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Abstract

Mathematical models of real-world problems in uncertainty quantification, opti-

misation and sensitivity analysis use a large number of parameters which can be

expensive and time consuming. Often simulations have to be run multiple times to

effectively study inputs and outputs. However, each simulation can be extremely

expensive. An active subspace approach allows us to identify an important linear

combination of parameters instead of analysing all of them individually. This can

significantly reduce the dimension of the parameter study. We develop these ideas

in a network science context to find important edges in a given network. Then, we

make a comparison with the Sobol method, which is an alternative approach to

sensitivity analysis. Moreover, we apply the active subspace method to examples

in measurement science.

Our analysis shows that the active subspace method on networks was able to

identify important edge(s) or connections in a given graph. The active subspace

method and Sobol method result in similar findings; however, the active subspace

method is computationally less expensive. We are able to validate some of these

results using extra information about the networks. In the measurement science

setting, the results of the active subspace method match with the results obtained

previously by NPL.
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Chapter 1

Introduction

1.1 Sensitivity Analysis

Many mathematical models of real-world problems involve a large number of pa-

rameters. For instance, consider an example in uncertainty analysis in the auto-

motive industry where the Noise Vibration Harshness (NVH) is investigated [1].

Specifically, the analysis of 46 different sheet thicknesses of a car body against

the sound pressure level at certain frequencies is carried out. This is a real-world

example of a problem with many parameters [1, 2]. We want to know which sheet

thickness or sheet thicknesses are the most important when analysing the sound

pressure level. This can be done by using sensitivity analysis.

Simply put, the input is the set of numbers you feed into the model, the output

is what you obtain after the calculations are done in the model. The basic idea of

sensitivity analysis is to analyse how inputs affect the output or how sensitive the

quantity of interest is to different input parameters. The quantity of interest is a

quantity that is measured in order to answer a specific question about the model.

For instance, the example we just encountered considers calculating the quantity

of interest (sound pressure level at certain frequencies) given input parameters (46

different sheet thicknesses of a car body) [1].

Sensitivity analysis is a fundamental approach used to identify influencial pa-

rameters and understand complex models, especially computationally expensive

models with a large number of parameters. It is known that sensitivity analysis

can improve parameter calibration efficiency, reduce model uncertainty and reveal

model structure [3, 4, 5, 6]. The more complex a given problem is, the harder it
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is to correctly identify important parameters. We want to correctly identify pa-

rameters that have the most leverage or influence on the quantity of interest [7].

Statisticians and engineers often need simulations that have to be run multiple

times to effectively study inputs and outputs. Each simulation can be computa-

tionally expensive [8].

Sensitivity analysis methods are generally grouped into two types: local meth-

ods and global methods [9]. Local methods only make one parameter change at one

time, while the other parameters are kept as constant [10, 11]. It is known that lo-

cal methods are computationally cheap. However, local methods are not capable of

determining the interactions between parameters. Local sensitivity analysis is used

less than global sensitivity analysis (which will be described shortly) due to the

fact that sensitivity parameter estimation can be affected by non-linearities and/or

interactions in a given model. However, for a given problem where it is extremely

expensive to obtain reasonable results using global methods, local sensitivity anal-

ysis method can still be useful. This is due to the fact that fewer simulations are

required in order to obtain estimated sensitivity indices [10]. The main examples

of local methods are the one-at-a-time (OAT) method and the Morris method [12].

In contrast to local methods, global sensitivity methods enable us to obtain

more sophisticated or detailed results. Specifically, they overcome the disadvan-

tages of local methods by changing more than one of the model parameters at the

same time [4, 9, 11]. In general terms, global sensitivity analysis focuses on the

variance of model output and how the input variability influences the output vari-

ance. There are a number of global methods that have been proposed and used,

such as Analysis of Variance (ANOVA) [13], the Fourier amplitude sensitivity test

(FAST) [9], the Sobol method [10], and the active subspace method [8] (which is

the focus of this thesis).

This project is sponsored by the National Physical Laboratory (NPL), which is

the national measurement laboratory of the UK. Given their interest in precision

in measurement, it is obvious why NPL is invested and interested in the study and

applicability of sensitivity analysis. This is the reason why this thesis is mainly

focused on sensitivity analysis.

2



1.2 Examples of Sensitivity Analysis

In this section we highlight three specific methods of sensitivity analysis which will

be important in the context of this thesis. The first one we discuss is the active

subspace method, which is the main topic of this thesis.

1.2.1 The Active Subspace Method

The key idea of the active subspace method is that it allows us to choose a linear

combination of important parameters instead of analysing all of them individually.

This way we are reducing the dimension of the parameter study [8, 14]. The active

subspace method will be discussed throughout this thesis (the background theory,

algorithm and examples are presented in Chapter 2). The main reference of this

thesis is the book “Active Subspaces: Emerging Ideas for Dimension Reduction in

Parameter Studies” by Paul G. Constantine [8].

