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ABSTRACT

The more-electric aircraft (MEA) concept is widely viewed as the next evolutionary step
towards enabling the industry goal of developing optimised, fuel efficient aircraft. MEA
have an increased dependency on electrical energy for distribution to secondary systems and,
in order to service this increased dependence, the electrical power systems (EPS) are more
complex with increased voltage distribution levels, power conversion stages and safety
critical components compared with their conventional counterparts. These complexities will
only increase in future platforms as they further embrace the MEA concept - the migration to
increasingly novel, critical and complex EPS will incur several development and integration
challenges.

This thesis considers the fundamental challenge of maintaining high reliability standards
within future aircraft EPS through the development of accurate and discriminative real-time
protection systems which will react during fault conditions. Specifically, the thesis
researches novel methods that improve real-time aircraft EPS protection and health
management systems by 1) accurately diagnosing degraded faults before their progression to
critical failure and 2) diagnosing faults that are difficult to detect using only conventional
protection methods — in particular, series arc faults are considered.

Within future aircraft EPS, the volume of operational data is expected to significantly
increase beyond that of the conventional systems; consequently, the thesis focuses on the use
of data-driven, machine learning based methods, to enable these extended functionalities of
the EPS protection and health management systems. The types of machine learning
modelling techniques that were chosen are explained and justified. Conventional protection
methods are described, including a discussion on the difficulties in using them to detect both
degraded fault modes and arcing conditions. The necessity to detect these types of faults in
an accurate and timely manner is also discussed.

One of the main contributions of the thesis is the proposal of the EPSmart method that can
autonomously diagnose and isolate a multitude of degraded faults within an aircraft
representative EPS. These degraded faults include intermittent and incipient conditions,
which, in comparison to overcurrent faults, often lack the energy to be detected by
conventional means. Early, and accurate, detection of these conditions will improve overall
system health management and reliability and ensure safe operation of the aircraft.

Further contribution is the design of the IntelArc method that can detect series arc faults

within direct current supplied systems. Accurate detection of series arc faults is extremely



challenging as, despite their presence being a serious fire hazard, they result in a decrease of
load current. Although methods do exist for diagnosis of series arcing, there remain
challenges with regards to accurate detection across different system configurations and
operating conditions. The thesis shows the potential for IntelArc to provide accurate
detection across a variety of configurations and operating conditions.

While the thesis only describes the initial development of these novel methods, the
significant conclusions are that application testing has shown the potential for them to
enhance real-time network protection, fault tolerance and health management of aircraft EPS
through detection of degraded fault and arcing conditions.
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1. INTRODUCTION

ince the notion of utilising machines to fly was first realised, designers and engineers
Shave continually strived to advance and improve the air vehicles, or aircraft, that enable
this capability. The 20" century saw significant development and evolution of aircraft, from
pioneers the Wright brothers developing the first successful heavier than air machine in
1903, through to the inception of the jet engine during World War 11, and the subsequent
dawn of the jet age and rise in commercial aviation in the 1950°s. The latter part of the
century saw a shift of focus, from increasing the speed and distance of flight, towards an

evolution of aircraft design, manufacturing techniques and avionics.

Economic and social incentives, coupled with enabling technology, have been the main
drivers for the mass changes that have occurred within aircraft since the jet age. Such factors
have culminated in modern aircraft, most notably Airbus’ 380 (A380) and Boeing’s 787
Dreamliner (B787), being able to carry up to 850 passengers with flight ranges of 15,700 km
and wingspans of 80m. During 2012, civilian aircraft transported an estimated 2.9 billion
passengers worldwide [1].

Evidence of the next progression in development can be found when considering the
reformed secondary power system architectures of Airbus’ and Boeings’ flagship aircraft.
The conventional form of providing secondary power through combinations of pneumatic,

hydraulic and electrical energy has been converted in the A380 and B787 to a system that is



more dependent on utilising electrical energy for distribution to aircraft subsystems. This
alternative method of power distribution means such aircraft can be termed a more-electric
aircraft (MEA) [2, 3, 4].

Figure 1-1 illustrates the electrical generator power ratings of various aircraft along with
their associated maximum take-off weights (ToW). The A380 and, in particular, the B787
have a greater total generating capacity than their predecessors; with consideration to ToW,
it could be surmised that the A380 is partially more-electric whereas the B787 has made
significant advancements. Nevertheless, the migration from constant frequency (CF) to
variable frequency (VF) systems, as well as higher operating voltages, has meant that both
aircraft have gained more-electric status. The A380 and B787 are revolutionary in that they
are the first civil MEA to enter service and, in so doing, confirmed that the future for aircraft

is electrical.

1000
800
600 B Total Elgctrlcal
Generation (KVA)
400 B Maximum ToW
(Metric Tons)
200
0

A340 B777 B747 B767 A380 B787

Figure 1-1: Electrical Generator rating and Maximum ToW of various commercial aircraft

The MEA principle is not a new idea — indeed, looking as far back as World War II,
military aircraft used electrical power for functions that, according to conventional wisdom,
would be powered by other means [5]. Despite this precedent, the lack of electrical power
generation capabilities and the volume requirements of the power conditioning equipment
meant that efforts were focused on providing secondary power on civil aircraft with a
combination of sources. Up to the late 1970’s, electrical power was restricted to avionics and
utility functions, with hydraulics used for most actuation functions and pneumatics for air

conditioning/pressurisation and ice protection.

However, increasing pressure on airline economics due to rising fuel prices and increased
competition through low cost carriers, incentivised manufacturers to further optimise the
operational efficiency of aircraft. The conventional secondary systems posed a number of

challenges with respect to optimisation, mainly due to the complexities and



interdependencies that existed within the hybrid networks. These issues, coupled with
technological advancements in power electronics (PE), fault tolerant electrical machines and
electrically driven primary flight control actuator systems [6, 7] have enabled the MEA
concept to begin to be realised within the B787 and A380.

There are various reasons why MEA are desirable, including; improved fuel consumption
and efficiency; elimination/reduction of inefficient and costly pneumatic and hydraulic
systems [8]; improved reliability [9]; and an increased potential for global optimisation of
the secondary power system. The main, high-level objectives of aircraft system design are to
reduce overall weight, reduce operational cost and increase reliability - the MEA option is
widely viewed as the most viable and attractive option for meeting such objectives.

A number of research projects dedicated to addressing the challenge of meeting these
objectives have been established in both Europe and the United States, including;

Northrop/Grumman’s MADMEL project [10], the Power Optimised Aircraft (POA)

programme [11] and the Totally Integrated More Electric Systems (TIMES) programme
[12]. POA confirmed the feasibility of MEA and showed more focus had to be placed on
management of electrical loads and enabling technologies. The TIMES programme
integrated the outputs of various standalone generation, actuation and load enabling
technology programmes to formulate their collective impact at a system level. The objective
of MADMEL was to design and demonstrate an advanced electrical generation and
distribution system for MEA,; the project developed a ground demonstrator that highlighted a
particular architecture that provides fail-op fault tolerance for mission critical loads.

The perceived benefits of the MEA lead to the logical conclusion that eventually the all-
electric aircraft (AEA) will be implemented i.e. secondary distribution networks that are
fully composed of electrical systems [13]. While this eventuality is realistic, the relatively
static nature of the aerospace industry dictates that such advancements, at least within civil
aircraft, would not be likely for at least another three generations [14]. The increasing trend
of unmanned aerial vehicles (UAV) for military applications, and the less stringent safety
standards they entail, has facilitated deeper opportunities for the AEA concept to be
developed, implemented and tested [43]. This aids the acceleration of the technologies and

architectures that will eventually be implemented within such concepts.

1.1 More Electric Aircraft Development and Integration Challenges
Migrating to increasingly novel, complex and critical EPS architectures will incur several
development and integration challenges. This thesis considers two fundamental research

challenges pertinent to the MEA:



1. Maintaining reliability standards in EPS with increased complexity and diversity of

fault modes.

2. Fault protection in higher voltage, DC systems.

The MEAJ/AEA future poses significant challenges in terms of developing electrical systems
that fulfil the unique functions required by aircraft. Reliability is at the forefront of system
development, and it is essential that components, both individually and collectively, perform
with minimal probability of failure. Aircraft reliability standards [15] dictate that safety
critical systems on-board civil aircraft have a probability of failure in the order of 1 x 10~°
per flight hour, equating to a mean time between failure (MTBF) for an aircraft fleet of 1

billion flight hours.

The MEA has led to a greater dependence on electrical distribution for the provision of
power to such safety critical systems. Accordingly, the complexity of electrical power
systems (EPS) has increased, with a diversity of power conversion stages and more
demanding loads now present [16]. As future aircraft will further utilise EPS to meet
functionality, this complexity and dependence will continue to increase. A key challenge
associated with the increased dependency on electrical energy in aircraft is how the EPS
health management system (HMS), which monitors and responds to undesirable network
conditions, can be enhanced to enable fault tolerance [17] within more diverse and
demanding systems. Greater EPS complexity will not only increase the number of failure
modes which have to be managed but also introduce new faults which were not readily
considered within conventional EPS. Also, the manner in which HMS manage, process and
interpret the increased volumes of system data® is imperative for the real-time detection of
system faults and trends, implementing control system reconfigurations and, generally,
providing optimally reliable and secure electrical systems [18]. This motivates research for

challenge 1.

In considering the second challenge, EPS protection and control is a critical aspect of
HMS. The MEA evolution has led to growing research in the protection domain, particularly
in the areas of direct current (DC) protection and solid-state power controllers (SSPC). DC
protection is inherently more difficult to achieve than alternating current (AC) protection, as
the lack of a natural voltage or current zero crossing affects circuit breaker (CB) operation
during fault conditions [35]. SSPC technology is seen as the preferred option for the
replacement of electromechanical circuit breakers (CB), which offer poor performance at
higher levels of DC voltage [19].

! The B787 transmits 28 times more data than the B777 and it is estimated there will be a 14,000%
increase in the total amount of data being transmitted from global fleets by 2030 [18].



The issue of DC arc fault protection has also become prevalent in the aerospace industry
with the migration to higher magnitude DC voltages and the fact that traditional overcurrent
protection practices do not detect such anomalies [36]. Electrical arcing is a product of the
breakdown of wire insulation - breakdown can occur with exposure to moisture, vibration
and chafing against other wires/hard surfaces or simply through the ageing process where
wires become brittle and crack. Damaged wiring is extremely difficult to detect, and the
resulting arcs and electromagnetic emissions pose a major concern to aircraft safety. Two
separate fatal accidents — Swissair 111 near Nova Scotia in 1998 and TWA 800 off Long
Island in 1996 — attributed faulty wiring as the cause for both aircraft grounding [37].

Traditional CBs are heat sensitive elements that trip only when a large current passes
through the circuit long enough to heat the element. The duration of arcing faults may only
be 1.25 milliseconds (ms), with a series of events lasting 25-30ms, and are invariably too
fleeting to trip ordinary CBs despite having the ability to cause catastrophic local damage to
wires - fires have been known to break out with the breaker still intact [38]. Arc Fault Circuit
Breaker (AFCB) technology has been developed [19]. AFCB operation involves the use of
sophisticated electronics to sample the current flow through wires at sub-millisecond
intervals and extract arc fault signatures using both time-domain and frequency domain
filtering. Despite this technology improving security levels and limiting the damage caused
by arcing, these devices suffer similar monitoring and control problems as the CB, and can
only be applied within AC power distribution systems.

Arc fault detection issues highlight that, with the migration to alternative methods of
electrical power distribution throughout aircraft which utilise higher operating voltages and
place greater emphasis on DC systems, there is the requirement to develop advanced
protection methods that can overcome shortfalls in conventional practices. This motivates

research on Challenge 2.

1.2 Intelligent Fault Diagnosis and Isolation for Aircraft EPS
With these two research challenges in mind, this thesis researches methods that advance EPS
protection systems and maintain the high overall reliability standards through autonomous
and accurate identification of various aircraft EPS faults. In particular, the thesis develops
and evaluates the use of new, intelligent fault diagnostic and isolation (FDI) methods [39] to:
1) Diagnose multiple degraded fault conditions prior to their progression to critical
failure — this includes autonomous diagnosis of intermittent and incipient faults, as

well as distinguishing between faults in the monitored system and sensor failures.



2) Diagnose ‘difficult to detect’ series arc faults within DC supplied systems —

diagnosis methods should be generalised to react to such faults across a range of

operating conditions.

Fundamentally, intelligent methods have the ability to perform tasks normally requiring

human cognition and knowledge. There is a wide variety of relevant intelligent FDI

applications within the general EPS domain. Typical applications comprise:

The condition monitoring, diagnostics and prognostics of transformers [21],
electrical machines [22] and rotating plant assets [23].

