlined in Table 5-1 include 1 nominal and 14 fault conditions - sensor 

stuck and failed off faults are akin to abrupt faults.  

In the event of multiple faults occurring simultaneously, the LL of the associated models will 

exhibit higher levels in comparison to other models within the framework across the 

observed time period. To handle such occurrences, a suitable LL threshold may be set; any 

labelled model that outputs higher levels than this threshold will be used as evidence that 

such condition(s) are currently present on the system. 
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Figure 5-3: Two-stage EPSmart method 

 

Table 5-1: Conditions modelled within EPSmart applied to the ADL network The FPA utilised for 

each condition is detailed. For clarity, Abrupt fault mode FPA is titled #I, Intermittent fault mode FPA 

is titled #II and Incipient mode FPA is titled #III. 

 

Stage 2 – Fault Severity Diagnosis 

Network Conditions Modelled Condition # FPA # 

Location Mode   

No Fault Nominal 1 N/A 

 

DC Load Faults 

DC Load Abrupt Resistance Offset FC1 I 

DC Load Intermittent Resistance Offset FC2 II 

DC Load Incipient Resistance  FC3 III 

 

AC Load Faults 

AC Load Abrupt Resistance Offset FC4 I 

AC Load Intermittent Resistance Offset FC5 II 

AC Load Incipient Resistance  FC6 III 

Fan Load Failed Off FC7 I 

Inverter Faults Inverter Failed FC8 I 

 

Voltage Sensor 

Faults 

Stuck FC9 I 

Intermittent FC10 II 

Incipient FC11 III 

 

Current Sensor 

Faults 

Stuck FC12 I 

Intermittent FC13 II 

Incipient FC14 III 
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Stage 2 operates on the basis that a fault has been classified from Stage 1; hence, if a 

nominal condition has been classified after Stage 1, there is no requirement for the 

implementation of severity diagnosis. However, in the event of a fault being classified, it is 

necessary to determine the impact the presence of the classified fault has on the reliable 

operation of the system. 

Calculating fault parameters enables the severity of any fault to be quantified. Fault 

parameter calculation algorithms (FPA) were developed that use the HMMs’ optimal state 

sequence, calculated using the VA (see Chapter 3, Section 3.8.1.4), to determine the 

parameters. The set of parameters required for the quantification of fault severity is 

dependent on the mode of fault that has been classified. Hence, three separate FPA’s were 

developed corresponding to the three modes of fault (abrupt, intermittent and incipient) 

within the ADL network, as outlined in Table 5-1. The FPA algorithms are discussed in 

Section 5.1.3.4. 

As an example of operation, if FC1 is classified after Stage 1, the optimal state path for the 

particular HMM of this fault condition will be calculated and then, considering FC1 relates 

to an abrupt fault mode, the FPA for calculating parameters for an abrupt fault would be 

initialised. State transitions occur within HMM when there are changes within the observed 

data. The optimal state path attributes each data point in an observation sequence to a 

particular hidden state – transitions between hidden states are a result of non-stationary 

dynamics within the data. Further discussion and illustration of these points are provided in 

Section 5.1.3.4. The algorithms essentially utilise the optimal state path sequence to detect 

points in time where the condition of the system changes. Deciphering points of state 

changes enables fault parameters to be calculated. 

After fault parameters have been calculated, the severity of the fault, and its impact on 

system reliability, can be determined. 

5.1.3 EPSmart: HMM Training, Feature Extraction & Severity Diagnostic Algorithms 

This section describes various aspects of EPSmart including: the implementation of HMM 

for EPS FDI; feature extraction and sensor fusion; HMM training; and the FPA severity 

diagnostic algorithms. 

5.1.3.1 HMM for EPS FDI 

HMM were introduced in Chapter 3. The following discussion describes how they have been 

implemented within EPSmart for EPS fault diagnosis. Particular focus is given to the 

training of HMM using ADL data, however, the general ideas discussed are not limited to 

ADL application and can be extended to similar hybrid, compact EPS.     
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The ADL sensor data is an example of multivariate time series data [233] where non-

stationary periods define the presence of fault/transient conditions. The ability to determine 

the latent physical state responsible for such changes in the data is the main goal of data 

driven FDI. Relating observational data to latent variables is a fundamental concept of 

HMM. This relationship involves non-stationary periods in the data representing transitions 

between latent states and, conversely, stationary periods in the data representing some form 

of latent state. It is therefore vital to have the capability to model data in a way that certain 

temporal aspects are explicit. Modelling the distribution of system data and then detecting 

shifts in its characteristics would enable such changes to become explicit. 

There are a number of distribution functions that can be used for modelling the probability 

distribution of observed variables. Typically, the ‘simplest’ function applied for continuous 

density observations assume Gaussian distributions per latent state [30]. Considering the 

multidimensional nature of the ADL data, approximating the distribution with a single 

Gaussian function would provide an overgeneralised fit [110]. A solution to this is to 

approximate the unknown density with a mixture of simple density functions. The general 

form of a variable 𝑥 of dimension 𝑑 using 𝑀 mixture components is given by 

𝑃(𝑥) = ∑ 𝑃(𝜃𝑖)𝑃𝑖

𝑀

𝑖=1

(𝑥|𝜃𝑖) 

where  𝜃𝑖 are the parameters of the ith simple density used as a mixture component. The 

most widely used mixture model is the Gaussian mixture model (GMM) [157], where each 

base distribution is a Gaussian with parameters 𝜃𝑖 = {𝜇𝑖,𝑖}  comprising the mean vector 𝜇𝑖 

and covariance 𝑖 of the i-th mixture component. The likelihood of an observation for each 

mixture component is given by 

 

𝑝(𝑥|𝜃𝑖) =
1

√2𝜋𝑑det  (𝑖)
exp  {−

1

2
(𝑥 − 𝜇𝑖)𝑇𝑖

−1(𝑥 − 𝜇𝑖)} 

 

Changes in observation distribution can be detected by testing which base mixture 

component returns the highest likelihood for a given observation where each distribution 

comprising the GMM represents a latent class conditional density within the HMM. The 

relationship between latent states and observational data is illustrated in Figure 5-4 which 

shows both the hidden Markov temporal dynamics and the GMM representation of the 

observation space. A Markov model assumes that the presently active state has been 

generated by the previous 𝑛 states it has been in, where 𝑛 is the model order. A HMM 

(5.1) 

(5.2) 
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abstracts time series observation data into a state based form and uses a first order Markov 

chain to model the dynamics of the hidden state sequence [157]. 

The example in Figure 5-4 shows sensor data for electrical current during a basic load 

resistance offset fault within the ADL network. The GMM has two base densities 

representing the distribution of the data. Regions in the data where the current remains 

constant are modelled by a single mixture component which in turn can be mapped to certain 

states within the hidden sequence. 

 

Figure 5-4: Illustration of relationship between latent states and observational data that form HMM. 

Data (right-hand side) is modelled by a GMM (left-hand side). Shifts in dominant mixture 

distributions indicate hidden state transitions. 

 

At fault onset, current magnitude increases; the increase in current corresponds to a change 

in the most likely mixture component represented by the increased current value, resulting in 

a change of state in the HMM. The changes in mixture distributions, and hence state, are 

what the HMMs use to characterise different fault conditions within the proposed EPSmart 

method.  
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Inference of the state evolution in a HMM for a given observation period can be 

undertaken using a number of different methods [30]. A maximum a posteriori (MAP) 

estimation infers the most probable state sequence in chain structure models; in the context 

of HMM, the MAP estimation is known as Viterbi decoding [223]. The VA computes 

 

𝑠∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝(𝑠1:𝑇|𝑥1:𝑇) 

𝑠1:𝑇 
 

The VA enables the optimum underlying system state sequence, 𝑠∗, to be inferred across the 

observation period, 𝑥1:𝑇, where all possible state sequences, 𝑠1:𝑇, are considered. In Figure 5-

4, it can be inferred from the data that the ADL is in a nominal condition until the point in 

time where the change in current magnitude enhances the likelihood of the network being in 

a faulted condition. 

An additional property of HMM concerns the probability of their statistical parameters 

yielded through training. These are a measure of how well a model has fitted the training 

examples presented to it through its parameters. A framework that contains multiple HMM 

permits the classification of candidate observation sequence by inferring the probability of 

the sequence being generated by a given model. This measure can be used to select the 

model which returns the highest likelihood and in doing so allows it to be classified with a 

label associated with the model. 

With respect to the work of this thesis, within the EPSmart method, separate HMM are 

trained based on different input data sets, each representing unique system conditions. Each 

HMM uses a GMM to model the observational data and enables the dynamics specific to 

each condition to be characterised by the HMM parameters. New data is classified by 

applying it to each of the models, with the model returning highest probability of generating 

the data, or LL, assumed to be the closest match and therefore the most likely condition of 

the system. 

5.1.3.2 Feature Extraction and Sensor Fusion 

Training of each HMM within the EPSmart framework is critically dependent on the quality 

and volume of training data and the selection of features presented to the learning 

algorithms. Training a HMM on inappropriate data will result in an inadequate 

representation of the generalised behaviour of the modelled condition, and produce a model 

that will perform poorly at the inference stage.  

Feature extraction, which was introduced in Chapter 3, is used to determine features within 

the data that optimise the discrimination capabilities of the system. Extracting unique 

(5.3) 
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signatures for each condition is integral to the EPSmart method proposed within this thesis, 

especially when attempting to discriminate between a large set of network conditions.  

Throughout training EPSmart for application to the ADL network, the limited sampling 

rate of the ADL sensors meant that basic statistical features were extracted for each modelled 

condition. Figure 5-5 (a) provides an example of the feature extraction process from load 

current sensor data throughout an intermittent fault condition. The sensor data is de-noised 

using wavelet analysis and then normalised to a notionally common scale. Normalising 

emphasises the dynamics within the data and also improves the generalisation capabilities of 

the trained HMM.  

 

Figure 5-5: Illustration of features extracted from data for HMM training. Raw data was de-noised 

using wavelet analysis. For data describing nominal conditions, extraction involved calculating the 

absolute deviation. For fault conditions, a normalisation process was used. 
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In contrast, Figure 5-5 (b) shows the feature extraction process used for modelling nominal 

conditions. In this case, normalising the load current data to a common scale would 

undesirably magnify slight changes in the data. As such, the absolute deviation of the 

nominal data was extracted to maximise the constancy associated with nominal conditions. 

EPSmart uses a global control structure to detect, diagnose and classify faults - i.e. data 

from multiple sensors within the network are combined to accurately identify and 

discriminate between faults. In a similar vein to the feature extraction processes, ‘sensor 

fusion’ [128] is necessary to determine the network sensors that optimise the discrimination 

capabilities of the system.  

Within the ADL network there are a total of twelve sensors. The sensor fusion process 

determines dependencies that exist between these sensors throughout certain system 

conditions. Identifying these dependencies not only increases the discrimination powers of 

the EPSmart method but also eliminates any redundant information used throughout HMM 

training and reduces the dimension of the observation space. 

Capturing dependencies within the multivariable ADL training data was achieved through 

simple plotting and analysis. Within systems more complex than the ADL, dependencies can 

be determined using more formalistic approaches (for example, principal component analysis 

[224]). Table 5-2 outlines the ADL sensor data used to train the HMM models for each 

network condition within EPSmart. A simplified schematic of the ADL showing only main 

components and labelled sensors is provided in Figure 5-6. Note that determination of the 

sensors used for training each condition is dependent only on the location of the fault, and 

not the mode. 

Of the twelve sensors illustrated in Figure 5-6, the maximum number used to train a single 

network condition model is three (the maximum of three sensors is specific to the ADL and 

will change from network to network through analysis of dependencies captured between 

variables – sensors that react in a similar fashion across different fault conditions, and 

therefore result in ambiguous diagnoses, may be discarded altogether). This reduction of the 

observation space significantly simplifies the training process. The nominal model uses data 

from all three current sensors – current levels are relatively constant throughout nominal 

operation and any dynamic change in current magnitudes may be indicative of fault 

conditions. AC and DC load fault models use data form both the source current sensor, 𝐼1, 

and their respective feeder current sensors, 𝐼2 and 𝐼3, for training.  

The inverter fault model is trained using current and voltage data from feeders both 

upstream and downstream from the device. Detection of sensor failures is achieved through 

fusion of various sensors throughout the ADL network. Sensor failures are characterised by 
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isolated changes in sensor data, whereas faults in the underlying system will have a more 

widespread effect on sensor observations. 

As a result of the feature extraction and sensor fusion processes, the data applied to each 

HMM for training are feature vectors describing sensor data for a variety of sensors sensitive 

to the specific network condition being modelled. 

 

Table 5-2: Sensor data used to train each HMM 

ADL Network 

Conditions  

Sensor Data 

for HMM training 

Nominal 𝐼1, 𝐼2, 𝐼3 

AC Load Faults 𝐼1, 𝐼2 

AC Fan Load Faults 𝐼1, 𝐼2, 𝑆𝑝 

DC Load Faults 𝐼1, 𝐼3 

Inverter Fault 𝐼1, 𝑉2 

𝐼1 Sensor Fault 𝐼1, 𝐼2, 𝐼3 

𝐼2 Sensor Fault 𝐼1, 𝐼2, 𝑉2 

𝐼3 Sensor Fault 𝐼1, 𝐼3 

𝑉1 Sensor Fault 𝑉1, 𝐼1 

𝑉2Sensor Fault 𝑉2, 𝐼2 

𝑉3 Sensor Fault 𝑉3, 𝐼3 

 

 

Figure 5-6: Simplified schematic of the ADL network showing main components and sensors: 𝑇𝑒 

donates a temperature sensor at the battery; 𝑆𝑛 donates a circuit breaker sensor; 𝑉𝑛 donates a voltage 

sensor; 𝐼𝑛 donates a current sensor; and 𝑆𝑝 donates a speed sensor at the fan load. 

 

5.1.3.3 HMM Training & Model Selection 

A significant EPSmart development issue concerns determination of the number of hidden 

states and mixture components of each trained HMM. This is an inherent issue with ML 

models, and this section describes the processes required to optimise these model 

parameters. 
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Modelling the observation space of HMM with a GMM captures non-stationary intervals 

through changes in dominant mixture distribution and thus changes in latent state [157]. 

However, the degree to which non-stationary periods are measured depends upon the number 

of mixtures that represent the distribution due to the fact that some non-stationary behaviour 

is absorbed into changes within the dominant mixture component as opposed to changes 

between distributions. 

Although increasing the number of states and mixture components will implicitly capture a 

finer degree of non-stationary behaviour, the computational complexity of the model will 

increase. This modelling flexibility poses the problem of determining the cardinality of 

parameters, for example, how many states to use and how many mixture components will be 

present in the observation model. The quantity of training data also has to be considered with 

respect to learning the parameters of the models and whether the set of training data is 

sufficient to specify a set of parameters that suitably model the condition. 

When fitting HMM to data using the expectation maximisation (EM) algorithm [225], 

increasing the cardinality of states and mixture components will increase the likelihood of 

the trained parameters. The problems associated with doing this are that models can become 

over-fitted to the training examples presented to them. Over fitting [110] is a phenomenon in 

which the models learn features pertinent only to the training set, and which will therefore 

perform poorly at inferring new, unseen data. A solution to overcome such problems is to 

introduce terms in the model selection criteria that punish model complexity, but still take 

into account model fit [157]. 

One such technique that considers model likelihood but retains a term to punish model 

complexity is Bayesian information criterion (BIC) [30], which is defined formally as 

 

𝐵𝐼𝐶(𝑋, 𝜃) = ∑ 𝑙𝑜𝑔𝑃(𝑥𝑛

𝑁

𝑛=1

|𝜃) −
𝑁𝑚

2
𝑙𝑜𝑔𝑁 

 

where 𝑋 is the training data set, 𝜃 is the maximum likelihood estimate (MLE) of the model, 

𝑁 is the dimension of the training set and 𝑁𝑚 is the number of degrees of freedom 

(parameters) of the model. Minimising the BIC value will optimise the number of parameters 

in terms of both model fit and complexity. Consequently, for each of the 15 modelled 

conditions within the ADL network (see Table 5-1 in Section 5.1.2), the BIC was used in 

determining model selection.  

Throughout development of EPSmart for the ADL network, the relatively limited volumes 

of training data, particularly with regard to fault conditions, meant the number of model 

(5.4) 
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parameters considered was limited [41]. Accordingly, when training each HMM within the 

Stage 1 framework, BIC ratings were calculated by increasing the number of states from two 

through to five and separate training examples describing each condition from one through to 

five (where possible, as some fault conditions did not have five separate training examples). 

Varying the number of states between two through to five was the result of analysing plots of 

the training examples. Fault current magnitude during intermittent and fault conditions can 

vary significantly - models with more than two states were required to capture these 

dynamics although it was decided to limit model complexity to a maximum of five hidden 

states. The training examples presented for each condition was limited to five so as to ensure 

there was sufficient test examples. Table 5-3 shows optimal trained models within EPSmart 

for selected ADL conditions, chosen by minimising the model BIC. The LL details the 

degree to which the parameters of the trained HMM described the training examples 

provided, with a value closer to zero detailing a ‘better’ model fit. The BIC considers all 

model elements, and determines if there is necessity to either increase or decrease 

cardinality. Table 5-3 highlights the state variability among selected HMM within the 

framework, where some modelled conditions require a greater number of states to achieve 

model optimality, compared with others. 

 

Table 5-3: Optimal HMM Parameterisation within EPSmart for selected ADL conditions 

ADL Network 

Condition 

Model 

Training 

Examples 

States Log- 
10Likelihood 

Bayesian 

Informati

on 

Criterion 

1 - Nominal 5 3 -2732.3 5526 

FC2 – DC load 

abrupt 

resistance offset 

2 4 -3346.8 6804 

FC4 – AC load 

abrupt 

resistance offset 

2 2 -1815.6 5704 

FC6 – AC load 

incipient 

resistance 

3 3 -2831.7 3646 

 

5.1.3.4 Fault Parameter Calculation Algorithms 

This section describes the development of the FPAs within Stage 2 of EPSmart, which were 

introduced in Section 5.1.2. The FPA utilise hidden state changes within the HMM to 

                                                      
10 Log-likelihood is the natural log of the joint probability of all data points in an observation training 

sequence being generated by a model with certain parameters. Across a large data sequence, the joint 

probability is intuitively going to be a small number (the product of numbers < 1). LL ranges from 

zero (where all probabilities are 1) to minus infinite (where all probabilities are zero). 
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determine points in time where there is a significant change in network data. However, the 

fact that each of the 15 trained HMM in the classification framework have a different 

number of hidden states (as described in the previous section), there is a requirement to 

establish how they should be interpreted. Essentially, the FPA’s only utilise the times where 

there is a change in hidden state within the optimum sequence – the raw sensor data is then 

analysed at these specific times to determine the severity of these changes.  Note that the 

optimal state sequence of a particular HMM will only be calculated once that condition has 

been classified (refer to Section 5.1.2). 

The best way to describe these concepts is with the use of an example. Figure 5-7 shows 

both the raw current sensor data for an AC load intermittent resistance fault and the 

associated optimal sequence within the related four state HMM of that condition. At the 

beginning of the observed sequence, the HMM is in State 1; at intermittent fault onset, the 

state sequence alters between States 3 and 4 and, when the system returns to a nominal 

condition, the state sequence also returns to State 1. The FPAs assume that the initial state 

within an observation sequence relate to a nominal condition; any divergence from this state 

indicates the point of fault onset.  

Three FPAs were developed corresponding to each fault mode. Table 5-4 outlines the 

parameters calculated by each FPA. The FPA algorithm for an abrupt mode fault is outlined 

in Algorithm FPA I below.   

 

 

Figure 5-7: Example of optimal state sequence when ADL intermittent fault data is applied to a four 

state intermittent fault HMM 

 



125 

 

 

 

 

Table 5-4: Fault parameters required for determination of fault severity 

FPA I – 

Abrupt mode 

fault 

FPA II- 

Intermittent  mode 

fault 

FPA III – 

Incipient mode 

fault 

1) Time of 

Fault Onset 

1) Time of Fault  

Onset 

1) Time of Fault 

Onset 

2) Power Offset 2) Power Offset 2)Drift Gradient 

 3) Average time in 

fault condition  

 

 4) Average time not 

in fault condition 

 

 

 

Algorithm 5-1: Abrupt Mode FPA1 Algorithm. 

Algorithm FPA I Abrupt Mode Fault 

1. Inputs Optimal State Sequence of HMM (state)  

2.             Raw Data observation sequence (raw) 

3. for i = 2:size(state) do 

4.      if i ≠ state(1) then 

5.         Fault Time = (i) 

6.         Fault Level =raw(i) – raw((i-1)) 

7.      else 

8.         No change in optimal state 

9.      end if 

10.end for 

 

The algorithm determines the time of optimal state change to be the point of fault onset. 

Fault level, or power offset, is determined by calculating the change in current levels 

between the point of fault onset and the current level prior to fault onset.  The intermittent 

mode FPA calculates these two parameters as well as the average intermittent fault time 

across the observational period. The incipient mode FPA also calculates the time of fault 

onset from the state change; the drift gradient is calculated by subtracting current magnitude 

at this point from the current magnitude at the end of the observation period. 

5.1.4 EPSmart - Summary 

The EPSmart method has been proposed as part of the work of this thesis to detect a variety 

of abrupt, intermittent and incipient fault modes across different locations throughout a 

hybrid AC/DC aircraft EPS. The aims of EPSmart are to diagnose different critical and 

degraded modes of operation as well as discriminate between sensor failures and faults in the 

underlying system; meeting these aims will improve overall EPS network protection and 

control. Two separate stages of the method – fault classification using an HMM framework, 
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and diagnosis of fault severity using HMM optimal state sequences – were described 

throughout this section. 

For the purposes of this thesis, EPSmart was developed using data from the NASA 

ADAPT network. EPSmart application is not limited to ADL. The methodology may be 

applied to various forms of compact hybrid EPS networks: the main prerequisite for wider 

application is the availability of training data for nominal and faulty conditions.   The variety 

of ADL fault modes described within the data was outlined. To validate the system, a case 

study, outlined in Chapter 6, uses ADAPT data, separate to data that was used for EPSmart 

development, to test the methods accuracy.  
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5.2 IntelArc – FDI of Series DC Arc Faults  

The series DC arc fault phenomena was described in detail in Chapter 4. Faults of this type 

remain a problem in both utility and micro grid applications [170]. However, detection and 

diagnosis of these network events within aircraft is particularly challenging as:  

1) Fault current reduces below nominal load current, meaning conventional overcurrent 

protection devices do not usually detect and isolate them.  

2) In-flight vibration may result in highly intermittent faults between loose 

terminals/connections, where typical duration is less than 50ms. 

Despite the considerable research and development effort over a number of years on 

detection systems and methods for arc faults, issues still remain surrounding the 

discrimination of fault events from nominal transient events [219]. This becomes particularly 

difficult when attempting to develop generalised fault detection methods11. 

This thesis puts forward a novel series DC arc fault diagnosis (AFD) method, IntelArc, 

which can provide accurate coverage across a range of network conditions, and also classify 

highly intermittent fault events. The proposed method combines time and time-frequency 

domain extracted fault features with HMM. Data generated from the validated arc fault 

model, described in Chapter 4, will be used for IntelArc development and testing. The 

ultimate goal of IntelArc is to improve aircraft EPS network protection against potentially 

dangerous series arc events through accurate fault detection and diagnosis. 

The novel IntelArc AFD method presented here is one of the key research outputs of this 

thesis. 

This section begins by outlining IntelArc. Off-line development of IntelArc is then 

described in Section 5.2.2 and on-line application is discussed in Section 5.2.3. The 

determination of characteristic arc fault features for use within IntelArc is discussed in 

Section 5.2.4. HMM training is also described in Section 5.2.5. Two applications relating to 

arc faults on aircraft systems are presented in Section 5.2.6. 

5.2.1 IntelArc - Method Outline 

The IntelArc method utilises a framework of trained HMM relating to different network 

conditions – this is similar to the methodology of Stage 1 of the EPSmart system, described 

in Section 5.1.2.  Figure 5-8 outlines the basic IntelArc method. 

                                                      
11 A generalised detection method can accurately (and autonomously) detect faults within a variety of 

system conditions and topologies. 
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For brevity, only three trained HMM are shown in Figure 5-8 – the three HMM relate to 

series arc fault, nominal steady-state and nominal transient conditions respectively.  

Practically, further HMM relating to different system transient conditions would be trained 

and implemented within the framework. 

During on-line application, windows of load current data are applied to each HMM within 

the framework. Each load current window covers a particular period, 𝑋 ms, of EPS 

operation. Each HMM outputs a LL measure which quantifies the similarity of on-line data 

with the trained parameters of the HMM (see Chapter 3, Section 3.8.1.4).  An AFD 

algorithm within IntelArc analyses the LL output of each HMM every 𝑋 ms. IntelArc 

outputs an alarm if there is sufficient evidence to suggest the presence of arc fault conditions. 

This process is repeated as new system data becomes available. 

The general design of IntelArc is similar to that of the EPSmart method. The main 

difference is that IntelArc only uses the LL outputs of the HMM every 𝑋 ms to diagnose arc 

fault conditions – there is no requirement for optimal state paths to be calculated. However, 

there is the requirement for development of an AFD algorithm to analyse the various outputs 

of each HMM. Also, IntelArc uses time-frequency domain feature extraction techniques for 

detection as opposed to only time-domain features used within EPSmart.  

 

 

Figure 5-8: Basic Outline of IntelArc method. 

 

5.2.2 IntelArc – Off-line Development 

Development of IntelArc centred on the use of EPS network data to train HMMs. Multiple 

HMMs corresponding to different network conditions were identified and trained. These 

corresponded to: 
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1) Nominal steady-state behaviour 

2) Nominal transient behaviour  

3) Series DC arc fault behaviour 

Each HMM was trained in a supervised manner [226] using labelled data corresponding to 

each of the three conditions. Several steps were undertaken to ensure correct processing of 

the generated training data and to determine optimal feature extraction for series DC arc fault 

discrimination. The main off-line development processes are shown in Figure 5-9 and 

summarised as follows: 

 Data Generation – Synthetic data generated using a software model (or similar) 

 Data Analysis – plotting, formatting and labelling synthesised data 

 Feature Extraction from Data – Features extracted from data in time and time-

frequency domains 

 Machine Learning Model Development – HMM trained using feature extracted data 

 Algorithm Development – Algorithms diagnose network condition through analysis 

of HMM LL outputs 

 

 

Figure 5-9: IntelArc off-line development processes 
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Training data was generated and labelled for all three conditions using Simulink and 

SimPower Systems [227] model simulations. Nominal steady-state data was captured during 

stationary periods of system operation, while nominal transient behaviour data was captured 

during load switching events; series DC arc fault behaviour was captured using the Simulink 

fault model, which was described and validated in Chapter 4. Randomised instances of the 

fault model were used for generating fault training data: speed of electrode separation was 

randomised between 5 and 25mm/s and the distance at which the electrodes dwell was 

randomised between 1 and 15mm.   

IntelArc uses load current data to determine fault presence. Use of load current signatures 

for detection ensures the system is non-intrusive and there is no further hardware 

requirement beyond load current sensors. 

Data processing was required for correct formatting and labelling of data. Explorative data 

analysis through graphical plots allows visualization of data and yields understanding of 

relationships throughout different network conditions. 

IntelArc uses both time-frequency and time domain extracted features for fault detection. 

The Wavelet Transform (WT) was used for time-frequency domain extraction of the load 

current data, while statistical measures were used for time domain extraction. The feature 

extraction process is non-trivial, and determining optimal features is important for the 

development of an accurate and discriminative diagnostic method. This is discussed in detail 

in Section 5.2.4. 

The extracted time-frequency and time domain features were used to train each HMM. 

Model training used the presented training data features to determine the model parameters 

through the use of the Expectation Maximisation (EM) iterative algorithm [30]. There was 

also the requirement to specify both the number of hidden states in the hidden state space, 

and the number of mixture distributions for the observation space. These processes are 

described in Section 5.2.5. 

The AFD algorithm determines network condition (i.e. healthy, faulted) through analysis 

of the HMM LL outputs. The LL measure of a given HMM quantifies the likelihood that 

new, unseen network data has been generated by the said HMM. Mathematically, this is 

defined as: 

 

𝐿𝐿𝑚 = 𝑝(𝐷𝑎𝑡𝑎|𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝑚) 

 

(5.5) 
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where 𝐿𝐿𝑚 is the log-likelihood that network data, 𝐷𝑎𝑡𝑎, was generated from the mth model 

with trained parameters, 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝑚 . 

AFD Algorithm development involved setting LL values that prove sufficient evidence to 

return a decision on network condition.  

5.2.3 IntelArc – On-Line Application 

The IntelArc method developed as part of this thesis is applied to diagnose series DC arc 

faults in real-time. Load current data is input to IntelArc in the form of windowed data 

streams.  The method processes and extracts features from each window of load current data. 

These extracted features are applied to each of the trained HMM, and the AFD algorithm 

analyses the LL outputs of each model to infer network condition at that point in time. These 

processes were illustrated in Figure 5-8. They are discussed in further detail in the following 

sections. 

5.2.3.1 Types of Data Window 

Sampling frequency, window length and window type impact system operation. Two 

separate applications of the IntelArc method relating to arc faults on aircraft are presented in 

this thesis. One application is for generalised sustained arc fault diagnosis across a range of 

voltage distribution levels. The other application is for the detection of intermittent series arc 

fault events. 

The main, and essentially only, differences between these two applications are the 

sampling frequency and type of window. Figures 5-10 and 5-11 highlight the differences in 

load current data windows between each application. 

Figure 5-10 illustrates the consecutive window technique utilised in the sustained fault 

detection application. This technique uses data windows of load current in consecutive time 

frames of length ∆t – a frame length of 50ms was used in both applications to reduce the 

probability of transient behaviour causing false diagnoses and to allow fault isolation prior to 

excessive electrode heating (thus reducing the risk of fire). This frame length is not binding 

and may be altered in separate applications of IntelArc. Each window is consecutively input 

to IntelArc to infer network condition.  

