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Abstract 

 

Shipping industry has become very competitive, while a lot of research is carried out 

in the shipbuilding world to investigate possible ways to improve ship design and 

create efficient and economical ships. Technological improvements allow the 

detailed exploration of design space and assist the theory of optimisation in 

becoming a vital part of ship design. Advanced software tools are available to 

designers and researchers to expand their design optimisation methodologies and 

introduce not only more efficient techniques, but also more robust approaches to ship 

design. 

 

The topic of ship design optimisation has been investigated by numerous researchers, 

who have established structured methodologies which can be applied to real case 

studies and produce efficient solutions to the ship design problem. However, the 

definition of the ship design problem changes often due to the introduction of new 

ship types, international regulations and technological improvements. 

 

This thesis contributes to the aforementioned developments with regard to the ship 

design optimisation problem. The mission is to develop a methodology for a multi-

objective robust early stage ship design optimisation under uncertainty. Several 

aspects of ship design are incorporated, taking into account the holistic ship design 

model. Various performance indicators are used as measures of merit to evaluate the 

response of possible solutions to the problem. New regulations are incorporated to 

the optimisation problem, investigating their impact on its solution. In addition, 

uncertainty quantification is applied throughout the proposed methodology, while its 

effect on the ship design optimisation problem is examined. 
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Abbreviations 

 

AP Aft perpendicular 

cM Midship section coefficient 

cP Prismatic coefficient 

cW Waterplane area coefficient 

CAD Computer aided design 

CAE Computer aided engineering 

CFD Computational fluid dynamics 

CPC Centre plane curve 

DWL Design waterline 

DWT Deadweight 

EEDI Energy efficiency design index, a MARPOL measure of 

CO2 emission per unit of transport in [gr CO2/(ton mile)] 

FEM Finite element method 

FOB Flat of bottom 

FOS Flat of side 

FP Forward perpendicular 

GM Metacentric height 

HPC High performance computer 

IFO Intermediate fuel oil 

IGES Initial graphics exchange specification (file format) 

IMO International maritime organisation 

LBP Length between perpendicular 

LWL Length waterline 

LCB Longitudinal centre of buoyancy 

MARPOL International convention for the prevention of marine 

pollution from ships (IMO) 

MDO Marine diesel oil 

NPV Net present value 

NSGA 2 Non-dominated sorting genetic algorithm 2 
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OOI Oil outflow index 

RANS Reynolds-averaged Navier-Stokes 

Ro-Pax Roll-on/roll-off passenger (ship type) 

RFR Required freight rate 

SAC Sectional area curve 

SFOC Specific fuel oil consumption 

SGIS Second generation intact stability criteria (IMO) 

SOLAS International convention for the safety of life at sea (IMO) 

TEU Twenty feet equivalent unit (standardised container size) 

USD United States dollar 

VCG Vertical centre of gravity 
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Nomenclature 

 

f(x,y) Objective function (measure of merit) 

g(x,y) Set of inequality constraints 

h(x,y) Set of equality constraints 

x Vector of the design variables 

y Vector of the parameters independent of the designer 

choice 

ak Step size 

dk Direction vector 

g(x)
T
β Trend function 

ε(x) Gaussian Process error model 

u(F(x)) Utility function 

wi Weighting factor 

ξ Error or tolerance related to design variable vector 

φ Stochastic error related to objective function vector 

RTotal Total resistance 

RF Frictional resistance 

k1 Form factor describing the viscous resistance of the hull 

form in relation to the frictional resistance 

RAPP Resistance of the appendages 

RW Wave braking resistance 

RB Pressure resistance introduced by the bulbous bow 

RTR Pressure resistance introduced by immersed transom 

RA Model-ship correlation resistance 

ρ Sea water density 

g Gravitational acceleration 

HW,1/3 Significant wave height 

B Ship’s breadth 

LBWL Length of the bow on the waterline to 95% of the 

maximum breadth 
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V10 Wind speed at ten metres above the sea surface 

CAA Wind resistance coefficient 

ρair Density of air 

V Ship’s speed 

VWind Wind speed 

AF Frontal projected area of the ship above the sea level 

PB Installed power 

ηS Shaft efficiency 

PD Delivered power 

ηD Propulsive efficiency 

LS Lightship 

WST Steel weight 

WOT Outfit weight 

WM Machinery weight 

WF Fuel, diesel and lubrication weight 

WFW Fresh water weight 

WPR Provisions weight 

WCR Crew weight 

WS Stores weight 

B Water ballast 

v Fluid velocity 

Ur Artificial force that compresses the region under 

consideration 

k Turbulence kinetic energy 

ε Rate of dissipation of turbulence energy 

Gk Generation of turbulence kinetic energy due to the mean 

velocity gradients 

Gb Generation of turbulence kinetic energy due to buoyancy 

YM Contribution of the fluctuating dilatation in compressible 

turbulence to the overall dissipation rate 

σk Turbulent Prandtl number for k 

σε Turbulent Prandtl number for ε 
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1 Introduction 

 

 

 

1.1 Introduction 

 

International shipping is the backbone of global trade. Reports suggest that seaborne 

trade is constantly growing, having expanded at 4% in 2017. More than ten billion 

tons of goods were transported by ships that year (UNCTAD, 2018). Global 

containerised trade increased by 7.5% in 2018 (UNCTAD, 2018). As far as 

passenger transport is concerned, the total number of passengers embarking and 

disembarking in European Union ports saw a slight increase of 0.4% in 2016, despite 

the overall decrease of 11% over the period of 2011-2016 (Figure 1) (Eurostat, 

2018). Nevertheless, the global ferry market seems to start improving its shape again 

(Baird, 2017). 

 

 

Figure 1: Number of seaborne passengers embarked and disembarked in all ports of 

the European Union (Eurostat, 2018) 

 

An increased seaborne trade has led to a global fleet growth. The deadweight 

tonnage of the commercial shipping fleet grew 3.3% between 2017 and 2018 
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(UNCTAD, 2018). A positive outlook can be observed for the passenger ships as 

well, with many of the vessels of the global fleet currently being up to their second 

refurbishments. Considering that nowadays it is more economical to replace a ferry 

than to refurbish it, many ship owners opt for a fleet replacement (Baird, 2017). 

 

As prominent as the future of maritime industry might be, there are several 

uncertainties which can affect the former. World economy growth is fragile and has 

considerable impact on oil prices and freight rates. In addition, the constant effort put 

by international organisations to achieve a safer and more environmentally friendly 

shipping industry, often results in the introduction of new rules or amendments on 

existing ones, which greatly affect the ship design process. 

 

 

Figure 2: Price indices and shipbuilding contracts (OECD, 2018) 

 

Besides uncertainty, the constant endeavour of shipping companies for economic 

growth constantly urges the shipbuilding industry to introduce new and cost-efficient 

designs of various ship types. These designs have to comply with international 

standards in terms of passenger safety and protection of the environment. In addition, 

the recent developments and technological improvements in the systems and energy 

sources used on board need to be taken into account. Figure 2 shows the recent 
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trends with regard to the newbuilding and second-hand price indices compared with 

the shipbuilding contracts. Newbuilding price index (expressed as USD per DWT 

values) continues its upward movement started back in 2017. Similar trend is 

observed for the second-hand price index. Both price indices seem to be affected by 

the number of shipbuilding contracts, which has been recovering since end of 2016, 

after a major downward trend between 2013 and 2016. 

 

The increasing number of constraints in the design process adds to the complexity of 

the ship design problem. The need for design space exploration is greater than ever 

and the recent advancements in CAD allow naval architects to perform detailed 

optimisation on ship design. Such practice can lead to optimised, efficient and novel 

ship designs, which satisfy all the criteria set by international organisations. 

 

1.2 Problem definition 

 

As technology progresses, access to powerful tools which can assist naval architects 

in the ship design process becomes wider. The practice of an iterative procedure 

involving complex calculations leading to a final design does not benefit from the 

availability of modern CAD tools available nowadays. Hence, a new design approach 

needs to be introduced which takes advantage of the available computational power, 

producing results that reflect the overall performance of the design in short lead 

times. 

 

On the other hand, the ever-increasing constraints in the ship design problem call for 

a detailed exploration of the design space. It then becomes clear that although 

modern software tools can decrease the computational time when a single design is 

required, naval architects have to find new ways and apply novel methods when 

numerous design variants need to be examined. A combined use of low- and high-

fidelity tools can produce satisfactory results, depending on the required level of 

detail. 
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In addition, an increased complexity in the design process affects the level of 

uncertainty associated with the results. The reliability of a design created in the 

initial steps, where the design space exploration is sensible, is questionable when 

there is shortage in available data. Increasing the robustness of a design methodology 

by taking into account the effects of uncertainty, leads to more confident decisions 

on which variant to select among the designs produced in an optimisation process. 

 

1.3 Thesis objectives 

 

Definition of the problem in Section 1.2 gives the detailed description of the research 

problem which needs to be solved in this thesis. The ultimate goal of this work is to 

contribute to the holistic methodology for ship design in its conceptual phase. 

 

The methodology shall be able to produce a design based on the selection of values 

for key design variables and should include the generation of the vessel’s external 

and internal geometry, along with all the computations which are essentially required 

for the completion of the conceptual ship design phase. In addition, the produced 

design should be checked to identify whether regulation compliance is met or not. 

 

Furthermore, an optimised final design shall be identified from a thorough 

optimisation procedure incorporated in the methodology, which takes into account 

the uncertainties arising in the various steps of the design process. The required 

computational time is kept to the minimum by use of surrogate models in lieu of 

computationally heavy processes. 

 

The concept design phase is selected for the implementation of the optimisation 

study, since major decisions are taken during this step regarding the design of the 

ship. The expected level of detail in the calculations taking place during the concept 

design phase is not as great as in the steps closer to the construction phase, allowing 

the integration of numerous computations in a design optimisation loop without 

requiring a prohibitive amount of time to obtain results. 
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The research outcome of this study ought to satisfy the following objectives: 

 

 Development of a parametric design for the vessel’s external and internal 

geometry 

 Expansion and improvement of the current methodologies for the multi-

objective optimisation of ship design 

 Incorporation of elements related to holistic approach to design methodology 

 Investigation of the effect of the newly introduced second generation intact 

stability criteria on the design elements of various ship types 

 Improvement of the robustness of the optimisation process via consideration of 

uncertainty 

 Improvement of the speed of the optimisation process via use of surrogate 

models 

 Evaluation of the proposed methodology on case studies involving different 

ship types 

 

1.4 Contribution to the research field 

 

As mentioned in Paragraph 1.3, this work aims to contribute to the holistic 

methodology for ship design in its conceptual phase. Taking into account the recent 

developments with regard to the integration of uncertainty in ship design, this thesis 

focuses on the effects of the former on the ship design methodology. Uncertainty 

quantification is investigated in various ways demonstrated through two case studies 

presented in Chapter 5. Uncertainty quantification becomes a key part of both the 

main optimisation phase and the decision making phase. This work illustrates the 

differences of the impact of each approach in an optimisation study. Ultimately, the 

robustness of the optimisation results is enhanced through the application of the 

proposed methodology. 

 

In addition, the effect of newly introduced objectives and constraints in ship design 

optimisation is examined. New environmental and stability regulations introduced or 
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currently under development by the IMO are taken into consideration in the 

optimisation procedure. Passenger vessels are optimised taking into account the 

newly developed IMO second generation intact stability criteria for the first time. 

The impact of the latter on the design variants production during a multi-objective 

optimisation run is investigated to understand how they affect the feasible design 

space and the identification of the optimal solution. 

 

1.5 Thesis structure 

 

The thesis consists of 7 Chapters. The content of each Chapter is described below. 

 

In Chapter 1 a brief introduction to the topic of ship design is provided and the 

problem addressed in this research is defined. The aim and main objectives of the 

thesis are laid out and its structure is presented. 

 

Chapter 2 presents a critical review of ship design methods, ship design optimisation 

and optimisation under uncertainty. The review focuses on both theory and 

application, along with discussion on the relevant work. The research gap addressed 

in this study is identified. 

 

In Chapter 3 the theoretical background of multi-objective robust early stage ship 

design optimisation under uncertainty is presented. The basic principles of ship 

design methodologies, parametric ship design, multi-objective optimisation, 

surrogate models, decision making and uncertainty quantification are introduced. 

 

Chapter 4 presents the proposed methodology to the ship design optimisation 

problem. The research workflow is analysed and explained in detail. 

 

In Chapter 5 two case studies are employed to evaluate the proposed methodology. 

The first case study describes the multi-objective optimisation of a containership 

design, incorporating aspects of economics, intact stability, ship resistance and 

structural integrity. On the other hand, the second case study illustrates the multi-
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objective optimisation of a Ro-Pax ferry design with regard to building cost, 

economics, intact stability and ship resistance. 

 

Chapter 6 contains the analysis of the results of the two case studies. Detailed graphs 

and tables illustrate the outcome of the application of the proposed methodology 

while the results are evaluated and discussed. 

 

In Chapter 7 the whole research presented in this thesis is reviewed and its 

contributions and achievements are presented. The discussions are outlined and 

further considerations are suggested for future work on the basis of experience 

gained during this study. Final conclusions emerging from this study are presented. 

 

Finally, a few Appendices are included in the end containing explanatory notes 

regarding the IMO second generation intact stability criteria taken into consideration 

in this study. 
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2 Critical review 

 

 

 

2.1 Introduction 

 

This Chapter focuses on the critical review of existing approaches and methods 

related to ship design, spanning a period of around fifty years. Ship design has 

evolved dramatically through the years, as it is influenced not only by technology, 

but also by historical events, economy and people’s mentality. 

 

 

 

Figure 3: Design spiral according to Evans (1958) (left) and Murphy et al. (1963) 

(right) 

 

2.2 Ship design 

 

2.2.1 Traditional approaches 

 

The first attempt to define a methodology for ship design was made by Evans (1958), 

who introduced the design spiral in order to describe the ship design process (Figure 
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3). In this method, ship design is viewed as a sequential iterative process. The design 

starts with the interpretation of the requirements by the ship owner and their 

translation to a conceptual design. Every aspect of naval architecture is examined 

sequentially until a complete cycle of calculations is completed. At the end of each 

cycle, the produced design is evaluated and the process is repeated until the 

objectives are met and no constraints are violated. In each repetition, the complexity 

of the design increases, moving from the conceptual phase to the detailed design. A 

single final design is produced, whose midship section structural weight is kept to a 

minimum. 

 

 

 

Figure 4: Design spiral according to Hurst (1971) and Buxton (1976) (left) and Kiss 

(1980) (right) 

 

Based on the original design spiral, several representations of its initial form were 

introduced in the following years. Murphy et al. (1963) focused on the minimisation 

of the building and fuel cost (Figure 3). Hurst (1971) and Buxton (1976) modified 

the form of the design spiral, aiming at economically reliable shipyard tenders 

(Figure 4). Kiss (1980) and Gale (2003) set the minimisation of cost as the objective 

of the design spiral process (Figure 4). 
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2.2.2 New methods 

 

Following the improvements in technology, further research was conducted to 

optimise the ship design process. In that respect, new methods were introduced. 

Decision-based design was proposed, according to which, the principal role of the 

designer is to make decisions. The latter influence the progression of the design and 

differentiate the proposed method from the traditional approaches mentioned in 

Paragraph 2.2.1 in a way that they can happen both concurrently and sequentially. In 

addition, the capabilities of computers are taken seriously into account and their 

contribution to the design stages becomes apparent (Mistree et al., 1990). 

 

Table 1: Ship design methods 

Method Author Date Description 

Design spiral 

(weight) 

Evans 1958 Sequential, iterative process aiming at 

the lightest structure 

Design spiral 

(cost) 

Murphy et al. 1963 Objective changes to minimisation of 

cost 

Design spiral 

(tenders) 

Hurst, Buxton 1971, 

1976 

Shipyard tenders become the main 

objective 

Design spiral 

(cost) 

Kiss, Gale 1980, 

2003 

Ship design based on minimisation of 

cost 

Decision-based Mistree et al. 1990 Introduction of decision making in the 

design process 

Set-based Parsons and 

Singer 

1999 Modular approach with application in 

naval ship design 

Risk-based Papanikolaou, 

Vassalos 

2009 Rule-based design with safety as the 

main objective 

Holistic Papanikolaou 2010 Life cycle approach 

 

Based on the automotive industry, set-based design approach was introduced a few 

years later (Parsons and Singer, 1999). According to this method, the first step is to 

define several sets of design parameters that lead to various designs being created 

concurrently. Exchange of information takes place in order to discard the dominated 

designs, until a more globally optimum solution is found. The level of detail in the 

design process rises gradually as the sets of design parameters are narrowed down. 
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Risk-based design approach was introduced later by Papanikolaou and Vassalos. 

According to this approach, safety plays an important role in ship design, which is 

based on probabilistic concepts. Intact and damage stability are considered as the 

main objectives and probability and risk theories are applied to create a design that 

meets all the safety-related criteria (Papanikolaou, 2009). 

 

By all means, the space of the feasible solutions in the design process is massive. 

This, in correlation with the complexity of the design constraints and the importance 

of the decisions made by naval architects call for more sophisticated approaches in 

ship design. According to Papanikolaou, a systemic approach considers the ship as a 

complex system integrating a variety of subsystems and their components. The latter 

can be described by ship functions. Adding the life cycle in the design process 

renders the task even more convoluted, however this leads to a comprehensive, 

holistic approach (Papanikolaou, 2010a). 

 

2.2.3 Summary 

 

All in all, the established ship design methodologies have evolved significantly 

throughout the fifty years examined in this review, ranging from sequential and 

rather time-consuming processes to more sophisticated approaches, while from 2010 

onwards the holistic approach seems to be the most reliable method which produces 

comprehensive results (Table 1). The benefits of this procedure are apparent after the 

construction of the vessel. By considering the life cycle of a ship in the design phase, 

a robust design is produced, for which the designer can feel confident about its 

economic feasibility until the end of its life. 

 

2.3 Optimisation in ship design 

 

As the ship design methods have evolved through the time, the concept of 

optimisation has become a vital part of them. Depending on the area and the level of 

optimisation, several categories of tasks can be identified in that respect; basic ship 
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design, ship compartmentation, hull shape design and powering, ship structural 

design and process design (Nowacki, 2003). Researchers once focused on single-

objective optimisation problems; however the trend nowadays is the solution of 

complex, multi-objective optimisation ones. 

 

In order to solve an optimisation problem, designers and researchers may apply 

various methods, each associated with advantages and disadvantages. Bertram (2003) 

has reviewed relevant developments regarding the available optimisation techniques. 

Genetic algorithms have been widely used as they have been found to be quite robust 

and efficient for problems involving many integer variables. These algorithms 

generally avoid getting stuck to local optima by evaluating various points in the 

design space. However, it remains unknown whether genetic algorithms can be 

successfully used in any optimisation problem (Bertram, 2003). 

 

Another approach to the solution of an optimisation problem is the utilisation of 

concept exploration models. It resembles the principles of an exhaustive search 

simulation, as essentially a large set of design variants is generated by varying design 

variables. Each of these variants is evaluated and the best solution is identified. 

Hence, the efficiency of this method quickly decreases as the number of design 

variables rises. There have been attempts to overcome this problem, either by 

applying constraints and rejecting design variants which violate them (Georgescu 

and Verbaasm, 1990), or by reducing the number of design variables (Erikstad, 

1994). Applications of concept exploration models in ship design include the 

optimisation of small warship design (Eames and Drummond, 1977); SWATH 

design (Nethercote et al., 1981) and cargo ship design (Georgescu and Verbaasm, 

1990, Winjnolst and Waals, 1995). 

 

Attempts to increase the efficiency of solving complicate ship design optimisation 

problems have led to the development of algorithms tailored to individual problems. 

Examples of such algorithms include CHWARISMI (Söding, 1977) and DELPHI 

(Bertram, 1998, Bertram and Isensee, 1998, Gudenschwager, 1988). Such algorithms 

generally accept as input all relevant knowledge to the problem in form of relations, 
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check whether the problem can be solved or not and then numerical computations are 

performed to provide the solution. Schneekluth and Bertram (1998) developed such 

an algorithm to optimise containership design. Drawbacks of this approach may 

include the error occurrence due to problem misformulation or unclear definition, 

while the developed algorithms generally lack user-friendliness. 

 

Knowledge-based systems were introduced to increase the user-friendliness of the 

aforementioned approach. Based on artificial intelligence, knowledge-based systems 

include a general database where all the basic functions are stored and engineers can 

then contribute by adding more functions and rules to develop a specific system. The 

advantage is that in theory the order of the knowledge is not important. Knowledge-

based systems have been used in ship and propeller design optimisation, yielding 

results in short lead times (Dai and Hambric, 1995, Dai et al., 1995). 

 

2.3.1 Single-objective optimisation 

 

Even if at first it seems that optimising a design in the maritime industry is 

prohibitive, given the complexity of ships as systems, significant research has been 

conducted since the 1960s. In this Paragraph, a review of the work carried out with 

regard to the solution of single-optimisation problems in ship design is presented. 

 

At the early design stages, the principal dimensions of the vessel are set, based on the 

owner’s requirements. An optimisation based on the main dimensions can have a 

great impact in the ship’s economic potential. The objectives can be based on the 

building cost or the life cycle cost and the revenue. In general, the amount of design 

variables is limited to the main dimensions and their ratios, while the constraints 

related to the problem are mostly physical bounds, regulations and safety 

requirements. There has been a considerable amount of research on this topic, mostly 

dealing with merchant vessels, such as bulk carriers and general cargo ships. Mandel 

and Leopold (1966), Gilfillan (1969), Nowacki et al. (1970) and Fisher (1972) 

focused on the optimisation of the required freight rate using several methods, 

ranging from exponential random search to parametric studies and non-linear 
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programming. On the other hand, Puchstein (1969) and Kupras (1976) optimised 

cargo ships based on their building cost using similar methods. 

 

Instead of focusing on the exterior shape of the hull, other researchers tried to 

optimise the internal compartmentation of ships. This problem involves numerous 

constraints in terms of available space and the ultimate purpose is to find the best 

arrangement which meets the requirements for capacity, access, safety, comfort and 

cost. Methodologies have been developed to solve the optimisation problem of 

internal compartmentation (Figure 5) (Kanerva, 2002, Nehrling, 1976). 

 

 

Figure 5: Compartmentation for parametric simulation-based design (Kanerva, 2002) 

 

Apart from the basic ship design, research has been carried out in terms of the overall 

hull shape and its hydrodynamic performance. The main objective in this case is the 

minimisation of the wave resistance. In order to achieve this, a set of free form 

parameters controlling the shape of the hull is used as design variables. Potential 

constraints for this problem include hull geometry limitations or hydrodynamic 

performance, such as motions and manoeuvring. Significant work undertaken in that 

respect includes Michell (1898), Wigley (1935) and Weinblum (1932), who applied 

linearised wave resistance theory. 
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The introduction of the computational fluid dynamics in ship design optimisation 

was followed by further research, as the accuracy of the results became higher and 

the optimised designs more credible than before. Duy and Hino (2015) focused on 

the hydrodynamic shape optimisation of a containership transom. Zhao et al. (2015) 

proposed the optimisation of the ship hull surface with regard to the wave resistance 

using the wavelet method. Zakerdoost et al. (2013), Han et al. (2012) and Peri et al. 

(2001) employed computational fluid dynamics methods to minimise the total 

resistance. 

 

Another area that has attracted research in the field of ship design optimisation is the 

structural design. The aim is to optimise the ship in terms of weight and cost. The 

design variables in this case involve size and type of scantling members as well as 

configuration variables, such as coordinates of nodes. The feasibility of the design is 

mostly affected by relevant regulations. Examples of relevant research include the 

work of Evans and Khoushy (1963) and Buxton (1966), who developed the design 

spiral aiming at a minimum midship section weight. Liu et al. (1981) and Hughes 

(1983) expanded the optimisation problem by including all major substructures in 

their application and employing sequential linear programming to minimise the cost 

and weight of the structure. 

 

The research mentioned above has contributed significantly to the field of ship 

design optimisation by introducing new methods and approaches in various aspects 

of ship design. However one major downside of solving a single-objective 

optimisation problem is the lack of an all-around solution. Focusing on one 

objective, such as the minimisation of the midship section weight or the minimisation 

of the overall resistance may lead to solutions that are incompetent in other aspects. 

 

2.3.2 Multi-objective optimisation 

 

Optimisation problems based on a single objective can be formulated in a 

straightforward manner. On the other hand, the addition of objectives requires careful 

handling of the problem. Essentially, an optimisation problem based on many 
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objectives –most commonly referred to in the literature as “multi-objective 

optimisation problem”– needs to be transformed to a single-objective optimisation 

one. There are several options to select from, including keeping one criterion as 

objective and formulating the rest as constraints, or apply decision making 

procedures to identify the optimal design (Sen and Yang, 1998). 

 

The result of a multi-objective optimisation problem is a set of solutions which 

perform the best in each discipline. This set lies on the so-called Pareto front, named 

after Vilfredo Pareto, an Italian engineer and economist, who used the concept in his 

studies of economic efficiency and income distribution. 

 

The advancements in computer hardware and software tools have made the solution 

of multi-objective ship design optimisation problems nowadays possible. Addressing 

and optimising several aspects and elements of a ship’s life has become the norm in 

the recent years. Starting from the stages of design and moving to the construction 

and operation phases, effort is made to define a holistic ship design optimisation 

methodology. 

 

Most of the work mentioned in Sections 2.2 and 2.3 can be considered as the first 

steps towards this attempt, since many of them follow the principle of transforming a 

multi-objective optimisation problem to a single-objective by focusing on one 

objective and translating the rest to constraints. Nowacki (2018) refers to these 

studies as the baseline to multi-objective ship design optimisation; however, they are 

confined in specific features of ship design. He underlines the importance of 

consideration of the whole life cycle of a ship in order to perform a thorough 

economic analysis of a design. Through a holistic, multi-attribute optimisation, all 

stakeholders involved in the life of a ship, such as the builders, operators, suppliers 

and customers are taken into account, while compliance to international regulations 

is investigated and emphasis is put on producing environmentally friendly and safe 

designs. In Table 2 some of the most important studies on multi-objective ship 

design optimisation, organised by the design model they are based on are mentioned. 
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 Synthesis model: 

 

The synthesis model is considered as the first generation of design models. 

According to this, a single objective is assumed during the optimisation process and 

the rest of the design requirements are treated as constraints. The aim is to identify 

the best design based on the single objective, which does not violate any of the 

constraints. The examples of research studies presented in Table 2 for the synthesis 

model date back to the 1960s up to the 1990s, when the constraints to be considered 

were a fraction of what should be included in an optimisation study today due to the 

low complexity of the design applications during that time period. 

 

Table 2: Ship design optimisation models 

Model Approach Measure of merit References 

Synthesis Penalty factors, 

gradient methods, 

direct search 

Life cycle cost, 

required freight rate, 

net present value, 

capital recovery factor 

(Kuniyasu, 1968, 

Mandel and Leopold, 

1966, Murphy et al., 

1963, Nowacki et al., 

1970, Nowacki et al., 

1990, Söding and 

Poulsen, 1974) 

Multi-

objective 

Pareto optimisation, 

utility functions, 

graphical visualisation 

Economics, safety, 

environment, etc. 

(Papanikolaou, 2010b, 

Papanikolaou et al., 

2011) 

Risk-based 

design 

Pareto optimisation, 

utility functions, 

graphical visualisation 

Economics, safety, 

naval criteria, 

environment, etc. 

(Boulougouris et al., 

2004, Papanikolaou, 

2009) 

Holistic 

design 

Pareto optimisation, 

utility functions, 

graphical visualisation 

Economics, safety, 

naval criteria, 

environment, etc. 

(Boulougouris et al., 

2011, Köpke et al., 

2014, Papanikolaou, 

2010a, 2011) 

 

 Multi-objective model: 

 

The development of multi-objective models began a few years later, with most 

studies undertaken in the 2000s and 2010s. The multi-objective model is based on 

the principle that ships have more than one purpose in their lifetime. Hence, design 

development should address all of the potential roles in the life of a ship while 
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considering the rules and regulations applied to the specific ship type. These 

purposes introduce more objectives in the design process. 

 

Nowacki (2018) classifies the reasons why multiple purposes may occur. A ship 

might be built to perform varying tasks (e.g. multi-purpose offshore vessels, 

ore/bulk/oil carriers). In addition, multiple parties are involved in a design project; 

not only the directly related, such as the designer and the owner, but also 

classification societies, legal authorities and insurance companies. It is inevitable that 

these stakeholders are having conflicting interests during the ship’s lifetime, which 

should be addressed in the design process. Moreover, the interests related to the 

operation of a ship are usually used as objectives when trying to optimise a design. 

The number of these interests is usually more than one, with three basic categories 

being pinpointed by Nowacki (2018); finance, safety and environment. These 

interests cannot be combined to form a single objective; hence, a multi-attribute 

optimisation problem inevitably arises. These interests are usually expressed by 

standardised measures, such as required freight rate, probability of compliance with 

SOLAS safety rules and energy efficiency design index. Finally, history has a 

significant impact in the formulation of the objectives of a ship design optimisation 

problem. Maritime accidents throughout the history have triggered changes in the 

international regulations regarding ship construction and operation, thus affecting the 

ship design process. The complexity of most regulations nowadays has increased 

compared to the past and it is more sensible to incorporate them as objectives rather 

than constraints in an optimisation problem. 

 

Examples of research work implemented based on the multi-objective model are 

presented below. 

 

Ehlers et al. (2015) performed a multi-objective optimisation study focusing on the 

structural design of chemical product tankers. Objectives include the production cost, 

weight and fatigue life. The latter is examined based on guidelines specified in 

classification society rules. Hence, the objectives are related to the relevant elements 

of ship design, namely economics, safety and environment. A decision support 
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algorithm involving the stakeholder preferences obtained through a semi-structured 

interview combined with a formal assessment of stakeholder utility functions is used 

to identify the optimal design. The results of this study indicate the trade-offs 

between the examined criteria, while the applied methodology regarding the decision 

making process illustrates the possibilities of including the stakeholder preferences 

as early as in the concept design stage. 

 

Zaraphonitis et al. (2003) developed a formalised multi-objective optimisation 

procedure for the internal compartmentation of a Ro-Pax ship. The financial and 

safety aspects of the design are examined by considering the ship’s survivability after 

damage and the transport capacity and building cost as the main objectives of the 

study. The results illustrate the importance of using such a design tool in the 

preliminary design stage for the assessment of numerous designs with regard to their 

internal compartmentation which affects its survivability based on SOLAS 

regulations. Similar studies were performed by the same authors for cruise ships, 

taking into account the probabilistic concept introduced by SOLAS 2009 regulations 

(Figure 6) (Zaraphonitis et al., 2013). 