Real-time health monitoring of distribution systems with automated anomaly
detection and diagnosis using supervisory control and data acquisition (SCADA)
telemetry data [24, 25].

With respect to aircraft EPS, intelligent systems have previously been proposed to monitor

system behaviour and aid both real-time network operation [20, 26] and the initial design

process [27]. Various stages of aircraft operation have to be considered with the integration

of intelligent FDI systems, which include: flight operation, maintenance, logistics and fleet

management. In order to positively impact each stage of operation, there is a variety of top-

level requirements that intelligent FDI based systems have to meet. These requirements are

outlined as follows:

Minimise false alarm rates — this is critical if an FDI method is to be effective. Even
low false alarm rates will induce an extra burden due to the need to evaluate the

alarm while also dealing with recovery options.

Specific fault identification/location — this is essential for efficient allocation of the

resources needed to confirm and rectify a fault.

Earliest warning of failure — information on the likelihood of impending failure is

desirable.

Minimise information overload — it is essential for FDI methods to eliminate
frequent fault messages, or large blocks of alternate messages. In this sense, some
form of prioritizing and filtering is required. An intelligent method will also need to
distinguish between critical and non-critical faults over both immediate and long-
term time frames. The need to distinguish between hardware faults in the monitoring

system itself (i.e. sensors) and faults within the base system is another necessity.

Theoretically, the extension of intelligent FDI to aircraft EPS is based on techniques that

can automatically isolate the source(s) of system malfunction. Techniques typically collect

information on system behaviour using measurements, tests and other information sources



(e.g. observed symptoms), and then analyse this information to determine if and why system
anomalies are present. Various methods exist for collating and analysing the information;

methods are usually classified as either model based [29] or data based [28].

This thesis concentrates on the data based intelligent FDI methods. More specifically, the
application of machine learning techniques [30] to the domain of aircraft EPS health
monitoring is considered. The thesis focuses on intelligent data based methods as they have
the potential to simplify health management in EPS that produce large amounts of
operational data. Critically, the thesis attempts to evaluate how intelligent FDI methods
based on machine learning techniques can enhance the understanding of complex EPS
dynamics throughout normal and faulted operating conditions to improve health

management and fault protection.

1.3 Research Objectives

With the ever growing complexity and criticality of aircraft EPS, there comes the need to
consider the development of intelligent FDI methods which will aid system health
monitoring and real-time protection as well as automatically interpret system status through
the analysis of data. The objectives of the research described in this thesis were to determine
if, and how, intelligent data based FDI methods operating within the unique aircraft EPS

context can:

1. Manage historical system data to develop protection systems that can accurately
detect and diagnose both critical and degraded system anomalies to supplement and
improve the protection of aircraft EPS. The diagnosis of degraded faults has the
potential to improve system reliability by ensuring corrective remedies are pursued
prior to the development of critical network failures.

2. Handle a multitude of both nominal operating and complex system failure modes in
order to quickly detect anomalies and therefore aid both understanding of network
conditions and fault management. This includes the implementation of scalable

intelligent methods that can be updated to handle additional fault modes.

3. Fill the gap where conventional electrical protection practices fall short in order to
produce optimally reliable, fault tolerant MEA EPS with highly accurate FDI.
Specifically, the detection and isolation of intermittent and self-sustained DC arc

faults are considered.
Intelligent FDI methods that have the potential to meet these objectives can be based on an
array of different data based machine learning techniques. These include artificial neural
networks (ANN) [31], support vector machines (SVM) [32], Bayesian networks (BN) [33]



and hidden Markov models (HMM) [34]. The majority of these techniques are classically
applied for speech, handwriting and gesture recognition [40, 41]. However, further
theoretical evolution and exposure has seen applications expand to mechanical, electrical and
process engineering fields [34, 42]. The thesis will consider machine learning techniques that

would be most suitable to meet the objectives described above.

The form of data used for the development of novel methods proposed within the thesis
included both EPS test bed datasets as well as datasets synthesised through model
simulations. A significant development issue is the extraction of unique fault signatures from
the data. This feature extraction stage is imperative for accurate fault discrimination,
particularly when multiple fault modes exist. As such, a further objective of the research is to

determine optimum features from data for accurate fault diagnosis.

The ultimate objective of the work was to develop accurate and scalable intelligent EPS
FDI methods which can assist health management and improve real-time network protection
through the diagnosis of critical and degraded fault modes as well as faults which are

difficult to detect using conventional protection practices.

1.4 Summary of Key Contributions
A number of contributions are made within the thesis. These are outlined as follows.

1) Degraded EPS fault conditions, such as intermittent and incipient failures, often lack
the energy to be detected by conventional protection methods. Detection and
diagnosis of these faults prior to critical failure is important for maintaining reliable
operation as well as improving health management and maintenance scheduling.
This thesis describes the design and development of EPSmart, a novel FDI method
that provides autonomous diagnosis of multiple degraded system faults, including
sensor failures, within compact, hybrid AC/DC aircraft EPS. A published journal

article [44] is an outcome of this contribution.

2) Despite the catastrophic damage series arc faults have the potential to cause, the
reduction of electrical current during such events means that traditional protection
methods and overcurrent protection devices generally do not detect their occurrence.
This thesis describes the design and development of a novel series DC arc FDI
method, IntelArc, for application to aircraft DC systems. The thesis demonstrates
that IntelArc is capable of accurately discriminating between arc fault onset and

normal network transients. The method is generalised to be implemented in systems



3)

4)

5)

6)

where a variety of DC voltage distribution levels, sources and loads are present. An

accepted journal article [45] is an outcome of this contribution.

Resolving discriminative features is fundamental to the design of accurate series arc
FDI methods that minimise false positive/negative diagnoses. This thesis determines
discriminative time-frequency domain and time domain features that are used within
IntelArc to optimise diagnostic accuracy. Features were selected through analysing
and comparing the distribution of extracted features across different nominal and

faulted system conditions.

The relative lack of historical fault data poses a significant problem throughout the
development of data-driven FDI methods. This thesis demonstrates feature
extraction and sensor fusion techniques that enable EPSmart to provide accurate FDI
of multiple system anomalies when fault data is limited. Explorative analysis of
multi-dimensional sensor data enabled significant fault features to be maintained for
system development. This analysis was also used to identify and discard redundant

features within the data, thus simplifying both method development and application.

The thesis establishes the shortcomings of conventional protection methods for
diagnosis of degraded and series arc fault conditions and outlines the requirement for
intelligent methods to improve real-time protection and health management systems.
A comprehensive review of existing intelligent FDI techniques and methods is
provided in the thesis, with specific focus on their application to diagnosing faults

within an aircraft system domain.

Construction of a DC series arc fault simulation model is described in the thesis. The
model was utilised for the generation of synthetic data for use in development of the
series DC arc fault detection system. The model captures the complex characteristics
of series arcing phenomenon and can be implemented within any DC electrical
system model. Model accuracy was validated by comparing model outputs with

previous studies described in the literature.



1.5 Thesis Outline
There are a total of 7 chapters in the thesis. An introduction to the work has been provided in
this chapter.

Chapter 2 introduces aircraft EPS architectures, components and technologies which will
be referred to throughout the thesis. Conventional protection practices during fault
conditions, including the devices used to isolate faults, are described. A discussion on EPS
fault formation, and the different types of faults within aircraft EPS, is provided. The
difficulties in protecting against a variety of degraded faults and arc faults using only the
conventional protection methods are established. The chapter emphasises the motivation for
development of intelligent FDI methods within MEA EPS to detect these types of faults and
improve overall network protection and health management.

Chapter 3 describes intelligent FDI concepts and techniques. The chapter summarises
model based and data based FDI before going on to discuss machine learning techniques in
detail. Attributes of machine learning techniques are compared and the reasons for selecting
certain techniques to meet the research objectives of this thesis are outlined. A review of
previous aircraft FDI methods proposed within the literature, including systems applied to
NASAs ADAPT network, is provided. Relevant machine learning based FDI methods
applied to the general EPS domain are also summarised.

Chapter 4 describes arc faults in significant detail. This includes a description of their
electrical characteristics through a summary of numerous previous studies that have

attempted to define the complex phenomenon. A series DC arc fault simulation model that

was developed using MATLAB's Simulink and used for generation of synthetic fault data is

described. This model is validated by comparing its outputs with the previous studies and
models. A review of existing arc fault detection methods is then provided, including the
benefits and limitations of each.

Chapter 5 details the two novel FDI methods that are the main outcome of the work of this
thesis. EPSmart is developed for autonomous FDI of a multitude of critical and degraded
fault modes, while IntelArc is developed for FDI of series DC arc faults. The main aspects,
and challenges, of developing each method are discussed, including; describing EPS data
used throughout development; data processing and analysis; feature extraction and selection;
overcoming a lack of available fault data; sensor fusion; on-line application issues; and
model training. Alongside the proposition of the two FDI methods, another main
contribution of Chapter 5 is the determination of optimal time-frequency domain features for

accurate diagnosis of series DC arc faults.
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Chapter 6 outlines four separate case studies that were used to test the application and

accuracy of EPSmart and IntelArc. The first case study describes applying EPSmart for
autonomous FDI within NASA's ADAPT network; this includes testing its ability to

diagnose intermittent and incipient fault modes as well as discriminate between faults in the
underlying system and sensor faults. The second case study describes application testing of
IntelArc for FDI of sustained series DC arc fault events while the third case study describes
testing the ability of IntelArc to diagnose intermittent arcing events. The fourth case study
experimentally validates IntelArc on a DC testbed. Results of each case study are presented
and analysed, and recommendations for practical application of the proposed methods are
provided.

Finally, Chapter 7 draws together the conclusions, describes possible avenues for future
work and highlights the contributions of this thesis.

1.6 Publications

The following publications have been completed during the course of this PhD:
Journal Articles

R. Telford, S. Galloway, B. Stephen and I. Elders, ‘Diagnosis of series DC arc faults: A
machine learning approach’, IEEE Transactions on Industrial Informatics, Advance Online
Publication, doi: 10.1109/T11.2016.2633335

R. Telford and S. Galloway, ‘Fault classification and diagnostic system for unmanned aerial
vehicles based on hidden Markov models’, IET Electrical Systems in Transportation, vol. 5,
no. 3, pp. 103-111, September 2015

Conference Papers

R. Telford, C. Jones, P. Norman and G. Burt, ‘Analysis tool for initial high level assessment

of candidate more-electric aircraft architectures’, SAE Technical Paper, September 2016

R. Telford, S. Galloway and G. Burt, ‘Evaluating the reliability and availability of more-
electric aircraft power systems’, in Universities Power Engineering Conference, London,
UK, Sep. 2012, doi: 10.1109/UPEC.2012.6398542
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2. AIRCRAFT ELECTRICAL POWER

SYSTEMS: ARCHITECTURES,
TECHNOLOGIES & PROTECTION

he requirement for future aircraft designs to have optimal operational efficiency, and
Tthe proposed migration to MEA (and eventually AEA) as a means of fulfilling this
requirement, will inevitably result in more complex, demanding and safety critical EPS. This
chapter introduces aircraft EPS and familiarises the reader with system designs and the
elements that compose such systems.

The chapter begins with a general overview of aircraft secondary power systems, where
conventional topologies through to present day more-electric distribution topologies are
discussed. A review is then provided of MEA enabling technological advances in electrical
generation sources, loads, power conversion, and how these sub-systems combine to form
advanced EPS distribution architectures.

The chapter also reviews conventional methods for ensuring fault tolerance within EPS,
with discussions on the HMS in general as well as the conventional philosophies and devices
used to protect the network throughout fault conditions. Fault formation and the various

types of network faults that impact operation are also described and the chapter concludes by
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elaborating on the difficulties of using conventional methods to detect and isolate particular

faults.

2.1 Aircraft Secondary Power System Overview
The majority of power — or ‘primary power’ - on an aircraft is used in the form of fuel to
produce the required thrust from the engines to propel the aircraft. ‘Secondary power’ refers
to all other non-propulsive power systems on board aircraft. Conventionally secondary
power systems are driven by a combination of different energy sources including hydraulic,
pneumatic, electrical and mechanical [46]. Secondary power is drawn from the aircraft’s
main engines? in two forms:
1) Bleed air is tapped from one or more points along the engine compressor to provide
pneumatic power.
2) Drive Shafts, from the engines high-pressure shaft, drive an accessory gearbox
where electrical generators and hydraulic pumps are mounted.