The main difference between the consecutive window technique and the sliding window 

technique, utilised for intermittent arc fault detection, and illustrated in Figure 5-11, is the 

overlap between windows. Despite ∆t being equal in both techniques for the examples 

considered here, the overlap means that only 10ms of new data is analysed within each 

window. This is advantageous for detection of intermittent arc events, as there is increased 
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potential for the detection of changes in fault current across smaller time intervals. Examples 

of IntelArc being applied for generalised diagnosis of both sustained arcing events and 

intermittent arcing events are provided in Section 5.2.6. 

 

Figure 5-10: Consecutive windowing technique utilised in the sustained arc fault application 

 

 

Figure 5-11: Sliding window technique utilised in the intermittent arc fault application 
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5.2.3.2 Application Overview 

Figure 5-8 illustrated the on-line method of IntelArc. Each stage of this process is briefly 

described in the following. 

 

 Online EPS Data 

 

System data is in the form of windowed batches covering a particular time period of 

load current, ∆𝑡𝑛, where n is the nth time window. Load current is sampled at 

frequency, 𝑓𝑠, meaning that, for any time window, 𝑛, the number of samples, 𝑠𝑛, is: 

 

𝑠𝑛 = 𝑓𝑠 × ∆𝑡 

 Feature Extraction 

 

Features are extracted from each data window using the WT (for time-frequency 

domain features) and statistical measures (for time domain features). These extracted 

features are then applied to each of the trained HMM. Feature extraction is described 

in detail in Section 5.2.4. 

 

 Apply to Trained Models 

 

Extracted features of data window, 𝑛, where 𝑛 ∈ (1, 2, … , 𝑁) and 𝑁 ∈ ℝ, are applied 

to each of the three trained HMM to determine the LL that each model generated the 

data. 

 

 AFD Algorithm  

 

The algorithm uses the LL of each HMM to infer network condition. The algorithms 

for both sustained and intermittent fault detection applications are presented in 

Section 5.2.6. 

 

The application process, in terms of receiving load current windows and using them to 

update inference of network condition is illustrated in Figure 5-12. Time between updates is 

dependent on the length of window ∆t, and whether a consecutive or sliding window 

technique is used. Section 5.2.3.1 outlined that IntelArc updates network condition every 

50ms – this length of time was deemed sufficient to safely diagnose and isolate arcing 

(5.6) 
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conditions, and also decrease the probability of false detection. However, update time can be 

altered to suit specific requirements.  

 

 

Figure 5-12: Basic example of IntelArc network condition updates after application of load current 

data windows 

 

5.2.4 Feature Extraction 

The importance of data feature extraction to the development and application of accurate 

fault diagnosis systems was introduced in Chapter 3. In ML based systems, the extracted 

features should be optimally discriminative between the different conditions/behaviours 

under consideration [30].   

Consequently, the development of three separate HMM corresponding to three separate 

conditions modelled in IntelArc – nominal steady-state, nominal transient and series DC arc 

fault – required significant empirical research into the determination of optimally 

discriminative features. This section discusses and presents the research results for 

determining discriminative features from the data. The extracted features were in both time-

frequency and time domains.  Time-frequency domain feature extraction using the WT is 

presented before time domain extraction using statistical techniques is described. 
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5.2.4.1 Series DC arc fault time-frequency domain Feature Extraction Using the 

Wavelet Transform 

The WT has been described throughout previous chapters. Chapter 4 elaborated on its ability 

to provide both time and frequency resolution to signals. Why is this resolution characteristic 

useful for feature extraction of series DC arc faults within an HMM based detection method? 

Consideration of the following elaborates on the benefits of using the WT. 

Essentially, the use of HMMs for fault detection depends on signals being non-stationary 

across time periods – HMMs use changing states (state transitions) to model the non-

stationary behaviour. Also, arc faults, as described in Chapter 4, exhibit highly transient, 

non-stationary behaviour, with expansive frequency spectra. While the FFT provides 

excellent frequency resolution [156], it does not provide any time resolution; as such, with 

respect to non-stationary signals, the FFT is not a powerful tool as there is no representation 

of how the frequency contributions change throughout time. On the other hand, the WT does 

provide information on both frequency and time. 

So, specifically: 

1) HMMs depend on signals changing across time (non-stationary signals); 

2) Arc faults exhibit highly transient (time domain) behaviour with expansive frequency 

ranges; 

3) The WT provides time and frequency resolution. 

These three points emphasise that the marriage of the WT (for feature extraction) with 

HMM (for inferring what the features relate to) has the potential to be the basis for a robust 

arc fault detection method. 

5.2.4.2 The Wavelet Transform 

It is important to understand both the theory of WT, and the additional information the 

transform provides about a signal. The theory of WT is complex and extensive – refer to 

Appendix C for a complete overview of the WT12.  

The DWT changes the time and frequency resolutions by convolving the signals with high 

and low pass filters, and down sampling by two. The bandwidths of the resultant sub-bands 

are ultimately determined by the sampling frequency of the original signal. Within the 

application of IntelArc for diagnosis of intermittent arcing events the sampling frequency, 𝑓𝑠, 

                                                      
12 This overview includes: discussion on the resolution properties of the transform, and its benefits 

over the FFT; descriptions of both the continuous WT and the discrete WT (DWT); and information 

on the extracted WT Detail and Approximate coefficients. 
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of the load current was 20 kHz. Frequency sub-bands relative to the extracted approximation 

and detail coefficients are outlined in Table 5-5.  

 

Table 5-5: Frequency sub-bands of the DWT approximate and detailed coefficients 

 Frequency Bandwidth Bandwidth for 20KHz 

Sampled Signal 

Original Time Domain Signal 

Load Current Signal 
0 −

𝑓𝑠

2
 

0 – 10KHz 

Time-Frequency WT Extractions 

Approximate 1 
0 −

𝑓𝑠

4
 

0 – 5KHz 

Approximate 2 
0 −

𝑓𝑠

8
 

0 – 2.5KHz 

Approximate 3 
0 −

𝑓𝑠

16
 

0 – 1.25KHz 

Approximate 4 
0 −

𝑓𝑠

32
 

0 – 625Hz 

Approximate 5 
0 −

𝑓𝑠

64
 

0 – 312.5Hz 

Detail 1 𝑓𝑠

4
−

𝑓𝑠

2
 

5kHz – 10KHz 

Detail 2 𝑓𝑠

8
−

𝑓𝑠

4
 

2.5kHz – 5KHz 

Detail 3 𝑓𝑠

16
−

𝑓𝑠

8
 

1.25kHz – 2.5KHz 

Detail 4 𝑓𝑠

32
−

𝑓𝑠

16
 

625Hz – 1.25KHz 

Detail 5 𝑓𝑠

64
−

𝑓𝑠

32
 

312.5Hz – 625Hz 

 

The following sections describe selecting the WT coefficients that optimise series arc fault 

detection and discrimination. 

5.2.4.3 DWT Approximate Coefficients – Determining Optimum Features 

Feature selection as a formal technique determines the extracted features that provide 

sufficient difference across the range of conditions under consideration. Determination of 

such features optimises a detection methods discriminative capabilities and accuracy. This 

section details the extraction of the DWT approximate coefficients and shows how these 

features vary between arc fault conditions and nominal conditions13. 

Figure 5-13 (a) illustrates normalised load current sampled at 20 kHz across a 50ms 

window under nominal conditions (1000 samples for 20 kHz sampling frequency) and 

                                                      
13 For clarity, only extracted DWT approximate coefficients under nominal steady-state and series arc 

fault conditions are described. 
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Figure 5-13 (b) shows the associated level 1, 3 and 5 WT approximate coefficient feature 

extractions (load current data was simulated using SimPower Systems and DWT 

approximation coefficients were extracted from load current data using MATLABs Wavelet 

toolbox [228]). DC ripple [229] is evident within the nominal load current – this ripple is a 

result of the upstream rectifier. Also, 5 kHz Gaussian measurement noise is present within 

the load current. The approximate coefficients extract the time-frequency response across the 

lower frequency sub-bands (see Table 5-5). The high frequency noise is filtered out as the 

levels increase and the frequency sub-bands get both lower and narrower. 

 

 

Figure 5-13: (a) Example of normalised load current signal across 50ms window during nominal 

conditions (b) Associated Level 1, 3 and 5 DWT approximate coefficients 

 

In contrast, Figure 5-14 (a) shows an example of normalised load current under series DC 

arc fault conditions, and Figure 5-14 (b) shows the associated DWT approximate 

coefficients. The sudden decrease in load current is a result of an unsuccessful arc-quenching 

attempt – this decrease significantly changes the magnitude and shape of the approximate 

coefficients during arc fault conditions. 
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Figure 5-14: (a) Example of normalised load current signal across 50ms window during series DC arc 

fault conditions (b) Associated Level 1, 3, and 5 DWT approximate coefficients 

 

The use of an empirical cumulative distribution function (CDF) highlights the difference in 

DWT approximate coefficients for nominal and fault conditions, with the CDF of 

approximation coefficients illustrated in Figure 5-15. The CDF was calculated across the 

training data sets for nominal and arc fault conditions. These training sets consisted of 

350×50ms windows captured during nominal conditions and 131×50ms windows captured 

during fault conditions - generation of training data was described in Section 5.2.2. 

 

 

Figure 5-15: Illustration of CDFs of various levels of approximate coefficients for both nominal and 

arc fault conditions 
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The CDF details the probability that the magnitude of the approximate coefficients will be 

within a certain range of values. The difference in CDF’s between nominal and fault 

conditions is evident from Figure 5-15. For example, the probability that the magnitude of 

approximate coefficients is >0.5 during arc fault conditions is roughly 70%, compared to 

roughly 45% during nominal conditions. The higher magnitudes of approximate coefficients 

under fault conditions are understandable when considering Figures 5-13 and 5-14.  

The difference in magnitude of the approximate coefficients under nominal and fault 

conditions is useful for discrimination. However, detection systems based on HMM also rely 

on features that change across time. Modelling the distribution of these coefficients enables 

the dynamic element of each feature to be modelled. 

Figure 5-16 illustrates the distribution of the Level 1, 3 and 5 approximations during 

nominal and fault conditions - non-parametric kernel density estimates [30] were used to 

model the basic distributions. 

 

 

Figure 5-16: Kernel density estimates of Levels 1, 3 and 5 WT approximation coefficients 
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During nominal conditions, the coefficients are evenly distributed between 0 and 1. 

However, during arc fault conditions, the density at lower values is considerably smaller than 

the density at higher values i.e. the probability of approximate coefficients having greater 

magnitude throughout arcing conditions is increased.  

A parametric GMM [30] is used to model how the approximate coefficients change 

throughout time. Consider the illustrative examples provided in Figure 5-17. Figure 5-17 (a) 

shows a GMM for the distribution of Level 1 coefficients under nominal conditions using 

four mixture components. Each Gaussian models the distribution of coefficients falling 

between specified ranges - the blue Gaussian models the distribution of coefficients between 

0 and 0.25, the red Gaussian models coefficients between 0.25 and 0.5, the green Gaussian 

models coefficients between 0.5 and 0.75 and the magenta Gaussian models coefficients 

between 0.75 and 1. 

 

 

 

 

Figure 5-17: GMMs to model the distribution of WT approximate coefficients during (a) nominal 

conditions and (b) series arc fault conditions. Note the increased rate of transitions between each 

Gaussian under nominal conditions in comparison to the fault conditions. 
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The area under each Gaussian models the probability that a coefficient will be within each 

range. Under nominal conditions, the area under each Gaussian is roughly similar which 

indicates a uniform distribution between 0 and 1. Thus, as illustrated in Figure 5-17 (a), there 

will be numerous transitions between each Gaussian throughout time. 

In contrast, Figure 5-17 (b) illustrates a GMM for Level 1 coefficients under arc fault 

conditions. The area under the Gaussian modelling the distribution of coefficients between 0 

and 0.25 is significantly smaller in comparison to the Gaussian modelling the distribution 

between 0.75 and 1. This difference in area means that the probability of the coefficients 

being between 0.75 and 1 is significantly higher than the coefficients being between 0 and 

0.25. Also, the number of transitions throughout time between each Gaussian is likely to be 

significantly less under arc fault conditions.  

The differing rate of transitions between nominal and arc fault conditions shows that the 

extracted approximation coefficients are a useful feature for discriminating between each 

condition. It is also necessary to determine the levels of approximation coefficients that 

should be used – is there suitable benefits of using all levels, or should a subset be selected?   

It was evident from analysis that the coefficients begin to level out at certain magnitudes as 

the levels increase and the frequency sub-bands get closer to zero.  This is not ideal as the 

distributions begin to become clustered within certain regions and reduces the number of 

transitions during nominal conditions - this concept is illustrated in Figure 5-13 where the 

level 5 coefficients are less sharp. These factors resulted in level 4 and level 5 coefficients 

not being selected for use within IntelArc whereas Levels 1 to 3 were selected as suitable 

features for arc fault detection. These features ensure the load current signal is decomposed 

into different frequency resolutions in the 0 to 5 kHz bandwidth (see Table 5-5) and also 

minimize the effect of extremely low frequency bands on detection accuracy. 

5.2.4.4 DWT Detail Coefficients – Determining Optimum Features 

The approximation coefficients extract low frequencies of the time domain signal at various 

resolutions. These approximate coefficients represent the original signal without the high 

frequency components.  However, highly transient arc fault signals contain high frequency 

components that are potentially useful for detection purposes [85]. The DWT detail 

coefficients, which extract higher frequency components, were therefore an important 

feature to consider. Similar to the approximate coefficients, it was necessary to select detail 

coefficient features that optimally discriminate between the various conditions.   
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The bandwidths of various levels of detail coefficients for a 20 kHz sampled signal are 

outlined in Table 5-5. Figure 5-18 illustrates examples of Levels 1, 3 and 5 detail coefficients 

relative to 50ms windows of load current data during nominal and fault conditions. 

 

 

Figure 5-18: (a) Examples of 50ms load current windows during nominal and arc fault conditions. (b) 

Extraction of WT detail coefficient levels 1, 3 and 5 for corresponding nominal and fault load current 

windows. Note that there are a higher number of increases in coefficient magnitude at lower detail 

levels under fault conditions – these increases are evident by the spikes in Detail 1 and 3 coefficients 

in (b).   

 

An increase in the magnitude of the detail coefficients indicates that the frequency 

bandwidth extracted by the particular level is present at that particular time. The load current 

during nominal conditions contains both DC ripple and measurement noise. The DC ripple 

results in increases in Level 1 and 3 coefficients roughly every 12.5ms (or 200 samples) 

under nominal conditions. The measurement noise also increases the magnitude of detail 

coefficients – as noise tends to be random, these increases are less predictable. The 5 kHz 

noise has a notable effect on detail levels 3-5, whereas levels 1-2 are less affected.  

In comparison, the detail coefficients under fault conditions are mostly affected by the 

transient nature of the arcing events. Coefficient increases are evident in levels 1 and 3 when 

current suddenly decreases - these transients result in the presence of high frequency 
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components and thus an increase in coefficient magnitude. These increases tend to be less 

prominent at higher detail levels. 

At lower level details, there tends to be a greater number of coefficient magnitude 

increases under series arc fault conditions in comparison to nominal conditions. The 

difference in coefficient increases between nominal and fault conditions was determined to 

be a useful feature for detection. As was the case with the approximation coefficients, the 

dynamics of the detail coefficients can be modelled using a GMM.  

Figure 5-19 illustrates GMMs for level 1 details during both nominal and fault conditions. 

The majority of detail coefficients in both conditions are clustered around zero with minimal 

standard deviation. The main difference between each GMM is the probability of the 

coefficient magnitude being greater than the zero-mean cluster. The area under each 

Gaussian is relative to the probability of a coefficient value being within the range of values. 

The increased area of the red and blue Gaussians under fault conditions signifies a greater 

probability of higher magnitude coefficients.   

 

 

Figure 5-19: GMMs for level 1 detail coefficients during (a) nominal conditions and (b) fault 

conditions. Note the increased probability of increases in coefficient magnitude during fault 

conditions. 

 

The increased probability of higher magnitude coefficients means that, in comparison to 

nominal conditions, there is likely to be greater transitions between each mixture during fault 

conditions. The differing rate of transitions between nominal and fault conditions ensure that 

DWT detail coefficients are a feature that will enhance the discrimination capabilities of the 

HMM based IntelArc system.   
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Again, it was necessary to select the levels of details that would optimise discrimination 

between each condition. Analysis of each detail level throughout each condition showed that 

Levels 3-5 were not suitable for discrimination. Level 3 coefficients were heavily distorted 

by the 5 kHz measurement noise whereas levels 4 and 5 did not capture the high frequency 

transients present throughout arc fault conditions (refer to Figure 5-18 (b) for illustrations of 

Levels 1, 3 and 5 detail coefficients). Consequently, detail levels 1 and 2 were selected as 

features for use in IntelArc.  

In practice, noise from power electronic converters will not be limited to 5 kHz and may be 

present across the entire 0-10 kHz observable bandwidth. Noise between 5-10 kHz will have 

an effect on lower level detail extractions; however, the salient higher frequency signatures 

of arcing will still be present within these features and they will remain useful for diagnosis. 

This is not the case at increased detail levels as the higher frequency components are filtered 

out - their inclusion in IntelArc will likely impair detection. Consequently, the number of 

DWT detail extractions is limited to lower levels with only levels 1 and 2 being selected as 

suitable features. 

5.2.4.5 Summary of time-frequency domain feature selection 

The importance of selecting optimal features for the development of accurate fault detection 

systems has been emphasised in the previous sections. The process of modelling the 

probability distributions of extracted coefficients under different network conditions was 

critical for using HMM for AFD. Modelling the distribution enables appreciation of the 

coefficient dynamics under each network condition. This simplifies the HMM training stage 

(see Section 5.2.5). While previously proposed systems [219, 230] have used WT extracted 

features for AFD, the studies outlined here, to the best of knowledge, are not reported in 

literature. 

After significant effort and research through modelling and analysing the distribution of 

coefficients extracted from load current data, the three approximate and two detail DWT 

coefficients extracted with a 20 kHz sampling frequency were deemed optimal for series DC 

arc fault detection within IntelArc. 

5.2.4.6 Series DC arc fault time domain feature extraction 

It was described in Section 5.2.2 that both time-frequency and time domain features were 

utilised within IntelArc. This section briefly describes the extraction of time domain features. 

The time domain features were, unlike the WT time-frequency domain features described in 
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the previous sections, extracted using more simplistic statistical analysis of the load current 

windows.  

Specifically, a time domain feature based on a moving average [231] across the 50ms 

windows was extracted. Figure 5-20 illustrates examples of the moving average calculated 

for normalised windows of nominal and arc fault load current data. The moving average used 

a lag of 100 samples – hence, the moving average window contains only 900 samples. 

 

Figure 5-20: (a) Normalised 50ms window of load current data during nominal and series arc fault 

conditions (b) Moving averages of nominal and fault currents 

 

Calculation of the moving average removes the extent of the DC ripple and separates the 

data into distinct regions for each condition.  Both signals are generally smoother, with the 

majority of high frequency noise removed.  The feature is complimentary to the WT 

approximate coefficients as the general shape of the signals, and distinctions between each 

condition, are highlighted.  

The moving average time domain feature, in combination with the approximate and detail 

coefficients, was used for AFD within IntelArc.  

Training of the HMM using these features is described in the following section. 

 

5.2.5 HMM Training for IntelArc  

Feature selection of DWT extracted coefficients determined that six feature vectors in total 

were used to train each HMM within IntelArc. These features included: 

 WT approximation coefficient levels 1-3 

 WT detail coefficient levels 1 and 2  

 Moving Average 
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A separate HMM was developed corresponding to each condition; thus, one model was 

developed for nominal steady-state behaviour, one for nominal transient behaviour and one 

for series DC arc fault behaviour. For HMM theory, refer to Chapter 3. 

Sections 5.2.4.3 and 5.2.4.4 illustrated the concept of modelling data using GMMs. Those 

sections also described the differing rate of transitions between mixtures throughout each 

condition. HMM development is analogous to these concepts. Modelling the observation 

space of HMM is similar to modelling the data using GMM, as illustrated in Figures 5-17 

and 5-19. The training data in the context of HMM development was the six feature vectors 

and, therefore, has higher dimensionality than the GMM examples provided in these figures.  

While the observation space is analogous to the GMMs of the data, the hidden state space 

relates the changes in mixtures across time to changes in hidden states i.e. changes in the 

observational data relates to changes in the hidden states (this was previously discussed in 

Section 5.1.3.1). It should be emphasised that the hidden states have no physical meaning – it 

is the trained parameters of the HMM that describe the behaviour of each modelled condition 

[41]. 

The feature selection process established the characteristics of each extracted feature under 

nominal and series DC arc fault conditions. These characteristics were useful in determining 

both the number of hidden states and mixture components within the observation space for 

each HMM prior to training. The EPSmart method, described in Sections 5.2, used the BIC 

to determine the optimal number of hidden states and mixture components of each HMM - 

the lack of training data for the ADAPT meant this methodology was used in an attempt to 

limit over fitting each HMM. However, the use of synthetic data simulated using software 

models meant that the volume of training data was not a concern during development of 

IntelArc; thus, the BIC formalism was not used throughout HMM training. 

It was determined that the nominal steady-state HMM would have a greater number of 

hidden states and mixtures in comparison to the fault and nominal transient models. A 

greater number of states emphasises higher transition rates between each state (as described 

in Section 5.2.4.3), where the probabilities of transition are roughly uniform. The number of 

hidden states and mixture components for each HMM are summarised in Table 5-6. 

 

Table 5-6: Number of hidden States and Gaussian mixtures of each HMM in IntelArc 

HMM Model Number of Hidden States Number of Mixtures 

Nominal Steady-State 10 10 

Series DC arc fault 6 6 

Nominal Transient 4 4 
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The increased number of hidden states in the nominal steady-state model is a consequence of 

the WT approximation features. Although the transition rate between the hidden states in the 

fault model are increased as a consequence of the WT detail features (refer to Section 

5.2.4.4), it was considered unnecessary to include additional states to model these transitions. 

The nominal transient model will have the least number of transitions between hidden states 

as step changes in load current will dominate state dynamics. Limiting the number of hidden 

states and mixture components of the fault and nominal transient model also reduced the risk 

of over fitting the models [110] to the training data. Over fitting the nominal steady-state 

model is less of an issue as data under this condition is likely to be more consistent across a 

range of network scenarios. 

The HMM parameters that were trained using the data are described in Table 5-7. 

 

Table 5-7: Description of Trained HMM Parameters 

HMM Trained Parameters 

Mixture weights of Gaussian components modelling observation space 

Variance between Gaussian mixture components 

Mean of each Gaussian mixture components 

Transition probabilities between each hidden state 

 

These trained parameters are used for inference of new system data. As new system data is 

applied to a model, the trained parameters are used to determine the LL that the data was 

generated by said model – see (5.5) in Section 5.2.2. 

The following sections further describe how the trained HMM are used within IntelArc to 

diagnose series DC arc faults. 

5.2.6 IntelArc – Examples of Application  

Two applications of the IntelArc method have previously been discussed in Section 5.2.3. 

The first application was for the diagnosis of sustained arc faults within aircraft 

representative networks, where a multitude of power converters and voltage distribution 

levels are present. The second application was for detection of highly intermittent arcing 

events. The use of IntelArc for diagnosis of sustained arc faults uses a reduced sampling 

frequency of 2 kHz while intermittent arc fault diagnosis uses a sampling frequency of 20 

kHz. Sampling frequency is reduced in the sustained application to determine the effect this 

will have on diagnostic accuracy and detection time.  

The different windowing techniques relevant to each application were discussed in Section 

5.2.3.1. The use of HMM for AFD is dependent on correct interpretation of the LL outputs. 

LLs are calculated with the application of new test data to each trained HMM – this was 
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described in Section 5.2.3.2. Within IntelArc an algorithm assesses the LL values output 

from each HMM to infer network condition. The different times at which each new data 

window is analysed (i.e. applied to each trained HMM) within each application resulted in 

separate AFD algorithms being developed for each application. These algorithms are 

described in the following sub-sections.  

The sub-sections also provide examples of the LL outputs from each HMM throughout 

certain arc fault conditions. This highlights how the IntelArc method can be used to 

accurately diagnose arcing conditions. 

5.2.6.1 IntelArc – Diagnosis of Sustained Series DC Arc Faults 

An example of load current sampled at 2 kHz during a sustained arcing event is illustrated in 

Figure 5-21 (a) and the corresponding LL outputs from each trained HMM are illustrated in 

Figure 5-21 (b).  
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Figure 5-21: (a) Example of load current during a sustained series DC arcing event (b) Corresponding 

LL output from each HMM. 

 

The LL outputs from each model change according to various dynamics in the load current. 

LL values closer to zero indicate higher probability. During relatively static nominal 

conditions the LL output of the nominal model, ‘LL_Nom’, is greater than the other two 

models.  

During the load switching event (≈ 3 seconds), ‘LL_Nom’ decreases - this could 

potentially indicate the presence of a fault. However, the simultaneous LL increase of the 

nominal transient model, ‘LL_Switch’, indicates that a normal load transient, as opposed to a 

fault, is present.  
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During the sustained arcing event (≈ 6.5 seconds) the LL of the series arc fault model, 

‘LL_Fault’, increases beyond ‘LL_Nom’ (‘LL_Switch’ increases but not beyond ‘LL_Nom’ 

or ‘LL_Fault’) – this evidence suggests an increased probability of arc fault presence and an 

arc fault warning for the observational period should be issued. 

Another measure that indicates an increased probability of fault presence is a likelihood 

ratio test [232]. This ratio expresses how many times more likely the data is under one 

hypothesis (model) compared to the other, and is defined as: 

 

𝐿𝐿_𝑅𝑎𝑡𝑖𝑜 = −2 𝑙𝑛 (
𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝐹𝑎𝑢𝑙𝑡 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
) = −2 × (𝐿𝐿_𝑁𝑜𝑚) + 2 × (𝐿𝐿_𝐹𝑎𝑢𝑙𝑡) 

 

The corresponding likelihood ratio for the example outlined in Figure 5-21 is shown in 

Figure 5-22. 

 

Figure 5-22: Likelihood ratio between nominal and fault model. Note the significant increase beyond 

zero at fault onset. 

 

The likelihood ratio stays consistently below zero until onset of the sustained arcing event. 

During the load switching event, the decrease in ‘LL_Fault’ results in the likelihood ratio 

decreasing significantly. Throughout the sustained arc event, the increase in ‘LL_Fault’ 

beyond ‘LL_Nom’ results in the ratio becoming significantly greater than zero. Thus, there is 

an increased probability of series arc fault presence at points where the ratio increases 

beyond zero. 

IntelArc was developed to infer network condition in real-time using both the HMM LL 

outputs and the likelihood ratio. With its application to the diagnosis of sustained arcing 

(5.7) 
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events, the aim was to diagnose series DC arc fault presence across a range of load 

conditions and voltage distribution levels. 

Figure 5-23 details operation of the IntelArc method applied for the diagnosis of sustained 

arc faults. 

The method is split into three distinct stages:  

 System Start Up  

 Data Widowing and HMM application 

 AFD Algorithm  

These stages are summarised in Table 5-8. 
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Figure 5-23: IntelArc for diagnosis of sustained arc faults 
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Table 5-8: Summary of separate stages of the IntelArc method for diagnosis of sustained arcing 

events 

 

System Start-Up 

 

The use of consecutive data windows requires a 

minimum of 50ms available data. Therefore, a 

50ms delay is implemented between system start-

up and algorithm initiation.  

 

System data are load current observations for 

loads at different locations (Location X, Location 

X+1) throughout the network. Load Current is 

sampled at 2 kHz.  

 

Data Windowing and HMM Application 

 

System data is processed for application to each 

model. Using the consecutive window technique, 

windowed load current data covering the 

previous 50ms is recursively applied to the 

nominal steady-state model, fault model and 

nominal transient model every 50ms.  

 

All three log-likelihood HMM outputs for 

window n are stored and evaluated at the next 

stage.  

AFD Algorithm 

 

All HMM outputs are evaluated to determine if 

there is a significant probability of series arc fault 

presence during each 50ms observational period.  

 

The algorithm determines if the LL_Ratio output 

is > predetermined threshold and the LL_Fault 

output > predetermined threshold and the 

LL_Switch output < predetermined threshold 

then an arc fault diagnostic warning for the 

observational period of window n at Location X 

is issued. If all of these specifications are not met, 

nominal operation is assumed.  

 

This whole process is repeated every 50ms 

throughout system operation.  

 

 

The consecutive window technique results in the load current data being analysed every 

50ms. The pre-determined thresholds ensure there is sufficient evidence to diagnose a series 

DC arc fault. The three thresholds determine if: 

1) ‘LL_Fault’ has increased 

2) There is sufficient difference between ‘LL_Nom’ and ‘LL_Fault’ (the likelihood 

Ratio) 

3) ‘LL_Switch’ has not increased beyond ‘LL_Fault’ 

If all of these conditions are true, a diagnostic warning for window n at Location X is 

issued. The process is then repeated for window n+1 to n+N.  
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5.2.6.2 IntelArc – Diagnosis of Intermittent Series DC Arc Faults  

An example of load current during an intermittent series DC arcing event is illustrated in 

Figure 5-24. Within this application, load current is sampled at a frequency of 20 kHz. 

Intermittent arcing events were simulated using an intermittent arc fault model -  this model 

is an adapted version of the sustained fault model, and is described fully in Appendix A.  

 

Figure 5-24: Example of load current during intermittent series DC arcing events 

 

The intermittent fault develops at roughly 8 seconds and results in periods of decreased load 

current. The duration of each intermittent event, and the level of current decrease, are both 

variable. The aim of IntelArc is to accurately diagnose these highly variable events in real-

time.  