 

 

Figure 6: Optimisation study results on survivability of cruise ships based on SOLAS 

2009 probabilistic concept (Zaraphonitis et al., 2013) 

 

Papanikolaou et al. (2011) proposed a methodology for an integrated design and 

multi-objective optimisation approach to ship design. The objectives of this 

optimisation study include the RFR, EEDI and OOI (Figure 7). Hence, finance and 

environment are taken into account, while safety is implied by the consideration of 
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MARPOL rules as constraints. A parametric model of an Aframax tanker is used for 

demonstration purposes. The integrated design approach connects several software 

systems for analysis and simulations. The authors stress the importance of robust 

parametric models for various ship types to allow highly automated optimisation 

process by adjusting the values of the design variables associated with the parametric 

model (Figure 8). 

 

 

Figure 7: Designs established by means of integrated CAE approach (Papanikolaou 

et al., 2011) 

 

 

Figure 8: Parametrically generated hull forms (Papanikolaou et al., 2011) 

 

 Risk-based model: 

 

The risk-based model is based on the assumption that complex systems which 

operate under hazardous conditions are prone to extensive damage and complete 
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failure. Therefore, prevention of such conditions should become a priority in the 

design process. Basic concepts of hazard investigation rely on deterministic theory. 

Risk-based models look into safety in more detail by applying probabilistic theory. 

 

Such design models apply the risk theory in all elements associated with a ship’s life 

cycle. Designers look at all possible operational scenarios which affect a ship’s 

performance with regard to safety and economics and try to predict the probability of 

occurrence of events that impact the ship’s life negatively, using risk theory. 

Adhering to the principles of multi-objective and holistic models, all damages 

affecting any of the stakeholders of a ship are included in the analysis. 

 

Nowacki (2018) observes the effects of the utilisation of risk theory in the analysis. 

In particular, the design process moves away from the rule-based principles. Even 

though safety is regarded as a constraint in the optimisation problem, in risk-based 

models it is treated as an objective instead. 

 

One could say risk-based models introduce the effect of uncertainty in ship design, a 

topic investigated in more detail in Paragraph 2.3.3. Nowacki (2018) suggests that 

uncertain hazards are quantified as probabilistic risks. These risks then become 

measures of merit in the optimisation process. The result of such practice is the 

identification of a more robust all-around solution which is not affected by external 

hazards (e.g. adverse weather conditions, crew competency, fuel or material price). 

 

Examples of research work based on the risk-based model are presented below. 

 

Typical example of the application of risk-based model in ship design optimisation is 

the study performed by Papanikolaou (2010b) on an Aframax tanker. The internal 

arrangement of the cargo space varies throughout the optimisation, considering 

several configuration setups with differences spotted in the number of cargo tanks in 

both longitudinal and transverse direction and the type of bulkheads. The main 

objective of the study is to reduce the accidental oil outflow, while minimising the 

steel weight and maximising the cargo capacity. The assessment is based on 
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probabilistic methods. Interesting results, showing the effect of the configuration 

setup on the oil outflow, were produced in this study (Figure 9). 

 

 

Figure 9: Oil outflow vs. cargo capacity for various internal setup configurations 

(Papanikolaou, 2010b) 

 

Risk-based models focusing on safety of passengers can be applied in cases where 

passenger vessels are being optimised. European Union funded project SAFEDOR 

(2005-2009) contributed to the development of methodologies related to risk 

assessment during the life cycle of a ship. In design phase hazards such as collision, 

grounding, flooding, fire and explosion are evaluated to investigate the survivability 

of a ship. In operation phase, the management of the residual risk every design 

possess over the lifetime of a ship is evaluated, focusing on the monitoring and 

maintenance of on-board safety systems and sensors. The project produced several 

publications describing methodologies and applications on risk-based ship design 

optimisation (Breinholt et al., 2012, Papanikolaou, 2009). 

 

 Holistic model: 

 

The fourth model presented in Table 2 is the holistic model. The term holistic derives 

from the Greek word ὅλος (hólos), meaning “whole”, “entire”, “complete”. The 

purpose of such a design model, as mentioned in Paragraph 2.2.2, is to investigate all 
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aspects of a ship simultaneously, through separate measures of merit. The difference 

from the multi-objective model lies in the extent of the life of a ship taken into 

consideration during the optimisation process. In addition, the number of indices 

selected to represent each influence is different. In a holistic model, the performance 

of a ship regarding a specific purpose (e.g. economics) is measured by more than one 

indicator. For instance, the required freight rate in connection with the energy 

efficiency design index can be used to estimate the economic performance of an oil 

tanker. Such practice eventually leads to a comprehensive, holistic appreciation of a 

ship design. 

 

According to Nowacki (2018), a holistic model, by definition, would require all 

influences to be considered in the design process. However, he prefers to confine the 

investigation to all influences that are actually relevant to the issue examined in each 

case. In fact, this approach seems more feasible than incorporating every element 

affecting the life of a ship in a single study. Not only over-constraining of the 

optimisation problem is avoided, but also more sensible solutions are obtained. 

Nevertheless, in order to classify a problem as a holistic design optimisation, the 

presence of economics, safety and environment in the problem definition is required. 

 

Papanikolaou (2018) suggests that a recent trend of introducing scientific disciplines 

in the general ship design problem –design for safety (Breinholt et al., 2012, 

Papanikolaou, 2008, 2009, Vassalos, 2007) design for efficiency (Boulougouris and 

Papanikolaou, 2009), design for production (Okumoto et al., 2009, Simpson et al., 

2014, Singer et al., 2009), design for arctic operation (Riska, 2009) and design for X 

(Andrews and Erikstad, 2015, Andrews et al., 2018, Papanikolaou et al., 2009)– 

indicate the need for new approaches and the availability of methods and software 

tools to successfully address the ship design optimisation problem in a holistic way. 

 

A selection of research studies which treat the ship design optimisation problem from 

a holistic point of view is presented below. 
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Köpke et al. (2014) performed a holistic optimisation of a high efficiency and low 

emission containership, as part of the joint industry project CONTIOPT (2012-2013). 

Taking into account the latest safety and environmental international regulations, 

they used genetic algorithms to optimise a parametric containership model with 

regard to the RFR, EEDI, carried water ballast, container capacity and port 

efficiency. This example satisfies the criteria to classify it as a holistic optimisation 

study, as the aspects examined –financial competence and environment– are 

measured using multiple efficiency indicators. The RFR, amount of water ballast 

carried on-board, container capacity and port efficiency indicate whether the design 

is competitive in the containership market, while the consideration of rules regarding 

water ballast management and greenhouse gas emissions illustrate the levels of 

environmental friendliness of the design. 

 

 

Figure 10: HOLISHIP approach (HOLISHIP, 2016-2020) 

 

HOLISHIP (2016-2020) project is a joint effort of forty European Union 

stakeholders to provide solutions for ship design in a holistic way. The main aim is to 

create a new synthesis concept, according to which information from one design 

discipline can be instantly provided to the rest and changes can be propagated 

directly from one system to the other (Figure 10). Numerous publications have been 

produced based on the ongoing research on the project. These include the application 

of compliance matrix models based on ship operational needs during the early ship 

design stage (Guegan et al., 2018), development of life cycle ship performance 
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assessment tools considering both costs and environmental aspects (Gualeni and 

Maggioncalda, 2018) and integration of software tools for a holistic design 

optimisation of offshore support vessels (De Jongh et al., 2018). 

 

The overall progress of the project is presented in the publication of Marzi et al. 

(2018). The coupling of the developed tools within the project and the use of 

surrogate models is demonstrated through an application case and their contribution 

to an efficient holistic optimisation study becomes evident. Computational time is 

controlled via the utilisation of surrogate models, while the variety of software tools 

allow the exploration of several ship design disciplines at once. 

 

The holistic model is applied not only on merchant vessels but also on naval ships 

(Boulougouris and Papanikolaou, 2013). The owner’s requirements for the merchant 

vessel are substituted by the navy’s mission requirements. Yet, the holistic design 

concept remains the same. Aspects such as the internal compartmentation and 

structural arrangement affect performance indicators such as compliance to 

international regulations, combat strength and survivability. 

 

2.3.3 Ship design optimisation under uncertainty 

 

In most engineering problems, the design parameters are known to a certain extent. 

For many years, research on ship design had been overlooking the impact of 

uncertainty on optimisation and had been focusing on deterministic solutions to the 

problems investigated. However, lately, as mentioned in Paragraph 2.3.2, researchers 

have been evaluating the significance of uncertainty and its effects. This trend has 

introduced one more term associated with optimisation studies; robustness. 

 

An optimal design can be characterised as robust when its quality does not deviate 

much from optimality when small changes occur in the problem (Branke et al., 

2008). Traditional optimisation methodologies that overlook uncertainty tend to 

produce non-robust, over-optimised designs that do not correspond to reality. On the 

contrary, robust optimisation methods take input uncertainties in the design 
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variables, as well as uncertainties within the system or model into account and try to 

find optimal solutions in a noisy, uncertain environment. The results of a robust 

optimisation end up being insensitive to variations occurring in their operating 

environment (Steponavice and Miettinen, 2012). Contrary to single-objective 

optimisation problems, robustness in multi-objective optimisation is complicated, as 

it has to be defined for all Pareto solutions. The number of objectives is inevitable 

increased should the designer decide to incorporate uncertainty in the problem. 

Consequently the decision making process becomes convoluted. 

 

Table 3: Robustness models in multi-objective optimisation 

Author Date Approach 

De Groot 1970 Minimisation of the expectation of the general 

loss in the performance of the solution 

Taguchi and Phadke 1986 Minimisation of the variance of the objective 

values 

Tu et al. 1999 Probabilistic constraints’ assessment model 

Trosset et al. 2003 “Minmax” approach 

Deb and Gupta 2006 Minimisation of the mean effective and worst 

value of the objective function 

Barrico and Antunes 2006 Degree of robustness concept 

Hassan and Clack 2008 Degree of insensitivity to changes in the 

environment 

Erfani and Utyuzhnikov 2011 Tuneable robust function 

 

One of the most common approaches to incorporate the effects of uncertainty in a 

problem is the assignment of probability functions to the design parameter, instead of 

using single values. Brefort and Singer (2018) characterise this as epistemic 

uncertainty that stems from many sources, including the limited information of a 

vessel model, the difficulty identifying precise design performance targets and the 

difficulty to identify the precise bounds on the validity of the analysis tools. 

Therefore, it becomes clear that a level of uncertainty is introduced from the process 

itself in the solution of the design problem. Nikolopoulos and Boulougouris (2018) 
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have investigated three categories of uncertainty, coming from the environment, the 

market and the method. The impact of uncertainty is significant, as many design 

characteristics are not properly defined and the response of the model is ambiguous. 

If these uncertainties and their effects are captured properly and early enough, the 

error margin arising along the design process can be minimised. 

 

There have been several studies, which investigate the effect of uncertainty on design 

optimisation through various approaches (Table 3). One option is to minimise the 

expectation of the general loss in the performance of the solution (De Groot, 1970). 

Taguchi and Phadke (1989) tackled uncertainty by minimising the variance of the 

objective values, which leads to a robust design in a strict sense. Others have 

incorporated uncertainty in the form of probabilistic constraints’ assessment in the 

minimisation of the objective function (Agarwal, 2004, Agarwal and Renaud, 2004, 

Du and Chen, 2000, Sues et al., 2001, Tu et al., 1999). Trosset et al. (2003) used the 

most conservative approach in robust optimisation, the “minmax” approach, which is 

the minimisation of the worst possible case for the objective function. 

 

 

Figure 11: Tuneable robust function (left) and its effect in the definition of the Pareto 

front (right) (Erfani and Utyuzhnikov, 2011) 

 

In multi-objective optimisation problems, Deb and Gupta (2006) introduced two 

types of robust solutions involving the mean effective and the worst values of the 

objective function among a chosen number of solutions in an attempt to gain direct 

control over the extent of the robustness of the solution . However, depending on the 
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number of solutions under consideration, the method can be computationally 

expensive. 

 

Barrico and Antunes (2006) approached the problem by introducing a degree of 

robustness in the optimisation process. The aim is to determine a set of areas around 

a solution, so that images of solutions within these areas still belong to a pre-

specified area around the objective function. The degree of robustness depends on 

the size of the areas around the solution and the percentage of the neighbouring 

points, whose objective function values belong to the pre-specified area around the 

objective function. 

 

Hassan and Clack (2008) interpreted the robustness of a solution qualitatively as a 

degree of its insensitivity to changes in the environment. However, this approach 

may lead to wrong decisions since the objective vectors do not necessarily keep their 

utility properties. 

 

Erfani and Utyuzhnikov (2011) used a tuneable robust function as an objective in the 

optimisation problem, which enables the control of the robustness extent by designer 

preferences (Figure 11). 

 

As far as ship design is concerned, Erikstad and Rehn (2015) have performed a 

thorough review on uncertainty handling in marine systems design. Uncertainty in 

the field of maritime research was first introduced utilising approaches, such as real 

options analysis, found in the financial sector. For instance, Dixit (1989) focused on 

shipping applications, where several decisions related to the shipping market were 

evaluated. Other applications involve the analysis of available options in 

shipbuilding contracts (Hoegh, 1998) and in naval ship design (Gregor, 2003). 

 

Another way to solve the optimisation problem under uncertainty is through the 

utilisation of probabilities. Stochastic optimisation introduces the probability 

distributions of design parameters, extending the deterministic optimisation problem 

to improve the robustness of the solutions. Applications in the marine industry 
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include vehicle routing problems (Fagerholt et al., 2010), simulation-driven 

optimisation of bulk carrier design (Nikolopoulos and Boulougouris, 2018), 

optimisation of ship design for life cycle operation (Plessas et al., 2018) and mission-

based ship design under arctic sea ice conditions (Choi et al., 2015). 

 

2.3.4 Summary 

 

Optimisation in ship design has evolved significantly in the past fifty years, starting 

from simple applications involving single-objective studies and trivial methods. 

Technological advancements allowed more complex calculations to be incorporated 

in the optimisation procedure, increasing the number of objectives and elements 

considered in relevant studies, while the accuracy levels of the results were 

improved. 

 

Although initial research focused on ship economics, historical events involving 

catastrophic ship accidents which affected the environment and led to loss of human 

lives, shifted attention to safety and environment. The introduction of new 

regulations regarding ship design and operation rendered the design problem more 

convoluted than in the past, thus calling for a multi-objective optimisation of the 

design process. At the same time, maritime transport and world economy have been 

facing significant changes and researchers have been attempting to analyse their 

effects on a ship’s life cycle. Uncertainties were introduced to the ship design 

optimisation problem and the proposed solutions present robust designs, 

uninfluenced by external factors. 

 

Despite the significant progress in the field of ship design optimisation, Bertram 

(2003) advises that a critical review on the results of optimisation studies is 

recommended. Such studies have a supportive role in the solution of ship design 

problem and the naval architect continues to be responsible for the final decision. 
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2.4 Identification of research gap 

 

In this Chapter a review on ship design approaches and design optimisation 

methodologies is presented. All in all, the field of ship design has evolved 

significantly, transitioning from conservative approaches to a holistic point of view. 

Optimisation has become a vital part of the process, focusing on a single objective 

when it was first introduced, yet investigating the whole life cycle of a ship and 

every design discipline nowadays. Moving away from deterministic solutions to the 

ship design problem, researchers are currently attempting to incorporate design 

uncertainty in a holistic way. 

 

Many ship design optimisation methodologies have been developed in the past fifty 

years and each one is analysed in this Chapter. Through this review, the research 

gaps in this scientific field are identified and become the research objectives of this 

thesis. 

 

Multi-objective optimisation allows the consideration of numerous objectives in each 

ship design study. Introduction of new regulations become the base for conception of 

such objectives and research is conducted to identify the feasibility of new designs 

based on constraints and measures of merit not examined previously. For instance, 

the development of the second generation intact stability criteria by the IMO adds to 

the complexity involved regarding the intact stability of ships, especially 

containerships and passenger vessels, as described later in Chapter 4. New 

regulations regarding water ballast management extend the design space for cost-

efficient merchant vessels. On the other hand, the introduction of the EEDI and the 

increasing restrictions it introduces in the operation of ships call for more thorough 

investigation of the ship design problem. 

 

The perpetual incorporation of optimisation objectives could lead to an over-

constrained problem with infeasible solutions. The purpose of this thesis is to explore 

the relation of newly introduced design objectives and their effect on the emerging 

solutions. 
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In addition, uncertainty definitely plays an important role the ship design process, 

according to the review of the research studies mentioned in Paragraph 2.3.3. 

However, its effect has not been adequately explored in detail in the optimisation 

process as far as ship design is concerned. The work presented in this thesis 

incorporates the uncertainty quantification process in various steps throughout the 

optimisation process and the results are compared and evaluated to identify the 

impact of uncertainty quantification in the selection of the optimal solution. 
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3 Theoretical background 

 

 

 

3.1 Introduction 

 

In this Chapter an analysis of the principles applied in this study is made. An 

overview of the parameter-based geometric modelling theory is presented. 

Furthermore, the generic ship design optimisation problem is defined, while a review 

of the optimisation methods used to solve the aforementioned problem is made. 

Finally, a reference to the surrogate models, decision making techniques and 

uncertainty quantification methods follows. More detailed information regarding the 

techniques and methods applied in this thesis is provided in each Section of this 

Chapter. 

 

3.2 Parametric modelling 

 

A requirement for a ship design optimisation problem is the definition of a 

parametric ship model. Depending on the objective functions of the problem, the 

model is defined in a parametric fashion, controlled by a set of descriptors 

(parameters). The designer selects which of these parameters are controlled by the 

user –determining the set of the design variables of the optimisation problem– and 

which are dependent on these design variables. According to Harries et al. (2015), 

two types of parametric modelling are identified, namely the fully-parametric 

modelling and the partially-parametric modelling. The trade-offs of the various levels 

of parameterisation are illustrated in Figure 12. 

 

The most traditional path offers great flexibility when someone needs to create a 

single geometry, involving the manual control of point sets to achieve the desired 

shape. However, should many variants of a baseline geometry need to be 
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investigated, a partially- or a fully-parametric model offers the required level of 

efficiency. In partially-parametric modelling, an existing shape is used as baseline 

geometry and specific elements are defined by parameters which affect the overall 

shape. For instance, shift transformation (point movements by a specified amount in 

the principle directions of a chosen coordinate system) or morphing (interpolation 

between two or more baseline geometries) techniques can be applied to an initial 

design, resulting in small changes which reflect the requirements set by the designer 

regarding the final shape. 

 

 

Figure 12: Efficiency vs. flexibility in geometric modelling (Harries et al., 2015) 

 

In a fully-parametric design, the entire geometry is determined by parameters. 

Essentially, a parametric model can be regarded as a system which takes as input a 

set of parameters and produces a specific shape. Design cases which involve flow-

related objects, such as ship hulls or propellers, contain information that can be 

described in two distinct directions. In one direction, the design morphology changes 
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quite slowly, while in the other direction –usually almost orthogonal to the first– 

there is a building pattern that remains topologically constant (Harries et al., 2015). 

 

A powerful approach is to define the geometry parametrically in both directions, 

namely the building pattern (curve definition) and the distribution of the inputs to 

this pattern in the other direction. The result is a mathematically closed definition, 

the meta-surface (Friendship Systems, 2018). 

 

3.3 Ship design optimisation problem 

 

Ship design can be modelled as a decision process in mathematical terms. Definitions 

describing this problem are available in literature (Nowacki, 2003, 2018, 

Papanikolaou, 2010a, 2014). Within a holistic ship design optimisation, we can 

distinguish several elements constituting the generic problem including the input and 

output data, the design variables and parameters, the measure of merit functions and 

the constraints (Figure 13). Each of these elements is described in detail below. 

 

 

Figure 13: Ship design optimisation problem 

 

 Input data: 

 

The input data include the owner’s requirements and the given bounds of the design 

variables of the optimisation problem. The former can be the required transport 

capacity expressed by deadweight or payload values, service speed and range. These 
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specifications can be accompanied by secondary data such as interest rates, steel and 

fuel price and drawings of ship’s general arrangement. 

 

 Output data: 

 

The output data include the set of design variables for which the examined measure 

of merit functions obtain the mathematically extreme values. If a multi-objective 

optimisation problem is studied, the optimal solutions are located on the Pareto front 

and a decision making phase follows to select a design on the basis of trade-offs. 

 

 Design variables: 

 

The design variables refer to a number of parameters influencing directly the design 

under optimisation. Most commonly, these parameters vary in a continuous way; 

however they can also be discrete or mixed. These parameters may include the ship’s 

main dimensions, internal space arrangement and structural elements. 

 

 Parameters: 

 

The parameters are closely related to the design variables described above. They 

usually affect the same ship design elements as the design variables; however they 

are a function of the free variables and cannot be controlled by the designer. 

Depending on the optimisation problem, the parameters can become independent and 

be included to the set of the design variables. They may be known with certainty in 

advance (deterministic case) or may be uncertain with known probabilities 

(stochastic case) or with complete uncertainty. 

 

 Measure of merit functions: 

 

The measure of merit functions are the optimisation criteria of the problem. These 

criteria are in general complex, non-linear functions of the design parameters which 

refer to the mathematically defined performance and efficiency indicators used to 
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evaluate each design variant. Most commonly, these performance indicators are 

reduced to an economic criterion, but there are cases where the objective is focused 

on a specific ship function, such as the hydrodynamic or seakeeping performance. 

Moreover, an optimisation problem can be formulated as a single- or multi-stage one, 

affecting which design variables influence which stage and how each stage 

contributes to the overall measure of merit (Figure 14). The advantage of multi-stage 

setups lies in the elimination of irrelevant design variables in each stage, resulting in 

well-defined, less convoluted optimisation problems. 

 

 

Figure 14: Multi-stage system (Nowacki, 2003) 

 

 Constraints: 

 

The constraints of the optimisation problem involve a set of mathematically defined 

criteria in the form of inequalities and/or equalities which determine the feasibility of 

each design variant. The constraints usually result from rules and regulations applied 

to the design and operation of ships, such as the MARPOL and SOLAS regulations. 

In addition, constraints may be related to the uncertainty of certain values used as 

input to the problem, such as the cost of materials or fuel. 

 

The formulation of the multi-objective optimisation task, based on the properties 

mentioned above is presented in (1): 

 

min(f1(𝒙, 𝒚), f2(𝒙, 𝒚), … , fn(𝒙, 𝒚)) 

subject to 

g(𝒙, 𝒚) ≤ 0 and h(𝒙, 𝒚) = 0 and 𝒙 ∈ 𝑿 and 𝒚 ∈ 𝒀 

(1) 
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fi, i=1,…,n is the i-th objective function (measure of merit), g and h are a set of 

inequality and equality constraints respectively, x is the vector of the design variables 

and y is the vector of the parameters independent of the designer choice. The solution 

to this problem is a set of Pareto solutions. Geoffrion (1968) defines Pareto 

optimality mathematically as: 

 

A decision vector x’∈S is properly Pareto optimal if it is Pareto optimal and if there 

is some real number M such that for each fi and each x∈X satisfying fi(x)<fi(x’) there 

exists at least one fj such that fj(x’)<fj(x) and (2) is true. 

 

fi(𝒙′) − fi(𝒙)

fj(𝒙) − fj(𝒙′)
≤ M (2) 

 

An objective vector is properly Pareto optimal if the corresponding decision vector is 

properly Pareto optimal. A solution is properly Pareto optimal if there is at least one 

pair of objectives for which a finite decrement in one objective is possible only at the 

expense of some reasonable increment in the other objective (Figure 15). 

 

 

Figure 15: Pareto front (Branke et al., 2008) 

 

3.4 Optimisation algorithms 

 

A common practice before the actual solution of the problem (1) is to explore the 

design space in order to define the limits of X. Running a design of experiment 

allows the designer to investigate the global response trends and identify the most 
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significant parameters. In some cases, this is proved rather beneficial to the 

optimisation process as the number of design variables can be reduced, decreasing 

the overall computational time. In addition, design of experiments can be used to 

produce surrogate models, described in Section 3.5. Examples of design of 

experiment methods can be found in Table 4, depending on their application. 

 

Table 4: Design of experiment methods 

Application Method 

Statistical analysis Factorial, ULH, Latin Square 

Surrogate model training Space filler (ULH, Latin Square) 

Optimisation Space filler (ULH, Random, Sobol) 

Design robustness and 

reliability analysis 

Latin Hypercube Sampling, Monte Carlo, Taguchi 

Orthogonal Arrays 

 

The solution of the problem (1) starts with a design which represents an initial 

solution described by a set of design variables x. The aim is to create a series of 

design variable vectors x which makes the objective functions smaller step by step, 

as shown in (3): 

 

f(𝒙𝑘+1) < f(𝒙𝑘) 

where 

𝒙𝑘+1 = 𝒙𝑘 + ak𝒅𝑘 

(3) 

 

The parameter ak represents the step size and dk is a direction vector. Birk (2003) 

declares the optimisation algorithms differ by the methods used to select the step size 

and direction and groups them into two categories; the deterministic and the 

stochastic algorithms. The former use an analytic scheme to move from one iteration 

xk to the next xk+1, while the latter apply random numbers at one or more stages of 

the process, resulting in an unpredictable movement pattern. Birk (2003) suggests 

that in the majority of maritime applications stochastic algorithms are applied. 
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Birk (2003) classifies the available optimisation methods in three categories (Table 

5). Search methods do not evaluate gradient and curvature information and are 

mostly suitable for expensive and noisy objective functions where an approximation 

of the gradient is costly or inaccurate. On the other hand, gradient methods select the 

search direction d based on information on the gradient ∇f of the objective function. 

The latter requires the objective functions to be twice continuously differentiable. An 

example of gradient methods is the sequential quadratic programming algorithms, 

which, according to Birk (2003), are highly efficient solvers for engineering 

optimisation problems. 

 

Global optimisation methods aim at finding the global optimum, namely the best 

design in the feasible design space. Some of the available global optimisation 

methods are mentioned in Table 5. Branch-and-bound methods divide the feasible 

region in smaller ones and calculate the lower and upper bounds of the objective 

functions defined in them. Simulated annealing method resembles the natural process 

of the recrystallisation of a liquid metal during annealing. In metallurgy, this 

technique involves heating and controlled cooling of a material to increase the size of 

its crystals and reduce their defects. The notion of cooling implemented in the 

simulated annealing algorithm is interpreted as a slow decrease in the probability of 

accepting worse solutions as the design space is explored, leading to a set of optimal 

ones. 

 

Table 5: Optimisation algorithms (Birk, 2003) 

Category Method 

Search methods Pattern search, simplex, conjugate directions 

Gradient methods Sequential quadratic programming 

Global optimisation 

algorithms 

Branch-and-bound, genetic algorithms, simulated 

annealing 

 

Genetic algorithms are inspired by the process of natural selection, relying on bio-

inspired operators, such as mutation, crossover and selection (Goldberg, 1989, 
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Holland, 1975). A genetic algorithm produces an improved set of solutions based on 

information received from previous sets (generations). The best solution of one 

generation is used to define the next generation, combining the characteristics of the 

parent solutions. A solution to a problem is represented as a chromosome, which is 

an array of genes. A typical structure of a genetic algorithm is presented below 

(Bertram, 2003): 

 

1. Translate the problem into a form that can be used by the genetic algorithm 

(e.g. binary) 

2. Derive a cost or evaluation function to evaluate each solution (chromosome) 

3. Generate an initial random population of chromosomes 

4. Evaluate each chromosome using the cost function 

5. Determine the fitness of each chromosome by comparing its cost with the rest 

of the population 

6. Generate a subset of the current population by selecting the fitter of the 

population 

7. Remove the unfit chromosomes 

8. Randomly select pairs of chromosomes in the subset population 

9. Create new (child) chromosomes by allowing the pairs to breed using an 

appropriate cross-over technique 

10. Implement a mutation technique to prevent gene stagnation 

11. If an optimal solution is found then quit, otherwise go bat to step 4 and repeat 

 

The fitness or objective function is used to map the chromosome’s array of genes 

into a positive number, called individual’s fitness. This process can be divided into 

two distinct phases, namely the decoding –translation of the array of genes 

(genotype) to the actual performance of the solution (phenotype)– and the actual 

calculation of the fitness, based on the rest of the population. 

 

The population size, selection, cross-over and mutation attributes affect the 

robustness of the genetic algorithms. In general, there is no rule of thumb applicable 
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to any optimisation problem and each of these properties has variable effects on 

different problems. 

 

The population size affects the chances of finding a global optimal. One may decide 

to increase the size for better results; however a population size too large will have a 

negative impact on the computational time. The extent of the genetic material of the 

individuals in a population transferred to the next is controlled by the selection 

attribute. The fitness ranking of the individuals influences this process. Solutions 

with greater fitness are most likely to be used for breeding. In general, genetic 

algorithm selection techniques reward fitter individuals by letting them reproduce 

more. 

 

The reproduction process is controlled by the cross-over and mutation properties as 

well (Figure 16). A cross-over operator creates a new solution by combining 

information contained in the two parent solutions. The cross-over rate affects the 

number of random chromosomes chosen to be paired off randomly. Mutation is used 

to prevent stagnation of genes, thus enabling the genetic algorithm to find an optimal 

solution. The mutation rate determines the alteration frequency of a value of a 

particular gene, which results in the introduction of new information to the existing 

population. Hence, the possibility of getting stuck to a local optimum is reduced. 

 

 

Figure 16: Demonstration of cross-over and mutation functions (Yang et al., 2004) 

 

3.5 Surrogate models 

 

Modern optimisation algorithms avoid employing time-consuming trial and error 

techniques by applying design space exploration approaches to find the best solution. 
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Despite the reduced amount of computational time required by the latter, modern 

optimisation problems involve complex calculations, such as CFD or FEM, which 

require different approaches to maintain the overall computational time low. 

Optimisation based on surrogate models is a strategy which allows designers to 

obtain the same results by substituting expensive simulation software runs with 

approximation models. 

 

Surrogate models are statistical and numerical models which approximate the input 

and output behaviour of the system under investigation. Input includes the design 

variables which affect the response of the system and the output is the actual 

performance of the system. Although the whole process leads to an approximation of 

the final result, surrogate models are used to estimate the set of design variables 

which produce an optimal response. Hence, the result of such an optimisation 

approach is a predicted optimum, representing an estimation of the true optimum. 

