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Abstract

This thesis reports on the performance and interactions of a tidal turbine

and station keeping systems based on the adoption of a tension mooring

system in different sea states. The capabilities of introducing damping

are being investigated to reduce the peak loads that tidal turbines expe-

rience during operational life in high energy wave-current environments

and extreme sea states. A neutrally buoyant turbine is supported from

a tension cable based mooring system, where tension is introduced by a

buoy fully submersed in water. The loading on the turbine rotor blades

and buoy are calculated using a wave and current coupled BEMT. The

modeling algorithm developed is based on an inverted triple pendulum,

responding to different sea state conditions to understand the system re-

sponse behavior and the blade load in different sea states, including ex-

treme conditions. The results show the tension mooring system reduces

peak thrust loading on the turbine, but it was found that there are certain

limitation when using this design in extreme waves conditions.
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Chapter 1

Introduction

1.1 Investigating the dynamic loads on tidal

stream turbines operating in the wave-

current interaction

The global resource from tidal and other marine currents may exceed

1100 TWh/y [35], tidal-stream energy may be an important contributor

to global renewable energy demand and UK has an estimated 10% to

15% of the global harvestable tidal resource [36]. At the stage of writing,

tidal stream turbine (TST) technology has developed to the stage where

a first large scale commercial facilities are being deployed, such as the

MeyGen project which has exported 17GWh to grid as of June 2019 [38],

it is proving to be a reliable and economically viable renewable energy

option. However, the durability is considered to be a complicated subject
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due to the loading on TSTs being highly varying in the unsteady marine

environment, therefore it is a challenge to achieve the requirement of a

10 - 25 years fatigue life.

This thesis investigate and aims to design a tidal turbine station keeping

system based on the adoption of a tension mooring system in different

sea states. The capabilities of introducing dampening are investigated

to reduce the peak loads from the variations in inflow velocity cause by

the surface waves and velocity profiles present in the tidal flow. These

inflow variations fluctuate with a passing wave train or tidal phases over

time and over the rotor plane area. A neutrally buoyant turbine which

can move with the wave train and tidal phase is supported from a tension

cable based mooring system, where tension is introduced by a buoy sub-

mersed in the water, and the numerical model is developed to investigate

the loading on the turbine.

1.2 Models

The model for a rigid supported turbine is based on studies done for wind

turbine technologies which a wind turbine with a tower-monopile sup-

porting structure can be modeled as an inverted pendulum, and the pas-

sive control is applied to the system to reduce the structural loading. The

tension mooring system is modeled as a special type of triple pendulum

which is called an inverted flail. It consists of three pendula, developed

into a finite element model to make it more realistic. The loading on

the turbine rotor blades and buoy are calculated using a wave coupled

17



blade element momentum theory (BEMT). The code was developed at the

University of Strathclyde to analysis the loading occurring on a turbine

rotor-drive train when operating in energetic wave-current flow condi-

tions [19].

1.3 Exploiting the sea states, turbines, moor-

ing lines and models

The different type of turbine station keeping systems and the hydrody-

namic loads on the turbines generated from the marine environment are

introduced in this thesis. A brief discussion of different wave models are

given and the blade element momentum theory coupled with wave inter-

action are indicated to calculate the load on the turbine.

A simulation code has been developed to model the monopile support

structure for turbine applications and analyse their dynamics including

the added mass and hydrodynamic damping effects. Moreover a pas-

sive structure control technique was employed in this methodology, which

used a tuned mass damper on the structure to do a fully coupled dynamic

analysis in time domain. Moreover, a parametric study varying the mass

of the Tuned Mass Damper (TMD) in fore-aft direction was undertaken

in order to compare the effects to the structure. The loading on the tur-

bine rotor blades are calculated using a wave and current coupled BEMT.

A coupled pendulum with external drive is expected to expected to ex-

perience more complicated dynamics, the external drives are calculated

18



from the BEMT code. Simulations are taken in different sea states, tur-

bine and mooring line parameters to give a brief understanding of their

effects on the system loading and system dynamics.

1.4 Contributions

The main contribution of the work is the introduction of a method for sim-

ulating the tension mooring turbine system in different sea states. The

method does not require a powerful work station with several high CPUs,

it can even be run on a personal computer. Following this methodology of

passive control, structural designers can determine the optimum options

based on the previous studies in wind turbines. Besides, the dynamics

of a turbine supported by a tension mooring system with varying input

parameters can be obtained conveniently by the methodology presented

in this thesis.

1.5 Thesis Organisation

The structure of the thesis is as follows:

Chapter 2 provides an augmented description of the background to tidal

stream turbines and blade element momentum theory.

Chapter 3 indicates wave models and the rigid supported turbine with

passive control. The results indicate the loading on the support structure

and their fatigue life.
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Chapter 4 outlines an algorithm that enables the turbine supported by

tension mooring system to be simulated by minimization of model com-

plexity and it is also developed to a finite element model.

Chapter 5 outlines results of simulations based on the previous model

and analyses the varying input parameters.

Chapter 6 draws discussion, conclusions and contains a summary of the

contributions of the work.

Chapter 7 outlines future works.
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Chapter 2

Overview of tidal stream

turbines – support structures,

load environments and

modeling techniques.

Structures deployed at sea will be be subjected to a varied environment,

so it is important to find the design philosophy of TSTs in ocean engi-

neering practices in order to ensure the durability of devices. Further-

more, a successful design of a TST must be economically feasible, which

means that the increase of cost in manufacture, weight, installation and

retrieval should be considered.

Due to the durability of TSTs in the marine climate, the focus of the liter-

ature review presented in this chapter will be on the actual hydrodynamic
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loading TSTs suffer and how these loads can be managed efficiently in

turbines by a damping application. The mid part of the chapter presents

an overview of the TST station keeping systems and how the fatigue per-

formance is impacted upon by damping system in a rigid supported tower.

Finally, the techniques commonly used to numerically model the loads on

a TST are presented, which will be used later in this thesis to investi-

gate the functional relationships between the unsteady sea climate and

the floating TSTs; this will inform how floating TSTs interact with their

environments and will further the understanding on how to reduce the

marine generated load on the TST in an efficient way.

Before the discussion of hydrodynamics and loading on a TST, some basic

concepts and terminologies must be introduced in the next few sections,

starting with the general description and operating principles of horizon-

tal axis TSTs.

2.1 General description of TSTs

There are six main types of Tidal Energy Convertors (TEC), which are

horizontal axis turbine, vertical axis turbine, oscillating hydrofoil, en-

closed tips (venturi), archimedes screw and tidal kites as shown in Fig-

ure 2.1 [2]. Moreover, horizontal axis, vertical axis and Venturi type can

be classified as rotating TST design , each has its advantages and disad-

vantages [2]. Energy extraction of TSTs mentioned above are all based

on converting the kinetic energy in the oncoming tidal flow into a rota-

tional torque by a power capture device. Torque load is captured by the
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Six main types of Tidal Energy Convertors, (a) horizontal axis
turbine (b) vertical axis turbine (c) oscillating hydrofoil (d) archimedes
screw(e) venturi (f) tidal kite [2]

device and directly transferred to the generator after passing through the

gearbox, the electricity produced is sent to the grid connection from the

appropriate electrical conversion.

It is showed that out of the 95 tidal developers listed by the European

Marine Energy Center (EMEC) [2], 46 were classed as horizontal axis de-

vices. This not only means that 48 % of the total number of tested devices

are horizontal axis type design but also indicates that there is currently

preference for the horizontal axis type of TST device in industry. This

preference is largely attributed to the fact that the loading on the drive
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Figure 2.2: Diagram showing the inflow velocity vectors on a blade and
the generated force vectors. The figure shows the inflow coming from the
left and the cross-section of one blade pointing ‘out’ of the paper [19]

train of horizontal axis TSTs is smoother and more continuous since the

blades do not shadow each other during operation [2]. In this thesis all

the analysis and methodologies presented will be focused on horizontal

axis TSTs. In addition, the station keeping system for horizontal TSTs is

the other focus in this thesis and will be discussed in section 2.2.

2.1.1 Theory of operation for horizontal axis TSTs

The thrust and torque on the rotor briefly introduced in this section is in-

fluenced by the turbine station keeping from a loading perspective. The

fundamental objective for TST designs is to convert the velocity momen-

tum in the inflow to rotational torque via lifting surfaces. The blade pro-

files of TST is an airfoil section, so the function is same as the aircraft

wing. The typical lift and drag forces on the airfoil section is shown as

Figure 2.2.

The lift and drag forces are depend on the magnitude of the relative in-
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flow velocity vector V, the angle of attack (AoA), α , between the inflow

vector and the chord-line, the Reynolds number of the fluid flow and the

geometrical shape and performance of the airfoil. The relative velocity

vector has two components, one is horizontal inflow component caused by

the tidal flow, the other one is apparent flow generated by the rotational

speed of the blade. Furthermore, the apparent rotational inflow speed

varies with radial distance from the rotational center of the turbine, be-

cause tangential velocity of the elements located closer to the hub moves

slower and the angle of attack will increase towards the root. To counter-

act this effect, the blades of horizontal TSTs are designed to be twisted

along the length of the blade in order to maintain an optimum angle of

attack over the length of the blade [39]. Similarly, the chord length of the

blade section closer to the turbine hub increases in order to maximize the

lift generated from the lower inflow speeds.

2.1.2 Optimum positioning in the water column and

characteristic parameters

The inflow current velocities have varying profile shapes depended on

time and sites, this is based on the research of vertical velocity distribu-

tions in tidal stream currents using Acoustic Doppler Current Profilers

(ADCP) by Sutherland [40] and Colucci [41]. The friction caused by the

roughness of the seabed and bathymetry makes the vertical velocity pro-

file vary from nearly uniform to linear to non-linear power-law distribu-

tions. Moreover, surface winds may cause a velocity shearing effect that
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propagates down the water column [42], because the wind flow transfers

its kinetic energy to the water surface at their interface.

Assumptions:

The highest flow velocities in the water column is close to the water sur-

face according to the vertical velocity profile, it may seem that the tur-

bine will have a maximum power capture at a shallow penetration depth.

However this option is less than ideal due to the possibly of harmful sur-

face wave, wind current shear and naval traffic. It is found that placing

the turbine above the bottom shear friction layer and below the most en-

ergetic wave induced velocities, which will typically be in the upper half

of the water column, has been considered a good trade-off for horizontal

axis TSTs [43]. In order to fix the turbine in a suitable depth, the station

keeping system is the main topic discussed in Section 2.2.

Since turbines operate in different conditions and have variable parame-

ters, some characteristic non-dimensional parameters are defined to com-

pare the performance of different turbines in a convenient way. The tip-

speed ration is commonly used to describe a turbine’s operating state as

TSR =
ΩrR

U∞
(2.1)

where Ωr is the angular velocity of the rotor, R is the turbine radius and

U∞ is the inflow velocity.

The turbine’s general power capture performance is defined as the power

coefficient CP, which indicates the ratio of the mechanical power in the
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shaft captured by the turbine from the incoming flow over the swept area

of the rotor. It is defined as

CP =
Ωrτ

0 .5ρU 3
∞A

(2.2)

where τ is the shaft torque, ρ is the fluid density and A is the swept rotor

area.

The rotor thrust can be expressed as a non-dimensional parameter, which

is thrust coefficient. It is a ratio of the force on the rotor to the dynamic

force in the flow. It is defined as

CT =
F

0 .5ρU 2
∞A

(2.3)

where F is the thrust force on the rotor shaft.

2.2 Station keeping system

In order to fix the turbine in a suitable depth in the tidal stream, in the

prototype devices listed by EMEC, there are various methods to fix the

horizontal TST to the seabed:

aabu,v,wx,y,z1. Gravity base is a physical way to fix the TST to seabed by means

of a massive weight[44].
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Figure 2.3: Configurations of gravity base and mono-pile [91]

2. Pile mounted is a principle that is used to mount most large wind

turbines, whereby the TST is attached to a pole penetrating the

ocean floor. Horizontal axis devices are able to yaw about this structure[44].

In some design the pile also allows the turbine to be raised above the

water level for maintenance.

3. Flexible mooring is a structure that the TST is tethered via a cable

or chain to the seabed[45]. The device is allowed to move freely and

swing as the tidal current direction changes with the tide.

4. Rigid mooring is a structure that the TST is secured into position

by a fixed mooring system[45]. This makes the device have minimal

leeway.

5. Floating structure allows several turbines mounted to a single plat-

form moving in relation to changes in sea level[45].

Figure 2.3 gives configurations of the gravity base and pile support sys-

tems. In this thesis a pile mounted TST will be discussed firstly and

passive structure control will be applied to the system. Then a flexible
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mooring system will be investigated with a buoy providing the tension

and working as a damper.

2.2.1 Gravity base

Gravity bases are utilized in various forms and need or need not be fixed

to the seabed. In its simplest form, the gravity base anchor or foundation

will be lowered to the seabed and its weight will be sufficient to hold the

structure in its location. Piles, grouting or suction techniques are used to

fix the base to the sea bed in other instances[44].

Gravity base anchors are used where vertical lift components are required[44].

They are used in oil and gas industry mooring applications particularly

in shallow water or surface bed rock usually for the mooring of support

vessels. Moreover they are increasingly used in installing wave energy

devices.

Gravity base anchors can be installed as a whole or made up of com-

ponents in order to reduce lifting requirements. Besides, gravity base

anchors are typically reinforced concrete designs but may have skirts,

spikes or other attachments to increase horizontal friction with the seabed.

2.2.2 Pin Pile

Pin piles are widely used in the offshore industry and can be driven,

drilled or sucked into position depending on the ground conditions. The
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use of piles are dependent on their configurations, typically high strength

grout is used to keep the structure in place and mooring applications can

use fittings like ball and roller inserts. ‘Bell footing’ is used to increase

the holding power in sand, it is a technology that the bottom of the drilled

hole is expanded out and filled with cement. In softer sands an epoxy can

be used to stabilize the sands around the hole.

Due to the nature of the seabed it is more likely that pin-piles will be

drilled for tidal applications. Drilling of the sockets can be conducted

from the surface through a conductor or using subsea drilling rigs, tech-

nology from deep water oilfield developments is enhancing the ability to

develop installation methods for drilling and securing pin piles using sub-

sea drilling rigs operated automatically from the surface [44].

Pin piles are commonly used for permanent moorings, but the cost of in-

stallation is higher. Piles can be either drilled, driven or use suction to be

installed in place. Drilling is used in the conditions with harder bottom,

piling and suction techniques are used in the softer sediments. The ad-

vantage of suction techniques compared with piling is that with piling the

life of the pile will be reduced if too much energy is expended in the piling

operation [44]. Once a pile has been placed, a mooring structure will be

inserted and be cemented in place or use ball and roller type fittings to

keep place.
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Figure 2.4: Schematic of mooring arrangements for a single marine re-
newable energy device: (from left) taut-moored systems with single and
multiple lines, basic catenary system, catenary system with auxiliary
surface buoy and lazy-wave system with subsea floater and sinker [45].

2.2.3 Mooring

Marine renewable energy mooring systems can be divided into three cat-

egories: passive, active and reactive. To provide station-keeping is the

main function of a passive mooring system. These systems tend to be

used for large floating platforms which have multiple marine renewable

energy devices attached. The response of active mooring systems is af-

fected significantly by the dynamic response of the moored device with

both responses being coupled and affecting the power output of the de-

vice. In the case of a reactive system the mooring is an integral part

of the system. Figure 2.4 shows mooring systems tended to be used for

large floating platforms which support multiple marine renewable energy

devices.

In the offshore industry both catenary and taut moored systems are widely

used, particularly for Floating Production Storage and Offloading (FPSO),

Floating Production Storage (FPS) facilities as well as Single Point moor-

ing and Reservoir (SPAR) and Catenary Anchor Leg Mooring (CALM)
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structures [45]. In order to keep a device on station, catenary mooring

systems comprise single or multiple lines with a catenary geometry to

provide the necessary horizontal and vertical restoring forces. The cate-

nary mooring allows for changes in the water depth due to tidal vari-

ations and motions in several degrees-of-freedom for power generation.

‘Lazy-wave’ system which includes float and sinker components attached

to the line is a developed system to increase the horizontal compliance of

the catenary mooring.

Alternative materials could be used for the mid or upper sections of the

line instead of using steel components for the entire line to reduce the cost

and weight of mooring system and provide compliance. ‘Rider’ or ‘ground’

chains are used for the lower sections to provide tension to the line, they

transferred loads horizontally to the anchor or foundation as well. A

much stiffer connection provided by Taut-mooring system is between the

device and seabed, the compliance is only provided by the axial properties

of the mooring components such as synthetic ropes. Platforms located in

deep water locations are successfully secured with ropes constructed from

polyester [46]. Foundations and anchors must be specified to operate un-

der horizontal and vertical directions due to restoring forces in both direc-

tions are provided by this type of mooring system. Unless a large mooring

footprint is specified, the limited compliance of a taut-moored system may

mean that the device becomes submerged during large amplitude waves

or in locations with high tidal ranges [48]. Full or partial submersion of

the device is not an issue for some designs and may be a way of limiting

device displacements in large amplitude waves [47]. For mooring sup-
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ported TSTs, the buoy will be full or partial submerged but the turbine

keeps being full submerged. In the last two decades the offshore indus-

try has successfully utilized ropes constructed from synthetic materials

such as polyester, aramid, nylon and high-modulus poly-ethylene for ves-

sel mooring, towing and equipment station-keeping. Compared to steel

components, fibre ropes have particular advantages such as low cost and

mass (per unit length) and load extension properties to reduce peak load-

ing, parallel stranded polyester is one of the most common rope types.

It is feasible that utilization of these materials could reduce the cost of

mooring systems for marine renewable energy. Unlike steel components,

synthetic materials have non-linear load-extension properties that are

time dependent [49]. The fatigue, durability and stiffness of polyester is

well understood through research over the last two decades. Nylon ropes

which are 2-3 times more com-pliant than polyester, could be suitable for

MRE mooring systems [50].

A basic survey of the use of elastic mooring tendons for the mooring of

tidal current turbines is presented by Bowie [34]. Where it was shown

that the reduction of cost and time involved in installation are reported

significant reductions using flexible moorings instead of pile structure

foundations, moreover the structural costs of the device and its mount-

ing can be reduced. The utilization of orientating the device to current

flow naturally reduces the cost of control systems, furthermore not only

are maintenance costs reduced by allowing removal of device for onshore

maintenance, but also downtime is reduced. However, the calculations

undertaken by Bowie [34] did not include the thrust, torque and more
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dynamic characteristics of a tension mooring turbine.

A tidal turbine with a single line (taut) mooring system will be introduced

in this thesis. The advantages of this system is that it has few compo-

nents and can provide a direct link between the floating part and the

turbine. However, no redundancy is provided by this system in the case

of line failure and anchors or foundation that can be loaded vertically are

required. Another disadvantage of a normal taut mooring system is the

applicability in large tidal ranges, so the floating part will be submerged

in this thesis in order to make the system operate in sites with a large

tide range.