Application of IntelArc for diagnosis of these events follows a similar methodology as its 

application for diagnosis of sustained events, where the HMM LL outputs are analysed for 

evidence of fault presence.  The main differences are the increased sampling frequency and 

the fact that a sliding window technique is used for application to the nominal and fault 

model; this means load current windows are analysed every 10ms as opposed to every 50ms 

in the sustained AFD algorithms.  
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The corresponding LL outputs of the nominal and fault models (for the load current of 

Figure 5-24) are illustrated in Figure 5-25 (a). The likelihood ratio is illustrated in Figure 5-

25 (b). The only points at which the LLs are not relatively static are during the nominal load 

switching event and throughout the intermittent arcing events. At fault onset, ‘LL_Fault’ 

increases and ‘LL_Nom’ decreases – this change is emphasised in the likelihood ratio and 

indicates a high probability of fault presence.  

The corresponding LL output of the nominal transient model is illustrated in Figure 5-26. 

Consecutively windowed data (as opposed to a sliding window) is applied to the switching 

model to minimise false positives – evaluating the LL of the switching model every 50ms, as 

opposed to every 10ms, allows a better representation of fast transient switching behaviour 

as the current remains constant across the majority of the data window.  

During the nominal load switch (≈ 4.1 seconds), ‘LL_Switch’ increases while both 

‘LL_Nom’ and ‘LL_Fault’ decrease indicating a high probability of a nominal transient 

event. Despite ‘LL_Switch’ increasing during the intermittent fault events, the fact that 

‘LL_Fault’ also increases means that there is a higher probability of an arc fault event.  

Figure 5-27 details operation of the IntelArc method applied for the diagnosis of 

intermittent arc faults. Each stage of the system is outlined in Table 5-9. 

The LL outputs are again compared to various pre-determined thresholds to ensure there is 

sufficient evidence to diagnose the presence of series DC arc faults throughout each 50ms 

interval. The main difference between application of IntelArc for intermittent fault diagnosis 

and application for sustained diagnosis is there are five LL outputs from the nominal and 

fault models over the 50ms interval (compared to one in the sustained AFD algorithm). The 

algorithm determines if any of the five LL outputs over each 50ms observational period are 

greater than the pre-determined thresholds. 

The predetermined thresholds were set through analysis of HMM LL outputs across 

different operational scenarios. Trade-offs between false detection, non-detection and 

detection time must be considered when selecting suitable thresholds – for example a LL 

threshold that accurately and quickly diagnoses an arc fault event may also provide too many 

false positives at nominal transient events. LL thresholds may be tuned to improve diagnosis 

in networks with particular operational scenarios or characteristics. 
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Figure 5-25: (a) LL outputs of nominal and fault models during intermittent arc event (b) Likelihood 

ratio between nominal and fault models. 

 

 

Figure 5-26: Corresponding LL output of nominal transient model. 
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Figure 5-27: IntelArc for diagnosis of intermittent arc faults 
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Table 5-9: Summary of separate stages of the IntelArc method for diagnosis of intermittent arcing 

events 

 

 

5.2.7 IntelArc - Summary 

IntelArc is proposed to diagnose series arc faults within DC supplied systems in real-time 

using load current data. The method is based on a framework of trained HMM, where 

System Start-Up 

 

The use of moving windows requires a minimum 

of 50ms available data. Therefore, a 50ms delay is 

implemented between system start-up and 

algorithm initiation.  

 

System data are load current observations for 

loads at different locations (Location X, Location 

X+1) throughout the network. Load Current is 

sampled at 20 kHz.  

 

Data Windowing and HMM Application 

 

System data is processed for application to each 

model. Using the moving window technique, 

windowed data covering the previous 50ms is 

recursively applied to the nominal model and fault 

model every 10ms. 50ms consecutive data 

windows are applied to the nominal switching 

model.  

 

All log-likelihood model outputs are evaluated 

every 50ms at the next stage – this includes 

5×LL_ratio and 5× LL_fault (one every 10ms) 

and 1×LL_nominal_switch (one every 50ms) for 

the nominal switching model. All LL statistical 

data is stored in an n×d matrix for each 50ms 

observational period, where n=number of 

windows analysed every 10ms=5 and d=number 

of different LL statistics calculated=4. 

 

AFD Algorithm 

 

All outputs are evaluated to determine if there is a 

significant probability of series arc fault presence 

during each 50ms observational period.  

 

The algorithm determines if any of the 

5×LL_ratio outputs are > predetermined threshold 

and any of the 5×LL_fault outputs > 

predetermined threshold and the 

1×LL_nominal_switch output < predetermined 

threshold then an arc fault diagnostic warning for 

the observational period is issued for Location X. 

If all of these specifications are not met, nominal 

operation is assumed.  

 

This process is repeated consecutively every 

50ms throughout system operation.  
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models correspond to nominal steady-state, nominal transient and series arc fault conditions. 

All models were trained using synthetic data acquired through software simulations. Time-

frequency and time domain features of the on-line load current data windows are applied to 

each HMM to generate LL statistics. An AFD algorithm analyses the LL outputs of each 

model to infer network conditions.  

Two separate applications of IntelArc were described. The first application described 

generalised sustained arc fault diagnosis across a range operating conditions. The second 

application was concerned with the diagnosis of intermittent series arc fault events. The only 

methodological differences between the applications are current sensor sampling frequency 

and type of window used. The sustained AFD application uses a sampling frequency of 2 

kHz and a consecutive data window, while the intermittent AFD application uses a higher 

sampling frequency of 20 kHz and a sliding data window. 

Three case studies are provided in Chapter 6 to validate these applications of IntelArc. The 

first case study tests the accuracy of IntelArc for diagnosing sustained arc faults within 

aircraft representative EPS. The second case study tests the accuracy of AFD for diagnosing 

intermittent arc fault events. The third case study validates IntelArc using experimental data 

generated on a scaled DC testbed. 

 

5.3 Chapter 5 Conclusions  

The chapter has proposed two data driven FDI methods for application to EPS deployed 

within an aircraft environment. The aim of these methods is to improve network protection 

and control through diagnosis of critical and degraded network faults. Both methods are 

based on the use of trained HMM to detect a variety of different fault types.  

EPSmart, presented throughout Section 5.1, is proposed to detect abrupt, intermittent and 

incipient fault modes in a hybrid AC/DC EPS. The two stage method primarily uses a 

framework of multiple trained HMM to classify network condition - classification of 

network condition includes both fault mode and location.  

The second stage of the method determines the severity of any fault that has been 

classified. Fault severity can be either critical or degraded, and this is determined through 

utilising the optimal state sequence of an HMM to calculate time of fault onset and fault 

current levels. For the purposes of this thesis, EPSmart was developed using data from a sub-

set of NASA’s ADAPT test bed. A total of fifteen faults, including sensor failures, were 

modelled using the ADAPT data.  
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Feature extraction from data, and sensor fusion, are critical aspects of development – these 

were described in Section 5.1.3.2. Another significant aspect of development involved 

optimising the trained parameters of the HMM training with only limited training data 

available – this was described in Section 5.1.3.3. 

IntelArc, a novel series DC AFD method, was presented throughout Section 5.2. IntelArc, 

like EPSmart, is also based on a framework of multiple trained HMM. The method uses 

time-frequency and time domain feature extraction from load current data. The main points 

of discussion in these sections included: 

 Off-line development 

 The selection of optimal time-frequency domain extracted features 

 Two separate on-line applications of IntelArc 

Off-line development used simulated training data to train each HMM; separate HMM 

corresponding to different network conditions were trained. Detection is based on 

interpretation of the LL outputs of each HMM as real-time system data is applied.  

Optimal features were determined through analysis of the WT coefficients extracted from 

the training data. The time and frequency resolution properties of the WT were deemed 

useful for the HMM based IntelArc method. This study analysed the distribution of various 

WT coefficients under the different network conditions to determine optimal features. 

Various low frequency band (approximate coefficients) and high frequency band (detail 

coefficients) features were selected.  

Two applications of IntelArc were described. The first application was for the generalised 

diagnosis of sustained arc events. The second application was for diagnosis of intermittent 

arc events. The only differences between these applications were the sampling frequency of 

load current and the type of data window used. 

The following chapter describes case studies that were implemented to validate both 

EPSmart and IntelArc. 
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6. TESTING OF EPSMART & 

INTELARC FDI METHODS: CASE 

STUDIES 

 
hapter 5 detailed the design of two novel fault diagnosis and isolation (FDI) methods – 

EPSmart and IntelArc - for application to aircraft EPS. These two proposed FDI 

methods are the main contributions of this thesis. The aim of EPSmart is to provide 

autonomous, and accurate, diagnosis of various critical and degraded failure modes within a 

hybrid AC/DC EPS. IntelArc aims to diagnose series arcing events within DC supplied 

networks. 

This chapter describes separate case studies that have been used to test the accuracy of 

these two methods. The first case study outlines application of EPSmart to NASA’s 

advanced diagnostic and prognostic test bed (ADAPT), a representative aircraft EPS. The 

second case study tests application of IntelArc for diagnosis of sustained series DC arc fault 

events across a range of EPS operating conditions. The third case study tests application of 

IntelArc for diagnosis of intermittent series DC arc faults. A fourth case study validates 

IntelArc using experimental data captured on a scaled DC testbed.  In each case study results 
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are presented and discussed. Chapters 2 and 4 discussed the difficulties in detecting and 

diagnosing these type of faults, as well as the dangers they pose to overall safety and 

reliability: preliminary evaluation of these two methods within these case studies allows their 

performance to be analysed and highlights their various attributes towards diagnosing such 

fault conditions within representative aircraft EPS.  

6.1 Case Study 1: Application of EPSmart to the ADAPT Network 

The case study to be investigated in this section tests the application of EPSmart to a subset 

of the ADAPT network, the ADAPT-Lite (ADL). Design and operation of EPSmart has been 

provided in Chapter 5. The format adopted for the presentation of this case study is to firstly 

outline the testing procedure before going on to describe and discuss test results in Sections 

6.1.1 and 6.1.2. The performance of EPSmart is compared to other systems proposed for FDI 

on the ADL network in Section 6.1.3.  

It was described previously in Chapter 5 that electrical system data from the ADAPT 

network was used to develop the EPSmart method. This data was publicly released for the 

International Diagnostic Competition in 2010 (DXC10) [139]. The complete dataset 

described 166 individual controlled experiments undertaken on the ADL network – 25 

experiments outlined system data under nominal conditions, and 141 experiments outlined 

data during various fault conditions.  Each individual experiment covered roughly four 

minutes of time, with sensor readings recorded at frequencies of 2-10Hz. There are a total of 

12 sensors throughout the ADL network (see Chapter 5, Section 5.1.3.2).  

For the purposes of this case study, the ADL data released by DXC10 was randomly 

divided into training and testing data. The number of data files used for training and testing 

each of the ADL conditions modelled within EPSmart are outlined in Table 6-1.  

In total, 129 files were used for testing whereas only 37 were used for training the models; 

the reason for this disparity between training and testing data was to fully test the ability to 

develop an accurate EPSmart method using minimal faulty data, as well thoroughly test the 

method with a variety of test cases.  

Testing the accuracy of EPSmart applied to the ADL network involved inputting each test 

file separately and observing the diagnostic outputs. The diagnostic outputs of EPSmart are 

compared to the ‘true’ network conditions labelled within each test case to quantify 

accuracy. EPSmart was tested in an off-line scenario, where only one set of diagnostic 

decisions was provided for each test case (as opposed to updating a diagnostic decision as 

new sensor data is received - refer to Section 6.1.3). 
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Table 6-1: Division of DXC10 data into training and test data sets 

 

The EPSmart method, which was described in Section 5.1.2, is based on two separate stages. 

The first stage uses the data to classify the condition of the network. If a fault condition is 

classified after Stage 1, Stage 2 of the method uses fault parameter calculation algorithms 

(FPA) to determine what time throughout the observation period the fault occurs, fault 

current levels and various other relevant parameters (see Chapter 5, Section 5.1.3.4). 

Information on fault parameters can then be used to determine the severity of the fault i.e. 

the effect it may have on system reliability. Fault severities were labelled within the DXC10 

competition data as either critical or degraded. 

Thus, with the input of ADL test data into EPSmart, there are three outputs: 

 ADL Network Condition Classification 

 Electrical Fault Parameters (void if nominal condition classified) 

 Diagnostic decision – critical or degraded fault (again, void if nominal condition is 

classified) 

The procedure of testing EPSmart using the ADL data is illustrated in Figure 6-1. 

Fault Location Fault Mode # Training 

Files 

# Test Files 

No Fault Nominal 5 20 

 

DC Load Faults 

Abrupt Resistance Offset 2 9 

Intermittent Resistance Offset 2 8 

Incipient Resistance  4 7 

 

AC Load Faults 

Abrupt Resistance Offset 2 9 

Intermittent Resistance Offset 2 8 

Incipient Resistance  3 8 

Fan Load Failed Off 2 2 

Inverter Faults Failed 1 2 

 

Voltage Sensor Faults 

Stuck 2 5 

Intermittent 2 5 

Incipient 3 4 

 

Current Sensor Faults 

Stuck 2 14 

Intermittent 2 14 

Incipient 3 14 

 Total 37 129 
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Figure 6-1: EPSmart testing procedure using ADL data 

 

Accuracy of the three EPSmart outputs is quantified for each test case by determining: 

1) If the network condition classified after Stage 1 matches the condition labelled in the 

test data 

2) If the fault parameters calculated by the FPAs are within ± 5% of the parameters 

labelled in the test data 

3) If the diagnostic decision on fault severity matches the severity labelled in the test 

data 

Accuracy for the 129 test cases is outlined in Table 6-2. The following sections describe 

and discuss these test results. 

6.1.1 EPSmart Test Results - Description 

Results are described in terms of classification accuracy (Stage 1 of the method) and fault 

severity diagnosis accuracy (Stage 2 of the method): 

 

 Classification Accuracy 

The results in Table 6-2 show that EPSmart was 95.3% accurate at discriminating between 

the 15 different ADL network conditions. This equates to 6 misclassifications out of the 129 

test cases presented to the system; of the six misclassifications, four of these are attributed to 

the misclassification of incipient faults. In all six misclassified test cases, the network was 

assumed to be in a nominal condition (false negatives). 

 

 Fault Severity Diagnosis Accuracy 

Severity diagnosis is based on the ability of EPSmart to accurately calculate fault parameters 

after a fault has been classified from Stage 1. Parameters of the fault, such as fault current  
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Table 6-2: Testing results of EPSmart applied to ADL test bed 

 

Fault 

Location 

Fault Mode # 

Tests 

Classification 

Accuracy (%) 

Fault 

Parameter 

Calculation 

Accuracy 

(%) 

# of 

Critical 

Faults 

labelled 

in Test 

Data 

# of 

Critical 

Faults 

diagnosed 

by 

EPSmart 

# of 

Degraded 

Faults 

labelled 

in  Test 

Data 

# of 

Degraded 

Faults 

diagnosed 

by 

EPSmart 

Diagnostic 

Decision 

Accuracy 

for 

Critical 

Faults 

(%) 

Diagnostic 

Decision 

Accuracy 

for 

Degraded 

Faults (%) 

Nominal N/A 20 100 N/A 0 0 0 0 100 100 

 

DC Loads 

Abrupt 9 100 100 5 5 4 4 100 100 

Intermittent 8 87.5 100 3 3 5 4 100 80 

Incipient 7 85.7 71.4 4 3 3 3 85.7 100 

 

AC Loads 

Abrupt 9 100 100 4 4 5 5 100 100 

Intermittent 8 100 91.6 4 4 4 4 100 100 

Incipient 8 87.5 81.25 4 4 4 3 100 75 

Fan Failed 

Off 

2 100 100 1 1 1 1 100 100 

Inverter Failed Off 2 100 100 1 1 1 1 100 100 

 

Voltage 

Sensors 

Stuck 5 80 100 0 0 5 4 100 80 

Intermittent 5 100 100 0 0 5 5 100 100 

Incipient 4 75 50 0 0 4 3 100 75 

 

Current 

Sensors 

Stuck 14 100 100 0 0 14 14 100 100 

Intermittent 14 100 100 0 0 14 14 100 100 

Incipient 14 92.8 64.28 0 0 14 13 100 92.9 

 Total 129 95.3 89.89 26 25 83 78 96.2 93.98 
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levels, determine the severity of the fault to the network - for complete descriptions of the 

FPAs refer to Section 5.1.3.4. In the majority of fault test cases, the calculation of parameters 

was accurate (i.e. within the ± 5% margin). For abrupt and intermittent fault cases the 

calculation accuracies were high.  

The main instance where accuracy was limited was when calculating parameters for 

incipient faults, which, in some cases was as low as 50%. The reduced overall accuracy of 

89.89% for parameter calculation accuracy can mainly be accredited to the inaccuracies of 

incipient parameter calculations. Despite the relative inaccuracies of the FPAs, all faults that 

were classified correctly at Stage 1 and assessed at Stage 2 were correctly diagnosed as 

either degraded or critical - incorrect diagnoses were mainly a result of inaccuracies at Stage 

1. The main parameter incorrectly calculated was the time of fault onset. 

There were a total of 26 critical faults within the labelled ADL test data – EPSmart 

correctly identified 25 of them, resulting in a critical fault diagnosis of 96.2%. The critical 

DC load incipient fault condition was not identified as it was incorrectly classified as a 

degraded current sensor fault at Stage 1.  

There were a total of 83 degraded faults within the test data, and EPSmart correctly 

identified 78 of them (93.98% accuracy).  The five inaccuracies (intermittent DC load, 

incipient AC load and incipient/stuck voltage and current sensor faults) were a result of them 

being misclassified as a nominal condition at Stage 1.  

EPSmart correctly identified all 20 nominal condition tests. 

 

6.1.2 EPSmart Test Results – Discussion 

The test results described in the previous section validate that EPSmart has the potential to 

utilise system data to diagnose and isolate a multitude of critical and degraded fault modes. 

In particular, diagnosis of abrupt and intermittent conditions was achieved with very high 

accuracy. The accurate discrimination of sensor failures from faults in the underlying system 

was evident from the test results, with only 2 out of 56 (3.5%) sensor failure tests 

inaccurately diagnosed.  

In terms of network degradations, EPSmart managed to correctly identify 93.98% of all 

test cases. The main reason this is not higher is because of complications in dealing with 

incipient fault conditions. The previous section touched upon the fact that the trained HMM 

within EPSmart were not accurately classifying incipient fault conditions: four of the six 

misclassifications at Stage 1 were incipient conditions. This suggests that the HMM for 
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incipient conditions were not responding to dynamics within the system data. This concept is 

illustrated in Figure 6-2, which shows the optimal state sequence of the relevant HMM for 

examples of abrupt, intermittent and incipient ADL fault conditions.  

State changes within the hidden sequences of the abrupt and intermittent HMMs 

correspond to changes in the sensor data – hence these models have a high probability of 

accurately diagnosing and isolating the respective fault conditions. However, this is not the 

case for incipient faults (Figure 6-2 (c)), where the onset of current drift, evident in the 

sensor data at roughly 50s, does not result in a change in hidden state of the associated 

HMM. Indeed, within this example, there is roughly a 50s delay between fault onset and a 

change in hidden state.   

These issues highlight that the lack of hidden state dynamics may result in incipient fault 

conditions being misdiagnosed as nominal conditions. This is backed up in the results, where 

all four incorrectly diagnosed incipient faults were attributed to be in a nominal condition by 

the EPSmart system.  

One solution to this problem would be to increase the number of hidden states within 

incipient condition models. This alteration would increase the probability of discriminating 

between marginal incipient conditions and nominal behaviour as increasing the number of 

states enhances sensitivity to slight changes in data, albeit with a trade off with model 

complexity. The volume of available training data must also be considered when attempting 

to improve the diagnosis capabilities of HMM through increasing the number of states. A 

drawback of data driven approaches is that, compared with cases involving nominal 

condition data, there is significantly less data available describing fault conditions. 

The lack of data can result in fault condition models being over fitted with poor 

performance when inferring new instances of the same condition. In this case study of 

EPSmart, the BIC [30] was used to optimise each HMM based on various parameters, 

including the number of training cases available (see Chapter 5, Section 5.1.3.3). Test results 

outlined in Table 6-2 have shown that the abrupt and intermittent fault models accurately 

inferred test cases, even though some models were trained using only two separate examples. 

The incipient models were not as accurate, despite being trained using a similar number of 

training examples.  
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Figure 6-2: Optimal State Sequences of relevant HMMs for examples of (a) abrupt (b) intermittent and (c) incipient ADL fault conditions. 
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The solution to improving the performance of incipient fault models by increasing the 

number of hidden states is dependent on the number of training cases available. Without 

more training examples, increasing the number of hidden states will simply result in a model 

over fitted to the training examples. Such issues highlight that, while increasing the volume 

of training data will lead to a better generalisation within all fault models, certain fault 

conditions are more dependent on the quantity of training cases for accurate inference of 

unseen data.  

Overall, case study results have shown that EPSmart can diagnose and isolate a range of 

critical and degraded faults within a hybrid AC/DC aircraft representative EPS. There is a 

wide range of distinct fault conditions within aircraft EPS and, it is imperative that system 

dynamics are monitored and evaluated throughout flight to enable early and accurate 

diagnosis of anomalies. Application of the proposed EPSmart method to the ADL network 

has shown that it has the ability to determine and quantify complex system dynamics from 

network data, and has the potential to aid system health monitoring and improve network 

protection. 

6.1.3 EPSmart Test Results – Comparison with DXC10 Systems  

EPSmart was developed and tested for application to the ADL network using data from the 

DXC10 competition [139]. This section compares the performance of EPSmart against other 

ADL FDI methods proposed within the DXC10 competition.  These methods were all 

discussed in detail in Chapter 3, Section 3.11.2.1. 

Figure 6-3 shows test results of the DXC10 systems alongside results of EPSmart. These 

results show the percentage of accurately diagnosed test cases (true positives), the percentage 

of false negatives and the percentage of false positives for each FDI method. The number of 

test cases varied between each system – these are outlined in Table 6-3. 

The comparison in Figure 6-3 shows that the EPSmart provided the highest overall 

diagnostic accuracy with 95.3% true positives, 4.7% false negatives and zero false positives. 

However, there is a caveat: testing of EPSmart, described in the previous sections, was 

conducted in an off-line environment. In this scenario, a complete test case, describing 

roughly four minutes of ADL network data, was input. EPSmart then returned a diagnostic 

decision for the associated four-minute observational period. This was not the case during 

testing of the DXC10 methods, which was conducted in an on-line scenario i.e. the 

diagnostic decisions were updated when new sensor data was received, with the time 

between updates governed by the sampling rates of the sensors.  
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This issue does not negate EPSmart – its methodology for FDI would be similar for on-line 

application, where diagnostic decisions would be updated using windows of data. Similar 

on-line application issues were discussed with regards to the IntelArc FDI method 

throughout Chapter 5. EPSmart is not bound to a four-minute observational window – length 

of the window can be adjusted accordingly within an on-line application of the method. 

 

 

Figure 6-3: Test results of the ADL FDI methods proposed in DXC10 and the EPSmart method  

 

 

Table 6-3: Number of separate test cases applied to each FDI Method 

FDI Method # of Test Cases 

AdaptedFACT 98 

HydeA 137 

ProADAPT 171 

QED 70 

SystemicsC 74 

TARDEC 60 

EPSmart 129 

 

The ProADAPT [33], AdaptedFACT [140] and Tardec [139] methods all provided relatively 

high overall accuracy, with each method returning roughly 80% true positives. TARDEC 

was the overall winner as it incurred the least cost. Costs were calculated by determining the 

diagnostic output of each method to the actual case. For example, if the method determines 

the UAV mission should abort due to a system fault, when in actual fact it should not (a false 

positive), the cost incurred is the cost of losing the mission. Likewise, if the diagnostic 

method determines the mission should not be aborted, when in actual fact it should (a false 
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negative), the cost incurred is the cost of the mission plus the cost of the UAV itself [139].   

Similar to the EPSmart method proposed as part of this thesis, TARDEC did not provide any 

false positive diagnoses. Other methods, notably HydeA and QED, struggled with 

diagnosing a variety of different failure modes. In [139] a complete breakdown of the 

DXC10 results is provided. 

In general, incipient faults presented the most difficulty to the FDI methods proposed in 

DXC10 - indeed, the AdapatedFACT system did not even consider incipient faults [139]. In 

some incipient fault scenarios, the faults were isolated to the incorrect component or 

incorrect failure mode, while in other scenarios the isolation was correct but estimation of 

the slope or fault injection time was inaccurate. Test case results presented in Section 6.1.1 

showed that diagnosis and isolation of incipient faults was also particularly challenging for 

EPSmart. These results, along with the DXC10 competition results, show that handling 

incipient faults is one area where future research and development should be focused. 

Overall, the EPSmart method has shown excellent potential for diagnosing and isolating a 

range of fault modes and locations.  Basic testing has shown that the method out performs all 

FDI methods proposed in the DXC10. However, more rigorous, on-line testing is required 

before its application to more advanced systems.  

6.1.4 Case Study 1 - Summary  

This case study has tested the application of the proposed EPSmart method to NASA’s ADL 

test bed. A total of 129 test cases were conducted. Accuracy of EPSmart for diagnosing and 

isolating faults within the ADL network was quantified by comparing the fault modes, 

locations and severity labelled in the test cases to the outputs of EPSmart. 

The method managed to correctly identify 123 (95.6%) cases, including 25 out of 26 

(96.2%) critical faults, and 78 out of 83 (93.98%) degraded faults. Fault modes included 

abrupt, intermittent and incipient. The case study identified incipient faults to be the most 

challenging to diagnose; procedures for potentially improving the trained incipient fault 

HMMs were discussed. 

The case study also compared the test results of EPSmart to results of FDI methods 

proposed in DXC10. These comparisons showed that EPSmart had the highest diagnostic 

accuracy. However, more rigorous on-line testing of EPSmart should be conducted. 

Overall, the case study showed the potential for the proposed EPSmart method to diagnose 

and isolate a multitude of degraded and critical faults within aircraft EPS. 
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6.2 Case Study 2: Application of the IntelArc for diagnosis of sustained DC Arc Faults 

This case study is used to test and analyse application of the proposed IntelArc method for 

diagnosis of sustained series DC arc fault events. IntelArc was described in Chapter 5; its 

application for diagnosis of sustained DC arc faults was described in detail in Chapter 5, 

Section 5.2.6.1. 

A general outline of this case study is provided in Section 6.2.1.  Results of the case study 

are presented in Section 6.2.2 and analysed in Section 6.2.3. Results are used to determine 

the ability of IntelArc to provide generalised diagnosis of sustained arc events within a 

representative DC aircraft EPS network.  

6.2.1 Case Study 2 - Outline  

The case study involved development of a representative aircraft DC EPS network model 

using MATLAB Simulink [227].  Arc fault conditions within the network were simulated 

using the arc fault model described and validated in Chapter 4. The EPS network model was 

used for generation of arc fault, nominal steady-state and nominal transient test data – this 

data was used to test the arc fault diagnostic capabilities of IntelArc. 

6.2.1.1 EPS Model 

The general topology of the modelled DC EPS network used for generation of test data is 

illustrated in Figure 6-4. Network architecture is similar to the system described in Chapter 

2, Section 2.3.3.2. 

 The network consists of 270VDC and 28VDC distribution levels. A passive 6 pulse 

rectifier converts main 230VAC power to 270VDC. The output of the rectifier is connected 

to the 270VDC bus. Two separate high power (≈ 2.7 - 8 kW) 270VDC load banks are 

powered from this bus; the two areas between the 270VDC bus bar and load banks are 

designated as Zones 1 and 2 respectively.  

 A DC/DC buck converter is also connected to the 270 VDC bus. The DC/DC converts 

the 270VDC power to 28VDC, and its output is connected to the 28VDC bus. A lower 

power (≈ 0.3 - 0.9 kW) load bank is connected to the 28VDC bus; the area between the 

28VDC bus and load bank is designated as Zone 3. 

 A 28VDC battery system provides power to a Battery Bus.  A standby load bank is 

connected to the battery bus and this area is designated as Zone 4. The battery bus is also 

connected to the 28VDC bus through a CB, which is nominally open. 
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Figure 6-4: Topology of aircraft EPS network model developed for generation of test data in Case 

Study 2 

 

The modelled network has a variety of distribution levels, converter interfaces and load 

locations. This allowed testing of IntelArc’s ability to provide generalised diagnostic 

performance. IntelArc uses load current data from the four different zones for inference of 

network condition.  

Model parameters are summarised in Table 6-4. A complete description of the network 

model is provided in Appendix A. 

6.2.1.2 Types of Load and Load switching 

Both inductive and capacitive loads were included in the model to test the IntelArc’s 

capability of diagnosing sustained arc faults in a variety of reactive power scenarios. 

Lumped element models consisting of inductors, resistors and capacitors were used to model 

the reactive loads. Typically, capacitive loading reduces transients within the load current 

during arcing conditions. This can potentially impact diagnostic performance. 

Maximum and minimum values of inductance, capacitance and resistance for each type of 

load are summarised in Table 6-5. 
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Table 6-4: Summary of Case Study 2 network model parameters 

DC Line Impedances  

Resistance 0.641Ω/km 

Inductance 0.34mh/km 

Capacitance 1mF 

Battery  

Type Lithium-Ion 

Nominal Voltage 28V 

Rated Capacity 60Ah 

Initial State of Charge 100% 

Battery Response Time 30s 

Current Measurements   

Gaussian noise generator mean value 0 

Gaussian noise generator variance 0.0001 

Gaussian noise generator sample time  0.001s 

Passive Rectifier  

Input Voltage 230VAC 

Output Voltage 270VDC 

Input Frequency 400Hz 

Number of Bridge Arms 3 

Snubber Resistance 0.1MΩ 

Snubber Capacitance Inf. 