The main advantage of this approach is the major reduction of the computational 

time needed to find the optimal solution to the problem. The surrogate model is an 

analytical function which can be evaluated quickly without running heavy 

simulations. 

 

The accuracy of the surrogate models depends on the type of algorithm used to 

produce the model, the number of training points and the complexity of the 

variations of the solution. It is important to evaluate the accuracy levels before using 

the surrogate model in the optimisation process, so that further training takes place. 

 

Surrogate models can be categorised into three types; data fits, multi-fidelity and 

reduced order model, multi-fidelity and data fit surrogates. Reduced order models 

derive from a high-fidelity model. By computing a set of basic functions that capture 

the principal dynamics of a system, the high-order system can be projected to a 

smaller one. Multi-fidelity models involve the use of low-fidelity physics-based 

model as a substitute for the original high-fidelity one. The low-fidelity model is a 

separate model not requiring data from the high-fidelity model and involves looser 

convergence tolerances or omitted physics. The high-fidelity model is needed only 
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for the definition of the correction functions that are applied to the low-fidelity 

results. 

 

Data fitting methods involve construction of an approximation of a surrogate model 

using data generated from the original model. Depending on the number of points 

used to generate the data fit, three techniques can be identified, namely the local, 

multi-point and global approximation methods. Global methods are often referred to 

as response surface methods and involve many points spread over the parameter 

ranges of interest. Usually designs of experiment are used to obtain the training 

points used to define the surrogate model. Global methods include polynomial 

regression, Kriging interpolation (Gaussian Process) and artificial neural networks. 

 

The set of interpolation techniques known as Kriging or Gaussian Processes were 

initially developed for geostatistics and spatial statistics studies to produce maps of 

underground geologic deposits based on a set of widely and irregularly spaced 

borehole sites (Cressie, 1990). In order to properly define a Kriging model, three 

steps need to be performed; (a) select the trend function, (b) select the correlation 

function and (c) estimate the correlation parameters. A Kriging emulator f̂(x) consists 

of a trend function (usually a least squares fit to the data g(x)
T
β) plus a Gaussian 

Process error model ε(x), used to correct the trend function (4). 

 

f̂(𝒙) = 𝒈(𝒙)T𝜷 + ε(𝒙) (4) 

 

This emulator represents an estimated distribution for the unknown true surface f(x). 

The error model ε(x) makes an adjustment to the trend function so that the emulator 

will interpolate and have zero uncertainty at the data points it was built from. Ill-

conditioning due to poorly spaced sample design can be handled by discarding points 

that contribute the least unique information to the correlation matrix. Therefore, the 

points that are discarded are the ones that are the easiest to predict. The resulting 

surface exactly interpolates the data values at the retained points but the interpolation 

of the discarded points is not guaranteed. 
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3.6 Multi-criteria decision analysis 

 

Decision making refers to the selection of one or more alternatives from a list of 

options. Multi-objective optimisation problems provide a set of optimal solutions 

which lie on the Pareto front, contrary to single-objective optimisation problems 

which converge to a single solution. Therefore, a special process has to follow during 

which a decision is made regarding the selection of the final solution, subject to the 

method utilised for this purpose. 

 

Multi-criteria decision making can be divided into two categories, the multi-attribute 

and the multi-objective decision making. The former involves the selection of an 

alternative from a list based on prioritised attributes of the alternatives. On the other 

hand, the latter involves a synthesis of an alternative or alternatives on the basis of 

prioritised objectives. 

 

A convenient way to select an alternative from a list is to use static or moving 

weights to represent the contribution of each attribute among the alternatives. 

Particularly, a common practice is to compare the alternatives on the basis of 

weighted sum of normalised attributes. Normalisation is important for comparability 

reasons, as the examined attributes are often disproportional. Utility functions utilise 

moving weights so that the relative contributions made by different attributes to the 

ranking of the alternatives change with the attribute values themselves (Sen and 

Yang, 1998). 

 

An ordinary decision making problem with n alternatives ai, i=1,…,n and k attributes 

yj, j=1,…,k is demonstrated in (5). Each pair of alternatives ai, al, l=1,…,n, i≠l, is 

compared with regard to every attribute. mil represents the relative importance of ai 

over al with regard to yj and a pairwise comparison matrix for all the n alternatives in 

terms of the attribute yj is formulated (5). The problem is then represented by k 

pairwise comparison matrices for the k attributes. 
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M = {mil}n×n = [

1 ⋯ m1n

⋮ ⋱ ⋮
mn1 ⋯ 1

] 

where 

mil =
1

mli
 ∀ i, l = 1, … , n 

(5) 

 

The use of utility functions within a multi-objective optimisation problem can 

provide the best compromise solution during the decision making process. The 

decision maker’s preferences are modelled by a utility function u(F(x)) which 

combines all the objective functions f (as defined in (1)) to one criterion (6). 

 

u(F(𝒙)) = u(f1(𝒙), … , fn(𝒙)) (6) 

 

x is the vector of the design variables, as defined in (1). The additive weighting is 

one of the most common techniques used in conjunction with the utility function 

approach to identify the best compromise solution. A weight vector is set used to 

represent the decision maker’s preferences. The utility function is then defined as the 

weighted sum of the objective functions. A scalar objective function is defined (7). 

 

min  u = WTF(𝒙) 

where 

W = [w1, … , wn]T 

(7) 

 

wi is the weighting factor of objective i. The utility function may be linear when any 

objective can be evaluated independently of the rest and bad values of some 

objectives can be directly offset without limit by good values of other objectives. 

However when such an assumption is not valid, the utility function can be non-linear. 

In case of a linear utility function, the change for each unit change of an objective is 

constant regardless of the base values of the objective. 

 

An example illustrating the difference between a linear and a non-linear utility 

function is can be found in Figure 17. In one case, an increase of 1000 units in the 

objective function representing the salary of a person is considered equally preferable 
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regardless of the initial salary (before the pay rise), while on the other case, the 

preference changes as the initial salary increases. 

 

 

Figure 17: Demonstration of the difference between a linear (left) and a non-linear 

(right) utility function (Sen and Yang, 1998) 

 

3.7 Uncertainty quantification 

 

Uncertainty quantification or non-deterministic analysis is the process of 

characterising input uncertainties, forward propagating them through a computational 

model and performing statistical or interval assessments on the resulting responses. 

This process determines the effect of uncertainties and assumptions on model output. 

 

Uncertainty quantification aims at gaining an understanding of how variations in 

parameters affect the response functions of the engineering design problem. In most 

cases the parameter vector is considered to be uncertain as specified by particular 

probability distributions. The assignment of a specific distributional structure to the 

inputs, distributional structure for the outputs can be inferred. This leads to an 

analysis which is more qualitative than quantitative. 
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Consideration of uncertainty in an optimisation problem affects the definition of the 

latter. Based on the formulation of the problem in (1), Diez and Peri (2010) suggest 

the following alternatives may be true: 

 

 Uncertain design variable vector x: 

 

Design variables may be affected by uncertainty due to manufacturing tolerances. 

Such uncertainties can be classified as external when associated to the analysis 

models input (Du and Chen, 2000). For a specific design variable vector x’, an error 

or tolerance related to this vector ξ∈Ξ can be defined. ξ can be a stochastic process 

with a probability density function p(ξ). By definition, the expected value of x’ is 

shown in (8). 

 

𝒙′̅ ∶= μ(𝒙′ + 𝝃) = ∫ (𝒙′ + 𝝃)p(𝝃)d𝝃
 

𝜩

 

where 

∫ p(𝝃)d𝝃 = 1
 

𝜩

 

(8) 

 

If the stochastic process ξ has zero expectation (9), then x̅’=x’. In general, the 

probability density function p(ξ) depends on the specific design variable vector x’. 

 

�̅� ∶= μ(𝝃) = ∫ 𝝃p(𝝃)d𝝃 = 0
 

𝜩

 (9) 

 

 Uncertain environmental and usage conditions (parameter vector y): 

 

Many optimisation problems involve parameters addressing environmental and 

operating conditions which in real life are uncertain. The parameters vector y may be 

assumed as a stochastic process with a probability density function p(y) and expected 

value as shown in (10). 
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�̅� ∶= μ(𝒚) = ∫ 𝒚p(𝒚)d𝒚
 

𝒀

 (10) 

 

In this case, no error is defined, since the environmental and operating conditions are 

treated as stochastic processes in the whole domain of Y. 

 

 Uncertain evaluation of the objective function f: 

 

The evaluation of an objective function fi can be affected by uncertainty due to 

inaccuracy in modelling or computing (Du and Chen, 2000). The assessment of 

vector f꞉꞊[f,g,h]
T
 containing the objective function, inequality and equality 

constraints, for a specific, deterministic design point f’꞉꞊f(x’,y) is affected by a 

stochastic error φ∈Φ. Then the expected value of f’ is the one shown in (11). 

 

𝒇′̅ ∶= μ(𝒇′ + 𝝋) = ∫ (𝒇′ + 𝝋)p(𝝋)d𝝋
 

𝜱

 (11) 

 

The probability density function of φ, p(φ) depends on f’ and therefore on the design 

point (x’,y). Combining the above uncertainties, the expected value of f is shown in 

(12). 

 

�̅� ∶= μ(𝒇) = ∫ ∫ ∫ (𝒇(𝒙′ + 𝝃, 𝒚) + 𝝋)p(𝝃, 𝒚, 𝝋)d𝝃d𝒚d𝝋
 

𝜱

 

𝒀

 

𝜩

 (12) 

 

p(ξ,y,φ) is the joint probability density function associated to ξ, y and φ. Hence, the 

expected value of f is a function of the designer choice. The variance of f with 

respect to the variation of ξ, y and φ is shown in (13). 

 

V(𝒇) ∶= σ2(𝒇) = ∫ ∫ ∫ ((𝒇(𝒙′ + 𝝃, 𝒚) + 𝝋) − �̅�(𝒙′))
2

p(𝝃, 𝒚, 𝝋)d𝝃d𝒚d𝝋
 

𝜱

 

𝒀

 

𝜩

 (13) 

 

Uncertainties in an optimisation problem may be addressed in various ways, such as 

the minimisation of the variance of f, minimisation of the expectation of f, 

minimisation of f in the worst possible case or by assessing probabilistic constraints 
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in the minimisation of f. An optimisation process focusing on the uncertainty in the 

evaluation of the objective function is known as robust design optimisation, while the 

one focusing on the constraints of the design, treating them as probabilistic 

inequalities, is known as reliability-based design optimisation. 

 

Uncertainty is classified into two main categories; the aleatory and the epistemic 

uncertainty. The former are irreducible variabilities inherent in nature while the latter 

are reducible uncertainties resulting from a lack of knowledge. For the aleatory 

uncertainties, usually there is sufficient data and probabilistic methods are commonly 

used for computing response distribution statistics based on input probability 

distribution specifications. On the other hand, for epistemic uncertainties, any use of 

probabilistic distributions is based on subjective knowledge. Methods used to 

quantify these two types of uncertainty can be found in Table 6. 

 

Table 6: Uncertainty quantification methods 

Type of uncertainty Method 

Aleatory Sampling-based (Monte Carlo, Latin Hypercube 

Sampling), local and global reliability methods, stochastic 

expansion (polynomial chaos expansion, stochastic 

collocation) 

Epistemic Local and global interval analysis, Dempster-Shafer 

evidence theory 

 

Reliability methods used to investigate aleatory uncertainties create approximations 

based on Gaussian Process models and accurately resolve a particular contour of a 

response function estimating probabilities using multi-modal adaptive importance 

sampling. Stochastic expansion methods form an approximation to the functional 

relation between response functions and their random input. 

 

As far as epistemic uncertainties are concerned, in interval analysis one assumes that 

nothing is known about an epistemic uncertain variable except that its value lies 

somewhere within an interval. However, in this case the value is not assumed to have 

a uniform probability of occurring within the interval. Therefore, the result one gets 
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using this method is the bounds on the output (defining the output interval) given the 

interval bounds on the input. Dempster-Shafer theory of evidence models the 

uncertain input variables as sets of intervals. A basic probability assignment is 

assigned to each interval, indicating how likely it is that the uncertain input falls 

within the interval. These intervals may be overlapping, contiguous or have gaps. 

The intervals and their associated basic probability assignments are propagated 

through the simulation to obtain cumulative distribution functions on belief and 

plausibility. Belief is the lower bound on a probability estimate that is consistent with 

the evidence, while plausibility is the upper bound on a probability estimate that is 

consistent with the evidence. 

 

Sampling techniques generate sets of samples according to the probability 

distributions of the uncertain variables and map them into corresponding sets of 

response functions. Means, standard deviations, coefficients of variation and 95% 

confidence intervals can be computed for the response functions. Two common 

sampling methods are the Monte Carlo and Latin Hypercube Sampling. In the former 

the samples are selected randomly according to the probability distributions, while in 

the latter a stratified sampling technique is applied for which the range of each 

uncertain variable is divided into Ns segments of equal probability, where Ns is the 

number of samples requested. The relative lengths of the segments depend on the 

nature of the specified probability distribution. For instance, uniform distribution 

creates segments of equal length, whereas normal distribution creates small segments 

near the mean and larger ones in the tails. In general, Latin Hypercube Sampling 

techniques require fewer samples than the traditional Monte Carlo method for the 

same accuracy in statistics (Aistleitner et al., 2012). 

 

3.8 Summary 

 

In this Chapter an overview of the theoretical background of applications and 

techniques employed in this thesis is made. The difference between traditional and 

parametric design approaches is presented in Section 3.2. The generic ship design 

optimisation problem is presented and each component is analysed in Section 3.3. 
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In order to solve the optimisation problem, several methods are available to choose 

from. Genetic algorithms have been used in this thesis and additional information 

regarding their application is given. In addition, the role of surrogate models in 

optimisation studies is analysed, while the available types and techniques one can use 

to define them are presented. 

 

In Section 3.6 the theory of multi-criteria decision making is presented, focusing on 

the utility function methods, which are applied in the work presented in this thesis. 

Finally, an overview of uncertainty in optimisation is made, with the most common 

methods utilised to quantify it being presented in Section 3.7. 
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4 Proposed methodology 

 

 

 

4.1 Introduction 

 

The description of the methodology adopted in this thesis regarding the holistic ship 

design optimisation under uncertainty is presented in this Chapter (Figure 18). The 

process begins with the definition of the parametric design and continues with the 

construction of the ship model. The setup for surrogate models is implemented 

afterwards. Throughout this process the design variables, objective functions and 

constraints of the problem are determined. The multi-objective optimisation setup 

follows, for which genetic algorithms are utilised. The setup is run and the results are 

analysed in the multi-criteria decision making process. 

 

Based on the most recent developments in the holistic ship design optimisation 

theory, most of the attributes shown in Figure 10 are investigated to some extent in 

the proposed methodology; main dimensions and preliminary powering, lines and 

body plan, hydrostatics, stability, arrangements, structures, mission requirements, 

cost estimates, capacities, trim and intact stability, lightship weight and resistance. 

 

A novel approach for the quantification of uncertainty in early stage ship design is 

proposed, while the consideration of recently developed international regulations 

provides an insight on how the latter affect the optimal design selection. 

 

The general procedure described in this Chapter can be applied to different ship 

types, provided that the hull geometry and ship model are defined accordingly. In 

this thesis, the methodology is applied to two different ship types, namely a 

containership and a Ro-Pax vessel. The case studies are presented in Chapter 5. 
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Figure 18: Proposed methodology 
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4.2 Parametric hull model 

 

The geometric hull model is produced in CAE software CAESES® (Friendship 

Systems, 2018). It consists of four main parts, namely the aft body, main frame, fore 

body and main deck. 

 

The use of meta-surfaces in CAESES®, mentioned in Section 3.2, allows the 

detailed definition of each part, introducing parameters which control the shape of 

the hull (Figure 19 and Figure 20). The parameters affect the curvature and shape of 

main curves, such as the deck, flat of bottom, flat of side or stem (Figure 21). They 

are also responsible for the shape of specific parts of the hull, such as the skeg in the 

aft section or the bulbous bow (Figure 22 and Figure 23). 

 

The widespread presence of parameters in the hull form definition allows the 

designer to select which of the available parameters controlling the hull form become 

the design variables of the problem. These parameters can be controlled by the user 

directly and change during the optimisation process. The remaining can either be 

assigned specific values that remain constant throughout the solution of the problem 

or depend on the values of the design variables. Hence, the versatility of the problem 

definition is amplified; the user is able to perform an optimisation study focusing on 

the main dimensions of the vessel or focus e.g. on the bulbous bow shape for a local 

hull form optimisation. 

 

Once the initial hull is defined, a Lackenby transformation takes place (Lackenby, 

1950). This transformation allows the shift of transverse sections along the length of 

the hull, by adjusting the cP and position of the LCB (Abt and Harries, 2007). A 

hydrostatic and a sectional area curve calculation need to be performed on the initial 

hull and the results are used as input in the Lackenby transformation. The final hull 

form is produced following the Lackenby transformation. Then it is exported to an 

IGES file and the process continues with the definition of the ship model. 
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Figure 19: Hull form variation with regard to the breadth 

 

 

Figure 20: Hull form variation with regard to the draught 

 

 

Figure 21: Hull form variation with regard to transom vertical position 



Proposed methodology  71 

Multi-Objective Robust Early Stage Ship Design Optimisation under Uncertainty Alexandros Priftis 

 

Figure 22: Local hull form variation (bulbous bow) 

 

 

Figure 23: Local hull form variation (aft skeg) 
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4.3 Ship model 

 

The construction of the ship model involves multiple calculations and definitions 

such as the internal subdivision of the hull, lightweight estimation and deadweight 

breakdown. NAPA® is a powerful software tool which allows detailed definition of 

compartments forming a complete ship model that can be used to define loading 

conditions (NAPA, 2018). The processes involved in this step need to be 

parametrically defined and have to be able to accept as input the hull form created in 

CAESES®. This is implemented through macros defined for this purpose. Hence, the 

first step is to read the relevant input which involves the IGES file containing the 

information regarding the hull geometry and the parameters used for the hull 

definition. Then, the necessary calculations take place locally in NAPA®. 

 

4.3.1 Surface and room definitions 

 

The first step towards the creation of the ship model is the definition of a set of 

surfaces which are used as limits for the room definition. These surfaces are mostly 

planes along the longitudinal, transverse or vertical direction, representing bulkheads 

and decks (Figure 24). 

 

 

Figure 24: Examples of developed planes in NAPA® 

 

More complex surfaces are created for superstructure and specific rooms, for which 

straight planes cannot capture sufficiently the geometry. One of the case studies 

examined in this thesis, namely the containership demonstration case, involves such 

kind of surfaces for the definition of the cargo space (Figure 25). Containers have 

specific dimensions which influence the shape of the cargo holds; the inner hull shell 

defining the double hull setup in particular. In order to maximise the transport 
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capacity of such kind of vessels, each surface defining one bay (a space along the 

length of the ship that can hold containers) needs to be designed taking into account 

the hull shape and the clearance (distance of the double side) for each tier (a space 

along the vertical direction of the ship that can hold containers). This process is 

particularly significant for the areas near the stern and bow, where the hull geometry 

changes rapidly along the longitudinal direction. 

 

 

Figure 25: Surfaces developed in NAPA®, used to define cargo holds in the 

containership case study 

 

 

 

Figure 26: Examples of rooms developed in NAPA® 
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After the definition of the necessary surfaces, the creation of the rooms takes place 

(Figure 26). The surfaces are used as limits for the construction of the spaces needed 

to define a loading case or for which specific information (e.g. area, volume) is 

required for calculations taking place at a later stage (e.g. lightweight estimation). 

These include the consumables tanks (fuel oil, diesel oil, lubrication oil, fresh water), 

water ballast tanks, cargo space, engine room and accommodation space. 

 

The definition of the necessary surfaces and rooms allows further preparations to be 

carried out. Depending on the ship type being optimised, the container blocks are 

defined, or the lane metres of the car decks are calculated. Both operations depend on 

the limits of the relevant rooms (i.e. cargo holds, car decks), specific curves of the 

parametric hull model (e.g. main deck line), as well as the parameters related to the 

TEU and standard vehicle dimensions. 

 

The process described above is designed to be performed in a parametric way. 

Depending on the design variables, the number of the defined surfaces and rooms is 

adjusted accordingly. For instance, the number of the surfaces forming the inner hull 

shell depends on the parameter representing the number of bays for a specific design. 

Likewise, the number of cargo holds and water ballast tanks is adjusted based on the 

same principle. Another example is the number and height of superstructure decks, 

both defined by parameters controlled by the designer. 

 

4.3.2 Resistance estimation 

 

Total resistance can be divided into three categories, namely calm water, added wave 

and wind resistance. These three components are estimated using fast approximation 

methods. Holtrop and Mennen (1978) method is utilised for the calculation of the 

first component. Calm water resistance is subdivided into frictional RF, wave making 

and wave braking resistance RW, the additional pressure resistance introduced by the 

bulbous bow RB and the immersed transom RTR, the resistance of the appendages 

RAPP and the model-ship correlation resistance RA (14). 

 



Proposed methodology  75 

Multi-Objective Robust Early Stage Ship Design Optimisation under Uncertainty Alexandros Priftis 

RTotal = RF(1 + k1) + RAPP + RW + RB + RTR + RA (14) 

 

k1 is the form factor describing the viscous resistance of the hull form in relation to 

the frictional resistance. The method conveniently requires as input values which are 

readily available in the early stages of ship design and provides accurate results, 

considering the level of detail applied in the calculations. Input values include the 

main particulars (LBP, LWL, breadth, draught on AP and FP), form coefficients (cM, 

cW) and values related to appendages and specific areas of the hull (transverse bulb 

area, transom area, wetted area of appendages). The values are either part of the 

design variables set of the problem (e.g. LBP, draught) or calculated based on the 

generated hull form (e.g. cM, transverse bulb area). Dimensions of appendages not 

known at the early design stage are approximated using formulas based on the ship’s 

main particulars. For instance, the area of bilge keels is based on the ship’s length 

and breadth. 

 

Added wave resistance is calculated using the STAWAVE-1 method (Boom et al., 

2013). The STAWAVE-1 method is based on the fact that for today's large ships the 

head waves encountered in trial conditions are normally short compared to ship 

length and speed. The added resistance due to the reflection of these short head 

waves is primarily dependent on the shape of the waterline in the bow region. Similar 

to the method used for the calm water resistance calculation, STAWAVE-1 provides 

results instantly requiring a limited amount of input (15). 

 

RAWL = 1000
1

16
ρgHW,1/3

2B√
B

LBWL
 (15) 

 

ρ is the sea water density, g is the gravitational acceleration, HW,1/3 is the significant 

wave height, B is the ship’s breadth and LBWL is the length of the bow on the 

waterline to 95% of the maximum breadth. The calculation of the significant wave 

height is shown in (16). 
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HW,1/3 = 0.21
(1.026V10)2

g
 (16) 

 

Weather data based on the operational profile of the ship (i.e. on which region the 

ship operates) are used to identify the wind speed at ten metres above the sea surface 

V10. 

 

The wind resistance is calculated according to Jensen (1994). Wind resistance is 

important for ships with large lateral areas above the waterline, such as 

containerships or passenger ships. The method requires the ship’s V and wind VWind 

speed values, along with the frontal projected area of the ship above the sea level AF 

(17). The latter can be obtained by the arrangement created in NAPA®, following 

the definition of the rooms related to the superstructure 

 

RAA = CAA

ρair

2
(V + VWind)2AF (17) 

 

CAA is a coefficient ranging between 0.8 and 1.0, while ρair is the density of air. 

 

The sum of the three resistance components mentioned above provides the total 

resistance RT, which is used to estimate the effective and installed power PB (18). 

The latter is computed by applying the propulsive ηD and shaft ηS efficiency. Due to 

lack of propeller data at this design phase, estimation for the efficiency factors are 

used, proposed by Schneekluth and Bertram (1998). 

 

PB = ηSPD 

where 

PD =
RTV

ηD
 

(18) 

 

The process described above is undertaken for various conditions. Calm water 

resistance and wind resistance are calculated for the design draught at the design 

speed, as well as at two additional speed values which are set as fractions of the 

design speed, represented by parameters that can be controlled by the user. These 
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speed values represent the operating speed in various conditions, i.e. manoeuvring at 

port or sailing under adverse weather conditions. In addition, the two aforementioned 

resistance components are estimated for the examined loading conditions, where trim 

and draught might differ. 

 

4.3.3 Lightweight estimation 

 

Lightweight is estimated using empirical methods. The overall weight is divided into 

three distinct groups, namely the steel WST, outfit WOT and machinery WM weights 

(19). Despite the concept design stage, there are a few methods which are able to 

provide accurate estimations for both the weight and the centre of gravity for each 

weight group. These methods take advantage of the parametric setup, requiring 

information which either derives from the parameters of the optimisation problem or 

depends on parametric entities defined at previous stages (e.g. surfaces, rooms). 

 

LS = WST + WOT + WM (19) 

 

The steel weight includes the weight of the hull, superstructures and some heavy 

steel fittings depending on the ship type, such as the container cells. The hull weight 

is calculated using the Schneekluth method (Papanikolaou, 2014). The method was 

originally designed for dry-cargo ships; however it is possible to apply it to other 

ship types, such as passenger vessels or containerships. A standard formula is used to 

calculate the steel weight of the hull, requiring as input the ship’s main particulars, 

form coefficients and sheer and camber heights. An amendment of this formula is 

available for the calculation of the hull steel weight of containerships; however the 

input data remain the same. 

 

Superstructure weight is calculated using the Müller-Köster method (Papanikolaou, 

2014). This weight is calculated as a function of the enclosed volume of the 

superstructure and depends on the location of its structural elements. Input data 

include the area and height of each superstructure deck, which is obtained from the 

parametrically defined rooms. 



Proposed methodology  78 

Multi-Objective Robust Early Stage Ship Design Optimisation under Uncertainty Alexandros Priftis 

The weight of heavy steel fittings, including the container cells, is calculated using 

simple formulas taking into account the weight of each part, multiplied by the total 

number which depends on the generated ship model. 

 

The outfit weight can be estimated using approximation formulas available in 

Papanikolaou (2014). Taking into account the ship’s main particulars (LBP, breadth), 

as well as a coefficient which depends on the size and type of the ship being 

optimised, the overall outfit weight is estimated. 

 

Finally, the machinery weight primarily depends on the installed main engine’s 

power. Watson & Gilfillan provide an approximation formula for the calculation of 

this weight group, taking into account the type of the engine, apart from the installed 

power (Papanikolaou, 2014). 

 

The centre of gravity for each of the above weight groups is estimated through 

empirical formulas, deriving from regression analyses on similar ships 

(Papanikolaou, 2014). Taking the rooms defined at previous stages, as well as the 

ship’s main particulars into account, the centre of gravity is computed to be used in 

the loading conditions setup. 

 

4.3.4 Deadweight breakdown 

 

Deadweight analysis is a requirement for the definition of the loading conditions and 

provides values for the payload and weight of consumables (WF, WFW, WPR), crew 

WCR, stores WS and water ballast B (20). 

 

DWT = Payload + WF + WFW + WPR + WCR + WS + B (20) 

 

Consumables include the fuel, diesel, lubrication oil WF, as well as the fresh water 

WFW and provisions WPR weights. The former group depends on the power of the 

main and auxiliary engines, time of a round trip, SFOC of the main and auxiliary 

engines, as well as the efficiency of the auxiliary engines. On the other hand, fresh 
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water and provision weights depend on the number of people on board and the time 

of a round trip. Typical values are used for required amount of fresh water and 

provisions for every person per day. Likewise, crew weight is calculated based on 

typical values for every person on board. Stores weight depends on the size of the 

ship, based on similar ship deadweight breakdown data. 

 

Depending on the ship type under consideration, payload is calculated either at this 

stage or during the loading conditions definition. For instance, a Ro-Pax vessel 

would normally be required to transport a specific amount of vehicles and 

passengers. Typical values are used for the weight of each of these elements and 

depending on the available space (i.e. lane metres, area of passenger spaces) 

determined by the rooms defined at an earlier stage, as well as typical values for 

dimensions of vehicles and number of passengers per square metre of passenger 

spaces (Levander, 2012), the total payload is determined. On the other hand, 

containerships have a maximum container capacity; however, a typical loading 

condition involves a homogeneous container stowage, whose number depends on 

intact stability criteria. Hence, the amount of containers loaded –and consequently 

the payload value– is defined during the definition of the loading conditions. 

 

4.3.5 Loading conditions 

 

Following the estimation of the lightweight and the deadweight analysis, the loading 

conditions are defined. In particular, the full load departure condition is examined, 

where the consumable tanks are fully loaded and the maximum payload is taken into 

account. 

 

Depending on the ship type, the definition of the loading condition may involve an 

internal optimisation regarding the payload or not. As mentioned in Paragraph 4.3.4, 

in containership demonstration case, the amount of containers loaded depend on 

intact stability criteria. The ship needs to comply with certain rules which are 

affected by the loading condition’s resulting centre of gravity. For this reason, a 

homogeneous weight for each TEU is assumed –controlled by a parameter– and 
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containers are loaded in such way to maximise the total amount of containers loaded 

below and above the main deck, minimising the required amount of water ballast at 

the same time. The latter is loaded in the AP and FP ballast tanks in order to control 

the final trim corresponding to the defined loading condition. No water ballast is 

used for stability reasons. 

 

The process described above is related to the recent developments in international 

regulations applied to merchant ships regarding the control and management of 

ship’s water ballast and sediments (IMO, 2004). The convention entered into force 

on September 2017 and requires all ships to implement a water ballast management 

plan. All ships have to carry a water ballast record book and are required to carry out 

water ballast management procedures to a given standard in a way to prevent the 

transfer of invasive marine species and protect the marine environment. 

 

Although various systems and technologies aiming at the minimisation of the transfer 

of organisms through water ballast to different ecosystems are currently available, 

their installation on-board ships increases their capital and operating costs. 

Therefore, research has been focusing lately at solutions to reduce the amount of 

required water ballast. This problem is more severe for containerships, which 

inherently carry more water ballast, even at the design load condition. Thus, design 

solutions for containerships that consider zero or minimal water ballast capacities are 

very appealing to the ship owners. 