2.3 Environment loads on tidal turbine

The following section will review the hydrodynamic loads on a turbine

generated from the marine environment, this has been described by pre-

vious researchers. This section covers the effects of the tidal current flow,

wave motions and their interactions with the currents and some other ef-

fects, this is followed by the techniques used to model the hydrodynamics,

as presented in the next section.

The currents, waves and turbulence affects the fluid particle motions

under the sea-surface in a highly complicated relationships, this is so

complex that the topic is still an active research field to this day. Nev-

ertheless, it is possible to simplify this chaotic environment by treating

the currents, waves and turbulence as separate phenomena and to study
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their individual effects on the turbine loads before attempting to resolve

their interactions with each other.

First, the wave loading on a tidal turbine will be investigated. The second

part of this section will describe the inflow current loading on a tidal

turbine and the secondary loading on a submerged rotor generated from

the resulting fluid acceleration.

2.3.1 Wave Loading

Since the 1970’s wave loading on structures in marine environment has

been extensively investigated via researches in the oil and gas industries.

However, for tidal stream turbine the effects of surface waves has only

been investigated recently. Most of the experiments of wave interaction

studies on TSTs are in the form of tow-tank or flume tests on scale mod-

els, full scale TSTs experiments in oceans has been implemented only in

recent years such as ATLANTIS AR1000 and AR1500 [51, 38].

A scale turbine of 350 mm diameter towed through incident waves is pre-

sented by Barltrop et al. [54], the variations of the blade root bending mo-

ments were as large as 50% of the mean load for the out-of-plane moment

and 100% of the mean load for the in-plane moment. The experimental

results showed that the main load oscillation occurred at the encountered

wave frequency and that the in-plane-bending moment load signal for a

single blade had a superimposed self-weight component resulting from

the gravity load of the blade.
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Whilst tow-tank testing provides a controlled environment to study the

effects of different inflow parameters on a turbine, the towing through

still water generates a turbulence free environment which is not repre-

sentative of a real tidal flow-site. Furthermore, since the waves propa-

gate over still water, no wave-current interactions are in effect using this

method. On the other hand, testing small-scale devices in recirculating

flumes can provide a more realistic inflow condition in terms of turbu-

lence intensities and wave-current interactions.

Gaurier et al. [52] performed such a study that a three bladed turbine

with 400 mm long blades was subjected to various wave and current in-

flow conditions and there were in plane and out of plane strain gauges

assembled on the blades. The results of the blade loading showed that

the standard deviation of the blade strains increased with an order of 2 -

3 times in wave conditions compared to the current only case, which is in

alignment with Barltrop et al. [28]. Also, it was observed that the mean

value of the blade strain was the same for the wave and pure current

cases, which Galloway et al. [53] attribute to the use of sinusoidal waves

with an average net velocity of zero, a result that is likely to change if

steeper waves with greater peak-trough asymmetry are used. It is again

reported that the fatigue performance of a turbine will be dominated by

the wave contribution and that this will be a significant driver of turbine

durability and cost [52].
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2.3.2 Current Loading and Fluid Acceleration Effects

The thrust forces and the useful shaft torque generated from the tidal

stream inflow currents are the main static forces on a turbine’s rotor. The

early small-scale experimental tests on TSTs were performed by Batten

et al. [55] in 2007 showed that tidal turbines which are subjected to uni-

form inflow conditions produce performance curves (CP and CT plotted

as functions of the TSR) that are similar to those of wind turbines with

peak values of CP and CT at 0.45 and 0.80 respectively. The blade root

pitch setting was a significant influence for both the performance param-

eters and the optimal TSR position. Both Baen et al. [55] and Barltrop et

al. [54] successfully managed to replicate the experimental performance

curves of TSTs using BEMT codes, which generally perform well close to

the optimum TSR but become less accurate at the higher TSR regions of

high induction operation (Section 3.2.2). A similar performance-drop is

also present in the high TSR region where the rotor enters the turbulent

wake state [56]. It is also noted that in the higher and lower bounds of

the studied TSRs by Milne et al. [57], causes the values of CP and CTto

exhibit a comparatively large degree of scatter.

All submerged objects in an oscillating flow field experience drag forces

due to pressure gradients and skin friction, and inertia forces due to the

acceleration of the fluid. Tidal turbines operate in a medium with 800

times greater density than air so it is suspected that inertial effects, also

termed added mass effects, will be appreciable in the tidal environment.

The most widely used method of calculating wave-induced inertial forces

on submerged objects is the Morison equation [58] which Buckland [59]
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presented and it is based on the original description of Chapman [31], the

Morrison effect is a significant impact for the mooring supported turbine

and will be discussed in Chapter 5.

2.3.3 Wave and Current Interaction

The basic calculation method of wave loading on offshore structures has

been successfully developed and utilized by the offshore industry, but it

has been a standard practice in ocean engineering disciplines for a long

time to consider the current and surface wave particle velocities as sep-

arate entities [60]. In most engineering cases where current and wave

loads are to be determined, the velocity fields from the currents and

waves are calculated individually and then added in a process called lin-

ear superposition [61].

The interactions can be treated as a simple Doppler shift of the wave fre-

quency [62]. On the other hand, waves propagating over a current with

a linear shear-prole (constant vorticity), where the rotational flow is still

maintained for the wave motion, effects arise in form of a modification

to the dispersion relationship between the wave period and wave length

(Section 3.1) [63]. During the presence of more complex non-linear shear

velocity flow distributions, the near-surface vorticity leads to an impor-

tant modification of the dispersion relationship which affects the water-

particle velocities throughout the water column [63] whilst also changing

the surface elevation profile. Consequently, as wave-current interactions

tend to modify the shape of the surface elevation and underlying flow-
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fields, they also affect the hydrodynamic forces on submerged structures.

The wave-current interaction models will be discussed in detail in Chap-

ter 3.

2.4 Blade Element Momentum Theory

According to an international design standard for marine energy convert-

ers, Design requirements for marine energy systems (IEC 62600-2) [42],

a simulation time domain should not be less than 3 hours for each sea-

state to ensure that the load output is statistically stationary when wave

load on the structures are analyzed. It is obvious that this standard gives

a strict requirement on the convergence speed of the models used for load

investigations of TSTs with the required time-step size.

This section introduces the theory behind the hydrodynamic rotor-load

model used in this thesis and the alterations made to it to enable the

capture of the marine loading phenomena. The model was based on an

unsteady BEMT formulation due to its superior computational efficiency

and was implemented in the Matlab R2017b[98] which could easily be

run on a laptop.

Several assumptions have been made in BEMT model to simplify the

complex interactions between rotating machinery and the fluid. A major

one of these is that the turbine operates in a non-turbulent, steady-state

environment in order to allow the force equations of the blade and the

fluid to be equated [64].
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The CFD simulations for tidal turbines operating in wave-current may

take weeks to get results, the BEMT models only spends hours to run

a simulation. However, there are theoretical limits on BEMT due to its

simplified and low computational cost. One of these limitations is that

the axial induction factor a can exceed its upper theoretical limit of 0.5 at

high TSRs, this makes the downstream wake of the rotor reverse. How-

ever, in reality, at these TSR regions the downstream flow becomes tur-

bulent which is known as the turbulent wake state [65].

2.4.1 One Dimensional Momentum Theory

This section describes the fundamental governing equations of the BEMT

method. These equations are the momentum theory equations adopted

for an actuator disc and the blade element equations, which are combined

within the BEMT method in order to close the mathematical problem and

solved for the loading forces.

A turbine generates power by extracting energy from the working fluid

passing through the rotor area. If it is assumed that the fluid affected by

the rotor disc does not interact with the ambient fluid, a control volume

can be defined in the form of a stream tube enclosing the rotor and the

passing flow as shown in Figure 2.5.

The turbine’s rotor can be assumed to be an actuator disc, it changes the

shape of the stream tube from smaller than the rotor area to larger than

it downstream because of the mass conservation across the stream tube.
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Figure 2.5: Definition of the annular stream tube control volume over the
turbine and flow domain. [65]

The relationship between the areas, velocities and fluid density in the

upstream, downstream and at the actuator disc region [66] is given by:

ṁ = U∞A∞ρ = UdAdρ = UwAwρ (2.4)

where ṁ is the mass flow rate, U is the fluid speed, A is the area, ρ is

the fluid density and the corresponding subscripts stand for conditions

in the far upstream (∞), at the actuator disc (d) and in the wake (w) as

illustrated in Figure 2.5.

The in flow velocity at the actuator disc can be described with the axial

induction factor a which is the fractional reduction in flow speed between

the free stream and the actuator disc, this is:

Ud = U∞(1− a) (2.5)

The rate of change of fluid momentum is caused by the total velocity
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change and it is given as

Rate of change of momentum = (U∞ − Uw)ρAdUd (2.6)

The left hand side in Equation 2.6 can be substituted by the force on the

disc caused by the pressure differential across it and the velocity at the

disc Ud can be substituted by Equation 2.5, giving:

(pud − pdd)Ad = (U∞ − Uw)ρAdU∞(1− a) (2.7)

The Bernoulli equation can be applied along the stream tube to find the

pressure differential of the upstream and downstream regions. Assuming

that the flow is incompressible and horizontal, this gives:

1

2
ρU2
∞ + pamb =

1

2
ρU2

d + pud (2.8)

1

2
ρU2

d + pdd =
1

2
ρU2

w + pamb (2.9)

where pamb is pressure far up and down stream from the rotor, which is

assumed to be an ambient pressure. Subtracting the above equations

gives the pressure gradient as:

Ad(pud − pdd) =
1

2
ρ(U2

∞ − U2
w) (2.10)
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then insertion into Equation 2.7 gives:

1

2
ρ(U2

∞ − U2
w) = (U∞ − Uw)ρAdU∞(1− a) (2.11)

and it is shown that:

Uw = (1− 2a)U∞ (2.12)

and the force can be obtained from the combination of Equation 2.7 with

Equation 2.12, to give:

F = Ad(pud − pdd) = 2ρAdU
2
∞a(1− a) (2.13)

2.4.2 Rotational Momentum

The analysis in the previous section can be extended to the case where

the rotor imparts angular momentum to the flow as presented by Masters

& Orme [67] in order to derive an expression for turbine torque.

Since the torque generated by the fluid on the rotor is dependent on the

local turbine radius, r , the analysis is based on the method of dividing

up the stream tube into several annular sections with thickness dr with

a cross sectional area of 2πrdr as illustrated in Figure 2.6.

If it is assumed that the angular velocity ωW imparted on the flow is small

compared to the turbine angular velocity Ωr, it can be assumed that the
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Figure 2.6: The control stream tube is divided into annular sections with
thickness dr [69].

pressure in the far wake is the same as the pressure in the free stream

[69].

The analysis of wake rotation is based on an annular control volume ro-

tating with the turbine’s angular velocity Ωr. This allows the Bernoulli

energy equation to be used in the sections before and after the actuator

disc to calculate the pressure difference across it by assuming the axial

flow across the disc is constant [68] giving:

pud − pdd = ρ(Ωr +
1

2
ωw)r2ωw (2.14)

The resulting thrust across an annular element is the pressure difference

multiplied by the annular area giving:

dFA1 = (ρ(Ωr +
1

2
ωw)r2ωw)2πrdr (2.15)

and the angular induction is defined as:
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b =
ωw

2Ωr

(2.16)

rewriting the annular thrust with the angular induction factor gives:

dFA1 = (4b(1− b)1

2
ρΩ2

r r2 )2πrdr (2.17)

an expression for the torque on an annular stream tube section can be

written as:

dT = dṁ(ωwr)r = ρUd2πrdr(ωwr)r (2.18)

substituting Equation 2.5 and Equation 2.16 into Equation 2.18 gives an

expression for annular torque as:

dT1 = 4πρb(1− a)U∞Ωrr
2rdr (2.19)

the kinetic energy in the wake is increased because of the turbine gen-

erates an angular velocity component to the flow [66], this increase in

wake energy is equivalent to the loss of static pressure in the wake and

is defined as:

4p = 0.5ρ(2Ωrbr)2 (2.20)

Equation 2.13 can be rewritten by the annular area of 2πrdr to give:

45



dFA = 4πρU2
∞a(1− a)rdr (2.21)

the induced force of this pressure drop can be obtained by Multiplying

Equation 2.20 with the annular area of 2πrdr, then adding to Equation

2.21, the final expression for the thrust on the fluid is given as:

dFA1 = 4πρ(U2
∞a(1− a) + (bΩrr)

2)rdr (2.22)

Although momentum theory gives the expressions for the thrust and

torque, the axial and angular induction factors, a and b are still not

known. Thus, momentum theory must be combined with blade element

theory in order to close the set of equations.

2.4.3 Blade element theory

Blade element theory is based on a principle of dividing the rotor’s blades

into several equally sized elements that intersect with the stream tubes

defined in Figure 2.6. The lift and drag forces on the blade elements are

solved by treating the elements as independent two-dimensional airfoil

sections. Look-up tables are used to check the 2-D airfoil data and the

geometric turbine parameters such as twist and chord distributions at

the blade radius for each section.

Figure 2.7 shows the relative inflow velocity vectors on a blade sections.

The resultant flow vector V is the resultant vector composed of the in-
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Figure 2.7: Inflow velocity vectors on a blade section

duced axial in flow velocity U∞(1 − a) and the induced angular inflow

velocity Ωrr(1 + b). The angle of attack α is the angle between V and the

chord line of the blade element, it is determined by the resultant veloc-

ity’s angle of incidence ϕ, the blade root pitch θpitch and the local blade

twist at particular blade section θsect. This is given as:

α = ϕ− (θsect + θpitch) (2.23)

The magnitude of the lift and drag forces are determined by the angle of

attack, Figure 2.8 shows the elemental lift dL , drag forces dD, elemental

axial forces and elemental radial forces.

The elemental axial and radial forces can be calculated from:

dFA2 = dLcosϕ+ dDsinϕ (2.24)
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Figure 2.8: Induced blade-forces on a blade section

dFR2 = dLsinϕ− dDcosϕ (2.25)

where ϕ is determined trough the Pythagorean theorem from Figure 2.6

as

ϕ = tan−1(
U∞(1− a)

Ωrr(1 + b)
) (2.26)

and the resultant flow vector becomes

V =
√

((U∞(1− A))2 + (Ωrr(1 + b))2 (2.27)

The elemental thrust and torque contributions to rotor loads can be de-

fined as

dFA2 = N
1

2
ρV 2c(CLcosϕ+ CDsinϕ)dr (2.28)
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dT2 = N
1

2
ρV 2c(CLsinϕ− CDcosϕ)rdr (2.29)

where CL and are the lift and drag coefficients for the airfoil sections for

the specific α at the blade section, N is the number of blades of the turbine

and c is the blade section chord length.

The method used to solve the set of equations derived from momentum

theory and blade element theory is to make the two thrust Equations 2.17

and 2.28 equal and make the two torque Equations 2.18 and 2.29 equal.

After the iteration reaches the convergence criterion, the solution of a

and b will be found. Then the elemental forces of each blade are added to

obtain the total thrust and torque acting on the the rotor.

The solution method used in this thesis is presented by Nevalainen [32]

with the error minimization through an optimization routine as presented

by Masters & Orme [67] and Chapman [31].

2.4.4 Correction factors

The Prandtl tip loss correction is a factor representing the turbine’s ef-

ficiency loss in BEMT due to the rise in tip vortices, which decrease the

performance close to blade tips. The factor tends to zero at the blade tips

and to one at the root [70]. It is defined as:

Ftip =
2

π
cos−1(exp[−N

2

(1− (r/R))

(r/R)sinϕ
]) (2.30)
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where R is the rotor radius. A hub loss correction factor may also be

added in a similar manner as suggested by Moriarty [71] as:

Fhub =
2

π
cos−1(exp[−N

2

(r −Rhub)

rsinϕ
]) (2.31)

where Rhub is the radius of the turbine hub. The total loss factor is then

defined as:

F = FtipFhub (2.32)

Combining the factor with the momentum equations for thrust and torque

gives:

dT1 = 4πρFb(1− a)U∞Ωrr
2 rdr (2.33)

dFA1 = 4πρF (U2
∞a(1− a) + (bΩrr)

2)rdr (2.34)

As the turbine enters its turbulent wake state during high axial induc-

tion factors at high TSRs, the original BEMT theory will under predict

the thrust on the rotor. This can be corrected by using an empirical for-

mulation of the axial induction factor at large a-values, which is obtained

from experimental data.

A frequently used method to correct for the thrust under-prediction in the
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Figure 2.9: Local element thrust coefficient CFA for various empirical
models plotted against axial induction factor with Prandtl tip-loss factor
F = 0.7

turbulent wake state is the Spera high induction correction as discussed

in Shen et al. [70].

Another widely used empirical method of high induction correction that

has been included as an option for the presented BEMT model is the high

induction correction factor by Glauert [68].

Finally, Buhl [72] addressed the issue that the Spera and Glauert high

induction corrections fail to incorporate the Prandtl loss factor by fitting

a parabolic curve to the highly loaded experimental turbine data shown

in Figure 2.9.

The blades on fixed-pitch rotors will operate in the full range of boundary

layer regimes for the airfoils which are classified as the ‘attached’, the

‘high lift’ and the ‘stall’ regions of the lift and drag curves. So it is impor-

tant to know the details of the lift and drag behaviour of the airfoils in the

high lift and stall regime. An empirical model modifies the experimen-

tal or numerical 2-D airfoil lift and drag data in the high lift/post-stall
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boundary layer regimes to more accurately capture the airfoil behaviour

observed for stalling turbines, which is developed by Viterna & Corrigan

and discussed in Spera [73].

2.5 Passive control

In the wind industry, one of the main problems and governing failure

modes is the wind turbine tower fatigue, due to turbulent wind loading

and dynamic loading from rotation of the turbine. The cost of the entire

wind turbine tower may be reduced if the dynamic response of the turbine

tower is suppressed. The dynamic loading in tidal turbine towers is more

complicated, so that it becomes necessary to reduce the dynamic response

of the turbine tower.

2.5.1 Tuned mass damper

The TMD concept was first applied by Frahm in 1909 [74] to reduce the

rolling motion of ship and ship hull vibrations. Ormondroyd and Den

Hartog [75] presented a theory for TMD later, followed by a detailed dis-

cussion of optimal tuning and damping parameters in Den Hartog’s book

[76]. The theory was firstly applicable for an undamped Single Degree

Of Freedom (SDOF) system with a sinusoidal force excitation. This the-

ory for damped SDOF systems has been investigated by numerous re-

searchers.

52



Figure 2.10: (a) Schematic of a single-degree of freedom structure with a
rectangular tuned liquid damper for SDOF system and (b) dimensions of
the rectangular tuned liquid damper [77]

The principle of a TMD is adding an extra structural damping to the

structure, where leads to a significant reduction of the fatigue load. This

is the passive control method utilised in this thesis, details will be given

in Chapter 3.

2.5.2 Tuned Liquid damper

A tuned liquid damper (TLD ) is placed on a structure and its frequency

is tuned to the natural frequency of structure, it generally consists of a

rigid tank with shallow water in it, as shown in Figure 2.10.