Diode Forward Impedance 1mΩ 

Forward Voltage 0.7V 

Filter Capacitance 1mF 

270/28VDC Buck Converter  

Inductance  250µH 

Capacitance 100µF 

Switching Frequency 20 kHz 

Duty Cycle 0.12 

DC Loads  

Load Resistance Ranged between 2 and 25Ω 

Load Inductance Ranged between 1.25 and 7mH 

Load capacitance Ranged between 0.1 and 7µF 

Series Arc Fault Model  

Parameters varied between simulations as 

described in Appendix A 

 

 

 

 

 

Table 6-5: Maximum and minimum values of impedance for each type of load 

Type of Load Inductance Capacitance Resistance 

270VDC Max: 7 mH Max: 7 µF Max: 25 Ω 

 Min: 1.5 mH Min: 1 µF Min: 10 Ω 

28 VDC Max: 4.5 mH Max: 0.7 µF Max: 6.5 Ω 

 Min: 1.25 mH Min: 0.1 µF Min: 2 Ω 
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Values were randomised between the maximum and minimum for each simulation run. The 

different maximum and minimum values for 270 VDC and 28 VDC loads resulted in similar 

load current ranges of 10A – 25A across both 270VDC and 28VDC levels (the increased 

power in the 270VDC loads is a result of the higher voltage).  

Switching of loads in each zone was used to model nominal transient behaviour. Load 

switching resulted in either increased or decreased current levels. The presence of transient 

conditions within the simulated load current data was used to evaluate the percentage of false 

positives diagnosed by IntelArc. 

6.2.1.3 Case Study 2 Methodology 

Numerous simulations of the EPS network model described in Section 6.2.1.1 were 

undertaken for generation of test data; these are summarised in Table 6-6. 

 

Table 6-6: Summary of simulations used to generate test data 

Fault 

Location 

No. of 

Simulations 

Load Types: (No. 

of  simulations) 

Nominal 

Transient 

Behaviour 

Feeder Length & 

Fault Location 

along Feeder 

No Fault 20 Inductive: 12  

 

 

Load 

Switching at 

various 

Times & 

Locations 

 

 

 

 

Line lengths  

ranged from 20 to 

120m 

  Capacitive: 8 

Zone 1 25 Inductive: 20 

  Capacitive: 5 

Zone 2 25 Inductive: 20 

  Capacitive: 5 

Zone 3 25 Inductive: 20 

  Capacitive: 5 

Zone 4 25 Inductive: 20 

  Capacitive: 5 

 

A total of 120 model simulations were executed, resulting in a total of 120 test cases where 

duration of each test case was 10s; arc faults were introduced at a variety of locations and 

times throughout the 10s duration. The arc fault model described in Chapter 4 was used for 

simulating series arc fault conditions. Load switching events were also introduced at a 

variety of locations and times throughout each 10s test case. Feeder length refers to the 

length of the feeder between each bus and load. These were varied between 20-120m 

throughout simulations – the short feeder lengths characterised the compactness of aircraft 

EPS. The location of the arc fault along the feeder was also varied. 

These simulations produced load current test data for the four separate zones. Load current 

was sampled at 2 kHz. 5 kHz Gaussian noise was added to simulate sensor and switching 
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noise. This data was applied to IntelArc which outputs a decision on network condition every 

50ms; hence 200 decisions are output for each 10s simulation period. The output is either: 

1) Network is in Nominal Condition – No Fault 

or, 

2) A Series Arc Fault has been Diagnosed in Zone 𝑋 (where 𝑋 ∈ (1, 2, 3, 4)) 

As the various conditions throughout each test case were known, it was possible to assess 

the accuracy of IntelArc.  

Fault detection time is a critical factor and, as test results were being assessed, the 

detection time of IntelArc was compared against a maximum detection time, 𝑇𝑑𝑡𝑒𝑐𝑡,  

proposed in Underwriters Laboratory 1699B standard [191]. This time is defined as:  

 

𝑇𝑑𝑒𝑡𝑒𝑐𝑡 ≤
750

𝑉𝑎𝑟𝑐𝐼𝑎𝑟𝑐
 

 

where 𝑉𝑎𝑟𝑐 is arc voltage and 𝐼𝑎𝑟𝑐 is arc current. 

Consequently, each test result also included a ‘% of max detection time’ metric that 

signified whether IntelArc had, or had not, detected arcing within a suitable timeframe. 

Complete test results for Case Study 2 are presented in the following section. 

6.2.2 Case Study 2 Results 

The accuracy of IntelArc for diagnosis of sustained arcing events was quantified using the 

test cases. In total there were 120 test cases generated using the model simulations described 

in the previous section, the results of which are outlined in Table 6-7. 

Of the 120 test cases, a total of 116 were diagnosed correctly, resulting in 96.67% 

diagnostic accuracy. The four cases incorrectly diagnosed were all at 28VDC levels; these 

included three false negatives i.e. non-detection of the arcing event and only one false 

positive. The average detection time was 0.4673 seconds. It is desirable to reduce this 

average time, despite the majority of detection times being below the max detection times. 

Note that the % of average max detection times were not calculated for 28VDC levels as the 

low voltage, and hence power, meant the times were well within the maximum (see (6.1)). 

The complete results of Case Study 2 are provided in Appendix B. Full analysis of these 

results is provided in the following section. 

(6.1) 
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Table 6-7: Case Study 2 Test Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fault 

Location 

 

Load Type 

Load  

Interface/ 

Source 

No. of 

Tests 

No. of 

correct 

diagnoses 

Diagnosis 

Accuracy 

(%) 

Summary of 

Incorrect 

Diagnoses 

Average 

Detection 

Time (s) 

Average % of 

Max Detection 

Time 

- - - 20 20 100 - - - 

Zone 1 Inductive Rectifier 20 20 100 - 0.385 34.149 

(270VDC) Capacitive Rectifier 5 5 100 - 0.6 34.147 

Zone 2 Inductive Rectifier 20 20 100 - 0.4725 52.193 

(270VDC) Capacitive Rectifier 5 5 100 - 0.82 29.72 

Zone 3 Inductive DC/DC 20 19 95 1×false 

negative 

0.2394 N/A 

(28VDC) Capacitive DC/DC 5 5 100 - 0.29 N/A 

Zone 4 Inductive Battery 20 18 90 2×false 

negative 

0.494 N/A 

(28VDC) Capacitive Battery 5 4 80 1×false 

positive 

0.4375 N/A 

  Totals 120 116 96.67 - 0.4673 37.55 
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6.2.3 Analysis of Case Study 2 Test Results 

IntelArc testing resulted in 96.67% of the test cases being accurately diagnosed. This level of 

accuracy proved that a FDI method based on HMM, and using time and time-frequency 

domain features, could potentially be used for on-line detection of series DC arc faults. 

However, there were other issues which arose from the test results; in particular, the overall 

detection time was too high. 

The conditions within the test cases were suitably varied (e.g. different levels of load 

switching and different load power/current ratings) to fully test the generalisation capabilities 

of IntelArc. The method handled the nominal load transients well, with only 1 false positive 

out of 120 tests (0.83%). This was considered very successful since some of the load 

transient’s involved small decreases in current that could easily be misinterpreted as an arc 

fault condition using less advanced detection methods. 

Testing was particularly successful at 270VDC distribution levels, where the system was 

100% accurate. All four incorrectly diagnosed test cases were at the 28VDC levels, and three 

were at the battery powered Zone 4. Three of the incorrect diagnoses did not detect the 

presence of an arc fault (false negative). This was probably a consequence of a reduced LL 

output of the fault model during 28VDC arcing events. A smaller LL value will result in the 

threshold condition not being met and non-diagnosis of a fault event. This is one aspect 

where the sustained AFD algorithm did not generalise particularly well, although it was only 

in three instances. 

Testing showed that IntelArc could successfully handle different types of load reactance – 

the system misdiagnosed three inductive load scenarios and one capacitive load scenario. 

These results are misconstrued by the fact that only 20 arc faults under capacitive loading 

were tested, in comparison to 80 inductive test cases. Detection under capacitive loading is 

generally considered more challenging as the load capacitance resists changes in load 

voltage resulting in limited arcing noise signatures. However, there was sufficient diagnostic 

accuracy (95%) in the capacitive test cases, albeit with a higher detection time at the 

270VDC distribution zones. 

The issue of high overall detection time is a result of the reduced sampling frequency. 

Ideally, sampling frequency would be minimised to reduce computational overheads. The 2 

kHz sampling frequency, despite providing enough data for accurate diagnosis, meant that 

arcing conditions had to be relatively prolonged to reach the pre-determined threshold 

values. Thus, overall detection time of IntelArc was increased. The thresholds could be 
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reduced to minimise detection times of true arcing events. However, reducing thresholds 

would also result in an increase of false positives. Essentially, a significantly reduced, and 

(perhaps) ambitious, sampling frequency means there is significant trade-off between 

detection time and accuracy. 

Although the average detection times were well within the max detection time quantified 

by (6.1), this trade off must be minimised for the IntelArc to be applied in an aircraft EPS 

environment. Sustained arc faults are unlikely at higher altitude [36], meaning detection time 

must be reduced without sacrificing accuracy. This case study has shown that a sampling 

frequency greater than 2 kHz is required to enable accurate detection within a suitable time 

frame. 

Overall, the case study has proven that IntelArc is capable of accurately diagnosing arc 

faults within a range of different conditions. However, the applicability potential to aircraft 

EPS is limited due to the reduced sampling frequency and overlong detection time.  

6.2.4 Case Study 2 - Summary 

This case study tested application of IntelArc for generalised diagnosis of sustained DC arc 

faults within representative aircraft EPS. This application of IntelArc was discussed 

extensively in Chapter 5, Section 5.2.6.1.  

A power systems model of an aircraft DC EPS was developed and used to generate arc 

fault, nominal steady-state and nominal transient test data. The system consisted of: 270VDC 

and 28VDC distribution levels; various power converter interfaces; capacitive and inductive 

loads, and different load feeder lengths. These variables were randomised within the test data 

to fully test the generalisation capabilities of IntelArc. 

A total of 120 individual test cases were generated; 100 cases contained arc fault 

conditions at different locations throughout the network and 20 included nominal steady-

state behaviour. All test cases included load switching transients. Test results showed 

IntelArc had a 96.67% diagnostic accuracy, with an average detection time of 0.467 seconds.  

Overall, the case study has shown the potential for IntelArc to provide accurate diagnosis of 

series DC arc faults across a range of operating conditions. Despite the fact that detection 

times in the majority of test cases were well within a max detection time quantified by 

UL1699B, it was concluded that, for practical application, load current sampling must be 

increased beyond 2 kHz.  
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6.3 Case Study 3: Application of IntelArc for diagnosis of intermittent DC Arc Faults 

This case study is used to test and analyse application of IntelArc for diagnosis of 

intermittent series DC arc faults. The use of IntelArc to diagnose intermittent arc events was 

discussed in detail in Chapter 5, Section 5.2.6.2. 

The case study is outlined in Section 6.3.1, and results are described and analysed in 

Sections 6.3.2 and 6.3.3 respectively. 

6.3.1 Case Study 3 - Outline 

The case study focuses on diagnosis of intermittent arcing events at 270VDC and 28VDC 

distribution levels. An EPS model was developed in Simulink for generation of intermittent 

arc fault data. This data was input to IntelArc to test its capabilities of diagnosing 

intermittent arc faults. 

6.3.1.1 EPS Model 

The basic model topology is illustrated in Figure 6-5. 

 

Figure 6-5: Topology of network model developed for generation of test data in Case Study 3 

 

The model consisted of a passive rectifier that converts either 230VAC into 270VDC or 

115VAC to 28VDC. The output of the rectifier is connected to a DC distribution bus. A 

single load bank is connected to the distribution bus and series intermittent arc faults are 

introduced on the feeder between the load bank and bus bar. The load bank is directly 

interfaced and does not include additional conversion stages. 
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Lumped element models consisting of inductors, resistors and capacitors were used to model 

the reactive loads. The same maximum and minimum impedance values for each voltage 

level outlined in Table 6-5 in Case Study 2 were applicable. Length of the feeder between 

the bus and loads, and fault location along the feeder, were also variable. Parameters for the 

network model are summarised in Table 6-8. 

 

Table 6-8: Summary of Case Study 3 network model parameters 

DC Line Impedances  

Resistance 0.641Ω/km 

Inductance 0.34mh/km 

Capacitance 1mF 

Current Measurements  

Gaussian noise generator mean value 0 

Gaussian noise generator variance 0.0001 

Gaussian noise generator sample time  0.001s 

Passive Rectifier  

Input Voltage 230VAC / 115VAC 

Output Voltage 270VDC / 28VDC 

Input Frequency 400Hz 

Number of Bridge Arms 3 

Snubber Resistance 0.1MΩ 

Snubber Capacitance Inf. 

Diode Forward Impedance 1mΩ 

Forward Voltage 0.7V 

Filter Capacitance 1mF 

DC Loads  

Load Resistance Ranged between 2 and 25Ω 

Load Inductance Ranged between 1.25 and 7mH 

Load capacitance Ranged between 0.1 and 7µF 

Intermittent Series Arc Fault Model  

Parameters varied between simulations as 

described in Appendix A 

 

 

6.3.1.2. Case Study 3 - Methodology 

The model simulations used for generation of intermittent arc fault test data are summarised 

in Table 6-9. A modified version of the sustained arc fault model described in Chapter 4 was 

used for simulating intermittent arc faults. This modified intermittent fault model is 

described in detail in Appendix A. 
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Table 6-9: Summary of simulations used to generate intermittent test fault data 

 

Load Type Load 

Interface 

Voltage Level 

(VDC) 

No. of Tests Nominal 

Transient 

behaviour 

Feeder 

Lengths 

Inductive Rectifier 270 30 Load 

Switching at 

various times 

Lengths 

ranged from 

45 to 90m 
  28 10 

Capacitive Rectifier 270 10 

  28 10 

  Total 60   

 

A total of 60 test cases were simulated - each of the 60 simulations lasted 10 seconds. 40 

simulations were conducted at 270VDC and 20 simulations were conducted at 28VDC. Each 

test case includes: periods of nominal steady-state behaviour; a nominal transient event; and 

the onset of intermittent arc faults. An example load current during a 10 second test case is 

illustrated in Figure 6-6.   

 

Figure 6-6: Example load current during 10 second test case 

 

Load current was sampled at 20 kHz and 5 kHz Gaussian noise was used to simulate 

sensor/switching noise. The case study does not consider noise from active power 

converters. Similar to the methodology followed in Case Study 2, the test cases were applied 

to IntelArc to determine accuracy of the system. IntelArc outputs a decision on network state 



 
 
 

183 

 

every 50ms; hence 200 decisions were output for each 10s simulation. Outputs of IntelArc 

were outlined in Case Study 2, Section 6.2.1.3. 

The onset and duration of intermittent fault events across each test case was variable. To 

determine accuracy of IntelArc, it was necessary to first establish when an intermittent arc 

event occurred throughout each test case. This information was compared to IntelArc outputs 

to quantify accuracy. 

Test results are presented in the following section. 

6.3.2 Case Study 3 -Test Results 

The accuracy of IntelArc for diagnosis of intermittent arcing events was quantified using the 

test cases. Testing results are outlined in Table 6-10. 

In total, 56 out of the 60 test cases were correctly diagnosed resulting in 93.3% accuracy – 

this included 37 out of 40 (92.5%) test cases at 270 VDC and 19 out of 20 (95%) at 28VDC. 

IntelArc accurately identified all intermittent fault events i.e. no false negatives were 

prescribed. The four incorrectly diagnosed test cases were a result of false positives induced 

at nominal transient events under inductive loading. The average time for detection of 

intermittent arcing events is 0.0571 seconds – significantly lower than detection time results 

outlined in Case Study 2. Another metric outlined in Table 6-10 includes the average 

duration of intermittent arcing events in each scenario.  

Full discussion and analysis of these results is provided in the following section, and the 

complete results are provided in Appendix B.  

6.3.3 Analysis of Case Study 3 Test Results 

Testing resulted in 93.3% of all test cases being accurately diagnosed, with an average fault 

detection time of 0.0571 seconds. This case study has highlighted various attributes of the 

IntelArc method. These include: 

 Detection of variable duration intermittent arcing events 

 Detection of arcing events with variable decreases in load current magnitude 

 Detection across a range of load currents 

 Detection across two different distribution voltages 

 Accurate identification of all intermittent fault events (no false negatives) 

 Minimal impact from nominal transients 

 Minimal detection time 

 Minimal computational overheads  
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Table 6-10: Summary of Case Study 3 Test Results 

 

 

 

 

 

 

 

Load Type Load 

Interface 

Voltage 

Level 

(VDC) 

No. 

of 

Tests 

No. of 

correct 

diagnoses 

Diagnosis 

Accuracy 

(%) 

Summary of 

incorrect 

diagnoses 

Average 

Detection 

Time 

(ms) 

Average 

Duration of 

arcing event 

(ms) 

Inductive Rectifier 270 30 27 90 3xfalse positives 56.9 97 

28 10 9 90 1xfalse positive 55.5 89 

Capacitive Rectifier 270 10 10 100 - 62.4 104.4 

28 10 10 100 - 53.7 101.2 

  Totals 60 56 93.3 - 57.1 97.905 
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The preliminary test results, coupled with these characteristics, show that the method has the 

potential to be both accurate and practically applicable. The main limitation with the 

preliminary testing is that only a limited number of test cases were considered, particularly 

under capacitive loading. 

Analysis of results shows that all four misdiagnosed cases were false positives induced by 

nominal switching events. The main reason for this was accredited to the LL of the nominal 

model significantly decreasing at nominal switching events (as expected) before increasing 

to a value more associated with arc fault events just after the switching event. This increase 

to a value more associated with arcing events causes IntelArc to incorrectly diagnose the 

presence of an arc fault. To attempt to alleviate this problem, it is proposed that diagnosis of 

a fault event cannot be made for a predetermined time (say 50ms) after a significant 

reduction in likelihood of the nominal model - for an example of LL outputs across a test 

case, refer to Chapter 5, Section 5.2.6.2. 

IntelArc diagnosed effectively under different types of inductive and capacitive loads; 

further testing should be undertaken under capacitive loading to fully assess the impact it 

may have on intermittent detection. Also, the average duration of arcing events (97ms), 

should be reduced further to assess impact of even shorter arcing events. 

The reduced detection time (in comparison to Case Study 2) was a result of the increased 

20 kHz sampling frequency and also the analysis of data windows every 10ms (as opposed to 

every 50ms). 20 kHz sampling does not result in significant computational overheads. These 

initial results prove that the combination of wavelet transform extracted features (across the 

0-10 kHz bandwidth) with HMM enables accurate intermittent arc fault diagnosis within 

acceptable detection times. 

Overall, testing proved both the capabilities and applicability of the IntelArc method. Case 

Study results show that IntelArc can protect DC networks from arcing events by detecting 

intermittent faults with high accuracy and within short time frames. The difficulty of 

accurate series arc fault detection, particularly in DC systems, was discussed throughout 

Chapters 2 and 4. Although the IntelArc method, proposed as part of the work of this thesis, 

has only been tested at basic levels, its potential has been proven within this case study. 

6.3.4 Case Study 3 - Summary 

This case study was used to test the ability of IntelArc to diagnose series DC intermittent arc 

fault events. A basic EPS model was used to generate intermittent arc fault test data – the 
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model consisted of a passive rectifier converting AC power to 270VDC or 28VDC which is 

distributed to a single load bank.  

A total of 60 individual test cases were generated where intermittent arcing events were 

randomly injected into the load feeder using an intermittent arc fault model– IntelArc 

managed to accurately diagnose 56 test cases (93.3%) with an average detection time of 

0.0571 seconds. All four misdiagnosed test cases were a result of false positives at nominal 

transient events – IntelArc did not provide false negatives and accurately identified all 

intermittent fault events. 

This case study showed the potential for accurate intermittent series DC arc fault diagnosis 

within an acceptable time frame. It highlighted that a sampling frequency of 20 kHz and the 

use of a sliding window technique will significantly reduce detection time and can maintain 

diagnostic accuracy.  

 

6.4 Case Study 4: Experimental Application of IntelArc  

This case study was used to validate the accuracy of the IntelArc for diagnosing series arc 

faults within a scaled DC testbed setup. Fault data was generated within the testbed and was 

used to test the accuracy of the method that was trained using data simulated with the arc 

model described in Chapter 4. This case study allows further assessment of the 

generalisation capabilities of IntelArc and also identifies the effects that system noises will 

have on diagnostic accuracy.   

6.4.1 Case Study 4 - Outline 

Data was generated within a DC testbed that has means of inducing series DC arc faults. A 

one-line diagram of the experimental setup is shown in Figure 6-7 and photographs depicting 

various system elements are provided in Figure 6-8 (a). 

 The set-up consists of a four-quad active rectifier providing DC power to a main busbar 

through two SSPCs. Two separate loads, a directly interfaced resistive load bank and two 

parallel motors interfaced using a buck-boost DC/DC converter, are connected to the main 

busbar. Two current measurements are taken at each respective feeder and a voltage 

measurement is taken at the main bus bar. This equipment and configuration is limited to a 

maximum of 40V, 320W which allows representation of low voltage DC networks. As part 

of the case study, series arc faults were induced between the source and busbar with use of a 

fault throwing unit that consists of a stepper motor intermittently separating two contacts – 
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this is shown in Figure 6-8 (b). This form of series arc fault generation has also been 

described in [171].  

 

Figure 6-7: One-line diagram of DC testbed set-up 

 

Figure 6-8: (a) Depiction of various components within the experimental DC testbed configuration 

and (b) Series arc fault throwing unit 
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Switching within the variable load bank was used to capture nominal transient behaviour. 

Electrical current data sampled at 20 kHz was captured at the source feeder using an 

oscilloscope during steady-state, series arc fault and nominal load switching behaviours. This 

data was used to test the accuracy of the IntelArc method that was trained using data 

generated from the software model described in Chapter 4.  

6.4.2 Case Study 4 – Test Results 

An example of the experimental data and the corresponding diagnostic outputs of the 

IntelArc method are illustrated in Figure 6-9. Within this test example, the nominal load 

switch at 0.4s did not result in false diagnosis, while the onset of intermittent fault conditions 

at 2.4s were accurately diagnosed by IntelArc.  

 

Figure 6-9: (a) Experimental data captured using the DC testbed. Within the experiment, a nominal 

load switch occurred at 0.4 s and the onset of intermittent series arcing occurred at 2.4s (b) 

Corresponding diagnostic outputs of the IntelArc outputs. IntelArc is not affected by the nominal load 

switch and accurately detects arcing at the appropriate time. 
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Five tests were conducted with the onset of arcing occurring at two different power levels 

outlined in Table 6-11. Accuracy was quantified by comparing the time of fault onset with 

the diagnostic decision provided by IntelArc; the ability of IntelArc to not provide false 

positives during both nominal steady-state and nominal transient conditions was also used 

for accuracy validation. IntelArc accurately diagnosed series arc fault conditions in each test 

case and load switching behaviour did not result in FPs. 

Table 6-11: Summary of Case Study 4 Results 

Voltage 

Level (V) 

Current 

Level (A) 

No. of 

Tests 

IntelArc 

Accuracy (%) 

33 5.5 3 100 

28 8 2 100 

 

These results have shown the capability of IntelArc to accurately diagnose series arc faults in 

the presence of active converter and system noise. Test case data presented here were 

generated on a testbed which had not previously been presented throughout model training - 

this highlights the robustness of IntelArc to provide diagnosis across a range of network 

conditions.  

6.4.3 Case Study 4 – Summary 

This case study was used to test the ability of IntelArc to diagnose series arc faults within the 

presence of active converter and switching noises. Data throughout nominal and fault 

conditions was generated within a scaled DC testbed that included an active rectifier, a 

DC/DC converter and various resistive and motor loads. Five test cases were presented 

across different power levels, and diagnostic results have shown the capability of IntelArc to 

provide accurate fault detection within this environment. These results prove the method can 

provide generalised fault diagnosis despite the presence of system noise and varying network 

conditions.  

 

6.5 Chapter 6 Conclusions 

The purpose of this chapter was to test the application and accuracy of the two novel FDI 

methods proposed as part of the work of this thesis. Testing was described with the use of 

four separate case studies. 

The first case study applied EPSmart to a subset of NASA’s ADAPT network, the ADL. 

The ADL is a basic network representing an aircraft EPS and consists of a single 24V DC 
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battery source directly powering a DC load and two AC loads through an inverter. 

Application of EPSmart to ADL tested its ability to provide FDI of multiple failure modes 

within hybrid AC/DC networks, as well as to diagnose both critical and degraded faults.  

Testing showed EPSmart accurately diagnosed 123 out of 129 (95.3%) intermittent, abrupt 

and incipient fault mode test cases. This included 25 out of 26 (96%) critical faults, 78 out of 

83 (93%) degraded faults and 20 out of 20 (100%) nominal conditions. The main drawback 

of the EPSmart method identified throughout testing was the misdiagnosis of incipient fault 

conditions; various procedures for improving this aspect were proposed and discussed. In 

general, case study results proved the potential of EPSmart to improve network protection 

through autonomous diagnosis of multiple critical and degraded fault modes. 

The test results were compared to previously proposed FDI methods applied to the 

ADAPT – comparisons showed EPSmart provided the highest diagnostic accuracy. 

However, it was explained that EPSmart testing was conducted in an off-line scenario, 

whereas the other methods were tested in an on-line setting. Hence, the next progression of 

EPSmart development is testing its ability to provide on-line FDI.  

The second case study tested the ability of IntelArc to provide generalised diagnosis of 

sustained series DC arc faults. The case study involved development of an EPS model for 

generation of test data – the model represented an aircraft DC EPS and consisted of 270VDC 

and 28VDC distribution zones, various converters, inductive and capacitive load types and 

different feeder lengths. The arc fault model described in Chapter 4 was used for simulating 

series arc fault conditions. This model is capable of producing a wide range of conditions 

and, as such, enabled the generalisation capabilities of the method to be tested.  

IntelArc managed to correctly diagnose 116 out of 120 (96.67%) test cases with an average 

detection time of 0.4673s. Although the majority of test cases in the second case study 

diagnosed faults within the acceptable time frame stipulated in [191], the average detection 

time was deemed too long for the detection of faults that are either sustained over shorter 

time frames or intermittent in nature. The overlong detection was reasoned to be a result of 

the limited 2 kHz sampling frequency: although discriminative features for fault diagnosis 

are present within the observable bandwidth of the 2 kHz sampled signal, a higher sampling 

frequency would also enable the use of salient higher frequency signatures for fault detection 

and would thus present further evidence and allow for fault detection reduced timeframes.  

Significant conclusions from the Case Study were that IntelArc provided highly accurate, 

generalised series DC arc fault diagnosis; however, an increased load current sampling 
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frequency would be required to reduce overall detection time and make IntelArc more 

suitable for practical application. 

The third case study challenged the ability of IntelArc to diagnose series DC intermittent 

arc fault events. A basic EPS model was used for generation of intermittent arc test data – 

the model included a single passive rectifier converting AC power to 270VDC or 28VDC 

which is distributed to a single load bank. Intermittent arc fault conditions were simulated on 

the load feeder using a modified version of the arc fault model. Intermittent arcing events 

exhibited both variable duration and variable reduction in load current. 

IntelArc accurately diagnosed 56 out of 60 (93.3%) test cases with an average detection 

time of 0.0571s. The case study showed that this application IntelArc, which utilises a higher 

load current sampling frequency of 20 kHz as well as a sliding window method, is able to 

maintain high diagnostic accuracy and significantly reduce detection time. Significant 

conclusions were that practical application of IntelArc would require the increased 20 kHz 

sampling frequency and use of a sliding window technique. 

The fourth case study used test data generated within a scaled DC testbed setup to assess 

the capability of IntelArc to diagnose series arc faults in the presence of system noise. The 

system comprised different active converters, resistive and motor loads, and a stepper motor 

based fault throwing unit for the creation of intermittent series arc faults. Five test cases were 

generated that included series arcing and nominal switching behaviour within the load banks. 

 Each test case was presented to IntelArc and diagnostic results showed that it had the 

ability to accurately detect intermittent arcing events. These results also showed that active 

converter noise and load transients did not result in false positives. This case study has 

provided further evidence of the robustness of IntelArc for providing accurate, generalised 

diagnosis within environments and conditions that were not presented throughout model 

training.  

Overall, these case studies have shown that the EPSmart and IntelArc methods have the 

potential to aid real-time fault management and improve EPS protection and health 

management systems. 
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7. CONCLUSIONS & FURTHER 

WORK 
 

 

 

his thesis has focused on the design of intelligent data-driven FDI methods to improve 

real-time fault protection and health management systems within MEA aircraft EPS. In 

particular, two novel methods have been proposed: EPSmart, that can accurately diagnose 

the onset of degraded faults prior to critical failure; and IntelArc, that can accurately detect 

series arc faults. The thesis has established the need to develop intelligent FDI methods by 

emphasising the limitation of conventional protection methods in detecting and isolating 

these types of fault – limitations include fault currents being well below relay trip curves and 

intermittency reducing fault energy.  

Motivations for developing data-driven FDI methods within the EPS of MEA were 

established; these included accurately determining network behaviour/operational status 

across large volumes of system data and removing the requirement for advanced system 

knowledge associated with model-driven approaches. The absence of fault data was 

identified as being a significant hurdle to overcome throughout development of such 

methods. The thesis presented and described discriminative fault features that minimised the 

impact the lack of data may have on diagnostic accuracy.  

T 
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The main contributions of the thesis were the design of the EPSmart and IntelArc methods. 

EPSmart was developed for detection and diagnosis of intermittent, incipient, abrupt and 

sensor faults within hybrid AC/DC aircraft EPS. Significant benefits of this method were 

determined to be the autonomous diagnosis of multiple critical and degraded fault modes and 

the ability to accurately discriminate between faults in the underlying system and sensor 

failures. IntelArc was developed for diagnosis of self-sustained and intermittent series DC 

arc faults, where its main benefits lie in its ability to provide generalised diagnosis across a 

range of operating conditions.  

Significant conclusions from each chapter within the thesis are detailed in the following. 

