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Abstract

Developments in the automation of test data generation have greatly improved efficiency
of the software testing process but the so-called “oracle problem” (deciding the pass or fail
outcome of a test execution) is still primarily an expensive and error-prone manual activity.
This thesis presents an approach to build an automated test oracle using anomaly detection
techniques (based on semi-supervised and unsupervised learning approaches) on dynamic
execution data (test input/output pairs and execution traces).

Firstly, anomaly detection techniques based on semi-supervised learning approach were
investigated to automatically classify passing and failing executions. A small proportion
of the test data is labelled as passing or failing and used in conjunction with the unlabelled
data to build a classifier which labels the remaining outputs (classify them as passing or
failing tests). A range of learning algorithms are investigated using several faulty versions of
three systems along with varying types of data (inputs/outputs alone, or in combination with
execution traces) and different labelling strategies (both failing and passing tests, and passing
tests alone). The results show that in many cases labelling just a small proportion of the test
cases – as low as 10% – is sufficient to build a classifier that is able to correctly categorise
the large majority of the remaining test cases. This has important practical potential: when
checking the test results from a system a developer need only examine a small proportion
of these and use this information to train a learning algorithm to automatically classify the
remainder.

Secondly, anomaly detection techniques based on unsupervised learning (mainly cluster-
ing algorithms) were investigated to automatically detect passing and failing executions. The
key hypothesis is that failures will group into small clusters whereas passing executions will
group into larger ones. In this investigation, the same dynamic execution data and systems
used in previous study were used to evaluate the proposed approach. The results show that
this hypothesis to be valid, and illustrates that the approach has the potential to substantially
reduce the numbers of outputs that would need to be manually examined following a test run.

Finally, a comparison study was performed between existing techniques from the spec-
ifications mining domain (the data invariant detector Daikon [30]) and anomaly detection
techniques (based on semi-supervised and unsupervised learning approaches). In most cases
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semi-supervised learning techniques (mainly Self-training approach - Naïve Bayes with EM
clustering algorithm - and Co-training approach - Naïve Bayes) perform far better under
both scenarios (two different labelling strategies) as an automated test classifier than Daikon
especially when input/output pairs are used together with execution traces. Furthermore,
unsupervised learning techniques performed on a par when compared with Daikon in several
cases.
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Chapter 1

Introduction

1.1 Problem Statement and Motivation

The importance of testing, and the consequences of poor or inadequate testing to software

development projects are only too well understood. The National Institute of Standards

Technology found that faulty software cost the US economy about $60 billion every year [99].

This figure aside, many companies spend over 50% of a software development on testing and

related activities and this figure rises to 90% in certain critical applications [66]. In recent

years, the rise in popularity of the Xunit suite and initiatives such as test first development

have done much to raise the profile of the topic, but such approaches still demand a lot from

the developer in that test cases need to be hand coded and acceptable results clearly specified.

Pex [38] tool is an example of the advances that have been made in the area of test

data generation which represents a step change in testing technology. With such a tool the

developer can save a significant amount of time and effort by being able to take an arbitrary

system and automatically generate test data that will exercise several paths of the system.

However, there is a missing essential component which is a mechanism for automatically

determining whether the output associated with a particular input is correct or not and

therefore indicative of a fault in the code. This mechanisms is known as test oracle. If such

oracle is missing then the developer needs to check the output to determine its correctness or

otherwise but this task can be tedious and time consuming for developer especially in the
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case of automatically generated data for large systems. Although not entirely mythical, test

oracles are fairly rare beasts.. Some systems may have accurate, complete and up-to-date

machine readable specifications, others may be well populated by contracts, and in such cases

both of these can perform the role of an oracle. However, the vast majority of systems lack

such provisions, and the massive benefits that can be gained from using test data generation

tools are outweighed by the need to check the results by hand.

Existing approaches to generate oracles range from the inexpensive and ineffective to

the effective but very costly. At one end of the scale, specified oracles can be generated

from formal specifications [9], and are effective in identifying failures, but defining and

maintaining such specifications is demanding and consequently such specifications are very

rare. At the other end, implicit oracles are easy to obtain at practically no cost but are not

able to identify semantic and complex failures, revealing only general errors like system

crashes or unhandled exceptions [9, 74]. The goal of this thesis is to strike a balance between

these approaches and develop a technique which combines the effectiveness of a specified

oracle and the cost of an implicit one by using anomaly detection detection approaches

(machine learning, data mining etc.) to automatically identify failing tests. The research will

be focused on building several models of test oracles by using various kinds of software data

such as input/output pairs alone or in combination with execution traces.

1.2 Research Questions and Goals

The overall aim of this work is to investigate and evaluate the feasibility of the idea of using

anomaly detection to detect software bugs by formulating test oracles. To achieve this aim,

the following research questions are investigated in this research:

1. Which of the variety of anomaly detection approaches (machine learning, data mining

etc.) is most appropriate for the test oracle problem?

2. Which anomaly detection strategies (classification, clustering etc.) are most effective

for the test oracle problem?
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3. What data from a system provides the anomaly detection approach with the best chance

of building an effective oracle?

The research goals of this thesis are identified below:

• Identification of the anomaly detection approaches that are appropriate and effective

for building test oracles. This goal will be achieved by performing a set of experiments

with a range of clustering and classification approaches.

• Identification, again via experimentation, of the most useful combinations of data to

feed anomaly detection algorithms.

1.3 Contribution of the Thesis

The work presented in this thesis makes the following contributions to the area of test oracle

generation techniques:

• An experimental investigation and evaluation into the use of semi-supervised learning

anomaly detection techniques to automatically classify passing and failing tests.

• An experimental investigation and evaluation into the use of a range of clustering-based

anomaly detection techniques to support the construction of a test oracle.

• An experimental investigation of the most useful combinations of execution data

(input/output pairs and execution traces).

• A comparison study between the proposed approaches in this thesis and the Diakon

specification mining tool.

Key findings

• The results from semi-supervised learning study suggested that the approach is ap-

plicable to automatically build an oracle. It was found that in many cases labelling

just small proportion of the test cases as low as 10% is sufficient to build a classifier
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that is able to classify correctly the large majority of the remaining test cases. The

results has pointed out to important practical potential: when checking the test results

from a system a developer need only examine a small proportion of these and use this

information to train a learning algorithm to automatically classify the remainder.

• The results from unsupervised learning study suggested that the approach is applicable

to automatically build an oracle. The results showed that the key clustering hypothesis

(failures will group into small clusters, whereas passing executions will group into

larger ones) is valid - in many cases small clusters were composed of at least 60%

failures (and often more). The results illustrated that the approach has the potential to

substantially reduce the numbers of outputs that would need to be manually examined

following a test run.

• The results from the comparison study showed that the proposed approaches (anomaly

detection based on semi-supervised and unsupervised learning techniques) did perform

well in comparison to Daikon especially when input/output pairs augmented with

execution traces. It must be stressed that Daikon requires a fault free version of the

system under test with complete and large test suite from which to build assertions - a

luxury that the proposed approaches did not require.

1.4 Research Methodology Outline

The thesis reviews the available published papers that have used anomaly detection techniques

along with dynamic execution data in the area of test oracles. The aim is to identify the most

commonly used anomaly detection approaches to date for building test oracles along with

various types of dynamic execution data that have been employed, and also to forms a basis

for comparison with the proposed work in this thesis.

It turns out that anomaly detection techniques based on semi-supervised and unsupervised

learning have not been extensively investigated to construct an automated test oracles.

Therefore, the thesis starts by investigating and evaluating the use of anomaly detection
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techniques based on semi-supervised learning in this context. The thesis investigates several

learning algorithms with two real practical scenarios and two types of dynamic execution

data (input/output pairs and execution traces). The thesis also observes the potential impact

of using different sizes of labelled data.

Then, the thesis investigates and evaluates the use of anomaly detection techniques based

on unsupervised learning to automatically construct a test oracle. The thesis investigates

several clustering algorithms with their main hypothesis ("Normal data instances belong to

large and dense clusters, while anomalies either belong to small or sparse clusters"[18]), and

also again with similar types of dynamic execution data as in the previous investigation. The

thesis explores the optimal number of clusters to employ in relation to the system domain to

generate an effective oracle.

Finally, a comparison study with the Daikon specification mining tool plays the role of

evaluation to anomaly detection techniques based semi-supervised and unsupervised learning

as test oracles.

1.5 Publications

Portions of this thesis have previously been published in the following papers:

• Rafig Almaghairbe and Marc Roper, “Anomaly detection techniques for automated

software fault detection via dynamic execution data”, Doctoral Symposium, 29th IEEE

International Conference on Software Maintenance (ICSM), 2013 (Reviewed, accepted

for presentation in the doctoral symposium track and as a poster in the conference

poster session, but not formally published).

• Rafig Almaghairbe and Marc Roper, “Building Test Oracles by Clustering Failures”,

in Proceedings of the 10th International Workshop on Automation of Software Test

(AST@ICSE), 2015
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• Rafig Almaghairbe and Marc Roper, “Automatically Classifying Test Results by

Semi-Supervised Learning”, in Proceedings of the 27th International Symposium on

Software Reliability Engineering (ISSRE), 2016

• Rafig Almaghairbe and Marc Roper, “Separating Passing and Failing Test Executions

by Clustering Anomalies”, Accepted for publication on Software Quality Journal (A

Special Issue on Automation of Software Test), 2016

1.6 Thesis Outline

The reminder of the thesis is structured in the following way:

• Chapter 2 introduces an overview of anomaly detection techniques, software testing

principles and the concept of test oracles that underpin the subject of this thesis, and

then follows with a classification of the exiting techniques and related work. The

related work is narrowed down to include only the most relevant papers to the subject

of this thesis.

• Chapter 3 presents an approach to classifying passing and failing execution data using

semi-supervised learning techniques on dynamic execution data based on firstly, just

a system’s input/output pairs and secondly, amalgamations of input/output pairs and

execution traces. In the experimental evaluation, a small proportion of the test data

is labelled by the developer as passing or failing along with a significant amount of

unlabelled test data and the learning algorithms use this to build a classifier which is

then used to label each remaining element (i.e. classify it as being either a passing

or failing test). A range of learning algorithms are investigated using several faulty

versions of three systems and different labelling scenarios (both failing and passing

tests, and just passing tests alone). A comparison study between the proposed approach

and the Diakon specification mining tool is performed.

• Chapter 4 presents an approach using cluster based anomaly detection on dynamic

execution data. In the experimental evaluation, two different studies are performed.
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In the first study, a range of clustering algorithms are applied to just the test case

input/output pairs of three systems and the effectiveness of this approach is evaluated.

In the second study, the test case input/output pairs are augmented with their associated

execution traces with the aim of improving the accuracy of the approach. A comparison

study between the proposed approache and the Diakon specification mining tool is

performed.

• Chapter 5 summarizes this thesis and proposes some directions to be explored in future

work.



Chapter 2

Background and Related Work on

Automated Test Oracles

2.1 Introduction

Research in software testing has focused on automating many aspects of the testing process

such as generating and executing test cases and maintaining and managing test suites.

A relatively neglected, but essential, aspect of testing is the production of an oracle: a

mechanism to determine the (in)correctness of an output associated with an input. Whilst

there are tools capable of completely automatically generating test inputs [32], few techniques

exist to generate test oracles, making the process of checking test outputs primarily human-

centred and consequently expensive and error prone [8].

The early section of this chapter will give a general view of anomaly detection (section

2.2). Software testing concepts and the concept of test oracles in the testing scenario will be

presented next (subsection 2.3.1 and 2.3.2). The following section will discuss the related

work that addresses the test oracle problem using anomaly detection (mainly clustering and

machine learning techniques), and also it will identify the gaps and the limitations on those

works (section 2.4).
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2.2 Anomaly Detection Background

Anomaly detection is a general set of strategies that can be used to detect unusual values

or outliers in large data sets. It has been employed successfully in various research areas

such as fraud detection for credit cards, insurance for health care, intrusion detection for

cyber-security, fault detection in safety critical systems, and military surveillance for enemy

activities.

Mitchell described the concept of learning as “acquiring the definition of a general

category given a sample of positive and negative training examples of the category” (Mitchell,

1997). According to the learning problem definition, there are three main components to

consider which are:

• The training experience (E) related to the training data sets from which the system will

learn.

• The class of tasks (T ) related to the definition of the target function that determines the

types of knowledge that will be learnt.

• The performance measure (P) of the knowledge that is acquired in the process.

Anomaly detection techniques can be classified to three broad categories based on

learning process:

• Supervised Learning: Techniques under this category assume the availability of a

training data set which has labelled instances for normal as well as anomaly classes

and is therefore the least generally applicable. The typical approach in such cases is to

build a predictive model for normal against anomaly classes. Any unseen data instance

is compared against the model to determine which class it belongs to. There are two

major issues that arise in supervised anomaly detection: (1) the anomalous instances

are far fewer compared to the normal instances in the training data (imbalanced

class distribution); (2) obtaining accurate and representative labels, especially for the

anomaly class is usually challenging. The principal tasks associated with this kind of

learning are Classification, Regression and Prediction.
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• Semi-supervised Learning: Techniques operating under this category assume that

training data has a small proportion of labelled instances for both normal and abnormal

classes which may be used in conjunction with the unlabelled instances to build a

model which labels the remaining instances. Since they do not require a large set of

labelled training instances, they are more widely applicable than supervised learning

techniques.

• Unsupervised Learning: Techniques that operate in unsupervised mode do not require

training data, and thus are most widely applicable. The techniques in this category make

the implicit assumption that normal instances are far more frequent than anomalies in

the test data. If this assumption is not true then such techniques suffer from a high false

alarm rate. The principal tasks associated with this kind of learning are Clustering and

Association Rules.

Anomaly detection tasks require general steps which have to be performed for successful

pattern recognition. This mainly includes collecting data (variables or features), performing

feature selection (for example removing irrelevant and redundant features), choosing the

right learning algorithm (for example evaluating several alternatives), training the classifier

or model, and finally evaluating the performance of the classifier (usually performed on a

separate test set).

Feature selection is a critical step in the classification process. With a large data set and

high dimensional feature vectors, it would be expected that the classifier would perform

poorly due to the redundant and irrelevant features present in the training set. But, by

selecting features that are invariant to irrelevant transformation, insensitive to noise and

highly discriminatory then we could expect to achieve a more successful pattern recognition

model.

The choice of a learning algorithm is also an important step. For example, some methods

such as Support Vector Machines (SVM) are very flexible and able to deal with high dimen-

sionality. Some learning algorithms are severely affected by the imbalanced training data

sets problem (imbalanced training data sets means that one class is represented by a large
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number of examples while the other is represented by only a few) such as SVM and Decision

Trees (DT) whereas others like Naïve Bayes (NB) are not. Some learning algorithms produce

human readable results, while others are “black boxes". SVM is an example of a black box

approach. However, they are often highly accurate in their results, particularly on continuous

real-valued numeric data.

After training a classifier, the classifier performance is measured by applying an evaluation

procedure. Many statistical and other measurements exist in Data Mining and Machine

Learning areas. One problem that might affect the evaluation procedure is over fitting. This

arises when a classifier allows for perfect classification on the training data while performing

poorly on a new data set (test data). The common approach to solve such problem is to

provide an independent test data set called validation set. This approach is commonly known

as cross validation - a statistical method of evaluating and comparing learning algorithms

by dividing data into two data sets; one used to learn or train a model and the other used

to validate the model. However, this is most likely to happen when a large amount of data

is available. On a smaller amount of data, holding out a large enough independent test set

may result in not enough data being available for training. In this case the cross validation

procedure will be the common solution.

Several anomaly detection techniques have been proposed in literature. Chandola et al.

[18] discussed in details the applications of anomaly detection techniques. Therefore, the

most popular techniques that have been used in other areas (such as intrusion detection and

fraud detection etc.) are discussed briefly below. For further details on the techniques the

reader is referred to the work of Bishop [14], Mitchell [65], Witten and Frank [103] and

Larose [53] for example.

• Decision Trees (DT): is a supervised learning technique that uses approximating

discrete functions to estimate and classify the example. The nodes of trees are attributes

and the leaves are values of discrete function. The decision tree can be rewritten in a

set of “if-then” rules and also give an estimation of the probability of occurrence of a

particular case. This is an inductive learning method which is very popular and mostly

used for variety of classification tasks [65].
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• Naïve Bayes (NB): is a simple probabilistic classifier based on applying Bayes theorem

with strong (naïve) independence assumptions. A more descriptive term for the under-

lying probability model would be an “independent feature model”. In simple terms, a

Naïve Bayes classifier assumes that the presence (or absence) of a particular feature

of a class is unrelated to the presence (or absence) of any other feature. Depending

on the precise nature of the probability model, Naïve Bayes classifiers can be trained

very efficiently in a supervised learning setting. In spite of their Naïve design and

apparently over-simplified assumptions, Naïve Bayes classifiers often perform much

better in many complex real world situations than one might expect [65].

• K-Nearest Neighbour (K-NN): is the simplest method in machine learning techniques.

The main idea of (K-NN) is to find the closest (k) points of the training data to the

test data point, and then give a label to the test data point by a majority vote between

the (k) points. This method is very simple and remarkably has a low classification

error. However, it requires a large memory to store the training data, and also it is

computationally expensive [65].

• Artificial Neural Network (ANN): is a computer system that simulates the learning

process of the human brain. ANN is massively parallel systems inspired by the

architecture of biological neural networks, comprising simple interconnected units

(artificial neurons). Neurons compute a weighted sum of their input and generate an

output if the sum exceeds a certain threshold. This output then becomes an excitatory

(positive) or inhibitory (negative) input to other neurons in the network. The process

continues until one or more outputs is generated [65].

• Support Vector Machines (SVM): is a supervised learning method, mainly applied to

classification and regression problems. The main idea of SVM is to separate classes

with a surface that maximizes the margins between them. This method combines

two main ideas. The first is the concept of an optimum linear margin classifier that

constructs a separating hyperplane that maximizes distances to the training point.

This hyperplane is supported by some of these training points. The second is the
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concept of a kernel which is a function that calculates the dot product of two training

vectors. Kernels calculate these dot products in feature space. When using feature

transformation, which reformulates input vectors into new features, the dot product

is calculated in feature space, even if the new feature space has higher dimensionally.

The linear classifier is unaffected. Note that different kernel functions can be used

with SVM algorithm to solve nonlinear classification problems such as a quadratic

kernel function, polynomial kernel function, Gaussian radial basis kernel function and

multilayer perceptron kernel function [103].

• Clustering: seeks to segment the entire data into relatively homogeneous subgroups

or clusters, where the similarity of the records within the cluster is maximized, and

the similarity to records outside this cluster is minimized. The clustering differs from

classification in that there is no target variable for clusters. The clustering task does not

try to classify, estimate, or predict the value of a target variable. Hierarchical clustering

and k-Means clustering methods are the most common types of clustering techniques

[53].

• Association Rules: Association is the job of finding which attributes “go together”.

The technique of association rules is commonly used in the business world, where

it is known as affinity analysis or market basket analysis. The task of association

seeks to uncover rules for quantifying the relationship between two or more attributes.

Association rules are of the form “if antecedent, then consequent”, together with a

measure of the support and confidence associated with the rule [53].

2.3 Software Testing Background

Nowadays software developers have access to advanced resources to support software

development but programmers can make mistakes during the process of writing code (the

implementation phase in the software development life cycle). Following the standard

definition [6], an "error" is a mistake made by a human that leads to a fault that may result
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in a failure. A "fault" occurs during the execution of software and results in an incorrect

state that may or may not lead to a failure. A "failure" is a deviation between the observed

behavior and the required behavior of a software system. The main focus of this chapter is on

test oracles which refers to the means for determining whether the current results agree with

the expected outcomes in software testing scenario: i.e. identifying failures. Therefore, this

section introduces a wide view of software testing concepts and the concept of test oracles.

2.3.1 Software Testing Concepts

Researchers in the software engineering (SE) area proposed different useful definitions to

describe software testing. Rafael et al. [72] define software testing as a way to verify and

validate whether the software under test (SUT) behaves according to the software specification

in a controlled execution. Hunter and Strooper [47] point out that software testing is the

most important resource to check software behaviours against its specification. According to

Bertolino [10], [11], software testing can be defined as an execution process of developed

software aiming to check whether it meets its specifications considering the environment

in which it was designed. In addition, software testing can be recognised as a reference

framework which allowing different associations with testing concepts: "Software testing

consists of the dynamic verification of the behavior of a program on a finite set of test cases,

suitably selected from the usually infinite execution domain, against the specified expected

behavior" [11].

Nardi identifies software testing concepts as the input domain, obtained output, test case

and test set [67]. The input domain is the set of all input data that can be applied to the

program, also called test data. Obtained output is the result of the program execution and

expected output is the one that should be produced by executing the program (or part of it)

according to a given input data. A test case is a pair formed by the input data and expected

output. A test set represents all the test cases used during the software testing.

Most testing activities have shared the same testing criteria and techniques in order to

mitigate effort to discover errors and to decrease testing costs [72]. “Black Box” and “White

Box” are the two main criteria in software testing. Black box criteria set requirements for
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a test set based upon external characteristics. A traditional black box criterion is correct

performance on a specified number of randomly chosen data points[4, 83]. On the other hand,

white box criteria set requirements for a test based upon coverage of internal components or

elements associated with the software. Structural coverage and fault coverage are the most

common white box criteria. A structural coverage criterion specifies the extent to which

a given test exercises or covers structural components of the software such as statements,

branches or dataflow chains. A fault coverage criterion specifies errors, faults or classes of

faults that are prevented or covered if the given test is passed [4, 83]. Major software testing

techniques can be defined as follow:

• Functional Testing is a family of black box testing criteria that generate tests based on

specified properties (e.g. functional properties) of the software under test. An example

of functional testing criterion is a special values test that generates data points at which

correctly functioning software exhibits some special behavior [4, 83].

• Random Testing are black box tests based upon known or assumed probability distribu-

tion of inputs. Random inputs may be chosen from operational profiles, simulations, or

by purely statistical means. Random testing is sometimes associated with development

methodologies and can be used to predict statistical parameters of operational software

systems [4, 83].

• Structural Testing is the simplest family of white box methods where structural testing

criteria sets coverage thresholds for program components such as statements, decision-

to-decision branches, control flow paths and dataflow chains (i.e. program segments

between successive definitions and uses of specified variables). One hundred per cent

statement coverage is frequently considered to be the lowest acceptable threshold

criterion for an effective software test [4, 83].

• Partition Testing relates to white box methods where analysis of a program usually

leads to partitions of the input space. For instance, a common partitioning scheme may

identify all those input values that cause the program to execute the same control path.

A partition testing method is used to select test data from the partitions. An example
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of such method, domain analysis, produces a geometric model of the partitions which

is used as a guide to test data selection [4, 83].

• Mutation Testing refers to a family of white box methods based upon fault coverage.

The goal is to create test that distinguish the program being tested from mutant

programs that contains faults or bugs. Variations have been developed to study fault

propagation (e.g. relay testing), early fault detection (e.g. weak mutation testing), and

test case generation (error-sensitive test case analysis) [4, 83].

• Regression Testing are used to retest the system after modifications that have been

made to enhance functionality or remove faults. A regression test can be conducted

as either black box or white box test. The critical factor in regression tests is the cost

of the test so that regressions tests are typically organized to minimize the amount of

retesting [4, 83].

• Smoke Testing is a type of software testing that comprises of a non-exhaustive set of

tests that aim at ensuring that the most important functions work. The results of this

testing is used to decide if a build is stable enough to proceed with further testing

[4, 83].

The testing phase usually consists of several testing levels such as "unit test", "integration

test", "system testing" and "acceptance testing". Each level has different goals and parts of

the SUT that need to be examined. "Unit test" is the level that the main test focus is to verify

the validity of smaller units of the SUT such as procedures and functions. On the other hand,

"integration test" is the level which aims to assess the adequacy between different software

units working together as a whole. Moreover, the test applied to detect faults at the system

level is the"system testing". Finaly, "acceptance testing" is a level of software testing process

where a system is tested for acceptability. The purpose of this test is to evaluate the system’s

compliance with the business requirements and assess whether it is acceptable for delivery

[11, 66, 67, 72].

Generally, by increasing the size and the complexity of the SUT, the costs of software

testing activities will be increased as well [72, 88]. Despite the costs of software testing
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activities, applying the appropriate software testing techniques and strategies is required at

every stage of software development process. Consequently, software developers and testers

have claimed that software testing activities take more than 50% of software development

time [66, 72]. To solve the problems of cost and time related to the software testing phase,

automated testing approaches are needed during different stages of the software development

process [10, 72]. Automated software testing activities can make significant cost reduction

to software development projects and are a key factor to help saving costs [4, 72].

In recent years, automated testing approaches have shown significant advancements

in the area of software testing. Automated test oracles can be considered one of these

advancements. Several automated test oracle approaches are proposed to provide more

efficient and productive ways to check the outputs of the SUT with the aim of reducing

human intervention and effort. Test oracle concepts and problems will be introduced in the

remainder of this section.

2.3.2 Test Oracles

Oracles can be defined as a mechanism that determines and judges whether a system’s test

results have passed or failed [100]. This function can be exercised by a tester (human oracle),

or by automated/semi-automated means. Shahamiri et al. [89] summarised the test oracle

process in the following points: (1) generate expected outputs; (2) save the generated outputs;

(3) execute the test cases; (4) compare expected and actual outputs; (5) decide if there is

fault or not. Note that test case execution is not part of test oracle, but it is part of the oracle

process.

Mao et al. [107] have characterised a perfect and complete automated test oracle as

follows: (1) it should have source of information which makes it possible to produce a

reliable and equivalent behavior to the SUT; (2) it should accept all entries for the specified

system and always produce the correct result; (3) it should have the answers to the data which

is actually used in the test.

A traditional and generic test oracle structure can be seen in Figure 2.1 [72]. In this

scenario, the test oracle accesses the set of data needed to evaluate the correctness of the
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test output. This set of data comes from the specification of the SUT and contains sufficient

information for supporting the oracle’s final decision. Figures 2.2 - 2.5 present several

structures of test oracle functions using different sources of information [72]. It can be

noticed from those figures that some test oracles require test cases in order to be structured.

However, there are cases where test oracles are able to provide a test result based on test data

(inputs) alone.

Fig. 2.1 Generic Test Oracle Structure from [72].

Figure 2.2 shows a test oracle based on a set of information and data about the expected

results in order to decide the correctness of the SUT [39, 45, 48, 52, 61, 96]. The tester

can implement this oracle by using one of the various frameworks known collectively as an

"xUnit" family. These frameworks ("xUnit") allow the unit testing of SUTs implemented in

different programming languages [49] for instance, "JUnit" is an "xUnit" framework for Java.

Testers develop test oracles in their code by inserting a true/false statement (assertions) in a

program to check unit or partial results. This oracle still demands a lot from the developer in

that test cases need to be hand coded and acceptable results clearly specified. An example of

such oracle is shown in the following piece of code [72].

1 public void testBOOKInLibrary ( ) {

2 Library library = new Library ( );

3 boolean search = library.checkByTitle ("Data Mining");

4 assertEquals (true , search); // A test oracle to check the

correctness of the method "boolean

Library.checkByTitle(String)"

5 }

Listing 2.1 Test Oracle Using the JUnit Framework
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Fig. 2.2 Test Oracles Structure Using Expected Output Behaviors from [72].

Test oracles can be generated from formal models or specifications (Figure 2.3) [3, 5,

19, 28, 37]. In this scenario, test oracle can be automated when a mathematical model (e.g.

Finite State Machine (FSM) or Petri net) of the SUT is available for testers. Test oracles

based on formal models or specifications are effective in identifying failures, but defining

and maintaining formal specifications is expensive to the point that such specifications are

very rare.

Fig. 2.3 Test Oracles Structure Using Formal Model Specification from [72].

Figure 2.4 illustrates test oracles that derive expected outputs of the SUT based on test

data inputs [84, 85, 90, 92, 101]. This could be possible by using another version of the SUT

to generate outputs from which the tester can build a test oracle to compare those outputs

and the current outputs. In this case, testers must assume that the version used (reference

program) meets all specifications of the SUT. This type of test oracle is widely used in the

case of regression testing and mutation testing, but is not sufficient in the general case.

Finally, testers can use their own knowledge about the SUT to check if outputs meet the

SUT specification, this test oracle is known as human oracle (Figure 2.5) [1, 46, 62, 95].

Human oracle suffers from several disadvantages: (1) it is error prone as a human oracle

might make error in analysis; (2) it may be slower than the speed with which the program
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Fig. 2.4 Test Oracles Structure Using Test Data from [72].

computed the results; (3) it might result in the checking of only trivial input/output (I/O)

behaviour.

Fig. 2.5 Test Oracles Structure Using Human Oracles from [72].

The oracle problem usually occurs when it is difficult to interpret test results by testers

[36]. In some cases, it is extremely difficult to predict expected behaviors of the SUT to

be compared against current behaviors (this depends on the SUT) [23, 67]. Failures can

be manifested under different circumstances which make checking the results complex or

impossible to be performed [63]. Some SUTs produce outputs in very complex formats such

as images, sounds or virtual environments which make the oracle problem very challenging

[23]. There are several works that alleviate the oracle problem using specific techniques. This

thesis is focused on building automated test oracles based on anomaly detection techniques,

and previous work related to this is presented in the following section.

2.4 Related Work on Automated Test Oracles

The automatic generation of test oracles is an important problem in software testing area,

but this problem has received considerably less attention compared to other testing problems

such as the generation of test cases. There have been three extensive reviews of topics
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relating to test oracles. The first review by Baresi and Young [8] covered four important

topics in the test oracle area: assertions, specification, state-based conformance testing and

log file analysis. The second review by Pezzè and Zhan [77] presented the main approaches

to oracle generation according to the source of information. In their survey, the source of

information for test oracles was classified either as the software specification or as a program

code. Specifications were further classified according to the type of formal model into

state-based specifications, transition-based specifications, history-based specifications and

algebraic specifications. Code-based information includes values from other versions, results

of program analysis, machine learning models and metamorphic relations. Finally, Barr et

al. [9] proposed a comprehensive analysis and review of work on the oracle problem, and

they classified the existing literature on test oracles into three broad categories: (1) specified

oracles; (2) implicit oracles; (3) derived oracles.