The TLD creates dynamic forces which absorbs excitation when the liq-

uid in it moves. Tanmura et. al. [78] presented a study of Nagasaki
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Figure 2.11: Schematic of a tuned liquid columns damper [16]

Airport Tower equipped with a TLD system. The results showed that the

damping ratio of the tower increased by 4.5 times the original value.

It is simple to manufacture and install a TLD. Moreover, It is considered

to be cost-effective due to the infrequent maintenance required[77].

2.5.3 Tuned Liquid columns damper

The principle of a tuned liquid column damper is similar to a tuned liq-

uid damper except that the tuned liquid column damper has two verti-

cal columns. The height difference in these columns plays the role of a

spring. Likewise, the fluid passing through the orifice separating these

two columns provides a damping force [16]. Figure 2.11 shows schematic

of a tuned liquid columns damper.

A TLCD consists of a rigid piping system which is integrated in a struc-

ture and partially filled with liquid, preferably water. Its dynamics can be

derived using the extended instationary Bernoulli’s equation for moving
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reference systems. Extending the passive TLCD by an actively controlled

air-spring setup, and applying a suitable control strategy results in a

novel hybrid active damper which combines both, the advantages of ac-

tive control devices, and the salient features of TLCD, e.g., cheap and easy

implementation into civil engineering structures, simple modification of

the natural frequency and damping properties, little maintenance costs,

a performance comparable to TMD as well as little additional weight if

the TLCD is used as water reservoir for fire fighting [99].

2.6 Summary

In this chapter, the basic types of station keeping systems for TSTs are in-

troduced, the mono-pile and mooring are the support systems modeled in

this thesis. Basic theories of BEMT is explained to give an understand of

the further application in the next chapters. The loading calculations on

TSTs for the mono-pile and moorinng supported are basis on the BEMT

code. Then three kinds of structural passive controls are listed and briefly

discussed to show which method is taken in this thesis for load reduction.
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Chapter 3

Models

3.1 Wave Models

This following section discusses the mathematical challenge for modeling

surface wave motions expressed as a potential flow problem. Figure 3.1

shows the definition of the flow domain in all wave models used here,

where the origin is at the mean water level (MWL), C is wave celerity

(wave speed), H is wave height, a is wave amplitude, L is wave length

and h is water depth.

3.1.1 Governing equations and boundary conditions

Due to the fluid flow is considered to be two dimensional, irrotational and

incompressible in all potential flow wave models, a potential flow field

may be assumed throughout the domain and thus the Laplace equation
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Figure 3.1: Diagram showing the definition of the flow domain as used by
the wave models

[79] shown below must be satisfied along the horizontal x and vertical z

coordinates as:
∂2ϕ

∂x2
+
∂2ϕ

∂z2
= 0 (3.1)

where ϕ is the velocity potential and from potential flow theory the hori-

zontal and vertical velocity components are given as:

u =
∂ϕ

∂x
, w =

∂ϕ

∂z
(3.2)

Navier-Stokes equations can be used to represent the equations of motion

for a fluid parcel in the flow, which gives the relationship between forces

acting upon the parcel and its mass and acceleration according to New-

ton’s second law. If considering the fluid is inviscid, this relationship can

be simplified to the Euler equation [80] due to the viscous forces, which

can be neglected and written as:

ρ
∂v

∂t
= −∇p+ ρg (3.3)

where ρ is the fluid density, v is the fluid velocity vector, ∇p is the pres-
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sure gradient over the fluid parcel and g is the gravitational acceleration.

As the flow is assumed to be irrotational, the Euler equation can be in-

tegrated over a streamline and transformed to a generalized Bernoulli

equation as:

gz +
p

ρ
+

1

2
((
∂ϕ

∂x
)2 + (

∂ϕ

∂z
)2) +

∂ϕ

∂t
= C(t) (3.4)

The boundary conditions for the problem can be separated into free sur-

face boundary conditions, bottom boundary conditions and periodicity

boundary conditions. because there is no flow going through the seabed,

the bottom boundary condition is set to be zero vertical velocity as:

w = 0→ ∂ϕ

∂z
= 0 for z = −h (3.5)

The fluid is allowed to slip along the seabed, which means that there

is no constraint for the horizontal velocity component. The kinematic

boundary condition and dynamic free surface condition are set at the

surface. The kinematic boundary condition relates the surface water-

particles’ vertical velocity component to the surface vertical velocity com-

ponent and is expressed as:

∂ϕ

∂z
=
∂η

∂t
+
∂η

∂x

∂ϕ

∂x
for z = η (3.6)

where η is the free surface displacement around the mean water level.

For a dynamic free surface boundary condition, the pressure at the sur-
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face must be equal to the atmospheric pressure which is assumed as a

constant p0. The pressure at the free surface can be expressed by using

Equation 3.4 as:

gz +
p

ρ
+

1

2
(u2 + w2) +

∂ϕ

∂t
=
p0
ρ

(3.7)

when setting z = η as the surface displacement and p = p0 at the surface,

the equation above may be expressed as:

gη +
1

2
((
∂ϕ

∂x
)2 + (

∂ϕ

∂z
)2) +

∂ϕ

∂t
= 0 for z = η (3.8)

The final boundary condition states that the periodicity of the waves must

be upheld, which is expressed as:

η(x, t) = η(x+ nL, t) = η(x, t+ nT ) (3.9)

where n is all positive integers.

The free-surface kinematic boundary condition in Equation 3.5 and dy-

namic boundary condition in Equation 3.8 are both non-linear; this makes

an analytical solution impossible, combining with governing Equation 3.1

for this mathematical problem. So suitable approximations for the gov-

erning equations are needed which will allow for the creation of useful

wave models.
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3.1.2 Linear wave theory model

The linear approach is based on Dean & Dalrymple [80] to solve the gov-

erning equations of motion. The wave-steepness, H/L, is assumed to be so

small that the unknown surface elevation, η, can be eliminated from the

governing equations, so as the surface boundary conditions is evaluated

at z = 0 instead of z = η .

The neglection of non-linear term in Equation 3.6 only generates a small

error by assuming that H/L � 1 [80]. The final form of the linearised

kinematic free-surface boundary condition by using Taylor expansions

around z = 0 becomes:

∂ϕ

∂z
=
∂η

∂t
forz = 0 (3.10)

The dynamic boundary condition is linearised in the same method and

becomes:

gη +
∂ϕ

∂t
= 0 forz = 0 (3.11)

Equations 3.10 and 3.11 can be combined to form a single free surface

boundary condition, which is given by:

∂ϕ

∂z
+

1

g

∂2ϕ

∂t2
= 0 for z = 0 (3.12)
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The exact solution of the Laplace equation can be obtained by using the

linearised free surface boundary condition in Equation 3.12, the bottom

boundary condition in Equation 3.1 and the periodicity condition can be

expressed by the method of separation of variables and Laplace equa-

tion separately. The final expression of the linear velocity potential then

becomes:

ϕ =
ag

ω

coshk(z + h)

coshkh
sin(ωt− kx) (3.13)

where ω is the wave angular frequency defined as ω = 2π/T and k is the

wave number defined as k = 2π/L.

The dispersion relationship of a linear wave is defined as:

ω2 = gktanh(kh) (3.14)

The simplest form of wave current interactions can be found when observ-

ing waves propagating on a current which is uniform with depth and flow

direction. The velocity potential can be obtained by using the methodol-

ogy described by Dean & Dalrymple [80], and given as:

ϕ = U∞x+
ga

ω(1− U∞k/ω)coshkh
coshk(h+ z)cos(kx− ωt) (3.15)

The analytical expressions for the horizontal and particle velocities can

be defined as:
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u = U∞ +
gak

ω(1− U∞k/ω)coshkh
coshk(h+ z)sin(kx− ωt) (3.16)

w = − gak

ω(1− U∞k/ω)coshkh
sinhk(h+ z)cos(kx− ωt) (3.17)

and the dispersion relationship becomes:

ω2 =
gktanh(kh)

1− U∞k/ω2
(3.18)

3.1.3 Third order Stokes wave-current model

In order to solve the governing potential flow equations with non-linear

boundary conditions, Stokes wave theory is widely used. The order of

the theory indicates that the number of terms kept in the perturbation

expansion of the variables will be insert into the governing equations and

solved for.

Kishida & Sobey [81] presented a third order Stokes theory coupled with

a linear shear current profile. The mean Eularian current Um and con-

stant current vorticity Ω0are calculated by:

Um = Us −
(Us − Ub)

2
(3.19)

Ω0 =
(Us − Ub)

h
(3.20)
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where Us is the surface velocity and Ub is the bottom velocity.

When current and wave parameters are specified, the first definition of

Stokes wave speed is used as a dispersion relationship to define the celer-

ity C which is used as the velocity of the moving reference frame [81].

The dispersion relationship for the model is defined as:

C = C0(a11 − ε2a20) + Um +
1

2
ω0h (3.21)

C0 = [gktanh(kh)]1/2 (3.22)

ω0 = Ω0/kC0 (3.23)

where the lengthy perturbation constants a11 and a20 are as given in

Kishida & Sobey [81].

The third order solution of the stream function ψ was presented by Kishida

& Sobey [81] as:

ψ =
C0

k
[a00kzl + a01(kzl)

2 + εa11
sinhkzl
sinhkh

coskxl + ε2(a20kzl + a22
sinh2kzl
sinh2kh

cos2kxl)

+ε3(a31
sinhkzl
sinhkh

coskzl + a33
sinh3kzl
sinh3kh

cos3kxl)

(3.24)
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where the xl and zl coordinates are in the lagrangian frame of reference

which are related to the global reference frame by xl = x−C(t) and zl = z.

ε is the wave steepness equals to kH/2, the perturbation constants can be

found in Kishida & Sobey [81].

3.1.4 Fifth order Stokes wave-current model

A higher order method is needed to solve the governing potential equa-

tions for waves which are close to the breaking limit. Fenton [62] pre-

sented a model of fifth order Stokes theory for the dimensionless steep-

ness, εF = H/gT , above 0.02.

The celerity of the waves is calculated by the definition of the mean uni-

form current. The Eularian time-averaged fluid velocity at any point is

given by:

cE = C − ū (3.25)

where ū is the mean current speed user defined and dispersion relation-

ship is given by Fenton [62] as:

(
k

g
)1/2cE −

2π

T (gk)1/2
+ C0 + (

kH

2
)2C2 + (

kH

2
)4C4 = 0 (3.26)

where C0,C2 and C4 are coefficients which have functional dependence on

kh.
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The velocity potential in an Eularian reference frame with the celerity

and wave number solved from Equation 3.25 and 3.26 is given by:

ϕ = (c− ū)x+ C0(
g

k3
)1/2

5∑
i=1

εi
i∑

j=1

Aijcoshjkzsinjk(x− ct) (3.27)

where the fluid velocities are u = ∂ϕ/∂x and w = ∂ϕ/∂z. The constants of

Aij are given by Fenton [62].

3.1.5 Three step wave-current interaction model

A fifth order wave model combined with BEMT code named ’three step’

approximate wave-current interaction model has been developed by Dal-

rymple [82] since the original fifth order Stokes model is only applicable

for waves on a uniform current. The method works by calculating the

wave period that an observer moving with the depth-averaged mean cur-

rent velocity would see, this period is defined as apparent period Tapp and

is given as

L

T
=

L

Tapp
+ Ū (3.28)

where Ū is the depth-averaged mean current. The wave length and period

are related by the first-order dispersion relationship:

T 2
app =

2πL

gtanh(2πh/L)
(3.29)
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and the depth-mean current is approximated via linear wave theory:

Ū =
4πL

sinh(4πh/L)

h

0

U(z)cosh(4π
(z + h)

L
)dz (3.30)

where U(z) is the arbitrary vertical current velocity profile.

3.1.6 Irregular sea-state wave model

A large number linear wave harmonics with random wave parameters

are superimposed to represent the stochastic sea-state [85]. According to

this method, the wave elevation in one dimension can be written as the

sum of the displacement contributions from N number of waves from:

η(x, t) =
N∑
i=1

aicos(kix− ωit+ ϕi) (3.31)

where ai is the wave amplitude, ki is the wave number, ωi is the angular

frequency and ϕi is the random phase angle between 0-2π for i-th wave

component. The wave number and angular frequency are based on the

dispersion relationship and wave amplitudes are obtained by Joint North

Sea Wave Project (JONSWAP) [83] power spectral function which will be

described in 3.1.7.

Similarly to the surface displacement, the linear equations for particle

velocities can be re-written in harmonic form as:

ui(x, z, t) =
gaiki

ωi(1− U0iki/ωi)coshkih
coshki(h+ z)sin(kix− ωit+ ϕi) (3.32)
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wi(x, z, t) = − gaiki
ωi(1− U0iki/ωi)coshkih

sinhki(h+ z)cos(kix− ωit+ ϕi) (3.33)

the term of the current velocity U∞ will be added to the equations in later

stage and U0i is the current velocity component aligned with individual

wave harmonic’s direction of propagation.

The wave harmonic components are given a random distribution of direc-

tional spread. Each harmonic component is given a normally distributed

random incidence angle θi between the wave orthogonal and the current

flow in x direction. A coordinate system rotated to the angle of incidence

is defined for each wave component. Then Equations 3.313.323.33 are

evaluated by using the x′i-coordinate from this reference frame which is

transformed from the global reference frame by:

x
′

i = cos(θi)x+ sin(θi)y (3.34)

the coordinate system is shown in Figure 3.2

The wave induced velocities for the added wave harmonics are now ex-

pressed as:

u(x, y, z, t) = U∞+
N∑
i=1

cos(θi)ui(x
′

t, t) (3.35)
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Figure 3.2: Coordinate system transformation for each harmonic compo-
nent

v(x, y, z, t) =
N∑
i=1

sin(θi)ui(x
′

t, t) (3.36)

w(x, y, z, t) =
N∑
i=1

wi(x
′

t, t) (3.37)

3.1.7 JONSWAP power density spectrum

It will be unrealistic for the wave energy or steepness, if the values of ai

and ωi are assigned arbitrarily. Field tests were undertaken by Pierson

& Moskowitch [84] to record the irregular ocean surface elevation and

to derive the spectral density for a natural sea-state from the collected

signal by discrete Fourier transfer. Then the Pierson-Moskowitch (PM)

spectrum SPM(ω) was generated by fitting a function to the power density

spectra in the frequency domain.

Based on PM spectrum, Hasselmann et al. [83] modified the spectrum to

fit data from the JONSWAP which was collected from the North Sea. The
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PM spectrum is defined by the DNV standard [60]as:

SPM(ω) =
5

16
H2
sω

4
Pω
−5exp(−5

4
(
ω

ωP

)−4) (3.38)

where is the significant wave height of the sea which is the mean of the

third largest recorded wave heights, ωP = 2π/TP is the spectral peak an-

gular frequency which is the frequency of the highest wave energy. The

JONSWAP spectrum is defined as:

SJ(ω) = AγSPM(ω)γ
exp(−0.5(ω−ωp

σωp
)2) (3.39)

Aγ = (1− 0.287ln(γ)) (3.40)

σ =


0.07, ω ≤ ωP

0.09, ω > ωP

(3.41)

where γ is a non-dimensional peak shape parameter and σ is a spectral

width parameter. For γ = 1, the JONSWAP spectrum collapses into the

PM spectrum. In this thesis the value of γ is defined to 3.3 as recom-

mended in DNV-RP-C205 [60].

According to Faltinsen [85], the relationship between the wave compo-

nent amplitudes and angular frequencies can be expressed as:
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1

2
a2i = SJ(ωi)4ω (3.42)

where 4ω is the constant bandwidth between the N sampled frequen-

cies from the power density spectrum used to construct the irregular sea-

state.

The zero-crossing period for the JONSWAP spectrum can be empirically

fitted to the peak period [60] by:

TP = Tz/(0.6673 + 0.05037γ − 0.006230γ2 + 0.0003341γ3) (3.43)

where Tz is the average zero-crossing period.

3.2 Rigid supported turbine

Considering unsteady wave-current coupled forces as excitation, the dy-

namic load experienced on a tidal turbine is a complicated physical prob-

lem which poses a challenge for engineers trying to design larger tidal

turbine foundations and other floating support structures. Different struc-

tural damping strategies have been implemented in the wind industry

such as tuned mass dampers and some control technologies like genera-

tor torque control and blade pitch control are also developed to reduce the

fatigue and structural loading.

Even though structural damping control strategies have not been studied

in the tidal energy field, strategies used by the offshore wind industry
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can be used as a first approximation to augment the structural life of

diverse components. Passive control approaches are wildly adapted for

wind turbines [6, 5, 3]. The use of a tuned mass damper (TMD) on a

wind turbine structure, is a simple passive structural control technique

to absorb energy at one of the natural frequencies of the entire structure

[4]. The aim of this project is to design a tidal turbine station keeping

system with a tuned mass damper in order to reduce fatigue and peak

structural loading experienced by the support structures. This may result

in a reduction of mass and costs associated with the structural support

and station keeping system.

3.2.1 Numerical models for monopile support

A model to study the application of Tune Mass Dampers (TMD) on struc-

tures used for tidal turbines is presented in this section. This model

is based on studies done for wind turbine technologies, as presented by

Temple[8]. A wind turbine with a tower-monopile supporting structure

can be modeled as an inverted pendulum, a general representation of the

system is shown in Figure 1.

The tower-monopile dynamics can be modeled as a forced response of a

non-gyroscopic damped linear system, a finite element model, established

for wind turbines [12] is given by:

Mẍ + Cẋ + Kx = F(t) (3.44)
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Figure 3.3: Structural model of a flexible wind (tidal) turbine

Figure 3.4: Flow chart of forces input

where M, C and K are the structural mass, damping and stiffness ma-

trices; ẍ, ẋ and x are structural nodal acceleration, velocity and displace-

ment vectors in x-axis respectively ; F(t) is the applied force, which in

this case is predominantly the rotor thrust applied on the top node of

structure and drag forces on the tower due to the tidal current. The

rotor thrust is calculated by Blade Element Momentum Theory in wave-

current coupled conditions, Figure 3 shows the procedure using Nevalainen’s

data [19, 20] in the dynamic analysis.

The structural damping is related to the first tower modal frequency ω0t
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as follows [14, 15]:

C = 2ςtω0tM (3.45)

where ςt is structural damping ratio for steel structure which is set to

0.005 [14].

Unlike onshore and offshore wind turbines, tidal turbines are fully sub-

merged in water, so the effect of added mass cannot be ignored, the added

mass is the inertia added to a system because an accelerating or deceler-

ating body must move (or deflect) some volume of surrounding fluid as it

moves through it. It will change the natural frequencies of the structure,

this will be shown in the results section. The tower is considered to be a

vibrating rod in the water column in order to calculate the added mass

and viscous damping [9] which will be discussed in Section 3.4. So the

equation of motion can be corrected as:

(M + MA)ẍ+ (C + CV)ẋ+ Kx = F(t) (3.46)

where MA is the added mass matrix and CV is the hydrodynamic viscous

damping matrix.