A simplified schematic of a generic twin engine conventional secondary power distribution
system (SPDS) is shown in Figure 2-1. This form of distribution, with three separate types
of power, was standardized in both civil and military aircraft when the increasing speed and
size of aircraft meant that ‘power’ functions, which previously could be manually operated
by pilots, had to be automated [48]. In these conventional SPDS, hydraulics is generally used
for most actuation functions, pneumatics for air conditioning/ pressurisation and electrics for

avionics and utility functions.

2 When the main engines are non-operational, power can also be supplied by an auxiliary power

unit (APU), an external ground power unit (GPU) or a ram-air turbine (RAT).
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Figure 2-1: Simplified Schematic of a conventional Aircraft Secondary Power Distribution System

The hybrid distribution system illustrated in Figure 2-1 shows the main users of secondary

power throughout the aircraft, which include:

Environmental Control Systems

Ice & Rain Protection

Landing Gear

Primary and Secondary Flight Controls

Avionics (e.g. navigation and communication systems)

Galley loads (e.g. entertainment systems)

The pneumatic and hydraulic systems within conventional SPDS are summarised in

Appendix D. The following section describes aircraft EPS to highlight the various features

unique to the aircraft environment. A summary of the main drivers and circumstances that

have dictated a shift from conventional to more-electric SPDS is also provided in Section

2.3.1.

14



2.2 Electrical Distribution System

There has been significant evolution of electrical distribution systems since the beginning of
the jet age. Typical systems of the 1940s and 50s’s comprised 28VDC levels distributing
~12kW of power from two separate engines. The changes since this period have been
marked, with an overall increase in both voltage distribution levels and power extracted from
the main engines — as an example, the A380 has four main engine driven generators rated at
150 kVA each.

The next electrical system evolution has come in the form of the MEA, where significant
changes, in terms of both demand and architecture, have been implemented within the EPS.
This sub-section provides an introduction to aircraft EPS and describes both system elements
and the main users of electrical power. Building upon this introduction, the various
motivations and drivers for MEA adoption and the resultant EPS advancements that will

entail, are outlined.

2.2.1 Conventional Aircraft EPS
The design and operation of Aircraft EPS is split into four inter-connected sub-systems [46]:

e Power Generation

e Primary power distribution and protection

o Power conversion and energy storage

e Secondary power distribution and protection

A generic EPS architecture in terms of each constituent sub-system is illustrated in Figure

2-2. A summary of each sub-system is provided in the following. Refer to Appendix D for a
detailed example of the Boeing 777 EPS.
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Figure 2-2: Generic Conventional Aircraft EPS architecture

2.2.1.1 Power Generation

Electrical power can be generated in both DC and AC forms. DC generators are typically
self-excited, where energy is generated using electro-magnets, and supply a regulated
28VDC output via an electrical commutator. DC generation is only preferable within smaller
aircraft with minimal power requirements and, as such, was phased out with the introduction
of larger scale aircraft.

AC generation is favoured within larger, more power demanding vehicles. AC generators
are driven from the aircraft’s main engines and provide sine waves of rated voltage and
constant frequency (CF) [47]. Nominally, AC power is three-phase with phase voltage levels
of 115VAC (200VAC line-to-line, star connected) at 400Hz. CF voltage is attained using
compound generators, where variable frequency, variable voltage power is converted into
regulated CF constant voltage power. Compound generators contain several complex
conversion stages. These stages include raw power being generated directly from the
engine’s variable speed drive using permanent magnet generators (PMG). This raw power is
then used to provide DC excitation current, from which a frequency regulated AC voltage is
induced, and used to supply the aircraft systems. Other means of providing CF power
include integrated drive generators (IDG)[48], where the variable speed engine shaft is
converted to constant speed using automatic gearboxes. The constant speed shaft then
directly drives an electrical generator, which outputs CF electrical power.

The various sources of electrical power are described in Appendix D.
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2.2.1.2 Primary Power Distribution System

The primary power distribution system (PPDS) accepts the electrical generation sources as
input. In civil aircraft, these sources include: the main engine driven generators, alternate
backup generators in the event of failure, APU and ground power, and the RAT generator in
emergency situations. These sources supply power to a primary distribution busbar. The
PPDS manages and controls the input to the primary busbar by using magnetically latched
power contactors (generator circuit breakers (GCB)) to switch between alternate sources
either during generator fault conditions, or when paralleling generators throughout normal
operating periods.

The PPDS also controls the supply of power to high rated loads (typically defined as > 7
kVA) which are connected to the primary busbar. Electronic load control units (ELCU) are
connected between the busbar and loads for undertaking the high current switching. The
ELCUs also perform protection functions, using current transformers to detect and isolate the

loads from overcurrents.

2.2.1.3 Power Conversion and Energy Storage

The PPDS functions not only to supply high power loads, but also to further distribute
energy to secondary distribution systems. To supply loads throughout the aircraft that
operate with different power ratings, it is necessary to convert the power distributed by the
PPDS from one level to another. The PPDS is directly supplied with 115VAC from the main
generators within the aircraft. Generally, this voltage is converted to different levels with the
use of converting units. Such operations are generally described as follows:

e Conversion from 115VAC to 28VDC using transformer rectifier units (TRU)[49].
TRU’s convert three phase AC power to DC power. Often, the output voltage is not
regulated to 28VDC, and voltage may deviate depending on load requirements.

e Conversion from 115VAC to 26VVAC. This AC conversion stage uses auto
transformers to step-down the voltage.

Further power conversion functions involve the charging of, and energy extraction from,
the battery system. The battery acts as an electrical storage medium which is independent of
the primary generation sources [50]. It provides additional power for both system start-up
and during emergency conditions while alternative sources are brought online. It also assists
in damping load transients to enhance power quality during normal switching events. Battery
chargers maintain the state of charge throughout flight. The chargers are similar to TRU’s,

where 115VAC is converted to the 28VDC charging voltage.
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When acting as a source of start-up and/or backup power, conversion of the 28VDC
battery output back to 115VAC is required. Inverter units undertake this DC-AC conversion
stage, where a single phase AC voltage is output - in civil applications, this backup AC
power is used as a source for critical flight instruments. Inverter technology development has
meant that conversion is now realised with semi-conductors rapidly switching to produce a

synthesised AC waveform [51].

2.2.1.4 Electrical Secondary Power Distribution System

The electrical SPDS ensures the correct provision of power from the secondary busbars to
medium and low rated electrical loads. This includes both the switching of power to meet the
systems functional requirements and the protection of circuits in the event of electrical
overloads. Relays are used for switching operations in the electrical SPDS where currents do
not exceed 20A — these operate in a similar manner to the high power contactors in the PPDS
although are lighter, simpler and less expensive. In low power applications, where load
current is <<20A, simple switches may be used for switching functions.

Circuit breakers (CBs) protect the loads from over currents. These are graded to trip
according to the current carrying capacity of nominal operation within each circuit, and there
may be as many as 500-600 utilised throughout the aircraft [46]. The CBs operate by
mechanically opening contacts when an overcurrent is detected, thus ensuring power is
removed from the circuit. Solid state power controllers (SPPC), which combine the function
of relays and CBs, are deemed as viable alternatives for the provision of both load switching
and protection functionality [19]. Higher trip accuracy and the elimination of mechanical
switching are the main advantages of SSPC over the traditional CB and relay.

The various types of electrical loads within conventional EPS are described in detail in
Appendix D.

2.3 More Electric Aircraft Concepts and Technologies

The operation and design of conventional aircraft SPDS, which consist of combinations of
pneumatic, hydraulic and electrical forms of distribution, have been described. The MEA has
also previously been briefly discussed. This section aims to fully introduce the MEA in terms
of why the concept has been pursued, how MEA SPDS differ from the conventional systems,

and what are the main advantages of its adoption.
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2.3.1 Why the need for Change?

Transportation as a whole is estimated to be responsible for over 20% of the world’s CO,
emissions. The Intergovernmental Panel on Climate Change claims that global aviation
contributes 2% of total CO, discharges caused by human activities [52]. Despite the
relatively small output caused by aviation, emissions from high altitude are deemed to have a
particularly damaging effect on the environment. Accordingly, the Advisory Council for
Aeronautics Research in Europe has set several goals to be achieved by 2020 for air
transportation [53]. These include: a 50% reduction of C 0, emissions through decreased fuel
burn, an 80% reduction in N,0 emissions; a 50% reduction of external noise, and a green
product life cycle in terms of design, manufacturing, maintenance and disposal [54]. These
targets have resulted in the aerospace industry facing significant challenges to drastically
improve aircraft fuel efficiency and emissions [55].

In order to address these challenges and meet designated targets, the conventional design
and operation of aircraft is no longer deemed viable for future generations of aircraft, and
alternative solutions are required. Although the primary propulsion system of an aircraft
consumes ~ 40MW power, improving non-propulsive SPDS efficiency, which consumes a
comparatively less ~ 1.7MW of power® [56], is still vital to achieving these targets. A
promising solution to the improvement of aircrafts SPDS efficiency is to remove the need for
on-engine hydraulic power generation and bleed air off-takes. Hydraulic power systems tend
to be complex, heavy and maintenance intensive while the use of bleed air increases fuel
consumption as high-speed air, primarily used for producing thrust from the engines, is
diverted for environmental control system (ECS) and anti/de-icing functions.

This significant SPDS redesign would require all power off-takes to be electrical in nature
— hence the term all electric aircraft. As mentioned in Chapter 1, the AEA concept is not
new and was previously considered by military aircraft designers in World War 1. However,
until recently, the lack of electrical generation capability and volume of power conditioning
equipment which is required rendered the concept unfeasible. Since the 1980°s and the
introduction of a variety of research projects [13, 57, 58] advancements in enabling
technology have allowed incremental steps towards the AEA goal. As such, the B787 and
A380 MEA are examples where bleed air off takes and hydraulic generation have been
reduced, but not entirely eliminated.

It should be considered at this point that the AEA/MEA notion is not simply organising the

aircraft in a different manner. The concept aims to implement more energy efficient methods

3 Power consumption figures for aircraft relative to the size of A330 or B777.
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of converting and distributing power across all non-propulsion subsystems — realising this

will have a far reaching effect upon overall aircraft performance [59].

2.3.2 Benefits of Electrical Power
Historically there has been a desire to use electrical power as the motive force for all non-
propulsion systems [46]. The disadvantages of hydraulic and bleed air power distribution
were briefly discussed in the previous section. This section outlines why utilising electrical
power to a greater extent throughout the aircraft has the potential to improve global aircraft
efficiency. The high level benefits are apparent when considering the replacement of
centralised hydraulic networks and bleed air systems with electrically powered systems— the
advantages of having only one distribution system as opposed to three, each with their own
redundancy, is clear in terms of simplicity of design, maintenance and optimisation potential.
Specific advantages of aircraft having greater dependency on electrical energy include [9,

60] :

o Electrical wires are lighter than hydraulic pipes. Specific weight gains may not be
immediately apparent with the introduction of large generators and power
convertors. However, electrical systems tend to offer more flexibility than hydraulic
systems for further weight savings.

e This greater design flexibility of electrical systems allows further, and perhaps
continual, opportunity to enhance operational performance/system efficiency.

e Losses in electrical wires are lower than those in hydraulic and pneumatic piping.

e Switching within electrical systems means they function only when required.
Hydraulic systems remain energised throughout the entire flight despite the fact that
larger users of hydraulic power, such as landing gear and secondary flight control,
only require power for short periods at a time.

e Electrical systems can be designed to provide the exact quantity of energy to each
load. This is not the case in hydraulic and pneumatic systems, where
excess/insufficient power is often supplied to loads.

e Elimination of inefficient air pre-coolers and hydraulic restrictors will reduce fuel
burn.

e Hydraulic fluid leaks are difficult to locate leading to increased aircraft downtime,
maintenance and ground support.

e Elimination of high temperature air ducts and flammable hydraulic fluids required in

traditional aircraft.
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These factors have culminated in the design of modern SPDS being more electrically based
and it is anticipated that technological evolution will enable future aircraft generations to

further embrace this concept.

2.3.3 MEA SPDS
The conventional design of SPDS previously described in Section 2.1 will be altered to
accommodate the greater dependency on electrical distribution. The extent to which SPDS
are transformed over time is conditional on the maturity of the enabling technology. Figure

2-3 illustrates a time line of expected advancements within the SPDS.
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Figure 2-3: Time line of SPDS advancements [61]

The B787 and A380 are MEA presently in service. The B787 has eliminated the bleed air
network whilst the A380 has focused on a more de-centralised hydraulic system design
utilising remote, electrically controlled hydraulic actuators. Figure 2-3 shows that future
advancements include the complete elimination of both hydraulic and pneumatic systems
and the development of the more electric and all electric engines. Figure 2-4 demonstrates
how power demands differ between conventional and more-electric SPDS. The MEA will
depend on ~ 1MW of electrical power - a five-fold increase in comparison to conventional

levels.
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Figure 2-4: Comparison of power demands between conventional and more-electric SPDS

It is the purpose of this section to detail the evolution of electrical system technology
which has enabled current MEA, spanning generation, conversion and distribution
architectures. Appendix D provides detailed examples of A380 and B787 EPS to illustrate
these changes within a system wide context. Novel MEA loads are also discussed in

Appendix D.