1.2.2 Sobol Indices

The Sobol method is one of the most powerful global sensitivity analysis methods

[3, 4, 15]. It relates the contribution of each input variable and the interactions

between them to the overall variance in the output of the model. This is achieved

by computing first-order, second-order, higher-order and overall sensitivity indices.

In other words, given a deterministic function, the variance of the output is ex-

plained by the variance in the inputs. This then allows us to determine which

individual input parameters are important or which interactions (if any) are im-

portant [16, 17, 18].

Since this is a well-known and powerful method, it is no surprise that NPL

is currently utilising the technique. The Sobol method will be discussed in more

detail in Chapter 5 for comparison with the active subspace method.

1.2.3 Principal Component Analysis

Pricipal Component Analysis (PCA) is a method that uses a vector space transfor-

mation to reduce the dimensionality of a given data set. We discuss PCA in more

detail here than the first two methods due to the fact that we will not consider

this method in later chapters. If the original data set involves many variables, it is

possible that the data can be interpreted in terms of just a few variables (i.e., the

3



principal components) [19]. PCA seeks a low-dimensional linear parameterisation

of a vector. In other words, the goal of PCA is to simplify the description of the

data set and extract the most important information. The main references used

here for details of the PCA are [19, 20, 21].

To illustrate the method, we consider a synthetic PCA example here for sim-

plicity. Imagine that we have collected some 3-dimensional data, say, we have

asked students how many hours monthly they spent studying MM104 (Statistics

and Data Presentation) at the University of Strathclyde, the mark that they re-

ceived at the end of the academic year, and their age. Let H be the first dimension

(monthly hours spent studying), M be the mark received by a student, and A be

their age. The data set is detailed in Table 1.1 and plotted in Figure 1.1.

Hours H 6 15 6 5 25 20 16 10 14 0 5 19 18 16 18 7 16 7 6 26 22 18 12 16 3 8 21 23 18 25

Mark M 42 59 52 44 97 89 77 57 65 25 43 70 71 81 85 46 63 58 50 97 89 81 62 69 40 49 75 75 86 90

Age A 18 19 35 25 28 19 37 27 25 20 21 22 21 21 25 19 20 25 22 23 19 26 25 22 21 20 19 21 21 20

Table 1.1. Data set of hours spent studying monthly by each student, mark
obtained and their age.

Figure 1.1. A plot of data of hours spent studying monthly, mark obtained and
age.

Having defined the data, the standard procedure of the PCA is now to calculate

4



the covariance matrix, which here is a 3 × 3 matrix. For our 3-dimensional case,

the covariance matrix is expressed as

C =


Cov(H,H) Cov(H,M) Cov(H,A)

Cov(M,H) Cov(M,M) Cov(M,A)

Cov(A,H) Cov(A,M) Cov(A,A)

 ,
where

Cov(H,M) =

∑
(Hi − H̄)(Mi − M̄)

n− 1
, Cov(H,A) =

∑
(Hi − H̄)(Ai − Ā)

n− 1
,

Cov(M,A) =

∑
(Mi − M̄)(Ai − Ā)

n− 1
, i = 1, . . . , n.

Here, H̄ is the average of hours spent studying of all students, M̄ is the av-

erage mark, Ā is the average of student’s age and n is the number of parameters

(students), i.e., n = 30 in this case. The covariance matrix for this example is

therefore

C =


53.34 130.44 −1.41

130.44 358.81 8.52

−1.41 8.52 19.91

 .
Having defined the covariance matrix, the next step of PCA is to obtain eigen-

values and eigenvectors of the covariance matrix. For this example, the eigenvalues

are 407.07, 20.93 and 4.06, with corresponding eigenvectors

[−0.3459,−0.9381,−0.0194]T , [0.2526,−0.0732,−0.9648]T and

[0.9037,−0.3386, 0.2622]T , respectively. The eigenvalues are ordered from largest

to smallest in order to determine the importance of the components. The eigen-

vector associated with the largest eigenvalue is called the principal component of

the data set.

The idea of PCA is that we can choose to ignore the components of lesser sig-

nificance. We obviously lose some information in the data by doing that, however,

if the eigenvalues are small, we don’t lose a great deal of information. If we ignore

some components in a given problem, then the final data will have fewer dimen-

sions [19]. The purpose is to retain meaningful properties of the original data while

we reduce the dimensionality and computational time. This is the main idea of the
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PCA method [22].