 

7.1 Conclusions 

 

Chapter 2 introduced aircraft EPS in general, outlined the motivations for the shift to MEA, 

and described the effect this wholesale change will have on the EPS of future aircraft – the 

significant challenge of maintaining high reliability standards within more complex and 

demanding MEA EPS was underlined. A particular aim of the chapter was to describe 

relevant limitations of the conventional protection methods, and hence justify the 

requirement for the development of advanced FDI methods to assist protection and health 

management within more complex EPS. Accordingly, there was a discussion on the inability 

of conventional methods to accurately detect fault conditions where there is an absence of 

significant overcurrent beyond nominal levels. Conditions where this type of behaviour is 

evident were elaborated, including: intermittent, incipient, high impedance, and arcing faults. 

Accurate detection and isolation of these degraded conditions prior to critical failure in 

future aircraft, where high EPS reliability will be even more of a necessity, is extremely 

difficult through conventional means. Thus, the main conclusions from this chapter was that 

there is motivation for the development of intelligent FDI methods for application to future 

aircraft EPS to accurately detect degraded fault conditions and improve network protection 

and reliability. 

 Chapter 3 discussed intelligent fault diagnosis and its application to the aircraft EPS 

domain.  The chapter established the relative advantages and disadvantages of each subset of 

FDI techniques to explain why the methods proposed in the thesis utilised a data-driven 

approach. The increased volumes of EPS data expected to be generated within MEA, along 

with a limited requirement for specific domain/system knowledge throughout design and 
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development, were deemed critical factors for adopting the data based approach. In 

particular, the chapter reasoned that methods utilizing ML techniques have the potential to 

autonomously, and accurately, diagnose system status through analysis of the extensive 

volumes of data. After the description of various ML techniques, certain characteristics of 

HMM were outlined that make them an excellent candidate for meeting requirements of the 

proposed FDI methods. These characteristics included, but are not limited to: suitability for 

detection of transient signals; ability to provide metrics that quantifies the probability of 

various fault hypotheses; and, inherent scalability that allows systems to be readily updated 

to include models of emergent system conditions. Previous applications of HMM for 

anomaly detection and fault diagnostics within various domains were summarised. Although 

these applications showed their suitability for reaching these goals, their use within EPS has 

so far been limited to main grid transmission and distribution networks, and thus focused 

only on AC distribution.   The chapter also reviewed general FDI within the aircraft EPS 

domain, including NASA’s ADAPT testbed. This review established that there is a lack of 

FDI methods specific to this domain, and the majority of aircraft EPS still rely on local 

control and basic overcurrent fault protection methods. 

 Chapter 4 was dedicated to series arc faults, including: validation of a fault model that was 

used for synthetic generation of arc fault data; consequences and hazards of their presence 

within aircraft EPS; and, description of the difficulties in detecting them. Design of the arc 

fault model in Simulink, which had previously been proposed by Uriarte et. al [171], was 

outlined. A particular goal of this chapter was to compare simulated outputs from this model 

with previous studies that had attempted to characterise electrical arcing. Overall there was 

relatively good agreement between the Simulink model outputs and arc characterisations 

described in the previous studies. The main inconsistency concerned V-I characteristics at 

very low current levels; as such, the model should not be used for conditions where arcing 

current is significantly less than 10A.  The chapter reviewed previously proposed series arc 

FDI methods. It was explained how major challenges still exist with regards to developing 

generalised FDI methods that can accurately detect series arc faults across a range of 

network configurations, voltage levels and loads. A main conclusion from the chapter was 

that basic FDI methods, which rely on simple thresholds, will not suffice in meeting these 

challenges. Hence, there is motivation for the development of intelligent FDI methods to 

provide accurate, generalised series arc FDI within aircraft EPS. 

 Chapter 5 described the proposed EPSmart and IntelArc FDI methods, which are the main 

contributions of the thesis. EPSmart is a two-stage method, whereby a framework of trained 
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HMM is primarily used to classify EPS condition – classification of network condition 

includes both fault mode and location. The second stage of EPSmart determines the severity 

of any fault that has been classified from the first stage. For the purposes of this thesis, 

EPSmart was developed using data from a subset of NASAs aircraft EPS representative 

ADAPT testbed. A total of 15 separately trained HMMs relating to various ADAPT nominal 

operating and fault conditions constituted the classification framework. Challenges of HMM 

training were discussed, including optimising the number of model parameters and 

extracting discriminative features when only limited volumes of fault data are available. 

There was discussion on statistical based feature extractions and sensor fusion techniques 

that allowed discrimination between nominal conditions; intermittent, incipient and abrupt 

fault modes; and, sensor failures. Using HMM to decipher state changes, and thus determine 

fault severity, was also described. 

 IntelArc, a series DC arc FDI method, is also based on a framework of multiple trained 

HMM. The method uses time-frequency and time domain features extracted from EPS 

current data. IntelArc design and development centered on training HMMs relating to 

nominal, transient and arc fault conditions - series arc fault data, generated from the arc fault 

model described in Chapter 4, was used to develop the fault condition HMM. An algorithm 

was also developed to analyse each of the LL outputs of the trained HMM as real-time 

network data is applied and thus infer network condition. IntelArc is designed to operate 

with a sampling rate in the kHz range, and updates inference of network condition every 

50ms. A major contribution of this chapter was determining time-frequency domain features, 

extracted using the DWT that enhance series arc FDI within the HMM based IntelArc. 

Presentation of DWT coefficients, including GMMs of their temporal characteristics, 

highlighted that approximate coefficient levels 1-3 and detail coefficient levels 1-2, extracted 

using a 20 kHz sampling frequency, were optimal for diagnosis. 

 Chapter 6 used four separate case studies to test application and accuracy of EPSmart and 

IntelArc. The first case study used test data from a subset of the ADAPT network to test the 

ability of EPSmart to provide FDI of multiple failure modes within hybrid AC/DC networks. 

Testing showed EPSmart accurately diagnosed 95.3% of 129 test cases. This included 25 out 

of 26 (96.1%) critical faults, 78 out of 83 (93.9%) degraded faults and 20 out of 20 (100%) 

nominal conditions. The majority of inaccuracies were accredited to misdiagnosis of 

incipient faults – it was described how increasing the number of hidden states within 

incipient HMM may improve detection of these types of faults. Results of EPSmart were 

compared to other systems proposed for FDI within ADAPT – these comparisons showed 
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EPSmart to have the highest diagnostic accuracy. However, EPSmart was limited to off-line 

testing (where volumes of data covering roughly four minutes of network operation were 

used for each test case) as opposed to a simulated on-line testing scenario used by the other 

systems.   

     Case Study 2 tested the ability of IntelArc to provide generalised diagnosis of sustained 

series DC arc faults. A representative aircraft MEA EPS model with various converters, load 

types and feeders was used for generation of arc fault test data at different DC voltage levels. 

Current sampling in this case study was limited to 2 kHz to test accuracy of IntelArc with 

reduced data resolution. Of the 120 individual sustained series arc fault test cases, IntelArc 

accurately diagnosed and isolated 96.67% of test cases, with an average detection time of 

0.4673 seconds. This case study showed the suitability of applying IntelArc for FDI of 

sustained series DC arc faults. However, the increased detection time also highlighted that an 

increased current sampling frequency would be required to reduce overall detection time and 

make IntelArc more suitable for practical application. 

     Case Study 3 tested the ability of IntelArc to accurately diagnose intermittent series DC 

arc faults. A basic aircraft EPS model was used for generation of intermittent fault test data 

and network current was sampled at 20 kHz. IntelArc accurately diagnosed 56 out of 60 test 

cases with an average detection time of 57.1 milliseconds. The case study showed the 

potential for diagnosis of intermittent arc faults within an acceptable time frame. In 

particular, the ability of IntelArc to diagnose variable duration intermittent arcing, where 

reductions in load current magnitude are also variable, was demonstrated.  It also highlighted 

that a sampling frequency of 20 kHz using a sliding window technique will significantly 

reduce detection time and maintains diagnostic accuracy. 

 Case Study 4 used test data generated within a scaled DC testbed to assess the performance 

of IntelArc for diagnosing intermittent series arc faults in the presence of active converter 

and system noises. Main components of the testbed system included an AC/DC active 

rectifier, a DC/DC converter, and motor and resistive load banks – current was sampled at 20 

kHz at the main busbar in the system using an oscilloscope. Intermittent series arc faults 

were created using a fault throwing unit consisting of a stepper motor separating two 

contacts apart. Five test cases that included fault behaviour as well as load switching and 

steady-state behaviours were generated and presented to IntelArc. Results showed the 

capability of the method to accurately detect the onset of intermittent arcing while nominal 

load switching and converter and system noises did not result in false positive diagnoses. 
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This case study further highlighted the robustness of the method to provide accurate 

diagnosis within a variety of DC systems and conditions.  

Overall conclusions from the thesis are that this work has progressed the knowledge and 

ability to diagnose a variety of critical and degraded EPS faults through analysis of system 

data. FDI methods have been designed that possess autonomous and accurate diagnostic 

characteristics – these methods will improve overall aircraft safety and operational reliability 

through isolation of hazardous fault conditions. Possessing detailed knowledge of network 

behaviour, conditions and trends will also ease maintenance procedures and assist 

scheduling. Implementation of these methods on-board operational aircraft is constrained by 

the strict certification standards that dictate the suitability, or ‘readiness’, of new 

technologies – accelerating the methods through technology readiness levels (TRL) is 

required before these novel methods will be utilised within protection and health 

management systems. It is envisaged that IntelArc will function to provide primary 

protection from DC arc faults whereas EPSmart will supplement health management through 

the identification of EPS degradations and will provide backup protection from critical 

faults.  

Volumes of EPS data will steadily progress in future platforms that possess greater 

complexity and dependence, and it is imperative to implement such autonomous methods 

whereby end-users are not overloaded with information – determining what is important 

within the data is critical, and this work has developed diagnostic methods that rely on 

sensor fusion and feature extraction to focus on informative data and minimize redundancy. 

Previous research has established methods for the diagnosis of arcing and degraded faults 

(see Chapters 3 and 4) – often these methods are deployed in systems that possess specific 

characteristics, and accuracy out with these limited conditions is questionable. This thesis 

has developed scalable, generalised methods based on machine learning techniques that can 

be implemented across a variety of EPS configurations and operating conditions. EPSmart 

highlighted the scalability and computational simplicity of HMM for EPS diagnostic 

purposes. It also showcased the ability to diagnose difficult to detect intermittent and 

incipient fault conditions. The work of this thesis analysed and presented DWT arc fault 

features that are useful for providing generalised diagnosis and significant discrimination 

between fault and nominal conditions – use of these features within IntelArc has shown they 

can provide accurate arc fault diagnosis and reduce the impact of nominal transient 

behaviour on system performance. The generalisation capabilities of IntelArc means it is not 
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limited to aircraft environments and may also be introduced to shipboard, photovoltaic and 

building networks.  

 The following section describes further work that is required to build upon this thesis and 

progress these novel methods.  

7.2 Further Work 

Based on the experienced gained from working in this research area, four aspects of further 

work are recommended and outlined in the following sections.  

7.2.1 Scaled hardware on-line implementation of FDI methods.  

The case studies in Chapter 6 have proven the potential of EPSmart and IntelArc –these case 

studies should be used as a basis in which to proceed towards hardware implementation. In 

particular, Case Study 4 described a DC testbed on which series arc faults were created. The 

case study described the use of the testbed to generate system data under various nominal 

and fault conditions; this data was then applied to the IntelArc method to test its diagnostic 

accuracy.  

The next main ambition of this research would be to test IntelArc in a real-time manner on 

this testbed.  In this context, development of IntelArc would remain software based. This 

would involve using data to train the different HMM and coding of the algorithms. Trained 

HMMs and associated algorithms would be integrated onto a micro-controller/field 

programmable gate array (FPGA) [234] ready for use within the testbed. Data would be 

collected, processed an analysed using the integrated microcontroller/FPGA to allow 

diagnosis of series arc faults in real-time. In the event of fault detection, control signals 

would be communicated to SSPCs to isolate the fault and thus test time between fault onset 

and isolation.  

Similarly, the EPSmart method could be implemented in hardware by initiating 

intermittent short circuit faults and incipient faults at various locations within the testbed. An 

intermittent short circuit fault throwing unit could be developed that vibrates positive and 

negative feeders with exposed conductors together, while incipient faults would be created 

by applying an artificial offset to sensor data. EPSmart, integrated onto an 

FPGA/microcontroller, would receive data measurements across the testbed to diagnose the 

different fault types and their location.    

In the longer term, the EPSmart and IntelArc methods could be combined to create a 

complete FDI method that diagnoses intermittent short circuits, incipient degradations, 

sensor failures and series DC arc faults within hybrid AC/DC testbed. Combining the two 
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methods highlights the inherent scalability of HMM based methods and is one of the 

motivations for their use. Furthermore, implementing the FDI methods into an operational 

UAV with fault throwing capabilities would be integral for testing EPSmart and IntelArc 

within an actual flight environment. A flying demonstrator is envisaged as a move beyond 

TRL6.  

7.2.2 Application of IntelArc to other DC systems & further consideration of PE 

Devices 

An anticipated benefit of IntelArc is its ability to provide accurate series arc fault diagnosis 

across a range of system conditions and operating environments. In particular, IntelArc has 

the potential to be applied within utility microgrids, photovoltaic systems, shipboard systems 

and building networks - further work would include method implementation within these 

respective environments. The intelligent nature of IntelArc means that its detection 

capabilities are agnostic to distribution voltage and current magnitudes although progression 

of IntelArc to different environments will determine certain unique system characteristics 

that may result in inaccurate fault diagnosis. One such unique system characteristic is power 

electronics. The majority of DC systems and microgrids rely on PE devices for conversion 

functionality, and further studies are recommended to determine the effect that control 

systems of different power electronic devices, particularly devices that use constant power 

control, will have on detection accuracy. A voltage decrease at the output terminals of a 

constant power controlled converter as the result of a series arc fault may cause the converter 

to increase current to achieve power balancing – this current increase will mask the current 

signatures required by IntelArc for diagnosis.      

7.2.3 Use of voltage measurements to detect series arc faults 

Another avenue of potentially fruitful future research involves the use of voltage 

measurements for series DC arc fault detection. Nominally, line voltage should remain 

minimal with only line impedance causing small voltage drops. In the presence of series 

arcing, there will be a significant increase in line voltage. This increase in voltage could 

potentially be used as a fault signature. The main obstacle to this concept would be obtaining 

accurate, non-obtrusive, voltage measurements across live conductors between loads and 

busbars. With measurements of this type being already available within the testbed setup 

illustrated in Figure 7-1, it would be interesting to establish the extent to which this effect 

could influence the diagnosis of series arc faults.  
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7.2.4 Assessment of methods when system data is missing 

The methods developed as part of this thesis have been tested so far with the assumption that 

the data required for diagnosis is available at all times. In practice this may not always be the 

case – sensors could fail, systems could be compromised, new and emergent use cases may 

manifest themselves. Further research work is recommended to consider the effect that 

missing data may have on the diagnostic performances of EPSmart and IntelArc. Here 

missing data are characterised by a percentage of null readings across observed time 

windows and may be a result of hardware or communication failure. These studies would 

establish the robustness of classification and diagnostic accuracy when null readings are 

present. Furthermore, they would support the development of remedial strategies in the 

absence complete information. 

 

7.2.5 Co-existence of Sustained and Intermittent IntelArc applications 

The vast majority, if not all, arcing conditions on-board aircraft are intermittent in nature; 

although the thesis presented two applications of IntelArc for both sustained and intermittent 

arcing conditions, it is likely that the intermittent application will be of greater importance 

within aircraft EPS. This does not negate the sustained application, and the potential does 

exist for both applications to co-exist within a single system and provide diagnosis of 

sustained and intermittent series DC arc faults. There are certain practicalities that must be 

overcome before this can be realised: each application utilises different sampling frequencies 

and will therefore require different types of current sensors throughout the monitored system 

while the greater volume of data required by the intermittent application will result in 

increased computational requirements. 

 

7.2.6 Exploration of Number of Features within IntelArc 

Six feature vectors have been proposed for detection within IntelArc. Future work could 

include sensitivity studies on the effect that reducing the number of features has on 

diagnostic accuracy.  Using a reduced number of feature vectors that does not negatively 

impact accuracy will improve computational complexity and benefit practical application of 

IntelArc. 
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7.3 Concluding Remarks 

This thesis has established the shortcomings of aircraft EPS that rely on conventional 

protection methods and has proposed novel intelligent FDI methods that have the potential to 

address these issues. The advantages of using data driven FDI methods for accurate, and 

autonomous, diagnosis of network health is apparent in an age where volumes of operational 

data continue to increase. Despite the fact that EPSmart and IntelArc are currently at an early 

stage of development, the thesis has shown some of the benefits they offer with respect to 

network protection and health management.  The enhanced knowledge these systems will 

elicit to improve management and maintenance of the EPS is a significant advantage of their 

implementation. Although challenges do still exist with regards to development and 

validation of both methods, the contributions of this thesis are a step toward intelligent 

protection and health management systems that would be integral within future aircraft EPS. 
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APPENDIX A: SIMULINK MODELS 
 

A description of the Simulink based models used throughout the work of this thesis. Section A.1 

describes the sustained series arc fault model developed for generation of synthetic fault data and 

Section A.2 describes the intermittent series arc fault model. Section A.3 describes the DC network 

model used in Case Study 2 and Section A.4 describes the DC network model used in Case Study 3. 

A.1 Sustained Series Arc Fault Model  

Figure A-1 illustrates the referenced fault model block. This block can be implemented within any 

SimPowerSystems parent model, providing the +VE, GND and –VE terminals are properly connected.  

The referenced model block should be implemented in series with electrical loads - the –VE port 

should NOT be connected directly to modelled ground/neutral return.  

The first layer in the model hierarchy is illustrated in Figure A-2. User defined variable Fault Time 

determines simulation time, in seconds, of fault onset. There is zero voltage across +VE and –VE 

ports prior to fault onset i.e. there is an ideal conductor between source and load. 

At onset, voltage between the +VE and –VE port begins to increase – this voltage effectively 

models a gap in the conductor, with the +VE port representing the positive electrode and the –VE port 

representing the negative electrode. The voltage between the two electrodes, 𝑉𝑔𝑎𝑝 , increases at arc 

fault onset. 

There are five distinct subsystems that determine 𝑉𝑔𝑎𝑝, summarised as follows: 

 

 

Figure A-1: Referenced series DC arc fault model 
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Figure A-2: First layer of hierarchical series DC arc fault model 

A.1.1 Gap  

Increments the electrode gap distance, 𝑋𝑔𝑎𝑝, in mm/s. Sub-system enabled at Fault Time, with initial 

value of 𝑋𝑔𝑎𝑝 = 0. The rate of increase is determined by the following user inputs.  

 

User Inputs 

 Gap – Constant, 𝐺, that determines speed of electrode gap separation. 𝑋𝑔𝑎𝑝 is incremented at 

each simulation step and is a product of  𝐺 and the elapsed time since fault onset, 𝐹𝑡𝑖𝑚𝑒  

𝑋𝑔𝑎𝑝 = 𝐺 × 𝐹𝑡𝑖𝑚𝑒 

                where 

𝐹𝑡𝑖𝑚𝑒 =
𝑇𝑖𝑚𝑒 𝑆𝑖𝑛𝑐𝑒 𝐹𝑎𝑢𝑙𝑡 𝑂𝑛𝑠𝑒𝑡

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑆𝑡𝑒𝑝
 

 Gap Dwell – Constant that determines distance at which electrode gap is fixed. The electrode 

gap dwells at a pre-determined distance for fixed distance faults - conditional logic is used at 

each simulation step to determine whether electrode gap > predetermined distance. 

 

 

 

(A.1) 

(A.2) 
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Sub-system Outputs 

 𝑋𝑔𝑎𝑝 

 

A.1.2 Randomise q 

This sub-system models the distance ratio, 𝑞. Sub-system enabled at Fault Time, with a random initial 

value, 𝑞𝑖𝑛𝑖𝑡 , where 0 ≤ 𝑞𝑖𝑛𝑖𝑡 ≤ 1 .  𝑞 randomly increases incrementally (𝑞𝑖𝑛𝑐) from 𝑞𝑖𝑛𝑖𝑡  at each 

simulation time-step. Also, random spikes, 𝑞𝑟𝑎𝑛𝑑, are added to 𝑞 at each time-step to model 

unsuccessful arc quenches, where 0 ≤ 𝑞𝑟𝑎𝑛𝑑 ≤ 1. Accordingly: 

𝑞𝑖 = 𝑞𝑖−1 + 𝑞𝑖𝑛𝑐 + 𝑞𝑟𝑎𝑛𝑑 

 

where 𝑖 is the ith time step from Fault Time.  

When 𝑖 = 1,  

𝑞 = 𝑞𝑖𝑛𝑖𝑡 + 𝑞𝑖𝑛𝑐 + 𝑞𝑟𝑎𝑛𝑑  

 

Sub-system Outputs 

 𝑞 

 

A.1.3 egap 

This sub-system models the step function, 𝑒𝑞𝑔𝑎𝑝. The function contributes to arc voltage, 𝑉𝑎𝑟𝑐 , and is 

described in Chapter 5, section (5.3.1.1)14.  

 

Sub-system Inputs 

 𝑋𝑔𝑎𝑝 – Electrode gap distance 

 𝑞 – Distance ratio 

 𝑉𝑑𝑐 – DC supply voltage magnitude 

 𝐿𝑎𝑚𝑑𝑎, 𝜆 – This user-defined constant determines the rate at which the slope of the step 

function rises (see (A.2) for typical values).  

 

Sub-system Outputs 

 𝑒𝑔𝑎𝑝 

 

 

                                                      
14 In Chapter 4, 𝑉𝑔𝑎𝑝 is used as opposed to 𝑉𝑎𝑟𝑐  – strictly speaking, 𝑉𝑎𝑟𝑐  should be used as 𝑉𝑔𝑎𝑝 is equal 

to equal to open circuit 𝑉𝑑𝑐 upon arc extinction (see (A.1.5)) 

(A.3) 

(A.4) 



 
 
 

220 

 

A.1.4 Vq 

This sub-system models the hyperbolic tangent function, 𝑉𝑞 . The function contributes to 𝑉𝑎𝑟𝑐  and is 

described in Chapter 5, Section (5.3.1.1).  

 

Sub-system Inputs 

 𝑉𝑑𝑐 – DC supply voltage magnitude 

 Alpha, 𝛼 – This constant determines the effect of distance ratio 𝑞 on 𝑉𝑞 . Higher values of 𝛼 

increase voltage disparity between low and high values of 𝑞. 𝛼 is approximated by:  

 

𝛼 =  (
−1

2
) 𝑙𝑛 (

𝑅𝑐𝑙𝑜𝑠𝑒𝑑𝐼𝑙𝑜𝑎𝑑

𝑉𝑑𝑐

) 

 

Where 𝑅𝑐𝑙𝑜𝑠𝑒𝑑  is impedance when 𝑋𝑔𝑎𝑝 = 0 (𝑅𝑐𝑙𝑜𝑠𝑒𝑑  is ≈ 0.001Ω and is relative to the 

closed-state impedance of a circuit breaker) and 𝐼𝑙𝑜𝑎𝑑  is the nominal load current. 

 𝑞 – Distance ratio 

 

Sub-system Outputs 

 𝑉𝑞 

 

A.1.5 Arc Voltage 

This sub-system uses conditional logic to determine if the arc has extinguished, and hence the 

magnitude of voltage across the electrode gap, 𝑉𝑔𝑎𝑝. The sub-system executes the following: 

 

while 𝑞𝑖 < 1 

    𝑉𝑔𝑎𝑝 = 𝑉𝑎𝑟𝑐 

break 

end 

    𝑉𝑔𝑎𝑝 = 𝑉𝑑𝑐 

 

 

This logic is used to determine if 𝑞 < 1 at each time step after fault onset; if this is true, the arc is 

still burning, 𝑉𝑔𝑎𝑝 = 𝑉𝑎𝑟𝑐  , and voltage continues to dynamically change. At the point in time where 𝑞 

is greater than or equal to one, the arc has extinguished, the gap is an open circuit, and 𝑉𝑔𝑎𝑝 = 𝑉𝑑𝑐  for 

the remainder of the simulation time. 

A controlled voltage source block is used to model 𝑉𝑔𝑎𝑝. 

 

Sub-system Inputs 

 𝑉𝑑𝑐 – DC supply voltage magnitude 

 𝑉𝑎𝑟𝑐  – This is the combination of 𝑒𝑔𝑎𝑝 and 𝑉𝑞  where 𝑉𝑎𝑟𝑐 = 𝑒𝑔𝑎𝑝 + 𝑉  

 

(A.5) 
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Sub-system Outputs 

 𝑉𝑔𝑎𝑝  – Voltage across the electrode gap 

 

 

A.1.6 Model Parameters 

Model parameters for the sustained series DC arc fault model are summarised in Table A-1. 

 

Table A-1: Summary of model parameters 

Parameter Description Value (Typical) 

𝑞𝑖𝑛𝑖𝑡  Initial Value of distance ratio Random number between 0 and 1 

𝑞𝑖𝑛𝑐 Increments distance ratio at 

each time step 

Random number that depends on 

sample time (between 0 and 0.001 

for 0.01s sample) 

𝑞𝑟𝑎𝑛𝑑 Additional random value to 

distance ratio 

Random number between 0 and 1 

Fault Time Time of arc fault onset User defined (in seconds) 

𝑉𝑎𝑟𝑐  Arc voltage Sum of 𝑒𝑔𝑎𝑝 and 𝑉𝑞  

𝛼 Determines the effect of 𝑉𝑞  

across different distance ratios 

Approximated by eq. (A.5) 

𝑋𝑔𝑎𝑝 Electrode gap distance Determined by G and sample time 

𝐺 Constant that determines speed 

of electrode gap separation 

User Defined 

Gap Dwell Constant that determines 

distance at which electrode gap 

remains constant 

User Defined (in mm) 

𝑉𝑞  Hyperbolic tangent contribution 

to 𝑉𝑎𝑟𝑐  

Defined in Chapter 5, eq. (5.4) 

𝑒𝑔𝑎𝑝  Step function contribution to 

𝑉𝑎𝑟𝑐  

Defined in Chapter 5, eq. (5.5) 

𝜆 Determines rate step function 

rises  

User Defined (nominal value of 

100)  

𝑉𝑑𝑐 DC supply voltage magnitude Dependent on implementation 

𝐼𝑙𝑜𝑎𝑑  Nominal load current magnitude Dependent on implementation 

𝑅𝑐𝑙𝑜𝑠𝑒𝑑  Gap Impedance when 𝑋𝑔𝑎𝑝 = 0  0.001Ω (typical impedance of 

closed CB) 
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A.2 Intermittent Series Arc Fault Model 

The intermittent arc fault model is an extension of the sustained arc fault model. The main design of 

the intermittent model is identical to the sustained model with the exception of some additional 

functionality to model fault intermittency. Figure A-3 outlines design of the intermittent fault model 

and highlights this additional functionality. 

 

 

Figure A-3: Intermittent Series Arc Fault Model. 

 

The additional functionality that enables modelling of fault intermittency includes Simulink switch 

and pulse generator blocks. The output of the switch block is conditional on the pulse generator block: 

if the output of pulse generator block is greater than a threshold specified in the switch block, the 

modelled arc voltage, 𝑉𝑔𝑎𝑝, is equal to 𝑉𝑎𝑟𝑐; otherwise, 𝑉𝑔𝑎𝑝 is zero. This method allows fault 

intermittency to be determined by the pulse generator block i.e. the period where the pulse is greater 

than the threshold is when an arc fault is present and the period where the pulse is less than a threshold 

is when no fault is present.  

The block parameters outlined in Table A-2 are required to provide this functionality. 
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Table A-2: Parameters of additional blocks for modelling intermittent faults. 

Parameter Description Value 

Pulse Generator Block   

Amplitude Amplitude of the pulse signal. This 

must be set to a negative value.  

-1 

Pulse Type Time based as opposed to sample 

based. 

Time Based 

Time  Use Simulation Time 

Period Total period of pulse. User Defined (ms) 

Pulse Width (%) Determines period of each 

intermittent fault event 

User Defined (ms) 

Phase Delay (secs) Determines delay of block from 

beginning of simulation time. This 

must be set to equal the time of 

intermittent fault onset.  

Fault Time (s) 

Switch Block   

Threshold Used to determine whether Input 1 

or Input 2 should be passed to the 

Output. 

-1 

Criteria for Passing Input 1 Set threshold criteria Input 2 > Threshold 

Input 1 Input 1 to the Switch block. 𝑉𝑎𝑟𝑐  

Input 3 Input 3 to the Switch block. 0 

Input 2 Input 2 to the Switch Block that 

determines whether arc voltage is  
𝑉𝑎𝑟𝑐  or zero. 

Connected to Pulse 

Generator Output. 
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A.3 Case Study 2 - DC Network Model  

Model parameters for the DC network model used in Case Study 2 are summarised in Table 

A-3. 

 

Table A-3: Case Study 2 DC network model parameters. 

DC Line Impedances  

Resistance 0.641Ω/km 

Inductance 0.34mh/km 

Capacitance 1mF 

Battery  

Type Lithium-Ion 

Nominal Voltage 28V 

Rated Capacity 60Ah 

Initial State of Charge 100% 

Battery Response Time 30s 

Current Measurements   

Gaussian noise generator mean value 0 

Gaussian noise generator variance 0.0001 

Gaussian noise generator sample time  0.001s 

Passive Rectifier  

Input Voltage 230VAC 

Output Voltage 270VDC 

Input Frequency 400Hz 

Number of Bridge Arms 3 

Snubber Resistance 0.1MΩ 

Snubber Capacitance Inf. 