2.3.3.1 Power Generation

Significant changes in electrical generation strategies of MEA include an increase in power
and voltage ratings and the migration from a constant to variable AC frequency output. The
increased power/voltage ratings are relatively self-explanatory — the higher electrical demand
within MEA dictates greater power availability from the primary generators. Higher
generation capability is evident in the B787, which has four main engine driven 250kVA
generators with 230VAC output — double that of the conventional 115VAC levels, with a

significantly higher power output.
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Moving to a variable frequency (VF) generator output is a consequence of the
inefficiencies of IDG constant speed drives (CSD) (described previously in Section 2.2.1.1).
The CSD is a gearbox that maintains constant speed of the generator shaft to produce a
constant 400 Hz frequency output, where engine speeds vary at a 2:1 ratio between
maximum power and ground idle. The main drawbacks of the CSD are its space and
intensive maintenance requirements. The rationale behind a move to VF systems was that
power conversion technological improvements would eradicate the necessity for CSDs.

VF output from generators is generally in the range 380-760 Hz. The frequency of power
provided to the primary distribution bus is dependent on the conversion stage between
generator and busbar. For example, the VF can be converted back to CF using DC link
methods or cyclo-converter units [46], or even rectified directly to DC for primary
distribution. Table 2-1 summarises the generation strategies of various aircraft, including the
B787 and A380.

Table 2-1: Main electrical power generation of various aircraft [46]

Generation Type Civil Application Military Application
IDG/CF B777 2 X 120kVA Eurofighter
[115VAC / 400Hz] A340 4 x 90kVA
B737 4 x 90kVA
B747 4 x 120kVA
B717 2 X 40kVA
B767 2 X 120kVA
VSCF Cyclo-converter F-18 C/D 2 X 45kVA
[115VAC / 400Hz] F-18 E/F 2 X 65kVA
VSCF (DC Link) B777 2 X 20kVA
[115VAC / 400HZ] (backup)
MD-90 2 X 75kVA
VF A380 4 x 150kVA Boeing JSF X-32 2 X 50kVA
[115VAC /380-760Hz] Horizon 2 X 25kVA
VF B787 4 x 250kVA
230VAC
270vDC F-22 Raptor 2 X 7T0kVA
F35

The migration to MEA has given significant scope to redesign and optimise the aircraft’s
engines. The power optimised aircraft (POA) programme was initiated to address and
integrate technologies for a more efficient aircraft [62]; in doing so, the programme
demonstrated the feasibility of the more electric engine (MEE). The MEE essentially
replaces the current hydraulic, pneumatic and lubrication system with electrical systems,

where the main features include:

23



¢ An electrical machine mounted on the high pressure shaft functions as both a
generator and an engine start unit, while the main generator is connected to the low
pressure shaft.

e All oil, fuel and hydraulic pumps are driven by electric motors

o No external gearbox

A comprehensive overview of the MEE design and features is provided by Hirst et al. [63].

2.3.3.2 Power Conversion

There is a critical requirement for power conversion within MEA EPS. Increased voltage
distribution levels and VF output from the main generators means that the number of
conversion stages in MEA is significantly higher. It is widely accepted [46, 51, 55, 64] that
conversion technology, particularly in the power electronics domain, has given significant
impetus to the growth of the MEA. Advances in power electronic conversion systems have
enabled a more efficient and reliable means of converting capability.

An example of power conversion importance is illustrated using the MEA EPS distribution
system in Figure 2-5.
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Figure 2-5: Potential Future MEA EPS architecture [55]

This example is a potential future trend, with power off-takes from each engine shaft and
load sharing between the high voltage DC primary buses. The three phase active rectifiers

allow paralleling of generators operating with different frequency and voltage on the DC
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side. The DC primary bus can drive high power loads either directly or with further power
conditioning. Inverters convert the DC voltage to AC for distribution and DC/DC converters
are used to step down the DC voltage. The number of conversion stages in such a topology is
in marked contrast to the conventional topologies described in Section 2.2.1. This highlights
that, in order to distribute energy more efficiently throughout the EPS, converters are
essential components to achieving this.
In general, the role of converters within MEA is to:
e Convert higher voltage distribution levels (DC/DC; DC/AC; AC/DC) to
conventional levels for supply to legacy loads
e Convert generated AC voltage to higher magnitude 270 VDC for primary power
distribution
o Control frequency and voltage supply to accessory AC electrical motor loads using
DC/AC inverters
e Convert power to/from battery and energy storage systems
Despite the significant advances made in power electronic converter technology, further
refinement is required in: mitigating electromagnetic interference (EMI); improving power
quality by reducing harmonic distortion; reducing the reliance on passive components; and
developing fault-tolerant topologies. The addition of heat to the aircraft system as a result of
their implementation also has knock-on effects to SPDS efficiency through increasing ECS
requirements. In general, though, the development of converter technology has been vital to
MEA development.

2.3.3.3 High Voltage DC Systems

Higher operating voltages in both AC and DC distribution systems are beneficial in terms of
reduced cable sizes and reduced electrical losses [65]. The higher levels of voltage allow a
decrease in current whilst still maintaining the same quantity of power. Lower current
magnitudes enable smaller cable diameters and a minimisation of I?R losses — desirable
characteristics for the development of energy efficient systems with significant electrical
power demand.

In particular, there has been growing interest around the development of high voltage DC
(HVDC) distribution systems. HVDC power distribution of 270VDC provides a mass and
volume advantage over three phase AC systems as the number of feeders can be reduced
from three to one. Also, as discussed in the previous section, the use of DC primary
distribution allows generators to operate at variable frequency before being converted to DC,

as well as paralleling and load sharing between generators.
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US military agencies extensively researched and developed HVDC systems over a number
of years. The initial deployment of these systems within combat military platforms [66]
enabled the progression to the civil sector, where the B787 now utilises this form.
Challenges do still remain with the integration of HVDC architectures. The increased voltage
levels require greater insulation thickness to avoid the risk of partial discharge. Also, the
inherent problems involved in protecting DC circuits with no natural current zero crossing
have already been discussed — this problem is amplified in higher voltage systems. In
general, there are significant challenges surrounding DC protection systems. These range
from the development of advanced, less bulky contactor/switching/circuit breaking
technology to the determination of DC fault characteristics and behaviours. IntelArc, the
novel method described as part of the work of this thesis addresses the challenge of detecting
series arc faults in HVDC systems.

The benefits of HVDC should be viewed from a system wide context. For example,
reducing the weight of electrical wires does not necessarily result in a global system weight
reduction when considering the increased insulation required and reliance on power
converters. Managing the various design trade-offs in terms of both the integrated system
and the individual components is vital to realising the benefits of HVDC implementation.
What is certain is that, as the amount of electrical power to be distributed is of the order of

MW, the use of HVDC will increase the potential for system optimisation.

2.3.3.5 Distributed System Architecture

In conventional aircraft designs the EPS has a centralised architecture of the form illustrated
in Figure 2-6 (a) [8]. Primary and secondary distribution units are situated in a main
electrical/electronics (E/E) bay which is located at the front of the aircraft. Cables transfer
power from the main generators to the E/E bay upon which all load feeders have to leave

their respective distribution units to service the various loads throughout the aircraft.
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Also, all control wires for the contactors and switches have to be joined together in the
forward bay. This conventional design is sub-optimal in terms of space and weight as heavy
cables have to be routed over the large distances between distribution centres and load
terminals.

In contrast, MEA support a more physically distributed form of generation, where the
aircraft is divided into different zones according to location (Figure 2-6 (b)). This distributed
form features two (E/E) bays— one in the front and one in the aft. A limited number of higher
power loads are supplied directly from the E/E bays with the majority of power being further
distributed to various remote power distribution units (RPDU) throughout the aircraft. The
RPDUs contain SSPCs instead of thermal CBs/relays and can be remotely controlled,
allowing them to be strategically located to minimise aircraft wiring, weight and cost. Other
advantages include higher redundancy in primary power distribution paths and decreased
voltage drops, and hence lower losses, across the shorter feeders [7].

2.4 Fault Tolerant EPS and Protection Methods
This section reviews current practices for protecting and managing aircraft EPS during fault
conditions. This includes a discussion on the limitation of conventional protection methods
for diagnosing certain types of fault and emphasises the motivation for the work undertaken
in this thesis.
The safety critical nature of aircraft requires the design, operation and reliability of all sub-
systems to conform to strict certification standards and directives [33]. As such, a hierarchy
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of sub-system criticality is established in order to determine optimal network designs which
maximise reliability through increased redundancy of supply and components, whilst also
considering the associated weight impact of redundancy measures.

In the event of system failures, a redundant system design has to be complemented with
accurate and robust real-time health monitoring, protection and control systems so as to
maintain highly reliable, fault tolerant EPS. A significant challenge concerns the
development of real-time monitoring systems for operation within more complex MEA EPS.
Greater EPS complexity is a result of increased generation, loads, variation of distribution
levels and volume of conversion technology — these factors will not only increase the
number of failure modes which have to be managed but also introduce new faults which
were not readily considered within conventional EPS.

The following sections introduce various aspects of EPS monitoring and protection
systems which detect and react during system failures — this includes a discussion on power
management, state-of-the art health management systems, protection devices and methods

and fault types.

2.4.1 Power Management Systems
Power management functions ensure that the power generated in any instant in time is equal
to the consumed power. The various elements of a power management system include [67]:
e Load Management - The control of electrical loads. Electrical loads can at least be
cut-off or reconnected and some may be regulated continuously or incrementally.
The demand for a set of loads can be split across several bus bars.
e Source Management — The control of multiple electrical sources where primary bus
bars can asynchronously accept power inputs from multiple sources.
e Energy storage devices, if available, providing/absorbing power.

Source management is undertaken using generator control units (GCU) and bus power
control units (BPCU). GCUs control the operation of the main generator circuit breaker and
can thus open the CB in the event of a non-tolerable overload. The bus power control unit
(BPCU) closes or opens bus tie breakers (BTB) and auxiliary power breakers to connect two
bus bars together.

The load management system involves the greatest complexity in terms of balancing load
demand with available generation. Each controllable load has a fixed, pre-determined
priority depending on its criticality to flight safety and mission function. In civil aircraft,
loads are classified as vital, essential and non-essential and are connected to specific busbars

according to their classification. Safety certification dictates that electrical loads should
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conform to specific levels of reliability. Reliability levels vary between aircraft type and
mission and are typically quantified in terms of failure rates (number of failures/hour) for an
entire fleet of components/sub-systems. Reliability objectives for civil and military aircraft
are summarised in Table 2-2 [71, 72, 73].

Table 2-2: Civil and military aircraft electrical load reliability targets

Aircraft Type Load Classification Probability of Failure Probability of Failure
(Qualitative) (Quantitative)
Vital Extremely Improbable < 1x107°
Civil Essential Improbable < 1x107°
Non-Essential Probable > 1x107°
Improbable < 1x107°
Remote < 1x1073
Military - Occasional < 1x1072
Probable < 1x107?
Frequent > 1x107?

A simple load hierarchy in civil aircraft is illustrated in Figure 2-7. The Load Management
system will load shed in accordance with the load classifications; non-essential loads will be
shed first to ensure that as many possible essential loads are powered. In the event of there
still being power imbalance, the essential loads will be shed in turn to ensure as many vital
loads as possible can get power. Prior to systems with automatic hierarchical disconnection
of loads, CB boards were used which had to be reconnected via manual checklist.
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Figure 2-7: Simple electrical load hierarchy for civil aircraft
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Advanced systems which integrated power distribution and load management were first
introduced in the B777 [46]. The B777 load management system uses seven different power
panels. Three primary power panels distribute to and protect higher power loads. The
remaining four power panels distribute and protect loads for the left, right and standby
channels and ground handling services. These four panels each have modular electronic units
which receive data* regarding the availability of functions throughout the entire aircraft. The
ability to receive real-time system data enables a sophisticated load management system
which can configure the loads to give optimum distribution of available power throughout
nominal and emergency operational periods.