 

4.4 Objective functions and constraints 

 

The definition of the loading conditions concludes the essential computations 

required to set up the ship model. The next step involves the determination of the 

performance indicators which are used to evaluate the initial design and its variants 

during the optimisation process. These performance indicators, forming the objective 

functions and constraints of the optimisation problem are defined taking advantage of 

the integration capabilities of CAESES®. A selection of software tools is utilised to 

define the objective functions and the necessary constraints described below. 
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4.4.1 Container capacity ratio 

 

This particular performance indicator represents one of the objective functions that 

can be applied to the containership demonstration case. It is used as an objective 

function and is an outcome of the loading condition definition process described in 

Paragraph 4.3.5. The ratio is calculated in NAPA® and is defined as the number of 

TEUs loaded in the examined load case divided by the maximum TEU capacity of 

the vessel (Figure 27). The higher the ratio, the larger the amount of containers 

carried on-board. Therefore, the efficiency of the containership is increased. In terms 

of the optimisation process, maximisation of the value is desired. 

 

 

Figure 27: Definition of the container capacity ratio 

 

4.4.2 EEDI 

 

EEDI is a performance indicator that can be used either as an objective function or as 

a constraint. It can be applied to both cases examined in this thesis, as the relevant 

IMO regulations refer to various ship types, containerships and Ro-Pax vessels 

included. EEDI is calculated in NAPA® according to the guidelines set by the IMO. 

Two values must be calculated; (a) the required EEDI, referring to the regulatory 

limit of the ship’s EEDI and (b) the attained EEDI, referring to the actual EEDI of 

the ship (IMO, 2012a, b, c). 

 

The required EEDI value is calculated using reference lines developed by the IMO 

using and analysing data from a large number of existing ships. In (21), a, b and c are 

parameters depending on the ship type and a result of the regression analysis of the 

aforementioned data (Table 7). On the other hand, x is the EEDI reduction factor 

which depends on the implementation phase and the year the ship is built (Table 8). 
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EEDIRequired = (1 −
x

100
) ab−c (21) 

 

Table 7: Required EEDI formula parameters (IMO, 2012a, b, c) 

Ship type a b c 

Containership 174.22 DWT 0.201 

Ro-Pax vessel 752.16 DWT 0.381 

 

The attained EEDI value is calculated taking the CO2 emissions and transport work 

of the ship into account (22). The emissions are calculated based on the ship’s on-

board technologies influencing the EEDI levels; the main engine, auxiliary engines, 

innovative power generation devices and innovative technologies providing 

mechanical power for the ship propulsion. The transport work is computed by 

multiplying the ship’s capacity in deadweight or gross tonnage at summer load line 

draught by the reference ship speed, attained at propulsion power specified by the 

regulations and under calm sea and deep water operation at summer load line 

draught. 

 

EEDIAttained =
CO2 emission

Transport work
 (22) 

 

Table 8: EEDI implementation phases (IMO, 2012a, b, c) 

Phase Year 

x 

Containership Ro-Pax vessel 

0 2013-2015 0 N/A 

1 2015-2020 10 5 

2 2020-2025 20 20 

3 2025– 30 30 
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The rules require the attained EEDI to be less or equal to the required value (23) 

(IMO, 2012a, b, c). 

 

EEDIAttained ≤ EEDIRequired (23) 

 

Within the concept of holistic ship design optimisation, the EEDI serves as an 

indicator of efficiency in terms of both economics and environmental friendliness. 

Since the transport work is inversely proportional to the attained EEDI value, a 

higher capacity results in a lower EEDI. Low values are desired for the latter to meet 

the constraint set in (23). Therefore, by minimising the attained EEDI value, not only 

are the regulations met, but also the ship becomes more economically efficient. As 

mentioned earlier, the designer may include the minimisation of the attained EEDI 

value in the objective functions of the optimisation problem, or consider (23) in the 

constraints of the problem. 

 

4.4.3 RFR 

 

The RFR value indicates the minimum rate that evens the properly discounted ship’s 

expenses. It is a major financial performance indicator taking into consideration both 

the expenses and earnings of a vessel throughout its lifetime. Its minimisation is 

desired during the solution of the optimisation problem. Models which are based on 

the principal ship characteristics known from the early design stages are programmed 

in NAPA® macros to calculate the RFR (Levander, 2012, SAFEDOR, 2005-2009). 

In general, the definition of RFR is shown in (24). 

 

RFR = ∑
PWOperation + PWShip acquisition

Cargo tonnage

N

i

 (24) 

 

PW states for the present worth of the cost. Operational costs include fuel, insurance, 

maintenance and manning expenses, while the ship acquisition costs consist of 

design, steel, outfit, machinery and overhead expenses. Detailed breakdown 

depending on the application case is available in Chapter 5. Several parameters 
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affecting the aforementioned costs, such as crew wage, steel price, labour rates or 

fuel price are controlled by the user. In addition, the applied discount rate in order to 

identify the NPV of the costs is defined as a parameter to the problem. 

 

In the Ro-Pax vessel demonstration case, the parametric definition of the RFR 

calculation process is more complicated than in the containership case, as the 

earnings refer to more than one element. For instance, passenger tickets include 

economy class, first class or cabin. Moreover, the price for the transported vehicle 

can vary between cars and busses or lorries. Hence, relations can be developed 

between the different rates in form of parameters controlled by the user in order to 

simplify the computation. The same principle can be applied to the different time 

periods of operation (i.e. high and low season), during which the prices can fluctuate, 

providing a more accurate value for the RFR. 

 

 

Figure 28: Definition of the container stowage ratio 

 

4.4.4 Container stowage ratio 

 

Container stowage ratio is a performance indicator applied to the containership 

demonstration case and refers to the ratio of the TEUs stored above the main deck to 

the ones below the main deck (Figure 28). It is calculated in NAPA® taking as input 

values produced during the definition of the ship model. The ratio is related to the 

cargo loading/unloading efficiency of containerships. It is a simplified approach to 

evaluate the performance of the design during the concept design stage, without 

requiring complex calculations involving the container stowage plan depending on 

the route the ship follows. 
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The maximisation of the ratio is desired within the optimisation problem. The greater 

the number of containers above the main deck can be translated to shorter loading 

and unloading times at port, increasing the available voyage time. The latter results 

in lower mean service speed and consequently lower fuel consumption. 

 

4.4.5 Calm water resistance CFD calculations 

 

One of the objectives of this thesis is to utilise multi-fidelity methods to evaluate 

each design produced during the optimisation process. The values resulting from 

each method is compared and differences in the relevant performance indicators can 

be identified. The accuracy and validity of the results produced by the utilised 

methods reveal the robustness of both the optimisation method and the design. A 

design characterised by the same or similar performance regardless of the method 

applied to obtain the relevant values is robust and reliable. 

 

The principle described above is applied to the calm water resistance estimation. 

Calm water resistance is calculated in NAPA® using empirical methods, providing a 

quick alternative to evaluate the hydrodynamic performance of the design. However, 

in this methodology an additional evaluation is performed for the same objective, 

using higher fidelity, CFD methods. The parametric hull form is used as input and 

imported to CFD software Star-CCM+® (Siemens, 2017). The calculations take 

place in Star-CCM+®, benefiting from the integration capabilities of the presented 

setup and the software tools used in this process. 

 

The parametric hull is translated to model scale to reduce the required computational 

time and the required numerical input for the Star-CCM+® model setup is provided 

by a CAESES® feature. For instance, the model’s properties (mass, centre of 

gravity, moment of inertia, wetted surface), solver parameters, stopping criteria and 

coordinates of the volumetric mesh refinements mentioned below are calculated 

based on the parameters of the problem and provided as output by the developed 

CAESES® feature. 
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Within Star-CCM+®, macros are used, responsible for the various actions required 

to define the computational setup. The process starts with the mesh generation, 

including the definition and formation of the necessary volumetric mesh refinements 

on areas close to the hull surface to refine the free water surface area (Figure 29). 

The latter is performed parametrically, depending on the parameters affecting the 

hull shape. Afterwards, the physical and numerical setup is defined. The method 

utilised is the Volume of Fluid in conjunction with the k-ε turbulence model to 

simulate the flow characteristics. 

 

 

 

Figure 29: Mesh generation in Star-CCM+® 

 

Volume of Fluid method is a numerical Euler method of free surface approximation. 

Euler methods are generally described by a grid which can be either stationary or 

non-stationary. In case of the latter, the grid motion is determined by the change of 

the surface shape. The Volume of Fluid method allows following the shape and 

position of the surface. The flux motion is described by Navier-Stokes equations, 

solved separately using RANS equations, such as the k-ε model described below. 

 

The method is based on the use of a fractional function C, which is determined as an 

integral of the fluid’s characteristic functions in a grid cell. C is a continuous 

function, with 0≤C≤1. If the cell is empty (i.e. there is no fluid), C=0. If the cell is 

full, C=1. Derivative of the fractional function must be equal to zero (25). 
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∂C

∂t
+ 𝒗∇C + ∇[C(1 − C)Ur] = 0 (25) 

 

where v is the fluid velocity and Ur is an artificial force that compresses the region 

under consideration. 

 

The k-ε model was first proposed by Jones and Launder (1972) and is considered the 

standard turbulence model for engineering simulation of flows. It is a two equation 

model describing the turbulence by means of two transport equations. The first 

transported variable is the turbulence kinetic energy k, while the second transported 

variable is the rate of dissipation of turbulence energy ε. 

 

The two transport equations for the standard k-ε model are shown in (26) and (27). 

 

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj
[(μ +

μt

σk
)

∂k

∂xj
] + Gk + Gb − ρε − YM + Sk (26) 

 

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj
[(μ +

μt

σε
)

∂ε

∂xj
] + C1ε

ε

k
(Gk + C3εGb) − C2ερ

ε2

k
+ Sε (27) 

 

where Gk represents the generation of turbulence kinetic energy due to the mean 

velocity gradients, Gb represents the generation of turbulence kinetic energy due to 

buoyancy, YM represents the contribution of the fluctuating dilatation in compressible 

turbulence to the overall dissipation rate and C1ε, C2ε, and C3ε are constants. σk and σε 

are turbulent Prandtl numbers for k and ε respectively. Sk and Sε are user-defined 

source terms. μt is the turbulent –or eddy– viscosity, computed by combining k and ε 

as shown in (28). 

 

μt = ρCμ

k2

ε
 (28) 

 

where Cμ is a constant. 
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The simulation results are obtained after setting the solver parameters and stopping 

criteria –controlled by parameters accessible to the user. 

 

During the post-processing phase, the results corresponding to the model are 

converted to full-scale to obtain the calm water resistance for the design to be 

optimised. 

 

As mentioned in the beginning of the Paragraph, the output of this operation is used 

to compare the results obtained through two different methods (detailed but time-

consuming CFD calculation and fast but approximating method proposed by Holtrop 

and Mennen (1978)). In the optimisation phase, the difference between the values for 

the calm water resistance obtained through the aforementioned methods is used as an 

objective function, for which minimisation is desired –the lower is the difference, the 

more robust is the response of the design. 

 

4.4.6 IMO second generation intact stability criteria 

 

A recent development regarding the safety regulations applied to merchant vessels is 

the introduction of the second generation intact stability criteria. These criteria are 

being developed by the IMO (2018). The introduction of ships with newly developed 

design characteristics and operation modes has challenged the assumption that the 

current intact stability criteria are sufficient to prove their stability. Hence, the new 

criteria are performance-based and address five modes of stability failure; excessive 

acceleration, parametric roll, pure loss of stability, stability under dead ship condition 

and surf-riding/broaching. 

 

As far as ships with slender hull forms (e.g. containerships, Ro-Pax vessels) are 

concerned, parametric roll is considered one of the most important modes of stability 

failure (Peters et al., 2011). Pure loss of stability failure mode should also be 

investigated, as the considerable flare found in the aft and fore parts of a slender hull 

results in significant changes in the waterplane area when the ship sails through 

waves. These changes may result in a large roll angle or even capsize (Peters et al., 
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2011). Likewise, excessive acceleration failure mode should be checked in these ship 

types, due to high superstructures found in such kind of ships. Therefore, the draft 

criteria of level 1 and 2 for excessive acceleration, parametric roll and pure loss of 

stability failure modes according to SDC 6/5 are included in this methodology (IMO, 

2018). Further information on the background of each examined criterion can be 

found in Appendices A, B and C. 

 

These checks are performed using macros (referred to as “features” in CAESES®), 

taking as input the hull geometry and the output of the computations performed 

during the definition of the ship model. Level 1 checks are meant to be simple and 

conservative, in order to quickly detect any vulnerability to each of the three failure 

modes. Level 2 checks are more complex, thus less conservative, taking into account 

more design- and operation-related aspects in order to determine whether the ship is 

vulnerable to either of the examined failure modes. For each failure mode, several 

features are developed within CAESES®, connecting various external software tools 

to evaluate certain parameters required to perform these computations. Maxsurf® 

Stability (Bentley Systems, 2014) and Matlab® (Mathworks, 2014) are integrated in 

the procedure to perform the required calculations and solve complex equations 

defined in the regulations. 

 

4.4.7 Midship section structural analysis 

 

In accordance with the principles set by the holistic design approach, several aspects 

of naval architecture are incorporated and evaluated in this methodology. Structural 

integrity is important for assessing the ship’s safety and compliance with regulations 

regarding structural strength. Containership sizes have been increasing lately, with 

several designs able to transport up to 21000 TEUs being already in operation. The 

structure of such ships requires attention in design due to their internal arrangement 

to avoid structural failure. 

 

The midship section design is analysed to check its structural strength according to 

Lloyd’s Register rules (Lloyd's Register, 2014) using CAESES® features. Based on 
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the generated internal geometry, a setup of the midship section is created. The strakes 

and longitudinal stiffeners are taken into account. The minimum required section 

modulus, moment of inertia and the permissible bending and shear stress are 

calculated according to the relevant rules. In addition the minimum required plate 

thickness and stiffener section modulus for each midship section panel are computed 

and considered as a starting point to check whether the setup passes the criteria. In 

case the latter is not achieved, an internal optimisation takes place using the Tangent 

Search method. The plate thicknesses and the stiffener profile types constitute the 

design variables set, while the minimum required section modulus, moment of inertia 

and permissible bending and shear stress are set as the constraints of the problem. 

The process identifies the combination of plate thicknesses and stiffener profiles that 

satisfies the limits set by the regulations. 

 

4.5 Design of experiment 

 

Once the preparatory steps for the setup of the ship design optimisation problem are 

completed, designs of experiment take place. The benefits of this step are outlined in 

Section 3.4. In addition, designs of experiments are required for the next step, which 

is the definition of the surrogate models. These runs allow the determination of the 

effect of each design variable on specific evaluations and consequently reduce the 

complexity of the production process of the surrogate models. 

 

The Sobol algorithm is utilised at this step. Sobol algorithm is a quasi-random 

sequence, in which test points are scattered in a purely random manner (Azmin and 

Stobart, 2015). The number of design variants is selected, the design variables and 

constraints are set and each design is evaluated according to the setup applied, 

depending on the required output. For instance, the design of experiment for the 

definition of the surrogate model responsible for the calm water resistance CFD 

calculations does not evaluate the ship model and objectives and constraints 

described in Sections 4.3 and 4.4, since they are redundant to the calculations 

performed to obtain the desired output. On the contrary, the parametric hull model is 
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generated and the relevant CFD software tool is utilised, as described in Paragraph 

4.6.1. 

 

The results of the design of experiments are analysed. Either the limits or the amount 

of the design variables are modified based on their effect on the design at the 

optimisation phase or the output is used to construct the surrogate model at the next 

step. 

 

4.6 Surrogate models 

 

Following the setup of the objective functions and constraints calculation and the 

relevant design of experiment runs, an evaluation is performed to decide which 

computations would be eligible to be substituted by surrogate models. The criteria 

taken into consideration are the following: 

 

 Computational setup; requirement to use specific operating system prohibits 

utilisation of software tools designed to operate on other operating systems 

 Computational time per design variant; computations requiring significant 

amount of time per design variant prolongs the duration of the optimisation 

phase 

 Number of design variables per computation; the higher the number of design 

variables, the greater the amount of evaluations required to produce an accurate 

surrogate model 

 Variance of output; inconsistency in results impedes the definition of an 

accurate surrogate model, as a high number of evaluations is required to 

achieve the latter 

 

Based on the aforementioned criteria, three computation setups are selected to be 

substituted by surrogate models in the optimisation phase; (a) the calm water 

resistance CFD calculations setup, (b) the IMO second generation intact stability 

criteria setup and (c) the uncertainty quantification setup. 
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The process followed to define the surrogate models is divided into three phases; (a) 

the preparation phase, in which designs of experiment are run to create a pool of 

design variants, (b) the generation phase, in which the surrogate model is defined 

using the Kriging method and the pool as input and (c) the evaluation phase, in 

which the surrogate model is tested for its accuracy by obtaining the results of both 

the actual simulation and the surrogate model for a specified number of newly 

defined design variants. The consistent, high accuracy of the Kriging method in the 

definition of the surrogate models, in conjunction with the fast evaluation times (both 

illustrated in Chapter 6), proves the suitability of this response surface method in the 

presented methodology. 

 

4.6.1 Calm water resistance CFD calculations 

 

The calm water resistance CFD calculations mentioned in Paragraph 4.4.5 require 

utilisation of HPC facilities in order to be able to obtain results in a sensible period of 

time. The setup may be required to be defined in specific operating system, 

depending on the HPC facilities, conflicting with the compatibility of other software 

tools used in the proposed methodology. 

 

In addition, CFD calculations –even if run on a HPC– demand substantial 

computational time per evaluation, making their integration to a typical optimisation 

process often inconvenient. For instance, a typical computation for a containership or 

Ro-Pax vessel used in the case studies of this thesis requires around thirty minutes to 

run on one node (40 cores), 2 x Intel Xeon Gold 6138 20 core 2.0 GHz CPU with 

192 GB RAM per node. Yet, depending on the set of design variables used, the 

results are generally consistent. 

 

Therefore, the calm water resistance CFD calculations setup can be conveniently 

used to create a surrogate model which provides valid results and be used in the 

optimisation phase. 
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4.6.2 IMO second generation intact stability criteria 

 

Computations needed to be performed for the evaluation of the IMO second 

generation intact stability criteria –mentioned in Paragraph 4.4.6– can be run locally 

on a personal computer. Nevertheless, the setup requires various software tools to be 

run simultaneously, due to the complexity and variance of the calculations (e.g. 

hydrostatic, numerical) required to be run. Therefore, a substantial amount of 

computational time in needed for each design variant –around fifteen minutes on an 

Intel Core i7-4790 3.6 GHz CPU with 8 GB RAM. 

 

Each of the criteria takes a considerable amount of data as input to be able to predict 

the variance of the results, however, the results described in Chapter 6 shows 

consistency without requiring prohibitive amount of design variants in the 

preparation phase. 

 

4.6.3 Uncertainty quantification 

 

Uncertainty quantification setup is a set of computations required to be run for the 

uncertainty analysis of the problem. Essentially, the setup is identical to the 

procedure described in Sections 4.3 and 4.4. The difference lies on the values 

assigned to specific design variables. Various methods –mentioned in Chapters 2 and 

3– have been applied to quantify the uncertainty in an optimisation problem. In 

addition, the higher is the complexity of the problem, the stronger is the presence of 

uncertainty along the process. 

 

In the proposed methodology, uncertainty is taken into account and investigated 

throughout the design and optimisation processes in key areas. Normally, design 

variables and parameters of the problem are assigned specific values and the solution 

of the problem returns a single result. In the uncertainty quantification setup, the 

objective is the evaluation of the variance in the results, affected by the values 

assigned to the identified parameters. Hence, the first step is the determination of the 

uncertain parameters specific to the problem under investigation. Their uncertainty 
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arises either from external factors or from lack of knowledge due to the early stage of 

ship design investigated in this methodology. For instance, fuel price is identified as 

uncertain due to its daily fluctuation, affected by the global market. The fuel price 

directly affects the RFR value. On the other hand, the propulsive and shaft efficiency 

are considered uncertain because of the lack of detailed propulsion calculations due 

to insufficient input during the concept ship design stage. These efficiency factors 

affect the main engine power, which in turn influences the fuel consumption, 

required amount of fuel oil carried on-board, loading condition and RFR value. The 

latter demonstrates not only the interrelation of the numerous computations 

performed to produce a ship design, but also the transfer of uncertainty along the 

design process. 

 

The former category of uncertain design variables are assigned a probability 

distribution based on known, historical data. Analysis of the data provides the 

required input to produce the probability distributions. For example, calculation of 

the mean and standard deviation of a dataset allows the definition of a normal 

probability distribution assigned to an uncertain parameter. On the other hand, 

uncertain parameters for which data are not available due to the investigated design 

stage are assigned a variance factor produced by a normal probability function, 

whose limits are determined by the user. The mean value used in this case is equal to 

the value used in the normal calculations setup, where uncertainty is not taken into 

account. 

 

Following the identification of the uncertain design variables and parameters of the 

problem, the ship model definition presented in Section 4.3 is amended to quantify 

the uncertainty involved in the results of the following calculations: 

 

 Calm water, added wave and wind resistance 

 Lightweight estimation 

 Deadweight analysis 

 RFR 
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The aforementioned computations are directly affected by the uncertain design 

variables due to the latter being the input to the former. However, as mentioned 

earlier, calculations influenced by the uncertainty effects are not limited to the list 

above. For instance, objectives’ values, such as the container capacity ratio, change 

depending on the values of the uncertain parameters. 

 

Overall, the aim of the process is to identify the variance of the results which are 

used as objective functions or constraints in the solution of the optimisation problem. 

This is achieved by investigating several scenarios for each design variant during the 

optimisation phase, during which the uncertain parameters are assigned random 

values based on their probability distribution (Figure 30). These scenarios are created 

using the Latin Hypercube Sampling method, mentioned in Section 3.7. Optimisation 

software tool Dakota® (Sandia, 2018) is connected to CAESES® during the 

optimisation run and produces a number of scenarios set by the user by employing 

the Latin Hypercube Sampling technique. The standard deviation of the results is 

computed and used as an optimisation objective, for which minimisation is desired. 

 

 

Figure 30: Uncertainty quantification setup 

 

The scenarios investigation takes place for each design variant during the 

optimisation phase. Although the duration of the computations required to investigate 

a single scenario does not exceed the amount of a few minutes, running the 
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simulations numerous times for each design would lead to excessive computational 

time. Therefore, surrogate models are utilised to substitute the actual simulations 

with approximation models. A design of experiment is run during which both the 

absolute and uncertain design variables change to provide results for the objective 

functions and constraints affected by the uncertain parameters. 

 

4.7 Multi-objective optimisation 

 

The final preparatory step of the optimisation setup is the selection of the method 

used to perform the multi-objective optimisation. The NSGA 2 method is utilised in 

this methodology (Deb et al., 2002). 

 

 

Figure 31: NSGA 2 procedure (Deb et al., 2002) 

 

NSGA 2 is a genetic algorithm which works with a population of solutions and able 

to find multiple Pareto optimal solutions in a single simulation run. The algorithm 

incorporates innovative features compared to other genetic algorithms; (a) a fast non-

dominated sorting procedure, (b) a fast crowded distance estimation procedure and 

(c) a simple crowded comparison operator, ensuring preservation of diversity in the 

produced solutions by monitoring the performance of each design variant, as well as 
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the distance between the solutions within the design space. A non-dominated 

solution which is located in a lesser crowded region is generally preferred. 

 

In iteration t of the algorithm the following steps take place (Figure 31): 

 

 An offspring population Qt of designs is formed, containing N designs, 

according to the selection, cross-over and mutation operators’ properties 

 Population Qt is combined with the parent population Pt, which also contains N 

designs. Hence, the combined population Rt=Pt∪Qt contains 2N designs 

 Population Rt is sorted according to non-domination and subsets Fi, i=1,…,n of 

solutions are created based on their level of elitism. Subset F1 contains the best 

non-dominated designs; solutions in subset F2 are dominated only by the 

designs contained in F1, and so on 

 The solutions of best subsets are passed on to the next parent population Pt+1, 

until the number N is reached. Thus, solutions of subset F1 are selected first, 

followed by solutions of subset F2, and so on 

 To choose exactly N population members, solutions of the last subset are sorted 

using the crowded comparison operator in descending order and the best 

solutions needed to fill all population slots are chosen 

 

The user is required to specify the number of generations and the population size for 

each one, along with the mutation and cross-over operator values. The values will 

affect the total number of design variants to be produced, as well as their variance in 

the design space to ensure the determination of a global optimum, following the 

decision making process at the next stage. 

 

In addition, the setup of the algorithm requires the determination of the design 

variables and their limits, selection of the objective functions and constraints applied 

to the problem to isolate the invalid designs from the feasible solutions. 
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4.8 Multi-criteria decision analysis 

 

The solution of a multi-objective optimisation problem requires a post-processing 

step which is vital for the designer to identify the best design produced by the 

process described in this Chapter. The results obtained from the operation mentioned 

in Section 4.7 need to be analysed to determine the Pareto front which includes the 

best solutions according to the objective functions and constraints defined in the 

multi-objective optimisation setup. As mentioned in Section 3.4, a solution is 

properly Pareto optimal if there is at least one pair of objectives for which a finite 

decrement in one objective is possible only at the expense of some reasonable 

increment in the other objective. This means that a decision making process has to 

follow to reveal the single best solution, based on a method determined by the user. 

 

In this methodology, the utility function theory presented in Section 3.6 is employed, 

providing the best compromise solution to the problem. The objective function 

values are normalised based on the best and worst performance in each objective 

according to (29). 

 

xn =
x − xworst

xbest − xworst
 (29) 

 

where xn is the normalised response and xbest, xworst are the best and worst responses 

respectively. Case scenarios are defined at this stage, which determine the weights 

taken into consideration in the decision making process. The user can specify the 

weights for each objective function, prioritising the significance of the objectives 

they believe are the most important, depending on the building purpose of the vessel. 

The weight assignment is directly related to the decision maker’s preference. Sen and 

Yang (1998) outline the various techniques available for that purpose. Three major 

methods are mentioned, namely the direct assignment, the eigenvector method and 

the entropy method. In this study, the direct assignment approach is adopted. The 

user decides the weight values in each examined scenario. The total of these values 

in each scenario add up to 100%, while each objective can be assigned a weight, 

ranging between 0% and 100%. 
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Afterwards, the utility function is calculated for each design for each case scenario. 

The designs are then ranked according to their utility function values. The maximum 

score achieved by one design can be 1, whereas the lowest can be 0. The highest 

ranked design is identified as the best for the specific case scenario. 

 

4.9 Summary 

 

A highly automated, integrated approach to ship design optimisation under 

uncertainty is presented in this Chapter. The methodology described in previous 

Sections demonstrate the process followed to optimise a ship design in its early 

design phase in a holistic manner, incorporating the uncertainty induced by external 

factors or lack of knowledge during the concept design stage. 

 

A parametric model for a specific ship type is constructed first, allowing a 

considerable amount of flexibility in the hull form definition. The user is able to 

select which of the parameters controlling the hull shape become the design variables 

of the optimisation problem, increasing the versatility of the problem definition and 

the focus of the problem. 

 

A detailed ship model is defined afterwards, based on the hull form defined in the 

first step, where all the necessary computations to calculate the values for the 

selected objective functions and constraints of the problem take place. Various 

software tools are seamlessly interconnected at this stage, with CAESES® being the 

main platform, taking advantage of their capabilities in producing the required values 

in short lead time. 

 

Designs of experiment are conducted once the ship model is properly defined using 

the Sobol algorithm. The design space is explored, identifying the trends and 

relations between the design variables and the objective function values. The 

selection of the design variables’ limits is verified and the results allow the user to 

determine which of the ship model computations are eligible to be substituted by 

surrogate models, so as to reduce the overall computational time, without 
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compromising in the accuracy of the results. Factors such as computational time per 

design variant or variance of the output are considered for that purpose. 

 

Next, the uncertainty quantification of the problem takes place, utilising surrogate 

models to calculate the standard deviation and mean of selected output, based on the 

variance of the uncertain parameters of the problem. 

 

Following the definition of all the required calculation components, the solution of 

the multi-objective optimisation problem takes place, using the NSGA 2. The 

produced design variants are post-processed to determine the Pareto front. 

 

Finally, in order to identify the best solution to the problem, a decision making 

process follows, where the utility function theory is employed. Case scenarios 

defining the significance of each objective are created by the user and the calculation 

of the utility function for each design variant determines the ranking of the feasible 

solutions. The highest ranked design variant is identified as the best solution to the 

specific case scenario. 

 

All in all, a robust solution to a multi-objective ship design optimisation problem is 

the outcome of the overall procedure. Despite the investigation of the concept design 

stage, the consideration of the effects of uncertainty allows the identification of a 

design which performs well regardless of the uncertain parameters of the problem. 

The objective functions are related to the three main categories defined by Nowacki 

(2018); economics, safety and environment, with more than a single performance 

indicator considered for each category. In addition, newly introduced regulations 

regarding the control and management of water ballast and sediments, EEDI and 

intact stability of ships are incorporated in the methodology in an attempt to identify 

their effect in the design of the construction and operation of ships. 
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5 Case studies 

 

 

 

5.1 Introduction 

 

The methodology presented in Chapter 4 is validated through two different case 

studies, each one involving different ship types, objective functions and constraints. 

Through this process, results of the solution of the optimisation problem are obtained 

and analysed to ensure the robustness of the proposed workflow, as well as its ability 

to provide meaningful results to support the designer’s task in producing an optimal 

ship design in the concept design phase. 

 

In addition, the two case studies prove the versatility of the methodology, examining 

different hull forms and operational profiles, while focusing on various objectives, 

specific to the ship type being optimised. 

 

In this Chapter, further information on the setup of the workflow presented in 

Chapter 4 is provided, elaborating on how each step is implemented and how the 

optimisation problem is processed and solved. 

 

5.2 Containership case study 

 

5.2.1 Challenges associated with containership design 

 

The first case study examined in this thesis is a containership. This particular ship 

type involves various challenges in its design phase, which can be resolved through 

an optimisation procedure. Intact stability is a major issue associated with 

containerships and their operation. The introduction of the second generation intact 

stability criteria increases the complexity of this issue, reducing the number of valid 
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designs obtained through an optimisation process. The consideration of both the 

current and the newly developed criteria in the design optimisation process helps the 

designer understand which design elements affect the stability of this particular ship 

type. 

 

Another issue associated with containerships is the resistance and powering. Until 

recently, this ship type used to operate in a speed range of 22 ÷ 26 Knots. Changes in 

the fuel prices in the recent years have induced a decrease in the speed range, with 

most containerships operating in the region of 18 ÷ 22 Knots (Banks et al., 2013). 

The practice of reducing the operational speed, adopted by the shipping industry in 

an attempt to lower the fuel consumption, is known as slow steaming and super slow 

steaming (Bonney and Leach, 2010). 