Specified oracles are obtained from a formal specification of the system behaviour. Those

oracles can be grouped into three categories: specification based languages, assertions and

contracts, and algebraic specifications [9]. An example of a specified oracle is the work

presented by Doong and Frankl [27]. They proposed a notion that is appropriate for unit

testing object oriented programs and developed an algebraic specification language called

LOBAS and a tool called ASTOOT. The main feature of the approach is the notion of

self-checking test cases for classes which use a class method that approximates observational

equivalence. In other words, ASTOOT suggested a new way of generating oracles based on

the equivalence of sequences of method calls. The test case in ASTOOT is a triple which

consists of two sequences of method calls and a tag. The tag is a boolean value that denotes

if the two sequences are equivalent, therefore they should produce the same results, or not.

Sequences and the tag are obtained automatically from the algebraic specification. The work

of Andrews and Zhang [5] is another example of specified oracles. The authors used state

machines as oracles to test an elevator system. To build a test oracle based on a state machine

a parser is applied to generate an analyser from the machine, and then the SUT’s output

is inserted into the analyzer. If the output is not expected in the machine then an error is

detected. In this case, the state machine and the analyzer represent the oracle information
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and the oracle procedure respectively. Overall, specified oracles are effective in finding

failures but their success depends heavily on the availability of a formal specification which

is limiting factor for most systems[9].

Implicit oracles are generated without reference to any domain knowledge or formal

specification [9]. Fuzzing can be considered one effective way of detecting implicit anomalies

[64]. Miller et al. [64] performed a systematic test of the utility programs running on various

versions of the UNIX operating system. Their idea proceeded in four steps: (1) construct a

program to generate random characters with a program to help test interactive utilities; (2)

use these programs to test a large number of utilities on random input strings to see if they

crash; (3) identify the strings or types of strings that crash these programs; (4) identify the

cause of program crashes and categorise the common mistakes that cause these crashes. As a

result of testing about 90 different utility programs on seven versions of UNIX, they were

able to crash roughly 24% of these programs. This approach is usually used to find security

vulnerabilities in the form of buffer overflows and memory leaks [98]. The work of Pacheco

and Ernst [74] is another example of implicit oracles. The authors developed the Randoop

tool to generate test suites. Randoop takes as input a set of classes under test, a time limit,

and properties to check. The outputs of Randoop are test suites. Randoop classifies test cases

into three types: ones that detect bugs in the current code of the SUT, ones that can be used

as regression tests to detect future bugs, and ones that are invalid and are discarded. The

classification depends primarily on whether the last statement throws an exception or violates

a contract. Generally, implicit oracles are inexpensive and easy to obtain but are limited in

their scope as they are not able to identify semantic and complex failures, revealing only

general errors like system crashes or unhandled exceptions[9].

Derived oracles are created from properties of the system and artefacts other than the

specification (e.g. textual documentation, execution information, regression test suites,

metamorphic relations and pseudo-oracles). A pseudo-oracle is an example of a derived

oracle proposed by Weyuker [102] and is a program (executable model or code) written in

parallel to a system development by a second team following the same specification of the

SUT. Both programs (the developed oracle and the SUT) are run with the same input data,
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and then generated outputs are compared. If the outputs are equal or are within an acceptable

margin of accuracy then the original program is considered to be fault free. However, there is

no guarantee that the oracle is fault free. For instance, if obtained outputs for both programs

are not equivalent a tester must go through a debug process to check which of the programs

actually has the fault. Another example of derived oracles is the one generated based

on known relationships between multiple inputs and outputs and known as metamorphic

relations (MR). MR specify how the output of the program should change according to a

specific change made to the input and represents some necessary properties [20]. Zhou et

al.[112] used metamorphic testing to test search engines such as Google and Yahoo!. The

experimental results showed that some commonly used search engines, including Google,

Yahoo!, and Live Search, are not as reliable as most users would expect. For example, users

may fail to find pages that exist in their own repositories, or rank pages in a way that is

logically inconsistent. The authors have made some suggestions for search service providers

to improve their service quality. Researchers claimed that derived oracles were able to reduce

the cost of generating oracles but they were not effective compared to other types of oracles

such as specified ones [78].

Each oracle category (specified, implicit and derived) could merit an entire survey in

its own right. This thesis is focused on generating test oracles using anomaly detection

techniques on dynamic execution data such as input/output pairs and execution traces.

Therefore, the related work can be divided in two main sections: test oracles based on

anomaly detection and test oracles based on invariant detection. Note that invariant detection

approaches are included in the related work section because they have machine learning at

their core.

2.4.1 Test Oracles Based on Anomaly Detection Techniques

Chandola et al. define anomaly detection as a matter of spotting patterns in data that

correspond to abnormal behaviour [18]. This concept is illustrated in Figure 2.6 - N represents

regions of normal behaviour, whereas O points represent the anomalous data. The aim of the

work reported in this thesis to investigate whether software bugs generate a non-conformant
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pattern of behaviour that can be distinguished from the conformant or normal behaviour - in

other words, in Figure 2.6 do the groups marked N corresponded to passed tests and those

marked O with failures? If this is the case then the possibility of detecting bugs automatically

can be raised.

Fig. 2.6 Principle of Anomaly Detection from [18].

The main principle of creating test oracles in this context is to hypothesize a formal

model of program behaviours from sets of observations. However, the application of anomaly

detection strategies in this context has not been extensively investigated (for a detailed review

of anomaly detection techniques and applications see the work of Chandola, Banerjee and

Kumar [18]). The following subsections discuss some recent work in this area. The work

in those subsections will be classified in to three main categories: (1) supervised learning

techniques; (2) semi-supervised learning techniques; (3) unsupervised learning techniques.

Supervised Learning Techniques: This subsection presents related work that used super-

vised anomaly techniques for automated test oracles.

Vanmali et al. used Artificial Neural Networks (ANNs) to build an automated test oracle

for the SUT [101]. A backpropagation algorithm was trained on the original version of the

system by using randomly generated test cases that conformed to the specification. When

new versions of the original system are created and regression testing was required, the tested

code was executed on the test cases to yield outputs that are compared with those of the ANN.
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They assumed that the new versions do not change the existing functions, which means that

the new versions of the system were supposed to produce the same output for the same inputs.

Then a comparison tool was used to make the decision whether the output of the tested system

is incorrect or correct based on the ANN activation function. The experimental results showed

that ANN model performed much better on binary outputs compared to continuous outputs,

the minimum average error for binary outputs (the proportion of misclassified outputs) was

8.31% and for continuous outputs was 20.79%. The authors stated that the trained ANN can

be used as an oracle to evaluate the correctness of the output produced by new versions of

the system and can be used as a simulated model even though that model can not guarantee

100% correctness over the original system.

Aggarwal et al. [2] presented a case study of test oracles for triangle classification into

isosceles, scalene, equilateral or invalid triangle by using ANNs. The ANN algorithm takes

two inputs: a triple which represents three sides of a triangle and the category in which it

fits. After the ANN is trained, it is capable of predicting in which category new triplets

belong. The experimental results showed that ANN model was able to classify triangle with

a reasonable degree of accuracy, with an average misclassification error between 15.9% to

19.02%, and also ANNs with 25 neurons in the hidden layer performed better. The work was

extended by adding another subject program (a common metric known as function point)

and performing more experiments [51]. The experimental results showed that the quality of

prediction achieved was 92.18% for the triangle classification program and the 100% for the

function point program. These results were in agreement with previous study. Their two

studies were followed by Jin et al. [50] who used the triangle classification program with

larger data sets (2000 test cases for each data set). The experimental results were not good as

the previous studies, and the overall average performance for the ANN model was 60.33%

but they showed that ANN model was able at least to build an automatic oracle to detect

software faults. The main weakness of these studies is the subject programs which are very

small with limited functionality. Therefore, it is not possible to generalise their results.

Mao et al. used the same methodology to build a test oracle for continuous functions

[58, 108]. They considered the continuous function y=F(x) where x is the software input
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vector, y is the corresponding output vector, and F is the software behaviour. The function F

was modelled and expected output were generated using a trained ANNs (the backpropagation

algorithm was used in the training phase). Their study was replicated by Lu et al. using RBF

ANNs to test a small mathematical continuous function [56]. The experimental results for all

studies showed that backpropagation and RBF ANNs were able to build an automatic oracle

for continuous functions. The ANNs algorithms were also able to generate approximate

outputs which were close to expected outputs for SUT. However, the subject programs in all

studies were small which make it difficult to assess and generalise their results.

Shahamiri et al. built an automated test oracle by using ANNs to test the decision making

structures for a student registration system [93]. The goal of the system was to maintain

and manage the students’ records and validate their registration using a decision making

process based on the student’s data that were given to the ANN as the input vector and

consisted of six data items. The output was the result of applying the registration policies

on the inputs to decide the validity of the students’ registrations. The results of their study

indicate that the resulting oracle succeeded in finding the injected faults with an accuracy

97.4%. Moreover, it found 98% of the mutants successfully. Shahamiri et al. replicated the

same work by performing more experiments [91]. The accuracy of the proposed oracle was

between 95.73% to 96.8%. However, both studies have the same problem that other studies

in this area suffer from in that one subject program was used to evaluate their approach and

only two types of faults were injected (operator and value changes).

All of previous studies used a single ANN oracle. Shahamiri et al. proposed a multi

ANN oracle to perform input/output mapping in order to test more complicated software

applications where a single ANN oracle may fail to deliver a high quality oracle [94]. A

single ANN was defined for each of the output items of the output domain; then all of

the networks together made the oracle. For example if the software under test produced 7

output items then seven ANNs are needed to create the multi ANN oracle. As a result, the

complexity of the software may be distributed between several ANNs instead of having a

single one to do all of the learning, and also separating the ANNs may reduce the complexity

of the training process and increase the oracle’s ability to find faults. Note that the training
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process must be done for each of the ANNs separately using the same input vectors but only

the output to be generated by the ANN. The experimental results indicate that multi ANNs

oracle performed much better than single ANN oracle. The average accuracy of the multi

ANN oracle was between 95.7% to 98.82%. On the other hand, the average accuracy of

the single ANN oracle was between 84.65% to 95.9%. However, there was no significant

difference between the average accuracy of single neural network oracle performance and

multi ANNs oracle performance for the second subject program. In addition, building single

ANNs for each output item to create a multi ANN oracles could be expensive.

Although all of previous studies show the ability of ANNs as a test oracle, they may

not be reliable when the complexities of subject programs increase because they require

larger training samples that could make the ANNs learning process complicated. A small

ANN error could increase the oracle misclassification error considerably in large software

applications. Moreover, most of these studies were evaluated by small subject programs

having small input/output domains. Therefore, the ANN was able to perform the mapping

in most of these studies. It is possible that a tiny difference exists between expected output

generated by the ANN based oracle and the correct program. These issues could happen

because of the complexity of the application under test. Consequently, generating the most

representative data sets to train the ANNs could enhance the ANN performance and reduce

the misclassification error. In addition, the structure of the network (e.g. the number of layers

and neurons) is another issue which may not be easy to decide and solve.

Zheng et al. [111] built test oracles for search engines by using association rules. The

main idea of their work is to mine implicit relations between queries and search results. They

defined a set of items of queries and search results. After that, association rules were used to

mine frequent rules between these items to construct a test oracle. The experimental results

showed that their approach mines many high confidence rules that help to understand search

engines and detect suspicious search results.

Frounchi et al. constructed automated test oracles to validate the correctness of image

segmentation algorithms by using decision trees [33]. Two different algorithms (J48 and

PART) were used to build the decision trees. In order to train the classifiers (oracles) to be
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able to distinguish between consistent and inconsistent image segmentations, their technique

used nine different attributes sets which consist of a number of measures related to volume

difference, overlap and geometrical measures. Also, the correlation-based feature approach

was used by the technique to select the attributes. The technique was able to achieve an

average accuracy of approximately 90% during the evaluation phase. Yilmaz et al. used

hybrid program spectra to train a decision tree classifier (J48 algorithm) that distinguishes

passing and failing executions [109]. They used six types of program spectra. The first three

program spectra are collected using hardware performance counters: (1) TOTINS counts

the number of machine instructions executed; (2) BRNTKN counts the number of branches

taken; (3) LSTINS counts the number of load and store memory instructions executed. The

three remaining spectra are gathered using traditional software profiling: (1) CALLSWT

records the functions invoked; (2) STMTFREQ counts the number of times the source code

statements are executed; (3) TIME measures execution times of functions at the level of

nanoseconds. The experimental results showed that hybrid spectra can be used to build a

reliable classifier to distinguish failed executions from successful executions.

Parsa et al. [76] trained a support vector machine (SVM) to detect faults during the

execution of subject programs. The proposed method was performed in two main phases:

training and deployment. The training phase consisted of three steps: instrumentation,

execution and learning. In the instrumentation step, probes are inserted before the branch

statements or the locations within the program code where the value of predicates may

change. In the execution step, the test cases are run against the instrumented original program

code and the defective program code to generate failing and passing executions. At each run

for each instrumented point within the program a separate vector is built. In the learning

step, a SVM model is built by using predicate vectors obtained from the previous step. The

detection accuracy for the model was between 80% - 90%. The work was extended by using

a SVM with a customised kernel function to measure the similarities between passing and

failing executions, represented as sequences of program predicates [75]. The fault detection

accuracy of the proposed approach was 63% (83 bugs were revealed out of 132 bugs).
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Lo et al. [54] proposed a new technique to classify unknown executions. Their tech-

nique first mined a set of discriminative features capturing repetitive series of events from

program execution traces. After that, feature selection was performed in order to select

the best features for classification. Then, these features were used to train a classifier (a

support vector machine) to detect failures. Three kinds of frequently encountered bugs were

injected (omission bugs, additional bugs and ordering bugs). Omission bugs are those where

methods/functions that should have been invoked were absent. Additional bugs are those

where methods/functions were invoked but were unnecessary and caused a failure of the

execution run. Ordering bugs are those methods/functions that are called out of sequence.

The experimental results showed the utility of the technique in capturing failures and anoma-

lies; the classification accuracy rate ranged between 86.26% and 99.94%. However, the

technique worked well with omission and additional bugs but poorly with ordering bugs,

and the results showed that the proposed techniques outperformed the baseline approach by

24.68% in accuracy.

Other learning algorithms were used by Haran et al. [44] to classify execution data

collected from applications in the field as coming from either passing or failing program

runs. They used a statistical learning algorithm called random forests to model and predict

the outcome of an execution based on the corresponding execution data (random forests

is an ensemble learning method which builds a robust tree based classifier by integrating

hundreds of different tree classifiers via a voting scheme). More specifically, the technique

built a model by analysing execution data collected in a controlled environment by executing

a large set of test cases in-house. It then used this information to lightly instrument numerous

instances of the software (i.e., capture only the small subset of predictors referenced by the

model). These lightly instrumented instances were then distributed to users who ran them in

the field. As instances run, the execution data were fed to previously built model to predict

whether the run is likely to be a passing or failing execution. Three types of execution data

were used to build the model such as statement count (the number of times each basic block

is executed for a given program run), throw count and catch count (throw counts measures the

number of times each throw statement is executed in given run, and catch counts measures
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the number of times each catch block is executed) and method count (the number of times

each method has been executed for a given program run). The experimental results suggested

that it is possible to classify a binary program outcome using various kinds of execution data.

However, statement counts and method counts succeeded in building a classification model

with higher accuracy compared to the classification model built using throw counts and catch

counts.

The previous work was extended by proposing two different classification techniques

which can build models with significantly less data than that required by first technique

(random forests) but maintaining the same accuracy [43]. One of these techniques, called

association trees, is based on the random forest algorithm. The technique has the following

three stages: (1) the predictors are transformed into items that are present or absent; (2)

association rules are found from these items; (3) a classification model is constructed based

on these association rules. The technique was able to build a reliable model by using less

than 10% of the complete execution data. Each instance collects a different subset of the

execution data, chosen via uniform random sampling. The other technique is an adaptive

sampling association tree and was also able to build reliable models based on a small fraction

of the execution data. However, the adaptive sampling association tree has the ability to adapt

the sampling over time so as to maximise the amount of information in the data. Overall, all

three techniques performed well with overall misclassification rate typically below 2%.

All of proposed approaches under this category performed reasonably well but they

require an accurate and reliable oracle to train the model (a large set of passing and failing

executions) which might be difficult to obtain this oracle in real software testing scenario.

In addition, most of proposed approaches were evaluated on a small systems which make it

difficult to generalise their results and ability with larger and complex systems.

Semi-supervised Learning Techniques: Semi-supervised learning techniques have not

yet been used to construct automated test oracles according to the existing literature [9, 77].

This subsection presents related work that uses semi-supervised learning techniques to

support other software engineering tasks (e.g. reverse engineering and bug localisation) but

not specifically aim for anomaly detection or automated oracle creation. However, these
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works may potentially be useful for the purpose of constructing automated test oracles.

Note that some of the related work in this subsection combines supervised learning with

unsupervised learning, thus can be considered as semi-supervised learning. For instance,

clustering (unsupervised learning) is often performed as a preliminary step in the data mining

process; with the resulting clusters being used as further inputs into different techniques

downstream such as a (supervised) neural network (it is often helpful to apply clustering

analysis first to reduce the search space for the downstream algorithm).

Podgurski et al. built a system which would cluster bugs represented by a failed test that

had the same cause [81]. Their system worked based on the analysis of the execution profile

that corresponded to reported failures of the test. Their system also combined supervised and

unsupervised learning strategies. The supervised learning strategy (logistic regression) was

used to identify the program execution features in the profile such as the execution count for

each function in the program. The feature selection was decided by generating candidate

feature sets and used each one to create and train pattern classifiers to distinguish failures

from successful executions, then selected the features of the classifier that performed best

overall. The study reported that the execution count for each function in the program was the

selected feature. The unsupervised learning strategy (cluster analysis) was used to analyse

the execution profiles of reported failures. The experimental results showed that over 70% of

automatically generated clusters appear to have the failures with the same cause clustered

together.

Francis et al. proposed two new tree-based techniques for refining an initial classification

of failures [31]. The first of these techniques was based on the use of dendrograms which

are tree-like diagrams used to represent the results of hierarchical cluster analysis. Their

dendrogram-based technique for refining failure classification was used to decide how

non-homogeneous clusters should be considered for merging. The second technique for

refining an initial failure classification relied on generating a classification tree to recognize

failed executions. A classification tree was constructed algorithmically using a training set

containing positive and negative instances of the class of interest. The experimental results

indicated that both techniques were effective for grouping together failures with the same
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or similar causes. All techniques were aimed at bug localisation by identifying groups of

failures with closely related causes among a set of reported failures based on user feedback.

Bowring et al. proposed an automatic classification of program behaviours using execu-

tion data [16]. Their approach is aimed at reverse engineering a more abstract description of

systems behaviour, rather than aiming to detect software defects. Their work focused on an

active learning approach (rather than batch learning approach), where, for each iteration of

learning, the classifier is trained incrementally on a series of labelled data elements and then

applied to series of unlabelled data to predict those elements that most significantly extend

the range of behaviours that can be classified. These selected elements are then labelled and

added to the training set for the next round of learning. Their technique builds a classifier

for software behaviour in two stages. Initially, a model of individual program executions

was built as a Markov model by using the profiles of event transitions such as branches (a

binary matrix was used to transform data to a suitable set of feature vectors). Each of these

models thus represents one instance of the program’s behaviour. The technique then used

an automatic clustering algorithm to build clusters of these Markov models, which then to-

gether form a classifier tuned to predict specific behavioural characteristics of the considered

program. The proposed technique was evaluated by conducting three empirical studies that

explore a scenario illustrating automated test plan and augmentation. The scenario showed

how their technique could reduce the costs and help to quantify the risks of software testing

and development. The experimental results showed that the trained classifier on an active

learning approach had a very high classification accuracy rate: up to 97.7%.

Mao et al. [57] used the Markov model approach proposed by Bowring et al. [16] with

clustering analysis to aid fault localization. The methodology starts by using a Markov model

and the profiles of event transitions such as branches to depict program behaviours. Based

on the obtained model, the dissimilarity of two profile matrices is defined. After separating

the failure executions and non-failure executions into different subsets, iterative partition

clustering and a new sampling strategy called priority-ranked n-per-cluster are employed to

extract representative failure executions. Note that the clustering and sampling strategy were
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performed on the failure execution subset in order to choose the most representative sample

of failures to reduce the debugging effort.

Baah et al. proposed a new machine learning technique that performed anomaly detection

during software execution [7]. A Markov model was trained on trace predicate information

and the Baum-Welch algorithm was used to find unknown parameters for the Markov model.

Probes were inserted into the subject program to sample tuples in the form of <class name,

method name, line number, predicate state>. These tuples were used to train a Markov model.

Clustering of predicate states was used also in the training phase to gather predicate state

information based on the line number and method number. In the line number clustering, all

predicate states generated at an instrumented line number are grouped into one cluster. In

method clustering, all predicate states belonging to a method are grouped into one cluster.

The subject program along with the Markov model were then deployed together to detect

faults as they occur and to possibly perform fault correction actions to prevent failures. The

experimental results showed that the proposed technique performed well with domain faults

with accuracy up to 100% in some cases. However, the technique did not perform well with

computation error with accuracy less than 50% and dropping to 0% in some cases. The

authors pointed out to a few efficiency issues such as the time required to build such model

especially in the presence of a large test suit, the cost of incrementing the software to gather

more information without incurring a significant overhead and how quickly the model can

track the execution of the software.

Overall, semi-supervised learning techniques performed reasonably well in the area of

bug localisation and reverse engineering. However, they deal with different problems to the

one in this thesis. In traditional semi-supervised learning techniques, a small proportion of

the test data is labelled as passing or failing and used along with unlabelled data to build a

classifier (the same scenario used in this research). On the other hand, some of proposed

approaches under this category combined supervised learning technique (Markov model)

with unsupervised learning technique (clustering technique) which can be considered as

semi-supervised learning approach. The most important factor is the generalizability of the
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experimental results for all proposed approaches as small subject programs were used during

the evaluation phase.

Unsupervised Learning Techniques: Similar to semi-supervised learning techniques, un-

supervised learning techniques have not been intensively investigated to construct automated

test oracles (according to the existing literature [9, 77]). This subsection presents related

work that uses unsupervised learning techniques to support other software engineering tasks

(e.g. software estimation reliability and test case selection) and they did not aim for anomaly

detection or automated oracle creation.

Podgurski et al. proposed a new approach to reducing the manual labour required to

estimate software reliability [79]. The approach combined the usage of automatic clustering

analysis along with a stratified sampling strategy. The proposed approach was divided

into two stages. In the first stage, automatic cluster analysis techniques (partitioning and

hierarchical clustering methods with Euclidean distance and Manhattan distance metrics)

were used to group execution profile data with similar features (the execution counts of

conditional branches). In other words, the clustering was aimed at grouping similar executions

together under the assumption that erroneous executions would be clustered separately from

the correct ones. In the second stage, a stratified sampling strategy was used to reduce the

sample size necessary to estimate reliability with a given degree of precision; the sampling

here was used to identify which clusters represented failing executions, by selecting a data

point from each cluster and determining if they were errors or not. The same study was

replicated by Podgurski et al. by performing additional experiments with larger subject

programs [80]. The aim of both studies was reduce the number of program executions

that must be checked manually for conformance to requirements. The main assumption

in both studies was that it is often possible to profile a population of executions so that

a significant number of failures (failed executions) exhibit unusual profiles that can be

revealed by multivariate data analysis, provided the software does not fail too frequently. The

experimental results in both studies showed that the proposed approach in the first study was

able to find clusters that exhibit unusual profiles with an average performance 58.681% for

all subject programs, and 41.557% for all subject programs in the second study. In addition,
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they also showed that stratified sampling was more efficient than simple sampling in most

cases.

Dickinson et al. performed two different studies to investigate the use of clustering

techniques for finding failures in software [24, 25]. In the first study, their technique involved

profiling the executions induced by the original test cases and then applying an automatic

agglomerative clustering algorithm. The sets of feature vectors were obtained by using

different dissimilarity metrics (binary, proportional, standard deviation, histogram, linear

regression, count binary and proportional binary metrics). Executions were clustered based

on function caller/callee profiles. Execution samples after clustering were selected based

on different sampling strategies (simple random, one-per-cluster, adaptive and n-per-cluster

sampling strategies). The sampling strategies were used to choose the best samples which

may contain failures from the whole cluster population. The experimental results showed

that the percentage of failures found in the smallest clusters is significantly higher than

50%. The results suggested that one-per-cluster, adaptive and n-per-cluster sampling were

more effective than simple random sampling in terms of finding failures. However, adaptive

sampling was the most effective sampling strategy. In the second study, the previous work

was extended by performing more experiments. The aim of the study was to confirm the

experimental results for previous study, and also to investigate the distribution of failures in

all clusters. The study proposed a new sampling strategy to find such areas called failure-

pursuit sampling. The analysis of nearest-neighbour distance and Gaussian influence were

the main idea behind of failure-pursuit sampling. In this sampling strategy, once a failure is

detected in the initial selected sample of executions profiles additional executions are selected

in the surrounding area of any failures found in the initial sample; this process is repeated

until no failures are found. These additional executions were selected based on the density of

surrounding neighbours. The experimental results for failure-pursuit sampling showed that

failures were typically isolated from the other executions.

Masri et al. [60] presented an empirical study of several test case filtering techniques that

are based on exercising various types of information flows. Coverage based and distribution

based techniques were the main test case filtering approaches employed. A coverage based
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approach selects test cases to maximize coverage of particular program elements, whereas

a distribution based approach selects test cases to span the range of behaviors exhibited by

the original test cases. In both approaches, test cases are characterized by execution profiles.

Both approaches also were compared to other filtering techniques based on exercising simpler

program elements such as basic blocks, branches, function calls and call pairs with respect

to their effectiveness for revealing defects. Their empirical study showed that coverage

maximization and distribution based filtering techniques were more effective overall than

simple random sampling. In addition. distribution based filtering techniques did not perform

significantly better than coverage maximization overall.

Yoo et al. also used a clustering approach to the problem of regression test optimisation

[110] where test cases were clustered based on their dynamic runtime behavior (execution

traces). Their work showed that the clustering approach outperformed the coverage based

approach in terms of fault detection rate.

Yan et al. proposed a dynamic test cluster sampling strategy called execution spectra

based sampling (ESBS) [104]. In their sampling strategy, a suspiciousness value is calculated

for each test case. If the suspiciousness value is larger than the predefined threshold then the

corresponding test is considered to be a possible failed test. Otherwise, it is considered to

be a possible passed test. After that, the sampling strategy selects a possible failed test with

maximum suspiciousness value from the cluster. Then, it uses the inspection result (the real

pass or fail information) and the execution spectra information of the selected test to update

the suspiciousness values for the remaining tests in the same cluster. The selection process is

continued until no failed test in the cluster remain. The authors claim that their sampling

strategy is more effective than existing test cluster sampling strategies [24, 25].

Generally, unsupervised learning techniques (mainly clustering algorithms with sampling

strategies) were widely used in the area of software estimation reliability and test case

selection. This has a strong influence on the work presented in this thesis on constructing

automated test oracles using unsupervised learning techniques (mainly clustering algorithms),

but an intensive experimental evaluation on this aspect is needed with deep analysis to test

their general applicability as test oracles.
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2.4.2 Test Oracles Based on Invariant Detection

Program behaviours can be automatically checked against the given invariants for violations.

Therefore, invariants can be used as test oracles to distinguish between the correct and

incorrect output. Invariants are often inserted into the code by the developers but this again

can be a costly exercise and an additional burden at the time coding. The Daikon tool can be

used to learn and infer invariants from program executions dynamically by using a collection

of inputs (test cases), monitoring key values (class attribute, method entry and exit points,

loop invariants etc.) and then making inferences from this large set of observations [29, 30].

Pacheco et al. [73] developed the Eclat tool which used Daikon to infer operational models

from a set of correct executions and derive test oracles based on properties of the operational

models. The input for Eclat tool is a set of classes to test and an example program execution

(a passing test suite). The output for Eclat tool is a set of JUnit test cases, each containing

a potentially fault-revealing input and a set of assertions at least one of which fails. The

experimental results showed that Eclat successfully generated inputs which exposed fault

revealing behavior.

Hangal and Lam used dynamic invariant detection to find program errors (the DIDUCE

tool)[42]. Similar to Daikon, DIDUCE tries to extract invariants dynamically from program

executions. However, instead of presenting the user with numerous invariants found after a

program execution, DIDUCE continually checks the program behavior against the invariants

hypothesized up to that point in the program run(s) and reports all detected violations.

When a dynamic invariant violation is detected, the invariant is relaxed to allow for the

new behavior and program execution is resumed. Their experimental evaluation showed

that DIDUCE is effective in detecting hidden errors and finding the root causes of complex

programming errors. Their experimental results also showed that DIDUCE is able to find

bugs that result from algorithmic errors in handling corner cases, errors in inputs, and

developers misconceptions of the APIs. The authors claimed that DIDUCE can be used to

help programmers to locate bugs in unfamiliar code and, sometimes even in code that have

not been instrumented.
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Similarity to Pacheco et al. [74] and Hangal et al. [42], Brun and Ernst [17] proposed

a new approach for finding program properties that indicate errors. The technique used

a combination of machine learning algorithms (Support Vector Machines and Decision

Trees) and dynamic invariant detection (mainly Daikon [30]). Daikon was used to obtain

the program properties and machine learning algorithms to classify those properties. The

technique comprised two stages: training and classification. In the training stage, machine

learning algorithms were trained on properties of erroneous programs and fixed versions

of them. As consequence, model fault revealing properties are generated which are true of

incorrect code and not true of correct code. In the classification stage, the user supplies the

generated model with properties of his or her code, then the model selects those properties

that are most likely to be fault revealing. The main goal of the technique was to help

programmers in locating errors in code by automatically providing the programmers with

properties of code that are likely to be fault revealing. Their experimental evaluation showed

that the proposed approach (Faults Invariant Classifier) effectively classifies properties as fault

revealing. Ranking and selecting the top properties was more advantageous than selecting all

properties considered fault revealing by the machine leaner. For C programs, on average 45%

of the top 80 properties were fault revealing; for Java programs, 59% of the top 80 properties

were fault revealing.