2.4.2 Health Management Systems
Real-time data transference is also pivotal to the development of state-of-the-art HMS which
detect and diagnose system anomalies [18, 69]. HMSs consist of an aircraft condition
monitoring system which records data from the on-board systems and engines, including
variations of flight and operating conditions. The HMS combines data and information into
an integrated decision support tool for:
e Real-time fault management - communicates in-flight faults/alarms from the aircraft
to the ground, allowing real-time operational decisions regarding maintenance.
¢ Performance monitoring — analyses and trends cruise performance data e.g. fuel
efficiency and emission levels.

The availability of system data can aid fault management in both real-time and
maintenance scheduling. However, there are associated challenges involved in accurately
detecting, diagnosing and classifying faults within growing volumes and complexities of
system data [70]. Part of the work of this thesis was to design novel methods that

autonomously, and accurately, diagnose faults within large volumes of data.

2.4.3 EPS Protection
The protection system is an integral component of HMS that detects the occurrence of
system faults and acts accordingly to mitigate potentially catastrophic events.
Fundamentally, the main objectives of a protection system are to be [75]:

e Reliable — Accurately detect fault conditions and only operate when required.

e Selective — Minimise disruption to healthy portions of system by only tripping CBs

required for isolating the fault.

4 Digital data is transferred between each electronic unit using a data bus system — the system is
designed so that each terminal can transmit data to, and receive data from, every terminal connected to
the bus [68].
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e Fast acting — Isolate faults as quickly as possible to reduce damage.
o Dependable — Ensure that the system will operate when required, and at the designed
speed, when a fault is detected.
Systems are based on either Non-Unit or Unit methods [35]. Before summarising each
method, the protection devices that physically isolate network faults in conventional systems
[77] are briefly described. SSPC technology is also summarised, including the advantages it

offers to the protection of future EPS.

2.4.3.1 Protection Devices

Electrical faults are generally characterised by an increase in system current. The current
carrying capacity of cables® is determined by length and cross sectional area; cable size is
therefore designed around rated current values of each circuit. Throughout normal service
life, cable abrasion can cause insulation to degrade, exposing open conductors and enabling
potential low resistance paths to ground (the aircraft frame) or between other conductors.
Low resistance paths cause current to increase, possibly beyond rated values, resulting in
increased heat and eventually fire. Protection against this, whilst also considering normal

overcurrent transients, is vital to aircraft safety.

Fuses
Fuses are wire links connected in series with loads. Current carrying capacity for each fuse is

pre-determined and the wire will melt and break the circuit when this capacity is reached.
Fuses are typically encased within glass or ceramic with end caps providing the fusing point
to cables - they should be located close to source to maximise the length of protected wire.
Materials determine the speed at which the wire melts, and introduce a form of time delay
within each device. Time graded settings in this sense are generally referred to as energy let
through or 1%t protection [78], where the device will trip if energy exceeds a threshold.
Despite being relatively low cost items, fuses can only be used once and have to be replaced

once blown.

Circuit Breakers
CBs are electromechanical devices which interrupt and isolate a circuit in the event of

excessive current. Unlike fuses, CB’s can be manually reset once a fault condition has been
cleared. In conventional systems, CB’s are located in the forward bay and are the most

common wire protection device in the 28VDC and 115VAC systems.

5 Distinction should be made between wires and cables. A wire is a single solid conductor while
cables are two or more wires contained within the same insulation sheath.
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Relays control the operation of CBs. Relay settings coordinate times at which each CB in
the system trips to maintain supply to healthy sections of the network - overcurrent relays
typically have an inverse time current setting [75], where trip time is inversely proportionate
to current.

There are significant drawbacks of CBs in terms of their deployment in MEA. These
include:

e Limitation to localised control. This requires all CBs to be located in centralised
front electronic bays and hence requires long runs of heavy load feeders. Within the
last decade, this issue has been overcome with the development of remote control
circuit breakers (RCCB) [74] that are controlled using a lightweight signal wire that
runs to the cockpit. This means they can be placed closer to the system they are
protecting to limit load feeder weight.

e The fundamental electromechanical feature of CBs is a significant hurdle to their
implementation in future high voltage DC systems [77]. There is no natural zero
crossing in the fault current waveform of a DC system and as such, the increased
size and weight necessary for breaking higher current magnitudes means CBs are
impractical for DC application above conventional levels.

e Traditional CBs cannot detect arc faults [19]. AFCB technology, which can protect
against the arc fault, has been developed. These devices are limited in application to
AC systems only and cannot be implemented in DC based systems. Arc faults are
discussed in Section 2.4.5.3 and also extensively in Chapter 4. Chapter 5 describes
IntelArc, a novel DC arc fault detection method and is one of the main outcomes of

the work of this thesis.

Solid State Power Controllers
The development of solid state power controller (SSPC) technology [79] has been a major

driver towards the realisation of the MEA. SSPCs are based on power semiconductors such
as MOSFETs and IGBTSs and effectively combine the function of load switching and wire
protection within one device. The principle of switching operation is based on software
control of electronic gate signals to the semiconductor within the device.

Significant advantages of SSPC over conventional protection devices include [19]:

e Their application to high voltage DC systems as a result of solid state switching as
opposed to mechanical switching - SSPCs can be connected directly between a
270VDC bus and load.

¢ Remote control of multiple load switching and circuit protection. This enables

distributed system architecture as SSPCs can be located closer to loads.
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¢ Reduced switching time of ~3us, compared to ~10ms for CBs.

e Builtin 12t time grade settings for wiring protection.

o Lower weight in comparison to relay and CB combinations.

o Lower susceptibility to in-flight vibrations and the reduction of bounce effect

produced in the contacts of conventional contactors.
o Increased number of switching life cycles (~50000 compared to ~1000 for CB).
Issues do still remain with EMI causing instant shutdowns and affecting downstream loads.

However, the advantages outlined show that SSPC technology will enable greater design

flexibility and improve operational performance of aircraft EPS.

2.4.4 Conventional Protection Methods
Conventional Methods for detecting and isolating faults are classified as either non-unit or
unit protection. Non-unit protection aims to correctly isolate faults by determining the
thresholds at which multiple protection devices across the entire network should trip —
determining correct thresholds is referred to as protection settings. In contrast, unit
protection protects a clearly bounded zone and will only operate for faults within that
respective zone. Each method is briefly summarised.

2.4.4.1 Non-Unit Protection

Current and/or voltage measurements are assessed from a single point in the network. The
operation of the protection device at each point depends on a comparison of measurements
with a pre-determined threshold setting. Protection settings throughout the system are
designed so that only devices closest to a fault will trip to isolate that portion of the network
and minimise disruption to the rest of the network. Non-Unit methods include overcurrent,
rate of change of current, distance and loss-of-mains protection [76].

Overcurrent protection is illustrated in Figure 2-8. Faults further upstream and hence closer
to supply will induce greater current magnitudes. Inverse current time relay settings enable
CBs closer to supply to have a higher threshold and CBs further downstream to have lower
current thresholds, thus maximising supply to healthy sections during fault events. Within
compact aircraft EPS with shorter cable lengths, it is often difficult to correctly determine
overcurrent protection settings as current magnitudes may be similar for faults at different
locations. Shorter cable lengths also mean distance protection methods are unfeasible for

aircraft EPS application.

33



Time

Protection Settings for Generator Relay

Protection Settings for Relays 1 and 2

Protection Settings for Relays 3.4....n

Current

Distribution
Busbar
@
v i 7 Load

Generator - 1

Busbar I / Fs
N

“ 7 7

|_| 7777777 Fl

/

mcﬁm
(o= SR
; ™ .,/ e VA

uit Breaker
N
/:\
o
R, .

Increasing Fault Current Levels

I(F) > I(F1, Fy) > I(Fa, Fy .. Fy)

Figure 2-8: Simple example of non-unit overcurrent protection method. Relays with different
protection settings isolate only the faulted section of the network to minimise disruption to healthy
sections. Top: Examples of different inverse current-time relay settings. Settings for each relay are
dependent on proximity to the electrical source.

2.4.4.2 Unit Protection

Protects a clearly bounded zone and will not operate for faults external to the zone. This
method is commonly referred to as ‘differential protection’ as it principally detects a
difference between currents entering and leaving a specified zone. Figure 2-9 illustrates unit
protection of a generator feeder and busbar.

Measurements are taken at the boundaries of the zone using current transformers (CT) —
CT. at the generator busbar and CT} at the earth return. In the event of a short circuit fault to
earth, a (large) portion of current would flow directly to earth and not flow through CT, to
the load feeder. This results in a difference between current supplied to the load (leaving the

zone) and current returning through earth to the generator through CT: (entering the zone).
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In this event, the GCU will trip the CB to avoid overheating. In contrast, if the fault is
outside the protected zone (Figure 2-9 (b)), the same current magnitude (albeit greater than
rated load current) would flow through each CT and the GCU would not trip the CB. Unit
protection of the generator feeder and busbar is implemented in aircraft EPS.
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2.4.5 EPS Faults — Limitations of Conventional Protection Methods

The limitations of conventional protection methods in detecting certain types of faults are
described in this section. In Section 2.4.3.1 EPS faults were generally characterised by an
increase in system current through live conductors directly contacting either earthed
conductors or other phase conductors. The systems protecting against such hard faults are
designed around detecting and isolating significant increases in system current. This section
further describes system faults, including variations which, despite not resulting in sudden
increases in sustained current, still have the potential to be equally catastrophic. Challenges
with regard to protecting against electrical faults and the design of health monitoring and
fault detection systems in the context of MEA are also elaborated throughout.

2.4.5.1 Fault Types

Adverse events can be categorised into five classes [80]:

e Incipient Fault — characterised by an extremely slow degradation and is very difficult
to detect.

o Slow progression fault — gradual degradation in performance.

e Intermittent fault — faults that do not degrade but instead manifest themselves in a
recurring fashion.

e Cascading fault — has a single root cause but progresses to create faults in other
systems, sub-systems or components.

e Fast progression fault — faults that have limited detection signature but show rapid
degradation.

Note that this thesis considers a slow progression fault to be of similar class to an incipient
fault and any further reference throughout to an incipient fault should be considered to be
either an extremely slow degradation or a gradual degradation. Furthermore, a cascading
fault is referred throughout the thesis as a multiple fault condition while a fast progression
fault is henceforth considered as an overcurrent fault.

In many cases, overcurrent faults begin as incipient low current faults [81]. Cables may be
bundled and secured to the aircraft structure, which also acts as the electrical ground, for
support. Insulation prevents metal-to-metal contact; this insulation may degrade causing high
impedance paths to be established. It is desirable to detect faults in the high impedance/
incipient stage prior to their progression to an overcurrent condition. High impedance fault
current levels are typically too low to trip overcurrent relays/fuses.

On-board EPS are exposed to harsh operating conditions, and in-flight vibrations can cause

intermittent fault contact between two conductors or between loose terminal connections.
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The intermittent nature means there is not enough sustained energy to trip protection devices
and they may go undetected by ground maintenance as they cannot be replicated out-of-
flight.

Despite these types of degraded faults not having enough energy to trip conventional
protection devices, they are typically accompanied with electrical arcing, which is a potential
fire hazards - see Section 2.4.5.3. Thus, detection is imperative for real-time fault tolerance
and long term aircraft safety, particularly in more complex EPS. Chapter 5 of this thesis
proposes EPSmart, a novel intelligent FDI method which detects a range of degraded failure

types.

2.4.5.2 Fault Locations

US Air Force data [82], illustrated in Figure 2-10, reveal the distribution of electrical
systems and components which fail in aircraft. The data were recorded for military aircraft
between 1989 and 1999 — similar data were recorded between 1986 and 1989 and published
in [83].

The majority of component failures occur in interconnecting cables, connectors and
generators. Interestingly, for many years, the only attention given to electrical systems on
aircraft was limited to key avionics and control systems [84]. The extended service of both
military and civil platforms due to the retrofitting of new sub-systems resulted in a greater
attention to the health of the interconnecting system. In particular, arcing as a consequence
of wiring and interconnecting failures has fatal consequences [37]. Migrating to higher
voltage (where arcing is more likely to occur) and DC systems (where arcing events are
sustained and more difficult to detect than AC systems) requires the development of accurate
and discriminative detection systems. Arcing faults are described in the following section.

Overall, the distribution of failures in the EPS highlights the necessity for autonomous, and
scalable, FDI methods that can accurately detect failures of various components of the
system — the EPSmart method, described as part of the work of this thesis in Chapter 5, is
highly scalable and designed to autonomously detect a range of fault types at different

locations.
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Figure 2-10: Distribution of aircraft electrical system failures across both systems (top) and
components [82]
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2.4.5.3 Arc Faults

Most faults will include arcing at some stage, typically at the point of fault and between the

contacts of CBs which isolate the fault. Arc faults are defined as current flow through

ionized gas between two ends of a broken conductor or at: a faulty contact or connector;

between two conductors supplying a load; or between a conductor and ground [85]. Normal

arcing events occur during mechanical switching operation of circuit breakers and contactors

[169] — these devices are designed to withstand arc formation and normal arcing is typically

highly transient and unsustainable. Conversely, arc current through ionized gas during fault

events may be fully sustained; the high heat generated can lead to partial volatilization of the

conductors and increases the risk of fire to surrounding insulation [170].