Diode Forward Impedance 1mΩ 

Forward Voltage 0.7V 

Filter Capacitance 1mF 

270/28VDC Buck Converter  

Inductance  250µH 

Capacitance 100µF 

Switching Frequency 20 kHz 

Duty Cycle 0.12 

DC Loads  

Load Resistance Ranged between 2 and 25Ω 

Load Inductance Ranged between 1.25 and 7mH 

Load capacitance Ranged between 0.1 and 7µF 

Series Arc Fault Model  

Parameters varied between simulations as 

described in Section A.1. 

 

Model Configuration  

Solver Ode23tb(stiff/TR-BDF2) 

Type Variable-step 

 

Figure A-4 illustrates the model as developed in Simulink. 
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Figure A-4: DC network model used for Case Study 2. 
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A.4 Case Study 3 - DC Network Model  

Model parameters for the DC network model used in Case Study3 are summarised in Table 

A-4. 

Table A-4: Case Study 3 DC network model parameters. 

DC Line Impedances  

Resistance 0.641Ω/km 

Inductance 0.34mh/km 

Capacitance 1mF 

Current Measurements  

Gaussian noise generator mean value 0 

Gaussian noise generator variance 0.0001 

Gaussian noise generator sample time  0.001s 

Passive Rectifier  

Input Voltage 230VAC / 115VAC 

Output Voltage 270VDC / 28VDC 

Input Frequency 400Hz 

Number of Bridge Arms 3 

Snubber Resistance 0.1MΩ 

Snubber Capacitance Inf. 

Diode Forward Impedance 1mΩ 

Forward Voltage 0.7V 

Filter Capacitance 1mF 

DC Loads  

Load Resistance Ranged between 2 and 25Ω 

Load Inductance Ranged between 1.25 and 7mH 

Load capacitance Ranged between 0.1 and 7µF 

Intermittent Series Arc Fault Model  

Parameters varied between simulations as 

described in Section A.1 & Section A.2. 

 

Model Configuration  

Solver Ode23tb(stiff/TR-BDF2) 

Type Variable-step 

 

Figure A-5 illustrates the model as developed in Simulink. 

 

Figure A-5: DC network model used for Case Study 3.  
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APPENDIX B: INTELARC TESTING – CASE STUDY 

RESULTS 
The complete results of the case studies described in Chapter 6 are presented. 

B.1 Case Study 2 Results 

NETWORK CONDITION: NO FAULT – NOMINAL CONDITIONS 

Test 

 # 

Cable 

Length  

(m) 

Load 

Switching 

Times  

(s) 

Load 

Switching 

Levels  

(W) 

Fault 

Times  

(s) 

IntelArc 

System 

Output 

Detection 

Time (s) 

1 Z1: 120 

Z2: 120 

Z3: 135 

Z4: 150 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: -: 

No Fault N/A 

2 Z1: 120 

Z2: 120 

Z3: 135 

Z4: 150 

Z1: 2 

Z2: - 

Z3: 8 

Z4: - 

Z1: 391.5 

Z2: - 

Z3: -95.2 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

No Fault N/A 

3 Z1: 120 

Z2: 120 

Z3: 135 

Z4: 150 

Z1: 3.53 

Z2: - 

Z3: 8.267 

Z4: - 

Z1: -405 

Z2: - 

Z3: -143.64 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: -: 

No Fault N/A 

4 Z1: 120 

Z2: 120 

Z3: 135 

Z4: 150 

Z1: - 

Z2: 8.53 

Z3: - 

Z4: 5.66 

Z1: - 

Z2: -729 

Z3: - 

Z4: -46.48 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

No Fault N/A 

5 Z1: 120 

Z2: 120 

Z3: 135 

Z4: 150 

Z1: - 

Z2: 7 

Z3: - 

Z4: 6 

Z1: - 

Z2: 1188 

Z3: - 

Z4: 67.2 

Z1: - 

Z2: - 

Z3: - 

Z4: -: 

No Fault N/A 

6 Z1: 42 

Z2: 60 

Z3: 78 

Z4: 67.5 

Z1: 5.253 

Z2: 4.126 

Z3: - 

Z4: - 

Z1: -108 

Z2: -297 

Z3: - 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: -: 

No Fault N/A 

7 Z1: 42 

Z2: 60 

Z3: 78 

Z4: 67.5 

Z1: - 

Z2: 6.5 

Z3: 8.22 

Z4: - 

Z1: - 

Z2: 1269 

Z3: -13.16 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

No Fault N/A 

8 Z1: 42 

Z2: 60 

Z3: 78 

Z4: 67.5 

Z1: 1 

Z2: - 

Z3: - 

Z4: 5 

Z1: -108 

Z2: - 

Z3: - 

Z4: -46.2 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

No Fault N/A 

9 Z1: 42 

Z2: 60 

Z3: 78 

Z4: 67.5 

Z1: 4.2 

Z2: 6.5 

Z3: 8.22 

Z4: 8.1 

Z1: 1188 

Z2: 567 

Z3: 61.04 

Z4: 43.4 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

No Fault N/A 

10 Z1: 80 

Z2: 60 

Z3: 40 

Z4: 40 

Z1: 1.22 

Z2: - 

Z3: 5.33 

Z4: 5.66 

Z1: 391.5 

Z2: - 

Z3: 95.48 

Z4: -19.6 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

No Fault N/A 

11 Z1: 80 

Z2: 60 

Z3: 40 

Z4: 40 

Z1: 1.22 

Z2: - 

Z3: 5.33 

Z4: 5.66 

Z1: 270 

Z2: - 

Z3: 89.88 

Z4: -29.4 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

No Fault N/A 
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12 Z1: 80 

Z2: 60 

Z3: 40 

Z4: 40 

Z1: 1.22 

Z2: - 

Z3: 5.33 

Z4: 5.66 

Z1: 256.2 

Z2: - 

Z3: 89.6 

Z4: 85.4 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

No Fault N/A 

13 Z1: 80 

Z2: 60 

Z3: 40 

Z4: 40 

Z1: 6.24 

Z2: 2.54 

Z3: 6.95 

Z4: 7.83 

Z1: -486 

Z2: -661.5 

Z3: -30.24 

Z4: 84 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

No Fault N/A 

14 Z1: 80 

Z2: 60 

Z3: 40 

Z4: 40 

Z1: 7.4 

Z2: 5.63 

Z3: - 

Z4: - 

Z1: -486 

Z2: -1188 

Z3: - 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

No Fault N/A 

15 Z1: 130 

Z2: 120 

Z3: 110 

Z4: 100 

Z1: - 

Z2: - 

Z3: 6 

Z4: 8 

Z1: - 

Z2: - 

Z3: 69.16 

Z4: 84 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

No Fault N/A 

16 Z1: 130 

Z2: 120 

Z3: 110 

Z4: 100: 

Z1: - 

Z2: 4 

Z3: 6 

Z4: - 

Z1: - 

Z2: 283.5 

Z3: -106.4 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

No Fault N/A 

17 Z1: 130 

Z2: 120 

Z3: 110 

Z4: 100 

Z1: 5.22 

Z2: - 

Z3: - 

Z4: - 

Z1: 3604 

Z2: - 

Z3: - 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

No Fault N/A 

18 Z1: 130 

Z2: 120 

Z3: 110 

Z4: 100: 

Z1: - 

Z2: 7.65 

Z3: - 

Z4: - 

Z1: - 

Z2: -2389.5 

Z3: - 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

No Fault N/A 

19 Z1: 130 

Z2: 120 

Z3: 110 

Z4: 100: 

Z1: - 

Z2: - 

Z3: 4.88 

Z4: - 

Z1: - 

Z2: - 

Z3: -175.76 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

No Fault N/A 

20 Z1: 130 

Z2: 120 

Z3: 110 

Z4: 100 

Z1: - 

Z2: - 

Z3: - 

Z4: 6 

Z1: - 

Z2: - 

Z3: - 

Z4: 161 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

No Fault N/A 

     100% 

Accurate 
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NETWORK CONDITION: SERIES DC ARC FAULT  - ZONE 1 

Test 

# 

Cable 

Lengths 

(m) 

Load 

Switching 

Times  

(s) 

Load 

Switching 

Level  

(W) 

Fault 

Time 

Onset  

(s) 

Arc 

Power 

(W) & 

Max 

Detection 

Time (s) 

IntelArc 

System 

Output 

Detection 

Time  

(s) 

% of 

Max 

Detection 

Time 

1 Z1: 120 

Z2: 120 

Z3: 135 

Z4: 150 

Z1: - 

Z2: - 

Z3: -  

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

Z1: 6 

Z2: - 

Z3: - 

Z4: - 

976.313W 

& 

0.7682s 

Z1 Fault, 

6.35s 

0.35 45.56 

2 Z1: 120 

Z2: 120 

Z3: 135 

Z4: 150 

Z1: - 

Z2: 6.5 

Z3: 8.25 

Z4: - 

Z1: - 

Z2: 567 

Z3: 61.6 

Z4: - 

Z1: 8 

Z2: - 

Z3: - 

Z4: - 

809.684W 

& 

0.9263s 

Z1 Fault, 

8.15s 
0.15 16.19 

3 Z1: 120 

Z2: 120 

Z3: 135 

Z4: 150 

Z1: - 

Z2: 6.5 

Z3: 8 

Z4: - 

Z1: - 

Z2: 270 

Z3: -66.4 

Z4: - 

Z1: 8 

Z2: - 

Z3: - 

Z4: - 

767.314W 

& 

0.9774s 

Z1 Fault, 

8.75s 
0.75 76.73 

4 Z1: 120 

Z2: 120 

Z3: 135 

Z4: 150 

Z1: 4 

Z2: 6.5 

Z3: 8.25 

Z4: - 

Z1: -486 

Z2: -918 

Z3: -86.8 

Z4: - 

Z1: 8 

Z2: - 

Z3: - 

Z4: - 

435.243W 

& 

1.7232s 

Z1 Fault, 

8.25s 
0.25 14.51 

5 Z1: 120 

Z2: 120 

Z3: 135 

Z4: 150 

Z1: -  

Z2: 6.89 

Z3: 8.44 

Z4: 7.25 

Z1: - 

Z2: -2943 

Z3: -13.16 

Z4: -67.2 

Z1: 8 

Z2: - 

Z3: - 

Z4: - 

568.196W 

& 

1.32s 

Z1 Fault, 

8.75s 
0.75 56.8 

6 Z1: 120 

Z2: 120 

Z3: 135 

Z4: 150 

Z1: 5  

Z2: 2.1 

Z3: 4 

Z4: 6 

Z1: -918 

Z2: 4171.5 

Z3: -61.6 

Z4: -22.4 

Z1: 7 

Z2: - 

Z3: - 

Z4: - 

1221W 

& 

0.6142s 

Z1 Fault, 

7.25s 
0.25 40.7 

7 Z1: 120 

Z2: 120 

Z3: 135 

Z4: 150 

Z1: - 

Z2: 6.25 

Z3: 8.25 

Z4: - 

Z1: - 

Z2: 3658.5 

Z3: -52.92 

Z4: - 

Z1: 8 

Z2: - 

Z3: - 

Z4: - 

910.514W 

& 

0.8237s 

 

Z1 Fault, 

8.6s 
0.6 72.84 

8 Z1: 120 

Z2: 120 

Z3: 135 

Z4: 150 

Z1: 3.33 

Z2: 6.5 

Z3: 7.25 

Z4: 6 

Z1: -1431 

Z2: 999 

Z3: -9.24 

Z4: 74.2 

Z1: 8 

Z2: - 

Z3: - 

Z4: - 

1290.5W 

& 

0.5812s 

Z1 Fault, 

8.1s 
0.1 17.21 

9 Z1: 120 

Z2: 120 

Z3: 135 

Z4: 150 

Z1: 3.58 

Z2: 6.5 

Z3: 3.24 

Z4: 4.65 

Z1:  Min* 

Z2: -499.5 

Z3: -66.64 

Z4: -11.2 

Z1: 8 

Z2: - 

Z3: - 

Z4: - 

1176.6W 

& 

0.6374s 

Z1 Fault, 

8.3s 
0.3 47.07 

10 Z1: 120 

Z2: 120 

Z3: 135 

Z4: 150 

Z1:  - 

Z2: 6.89 

Z3: 5.25 

Z4: 4.44 

Z1: - 

Z2: 1944 

Z3: -61.6 

Z4: Min* 

Z1: 8 

Z2: - 

Z3: - 

Z4: - 

1140.4W 

& 

0.6577s 

Z1 Fault, 

8.15s 
0.15 22.81 

11 Z1: 120 

Z2: 120 

Z3: 135 

Z4: 150 

Z1: 4 

Z2: 2.12 

Z3: 3.56 

Z4: 1.21 

Z1: 1782 

Z2: -634.5 

Z3: -

204.96 

Z4: 40.6 

Z1: 8 

Z2: - 

Z3: - 

Z4: - 

545.887W 

& 

1.3739s 

Z1 Fault, 

8.35s 
0.35 25.47 

12 Z1: 120 

Z2: 120 

Z3: 135 

Z4: 150 

Z1: 5.23 

Z2: 6.13 

Z3: 7.11 

Z4: 2.69 

Z1: -4482 

Z2: -1917 

Z3: 16.52 

Z4: -24.08 

Z1: 8 

Z2: - 

Z3: - 

Z4: - 

394.840W 

& 

1.8995s 

Z1 Fault, 

8.1s 
0.1 5.26 

13 Z1: 42 

Z2: 60 

Z3: 78 

Z4: 67.5 

Z1: 4.4 

Z2: 6.5 

Z3: 8.25 

Z4: - 

Z1: 2251.5  

Z2: 972 

Z3: 68.8 

Z4: - 

Z1: 7 

Z2: - 

Z3: - 

Z4: - 

499.454W 

& 

1.5016s 

Z1 Fault, 

8.15s 
1.15 76.58 
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14 Z1: 42 

Z2: 60 

Z3: 78 

Z4: 67.5 

Z1: 4.24 

Z2: 5.5 

Z3: 2.25 

Z4: 3.1 

Z1: 2538 

Z2: -2673 

Z3: -

178.36 

Z4: 58.8 

Z1: 7 

Z2: - 

Z3: - 

Z4: - 

346.105W 

& 

2.167s 

Z1 Fault, 

7.4s 
0.4 18.46 

15 Z1: 42 

Z2: 60 

Z3: 78 

Z4: 67.5 

Z1: 3.25 

Z2: 1.12 

Z3: - 

Z4: - 

Z1: -

1633.5 

Z2: 769.5 

Z3: - 

Z4: - 

Z1: 7 

Z2: - 

Z3: - 

Z4: - 

269.815 W 

& 

2.7797s 

Z1 Fault, 

7.1s 
0.1 3.598 

16 Z1: 42 

Z2: 60 

Z3: 78 

Z4: 67.5 

Z1: - 

Z2: - 

Z3: 4.42 

Z4: 3.2 

Z1: - 

Z2: - 

Z3: -173.6 

Z4: -56 

Z1: 7 

Z2: - 

Z3: - 

Z4: - 

384.621 W 

& 

1.95s 

Z1 Fault, 

7.95s 
0.95 48.72 

17 Z1: 130 

Z2: 120 

Z3: 110 

Z4: 100 

Z1: 5.65 

Z2: - 

Z3: 2.12 

Z4: 2.36 

Z1: -

1093.5 

Z2: - 

Z3: -9.52 

Z4: Min* 

Z1: 7 

Z2: - 

Z3: - 

Z4: - 

524.422 W 

& 

1.4301s 

Z1 Fault, 

7.25s 
0.25 17.48 

18 Z1: 130 

Z2: 120 

Z3: 110 

Z4: 100 

Z1: 5.65 

Z2: - 

Z3: 2.12 

Z4: 2.36 

Z1: -1512 

Z2: - 

Z3: 163.8 

Z4: 36.4 

Z1: 7 

Z2: - 

Z3: - 

Z4: - 

501.426W 

& 

1.4957s 

Z1 Fault, 

7.1s 
0.1 6.69 

19 Z1: 130 

Z2: 120 

Z3: 110 

Z4: 100 

Z1: 3.45 

Z2: 1.22 

Z3: 0.95 

Z4: - 

Z1: -216 

Z2: -1998 

Z3: -54.6 

Z4: - 

Z1: 7 

Z2: - 

Z3: - 

Z4: - 

610.248W 

& 

1.229s 

Z1 Fault, 

7.35s 
0.35 28.48 

20 Z1: 130 

Z2: 120 

Z3: 110 

Z4: 100 

Z1: - 

Z2: 4.23 

Z3: 5.25 

Z4: - 

Z1: - 

Z2: -756 

Z3: 45.64 

Z4: - 

Z1: 7 

Z2: - 

Z3: - 

Z4: - 

1045.5 W 

& 

0.7173s 

Z1 Fault, 

7.3s 
0.3 41.82 

21 Z1: 40 

Z2: 52 

Z3: 35 

Z4: 40 

Z1: 4.2 

Z2: 6.5 

Z3: 5 

Z4: 9 

Z1: -

1498.5 

Z2: 1026 

Z3: 11.48 

Z4: 462 

Z1: 9 

Z2: - 

Z3: - 

Z4: - 

420.061W 

& 

1.7855s 

Z1 Fault, 

9.75s 
0.75 42 

22 Z1: 40 

Z2: 52 

Z3: 35 

Z4: 40 

Z1: 5.19 

Z2: 4.22 

Z3: 6.12 

Z4: 8.21 

Z1: 310.5 

Z2: -494.5 

Z3: -15.68 

Z4: 291.2 

Z1: 9 

Z2: - 

Z3: - 

Z4: - 

459.984W 

& 

1.6305s 

Z1 Fault, 

9.65s 
0.65 47.48 

23 Z1: 40 

Z2: 52 

Z3: 35 

Z4: 40 

Z1: 5 

Z2: 6 

Z3: 7.22 

Z4: 4.36 

Z1: -1755 

Z2: -321.3 

Z3: 46.76 

Z4: 520.8 

Z1: 9 

Z2: - 

Z3: - 

Z4: - 

352.478 W 

& 

2.1278s 

Z1 Fault, 

9.6s 
0.6 28.2 

24 Z1: 40 

Z2: 52 

Z3: 35 

Z4: 40 

Z1: 7 

Z2:  8 

Z3: 5.2 

Z4: 1.24 

Z1: -783 

Z2: -216 

Z3: 18.48 

Z4: 53.2 

Z1: 9 

Z2: - 

Z3: - 

Z4: - 

379.869W 

& 

1.9744s 

Z1 Fault, 

9.10s 
0.1 5.06 

25 Z1: 40 

Z2: 52 

Z3: 35 

Z4: 40 

Z1: 7.26 

Z2: 4.20 

Z3: 7.45 

Z4: 6.21 

Z1: 2403 

Z2: 378 

Z3: 80.64 

Z4: 229.6 

Z1: 9 

Z2: - 

Z3: - 

Z4: - 

397.471W 

& 

1.8869s 

Z1 Fault, 

9.90s 
0.9 47.697 

      100% 

Accurate 

0.428 34.1486 
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NETWORK CONDITION: SERIES DC ARC FAULT  - ZONE 2 

Test # Cable 

Length 

(m) 

Load 

Switching 

Time (s) 

Load 

Switching 

Level (W) 

Fault 

Times 

(s) 

Arc Power 

(W) & 

Max 

Detection 

Time (s) 

IntelArc 

System 

Output 

Detection 

Time (s) 

% of 

Max 

Detection 

Time 

1 Z1: 80 

Z2: 125 

Z3: 60 

Z4: 75 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

Z1: - 

Z2: 6 

Z3: - 

Z4: - 

417.894W 

& 

1.794s 

Z2 Fault, 

6.1s 

0.1 5.57 

2 Z1: 80 

Z2: 125 

Z3: 60 

Z4: 75 

Z1: 3.5 

Z2: 2.22 

Z3: - 

Z4: - 

Z1: 1039.5 

Z2: -256 

Z3: - 

Z4: - 

Z1: - 

Z2: 7 

Z3: - 

Z4: - 

550.983W 

& 

1.3612s 

Z2 Fault, 

7.3s 

0.3 22.04 

3 Z1: 80 

Z2: 125 

Z3: 60 

Z4: 75 

Z1: - 

Z2: 4.23 

Z3: 5.25 

Z4: - 

Z1: - 

Z2: Min* 

Z3: -34.44 

Z4: - 

Z1: - 

Z2: 7 

Z3: - 

Z4: - 

1290W 

& 

0.5814s 

Z2 Fault, 

7.4s 

0.4 68.79 

4 Z1: 80 

Z2: 125 

Z3: 60 

Z4: 75 

Z1: 2.22 

Z2: 6.2 

Z3: 6.65 

Z4: 1.91 

Z1: -3604 

Z2: 1053 

Z3: -

145.04 

Z4: Min* 

Z1: - 

Z2: 7 

Z3: - 

Z4: - 

702.906W 

& 

1.067s 

Z2 Fault, 

7.6s 

0.6 60.9 

5 Z1: 80 

Z2: 125 

Z3: 60 

Z4: 75 

Z1: - 

Z2: - 

Z3: 4.55 

Z4: 2.36 

Z1: - 

Z2: - 

Z3: 24.36 

Z4: 123.2 

Z1: - 

Z2: 7 

Z3: - 

Z4: - 

891.754W 

& 

0.841s 

Z2 Fault, 

7.5s 

0.5 59.4 

6 Z1: 80 

Z2: 125 

Z3: 60 

Z4: 75 

Z1: - 

Z2: 4.25 

Z3: 2.65 

Z4: - 

Z1: - 

Z2: 270 

Z3: -46.76 

Z4: - 

Z1: - 

Z2: 7 

Z3: - 

Z4: - 

1258.2W 

& 

0.5961s 

Z2 Fault, 

7.4s 

0.4 67.1 

7 Z1: 80 

Z2: 125 

Z3: 60 

Z4: 75 

Z1: - 

Z2: 1.24 

Z3: 4.24 

Z4: 5.21 

Z1: - 

Z2: 1431 

Z3: -99.4 

Z4: 23.8 

Z1: - 

Z2: 7 

Z3: - 

Z4: - 

1015.6W 

& 

0.7385s 

Z2 Fault, 

7.65s 

0.65 88.02 

8 Z1: 80 

Z2: 125 

Z3: 60 

Z4: 75 

Z1: - 

Z2: 1.54 

Z3: - 

Z4: 3.21 

Z1: - 

Z2: 2916 

Z3: - 

Z4: -61.6 

Z1: - 

Z2: 7 

Z3: - 

Z4: - 

468.425W 

& 

1.601s 

Z2 Fault, 

7.45s 

0.45 28.1 

9 Z1: 80 

Z2: 125 

Z3: 60 

Z4: 75 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

Z1: - 

Z2: 8 

Z3: - 

Z4: - 

1202.1W 

& 

0.6239s 

Z2 Fault, 

8.45s 

0.45 72.13 

10 Z1: 95 

Z2: 160 

Z3: 50 

Z4: 100 

Z1: 1.11 

Z2: 4.23 

Z3: 3.9 

Z4: - 

Z1: -1809 

Z2: -229.5 

Z3: 102.2 

Z4: - 

Z1: - 

Z2: 8 

Z3: - 

Z4: - 

772.065W 

& 

0.9714s 

Z2 Fault, 

8.15s 

0.15 15.44 

11 Z1: 95 

Z2: 160 

Z3: 50 

Z4: 100 

Z1: 5.2 

Z2: 3.21 

Z3: - 

Z4: - 

Z1: Min* 

Z2: -675 

Z3: -  

Z4: - 

Z1: - 

Z2: 7 

Z3: - 

Z4: - 

938.260W 

& 

0.7994s 

Z2 Fault, 

7.70s 

0.7 87.5 

12 Z1: 95 

Z2: 160 

Z3: 50 

Z4: 100 

Z1: - 

Z2: - 

Z3: 7.4 

Z4: 6.1 

Z1: - 

Z2: - 

Z3: 29.68 

Z4: 9.24 

Z1: - 

Z2: 8 

Z3: - 

Z4: - 

794.104W 

& 

0.9445s 

Z2 Fault, 

8.70s 

0.7 74.11 

13 Z1: 95 

Z2: 160 

Z3: 50 

Z4: 100 

Z1: - 

Z2: 3.2 

Z3: - 

Z4: 6.91 

Z1: - 

Z2: 54 

Z3: - 

Z4: 7 

Z1: - 

Z2: 7 

Z3: - 

Z4: - 

778.408W 

& 

0.9635s 

Z2 Fault, 

7.10s 

0.1 10.37 
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14 Z1: 95 

Z2: 160 

Z3: 50 

Z4: 100 

Z1: - 

Z2: - 

Z3: 5.2 

Z4: - 

Z1: - 

Z2: - 

Z3: 109.48 

Z4: - 

Z1: - 

Z2: 7 

Z3: - 

Z4: - 

1055.3W 

& 

0.7107s 

Z2 Fault, 

7.70s 

0.7 97.6 

15 Z1: 80 

Z2: 105 

Z3: 40 

Z4: 145 

Z1: 5.69 

Z2: - 

Z3: 2.12 

Z4: - 

Z1: -81 

Z2: - 

Z3: -31.36 

Z4: - 

Z1: - 

Z2: 8 

Z3: - 

Z4: - 

704.898W 

& 

1.064s 

Z2 Fault, 

8.40s 

0.4 37.59 

16 Z1: 80 

Z2: 105 

Z3: 40 

Z4: 145 

Z1: - 

Z2: 1.29 

Z3: 4.21 

Z4: 7.84 

Z1: - 

Z2: 378 

Z3: -8.96 

Z4: -29.4 

Z1: - 

Z2: 8 

Z3: - 

Z4: - 

1326.9W 

& 

0.5632s 

Z2 Fault, 

8.25s 

0.25 44.23 

17 Z1: 80 

Z2: 105 

Z3: 40 

Z4: 145: 

Z1: - 

Z2: 6.12 

Z3: - 

Z4: 2.14 

Z1: - 

Z2: -

3307.5 

Z3: - 

Z4: 160.44 

Z1: - 

Z2: 7 

Z3: - 

Z4: - 

735.325W 

& 

1.02s 

Z2 Fault, 

7.55s 

0.55 53.92 

18 Z1: 80 

Z2: 105 

Z3: 40 

Z4: 145: 

Z1: - 

Z2: - 

Z3: - 

Z4: 5 

Z1: - 

Z2: - 

Z3: - 

Z4: -

115.08 

Z1: - 

Z2: 7 

Z3: - 

Z4: - 

1613.7W 

& 

0.4648s 

Z2 Fault, 

7.35s 

0.35 75.3 

19 Z1: 80 

Z2: 105 

Z3: 40 

Z4: 145 

Z1: 4.12 

Z2: 5.96 

Z3: 4.44 

Z4: - 

Z1: -769.5 

Z2: -248.5 

Z3: 22.12 

Z4: - 

Z1: - 

Z2: 7 

Z3: - 

Z4: - 

429.9647W 

& 

1.7443s 

Z2 Fault, 

8.50s 

1.5 85.99 

20 Z1: 80 

Z2: 105 

Z3: 40 

Z4: 145 

Z1: 5.4 

Z2: 6.6 

Z3: - 

Z4: 3.16 

Z1: -

3793.5 

Z2: Min* 

Z3: - 

Z4: 36.12 

Z1: - 

Z2: 7 

Z3: - 

Z4: - 

208.379W 

& 

3.5992s 

Z2 Fault, 

7.15s 

0.15 4.167 

21 Z1: 40 

Z2: 52 

Z3: 35 

Z4: 40 

Z1: 7 

Z2: 4 

Z3: 1 

Z4: 6 

Z1: -432 

Z2: 1498.5 

Z3: 27.72 

Z4: -291.2 

Z1: - 

Z2: 9 

Z3: - 

Z4: - 

391.799W 

& 

1.9142s 

Z2 Fault, 

9.45s 

0.45 23.51 

22 Z1: 40 

Z2: 52 

Z3: 35 

Z4: 40 

Z1: 4 

Z2: 5 

Z3: 3 

Z4: 2 

Z1: 1809 

Z2: -1674 

Z3: -42.84 

Z4: 229.6 

Z1: - 

Z2: 9 

Z3: - 

Z4: - 

399.169W 

& 

1.878s 

Z2 Fault, 

9.75s 

0.75 39.92 

23 Z1: 40 

Z2: 52 

Z3: 35 

Z4: 40 

Z1: 6.25 

Z2: 7.4 

Z3: 1.25 

Z4: 4.28 

Z1: -459 

Z2: 1560.6 

Z3: 216.6 

Z4: -614.6 

Z1: - 

Z2: 9 

Z3: - 

Z4: - 

267.376W 

& 

2.8050s 

Z2 Fault, 

9.4s 

0.4 14.26 

24 Z1: 40 

Z2: 52 

Z3: 35 

Z4: 40 

Z1: 8.12 

Z2: 2.14 

Z3: 6.23 

Z4: 3.14 

Z1: Min* 

Z2: -229.5 

Z3: -35.84 

Z4: 789.6 

Z1: - 

Z2: 9 

Z3: - 

Z4: - 

382.328W 

& 

1.9617s 

Z2 Fault, 

9.75s 

0.75 38.23 

25 Z1: 40 

Z2: 52 

Z3: 35 

Z4: 40 

Z1: 5.23 

Z2: 5.65 

Z3: 2.26 

Z4: 4.87 

Z1: -

1687.5 

Z2: 526.5 

Z3: 151.76 

Z4: -387.8 

Z1: - 

Z2: 9 

Z3: - 

Z4: - 

326.830W 

& 

2.294s 

Z2 Fault, 

9.75s 

0.75 32.68 

      100% 

Accurate 

0.502 48.27 
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NETWORK CONDITION: SERIES DC ARC FAULT  - ZONE 3 

Test # Cable 

Lengths 

(m) 

Load 

Switching 

Times 

(s) 

Load 

Switching 

Levels 

(W) 

Fault 

Times 

(s) 

IntelArc 

System 

Output 

Detection 

Time (s) 