3.2.2 Tuned mass damper

The location of the Tuned Mass Damper (TMD) is in the nacelle, this

model initially considers a nacelle oscillating in a horizontal fore-aft di-
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Figure 3.5: Schematic of TMDx in turbine nacelle [6]

rection which is denoted by TMDx. Figure 3.5 shows a simple schematic

of the TMDx configuration.

The TMDx is considered as an additional degree of freedom in the x-axis.

Once the tower-monopile’s natural frequencies have been derived, the

TMD properties can be calculated as Yilmaz[11]:

ωTMD =

√
kTMD

mTMD

(3.47)

ςTMD =
cTMD

2
√
mTMDkTMD

(3.48)

where ωTMD is the TMD natural frequency, kTMD is the TMD spring stiff-

ness, mTMD is the TMD mass, cTMD is the TMD damping constant and

ςTMD is the damping ratio. As suggested by Stewart[16], the optimal TMD

natural frequency is approximately 93% of the tower natural frequency.

Then the damping ratio ςTMD can be estimated according to the study

[17].
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The TMD properties are applied to obtain the mass matrix of TMDx,

MTMD, the damping matrix, CTMD, and the stiffness matrix, KTMD. The

discrete equation of motion defined with TMDx can be written as:

 M + MA 0

0 MTMD


 ẍ

ẍTMD

+

 C + CV + CTMD −CTMD

CTMD CTMD


 ẋ

ẋTMD


+

 K + KTMD −KTMD

−KTMD KTMD


 x

xTMD


=

 F(t)

0

 (3.49)

set

KT =

 K + KTMD −KTMD

−KTMD KTMD

 ,

CT =

 C + CV + CTMD −CTMD

CTMD CTMD

 ,

MT =

 M + MA 0

0 MTMD

 ,

75



Ẍ =

 ẍ

ẍTMD

 , Ẋ =

 ẋ

ẋTMD

 ,

X =

 x

xTMD

 andP(t) =

 F(t)

0

 .

then the equation of motion for the whole structure is as follow:

MTẌ + CTẊ + KTX = P(t) (3.50)

3.3 Time domain solution

Most numerical solution methods are step-by-step methods because the

equation is solved at a succession of values of t, t + 4t, t + 24t. The

accuracy of the solution depends on the length of the step interval 4t. It

must be short enough for the load time history, the response time history

and in many cases the shortest natural periods should be well defined.

There are two categories for numerical solution, explicit and implicit.

A value at t +4t is obtained by considering equilibrium at time t in ex-

plicit methods. This is good for highly non-linear systems, but require

short time steps. For implicit methods, a value at t +4t is obtained by

considering equilibrium at time t + 4t. This system can be calculated

with long time steps for linear systems. Some explicit and implicit meth-

ods are compared in Table 3.1.

76



%

Examples Method Stability

Explicit
Central difference Obtain value Conditional (depends on

at t+4t by time step length),

Runge-Kutta considering equilibrium but reasonably accruate
at tine t solution if stable

Implicit
Newmark β Obatin value at Can be made

t+4t by unconditionally stable

Newmark-Wilson considering equilibrium (but solution is
at tine t+4t no necessarily accurate)

Table 3.1: Summary of numerical solution methods

In order to solve the equations of motion, three methods are discussed in

this section.

3.3.1 Central difference (explicit) method

It is required to step through time t calculating x at each step in Equation

3.50 as

MTẌ t + CTẊ t + KTX t = P(t) (3.51)

the finite difference relationships are used:

Ẋ t =
1

24t
[X t+4t −X t−4t] (3.52)

Ẍ t =
1

4t
(Ẋ t+4t/2 − Ẋ t−4t/2) =

1

4t2
[X t+4t − 2X t +X t−4t] (3.53)

Equations 3.52 and 3.53 can be substituted into equation 3.51 to form an

equation for X t+4t as
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X t+4t = [
MT

4t2
+

CT

24t
]−1
{
P(t)−KTX t −

MT

4t2
(X t+4t − 2X t) +

CT

24t
X t−4t

}
(3.54)

This equation can be used for SDOF and MDOF of progress with the time

history. Initial condition X t−4t and X t are required, then X t+4t will be

obtained by this equation. Time is progressed by 4t now so that X t−4t

becomes X t and X t becomes X t+4t to calculate the next value of X t+4t.

The procedure is repeated until the required length of time history has

been reached.

3.3.2 Runge-Kutta (explicit) method

German mathematicians Carl Runge and Wilhelm Kutta developed a

method to solve the ordinary differential equations in 1900 [86, 87], named

as Runge-kutta method. It has two stages to calculate each time step as

shown in Table 3.2.

The first stage is the use of the relationships below:

Ẍ t = M−1
T (P(t)−KTX t −CTẊ t) (3.55)

Ẋ t+4t = Ẋ t + Ẍ t4t , X t+4t = X t + Ẋ4t (3.56)

then evaluates these equations at the beginning, middle and end of each

overall time step. For the middle of the time step the equations are eval-
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Ẋ

X
Ẍ
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Ẋ

t
4
t

2
M
−
1

T

{ P
(t

+
4
t/

2)
−

K
T
X

2
a
−

C
T
Ẋ
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Ẋ

2
b

}
t

+
4
t/

2

3
t

+
4
t

Ẋ
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uated by the forces acting at the beginning of the time step and the forces

calculated to be acting at the middle of the time step.

The four values of Ẍ in stage 1 are then used with a Simpson’s rule

formula to obtain a better estimate the change of Ẋ for the overall time

step in stage 2. Then the four values of Ẋ are used to obtain a better

estimate of the change X.

The Runge-Kutta method gives a more accurate result for each time step

than the central difference method. Runge-Kutta method may require

less computing resources than a smaller step length central difference

method to get the same accuracy in SODF system.

The Runge-Kutta method may not be better than the central difference

method for a realistic MDOF system, due to the time step not being deter-

mined by accuracy of the solution but by the shortest structural period for

solution stability. The best type of solutions for MDOF structural system

is the implicit type.

3.3.3 Newmark β method

Newmark β method is selected for wind turbines with finite element

model [12]. This method is widely used in numerical evaluation of the

dynamic response of structures and solids such as in finite element anal-

ysis to model dynamic systems. Equation 3.51 discretized in the time

domain by this algorithm is presented below:
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X t+4t = X t + 4tẊ + 4t2[(1

2
− β)Ẍ t + βẌ t+4t] (3.57)

Ẋ t+4t = Ẋ t +4t[(1− γ)X t + γX t+4t] (3.58)

Theoretical analysis of the method shows that the approximation will be

stable with β > 0.25 and the equations will be linear.

Substituting Eqn 3.57 3.58 into Equation 3.51 and rearranging to obtain

the final form of the equation so that X t+4t can be solved, gives:

[KT +
γ

β4t
CT +

1

β(4t)2
MT]X t+4t = P(t+4t)

+CT{
γ

β4t
X t + (

γ

β
− 1)Ẋ t +4t( γ

2β
− 1)Ẍ t}

−MT{
1

β(4t)2
X t +

γ

β4t
Ẋ t + (

γ

2β
− 1)Ẍ t} (3.59)

β and γ are set to 0.25 and 0.5 respectively in order to make the method

implicit and unconditionally stable[13]. Moreover, the formula reverts to

central difference method when β is set to 0.

This method is selected to solve the Equation 3.50. The equation of mo-

tion can be solved by 3.59 once the step interval4t has been determined.

The method is also good for non-linear systems with a shorter time step

in order to avoid instability. For linear systems the method may be ap-

plied separately to each normal mode or in matrix form to the coupled
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Cartesian equations. For non-linear systems the matrix form is the most

convenient.

3.4 Added mass and damping

When a structural component vibrates in a viscous fluid, the presence

of the fluid gives rise to a fluid reaction force which is known as added

mass and a damping contribution to the dynamic response of a compo-

nent. Added mass and damping are dependent on fluid properties as well

as being a functions of component geometry and adjacent boundaries.

M.W.Wambsganss et.al.[9] presented an appropriate form of the Navier-

Stokes equation to solve and give the radial and tangential velocity com-

ponents of the viscous flow in the fluid annulus formed by a vibrating rod

and rigid containment shell.

The resultant force per unit length of a cylinder is given as:

F = −iMUωHeiωt (3.60)

where M is the mass of fluid per unit length displaced by the cylinder

which equals to ρπd2 and d is the radius of the cylinder, U is the velocity of

the fluid at the cylinder surface, ω is oscillating frequency of the cylinder

and H is given as:
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H ={2α2[I0(α)K0(β)− I0(β)K0(α)]− 4α[I1(α)K0(β) + I0(β)K1(α)]

+ 4αγ[I0(α)K1(β) + I1(β)K0(α)]− 8γ[I1(α)K1(β)− I1(β)K1(α)]}

/{α2(1− γ2)[I0(α)K0(β)− I0(β)K0(α)] + 2αγ[I0(α)K1(β)

− I1(β)K0(β) + I1(β)K0(α)− I0(β)K1(β)] + 2αγ2[I0(β)K1(β)

− I0(α)K1(α) + I1(α)K0(β)− I1(α)K0(β)]} − 1 (3.61)

where α, β, γ are defined as

α = kd

β = kD

γ = d/D (3.62)

and D is the radius of the boundary, k =
√
iω
υ

where υ is the kinematic

viscosity of fluid.

The real part of Equation 3.60 gives

F = MUω[Re(H)sinωt+ Im(H)cosωt] (3.63)

This equation shows that two forces are required. The first one is−MUωRe(H)sinωt

where MRe(H) is the added mass of the cylinder. The second one is

−MUωRe(H)cosωt which is related to the damping mechanism.

83



According to Equation 3.61, H depends on α, β and γ in a very compli-

cated way. However in some special cases, the equation can be simplified.

3.4.1 Infinite and viscous fluid

In this case, the value ofH can be obtained by taking the limits of Bessel’s

functions. Here D ∼ ∞, γ ∼ ∞ and β ∼ ∞. Then I0(β) ∼ ∞, I1(β) ∼ ∞,

K0(β) ∼ 0 and K1(β) ∼ 0. Finally the Equation 3.61 reduces to:

H = 1 +
4K1(α)

αK0(α)
(3.64)

This case can be applied to the monopile structure in the ocean where the

boundary can be considered as infinite.

3.4.2 Infinite and inviscous fluid

If the fluid is inviscid, this means α ∼ ∞, then Equation 3.64 becomes:

H = 1 (3.65)

This result is consistent with the classical result that the added mass of

a cylinder vibration in an infinite fluid is equal to the mass of the fluid

displaced by the cylinder [9].
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3.4.3 Viscous and inviscous fluid with large values of

α and β

For cases have large values of α and β, the results can be greatly simpli-

fied with the asymptotic formulae:

I0(z) ∼ ez√
2πz

I1(z) ∼ ez√
2πz

K0(z) ∼
√

π

2z
e−z

K1(z) ∼
√

π

2z
e−z (3.66)

then H becomes:

H ={[α2(1 + γ2)− 8γ] sinh(β − α) + 2α(2− γ + γ2) cosh(β − α)

− 2γ2
√
αβ − 2α

√
α

β
}/[α2(1− γ2) sinh(β − α)

− 2αγ(1 + γ) cosh(β − α) + 2γ2
√
αβ + 2α

√
α

β
] (3.67)

If the fluid is considered to be inviscid, Equation 3.67 reduces to:

H =
1 + γ2

1− γ2
(3.68)
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Table 3.3: Monopile verification parameters
% TMD Mass {kg} k {N/m} d {N/(m/s)} ωn{rad/s} ωd{rad/s} ζ (%)

Optimal 20000 64000 10000 1.79 1.77 14

3.4.4 Added mass and damping factors

Th added mass correction factor CM is defined as a constant, added mass

can be obtained by multiplying the factor to the mass of displace fluid.

From Equation 3.63 it can be defined as:

CM = Re(H) (3.69)

Similarly, from Equation 3.63 the damping coefficient can be written as:

CV = MωIm(H) (3.70)

3.5 Model verification

A parametric study for the monopile offshore 5MW wind turbine, 126 m

rotor diameter and a 90 m hub height, with TMDx has been investigated

by M.A. Lackner [89] using FAST (Fatigue, Aerodynamics, Structures

and Turbulence). In this thesis, the present rigid support model is sim-

ulated in the same case as M.A. Lackner’s study to do verification. The

parameters are given in Table 3.3.

Note that the TMD mass is approximately 8% of the nacelle mass and 6%

of the tower top mass. The baseline case is established by providing an
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initial perturbation of 1 m to the tower top fore-aft displacement, TTDFA.

Only the first tower fore-aft DOF is turned on. The comparison of two

models in time series of TTDFA for the baseline case is shown in Fig-

ure 3.6, the average difference of the amplitudes for two models is 9.2%,

at beginning the difference of the first amplitude is 1.1% then it rise to

17.7% at last. Next, the TMDx DOF is turned on, a time series of TTDFA

and the TMDx displacement is shown in Figure 3.6 as well. For TTDFA

displacement, the average difference of the amplitudes for the two mod-

els for the first 50 seconds is 13.1%, at first the difference is 0.1% then

it rise to 27.9%, , and the motion is tend to close 0 after 50 seconds. For

the TMDx displacement, the average difference of the amplitudes for the

two models from 4s to 12s is around 4.6% and the it is totally 22.1% for

the first 50 seconds. It is satisfied that the results of the present model

are approach to the FAST simulation in vibration frequencies according

to Figure 3.6, and the amplitudes of two models at the beginning of sim-

ulation matches appropriately, but the difference will increase with time.

3.6 System parameters

In the previous chapter, generative models of monopile supported tur-

bines with a tuned mass damper was described. Construction of such

models is the factor that defines the sea states to generate the external

forces on these systems and the parameters of the tuned mass dampers in

the nacelles. The design of the turbine support structure investigated is

based on Torr Head Tidal Energy Array project proposed by Tidal ven-
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Figure 3.6: Time series results for monopile verification
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Table 3.4: tower-monopile support parameters.
Materials Steel

Height of nacelle center 25m
Pile diameter 2.5m

Structure weight Dry weight of 120 tonnes
Thickness 0.073m
Top mass 150 tonnes

tures. This project is located in the north coast of County Antrim in

Northern Ireland with a maximum capacity is 100MW from 50 to 100

turbines each with a rated power output of at least 1MW. This project

started its feasibility and site research in 2013 and had planed to be op-

erational in 2020, now it is at Consent and Environmental Statement

(ES) Submission stage. The Environmental Impact Assessment (EIA) re-

port lists three types of turbine support structures relevant to the project

[7], which are gravity base structures including sub-sea bases, drilled

monopiles and drilled pin pile tripods.

For this investigation, a drilled monopile structure for a 1MW turbine

is selected and the relevant parameters are given in Table 3.4. Most

of the parameters are from the EIA report, but there is no information

of the pile wall thickness and the top mass (rotor and nacelle weight).

The thickness here is estimated from the pile diameter, material density,

weight and length. Moreover, the top mass is from Alstom’s 1MW tidal

turbine [22]. Some parameters can be changed in order to simulate dif-

ferent conditions and sensitivity.

The calculation for the first natural frequency of the structure is the first

step to determine the optimum TMD parameter. In this study only the
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Table 3.5: TMD parameters
mass mass k c ς

percentage (kg) (N/m) (N*s/m) (-)
1% 1200 85359 1233.4 0.0609
2% 2400 170720 3471.4 0.0858
3% 3600 256080 6346.4 0.1045
4% 4800 341440 9723.8 0.1201

fore-aft TMD system, TMDx, is under consideration, so the first tower

bending mode is the most important [6]. According to the model, the

first natural frequency for the structure is 9.069 rads/s (1.443Hz) for the

structure support case study. This is a high value compared to a 5MW

offshore wind turbine with monopile support which usually has a first

nature frequency of 1.71 rads/s (0.272Hz) [11]. Based on an investiga-

tion [6], the mass of the TMD is suggested as 2% of the total mass of

the monopile. This results in a final mass of 2400kg in this case study.

In order to understand the effects of the TMD mass on the structure, a

parametric study using four different masses is performed.

In this thesis, 1200kg. 2400kg, 3600kg and 4800kg TMDx mass values

are chosen which are related to 1%, 2%, 3% and 4% of the monopile mass

respectively. Table 3.5 summarized the TMD parameters obtained.

This study uses the unsteady wave-current coupled loads data gener-

ated from an improved Blade Element Momentum Theory [10]. The tidal

current speed is 2.5m/s, significant wave height is 5.979m, average zero

crossing period is 7.616s for a sea-state generated by an estimated wind

speed of 25.628m/s. These data were taken from the British Oceano-

graphic Data Center [23], provided by the UK Offshore Operators Associ-
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ation and funded by the Institute of Oceanographic Sciences. The water

depth is assumed to be 50m.

3.7 Results

3.7.1 Instant impact on structure

The tower top fore-aft deflection with and without TMDx are simulated

over 120s, an instant load of 450kN which is considered as the value of

the thrust load on the turbine is applied on the structure at the time step

0.4s then removed at 0.5s, Figure 3.7 shows the results.

The results shows that TMDx has a clear effect on the structural response

when an instant load is applied on the structure such as from a impact

of an extreme wave-current coupled force on turbine or a large marine

mammal impact. The TMD shows a better performance in deflection re-

duction with a higher mass ratio. However the results for the TMDs with

a mass ratio higher than 2% does not show a significant improvement

in the deflection reduction. Furthermore, all the TMDx with the mass

percentages of 2%, 3% and 4% will make the system stop vibrating in

45s and the TMD displacement is also within the range of 0.2m, which is

small relative to the Alstom’s 1MW tidal turbine nacelle which is 22m in

length. Besides, the TMD mass (mass ratio 2%) is only 1.6% of the top

mass. This means that using a TMD on tidal energy applications is valu-

able in terms of their space requirement and ease of installation hence it

can be installed in the nacelle or in the tower.
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Figure 3.7: Tower top displacement and TMD displacement in time series
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3.7.2 Monopile Results Including Wave-current Inter-

actions

This study uses the unsteady wave-current coupled load data generated

from an improved Blade Element Momentum Theory [10]. The tidal cur-

rent speed is 2.5m/s, significant wave height is 5.979m, average zero

crossing period is 7.616s for a sea-state generated by an estimated wind

speed of 25.628m/s. Again, these data was taken from the British Oceano-

graphic Data Center [23], provided UK Offshore Operators Association

and funded by the Institute of Oceanographic Sciences. The water depth

is assumed to be 50m. A 5 minutes simulation is applied under this load

condition and figure 3.8 shows a result of tower top displacement and

fore-aft bending moment at tower base in a time window of 14s .

It is obvious that for a longer term run the TMD effect can be almost ig-

nored because the reduction of displacements and loads is small as the

figure shows. When the structure becomes stable, a rainflow-counting

algorithm [18] is applied here to do a primary fatigue evaluation for the

maximum stress at tower base from 200s to 300s of the simulation. Ta-

ble 3.6 and 3.7 shows the results of the the fatigue analysis done for a

monopile when not using and using TMD.

From these tables, the two factors cyclic stress ranges and the number of

cycles in this range, which are more important than the mean peak stress

[92], are almost same in these two conditions (less than 5% difference).