There are many conditions which may cause an arc fault, including [84]:

Chemical, electrical and mechanical deterioration of wiring and interconnections.
Presence of moisture or fluids on the insulation enabling leakage currents to create
small electrical discharges across voids to other conductors (referred to as wet arc
tracking [86]).

Loose terminal connections.

Wiring damaged during routine maintenance e.g. nails or staples through insulation.

Arc faults are categorised as either parallel or series.

Parallel Arc Fault
Parallel arcing involves the flow of current through ionised air (or other dielectric

medium) between either two phase conductors, or a phase conductor and ground, as
illustrated in Figure 2-11. These are typically the result of wet arc tracking formed
when two conductors are brought into close proximity, or by degraded insulation.
The fault is parallel to the electrical load and is considered a form of high impedance
short circuit. The arc current levels are reduced by the impedance of both the system
and the ionised path which forms the arc, which typically exhibits higher impedance
in comparison to regular short circuit events. The high impedance nature of parallel
arcing events often results in conventional protection devices not detecting their
occurrence due to fault current levels being below the trip curve of the relays.

Series Arc Fault
Series arcing, illustrated in Figure 2-12, often begins with either chemical corrosion

in pin-socket connections or loose connections in series with electrical loads. In-
flight vibration causes intermittent connection/disconnection cycles within loose
terminals. These cycles begin with small voltage drops which can eventually

pyrolize the surrounding media and induce small arcs across the gap as the contacts
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move away from each other. Single arc cycles will only dissipate a small amount of
energy. However, if the vibrations produce many broken connections within a
sufficiently short duration, the voltage will increase to create a build-up of localized
dissipated energy and hence rapid temperature increase. Such instances produce a
serious risk of fire within the surrounding insulation. A significant detection issue
with the series arc fault is the fact that, because it is in series with the load, fault
current actually decreases below load rated current and therefore well below relay
trip curves.
Arc fault characteristics for both AC and DC systems, detection difficulties and arc fault
modelling are all discussed extensively throughout Chapter 4. IntelArc, a novel series DC arc

fault detection method is proposed in Chapter 5.
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Figure 2-11: Illustration of phase-phase and phase-ground parallel arc faults
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Figure 2-12: Illustration of a series arc fault
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2.6 Protection and Health Management Issues Addressed in this Thesis
According to the various faults described, the protection and health management issues
specific to this thesis include:

e Real-time monitoring and detection of faults where current levels either do not trip
conventional circuit protection (incipient and intermittent faults) or actually fall
below rated current (series arc faults)

e The development of scalable health management systems which can autonomously
detect and diagnose a range of faults through analysis of large volumes of data

These challenges become more pertinent within MEA architectures, where there is:

e A general increase in safety-critical electrical systems

¢ Anincrease of PE components which affect fault behaviour [87]

e A greater emphasis on higher voltage, DC distribution

The remainder of this thesis describes the initial development of advanced methods which
address these issues to enhance protection and health management. This includes the
proposal of two novel FDI methods in Chapter 5: EPSmart, which diagnoses multiple critical
and degraded faults within hybrid AC/DC networks, and IntelArc, which provides
generalised detection and isolation of series DC arc faults.

2.7 Chapter 2 Conclusions

The chapter outlined the basis of the research by emphasising the motivation for
development of advanced methods to improve protection and health management systems
within aircraft EPS. In order to describe specific fault detection and management issues, the
chapter described both conventional and MEA secondary power systems, not only to
highlight the differences between them, but also to illustrate the specifics of aircraft based
EPS. An understanding of these aspects enables comprehension of the importance and
difficulty of detecting certain types of intermittent, incipient and arcing faults, as well as to
reasons that the traditional protection approaches do not always suffice. The chapter
identified and described various degraded fault modes that the remainder of the thesis will
focus on and which novel methods for their detection are proposed in Chapter 5 — these
include incipient, intermittent and arc faults. This chapter lays the groundwork for Chapter 3
to discuss advanced intelligent techniques that have the potential to enable accurate fault

detection and diagnosis of these fault types within aircraft EPS.
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3. INTELLIGENT FAULT

DIAGNOSIS: THEORY &
APPLICATION TO AIRCRAFT EPS

he necessity for advanced intelligent fault diagnostic methods to detect degraded and
Tarcing faults that may not be identified using conventional protection methods was
emphasised in Chapter 2. Detection and diagnosis of degraded fault conditions before their
potential progression to critical failure will improve overall aircraft health management. This
chapter builds on Chapter 2 and introduces intelligent fault diagnosis.

The topic is extensive, and intelligent diagnostic methods can be based on a variety of
models, concepts and techniques which are summarised in this chapter. The methods
proposed in this thesis for diagnosing aircraft EPS faults are based on machine learning
(ML) techniques and these techniques are discussed in more detail. The attributes of each
ML technique are summarised, and the motivations for selecting certain technigues to meet
the objectives of this thesis explained. Previous applications of intelligent diagnostic
methods to the aircraft EPS domain are described to place in context the contribution of this

research.
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3.1 Fault Diagnosis — A Definition

It is important to understand the general idea of fault® diagnosis before introducing
intelligent fault diagnosis in more detail. The semantics of the subject can easily result in
confusion as often there are a variety of accompanying terms, including: fault detection; fault
tolerant control; fault classification; and, fault isolation.

Fekih [88] states that “Fault Diagnosis is the primary stage of fault tolerant control
systems. Its goal is to perform two main decision tasks: fault detection, consisting of
deciding whether or not a fault has occurred, and fault isolation, consisting of deciding
which element of the system has failed.” Fenton [39] summarises that “Fault diagnosis
isolates the source (s) of a system malfunction by collecting and analysing information on
system status using measurements, tests and other information sources (e.g. observed
symptoms)”.

These two statements summarise fault diagnosis rather well; definitions of the various
terminology are provided, and a description of the processes involved, including means of
achieving diagnosis, are succinctly described. Essentially, a system that has the capacity to
detect, classify (or identify) and isolate a fault is termed a fault diagnosis system [89].

This thesis defines an intelligent fault diagnostic system as one that extends the
functionality of traditional EPS protection systems (described in Chapter 2) by using more
advanced methods for decision making. For clarity, intelligent fault diagnosis and isolation
(FDI) is used throughout the thesis to describe advanced methods that enable systems to
provide combinations of fault detection, classifying and isolating functionalities.

The thesis focuses more so on diagnosis, although it is important at this elementary stage
to also briefly summarise prognosis. Prognostics are concerned with calculating or
predicting the future through rational study and analysis of system data. While diagnosis is
the process of detecting and diagnosing a failure mode within a system or sub-system once it
has occurred, prognosis is the process of generating a rational estimation of the remaining
useful life and/or remaining performance until complete failure occurs. For further

information on prognostics please refer to the review provided by Lee et al. [125].

6 A fault is defined as a departure from an acceptable range of an observed variable, or a calculated
parameter, associated with a process.
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3.2 Fault Diagnosis & Fault Tolerant Control — General Process

This section considers the general environment in which fault diagnosis systems operate,
including how they combine with other system elements to detect, diagnose and isolate
failures.

Fault diagnosis is often married with the concept of Fault tolerant control (FTC) - FTC
reflects the ability to generate reconfigurable control action within systems in the presence of
fault conditions. This is a necessity in safety critical systems such as aircraft EPS. A generic
FTC process is illustrated in Figure 3-1 - the importance of fault diagnosis in this process is
conveyed.

The four main components in Figure 3-1 are:

e The monitored plant, including sensors and actuators.
e The fault diagnosis system.

e The feed-forward controller.

e The supervision system.

Potential faults can occur within the plant, the sensors and the actuators. The fault
diagnosis system utilises information provided by the sensors to inform the supervision
system about the onset, location and severity of any faults. Based on this information, and
the system inputs and outputs, the supervision system will reconfigure the sensor set and/or
actuators to isolate the faults and adapt the controller to accommodate the fault effects [89,
90].

A conventional feedback control system without means of fault diagnosis may be less
reliable, as the supervision and control system will not detect and reconfigure the system

after the occurrence of malfunctions in sensors, actuators and other plant components [92].

Fault
Diagnosis
System
Actuator Faults Internal Faults Sensor Faults
Controller Actuators Plant Sensors Supervision
Control Outputs
Signals

Figure 3-1: Generic FTC Process [89]
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3.3 Fault Diagnosis — Desirable Characteristics

The importance of fault diagnosis systems for detecting and isolating faults, and generally
maintaining reliable operation of a monitored system, was emphasised in the previous
section. However, an inaccurate and poorly designed diagnosis system has the potential to
negatively impact the reliability of the monitored system [91]. In order to avoid this scenario,
there are various desirable characteristics a diagnosis system should possess that optimise
operation and performance. These characteristics are summarised as follows:

e Quick detection and diagnosis — a real-time diagnosis system should respond quickly
in detecting and diagnosing failures. One issue with a system designed for quick
detection is that it is more susceptible to noise; the probability of false alarms during
normal operation is therefore increased.

e Provision of fault classification/discrimination — should have the ability to
distinguish between different failures.

e Ability to identify multiple-faults — an important, but difficult, requirement as
different faults may interact making accurate identification of multiple anomalies
highly complex.

e Robustness — system should be robust to noise and uncertainty.

o Classification error estimate — system should have the ability to quantify the
reliability of diagnostic decisions. Ideally, this would include the probability of a
prescribed fault.

e Adaptability — should maintain accurate performance throughout changing operating
conditions.

e Explanation facility — besides the ability to identify the source of failure, a diagnostic
system should also provide explanation on how the fault originated and propagated
to the current situation.

e Modelling requirements — the modelling stage should be minimised for fast and easy
deployment of real-time diagnostic systems.

e Computational requirements — quick, real-time solutions typically require algorithms
and implementations which are computationally less complex.

The development of methods that enable diagnostic systems to possess all characteristics
would be, if not unrealistic, extremely difficult. The novel intelligent FDI methods proposed
in Chapter 5 were designed in an attempt to maximise these desirable characteristics - this is

elaborated on throughout Chapter 5.
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3.4 Intelligent Fault Diagnostic Methods — A Summary

This section discusses the methods that intelligent fault diagnostic systems use to analyse
available information and detect and isolate system faults. There is a broad range of methods
for diagnosing faults. The classification of each method can vary throughout literature - the
categorisations provided in this section seem to be the most common.

Existing FDI methods and techniques are summarised in Figure 3-2.

Fault Diagnosis

Methods
}el-based Q Data-based Methods
Quantitative Methods Qualitative Methods  Qualitative Methods Quantitative Methods
/P' l ] \ / \ Expert Fuzzy Trend . /__ l \_ \ "
] S'(zuc- drfunet-el Simultaneous Causal Abstract Systems Logic Anulysis: Support Bayesian Hidden  Neuyral |
Estimation Estimation State/Parameter M d Is Hi i I i Vector Network Markov Network!
Estimation odels terarchy i Machine Model E
Kalman / \ i ri !
Filter . . )
Based chrcsm.on Extended Digraphs Fault /
Analysis Kalman Tree Machine Learning

Filter Techniques

Figure 3-2: Summary of FDI Methods [91]

Methods are generally classified into two categories: model based and data based. The

distinction between these two groups is summarised in the following sections.

3.5 Model Based Methods

Model based approaches can be broadly defined as either quantitative [91] or qualitative
[97].

3.5.1 Quantitative Models

A quantitative model is usually developed based on some understanding of the physics of the
monitored system. This understanding is expressed in terms of mathematical functional
relationships between the inputs and outputs of the system. The models are usually discrete
black-box system models or state space models [91], and assume linearity of the plant. Using
guantitative models to diagnose faults usually requires two steps. Within the first step,

inconsistencies are generated throughout fault conditions between actual, observed,

46



behaviour and expected normal behaviour from the model - these inconsistencies are known
as ‘residuals’. Residuals are close to zero throughout nominal conditions, and increase only
during fault conditions.

The second step involves the development of decision rules for classifying faults in the
presence of residuals. For example, residual generation within state-based models concerns
divergence from expected values of state variables and/or model parameters. Classification is
then determined by observing what state variables or model parameters have significant
residuals.