 

Considering the strong relation between speed and resistance/powering, the 

optimisation of a containership hull for lower operational speed can have a huge 

impact on the efficiency of the design. The majority of research carried out on this 

subject has either been associated with single-objective design optimisation studies, 

considering only the resistance as an objective function, or have been focusing on the 

hull optimisation with regard to a specific operational speed, overlooking the 

uncertainty related to the changes in the operational profile in the future. On the 

contrary, in this thesis, a multi-objective optimisation procedure takes place, where 

resistance is taken into account as part of a number of objective functions, 

investigating its relation with design constraints applied to the problem. In addition, 

uncertainties associated with external factors, such as the fuel price or wind speed, 

are considered in the design process, revealing their effects on various operational 

profiles associated with different velocities. 

 

Ship strength is another issue which requires attention during a design optimisation 

process. Containerships’ structure arrangement to accommodate as much containers 

as possible requires careful design, involving high values for the overall ship’s length 

and absence of main deck structure. As mentioned in Paragraph 4.4.7, design of the 

midship section needs to be validated for compliance with structural rules imposed 
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by classification societies, taking into account the bending moments and shear forces 

applied as a result of a loading condition. 

 

Table 9: Examples of containership hull definition parameters in CAESES® 

Parameter Explanation 

Acc_Pos Position of the deckhouse along the ship 

Hub_Radius Bossing radius 

CPC_X_Bulb_Tip X-coordinate of the bossing tip 

Fullness_Aft Fullness of the aft fairing boundary 

sections 

Weight_At_Bottom Fullness of the bossing area sections 

FOB_At_Mid Y-coordinate of the mid-point of the aft 

FOB curve 

FOS_Fullness Fullness of the aft FOS curve represented 

by an F-spline 

Bulb_Fairing_Spread_Factor Fullness of the bulbous bow sections 

Fullness Fullness of the deck curve represented by 

an F-spline 

Entrance_Angle Entrance angle of the DWL 

 

5.2.2 Optimisation problem setup 

 

The setup of the problem begins with the hull design. As mentioned in Section 4.2, 

the geometric model is constructed in CAESES® and consists of four parts, the aft 

body, main frame, fore body and main deck (Figure 32, Figure 33, Figure 34 and 

Figure 35). The aft part contains the propeller area and the transom, both controlled 

by a set of parameters. The main frame can also be adjusted to change the midship 

section coefficient. The fore body includes the bulbous bow whose shape can be 

manipulated by several parameters. In total, 128 parameters are introduced in the 

design of the hull within CAESES®. Examples of these parameters are given in 

Table 9. 
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Figure 32: Containership hull aft section curves (profile view) 

 

 

Figure 33: Containership hull aft section curves (top view) 

 

 

Figure 34: Bulbous bow curves 



Case studies  105 

Multi-Objective Robust Early Stage Ship Design Optimisation under Uncertainty Alexandros Priftis 

 

Figure 35: Containership hull fore section curves 

 

 

Figure 36: Containership baseline model hull (body plan view) 
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Figure 37: Containership baseline model hull (profile view) 

 

 

Figure 38: Containership baseline model hull (top view) 

 

 

Figure 39: Containership baseline model hull (perspective view) 

 

 

Figure 40: Containership baseline model hull (panel mesh) 

 

The baseline geometric model for the containership case study produced in 

CAESES® is presented in Figure 36, Figure 37, Figure 38 and Figure 39, while a 

panel mesh of the hull surface used for some calculations involving the connection 

with Maxsurf® Stability is illustrated in Figure 40. 

 

At this stage, the design variables of the optimisation problem are selected. An 

overall hull design optimisation procedure is selected to be performed; hence 

parameters controlling the main particulars are appointed as design variables. Ten 
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design variables are defined for that purpose and their values will be varying during 

the optimisation phase. The explanation of each design variable is given in Table 10. 

 

The amount of the design variables affects the number of the generated design 

variants required to investigate the design space. Too many design variables result in 

a complex optimisation problem setup, calling for an extensive number of designs to 

be evaluated to guarantee the identification of the global optimum solution. In this 

case study, the number of design variables is kept low, focusing on the ones affecting 

the main dimensions of the ship. 

 

Table 10: Main set of design variables selected for the containership case study 

Design variable Baseline value Explanation 

Acc_Pos 4 Position of the deckhouse along the ship 

(expressed as the number of bays 

located aft of the deckhouse) 

Bays 18 Number of bays 

Bilge_A 5.5 Y-coordinate of the bilge radius (m) 

Bilge_B 5.5 Z-coordinate of the bilge radius (m) 

DB 2 Double bottom height (m) 

d_C_Prismatic 0 Percentage change of the prismatic 

coefficient (Lackenby transformation 

parameter) 

d_LCB 0 Percentage change of the LCB 

(Lackenby transformation parameter) 

Rows 18 Number of rows 

Tiers_In 9 Number of tiers below the main deck 

Tiers_On 6 Number of tiers above the main deck 

 

Apart from the main design variables of the problem, secondary design variables are 

defined, which are related to the operational profile of the ship. The majority of these 
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design variables are identified as the uncertain parameters of the problem and play a 

major role in the uncertainty quantification process (Table 11). 

 

The values selected for the parameters displayed in Table 11 derive from several 

sources. Taking into account the schedule of similar-sized containerships, a roundtrip 

of 13567 nm is selected, starting from the Mediterranean Sea, reaching the Gulf of 

Mexico, before returning to Europe. The corresponding number of port calls, along 

with an average time of the ship moored at the various ports is used as input in the 

case study. The average price of diesel (MDO) and fuel (IFO 380) oil are used as 

input (Bunker Index, 2018). Taking into account the latest trends in the operational 

speed of containerships, a mean value is used for the case study (Banks et al., 2013). 

Moreover, historical weather data are used to define the average wind speed in the 

areas matching the operational profile of the case study (NOAA, 2018). 

 

Table 11: Secondary set of design variables selected for the containership case study 

Design variable Baseline value Explanation 

Distance 13567 Round trip distance (nm) 

Port_No 18 Number of port calls 

Port_Time 13.17 Average time spent at port (h) 

Price_DO 721.67 Diesel oil price ($/t) 

Price_FO 488.81 Fuel oil price ($/t) 

V_S 20 Ship speed (Knots) 

V_Wind 11.97 Wind speed (Knots) 

W_Cont 10 TEU homogeneous weight (t) 

 

A Lackenby transformation takes place to adjust the overall hull form through the 

design variables d_C_Prismatic and d_LCB mentioned in Table 10. Following the 

parametric hull form definition in CAESES®, the construction of the ship model in 
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NAPA® takes place. Within NAPA®, 24 additional parameters are introduced, all 

relevant to specific calculations performed by macros. Although the user has access 

to these parameters, specific values are assigned remaining constant throughout the 

optimisation phase. Examples of these parameters are given in Table 12. 

 

The definition of the ship model is carried out according to the steps outlined in 

Section 4.3. The baseline ship model for the containership case study is presented in 

Figure 41. The various colours represent the purpose of each room. For instance, 

green stands for the water ballast tanks, while light blue is used for the cargo space. 

 

Table 12: Examples of containership model parameters in NAPA® 

Parameter Explanation 

V.S.Low Ship speed during port operation 

(expressed as a percentage of the ship 

speed) 

C.AA Coefficient related to the calculation of 

the wind resistance component 

F.Cor.2 Correction factor for the calculation of 

the lightship’s VCG 

Dens.DO Diesel oil density 

F.Broker Coefficient related to the calculation of 

the broker cost 

 

 

Figure 41: Containership baseline ship model defined in NAPA® 

 

The process continues with the definition of the objective functions. The calculations 

mentioned in Section 4.4 take place. In general, the setup is irrelevant of the ship 

type under investigation and computations related to the ship type take place at this 

stage. For instance, in the containership case study the calculations of the container 

capacity and stowage ratio take place. As far as the RFR estimation is concerned, 
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different methods are used, depending on the ship type, as mentioned in Paragraph 

4.4.3. In the containership case study, RFR is calculated based on the total cost 

associated with the ship’s lifetime, according to Levander (2012). In particular, the 

total cost is divided into the capital and operating cost. 

 

The capital cost is divided into the following categories (Levander, 2012): 

 

 General 

 Payload related (hatch covers, container cranes, cell guides in holds/on deck) 

 Hull structure 

 Deckhouse 

 Ship outfitting 

 Accommodation 

 Machinery 

 Ship systems 

 Reserve 

 Design 

 Finance 

 

On the other hand, the operating cost involves several categories, mentioned in 

Figure 42. 

 

 

Figure 42: Operating cost model for containerships (Levander, 2012) 
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As far as the calm water resistance CFD calculation setup is concerned, the 

CAESES® feature mentioned in Paragraph 4.4.5 is defined accordingly to produce 

the necessary input for the Star-CCM+® operations. The generated mesh and the 

wave elevation measurement during the CFD runs of the baseline model of the 

containership case study are presented in Figure 43 and Figure 44 respectively. 

 

 

Figure 43: Generated mesh of the containership baseline model in Star-CCM+® 

 

 

Figure 44: Wave elevation of the containership baseline model in Star-CCM+® 

 

Following the definition of all the necessary computations, several designs of 

experiment take place for the construction of the surrogate models mentioned in 

Section 4.6. Following an analysis of the designs of experiment conducted to identify 

which design variables influence the particular calculations the most, the setups are 

defined for the construction of the surrogate models for the calm water resistance 

CFD calculations, IMO second generation intact stability criteria and uncertainty 

quantification. The design variables, monitored parameters, number of design 
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variants generated during the preparation and evaluation phases –as described in 

Section 4.6– are provided in Table 13. 

 

Table 13: Surrogate model setups for the containership case study 

Calm water resistance CFD calculations 

Design variables Bays, Bilge_A, Bilge_B, d_C_Prismatic, d_LCB, 

Rows, Tiers_In 

Investigated parameters F_Drag_Model, Wetted_Surface_Full_Scale, 
Wetted_Surface_Model 

Setup (preparation phase) Sobol algorithm (300 design variants) 

Setup (evaluation phase) Sobol algorithm (30 design variants) 

IMO second generation intact stability criteria 

Design variables Acc_Pos, Bays, Bilge_A, Bilge_B, DB, 

d_C_Prismatic, d_LCB, Rows, Tiers_In, Tiers_On 

Investigated parameters EA_Criteria, PL_Criteria, PR_Criteria 

Setup (preparation phase) Sobol algorithm (300 design variants) 

Setup (evaluation phase) Sobol algorithm (30 design variants) 

Uncertainty quantification 

Design variables Bays, DB, Rows, Tiers_In, Tiers_On, Price_DO, 

Price_FO, Variance, V_S, V_Wind, W_Cont 

Investigated parameters Capacity_Ratio, EEDI_Ratio_10, R_Total, RFR, 
Stowage_Ratio 

Setup (preparation phase) Sobol algorithm (1000 design variants) 

Setup (evaluation phase) Sobol algorithm (100 design variants) 

 

F_Drag_Model stands for the calm water resistance of the model scale version of 

the hull, Wetted_Surface_Full_Scale and Wetted_Surface_Model are the 

wetted surface values for the full scale and the model scale version of the hull 

respectively. 
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EA_Criteria, PL_Criteria and PR_Criteria stand for the examined IMO 

second generation intact stability criteria (excessive acceleration, pure loss of 

stability, parametric rolling) values; compliance with the rules provide a value of one 

for each parameter, whereas zero is provided for the opposite case. 

 

Capacity_Ratio and Stowage_Ratio stand for the container capacity and 

stowage ratio of the design respectively; EEDI_Ratio_10 is the ratio of the attained 

to the required EEDI value, when the first implementation phase of the rule is taken 

into account (Table 8). R_Total stands for the total resistance of the ship (calm 

water, added wave, wind) and RFR is the required freight rate of the design. 

 

Table 14: Uncertain parameters of the containership case study 

Parameter Probability 

distribution 

Minimum 

value 

Maximum 

value 

Average 

value 

Standard 

deviation 

Price_DO Normal 308.93 1058.2 721.67 200.52 

Price_FO Normal 188.18 759.61 488.81 149.83 

Variance Uniform 0.95 1.05 N/A N/A 

V_S Uniform 18 22 N/A N/A 

V_Wind Normal 0.00 70.95 11.97 4.27 

W_Cont Uniform 10 14 N/A N/A 

 

With regard to the uncertainty quantification setup, half of the design variables used 

for the construction of the surrogate model (Price_DO, Price_FO, Variance, 

V_S, V_Wind, W_Cont) are the identified uncertain parameters of the optimisation 

problem. They are also a subset of the secondary design variables mentioned in 

Table 11. During the uncertainty quantification run, taking place in the multi-

objective optimisation phase, these design variables vary according to user-defined 

probability distributions. Details about the definition of these distributions for each 

uncertain parameter are found in Table 14. Variance is responsible for the variance 
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factor mentioned in Paragraph 4.6.3, which is used for the variation of uncertain 

parameters for which data are not available due to the investigated design stage. The 

number of scenarios examined for each design variant (as described in Paragraph 

4.6.3) is set to 25. 

 

The next step involves the multi-objective optimisation run. As mentioned in Section 

4.7, NSGA 2 is utilised. Several parameters need to be specified before initiating the 

algorithm. These include the number of generations and the population size for each 

one, along with the mutation and cross-over operator values. In addition, the design 

variables and their limits are determined, while the objective functions and 

constraints applied to the problem are selected. This information can be found in 

Table 15, Table 16 and Table 17. 

 

The optimal number of generations and population size depends on the examined 

optimisation problem. Taking into account the amount of time required to evaluate 

each design variant, as well as previous studies on a similar optimisation problem 

setup mentioned in the Research output Section of the thesis, the total number of 

generated designs is set to 1500. Deb et al. (2002) emphasise the efficiency of the 

NSGA 2 over other available algorithms, converging to a global optimum solution 

much faster. In addition, several combinations of number of generations and 

population size have been tested on a similar optimisation problem setup using the 

NSGA 2 (Priftis et al., 2018, Priftis et al., 2016). The results obtained from the 

various optimisation runs indicated that an increase on the number of generated 

designs does not improve the response of the optimal solution significantly. 

 

The selected objective functions for the containership case study are the following: 

 

 Calm water resistance difference between CFD and approximation methods 

 Container capacity ratio 

 RFR 

 Container stowage ratio 

 Total resistance 
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Table 15: NSGA 2 setup for the containership case study 

Number of generations 125 

Population size per generation 12 

Mutation operator 0.1 

Cross-over operator 0.9 

Number of design variables 10 

Number of objective functions 5 

Number of constraints 6 

 

Table 16: Design variables in the NSGA 2 setup for the containership case study 

Design variable Lower limit Upper limit 

Acc_Pos 4 5 

Bays 15 20 

Bilge_A 4.000 6.000 

Bilge_B 4.000 6.000 

DB 2.000 3.000 

d_C_Prismatic -0.02000 0.02000 

d_LCB -0.02000 0.02000 

Rows 15 20 

Tiers_In 8 10 

Tiers_On 6 8 
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Table 17: Constraints in the NSGA 2 setup for the containership case study 

Parameter Constraint 

EEDI_Ratio_10 ≤ 1 

EEDI_Ratio_10_Mean ≤ 1 

FLD_Trim ≤ 0.5% LBP 

IS_Criteria = 1 (pass) 

IMO_SGIS_Criteria = 1 (pass) 

Structural_Analysis = 1 (pass) 

 

After the completion of the NSGA 2 run, the results of the optimisation are available 

to the user for post-processing. The Pareto front can be identified and the decision 

making process as described in Section 4.8 takes place. 

 

The utility function (31) is formed after normalising the results of the NSGA 2. 

Normalisation of the data is required to make the comparison of the various objective 

functions possible (e.g. container capacity ratio, which varies between zero and one, 

cannot be compared with the total resistance, which can be around 2500 KN). The 

normalisation transforms all the data to values between zero and one. One represents 

the best response while zero represents the worst. 

 

Three case scenarios are defined to identify the optimal design. In each scenario 

different weights are applied to each objective function, selected by the user. The 

scenarios are described in Table 18. 

 

In the first scenario, all objective functions are considered equally important, while 

in the second and third scenario, specific objectives are assigned higher weights, 

acknowledging their significance over the remaining objective functions. In 

particular, in scenario 2 the objectives related to the resistance are assigned higher 

weights than the remaining measures of merit. Scenario 3 focuses on the financial 
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performance of the vessel, with the RFR and container stowage ratio being 

considered as the most important objectives. Nevertheless, different scenarios can be 

defined by the user depending on the preferences of the decision maker, using the 

same NSGA 2 results taken into account in this case study. 

 

Table 18: Scenarios for the containership case study 

Objective Scenario 1 Scenario 2 Scenario 3 

Calm water resistance 

difference between CFD and 

approximation methods (δR) 

20% 35% 10% 

Container capacity ratio (rC) 20% 10% 10% 

RFR 20% 10% 35% 

Container stowage ratio (rS) 20% 10% 35% 

Total resistance (RTotal) 20% 35% 10% 

 

In the containership case study, instead of applying a linear utility function (as 

described in Section 3.6), the uncertainty of the problem is incorporated in the 

decision making process. During the uncertainty quantification computations, several 

scenarios are investigated for each design variant of the NSGA 2 run and the 

standard deviation and average value for the container capacity ratio, RFR, container 

stowage ratio and total resistance are calculated. A new parameter is introduced (30), 

which is defined as the ratio of the standard deviation over the average value for each 

of the aforementioned objectives. 

 

σx =
Standard deviationx

Meanx
 (30) 

 

x represents the objective function. Instead of taking the actual standard deviation of 

each objective into consideration, a “normalised” version is used to eliminate the 

numerical differences between the objective functions. For instance, the standard 

deviation for the container capacity ratio is significantly lower than the one for the 
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total resistance. The lower is the value of the “normalised” standard deviation for 

each objective function, the higher is the score achieved by the design variant, 

increasing its performance among the results and its probability of being identified as 

the optimal design. 

 

U = wδR
u(δR) + wrC

σrC
u(rC) + wRFRσRFRu(RFR) + wrS

σrS
u(rS)

+ wRTotal
σRTotal

u(RTotal) 
(31) 

 

After the calculation of the utility function for each design variant, the results are 

sorted and the optimal design for the specific case scenario is identified. 

 

5.3 Ro-Pax vessel case study 

 

5.3.1 Challenges associated with Ro-Pax vessel design 

 

Similar to the containership case study, a Ro-Pax vessel design is used to validate the 

proposed methodology. Ro-Pax and containerships share some design elements, 

however, their operational profile bears little resemblance. Ro-Pax vessels are 

designed to transport people and vehicles. The lightship-to-deadweight ratio is 

different to that of containerships’. A reduction in the steel weight can have a 

significant impact in the financial aspects associated with the production and 

operation of such a ship type. Reduction of the lightweight value can result in the 

decrease of the building cost and the RFR. Competitiveness is high in the Ro-Pax 

vessel industry, with each shipping company trying to achieve as low ticket prices as 

possible. The steel weight influences the total resistance and therefore the power 

requirements. Hence, the fuel consumption is closely related to the lightweight and 

the overall design of the ship. 

 

Ro-Pax vessel design will be influenced in the near future by the introduction of the 

second generation intact stability criteria. Similar to containerships, Ro-Pax vessels 

are often associated with slender hull forms, low block and waterplane area 
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coefficient values, which affect the response of the hull to the newly developed intact 

stability criteria. This thesis aims to elaborate on how the former affect the design 

and operation of Ro-Pax vessels through an optimisation study which involves these 

criteria as part of the design constraints applied to the optimisation problem. 

Research involving the second generation intact stability criteria has only been 

carried out for other ship types. This thesis aims to provide an insight on which 

design elements affect the stability of this particular ship type with regard to the new 

criteria. 

 

In addition, Ro-Pax vessels, contrary to containerships, have not been significantly 

affected by the slow steaming practice. Most vessels continue to operate on high 

speeds in order to remain competent within the market. However, fuel costs have 

been fluctuating in the recent years and an optimisation focusing on the efficiency of 

Ro-Pax vessels with regard to the resistance and required power can result in 

significant savings and fuel consumption reduction. The introduction of the EEDI 

had not affected the operation of passenger vessels until recently, when the rules 

were adjusted to incorporate this particular ship type. Power and speed of such 

vessels may need to be revised under the new regulations and a multi-objective 

design optimisation study incorporating the EEDI regulation as a design constraint 

can identify which designs comply with the new regulations, without losing points 

with regard to their efficiency. 

 

A multi-objective design optimisation methodology incorporating factors such as 

resistance and the building cost, along with new constraints (such as newly 

introduced international regulations) and the effects of the uncertainty imposed by 

external factors becomes a valuable tool to naval architects whose objective is to 

produce efficient designs. 

 

5.3.2 Optimisation problem setup 

 

As with the containership case study, the setup of the problem begins with the hull 

design. As mentioned in Section 4.2, the geometric model is constructed in 
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Figure 45: Ro-Pax vessel hull aft section curves (profile view) 

 

 

Figure 46: Ro-Pax vessel hull aft section curves (top view) 

 

 

Figure 47: Bulbous bow curves 
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Figure 48: Ro-Pax vessel hull fore section curves 

 

 

Figure 49: Ro-Pax vessel baseline model hull (body plan view) 
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Figure 50: Ro-Pax vessel baseline model hull (profile view) 

 

 

Figure 51: Ro-Pax vessel baseline model hull (top view) 

 

 

Figure 52: Ro-Pax vessel baseline model hull (perspective view) 

 

 

Figure 53: Ro-Pax vessel baseline model hull (panel mesh) 

 

CAESES® and consists of four parts, the aft body, main frame, fore body and main 

deck (Figure 45, Figure 46, Figure 47 and Figure 48). The aft part contains the skeg 

and the transom, both controlled by a set of parameters. The main frame can also be 

adjusted to change the midship section coefficient. The fore body includes the 

bulbous bow whose shape can be manipulated by several parameters. 
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Several curve and surface definitions used to create the hull form are shared between 

the two case studies, underlining the versatility of the setup. It is the values assigned 

to the different parameters which define the final result, specific to the case study. In 

total, 98 parameters are introduced in the design of the Ro-Pax vessel hull within 

CAESES®. Examples of these parameters are given in Table 19. 

 

The baseline geometric model for the Ro-Pax vessel case study produced in 

CAESES® is presented in Figure 49, Figure 50, Figure 51 and Figure 52, while a 

panel mesh of the hull surface used for some calculations involving the connection 

with Maxsurf® Stability is illustrated in Figure 53. 

 

Table 19: Examples of Ro-Pax vessel hull definition parameters in CAESES® 

Parameter Explanation 

B Breadth 

Bulb_Fairing_Spread_Factor Fullness of the bulbous bow sections 

Fullness Fullness of the deck curve represented by 

an F-spline 

Entrance_Angle Entrance angle of the DWL 

At_Bulb_Tip Flare of the hull surface at the bulb area 

close to the baseline 

At_Peak Flare of the fore part of the hull surface 

close to the deck line 

At_FP Flare of the hull surface at the DWL 

FOB_Mid Y-coordinate of the middle point used to 

define the fore part of the FOB 

Rel_X_FOS_Emerge X-coordinate of the middle point used to 

define the fore part of the FOS 

Coefficient_At_FOS_Emerge Fullness of the transverse sections of the 

fore part of the hull 

 

At this stage, the design variables of the optimisation problem are selected. As in the 

containership case study, an overall hull design optimisation procedure is selected to 

be performed; hence parameters controlling the main particulars are appointed as 
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design variables. Ten design variables are defined for that purpose and their values 

will be varying during the optimisation phase. The explanation of each design 

variable is given in Table 20. Similar to the containership case study, the amount of 

design variables selected for the optimisation setup is kept low, focusing on the ones 

affecting the main dimensions of the vessel to reduce the required amount of design 

variants during the optimisation run. 

 

Apart from the main design variables of the problem, secondary design variables are 

defined, which are related to the operational profile of the ship. The majority of these 

design variables are identified as the uncertain parameters of the problem and play a 

major role in the uncertainty quantification process (Table 21). 

 

The values selected for the parameters displayed in Table 21 derive from several 

sources, similar to the containership case study. Based on the schedule of similar 

sized Ro-Pax vessels in the Mediterranean Sea, a route between the port of Piraeus 

and the island of Crete is taken into account. Round trip distance is about 366 nm. 

 

The corresponding number of port calls, along with an average time of the ship 

moored at the various ports is used as input in the case study. The average price of 

diesel (MDO) and fuel (IFO 380) oil are used as input (Bunker Index, 2018). Based 

on the operational speed of vessels in that route, a mean value is used for the case 

study. Moreover, historical weather data are used to define the average wind speed in 

the areas matching the operational profile of the case study (NOAA, 2018). 

 

A Lackenby transformation takes place to adjust the overall hull form through the 

design variables d_C_Prismatic and d_LCB mentioned in Table 20. Following the 

parametric hull form definition in CAESES®, the construction of the ship model in 

NAPA® takes place. Within NAPA®, 55 additional parameters are introduced, all 

relevant to specific calculations performed by macros. Although the user has access 

to these parameters, specific values are assigned remaining constant throughout the 

optimisation phase. Examples of these parameters are given in Table 22. 
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Table 20: Main set of design variables selected for the Ro-Pax vessel case study 

Design variable Baseline value Explanation 

Bilge_A 3 Y-coordinate of the bilge radius (m) 

Bilge_B 3 Z-coordinate of the bilge radius (m) 

DB 1.5 Double bottom height (m) 

Deck_No_Pax 5 Number of superstructure decks 

Deck_No_RoRo 2 Number of ro-ro decks 

Draught 7.1 Design draught (m) 

d_C_Prismatic 0 Percentage change of the prismatic 

coefficient (Lackenby transformation 

parameter) 

d_LCB 0 Percentage change of the LCB 

(Lackenby transformation parameter) 

Lane_No 8 Number of car lanes 

L_BP 162.85 Length between perpendiculars (m) 

 

Table 21: Secondary set of design variables selected for the Ro-Pax vessel case study 

Design variable Baseline value Explanation 

Distance 366 Round trip distance (nm) 

Port_No 1 Number of port calls 

Port_Time 1.5 Time spent at port (h) 

Price_DO 721.67 Diesel oil price ($/t) 

Price_FO 488.81 Fuel oil price ($/t) 

V_S 27 Ship speed (Knots) 

V_Wind 11.08 Wind speed (Knots) 
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Table 22: Examples of Ro-Pax vessel model parameters in NAPA® 

Parameter Explanation 

V.S.Low Ship speed during port operation 

(expressed as a percentage of the ship 

speed) 

C.AA Coefficient related to the calculation of 

the wind resistance component 

N.S Shaft efficiency 

SFOC.AE Specific fuel oil consumption for the 

auxiliary engine 

F.Com Complexity index (according to (Guarin, 

2007)) 

 

The definition of the ship model is carried out according to the steps outlined in 

Section 4.3. The baseline ship model for the Ro-Pax vessel case study is presented in 

Figure 54. The various colours represent the purpose of each room. For instance, 

green stands for the water ballast tanks, while pink is used for the ro-ro decks. 

 

The process continues with the definition of the objective functions. The calculations 

mentioned in Section 4.4 take place. As far as the RFR estimation is concerned, 

different methods are used, depending on the ship type, as mentioned in Paragraph 

5.2.2. In the Ro-Pax vessel case study, RFR is calculated based on the total cost 

associated with the ship’s lifetime, according to (Guarin, 2007). In particular, the 

total cost is divided into the initial and running cost. On the other hand, earning is 

divided into on-board, sale/decommissioning, passenger and vehicle (Figure 55). 

 

 

Figure 54: Ro-Pax vessel baseline ship model defined in NAPA® 
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Figure 55: Cost model for Ro-Pax vessels (Guarin, 2007) 

 

As mentioned in Paragraph 4.4.3, relations are defined between the different rates 

with regard to the passenger and vehicle tickets in form of parameters controlled by 

the user in order to simplify the computation. The same principle is applied to the 

different time periods of operation (i.e. high and low season), during which the prices 

can fluctuate, providing a more accurate value for the RFR. The relations are 

expressed as percentages of the base fare. In particular, in this case study, the 

economy passenger ticket for the middle season is considered the base fare. Based on 

the ticketing policy adopted by shipping companies operating in the selected route, 

the remaining ticket categories (e.g. passenger cabin, car, lorry) for the low and high 

seasons are expressed as percentage of the base fare. Therefore, the price of the ticket 

for a passenger cabin is considered to be 2.32 times the price of the base fare, while 

the economy passenger ticket price for the high season is considered to be 18% 

higher than the one for the middle season. As a result, the RFR calculation 

corresponds to the base fare for that route. 

 

The load factors for each season for both passengers and vehicles, as well as the 

duration of each season are also controlled by the user through a set of parameters in 

a similar way. 
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The approach described above results in a detailed calculation of the RFR for the Ro-

Pax vessel case study, keeping the complexity of the process low at the same time. 

 

 

Figure 56: Generated mesh of the Ro-Pax vessel baseline model in Star-CCM+® 

 

 

Figure 57: Wave elevation of the Ro-Pax vessel baseline model in Star-CCM+® 
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As far as the calm water resistance CFD calculation setup is concerned, the 

CAESES® feature mentioned in Paragraph 4.4.5 is defined accordingly to produce 

the necessary input for the Star-CCM+® operations. The generated mesh and the 

wave elevation measurement during the CFD runs of the baseline model of the Ro-

Pax vessel case study are presented in Figure 56 and Figure 57 respectively. 

 

Table 23: Surrogate model setups for the Ro-Pax vessel case study 

Calm water resistance CFD calculations 

Design variables Bilge_A, Bilge_B, Draught, d_C_Prismatic, 

d_LCB, Lane_No, L_BP 

Investigated parameters F_Drag_Model, Wetted_Surface_Full_Scale, 
Wetted_Surface_Model 

Setup (preparation phase) Sobol algorithm (300 design variants) 

Setup (evaluation phase) Sobol algorithm (30 design variants) 

IMO second generation intact stability criteria 

Design variables Bilge_A, Bilge_B, DB, Deck_No_Pax, 

Deck_No_RoRo, Draught, d_C_Prismatic, d_LCB, 

Lane_No, L_BP 

Investigated parameters EA_Criteria, PL_Criteria, PR_Criteria 

Setup (preparation phase) Sobol algorithm (300 design variants) 

Setup (evaluation phase) Sobol algorithm (30 design variants) 

Uncertainty quantification 

Design variables Deck_No_Pax, Deck_No_RoRo, Draught, Lane_No, 

L_BP, Price_DO, Price_FO, Variance, V_S, V_Wind 

Investigated parameters C_Building, EEDI_Ratio_5, R_Total, RFR 

Setup (preparation phase) Sobol algorithm (1000 design variants) 

Setup (evaluation phase) Sobol algorithm (100 design variants) 
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Following the definition of all the necessary computations, several designs of 

experiment take place for the construction of the surrogate models mentioned in 

Section 4.6. Following an analysis of the designs of experiment conducted to identify 

which design variables influence the particular calculations the most, the setups are 

defined for the construction of the surrogate models for the calm water resistance 

CFD calculations, IMO second generation intact stability criteria and uncertainty 

quantification. The design variables, monitored parameters, number of design 

variants generated during the preparation and evaluation phases –as described in 

Section 4.6– are provided in Table 23. 