A second class of approaches under this category are the ones that focused on finite

state model inference. The Synoptic tool developed by Beschastnikh et al.[13, 86] helps

developers by inferring from log files a concise and accurate system model focusing on

generating invariant-constrained models. The main component of Synoptic tool is the use

of three types of mined temporal invariants to guide the model space exploration. Their

evaluation showed that the Synoptic tool always makes progress and always finds a model

that satisfies the mined invariants. Their case studies showed that Synoptic graphs improved

developer confidence in the correctness of their systems, and were useful for finding bugs.

Lorenzoli et al.[55] combined the ideas of invariant detection and temporal property

mining and developed a dynamic analysis algorithm (the algorithm called GK-tail) for

extracting software behavioral models. GK-tail algorithm constructs an Extended Finite State
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Machine (EFSM) from a set of dynamic traces. The transitions in these extended models

include called functions or methods and a set of constraints on the parameters or environment.

However, the main threat to validity is that the performance of proposed algorithm depends

on the quality of the test suites used to produce EFSM models (all dynamic models have a

similar problem).

Selar et al. [87] proposed an approach to learn Finite State Automata (FSA) by using

sequences of systems call. Their approach deals with system security and aimed at detecting

anomalous sequences of system calls which are likely to point to intrusion attempts and

malware. Their experiments showed that the training periods needed for FSA based approach

are shorter compared to the existing learning algorithm (N-gram algorithm) that have been

used in the same area (intrusion detection). Moreover, the FSA based approach can detect

a wide range of attacks and also produces much fewer false positives than the N-gram

algorithm.

A third class of approaches under this category are the ones that exploited temporal

dependencies between events to mine control flows under a high amount of interleaved

traces [12]. Perracotta, developed by Yang et al.[106], infers temporal properties (in the

form of pre-defined templates involving two API calls) from program executions. They

applied Perracotta to infer temporal rules for the Windows kernel APIs where it successfully

inferred 56 interesting properties. The authors also used the ESP verifier (a validation tool

for typestate properties [97]) to check the inferred properties and found many previously

undetected bugs in Windows.

Gabel and Su proposed an approach which used a sliding-window queue method over

dynamic sequences of API method calls during the program execution to mine two-letter

regular expressions [35]. Their approach was evaluated on a set of commonly used java

programs and found that it learns and fully verifies a large set of temporal properties with an

acceptable overhead. Their evaluation showed that the approach was able to reveal previously

unknown defects and code smells. The approach maintained a high degree of precision.

Nguyen et al. [69] investigated the existing related work under this category and classified

the main approaches that can be used as automated test oracles to three types: (1) Data
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Invariants; (2) Temporal Invariants; (3) Finite State Automation (FSA). They selected an

oracle from each type based on their characteristics, popularity and supporting tools (Daikon

[30] for data invariants, KLFA [59] for FSA and Synoptic [13] for temporal invariants). They

studied the false positive rate and fault detection of those selected oracles. Their empirical

results showed that automated test oracles can detect several real faults. However, the fault

detection capability of those oracles comes at the price of a quite high false positive rate

(30% on average). The high false rate makes the balance between practical benefits (revealed

faults) and costs for manual assessment of the false alarms unclear.

Generally, most of test oracles under this category assumed that the fault free version

of the SUT is available in order to train the oracle before using the oracle to detect faults

(often difficult to obtain in practice). It must be stressed that the research presented in this

thesis is not dealing with test oracles in this category (invariant detection) but they have been

included as they may provide a useful basis for empirical comparison.

2.5 Discussion

In terms of their application in practice, the most important properties that test oracles need

to demonstrate are scalability, fault detection ability, false positive rate and cost effectiveness.

Each of those properties is explained further below:

• Scalability means the ability of any technique to handle any size of software (with

corresponding increases in the volume of data). In other words, a technique has to be

potentially usable at an industrial level.

• Fault detection ability refers to the effectiveness with which new (unseen) faults

occurring in running application are identified.

• False positive rate is the rate of false alarms reported by test oracles. This can be

considered as the biggest issue with automated oracles. When such a rate is intolerably

high, any problem reported by automated oracles will be deemed unreliable and ignored

by developers.
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• Cost effectiveness takes into consideration the effort and resources required to create

an oracle in relation to its ability to reveal subtle semantic failures.

Generally, all those properties are complementary to each other and can affect the usability

of any test oracle in practice. The ultitmate goal of the software testing community is to find

a test oracle that can be used to test any system, and is able to find all failures with a low

false positive rate at an acceptable cost.

Test oracles based on supervised learning techniques have been widely used to build an

automated test oracles. They have shown that they are able to test any system with any size

which makes them scalable. They also tend to display a powerful ability to detect failures

with a very low false positive and false negative rate (in other words a high classification

accuracy). However, their effectiveness depends on the availability of a fully labelled training

data set (each instance in the training data set has to be labelled as a pass or failing test

execution) to construct the oracle. Labelling each instance in the training data set can be an

expensive process and typically relies on using a reference version of the software (which is

difficult to obtain in practice), making them prohibitively expensive and not cost-effective.

Test oracles based on invariant detection have also been discussed on the related work

section because they have machine learning at their core. Those approaches can be used to

test any system with any size but they require a fault free version of the software under test

to construct the oracle which is difficult to obtain in real world testing scenario. As with

supervised learning, this can affect the cost-effectiveness of these approaches. Test oracles

based on invariant detection are effective at finding failures but tend to suffer from quite a

high false positive rate.

2.6 Conclusions

This chapter discussed several approaches to build automated test oracles based on anomaly

detection techniques (machine learning and data mining techniques), and also based on

invariant detection. Some other approaches were also presented only briefly because they are
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out of the scope for this research. The review has identified out to the following principal

findings:

• Anomaly detection approaches are potentially applicable for automated test oracles but

different machine learning and data mining techniques with different set of features

(dynamic execution data) give mixed results in terms of detection accuracy. Classifica-

tion strategies (supervised) are reported to be more effective compared to clustering

(unsupervised) but have the disadvantage of relying on the availability of accurate

labels and a large training set for various normal and anomaly classes, which is often

not feasible.

• Different types of dynamic execution data have been used as a set of features to

build anomaly detection models including the execution count of conditional branches,

function caller/callee profile, execution count for functions or methods, profiles of event

transitions, predicate state information, inputs/outputs, throw counts, catch counts and

execution traces. The experimental results in some studies showed that the execution

count of conditional branches and of functions or methods is more suitable to build an

effective model compared to throw count and catch counts.

• Different approaches have been used to transform dynamic execution data to a suitable

set of feature vectors for anomaly detection such as binary metric, proportional metric,

standard deviation (SD) metric, histogram metric, linear regression metric, count binary

metric and proportional binary metric. The binary metric is the most commonly used

approach.

• Test oracles based on invariants detection can easily generate many false alarms.

The review showed that unsupervised and semi-supervised learning techniques have not

been investigated intensively for building test oracles for automated software fault detection

but do show elements of promise in this respect, thereby justifying the choice of research

area. The review suggests that more empirical work is required to explore their general

application. Therefore, the next two chapters will present an empirical investigation for both
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semi-supervised and unsupervised learning techniques to build automated test oracles by

using input/output pairs and execution traces. Both approaches will also be compared to test

oracles based on invariant detection techniques.



Chapter 3

Automatically Classifying Test Results by

Semi-Supervised Learning

3.1 Introduction

The literature review in the area of test oracles motivates the need for further experimentation

on semi-supervised machine learning techniques used to build test oracles. Self-training, co-

training and co-EM (Expectation Maximisation) have been chosen for further investigation

as those are the techniques that are sparking popular interest amongst academic researchers

in the area of document classification and web classification. Furthermore, self-training, co-

training and co-EM (expectation maximisation) were also reported to be better for prediction

in the area of document classification and web classification.

The main purpose of the work is to investigate the use of semi-supervised learning

techniques to classify passing and failing tests. A small proportion of the test data is labelled

with a large proportion of unlabelled test data and the learning algorithms use this (both

labelled and unlabelled data) to build a classifier which is then used to label the remaining

data (i.e. classifying it as being either a passing or failing test). A range of learning algorithms

are investigated using several versions of three systems along with varying types of data

(initially just input/output pairs and then input/output pairs with their corresponding execution

traces) and different labelling strategies (both failing and passing tests, and just passing tests
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alone). Moreover, the work explores the optimal number of labelled data (i.e. a subset of

the input/output pairs labelled as correct) to employ in relation to the program domain to

generate an effective oracle. In addition, any other practical issues that arise when applying

semi-supervised learning to the test oracle area are observed.

3.2 Methodology

3.2.1 Semi-Supervised Learning

The principle of semi-supervised learning is that the learning algorithm is fed a labelled

subset of the data - instances for which the correct classification is known - and from this

builds a model which is then used to classify the remaining (unlabelled) data. There is a clear

trade-off between the accuracy of the classifier and the volume of data used in training, and

the challenge is to build the most effective classifier from the smallest amount of data. For

techniques that operate in semi-supervised approach there are two possible scenarios [18].

The first scenario is that the training data has a small set of labelled instances from both the

abnormal/anomaly class and the normal class [22] [21], and the second is that the training

data has labelled instances for only the normal class.

At first sight it may appear unusual to try and employ the first scenario to identify software

failures. After all, if testers are able to label a failure then why bother looking for it? However,

there are several scenarios where this approach could be employed. For example, failures

may be available from a previous version of the software, or there may be many faults in the

system and an initial subset which has been observed and classified and may then be used to

build a model to detect the remainder, or the failures may be artificially created by seeding

the SUT with faults in much the same way as mutation testing.

For the second scenario the training data has labelled instances for only the normal class -

this would correspond to a subset of passing test cases in this work. Since such techniques

do not require labels for the abnormal class they are therefore more widely applicable. This

approach has been successfully used to detect faults in space craft where an abnormal class

would signify an accident which is not easy to model [34]. Therefore, the model was built
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for the class corresponding to normal behaviour only and used to identify anomalies in the

test data.

There are two types of semi-supervised learning categorised according to the prediction

goal: inductive learning where the goal is to predict unseen data which were not available

during the training; and transductive learning where the goal is to predict the unlabelled data

which were available during the training. This research is focused in transductive learning –

trying to predict whether unlabelled data items correspond to a passing or failing output.

3.2.2 Semi-Supervised Learning Algorithms

Three approaches to semi-supervised learning are explored in this research: self-training,

co-training and co-EM (expectation maximisation).

Self-Training

The basic principle behind self-training is firstly to train a classifier on the small set of

available labelled data and then use this to classify the large remaining set of unlabelled

ones. This process may be performed iteratively as outlined in Algorithm 1 [68] - at each

stage the classifier that has been bootstrapped with the labelled data (training set) labels

the remaining data and adds those in which it has the most confidence to the training set.

This updated training set is then used to build a new classifier which is then applied to the

remaining unlabelled data, and so on... The self-training algorithm can be thought of as a

wrapper algorithm, as it itself takes an algorithm as a parameter which it uses to build the

classifier at each stage. A popular and robust approach (which has shown to perform well in

the domain of document classification for example [71]) is to combine the Naïve Bayes and

EM (expectation-maximization) algorithms: the initial classifier is built using Naïve Bayes

and the extension to the unlabelled data at each stage of the iteration is handled by EM.
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Algorithm 1 Pseudo code for the self-training algorithm
Input: Labelled data DL, unlabelled data DU , and a supervised learning algorithm A.

Step 1: Train a classifier c using labelled data DL with A.
Step 2: Label unlabelled data DU with c.
Step 3: For each class C, select an example which c labels as C with high confidence, and
add it to the labelled data DL.
Step 4: Repeat 1–3 until it converges or no more unlabelled data DU left.

Output: c

Co-Training and co-EM

Approaches based on co-training assume that the features describing the object can be

divided in two independent subsets: perspectives that individually are sufficient to train a

good classifier. Two classifiers - one for each perspective - are created using the initial set of

labelled data and then iteratively trained as described by Algorithm 2 [68]. At every iteration

each classifier contributes the newly labelled data with the associated highest confidence

to the labelled set which is then used as training data for the next iteration. In this way the

two classifiers teach each other with a respective subset of unlabelled data and their highest

confidence predictions [15].

Co-EM also operates with two perspectives but takes a different approach at each stage

of the iteration. The first classifier is trained on the labelled data and then used to prob-

abilistically label all the unlabelled data (not just the those elements in which it has the

highest confidence). The second classifier is trained on both labelled data and the unlabelled

data which has been tentatively labelled by the first classifier, and it in turn probabilistically

relabels all the data for the first classifier to use. The process iterates until the classifiers

converge [70].

In this research two implementations of the co-training algorithm were explored: one

using Naïve Bayes and the other a Support Vector Machine with a Radial Basis Function

(RBF) kernel. One instance of the co-EM algorithm was used which also employed the

Support Vector Machine with a RBF kernel. Those implementations represent the most
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successful technology for text/web categorization which is the main reason for using them in

this research.

Algorithm 2 Pseudo code for the co-training algorithm
Input: Labelled data DL, unlabelled data DU , and a supervised learning algorithm A.

Step 1: Train a classifier cF using the feature set F of each example with A.
Step 2: For each class C, pick the unlabelled data DU which classifier cF labels as class C
with highest confidence, and add it to labelled data DL.
Step 3: Train classifier cE using the feature set E of each example with A.
Step 4: For each class C, pick the unlabelled data DU which classifier cE labels as class C
with highest confidence, and add it to the collection of labelled data DL.
Step 5: Repeat 1–4 until it converges or no more unlabelled data DU left.

Output: Two classifiers, cF and cE

Co-training has been shown to perform well if the two assumptions about the splitting of

the feature set are true [15]: each feature should be sufficient by itself to build a good classifier

and the two features are conditionally independent of each other. These two assumptions

often may not be satisfied in real world application but it has been demonstrated empirically

[40, 70] that co-training can still be effective in such a case if the feature set is split randomly

(although not as effective as if independent perspectives are employed). In this research

the data in the second phase of experiments is a combination of input-output pairings and

method execution traces which could be regarded as distinct perspectives. However, there are

questions about their independence (the path taken by a program is a function of its input).

Therefore, a random split for the data into two subsets for both co-training and co-EM was

chosen. This allows for a more direct comparison between experiments.

As mentioned earlier, both self-training and co-training make use of the confidence of

prediction as selection criterion during the labelling process to decide which of the unlabelled

samples should move to the labelled set. However, as well at the prediction confidence this

step should also make use of the class distribution - the split between positive and negative

examples (passing and failing outputs in this work), and try and maintain this proportion

during the selection process. For instance, if the positive to negative class ratio in the labelled

data set is 3:1, after the unlabelled data are classified by the classifier, then 3 “positive”
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examples and 1 “negative” example with the highest predicted posterior probabilities will be

selected in each iteration.

3.3 Experiment Design

A series of experiments was conducted to assess the effectiveness of the algorithms and

scenarios presented in the previous section in terms of accuracy of classification of test

data (unlabelled data). Two different studies were performed with two different types of

execution data: in the first study a set of input/output pairs was used as input to classifiers; in

the second study input/output pairs were augmented with their associated execution traces.

Along with this the two common scenarios employed by semi-supervised learning algorithms

was explored: labelling both normal and abnormal data, and labelling normal data alone. For

both these scenarios different proportions of labelled data were investigated. This section

describes the framework used to design these experiments.

3.3.1 Subject Programs

Versions of three subject programs were used in this research: the NanoXML XML parser,

Siena (Scalable Internet Event Notification Architecture) and Sed (stream editor). All systems

are available from the Software Infrastructure Repository (SIR)1, are non-trivial systems,

have several versions with well-documented faults, and also come with test suites – an

important factor as having sets of good with representative coverage of operation profile, but

comprehensive and also independently created, tests is vital for this experiment.

NanoXML

NanoXML is a non-GUI based XML parser written in Java. NanoXML contains a component

library and an application, JXML2SQL, which takes as input a XML file and either transforms

it into a html file and showing the contents in tabular form or into a SQL file. NanoXML

has 24 classes, 5 versions (although the fourth version was excluded as it contains no faults),

1http://sir.unl.edu/portal/index.php
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each containing multiple faults – 7 in each of versions 1-3 and 8 in version 5 – and 214 test

cases. The error rates in all faulty versions ranged from 31% to 39% (the error rate is the

proportion of the supplied test cases which will fail due to the seeded faults).

Siena

Siena (Scalable Internet Event Notification Architecture) is an Internet-scale event notification

middleware for distributed event-based applications deployed over wide-area networks. Siena

is responsible for selecting notifications that are of interest to clients (as expressed in client

subscriptions) and then delivering those notification to the clients via access points. Siena

contains 26 classes (9 in its core and 17 which constitute an application), 567 test cases and

7 faulty versions: 3 with single, and 4 with multiple ones. Versions with multiple faults

(V1,V3,V5 and V7) have been excluded from this experiment for the time being because of

the absence of a fault matrix (a simple way of establishing which test cases are responsible

for revealing which fault). Therefore, only V2, V4 and V6 are included in the experiment,

each having a single fault and an error rate of 17%.

Sed

Sed (stream editor) is a Unix utility that parses and transforms text by using a simple compact

programming language. Sed takes text input in the form of commands and a text file, performs

some operation (or set of operations) on the text file, and outputs the modified text. Sed is

typically used for extracting part of a file using pattern matching or substituting multiple

occurrences of a string within a file. Sed is written in C and has 225 functions, 370 test

cases and 7 versions with multiple faults. However, only one version was included in the

experiment (version 5 which has 4 faults and an error rate of 18%).

3.3.2 Experiment Set-up

The main components of the experiments were: a set of programs with known failures, a set

of test inputs for each program, a way to determine whether an execution of each test was
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successful or not (passed or failed), and a mechanism for recording the execution trace taken

through the program by each test. Each of these steps is described in more detail below.

Input/Output Pair Collection

All subject programs come with Test Specification Language (TSL) test suits and tools to

run these automatically (details are available from the SIR repository and the article by Do,

Elbaum and Rothermel [26]). Test cases which failed to produce any output were discarded.

Failure to produce an output occurred in a small number of cases where the input file was

missing from the test suite, and consequently no output file was produced: 7 out of 214 for

NanoXML, 73 out of 567 for Siena, and 7 out of 370 for Sed, giving final test case numbers

of 207, 494 and 363.

Execution Trace Collection

Daikon2[30] was used to instrument the subject programs in order to collect the execution

traces. For all subject programs, each test case was executed along with its input to produce

one trace with one output. Daikon allows programs to be monitored and traced at varying

levels of granularity, but for this work sequences of method invocations (entry points) and

method exits in the order they occurred during test execution were extracted.

Identification of Failures

Both NanoXML and Sed systems come with matrices which map test cases to failures

corresponding to faults and makes the identification of faults effectively automatic. Siena

has no such fault matrix so the test outputs of the original version was compared with that of

the faulty ones to find the failing tests.

Data Transformation

To be acceptable to the various machine learning algorithms, the data requires processing

before it can be analysed. The processing procedures differ from one data type to another – for
2http://plse.cs.washington.edu/daikon/
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instance numeric data sometimes requires normalisation. All systems used in the experiment

work with textual input and produce textual output. Very often there is little semantic

information in such data and a lot of noise, so to minimise the content (and redundancy)

but still retain any uniqueness, the data (input/output pairs) was transformed by a simple

process of tokenisation. The tokenisation method is widely used in the area of text mining

to produce a suitable set of attribute vectors to build a classification model (a problem not

dissimilar to the one this thesis is dealing with), and is also suggested by Witten and Frank

[103]. Several transformation methods such as hash coding, Huffman coding and others were

examined, but tokenisation turned out to be the most suitable one, and also performed well

with clustering algorithms for a similar problem [82]. Table 3.1 shows an example of this for

both NanoXML and Siena. Notice that the parameters for Siena commands were all encoded

as "1" as they remained unchanged between input and output.

The Sed data (input/output pairs) is a command line which contains 2 main parts with

very specific information: parameters (operations to perform) and a text file (input / modified

text file as output). Therefore, the data was transformed in slightly different way compared

to NanoXML and Siena. For instance, all input components remained unchanged except the

text file (../inputs/default.in) encoded as "<1>" as the file has only the text to be modified.

For the output part, the diff utility (a data comparison tool) was used to calculate and display

the differences between the original text file and the modified form (this process reports how

to change the first file to make it match the second file with specific operations that need to

be performed such as "a" for add and "c" for change). Table 3.1 shows an example of this

coding stratgy.

Each input/output pair was augmented with their associated execution traces in the second

study. Sequence traces for the Java systems are often very long, and each entry in a sequence

is often a full Java method signature including package name, class name, method name, and

parameters (along with their respective long signatures). Sequence traces for the C system

are similar to the one generated by Java system where each entry in a sequence is often

a full C function/procedure signature including function/procedure name and parameters.

This required more compression than could be provided by simple tokenisation so the trace
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Table 3.1 Example Coding of Input/Output Pairs

Input Output

Nanoxml Flower colour="Red"
smell="Sweet" name="Rose"
season="Spring"

xml element name is: Flower

Encoding FCRSSNRSS F
Siena Filter senp{x=0}filter{x=20

y=30 z=10} Event
senp{x=0}event{x=20}
senp{x=0}event{y=30 z=10}

subscribing for filter{x=20
y=30 z=10}publishing for
event{x=20}publishing for
event {y=30 z=10}

Encoding F111E1E11 SF111PE1PE11
Sed sed -e ’s/dog/cat/’ ../inputs/de-

fault.in
the modified text file (change and
add operations)

Encoding sed-es/dog/cat/<1> 114a36c34c29c26c3|4c0a

compression algorithm developed by Nguyen et al. [69] was used. The algorithm replaces

the collections of method sequence entry and exit values with their hash keys, consisting

usually of just 1 or 2 characters. It takes into account the occurrence frequency to assign

shorter hash keys for entries that are most frequent. Table 3.2 shows a sample of sequences

for one of collected traces and their hash key values (for space reasons, just 3 sequences are

included rather than all sequences of that trace). The obtained trace from the example in this

table is 0LA37.

Finally all the data items were used in two different studies. In the first study, the input to

the classifier was input/output pairs only as a set of vectors. This vector is built from two

components: input and output, so for the NanoXML example in Table 3.1 the vector would

be :<FCRSSNRSS, F>. In the second study, the vector is built from three components:

input, output and execution trace, so for the NanoXML example from Table 3.1 above and

the generated trace shown in Table 3.2, the vector would be: <FCRSSNRSS, F, 0LA37>.

Appendix B and C provide more detail on the encoding scheme.
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Table 3.2 Example Coding of Sequence Traces

Sequence Traces Hash Keys Values

net.n3.nanoxml.XMLElement.
getFullName():::EXIT283

0L

net.n3.nanoxml.XMLUtil.skipWhitespace
(net.n3.nanoxml.IXMLReader,char,
java.lang.StringBuffer,
boolean[]):::ENTER

A

net.n3.nanoxml.StdXMLReader.
getEncoding(java.lang.String):::ENTER

37

Selection of Labelled and Unlabelled Data

Cross validation was used during the selection of labelled (DL) and unlabelled (DU ) data

to avoid bias in the choice of data. Different values were set for the size of (DL) in the

experiments ranging from 10% to 50% of data (based on a percentage of the number of

subject program test cases). The process was repeated so that every input/output pair will

appear once in (DL) during training process. Two semi-supervised learning scenarios are

explored in this research: the first is where labels are drawn from both the normal and

abnormal classes (i.e. passing and failing tests) and is termed (Scenario 1), the second is

where labels are drawn from just the normal (passing) class (Scenario 2). To try and avoid

biasing the results and also to maintain a more realistic scenario, the set of labelled failing

cases for scenario 1 was kept deliberately small. Tables 3.3, 3.4 and 3.5 show the labelled

data size and class distribution that were used during the experiments in both studies for

scenario 1 for all versions of all subject programs.

In practice, it is often difficult to obtain a training data set which covers every possible

abnormal behavior class that can occur in the data and in this case a small subset of 5 failing

executions was randomly chosen (and these in turn may appear quite distinct, as one fault

may transform the output in many different ways depending on the input). The failures to

which these correspond for the different versions of NanoXML and Sed are shown in Tables

3.6 and 3.7, and this same abnormal labelled set was used as the size of the normal labelled

set grew. For Siena there is just one failure (which again has different manifestations) so all 7
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abnormal labels related to this. As mentioned earlier, there may be other ways of obtaining

abnormal data such as from previous versions of the software or via seeded faults.

Table 3.3 Labelled training data set sizes and class distribution for NanoXML (all versions)
for scenario 1

Labelled size % Normal data Abnormal data Unlabelled data
10% (25 labelled instances) 20 5 182
20% (45 labelled instances) 40 5 162
30% (65 labelled instances) 60 5 142
40% (85 labelled instances) 80 5 122
50% (103 labelled instances) 98 5 104

Table 3.4 Labelled training data set sizes and class distribution for Siena (all versions) for
scenario 1

Labelled size % Normal data Abnormal data Unlabelled data
10% (50 Labelled instances) 43 7 444
20% (100 Labelled instances) 93 7 394
30% (153 Labelled instances) 146 7 341
40% (200 Labelled instances) 193 7 294
50% (247 Labelled instances) 240 7 247

Table 3.5 Labelled training data set sizes and class distribution for Sed (version 5) for scenario
1

Labelled size % Normal data Abnormal data Unlabelled data
10% (39 Labelled instances) 34 5 331
20% (69 Labelled instances) 64 5 301
30% (104 Labelled instances) 99 5 266
40% (141 Labelled instances) 136 5 229
50% (180 Labelled instances) 175 5 190

Also of particular interest in this research is the way the data separates into distinct

groups based on input, output and trace combinations, which may have an impact on the

effectiveness of the machine learning algorithms employed. Table 3.8 shows for each system

the number of test cases followed by the number of distinct inputs, outputs, input-output

combinations, traces, and input-output-trace information. This table will be used in the

discussion of the results.
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Table 3.6 Abnormally Labelled data items for NanoXML studies using scenario 1

Version No. Labelled failures (number of instances)
Version 1 F1 (5)
Version 2 F6 (3) and F7 (2)
version 3 F6 (3) and F7 (2)
Version 5 F1 (2) and F2 (3)

Table 3.7 Abnormally Labelled data items for Sed studies using scenario 1

Version No. Labelled failures (number of instances)
Version 5 F3 (5)

Table 3.8 Domain size for the three systems

System NanoXML (V1) NanoXML (V2, V3 and V5) Siena Sed
Total No. Tests 207 207 494 363
Distinct Inputs 57 57 37 206
Distinct Outputs 70 70 60 179
Distinct I/O Combinations 120 120 104 287
Distinct Traces 105 2 2 295
Distinct I/O/Trace Combinations 120 120 104 341
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3.3.3 Evaluation

The performance of semi-supervised learning algorithms was evaluated by using the F-

measure – a combination measure of Precision and Recall (widely used measures in infor-

mation science domain). These measures in turn rely on the concepts of true positives (TP),

false positives (FP) and false negatives (FN) which are defined in this context as follows:

TP: A failing test result classified as failing test

FP: A passing test result classified as failing test

FN: A failing test result classified as passing test

Precision is defined as the ratio of correctly classified failures to the total number of true

positive (correctly classified failures) and false positive (incorrectly classified passing tests):

Precision(PR) =
(T P)

(T P+FP)
(3.1)

Recall is the ratio of correctly classified failures to the total number of true positive

(correctly classified failures) and false negative (incorrectly classified failing tests):

Recall(RE) =
(T P)

(T P+FN)
(3.2)

The F-measure - the harmonic mean of precision and recall - combines these two as

follows:

F −measure = 2
(PR×RE)
(PR+RE)

(3.3)

In all cases these values are calculated purely on the unlabelled data instances - (DU ).

Generally, the F-measure was chosen because it is a well understood and commonly used

measure which also combines important elements of a classifier – precision and recall – into

one measure. Precision is a reflection of the false positive (FP) rate (a passing test result

classified by the oracle as failing test) and recall reflects the false negative (FN) rate (a failing

test result classified by oracle as passing test). The false positive and false negative rates are
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the most important aspect to assess the test oracle performance and those aspects are captured

by F-measure to provide a balanced view of oracle performance. The Error Rate is also a

useful measure but captures only one aspect the classifier – it’s accuracy (see the equation

below) and furthermore does not distinguish between the source of the errors - whether they

are attributable to false positive or false negatives. That said, the Error Rate was used later

on to examine the results and the significance level of the classifiers.

ErrorRate(ER) =
(FP+FN)

(T P+T N +FP+FN)
(3.4)

3.3.4 Comparison with Daikon

To try and provide some meaningful comparison regarding the effectiveness of the approach

presented in this research, a comparison with Daikon [30] is also performed. Daikon is a

popular tool in the specification mining area that can also be used as a form of automated

test oracle to identify failing outputs. Daikon is dynamic analyser that is able to infer

likely program invariants from the synthesis of program properties (e.g. key variables and

relationships) observed over several program traces. An invariant is a property that holds at a

certain point or points in a program; these are often used in assert statements, documentation

and formal specifications. Daikon instruments and runs a program, observes the values that

the program computes, and then builds assertions from inference over the collective values

of the properties observed in the traced executions. These assertions can then act as a form

of specification and subsequent executions of the program can be checked against these to

determine if the assertions still hold or are violated at some point. It must be stressed that

Daikon assumes that the system under test has a fault-free version with a large and complete

test suite on which to train the assertions – something which is difficult to obtain in reality.

In contrast semi-supervised learning has a slightly different assumption (the training data

has labelled instances for a subset of passing and failing test cases or passing test cases only

- see both scenario in section 3.2.1), and also it does not require a large and complete test

suite on which to train the model (only a small proportion of the test data is labelled as either
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passed and failed executions or only passed executions with a large proportion of the test

data remaining unlabelled).