Quantitative models have been used extensively within the aerospace domain. In
particular, the Kalman filter, a form of state based model, has been applied for diagnosis of
actuator failures [93, 94] and flight control during failures [95]. The main disadvantages of a
guantitative modelling approach are that several factors render it very difficult, even
impractical, to develop an accurate mathematical model of the system. These factors include
system complexity, non-linearity, and high dimensionality. Consequently, they are not

considered within this thesis.

3.5.2 Qualitative Models

The relationships between system inputs and outputs in qualitative models are expressed in
terms of qualitative functions for the different sub-systems/components of the monitored
system. For example, phrases that describe behaviour are used for detection, and model
variables are usually binary with minimal discrete values. Qualitative modelling is often used
to represent deep knowledge of a system [98], as they simplify systems that contain
numerous variables and also reduce computation — this is in contrast to shallow knowledge
based diagnosis which only captures the relationships between observed abnormalities and
the associated fault, and does not contain detailed information on the underlying physics of
the monitored system. Qualitative models can be classified as either causal or abstraction
hierarchy [97].

Causal models are formed using signed digraphs [39]. Digraphs contain ‘nodes’, which
represent system events or variables, and ‘edges’, which represent the relationship between
the nodes. They provide an excellent means of representing models graphically and describe
the effect or influence that certain entities (e.g. variables, faults) have on other entities. Fault
diagnosis is performed by combining the observed system deviations and relating the
combinations to a root cause. Studies within literature [96] describe the use of fault trees, a

form of digraph, for fault diagnosis.
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Within abstraction hierarchies, the monitored system is broken into a hierarchy of separate
sub-systems and components. This decomposition allows a general representation of the
functionality of a system in terms of the inputs and outputs of the constituent sub-systems.
Fault diagnosis is a top down approach from a higher, sub-system level abstraction to a
lower, component level abstraction. Each node in the hierarchy represents the intended
function of each subsystem/component in the hierarchy. Comparison of the current
performance of each node with the intended function enables the diagnosis of anomalies.

The main limitation of qualitative models is that they require detailed a priori knowledge
of the monitored systems structure, components and functionality. Expert knowledge may
not be available and, even if it is, the elicited knowledge may be specific to exact system
conditions and configurations. Such specific knowledge will complicate the development of

generalised models.

3.6 Data Based FDI

In contrast to model-based approaches, which require a priori knowledge (either quantitative
or qualitative) about the monitored system, the data based approaches require sufficient
volumes of system data [28] to be available. Raw data of this type can subsequently be
transformed in a variety of ways and presented to the diagnostic systems as knowledge — this
process is known as ‘feature extraction’.

Similar to model based fault diagnosis, data based approaches can also be classified as
either quantitative or qualitative. As part of this thesis, special consideration is given to ML
techniques, a form of quantitative data based approach, as the novel FDI methods proposed
in Chapter 5 of this thesis utilise these techniques. This discussion includes detail on their
design and operation, as well as motivation for their adoption within the proposed methods.
Particular issues with the design and development of data based FDI methods for application

to an aircraft system domain are also discussed in Section 3.10.

3.6.1 Qualitative Data Based FDI

Forms of qualitative methods include; expert systems [99, 100, 101]; fuzzy logic [105]; and
qualitative trend analysis (QTA) [108]. The development, operation and application of these

methods are summarised in the following sections.
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3.6.1.1 Expert Systems

An expert system is a specialised system that solves diagnostic problems in a narrow domain
of expertise [28]. These systems apply expert knowledge to system data in an autonomous
and programmatic manner to provide FDI. Application of expert knowledge is typically in
the form of a rule based method, which analyses the data and classifies anomalies using
prescribed rules. Expert systems are based on shallow knowledge, as only knowledge
surrounding faults within the system is required [98].

Knowledge elicitation, where knowledge of the domain expert is gathered through some
form of direct interaction, is pivotal to system development. The systems are designed in two
principal parts: the knowledge base and the reasoning, or inference, engine. The knowledge
base contains both factual and heuristic knowledge. Factual knowledge is commonly agreed
upon within the domain community - i.e. well known, documented facts. Heuristic
knowledge is more a result of the expert’s experiences, and is therefore largely
individualistic. The inference engine analyses and processes the rule base. Essentially, the
inference engine traces its way through a grouping of rules to arrive at a conclusion [102].

Expert systems are advantageous for fault diagnosis systems as they:

o Possess vast quantities of domain specific knowledge to minute detail;

e Have a high explanation capability where reasoning can be reviewed and decisions
explained,;

e Can provide high quality performance in solving difficult programs as, or better
than, human experts.

Expert systems have been developed and proposed for application within the aerospace
domain for real-time fault diagnosis of aircraft engine failures [99], fuel system failures
[100] and the diagnosis of problems immediately after the manufacturing process of combat
aircraft [101]. In each case they have shown potential for accurate and efficient fault
diagnosis within their respective applications. However, in all applications, the limitations of
an expert system approach are relatively self-explanatory: knowledge based systems
developed from expert rules are very system-specific and they are often difficult to update

and generalise [28].

3.6.1.2 Fuzzy Logic

An important feature of expert systems is their ability to deal with incorrect or uncertain

information [103]. Uncertainty within expert systems can manifest in two forms: linguistic
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uncertainty and evidential uncertainty. Linguistic uncertainty occurs when there are vague
statements to describe the data (e.g. “the value is near 20”), while evidential uncertainty
occurs if the relationship between an observation and a conclusion is not entirely certain.
Evidential uncertainty is commonly handled using conditional probability [103]. Linguistic
uncertainty is commonly handled using fuzzy set theory [104].

Fuzzy set theories assume that the transition between different classes of a system is
gradual rather than abrupt. Fuzzy logic quantifies this concept by using the qualitative data to
define the probability of the system being in a certain class and arrive at a diagnostic
conclusion. These concepts enable expert systems to deal with ambiguous observations and
are often important to their application — fuzzy logic based expert systems have been
developed for transformer fault diagnosis [106]. With respect to the aerospace domain, an

expert system utilising fuzzy logic for FDI on the Airbus 340 was proposed by Wu [105].

3.6.1.3 Qualitative Trend Analysis

QTA represents measured time-series signals as a sequence of basic symbols [107]. The
simplest qualitative representation of a signal uses three symbols: increasing, constant and
decreasing. These symbols correspond to the derivatives of the signal - more complex
symbols based on second derivatives, such as sharp increase, can also be used. The symbols
are often termed primitives’.

The basic idea of QTA is to represent the measured signal as a trend using the primitives.
QTA involves two main processes [108]:

1) Trend extraction — this involves fitting either a constant, first-order or second order
polynomial function (in that order) to a period of data. The period of data in which
the function is fitted is determined by comparing the noise in the signal to the fit
error. If the error is significant in comparison to noise, the interval is halved until an
acceptable limit is reached. A primitive is assigned to the period based upon the sign
of the first and second order derivatives of the function. This process is applied to
the remainder of the data until the entire signal is transformed into a sequence of
primitives.

2) Trend matching — QTA for fault diagnosis involves matching the trend extracted
from the current window of time-series data to previously determined abnormal
trends. This includes matching both the trends of single sensors within the monitored

system, and also trends of all sensors throughout the complete system.
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The main benefits of QTA include its simplicity and its ability to provide quick fault
diagnosis. However, the increased computational complexity and requirement for multiple

sensor deployment prohibits its real-time application for very large scale plants.

3.6.2 Quantitative Data Based FDI

This section introduces quantitative data based approaches to fault diagnosis before going on
to discuss ML techniques in more detail.

The quantitative methods are often summarised as being a pattern recognition problem
where the main goal is to classify new data points into a pre-determined class of the
monitored system [28]. Monitored systems tend to exhibit stochastic behaviour and, as such,
guantitative methods usually adopt a probabilistic approach. Generally, utilising such an
approach involves data observations during normal system operation having a certain
distribution. During fault conditions, these distributions will change — fault diagnosis
involves determining when, and how, the distributions change.

When a parametric distribution is used, the probability distributions are characterised by
their parameters - for example, the parameters of a Gaussian distribution are its mean and
standard deviation. During on-line system monitoring, changes in these parameters can be
indicative of fault conditions. Methods that observe changes in distribution parameters are
usually classified as statistical.

This thesis focusses on ML based FDI methods. ML combines the ideas of pattern
recognition and learning, probabilistic methods and statistics for development and
application of diagnostic systems.

One of the main reasons for this thesis focusing on ML based FDI is that the volume of
data that future aircraft EPS will generate is expected to increase significantly in future
platforms [18]. It is imperative that this additional information is utilised efficiently, and
does not impede the reliable operation of these systems. The employment of intelligent ML
based methods for interpreting the behaviour/condition of the system through analysis of
data will ensure that efficient and reliable operation of future aircraft EPS will be
maintained, if not enhanced.

The following sections discuss these ideas in more detail.

51



3.7 Machine Learning

Murphy [30] defined ML as “a set of methods that can automatically determine patterns in
data, and then use the uncovered patterns to predict future data, or to perform other kinds of
decision making under uncertainty”. This section describes some of these methods as well as
the general design and operation of ML based FDI methods.

Murphy’s definition covers the basic aspects of such methods. Automatically determining
patterns in data is essentially training models using historical system data. Predicting future
data refers to using the trained models to diagnose new system data. ML methods rely on
using cases or examples to solve a diagnostic problem, rather than using a predefined
mathematical model of the monitored system or a set of rules.

The development and application of ML based FDI methods are summarised in Figure 3-3.

Development Application
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Data

A A 4

Feature Extraction Feature Extraction

Apply New
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Figure 3-3: Development and application processes of ML based FDI methods

Methods are developed using historical system data - alternatively, system data generated
using representative test beds and/or software models of the monitored system may also be
used [109]. Data used throughout development is termed training data. Feature extraction
from system data is a significant aspect of development — this process extracts the most

significant features, in terms of discriminatory power, from raw system data. Feature
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extraction is extremely important for the development of accurate methods, and is discussed
further in Section 3.7.1.

The next stage of development involves using the extracted features to learn patterns, or
signatures, of various system conditions. The process of pattern learning depends upon the
type of modelling technique utilised — different ML modelling techniques are discussed in
Section 3.8. The learning stage results in either a single model relating to nominal system
condition, or a library of models corresponding to different nominal and fault conditions.
The learning process is also dependent on the type of approach used. The two main learning
approaches are supervised and unsupervised — these are described in Section 3.7.2.

Fault diagnosis is determined by comparing online behaviour with the modelled behaviour
of each condition. Measures for these comparisons are again dependent on the modelling
techniques used, and are discussed throughout Section 3.8. Interpretation of these
comparisons is performed using some form of decision making tool or algorithm. Such tools

may involve expert knowledge and/or fuzzy logic.

3.7.1 Feature Extraction

Feature extraction is the transformation of raw data from its original form to a new form
from which suitable information can be extracted. This process ensures that fault diagnostic
systems can be trained to realise significant features within data that relate to certain
conditions. As discussed in the previous section, feature extraction is important for accurate
diagnosis as it simplifies operation (by focusing only on a subset of the data) and increases
discriminatory power.

Features may be directly extracted from the original data (e.g. using statistical measures
such as RMS values) or from a transformed domain (e.g. Fourier and Wavelet Transforms).
The Fourier transform (FT) [156] extracts the frequency components of time-domain data
and has been used for discriminating between fault conditions that exhibit different
frequency bands [85]. The advantage of the Wavelet transform (WT) [163] over the FT is
that it provides both time and frequency information about a signal (i.e. what frequencies
occur and at what time) — this is ideal for extracting information from highly transient
signals.

A significant challenge involved with development of FDI methods is determining the
features that optimise accuracy and discrimination — this process is often termed feature
selection. Chapter 5 discusses feature extraction and selection for the novel FDI methods

proposed as part of the work of this thesis.
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3.7.2 Supervised and Unsupervised Learning

Learning patterns in data (or extracted features) using the various ML modelling techniques
can be useful in two contexts. In the first context, the patterns of a specific, and known,
condition described within the training data is learned - knowledge of these patterns can then
be used in future to determine the presence of the same condition. This is termed as
supervised learning as the features presented for learning relate to a known system condition.
In the second context, patterns within data that does not describe a known system condition
are learned. This is termed unsupervised learning, where the goal is to discover interesting
patterns that could have potential meaning — this is a less defined problem, as it is difficult to
determine what the patterns relate to and there is no obvious error metric (unlike supervised
learning where predictions of system conditions can be compared to the known condition).
The EPSmart and IntelArc FDI methods designed as part of the work of this thesis were
developed using a supervised learning approach. This approach required examples of system
data throughout different system conditions to be both available and labelled. This aspect of

development is discussed further in Chapter 5.