 

F_Drag_Model stands for the calm water resistance of the model scale version of 

the hull, Wetted_Surface_Full_Scale and Wetted_Surface_Model are the 

wetted surface values for the full scale and the model scale version of the hull 

respectively. 

 

EA_Criteria, PL_Criteria and PR_Criteria stand for the examined IMO 

second generation intact stability criteria (excessive acceleration, pure loss of 

stability, parametric rolling) values; compliance with the rules provide a value of one 

for each parameter, whereas zero is provided for the opposite case. 

 

C_Building stands for the building cost of the vessel, while EEDI_Ratio_5 is the 

ratio of the attained to the required EEDI value, when the first implementation phase 

of the rule is taken into account (Table 8). R_Total stands for the total resistance of 

the ship (calm water, added wave, wind) and RFR is the required freight rate of the 

design. 

 

With regard to the uncertainty quantification setup, half of the design variables used 

for the construction of the surrogate model (Price_DO, Price_FO, Variance, 

V_S, V_Wind) are the identified uncertain parameters of the optimisation problem. 

They are also a subset of the secondary design variables mentioned in Table 21. 

During the uncertainty quantification run, taking place in the multi-objective 

optimisation phase, these design variables vary according to user-defined probability 
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distributions. Details about the definition of these distributions for each uncertain 

parameter are found in Table 24. Variance is responsible for the variance factor 

mentioned in Paragraph 4.6.3, which is used for the variation of uncertain parameters 

for which data are not available due to the investigated design stage. The number of 

scenarios examined for each design variant (as described in Paragraph 4.6.3) is set to 

25, same with the containership case study. 

 

Table 24: Uncertain parameters of the Ro-Pax vessel case study 

Parameter Probability 

distribution 

Minimum 

value 

Maximum 

value 

Average 

value 

Standard 

deviation 

Price_DO Normal 308.93 1058.2 721.67 200.52 

Price_FO Normal 188.18 759.61 488.81 149.83 

Variance Uniform 0.95 1.05 N/A N/A 

V_S Uniform 25 29 N/A N/A 

V_Wind Normal 0.00 34.50 11.08 4.79 

 

Table 25: NSGA 2 setup for the Ro-Pax vessel case study 

Number of generations 125 

Population size per generation 12 

Mutation operator 0.1 

Cross-over operator 0.9 

Number of design variables 10 

Number of objective functions 5 

Number of constraints 5 

 

The next step involves the multi-objective optimisation run. As mentioned in Section 

4.7, NSGA 2 is utilised. Several parameters need to be specified before initiating the 
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algorithm. These include the number of generations and the population size for each 

one, along with the mutation and cross-over operator values. In addition, the design 

variables and their limits are determined, while the objective functions and 

constraints applied to the problem are selected. This information can be found in 

Table 25, Table 26 and Table 27. 

 

Table 26: Design variables in the NSGA 2 setup for the Ro-Pax vessel case study 

Design variable Lower limit Upper limit 

Bilge_A 2.000 4.000 

Bilge_B 2.000 4.000 

DB 0.760 2.000 

Deck_No_Pax 4 6 

Deck_No_RoRo 2 3 

Draught 5.000 9.000 

d_C_Prismatic -0.02000 0.02000 

d_LCB -0.02000 0.02000 

Lane_No 6 10 

L_BP 150.000 180.000 

 

Similar to the containership case study, the amount of generations and population 

size is selected, taking the time required to evaluate each design variant and the high 

efficiency of NSGA 2 into consideration. 1500 designs are generated in total for the 

Ro-Pax vessel case study. 

 

The selected objective functions for the Ro-Pax vessel case study are the following: 

 

 Building cost 



Case studies  133 

Multi-Objective Robust Early Stage Ship Design Optimisation under Uncertainty Alexandros Priftis 

 Calm water resistance difference between CFD and approximation methods 

 RFR 

 Total Resistance 

 Uncertainty indicator for the investigated objective functions (building cost, 

RFR, total resistance) 

 

The last objective in the aforementioned list is defined in a similar way uncertainty is 

addressed in the decision making phase in the containership case study. Here, 

uncertainty is treated as a measure of merit, taken into consideration in the 

optimisation process. 

 

Table 27: Constraints in the NSGA 2 setup for the Ro-Pax vessel case study 

Parameter Constraint 

EEDI_Ratio_5 ≤ 1 

EEDI_Ratio_5_Mean ≤ 1 

FLD_Trim ≤ 0.5% LBP 

IS_Criteria = 1 (pass) 

IMO_SGIS_Criteria = 1 (pass) 

 

During the uncertainty quantification computations, several scenarios are 

investigated for each design variant of the NSGA 2 run and the standard deviation 

and average value for the building cost, RFR and total resistance of the vessel are 

calculated. A parameter similar to the one presented in (30) is introduced, which is 

defined as the ratio of the standard deviation over the average value for each of the 

aforementioned objectives. An approach similar to the one followed in the 

containership case study is adopted; instead of taking the actual standard deviation of 

each objective into consideration, a “normalised” version is used to eliminate the 

numerical differences between the objective functions. 

 



Case studies  134 

Multi-Objective Robust Early Stage Ship Design Optimisation under Uncertainty Alexandros Priftis 

The sum of the “normalised” standard deviations forms the uncertainty-related 

performance indicator for the Ro-Pax vessel case study. The minimisation of this 

indicator is desired, since this leads to the production of a robust design which is not 

affected by the uncertain external parameters of the problem and its performance 

with regard to the investigated objective functions does not deviate in the 25 

scenarios examined during the NSGA 2 run. 

 

After the completion of the NSGA 2 run, the results of the optimisation are available 

to the user for post-processing. The Pareto front can be identified and the decision 

making process as described in Section 4.8 takes place. 

 

The utility function (32) is formed after normalising the results of the NSGA 2. 

Normalisation of the data is required to make the comparison of the various objective 

functions possible, as in the containership case study. The normalisation transforms 

all the data to values between zero and one. One represents the best response while 

zero represents the worst. 

 

Three case scenarios are defined to identify the optimal design. In each scenario 

different weights are applied to each objective function, selected by the user. The 

scenarios are described in Table 28. 

 

Table 28: Scenarios for the Ro-Pax vessel case study 

Objective Scenario 1 Scenario 2 Scenario 3 

Building cost (CB) 20% 10% 25% 

Calm water resistance 

difference between CFD and 

approximation methods (δR) 

20% 35% 12.5% 

RFR 20% 10% 25% 

Total resistance (RTotal) 20% 10% 25% 

Uncertainty indicator for the 

investigated objective functions 

(CB, RFR, RTotal) (iU) 

20% 35% 12.5% 
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In the first scenario, all objective functions are considered equally important, while 

in the second and third scenario, specific objectives are assigned higher weights, 

acknowledging their significance over the remaining objective functions. In 

particular, in scenario 2 the objectives related to the uncertainty of the problem are 

assigned higher weights than the remaining measures of merit. On the other hand, 

scenario 3 focuses on the financial performance of the vessel, assigning lower weight 

to the uncertainty indicators. Nevertheless, different scenarios can be defined by the 

user depending on the preferences of the decision maker, using the same NSGA 2 

results taken into account in this case study. 

 

U = wCB
u(CB) + wδR

u(δR) + +wRFRu(RFR) + wRTotal
u(RTotal) + wiU

u(iU) (32) 

 

In the Ro-Pax vessel case study, a linear utility function is applied (as described in 

Section 3.6), with each weight mentioned in Table 28 being applied to each objective 

function. After the calculation of the utility function for each design variant, the 

results are sorted and the optimal design for the specific case scenario is identified. 

 

5.4 Summary 

 

The verification of the proposed methodology through its implementation on two 

different case studies –involving a containership and a Ro-Pax vessel, respectively– 

is presented in this Chapter. The input and output data, design variables, parameters, 

measure of merit functions and constraints as described with regard to their general 

definition in Section 3.3 are set for each case study. 

 

The methodology described in detail in Chapter 4 is flexible and can be applied to 

different ship types. Each of the two demonstrations deals with a different ship type, 

as well as different design variables and objective functions. In addition, the concept 

of uncertainty quantification is treated differently in both cases. In the containership 

case study, uncertainty plays a major role in the decision making phase, affecting the 

identification and selection of the optimal design. The optimisation process is based 

on a deterministic model and the objective functions are calculated omitting the 
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effects of the uncertain parameters. However, the same performance indicators are 

calculated for several scenarios, during which a probabilistic model is evaluated by 

varying the identified uncertain parameters of the problem. The standard deviation 

and mean value of the results for each performance indicator are calculated and 

incorporated in the utility function formed during the decision making phase. Along 

with the weighting factors defined by the user, a non-linear utility function is utilised, 

sorting the optimisation results to identify the optimal design. This process takes into 

account the level of robustness of each design variant and promotes designs 

characterised by low standard deviation of the examined performance indicators. In 

other words, the decision making process favours robust designs, whose performance 

does not deviate from the mean value during the evaluation of the probabilistic 

model. 

 

On the contrary, uncertainty in the Ro-Pax vessel case study is treated as an objective 

function. In particular, the indicators used to quantify the uncertainty level of each 

design are defined as in the containership case study; however, their sum becomes an 

objective function which is minimised during the optimisation phase. The lower is 

the attained value for the uncertainty indicator, the lower the deviation of the 

performance of the design from the mean response during the evaluation of the 

probabilistic model. Therefore, through its elitist nature, the genetic algorithm 

utilised during the optimisation process promotes the most robust designs in each 

generation, resulting in an optimal set of design variants (Pareto front), for which the 

highest robustness levels are ensured. 

 

The setup presented in this Chapter allows the implementation of the simulation runs 

which provide the optimisation results presented in Chapter 6. 
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6 Results 

 

 

 

6.1 Introduction 

 

The results of the implementation of the methodology described in Chapter 4 for the 

case studies presented in Chapter 5 are illustrated in this Chapter. An extensive set of 

graphs and tables are provided for each case study, demonstrating the outcome of the 

multi-objective optimisation of a ship design at its concept stage involving the 

utilisation of surrogate models. Information about the baseline model response is 

provided, while the results of the multi-criteria decision analysis are discussed. 

 

The effects of the utilisation of surrogate models throughout the optimisation process 

are demonstrated in this Chapter. The required time for the optimisation run and the 

accuracy of the results associated with the surrogate models are discussed in the 

relevant Paragraphs. Furthermore, the consideration of uncertainty in the overall 

process is evaluated. The effects of uncertainty are presented, while the two utilised 

methods for the incorporation in the methodology are demonstrated in this Chapter. 

Finally, the results regarding the examined objective functions and design constraints 

are evaluated for each case study. The consideration of new regulations and their 

impact on the identification of the optimal design are demonstrated through the 

obtained results. 

 

6.2 Containership case study 

 

6.2.1 Baseline model 

 

The baseline model for the containership case study is presented in Paragraph 5.2.2. 

Table 10 and Table 11 present the design variables’ values used to define the model. 
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Its performance with regard to the examined objective functions is presented in Table 

29. 

 

Table 29: Baseline containership model response to objective functions 

Objective Baseline 

Calm water resistance difference between CFD and 

approximation methods (δR) (KN) 

123 

Container capacity ratio (rC) 1.0000 

RFR ($/TEU) 935.29 

Container stowage ratio (rS) 0.9423 

Total resistance (RTotal) (KN) 2233 

 

6.2.2 Surrogate models 

 

As mentioned in Paragraph 5.2.2, three surrogate models are created for the 

containership case study. In this Paragraph, the analysis of the results related to the 

preparation and the evaluation of these surrogate models is presented. 

 

The design of experiment run using the Sobol algorithm to define the surrogate 

model allows the designer to identify how each of the design variables influences the 

evaluated parameters. The Pearson correlation coefficient (33) is used to determine 

the strength of the relationship between two selected variables (Doyle, 2011). The 

coefficient ranges from -1 to 1, where -1 is total negative linear correlation, 0 is no 

linear correlation and 1 is total positive linear correlation. 

 

ρX,Y =
cov(X, Y)

σXσY
 (33) 
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where ρ is the Pearson correlation coefficient, X, Y are the examined variables, 

cov(X,Y) is the covariance and σX, σY is the standard deviation of X and Y 

respectively. 

 

 Calm water resistance CFD calculations: 

 

For the generation of the calm water resistance CFD calculations surrogate model, a 

subset of the main design variables of the optimisation problem –presented in Table 

10– is used. As expected, the design variables affecting the main particulars of the 

ship influence calm water resistance results the most. Number of rows (associated 

with the breadth of the hull), number of tiers below the main deck (associated with 

the depth and draught of the vessel) and number of bays (associated with the length 

of the ship) have a correlation coefficient of 0.81, 0.45 and 0.22 respectively. 

Therefore, all three design variables result in calm water resistance increase. 

Resistance is directly related to the wetted surface of the hull; increase of the latter 

results in higher values for the former. An increase in either of the aforementioned 

design variables leads to higher values for the wetted surface. Hence, the 

proportional relation between calm water resistance and the main particulars of the 

vessel is expected. 

 

 

Figure 58: Evaluation of the calm water resistance CFD calculations surrogate model 

for the containership case study 
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The evaluation phase of the surrogate model following its generation is crucial to 

identify its accuracy. A new design of experiment is run, generating a new set of 

design variants to compare the response of the surrogate model with the actual CFD 

simulations. Figure 58 shows the comparison results; the red dashed line shows an 

error margin of 2.5%. All in all, the surrogate model performs adequately for the 

generated design variants. 

 

As far as the computational time savings are concerned, a considerable decrease in 

the evaluation of the calm water resistance is achieved through this approach which 

is greatly reflected in the overall optimisation process. As mentioned in Paragraph 

4.6.1, around thirty minutes are required for a CFD simulation of a single design 

variant. On the other hand, the evaluation of the surrogate model lasts one second per 

design variant, making the surrogate model 1800 times faster than the CFD 

simulations. This proves the advantage of surrogate model utilisation over the actual 

use of high-fidelity tools, considering the achieved accuracy levels. The overall time 

required for the completion of all three phases (preparation, generation, evaluation) 

related to the surrogate model definition is 165 hours. 

 

 IMO second generation intact stability criteria: 

 

As far as the IMO second generation intact stability criteria surrogate model is 

concerned, the main design variables of the optimisation problem –presented in 

Table 10– are used for its generation. All ten parameters influence the success rate of 

the generated design variants with regard to meeting the criteria or not to some 

extent. An increase in the number of rows has a positive impact to the compliance 

with the criteria, as the correlation coefficient for this design variable is found to be 

0.16. 

 

On the other hand, the increase in the number of tiers below and above the main 

deck, as well as the shifting of the deckhouse towards the bow have a negative 

impact; the correlation coefficient for these design variables are -0.29, -0.11 and -

0.12 respectively. An increase in the value of these design variables results in rule 
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violation. Even small variations in these parameters can cause significant changes in 

the loading condition and the centre of gravity of transported cargo. Therefore the 

stability of the ship is affected 

 

The evaluation phase of the surrogate model following its generation is crucial to 

identify its accuracy. A new design of experiment is run, generating new design 

variants to compare the response of the surrogate model with the actual computation 

regarding the evaluation of the IMO second generation intact stability criteria. Figure 

59 presents the results of this comparison. The surrogate model performs adequately 

well, matching the results of the actual computation in each examined case. The 

attained value of one denotes compliance with the examined criteria, whereas zero 

denotes the opposite. 

 

 

Figure 59: Evaluation of the IMO second generation intact stability criteria surrogate 

model for the containership case study 

 

Similar to the calm water resistance CFD calculations surrogate model, the decrease 

in the time required to obtain results for a single design variant is significant; a 

simulation using the defined CAESES® feature to identify the compliance with the 

examined IMO second generation intact stability criteria requires fifteen minutes, 

whereas the evaluation of the surrogate model requires a couple of seconds, making 

it 450 times faster than the actual simulation. This difference is greatly amplified in 
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the main optimisation run, during which 1500 designs are evaluated. The overall 

time required for the completion of all three phases (preparation, generation, 

evaluation) related to the surrogate model definition is 82.5 hours. 

 

 Uncertainty quantification: 

 

The third surrogate model defined for the containership case study is the one related 

to the uncertainty quantification. For its generation, eleven design variables are used; 

five main design variables of the optimisation problem and six uncertain design 

variables (Table 10 and Table 14). As mentioned in Table 13, five uncertain 

parameters are evaluated, namely the capacity ratio, EEDI10 ratio, RFR, total 

resistance and stowage ratio. 

 

The correlation coefficient is calculated for each evaluated parameter to identify 

which design variables influence these parameters the most. The most important 

design variables are shown in Table 30. 

 

Table 30: Correlation coefficients for the uncertainty quantification surrogate model 

for the containership case study 

Evaluated parameter Design variables 

Capacity ratio Bays (-0.44), Variance (-0.15), W_Cont (-0.53) 

EEDI10 ratio Rows (0.17), Tiers_In (-0.52), Variance (0.67) 

RFR Price_FO (0.46), Variance (0.68), W_Cont (0.31) 

Total resistance Rows (0.16), Tiers_In (0.76), Variance (0.57) 

Stowage ratio Tiers_In (-0.67), Tiers_On (0.71) 

 

The uncertain design variables affect all the objective functions except for the 

stowage ratio. W_Cont influences particularly the capacity ratio. The higher is the 

homogeneous weight of each TEU; the lower is the achieved capacity ratio. This 
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trend is expected as increased TEU weight values inhibit the stowage of many 

containers above the main deck due to stability reasons. RFR is affected mainly by 

the uncertain parameters. In particular, Price_FO, Variance and W_Cont are all 

proportionally relative to RFR; increase in the value of any of these design variables 

leads to increased RFR values. Higher oil price results in higher operating cost; 

increased homogeneous weight of each TEU results in smaller amount of containers 

transported. Both lead to an increase of the RFR. Finally, stowage ratio is mainly 

influenced by the number of tiers below and above the main deck, since its definition 

is directly related to the amount of containers stored on deck and in holds. 

 

The accuracy of the generated surrogate models for each evaluated parameter is 

presented in Figure 60, Figure 61, Figure 62, Figure 63 and Figure 64. In general, the 

results fall within the 2.5% error margin lines illustrated in the graphs. No major 

discrepancies are identified in the evaluation process which proves the suitability of 

the Kriging method for the generation of the uncertainty quantification surrogate 

model. Despite the low error margin values obtained through this setup, the 

uncertainty associated with the use of some models and methods in NAPA® (e.g. 

Holtrop and Mennen method) is not analysed. 

 

The evaluation of the surrogate model responsible for the uncertainty quantification 

takes about a second for each evaluated parameter –five seconds for the evaluation of 

all five uncertain parameters. The same process takes around a minute to be 

completed when the NAPA® macros are run. Although the time difference in this 

case, compared to the aforementioned surrogate models for the containership case 

study, is considerably smaller for a single evaluation round, it becomes more 

significant when the uncertainty quantification process takes place in the main 

optimisation phase. 25 evaluations need to take place for the setup presented in 

Paragraph 5.2.2. Therefore, the utilisation of a surrogate model results in a time 

saving of around twenty minutes per design variant, being twelve times faster than 

the full NAPA® computations. The overall time required for the completion of all 

three phases (preparation, generation, evaluation) related to the surrogate model 

definition is 18 hours. 
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Figure 60: Evaluation of the uncertainty quantification (capacity ratio) surrogate 

model for the containership case study 

 

 

 

Figure 61: Evaluation of the uncertainty quantification (EEDI10 ratio) surrogate 

model for the containership case study 
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Figure 62: Evaluation of the uncertainty quantification (RFR) surrogate model for the 

containership case study 

 

 

 

Figure 63: Evaluation of the uncertainty quantification (total resistance) surrogate 

model for the containership case study 
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Figure 64: Evaluation of the uncertainty quantification (stowage ratio) surrogate 

model for the containership case study 

 

6.2.3 Multi-objective optimisation 

 

The NSGA 2 is run for the main optimisation phase of the containership case study, 

according to the setup mentioned in Table 15. 1500 designs are created in total; 1039 

valid and 461 invalid, due to the specified design constraints of the problem. Figure 

65 shows this distribution, while the number of designs violating each design 

constraint is presented in Figure 66. 

 

The most sensitive design constraint is the IMO second generation intact stability 

criteria, which is violated by 272 out of the 461 invalid design variants. As 

mentioned in Paragraph 4.4.6, the development of the IMO second generation intact 

stability criteria aims at the reinforcement of the current intact stability regulations. 

Therefore, the new rules are more stringent, affecting the number of designs which 

comply with these regulations. The trim at the examined loading condition follows 

with 169 invalid designs. The existing intact stability criteria are violated by 116 

designs, while for 19 designs no valid midship section can be defined to comply with 

the rules. 
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Figure 65: Generated design variants for the containership case study 

 

 

Figure 66: Analysis of design constraints’ violation for the containership case study 

 

Interestingly, no violations are spotted with regard to the EEDI10 and mean EEDI10 

ratio constraints. Current EEDI regulations do not seem to be an encumbrance for the 

particular optimisation problem, mostly due to the relatively low service speed 

selected for the examined operational profile. Although one would expect EEDI to be 

a serious problem for containerships, this particular case study examines vessels 

designed for a service speed much lower than the one most containerships currently 

in service have been designed for. Therefore, the installed power associated with the 

design variants is adequately low to result in compliance with the first phase of the 
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regulation. Nevertheless, the EEDI ratio for the upcoming rule phases is also 

calculated during the optimisation run and violations are observed in both valid and 

invalid designs. In particular, 235 out of the 1500 generated designs fail phase 2 of 

the EEDI regulations, while 676 out of the 1500 generated designs fail phase 3 using 

the operational profile defined in Table 11. 

 

These results underline the importance of incorporating newly enforced or developed 

regulations to the ship design optimisation problem. The number of invalid designs 

violating IMO second generation intact stability criteria implies that the new rules 

will most likely affect optimal containership design when they come into force. 

EEDI rule is already applied to containerships; however, as regulations become more 

stringent, changes in containership design will be introduced. 

 

The Pearson correlation coefficient is calculated to identify the relation between the 

design variables and the objective functions. The design variables associated with the 

main dimensions of the hull –Bays, Tiers_In and Tiers_On– are strongly related 

to all five objective functions (Table 31). 

 

Table 31: Correlation coefficients for the NSGA 2 run for the containership case 

study 

Objective Bays Tiers_In Tiers_On 

Capacity ratio -0.51 0.68 -0.62 

Calm water resistance 

difference between CFD and 

approximation methods (δR) 

-0.18 0.40 -0.17 

RFR 0.46 -0.82 0.27 

Total resistance (RTotal) -0.27 0.66 0.05 

Stowage ratio 0.29 -0.71 0.81 
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Capacity ratio is mainly affected by the number of tiers below and above the main 

deck (Figure 67). In particular, a direct relation is observed between the Tiers_In 

design variable. On the other hand, design variables Bays and Tiers_On are 

inversely proportional to the capacity ratio values. As the number of tiers above the 

main deck rises, the possibility of having empty slots in the examined loading 

condition gets higher. The minimal amount of water ballast carried on-board does not 

allow container stacking at higher tiers above the main deck. Therefore, the ratio is 

decreased, since the increase of the Tiers_On value leads to an increase of the total 

TEU capacity. On the contrary, higher Tiers_In values allow the increase of the 

capacity ratio since container loading under the main deck does not have a significant 

impact on the vessel’s stability. 

 

 

Figure 67: Comparison of capacity ratio with Bays, Tiers_In and Tiers_On 

 

Objective function δR is closely related to the same design variables (Bays, 

Tiers_In, Tiers_On). As with the capacity ratio, Bays and Tiers_On are 

inversely proportional to δR, while increase of Tiers_In causes increase of δR 

(Figure 68). In addition, the latter design variable has a stronger relation to δR than 

the other two, since it is directly related to the vessel’s draught which heavily 

influences wetted surface and resistance. 
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Figure 68: Comparison of δR with Bays, Tiers_In and Tiers_On 

 

 

Figure 69: Comparison of RFR with Bays, Rows and Tiers_In 

 

Figure 69 shows the relation between the RFR and three design variables; Bays, 

Rows and Tiers_In. RFR increases gradually as the number of bays and rows gets 

higher, while decreases drastically as the number of tiers below the main deck gets 

higher. This trend is expected due to the increase in the building cost of the vessel 

when the length and breadth values rise. On the other hand, increase of the tiers 

below the main deck results in higher values for the ship’s depth. Larger depth offers 

larger cargo capacity without causing significant increase in the ship’s structural 



Results  151 

Multi-Objective Robust Early Stage Ship Design Optimisation under Uncertainty Alexandros Priftis 

weight and consequently building cost (Papanikolaou, 2014). Hence, increase of 

Tiers_In is beneficial to RFR objective function. 

 

 

Figure 70: Comparison of total resistance with Bays, Rows and Tiers_In 

 

Bays and Tiers_In relation with total resistance is opposite to the one with RFR 

described above. Increase in length (associated with Bays) results in lower resistance 

values, while higher Tiers_In values increase the ship’s draught which has a 

negative impact on resistance. In addition, Rows, connected to the ship’s breadth, is 

directly proportional to the total resistance objective function; the higher is the 

number of rows, the higher are the resistance values (Figure 70). 

 

Finally, the relation between the stowage ratio and the position of the deckhouse and 

the number of tiers above and below the main deck is presented in Figure 71. A clear 

trend is observed with regard to all three design variables. Positioning the deckhouse 

towards the bow increases the number of containers stacked above the main deck aft 

of the superstructure which can extend to the highest possible tier, while at the same 

time the angle of the visibility line defined by regulations changes, allowing a higher 

number of containers to be stacked above the main deck forward of the deckhouse. 

Moreover, as expected, higher Tiers_On values and lower Tiers_In values lead to 

an increased stowage ratio. 
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Figure 71: Comparison of stowage ratio with Acc_Pos, Tiers_In and Tiers_On 

 

6.2.4 Multi-criteria decision analysis 

 

The decision making process described in Paragraph 5.2.2 is applied to the NSGA 2 

results and the optimal solution is identified. Three scenarios are defined (Table 18), 

each one considering the significance of each objective function differently. A utility 

function is defined taking as input the results of the NSGA 2 run and the weighting 

factors of each scenario (31). Instead of applying a linear utility function, design 

uncertainty is incorporated as described in Paragraph 5.2.2. The utility function 

provides the final score for each design variant and the optimal design is found. 

 

The first scenario considers all five objectives to be equally important. Hence, each 

objective is assigned a weight of 20%. Scenario 2 prioritises the objectives related to 

resistance –δR and total resistance– assigning a weighting factor of 35% to each of 

them. The remaining objectives are assigned a weighting factor of 10%. In scenario 3 

the objective functions of RFR and stowage ratio are assigned a weighting factor of 

35%, with the remaining objectives having a weighting factor of 10%. A normalised 

standard deviation σx (30) is taken into account for the objective functions having 

their uncertainty levels measured during the optimisation run. 
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The ranking of the best designs for each scenario is presented in Figure 72, Figure 73 

and Figure 74. In all cases, a score of one denotes the best design, while a score of 

zero denotes the worst performing variant. 

 

The decision making analysis identifies three optimal designs, namely Des0303, 

Des0657 and Des0949. The former dominates scenario 3, Des0657 dominates 

scenario 1, while Des949 is identified as the dominant design in scenario 2. 

 

 

Figure 72: Scenario 1 results for the containership case study 

 

 

Figure 73: Scenario 2 results for the containership case study 
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Figure 74: Scenario 3 results for the containership case study 

 

In addition, the difference in the results between the three designs in each scenario is 

evident. In the first scenario, Des0303 and Des0949 are found away from the top 

ranked designs in the list, having both a difference of 7.8% and 11.8% from the score 

achieved by the top ranked Des0657, respectively. Same pattern is observed in the 

second scenario, however there is a bigger difference between the performance of 

Des0303 and Des0949 which ranks first (24%). Finally, in the third scenario, 

Des0657 manages to achieve a score close to the top ranked designs, having a 

difference of only 3.8% from Des0303 which dominates the specific scenario. The 

design variable values for the two designs are presented in Table 32, while their 

performance is presented in Table 33. The CAESES® and NAPA® models for the 

two optimal designs are presented in Figure 75, Figure 76, Figure 77, Figure 78, 

Figure 79 and Figure 80. 

 

 

Figure 75: Des0303 CAESES® model 
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Figure 76: Des0303 NAPA® model 

 

 

Figure 77: Des0657 CAESES® model 

 

 

Figure 78: Des0657 NAPA® model 

 

 

Figure 79: Des0949 CAESES® model 

 

 

Figure 80: Des0949 NAPA® model 
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Table 32: Main set of design variables for Des0303, Des0657 and Des0949 

Design variable Des0303 Des0657 Des0949 

Acc_Pos 5 5 5 

Bays 16 18 18 

Bilge_A 5.285 4.598 5.297 

Bilge_B 5.232 5.980 5.224 

DB 2.693 2.896 2.657 

d_C_Prismatic -0.00747 0.00765 -0.00100 

d_LCB 0.00748 0.00205 -0.01439 

Rows 15 15 17 

Tiers_In 9 9 9 

Tiers_On 8 7 8 

 

Table 33: Des0303, Des0657 and Des0949 response to objective functions 

Objective Des0303 Des0657 Des0949 

Calm water resistance 

difference between CFD and 

approximation methods (δR) 

(KN) 

306 185 16 

Container capacity ratio (rC) 0.9253 0.9493 0.7509 

RFR ($/TEU) 879.12 885.47 955.67 

Container stowage ratio (rS) 1.2292 1.1102 1.2955 

Total resistance (RTotal) (KN) 2326 2273 2366 
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The results of the decision making process clearly illustrate the effect uncertainty has 

in the selection of the optimal design. A ranking of the produced design variants is 

performed, excluding the effects of uncertainty and in all three scenarios the best 

designs are different from the results presented above. This becomes obvious in the 

graphs presented below, where the location of the optimal designs is compared with 

the Pareto front, for which generation uncertainty is not taken into account. In most 

cases the identified designs do not lie on the Pareto front, hence as far as their 

performance with regard to the examined objective functions is concerned, design 

variants with better performance exist among the NSGA 2 results. This observation 

underlines the fact that robustness is not always linked with best performance. The 

designer needs to choose between optimal and robust performance. On the one hand, 

a design performs ideally for the very specific scenario it is tested on, while on the 

other hand another design achieves a uniform and consistent performance when 

tested on various scenarios during which uncertain parameters are assigned different 

values. The latter proves to be more robust, unaffected by external factors which 

could have a severe impact on the former design, degrading its overall performance. 