By the use of S-N curves, it can be demonstrated that the smaller ampli-

tude stress fluctuations in the case using TMD will yield a longer fatigue
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Figure 3.8: Tower top displacement and base bending moment in time
series
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Table 3.6: number of cycles at various stress range and mean stress com-
bination for structure without TMD

Stress Range Mean Stress (MPa)
(MPa) 216 218 220 222 224
0.97 27 110 85 120 26
2.90 N/A N/A N/A N/A N/A
4.83 N/A N/A 9 N/A N/A
6.77 N/A N/A 1 N/A N/A
8.70 N/A N/A 3 N/A N/A

Table 3.7: number of cycles at various stress range and mean stress com-
bination for structure with TMD

Stress Range Mean Stress (MPa)
(MPa) 216 217 218 219 220
0.95 26 105 86 118 27
2.86 N/A N/A N/A N/A N/A
4.76 N/A N/A 9 N/A N/A
6.67 N/A N/A 1 N/A N/A
8.57 N/A N/A 3 N/A N/A

life (number of cycles to failure) [21]. However, it can also be seen that

the effect of the TMD on the fatigue load reduction is negligible for long

term operations of the system.

3.7.3 Frequency Domain Analysis

A frequency domain analysis is presented in this section to investigate

the influence of added mass and TMD to the structure. Figure 3.9 shows

the first 4 mode shapes of the structure. Figure 3.10 shows a plot of

the tower base fore-aft bending moment in frequency domain with three

different conditions. The first figure presents the results where no added

mass effect and no TMD is considered, second one has added mass effect

but no TMD, the last one has both added mass and TMD.
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Figure 3.9: Mode shapes of monopile structure

As Figure 3.10 shows, there is a peak at the first natural frequency of the

structure which is mode 1, the natural frequency will reduce slightly from

1.533Hz to 1.443Hz when considering the added mass effect. Moreover,

the amplitude of resonance in fore-aft direction decreases significantly

when TMDx is applied on the structure. Generally, the passive structural

control such as tuned mass damper is an effective method to reduce the

loads due to the vibration of structural modes.

3.8 Summary

This chapter has presented some major wave models as well as a method

to model the passive structural control technology for tidal stream tur-

bines combined with wave-current interactions. A simple and fast simu-

lation method has been developed to model the monopile support struc-
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Figure 3.10: Frequency domain results of structure

tures for turbine applications and analyze their dynamics including the

added mass and hydrodynamic damping effects. A passive structure con-

trol technique was employed in this methodology, which used a TMD on

the structure to do a fully coupled dynamic analysis in time domain us-

ing a Newmark β method. The forces on the turbine are calculated by

the BEMT model for each time step. It is shown that the tuned mass

damper had significant effects on the resonance reduction and fore-aft

fatigue load-reduction under instant impacts. However, compared to the

instant fluctuating impact, TMD had an insignificant effect when mod-

est unsteady wave-current coupled forces were applied on the structure

for long operating periods. By changing the shape of tower-monopile sup-

porting structure, this will make a better performance in fatigue analysis.
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Chapter 4

The Dynamics of Tension

Mooring Supported Tidal

Turbines

This chapter reports the design of a tidal turbine station keeping system

based on the adoption of a tension mooring system and investigates the

potential introduction of into the system and the capabilities to reduce

the peak loads tidal turbines experience during operations in high en-

ergy wave-current environments. This is investigated using a model of

a neutrally buoyant turbine supported from a tension cable based moor-

ing system, where tension is introduced by a submersed buoy in water.

The loading on the turbine rotor blades and buoy are calculated using

a wave and current coupled BEMT. A basic survey of the use of elasti-

cated mooring lines for the mooring of tidal current turbines is presented

by Bowie[34]. It reports that the reduction of cost and time involved
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in installation are significant by using flexible moorings instead of pile

structure foundations, moreover the structural costs of the device and its

mounting are reduced. The utilization of orientating the device to current

flow naturally reduces the cost of control systems, furthermore mainte-

nance costs and the downtime can be reduced by easier removal of device

for onshore maintenance.

4.1 Preliminary numerical model

The focus of this section is to present a methodology which assesses the

behavior of a neutrally buoyant turbine supported from a tension cable

based mooring system, where tension is introduced by a buoy acting as

a damper and fully submersed in water, the schematic of the system in

operation is shown as Figure 4.1.

The tension mooring system is modeled as a special type of triple pen-

dulum which is called an inverted flail. It consists of three pendula, the

first one is attached to a fixed point which is considered to be an anchor,

and to its end mass the other two pendulum are joined. An original flail

system without external drive in the absence of a gravity field is shown

in Figure 4.2 and it was analyzed in Przybylska[26].

Unlike the original flail system, the tension mooring supported turbine

is driven by external forces, the loading on the turbine rotor blades and

buoy are calculated using the same BEMT code as the last Chapter. In

addition, due to the turbine being able to move and respond to the moving
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Figure 4.1: Schematic of tension mooring turbine in operation

Figure 4.2: Geometry of the flail pendulum [26]
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flow field, the resulting motions due to flow field interactions should be

taken into consideration.

4.1.1 Preliminary modeling of a mooring supported

turbine

The mooring lines are assumed to continuously be in tension during

operation. Therefore this system can be modeled as an inverted flail

pendulum in order to calculate its dynamics, Figure 4.3 provides the

model for the three elements in flail pendulum. Equations of motion of

the pendulum system can be derived using the following Lagrange’s

equation:
d

dt

(
∂L

∂θ̇i

)
− ∂L

∂θi
= Qi (4.1)

where L = T − V is defined as the Lagrangian of the system, T is the

kinetic energy and V the potential energy of system.

When an external force function Qi is not considered, the Lagrangian of

the system can be written as:

L =
1

2
(m1 +m2 +m3)l

2
1θ̇

2
1 +

1

2
m2l

2
2θ̇

2
2 +

1

2
m3l

2
3θ̇

2
3

+m2l1l2θ̇1θ̇2cos(θ1 − θ2) +m3l1l3θ̇1θ̇3cos(θ1 − θ3)

+(m1 +m2 +m3)gl1cosθ1 +m2gl2cosθ2 +m3gl3cosθ3 (4.2)

where m1 is the lumped mass of three mooring lines at the connection
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Figure 4.3: The Schematic of “flail” pendulum

node, m2 represents the mass of buoy, m3 represents the mass of the tur-

bine. l1, l2 and l3 are the length of each segment. θ1, θ2 and θ3 are gener-

alized coordinates as shown in Figure 4.3.

It is assumed that the turbine and the buoy are neutrally buoyant, so

the potential energy terms in Equation 4.2 can be eliminated. The new

Lagrangian of the system becomes:

L =
1

2
(m1 +m2 +m3)l

2
1θ̇

2
1 +

1

2
m2l

2
2θ̇

2
2 +m2l1l2θ̇1θ̇2cos(θ1 − θ2)

+
1

2
m3l

2
3θ̇

2
3 +m3l1l3θ̇1θ̇3cos(θ1 − θ3) (4.3)

Substituting Equation 4.3 into Equation 4.1 yields the Euler-Lagrange
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differential equations of the system:

(m1 +m2 +m3)l
2
1θ̈1 +m2l1l2θ̈2cos(θ1 − θ2) +m2l1l2θ̇

2
2sin(θ1 − θ2)

+m3l1l3θ̈3cos(θ1 − θ3) +m3l1l3θ̇
2
3sin(θ1 − θ3)

= Q1 (4.4)

m2l
2
2θ̈2 +m2l1l2θ̈1cos(θ1 − θ2)−m2l1l2θ̇

2
1sin(θ1 − θ2)

= Q2 (4.5)

m3l
2
3θ̈3 +m3l1l3θ̈1cos(θ1 − θ3)−m3l1l3θ̇

2
1sin(θ1 − θ3)

= Q3 (4.6)

where Q1, Q2 and Q3 are the generalized forces. In this case Q3 equates

to the momentum thrust develop by a turbine loading where this is op-

erating under combined wave and currents conditions. Q2 relates to the

buoyant forces occurring on the floater, which are considered in the form

of buoyancy and wave excitation forces. Q1 will be obtained from the re-

lationship between Q2 and Q3.

4.1.2 External forces

Figure 4.4 shows the forces in the system, thrust F3 can be obtained from

the ESRU in house BEMT code [10]. Modifications have been made in the
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Figure 4.4: Forces on the system

original code due to the relative velocity between the turbine and inflows:

U = u−UT (4.7)

where u is the inflow velocity which is calculated from the wave-current

model in Section 3.1, UT is the inertia velocity of the turbine itself, which

can be calculated in vertical and horizontal directions as:

UT,x=θ̇1l1cosθ1 + θ̇3l3cosθ3 (4.8)

UT,y=θ̇1l1sinθ1 + θ̇3l3sinθ3 (4.9)
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The buoy is assumed to be a sphere, F2b, and represents the net buoyancy,

the drag force F3 is also calculated from the BEMT code, the relative

velocity between buoy and in flows is now considered as:

V = u−UB (4.10)

the inflow velocity u can be calculated by wave-current model with the

coordinates of the buoy. UB is the inertia velocity of buoy, given by:

UB,x=θ̇2l2cosθ2 + θ̇1l1cosθ1 (4.11)

UB,y=θ̇2l2sinθ2 + θ̇1l1sinθ1 (4.12)

According to Anli and Ohlhoff[24, 27], the generalized force can be ob-

tained as:

Qk =
n∑
i=1

Fi
∂ri
∂qk

(4.13)

where Qk is the Generalized force associated with the kth Euler-Lagrange

differential equation, Fi is the external force, ri is the position of the point

of application and qk is the generalized coordinate.

Thus, the generalize forces for this system are given as:
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Q1 = F3l1cosθ1 − F2bl1sinθ1 + F2l1cosθ1 (4.14)

Q2 = F2l2cosθ2 − F2bl2sinθ2 (4.15)

Q3 = F3l3cosθ3 (4.16)

When the generalized forces are obtained, the Euler-Lagrange differen-

tial equations of the system can be solved with given initial conditions.

Substituting Equations 4.14 4.15 4.16 into Equations 4.4 4.5 4.6 then

divide by l1, l2 and l3 yields:

(m1 +m2 +m3)l1θ̈1 +m2l2θ̈2cos(θ1 − θ2) +m2l2θ̇
2
2sin(θ1 − θ2)

+m3l3θ̈3cos(θ1 − θ3) +m3l3θ̇
2
3sin(θ1 − θ3)

= F3cosθ1 − F2bsinθ1 + +F2cosθ1 (4.17)

m2l2θ̈2 +m2l1θ̈1cos(θ1 − θ2)−m2l1θ̇
2
1sin(θ1 − θ2)

= F2cosθ2 − F2bsinθ2 (4.18)
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m3l3θ̈3 +m3l1θ̈1cos(θ1 − θ3)−m3l1θ̇
2
1sin(θ1 − θ3)

= F3cosθ3 (4.19)

4.1.3 Modification for BEMT correction

For the wave-current model module, calculations of horizontal and ver-

tical particle velocities are related to the horizontal and vertical coordi-

nates of the turbine in different wave theories, these coordinates of the

turbine hinge node and buoy hinge node are written as:

xturbine =
∂Xturbine

∂x
(4.20)

zturbine =
∂Xturbine

∂z
(4.21)

xbouy =
∂Xbuoy

∂x
(4.22)

zbouy =
∂Xbuoy

∂z
(4.23)
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Moreover, the vertical particle velocities are varied along blades, so ele-

ment coordinates are:

xelement = xturbine + helementcosθ4 (4.24)

zelement = zturbine + helementsinθ4 (4.25)

where helement is the element position on the blade and θ4 is the pitch an-

gle of the turbine. If assuming that the turbine is kept horizontal during

operation, the pitch angle is assume to be 0 degrees, so element coordi-

nates will become:

xelement = xturbine (4.26)

zelement = zturbine + helement (4.27)

Substituting these coordinates into the wave model, then this module has

been modified to work for the mooring supported turbine.
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The relative velocity modification of inflow velocity should be considered

not only in the BEMT Equations but also in the Dynamic Wake Model

and Morison Equation.

According to the methodology, the adapted dynamic inflow effects to the

BEMT model [93, 29, 94]. On a blade element bounded by radii R1 and

R2 the momentum thrust equation depends on the time derivative of the

axial induction factor ȧ and is written as:

dFA = 2uaṁ+ umAȧ (4.28)

where ṁ is the mass flow through the intersecting fluid annulus, a is the

axial induction factor and mA is the apparent mass of the blade section.

The mass flow through the annular element can be written as:

ṁ = ρu(1− a)dA (4.29)

where ρ is the water density and dA = π(R2
2 −R2

1).

For a turbine of radius R, Tuckerman [95] suggests that the apparent

mass acting on the rotor can be approximated by an enclosing fluid ellip-

soid, which through the use of potential flow theory is expressed as:
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mA = 8/3ρR3 (4.30)

Substituting Equation 4.29 and 4.30 into Equation 4.28 and each term

divided by π, ρ, u2, dA and multiplied by 2, the final form of the unsteady

thrust coefficient for an annulus can be obtained as:

CFA = 4a(1− a) +
16

3πu

(R3
2 −R3

1)

(R2
2 −R2

1)
ȧ (4.31)

Substituting the thrust coefficient CT = 4a(1− a) into Equation 4.31 and

replace the inflow velocity with the modified horizontal relative velocity,

Ux gives:

CFA = CT +
16

3πUx

(R3
2 −R3

1)

(R2
2 −R2

1)
ȧ (4.32)

The last term in right hand of Equation 4.32 can be used to calculate the

additional force from the dynamic wake effects.

The inertial forces caused by fluid acceleration effects is expressed as a

Morison equation, and as presented by Buckland [30] and Chapman [31].

The inertial force per unit length, dl, in the wave propagation direction

on a submerged body can be written as:

110



dFin = ρCmA
∂u

∂t
dl (4.33)

where A is the cross horizontal sectional area parallel to the flow and Cm

is the inertia coefficient which is expressed as:

CM = 1 + CA = 1 +
MA

ρAdl
(4.34)

where MA is the added mass for a blade element.

For blade elements, the added mass in axial and tangential directions can

be approximated with that of a fixed pitched plate as Theodorsen’s theory

[33]:

MA,axial = ρπ(
csinβ

2
)2dl (4.35)

MA,tan = ρπ(
ccosβ

2
)2dl (4.36)

which is the mass of an enclosing fluid cylinder with radii r of half the

vertical and horizontal chord components c of the respective blade sec-

tions with section angle β [19].

111



Substituting Equations 4.34, 4.35 and 4.36 into Equation 4.33 and plug-

ging the relative velocity U into the Equation gives the equations for the

inertia forces in the axial and tangential directions for a blade element

as

dFin,axial = ρ(1 +
π((csinβ)/2)2

Aα
)Aα

∂Ux

∂t
dr (4.37)

dFin,tan = ρ(1 +
π((ccosβ)/2)2

Aα
)Aα

∂Uy

∂t
dr (4.38)

where Aα is the cross sectional area of the airfoil at the blade section.

When the external forces based on the initial conditions for the first time

step are calculated from the BEMT equations with a wave-current model,

dynamic wake model and Morrison equations, the system Lagrange’s

equation solver will start to solve the differential equations of motion

for the mooring supported turbine. Then the new values and the angular

velocities of θ̇1, θ̇2, θ̇3 are obtained to work as the new initial conditions

for the next time step. This loop process will continue until the time step

reaches the end time of the simulation.
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Figure 4.5: A multi-pendulum system with a finite number of rods and
masses

4.2 Developed model with finite element method

The method shown previously is now extended to include the mooring

line dynamics using as a basis finite element method. It is necessary to

divide rods in pendulum system into a finite number of segments with

lumped mass nodes. The segment is assumed to be fully flexible in bend-

ing directions, thus the whole system becomes a multi-pendulum system

with a finite number of rods and masses as shown in Figure 4.5.

In
n∑
1

order to derive the governing equations of motion for a single ten-

sion mooring line system, the Euler-Lagrange differential equations of

the system is written in global coordinates:
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[M] =



n∑
i=1

Mi

n∑
i=2

Mi . . .
n∑

i=n

Mi

n∑
i=2

Mi

n∑
i=2

Mi . . .
n∑

i=n

Mi

...
... . . .

...
n∑

i=n

Mi

n∑
i=n

Mi . . .
n∑

i=n

Mi


(4.40)

ψ =


0 θ1 − θ2 . . . θ1 − θn

θ2 − θ1 0 . . . θ2 − θn
...

... . . .
...

θn − θ1 θn − θ2 . . . 0

 (4.41)

([M] + [ma]) [l] cos(ψ)
[
θ̈
]

+([M] + [ma]) [l] sin(ψ)
[
θ̇
]2

− [M] gsin [θ]− [CV]
[
θ̇
]

= [F] (4.39)

where:
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[m] =



n∑
i=1

mai
n∑

i=2

mai . . .
n∑

i=n

mai
n∑

i=2

mai
n∑

i=2

mai . . .
n∑

i=n

mai

...
... . . .

...
n∑

i=n

mai
n∑

i=n

mai . . .
n∑

i=n

mai


(4.42)

[l] =


l1 l2 . . . ln
l2 l2 . . . ln
...

... . . .
...

ln ln . . . ln

 (4.43)

[θ] =


θ1
θ2
...
θn

 (4.44)

[CV] =


CV1
CV2

...
CVn

 (4.45)

[F] =


F1

F2
...
Fn

 (4.46)

Mi is the lumped mass for each node, mai is the lumped added mass for

each node, li is the length of each segment, g is the gravitational accel-

eration, CVi is the viscous damping coefficient of each segment which is
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Figure 4.6: Forces on each mass node

calculated by the method presented by [9], θi is the angle shown in Figure

4.5.

The components of external force on each node is shown in Figure 4.6.

The weight Wi is counted in Equation 4.39, so the external forces be-

comes:

Fi = fEi + fDicosθi + fBisinθi (4.47)

fEi = Qi/li (4.48)

where

fDi = drag force on the segment

fBi = buoyancy force on the segment

Qi = the generalized force on the segment which can be calculated from

Equation 4.13
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In this method the inertia velocity of the turbine itself is calculated from

the backward difference method for the position Xturbine at time tit:

UT =
∂

∂∆t
(Xit

turbine −Xit−1
turbine) (4.49)

similarly, the relative velocity of the buoy:

UB =
∂

∂∆t
(Xit

buoy −Xit−1
buoy) (4.50)

In this system it has also been assumed that the turbine is naturally

buoyant and buoy is positively buoyant, so the masses should not be in-

cluded in the weight calculation. However, masses of the device should

be considered in an inertia matrix.
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Figure 4.7: System with device masses

Figure 4.7 shows the buoy is attached to the n-th node which is the end

of the mooring line and the turbine is attached to the m-th node. Thus

the final inertia matrix becomes:
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R
]

=
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where mt and mat are the mass and added mass of turbine, mb and mab

are the that of buoy.