3.8 Machine Learning Modelling Techniques

A selection of ML modelling techniques utilised for pattern learning are outlined in this
section. The selected techniques include:

e Hidden Markov models (HMM)

e Bayesian networks (BN)

o Atrtificial Neural networks (ANN)

e Support vector machine (SVM)

The ways in which these techniques can detect and diagnose faults are elaborated. The

attributes of each technique are discussed in Section 3.9. The motivation for using certain

techniques over others, to meet the objectives of this thesis, is also explained in Section 3.9.

3.8.1 Hidden Markov Model

A HMM [127] is a statistical Markov model, in which the system being modelled is assumed
to be a Markov process [110] with unobserved (hidden) states. They also assume that the
system data is a noisy observation of this process. HMM are trained by extracting
information from existing data and developing stochastic models of the signals. They can be

used to solve classification problems associated with time series input data such as speech
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signals, and can provide an appropriate solution by means of their modelling and learning
capability, even though they do not have exact knowledge of the problems [42]. Traditional
applications of HMM are in areas such as speech, handwriting and gesture recognition [30].
More recently, HMMs have been applied in classifying patterns in process trend analysis
[111] and machine condition monitoring [112].

3.8.1.1 Elements of HMM

Usually HMM contain a finite number of states, where each state generates an observation at
a certain point in time. The hidden state is characterised by two sets of probabilities: a
transition probability and an observation probability distribution. The initial state distribution
(i.e. the probability of the modelled process beginning in each of the hidden states) has to
also be defined. In summary, the complete specification of an HMM includes the following
elements [41]:

e set of hidden states:

S = {51,52, ""SN} y

(3.1)
where N is the number of states in the model;
e state transition probability distribution:

A = {a;}, (3.2)
where a;; = P[q¢41 = Sjlq: = S;], for 1 < i,j < N. q is the hidden state sequence
throughout time: g, represents the hidden state at time t and g;.., represents the
hidden state at time t+1;

e set of observations:
V ={vy,v5,..., vy} (3.3)
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where M is the number of observations per state. These observations relate to the
physical output of the system being modelled, and each hidden state produces an

associated set of observations;

e observation probability distribution which maps observations to hidden states:

3.4
B = {b;(k)}, &4

where b;(k) = P[vy at t|q; = S;] for 1 < j < N, 1 < k < M. In continuous density
HMM, B represents a particular continuous distribution (e.g. Gaussian distribution)

over the set of observations, V, for hidden state j;
¢ initial state probability distribution:
m =, (3.5)
where 7; = P[q; = S;], for1 <i < N.

For convenience an HMM can be represented by the notation:
A = (A,B, ﬂ'), (3.6)
to indicate the complete parameter set.

The HMM elements are illustrated in Figure 3-4 using a directed graphical model (DGM)’.

a2 az_n

Hidden Markov __.-- -——7| 8§ L — Sy

State Process

bi(1..M) | by(1..M) by(1..M)

Data =========== >
(Observations)

Figure 3-4: Graphical representation of HMM elements

” A DGM is a way to represent joint probability distributions of system/model variables by making
assumptions about the conditional independence of each variable. See reference [30] for further detail.
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Figure 3-4 illustrates the relationships between the HMM state and observation variables —
the observational data is dependent on the (hidden) system state, while the current system
state is dependent only on the previous system state. The observations in an HMM can be
discrete or continuous. If they are discrete, it is common for the observation model to be an
observation matrix. If they are continuous, the observation model will usually be a

conditional Gaussian [30]. Please refer to [41] for further reading on HMM theory.

3.8.1.2 HMM Parameter Training

Training refers to the characteristics of the input patterns to be modelled by the set of
parameters A = (4,B,7). A HMM is applied to a classification problem under the
assumption the model parameters can be determined given the observation data. The
complexity of this problem means this is difficult to achieve. However, it is possible to find
local optima through maximum likelihood estimation [42]. The Expectation-Maximization
(EM) algorithm [113] is used to solve the training problem and determine the likelihood of

the parameters, given an observation sequence.

3.8.1.3 Expectation-Maximisation Algorithm

The EM algorithm [113], also known as the Baum-Welsh algorithm, is used in statistics for
finding maximum-likelihood estimates of parameters in probabilistic models, where the
models depend on hidden variables. The algorithm can compute maximum-likelihood
estimates of the HMM parameters when given only a set of observation training data. The
algorithm involves two steps: an Expectation, or E step, and a Maximization, or M step. The
general EM algorithm is summarised in the following.

Given a joint distribution P(V,Q|A) over observed variables Vand latent variables Q,
governed by parameters A, the goal is to maximize the likelihood function P(V|1) with
respect to A.

The algorithm can be generalised as follows:

1. Choose an initial setting for the parameters 1°!4.
2. E step - Evaluate P(Q|V,2°4) (3.7)
3. M step - Evaluate A™¢" given by

AW = grgmax, Q(2, 1°4) (3.8)

Where
(3.9
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0(2,2°4) = Z P(QIV, 2°4)In P(V,Q|2)
Q

4. Check for convergence of the log likelihood. If the convergence criterion is not
satisfied, then let

Aold « )new

(3.10)

and return to Step 2.

3.8.1.4 Using Trained HMM for FDI

HMMs can be trained to diagnose unlabelled sequential data. In many applications [42] it is
popular to establish several trained HMM models corresponding to the different conditions
under consideration. Within such an approach, the unlabelled data would be applied to each
trained HMM. Classification would regard choosing the model that gives the maximum
probability (or, more specifically, the log-likelihood) of the observational data, given the

trained parameters. That is, network condition, C, can be classified by

C =argmax(ln P(V|A)) 1<s<H (3.11)

where H is the number of network conditions considered within the FDI system - argmax
refers to the model with parameters A that provides the maximum LL value and not the
maximum value itself.

A general framework of this method is illustrated in Figure 3-5.

Trained
HMM for | InP(VIA)
Condition 1,
A
. Select
Observation Trained )
HMM with
data HMM for InPCViRa) Maximum — C
sequence, V Condition 2, Log
Az likelihood
Trained In P(VIA
HMM for | ™ P(VIA)
Condition H,
An
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Figure 3-5: Framework of HMM based FDI system



The Viterbi algorithm (VA) [30] can be used for inferring from an observation sequence the
most likely sequence of hidden underlying states that might have generated it. For each
observation point in the sequence, an associated hidden state can be determined. HMM may
be trained in a context where the hidden variables represent physical quantities of interest,
such as specific fault states. In this context, the VA may be used for FDI by using the
observational data to infer the sequence of physical states in which the monitored system has
evolved. However, often HMM are trained in the context where the hidden states have no
physical meaning and diagnosis is achieved by using the framework illustrated in Figure 3-5
(see, for example, references [78-81]).

For reasons outlined in Section 3.9, the novel FDI methods proposed in Chapter 5 are
based on HMM. Consequently, Section 3.11.3 provides a review of HMM based FDI

methods described within the literature.

3.8.2 Bayesian Networks

A BN is a form of directed graphical model used to represent the joint probability
distribution of variables within a system. In Section 3.5.2 there has already been a discussion
on qualitative causal graphs, that model the interaction of system variables using qualitative
relationships and deep knowledge. BNs are similar to this concept, although they use system
data to learn both graph structure and the joint probability distributions that quantify the
relationships between system variables. BN’s include both observed and hidden variables,
and can be used to combine observed data with the joint distributions to infer hidden
variables [114].
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5

Figure 3-6: Basic structure of a naive BN

The most simplistic form is the naive BN [30], illustrated in Figure 3-6. This form assumes
the observed variables, X; to X, are all independent and conditional on the hidden class
variable, Y — thus, in terms of diagnosis, the hidden variable can be inferred by considering
each of the observed variables separately. This type of BN is termed naive as it does not
assume any relationship between observed variables — a more advanced form of BN would
model correlation between the observed variables. There may also be correlation between
multiple hidden variables (if they exist). Development of advanced BNs that capture these
correlations requires sufficient domain/system knowledge. Application is widespread in the
medical diagnostics domain [115]. Engineering based applications include fault diagnosis of
rotating machines [116] and road vehicles [117]. Examples of BN based FDI methods for

application to aircraft EPS are discussed in Section 3.11.2.

3.8.3 Artificial Neural Networks

ANNSs are non-linear, multivariable models which are developed using a set of input/output
training data. They were originally inspired by the neural circuitry of the human brain, which
has billions of interconnected cells [39]. ANNs are represented by a set of nodes with
connections between them. The connections have weights associated that represent the
strength of each connection between the nodes. In the training phase, the weights between
each node are learned. Within a supervised approach the labelled training data is used to

attribute specific combinations of learned weights to particular conditions/faults.
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ANNs are organised into different layers [118]. The ‘input’ layer relates to observable
data, where each node represents a single variable/feature. The input nodes are connected to
multiple hidden nodes in the ‘hidden’ layer. The hidden nodes perform a non-linear mapping
from the input space into a new space — these nodes are connected to output nodes in the
‘output’ layer. The output of the network is a linear combination of the hidden nodes. This
architecture is illustrated in Figure 3-7. Inference of new data is determined through the
status of output nodes. Each output node, which relates to a specific system condition, has a
binary output [119] — an output of 1 indicates presence of the condition.

Hidden Layer
Input Layer Output Layer

=~ System
Conditions

Data
Features

Figure 3-7: General architecture of an ANN

ANN’s have been extensively applied for diagnosis of power quality problems within the
general EPS domain [39, 119, 120]. Examples of their application to EPS within aircraft and

shipboard systems are described in Section 3.11.2.2.

3.8.4 Support Vector Machines

SVMs are a relatively new supervised machine learning technique [126]. SVM learn the
location of decision boundaries, or hyperplanes, that produce optimal separations of classes
within observed data. Finding the optimal separation of linearly separable data is relatively
simple — essentially the SVM searches for the optimal hyperplane that correctly classifies the
data. This concept is illustrated in Figure 3-8 (a). Determining the optimal hyperplane is
equivalent to maximising the distance separating each class, as shown in Figure 3-8 (b). The

support vectors are training data points that lie on the margin. These are the most significant
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points, as classification of new data points involves determining their position relative to the

support vectors.
Searching for
Optimal optimal hyperplane
Hyperplane
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Figure 3-8: (a) Searching for optimal hyperplanes between two linearly separable classes of data (b)
Optimal margin criteria for determining hyperplane

SVM can also be extended to classify data that is not linearly separable. In this extension,

training data is mapped into a high dimensional feature space using kernel functions.

Transformation to an alternative feature space enables linear separation of classes - [121]

provides more information on this process and SVM in general.

SVM have been proposed for fault diagnosis in series compensated electrical transmission

lines [122] and high voltage circuit breakers [123]. Applications particularly relevant to this

thesis include their use for high impedance fault/arc fault detection [124] (this is described

further in Chapter 4), and FDI and prognosis of aircraft engine degradations [164].

3.9 Comparison of Machine Learning Modelling Techniques

Section 3.8 described various ML modelling techniques that utilise system data to diagnose

system faults. Each technique has the potential to be applied for fault diagnosis within an

aircraft EPS environment — indeed, as is elaborated in Section 3.11.2, various techniques

have previously been applied in this context.

The main objectives of the novel aircraft EPS FDI methods proposed in this thesis are to:

o Autonomously, and accurately, detect a multitude of fault conditions.
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Detect the onset of degraded fault conditions (i.e. intermittent and incipient faults) in
an appropriate timeframe.
Detect series arc faults in DC supplied systems that are difficult to detect using

conventional protection methods.

The following section outlines the attributes of the potential ML techniques that could be

applied to meet these objectives. Summarising these attributes helps to explain the

motivation for the choices that were made.

3.9.1 Attributes of Machine Learning Techniques

The various attributes of the selected ML techniques are summarised in Table 3-1 [125,

129].

It was explained in Section 3.8.1.4 that the novel FDI methods proposed as part of the

work of this thesis would be based on the use of HMM to infer the presence of faults using

system data. Each potential technique outlined in Table 3-1 has associated advantages and

disadvantages. According to the aims outlined in the previous section, the main motivations
for basing the FDI methods on HMM include:

Their suitability for detection of transient signals — this makes them ideal for series
DC arc faults which exhibit highly transient, non-stationary behaviour.

Their ability to provide a log-likelihood metric that quantifies the probability of
various fault hypotheses. This form of diagnostic explanation means HMMs are
more suitable for multiple fault diagnosis than ANNSs, which only provide a binary
decision.

HMM based FDI methods are highly scalable and can be readily updated to include
models of emergent system conditions.

SVM can provide excellent fault diagnostic accuracy. However, they are usually
suitable for classifying between only two system conditions and thus multiple fault
diagnosis is complicated.

The accuracy of naive BN classifiers is debatable. To improve accuracy, more
advanced BNs c