 

In addition, the identification of three optimal designs shows the importance of the 

incorporation of decision making process in a multi-objective optimisation problem. 

The different scenarios generate different ranking of the same pool of design 

variants, depending on the significance of each objective function. The difference in 

the weighting factors applied to the investigated measures of merit results in 

promotion of designs which perform best in the respective objective functions in 

each scenario. However, the optimal design of scenario 1, in which all objectives are 

considered equally important, achieves a performance which is not significantly 

different from the top ranked designs in the other two scenarios. This behaviour is 

expected as the top ranked design of scenario 1 is considered an all-around solution. 

 

Some indicative graphs showing the results of the optimisation are presented and 

analysed below. 
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Figure 81 presents the relation between RFR and capacity ratio. Minimisation of 

RFR is desired while at the same time maximisation of the capacity ratio is pursued. 

Des0303 and Des0657 perform adequately well, located close to the Pareto front, 

contrary to Des0949 which lies far away from both the remaining two optimal and 

the baseline designs. This result is anticipated due to the low impact capacity ratio 

and RFR have on the selection of Des0949. 

 

 

Figure 81: RFR vs. capacity ratio 

 

 

Figure 82: Total resistance vs. RFR 
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Figure 82 illustrates the relation between the total resistance and the RFR. The same 

pattern described above is observed in this graph. Bays and Tiers_In have 

opposite impact on these objectives. Increase of the number of bays leads to an 

increase in the RFR due to higher building cost; on the other hand, more slender 

designs –defined by higher number of bays– are associated with lower resistance 

values, hence the decrease in the total resistance. Similarly, higher Tiers_In values 

result in higher draught values which are associated with increased total resistance, 

yet the RFR is decreased due to higher cargo capacity. It is worth mentioning that 

Des0303 and Des0657 lie on the Pareto front, contrary to Des0949 which performs 

worse than the other two optimal designs with regard to the RFR. 

 

 

Figure 83: Stowage ratio vs. total resistance 

 

The relation between stowage ratio and total resistance is presented in Figure 83. 

Maximisation of the stowage ratio is desired, whereas minimisation of total 

resistance is pursued. The identified optimal designs are located far from the Pareto 

front. However, a trend between their responses is identified; as the performance 

with regard to one objective is improved among the three designs, the performance 

with regard to the other objective becomes poorer, thus forming a local Pareto front 

themselves. 
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Finally, Figure 84 shows the relation between the two examined ratios; the stowage 

and capacity ratio. A clear Pareto front is identified in the comparison of these 

objective functions. Similarly to previous graphs, the two objectives are quite 

contradictive; increase of one results in decrease of the other. Specific design 

variables (Tiers_In and Tiers_On in this case) are responsible for this relation. 

 

This illustrates how complex the solution of the specific optimisation problem proves 

to be, since improvement in one objective does not necessarily lead to an overall 

improved performance. Hence, it is very important to perform a decision making 

process following the optimisation run to set priorities for the optimal design 

selection. As far as the identified best designs are concerned, Des0303 and Des0657 

lie on the Pareto front, while Des0949 is located far away, despite achieving the best 

stowage ratio among the selected designs. 

 

 

Figure 84: Capacity ratio vs. stowage ratio 

 

A comparison between the identified optimal designs and the baseline model is 

presented in Table 34, showing the differences in their performance. 

 

The optimal designs generally perform better with regard to objective functions of 

δR, RFR and stowage ratio, while their performance on capacity ratio and total 

resistance is slightly worse than the baseline model. As far as δR is concerned, 
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Des0949 achieves the lowest value, creating a difference of from the baseline model 

value. Des0303 scores the lower RFR value among the designs and the two best 

stowage ratio values, along with Des0949. Des0657 is an all-around solution 

performing better than the baseline model in most of the objective functions. 

 

Nevertheless, all three identified improved designs are selected taking uncertainty 

into account, assuring the decision maker that their performance reaches high levels 

of robustness. Their response to the investigated objective functions is more likely to 

remain constant in different situations, compared to other variants generated during 

the NSGA 2 run which respond better to one examined scenario. 

 

The investigation of uncertainty in the decision making phase shows its impact on 

ship design, producing results which would otherwise seem suboptimal. 

 

Table 34: Optimal designs and baseline model response to objective functions for the 

containership case study 

Objective Baseline Des0303 % Diff. Des0657 % Diff. Des0949 % Diff. 

Calm water 

resistance 

difference 

between CFD 

and 

approximation 

methods (δR) 

(KN) 

123 306 149.2 185 50.2 16 -87.0 

Container 

capacity ratio 

(rC) 

1.0000 0.9253 -7.5 0.9493 -5.1 0.7509 -24.9 

RFR ($/TEU) 935.29 879.12 -6.0 885.47 -5.3 955.67 2.2 

Container 

stowage ratio 

(rS) 

0.9423 1.2292 30.4 1.1102 17.8 1.2955 37.5 

Total resistance 

(RTotal) (KN) 

2233 2326 4.2 2273 1.8 2366 5.9 
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6.3 Ro-Pax vessel case study 

 

6.3.1 Baseline model 

 

The baseline model for the Ro-Pax vessel case study is presented in Paragraph 5.3.2. 

Table 20 and Table 21 present the design variables’ values used to define the model. 

Its performance with regard to the examined objective functions is presented in Table 

35. 

 

6.3.2 Surrogate models 

 

As mentioned in Paragraph 5.3.2, three surrogate models are created for the Ro-Pax 

vessel case study. In this Paragraph, the analysis of the results related to the 

preparation and the evaluation of these surrogate models is presented. 

 

Table 35: Baseline Ro-Pax vessel model response to objective functions 

Objective Baseline 

Building cost (CB) (M $) 62.5 

Calm water resistance difference between CFD and 

approximation methods (δR) (KN) 

548 

RFR ($) 41.86 

Total resistance (RTotal) (KN) 1999 

Uncertainty indicator for the investigated objective 

functions (CB, RFR, RTotal) (iU) 

0.3756 

 

As in containership case study, the design of experiment run using the Sobol 

algorithm to define the surrogate model allows the designer to identify how each of 

the design variables influences the evaluated parameters. The Pearson correlation 

coefficient is used to determine the strength of the relationship between two selected 

variables (Doyle, 2011). 
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 Calm water resistance CFD calculations: 

 

For the generation of the calm water resistance CFD calculations surrogate model, a 

subset of the main design variables of the optimisation problem –presented in Table 

20– is used. The number of car lanes, draught and LBP influence the calm water 

resistance CFD result the most, followed by the percentage change in the LCB and 

cP. The number of car lanes is directly related to the breadth of the vessel. The 

correlation coefficient for the number of car lanes and draught is 0.70 and 0.56 

respectively, which denotes a proportional relation; an increase in either of these 

design variables results in a higher calm water resistance value. On the other hand, 

the correlation coefficient for the LBP is found to be -0.24, which affirm the inversely 

proportional relation between length and resistance. 

 

The positive correlation coefficient values of 0.15 and 0.24 for the design variables 

d_C_Prismatic and d_LCB respectively reveal the positive change in the 

resistance value as the two design variables are assigned higher values. On the other 

hand, the same analysis shows that a small, yet noticeable, decrease is achieved in 

the calm water resistance by increasing the bilge radius. This trend is expected, as an 

increased bilge radius results in a lower wetted surface area which affects the 

frictional resistance. 

 

The evaluation phase of the surrogate model following its generation is crucial to 

identify its accuracy. A new design of experiment is run, generating a new set of 

design variants to compare the response of the surrogate model with the actual CFD 

simulations. Figure 85 shows the comparison results; the red dashed line shows an 

error margin of 2.5%. All in all, the surrogate model performs adequately for the 

generated design variants. 

 

As far as the computational time savings are concerned, the same conclusions as in 

the containership case study can be drawn. A considerable decrease in the evaluation 

of the calm water resistance is achieved. Instead of spending thirty minutes for the 

CFD computation per design variant, a second is needed to evaluate the relevant 
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surrogate model, making the latter 1800 times faster than the CFD simulations, thus 

reducing the overall computation time of the optimisation run significantly. The 

overall time required for the completion of all three phases (preparation, generation, 

evaluation) related to the surrogate model definition is 165 hours. 

 

 

Figure 85: Evaluation of the calm water resistance CFD calculations surrogate model 

for the Ro-Pax vessel case study 

 

 IMO second generation intact stability criteria: 

 

As far as the IMO second generation intact stability criteria surrogate model is 

concerned, the main design variables of the optimisation problem –presented in 

Table 20– are used for its generation. All ten parameters influence the success rate of 

the generated design variants with regard to meeting the criteria or not to some 

extent. 

 

The number of ro-ro decks, the number of car lanes and the LBP are found to affect 

the success rate the most. The first two design variables are directly related to the 

depth and the breadth of the vessel. In particular, the correlation coefficient for the 

number of ro-ro decks is found to be -0.78, while the correlation coefficients for the 

number of car lanes and the LBP are 0.34 and 0.13 respectively. 
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The evaluation phase of the surrogate model following its generation is crucial to 

identify its accuracy. A new design of experiment is run, generating new design 

variants to compare the response of the surrogate model with the actual computation 

regarding the evaluation of the IMO second generation intact stability criteria. Figure 

86 presents the results of this comparison. The surrogate model performs adequately 

well, matching the results of the actual computation in each examined case. The 

attained value of one denotes compliance with the examined criteria, whereas zero 

denotes the opposite. 

 

 

Figure 86: Evaluation of the IMO second generation intact stability criteria surrogate 

model for the Ro-Pax vessel case study 

 

Similar to the containership case study, the decrease in the time required to obtain 

results for a single design variant is significant; a couple of seconds are required for 

the evaluation of the surrogate models, whereas about fifteen minutes are needed for 

a direct simulation in CAESES® for the evaluation of the IMO second generation 

intact stability criteria. This makes the surrogate model 450 times faster than the 

actual simulation. The difference is greatly amplified in the main optimisation run, 

during which 1500 designs are evaluated. The overall time required for the 

completion of all three phases (preparation, generation, evaluation) related to the 

surrogate model definition is 82.5 hours. 
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 Uncertainty quantification: 

 

The third surrogate model defined for the Ro-Pax vessel case study is the one related 

to the uncertainty quantification. For its generation, ten design variables are used; 

five main design variables of the optimisation problem and five uncertain design 

variables (Table 20 and Table 24). As mentioned in Table 23, four uncertain 

parameters are evaluated, namely the building cost, EEDI5 ratio, RFR and total 

resistance. The correlation coefficient is calculated for each evaluated parameter to 

identify which design variables influence these parameters the most. The most 

important design variables are shown in Table 36. 

 

Table 36: Correlation coefficients for the uncertainty quantification surrogate model 

for the Ro-Pax vessel case study 

Evaluated parameter Design variables 

Building cost Draught (0.51), Lane_No (0.28), Variance (0.50) 

EEDI5 ratio Deck_No_RoRo (-0.23), Draught (0.81), Lane_No (-

0.35),  

RFR Lane_No (-0.66), Price_FO (0.44), V_S (0.13) 

Total resistance Draught (0.90) 

 

As far as the uncertain design variables are concerned, they mostly affect the 

objective functions of the building cost and RFR. The EEDI5 ratio is calculated based 

on international regulations which require as input nominal values which are 

normally not affected by parameters affecting the operational profile of the ship (e.g. 

oil price, operational speed, wind speed). 

 

However, parameters such as the added wave and the wind resistance which are 

monitored throughout the optimisation process are closely related to the uncertain 

design variables, especially the operational and wind speed. In particular, the 

correlation coefficient calculated for the identification of the relation between the 
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wind speed and the wind resistance is found to be 0.94, a value which is expected 

when (17) is taken into account. 

 

Total resistance is calculated based on the design speed and an average wind speed to 

correctly identify the required propulsion power, which is used as input in several 

calculations during the concept design stage (e.g. estimation of the machinery 

weight). 

 

The accuracy of the generated surrogate models for each evaluated parameter is 

presented in Figure 87, Figure 88, Figure 89 and Figure 90. In general, the results fall 

within the 2.5% error margin lines illustrated in the graphs. No major discrepancies 

are identified in the evaluation process which proves the suitability of the Kriging 

method for the generation of the uncertainty quantification surrogate model. 

 

Despite the low error margin values obtained through this setup, the uncertainty 

associated with the use of some models and methods in NAPA® (e.g. Holtrop and 

Mennen method) is not analysed. 

 

The evaluation of the surrogate model responsible for the uncertainty quantification 

takes about a second for each evaluated parameter –four seconds for the evaluation 

of all four uncertain parameters. The same process takes around a minute to be 

completed when the NAPA® macros are run. Although the time difference in this 

case, compared to the aforementioned surrogate models for the Ro-Pax vessel case 

study, is considerably smaller for a single evaluation round, it becomes more 

significant when the uncertainty quantification process takes place in the main 

optimisation phase. 25 evaluations need to take place for the setup presented in 

Paragraph 5.3.2. Therefore, the utilisation of a surrogate model results in a time 

saving of around twenty minutes per design variant, being fifteen times faster than 

the full NAPA® computations. 

 

The overall time required for the completion of all three phases (preparation, 

generation, evaluation) related to the surrogate model definition is 18 hours. 
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Figure 87: Evaluation of the uncertainty quantification (building cost) surrogate 

model for the Ro-Pax vessel case study 

 

 

 

Figure 88: Evaluation of the uncertainty quantification (EEDI5 ratio) surrogate model 

for the Ro-Pax vessel case study 
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Figure 89: Evaluation of the uncertainty quantification (RFR) surrogate model for the 

Ro-Pax vessel case study 

 

 

 

Figure 90: Evaluation of the uncertainty quantification (total resistance) surrogate 

model for the Ro-Pax vessel case study 
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6.3.3 Multi-objective optimisation 

 

The NSGA 2 is run for the main optimisation phase of the Ro-Pax vessel case study, 

according to the setup mentioned in Table 25. 1500 designs are created in total; 1099 

valid and 401 invalid, due to the specified design constraints of the problem. Figure 

91 shows this distribution, while the number of designs violating each design 

constraint is presented in Figure 92. 

 

 

Figure 91: Generated design variants for the Ro-Pax vessel case study 

 

 

Figure 92: Analysis of design constraints’ violation for the Ro-Pax vessel case study 
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The most sensitive design constraint is the EEDI5 ratio, which is violated by 230 out 

of the 401 invalid design variants. The mean EEDI5 ratio follows, which derives 

from the uncertainty quantification process, with 178 invalid designs violating the 

specific constraint. The existing and the second generation intact stability criteria are 

violated by 163 and 140 invalid designs respectively, while the trim at the examined 

loading condition seems to be the least sensitive constraint, with only 57 invalid 

designs having a trim of more than 0.5% of the LBP. 

 

As with the containership case study, the results presented above emphasise the 

importance of including new regulations in the ship design optimisation problem. 

The number of invalid designs violating the EEDI rule indicates that the application 

of the EEDI rule to Ro-Pax vessels might induce changes in their design. The same 

conclusions can be drawn for the stability criteria. Although the invalid designs 

violating the second generation intact stability criteria are slightly less than those 

violating the existing ones, their overlap is 53%. Hence, the relation between the two 

criteria sets is not very significant and advocates the consideration of the second 

generation intact stability criteria in the design optimisation problem. 

 

Table 37: Correlation coefficients for the NSGA 2 run for the Ro-Pax vessel case 

study 

Objective Draught Lane_No L_BP 

Building cost (CB) 0.65 0.65 0.41 

Calm water resistance 

difference between CFD and 

approximation methods (δR) 

-0.33 0.34 -0.61 

RFR -0.01 -0.60 -0.10 

Total resistance (RTotal) 0.89 0.31 0.47 

Uncertainty indicator for the 

investigated objective functions 

(CB, RFR, RTotal) (iU) 

-0.36 -0.01 -0.42 
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The Pearson correlation coefficient is calculated to identify the relation between the 

design variables and the objective functions. The design variables associated with the 

main dimensions of the hull –draught, number of car lanes and LBP– are strongly 

related to all five objective functions (Table 37). 

 

As far as the building cost is concerned, all three design variables are proportional to 

the building cost. A stronger relation is identified between the draught and breadth 

(directly relevant to the number of car lanes), followed by the LBP (Figure 93). This 

trend falls in line with the analysis found in Papanikolaou (2014). Larger draught 

values are associated with higher hydrostatic pressures at the bottom and higher 

bending moments due to larger displacement values, which affect the required 

strengthening and consequently the steel weight. An increase in the breadth of the 

hull results in a greater surface area and higher required plate thickness values to 

withstand the increased weight and hydrostatic forces. Therefore, the steel weight is 

increased, leading to a higher building cost. The same applies to the relation between 

the length and the building cost of the vessel. 

 

 

Figure 93: Comparison of building cost with Draught, Lane_No and L_BP 

 

RFR is greatly affected by the number of car lanes. In particular, the relation is 

inversely proportional; the RFR decreases as the number of car lanes gets higher. 

This is expected due to the increased transport capacity achieved by the addition of 
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car lanes in the car decks. Similar relation is observed between the RFR and the 

number of passenger decks (correlation coefficient is found to be -0.14). However, 

the revenue from transporting vehicles (cars or lorries) is much higher per nominal 

value, compared to passengers due to the ticket price structure. In addition, hull 

length influences slightly the RFR value, as longer designs are associated with a 

lower RFR (Figure 94). 

 

 

Figure 94: Comparison of RFR with Deck_No_Pax, Lane_No and L_BP 

 

Total resistance, which includes the calm water, added wave and wind components, 

is directly related to the draught of the vessel. LBP also affects the total resistance 

value, being proportional to the latter but to a lesser extent than the draught. The two 

design variables associated with the Lackenby transformation –d_C_Prismatic 

and d_LCB– influence the resistance due to the impact they have on the hull wetted 

surface which affects the calm water resistance component. Their correlation 

coefficient with regard to the total resistance value is -0.38 and -0.30 respectively 

(Figure 95). 

 

Finally, an interesting observation with regard to the examined uncertainty indicators 

is worth mentioning. Both the draught and the LBP are closely related to the δR and 

the iU objectives. In particular, both design variables are inversely proportional to 

these objective functions. Higher draught and LBP values result in more robust 
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designs for which high- and low fidelity methods for the calm water resistance 

calculation converge to a single value and the variation of the uncertain parameters 

of the problem does not result in high variation of the building cost, RFR and total 

resistance. This observation is supported by the results of the multi-criteria decision 

analysis which follows the optimisation run. The scenario which prioritises the 

significance of the objective functions related to the uncertainty ranks longer designs 

to the top. 

 

 

Figure 95: Comparison of total resistance with Draught, Lane_No and L_BP 

 

 

Figure 96: Comparison of δR with d_C_Prismatic, d_LCB and L_BP 
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Figure 97: Comparison of iU with Deck_No_Pax, Draught and L_BP 

 

The number of passenger decks have a similar impact to the uncertainty indicator iU, 

albeit to a lesser extent (correlation coefficient is found to be -0.22). On the other 

hand, d_C_Prismatic and d_LCB design variables have the opposite effect on δR 

objective function. Their correlation coefficient values of 0.44 and 0.47 respectively 

lead to the conclusion that convergence between the CFD and approximation method 

results is achieved as their value decreases (Figure 96 and Figure 97). 

 

6.3.4 Multi-criteria decision analysis 

 

The decision making process described in Paragraph 5.3.2 is applied to the NSGA 2 

results and the optimal solution is identified. Three scenarios are defined (Table 28), 

each one considering the significance of each objective function differently. A utility 

function is defined taking as input the results of the NSGA 2 run and the weighting 

factors of each scenario (32). The sum of all five normalised and weighted objective 

values provides the final score for each design variant. 

 

The first scenario considers all five objectives to be equally important. Hence, each 

objective is assigned a weight of 20%. Scenario 2 prioritises the objectives related to 

design robustness –δR and iU– assigning a weighting factor of 35% to each of them. 

The remaining objectives are assigned a weighting factor of 10%. Scenario 3 is the 
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opposite of scenario 2, i.e. priority is given to building cost, RFR and total resistance, 

with each one being assigned a weighting factor of 25%, while δR and iU are 

considered less important, appointed a weighting factor of 12.5% each. 

 

The ranking of the best designs for each scenario is presented in Figure 98, Figure 99 

and Figure 100. In all cases, a score of one denotes the best design, while a score of 

zero denotes the worst performing variant. 

 

 

Figure 98: Scenario 1 results for the Ro-Pax vessel case study 

 

 

Figure 99: Scenario 2 results for the Ro-Pax vessel case study 
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Figure 100: Scenario 3 results for the Ro-Pax vessel case study 

 

The decision making analysis identifies two optimal designs, namely Des0830 and 

Des1462. The former dominates scenarios 1 and 3, while the latter is identified as the 

dominant robust design, ranking first in the second scenario. In addition, the 

difference in the results between the two designs in each scenario is evident, with 

Des0830’s score in scenario 2 being 8.5% lower than Des1462. Likewise, Des1462’s 

score is 5% and 11.8% lower than Des0830 in scenario 1 and 3 respectively. The 

design variable values for the two designs are presented in Table 38, while their 

performance is presented in Table 39. The CAESES® and NAPA® models for the 

two optimal designs are presented in Figure 101, Figure 102, Figure 103 and Figure 

104. 

 

 

Figure 101: Des0830 CAESES® model 
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Figure 102: Des0830 NAPA® model 

 

 

Figure 103: Des1462 CAESES® model 

 

 

Figure 104: Des1462 NAPA® model 

 

Two conclusions can be drawn from the decision making analysis. Firstly, the effect 

of uncertainty in ship design optimisation becomes evident, as the scenario which 

promotes robustness ranks first a design whose performance is inferior to other 

variants otherwise. A safer decision is always related to a more conservative solution 

and this is the case in this optimisation problem. However, the enhanced robustness 

of Des1462 ensures that the performance levels are less likely to vary should 

uncertain external parameters change. For instance, Des1462’s lower uncertainty 

indicator iU value indicates that its building cost is less likely to deviate from the 

identified value of 60.1 million $. Likewise the RFR value of 68.54 $ (economy 

passenger ticket for middle season for the investigated operational profile) is more 

likely to compensate for changes in fuel price throughout the vessel’s lifetime. 
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Table 38: Main set of design variables for Des0830 and Des1462 

Design variable Des0830 Des1462 

Bilge_A 3.260 2.651 

Bilge_B 3.166 2.246 

DB 0.932 0.797 

Deck_No_Pax 4 6 

Deck_No_RoRo 2 2 

Draught 5.165 5.945 

d_C_Prismatic -0.01891 -0.01491 

d_LCB 0.00162 0.01292 

Lane_No 8 7 

L_BP 157.196 177.550 

 

Table 39: Des0830 and Des1462 response to objective functions 

Objective Des0830 Des1462 

Building cost (CB) (M $) 56.0 60.1 

Calm water resistance difference between CFD and 

approximation methods (δR) (KN) 

364 7 

RFR ($) 50.85 68.54 

Total resistance (RTotal) (KN) 1777 2084 

Uncertainty indicator for the investigated objective 

functions (CB, RFR, RTotal) (iU) 

0.3697 0.3213 

 

Secondly, the top ranking of Des0830 in the two remaining scenarios shows the 

robustness of the optimisation setup and methodology. NSGA 2, given the 

optimisation setup presented in Paragraph 5.3.2, managed to detect a design which 
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performs well irrelevant of the weighting factors of scenarios 1 and 3. Des0830 is 

identified as an all-around solution with regard to the building cost, RFR and total 

resistance and assures the user that is superior to the remaining design variants 

produced during the optimisation run. 

 

In the following graphs, some indicative results of the NSGA 2 run are presented, 

identifying the identified optimal designs, the baseline design and the Pareto front. 

 

Figure 105 presents the relation between iU and building cost. Minimisation of both 

values is desired and an aggregation of design variants is spotted in the region of 

0.34-0.35 for the iU and 57-60 million $ for the building cost. Both identified optimal 

designs are lying on the Pareto front while the baseline design is located far away 

which illustrates the benefits of the optimisation process. 

 

 

Figure 105: iU vs. building cost 

 

The relation between RFR and δR is demonstrated in Figure 106. The majority of the 

generated designs lie in the region of 40-65 $ for the RFR. A small group of design 

variants performed poorly with regard to this objective, achieving values of around 

120 $ which is considerably higher than the optimal or baseline designs. Following 

the analysis on the relation between the design variables and the objectives, 

presented in Paragraph 6.3.3, the strong connection between RFR and the number of 
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car lanes justifies this trend; the majority of designs achieving high RFR values are 

associated with low Lane_No values (Figure 94). The latter leads to decreased 

transportation capacity which has an impact on the ticket price in order to even out 

the vessel’s expenses. Des0830 does not lie on the Pareto front regarding the two 

objective functions as one of them is a robustness indicator (δR), which is not 

acknowledged significant in scenarios 1 and 3, where Des0830 ranks first. On the 

other hand, Des1462 is part of the Pareto front, since its selection among the design 

variants is mainly based on its performance with regard to δR. 

 

 

Figure 106: RFR vs. δR 

 

 

Figure 107: Building cost vs. RFR 
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Figure 108: RFR vs. total resistance 

 

 

Figure 109: Total resistance vs. iU 

 

Figure 107 illustrates the relation between the building cost and the RFR. The same 

pattern described above is observed regarding the RFR in this graph. For each design 

group –based on the RFR value– a slight increase in the building cost can be noticed. 

This is interpreted by the fact that both objectives are closely related, as the RFR is 

calculated based on the building cost; the higher is the value of the latter, the greater 

is the former to compensate for the higher initial costs. As far as the two identified 

optimal designs are concerned, Des0830 is part of the Pareto front, contrary to 
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Des1462, for which the selection in scenario 2 is not heavily influenced by the two 

examined objectives. 

 

The relation between RFR and total resistance is presented in Figure 108. An 

increase in the RFR is observed as the total resistance value rises. This trend is 

expected due to the increased power requirements associated with higher resistance 

values. This leads to increased fuel consumption which affects the running costs, 

used to calculate the RFR. 

 

Finally, Figure 109 shows the relation between the total resistance and iU. Although 

minimisation of both objective values is desired, a decrease in the uncertainty is 

achieved as the total resistance increases. This remark is connected to the correlation 

analysis performed in Paragraph 6.2.3 (Figure 97). Increase of draught results in 

lower iU values, while at the same time, resistance is increased. 

 

A comparison between the identified optimal designs and the baseline model is 

presented in Table 40, showing the differences in their performance. 

 

Table 40: Optimal designs and baseline model response to objective functions for the 

Ro-Pax vessel case study 

Objective Baseline Des0830 % Diff. Des1462 % Diff. 

Building cost (CB) (M $) 62.5 56.0 -10.5 60.1 -3.8 

Calm water resistance 

difference between CFD 

and approximation 

methods (δR) (KN) 

548 364 -33.7 7 -98.7 

RFR ($) 41.86 50.85 21.5 68.54 63.7 

Total resistance (RTotal) 

(KN) 

1999 1777 -11.1 2084 4.3 

Uncertainty indicator for 

the investigated objective 

functions (CB, RFR, 

RTotal) (iU) 

0.3756 0.3697 -1.6 0.3213 -14.4 
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Overall, both improved designs perform better than the baseline model except for the 

RFR, which is higher in both selected designs. Des1462 is a more conservative 

solution to the problem, hence the slighter improvements compared to Des0830. 

Nevertheless, the former achieves the best responses with regard to the robustness 

indicators (δR and iU). It becomes clear that uncertainty influences the selection of 

optimal solutions in the ship design problem. By prioritising its significance in the 

decision making process, a more conservative –yet robust– design is identified for 

which the user feels more confident that its performance remains unchanged when 

uncertain parameters vary. 

 

6.4 Summary 

 

The results of the optimisation for the two case studies are presented in this Chapter, 

illustrating the effect of the design variables, problem setup, surrogate models and 

uncertainty on the optimal design selection. Two different ship types are being 

optimised focusing on different objectives. Uncertainty quantification is taken into 

account in both cases, however, its incorporation into the setup is different; in the 

containership case study uncertainty is considered during the decision making phase, 

while in the Ro-Pax vessel case study it is minimised during the main optimisation 

run. 

 

As far as the utilisation of surrogate models is concerned, significant time savings are 

achieved in both case studies in all three stages of the problem where surrogate 

models substitute the actual simulations. The interconnection of specialised software 

and the use of high-fidelity time-consuming software tools call for a solution to the 

encumbrances they induce in the setup of the optimisation problem. In total, more 

than an hour would be needed to complete all calculations avoiding the use of 

surrogate models. On the contrary, utilisation of the latter in key stages of the 

problem reduces the computation time to less than five minutes pre design variant. It 

becomes clear that a multi-objective optimisation problem incorporating the holistic 

approach to ship design requires clever utilisation of available tools and techniques 

to produce accurate results and benefit from modern technology. Yet, this does not 
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come without any drawbacks, as surrogate models cannot match the accuracy of the 

proper simulations. The results presented in Paragraphs 6.2.2 and 6.3.2 illustrate this 

disadvantage; values produced by the surrogate models varied up to 2.5% from the 

original simulations. This difference should be considered during the analysis of the 

results and not ignored when the final decision is taken. Nevertheless, the advantages 

they offer cannot be overlooked, as they certainly offer a comprehensive view on the 

ship design optimisation problem. 

 

The investigation of the relation between design variables and objectives shows not 

only how the former affect the latter, but also the impact of the latter on the 

optimisation problem. Several objectives contradict with each other, rendering the 

convergence of the optimisation algorithm in a clear solution a real challenge. Often, 

improvement in one objective results in poor performance with regard to another 

one. This is the case in most real-life problems and proves that ship design 

optimisation is not a trivial task. The decision making phase in multi-objective 

optimisation problems is a key stage which requires careful selection of methods and 

approaches to distil the raw results produced by an optimisation algorithm and 

identify the optimal solution. 