Figure 4.8: “Flail” system

The schematic of system shown in Figure 4.8 is now extended to incorpo-

rate the dynamics of the turbine and buoyant reaction forces when sub-

jected to wave-current conditions. Figure 4.8 shows the final diagram of

the system studied here, the final matrix is listed blow. In a “flail” moor-

ing system, the inertia matrix and the weight matrix are different from

the single mooring system. As Figure 4.8 shows, the buoy and turbine

are attached at the n-th and m-th node and the three section pendulum

is hinged at the k-th node, so the inertia matrix and weight matrix be-

come:
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Substituting Equations 4.53 4.54 and 4.55 into Equation 4.39, the gov-

erning equation for a “flail” system with finite number of segments can

be obtained from:

([MRf ] + [mRf ]) [l] cos([ψ])
[
θ̈
]

+ ([MRf ] + [mRf ]) [l] sin([ψ])
[
θ̇
]2

− [Mf ] gsin([θ])− [CV]
[
θ̇
]

=[F] (4.56)

4.2.1 Wave excitation on buoy

The wave excitation is considered to be a factor to the system, the buoy

will be excited by the wave at a different magnitude according to its

shape. In this section the buoy is considered to be a sphere, the hydrody-

namics of the buoy will be discussed in next chapter. The external forces

including wave excitation on the system of the tension mooring turbine

is shown in Figure 4.9.

The wave excitation in two directions can be defined as the exciting force

and drift force, and is based on the work from Wu [96], the wave induced

exciting and drift forces acting on a submerged sphere is given as:

fj = −ρω2ASB
(φ1 + φD)njds (4.57)
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Figure 4.9: Forces on the system

and

f̄j =
1

4
ρω2A2

SB
∇φID �∇φ∗IDnjds (4.58)

where ρ is the water density, ω is the wave frequency, A is the wave am-

plitude, SB is the body surface, φ1 is incident wave velocity potential, φD is

the diffraction potential, nj is the the body’s normal vector pointing into

the water, φID = φ1 + φD and the symbol ∗ denotes the complex conjugate.

In this investigation an assumption has been made that the diffraction

potential is not taken into account in order to simplify the calculation.

Therefore the the exciting and drift forces can be simplified to:
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fj = −ρω2ASB
φ1njds (4.59)

and

f̄j =
1

4
ρω2A2

SB
∇φ1 �∇φ∗1njds (4.60)

Moreover, the added mass effect should be considered, these added mass

forces on the buoy in both horizontal and vertical directions are:

Fax =
2

3
ρπR3 ∂

2φ1

∂x∂t
(4.61)

and

Fay =
2

3
ρπR3 ∂

2φ1

∂y∂t
(4.62)

where R is the buoy radius.
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4.3 Solving scheme

The original ESRU BEMT code is based on a rigid supported turbine, the

position of the turbine will not change by time. However, the coordinates

of the mooring supported turbine are variable by time and the relative

velocity should be calculated by the relative motion between the turbine

and wave-current inflow. Figure 4.10 shows the main process of the simu-

lation. The process nodes with dark background are works based on this

thesis, which are different from the original BEMT.

Figure 4.10: Solving process

There are some variables in input parameters which can be defined by
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users for different mooring turbine devices. The state of motion for the

system in the first time step is defined by the initial conditions. The

loading on each mooring element and buoy is obtained as the external

forces and the loading on the turbine is calculated by BEMT code with

relative velocity modification. After the external forces are determined,

the governing equation can be solved for the new state of motion of the

system. The new values will be used as initial conditions for the next

time step until the simulation reaches the end time.

4.4 Summary

This chapter has explained two fast simulation algorithms that is devel-

oped to model the neutrally buoyant turbine supported from a tension

cable based mooring system based on the modified ESRU BEMT code.

The methodology presented here is arguably the simplest form of repre-

senting the complicated interactions between the instationary marine en-

vironment, the rotating turbine blades and the tension mooring system,

while still retaining the capability to resolve the most dominant hydro-

dynamic loading effects. In the next chapter investigations will be under-

taken to inform the relationships between a turbine’s inflow, operating,

turbine and mooring parameters to the generated loads on the rotor.
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Chapter 5

Investigation of the

relationships between the

rotor loads and input

parameters

“As order exponentially increases, time exponentially speeds up.”

– Ray Kurzweil.

This section focuses on variables such as turbine dimensional parame-

ters, buoyancy, wave-current coupled forces and mooring line parame-

ters. Sea states with both regular and irregular waves are investigated,

the wave data was collected by UK Offshore Operators Association and

provided by the British Oceanographic Data Center [1]. The irregular

waves are generated from JONSWAP spectrum [25].
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5.1 Model verification

A method in predicting the line’s profile for a typical taut mooring system

has been presented by Lingzhi Xiong [90], The properties of the mooring

line are tabulated in Table 5.1 and the water depth is 300m.

Table 5.1: Mooring line properties
Parameter Length (m) Diameter(mm) Wet(kg/m) EA (MN)

Ground chain 100 147 367 1220
Mid-section 218 208 7.8 348

Fairlead chain 50 147 367 1220

In order to verify the developed model, the mooring line’s profile had been

compared with Xiong’s data. Moreover, the elasticity of the mooring line

in developed model was considered here to give an accurate comparison.

Note an assumption that the elasticity was ignored had been made in

other simulations. Table 5.2 gives the line tension at the fairlead. The

initial angles for the mooring line segments are all set to be π/2, which

means the mooring line is lay on the seabed at first. Then the external

forces are applied on the fairlead. Then a constraint is applied to the

system, the constraint is that the projection of the mooring line on the

z-coordinate cannot exceed 310m. The mooring line’s profile is obtained

at the end of the simulation.

Table 5.2: Line tension at the fairlead
Fairlead position FX(kN) FZ(kN) Total tension (kN)

X=190m 251.2 659.9 706.1
X=200m 885.7 1603.7 1832.0
X=210m 4824.1 7346.2 8788.5

The horizontal distance between the fairlead and the anchor point varies

from 190m to 210m, with a step of 10m. Line’s profile are compared with

the results based on Xiong’s work in Orcaflex. As shown in Figure 5.1,
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good agreement has been achieved in fairlead at 200m and 210m, but the

developed model failed to work when the fairlead is at 190m. This means

the developed model is applicable to the condition that the tension on the

mooring lines is high enough to make the mooring to be approximately

straight. The application of the system where has large buoyancy, thrust

and mooring lines length shorter than water depth make the developed

model reach the requirement.

5.2 Investigation of waves

Table 5.3 shows the sea states investigated in the simulations to obtain

the thrust and torque on the turbine. Steep and swell waves are investi-

gated to make comparison on how wave excitation on the buoy affect the

loads on the turbine. The sea site is based on Nevalainen’s studies[19],

the assumed hypothetical site for the generic turbine was chosen off the

north east coast of the Orkney islands, Scotland. This site provided a flow

speed around 2.5m/s and a n average depth of 50m.

Table 5.3: sea states
sea states 1 2 3 4 5
Hs[m] 4.322 1.07 2.665 1.07 2.665
Tz[s] 6.135 11.07 6.135 11.07 6.135

water depth(m) 50 50 50 50 50
steepness(H/gT ) 0.0719 0.0099 0.0443 0.0099 0.0443

wave model three-step linear three-step random random

sea states 6 7 8 harsh winter
Hs[m] 1.008 2.665 1.008 10.12
Tz[s] 4.653 6.135 4.653 10.06

water depth(m) 50 40 50 50
steepness(H/gT ) 0.0237 0.0443 0.0237 0.1027

wave model three-step three-step random three-step
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Figure 5.1: Comparison of the line’s profile in water (Fairlead at x=190m,
200m and 210m, z=310m
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Figure 5.2: The sea site chosen by Nevalainen[19]

5.2.1 Initial conditions

The first step for solving the system is to confirm initial conditions. In

this study, a set of initial conditions is considered, which is shown in

Table 5.4

Table 5.4: Initial conditions for preliminary model
Initial conditions

θ1=π
4

θ̇1=0 θ2=0 θ̇2=0 θ3=
π
2

θ̇3=0

Angles in Table 1 are all measured in radian. For analysis of pendu-

lum dynamics, usually more initial conditions should be taken into con-

sideration. However for the mooring supported tidal turbine, when the

buoyancy and wave-current coupled force are applied on the system, the

turbine will oscillate around the equilibrium position during operation,

no matter what the initial conditions are set. The reduction of force and

torque on the turbine resulted by the tension mooring system during op-
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eration, is the main topic of this thesis to investigate. This is so that only

one initial condition is considered in this study, it is that mooring lines l1

and l2 are at vertical position and l3 is at horizontal position.

For a developed model, it is necessary to define the initial condition for

all segments as Table 5.5 shows

Table 5.5: Initial conditions for developed model
Initial conditions

θ1 ∼ θk=π
4

θ̇1 ∼ θ̇k=0 θm+1 ∼ θn=0

θ̇m+1 ∼ θ̇n=0 θk+1 ∼ θm=
π
2

θ̇k+1 ∼ θ̇m=0

The initial angles are set for every segment separately in order to repre-

sent an untensioned mooring line. Moreover, this method can be applied

to a general mooring system as well. Parameters for the turbine, buoy

and mooring line are given below

case 1:segment length = 0.5m mbuoy = 5t mturbine = 80t l1 = 30m l2 = 15m

l3 = 3m turbine diameter = 20m buoy redius = 3m Ωr = 1.25rad/s Blade

profile: NRELs814 Mooring line material: Dyneema

case 2:segment length = 0.5m mbuoy = 300kg mturbine = 1000kg l1 = 20m

l2 = 10m l3 = 3m turbine diameter = 4m buoy redius = 1.1m Ωr = 1.25rad/s

Blade profile: NRELs814 Mooring line material: Steel

case 3:segment length = 0.5m mbuoy = 300kg mturbine = 1000kg l1 = 20m

l2 = 10m l3 = 3m turbine diameter = 4m buoy redius = 1.1m Ωr = 1.25rad/s

Blade profile: NRELs814 Mooring line material: Dyneema
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For case 1, the turbine diameter is set to be same as AR2000 and the

weight is half of the AR1500. For case 2 and 3, the turbine diameter and

weight is same as SIT Instream Turbine[97].

5.2.2 Comparison of preliminary and developed mod-

els

In this part, the results for two models in three regular sea states are

discussed under Case 1. The turbine is submerged in a swell wave in the

first sea state and linear wave theory is applied, loading in the developed

model is slightly higher than that in the preliminary model, this is be-

cause there are external force terms on every element in the developed

model. The same trend is in the second sea state where three step wave

theory is applied [37], but results from two models are closer when com-

pared with the first sea state. In the harsh winter sea state, the developed

model generates a higher loading value, it shows this to be a transition

from the curve of preliminary model. Moreover, the torque value turns to

negative in some time steps in harsh winter sea state as Figure 5.5, this

will be discussed in detail in the next section.

In the system with smaller size of turbine and buoy as Case 2 shows a

similar shape of curve, the system loading in the preliminary model is

higher than the developed model as for Figure 5.6. In this case the moor-

ing line weight is about 1/6 of the the buoyancy, the mooring line weight

becomes an important factor, the system starts to vibrate in the developed

model after running for 1 minute. However, the system will not vibrate
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Figure 5.3: Case 1, regular waves generated from sea state 2, current
speed is 2.5m/s
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Figure 5.4: Case 1, regular waves generated from sea state 3, current
speed is 2.5m/s
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Figure 5.5: Case 1, regular waves generated from harsh winter, current
speed is 2.5m/s
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in the preliminary model because of the mooring line is being considered

as three rigid rods and only three lumped masses in the system, which is

not fully representative of a low tension system. Moreover, in a system

where the mooring line is made of dyneema as Case 3, the density of this

material is similar to water. The system loading in the developed model

shows a significant improvement, as shown in Figure 5.7.

Figure 5.6: Case 2, regular waves generated from sea-state 7, current
speed is 2.5m/s

Figure 5.7: Case 3, regular waves generated from sea-state 7, current
speed is 2.5m/s
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In order to avoid the vibration of steel wire mooring systems in Case 2,

a factor Alpha is introduced to Equation 4.56 as a multiplier to enlarge

the viscous coefficient term CV so that the vibration can be damped ef-

fectively. Figure 5.8 and 5.9 shows the comparison of the turbine thrust

loading in different Alpha. It indicates that the higher viscous damp-

ing coefficient will reduce the vibration of the system that mooring lines

are made from steel, the coefficient term effects in the dyneema mooring

line system is not as obvious as that of steel mooring. In addition, the

large viscous damping will make the convergence of the solution procure

quicker.

Figure 5.8: Case 2, turbine thrust loading in different Alpha
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Figure 5.9: Case 3, turbine thrust loading in different Alpha

5.2.3 Regular waves

Firstly, the results with and without wave excitation on the buoy are com-

pared in the same sea states. In sea state 3, a three-step approximate

wave-current interaction model was applied in this simulation since its

steepness is larger than 0.02 [62]. However, the hub height will drop to

around 22.5m in operation compared to the original height which was set

at 30m from the seabed, so for the rigid supported turbine the hub height

is modified to the same as a mooring one. Figure 5.10 shows the result for

Case 1 in sea state 3, it showed that the mooring supported turbine has

a favorable performance in reduction of peak thrust on the turbine when

compared to the rigid supported turbine and the result that considered

wave excitation on the buoy shows a different waveform as that without

wave excitation. The mean values of the three curves are close which are

1.019MN for rigid supported, 1.019MN for that without wave excitation

on buoy and 1.016MN for that with wave excitation on buoy. However, the
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standard deviation of the thrust on a mooring supported turbine consid-

ered wave excitation on the buoy is 28.23kN and without wave excitation

is 16.90kN which are 69.69% and 41.73% of that on rigid structure’s value

40.50kN.

The results for torque shows a different trend compared with thrust,

torques on the mooring supported turbine with and without wave exci-

tation on buoy both have more fluctuation than that of rigid supported.

Although the mean values are similar which are 364.91kN·m, 364.66kN·m

and 361.98kN·m for rigid, without and with wave excitation on buoy sepa-

rately, the standard deviation are 18.19×kN·m, 87.14kN·m and 83.41kN·m.

This is because of the influence of the relative velocity modification in the

vertical direction which will be expressed later in this section.

Figure 5.10: Thrust and torque for Case 1 in sea state 3
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Figure 5.11 shows the result for the turbines in case 1 operating in sea

state 1. The wave height is higher than that of sea state 3 but the hub

height is around 22m, so the mean values are slightly lower than those

of sea state 3 which are 962.41kN, 963.75kN and 962.53kN for rigid sup-

ported, mooring turbine without and with wave excitation on buoy. The

standard deviations are 65.04kN, 27.66kN (42.54%) and 47.52kN (73.07%)

separately. The mean values of torque are 301.53kN·m, 302.10kN·m and

302.85kN·m and the standard deviations are 23.72kN·m, 141.84kN·m and

137.15kNm.

Figure 5.11: Thrust and torque for Case 1 in sea state 1

Figure 5.12 gives results for the system operating in sea state 4. It shows

a favorable performance in the reduction of peak loading both in thrust
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and torque and the wave excitation on buoy gives a positive effect in

load reduction. The reason is that the buoy will oscillate more regularly

in the wave with long wave periods, as Figure 5.15 shows. In this sea

state, the mean values of thrust are 1.260MN, 1.265MN and 1.265MN for

rigid supported turbine, mooring turbine without and with wave excita-

tion on buoy respectively. The standard deviations are 47.35kN, 11.59kN

(24.5%) and 6.56kN (13.9%) separately. The average torque values are

694.47kN·m, 699.92kN·m and 699.06kN·m and the standard deviations are

58.19kN·m, 24.98kN·m and 20.86kN·m.

Figure 5.12: Thrust and torque for Case 1 in sea state 2

The result for harsh winter conditions, extreme storm condition, is shown

in Figure 5.13, the peak loading reduction in thrust is performed simi-
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larly as sea state 4. The mean values are 930.03kN, 8.97MN and 8.94MN

separately, the standard deviations are 390.80kN, 86.67kN (22.2%) and

37.57kN (9.6%). However the torque shows negative values which indi-

cates that the directions of torque have reversed, in reality this means the

turbine will be stalled due to displacement being so large, as Figure 5.15

shows, that the velocities on blade elements changed. This phenomenon

will be discussed in detail in Section 5.15.

Figure 5.13: Thrust and torque for Case 1 in harsh winter

In sea state 6, the performance of the system is different from all the

sea states above, the peak loading of thrust as a result of wave excita-

tion on buoy becomes larger than the rigid supported turbine. The mean

values of thrust are 1.045MN, 1.044MN and 1.040MN for rigid supported
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turbine, mooring turbine without and with wave excitation on buoy. The

standard deviations are 5.82kN, 6.28kN and 13.43kN separately. The av-

erage torque values are 396.44kN·m, 394.84kN·m and 390.25kN·m and the

standard deviations are 169.08kN·m, 20.73kN·m and 35.48kN·m. More in-

vestigations has been undertaken for the system in this sea state, the

result will be given in Section 5.2

Figure 5.14: Thrust and torque for Case 1 in sea state 6

Figure 5.15 gives trajectories for buoys and turbines in some sea states.

The system is dragged to a deeper position due to the forces in the hori-

zontal direction increasing under wave excitation. As mentioned above,

the motions of buoy and turbine are smooth in sea state 4 which makes

the peak loading reduction remarkable. However, the system shows large
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displacements in harsh winter and generates high values of inertia veloc-

ities .

5.2.4 Random waves

Results from sea state 4, 5 and 8 are given in Figure 5.16, Figure 5.17

and Figure 5.18, a 1 minutes simulation windows of comparisons between

the total thrust and torque on mooring supported turbine (blue solid line)

with that on rigid supported turbine (red dot line) under irregular waves

during operation are shown in the result. It is obvious that the mooring

supported turbine shows a favorable performance in the reduction of peak

thrust on the turbine.

In sea state 4, the standard deviation of the thrust on mooring supported

turbine are 13.26kN and 11.87kN for without and with wave excitation

on buoy which are 33.52% and 30.01% of that on a rigid one’s value of

39.57kN. The peak torque on the turbine reduced as commendable in this

sea state, the standard deviation are 13.22kN·m and 9.80kN·m for the

mooring without and with wave excitation on the buoy, the standard de-

viation for a rigid one is 54.98kN·m.
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(a) turbine

(b) buoy

(c) turbine

(d) buoy
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(e) turbine

(f) buoy

(g) turbine

(h) buoy

Figure 5.15: Trajectories for different sea states. (a)(b) are the turbine
and buoy trajectories in sea state 3, (c)(d) are the turbine and buoy trajec-
tories in sea state 4, (e)(f) are the turbine and buoy trajectories in harsh
winter, (g)(h) are the turbine and bouy trajectories in sea state 6
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Figure 5.16: Random waves generated from significant wave height
1.07m and mean wave period 11.07s, current speed is 2.5m/s

In sea state 5, the standard deviation of the thrust on mooring supported

turbines are 7.60kN and 9.87kN for without and with wave excitation on

the buoy, which are 18.56% and 24.11% of that on a rigid one’s value

of 40.92kN. However, the peak torque on the turbine is not reduced as

commendable as thrust but is better than the regular waves, the standard

deviations are 50.16kN·m and 42.12kN·m for the mooring one without and

with wave excitation on buoy, while standard deviation for a rigid one is

40.97kN·m
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Figure 5.17: Random waves generated from significant wave height
2.665m and mean wave period 6.135s, current speed is 2.5m/s

In sea state 8, the standard deviation of the thrust on a mooring sup-

ported turbine is 3.27kN and 4.88kN for without and with wave excitation

on buoy which is 38.70% and 57.79% of that of a rigid one’s value 8.46kN.