To build the initial set of assertions Daikon was run on the non-faulty version of each

system using the same supplied set of test cases. Following this, Daikon was run on the

various versions of the program containing the seeded faults (again using the supplied test

cases) and used to establish whether there were any violations of the initially established

assertions. To confirm that Daikon detects a seeded fault (true positive), the output reports

produced by Daikon were manually inspected to find if there is any direct link between the

reports (the violated invariants) and the seeded faults (information about the seeded faults

can be found for each subject program in the SIR). A true positive is noted if the Daikon

assertions reported an alarm that is verified to point to the corresponding faults. A false

positive is recorded if the Daikon assertions reported an alarm but which does not relate

to any of the corresponding faults. If the assertions do not report any alarm when one was

expected (i.e. in response to a failure-inducing input) then this can be considered as False

Negative. These values are then used to compute the F-measure which provides a useful

point of comparison.

3.3.5 Tools and Configuration

A collective classification package (release 2015.2.27)3 for semi-supervised learning in

WEKA4 (release 3-6-12) was used in the experiments. The maximum number of iterations

in self-training and co-training is set to 80, and to 30 for co-EM in the experiments (as used

in [40]). Default values for all other parameters (except the iteration parameter) were used

as given in their implementation. The Daikon configuration employed was the most recent

version and the same as that used in other experiments [30, 69].

3https://github.com/fracpete/collective-classification-weka-package/releases
4http://www.cs.waikato.ac.nz/ml/weka/downloading.html
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3.4 Experimental Results and Discussion

This section presents the results obtained from using semi-supervised learning approaches

(self-training, co-training and co-EM) on the three subject programs described in Section 3.3,

using two kinds of execution data: firstly just input/output pairs, and secondly input/out-

put pairs augmented with execution traces. In addition the two semi-supervised labelling

scenarios were explored (section 3.2.1).

3.4.1 Study 1: Test Result Classification Based on Input/Output Pairs

Scenario 1: Labelling subset of both passing (normal) and failing (abnormal) tests: For the

first study the classifiers were built using just the test case inputs and outputs from which

a subset of instances of the normal behavior class (in this case, passing execution) were

labelled along with a few instances for abnormal behaviour (failing executions). The rest

of the data were unlabelled instances of test case input/output pairs which the classifiers

iteratively categorised during the learning process.

Tables 3.9 and 3.10 show, for NanoXML and for Siena and Sed respectively, the results

of applying semi-supervised learning with increasing numbers of Labelled samples. The

figures reported are the average values obtained from employing cross validation to reduce

the potential bias created by the choice of the Labelled data items (see section 3.3.2). The first

column (size) defines the number of Labelled data items in the training sets as a percentage

of the total number of test cases. The subsequent columns refer to the version number of

the subject programs with (P, R, F) referring to the average values of Precision, Recall and

F-measure (see section3.3.3) with the best results in each column highlighted in bold. A full

experimental results over different cross validation can be found in Appendix D.

For NanoXML the self-training method (Naïve Bayes with EM) performed well over

all versions, achieving an average F-measure of 0.5 when only 10% of the data (just 25

items) was Labelled. However, to achieve the better results it would be necessary to label

between 30-50% of the data. Co-training using Naïve Bayes performed far less well, and

more notably did not really improve as the size of the Labelled training set increased. Even
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more disappointing are the results for co-EM and co-training with SVM: the performance for

version 1 of NanoXML is identical for both algorithms but let down by poor recall values,

but for versions 2, 3 and 5 the recall was zero most of the time as no failures were detected

(indicated by a ‘-’ n the results tables). Some learning algorithms are severely affected by the

imbalanced training data set problem such as SVM. This could explain the poor performance

for co-EM and co-training with SVM.

The performance of Naïve Bayes with EM on NanoXML is encouraging, particularly

considering the number of input and output combinations that need to be classified (see Table

3.8). Given that there are 120 distinct input-output pairs it is also to be expected that the

performance improves when the 30-50% bracket is reached – at this point between 60-100

data items will have been labelled and chances are that this will have covered the majority

of the distinct combinations. It might be expected that as more cases get labelled so the

accuracy would increase but this is not always the case, especially for some of the other

algorithms. Looking at these cases it appears that initially many results were classified as

fail (some correctly, some not). As more data gets labelled several of these fail results were

turned into passes - some correctly but some not - due to the influence of one label (they may

match a labelled passing input for example). This impacts on precision and recall as the FP

value will drop as will the TP value which means that precision increases but recall decreases.

By adding in more data in the form of traces it is anticipated that this undue influence from

one component will diminish.

A similar pattern of results can be seen from the data for Siena – the semi-supervised

learning techniques did not perform well in all versions. Remember that the versions of

Siena contain just the one fault, so all failures correspond to the same fault (but which will

have different manifestations). As with NanoXML the best F-measure values are achieved

with self-training (Naïve Bayes with EM) but unlike NanoXML there was no increase in

performance as the proportion of labelled data increased. This feature is something of a

surprise as in comparison to NanoXML the number of input-output combinations for Siena

is relatively small (104 - see Table 3.8). With nearly 500 test cases for the system the

expectation would be for the majority of these combinations would be included by the time
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that 30% of the data was labelled but this seemed to have no impact. This may be down to

either the choice of abnormal cases or the fact that the increase in the number of tests means

the data becomes very imbalanced. The results for the other approaches are generally poor,

and when not zero are too low to be considered usable.

The results for Sed in some ways also reflect those for the other two systems. The best

results are achieved using Naïve Bayes with EM but at the low level of labelling these are

quite weak. It is only when around 30% of the data is labelled that these begin to become

acceptable. This is perhaps to be expected as Sed had the most fragmented input-output

profile of all the systems (287 in total - see Table 3.8).

Figures 3.1 and 3.2 present the relationship between the size of labelled data on the

training set and the best classifier performance (the average F-measure for self-training and

co-training methods with Naïve Bayes). The figures are essentially a graphical summary of

the data that appears in Tables 3.9 and 3.10.

Scenario 2: Labelling subsets of only passing (normal) tests: In the second scenario

classifiers were trained on a small set of labelled instances for normal behaviour class (passing

executions) alone, with the remaining data being unlabelled instances (an unknown class for

the classifier during the training process). The same set of learning strategies were explored

but none of approaches performed well enough to warrant reporting in more detail. The

trained classifiers were only able to classify all passing (normal) execution data correctly but

miss-classified all failing (abnormal) execution data, labelling it as normal data instead.

3.4.2 Study 2: Test Result Classification Based on Input/Output Pairs

Augmented with Execution Traces

Scenario 1: Labelling subset of both passing (normal) and failing (abnormal) tests: For

this second study the input data for the semi-supervised learning strategies consisted of the

input/output pairs used in the first study augmented with their execution traces. In both cases

the data are encoded as described in section 3.3.2 to reduce them to a manageable size (the

trace data in particular). This change aside, all other aspects - semi-supervised learning
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Table 3.9 The Average Precision (P), Recall (R) and F-measure (F) values vs. Labelled Data
Size for Semi-Supervised Learning Techniques Using Input/Output Pairs and Training on
Normal and Abnormal Cases

Self-training (EM-Naïve):
NanoXML Version

Labelled Data V1 V2 V3 V5
Size (P, R, F) (P, R, F) (P, R, F) (P, R, F)
10% (0.47, 0.40, 0.43) (0.57, 0.46, 0.51) (0.65, 0.60, 0.62) (0.42, 0.46, 0.44)
20% (0.57, 0.40, 0.47) (0.74, 0.53, 0.62) (0.72, 0.45, 0.56) (0.52, 0.40, 0.45)
30% (0.74, 0.46, 0.56) (0.83, 0.63, 0.72) (0.86, 0.71, 0.78) (0.52, 0.40, 0.45)
40% (0.80, 0.80, 0.80) (0.83, 0.63, 0.72) (0.85, 0.78, 0.82) (0.68, 0.66, 0.67)
50% (0.77, 0.80, 0.78) (0.83, 0.63, 0.72) (0.79, 0.78, 0.79) (0.73, 0.76, 0.75)

Co-training (Co-Naïve):
NanoXML Version

Labelled Data V1 V2 V3 V5
Size (P, R, F) (P, R, F) (P, R, F) (P, R, F)
10% (0.52, 0.29, 0.37) (0.65, 0.18, 0.28) (0.63, 0.17, 0.27) (1, 0.21, 0.35)
20% (0.48, 0.49, 0.48) (1, 0.08, 0.15) (1, 0.08, 0.15) (1, 0.21, 0.35)
30% (0.90, 0.23, 0.37) (1, 0.08, 0.15) (1, 0.08, 0.15) (1, 0.21, 0.35)
40% (1, 0.16, 0.27) (1, 0.08, 0.15) (1, 0.08, 0.15) (1, 0.06, 0.11)
50% (1, 0.16, 0.27) (1, 0.08, 0.15) (1, 0.08, 0.15) (1, 0.06, 0.11)

Co-EM (EM-SVM):
NanoXML Version

Labelled Data V1 V2 V3 V5
Size (P, R, F) (P, R, F) (P, R, F) (P, R, F)
10% (0.55, 0.23, 0.33) (-, -, -) (-, -, -) (-, -, -)
20% (0.55, 0.23, 0.33) (-, -, -) (-, -, -) (-, -, -)
30% (0.82, 0.23, 0.36) (-, -, -) (-, -, -) (-, -, -)
40% (1, 0.16, 0.27) (-, -, -) (-, -, -) (-, -, -)
50% (1, 0.16, 0.27) (-, -, -) (-, -, -) (-, -, -)

Co-training (Co-SVM):
NanoXML Version

Labelled Data V1 V2 V3 V5
Size (P, R, F) (P, R, F) (P, R, F) (P, R, F)
10% (0.55, 0.23, 0.33) (-, -, -) (-, -, -) (-, -, -)
20% (0.55, 0.23, 0.33) (-, -, -) (-, -, -) (-, -, -)
30% (0.82, 0.23, 0.36) (-, -, -) (-, -, -) (-, -, -)
40% (1, 0.16, 0.27) (-, -, -) (-, -, -) (-, -, -)
50% (1, 0.16, 0.27) (-, -, -) (-, -, -) (-, -, -)
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Table 3.10 The Average Precision (P), Recall (R) and F-measure (F) values vs. Labelled Data
Size for Semi-Supervised Learning Techniques Using Input/Output Pairs and Training on
Normal and Abnormal Cases

Self-training (EM-Naïve):
Siena Version Sed Version

Labelled Data V2 Labelled Data V5
Size (P, R, F) Size (P, R, F)
10% (0.19, 0.60, 0.28) 10% (1, 0.10, 0.19)
20% (0.10, 0.23, 0.13) 20% (1, 0.10, 0.19)
30% (0.09, 0.20, 0.12) 30% (0.39, 0.86, 0.54)
40% (0.09, 0.20, 0.12) 40% (0.39, 0.86, 0.54)
50% (0.09, 0.20, 0.12) 50% (0.39, 0.86, 0.54)

Co-training (Co-Naïve):
Siena Version Sed Version

Labelled Data V2 Labelled Data V5
Size (P, R, F) Size (P, R, F)
10% (0.09, 0.21, 0.13) 10% (1, 0.04, 0.08)
20% (0.37, 0.10, 0.16) 20% (1, 0.04, 0.08)
30% (0.16, 0.03, 0.05) 30% (1, 0.04, 0.08)
40% (0.10, 0.23, 0.14) 40% (0.85, 0.36, 0.51)
50% (0.09, 0.21, 0.13) 50% (0.85, 0.36, 0.51)

Co-training (Co-SVM):
Siena Version Sed Version

Labelled Data V2 Labelled Data V5
Size (P, R, F) Size (P, R, F)
10% (0.11, 0.15, 0.13) 10% (-, -, -)
20% (-, -, -) 20% (-, -, -)
30% (-, -, -) 30% (-, -, -)
40% (-, -, -) 40% (-, -, -)
50% (-, -, -) 50% (-, -, -)
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Fig. 3.1 The Average F-measure (F) Values vs. Labelled Data Size for Self-Training (EM-
Naïve) Using Input/Output Pairs and Training on Normal and Abnormal Cases

Fig. 3.2 The Average F-measure (F) Values vs. Labelled Data Size for Co-Training (Co-
Naïve) Using Input/Output Pairs and Training on Normal and Abnormal Cases
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algorithms, subject programs, proportions of Labelled data explored - are identical to the first

study.

The results of this study for all versions of the subject programs are shown in Tables 3.11

and 3.12 which have the same format as Tables 3.9 and 3.10. The data shows that for versions

2, 3 and 5 of NanoXML the self-training method (Naïve Bayes with EM) has performed

particularly well, producing an F-measure of 1 (in other words, correctly classifying all

passing and failing executions) based on labelling only 10% of the data items. The reason for

this is both encouraging and also slightly disappointing. The trace data perfectly separates

the results (there are only two distinct traces - see Table 8): all passing tests follow one

route through the program and all failing ones follow the other route. This demonstrates the

useful information that execution trace information can bring but is also not a scenario that is

likely to be observed that frequently. Performance on version 1 is not strong but becomes

acceptable when around 30% of the data has been Labelled. This may be a consequence

of the faults that lie within version 1 or possibly due to having just the one abnormal case

Labelled (see Table 3.6), or the fact that its profile is very different to the other versions in

having 105 distinct traces. What is notable is that once around 30% of the data is labelled

then the performance is better than the results achieved from classifying the input-output

data alone without the execution trace information.

Co-training using Naïve Bayes displays a very similar pattern although the improvement

observable in version 1 for self-training is absent. Co-training with SVM did not perform

well on any versions with the exception of version 3 (it is unclear why similar results should

be have been achieved for versions 2 and 5). The results for co-EM were particularly poor

and have been omitted from the table. The poor performance for co-EM and co-training

with SVM could be attributable to the imbalanced training data sets problem which SVM

algorithm always suffers from.

The results for Siena for all techniques (with the exception again of co-EM) are universally

good, accurately classifying the passing and failing executions with 100% accuracy based on

just the smallest labelling proportion. Again, this is for exactly the same reasons as versions

2,3 and 5 of NanoXML – the passing and failing executions are perfectly separable based
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on the execution traces alone. This trace pattern was entirely unknown at the time the two

systems were selected and not something that was either expected or planned for.

Sed displays a very similar pattern of results to those achieved using input-output pairs

alone. Indeed the inclusion of execution traces appear to have practically no impact on

the results. It has already been observed that Sed has the most fragmented input-output

combination, and together with its 295 distinct traces gives 341 distinct input-output-trace

combinations. For cases such as this it is clear that other information needs to be introduced

to the classifier algorithms such as execution time or summary information relating to traces

(e.g. number of unique methods, nesting pattern etc.) in order to achieve better results.

Figures 3.3 and 3.4 illustrate the relationship between the size of labelled data on the

training set and the best classifier performance (the average F-measure for self-training and

co-training methods with Naïve Bayes). The figures are essentially a graphical summary of

the data that appears in Tables 3.11 and 3.12.

Fig. 3.3 The Average F-measure (F) Values vs. Labelled Data Size for Self-Training (EM-
Naïve) Using Input/Output Pairs Augmented with Execution Traces and Training on Normal
and Abnormal Cases

Scenario 2: Labelling subset of only passing (normal) tests: For this part of the study the

data used was as for the first scenario - input/output pairs augmented with their execution
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Table 3.11 The Average Precision (P), Recall (R) and F-measure (F) values vs. Labelled Data
Size for Semi-Supervised Learning Techniques Using Input/Output Pairs Augmented with
Execution Traces and Training on Normal and Abnormal Cases

Self-training (EM-Naïve):
NanoXML Version

Labelled Data V1 V2 V3 V5
Size (P, R, F) (P, R, F) (P, R, F) (P, R, F)
10% (0.50, 0.41, 0.45) (1, 1, 1) (1, 1, 1) (1, 1, 1)
20% (0.47, 0.47, 0.47) (1, 1, 1) (1, 1, 1) (1, 1, 1)
30% (0.70, 0.94, 0.80) (1, 1, 1) (1, 1, 1) (1, 1, 1)
40% (0.86, 0.94, 0.90) (1, 1, 1) (1, 1, 1) (1, 1, 1)
50% (0.94, 0.94, 0.94) (1, 1, 1) (1, 1, 1) (1, 1, 1)

Co-training (Co-Naïve):
NanoXML Version

Labelled Data V1 V2 V3 V5
Size (P, R, F) (P, R, F) (P, R, F) (P, R, F)
10% (0.50, 0.40, 0.44) (1, 1, 1) (1, 1, 1) (1, 1, 1)
20% (0.50, 0.40, 0.44) (1, 1, 1) (1, 0.98, 0.99) (1, 1, 1)
30% (0.83, 0.28, 0.42) (1, 1, 1) (1, 0.98, 0.99) (1, 1, 1)
40% (0.90, 0.28, 0.43) (1, 1, 1) (1, 1, 1) (1, 1, 1)
50% (0.90, 0.28, 0.43) (1, 1, 1) (1, 1, 1) (1, 1, 1)

Co-training (Co-SVM):
NanoXML Version

Labelled Data V1 V2 V3 V5
Size (P, R, F) (P, R, F) (P, R, F) (P, R, F)
10% (-, -, -) (-, -, -) (1, 1, 1) (-, -, -)
20% (-, -, -) (-, -, -) (1, 1, 1) (-, -, -)
30% (-, -, -) (-, -, -) (1, 1, 1) (-, -, -)
40% (-, -, -) (-, -, -) (1, 1, 1) (-, -, -)
50% (-, -, -) (-, -, -) (1, 1, 1) (-, -, -)
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Table 3.12 The Average Precision (P), Recall (R) and F-measure (F) values vs. Labelled Data
Size for Semi-Supervised Learning Techniques Using Input/Output Pairs Augmented with
Execution Traces and Training on Normal and Abnormal Cases

Self-training (EM-Naïve):
Siena Version Sed Version

Labelled Data V2 Labelled Data V5
Size (P, R, F) Size (P, R, F)
10% (1, 1, 1) 10% (1, 0.10, 0.19)
20% (1, 1, 1) 20% (1, 0.10, 0.19)
30% (1, 1, 1) 30% (0.39, 0.86, 0.54)
40% (1, 1, 1) 40% (0.39, 0.86, 0.54)
50% (1, 1, 1) 50% (0.39, 0.86, 0.54)

Co-training (Co-Naïve):
Siena Version Sed Version

Labelled Data V2 Labelled Data V5
Size (P, R, F) Size (P, R, F)
10% (1, 1, 1) 10% (1, 0.07, 0.14)
20% (1, 1, 1) 20% (1, 0.07, 0.14)
30% (1, 1, 1) 30% (1, 0.07, 0.14)
40% (1, 1, 1) 40% (0.39, 0.84, 0.53)
50% (1, 1, 1) 50% (0.39, 0.84, 0.53)

Co-training (Co-SVM):
Siena Version Sed Version

Labelled Data V2 Labelled Data V5
Size (P, R, F) Size (P, R, F)
10% (1, 1, 1) 10% (-, -, -)
20% (1, 1, 1) 20% (-, -, -)
30% (1, 1, 1) 30% (-, -, -)
40% (1, 1, 1) 40% (-, -, -)
50% (1, 1, 1) 50% (-, -, -)

Co-EM (EM-SVM):
Siena Version Sed Version

Labelled Data V2 Labelled Data V5
Size (P, R, F) Size (P, R, F)
10% (-, -, -) 10% (1, 0.07, 0.14)
20% (-, -, -) 20% (1, 0.07, 0.14)
30% (-, -, -) 30% (1, 0.07, 0.14)
40% (-, -, -) 40% (1, 0.07, 0.14)
50% (-, -, -) 50% (1, 0.07, 0.14)
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Fig. 3.4 The Average F-measure (F) Values vs. Labelled Data Size for Co-Training (Co-
Naïve) Using Input/Output Pairs Augmented with Execution Traces and Training on Normal
and Abnormal Cases

traces - but only a normal (passing execution) subset of the data was Labelled. The results

are shown in Tables 3.13 and 3.14 and display a similar, but slightly less effective, pattern to

scenario 1.

Again self-training (Naïve Bayes with EM) has performed well and has correctly classified

almost all the data for versions 2, 3 and 5 of NanoXML when only a small proportion of

the data is Labelled. For version 1, very much like in scenario 1, the results are not as

impressive and even though they improve as the proportion of labelled data increases, the

overall performance as indicated by the F-measure is held back by the low recall. The reasons

for this can be explained by the trace information in much the same way as for the previous

scenario (there are only two distinct traces for version 2, 3 and 5 whereas 105 distinct traces

for version 1 - see Table 3.8). Co-training using Naïve Bayes also shows a similar trend,

performing well on versions 2 and 3 and also on version 5 except at the lowest level of

labelling. For version 1 though co-training failed to distinguish between the passing and

failing executions, producing recall values of 0 most of the time. Co-training with SVM and
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co-EM both produced results that were close to zero the majority of the time and have been

omitted from the results.

The results for Siena (Table 3.14) show that both self-training (Naïve Bayes with EM)

and co-training (Naïve Bayes) methods have extremely performed well, again due to the

very informative execution traces. Self-training was able to detect all failures with all

Labelled sample sizes on all versions and co-training produced a similar set of results with

the exception of the smallest (10%) labelling proportion. Co-training with SVM and co-EM

again did not perform well for Siena either and the results for these have been omitted.

Again Sed proved to be the most challenging system and for Naïve Bayes with EM did not

display any acceptable results until at least 30% of the data was labelled (again attributable

to the fragmentation). Co-training (Naïve Bayes) displayed a similar performance but was

able to produce results even with the smallest level of labelling. Even though the results for

this approach are not as accurate as the previous scenario, the absence of any labelled failing

inputs makes this an interesting outcome.

Figures 3.5 and 3.6 show the relationship between the size of labelled data on the training

set and the best classifier performance (the average F-measure for self-training and co-training

methods with Naïve Bayes). The figures are essentially a graphical summary of the data that

appears in Tables 3.13 and 3.14.
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Table 3.13 The Average Precision (P), Recall (R) and F-measure (F) values vs. Labelled Data
Size for Semi-Supervised Learning Techniques Using Input/Output Pairs Augmented with
Execution Traces and Training on Normal Cases Alone

Self-training (EM-Naïve):
NanoXML Version

Labelled Data V1 V2 V3 V5
Size (P, R, F) (P, R, F) (P, R, F) (P, R, F)
10% (0.45, 0.12, 0.20) (1, 0.96, 0.98) (1, 0.89, 0.94) (1, 0.92, 0.96)
20% (0.37, 0.12, 0.19) (1, 0.96, 0.98) (1, 0.97, 0.98) (1, 0.92, 0.96)
30% (0.40, 0.15, 0.22) (1, 0.96, 0.98) (1, 0.97, 0.98) (1, 0.92, 0.96)
40% (0.66, 0.20, 0.30) (1, 1, 1) (1, 0.97, 0.98) (1, 0.96, 0.98)
50% (0.89, 0.24, 0.38) (1, 1, 1) (1, 0.97, 0.98) (1, 1, 1)

Co-training (Co-Naïve):
NanoXML Version

Labelled Data V1 V2 V3 V5
Size (P, R, F) (P, R, F) (P, R, F) (P, R, F)
10% (-, -, -) (1, 0.96, 0.98) (1, 1, 1) (0, 0, 0)
20% (-, -, -) (1, 0.80, 0.88) (1, 0.81, 0.89) (1, 0.63, 0.74)
30% (-, -, -) (1, 0.80, 0.88) (1, 0.81, 0.89) (1, 0.63, 0.74)
40% (-, -, -) (1, 0.80, 0.88) (1, 0.81, 0.89) (1, 0.64, 0.78)
50% (-, -, -) (1, 0.80, 0.88) (1, 0.81, 0.89) (1, 0.64, 0.78)
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Table 3.14 The Average Precision (P), Recall (R) and F-measure (F) values vs. Labelled Data
Size for Semi-Supervised Learning Techniques Using Input/Output Pairs Augmented with
Execution Traces and Training on Normal Cases Alone

Self-training (EM-Naïve):
Siena Version Sed Version

Labelled Data V2 Labelled Data V5
Size (P, R, F) Size (P, R, F)
10% (1, 1, 1) 10% (-, -, -)
20% (1, 1, 1) 20% (-, -, -)
30% (1, 1, 1) 30% (0.39, 0.45, 0.42)
40% (1, 1, 1) 40% (0.33, 0.56, 0.42)
50% (1, 1, 1) 50% (0.41, 0.68, 0.51)

Co-training (Co-Naïve):
Siena Version Sed Version

Labelled Data V2 Labelled Data V5
Size (P, R, F) Size (P, R, F)
10% (1, 0.81, 0.89) 10% (0.38, 0.28, 0.33)
20% (1, 1, 1) 20% (0.36, 0.25, 0.30)
30% (1, 1, 1) 30% (0.43, 0.39, 0.41)
40% (1, 1, 1) 40% (0.40, 0.45, 0.42)
50% (1, 1, 1) 50% (0.42, 0.48, 0.45)
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Fig. 3.5 The Average F-measure (F) Values vs. Labelled Data Size for Self-Training (EM-
Naïve) Using Input/Output Pairs Augmented with Execution Traces and Training on Normal
Cases Alone

Fig. 3.6 The Average F-measure (F) Values vs. Labelled Data Size for Co-Training (Co-
Naïve) Using Input/Output Pairs Augmented with Execution Traces and Training on Normal
Cases Alone
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3.5 Statistical Test for semi-supervised learning Hypothe-

sis

The experimental hypothesis for test oracle based on semi-supervised learning techniques

can be formulated in the following way "Test oracles based on semi-supervised learning

techniques are able to accurately classify a significant majority of unlabelled (or unseen)

data". The Binomial test will be used to test the experimental hypothesis on the experimental

data results for all subject programs used in this thesis (see Table 3.15). A null hypothesis,

alternative hypothesis, equation parameters and significance level are stated as follows:

• The Null hypothesis (H0) P<= 0.5. Where P is the classification probability compared

against random chance classification probability obtained by (0.5). In other words,

it is compared against a random oracle where a random oracle is a classifier which

classifies data by random chance.

• The Alternative hypothesis (H1) P > 0.5.

• (N) is the number of errors for the classifier (FP+FN) under a particular labelled data

size, (K) is the number of tests which represent the number of unlabelled data that the

classifier attempts to classify.

• The significance level is 0.05, and Z-Test method with a right one tailed test is used.

The null hypothesis is rejected in all cases. It was observed that the results are statistically

significant in all cases where p− value lower than the significance level (0.05) - (see Table

3.16). This can be generalised to the rest of experimental data.

3.6 Semi-supervised Learning Techniques versus Daikon

The performance of Daikon is compared with the best results from each of the semi-

supervised approaches under both scenarios for all systems with both data types. Also

included in the comparison are the results from using two base classifiers (Naïve Bayes and
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Table 3.15 Random Tested F-measure from Several Experiments

Test System F-m Number of Errors (FP+FN) (N) Number of tests (K) Labelled Data Size
Test 1 NV1 0.80 32 122 40%
Test 2 NV2 0.72 35 142 30%
Test 3 NV3 0.82 24 122 40%
Test 4 NV5 0.75 33 104 50%
Test 5 SV2 0.28 242 444 10%
Test 6 SeV5 0.54 46 266 30%

Table 3.16 The Results of Z-Test and p-value on Tested F-measure

Test Number z p− value Note
Test 1 37.299883 3.0762×10−303 (H0) rejected - significant results
Test 2 41.919651 0 (H0) rejected - significant results
Test 3 44.703188 0 (H0) rejected - significant results
Test 4 30.289512 2.3888×10−200 (H0) rejected - significant results
Test 5 41.46217 0 (H0) rejected - significant results
Test 6 71.509349 0 (H0) rejected - significant results

Support Vector Machines) built in fully supervised mode where all of the data for the training

set is labelled and the classifier is built and evaluated using 10-fold cross-validation (where

the classifier is trained on 90% of the dataset and evaluated on the remaining 10% until all

items have appeared in the training and test sets).

The results of this study are summarised in Tables 3.17 and 3.18 for all systems, input

types and scenarios, and show the classifier type - self-training using EM clustering algo-

rithm with Naïve Bayes (‘Self’), co-training using Naïve Bayes (‘Co-Naïve’), co-training

using Support Vector Machines classifiers (‘Co-SVM’), co-expectation-Maximisation using

Support Vector Machines (‘Co-EM’) and the base classifiers Naïve Bayes (‘Base Naïve’) and

Support Vector Machines (‘Base SVM’) - along with the version number of the systems and

the 3 values corresponding to Precision (P), Recall (R) and the F-measure (F). Any technique

that performed particularly poorly has been omitted from the results.

The results for semi-supervised learning techniques using input/output pairs under sce-

nario 1 (a proportion of both normal and abnormal data are labelled) for NanoXML are shown

in table 3.17. The data for NanoXML shows that self-training outperformed Daikon on
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version 1 and 5 but Daikon performed better on versions 2 and 3 (recall that the comparison

is with the best results from semi-supervised learning, so in this case the self-training results

are based on labelling 40% and 50% of the data respectively). Daikon also outperformed

all other semi-supervised learning methods with the exception of version 1 where Daikon

was beaten by co-Naïve. The results for Siena and Sed (Table 3.18) show that Daikon out-

performed all semi-supervised learning methods. Generally, the base classifier always beat

the semi-supervised learning techniques on all versions for NanoXML and Siena systems

and Daikon too, but this is not surprising as it required a fully labelled training set for its

construction.

The second part of table 3.17 presents the results of using semi-supervised learning

techniques on input/output pairs augmented with their execution traces for NanoXML under

scenario 1 (both normal and abnormal data are Labelled). From the experimental results, it

can be observed that practically all the semi-supervised learning approaches outperformed

Daikon with the exception of base SVM on version 1 and co-SVM on versions 1, 2 and

5 (which raises serious questions about the applicability of Support Vector Machines for

this type of problem and data set). Again the values for self-training are based on a large

proportion of labels (50% in this case) but even if this was dropped down to 10% self-training

would still have outperformed Daikon over all versions. The results for Siena (the second

part of table 3.18) show that semi-supervised learning methods outperformed Daikon and

are able to perform on a par with the base classifiers even after being built using just 10%

of the Labelled data - quite a surprising accomplishment which also indicates the value of

including additional data. On the other hand, from the Sed results (the second part of table

3.18), Daikon outperformed semi-supervised/supervised learning techniques. Moreover,

self-training and co-training using with Naïve Bayes performed on a par with the base Naïve

Bayes classifier.