 

Through the application of the holistic model in the optimisation process, the 

designer is able to identify which objectives are the most critical in the design 

process. The holistic approach incorporates various aspects of the ship’s nature, such 

as stability, structural integrity, logistics and efficiency, all expressed as objectives 

and constraints. The variety of the objectives inspected throughout the optimisation 

process produces valuable results, available to the end user, who can identify not 

only the correlation between the design variables and the optimisation objectives, as 

mentioned earlier, but also can have a clear view of which measures of merit have 

the strongest impact in the overall procedure and understand their significance in the 

design process. 

 

The analysis of the results of the optimisation run demonstrates the effect of 

constraints on the feasibility of the design variants. In both case studies, newly 
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introduced and developed regulations are applied and the percentage of invalid 

designs violating the constraints related to these regulations prove that their effect on 

ship design is considerable. The IMO second generation intact stability criteria will 

most probably have a considerable impact on containership design, while the 

introduction of the EEDI rule to the Ro-Pax vessel category may induce changes on 

the operational profile of passenger vessels. The results of the optimisation study 

provides indications on how ship design changes along the time, when design, 

operational and regulatory constraints are constantly introduced and become part of 

the problem. 

 

In both case studies, the selected NSGA 2 setup generates clear Pareto fronts, 

indicating the fast convergence of the algorithm to an optimal solution. As mentioned 

in Paragraph 5.2.2, similar optimal solutions have been identified on a similar 

optimisation problem setup, regardless of the total number of design variants. 

Nevertheless, a different combination of number of generations and population size 

can be tested in the future to verify the results of the present study. 

 

The results related to uncertainty quantification provide a new insight on how ship 

design methodology should be structured. Uncertainty has been incorporated in ship 

design studies; however the extent to which it is applied varies. Two different 

approaches are presented in this thesis, leading to different trends among the results. 

In one case, uncertainty is incorporated in the decision making phase, defining a non-

linear utility function which ranks the produced design variants according to their 

robustness levels. On the one hand there are designs which perform significantly 

better than other but they lack in robustness. On the other hand, designs which are 

highly robust compared to other produced design variants are generated by NSGA 2. 

The decision making phase aims at finding the right combination of these two 

elements among the design variants and identify a design with an improved overall 

performance, while ensuring this performance does not deviate when uncertain 

parameters vary. The results show that the ideal, perfect combination of superior 

performance and remarkable robustness is not feasible and the decision maker needs 

to compromise between the two aspects. 
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In the second case study, uncertainty is incorporated in the main optimisation phase, 

where it becomes an objective the genetic algorithm aims to minimise. This approach 

leads to production of design variants which essentially are improved in terms of 

robustness compared to the baseline model. Since uncertainty becomes part of the 

objective functions, the overall results are more conservative than in the first case 

where NSGA 2 does not take uncertainty into account. Presumably, a new round of 

calculations for the Ro-Pax vessel case study ignoring the objective related to 

uncertainty would produce different results. However, the decision maker is ensured 

that the optimal design identified during the decision making phase is more robust 

than the baseline model. This is proved by the results presented in Paragraph 6.3.4. 

Two optimal designs are found, both achieving lower values with regard to objective 

iU. A higher weighting factor assigned to this objective results in a much more robust 

design than in any other case and this is reflected by its more conservative response 

to the non-related to uncertainty objective functions. 
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7 Discussion and conclusions 

 

 

 

7.1 Introduction 

 

The thesis ends with some conclusions and final remarks presented in this Chapter. 

The work performed for this PhD topic is reviewed, summarising its key parts and 

findings. The novelty elements of the thesis are analysed and evaluated, while based 

on the detailed presentation of the workflow and the results of this study in Chapters 

4, 5 and 6, the thesis objectives outlined in Chapter 1 are reviewed. Finally, 

recommendations for future work on this subject are presented. 

 

7.2 Thesis review 

 

Shipping industry has become very competitive, with a lot of research being carried 

out to investigate possible ways to improve ship design and create efficient and 

economical ships. Technological improvements allow the detailed exploration of 

design space and assist the theory of optimisation in becoming a vital part of ship 

design. 

 

The topic of ship design optimisation has been investigated by numerous researchers, 

resulting in establishment of techniques and structured methodologies which can be 

applied to real case studies and produce efficient solutions to the ship design 

problem. Starting from the fundamentals (Evans, 1958), which set the base for this 

particular research field, and moving on to the more recent developments 

(HOLISHIP, 2016-2020), it becomes clear that the definition of the ship design 

problem constantly changes; researchers integrate new design aspects in existing 

methodologies, concentrate on specific areas of naval architecture to improve the 
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precision levels of the obtained results, or investigate the effect of new constraints to 

the problem, resulting from new developments in the industry. 

 

This thesis contributes to the aforementioned developments with regard to the ship 

design optimisation problem. The mission is to develop a methodology for a multi-

objective robust early stage ship design optimisation under uncertainty. Adhering to 

the most recent model developed for the multi-objective design optimisation –

namely the holistic model– the enhancement and further development of previously 

proposed methodologies is achieved, while several aspects of ship design are 

incorporated, taking into account the three main categories associated with the 

operation of a ship; economics, safety and environment. Various performance 

indicators are used as measures of merit to evaluate the response of possible 

solutions to the problem. 

 

A parametric ship model is defined, controlling both the hull form and the internal 

compartmentation through a variety of parameters. The performance indicators are 

defined receiving as input various aspects of the defined ship model and become the 

objective functions of the problem. Recent developments in the shipping industry are 

taken into consideration for the definition of the latter. Regulations affecting the 

operation and design of ships, such as the EEDI and the IMO second generation 

intact stability criteria, are incorporated to the problem definition to investigate their 

effect on the optimal design selection. 

 

Advancements in computing allow not only the utilisation of powerful software tools 

to perform complex calculations, such as CFD, but also the integration of such tools 

in an optimisation problem. High-fidelity techniques are incorporated in the design 

methodology through use of surrogate models –approximation models imitating the 

behaviour of the original tools producing results based on data deriving from the 

original calculations. Utilisation of surrogate models in an optimisation study offers a 

level of accuracy in results which is similar to the one obtained by running the 

original simulations, yet at a fraction of the computational time required by the latter. 
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In this work, surrogate models are used in key areas of the methodology, taking into 

account eligibility issues, such as the computational setup or the computational time 

per design variant. In particular, CFD calculations for the estimation of the calm 

water resistance, calculations for the evaluation of the IMO second generation intact 

stability criteria and calculations relative to the uncertainty quantification of the 

problem are substituted by surrogate models. The result is a remarkable reduction of 

the time needed to evaluate a single design during the optimisation phase. The 

definition of the surrogate models starts with the preparation phase which involves 

several designs of experiment to obtain the training data set, continues with the 

generation phase, during which the approximation model is constructed and ends 

with the evaluation phase when their accuracy is tested and verified. 

 

Genetic algorithms are utilised for the solution of the optimisation problem. The user 

is able to select the design variables of the problem, choosing to perform a global or 

a local design optimisation. In addition, the user decides which are the objective 

functions and constraints of the problem. The solution of the multi-objective 

optimisation problem concludes with the multi-criteria decision analysis. The 

optimisation algorithm produces a Pareto front of designs with regard to the 

investigated objective functions; however the designer needs to set up a decision 

making model to identify the optimal design. The utility function approach is 

employed in this thesis, which suggests which the best solution is according to the 

user’s priorities through the utilisation of weighting factors, which quantify the 

significance of each objective. 

 

Design uncertainty is monitored throughout the optimisation process. As mentioned 

in Paragraph 2.3.3, research has been undertaken with regard to capturing the 

uncertainty in ship design. Various approaches have been introduced. In this work a 

novel way of capturing the uncertainty in design is tested through two different case 

studies. Apart from incorporating uncertainty in the constraints of the optimisation, 

the former becomes a vital part of the decision making process or the optimisation 

phase. The stages at which uncertainty effects on ship design are taken into account 

influence the optimisation results. 
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The proposed methodology is validated through two case studies involving different 

ship types and optimisation setups. The application of uncertainty quantification is 

implemented in different ways to investigate its impact on the results. 

 

The results of the multi-objective optimisation study of both cases provide an insight 

on the robustness of the methodology. The effect of surrogate models on the 

computational time is evaluated. The consideration of recent developments in the 

shipping industry (e.g. IMO second generation intact stability criteria) is investigated 

by applying newly introduced and recently developed regulations to ship types for 

the first time. The results indicate how the former affect the current ship design 

trends and show indications of possible changes in the latter in the near future. 

 

The impact of different design variables on contradictive objective functions 

underline the complexities associated with holistic ship design optimisation; it 

becomes clear that the ideal solution is not always available. 

 

Finally, the stage of the proposed methodology at which uncertainty quantification is 

applied influences the optimisation results. More conservative solutions are 

promoted either during the optimisation phase or the decision making process. The 

robustness of the results becomes an important factor during the optimal design 

selection and the application of the methodology shows the contradiction between 

optimal performance and enhanced robustness of the produced designs. 

 

7.3 Novelty elements 

 

This study proposes a ship design optimisation methodology incorporating novel 

elements concerning design uncertainty and recent developments in the shipping 

industry. Through this study, an expansion and improvement of current ship design 

methodologies is achieved. A robust approach to ship design optimisation is 

essentially introduced, emphasising on the effects of uncertainty in ship design and 

benefiting from the utilisation of state-of-the-art tools. In particular, proper use of 

software tools allows the establishment of a core platform, such as CAESES®, 



Discussion and conclusions  192 

Multi-Objective Robust Early Stage Ship Design Optimisation under Uncertainty Alexandros Priftis 

which supports the integration of all the necessary tools to perform the required 

simulations in a fast and efficient manner. 

 

The study explores the ways uncertainty quantification can be applied to an 

optimisation methodology. The effects of each approach is analysed and compared 

with a deterministic solution of the same problem where uncertainty is disregarded. 

The analysis leads to some general conclusions regarding the effects of uncertainty in 

optimisation, but also reveals specific trends related to each approach. Uncertainty 

influences the optimal solution. A deterministic approach produces more radical 

solutions with improved performance which often does not correspond to real-life 

application. On the other hand, optimisation under uncertainty takes into account the 

effect of uncertain parameters and evaluates the response of a potential optimal 

solution comprehensively, emphasising on its robustness. 

 

Integration of uncertainty in various stages of the optimisation has a different impact 

on the results. Measurement of the uncertainty of the applied constraints results in a 

stricter evaluation of the validity of the design variants, thus altering the feasible 

design space and the availability of improved designs. Consideration of uncertainty 

as a measure of merit does not limit the feasible design space; however it affects the 

way the employed algorithm works towards the identification of the optimal solution. 

The minimisation of uncertainty is desired and becomes priority during the search for 

improved designs. This results in production of a more robust and conservative pool 

of design variants the user is able to choose from. Finally, incorporating uncertainty 

in the decision making phase of a multi-objective optimisation problem influences 

the selection of the optimal solution. The pool of available designs is produced 

regardless of their robustness levels; however the latter becomes an important factor 

in the optimal design selection. The decision making analysis leads to the selection 

of robust, yet conservative solutions, which do not necessarily lie on the Pareto front 

defined by a deterministic solution of the problem. 

 

As far as the ongoing developments in the shipping industry are concerned, this 

study takes into consideration two major regulations which are either recently 
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enforced or towards their finalisation. Their effect on the design of specific ship 

types is investigated for the first time and conclusions are drawn. EEDI rules are now 

applied to passenger vessels and the proposed methodology incorporates them as one 

of the optimisation constraints. The number of invalid designs due to the application 

of this constraint indicates the impact of the latter to the current design trends and 

operational profiles structure. The evaluation of the IMO second generation intact 

stability criteria becomes part of the optimisation constraints and influences the 

feasible design space of two different ship types. International regulations become 

stricter and the results of this study demonstrate their significance in ship design. 

 

7.4 Accomplishment of thesis objectives 

 

In Chapter 1, the objectives for this thesis are outlined. Following the detailed 

description of the work undertaken for this study, it is possible to evaluate their 

accomplishment. 

 

 A detailed parametric ship model is defined for this study, including both the 

exterior (hull shape) and the interior (internal compartmentation), as well as all 

the required functions to evaluate the model’s performance. The strategic 

introduction of parameters in the parametric model allows the user to select 

which act as the design variables of the optimisation problem, depending on 

the nature of the problem. 

 The proposed methodology is based on existing models for the multi-objective 

optimisation of ship design, benefiting from high-fidelity software tools’ 

computational capabilities, as well as efficient engineering methods (e.g. 

surrogate models) which reduce computational time while retaining accuracy 

and reliability in the obtained results. 

 Elements deriving from the holistic design concept are integrated in the 

proposed methodology, defining performance indicators which are related to 

the three main aspects of ships’ operation; economics, safety and environment. 
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Each of these aspects is evaluated by various objective functions and 

constraints, providing a broader view of the design performance. 

 Three failure modes of stability introduced in the IMO second generation intact 

stability criteria are included in the proposed methodology. Each design variant 

in the optimisation process is evaluated to check their compliance to the newly 

developed rules. The optimisation results indicate that the proposed criteria are 

violated by a number of generated designs and suggest that the former will 

affect ship design in the near future. 

 A key aspect of this study, design under uncertainty, is taken into account in 

different levels of the proposed methodology. One of the aims of this study is 

to develop a design optimisation method which promotes robustness in the 

results by using probabilistic models to perform the required calculations and 

capture the uncertainty in the design process. The results indicate that 

consideration of uncertainty influences the outcome of an optimisation study. 

 This study incorporates a variety of power- and time-demanding software tools 

for the calculation of the required parameters used throughout the optimisation 

process. To make the overall process less time-consuming, surrogate models 

are utilised, increasing the speed of the optimisation runs without 

compromising in accuracy. 

 The proposed methodology is evaluated by two case studies involving different 

ship types and optimisation setups. Application of some of the key elements of 

this study (e.g. capture of uncertainty) varies among the cases to explore their 

effects in the overall process. 

 

7.5 Future work 

 

Through the work carried out for this study, potential future research areas are 

identified, which can extend the research scope and thesis impact. 

 

Firstly, the proposed methodology is applied on two ship types for demonstration 

purposes of this study. It would be interesting to expand this research to more case 
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studies, involving different types of merchant ships, such as oil tankers, bulk carriers 

or cruise ships. Each of the aforementioned ship types involve various operational 

profiles and used in different markets. Therefore, new objective functions can be 

introduced, specific to the purpose of each vessel. 

 

This study focuses on a global optimisation of the main particulars of two different 

ship types. However, the formulation of the problem and the parametrisation process 

followed in the proposed methodology allows the selection of different parameters to 

become the design variables set of the optimisation problem. Depending on the 

measures of merit, a local hull form optimisation can be carried out to investigate 

further the results of a global optimisation process. 

 

Implementing the holistic ship design optimisation approach in a literal way is a 

rather challenging task. One of the definitions of “holistic” in ship design is to 

examine every aspect related to a ship’s life cycle and evaluate its response 

holistically. This study incorporates elements of this approach; yet there are 

opportunities to expand the focus areas beyond the scope of this thesis. For instance, 

a detailed investigation of the propulsion systems could be integrated to the proposed 

methodology, manoeuvring and detailed seakeeping behaviour of the ship could be 

investigated, while damage stability of the ship could be examined to enhance the 

safety aspect of the ship’s life. The design uncertainty quantification of the ship 

design problem could be expanded through the addition of the aforementioned focus 

areas of naval architecture and improve further the robustness of the results. 

 

As far as the surrogate models methods are concerned, in this thesis a global 

approximation method is utilised, which accepts as input known data and creates a 

surrogate model that can estimate a response for a new set of data. The accuracy of 

this method is evaluated in this work; however, a further investigation could be 

carried out on other available techniques and compare the outcome. Similarly, 

different optimisation algorithms could be tested and analyse the difference in the 

quality of the results, convergence to optimal solution and overall computational 

time. 
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7.6 Summary 

 

In this Chapter the thesis is reviewed, summarising its key features, while identifying 

the novelty elements of this work. A description of the accomplishment of the 

research aim and objectives is provided. Through the research outcome, future work 

recommendations are presented. 
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A Calculation of excessive acceleration stability 

criterion 

 

 

 

Large angles of rolling lead to extreme lateral accelerations, which result in objects 

in higher locations (such as the top decks of the superstructure) to travel longer 

distances. The period of roll motions is the same in each location on the ship. Hence, 

the linear velocity increases to cover the longer distance at the same time. Velocity 

changes its direction every half a period, therefore, this phenomenon affects the 

linear accelerations, which get larger in higher locations on the ship (Figure 110). 

 

 

Figure 110: Scenario of stability failure related to excessive accelerations (IMO, 

2016) 

 

The period of roll motion decreases as the GM value gets higher. Hence, for the same 

roll amplitude, the linear velocity changes faster, resulting in larger accelerations. 

 

One of the reasons causing excessive accelerations is the synchronous resonance, a 

phenomenon of amplification of the motion response when the natural frequency of 

the ship motion is close to the frequency of the wave excitation. The wave excitation 

frequency depends on the wave frequency, ship heading relative to waves and ship 

speed. The frequency of encounter becomes higher than the frequency of the waves 

in head waves when the ship sails against them, while the opposite is observed in 
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following seas when the ship sails in the same direction as them. Higher speeds 

increase this effect (IMO, 2016). 

 

According to IMO (2018), the first level of the vulnerability criteria for excessive 

acceleration is based on the calculation of the lateral acceleration for each condition 

of loading and location along the length of the ship where passengers or crew may be 

present. The value is compared with an upper limit to identify whether the ship is 

vulnerable or not (34). 

 

φkL (g +
4π2h

Tφ
2 ) < REA1 (34) 

 

where φ is the characteristic roll amplitude, kL is a factor taking into account the 

simultaneous action of roll, yaw and pitch motions, h is the height above the roll axis 

of the location where passengers or crew may be present, Tφ is the rolling period and 

REA1 is the upper limit value. 

 

Level 1 check is relatively straightforward and is implemented in a custom 

CAESES® feature, which reads input data originating from the NAPA® macros run 

in advance. The feature indicates compliance with or violation of the level 1 check. 

Should the former be the case, the process is terminated to avoid the implementation 

of the level 2 check and reduce the computational time. 

 

Level 2 goes into more detail, calculating a long term probability index C that 

measures the vulnerability of the ship to a stability failure in the excessive 

acceleration mode for the loading condition and location under consideration, based 

on the probability of occurrence of short term environmental conditions affecting the 

wave frequency and amplitude. C is compared with the upper limit value REA2 to 

check the vulnerability of the ship to the specific criterion (35). 

 

C < REA2 

where 
(35) 
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C = ∑ WiCi

N

i=1

 

 

where N is the number of short term environmental conditions, Wi a weighing factor 

for the short term environmental conditions and Ci the short term excessive 

acceleration stability failure index for the loading condition and location under 

consideration and for the short term environmental condition under consideration 

calculated as shown in (36). 

 

Ci = e−R2
2/2σLAi

2
 (36) 

 

where R2 is the gravitational acceleration and σLAi the standard deviation of the lateral 

acceleration at zero speed and in a beam seaway. 

 

Level 2 check is more complex than level 1 and requires the connection of 

CAESES® with Maxsurf® Stability, in which the necessary calculations for the 

determination of the Ci value shown in (36) for each wave case take place. To 

achieve that, the hull is exported from CAESES® in panelised form and imported to 

Maxsurf® Stability, while data originating from the NAPA® macros run in advance 

are read by Maxsurf® Stability. 

 

The results are then imported to CAESES® where a custom feature calculates the C 

value shown in (35). A comparison of the latter with the limit value REA2 takes place 

to determine compliance with or violation of the criterion. 
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B Calculation of parametric roll stability 

criterion 

 

 

 

Parametric roll is the amplification of roll motions caused by the periodic variation of 

transverse stability in waves. This phenomenon is primarily observed in head, 

following, bow and stern-quartering seas when the ship’s encounter frequency is 

approximately twice of the ship roll natural frequency and the roll damping of the 

ship is insufficient to dissipate the additional energy. 

 

 

Figure 111: Development of parametric roll (IMO, 2016) 

 

When the ship is rolled while positioned on the wave trough, increased stability 

provides stronger pushback (restoring moment). As the ship returns to the upright 

position, its roll rate is greater, since there was an additional pushback from the 

increased stability. If at that time, the ship has the wave crest at midship, the stability 
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is decreased and the ship will roll further to the opposite side because of the greater 

speed of rolling and less resistance to heeling. Then, if the wave trough reaches the 

midship section when the ship reaches its maximum amplitude roll, stability 

increases again and the cycle starts again. This phenomenon is shown in Figure 111. 

 

Roll damping influences parametric roll. When a ship rolls in calm water the roll 

amplitude decreases successively due to roll damping. The rolling motion creates 

waves and eddies, and the ship experiences viscous drag. All of these processes 

contribute to roll damping. Roll damping may play a critical role in the development 

of parametric roll. If the "loss" of energy per cycle caused by damping is more than 

the energy "gain" caused by the changing stability in longitudinal seas, the roll 

angles will not increase and the parametric roll will not develop. Once the energy 

"gain" per cycle is more than the energy "loss" due to damping, the amplitude of the 

parametric roll starts to grow. 

 

In addition, there is a roll damping threshold for parametric roll. If the roll damping 

moment is higher than the threshold, then the parametric roll is impossible to 

develop. On the other hand, if the roll damping moment is below the threshold, 

parametric roll may take place. 

 

The development of parametric roll depends on the speed and wave direction. The 

frequency of encounter with waves changes when the ship is in motion. In following 

or stern-quartering seas, the direction of waves and the ship heading are similar. 

Hence, the relative speed is low and a ship encounters fewer waves during the same 

time period. On the contrary, in head or bow-quartering seas, the direction of waves 

and the ship heading are opposite, resulting in higher relative speed. Therefore, the 

ship encounters more waves during the same time period (IMO, 2016). 

 

According to IMO (2018), the first level of the vulnerability criteria for parametric 

roll is based on the comparison of the amplitude of the variation of GM in specific 

conditions δGM1 over the GM of the loading condition in calm water GMC with an 

upper limit value RPR (37). 
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δGM1

GMC
≤ RPR (37) 

 

δGM1 and GMC are calculated in Maxsurf® Stability for the loading condition under 

consideration. To achieve that, the hull is exported from CAESES® in panelised 

form and imported to Maxsurf® Stability, while data originating from the NAPA® 

macros run in advance are read by Maxsurf® Stability. The hydrostatic values 

required for the computations are also calculated in Maxsurf® Stability. 

 

The results are then imported to CAESES® where a custom feature performs the 

check shown in (37). If the condition is met, the process is terminated to avoid the 

implementation of the level 2 check and reduce the computational time. 

 

Level 2 consists of two separate checks which examine different combinations of 

wave amplitudes and periods, as well as various ship speeds and headings. Two 

values –C1 (38) and C2 (41)– are calculated and compared with two lower limit 

values, RPR0 and RPR1. 

 

C1 = ∑ WiCi

N

i=1

 (38) 

 

where N is the number of the examined wave cases, Wi is a weighting factor for the 

respective wave case and Ci is assigned a value of either zero or one, depending on 

the satisfaction of the requirements related to GM and the ship speed presented in 

(39) and (40). 

 

GM(Hi, λi) > 0 

and 

δGM(Hi, λi)

GM(Hi, λi)
< RPR 

(39) 

 

In (39), δGM(Hi,λi) is half the difference between the maximum and minimum values 

of GM calculated for the ship, corresponding to the loading condition under 
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consideration, considering the ship to be balanced in sinkage and trim on a series of 

waves characterised by a wave height of Hi and a wave length of λi. GM(Hi,λi) is the 

average value of GM calculated for the ship, corresponding to the loading condition 

under consideration, considering the ship to be balanced in sinkage and trim on a 

series of waves characterised by a wave height of Hi and a wave length of λi. 

 

VPRi > VS (40) 

 

In (40), VPRi is the reference ship speed corresponding to parametric roll conditions 

when GM(Hi,λi)>0, while VS is the service speed. 

 

GM, δGM and VPR are calculated in Maxsurf® Stability for each wave case, taking as 

input the panelised hull form and the NAPA® macros’ output data, as described in 

the level 1 check. The weighting factor is set by the IMO regulation and depends on 

the wave case. 

 

The results are then imported to CAESES® where a custom feature calculates the 

value of C1 shown in (38). A comparison of the latter with the limit value RPR0 takes 

place to determine compliance with or violation of the criterion. 

 

C2 is calculated in more detail, based on the values of the maximum roll angle in 

head and following waves calculated for various ship speed and heading 

combinations (41). 

 

C2 =
[∑ C2(Fni, βh)12

i=1 +
1
2 (C2(0, βh) + C2(0, βf)) + ∑ C2(Fni, βf)

12
i=1 ]

25
 

(41) 

 

where C2(Fni,β) is calculated as a weighted average from a specified set of waves 

according to (42), h stands for head waves and f stands for following waves. 

 

C2(Fni, β) = ∑ WiCi

N

i=1

 (42) 
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In (42), N is the total number of wave cases for which maximum roll angle is 

evaluated for a combination of speed and ship heading, Wi is a weighting factor for 

the respective examined wave case and Ci is assigned a value of either one or zero, 

depending on whether the maximum roll angle exceeds 25 degrees or not. 

 

Calculation of C2 is more complex than the one of C1, due to the high number of 

evaluations involved in the process, which depend on the heading and speed of the 

ship. The cases are set by the IMO regulation and for each one the maximum roll 

angle is calculated based on Ikeda’s method defined in the proposed regulation. 

 

The required input data for the implementation of Ikeda’s method are calculated in a 

custom feature within CAESES®. They are exported to a text file, which is read by 

Matlab®. The latter is responsible for the solution of a complex equation which 

provides the maximum roll angle. 

 

Matlab® output is exported to a text file, which is read by CAESES®. The process 

continues within a custom feature which is responsible for the calculation of the Ci 

value shown in (42). This process is carried out for each examined case in order to 

calculate the value of C2 shown in (41). 

 

Finally, C2 is compared with the limit value RPR1 and the compliance with or 

violation of the criterion is determined. 
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C Calculation of pure loss of stability criterion 

 

 

 

Stability varies in different wave conditions. As a ship sails through waves, the 

submerged part of the hull changes. For most ships, the upper part of the bow section 

is usually wide, due to bow flare. The latter makes the waterplane area larger when 

the upper part of the bow section becomes partially submerged. The upper part of the 

aft section of the hull is typically even larger. Hence, the aft part of the waterplane 

area also increases, when the upper part of the aft section becomes submerged. On 

the other hand, unlike the bow and aft sections, the midship section of most ships 

remains the same along its depth. Therefore, the waterplane area remains mostly 

unchanged with the variation of draught. When the wave trough is amidships, the 

draught at the midship section is low, but as the hull is wall-sided in this region, there 

is little waterplane area change. As a result, when the wave trough is located around 

the midship section, the overall waterplane area is increased (Figure 112). 

 

 

Figure 112: Changes in hull geometry (wave trough) (IMO, 2016) 

 

The opposite happens when the wave crest is located near the midship section. The 

underwater part of the bow section is usually quite narrow, especially around the 

waterline for hydrodynamic reasons. The faster the ship is, the narrower its 

underwater bow section should be. If the wave crest is located amidships and the 

wave length is comparable to the ship’s length, the wave trough is located around the 

bow section. The low draught at the bow area results in a very narrow waterplane 

area around the bow section. Similarly, the lower part of the stern is usually narrow 

and the location of the wave trough near the stern results to a decreased waterplane 
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area in the aft section. As mentioned previously, the midship section usually has a 

uniform shape along the depth, so it does not affect the waterplane area significantly. 

Therefore, the overall waterplane area is decreased in this case (Figure 113). 

 

 

Figure 113: Changes in hull geometry (wave crest) (IMO, 2016) 

 

The waterplane area influences significantly the ship’s stability. Reduction of the 

waterplane area leads to the reduction of the GZ curve. Hence the stability of the ship 

declines (Figure 114) (IMO, 2016). 

 

 

Figure 114: Stability corresponding to waterplane area changes (IMO, 2016) 

 

According to IMO (2018), the first level of the vulnerability checks for pure loss of 

stability failure mode compares the minimum value of GM among various 

conditions, GMmin, with a lower limit value RPLA, as seen in (43). 

 

GMmin > RPLA (43) 

 

GMmin is calculated in Maxsurf® Stability for the loading condition under 

consideration. To achieve that, the hull is exported from CAESES® in panelised 

form and imported to Maxsurf® Stability, while data originating from the NAPA® 
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macros run in advance are read by Maxsurf® Stability. The hydrostatic values 

required for the computations are also calculated in Maxsurf® Stability. 

 

The results are then imported to CAESES® where a custom feature performs the 

check shown in (43). If the condition is met, the process is terminated to avoid the 

implementation of the level 2 check and reduce the computational time. 

 

Level 2 consists of two separate checks, comparing two criteria representing a 

weighted average of certain stability parameters for a ship considered to be statically 

position in waves of specific height and length –CR1 (44) and CR2 (45)– with an 

upper limit value RPL0. In particular, the larger of the two values –CR1 and CR2– 

should be less than RPL0. 

 

CR1 = ∑ WiC1i

N

i=1

 (44) 

 

CR2 = ∑ WiC2i

N

i=1

 (45) 

 

where N is the number of wave cases for which C1 and C2 are evaluated, Wi is a 

weighting factor and C1 and C2 the two examined criteria. C1 is based on the 

calculation of the angle of vanishing stability φv as seen in (46). C2 is based on the 

calculation of the angle of heel φs as seen in (47), under the action of the heeling 

lever RPL3 (48). 

 

C1i = {
1, φv < RPL1

0, otherwise
 (46) 

 

where RPL1 is 30 degrees. 

 

C2i = {
1, φs > RPL2

0, otherwise
 (47) 
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where RPL2 is 15 degrees for passenger ships and 25 degrees for any other ship type. 

 

RPL3 = 8 (
Hi

λ
) dFn2 (48) 

 

Where Hi is the wave height for the respective examined wave case, λ is the wave 

length, d is the draught amidships corresponding to the loading condition under 

consideration and Fn is the Froude number. 

 

Calculation of CR1 and CR2 takes place in Maxsurf® Stability, taking as input the 

panelised hull form and the NAPA® macros’ output data, as described in the level 1 

check. The calculation of the angle of vanishing stability and angle of heel takes 

place. The results are imported to CAESES® where a custom feature is responsible 

for the comparison of the two angle values with the limit values RPL1 and RPL2. The 

value of C1i and C2i are then determined. This process is repeated for each wave 

case. 

 

Finally, the values of CR1 and CR2 are calculated and compared with RPL0 to 

determine the compliance with or violation of the criterion. 