The peak torque on the turbine is not reduced as well as the regular

waves in this sea state, while the standard deviation is 18.04kN·m and

15.33kN·m for the mooring one without and with wave excitation on the

buoy, standard deviation for a rigid one is 6.88kN·m
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Figure 5.18: Random waves generated from significant wave height
1.008m and mean wave period 4.653s, current speed is 2.5m/s

5.2.5 Blade section velocities

A case that the turbine generate negative torque in harsh winter was de-

scribed in the previous section, the reason is that the large displacement

of turbine in harsh winter makes the inflow velocity vectors on the blade

sections change in direction, as Figure 5.19 shows.

The turbine moves along the wave in the wave trough, the inertial ve-

locity of turbine UT is coupled with the wave-current velocity field and

transferred to the local rotating blade coordinate system [32], the two ve-

locities, U1 and U1y, are obtained to modify the horizontal inflow and the
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Figure 5.19: The inflow velocity vectors on blade sections in harsh winter

153



apparent rotational inflow speed in order to calculate the relative velocity

for the blade section. The new relative velocity will result in a larger an-

gle of attack which generates a smaller lift force but a larger drag force

on the blade section. Therefore the in-plane force is change to another

direction, which means the torque on the rotor is turned into negative

values and the blade stalled. The blade profile that performs better than

a NRELs814 in larger angles of attack or setting a pitch angle to the be

applied to avoid this phenomenon , but this remains to be investigated in

the future.

5.2.6 Buoy Effect

The other external forces are the buoyancy and drag force which are de-

pend on the volume and shape of the buoy, in this report the shape is a

sphere. Figure 5.20 shows the comparison of thrust and torque on the tur-

bine with 6 different buoy radius in sea state 2. The result indicates that

high buoyancy may not mean a satisfactory performance in load reduc-

tion especially the torque on the turbine may increase at high buoyancy

condition, because the system will become over tension and approach a

rigid supported turbine, the loading on the turbine tends to increase.
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(a)

(b)

Figure 5.20: Case 1, regular waves generated from sea-state 3, (a) gives
the buoy radius smaller than 3m, (b) gives the buoy radius larger than
3m
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Figure 5.21: Trajectories of turbine hinge node for buoy radius 2.5m

In addition, the low buoyancy can be accepted in the reduction of peak

loads for thrust, because lower buoyancy will make θ1 increase which

means the turbine will move closer to seabed and the wave effect is abat-

ing. But the low buoyancy makes the torque start to oscillate, which is

unacceptable. Figure 5.21 shows the trajectory for the turbine with a

2.5m radius buoy, the motion is not as stable as that in 5.15(c) and it

reveals a periodicity in the curve which may generate the oscillates in

torque. Moreover, the lowest vertical coordinate of the hinge node is less

than 13.2m and the radius of turbine is 10m, the distance from seabed to

the blade is less than 3.2m, this case should be considered during design-

ing the system to avoid the blade hitting the seabed. Overall, the buoy

design is a important stage for the tension mooring supported turbine,

buoyancy close to the total thrust on the turbine is the best choice.
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5.2.7 Morrison effects

According to the results above, the variation of torque values on tension

mooring supported turbine is larger than that of rigid supported ones in

similar sea states. The reason is added mass effects on blade sections, the

inertia force which added into the in-plane force to calculate the torque

is as Equation 4.38, the relative velocity term for a rigid supported tur-

bine is the wave particle velocity in the vertical direction transferred to

the local rotating blade coordinate system. However the inertia velocity

of the turbine itself is considered to be coupled with the wave particle

velocity to obtain the final relative velocity of the inertia force for the

mooring supported turbine, this results in an increase of inertia forces on

blade sections in the mooring supported turbine, then the total torques

increases as the in-plane forces rise. Moreover the way calculated the

inertia force on blade section for rigid supported turbine is not applicable

for a turbine which can move in the water as a tension mooring supported

turbine does, therefore further investigation should be done in the added

mass effects to the mooring supported turbine blade.

Figure 5.22 gives the torque on the mooring supported turbine without

Morrison effects in sea state 3, the toque reduces as expect. This in-

dicates that the Morrison effect which is the added mass on the blade

plays a significant role in torque on a turbine which can move in a ver-

tical direction. Moreover, the Morrison effect module in BEMT could be

improved in future.
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Figure 5.22: Morrison effects in torque

5.3 Discussions in the System Parameters

In the last section, the buoyancy force is set to be approximately to equal

the thrust load on the rotor in order to give a best performance in load

reduction. However, when the turbine has a large diameter as Case 1, the

size of buoy will be large as well. This sometimes makes the installation

of the system difficult due to a huge force required to submerge the buoy

down into its location in the water column.

The conditions that loads on the turbine increases in sea state 6 show

wave packets both with and without wave excitation on the buoy. The

velocity of turbine can be considered as the phase velocity moving in

same propagation direction with the phase velocity of the wave-current

at troughs but in opposite direction at peaks (defined as relative velocity

modification for blade inflow velocity calculation), then the oscillation of

the turbine and the oscillation of buoy envelopes and results in a pattern

in the loading result.
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Figure 5.23: Water particle paths under waves in deep water and the
turbine position

For sea state 6, the wave length is 54.38m, the water particle path reaches

27.19m from the water surface and the turbine hub is at the height of

around 21m from seabed, as shown in Figure 5.23. It revealed that the

wave only affected half of the rotor but excitated the buoy significantly as

shown in Figure 5.15(h) so that the beat pattern in the result with wave

excitation on buoy is more obvious in Figure 5.14. Furthermore, the load-

ing reduction for mooring supported turbine does not show advantages in

competition of rigid supported because of the wave only reaching half of

the turbine and the oscillation envelopes.

In order to improve the permanence of mooring supported turbines in

conditions as sea state 6, a variable length of the mooring line, buoy di-

ameter and turbine diameter are investigated in this section to indicate a

sensitive analysis for the system. This work will establish relationships

of different devices based on the same concepts.
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5.3.1 Mooring line length

The wave effects on a buoy has a remarkable increase on system loading

due to the short wave period. In this part the length of mooring line for

L2 is reduced in order to move the buoy away from the water surface and

deeper in the water column since the wave excitation will decrease

Figure 5.24: Thrust and torque on turbines for different second mooring
line length in sea state 6

Figure 5.25 shows that the decrease of the L2 length gives a positive effect

to the reduction of thrust on the turbine, the thrust becomes smaller than
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the rigid supported turbine when L2 reduces to 5m, but the reduction for

the torque on the turbine does not show a favorable performance.

Figure 5.25: Thrust and torque on turbines for different third mooring
line length in sea state 6

The decrease from 3m to 2m of the mooring line for L3 length shows a

satisfactory performance in thrust reduction on turbine in sea state 6, it

is showed that in a sea state with a low wave period (high frequency) in

deep water, it is supposed to compact the system so that the oscillations

of the system can be reduced. However, it should keep a safe distance be-

tween the turbine, buoy and mooring line L2 to avoid any risk of collision
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between them. Besides, the inflow velocity will be effected by the buoy

in front of the turbine and there may be an interaction between the buoy

and turbine. Therefore the BEMT code could be modified to recalculate

these inflow parameters, which is not considered in this report. In order

to avoid the complicated interaction, it is supposed to make the buoy is

sufficiently located above the turbine.

5.3.2 Smaller turbines

In this part, smaller turbines are applied to the system to reduce the

thrust on the turbine and make the mooring line L1 longer, therefore the

turbine will rise to a higher position where the wave affects the whole

turbine. The second turbine is a Voith’s 1MW horizontal axis turbine

HyTide 1000 which diameter is 13 meters [?], the rotor is set to be the

same TSR as Case 1 which is 5. At this case, the height of the turbine hub

is around 27.6m from the seabed where the wave effect approximately

reaches the whole turbine.

case 4: segment length = 0.5m mbuoy = 3.5t mturbine = 200t l1 = 36m l2 =

10m l3 = 2m turbine diameter = 13m buoy redius = 2.4m Ωr = 1.92rad/s

NRELs814 Dyneema

The result shows that in sea state 3 the thrust loading increases com-

pared with the rigid supported turbine as Figure 5.26, this is in contrast

with the other cases. The reason is that the kinetic energy of the system

increases when calculating the Lagrangian of the stem since the mass

of the turbine is 2.5 times of the previous turbine in Case 1. In fact it

162



is not practical to set a turbine weighed 200t to be self buoyant, hence

the turbine is modified to be 80t as the one in Case 1, the other param-

eters are kept the same. It is showed that the peak thrust loading on

the turbine reduces as expected at 80t turbine, the standard deviation is

slightly reduced from 5.1819 × 103N of rigid to 4.8245 × 103N of mooring,

however standard deviation for the 200t turbine is 5.3285× 103N. On the

other hand the torque on the turbine is still larger than the rigid one as

a result of Morrison effect descried in 5.1.6. This reveals that the self

buoyant turbine attached to this tension mooring system should not have

a large mass in order to make the turbine self buoyant accessibly, which

requires a redesign of the gear box and shaft to reduce the weight as well

as the power output.
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Figure 5.26: Loading on HyTide 1000 in sea state 3 at TSR 5 for different
turbine weights

5.4 Summary

Within this chapter, the thrust loading reduction in most sea states are

favorable especially in swell waves, but the reduction of torque on the

rotor is not as satisfactory as the thrust due to the turbine vertical ve-

locities. System parameters such as buoy radius, mooring line materials

and mooring line length are investigated to obtain better understanding

of the system. It is shown that the buoyancy forces should be approxi-
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mately equal to the thrust to give a most satisfactory loading reduction

and the mooring line parameters have a significant influence in the sys-

tem stability. Moreover, two phenomenon are found, one is the negative

torque caused by the blade stalling in extreme sea states, the other is that

the system is not well suited to sea states the the wave particle paths can

not approach the seabed.
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Chapter 6

Summary and conclusion

Although there exists an increasingly substantial literature on the topic

of TST hydrodynamic loading, there is limited information on a float-

ing turbines operating in various inflow and geometrical parameters in

regards to the loading in a general sense. It is hard to relate the differ-

ent findings from different sources as the investigations of the parame-

ters’ influencing on the loads tend to be highly case-specific. Therefore

the aim of this thesis is to establish a method to model the tensioned

mooring TSTs and develop an understanding of it, where the parame-

ter’s influences were evaluated over the whole input domain, making the

interpretation of the results valid for a large range of cases. Relating

to the importance of understanding the relationships between a floating

turbine’s operating conditions and the experienced peak loads and fa-

tigue life, the accuracy and applicability of the numerical models used to

simulate these phenomena becomes key to insuring that the devices are

suitably designed to withstand the expected load conditions.
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This chapter presents a synthesis of the various results presented in the

individual chapter, an overview of the findings from the numerical models

are given in the first section. The second section gives the implications of

the research findings which can improve the tension mooring supported

turbine performance. The last section gives the limitation of this research

and suggestions for the future studies.

6.1 Research findings and original contribu-

tions

The original contributions of the rigid supported turbine are summarized

as:

• A fast simulation code combined with BEMT has been developed

to model the monopile support structures for TST applications and

analyses their dynamics including the added mass and hydrody-

namic damping effects.

• A passive structure control technique was employed in rigid sup-

ported turbine, which used a TMD on the structure to do a fully

coupled dynamic analysis in time domain. Variations in mass of the

TMD in fore-aft direction was undertaken in order to compare the

effects on the structure, when a TMDx was implemented in the sys-

tem, it had significant effects on the resonance reduction and fore-

aft fatigue load-reduction under instant load fluctuations. How-
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ever, TMD had an insignificant effect when modest unsteady wave-

current coupled forces were applied on the structure for a long oper-

ating period. But changing the shape of tower-monopile supporting

structure will improve the performance in a fatigue analysis.

• Unlike most large offshore wind turbines, the tidal turbine tower-

monopile systems investigated in this project showed higher first

natural frequencies due to the shorter length. Furthermore, the

added mass correction will make natural frequencies of the struc-

ture slightly reduced.

The original contributions of the tension mooring supported turbine are

summarized as:

• A methodology has been developed to model a full submerged ten-

sion mooring support system with a self buoyant turbine, the dy-

namics of the system and the loading on the turbine in various sea

states can be simulated rapidly.

• Based on the results, the thrust comparison reveals that forces on

mooring supported turbine blades are smaller and smoother than

those on the rigid supported one in most sea states, especially for

the swell waves and random waves. This means the fatigue per-

formance of mooring supported turbine will be better for the blade

loading. However torque on the turbine increases due to the Mor-

rison effect under stokes waves, which requires an improvement in

the Morrison effect module.
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• The tension mooring supported turbine under the influence from

stokes wave with short wave length does not perform as good as

that in longer wave length whose wave particle path can reach the

seabed. Because the wave particle paths of long wave-length waves

can reaches a deeper depth and affects the turbine efficiently. But

the wave particle paths of some short wave-length waves can not

reach the depth where the turbine is and only excite the buoy.

• In stokes waves, the wave excitation on a buoy will increase the

loading in the system. Motions of the buoy and turbine will interact

thus the waveform of the thrust and torque is different form that of

a rigid mooring.

• The large displacements of the turbine due to the extreme waves in

harsh winter results in negative torques, which may be harmful to

the drive train and generators and must be avoided.

• The turbine will slightly move along a short section of an arc during

operation if the buoyancy is suitable, which is an ideal operation en-

vironment. The buoy is a very important factor, when the buoyancy

force which is reflected as the buoy radius is higher than a specific

proportion of thrust, the ratio of which can be researched in the fur-

ther research, and the motion of turbine will not be stable and will

oscillate around an equilibrium position. Moreover, the mooring line

length and the mooring material plays a significant role in system

stability, where the system is suppose to be compact.
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6.2 Theoretical implications of the research

finding

The dynamic marine climate causes large load fluctuations on TSTs, this

thesis found that the tension mooring supported system has a positive ef-

fect to the thrust load reduction in most sea states. Although the torque

fluctuations can be a problem requiring further investigations, the sys-

tem performance is satisfactory in swell waves which have a long wave

length, both thrust and torque fluctuations decrease in favorable values.

The tension mooring supported TSTs are applicable to the swell environ-

ment or stokes waves with long wave length, thus installing this system

will improve fatigue performance, compared with rigid supported TSTs.

In extreme condition such as harsh winter storm, the tension mooring

supported TSTs also reduces the thrust loading significantly but the tur-

bine should be shut down and protected from potential blade in order to

avoid negative torque actions. Furthermore, this stall phenomenon can

also be investigated by improving the blade design and adding a high an-

gle of attack pitch angle to the blade so that the turbine is able to work

in the extreme condition with a favorable loading reduction.

In stokes waves that have shot wave lengths such as sea state 6 in the

previous sections, the tension mooring supported TST should operate at

the position where the wave particle paths can reach the whole turbine.

This requires the diameter of turbine not to be too large and the buoy

is required need to supply a larger buoyancy when compared with the
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thrust loading on the turbine, thus the turbine can operate in an appro-

priate location in water column. However, the load reduction in this con-

dition is still not as satisfactory as the other sea states, it verges on the

performance of a rigid supported turbine. Therefore, the tension mooring

supported system should be designed for application in the environment

where half of the most common wave length is larger than the water

depth to give a satisfactory loading reduction in thrust.

The rotor speed is fixed in this research, which is not reliable for a turbine

moving in waves. The rotor speed should be reduced when the turbine

moves against the wave and increased when the turbine moves with the

wave in order to give a constant TSR to the rotor during operation in

wave-current interaction. The variable TSR will enlarge torques on the

shaft, this may be the underlying reason why results of torques in some

sea states shows different trend to thrust in this thesis.

The code itself is a very efficient providing a fast simulation process, a 3

minutes simulation of 0.1s time step for 20 elements per blade and 0.5m

mooring line element length on a personal computer with 4 i7 cores takes

around 1 hour. The outputs contain various data such as blade elements

inflow conditions, forces on each element and so on, the status of turbine

can be checked for every time step and a simple animation can be gener-

ated for motions of turbine. This is an efficient methodology for a highly

dynamic system like a tension mooring supported turbine and other taut

mooring systems to check its performance in different environmental con-

ditions.
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Chapter 7

Future works

The vertical velocity component of the wave motion had a large influence

on the rotor out-of-plane bending moment of a turbine [32]. Further-

more, the tension mooring supported turbine itself has a vertical velocity

because it can move in vertical direction, thus the out-of-plane bending

moment may be greater than a rigid supported turbine. Furthermore,

the torque on the rotor is also affected by the vertical velocity of turbine

itself due to the Morrison effect. It is obvious that the vertical motion of

turbine is a significant impact to the design of TST’s drive train or inter-

nal components, therefore investigations of the turbine’s vertical velocity

influence on the rotor out-of-plane bending moment should be further in-

vestigated in the future. On the other hand, future modifications to the

original Morrison effects may not be applicable to the blade elements on

a turbine which can move in vertical direction, therefore Morrison effects

modification should be improved in the future. In extreme sea state such

as harsh winter storm, greater blade profiles and pitch angles should be
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investigated in order to avoid the negative torque. Adjustable rotor speed

will be a main research target in the future and should be applied to the

model in order to give a reliable torque result.

During turbine operations, the movement of the turbine may cause rota-

tional motions as pitch, this will have an influence on the inflow condition

of each blade element. However the pitch effect is not taken into consid-

eration in this thesis. In order to calculate the pitch angle of the turbine,

the model should be extended to four pendulums and no finite elements

on the fourth pendulum which represented the turbine. The mass of the

turbine is considered as a lumped mass at the two nodes of the fourth pen-

dulum and the thrust and torque is applied on the first node, the matrix

of the system is required to modify this to be suitable for a new system.

Furthermore, the added mass effects of the turbine could be applied to

both nodes instead of one node as the recent model, the added mass ef-

fect of turbine may have a large influence on pitch. When the pitch angle

of the turbine at this time step is obtained, it can be set to the blades as

description in Section 4.1.3 as a initial condition for the next time step.