The final part of table 3.17 compares the results of using input/output pairs augmented

with their execution traces along with scenario 2 for NanoXML (labelling a proportion of the

normal results only). Self-training again outperformed Daikon in all cases except version 1

of NanoXML where they performed on a par. Had a smaller proportion of the data been used



78 Automatically Classifying Test Results by Semi-Supervised Learning

for the self-training then it would have been beaten by Daikon (although only for this version

NanoXML). The results for Siena (the final part of table 3.18) show the self-training and

co-training methods beat Daikon, and also they are able to perform on a par with the base

classifier. However, the results for Sed (the final part of table 3.18) show that Daikon beat the

semi-supervised/supervised learning techniques. Furthermore, self-training outperformed

co-training but the base Naïve classifier performed slightly much better than semi-supervised

learning approaches (Naïve Bayes with EM and co-training using Naïve Bayes).

Overall the semi-supervised learning techniques, and especially the self-training method

(using Naïve Bayes with EM), performed well in comparison to Daikon in the case where

the data consists of input/output pairs augmented with their execution traces (regardless of

whether the training used both normal and abnormal data labels or solely normal labels). The

relatively poor performance of Daikon may be attributable to the size of the test suites - in all

cases Daikon suffered from a high false positive rate and it may have been that the suites

were all too small to adequately train the system. However, the same data sets were used

for training the semi-supervised learning approaches which may be an advantage for these

techniques if they are able to perform well even with a small test suite size.

3.7 Discussion

Test oracles based on semi-supervised learning techniques are more less expensive in com-

parison to those based on supervised learning techniques as they require a smaller set of

labelled training data (as opposed to the large data set required by supervised techniques

or the fault-free version employed by invariant detectors). However, oracles based on semi-

supervised learning techniques have a lower accuracy in comparison to those based on

supervised learning techniques (they have slightly higher false positive rate, and also slightly

lower fault detection ability) which is to be expected as the training of the algorithms uses far

less labelled data. Semi-supervised approaches are a classic demonstration of the cost-benefit

trade-off: a larger set of labelled data is likely to yield a more accurate classifier, and while

these techniques are significantly more cost-effective (and practicable) than supervised ap-
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Table 3.17 Daikon Versus Semi-supervised Learning Techniques

I/O
Scenario 1 NanoXML Version

V1 V2 V3 V5
Classifiers (P, R, F) (P, R, F) (P, R, F) (P, R, F)
Self (0.80, 0.80, 0.80) (0.83, 0.63, 0.72) (0.85, 0.78, 0.82) (0.73, 0.76, 0.75)
Co-EM (0.82, 0.23, 0.36) (-, -, -) (-, -, -) (-, -, -)
Co-SVM (0.82, 0.23, 0.36) (-, -, -) (-, -, -) (-, -, -)
Co-Naïve (0.48, 0.48, 0.48) (0.65, 0.18, 0.28) (0.63, 0.17, 0.27) (1, 0.21, 0.35)
Base Naïve (0.92, 0.79, 0.85) (0.99, 1, 0.99) (0.99, 1, 0.99) (0.90, 0.92, 0.916)
Daikon (0.40, 0.37, 0.38) (0.80, 0.75, 0.77) (0.94, 0.91, 0.92) (0.63, 0.53, 0.57)

I/O+Traces
Scenario 1 NanoXML Version

V1 V2 V3 V5
Classifiers (P, R, F) (P, R, F) (P, R, F) (P, R, F)
Self (0.94, 0.94, 0.94) (1, 1, 1) (1, 1, 1) (1, 1, 1)
Co-SVM (-, -, -) (-, -, -) (1, 1, 1) (-, -, -)
Co-Naïve (0.50, 0.40, 0.44) (1, 1, 1) (1, 1, 1) (1, 1, 1)
Base Naïve (0.94, 0.94, 0.94) (1, 1, 1) (1, 1, 1) (1, 1, 1)
Base SVM (0.94, 0.22, 0.36) (1, 1, 1) (1, 1, 1) (1, 1, 1)
Daikon (0.40, 0.37, 0.38) (0.80, 0.75, 0.77) (0.94, 0.91, 0.92) (0.63, 0.53, 0.57)

I/O+Traces
Scenario 2 NanoXML Version

V1 V2 V3 V5
Classifiers (P, R, F) (P, R, F) (P, R, F) (P, R, F)
Self (0.89, 0.24, 0.38) (1, 1, 1) (1, 0.97, 0.98) (1, 1, 1)
Co-Naïve (-, -, -) (1, 0.96, 0.98) (1, 1, 1) (1, 0.64, 0.78)
Base Naïve (0.94, 0.94, 0.94) (1, 1, 1) (1, 1, 1) (1, 1, 1)
Daikon (0.40, 0.37, 0.38) (0.80, 0.75, 0.77) (0.94, 0.91, 0.92) (0.63, 0.53, 0.57)
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Table 3.18 Daikon Versus Semi-supervised Learning Techniques

I/O
Scenario 1 Siena Sed

V2 V5
Classifiers (P, R, F) Classifiers (P, R, F)
Self (0.19, 0.60, 0.28) Self (0.39, 0.86, 0.54)
Co-SVM (0.11, 0.15, 0.13) Co-SVM (-, -, -)
Co-Naïve (0.37, 0.10, 0.16) Co-Naïve (0.85, 0.36, 0.51)
Base Naïve (0.99, 0.97, 0.93) Base Naïve (0.35, 0.86, 0.50)
Daikon (0.75, 0.71, 0.72) Daikon (0.66, 0.60, 0.62)

I/O+Traces
Scenario 1 Siena Sed

V2 V5
Classifiers (P, R, F) Classifiers (P, R, F)
Self (1, 1, 1) Self (0.39. 0.86, 0.54)
Co-SVM (1, 1, 1) Co-SVM (-, -, -)
EM-SVM (-, -, -) EM-SVM (1, 0.07, 0.14)
Co-Naïve (1, 1, 1) Co-Naïve (0.39, 0.84, 0.53)
Base Naïve (1, 1, 1) Base Naïve (0.39, 0.84, 0.53)
Base SVM (1, 1, 1) Base SVM (-, -, -)
Daikon (0.75, 0.71, 0.72) Daikon (0.66, 0.60, 0.62)

I/O+Traces
Scenario 2 Siena Sed

V2 V5
Classifiers (P, R, F) Classifiers (P, R, F)
Self (1, 1, 1) Self (0.41, 0.68, 0.51)
Co-Naïve (1, 1, 1) Co-Naïve (0.42, 0.48, 0.45)
Base Naïve (1, 1, 1) Base Naïve (0.39, 0.84, 0.53)
Daikon (0.75, 0.71, 0.72) Daikon (0.66, 0.60, 0.62)
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proaches, there is still work to be done in establishing the ideal ratio of labelled to unlabelled

data.

3.8 Conclusions

It was found that self-training (Naïve Bayes with EM) and co-training (Naïve Bayes) classi-

fiers are substantially more effective for detecting failures than co-training (Support Vector

Machines) and co-EM (Support Vector Machines) classifiers. Furthermore, in most cases

they perform far better under both scenarios as an automated test classifier than Daikon even

with small test suites (Daikon usually requires a fault free version of the system with a large

and complete test suite to perform well).

It was also found that adding execution trace data can help enormously. This is not really

unexpected given that more information is being supplied to the algorithm, but even when

very fragmented they improve the accuracy once a fair proportion of the data is labelled. In

extreme cases the impact is dramatic (leading to a perfect classifier on from a very small

subset of labelled data) but these are relatively rare instances (based on author’s assumption).

The results do not give a clear consistent conclusion regards to the size of labelled data on

the training set. In some cases (especially in the case that input/output pairs were augmented

with their execution traces) labelling just a small proportion of the test cases - as low as 10%

- was sufficient to build a classifier that is able to correctly categorise the large majority of

the remaining test cases. This has an important implications for the practical use of this

technique: when checking the test results from a system a developer need only examine a

small proportion of these and use this information to train a learning algorithm to classify

the remainder. However, in some cases a large proportion of labelling data was required to

achieve higher classification results.

The next chapter describes an investigation of using unsupervised learning techniques

(mainly clustering algorithms) where the testers do not have labelled data at all (a real

scenario).



Chapter 4

Separating Passing and Failing Test

Executions by Clustering Anomalies

4.1 Introduction

The previous chapter showed that semi-supervised learning techniques are useful in many

circumstances, but they might be fall short as a solution when labelled execution data is

not available (i.e. a small proportion of test data is labelled as a passing or failing test in

semi-supervised learning techniques). Fortunately, unsupervised learning techniques can

help in the case that no labelled execution data available.

The main focus of this chapter is to investigate the use of clustering based anomaly

detection techniques to support the construction of a test oracle by performing two different

empirical studies along with varying types of dynamic execution data. In the first empirical

study, a range of clustering algorithms are applied to just the input-output pairs of three

systems with the primary aim of exploring the feasibility of this approach. The second

empirical study extends the first empirical study by augmenting the input/output pairs with

their associated execution traces with the aim of improving the performance and accuracy of

the approach.

The chapter also explores the optimal number of clusters to employ in relation to the

program domain to generate an effective oracle. In addition, the chapter includes observations
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on any practical implications that can be found when using unsupervised learning (mainly

clustering techniques) in the test oracles area.

4.2 Methodology

4.2.1 Clustering Analysis

Clustering aims to partition a population of objects, each containing various attributes, into

groups in such way that objects with similar values are placed in the same cluster, whereas

those with dissimilar ones are placed in different clusters. The similarity of objects can be

decided by using different distance metrics (discussed in more detail in section 4.2.3). In

this thesis the objects of interest are observations from program executions - test inputs and

outputs and execution traces - and the aim of clustering is to separate the passing and failing

executions.

The main clustering hypothesis is that "Normal data instances belong to large and

dense clusters, while anomalies either belong to small or sparse cluster" [18]. Clustering

techniques based on this hypothesis report objects belonging to clusters whose size and/or

density is below a threshold as anomalies. By applying clustering techniques under this

assumption on a population of execution data that has failures with a non-conformant pattern,

it could be possible to cluster the population so as to separate a significant proportion of the

failures in small clusters. This would enable the failures to be found by checking the small

clusters.

Constructing test oracles via clustering analysis depends in particular on the following

decisions: (1) The choice of particular clustering techniques with suitable distance metrics;

(2) The number of clusters to be determined; (3) The size of small clusters to be decided.

Each of these steps will be discussed in the following sections.



84 Separating Passing and Failing Test Executions by Clustering Anomalies

4.2.2 Clustering Algorithms

There is a very large variety of approaches towards clustering and so far this thesis has

explored the use of the following algorithms: agglomerative hierarchical clustering, DB-

SCAN clustering (Density Based Spatial Clustering of Application with Noise) and EM

clustering (Expectation-Maximization). Agglomerative hierarchical clustering has been used

by other researchers for some similar types of problem and shown to perform reasonably

well (e.g. [24], [25], [105], [110]) and also recommended by Witten and Frank [103] as the

most suitable solution for nominal and string data (which the coding systems produce for

three subject programs section 3.3.2). In contrast, DBSCAN and EM were chosen because

of their ability to determine the number of clusters automatically rather than specify them at

the outset (one of the limitation of agglomerative hierarchical clustering algorithm) [41].

The following subsections give a brief description of each approach. For further details

on the techniques the reader is referred to the work of Han et al. [41] or Witten and Frank

[103] for example.

Agglomerative Hierarchical Clustering Algorithm

The agglomerative hierarchical algorithm is an example of a clustering approach that aims

to build a hierarchy of objects. The core principle of this type of clustering method is that

the objects are more related to nearby objects (as defined by the distance metric) than to

objects farther away. A hierarchical clustering method can be either agglomerative or divisive,

depending on whether the hierarchical decomposition is formed in a bottom-up (merging) or

top-down (splitting) fashion.

Agglomerative hierarchical clustering initially assigns each object to its own cluster,

calculates the distance between two clusters, and combines the most similar ones. This

process is repeated, building larger and larger clusters at higher levels of the hierarchy, until

no close similarity or dissimilarity between two clusters can be found.

Divisive hierarchical clustering operates in the opposite fashion, initially assigning all

objects into one cluster and then dividing this main cluster into smaller ones based on object

dissimilarity until no further splits can be made.
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In both approaches the user has to specify the desired number of clusters as a termination

condition.

DBSCAN Clustering Algorithm

DBSCAN is an example of density based clustering approach, grouping together those

objects that are close neighbours which allows it to find arbitrarily shaped clusters. Unlike

agglomerative hierarchical clustering the number of clusters can be determined automatically

(after specifying two key parameters: the minimum number of points in a cluster and the

distance between them) and the approach also supports the notion of an outlier (objects not

belonging to any cluster). A cluster is defined as containing at least a minimum number of

points (MinPts), every pair of points of which either lies within a user specified distance (ε)

of each other or is connected by a series of points that each lie within distance of (ε) the

next point in the chain. Smaller values of (ε) yield denser clusters because instances must be

closer to another to belong to the same cluster. Based on the value of (ε) and the minimum

cluster size, it is possible that some objects will not belong to any cluster (these outliers are

considered as noise).

EM (Expectation-Maximization) Clustering Algorithm

The EM clustering algorithm is an example of probability based clustering approach. In

contrast to an approach such as k-means clustering, in which a fixed number of clusters (k)

is given at the outset and objects are assigned to those clusters so that the means across

clusters (for all objects) are as different from each other as possible, EM works purely from

the set of objects without any a priori information to find the most likely set of clusters from

a probabilistic perspective. EM operates iteratively to assign data objects to clusters and

update the parameters of the probability distributions governing the various clusters until the

best model is found.
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4.2.3 (Dis)similarity Measures

A range of distance measures were explored such as Euclidean distance, Minkowski distance,

Manhattan distance and edit distance in order to establish the most suitable measure for the

experiments proper. The first three were similar in terms of the performance and principle.

However, edit distance did not perform well and agglomerative hierarchical clustering

consistently assigned all input/output pairs into one cluster even when the cluster count was

increased. After exploring these various alternatives Euclidean distance was settled on as the

measure of (dis)similarity between two objects for agglomerative hierarchical clustering and

DBSCAN. The WEKA toolkit 1 used in this thesis computes this by converting all nominal

attributes into binary numeric attributes. So, an attribute with (k) values is transformed into

(k) binary attributes (using the one-attribute-per-value approach) [103]. Thus, all attributes

values are binary: being either a numeric attribute or a synthetic binary attribute that is

treated as numeric. The squared Euclidean distance sums the squared differences between

these attributes: a zero sum indicates agreement (similarity), but a non-zero sum suggests a

dissimilarity.

The consequence of choosing Euclidean distance is that nominal or categorical data (such

as the inputs, outputs and traces used in this thesis) are only considered equal if they are

identical. Any form of difference, no matter how small or large, causes them to be considered

unequal. This means that two traces may differ in just one method call out of thousands but

are considered as different as two that had no method calls in common. This might seem

an odd decision but the rationale behind this is that even a slight difference in an execution

trace may be indicative of an error. Using other measures would mean such a difference was

hardly perceptible and could easily be missed.

4.2.4 Linkage Metrics

In addition to a similarity metric, agglomerative hierarchical clustering requires a linkage

metric which is used to determine when clusters should be merged or split. There are three

1http://www.cs.waikato.ac.nz/ml/weka/
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approaches: Single Linkage calculates the minimum distance between an object in one cluster

and an object in another, Average Linkage computes the mean distance between objects in

the two clusters, and Complete Linkage is based on the maximum distance between objects.

All three are explored in this thesis.

4.2.5 Number of Clusters

For agglomerative hierarchical clustering the number of clusters needs to be provided

as parameter. This can clearly have a significant impact: too many clusters results in

fragmentation and too few in overgeneralisation. Therefore, a number of different cluster

counts were explored based on a percentage of the number of subject program test cases: 1%,

5%, 10%, 15%, 20% and 25%.

The number of clusters for EM is determined automatically by cross validation, a tech-

nique often used in classification [103]. A given data set is firstly divided into (m) parts.

Next, (m-1) parts are used to build a clustering model, and the remaining part used to test

the quality of the clustering. This process is repeated (m) times to derive clusterings of (k)

clusters by using each part in turn as the test set. The average of the quality measure is taken

as the overall quality measure. Then, the overall quality measure with respect to different

values of (k) is compared to find the best number of clusters that fits the data.

The DBSCAN algorithm uses two specified parameters (ε: the radius parameter, and

MinPts: the neighbourhood density threshold – see section 4.2.2) to determine the number of

clusters automatically. For this thesis, the parameters which gave the best results are reported

in the results and discussion sections (section 4.4.2 and section 4.5.2).

4.2.6 Small Cluster Size

One of the key elements of this thesis is the hypothesis that failures tend to congregate in

small clusters. But what is a small cluster? For this thesis, small is defined as less than

or equal to the mean of the cluster size (the remainder being considered as large). For

the purposes of the experimental evaluation all clusters were examined to determine the
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proportion of failures contained therein, but in practice is it envisaged that only small clusters

would be inspected and larger ones ignored.

4.3 Experimental Evaluation

Two main experiments were run to evaluate the effectiveness of clustering techniques in

separate failing and passing tests.

Experiment 1: In the first experiment the input to the clustering algorithms consisted of

just the test case inputs along with their associated outputs.

Experiment 2: The second experiment extended this by adding to the input/output pairs

with their corresponding execution trace.

The main hypothesis under investigation being: ”Normal data instances belong to large

and dense clusters, while anomalies (failures) either belong to small or sparse clusters”. In

other words, is the execution data which falls outside the clusters or in small (sparse) clusters

indicative of bugs? Data about the distribution of failures over clusters, the impact of the

number of clusters, the density of clusters, and the number of faults revealed per cluster were

analysed to examine this hypothesis. This section gives a brief overview of the experimental

set-up and evaluation procedures.

4.3.1 Experimental Set-up

The main components of the experiment were: a set of programs with known failures, a set

of test inputs for each program, a way to determine whether an execution of each test was

successful or not (passed or failed), and a mechanism for recording the execution trace taken

through the program by each test. The seeded versions of the subject programs were run on

the inputs to produce the associated outputs, and Daikon [30] was used to obtain the execution

traces. The resulting set of input/output pairs was augmented with their associated execution

traces, transformed to reduce the volume of data (traces are often very large), and then
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analysed using several clustering algorithms. Knowing which data objects corresponding to

failed test cases enabled author to determine how well the clustering algorithms performed.

Each of these steps along with subject programs were described in more details in the

previous chapter (see section 3.3.1 and section 3.3.2).

4.3.2 Evaluation of Clustering Techniques

The performance of the clustering algorithms can be assessed by looking at the way that

failures are distributed over the small clusters (the definition of “small” is flexible so what

follows is a general definition). To capture more accurately for this thesis, the F-measure was

used – a combination measure of Precision and Recall (formulae were introduced in previous

chapter section 3.3.3). These measures in turn rely on the concepts of true positives (TP),

false positives (FP) and false negatives (FN) which are defined in this context as follows:

TP: A failing test result that appears in a small cluster.

FP: A passing test result that appears in a small cluster.

FN: A failing test result that appears in a large (i.e. not small) cluster.

For this context, Precision is defined as the ratio of “correctly clustered” failures (i.e.

failures that appear in small clusters) to the sum of all the entries in the small clusters. Recall

is the ratio of “correctly clustered” failures to the total number of true failures (failures

appearing in both small and large clusters).

In this thesis, the small clusters were defined as those being of average size or less (i.e.

the total number of passing and failing outputs divided by the number of clusters).

To illustrate the process of the evaluation, a small example is introduced which shows

how the small cluster size, precision, recall and F-measure are computed. Assume that a

system under test generates 21 data points during execution of its set of test cases. The

system contains 3 faults (referred to as F1, F2 and F3) which cause failures which appear

in the output 4, 4 and 2 times respectively. The remaining 11 test outputs were all passes

(there is no need to distinguish amongst these). Again assume that after applying clustering,
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6 clusters were created which grouped the outputs as follows: (f1, f2, f3, p, p, p), (p, p, p, p,

p), (f1, f2, p, p), (f1, f2, p), (f2, f3), (f1), where fn corresponds to a failure associated with

fault n and p corresponds to pass execution. This can be illustrated graphically as shown in

Figure 4.1 (where the clusters are sorted in increasing order of size on the y-axis and the

“cluster count” legend is just an arbitrary value allocated to a cluster). This representation

allows the reader to see the distribution of failures over the clusters.

The key values are computed as follows:

• Small clusters are those of average size or less (i.e. (number of data points)/(number

of clusters)). In the above example the average cluster size is (21/6) = 3.5, so the small

clusters are all of these containing ≤ 3 data points (i.e. clusters 1, 2 and 3).

• Precision: Five of the outputs in the 3 small clusters are failures (TPs) and one is a

pass (FP), so

PR = 5/(5 + 1) = 0.83

• Recall: Five of the outputs in the 3 small clusters are failures (TPs) but 5 failures also

ended up being allocated to the “large” clusters (TNs), so

RE = 5/(5 + 5) = 0.5

• The F-measure is then 2 × (0.83 × 0.5)/(0.83 + 0.5) = 0.62

Fig. 4.1 Evaluation Example
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4.4 Experiment 1 (Clustering Test Input/Output Pairs): Re-

sults And Discussion

This first experiment explored the use of clustering algorithms to cluster data composed of

test case inputs and their associated outputs.

4.4.1 Distribution of Failures

The first question to explore is whether failures are distributed in a random pattern or whether

they tend to congregate in the smaller clusters as hypothesised. Figures 4.2 – 4.7 show bar

charts representing the cluster size and composition for all versions of NanoXML, Siena

(faulty version 2), and Sed (faulty version 5) using agglomerative hierarchical clustering with

average linkage. The results are interesting and in several cases (NanoXML versions 2 and

3 and Siena version 2) it can be seen that failures in the test input/output pairs population

tend to cluster together and these clusters tend to be the smaller ones. This effect is less

pronounced in NanoXML versions 1 and 5 where the smallest clusters also tend to contain

more of the passing cases. The pattern for Sed is quite different – there are a very large

number of small clusters rather than a gradually increasing distribution as in the other cases,

and these contain a mixture of both passing and failing cases. Overall there is some support

for the main hypothesis behind this work, that failures tend to gravitate towards the smaller

clusters but it is by no means universal. The following sections examine this in more detail.

4.4.2 Failures Found verses Cluster Counts and Cluster Sizes

To investigate this observation further the population of input/output pairs that were in small

clusters (defined as being of average size or less) and corresponded to failures was examined.

Tables 4.1 and 4.2 show, for varying numbers and sizes of clusters over all systems and for the

three different linkage metrics that may be used with agglomerative hierarchical clustering

(Average, Single and Complete), the percentage of all data points corresponding to failures.
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Fig. 4.2 Hierarchical Clustering Algorithm with Average Linkage for NanoXML (Version 1)
Using Input/Output Pairs only.

  

Fig. 4.3 Hierarchical Clustering Algorithm with Average Linkage for NanoXML (Version 2)
Input/Output Pairs only.
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Fig. 4.4 Hierarchical Clustering Algorithm with Average Linkage for NanoXML (Version 3)
Input/Output Pairs only.

  

Fig. 4.5 Hierarchical Clustering Algorithm with Average Linkage for NanoXML (Version 5)
Input/Output Pairs only.
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Fig. 4.6 Hierarchical Clustering Algorithm with Average Linkage for Siena (Version 2)
Input/Output Pairs only.

  

Fig. 4.7 Hierarchical Clustering Algorithm with Average Linkage for Sed (Version 5) In-
put/Output Pairs Only.
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The first column (Cluster Count %) defines the number of clusters the algorithm is charged

with creating expressed as a percentage of the number of test cases. So, for NanoXML a

value of 10 in the Cluster Count % corresponds to 21 as it has 207 tests, for Siena this would

be 50 as it has 494 test cases, and for Sed which has 363 tests it would be 37. The second

column (Cluster Size %) is the average size of the clusters created by the algorithms, again

expressed in terms of the number of tests. So as the values in Cluster Count % column

increase, so do the number of clusters created which leads to a corresponding decrease in

the average size of the clusters. The subsequent columns refer to the version number of the

program. Note that the faults in Siena changed the same output data in all versions, even

though they are distinct faults, so only the results from one version are considered since there

is nothing to be gained from examining the other versions.

Considering the results for NanoXML (Table 4.1) the data shows that when the cluster

counts are between 15% to 25% of the number of test cases (corresponding to cluster sizes

of around 3% of the number of test cases - i.e. around 6 data points for NanoXML), well

over 55% of the data points are failures irrespective of which linkage metric is used, and over

60% when the average linkage metric is employed. For Siena (Table 4.2) a similar pattern

emerges but the best results are at the higher cluster count levels (20-25%, possibly due to

the larger number of test cases which gives an average cluster size of around 4) and tend to

be over 70%. The results for Sed (Table 4.2) are less dramatic and although a similar trend is

displayed the failure density never reaches 50%, peaking at just over 40% when the complete

linkage metric is used with an average cluster size of about 3. From the graphs shown earlier

(Figure 4.7) it was observed that Sed contained a very large number of small clusters and

only one large cluster, rather than a steadily increasing cluster size which suggests that the

data is very fragmented and the algorithm is clearly struggling to form larger groups of data

items. This might be addressed by augmenting the data with other types of features such as

execution traces or code coverage information. This also could be solved by applying one of

the pre-processing/filtering algorithms in the WEKA toolkit to the data in order to remove

any unobserved noise.
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Even with the results from Sed the findings lend support to the main hypothesis of this

work: As the number of clusters increases and their average size decreases, so the failure

density of the small (less than average) sized clusters tends to increase. One case where this

is not quite true is version 3 of NanoXML where the smallest clusters contained the most

failures: the input-output pairs corresponding to failures are so distinct from the rest that they

were all grouped into one cluster (an impressive but probably unusual case!).

Tables 4.3 and 4.4 show the results of clustering test inputs and outputs using the

Expectation Maximisation and DBSCAN algorithms respectively. Unlike Agglomerative

Hierarchical Clustering, neither of these algorithms require the number of clusters to be

specified in advance. The results show that EM performs well with all versions of NanoXML

but less so with Siena and very poorly with Sed. Interestingly, for NanoXML the number of

clusters created is close to the best number when specified for Agglomerative Hierarchical

Clustering. The results for DBSCAN are weaker for NanoXML and very poor for Siena but

extremely encouraging for Sed, generating both a very high failure density in the smallest

clusters and a reasonable F score. In the case of Sed DBSCAN has generated a very large

number of small clusters (matching the pattern observed earlier in figure 4.7) – almost twice

the number that was explored using Agglomerative Hierarchical Clustering, which confirms

the earlier observations about the data being very fragmented.

Although general pattern is for failure intensity to increase as the cluster size decreases,

a trend which can also be observed in Figures 4.8 - 4.12 which present the percentage of

failures found in the small clusters with different cluster counts in the subject programs

(essentially a graphical summary of the data that appears in Tables 4.1 and 4.2), there are

cases where the failure intensity peaks and then begins to drop (although not substantially)

as the clusters are forced to fragment. An important lesson from this study is that the number

of clusters is crucial: too few clusters may be ineffective for the technique but too many may

cause the failure intensity to diminish as the clusters are forced to fragment. Identifying the

ideal number of clusters (or similarly, the best parameters for algorithms such as DBSCAN)

is something which needs further empirical investigation to establish.
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Table 4.1 Recall (Failures Found) and F-measure vs. Cluster Size for Hierarchical Clustering
with Different Linkage Metrics Using Input/Output Pairs Only.

Single Linkage:
Cluster Details NanoXML Version
(% Tests) V1 V2 V3 V5
Count Size (%, F) (%, F) (%, F) (%, F)
1% 50% (0, 0) (0, 0) (0, 0) (0, 0)
5% 10% (14, 0.23) (18, 0.27) (7, 0.11) (26, 0.13)
10% 3.5% (53, 0.63) (63, 0.71) (50, 0.59) (40, 0.45)
15% 3% (56, 0.62) (63, 0.65) (65, 0.71) (61, 0.60)
20% 2.5% (56, 0.56) (63, 0.60) (72, 0.75) (66, 0.57)
25% 2% (56, 0.53) (63, 0.55) (74, 0.68) (66, 0.54)

Average Linkage:
Cluster Details NanoXML Version
(% Tests) V1 V2 V3 V5
Count Size (%, F) (%, F) (%, F) (%, F)
1% 50% (7, 0.07) (28, 0.03) (100, 1) (10, 0.09)
5% 10% (56, 0.60) (63, 0.63) (34, 0.46) (26, 0.29)
10% 6.25% (56, 0.58) (63, 0.63) (45, 0.57) (61,0.59)
15% 3.25% (56, 0.56) (63, 0.62) (82, 0.81) (52, 0.53)
20% 2.5% (51, 0.51) (54, 0.51) (75, 0.70) (52, 0.43)
25% 2.25% (65, 0.55) (61, 0.55) (75, 0.66) (61, 0.48)

Complete Linkage:
Cluster Details NanoXML Version
(% Tests) V1 V2 V3 V5
Count Size (%, F) (%, F) (%, F) (%, F)
1% 50% (12, 0.12) (28, 0.04) (100, 1) (10, 0.08)
5% 10% (12, 0.16) (29, 0.26) (20, 0.33) (26, 0.28)
10% 6.25% (35, 0.36) (17, 0.49) (67, 0.80) (44, 0.39)
15% 3.12% (59, 0.56) (46, 0.41) (84, 0.81) (55, 0.44)
20% 2.5% (51, 0.51) (54, 0.51) (75, 0.65) (52, 0.43)
25% 2.25% (54, 0.51) (64, 0.56) (75, 0.66) (53, 0.43)
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Table 4.2 Recall (Failures Found) and F-measure vs. Cluster Size for Hierarchical Clustering
with Different Linkage Metrics Using Input/Output Pairs Only.