1 Z1: 120 

Z2: 100 

Z3: 70 

Z4: 115 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

Z1: - 

Z2: - 

Z3: 5 

Z4: - 

Z3 Fault, 

5.15s 
0.15 

2 Z1: 120 

Z2: 100 

Z3: 70 

Z4: 115 

Z1: - 

Z2: - 

Z3: 3.9 

Z4: - 

Z1: - 

Z2: - 

Z3: 160.72 

Z4: - 

Z1: - 

Z2: - 

Z3: 6 

Z4: - 

Z3 Fault, 

6.40s 
0.4 

3 Z1: 120 

Z2: 100 

Z3: 70 

Z4: 115 

Z1: 7.12 

Z2: 6.35 

Z3: - 

Z4: - 

Z1: 3267 

Z2: 3483 

Z3: - 

Z4: - 

Z1: - 

Z2: - 

Z3: 8 

Z4: - 

Z3 Fault, 

8.30s 
0.3 

4 Z1: 120 

Z2: 100 

Z3: 70 

Z4: 115 

Z1: - 

Z2: - 

Z3: 2.12 

Z4: 4.03 

Z1: - 

Z2: - 

Z3: -213.64 

Z4: -7.56 

Z1: - 

Z2: - 

Z3: 8 

Z4: - 

Z3 Fault, 

8.10s 
0.1 

5 Z1: 120 

Z2: 100 

Z3: 70 

Z4: 115 

Z1: 3.65 

Z2: 6.54 

Z3: 2.12 

Z4: 4.03 

Z1: -1093 

Z2: 2322 

Z3: 73.08 

Z4: -51.24 

Z1: - 

Z2: - 

Z3: 8 

Z4: - 

Z3 Fault, 

8.10s 
0.1 

6 Z1: 120 

Z2: 100 

Z3: 70 

Z4: 115 

Z1: 6 

Z2: 7.45 

Z3: 5.41 

Z4: 6.22 

Z1: 504.9 

Z2: 2241 

Z3: -148.4 

Z4: 71.4 

Z1: - 

Z2: - 

Z3: 8 

Z4: - 

Z3 Fault, 

8.40s 
0.4 

7 Z1: 120 

Z2: 100 

Z3: 70 

Z4: 115 

Z1: 1.24 

Z2: 6.25 

Z3: 2 

Z4: 4 

Z1: -918 

Z2: -216 

Z3: -38.92 

Z4: 23.8 

Z1: - 

Z2: - 

Z3: 8 

Z4: - 

Z3 Fault, 

8.10s 
0.1 

8 Z1: 120 

Z2: 100 

Z3: 70 

Z4: 115 

Z1: 4.75 

Z2: 3.66 

Z3: - 

Z4: 1.29 

Z1: -2578.5 

Z2: 94.68 

Z3: - 

Z4: -109.2 

Z1: - 

Z2: - 

Z3: 8 

Z4: - 

Z3 Fault, 

8.10s 
0.1 

9 Z1: 80 

Z2: 80 

Z3: 65 

Z4: 100 

Z1: - 

Z2: 2.14 

Z3: 4.68 

Z4: - 

Z1: - 

Z2: 140.84 

Z3: -2.8 

Z4: - 

Z1: - 

Z2: - 

Z3: 8 

Z4: - 

Z3 Fault, 

8.15s 
0.15 

10 Z1: 80 

Z2: 80 

Z3: 65 

Z4: 100 

Z1: 6 

Z2: 5 

Z3: - 

Z4: - 

Z1: 521.1 

Z2: 3186 

Z3: - 

Z4: - 

Z1: - 

Z2: - 

Z3: 8 

Z4: - 

Z3 Fault, 

8.20s 
0.2 

11 Z1: 80 

Z2: 80 

Z3: 65 

Z4: 100 

Z1: - 

Z2: 5.32 

Z3: 1.11 

Z4: - 

Z1: - 

Z2: 4704 

Z3: 378 

Z4: 

Z1: - 

Z2: - 

Z3: 8 

Z4: - 

Z3 Fault, 

8.30s 
0.3 

12 Z1: 80 

Z2: 80 

Z3: 65 

Z4: 100 

Z1: - 

Z2: 3.65 

Z3: - 

Z4: - 

Z1: - 

Z2: -688.5 

Z3: -  

Z4: - 

Z1: - 

Z2: - 

Z3: 7 

Z4: - 

Z3 Fault, 

7.10s 
0.1 

13 Z1: 80 

Z2: 80 

Z3: 65 

Z4: 100 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

Z1: - 

Z2: - 

Z3: 7 

Z4: - 

Z3 Fault, 

7.10s 
0.1 
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14 Z1: 80 

Z2: 80 

Z3: 65 

Z4: 100 

Z1: - 

Z2: 1.87 

Z3: 3.54 

Z4: - 

Z1: - 

Z2: 1628.1 

Z3: -107.8 

Z4: -  

Z1: - 

Z2: - 

Z3: 7 

Z4: - 

Z3 Fault, 

7.25s 
0.25 

15 Z1: 80 

Z2: 80 

Z3: 65 

Z4: 100 

Z1: - 

Z2: - 

Z3: 4.65 

Z4: 3.74 

Z1: - 

Z2: - 

Z3: 250.6 

Z4: 77 

Z1: - 

Z2: - 

Z3: 7 

Z4: - 

Z3 Fault, 

7.60s 
0.6 

16 Z1: 150 

Z2: 140 

Z3: 90 

Z4: 120 

Z1: - 

Z2: 6.25 

Z3: 4.12 

Z4: - 

Z1:  - 

Z2: 1039.5 

Z3: -43.68 

Z4: - 

Z1: - 

Z2: - 

Z3: 7 

Z4: - 

Z3 Fault, 

7.40s 
0.4 

17 Z1: 150 

Z2: 140 

Z3: 90 

Z4: 120 

Z1: 3.25 

Z2: 5 

Z3: 6 

Z4: 4.7 

Z1: 1674 

Z2: 837 

Z3: 43.4 

Z4: -8.96 

Z1: - 

Z2: - 

Z3: 7 

Z4: - 

No Fault N/A 

18 Z1: 150 

Z2: 140 

Z3: 90 

Z4: 120 

Z1: 5 

Z2: 4.1 

Z3: 4.8 

Z4: 4.2 

Z1: -1620 

Z2: 3631.5 

Z3: -49 

Z4: 37.8 

Z1: - 

Z2: - 

Z3: 7 

Z4: - 

Z3 Fault, 

7.25s 
0.25 

19 Z1: 150 

Z2: 140 

Z3: 90 

Z4: 120 

Z1: - 

Z2: - 

Z3: 3 

Z4: 1.24 

Z1: - 

Z2: - 

Z3: -185.05 

Z4: 26.6 

Z1: - 

Z2: - 

Z3: 7 

Z4: - 

Z3 Fault, 

7.45s 
0.45 

20 Z1: 150 

Z2: 140 

Z3: 90 

Z4: 120 

Z1: 3.11 

Z2: - 

Z3: 1.78 

Z4: 2.87 

Z1: -796.5 

Z2: - 

Z3: 22.68 

Z4: 81.76 

Z1: - 

Z2: - 

Z3: 7 

Z4: - 

Z3 Fault, 

7.10s 
0.1 

21 Z1: 35 

Z2: 30 

Z3: 20  

Z4: 45 

Z1: 7.2 

Z2: 6 

Z3: 3.9 

Z4: 4.25 

Z1: -661.5 

Z2: 1938.6 

Z3: -154.84 

Z4: Min* 

Z1: - 

Z2: - 

Z3: 8 

Z4: - 

Z3 Fault, 

8.40s 
0.4 

22 Z1: 35 

Z2: 30 

Z3: 20  

Z4: 45 

Z1: 7.2 

Z2: 6 

Z3: 3.9 

Z4: 4.25 

Z1: -1269 

Z2: -337.5 

Z3: 35 

Z4: -23.8 

Z1: - 

Z2: - 

Z3: 8 

Z4: - 

Z3 Fault, 

8.25s 
0.25 

23 Z1: 35 

Z2: 30 

Z3: 20  

Z4: 45 

Z1: 8 

Z2: 7.45 

Z3: 6 

Z4: 5 

Z1: 1809 

Z2: -558.9 

Z3: -80.64 

Z4: 415.8 

Z1: - 

Z2: - 

Z3: 9 

Z4: - 

Z3 Fault, 

9.25s 
0.25 

24 Z1: 35 

Z2: 30 

Z3: 20  

Z4: 45 

Z1: 4.52 

Z2: 1.22 

Z3: 3.15 

Z4: - 

Z1: 81 

Z2: 1714.5 

Z3: 30.24 

Z4: -  

Z1: - 

Z2: - 

Z3: 9 

Z4: - 

Z3 Fault, 

9.30s 
0.3 

25 Z1: 35 

Z2: 30 

Z3: 20  

Z4: 45 

Z1: - 

Z2: 6.5 

Z3: 5 

Z4: 8 

Z1: - 

Z2: -1431 

Z3: 260.4 

Z4: -714 

Z1: - 

Z2: - 

Z3: 9 

Z4: - 

Z3 Fault, 

9.25s 
0.25 

     95.8% 

Accurate 

0.25 

 

 

 

 

 



 
 
 

235 

 

 

NETWORK CONDITION: SERIES DC ARC FAULT  - ZONE 4 

Test 

# 

Cable 

Length 

(m) 

Load 

Switching 

Times 

(s) 

Load 

Switching 

Levels 

(W) 

Fault 

Times 

(s) 

AFD 

System 

Output 

Detection 

Time 

(s) 

1 Z1: 150 

Z2: 150 

Z3: 80 

Z4: 160 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: 7 

Z4 Fault, 

7.85s 
0.85 

2 Z1: 150 

Z2: 150 

Z3: 80 

Z4: 160 

Z1: - 

Z2: - 

Z3: - 

Z4: 4 

Z1: - 

Z2: - 

Z3: - 

Z4: 16.8 

Z1: - 

Z2: - 

Z3: - 

Z4: 6 

Z4 Fault, 

6.45s 
0.45 

3 Z1: 150 

Z2: 150 

Z3: 80 

Z4: 160 

Z1: 3.2 

Z2: 6.1 

Z3: - 

Z4: - 

Z1: -1444.5 

Z2: 40.5 

Z3: - 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: 7 

Z4 Fault, 

7.25s 
0.25 

4 Z1: 150 

Z2: 150 

Z3: 80 

Z4: 160 

Z1: - 

Z2: - 

Z3: 3.1 

Z4: 5.4 

Z1: - 

Z2: - 

Z3: 

Z4: 

Z1: - 

Z2: - 

Z3: - 

Z4: 7 

Z4 Fault, 

7.35s 
0.35 

5 Z1: 150 

Z2: 150 

Z3: 80 

Z4: 160 

Z1: - 

Z2: 2.33 

Z3: 5.31 

Z4: - 

Z1: - 

Z2: 1190.7 

Z3: 184.52 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: 7 

Z4 Fault, 

7.1s 
0.1 

6 Z1: 150 

Z2: 150 

Z3: 80 

Z4: 160 

Z1: - 

Z2: 3.1 

Z3: - 

Z4: 2.5 

Z1: - 

Z2: 1053 

Z3: - 

Z4: -133 

Z1: - 

Z2: - 

Z3: - 

Z4: 7 

Z4 Fault, 

7.3s 
0.3 

7 Z1: 150 

Z2: 150 

Z3: 80 

Z4: 160 

Z1: 4.25 

Z2: - 

Z3: 1.23 

Z4: - 

Z1: -1336.5 

Z2: - 

Z3: 118.44 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: 7 

Z4 Fault, 

7.5s 
0.5 

8 Z1: 150 

Z2: 150 

Z3: 80 

Z4: 160 

Z1: 4.25 

Z2: - 

Z3: - 

Z4: 6.2 

Z1: 3604.5 

Z2: - 

Z3: - 

Z4: -93.8 

Z1: - 

Z2: - 

Z3: - 

Z4: 8 

No Fault N/A 

9 Z1: 150 

Z2: 150 

Z3: 80 

Z4: 160 

Z1: - 

Z2: - 

Z3: - 

Z4: 6.1 

Z1: - 

Z2: - 

Z3: - 

Z4: 88.2 

Z1: - 

Z2: - 

Z3: - 

Z4: 8 

Z4 Fault, 

8.95s 
0.95 

10 Z1: 150 

Z2: 150 

Z3: 80 

Z4: 160 

Z1: 1.5 

Z2: 5.4 

Z3: 4.25 

Z4: - 

Z1: -227.5 

Z2: -1593 

Z3: 80.08 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: 8 

Z4 Fault, 

8.15s 
0.15 

11 Z1: 120 

Z2: 130 

Z3: 60 

Z4: 140 

Z1: - 

Z2: 4.25 

Z3: - 

Z4: 6.24 

Z1: - 

Z2: 2146.5 

Z3: - 

Z4: 106.4 

Z1: - 

Z2: - 

Z3: - 

Z4: 8 

Z4 Fault, 

8.75s 
0.75 

12 Z1: 120 

Z2: 130 

Z3: 60 

Z4: 140 

Z1: 3.25 

Z2: 6.11 

Z3: - 

Z4: - 

Z1: 1269 

Z2: 1766.4 

Z3: - 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: 8 

Z4 Fault, 

8.15s 
0.15 

13 Z1: 120 

Z2: 130 

Z3: 60 

Z4: 140 

Z1: 3.2 

Z2: - 

Z3: 5.21 

Z4: - 

Z1: -2335.5 

Z2: - 

Z3: -49.84 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: 8 

Z4 Fault, 

8.55s 
0.55 

14 Z1: 120 

Z2: 130 

Z1: 7.12 

Z2: 2.56 

Z1: -67.5 

Z2: -2943 

Z1: - 

Z2: - 

Z4 Fault, 

9.3s 
1.3 
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Z3: 60 

Z4: 140 
Z3: 1.56 

Z4: 3.22 
Z3: 346.36 

Z4: 141.4 

Z3: - 

Z4: 8 
15 Z1: 120 

Z2: 130 

Z3: 60 

Z4: 140 

Z1: 6.21 

Z2: 3.45 

Z3: 7.12 

Z4: 1.2 

Z1: 2727 

Z2: 2092.5 

Z3: 103.2 

Z4: 32.2 

Z1: - 

Z2: - 

Z3: - 

Z4: 8 

No Fault N/A 

16 Z1: 120 

Z2: 130 

Z3: 60 

Z4: 140 

Z1: 4.56 

Z2: 1.89 

Z3: - 

Z4: - 

Z1: 275.4 

Z2: 2205.9 

Z3: - 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: 8 

Z4 Fault, 

8.80s 
0.8 

17 Z1: 100 

Z2: 110 

Z3: 70 

Z4: 90 

Z1: - 

Z2: - 

Z3: - 

Z4: 3.11 

Z1: - 

Z2: - 

Z3: - 

Z4: 62.44 

Z1: - 

Z2: - 

Z3: - 

Z4: 7 

Z4 Fault, 

7.5s 
0.5 

18 Z1: 100 

Z2: 110 

Z3: 70 

Z4: 90 

Z1: 3.67 

Z2: - 

Z3: - 

Z4: 4.12 

Z1: 2430 

Z2: - 

Z3: - 

Z4: -162.4 

Z1: - 

Z2: - 

Z3: - 

Z4: 7 

Z4 Fault, 

7.3s 
0.3 

19 Z1: 100 

Z2: 110 

Z3: 70 

Z4: 90 

Z1: 2.56 

Z2: 7.12 

Z3: 3.62 

Z4: 2.24 

Z1: -472.5 

Z2: -1957.5 

Z3: -24.08 

Z4: 176.68 

Z1: - 

Z2: - 

Z3: - 

Z4: 8 

Z4 Fault, 

8.5s 
0.5 

20 Z1: 100 

Z2: 110 

Z3: 70 

Z4: 90 

Z1: - 

Z2: - 

Z3: 6.45 

Z4: 7.02 

Z1: - 

Z2: - 

Z3: 97.16 

Z4: -43.4 

Z1: - 

Z2: - 

Z3: - 

Z4: 8 

Z4 Fault, 

8.15s 
0.15 

21 Z1: 30 

Z2: 40 

Z3: 40 

Z4: 20 

Z1: 4.25 

Z2: 1.22 

Z3: 6.11 

Z4: 7.30 

Z1: -108 

Z2: 1633.5 

Z3: 177.8 

Z4: 667.8 

Z1: - 

Z2: - 

Z3: - 

Z4: 8 

Z1 Fault, 

4.3s 
N/A 

22 Z1: 30 

Z2: 40 

Z3: 40 

Z4: 20 

Z1: 4.25 

Z2: 1.22 

Z3: 6.11 

Z4: 7.3 

Z1: -1107 

Z2: -513 

Z3: 86.52 

Z4: -658 

Z1: - 

Z2: - 

Z3: - 

Z4: 8 

Z4 Fault, 

8.05s 
0.05 

23 Z1: 30 

Z2: 40 

Z3: 40 

Z4: 20 

Z1: 5.25 

Z2: - 

Z3: - 

Z4: 6.11 

Z1: 445.5 

Z2: - 

Z3: - 

Z4: 278.6 

Z1: - 

Z2: - 

Z3: - 

Z4: 8 

Z4 Fault, 

8.65s 
0.65 

24 Z1: 30 

Z2: 40 

Z3: 40 

Z4: 20 

Z1: 4.12 

Z2: 6.56 

Z3: - 

Z4: - 

Z1: 1155.6 

Z2: -54 

Z3: - 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: 8 

Z4 Fault, 

8.30s 
0.3 

25 Z1: 30 

Z2: 40 

Z3: 40 

Z4: 20 

Z1: - 

Z2: 7.45 

Z3: 6.24 

Z4: - 

Z1: - 

Z2: -918 

Z3: -188.72 

Z4: - 

Z1: - 

Z2: - 

Z3: - 

Z4: 8 

Z4 Fault, 

8.75s 
0.75 

     88% 

Accurate 

0.484 
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B.2 Case Study 3 Results 

Key 

Accurate Detection 

of Arcing 

Inaccurate Detection 

of Arcing 

 

INTERMITTENT SERIES DC ARC FAULT  - ZONE X 

Test 

# 

Cable 

Length 

(m) 

Load 

Switch 

Time 

(s) 

Load 

Switch 

Level 

(W) 

Initial 

Intermittent 

Arc Fault 

Onset (s) 

Further 

Intermittent 

Arc Fault 

|Onsets (s) 

Average 

Arcing 

Time (ms) 

IntelArc 

System 

Outputs 

(s) 

1 

60 (30) 

8.12 

1080 8.5 8.98, 9.5 171.3 

Arcing - 8.60, 

8.70, 9.6  

2 

60 (30) 

5.54 

-1147.5 8.85 9.43 89.2 

Arcing - 8.90, 

9.00, 9.45, 9.50 

3 60 (30) 6.54 1512 9.58 -- 156.2 Arcing - 9.75 

4 

60 (30) 

2.28 

202.5 9.25 9.59, 9.93 46.3 

Arcing - 2.35, 

9.95 

5 

60 (30) 3.65 -864 9 9.47 110.4 

Arcing - 9.05, 

9.15, 9.50 

6 

60 (30) 6.53 108 9.03 9.29 97.3 

Arcing - 9.05, 

9.10, 9.20, 9.35 

7 

60 (30) 4.27 243 9.02 9.35 49.5 

Arcing - 9.05, 

9.10, 9.40, 9.45 

8 

60 (30) 6.96 -2430 9.12 9.35, 9.58, 9.82 31.8 

Arcing - 9.15, 

9.40, 9.60 

9 60 (30) 5.4 -945 9.5 -- 213.6 Arcing - 9.65 

10 

60 (30) 2.98 -904.5 9.18 9.51, 9.84 88.8 

Arcing - 9.20, 

9.35, 9.65, 9.95 

11 

60 (30) 5.94 2403 8.69 9, 9.64, 122.4 

Arcing - 8.75, 

8.85, 9.10, 9.20, 

9.70, 9.75, 9.80 

12 

60 (30) 4.7477 378 9.05 9.34, 9.62, 9.9 39.8 

Arcing - 9.10, 

9.15, 9.35, 9.40, 

9.45, 9.65, 9.70, 

9.95 

13 

60 (30) 2.922 -1593 9.3 9.8 133.5 

Arcing - 9.35, 

9.85, 10 

14 

60 (30) 6.5 -3226.5 9.01 9.3, 9.6, 9.88 90.4 

Arcing - 9.05, 

9.45, 9.65, 9.70, 

9.75, 9.95, 10 

15 

60 (30) 6.78 2187 9.03 -- 94.7 

Arcing - 9.10, 

9.20, 9.80 

16 

60 (30) 3.51 1485 9 9.4, 9.83 130.8 

Arcing - 9.05, 

9.15 

17 

60 (30) 4.46 1039.5 8.74 9.15, 9.58 167.9 

Arcing - 8.80, 

8.95, 9, 9.60 

18 

60 (30) 6.89 162 8.98 9.42, 9.85 76 

Arcing - 6.90, 

9.45, 9.55, 9.90, 

10 
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19 

60 (30) 5.22 -1512 8.71 9.04, 9.38, 9.71 117 

Arcing - 8.75, 

8.90, 9.15, 9.25, 

9.40, 9.70, 9.85, 

9.90 

20 

60 (30) 5.98 1728 8.5 

8.8, 9.12, 9.45, 

9.77 76.3 

Arcing - 8.55, 

8.85, 8.90, 8.95, 

9.15, 9.50, 9.85 

21 

45 (20) 3.57 -1512 9.2 9.52, 9.84 86.9 

Arcing - 9.25, 

9.35, 9.60, 9.70, 

9.90, 10 

22 

45 (20) 2.59 -553.5 8.55 9.02, 9.45, 9.9 162.4 

Arcing - 8.60, 

8.65, 8.80, 9.05, 

9.10, 9.15, 9.25, 

9.50, 9.65, 9.95, 

10 

23 

45 (20) 7.47 -553.5 8.71 9.1, 9.49, 9.88 81.3 

Arcing - 8.75, 

8.85, 9.15, 9.25, 

9.55, 9.65, 9.90, 

9.95 

24 

45 (20) 4.06 2767.5 8.58 

8.85, 9.13, 9.42, 

9.7 67.4 Arcing - 8.65  

25 

45 (20) 2.38 -756 8.63 

8.94, 9.25, 9.55, 

9.87 94.4 

Arcing - 8.65, 

8.80, 8.95, 9, 

9.05, 9.10, 9.40, 

9.65, 9.70, 9.90, 

9.95 

26 

45 (20) 6.95 2146.5 8.99 -- 134.1 

Arcing - 9.05, 

9.15, 9.20 

27 

45 (20) 3.2 -2214 9.08 9.58 60.9 

Arcing - 9.10, 

9.15, 9.20, 9.65 

28 

45 (20) 7.4 -2565 8.84 9.26, 9.69 72 

Arcing - 8.85, 

8.9, 9, 9.3, 9.35, 

9.40, 9.70, 9.75, 

9.85 

29 

45 (20) 1.7 2254.5 9 9.4, 9.1 134.3 

Arcing - 9.10, 

9.40, 9.95 

30 

45 (20) 2.12 -607.5 9 

9.17, 9.4, 9.62, 

9.83 60.5 

Arcing - 9.10, 

9.20, 9.30, 9.45, 

9.65, 9.85, 9.95 

31 

50 (35) 3.42 540 8.62 9.18, 9.79 100.6 

Arcing - 3.50, 

8.65, 9.20, 9.25, 

9.85 

32 

50 (35) 3.47 2956.5 8.58 9.12, 9.38 79.3 

Arcing - 8.65, 

8.75, 9.20, 9.45 

33 

50 (35) 3.01 486 9.16 9.37, 9.56, 9.77 39.9 

Arcing - 9.20, 

9.40, 9.60, 9.65, 

9.70, 9.80, 9.90 

34 

50 (35) 4.41 715.5 9.28 -- 48.4 

Arcing - 9.35, 

9.40 

35 

50 (35) 4.88 769.5 9.22 -- 102.7 

Arcing - 9.25, 

9.30, 9.40 

36 

50 (35) 5.27 -588.6 8.98 9.5 58.2 

Arcing - 9.05, 

9.10, 9.55, 9.65 

37 

50 (35) 1.6 -175.5 9 9.5 102 

Arcing - 1.65, 

9.05, 9.15, 9.6 

38 

50 (35) 4.14 -1876.5 9.5 9.73, 9.97 92.3 

Arcing - 9.65, 

9.75, 9.85, 9.90, 

10 

39 

50 (35) 3.63 1336.5 9.18 9.52 75.9 

Arcing - 9.25, 

9.35, 9.55 

40 50 (35) 2.78 580.5 9.77 -- 56.6 Arcing - 9.85  
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41 

80 (50) 3.14 1012.5 9.29 9.68 49.5 

Arcing - 9.30, 

9.35, 9.40, 9.70 

42 80 (50) 6.2 -378 8.78 9.17, 9.58 122.5 Arcing - 9.65 

43 

81 (50) 2.49 -162 9.3 9.74 70.7 

Arcing - 9.40, 

9.75, 9.80, 9.85 

44 

82 (50) 4.7 2700 8.53 8.92, 9.32, 9.71 46 

Arcing - 8.60, 

8.65, 8.95, 9, 

9.05, 9.45, 9.75, 

9.80, 9.85 

45 

83 (50) 4.16 405 8.7 9.08, 9.43, 9.82 139.9 

Arcing - 8.75, 

8.90, 9.10, 9.15, 

9.20, 9.45, 9.55, 

9.85, 9.90, 9.95 

46 

84 (50) 4.31 729 9.5 9.9 76.3 

Arcing - 9.55, 

9.65, 9.95 

47 

85 (50) 4.86 1660.5 9.47 -- 109 

Arcing - 9.55, 

9.60, 9.65 

48 

86 (50) 4.41 -2754 9.2 9.43, 9.69, 9.91 22.8 

Arcing - 9.25, 

9.30, 9.45, 9.75, 

9.95 

49 

87 (50) 4.95 2740.5 8.67 9.57 139.2 

Arcing - 8.75, 

9.60 

50 

88 (50) 3.23 521.1 9.45 -- 107.3 

Arcing - 9.45, 

9.50, 9.55 

51 

75 (20) 7.5 -837 9.5 -- 141.5 

Arcing - 9.55, 

9.70 

52 

75 (20) 5.5 -486 9.3 9.86 195.9 

Arcing - 9.35, 

9.60, 9.90, 9.95 

53 

75 (20) 6.93 -270 9.14 9.37, 9.58, 9.8 32.8 

Arcing - 9.15, 

9.20, 9.25, 9.40, 

9.45, 9.65, 9.85, 

9.90 

54 

75 (20) 2.6 Min* 8.57 9.34, 9.72 50.2 

Arcing - 8.60, 

9.45, 9.75, 9.80 

55 

75 (20) -- -- 8.5 9.14, 9.58 59.1 

Arcing - 8.55, 

9.20, 9.50, 9.60 

56 

75 (20) 2.39 -828.9 8.77 9.21, 9.76 70.8 

Arcing - 8.80, 

8.90, 9.30, 9.80 

57 

75 (20) 1.5 1336.5 9.58 -- 163 

Arcing - 9.65, 

9.70 

58 

75 (20) 1.53 2119.5 8.68 9.15 123.3 

Arcing - 8.70, 

8.90, 9.20, 9.25 

59 

75 (20) 5.18 1944 8.55 9.15, 9.77 113.2 

Arcing - 8.75, 

9.20, 9.25, 9.85 

9.90 

60 

75 (20) 5.57 972 9.08 9.82 

78.3 Arcing - 9.15, 

9.85 

 

     

 93.3% 

Accurate 
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APPENDIX C: WAVELET TRANSFORM - THEORY 
The IntelArc system uses the wavelet transform (WT) to extract time-frequency domain features from 

load current data. Determining optimal WT features for series DC arc fault diagnosis was described in 

detail in Chapter 5, Section 5.2.4. The background and theory of the WT, in the context of its use 

within IntelArc, is provided in the following. 

C.1 Wavelet Transform 

It is important to understand both the theory of the WT and the additional information the transform 

provides about a signal. The theory of WT is complex and extensive – this overview only provides a 

high level introduction. For further information, refer to the excellent introduction provided by Polikar 

[C.1]. 

The use of the fast Fourier transform (FFT) for transforming time domain signals into the frequency 

domain is well documented. The WT was first developed in the early 1980’s to overcome the lack of 

time resolution provided by the FFT and provide a multi-resolution transformation of a time domain 

signal.    

Prior to the WT, the short time Fourier transform (STFT) [C.2] was used to resolve signals in both 

time and frequency domains. The STFT basically splits a time-domain signal into separate windows 

and calculates the FFT at each window. This process assumes a non-stationary signal can be split into 

windows of stationary signals – calculating the FFT at each stationary window enables an accurate 

representation of what frequencies occur at what time.  

However, the main issue with STFT arises when attempting to choose a window that provides good 

time and frequency resolution. A narrow window will provide good time resolution but poor 

frequency resolution, whereas a wide window will provide good frequency resolution but a poor time 

resolution. 

 

C.2 Continuous Wavelet Transform 

The continuous WT (CWT) was developed as an alternative to the STFT to overcome the problems 

involved with choosing a suitable window function. The CWT operates by multiplying a time-domain 

signal with a wavelet window function that is scaled (change of wavelet window width and hence 

frequency resolution) and shifted (window moved through time).  

The CWT is defined as 

𝐶(𝑎, 𝑏; 𝑓(𝑡), 𝛹(𝑡)) = ∫ 𝑓(𝑡)
1

√𝑎

∞

−∞

𝛹∗ (
𝑡 − 𝑏

𝑎
) 𝑑𝑡 

 

where 𝐶 are the wavelet coefficients, 𝛹(𝑡) is the mother wavelet, 𝑓(𝑡) is the time-domain signal, 𝑎 is 

the scaling parameter and 𝑏 is the shifting parameter. In short, scaled and shifted versions of the 

(C.1) 
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mother wavelet are compared against the original signal- the wavelet coefficients are obtained through 

continuously changing the scaling and shifting in time.  

This results in significantly improved resolution in both frequency and time domains. Figure C-1 

illustrates this concept – Figure C-1 (a) shows time frequency plane for a CWT and Figure C-1 (b) 

shows the same time-frequency plane for the STFT.  