The damping of the system is a difficult factor to define especially for

the water viscous damping, the method descried in Section 3.4 in this

thesis works well for rigid supported turbine and the tension mooring

supported turbine without consideration to excessive wave excitation on

the buoy. However, in some conditions the calculation was not converged

as Figure 5.4 and 5.6 when the wave excitation on the buoy is considered,

the damping coefficient of the system had to be investigated and enlarged

to make the system stop vibrating. It indicates that the wave excitation
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may have an influence on the system natural frequency related to the

damping calculation. The damping of the system is a factor remained for

further research in future.
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Appendix A

TURBINE MOTION ANIMATION

This appendix shows the pictures from the simulation animations in some

sea states as supplementary of Figure 5.15. The turbine and the buoy are

represent as nodes in the animation in order to simplify the complicate

turbine sketches.
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Figure A.1: The animation of simulation for swell waves (Hs=1.07m
Ts=11.07s)
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Figure A.2: The animation of simulation for seastate 3 (Hs=2.665m
Ts=6.135s)
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Figure A.3: The animation of simulation for harsh winter seastate
(Hs=10.12m Ts=10.06s)
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Appendix B

DESIGN STANDARDS FOR USE

IN TIDAL ENERGY SYSTEM

In the study presented, two standards have been consulted in order to

calculate TST hydrodynamic loading. Brief descriptions of the standards

used are as follows:

DNV-RP-C205[60]: This new Recommended Practice (RP) from Det Norske

Veritas (DNV) provides guidance for modeling, analysis and prediction

of environmental conditions. It also gives guidance for calculating envi-

ronmental loads acting on structures generated by waves, currents and

winds. The RP is based on state of the art within modeling and analysis

of environmental conditions and loads, as well as technical development

of recent R&D projects and the design experience from recent and ongo-

ing projects. The basic principles applied in this RP are in agreement

with the most recognized rules and reflect industry practice and latest
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research.

IEC 62600-2[42]: This technical specification provides the essential de-

sign requirements to ensure the engineering integrity of wave, tidal and

other water current energy converters, referred to as marine energy con-

verters (MECs), for a specified design life. Provides an appropriate level

of protection against damage from all hazards that may lead to failure

of the primary structure, defined as the collective system comprising the

structural elements, foundation, mooring and anchors, piles, and device

buoyancy designed to resist global loads. This document applies to wave,

tidal and other water current converters and to structures that are either

floating or fixed to the seafloor or shore. This document addresses site-

specific conditions, safety factors for critical structures and structural in-

terfaces, external load cases, failure probability and failure consequences

for critical structures and structural interfaces, and failsafe design prac-

tices.
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Miroslav Mad̄erčić. Design of a wind turbine pitch controller for

loads and fatigue reduction. In European Wind Energy Conference

& Exhibition, EWEC 2007, 2007.

[16] Gordon M. Stewart. Load reduction of floating wind turbines using

tuned mass dampers. Master’s thesis, University of Massachusetts

- Amherst, 2012.

182



[17] Fahim Sadek, Bifan Mohraz, Andrew W. Taylor, and Riley M. Chung.

A method of estimating the parameters of tuned mass dampers for

seismic applications. Earthquake Engineering and Structural Dy-

namics, 26:617–635, 1997.

[18] C Amzallag, JP Gerey, JL Robert, and J Bahuaud. Standardization

of the rainflow counting method for fatigue analysis. International

journal of fatigue, 16(4):287–193, 1994.

[19] T.M. Nevalainen. The Effect of Unsteady Sea Conditions on Tidal

Stream Turbine loads and durability. Unpublished phd thesis, Uni-

versity of Strathclyde, 2016.

[20] TM Nevalainen, CM Johnstone, and AD Grant. A sensitivity anal-

ysis on tidal stream turbine loads caused by operational, geometric

design and inflow parameters. International Journal of Marine En-

ergy, 2016.

[21] Ralph I Stephens, Ali Fatemi, Robert R Stephens, and Henry O

Fuchs. Metal fatigue in engineering. John Wiley & Sons, 2000.

[22] ALSTOM. Alstom’s tidal turbine reaches 1mw in offshore conditions.

Accessed:2016-08-15, 2013.

[23] British Oceanographic Data Centre. Wave data. Accessed:

2016-09-30.

[24] Ibrahim Ozkol Elmas Anli. Classical and fractional-order analysis

of the free and forced double pendulum. Engineering, 2:935–949,

2010.

183

Accessed: 2016-08-15
Accessed: 2016-09-30
Accessed: 2016-09-30


[25] Environmental conditions and environmental loads (DNV-RP-

C205). Recommended practice. Det Norske Veritas, 2007.

[26] Wojciech Szuminski Maria Przybylska. Non-integrability of flail

triple pendulum. Chaos, Solitons & Fractals, 53:60–74, 2013.

[27] P.H. Richter A. Ohlhoff. Forces in the double pendulum. ZAMM -

Journal of Applied Mathematics and Mechanics / Zeitschrift fÃŒr

Angewandte Mathematik und Mechanik, 80(8):517–534, 2000.

[28] A Grant D Clelland N Barltrop, K S Varyani and Xuan Pham. Wave-

current interactions in marine current turbines. Journal of Engi-

neering for the Maritime Environment, 220(4):195–203, 2006.

[29] G. Gaonkar and D. Peters. Review of dynamic inflow modeling for

rotorcraft flight dynamics. In 27th Structures, Structural Dynam-

ics and Materials Conference, Structures, Structural Dynamics, and

Materials and Co-located Conferences, San Antonio,TX,U.S.A, 1986.

[30] Hannah Buckland. Combined current, wave and turbulent flows and

their effects on tidal energy devices. PhD thesis, Swansea University,

2014.

[31] John Christopher Chapman. Tidal Energy Device Hydrodynamics

in Non-uniform Transient Flows. PhD thesis, Swansea University,

2008.

[32] Thomas Nevalainen. The effect of unsteady sea conditions on tidal

stream turbine loads and durability. PhD thesis, University of

Strathclyde, 2016.

184



[33] J. Peiro J.I. Whelan, J.M.R. Graham. Inertia effects on horizontal

axis tidal-stream turbines. In 9th European Wave and Tidal Energy

Conference, 2009.

[34] Audrey E.D. Bowie. Flexible moorings for tidal current turbines.

Master’s thesis, University of Strathclde, 2012.

[35] Ocean energy systems implementing agreement: an international

collaborative programme. Technical report, IEA-OES, 2008.

[36] Pratt D. Clarke J. & Grant A. Johnstone, C. A techno-economic anal-

ysis of tidal energy technology. Renewable Energy, 49:101–106, Jan-

uary 2013.

[37] RA Dalrymple and JC Heideman. Nonlinear water waves on a

vertically-sheared current. 1989.

[38] simecatlantis. projects. Accessed:2019-06-13.

[39] John Andrews and Nick Jelley. Energy science: principles, technolo-

gies, and impacts. Oxford University Press, 2017.

[40] S. Harding D. R. Sutherland, B. G. Sellar and L. Bryden. Initial

flow characterisantion utilising turbine and seabed installed acous-

tic sensor arrays. In In: Proceedings of the 10th European Wave and

Tidal Energy Conference Series, pages 2–5, Aalborg, Denmark, 2013.

[41] J. P. Hardwick A. M. Colucci, A. Bouferrouk and L. Johanning. Char-

acterising wave-current fields and their interaction from in situ

measurements. In Proceedings from the10th European Wave and

Tidal Energy Conference, Aalborg, Denmark, 2011.

185

Accessed: 2019-06-13


[42] Design requirements for marine energy systems (iec 62600-2), 2016.

[43] Energy Systems Research Unit. Website. Accessed:2018-09-30.

[44] Michael Starling and Alex Scott. Foundations and moorings for tidal

stream systems. Technical report, The Carbon Trust, 2009.

[45] Madjid Karimirad, Kourosh Koushan, Sam Weller, Jon Hardwick,

and Lars Johanning. Applicability of offshore mooring and founda-

tion technologies for marine renewable energy (mre) device arrays.

2015.

[46] SJ Banfield, NF Casey, Reza Nataraja, et al. Durability of polyester

deepwater mooring rope. In Offshore technology conference. Offshore

Technology Conference, 2005.

[47] TJ Stallard, SD Weller, and PK Stansby. Limiting heave response

of a wave energy device by draft adjustment with upper surface im-

mersion. Applied Ocean Research, 31(4):282–289, 2009.

[48] C Guedes Soares. Renewable Energies Offshore. CRC Press, 2015.

[49] SD Weller, P Davies, AW Vickers, and Lars Johanning. Synthetic

rope responses in the context of load history: Operational perfor-

mance. Ocean Engineering, 83:111–124, 2014.

[50] IML Ridge, SJ Banfield, and J Mackay. Nylon fibre rope moorings for

wave energy converters. In OCEANS 2010 MTS/IEEE SEATTLE,

pages 1–10. IEEE, 2010.

[51] simecatlantis. ar1000-launching-at-emec. Accessed:2019-6-13.

186

Accessed: 2018-09-30
Accessed: 2019-6-13


[52] Benoît Gaurier, Peter Davies, Albert Deuff, and Grégory Germain.

Flume tank characterization of marine current turbine blade be-

haviour under current and wave loading. Renewable Energy, 59:1–

12, 2013.

[53] Pascal W Galloway, Luke E Myers, and AbuBakr S Bahaj. Quantify-

ing wave and yaw effects on a scale tidal stream turbine. Renewable

energy, 63:297–307, 2014.

[54] N Barltrop, KS Varyani, A Grant, D Clelland, and Xuan Pham.

Wave-current interactions in marine current turbines. Proceedings

of the Institution of Mechanical Engineers, Part M: Journal of Engi-

neering for the Maritime Environment, 220(4):195–203, 2006.

[55] WMJ Batten, AS Bahaj, AF Molland, JR Chaplin, Sustainable En-

ergy Research Group, et al. Experimentally validated numerical

method for the hydrodynamic design of horizontal axis tidal tur-

bines. Ocean engineering, 34(7):1013–1020, 2007.

[56] IA Milne, AH Day, RN Sharma, and RGJ Flay. Blade loads on tidal

turbines in planar oscillatory flow. Ocean Engineering, 60:163–174,

2013.

[57] IA Milne, AH Day, RN Sharma, and RGJ Flay. Blade loading on tidal

turbines for uniform unsteady flow. Renewable Energy, 77:338–350,

2015.

[58] JI Whelan, JMR Graham, and J Peiro. Inertia effects on horizontal

axis tidal-stream turbines. In the 8th European Wave and Tidal

Energy Conference, 2009.

187



[59] H. Buckland. Combined current, wave and turbulent flows on tidal

energy. Volume 1. PhD thesis, Swansea University, 2013.

[60] Environmental conditions and environmental loads (dnv-rp-c205),

2010.

[61] Tao Wang and Jiachun Li. Effect of nonlinear wave-current interac-

tion on flow fields and hydrodynamic forces. Science in China Series

A: Mathematics, 40(6):622–632, 1997.

[62] John D Fenton. A fifth-order stokes theory for steady waves. Journal

of waterway, port, coastal, and ocean engineering, 111(2):216–234,

1985.

[63] C Swan, IP Cummins, and RL James. An experimental study of two-

dimensional surface water waves propagating on depth-varying cur-

rents. part 1. regular waves. Journal of Fluid Mechanics, 428:273–

304, 2001.

[64] James F Manwell, Jon G McGowan, and Anthony L Rogers. Wind

energy explained: theory, design and application. John Wiley & Sons,

2010.

[65] Martin OL Hansen. Aerodynamics of wind turbines. Routledge,

2015.

[66] Tony Burton, David Sharpe, and Nick Jenkins. Handbook of wind

energy. John Wiley & Sons, 2001.

[67] Ian Masters, JC Chapman, MR Willis, and JAC Orme. A robust

blade element momentum theory model for tidal stream turbines in-

188



cluding tip and hub loss corrections. Journal of Marine Engineering

& Technology, 10(1):25–35, 2011.

[68] Hermann Glauert. Aerodynamic theory. The Aeronautical Journal,

34(233):409–414, 1930.

[69] Robert Elliott Wilson and Peter Lissaman. Applied aerodynamics of

wind power machines. 1974.

[70] Wen Zhong Shen, Robert Mikkelsen, Jens Nørkær Sørensen, and

Christian Bak. Tip loss corrections for wind turbine computations.

Wind Energy: An International Journal for Progress and Applica-

tions in Wind Power Conversion Technology, 8(4):457–475, 2005.

[71] Patrick J Moriarty and A Craig Hansen. Aerodyn theory man-

ual. Technical report, National Renewable Energy Lab., Golden, CO

(US), 2005.

[72] Marshall L Buhl Jr. New empirical relationship between thrust co-

efficient and induction factor for the turbulent windmill state. Tech-

nical report, National Renewable Energy Lab.(NREL), Golden, CO

(United States), 2005.

[73] David A Spera et al. Wind turbine technology: fundamental concepts

of wind turbine engineering, volume 3. ASME press New York, 1994.

[74] Hermann Frahm. Device for damping vibrations of bodies., April 18

1911. US Patent 989,958.

[75] J. Ormondroyd and Den Hartog J, P. The theory of dynamic vibration

absorber. Journal of Applied Mechanics Trans, 50(7):9–22, 1928.

189



[76] Jacob Pieter Den Hartog. Mechanical vibrations. Courier Corpora-

tion, 1985.

[77] Pradipta Banerji, Mohan Murudi, Arvind H Shah, and Neil Pop-

plewell. Tuned liquid dampers for controlling earthquake response

of structures. Earthquake engineering & structural dynamics,

29(5):587–602, 2000.

[78] Yukio Tamura, Kunio Fujii, Tamio Ohtsuki, Toshihiro Wakahara,

and Ryuichi Kohsaka. Effectiveness of tuned liquid dampers under

wind excitation. Engineering structures, 17(9):609–621, 1995.

[79] Alex DD Craik. The origins of water wave theory. Annual review of

fluid mechanics, 36, 2004.

[80] Robert G Dean and Robert A Dalrymple. Water wave mechanics

for engineers and scientists, volume 2. World Scientific Publishing

Company, 1991.

[81] Norifumi Kishida and Rodney J Sobey. Stokes theory for waves

on linear shear current. Journal of engineering mechanics,

114(8):1317–1334, 1988.

[82] RA Dalrymple and JC Heideman. Nonlinear water waves on a

vertically-sheared current. 1989.

[83] Klaus Hasselmann, TP Barnett, E Bouws, H Carlson,

DE Cartwright, K Enke, JA Ewing, H Gienapp, DE Hassel-

mann, P Kruseman, et al. Measurements of wind-wave growth

190



and swell decay during the joint north sea wave project (jonswap).

Ergänzungsheft 8-12, 1973.

[84] Willard J Pierson Jr and Lionel Moskowitz. A proposed spectral

form for fully developed wind seas based on the similarity theory

of sa kitaigorodskii. Journal of geophysical research, 69(24):5181–

5190, 1964.

[85] Odd Faltinsen. Sea loads on ships and offshore structures, volume 1.

Cambridge university press, 1993.

[86] Carl Runge. Über die numerische auflösung von differentialgle-

ichungen. Mathematische Annalen, 46(2):167–178, 1895.

[87] Wilhelm Kutta. Beitrag zur naherungsweisen integration totaler

differentialgleichungen. Z. Math. Phys., 46:435–453, 1901.

[88] Nigel DP Barltrop and Adrian J Adams. Dynamics of fixed marine

structures, volume 91. Butterworth-Heinemann, 2013.

[89] Matthew A Lackner and Mario A Rotea. Passive structural control

of offshore wind turbines. Wind energy, 14(3):373–388, 2011.

[90] Lingzhi Xiong, Jianmin Yang, and Wenhua Zhao. Dynamics of a

taut mooring line accounting for the embedded anchor chains. Ocean

Engineering, 121:403–413, 2016.

[91] Peter L Fraenkel. Power from marine currents. Proceedings of the

Institution of Mechanical Engineers, Part A: Journal of Power and

Energy, 216(1):1–14, 2002.

191



[92] Walter Schütz. A history of fatigue. Engineering Fracture Mechan-

ics, 54:263–300, 1996.

[93] E.Bossanyi. BLADED for windows theory manual. Garrad Hassan

and Partners Limited, Bristol, England, 1997.

[94] J. Schepers and H. Snel. Final results of the eu joule project "dy-

namic inflow". Technical report, ECN-RX. Netherland Energy Re-

search Foundation ECN, 1995.

[95] L. B. Tuckerman. Inertia factors of ellipsoids for use in airship de-

sign. Technical report, United States, 1926.

[96] GX Wu, JA Witz, Q Ma, and DT Brown. Analysis of wave induced

drift forces acting on a submerged sphere in finite water depth. Ap-

plied ocean research, 16(6):353–361, 1994.

[97] MARTIME JOURNAL. Schottel instream turbine. Accessed:

2018-07-23.

[98] The Mathworks, Inc., Natick, Massachusetts. MATLAB version

9.3.0.713579 (R2017b), 2017.

[99] MJ Hochrainer. Tuned liquid column damper for structural control.

Acta Mechanica, 175(1-4):57–76, 2005.

192

Accessed: 2018-07-23
Accessed: 2018-07-23

	Nomenclature
	Introduction
	Investigating the dynamic loads on tidal stream turbines operating in the wave-current interaction
	Models
	Exploiting the sea states, turbines, mooring lines and models
	Contributions
	Thesis Organisation

	Overview of tidal stream turbines – support structures, load environments and modeling techniques.
	General description of TSTs
	Theory of operation for horizontal axis TSTs
	Optimum positioning in the water column and characteristic parameters

	Station keeping system
	Gravity base
	Pin Pile
	Mooring

	Environment loads on tidal turbine
	Wave Loading
	Current Loading and Fluid Acceleration Effects
	Wave and Current Interaction

	Blade Element Momentum Theory
	One Dimensional Momentum Theory
	 Rotational Momentum
	Blade element theory
	Correction factors

	Passive control
	Tuned mass damper
	Tuned Liquid damper
	Tuned Liquid columns damper

	Summary

	Models
	Wave Models
	Governing equations and boundary conditions
	Linear wave theory model
	Third order Stokes wave-current model
	Fifth order Stokes wave-current model
	Three step wave-current interaction model
	Irregular sea-state wave model
	JONSWAP power density spectrum

	Rigid supported turbine
	Numerical models for monopile support
	Tuned mass damper

	Time domain solution
	Central difference (explicit) method
	Runge-Kutta (explicit) method
	Newmark  method

	Added mass and damping
	Infinite and viscous fluid
	Infinite and inviscous fluid
	Viscous and inviscous fluid with large values of  and 
	Added mass and damping factors

	Model verification
	System parameters
	Results
	Instant impact on structure
	Monopile Results Including Wave-current Interactions
	Frequency Domain Analysis

	Summary

	The Dynamics of Tension Mooring Supported Tidal Turbines
	Preliminary numerical model
	Preliminary modeling of a mooring supported turbine
	External forces
	Modification for BEMT correction

	Developed model with finite element method
	Wave excitation on buoy

	Solving scheme
	Summary

	Investigation of the relationships between the rotor loads and input parameters
	Model verification
	Investigation of waves
	Initial conditions
	Comparison of preliminary and developed models
	Regular waves
	Random waves
	Blade section velocities
	Buoy Effect
	Morrison effects

	Discussions in the System Parameters
	Mooring line length
	Smaller turbines

	Summary

	Summary and conclusion
	Research findings and original contributions
	Theoretical implications of the research finding

	Future works
	Turbine Motion Animation
	Design Standards For Use In Tidal Energy System