Single Linkage:
Cluster Details Siena Version Sed Version
(% Tests) V2 Cluster V5
Count Size (%, F) Count Size (%, F)
1% 19.8% (0, 0) 1% 19.8% (14, 0.26)
5% 4% (3, 0.03) 5% 6.4% (23, 0.29)
10% 2% (40, 0.34) 10% 2.685% (23, 0.29)
15% 1.21% (48, 0.44) 15% 1.69% (23, 0.24)
20% 0.79% (72, 0.65) 20% 1.22% (27, 0.23)
25% 0.6% (60, 0.53) 25% 1% (36, 0.27)

Average Linkage:
Cluster Details Siena Version Sed Version
(% Tests) V2 Cluster V5
Count Size (%, F) Count Size (%, F)
1% 19.8% (0, 0) 1% 19.8% (0, 0)
5% 4% (16, 0.13) 5% 6.46% (9, 0.16)
10% 2% (41, 0.39) 10% 2.628% (12, 0.16)
15% 1.21% (41, 0.37) 15% 1.563% (18, 0.0.20)
20% 0.79% (67, 0.61) 20% 1.08% (25, 0.24)
25% 0.6% (75, 0.62) 25% 0.808% (29, 0.25)

Complete Linkage:
Cluster Details Siena Version Sed Version
(% Tests) V2 Cluster V5
Count Size (%, F) Count Size (%, F)
1% 19.80% (0, 0) 1% 20% (9, 0.16)
5% 4% (33, 0.18) 5% 6.466% (22, 0.26)
10% 2% (47, 0.34) 10% 2.71% (33, 0.38)
15% 1.21% (66, 0.49) 15% 1.69% (29, 0.29)
20% 0.79% (72, 0.65) 20% 1.24% (36, 0.30)
25% 0.6% (60, 0.53) 25% 0.968% (41, 0.30)
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Table 4.3 Percentage of Failures and F-measure vs. Cluster Size for EM clustering Algorithm
Using Input/Output Pairs Only.

Cluster Details EM
Systems Count Size (%, F)
Nanoxml V1 1.94% 25% (49, 0.65)
Nanoxml V2 2.42% 20.2% (50, 0.29)
Nanoxml V3 2.42% 20% (62, 0.43)
Nanoxml V5 1.45% 33% (64, 0.77)

Siena V2 2.02% 16.66% (35, 0.22)
Sed V5 2.71% 9.9% (5, 0.06)

Table 4.4 Percentage of Failures and F-measure vs. Cluster Size for DBSCAN clustering
Algorithm Using Input/Output Pairs Only. Note for NanoXML (Epsilon = 0.9 Minpoints =
2) and for Siena and Sed (Epsilon = 1.5 Minpoints = 1).

Cluster Details DBSCAN
Systems Count Size (%, F)
Nanoxml V1 19.9% 2.68% (25, 0.29)
Nanoxml V2 19.9% 2.68% (22, 0.24)
Nanoxml V3 19.9% 2.70% (25, 0.26)
Nanoxml V5 19.9% 2.60% (16, 0.17)

Siena V2 4.45% 4.54% (3, 0.03)
Sed V5 48.23% 1% (83, 0.30)
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Fig. 4.8 Percentage of Failures Found Over the Smallest Clusters for all NanoXML Versions
Using Single Linkage and Input/Output Pairs Only.
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Fig. 4.9 Percentage of Failures Found Over the Smallest Clusters for all NanoXML Versions
Using Average Linkage and Input/Output Pairs Only.
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Fig. 4.12 Percentage of Failures Found Over the Smallest Clusters for Sed Version Using
Linkage Metrics and Input/Output Pairs Only.
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4.4.3 Failure Density of Smallest Clusters

From the perspective of supporting the practising software engineer in their work and also in

the construction of a test oracle, the interesting question concerns the return on investment:

how many outputs need to be examined before a reasonable number of failures are observed?

To answer this the proportion of failing outputs appearing in the smallest sized clusters

was examined in more detail. The absence of a fault matrix for Siena makes this very time

consuming to compute, therefore only the results for the highest failure density clusters for

NanoXML and Sed were calculated. The results of this are summarised in Tables 4.5 and

4.6 and show the cluster size (the 3 values correspond to the absolute size of the cluster, the

number of clusters of that size, and the size of the cluster proportional to the test set size)

and details of the failures found (the proportion, the actual failures indicated by ‘Fn’, and

the number of occurrences of each failure). Failures associated with a new fault (i.e. not

previously encountered) are indicated in bold font. The final column shows the cumulative

count of unique faults observed (via their associated failures) over the total number of faults

in the system. So, for instance, the first entry of Table 4.5 shows that for Version 1 using 25%

of the number of test cases to define the number of clusters, there were 13 clusters each of

size 1 corresponding to 0.48% of the number of test cases, containing failures 1 (3 times), 2

and 6 (once each), giving a cumulative count of 3 out of a total of 7.

Table 4.5 shows that on average over all four versions a fair proportion of the failures -

45% (13/29) - are contained within the very smallest clusters (formed from just one or two

items). This is encouraging from a test oracle perspective:out of 43 outputs, 23 correspond to

failures giving a failure density of 53%. This initially good rate tails off until the cluster size

reaches 4 and additional failures appear in the outputs (except for version 5). By this point

an average of 66% (19/29) of the failures have appeared in the clusters, albeit at the expense

of having to examine more non-failing outputs and encountering duplicate failing outputs

(but still giving a failure density of around 59%). This failure density figure, combined with

the fact that clusters tend to contain outputs associated with the same failure, means that in

practice less than half of the outputs from a small cluster need to be checked before a failing

output is encountered.
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The results for Sed (Table 4.6) are less impressive but nevertheless encouraging. Even

though the failure density is lower than for NanoXML the failures are well represented in the

smallest clusters: by examining these 3 out of the 4 failures would be encountered. On the

downside the outputs of 62 small clusters (all of size 1) need to be checked but this is still far

less work than examining all 370 test outputs.

Of course, there are still additional failing outputs embedded in the larger clusters which

can not be ignored. This is clearly a weakness of the approach and one of the main topics

of future work is to explore how these can be teased out into smaller clusters. A further

feature of the clustering is that there is often number of independent clusters associated with

the same failure (separated typically because the input/output pairs have different attribute

values). This is also a challenge since finding the same failure appearing in several clusters

can be quite frustrating for the individual charged with the task of checking outputs. Merging

them together is not the answer as this will typically result in a larger cluster which may

escape scrutiny, so some way of indicating similarity between them needs to be explored.

4.5 Experiment 2 (Clustering Test Input/Output Pairs and

Execution Traces): Results And Discussion

A second experiment was run to investigate if collecting additional data in the form of the

execution traces associated with each test case would improve the accuracy of the clustering

performed in the first experiment by increasing in particular the failure density of the small

clusters. Since this trace data can be quite extensive it was compressed as described in Section

3.3.2 in previous chapter. Apart from collecting and including this additional trace data in

the clustering all other aspects of this experiment were identical to the previous experiment.

4.5.1 Distribution of Failures over Clusters

Again, the first major question to explore is whether failures are distributed in a random

pattern over the clusters or whether they gravitate towards the small clusters as hypothesised.
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Table 4.5 Failure Distribution over less than Average Sized Clusters for Nanoxml Using
Input/Output Pairs Only.

Version 1 (25%)
Cluster Size Failures Found Cumulative
1, 13, 0.48% (F1:3, F2:1, F6:1) 3/7
2, 13, 0.97% (F1:4, F2:2, F6:2) 3/7
3, 4, 1.45% (F6:3) 3/7
4, 8, 1.94% (F2:16, F5:8, F7:8) 5/7

Version 2 (15%)
Cluster Size Failures Cumulative
1, 7, 0.48% (F1:3, F2:2, F6:1) 3/7
2, 3, 0.97% (F6:2) 3/7
3, 5, 1.45% (F6:3) 3/7
4, 6, 1.94% (F2:8, F5:8, F7:8) 5/7
5, 2, 2.42% (F2:5) 5/7
6, 1, 2.91% (F2:6) 5/7

Version 3 (15%)
Cluster Size Failures Cumulative
1, 10, 0.48% (F1:4, F2:1, F3:1, F4:2, F6:1) 5/7
2, 4, 0.97% (F1:1, F4:2, F6:2) 5/7
3, 5, 1.45% (F4:6, F6:3) 5/7
4, 6, 1.94% (F2:8, F5:8, F7:8) 7/7
5, 2, 2.42% (F2:5) 7/7
6, 1, 2.91% (F2:6) 7/7

Version 5 (25%)
Cluster Size Failures Cumulative
1, 13, 0.48% (F1:3, F2:1) 2/8
2, 14, 0.97% (F1:2, F2:2) 2/8
3, 8, 1.45% (F2:3) 2/8
4, 7, 1.94% (F2:28) 2/8

Table 4.6 Failure Distribution over less than Average Sized Clusters for Sed Version 5 Using
Input/Output Pairs Only.

Complete Linkage (25%)
Cluster Size Failures Found Cumulative
1, 62, 0.19% (F1:7, F2:4, F3:7) 3/4
2, 16, 0.38% (F1:2, F3:4) 3/4
3, 5, 0.57% (F2:3, F3:3) 3/4
4, 2, 0.76% (-) -/4
5, 1, 0.96% (-) -/4
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To examine this a sample of the results are shown visually – these are only a selection of

the best results for all versions of the subject programs, but the full set is available online
2. Figures 4.13 to 4.18 show bar charts of the cluster composition for NanoXML (all faulty

versions), Siena (faulty version 2) and Sed (faulty version 5), where failing outputs are

coloured blue and passing ones yellow. In these cases the cluster count for NanoXML is set

at 15% of the number of test cases (producing approximately 30 clusters), 20% for Siena

(producing just under 100 clusters) and 25% for Sed (producing just over 90 clusters). In

all cases the results are using agglomerative hierarchical clustering (DBSCAN and EM

clustering algorithms were also used but tended to perform relatively poorly – something

which is explored in more detail later).

It can be seen from these results that as in experiment 1 the failure data do tend to cluster

together and these clusters are the smaller ones in most cases. There are some exceptions

to this: for example for NanoXML version 5 the very smallest clusters are dominated by

non-failing outputs whereas the converse is true for the other versions, and in all cases of

NanoXML some failures creep into the largest clusters. The results for Siena are more

consistent with a clear tendency for failures to gravitate towards the small clusters and away

from the larger ones. The results for Sed are similar to experiment 1 – many small clusters

and one large cluster but this time with a few intermediate-sized ones. It must be stressed

that these are selected, and very high-level, results (although others reflect a similar pattern)

but it would seem that a substantial number of failures congregate in small clusters. The

detailed composition of these small clusters is examined in more detail in the next section.

4.5.2 Failure Composition of Small Clusters

This apparent observed tendency for failures to gravitate towards the smaller clusters need to

be explored in more detail: the precise degree to which it occurs; the impact of the different

clustering algorithms and parameters (especially the number of clusters); and particularly the

way that multiple failures are distributed (for example, in the case of several failures do they

all appear in the small clusters or is one failure dominant?). To explore this principle further

2A complete sets of results can be found at: http://personal.strath.ac.uk/rafig.almaghairbe/
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Fig. 4.13 Hierarchical Clustering Algorithm with Single Linkage for NanoXML (Version 1)
Using Input/Output Pairs Augmented with Execution Traces.

  

Fig. 4.14 Hierarchical Clustering Algorithm with Single Linkage for NanoXML (Version 2)
Using Input/Output Pairs Augmented with Execution Traces.
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Fig. 4.15 Hierarchical Clustering Algorithm with Single Linkage for NanoXML (Version 3)
Using Input/Output Pairs Augmented with Execution Traces.

  

Fig. 4.16 Hierarchical Clustering Algorithm with Single Linkage for NanoXML (Version 5)
Using Input/Output Pairs Augmented with Execution Traces.
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Fig. 4.17 Hierarchical Clustering Algorithm with Single Linkage for Siena (Version 2) Using
Input/Output Pairs Augmented with Execution Traces.

  

Fig. 4.18 Hierarchical Clustering Algorithm with Average Linkage for Sed (Version 5) Using
Input/Output Pairs Augmented with Execution Traces.
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the population of the small clusters (defined as being of average size or less) was examined

for each of the algorithms, identified the percentage of these clusters that correspond to

failures, and also used the F-measure to answer the point about the way that multiple failures

are clustered.

Tables 4.7, 4.8 and 4.9 show, for NanoXML, Siena and Sed respectively, the results of

applying agglomerative hierarchical clustering for different linkage metrics with varying

numbers of clusters. The tables show the percentage of all data points in small (less than

average-sized) clusters that correspond to failures, and the F-measure for the small clusters.

The percentage figure gives an indication of the failure density and the F-measure adds to

this by considering the range of faults that are revealed by failures that appear in the small

clusters (for NanoXML there are 7 faults in versions 1-3 and 8 in version 5). The first column

(Count) defines the number of clusters the algorithm is charged with creating expressed as

a percentage of the number of test cases. The second column (Size) is the average size of

the clusters again in terms of the number of test cases. The cluster count figure has to be

supplied as a parameter whereas the size figure is a consequence of the number of clusters

and is not controllable. The subsequent columns refer to the version number of the programs

and % and F refer to the percentage of failures and the F-measure.

The data for NanoXML shows an interesting bi-modal response: the best results occur

when there is either the smallest number of clusters (1% which corresponds to 2 clusters)

or when the cluster counts range between 10% to 25% of the number of test cases (yielding

between 20 and approximately 50 clusters). When the cluster count is very small the

algorithm will generate two large clusters (these will be of similar size but the smaller one

is always treated as the small cluster) and in some cases one of these is composed entirely

of failures and the other of passing outputs (those where the F-measure has a value of 1)

– in other words the algorithm has managed to perfectly separate the passing and failing

executions (the reason behind this impressive clustering were investigated and discussed in

more detail in section 3.4.2 in previous chapter - also see table 3.8).

As the cluster count increases so the results tend to drop quite dramatically until they

pick up at around the 15% level (± 5%) before tailing off again. In this range the average
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small cluster sizes are between 2.73% to 6.39% of the number of test cases – around 5 to

13 elements and it is worth noting that well over 60% – sometimes far more – of the data

points are failures. This again lends support to the experimental hypothesis behind this work

that failures tend to congregate in small clusters. Another notable point is the fact that the

F-measure tends to vary in line with the percentage of failures (and in all but one case the

highest F-measure is also the highest percentage of failures), indicating that the failures

associated with the numerous faults are evenly distributed across the small clusters. This is

important as it could have been the case that the small clusters were dominated by a small

and unrepresentative number of failures. The exact composition of these clusters will be

explored in more detail later. It is also notable that both the linkage metrics and the versions

of the program have an impact on the results, but the best overall and most stable results are

produced by using the single linkage metric with a cluster count set at 15% of the number of

test cases.

The results for Siena (4.8) tend to follow a similar pattern: in some cases the smallest

number of clusters (5) tend to perform well and again manage to perfectly separate the data

(once again this result is down to the passing and failing outputs being completely separable

by their traces), but in other cases (with the single linkage metrics) they perform very poorly.

The data for Siena also supports the key hypothesis behind this work with the cluster counts

between 5% to 25% of the number of test cases consisting of over 70% failures. As for

NanoXML the linkage metrics influence the findings, with the single linkage producing the

least consistent results and the complete linkage the best.

The picture for Sed is similar to that for experiment 1 – a gradual increase in failure

density and F-measure as the cluster size drops but a much lower overall failure density value

than was observed in the other two projects. Including the trace information has not produced

any dramatic results as with NanoXML and Siena as there is no dominant pattern of traces

arising from failing executions (Sed has 295 distinct traces - see table 3.8 in the previous

chapter).

The results of using EM and DBSCAN to perform the clustering are shown in Tables

4.10 and 4.11. The first column (systems) defines the subject programs with their version
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number. The second and third columns identify, as in the previous tables, the number of

clusters and the average small cluster size again in terms of the percentage of test cases.

The key difference in this case is that the cluster count is determined automatically by the

algorithm. The final column shows the percentage of failures in the small clusters and the

F-measure for each algorithm. With the exception of version 1, DBSCAN performed well

on NanoXML: for version 2 the result was equal to the best found using agglomerative

hierarchical clustering, and versions 3 and 5 were close to the best. It is also notable that

the cluster count chosen was 15% – identified as the best compromise for agglomerative

hierarchical clustering. The trace information in version 1 is far more diverse which may

explain the less impressive performance in this case. The results for Siena are consistent

but far inferior to those produced by most of the different cluster size parameters using

agglomerative hierarchical clustering. Sed produced the most disappointing results for this

algorithm – far worse than when it was operating on test input and outputs alone which

suggests that the clustering seems to be fragmenting the data further. The findings for EM

are very disappointing, with the odd exception of NanoXML Version 1. In the majority of

cases the algorithm failed to apportion any of the failures into the smallest clusters and also

elected to use a very small number of clusters.

4.5.3 Fault Density of Smallest Clusters

As in experiment 1 the practical utility of the approach and the return on investment was

explored: how many outputs need to be examined before a reasonable number of failures

and associated faults are observed? To answer this the precise composition of failing data

appearing in the smallest sized clusters was examined in more detail – in other words which

failing outputs appeared in which clusters.

The results of this analysis for NanoXML (with a clustering size of 15% using agglomera-

tive hierarchical clustering) are shown in Table 4.12 (which takes the same form as Table 4.5

in Section 4.4.3). The NanoXML results show a number of failures appearing in the smallest

clusters with additional ones appearing after examining just a few more clusters (with the

exception of version 5). This is an important finding as it suggests that those failures which
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Table 4.7 Percentage of Failures Found (Recall) and F-measure vs. Cluster Size for Hierar-
chical Clustering with Different Linkage Metrics Using Input/Output Pairs Augmented with
Execution Traces.

Single Linkage:
Cluster Details NanoXML Version
(% Tests) V1 V2 V3 V5
Count Size (%, F) (%, F) (%, F) (%, F)
1% 50% (64, 0.72) (0, 0) (2, 0.03) (0, 0)
5% 11.95% (5, 0.09) (5, 0.08) (34, 0.5) (40, 0.53)
10% 6.37% (47, 0.59) (40, 0.43) (66, 0.79) (41, 0.53)
15% 5.03% (64, 0.73) (78, 0.84) (82, 0.84) (60, 0.63)
20% 3.31% (57, 0.65) (68, 0.72) (73, 0.75) (60, 0.6)
25% 2.76% (58, 0.62) (68, 0.70) (69, 0.70) (44, 0.44)

Average Linkage:
Cluster Details NanoXML Version
(% Tests) V1 V2 V3 V5
Count Size (%, F) (%, F) (%, F) (%, F)
1% 50% (0, 0) (100, 0.94) (84, 0.91) (100, 1)
5% 12.04% (7, 0.11) (6, 0.11) (14, 0.24) (9, 0.14)
10% 6.47% (44, 0.56) (48, 0.64) (34, 0.47) (26, 0.35)
15% 4.30% (64, 0.73) (78, 0.81) (68, 0.74) (60, 0.61)
20% 3.27% (64, 0.58) (68, 0.61) (75, 0.71) (60, 0.56)
25% 2.74% (58, 0.55) (70, 0.57) (69, 0.64) (46, 0.37)

Complete Linkage:
Cluster Details NanoXML Version
(% Tests) V1 V2 V3 V5
Count Size (%, F) (%, F) (%, F) (%, F)
1% 50% (0, 0) (100, 1) (100, 0.98) (100, 1)
5% 11.94% (0, 0) (3, 0.004) (26, 0.40) (43, 0.60)
10% 6.39% (2, 0.02) (3, 0.03) (49, 0.65)) (70, 0.83)
15% 4.27% (31, 0.36) (10, 0.08) (85, 0.88) (70, 0.74)
20% 3.37% (52, 0.55) (45, 0.45) (76, 0.72) (61, 0.60)
25% 2.73% (58, 0.57) (70, 0.69) (69, 0.67) (46, 0.42)
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Table 4.8 Percentage of Failures Found (Recall) and F-measure vs. Cluster Size for Hierar-
chical Clustering with Different Linkage Metrics Using Input/Output Pairs Augmented with
Execution Traces.

Single Linkage:
Cluster Details Siena Version
(% Tests) V2
Count Size (%, F)
1% 19.8% (0, 0)
5% 4% (17, 0.21)
10% 1.99% (34, 0.31)
15% 1.21% (61, 0.47)
20% 0.79% (75, 0.66)
25% 0.6% (60, 0.48)

Average Linkage:
Cluster Details Siena Version
(% Tests) V2
Count Size (%, F)
1% 20.13% (100, 0.96)
5% 4% (23.80, 0.19)
10% 1.98% (75, 0.65)
15% 1.20% (75, 0.57)
20% 0.81% (71, 0.60)
25% 0.6% (75, 0.64)

Complete Linkage:
Cluster Details Siena Version
(% Tests) V2
Count Size (%, F)
1% 20% (100, 1)
5% 4.04% (100, 0.89)
10% 1.99% (60, 0.56)
15% 1.27% (71, 0.52)
20% 0.79% (75, 0.66)
25% 0.6% (75, 0.62)
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Table 4.9 Percentage of Failures Found (Recall) and F-measure vs. Cluster Size for Hierar-
chical Clustering with Different Linkage Metrics Using Input/Output Pairs Augmented with
Execution Traces.

Single Linkage:
Cluster Details Sed Version
(% Tests) V5
Count Size (%, F)
1% 19.8% (24, 0.31)
5% 6.4% (27, 0.32)
10% 2.6% (16, 0.21)
15% 1.65% (24, 0.24)
20% 1.2% (34, 0.28)
25% 1% (34, 0.18)

Average Linkage:
Cluster Details Sed Version
(% Tests) V5
Count Size (%, F)
1% 19.8% (24, 0.31)
5% 7.6% (13, 0.20)
10% 2.68% (16, 0.20)
15% 1.67% (25, 0.25)
20% 1.2% (36, 0.29)
25% 1% (39, 0.26)

Complete Linkage:
Cluster Details Sed Version
(% Tests) V5
Count Size (%, F)
1% 20% (12, 0.19)
5% 6.6% (22, 0.28)
10% 2.71% (33, 0.37)
15% 1.69% (28, 0.27)
20% 1.22% (31, 0.25)
25% 1% (37, 0.29)
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Table 4.10 Percentage of Failures Found (Recall) and F-measure vs. Cluster Size for DB-
SCAN clustering Algorithm Using Input/Output Pairs Augmented with Execution Traces.

Cluster Details DBSCAN
Systems Count Size (%, F)
Nanoxml V1 50% 1.425% (32, 0.31)
Nanoxml V2 15% 5.1% (78, 0.81)
Nanoxml V3 15% 4.08% (79, 0.81)
Nanoxml V5 15% 3.78% (69, 0.67)
Siena V2 6% 3.33% (53, 0.48)
Sed V5 8% 3.5% (9, 0.10)

Table 4.11 Percentage of Failures Found (Recall) and F-measure vs. Cluster Size for EM
clustering Algorithm Using Input/Output Pairs Augmented with Execution Traces.

Cluster Details EM
Systems Count Size (%, F)
Nanoxml V1 2.41% 20% (40, 0.42)
Nanoxml V2 1.93% 25.25% 0
Nanoxml V3 2.41% 19.8% (5, 0.09)
Nanoxml V5 1.44% 33.33% 0
Siena V2 1.41% 14.28% 0
Sed V5 1% 33.33% (9, 0.08)
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are going to be observed tend to appear relatively early in the ordering of clusters. This has

important practical implications: collectively these smallest clusters correspond to between

25% and 30% of the total output of the system, and the observed failures appear in an even

smaller grouping, which means that the majority of failures in a system can be identified by

looking at between one-fifth and one-quarter of the output – a substantial saving in effort for

the developer.

The results for Siena are included in Table 4.13 although since Siena contains just the

one fault the impact is less pronounced. However, it does show that the observed failures

also tend to be concentrated early on in the small clusters and have the same implications as

the NanoXML results. The findings for Sed are shown in Table 4.14. The pattern is similar

to the first experiment but the number of clusters to be examined has dropped very slightly.

Again there are clear practical benefits: 75% of the program’s failures are concentrated in

about 16% of its results.

4.5.4 Impact of Failure Density

One key factor in this study is the failure density. As mentioned in Section 3.3.1, this is

between 31%-39% for NanoXML and 17% for Siena. This failure rate is a factor of the

combination of test cases supplied for the two systems and the nature of the faults embedded

within the systems. However, in practical terms this may be too high. The expectation is

that this approach would be applied to a relatively mature system which may not have many

obvious faults, and consequently a much smaller failure rate. Furthermore, an assumption

behind anomaly detection is that anomalous events are relatively rare whereas in these

experiments the failure rate has been fairly high, so may represent a difficult case for the

successful application of clustering techniques. To explore the impact of this two versions

of two of the systems were taken – NanoXML V3 and Siena V2 (Sed was ignored as it

demonstrated a similar failure rate to Siena) – and randomly pruned out fault revealing test

cases to systematically reduce the failure rates to 10%, 5% and 1% for each system.

The results for this part of the investigation are shown in Tables 4.15 and 4.16 which,

for each system, shows the cluster size, again in terms of the percentage of test cases (but
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Table 4.12 Failure Distribution over less than Average Sized Clusters for Nanoxml

Version 1 (15%)
Cluster Size Failures Found Cumulative
1, 10, 0.67% (F1:2, F2:2, F6:1) 3/7
2, 3, 1.34% (F1:2, F6:2) 3/7
3, 2, 2.01% (F2:3, F6:3) 3/7
4, 5, 2.68% (F2:4, F5:8, F7:8) 5/7
5, 1, 3.35% (F2:4) 5/7
6, 1, 4.02% (F2:6) 5/7

Version 2 (15%)
Cluster Size Failures Cumulative
1, 8, 0.67% (F1:3, F2:2, F6:2) 3/7
2, 4, 1.34% (F1:2, F6:4) 3/7
3, 3, 2.01% (F2:3) 3/7
4, 5, 2.68% (F2:4, F5:8, F7:8) 5/7
5, 1, 3.35% (F2:5) 5/7
6, 1, 4.02% (F2:6) 5/7

Version 3 (15%)
Cluster Size Failures Cumulative
1, 8, 0.59% (F1:3, F2:1, F4:2, F6:1) 4/7
2, 4, 1.18% (F1:2, F4:2, F6:2) 4/7
3, 5, 1.77% (F4:3, F6:6) 4/7
4, 6, 2.36% (F2:8, F5:8, F7:8) 6/7
5, 1, 2.95% (F5:5) 6/7
6, 1, 3.55% (F2:6) 6/7

Version 5 (15%)
Cluster Size Failures Cumulative
1, 7, 0.62% (F1:1, F2:1) 2/8
2, 4, 1.25% (F1:2) 2/8
3, 3, 1.88% (-) 2/8
4, 6, 2.51% (F2:24) 2/8
5, 1, 3.14% (F1:5) 2/8
6, 1, 3.77% (F2:6) 2/8
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Table 4.13 Failure Distribution over less than Average Sized Clusters for Siena

Version 2 (5%)
Cluster Size Failures Found Cumulative
1, 5, 0.20% (-) -/1
2, 1, 0.40% (F:2) 1/1
3, 8, 0.60% (F:24) 1/1
4, 1, 0.80% (F:4) 1/1
6, 3, 1.21% (F:12) 1/1
8, 1, 1.61% (-) 1/1
9, 1, 1.82% (F:9) 1/1
11, 3, 2.22% (F:33) 1/1

Table 4.14 Failure Distribution over less than Average Sized Clusters for Sed Version 5

Complete Linkage (25%)
Cluster Size Failures Found Cumulative
1, 59, 0.19% (F1:8, F2:1, F3:7) 3/4
2, 17, 0.38% (F2:2, F3:4) 3/4
3, 6, 0.57% (F3:3) 3/4
4, 2, 0.76% (-) -/4
5, 1, 0.96% (-) -/4

note that the actual number of clusters will decrease as the failure rate decreases as test

cases are being pruned from the suite), and the percentage of failures found and F-measure

over the small clusters for failure rates of 10%, 5% and 1%. Both systems exhibit a similar

distinctive pattern: as the failure rate decreases the recall (percentage of failures found) tends

to remain high but the F-measure drops as the cluster count increases. The reason behind this

is that with an increase in the number of clusters the false positive rate also increases as more

passing tests become classified into the small clusters. This also has an important practical

implication for this technique suggesting that if the system under investigation is expected

to have a low failure rate then the cluster count (if specified as a parameter) should be very

small, but as the expected failure rate increases then so should the number of clusters.
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Table 4.15 NanoXML V3 with Reduced Failure Rate

10% 5% 1%
Cluster Failures F- Failures F- Failures F-
Count Found measure Found measure Found measure
1% 100% 1 100% 1 100% 1
5% 100% 1 100% 1 100% 0.43
10% 100% 0.88 100% 0.60 100% 0.11
15% 100% 0.72 100% 0.43 100% 0.09
20% 100% 0.59 100% 0.33 100% 0.07
25% 100% 0.56 100% 0.34 100% 0.09

Table 4.16 Siena with Reduced Failure Rate

10% 5% 1%
Cluster Failures F- Failures F- Failures F-
Count Found measure Found measure Found measure
1% 100% 1 100% 0.94 85% 0.91
5% 100% 0.78 0% 0 100% 0.14
10% 100% 0.69 100% 0.43 100% 0.13
15% 52% 0.43 100% 0.4 100% 0.14
20% 100% 0.64 100% 0.42 100% 0.11
25% 100% 0.58 100% 0.31 100% 0.07
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4.6 Statistical Test for Clustering Hypothesis

The experimental results in the thesis gave an evidence which support the clustering hypothe-

sis behind this work where in several cases small clusters (less than average sized) contained

more than 60% of failures ( and often a substantially higher proportion). The hypothesis test

will be employed on several experimental data for all subject programs used in this thesis

(see Table 4.17) to test and see the impact of clustering approach. Note that, if the clustering

approach has no impact then the failures will be evenly distributed throughout the clusters

irrespective of their size. A null hypothesis, alternative hypothesis and significance level are

stated as follows:

• The Null hypothesis (H0) P <= (FN/T Z) (Proportion of failures found on small

cluster is less than or equal to FN/T Z). Where FN is all failures on test suite, and TZ

is the size of test suite.