 

 

Figure C-1: Time-frequency planes of (a) the CWT and (b) the STFT. The different dimensions of the boxes in 

the CWT time-frequency plane illustrate the different resolution provided by various scales of a mother wavelet. 

At higher frequencies, the mother wavelet is shrunk resulting in poorer frequency resolutions with better time 

resolution. At lower frequencies, the mother wavelet is dilated providing better frequency resolution with poorer 

time resolution. The fixed window of the STFT results in fixed time-frequency resolutions. 

Each box in Figure C-1 (a) relates to a scaled and shifted wavelet function that provides a certain 

time and frequency resolution. At shorter frequencies, the height of the boxes are shorter, which 

corresponds to better frequency resolution (as there is less ambiguity regarding the value of the exact 

frequency) but their widths are longer (which correspond to poor time resolution as there is more 

ambiguity regarding the value of the exact time). At higher frequencies the width of the boxes 

decreases and the heights increase i.e. lower frequency resolution and better time resolution.  

Compare the varying resolutions provided by the CWT with that of the STFT, illustrated in Figure 

C-1 (b). The constant width of the analysis window means that both time and frequency resolutions 

are the same across the entire time-frequency plane; hence, unlike the CWT, the choice of window 

used in STFT significantly affects the results. 

The improved time-frequency resolution provided by the CWT is extremely useful for feature 

extraction of arc fault signatures as there is the ability to accurately analyse the contribution of various 

frequency bandwidths of the time-domain load current signal across the entire sampled time period 

without having to consider the type of window used. 

However, the fact that the CWT shifts and scales the mother wavelet in a continuous fashion to 

calculate the coefficients makes it impractical in terms of increased computational time and resources. 

Also, there is significant redundancy involved with shifting and scaling continuously. The discrete 
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wavelet transform (DWT) improves the computational and redundancy issues and is generally more 

suited for practical applications (where signals are discretely sampled). 

 

C.3 Discrete Wavelet Transform 

The DWT assesses both frequency and time at discrete intervals as opposed to continuously. To 

summarise, the CWT is a correlation between a wavelet at different scales and a time-domain signal, 

with the scale (or frequency) being used as a measure of similarity. The CWT is computed by 

changing the scale of the wavelet window, shifting the window in time, multiplying by the signal, and 

integrating over all times. In the DWT, filters of different cut-off frequencies are used to analyse the 

signal at different, discrete scales. The signal is passed through a series of high pass filters to analyse 

the high frequencies, and it is passed through a series of low pass filters to analyse the low 

frequencies.  

It is easier to understand the DWT process by considering Figure C-2. 

 

 

Figure C-2: Illustration of the DWT processes. The discretely sampled signal is applied to successive high and 

low pass filters and down sampled at each level. The filtering and down sampling processes vary the time and 

frequency resolution. 

The sampled time-domain signal 𝑥[𝑛] is decomposed into different frequency bands by successive 

high pass and low pass filtering. The bandwidth of 𝑥[𝑛] is, according to the Nyquist theorem [C.3], 

limited to half the sampling frequency; therefore  =
𝑓𝑠

2
15. 𝑥[𝑛] is first passed through a half-band 

high pass filter 𝑔[𝑛] and a low pass filter ℎ[𝑛]. The filtering process results in level 1 detailed and 

                                                      
15 In discrete signals, frequency is expressed in terms of radians. 
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approximate coefficients respectively. The level 1 low pass signal is decomposed further into low pass 

and high pass frequency contributions to generate further levels of detailed and approximate 

coefficients.  

An important feature of decomposing the low pass frequencies is the down sampling of the signal. 

Down sampling refers to discarding every other sample. The process of dropping samples can be 

undertaken as only half the frequencies are being assessed, and the Nyquist criterion can still be met. 

Down sampling reduces the time-resolution as the number of samples covering the same time periods 

has reduced by half. 

To avoid further confusion, the filtering and down sampling processes essentially vary time and 

frequency resolution across all scales. Analogous to the CWT, the filter banks basically compute the 

wavelet coefficients for a discrete set of child wavelets. 

Importantly, applying the DWT to load current signals generates approximate and detail coefficients 

that represent various time-frequency responses of the signal. These coefficients can be incredibly 

important in terms of arc fault diagnosis (AFD).  

A significant step towards development of the IntelArc AFD system was determining discriminative 

features from within the approximate and detailed coefficients. This feature selection process was 

described in Chapter 5, Section 5.2.4. 

 

C.4 Choice of Mother Wavelet 

The time and frequency resolution properties of the WT have been described in terms of a mother 

wavelet – changing the scale of the mother wavelet and shifting in time enables the multi-resolution 

transform. There are a variety of mother wavelets available [C.4]. Conceptually, changing the mother 

wavelet changes the dimensions of the time-frequency boxes illustrated in Figure C-1 (a), albeit with 

similar time and frequency trade-offs (i.e. the area of the boxes remain the same). Significant 

discussion on the various types of mother wavelets is beyond the scope of this thesis.  

The type of mother wavelet used for time-frequency DC arc fault feature extraction was determined 

qualitatively. This qualitative process assessed the similarity between the time-domain load current 

signal and the different types of mother wavelet. The load current signal throughout arcing events 

possessed highly transient and rapidly changing features. It was therefore desirable to choose a mother 

wavelet that possessed sharp characteristics without excessive smooth features. The lower orders of 

the Daubechies (db) wavelet family [C.4] possessed sharp characteristics ideal for extracting the 

transient features within the load current signal. Consequently, db level 2 (db2) was selected as the 

mother wavelet. 
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C.5 Relating DWT Approximation and Detail Coefficients to frequency sub-bands 

Figure C-2 illustrated how the DWT changed the time and frequency resolutions by convolving the 

signals with high and low pass filters, and down sampling by two. The bandwidths of the resultant 

sub-bands are ultimately determined by the sampling frequency of the original signal. Within the 

application of IntelArc for diagnosis of intermittent arcing events the sampling frequency, 𝑓𝑠, of the 

load current was 20 kHz. This value meant the wavelet decompositions were within the main 

frequency sub-bands of interest. Recall from Chapter 5 the description of the research conducted by 

Parker [C.5] which stated that sub-bands within the 200-3500Hz range would be optimal for AFD. A 

sampling frequency of 20 kHz16 enabled full coverage of this frequency range. Frequency sub-bands 

relative to the extracted approximation and detail coefficients are outlined in Table C-1.  

 

Table C-2: Frequency sub-bands of the DWT approximate and detailed coefficients 

 Frequency Bandwidth Bandwidth for 20KHz 

Sampled Signal 

Original Time Domain Signal 

Load Current Signal 
0 −

𝑓𝑠

2
 

0 – 10KHz 

Time-Frequency WT Extractions 

Approximate 1 
0 −

𝑓𝑠

4
 

0 – 5KHz 

Approximate 2 
0 −

𝑓𝑠

8
 

0 – 2.5KHz 

Approximate 3 
0 −

𝑓𝑠

16
 

0 – 1.25KHz 

Approximate 4 
0 −

𝑓𝑠

32
 

0 – 625Hz 

Approximate 5 
0 −

𝑓𝑠

64
 

0 – 312.5Hz 

Detail 1 𝑓𝑠

4
−

𝑓𝑠

2
 

5kHz – 10KHz 

Detail 2 𝑓𝑠

8
−

𝑓𝑠

4
 

2.5kHz – 5KHz 

Detail 3 𝑓𝑠

16
−

𝑓𝑠

8
 

1.25kHz – 2.5KHz 

Detail 4 𝑓𝑠

32
−

𝑓𝑠

16
 

625Hz – 1.25KHz 

Detail 5 𝑓𝑠

64
−

𝑓𝑠

32
 

312.5Hz – 625Hz 

 

 

                                                      
16 The 20 kHz load current sampling frequency referred to here was only employed in the application 

of IntelArc for diagnosing intermittent arcing events. The application of IntelArc for diagnosis of 

sustained arcing events used a limited sampling frequency of 2 kHz. After analysis of testing results 

(see Chapter 6), it was concluded that the 2 kHz sampling frequency led to increased detection times 

and, as such, feature extraction is explained in terms of 20 kHz sampling. 
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APPENDIX D: CONVENTIONAL & MORE-ELECTRIC 

AIRCRAFT SYSTEMS 
 

D.1 Pneumatic/Bleed Air Distribution System 

In many civil aircraft, the largest amount of secondary power is extracted in the form of bleed air, and 

the largest continual user of this power is the Environmental Control System (ECS) [D.2]. The ECS 

undertakes a number of functions including; the regulation of cabin pressure (maintained to levels 

similar to that experienced at 8000ft above sea level [D.3]), oxygen, temperature and contaminants to 

requisite levels; and the removal of heat from undercarriage bays, electrical equipment and flying 

control areas. The bleed air taken from the compressor to provide ECS function is reduced in pressure 

and cooled through a series of heat exchangers and an air cycle machine to provide cool air for the 

cockpit and avionics cooling system. Military aircraft use ECS systems working on the same 

principles as those for civil aircraft, albeit the pressurised cabin is smaller in volume and the avionics 

are more complex, produce comparatively more heat, and require additional levels of cooling. 

Bleed air also supplies the provision of power for engine and wing anti-icing/de-icing functions. 

Despite the fact that dangerous icing conditions are rarely encountered on modern aircraft, protection 

from the development of intolerable ice on the lifting surfaces of the airframe and the engine in-takes 

is required. Protection can be obtained in two forms – de-icing allows ice to form to a certain extent 

and then periodically removes it, while anti-icing is a system which is activated when icing conditions 

are likely and prevents ice formation. The operation of anti/de-icing systems depend upon the type of 

aircraft engine. It is possible for turbo-fan engines to provide the main form of protection for both 

engine and airframe. However, turbo-prop powered aircraft have insufficient bleed for thermal anti-

icing, and alternative forms of protection are required [D.1]. An example of the main components and 

structure of the bleed air system in an Airbus-310 is illustrated in Figure D-1.  

 

Figure D-1: Example of main components and structure of a conventional bleed air system 
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D.2 Hydraulic Distribution System 

Hydraulic systems first appeared on aircraft in the early 1930’s when retractable undercarriages were 

introduced– since then, the number of tasks performed using hydraulics, and the corresponding power 

demand, has increased significantly. Benefits of using hydraulic systems include; their efficient 

amplification ability, where high pressures or forces can be achieved with a small volume of fluid 

(hydraulic oil); and their precision control of load rate, position and magnitude [D.4]. As such, 

hydraulic systems have an important part to play in today’s civil and military aircraft. Figure D-2 

outlines the main operations performed using hydraulic power in a typical aircraft system [D.1].  

 

Figure D-2: Hydraulic power functions in a typical aircraft 

 Primary flight control of pitch, roll and yaw and secondary flight control of various trim devices and 

flaps is conventionally provided using hydraulically powered mechanical actuators (mechanical 

manual signalling from the pilot to the actuators was predominantly overtaken with the advent of 

automated electrical signalling, or ‘fly-by-wire’ systems); similarly, retractable landing gear 

deployment and steering, breaking and anti-skid systems and a number of other utility functions are 

hydraulically powered [D.5]. 

 The majority of these operations are safety critical, where high supply reliability is required and 

single failure events should not prevent, or even momentarily interrupt, operation. The reliability 

requirements primarily dictate the design of the hydraulic system, where redundancy measures ought 

to be considered. Also, the type of aircraft and their mission profiles have a role to play in system 

design (where a crude categorisation of type is either civil or military). However, generally speaking, 

hydraulic distribution architectures would be of the simplified form illustrated in Figure D-3. This is 
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an example of a dual channel system where hydraulic pumps are connected to the engine gearboxes. 

The pumps cause a pressurised flow of fluid through stainless steel pipes to various actuating devices, 

and a reservoir ensures that sufficient fluid is available under all conditions of demand. Typically, 

military aircraft would have dual channel redundancy whilst large civil transport systems would 

invariably have three or more separate systems. 

 

Figure D-3: Dual Channel hydraulic distribution system 

 

D.3 Alternative Generation Sources 

Aside from the main engines of the aircraft, other sources of secondary power generation are available 

throughout certain operational periods [D.6]. One such period where alternative sources are required 

is during ground operation. Ground power may be generated by means of a ground power unit (GPU) 

– GPUs generate electricity by means of a motor generator set, where a prime motor drives a 

dedicated generator. The usual standard for ground power is 115VAC three-phase 400Hz, which is the 

same as the power supplied by the aircraft AC generators. In some cases, 115VAC three- phase power 

can be derived and converted from the national electricity grid. 

Ground power can also be sourced independently from GPUs through the use of auxiliary power 

units (APU). APU’s are gas turbine engines located in the tail of the aircraft which are primarily used 
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during ground operation to provide compressed air for cabin air conditioning, electricity for the basic 

instruments and shaft power and pressurised air for main engine start-up (in some aircraft, the APU 

also aids hydraulic functions, allowing pilots to operate flight control surfaces). Engine start-up 

requires a large jolt of energy that cannot be provided by the battery alone - APU sourced compressed 

air provides the additional energy required. The APU may also operate in flight to relight engines that 

have failed or to provide back-up power for the main flight instruments in the event of a mid-air total 

engine failure. To achieve this, the APU may be left running throughout the flight (usually only 

during long-haul, overwater journeys), or started mid-flight. 

In the event that the majority of conventional power generation has failed and an emergency 

situation has developed, additional backup power may be provided by a ram air turbine (RAT). The 

RAT is confined to function as a source of sufficient power to fly the aircraft while attempting to 

restore the primary generators or carry out a diversion to the nearest airfield, and is not intended to 

provide significant amounts of power for a lengthy period of operation. A RAT is an air driven turbine 

normally located in the nose section which is extended either automatically or manually; the passage 

of air over the turbine is used to power a small emergency generator ordinarily rated between 5-15 

kVA which supplies essential flight instruments and other critical services.   The RAT also powers a 

small hydraulic power generator for similar hydraulic system emergency power provision.  

The deployment of the RAT should only occur during extreme emergency conditions, and aircraft 

certification directives dictate that additional methods of backup electrical power supply should be 

implemented prior to the RAT [D.7]. The hierarchical form of generation redundancy involves backup 

generators for AC load provision which are driven by the same engine accessory gearboxes as the 

main engines (but independent of the main generators17), and permanent magnet generators (PMG) 

rated in the order 102 Watts for backup DC load provision. 

 

D.4 Conventional EPS Example  

To illustrate the design and operation of conventional aircraft EPS, the complete electrical distribution 

system of the B777 is described in the following.  

D.4.1 B777 Electrical Power System 

The Boeing 777 is a large twin engine jet designed for regional and longer range operations [D.8]. The 

B777’s first flight was completed in 1994 before its introduction to the market in 1995. A simplified 

schematic of the complete B777 EPS [D.9, D.10, D.11, D.12] is provided in Figure D-4. There are 

two electrical generation systems, a main system and a backup system. Within the main system, the 

two propulsion engines each drive a 120kVA IDG, which output three phase 115VAC, 400Hz power. 

The two IDGs serve their respective primary bus through GCBs. Generator control units (GCUs) 

                                                      
17 ~20kVA variable frequency generators with backup constant frequency converters. 
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control the operation of the GCBs by closing them when all operating parameters are satisfactory and 

opening them when generator fault conditions prevail. The two primary buses are connected through  

BTB. In the event of the loss of one IDG, the BTB automatically closes, powering both primary buses 

from the operational IDG. Each 120kVA rated IDG has the capacity to power all electrical loads. 

In addition to the two IDGs, a 120kVA generator is connected to the APU (there is no requirement 

for an IDG as the APU operates at constant RPM).  This generator is connected between the BTB 

through an auxiliary power breaker (APB). With an IDG inoperative, the APU generator can supply 

the respective primary bus through the APB and BTB (whilst the other BTB remains open). The 

aircraft can therefore be dispatched with only one IDG operative. During ground operation, an 

external power receptacle provides 115VAC 400HZ to the primary buses. 

The backup generation system comprises one 20kVA variable frequency generator on each engine. 

Backup generators are directly connected to the engine gearbox with no speed conversion. The 

purpose of the backup system is to provide equivalent redundancy in the event of main generation 

system failure. The generator outputs are directly connected to a solid-state variable speed constant 

frequency (VSCF) converter, which outputs the nominal 115VAC, 400Hz to respective transfer buses. 

Power from the backup generator can then be distributed through the transfer bus. Backup sources 

supply power during IDG failure, although only in the event that the APU is not servicing the primary 

bus of the failed IDG. In emergency situations, the RAT generator will supply up to 7.5kVA to the 

transfer buses. 
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Figure D-4: Simplified schematic of the B777 EPS 

 

The function of the transfer buses is to distribute power to the DC system through TRUs. Power is 

supplied to the transfer buses from the primary buses or, in the event of IDG/APU failure, from the 

backup converters or RAT generator. TRUs convert the three phase AC power supplied by the transfer 

bus into 28VDC power for distribution to the secondary power DC buses. DC bus ties enable power to 

flow between the two buses in the event of TRU or transfer bus failure. 

The battery system is located in the DC network. Battery chargers connect directly to a hot battery 

bus and maintain the battery charge. The battery powers a standby electrical system during primary 

electrical system failures. The standby system powers critical DC loads such as flight instruments as 

well as an inverter for the provision of power to critical AC loads. The B777 main battery has a 47 

A/h capacity and can supply critical standby loads for up to 30 minutes. The system also consists of an 

APU battery which is connected to a separate battery charger through an APU battery bus. The APU 

battery is a source of dedicated power for the APU electric starter. 
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D.5 Conventional Electrical Loads 

The electrical distribution system supplies the generated power to the aircraft services. Electrically 

powered services in conventional systems are spread geographically throughout the aircraft and can be 

broadly subdivided into four categories [D.1]: 

 Motors and actuation 

 Lighting services 

 Heating services 

 Subsystem controllers and avionics 

Higher power services will be located and supplied by the primary distribution bus while the lower 

rated services will be supplied by lower voltage levels at the secondary buses. Generally speaking, 

utility and galley loads such as lighting and heating services are often located at the primary bus, 

while avionic loads are serviced by the secondary bus. Further information on the function of each 

electrical service category is provided in the following sections. 

D.5.1 Motors and Actuation 

Motors are used to drive and position valves and actuators throughout the aircraft. The major motor 

driven sub-systems include: 

 Starter motors for provision of starting power for engine, APU and other systems that require 

assistance for self-sustaining operation 

 Pumps - The provision of motive force for fuel and hydraulic pumps 

 Control valve operation – electrical operation of fuel, hydraulic and air control valves 

 Fan motors for provision of cooling power to both passengers and equipment 

 Gyroscope motors – power to run gyroscopes for flight instruments and auto pilot 

These sub-systems use a combination of AC and DC motors. DC motors are used for operations 

which operate for a small proportion of flight time while AC motors are typically used in continuously 

operational functions like fan and gyroscope motors. 

D.5.2 Lighting Services 

Lighting is essential for the safe operation of aircraft during night or low visibility conditions. 

Conventional filament bulbs, powered from either 28VDC or transformed 26VAC from the primary 

AC bus, are typically used to provide this service. Lighting systems are categorised as either external 

or internal. External lighting services function to provide: 

 Navigation lights 

 Landing/Taxi lights 

 Formation lights 

 Inspection lights for wings and engine anti-icing 

 Emergency evacuation lights 

 Searchlights 
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Internal lighting services provide: 

 Cockpit/flight deck lighting 

 General Cabin lighting 

 Emergency/evacuation lighting 

 Bay lighting for servicing cargo or equipment bays 

D.5.3 Heating Services 

Electrical heating is used in various areas of the aircraft. The highest power usage (often 10s of kVAs) 

is in anti/de-icing systems for the tail plane and fin leading edges, intake cowls and propellers. 

Electrical heating is combined with bleed air de-icing and are controlled to ensure optimum operation 

periods and avoid overheating. Electrical heating is also used in windshield de-icing in the cockpit and 

air heating of cargo compartments and passenger cabins.  

D.5.4 Subsystem Controllers and Avionics 

The aircraft avionic systems comprise display, communication and navigation functions. Avionics are 

lower power loads supplied from the 28VDC secondary bus. These loads contain internal dedicated 

controllers for specific control functions and are packaged into line replaceable units (LRUs). The 

internal controllers allow power to be further conditioned according to the type of electronics - 

usually, this involves converting the 28VDC to ±15VDC or +5VDC. The LRUs enable increased 

modularity and hence rapid replacement and turnaround in the event of faults.  There are hundreds of 

LRUs throughout the aircraft, the majority of which are critical for safe operation. Consequently, the 

critical LRUs should be distributed across several busbars to ensure sufficient supply redundancy. The 

provision of emergency power to LRUs should also be guaranteed to maintain critical services during 

emergency situations. 

D.6 MEA Electrical Loads 

A fundamental aspect of MEA concerns the different loads which the increased generation and 

distributed power will service. In essence, a high proportion of novel electrical loads in MEA will be 

motor loads, with the remainder functioning as power supplies for avionics and radar systems. This 

section briefly introduces the type and function of new electrical loads which demand significant 

levels of highly reliable electrical power. To illustrate, two systems expected to consume additional 

electrical load in future aircraft, actuation systems and environmental control systems (ECS), are 

summarised. 

D.6.1 More-Electric Actuation 

Conventionally, actuation processes of flight control surfaces were controlled mechanically through 

mechanical cables and activated hydraulically through a central hydraulic system. Fly-by-wire 

technology, where actuators are controlled electrically as opposed to mechanically, was developed in 

the 1980’s and became the industry standard for modern jetliners [D.13].  
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The concept of using electrical power for actuation as well as control is attractive in terms of 

potential aircraft level weight reductions through the elimination of the centralised hydraulic network. 

Ultimately, it is perceived that aircraft will integrate electro-mechanical actuators (EMA) [D.14] to 

realise the complete elimination of all on-board hydraulic devices along with the centralised network. 

However, in the intermediate time, electro-hydrostatic actuator (EHA) technology [D.15] is the 

preferred choice for air framers as they retain many of the characteristics and advantages of 

conventional hydraulic actuators and their implementation requires minimal change in system 

definition [D.16]. 

EHAs drive control surfaces using localised hydraulic power transformed from electrical power. 

This power-by-wire concept utilises an electrical motor to drive a hydraulic pump which controls fluid 

pressure and an actuator. The self-contained nature of the hydraulic fluid within this configuration 

means that significant pressure is only required for movement, resulting in an energy saving over the 

conventional hydraulic servo actuator which maintains pressure when holding [D.16]. Also, safety 

advantages entail from the utilisation of less hazardous fluids in localized systems. Indeed, the A380 

has employed the use of EHA for the ailerons and elevators and back-up for the rudders and spoilers 

[D.17].  

EHA technology is considered a stop gap for pure electrical actuation. The EMA – an electric 

motor, gearbox and mechanical actuator – has the potential to be more compact and weight saving 

than the EHA through the elimination of the hydraulic reservoir. Their adoption on aircraft has been 

hampered by their relatively poor power density and reliability concerns over jamming [D.17]. EMA 

are present in the A380 slat actuation and the B777 flap/slat actuation, albeit operating redundantly 

with hydraulic motors – also, flap/slat systems are not safety critical as continued flight and safe 

landing is guaranteed in the event of a failure. 

The reliability and fault tolerance issues of EMA highlight that the integration of electrical actuation 

systems across primary and secondary flight controls is dependent on technological maturation in both 

motor and power electronics. However, it is also evident that actuation is a particular area of the 

aircraft where novel electrical loading will significantly increase throughout future generations. 

D.6.2 Environmental Control Systems 

The reduction/elimination of bleed air (BA) extraction from the aircraft’s engines requires the 

environmental control system (ECS), the largest user of BA, to be alternatively sourced via electrical 

power [D.1, D.18]. Conventionally18, BA enters the ECS where it is cooled by an air cycle machine 

which outputs pressured air to the cabin equivalent to 6000ft altitude. Within more-electric ECS 

(MECS), permanent magnet motors drive air compressors (in the B787 there are four separate 

compressors) where each motor drive is a high rated load in the order of 100-125kVA. The 

compressed air is fed to primary and secondary heat controllers which use external RAM air as a heat 

sink. The resultant cold air is mixed with recirculation air to maintain the desired cabin temperature. 

                                                      
18 ECS design is dependent on the aircraft type and mission profile. This is only a general outline. 
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Despite the high power demand of MECS, there are significant benefits associated with its adoption. 

Conventional systems draw bleed air at ~400ºF and 30 psi19 – the conditioned air output to the cabin is 

~60ºF and 11.8 psi. In comparison, MECS inputs compressed air at roughly half the temperature 

(~200ºF) and half the pressure (15 psi) whilst outputting similarly conditioned air. The difference in 

energy expended between the two systems is marked – this difference represents energy loss and 

waste [D.1].  

In other words, the replacement of BA derived ECS with electrically powered ECS culminates in a 

potentially more energy efficient system. However, again, caveats concerning the efficiency at aircraft 

level should be issued. The MECS will likely introduce additional weight to the system. The 

management of such efficiency and weight trade-offs are beyond the scope of this particular 

discussion. What can be dissected from this brief summary is that motor dives in MECS will represent 

significant additional load within modern aircraft EPS. 

 

D.7 More Electric Aircraft EPS Architectures 

The MEA concepts and technologies previously described are illustrated with a discussion of the 

A380 and B787 electrical systems – two MEA currently in service. Comparing these two systems 

with the conventional B777 system highlights the increased capacity and criticality of EPS within the 

MEA. 

D.7.1 Airbus A380 EPS 

The A380 was the first modern aircraft to re-adopt VF distribution. The simplified EPS architecture is 

illustrated in Figure D-5. The four main engine driven generators are rated at 150kVA each and 

provide 230VAC VF power to their respective primary distribution bus. Two 120kVA rated CF 

APU’s constitute the main generation system. A 70kVA RAT functions as emergency power 

provision. The VF supply dictates that the four primary AC buses cannot be paralleled. Galley loads 

with a typical total demand ranging between 120-240kVA are split across the AC buses. 

The AC buses feed the main DC system power conversion units. These units include three battery 

charge regulator units (BCRU) for supply to each of the three 50Ah batteries, one TRU and one static 

inverter. The DC system has a no-break power capability whereby key aircraft systems operate 

without power interruptions. The architecture of this system is such that the AC1/AC4 buses feed the 

DC ESS and the AC2 and AC3 respectively feed the DC1 and DC2 buses that are regulated to 28VDC 

by the BCRUs. The DC ESS bus feeds the AC EMER bus through a static inverter. The AC EMER 

bus can also be supplied by the RAT through an AC ESS bus. There is a dedicated APU starter 

subsystem provided by charging the 50Ah battery from the AC4 bus through the APU TRU. 

System segregation allows three independent channels of power, each with an associated main 

generator, BCRU and battery. Segregation maximises EPS redundancy. 

                                                      
19 Pounds per square inch 
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Figure D-5: Simplified A380 EPS Architecture 

The switching and protection of loads is undertaken in separate electrical panels throughout the 

aircraft. These are summarised as follows: 

 1 × integrated primary power distribution centre 

 2 × secondary electrical power distribution centres to distribute power to loads rated < 5kVA 

 6 × secondary electrical power distribution boxes for power to non-critical domestic loads. 

These loads include galleys, cabin lighting (~ 15kVA), galley cooling ~ 90kVA and in-flight 

entertainment ~ 50-60kVA 

 SSPCs for switching and protection are preferred to thermal circuit breakers within the 

secondary power distribution centres and boxes 

 

D.7.2 Boeing 787 EPS 

The B787 entered service in 2011. Its design is widely regarded as being a significant step towards the 

AEA where bleed air systems have essentially been eliminated and a large number of hydraulic 

actuators are powered electrically. 
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The B787 EPS is outlined in Figure D-6. The two main engines each have two VF 250kVA rated 

generators, resulting in 500kVA of generated power per engine and the APU engine drives two 

225kVA starter/generators. Total electrical generation on the B787 accumulates to 1.5MW, 

significantly higher than any previous civil aircraft.  

 

Figure D-6: Outline of the B787 EPS 

Each main generator feeds its own primary 230VAC bus, where loads are either directly connected 

or power is converted for further distribution. The large loads driven from the 230VAC bus are 

usually interfaced with DC link converters to convert the VF to CF for speed control of load motors. 

Legacy distribution levels of 115VAC and 28VDC levels are attained through autotransformers and 

TRUs respectively.  

A unique feature of the B787 is the conversion of 230VAC into ±270VDC using an ATRU. The 

±270VDC levels have an additional zero volt return cable equating to a total potential difference of 

540VDC. The ±270VDC levels power large variable speed loads such as the ECS compressor.   

The main advancement of the B787 SPDS is the removal of bleed air for supply to the ECS, cabin 

pressurisation systems and wing anti-icing systems – the only bleed air taken from the engine is used 

for anti-icing of the engine cowl. The BA systems have largely been replaced with electrically driven 

systems. The main novel electrical loads within the B787 system include: 
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 Environmental Control System and Pressurisation – four large electrically driven 

compressors are required for ECS and cabin pressurisation. The compressors consume a total 

of ~ 500kVA. 

 Wing Anti Icing – provided by electrical heating mats and requiring ~ 100kVA. 

 Electric Motor Pumps – four electrical motors replace some of the accessory driven hydraulic 

pumps. Each pump is rated at 100kVA  

The electrical system has a geographically distributed architecture. Four main primary distribution 

panels (two in the forward and two in the aft electrical bays) contain the electrical motor pumps and 

the main engine and APU starter motor controllers. Electrically powered air conditioning packs and 

motor compressors are located in the centre section of the aircraft while twenty-one separate remote 

power distribution units provide secondary power distribution. 

This brief summary of the B787 highlights the more electric features of the SPDS. The removal of 

bleed air systems is the predominant feature of this revolutionary aircraft. This redesign impacts 

significantly on electrical system generation, demand, and topology. The B787 has set the more-

electric benchmark from which future aircraft will evolve. 
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