• The Alternative hypothesis (H1) P > (FN/T Z) (Proportion of failures found on small

cluster is more than FN/T Z).

• The significance level is 0.05, and Z-Test method with a right one tailed test is selected.

The hypothesis tests are rejected in all cases for first study when input/output pairs used as

input to the clustering algorithm (Test 1 to Test 6 in Table 4.17). In addition, the hypothesis

tests were rejected in all cases for second study when input/output pairs with execution traces

used as input to the clustering algorithm (Test 7 to Test 12 in Table 4.17). It was observed

the results statistically significant in all cases where p− value lower than the significance

level (0.05) - (see Table 4.18). This can be generalised to the rest of experimental data.

4.7 Clustering Algorithms versus Daikon

Although it is not fair to make a direct comparison between Daikon and the approach pre-

sented in this chapter as they address the oracle problem in quite different ways (Daikon by

building up assertions using a “clean” reference model of the system and then automatically



4.7 Clustering Algorithms versus Daikon 121

Table 4.17 Tested Proportion of Failures Found on the Smallest Clusters on Several Experi-
ments

Test Number System Failures Found Population Size Clusters Number
Test 1 NanoXML V1 65% 101 25%
Test 2 NanoXML V2 63% 72 15%
Test 3 NanoXML V3 82% 73 15%
Test 4 NanoXML V5 52% 99 25%
Test 5 Siena V2 67% 100 20%
Test 6 Sed V5 29% 92 25%
Test 7 NanoXML V1 64% 53 15%
Test 8 NanoXML V2 78% 56 15%
Test 9 NanoXML V3 82% 66 15%
Test 10 NanoXML V5 82% 59 15%
Test 11 Siena V2 82% 104 20%
Test 12 Sed V5 29% 130 25%

Table 4.18 The Results of Z-Test and p-value on Tested Failures Proportion

Test Number z p− value Note
Test 1 5.531 9.07716×10−8 (H0) rejected - significant results
Test 2 5.272 3.67725×10−7 (H0) rejected - significant results
Test 3 9.074 5.26689×10−19 (H0) rejected - significant results
Test 4 4.666 7.46925×10−6 (H0) rejected - significant results
Test 5 13.51 9.27201×10−41 (H0) rejected - significant results
Test 6 2.195 0.035866519 (H0) rejected - significant results
Test 7 3.787 0.000306705 (H0) rejected - significant results
Test 8 6.984 1.0216×10−11 (H0) rejected - significant results
Test 9 8.576 4.26789×10−17 (H0) rejected - significant results
Test 10 8.5 8.16624×10−17 (H0) rejected - significant results
Test 11 18.055 6.52523×10−72 (H0) rejected - significant results
Test 12 2.647 0.012007269 (H0) rejected - significant results
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looking for violations, and clustering by working just with the possibly faulty version of

the system and aiming to group the failing outputs into the smallest clusters to minimise

the number of outputs that need to be checked), it can serve a valuable purpose as Daikon

represents a viable alternative to automatically identifying failures. In both cases the effec-

tiveness of the approach is defined using the F-measure (for details see section 3.3.4) which

provides a useful point of comparison, so the findings for Daikon are compared with the best

results from each of the clustering approaches for all systems in both experiments (results for

Daikon are the same results that presented in the previous chapter section 3.6). The results of

this are summarised in Tables 4.19, 4.20, 4.21 and 4.22 for NanoXML, Siena and Sed, and

show the oracle type – Single, Average and Complete refer to the linkage metric used for

agglomerative hierarchical clustering, and the version number – the 3 values correspond to

cluster count (% test cases), cluster size (% test cases), and the F-measure in bold.

In the first experiment, table 4.19 shows that agglomerative hierarchical clustering

algorithm with single linkage metric performed better than Daikon for NanoXML version 1

and 5. However, for version 2 and 3 Daikon performed better than agglomerative hierarchical

clustering algorithm with all linkage metrics. The results for DBSCAN are very disappointed

in comparison with Daikon where DBSCAN was beaten by Daikon in all NanoXML versions.

On the other hand, EM clustering did outperform Daikon for NanoXML version 1 and 5 only.

Table 4.20 shows that all clustering algorithms were not able to outperformed Daikon on

both systems (Siena and Sed).

In the second experiment, the results for NanoXML (Table 4.21) shows that agglomerative

hierarchical clustering with various linkage metrics outperformed Daikon (versions 1, 2 and

5). However, only for version 3 did Daikon perform better. Daikon was beaten by DBSCAN

on version 2 and 5 but it performed much better than DBSCAN on version 1 and 3. EM,

as we have already seen, fared badly except for version 1 where Daikon, curiously, also

performed very poorly. For Siena (Table 4.22) the results show that agglomerative hierarchical

clustering with complete metric is able to outperform Daikon. However, for this system

Daikon performed much better than DBSCAN and EM. In contrast Daikon outperformed all

clustering algorithms for Sed (Table 4.22).
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Overall the clustering approaches (especially agglomerative hierarchical clustering algo-

rithm with linkage metrics) using input/output pairs and execution traces together performed

reasonably well compared to Daikon.

Table 4.19 F-measure for Failures Found for Clustering Algorithms Using Input/Output Pairs
Versus Daikon in Nanoxml.

Oracles NanoXML v1 NanoXML v2 NanoXML v3 NanoXML v5
Single (15, 3, 0.62) (15, 3, 0.65) (20, 2.5, 0.75) (15, 3, 0.60)
Average (10, 6.25, 0.58) (10, 6.25, 0.63) (15, 3.25, 0.81) (10, 6.25, 0.59)
Complete (15, 3.12, 0.56) (25, 2.25, 0.56) (25, 2.25, 0.66) (15, 3.12, 0.44)
DBSCAN (19.9, 2.68, 0.29) (19.9, 2.68, 0.24) (19.9, 2.70, 0.26) (19.9, 2.60, 0.17)
EM (1.94, 25, 0.65) (2.42, 20.2, 0.29) (2.42, 20, 0.43) (1.45, 33, 0.77)
Daikon (-, -, 0.38) (-, -, 0.77) (-, -, 0.92) (-, -, 0.57)

Table 4.20 F-measure for Failures Found for Clustering Algorithms Using Input/Output Pairs
Versus Daikon in Siena Version 2 and Sed Version 5.

Oracles Siena V2 Sed V5
Single (20, 0.79, 0.65) (5, 6.4, 0.29)
Average (25, 0.6,0.62) (25, 0.80,0.25)
Complete (20, 0.79, 0.65) (10, 2.71, 0.38)
DBSCAN (4.45, 4.54, 0.03) (48.23, 1, 0.30)
EM (2.02, 16.66, 0.22) (2.71, 9.9, 0.06)
Daikon (-, -, 0.72) (-, -, 0.62)

4.8 Discussion

Test oracles based on unsupervised learning techniques do not require the availability of

labelled data or a fault free version of the system under test to construct test oracles which

make them more scalable in comparison to test oracles based on supervised/semi-supervised

learning techniques and test oracles based on invariant detection in terms of the provision of

labelled data (other scalability issues may arise in the application of the algorithms but these a

likely to be equally applicable to all approaches). In addition, the proposed approaches in this

chapter are less expensive to obtain in comparison to test oracles based on supervised/semi-
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Table 4.21 F-measure for Failures Found for Clustering Algorithms Using Input/Output Pairs
Augmented with Execution Traces Versus Daikon in Nanoxml.

Oracles NanoXML v1 NanoXML v2 NanoXML v3 NanoXML v5
Single (15, 5.03, 0.73) (15, 5.03, 0.84) (15, 5.03, 0.84) (15, 5.03, 0.63)
Average (15, 4.30, 0.73) (15, 4.30, 0.81) (20, 3.27, 0.71) (15, 4.30, 0.61)
Complete (25, 2.73, 0.57) (25, 2.73, 0.69) (15, 4.27, 0.88) (10, 6.39, 0.83)
DBSCAN (50, 1.42, 0.31) (15, 5.1, 0.81) (15, 4.08, 0.81) (15, 3.78, 0.67)
EM (2.41, 20, 0.42) (1.93, 25.25, 0) (2.41, 19.8, 0.09) (1.44, 33.33, 0)
Daikon (-, -, 0.38) (-, -, 0.77) (-, -, 0.92) (-, -, 0.57)

Table 4.22 F-measure for Failures Found for Clustering Algorithms Using Input/Output Pairs
Augmented with Execution Traces Versus Daikon in Siena Version 2 and Sed Version 5.

Oracles Siena V2 Sed V5
Single (20, 0.79, 0.66) (20, 1.2, 0.28)
Average (10,1.98,0.65) (25, 1, 0.26)
Complete (5, 4.04, 0.89) (25, 1, 0.29)
DBSCAN (6, 3.33, 0.48) (8, 3.5, 0.10)
EM (1.41, 14.28, 0) (1, 33.33, 0.08)
Daikon (-, -, 0.72) (-, -, 0.62)

supervised learning techniques (again as no data labelling is necessary), but can be less

accurate for the same reason.

4.9 Conclusion

This chapter has presented two empirical investigation for several clustering techniques such

as agglomerative hierarchical with different linkage metrics, DBSCAN and EM clustering

algorithms using dynamic execution data to build an automated test oracle. The input/output

pairs only were used as input to the clustering algorithms in the first empirical investigation,

and then they were augmented with execution traces in the second empirical investigation

with the aim of improving the proportion of unique failures in the smaller clusters.

The experimental results gave an evidence which support the clustering hypothesis behind

this work where in several cases small (less than average sized) clusters contained more

than 60% of failures (and often a substantially higher proportion). As well as having a
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higher failure density they also contained a spread of failures in the cases where there were

multiple faults in the programs. The results provide us with some useful guidelines in terms

of specifying the number of clusters as a parameter to the algorithms. Over both experiments

Agglomerative Hierarchical Clustering produced the most consistently good results, although

performance varied according to which linkage metric was used (and also varied with

experiment). The results for DBCAN were also generally encouraging, particularly since the

number of clusters does not need to be supplied as a parameters.

The results also demonstrate important practical consequences: the task of checking test

outputs may potentially be reduced significantly to examining a relatively small proportion

of the data to discover a large proportion of the failures. The approach has also been shown

to be robust to a drop in the failure rate – all the way down to 1% of the output – and initial

results suggest that when the failure rate is likely to be low then the number of clusters should

also be small.

In addition, the clustering approach presented here performs favourably in comparison

with Daikon in several cases especially in the second empirical investigation where input/out-

put pairs augmented with execution traces. It must be stressed again that Daikon assumes

that the system under test has fault-free version on which to train the oracle - something

which is difficult to obtain in the reality. In contrast clustering approach makes no such

assumption about a fault-free version (real practical scenario). The rational reason behind

the poor performance of Daikon is that Daikon requires a large and complete test suite of the

fault-free version of the system under test in order to train the oracle otherwise Daikon will

be suffered of a high false positive rate [69] (all systems used in this work have a relatively

small test suits). This gives an advantage for clustering approach in comparison to Daikon.



Chapter 5

Conclusions and Future Work

5.1 Summary of the Thesis

This research started by reviewing three extensive reviews of topics relating to test oracles

[8, 9, 77]. The reviews showed that existing approaches to generate test oracles range

from the inexpensive and ineffective to the effective but very costly [9]. The thesis was

motivated by this finding and aimed to strike the balance between these approaches and

develop a technique which can be effective and also inexpensive by using anomaly detection

to automatically identify failing tests. As a result, the thesis begins by gathering background

information on software testing and the test oracle problem in general. The thesis also

identifies a variety of anomaly detection techniques that have been proposed to address the

test oracle problem or to support other software engineering tasks such as reverse engineering

and fault localisation.

It was found that a variety of machine learning and data mining techniques based on

supervised learning strategy have been used to build an automated test oracles. It was

also found that different types of features (dynamic execution data) were used to build the

model. Another point to be noticed is that different approaches have been used to transform

dynamic execution data to a suitable set of feature vectors to build the model. However, the

evaluation on those techniques was relatively inadequate because of the subject programs’

size (relatively small) which makes it difficult to generalise their applicability to build an
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automated test oracles. In addition, the performance of supervised learning techniques

depends on the availability of fully labelled training data set which is difficult to obtain on

real software testing scenario. The most important finding was that machine learning and

data mining techniques based on unsupervised learning and semi-supervised learning in

particular have not been investigated intensively to build an automated test oracles.

Motivated by the finding of the review, the thesis continues by investigating semi-

supervised learning techniques (self-training, co-training and co-EM) to support the con-

struction of automated test oracles by classifying passing and failing tests. It presented

two different studies with two practical scenarios associated with semi-supervised learning

techniques - labelling both normal (passing) and abnormal (failing) tests, and labelling

normal (passing) tests alone. The first study used the input/output pairs of the systems under

test (NanoXML, Siena and Sed) as input to the learning algorithms, and then augmented

these with execution traces in the second study. A comparison study between existing

techniques from the specification mining domain (the data invariant detector Daikon [30])

and semi-supervised learning techniques was performed. The main findings from from this

investigation may be summarised as follows:

• From the algorithms investigated Naïve Bayes with EM and co-training using Naïve

Bayes proved to be the most consistent performers. These approaches have been shown

to perform well in the area of document classification where all of the data sets are

textual (as in this investigation) which may go some way towards explaining the reason

for their performance in relation to the much poorer one of Support Vector Machines

with the co-EM and co-training methods.

• Considering just input-output pairs with positive labels (passing cases) alone yielded

very poor results.

• The results for input-output pairs with positive and negative labels (a subset of passing

cases and a small number of failing ones) were variable: encouraging for NanoXML,

acceptable for Sed but disappointing for Siena. This result was a surprise given that
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the profile of the system is far less fragmented than Sed, but could be attributable to a

data imbalance problem.

• Adding in execution trace data can help enormously. This is not really unexpected

given that more information is being supplied to the algorithm, but even when very

fragmented they improve the accuracy once a fair proportion of the data is labelled.

In extreme cases the impact is dramatic (leading to a perfect classifier on from a very

small subset of labelled data) but these were assumed to be relatively rare instances.

• Using input-output pairs and execution traces with just positive labels worked well

when the number of traces is small but otherwise did not perform as well as when a

small number of failing inputs are provided.

• Naïve Bayes with EM and co-training using Naive Bayes perform far better than

Daikon as an automated test oracle even with small test suites (Daikon usually requires

a fault free version of the system with a large and complete test suite to perform well).

The findings from this investigation have important implications for the practical use of

this technique: when checking the test results from a system a developer need only examine

a relatively small proportion of these and use this information to train a learning algorithm to

classify the remainder. This has the potential to improve the efficiency and reduce the cost

and tedium of manually checking large volumes of test results.

The thesis continues by adding an another investigation into unsupervised learning

techniques (mainly Agglomerative Hierarchical, DBSCAN and EM clustering algorithms)

to build an automated test oracle. Again it presented two different studies along with a

comparison study to Daikon. The first study used input/output pairs of the systems under test

(NanoXML, Siena and Sed) as input to the clustering algorithms, and then augmented these

with execution traces in the second study. The main findings from from this investigation

may be summarised as follows:

• Small clusters (less than average sized) contained more than 60% of failures (and often

a substantially higher proportion). As well as having a higher failure density they
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also contained a spread of failures in the cases where there were multiple faults in the

programs.

• Over both studies Agglomerative Hierarchical Clustering produced the most consis-

tently good results, although performance varied according to which linkage metric

was used (and also varied with experiment). The results for DBSCAN were also

generally encouraging, particularly since the number of clusters does not need to be

supplied as a parameters.

• The approach has also been shown to be robust to a drop in the failure rate – all the

way down to 1% of the output – and the results suggested that when the failure rate is

likely to be low then the number of clusters should also be small.

• The clustering approaches used here performed favourably in comparison to Daikon in

several cases especially in the second study where input/output pairs are augmented

with execution traces.

The results also demonstrated important practical consequences: the task of checking test

outputs may potentially be reduced significantly to examining an approximately just 25% of

the data – a substantial reduction in effort and time.

5.2 Contributions of the Thesis

The thesis makes several contributions to the software testing area in general and to the test

oracle problem in particular. This study has investigated the use of semi-supervised learning

techniques to classify passing and failing test results which can be recognised as a first

attempt to use such approaches to support the construction of test oracles. The experimental

results showed that anomaly detection techniques based on semi-supervised learning have

the potential to support the construction of automated test oracles. The results also showed

an important implications for the practical potential of semi-supervised learning techniques:

when checking the test results from a system a developer may need only examine a small
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proportion of these and use this information to train a learning algorithm to automatically

classify the remainder.

The study has also investigated the use of unsupervised learning techniques to separate

passing and failing test executions by clustering anomalies. The experimental results gave an

evidence which support the clustering hypothesis (“Normal data instances belong to large

and dense clusters, while anomalies either belong to small or spare cluster”) behind this

work [18]. The experimental results showed that anomaly detection techniques based on

clustering techniques can be used to build an automated test oracles. The results of this

investigation also have potentially important practical consequences: the task of scrutinising

test outputs may potentially be reduced significantly to examining well under half the contents

of the smaler clusters an order of magnitude reduction in effort and time.

The study has performed a comparison between existing techniques from specification

mining domain (the data invariant detector Daikon [30]) and anomaly detection techniques

based on semi-supervised and unsupervised learning strategies. In several cases the proposed

approaches performed well in comparison to Daikon. It must be stressed that Daikon requires

a fault free version of the system under test with complete and large test suite from which to

build assertions - a luxury that the proposed approaches did not require.

5.3 Threats to Validity

The clear issue concerning the external validity of this work is the generalisability of the

experimental results: the finding so far are limited to three subject programs which can

not be said to from a representative set, even though they are non-trivial real-world Java

and C systems of reasonable size containing real faults. The failure rates for all systems

may also not be representative, as may be the test cases (although these were created

independently via collaboration between the SIR and subject systems’ developers). Note

that, some investigation of the impact of reducing the failure rate has been undertaken mainly

on unsupervised learning techniques investigation.
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A potential construct validity for this work lies on the use of the coding scheme for both

input/output pairs and execution traces (although the coding scheme for text/string data was

suggested to be the most suitable by [103] which are similar to data type in this thesis). The

coding scheme for execution traces was the same algorithm used by Nguyen et al. [69]

and also has no information about whether a trace is associated with a passing or failing

execution.

The author of this thesis suggests further replication of the study on additional subject

programs to be able to generalise the findings and to reduce the external validity threat.

5.4 Future Work

In this thesis, author has proposed new approaches to construct test oracles from software

data to guide automatic software testing in the absence of specifications. Despite of the initial

achievements, there are number of barriers for the work to become practically usable which

fall into the categories of scalability and accuracy. Both barriers is explained further below:

Improving the accuracy of the proposed approaches:

Accuracy in this context means the ability of the proposed approaches to identify failing

and passing test results as correctly as possible (high true positive rate and low false positive/-

false negative rates). The accuracy of semi-supervised and unsupervised learning techniques

can be improved by augmenting the data sets (input/output pairs and execution traces) with

more relevant information from the program execution (e.g. state information, execution

time and code coverage etc.) to build more effective/accurate test oracles.

Adding more execution data to the data sets can help to reduce the size of labelled

data used to train the learning algorithms in semi-supervised learning. This also relates to

scalability but to make the approach practical the size of labelled data needs to be as low as

possible which means improving the accuracy as well. The other point related to the size of

labelled and then accuracy is that the predictions of semi-supervised learning approaches
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should come with an estimate of confidence, possibly associated with the proportion of

labelled data used.

The accuracy of unsupervised learning approaches can be improved by selecting the

most appropriate similarity measures for clustering algorithms. In addition, the number of

specified clusters for clustering algorithms is important and the accuracy can be improved by

specifying the optimal number of cluster counts. Note that, the accuracy of unsupervised

learning techniques (clustering algorithms) in this research means the separation between

failing and passing test results. In other words, the failing test results should be grouped

in small clusters with high failure density compared to large clusters which should have

more passing test results. The definition of ’small’ and ’large’ is quite coarse in this context.

Finding the appropriate definition of small and large clusters can help to improve accuracy in

practice, as well as providing some guidelines to the tester on the point where is not worth

exploring further clusters.

Increasing the scalability of the proposed approaches:

The test data transformation for the software under test is a very important issue which

affects the scalability of the proposed approaches in this thesis. This clearly impacts on the

volume of data that has to be processed but also has implications for accuracy too, so must

be done in a way that does not compromise this. To be practically applicable it is necessary

to find a generic automated approach for each type of test data. For instance, the input/output

pairs for tested systems in this thesis were string/text type and it turned out that tokenization

procedure worked reasonably well with the proposed approach but this may not be generally

applicable for all input and output types.

An interesting approach to addressing the scalability (and cost-effectiveness) issue which

will be explored in the future is to investigate the feasibility of using the cheap results from

clustering in which there is the greatest confidence to generate the labelled set required by

the semi-supervised techniques, and thereby reduce the cost of the semi-supervised learning.

Generally, further research will be devoted to overcome those barriers by conducting

further empirical investigation of the effectiveness of proposed approaches corroborate the
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findings and to increase their external validity, particularly by exploring a wider range of

programs, faults and coding schemes for dynamic execution data (input/output pairs and

execution traces etc.).

5.5 Closing remarks

As this thesis has shown that building an effective test oracle with low cost is a challenging

as well as complex problem. Through the studies presented here, author has aimed to build

an automated test oracle via anomaly detection techniques in order to improve the efficiency

and reduce the cost and tedium of manually checking large volumes of test results. The

feasibility of the approach is demonstrated and shown to have the potential to reduce by an

order of magnitude the numbers of outputs that need to be examined following a test run.
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Appendix A

Fault Details for All Systems

1 / / code wi th t h e embedded f a u l t
2 . . .
3 } w h i l e ( ( ch == ’ ’ ) | | ( ch == ’ \ t ’ ) | | ( ch == ’ \ r ’ ) ) ;
4

5 / / o r i g i n a l code
6 , , ,
7 } w h i l e ( ( ch == ’ ’ ) | | ( ch == ’ \ t ’ ) | | ( ch == ’ \ n ’ )
8 | | ( ch == ’ \ r ’ ) ) ;

Listing A.1 NanoXML V1 - F1 - NonValidator class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 i f ( ! XMLUtil . c h e c k L i t e r a l ( r e a d e r , ’ \% ’ ,

t h i s . p a r a m e t e r E n t i t y R e s o l v e r , " TLIST " ) ) {
4

5 / / o r i g i n a l code
6 , , ,
7 i f ( ! XMLUtil . c h e c k L i t e r a l ( r e a d e r , ’ \% ’ ,

t h i s . p a r a m e t e r E n t i t y R e s o l v e r , " TTLIST " ) ) {

Listing A.2 NanoXML V1 - F2 - NonValidator class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 i f ( ! XMLUtil . c h e c k L i t e r a l ( r e a d e r , ’ \% ’ ,
4 t h i s . p a r a m e t e r E n t i t y R e s o l v e r , "SYSTEM" ) ) {
5

6 / / o r i g i n a l code
7 , , ,
8 i f ( ! XMLUtil . c h e c k L i t e r a l ( r e a d e r , ’ \% ’ ,
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9 t h i s . p a r a m e t e r E n t i t y R e s o l v e r , "YSTEM" ) ) {

Listing A.3 NanoXML V1 - F3 - NonValidator class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 i f ( _enum . hasMoreElements ( ) ) {
4 / / o r i g i n a l code
5 , , ,
6 w h i l e ( _enum . hasMoreElements ( ) ) {

Listing A.4 NanoXML V1 - F4 - NonValidator class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 Removed Line
4 / / o r i g i n a l code
5 , , ,
6 XMLUtil . sk ipTag ( t h i s . r e a d e r , ’& ’ , t h i s . e n t i t y R e s o l v e r ) ;

Listing A.5 NanoXML V1 - F5 - StdXMLParser class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 name = name . s u b s t r i n g ( c o l o n I n d e x ) ;
4 / / o r i g i n a l code
5 , , ,
6 name = name . s u b s t r i n g ( c o l o n I n d e x + 1) ;

Listing A.6 NanoXML V1 - F6 - StdXMLParser class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 t r u e ,
4 / / o r i g i n a l code
5 , , ,
6 f a l s e ,

Listing A.7 NanoXML V1 - F7 - StdXMLParser class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 S t r i n g v a l u e = XMLUtil . s c a n S t r i n g ( r e a d e r , ’ \% ’ , t r u e ,
4 t h i s . p a r a m e t e r E n t i t y R e s o l v e r ) ;
5 / / o r i g i n a l code
6 , , ,
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7 S t r i n g v a l u e = XMLUtil . s c a n S t r i n g ( r e a d e r , ’ \% ’ , f a l s e ,
8 t h i s . p a r a m e t e r E n t i t y R e s o l v e r ) ;

Listing A.8 NanoXML V2 - F1 - NonValidator class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 t h i s . c u r r e n t S y s t e m I D = new URL( " f i l e : " ) ;
4 / / o r i g i n a l code
5 , , ,
6 t h i s . c u r r e n t S y s t e m I D = new URL( " f i l e : . " ) ;

Listing A.9 NanoXML V2 - F2 - StdXMLReader class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 Removed Line
4 / / o r i g i n a l code
5 , , ,
6 t h i s . c u r r e n t S y s t e m I D = new URL( t h i s . c u r r e n t S y s t e m I D , sys temID ) ;

Listing A.10 NanoXML V2 - F3 - StdXMLReader class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 r e t u r n n u l l ;
4 / / o r i g i n a l code
5 , , ,
6 r e t u r n t h i s . sys temID ;

Listing A.11 NanoXML V2 - F4 - XMLElement class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 r e t u r n t h i s . o p e n E x t e r n a l E n t i t y ( xmlReader , i d [ 1 ] , i d [ 0 ] ) ;
4 / / o r i g i n a l code
5 , , ,
6 r e t u r n t h i s . o p e n E x t e r n a l E n t i t y ( xmlReader , i d [ 0 ] , i d [ 1 ] ) ;

Listing A.12 NanoXML V2 - F5 - XMLEntityResolver class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 ? ( ( ( sys temID != n u l l ) ? " "
4 / / o r i g i n a l code
5 , , ,
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6 ? ( ( ( sys temID == n u l l ) ? " "

Listing A.13 NanoXML V2 - F6 - XMLException class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 t h i s . e n c a p s u l a t e d E x c e p t i o n = n u l l ;
4 / / o r i g i n a l code
5 , , .
6 t h i s . e n c a p s u l a t e d E x c e p t i o n = e ;

Listing A.14 NanoXML V2 - F7 - XMLException class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 Removed Line
4 / / o r i g i n a l code
5 , , .
6 i f ( n s P r e f i x != n u l l ) {
7 fu l lName = n s P r e f i x + ’ : ’ + name ;
8 }

Listing A.15 NanoXML V3 - F1 - StdXMLBuilder class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 fu l lName = n s P r e f i x + key ;
4 / / o r i g i n a l code
5 , , .
6 fu l lName = n s P r e f i x + ’ : ’ + key ;

Listing A.16 NanoXML V3 - F2 - StdXMLBuilder class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 Removed Line
4 / / o r i g i n a l code
5 , , .
6 i f ( key . s t a r t s W i t h ( " xmlns " ) ) {
7 c o n t i n u e ;
8 }

Listing A.17 NanoXML V3 - F3 - StdXMLParser class

1 / / code wi th t h e embedded f a u l t
2 . . .
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3 Removed Line
4 / / o r i g i n a l code
5 , , .
6 t h i s . sys temID = sys temID ;

Listing A.18 NanoXML V3 - F4 - XMLElement class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 i f ( ( chi ldName != n u l l ) && childName . e q u a l s ( fu l lName ) ) {
4 / / o r i g i n a l code
5 , , .
6 i f ( ( chi ldName != n u l l ) && childName . e q u a l s ( name ) ) {

Listing A.19 NanoXML V3 - F5 - XMLElement class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 Removed Line
4 / / o r i g i n a l code
5 , , .
6 i f ( found ) {
7 r e t u r n a t t r ;
8 }

Listing A.20 NanoXML V3 - F6 - XMLElement class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 s t r = " , SystemID = ’" + sys temID + " ’ " ;
4 / / o r i g i n a l code
5 , , .
6 s t r += " , SystemID = ’" + sys temID + " ’ " ;

Listing A.21 NanoXML V3 - F7 - XMLException class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 s t r = XMLUtil . r e a d ( t h i s . r e a d e r , ’ ’ ) ;
4 / / o r i g i n a l code
5 , , .
6 s t r = XMLUtil . r e a d ( t h i s . r e a d e r , ’& ’) ;

Listing A.22 NanoXML V5 - F1 - ContentReader class
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1 / / code wi th t h e embedded f a u l t
2 . . .
3 Removed Line
4 / / o r i g i n a l code
5 , , .
6 c o n t i n u e ;

Listing A.23 NanoXML V5 - F2 - ContentReader class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 Removed Line
4 / / o r i g i n a l code
5 , , .
6 i f ( e x t e r n a l ) {
7 t h i s . peLeve l = 1 ;
8 }

Listing A.24 NanoXML V5 - F3 - NonValidato class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 i f ( ! XMLUtil . c h e c k L i t e r a l ( t h i s . r e a d e r , "CDATA" ) ) {
4 / / o r i g i n a l code
5 , , .
6 i f ( ! XMLUtil . c h e c k L i t e r a l ( t h i s . r e a d e r , "CDATA[ " ) ) {

Listing A.25 NanoXML V5 - F4 - StdXMLParser class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 XMLUtil . e r r o r E x p e c t e d I n p u t ( r e a d e r . ge tSys temID ( ) ,
4 r e a d e r . g e t L i n e N r ( ) , "<DOCTYPE" ) ;
5 / / o r i g i n a l code
6 , , .
7 XMLUtil . e r r o r E x p e c t e d I n p u t ( r e a d e r . ge tSys temID ( ) ,
8 r e a d e r . g e t L i n e N r ( ) , " <!DOCTYPE" ) ;

Listing A.26 NanoXML V5 - F5 - StdXMLParser class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 Removed Line
4 / / o r i g i n a l code
5 , , .
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6 b u f f e r . append ( ch ) ;

Listing A.27 NanoXML V5 - F6 - StdXMLParser class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 t h i s . e n t i t i e s . p u t ( " amp " , " & # 3 8 ; # 3 8 ; " ) ;
4 / / o r i g i n a l code
5 , , .
6 t h i s . e n t i t i e s . p u t ( " amp " , "&#38 ; " ) ;

Listing A.28 NanoXML V5 - F7 - XMLEntityResolver class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 " <!−") ;
4 / / o r i g i n a l code
5 , , .
6 "<!−−") ;

Listing A.29 NanoXML V5 - F8 - XMLUtil class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 c a s e T o k e n i z e r . T_ID : r e t u r n new A t t r i b u t e V a l u e ( t . i v a l ) ;
4 / / o r i g i n a l code
5 , , .
6 c a s e T o k e n i z e r . T_ID : r e t u r n new A t t r i b u t e V a l u e ( t . s v a l )

Listing A.30 Siena V2 - F1 - SENP class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 i f ( x == n u l l | | y == n u l l ) r e t u r n t r u e ;
4 / / o r i g i n a l code
5 , , .
6 i f ( x == n u l l && y == n u l l ) r e t u r n t r u e ;

Listing A.31 Siena V4 - F1 - SENP class

1 / / code wi th t h e embedded f a u l t
2 . . .
3 c a s e BOOL: r e t u r n b v a l != 0 ;
4 / / o r i g i n a l code
5 , , .
6 c a s e BOOL: r e t u r n b v a l ;

Listing A.32 Siena V6 - F1 - AttributeValue class
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1 / / code wi th t h e embedded f a u l t
2 . . .
3 i f ( p rog . c u r < prog . end )
4 / / o r i g i n a l code
5 , , .
6 i f ( p rog . c u r <= prog . end )

Listing A.33 Sed V5 - F1 - Sed

1 / / code wi th t h e embedded f a u l t
2 . . .
3 ch = * prog . c u r ++;
4 / / o r i g i n a l code
5 , , .
6 ch = *( prog . c u r +1) ;

Listing A.34 Sed V5 - F2 - Sed

1 / / code wi th t h e embedded f a u l t
2 . . .
3 addr−>addr_number = i n _ i n t e g e r ( ch ) ;
4 / / o r i g i n a l code
5 , , .
6 addr−>addr_number = i n c h a r ( ) ;

Listing A.35 Sed V5 - F3 - Sed

1 / / code wi th t h e embedded f a u l t
2 . . .
3 c u r _ i n p u t . s t r i n g _ e x p r _ c o u n t = ++ s t r i n g _ e x p r _ c o u n t ;
4 / / o r i g i n a l code
5 , , .
6 c u r _ i n p u t . s t r i n g _ e x p r _ c o u n t = s t r i n g _ e x p r _ c o u n t ;

Listing A.36 Sed V5 - F4 - Sed
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An Example to Explain the Encoding
Scheme in More Detail

For input/output pairs coding scheme, let us call the NanoXML example in the Table in
chapter 3. The input file for NanoXML is an XML file that contains an element (Flower in
our case) and some properties for this element (colour, smell, name and season). The output
file will be a html file that shows the contents in tabular form (in the example the output will
be the name of element only - Flower). To simplify this to a form that could be handled by
the learning algorithms we tokenised this string by considering the first letter of each element
and its properties for the input - F for Flower, CR for Colour and Red, SS for Smell and
Sweet, NR for Name and Rose, SS for Season and Spring and so on for other NanoXML
examples (note that even though some letters are duplicated they are unique in their contexts).
The output in this example will return the element name which is Flower and coded as
F. We applied that automatically to all examples and then we checked random samples to
validate that the coding strategy has not missed any valuable information. The validation
procedure was done manually by comparing the actual input/output pairs (actual data before
transformation) of selected samples and the coded version of the same input/output pairs.

The coding scheme for one trace execution example of NanoXML will be explained as
follow:

• Trace generated by Daikon is shown on Figure B.1.

• From such trace we extract sequences of of method invocations (ENTER) and method
exits (EXIT) in the exact order as they occur during test execution. Figure B.2 shows
extracted sequences for chosen example (1260 sequences).
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Fig. B.1 Trace Generated by Daikon

Fig. B.2 Extracted Sequences
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• The trace compression algorithm developed by Nguyen et al. [69] is used (see the
algorithm below). The algorithm replace the collections of method sequence entry and
exit (Figure B.2) values with their hash key consisting usually of 1 or 2 characters (Fig-
ure B.3). For instance, the hash key 12 is the representation for the method sequence
net.n3.nanoxml.XMLWriter.write(net.n3.nanoxml.XMLElement, int):::EXIT152 and
if the same method sequence occurs during the execution it will also be represented by
the hash key 12 and so on.

Fig. B.3 Hash Key for the Collections of Method Sequence

• The compression algorithm takes the repetition of method sequence into account (126
sequences in the final trace representation out of 1260 sequences). For example, the
method sequence (net.n3.nanoxml.XMLWriter.write(net.n3.nanoxml.XMLElement,
int):::EXIT152) occurred twice, the algorithm will take one of this method sequence in
the final trace representation (Figure B.4).

Generally, the coding strategy for the execution traces has not caused any loss in the infor-
mation, and at any time testers can use the hash key value for specific ENTER or EXIST
sequence method as shown in Figure (B.3) and used this value to go back to the actual
extracted sequence method as shown in Figure (B.3). Note that, the traces are only compared
directly with each other and their content is not used in any other way.
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Fig. B.4 The Final Trace Representation
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Trace Compression Algorithm Developed
by Nguyen et al. [69]

1 # ! / u s r / b i n / env py thon
2 i m p o r t f i l e i n p u t
3 i m p o r t s y s
4 i m p o r t os
5 i m p o r t g lob
6 from c o l l e c t i o n s i m p o r t d e f a u l t d i c t
7 i m p o r t i t e r t o o l s
8 i m p o r t csv
9

10 p a t h = ’ . / ’
11 i f l e n ( s y s . a rgv ) == 2 :
12 p a t h = s y s . a rgv [ 1 ]
13 e l s e :
14 p r i n t " " "
15 Usage : py thon encode−e v e n t s [ d i r ]
16 " " "
17 e x i t ( )
18

19 d e f g e n e r a t e _ e v e n t _ s h o r t _ n a m e s ( s i z e ) :
20 a l p h a b e t s = [ ’ 0 ’ , ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’ , ’ 7 ’ , ’ 8 ’ , ’ 9 ’ , ’A’ , ’B ’ , ’C ’ , ’D’ , ’

E ’ , ’F ’ , ’G’ , ’H’ , ’ I ’ , ’ J ’ , ’K’ , ’L ’ , ’M’ , ’N’ , ’O’ , ’P ’ , ’Q’ , ’R ’ , ’S ’ , ’T ’ , ’U’ , ’V
’ , ’W’ , ’X’ , ’Y’ , ’Z ’ ]

21 new_names = [ ]
22

23 # e s t i m a t e max number o f c o m b i n a t i o n s
24 max_combina t ions = 1
25 w h i l e l e n ( a l p h a b e t s ) ** max_combina t ions < s i z e :
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26 max_combina t ions = max_combina t ions + 1
27

28 c u r r e n t _ s i z e = 0
29 f o r i i n r a n g e ( 1 , max_combina t ions + 1) :
30 f o r t u p l i n i t e r t o o l s . p r o d u c t ( a l p h a b e t s , r e p e a t = i ) :
31 i f ( c u r r e n t _ s i z e < s i z e ) :
32 c u r r e n t _ s i z e = c u r r e n t _ s i z e + 1
33 new_names . append ( " " . j o i n ( t u p l ) )
34 i f c u r r e n t _ s i z e == s i z e :
35 r e t u r n new_names
36

37 l i s t _ a l l _ e v e n t s = [ ]
38 even t_coun t_map = d e f a u l t d i c t ( i n t )
39

40 # r e a d t h e e v e n t s from i n p u t f i l e s , c o u n t t h e i r o c c u r e n c e
41 f o r i n f i l e i n g lob . g lob ( os . p a t h . j o i n ( pa th , ’ * . s e q s ’ ) ) :
42 p r i n t " Reading f i l e : " + i n f i l e
43 f o r l i n f i l e i n p u t . i n p u t ( i n f i l e ) :
44 e v e n t = l . s t r i p ( )
45 i f e v e n t n o t i n l i s t _ a l l _ e v e n t s :
46 l i s t _ a l l _ e v e n t s . append ( e v e n t )
47 # i n c r e a s e c o u n t e r
48 even t_coun t_map [ e v e n t ] = even t_coun t_map . s e t d e f a u l t ( even t , 0 ) + 1
49

50 # s o r t so t h a t e v e n t t h a t o c c u r s more w i l l be encoded as a s h o r t e r
s t r i n g

51 e v e n t _ c o u n t _ s o r t e d _ l i s t = s o r t e d ( event_count_map , key= even t_coun t_map .
ge t , r e v e r s e =True )

52 new_event_names = g e n e r a t e _ e v e n t _ s h o r t _ n a m e s ( l e n ( e v e n t _ c o u n t _ s o r t e d _ l i s t
) )

53

54 # b u i l d t h e mapping
55 ee_map = {}
56 f o r pos , e v e n t i n enumera t e ( e v e n t _ c o u n t _ s o r t e d _ l i s t ) :
57 ee_map [ e v e n t ] = new_event_names [ pos ]
58

59 # f o r key i n e v e n t _ c o u n t _ s o r t e d _ l i s t :
60 # p r i n t key , even t_coun t_map [ key ]
61

62 # s t o r e mapping f i l e
63 m a p p i n g _ f i l e = os . p a t h . j o i n ( pa th , ’ encode_mapping . csv ’ )
64 f = csv . w r i t e r ( open ( m a p p i n g _ f i l e , "w" ) )
65 f o r key , v a l i n ee_map . i t e m s ( ) :
66 f . w r i t e r o w ( [ key , v a l ] )
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67

68 # p r o c e s s e n c o d i n g f i l e p e r f i l e
69 o u t p a t h = os . p a t h . j o i n ( pa th , " o u t " )
70 os . mkdir ( o u t p a t h )
71 os . c h d i r ( p a t h )
72 f o r i n f i l e i n os . l i s t d i r ( " . " ) :
73 i f i n f i l e . e n d s w i t h ( " . s e q s " ) :
74 p r i n t " Encoding f i l e : " + i n f i l e
75 o u t _ f i l e = os . p a t h . j o i n ( o u t p a t h , i n f i l e )
76 f = open ( o u t _ f i l e , "w" )
77 f o r l i n f i l e i n p u t . i n p u t ( os . p a t h . j o i n ( pa th , i n f i l e ) ) :
78 e v e n t = l . s t r i p ( )
79 f . w r i t e ( ee_map [ e v e n t ] )
80 f . w r i t e ( " \ n " )
81 f . c l o s e ( )

Listing C.1 Trace Compression Algorithm
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A Cross Validation Results for All
Experiments

As requested, the tables below show ranges of the values for F-measure value over cross
validation with their average values and standard deviations. The cross validation will be
different based on the test suite size of the subject program. For instance, 6-fold cross
validation was employed for NanoXML version 1 when 10% of the labelled data size was
examined, because the test suite size was 207 test cases (126 passed test cases and 81 failed
test cases). As explained in the selection of labelled and unlabelled data section, in this case
the training set had 26 labelled data (21 instances labelled as passed execution and 5 labelled
as failed execution), and therefore the data set was divided to 6 training sets to make sure that
all passed instances were participate as labelled once and unlabelled data for other iteration.
The number of fold cross validation is decreased because the size of the labelled data is
increased. For example, 3-fold cross validation was employed for NanoXML version 1 when
20% of the labelled data size was examined, because the test suite size was 207 test cases
(126 passed test cases and 81 failed test cases). As explained in the selection of labelled and
unlabelled data section, in this case the training set had 45 labelled data (40 instances labelled
as passed execution and 5 labelled as failed execution), and therefore the data set was divided
to 3 training sets to make sure that all passed instances were participate as labelled once and
unlabelled data for other iteration. Those two examples explained the blank entries in all
tables. Note that, the labelled failed instances were kept deliberately the same and also small
to maintain more realistic scenario for scenario 1.
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Test Result Classification Based on Input/Output Pairs

Table D.1 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 1 for scenario 1 using self-training (EM-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.79 0.83 0.70 0.75 0.72
Train 2 0.34 0.30 0.42 0.85 0.84
Train 3 0.36 0.29
Train 4 0.38
Train 5 0.38
Train 6 0.38
Average F-measure 0.43 0.47 0.56 0.80 0.78
Standard deviation 0.17 0.30 0.19 0.07 0.08

Table D.2 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 2 for scenario 1 using self-training (EM-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.79 0.79 0.75 0.75 0.75
Train 2 0.34 0.35 0.70 0.70 0.70
Train 3 0.36 0.70 0.72
Train 4 0.60 0.65
Train 5 0.70
Train 6 0.50
Train 7 0.38
Average F-measure 0.51 0.62 0.72 0.72 0.72
Standard deviation 0.17 0.19 0.02 0.03 0.03
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Table D.3 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 3 for scenario 1 using self-training (EM-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.67 0.60 0.79 0.85 0.80
Train 2 0.63 0.60 0.77 0.79 0.78
Train 3 0.65 0.56 0.78
Train 4 0.60 0.50
Train 5 0.60
Train 6 0.63
Train 7 0.60
Average F-measure 0.62 0.56 0.78 0.82 0.79
Standard deviation 0.02 0.04 0.01 0.04 0.01

Table D.4 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 5 for scenario 1 using self-training (EM-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.42 0.47 0.47 0.68 0.76
Train 2 0.44 0.45 0.45 0.66 0.74
Train 3 0.40 0.47 0.44
Train 4 0.47 0.41
Train 5 0.48
Train 6 0.45
Train 7 0.42
Average F-measure 0.44 0.45 0.45 0.67 0.75
Standard deviation 0.02 0.02 0.01 0.01 0.01

Table D.5 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 1 for scenario 1 using co-training (Co-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.38 0.48 0.38 0.28 0.28
Train 2 0.34 0.47 0.36 0.26 0.26
Train 3 0.36 0.49
Train 4 0.38
Train 5 0.38
Train 6 0.38
Average F-measure 0.37 0.48 0.37 0.27 0.27
Standard deviation 0.01 0.01 0.01 0.01 0.01
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Table D.6 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 2 for scenario 1 using co-training (Co-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.34 0.16 0.14 0.14 0.15
Train 2 0.33 0.14 0.15 0.16 0.15
Train 3 0.13 0.15 0.16
Train 4 0.32 0.15
Train 5 0.25
Train 6 0.29
Train 7 0.30
Average F-measure 0.28 0.15 0.15 0.15 0.15
Standard deviation 0.07 0.008 0.01 0.01 0

Table D.7 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 3 for scenario 1 using co-training (Co-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.29 0.16 0.14 0.16 0.15
Train 2 0.30 0.14 0.15 0.14 0.15
Train 3 0.24 0.14 0.16
Train 4 0.29 0.16
Train 5 0.25
Train 6 0.30
Train 7 0.22
Average F-measure 0.27 0.15 0.15 0.15 0.15
Standard deviation 0.03 0.01 0.01 0.01 0

Table D.8 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 5 for scenario 1 using co-training (Co-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.40 0.35 0.36 0.10 0.10
Train 2 0.35 0.34 0.35 0.12 0.12
Train 3 0.39 0.36 0.34
Train 4 0.35 0.35
Train 5 0.33
Train 6 0.33
Train 7 0.30
Average F-measure 0.35 0.35 0.35 0.11 0.11
Standard deviation 0.03 0.008 0.01 0.01 0.01
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Table D.9 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 1 for scenario 1 using Co-EM (EM-SVM)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.35 0.35 0.37 0.29 0.32
Train 2 0.30 0.34 0.35 0.25 0.22
Train 3 0.33 0.30
Train 4 0.35
Train 5 0.34
Train 6 0.31
Average F-measure 0.33 0.33 0.36 0.27 0.27
Standard deviation 0.02 0.02 0.01 0.02 0.07

Table D.10 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 1 for scenario 1 using Co-training (Co-SVM)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.35 0.34 0.36 0.26 0.25
Train 2 0.34 0.30 0.36 0.28 0.29
Train 3 0.35 0.35
Train 4 0.33
Train 5 0.33
Train 6 0.28
Average F-measure 0.33 0.33 0.36 0.27 0.27
Standard deviation 0.02 0.02 0 0.01 0.02

Table D.11 Ranges of values for F-measure value over cross validation with standard deviation
for Siena version 2 for scenario 1 using Self-training (EM-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.25 0.15 0.12 0.14 0.11
Train 2 0.25 0.13 0.13 0.12 0.13
Train 3 0.27 0.12 0.11 0.10
Train 4 0.24 0.11
Train 5 0.28 0.14
Train 6 0.28
Train 7 0.25
Train 8 0.24
Train 9 0.27
Train 10 0.47
Average F-measure 0.28 0.13 0.12 0.12 0.12
Standard deviation 0.06 0.01 0.01 0.02 0.01



171

Table D.12 Ranges of values for F-measure value over cross validation with standard deviation
for Sed version 5 for scenario 1 using Self-training (EM-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.15 0.19 0.50 0.56 0.56
Train 2 0.14 0.15 0.55 0.52 0.52
Train 3 0.18 0.15 0.57 0.54
Train 4 0.19 0.20
Train 5 0.20 0.26
Train 6 0.15
Train 7 0.20
Train 8 0.25
Train 9 0.25
Average F-measure 0.19 0.19 0.54 0.54 0.54
Standard deviation 0.04 0.04 0.03 0.02 0.02

Table D.13 Ranges of values for F-measure value over cross validation with standard deviation
for Siena version 2 for scenario 1 using Co-training (Co-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.10 0.12 0.04 0.14 0.14
Train 2 0.13 0.15 0.05 0.16 0.12
Train 3 0.11 0.14 0.06 0.12
Train 4 0.10 0.17
Train 5 0.12 0.22
Train 6 0.14
Train 7 0.13
Train 8 0.15
Train 9 0.17
Train 10 0.15
Average F-measure 0.13 0.16 0.05 0.14 0.13
Standard deviation 0.02 0.03 0.01 0.02 0.01
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Table D.14 Ranges of values for F-measure value over cross validation with standard deviation
for Sed version 5 for scenario 1 using Co-training (Co-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.08 0.08 0.08 0.51 0.50
Train 2 0.08 0.08 0.08 0.50 0.52
Train 3 0.08 0.08 0.08 0.52
Train 4 0.08 0.08
Train 5 0.08 0.08
Train 6 0.08
Train 7 0.08
Train 8 0.08
Train 9 0.08
Average F-measure 0.08 0.08 0.08 0.51 0.51
Standard deviation 0 0 0 0.01 0.01

Test Result Classification Based on Input/Output Pairs Augmented with Execution
Traces

Table D.15 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 1 for scenario 1 using self-training (EM-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.47 0.47 0.77 0.89 0.92
Train 2 0.44 0.48 0.83 0.91 0.96
Train 3 0.46 0.45
Train 4 0.45
Train 5 0.48
Train 6 0.40
Average F-measure 0.45 0.47 0.80 0.90 0.94
Standard deviation 0.02 0.01 0.04 0.01 0.02
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Table D.16 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 2 for scenario 1 using self-training (EM-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 1 1 1 1 1
Train 2 1 1 1 1 1
Train 3 1 1 1
Train 4 1 1
Train 5 1
Train 6 1
Train 7 1
Average F-measure 1 1 1 1 1
Standard deviation 0 0 0 0 0

Table D.17 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 3 for scenario 1 using self-training (EM-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 1 1 1 1 1
Train 2 1 1 1 1 1
Train 3 1 1 1
Train 4 1 1
Train 5 1
Train 6 1
Train 7 1
Average F-measure 1 1 1 1 1
Standard deviation 0 0 0 0 0

Table D.18 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 5 for scenario 1 using self-training (EM-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 1 1 1 1 1
Train 2 1 1 1 1 1
Train 3 1 1 1
Train 4 1 1
Train 5 1
Train 6 1
Train 7 1
Average F-measure 1 1 1 1 1
Standard deviation 0 0 0 0 0
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Table D.19 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 1 for scenario 1 using Co-training (Co-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.45 0.45 0.44 0.44 0.45
Train 2 0.42 0.44 0.40 0.42 0.41
Train 3 0.43 0.43
Train 4 0.45
Train 5 0.45
Train 6 0.44
Average F-measure 0.44 0.44 0.42 0.43 0.43
Standard deviation 0.01 0.01 0.02 0.01 0.02

Table D.20 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 2 for scenario 1 using Co-training (Co-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 1 1 1 1 1
Train 2 1 1 1 1 1
Train 3 1 1 1
Train 4 1 1
Train 5 1
Train 6 1
Train 7 1
Average F-measure 1 1 1 1 1
Standard deviation 0 0 0 0 0

Table D.21 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 3 for scenario 1 using Co-training (Co-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 1 1 1 1 1
Train 2 1 0.96 0.97 1 1
Train 3 1 1 1
Train 4 1 1
Train 5 1
Train 6 1
Train 7 1
Average F-measure 1 0.99 0.99 1 1
Standard deviation 0 0.02 0.01 0 0
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Table D.22 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 5 for scenario 1 using Co-training (Co-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 1 1 1 1 1
Train 2 1 1 1 1 1
Train 3 1 1 1
Train 4 1 1
Train 5 1
Train 6 1
Train 7 1
Average F-measure 1 1 1 1 1
Standard deviation 0 0 0 0 0

Table D.23 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 3 for scenario 1 using Co-training (Co-SVM)

Labelled size % 10% 20% 30% 40% 50%
Train 1 1 1 1 1 1
Train 2 1 1 1 1 1
Train 3 1 1 1
Train 4 1 1
Train 5 1
Train 6 1
Train 7 1
Average F-measure 1 1 1 1 1
Standard deviation 0 0 0 0 0
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Table D.24 Ranges of values for F-measure value over cross validation with standard deviation
for Siena version 2 for scenario 1 using self-training (EM-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 1 1 1 1 1
Train 2 1 1 1 1 1
Train 3 1 1 1 1
Train 4 1 1
Train 5 1 1
Train 6 1
Train 7 1
Train 8 1
Train 9 1
Train 10 1
Average F-measure 1 1 1 1 1
Standard deviation 0 0 0 0 0

Table D.25 Ranges of values for F-measure value over cross validation with standard deviation
for Sed version 5 for scenario 1 using Self-training (EM-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.18 0.20 0.53 0.53 0.53
Train 2 0.19 0.19 0.55 0.55 0.55
Train 3 0.19 0.17 0.54 0.54
Train 4 0.20 0.19
Train 5 0.19 0.20
Train 6 0.18
Train 7 0.19
Train 8 0.19
Train 9 0.20
Average F-measure 0.19 0.19 0.54 0.54 0.54
Standard deviation 0.007 0.01 0.01 0.01 0.01
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Table D.26 Ranges of values for F-measure value over cross validation with standard deviation
for Siena version 2 for scenario 1 using Co-training (Co-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 1 1 1 1 1
Train 2 1 1 1 1 1
Train 3 1 1 1 1
Train 4 1 1
Train 5 1 1
Train 6 1
Train 7 1
Train 8 1
Train 9 1
Train 10 1
Average F-measure 1 1 1 1 1
Standard deviation 0 0 0 0 0

Table D.27 Ranges of values for F-measure value over cross validation with standard deviation
for Sed version 5 for scenario 1 using Co-training (Co-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.14 0.14 0.14 0.59 0.54
Train 2 0.15 0.15 0.15 0.50 0.52
Train 3 0.13 0.14 0.13 0.50
Train 4 0.14 0.15
Train 5 0.13 0.12
Train 6 0.14
Train 7 0.15
Train 8 0.13
Train 9 0.15
Average F-measure 0.14 0.14 0.14 0.53 0.53
Standard deviation 0.008 0.01 0.01 0.05 0.01
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Table D.28 Ranges of values for F-measure value over cross validation with standard deviation
for Siena version 2 for scenario 1 using Co-training (Co-SVM)

Labelled size % 10% 20% 30% 40% 50%
Train 1 1 1 1 1 1
Train 2 1 1 1 1 1
Train 3 1 1 1 1
Train 4 1 1
Train 5 1 1
Train 6 1
Train 7 1
Train 8 1
Train 9 1
Train 10 1
Average F-measure 1 1 1 1 1
Standard deviation 0 0 0 0 0

Table D.29 Ranges of values for F-measure value over cross validation with standard deviation
for Sed version 5 for scenario 1 using Co-training (Co-SVM)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.14 0.14 0.14 0.13 0.13
Train 2 0.15 0.15 0.15 0.14 0.15
Train 3 0.13 0.14 0.13 0.15
Train 4 0.14 0.15
Train 5 0.13 0.12
Train 6 0.14
Train 7 0.15
Train 8 0.13
Train 9 0.15
Average F-measure 0.14 0.14 0.14 0.14 0.14
Standard deviation 0.008 0.01 0.01 0.01 0.01
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Table D.30 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 1 for scenario 2 using self-training (EM-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.18 0.17 0.20 0.32 0.39
Train 2 0.20 0.20 0.44 0.28 0.37
Train 3 0.19 0.20
Train 4 0.20
Train 5 0.20
Train 6 0.23
Average F-measure 0.20 0.19 0.22 0.30 0.38
Standard deviation 0.01 0.01 0.02 0.02 0.01

Table D.31 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 2 for scenario 2 using self-training (EM-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.98 1 1 1 1
Train 2 0.98 1 1 1 1
Train 3 1 1 0.94
Train 4 1 1
Train 5 1 0.90
Train 6 1
Train 7 0.90
Average F-measure 0.98 0.98 0.98 1 1
Standard deviation 0.03 0.04 0.03 0 0

Table D.32 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 3 for scenario 2 using self-training (EM-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 1 1 1 1 1
Train 2 1 1 0.97 0.96 0.96
Train 3 1 0.96 0.97
Train 4 1 0.96
Train 5 0.79
Train 6 1
Train 7 0.79
Average F-measure 0.94 0.98 0.98 0.98 0.98
Standard deviation 0.01 0.02 0.01 0.02 0.02



180 A Cross Validation Results for All Experiments

Table D.33 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 5 for scenario 2 using self-training (EM-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.96 0.96 0.96 0.96 1
Train 2 1 1 1 1 1
Train 3 1 1 0.92
Train 4 1 0.88
Train 5 1
Train 6 0.88
Train 7 0.88
Average F-measure 0.96 0.96 0.96 0.98 1
Standard deviation 0.05 0.05 0.04 0.02 0

Table D.34 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 2 for scenario 2 using Co-training (Co-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.98 0.88 0.88 0.80 0.80
Train 2 0.98 1 0.80 0.96 0.96
Train 3 1 0.80 0.96
Train 4 1 0.84
Train 5 1
Train 6 1
Train 7 0.90
Average F-measure 0.98 0.88 0.88 0.88 0.88
Standard deviation 0.03 0.08 0.08 0.11 0.11

Table D.35 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 3 for scenario 2 using Co-training (Co-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 1 0.81 0.81 0.88 0.88
Train 2 1 0.89 0.88 0.90 0.90
Train 3 1 0.86 0.98
Train 4 1 1
Train 5 1
Train 6 1
Train 7 1
Average F-measure 1 0.89 0.89 0.89 0.89
Standard deviation 0 0.08 0.08 0.01 0.01



181

Table D.36 Ranges of values for F-measure value over cross validation with standard deviation
for NanoXML version 5 for scenario 2 using Co-training (Co-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0 0.63 0.63 0.70 0.70
Train 2 0 0.75 0.80 0.86 0.86
Train 3 0 0.80 0.79
Train 4 0 0.78
Train 5 0
Train 6 0
Train 7 0
Average F-measure 0 0.74 0.74 0.78 0.78
Standard deviation 0 0.07 0.09 0.11 0.11

Table D.37 Ranges of values for F-measure value over cross validation with standard deviation
for Siena version 2 for scenario 2 using Self-training (EM-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 1 1 1 1 1
Train 2 1 1 1 1 1
Train 3 1 1 1 1
Train 4 1 1
Train 5 1 1
Train 6 1
Train 7 1
Train 8 1
Train 9 1
Train 10 1
Average F-measure 1 1 1 1 1
Standard deviation 0 0 0 0 0
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Table D.38 Ranges of values for F-measure value over cross validation with standard deviation
for Sed version 5 for scenario 2 using Self-training (EM-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0 0 0.40 0.40 0.50
Train 2 0 0 0.45 0.45 0.52
Train 3 0 0 0.41 0.41
Train 4 0 0 -
Train 5 0 0
Train 6 0
Train 7 0
Train 8 0
Train 9 0
Average F-measure 0 0 0.42 0.42 0.51
Standard deviation 0 0 0.02 0.02 0.01

Table D.39 Ranges of values for F-measure value over cross validation with standard deviation
for Siena version 2 for scenario 2 using Co-training (Co-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 1 1 1 1 1
Train 2 1 1 1 1 1
Train 3 1 1 1 1
Train 4 1 1
Train 5 1 1
Train 6 1
Train 7 1
Train 8 1
Train 9 1
Train 10 1
Average F-measure 1 1 1 1 1
Standard deviation 0 0 0 0 0
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Table D.40 Ranges of values for F-measure value over cross validation with standard deviation
for Sed version 5 for scenario 2 using Co-training (Co-Naïve)

Labelled size % 10% 20% 30% 40% 50%
Train 1 0.33 0.30 0.40 0.40 0.42
Train 2 0.30 0.34 0.43 0.43 0.48
Train 3 0.33 0.33 0.40 0.43
Train 4 0.31 0.26
Train 5 0.30 0.27
Train 6 0.33
Train 7 0.33
Train 8 0.31
Train 9 0.43
Average F-measure 0.33 0.30 0.41 0.42 0.45
Standard deviation 0.03 0.02 0.01 0.01 0.04



Appendix E

A Thesis Data

All data for this thesis is available at http://personal.strath.ac.uk/rafig.almaghairbe/
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