The last step of the PCA method is to derive a new data set with respect to

the principal components or eigenvectors. In this particular example, we have a

3-dimensional problem and so we choose to derive a new data set (i.e., transform

the existing data set) with respect to the two eigenvectors that correspond to the

largest eigenvalues. Then, we standardise our original data in such a way that

Ĥi =
Hi − H̄
σH

, where σH is the standard deviation of H, M̂i =
Mi − M̄
σM

, where

σM is the standard deviation of M and Âi =
Ai − Ā
σA

, where σA is the standard

deviation of A. This is done so that Ĥi, M̂i, Âi ∼ N(0, 1). We then combine all

standardised vectors of data to form a 30 × 3 matrix called the Feature Matrix.

The idea is then to obtain transformed data with respect to the Feature Matrix

and the two leading eigenvectors (positioned colum-wise, in order of importance,

to form a 3× 2 matrix). By multiplying the Feature Matrix and the leading eigen-

vectors, we obtain a 30 × 2 matrix of transformed data. Notice that our original

data was 3-dimensional, but the transformed data is now 2-dimensional [19, 22, 23].

The principal components for our example are plotted together with the stan-

dardised data in Figure 1.2. We can clearly see that there is not much contribution

from the green direction (the third principal component).

Figure 1.2. A plot of three principal components.

We then drop the inconsequential principal component to obtain a 2-dimensional

case with two principal components.This results in PC1 and PC2 becoming the
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new axes to our data, as shown in Figure 1.3.

Figure 1.3. A plot of two principal components.

This gives us insight into what the transformed data looks like. Specific com-

putations show that the first principal component explains 64.82% of the variance

in the data (the points are clustered around the horizontal axis), and the second

principal component explains 33.64% of the variance. This means that the first two

principal components explain more than 95% of the variance in the data. More

about PCA can be found in [19, 20, 21, 22].

In contrast to PCA, the active subspace method helps to approximate a scalar-

valued function of several variables. In order to do that, we use the eigenvectors of

an uncentered covariance of the gradient. However, we are not interested in con-

structing a low-dimensional, linear parameterisation of the gradient such that its

covariance is well-approximated, like in PCA. Instead, we use those eigenvectors to

identify directions along which the scalar-valued function (non-existent in PCA)

changes more, on average [8, 14]. This will be illustrated in Chapter 2.

1.3 Network and Measurement Science

Throughout this thesis, we illustrate the use of the active subspace method moti-

vated by problems in network and measurement science. In order to acquaint the

reader with both fields, we give short introductions in this chapter.
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1.3.1 Network Science Context

We live in a world where everything around us is connected, for example, infor-

mation systems (such as the internet), electrical grids and transportation systems.

Understanding, controlling or designing of such systems or networks is a huge chal-

lenge today. Many different complex systems consisting of thousands or millions

of connected elements are studied in disciplines as diverse as sociology, economy,

biology, neuroscience and physics [24].

Complex systems can often be usefully represented as networks. Each network

component is represented by a node and nodes are linked when components are

connected. This way we can study the connected elements of a system. Further-

more, networks are often represented as matrices (see Chapter 3). We can then

apply statistical inference techniques to these systems more easily [25, 26]. For

example, we can identify central nodes or edges in a given network. This is often

achieved by considering a centrality measure [27, 28, 29], which assigns a value to

each node to indicate importance or relevance in a given network [30]. We discuss

networks and calculations of centralities in more detail in Chapter 3. We then

apply the active subspace method on networks in Chapter 4.

1.3.2 Measurement Science Context

Measurement is one of the first human intellectual achievements. It is believed

that people learned to measure centuries before they learned how to write. More-

over, people learned how to count through measurement [31]. It is a process of

observing and recording objects or events (i.e., comparing objects, recording re-

sults). Measurement capabilities have increased drastically since the 1960s, making

measurements faster and more precise. Instruments such as laser trackers, which

were invented in 1987, are now capable of providing us with the 3-dimensional

co-ordinates of an object (i.e., distance, azimuthal angle and elevation) [32, 33].

We discuss measurement science (more specifically, in design of experiments)

and how it fits with the active subspace method in more detail in Chapter 6. We

also consider laser trackers in more detail below since the problems in Chapter

6 are closely related to problems involving laser tracker measurements. Needless

to say, NPL is interested and invested in measurement science and, in particular,

laser trackers, which is why we highlight this topic in this thesis.
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Figure 1.4. Examples of a laser tracker. From left to right: API’s OT2 Core,
FARO’s Vantage, Leica Hexagon AT403 [38]

1.3.2.1 Introduction to Laser Trackers

Industries such as aeronautical engineering and space exploration are in need of

large-scale measurement systems [32, 33, 34, 35] for problems where the dimen-

sions and positioning of large parts require accurate measuring devices [35]. It is

known that using laser tracker offers precision and relatively fast data acquisition

for measuring large objects in industrial environments [34]. The first laser tracker

was invented in 1987 by Kam Lau; see Figure 1.4 for examples of laser trackers

today [36, 37].

A lot of research and development has been done during the last 30 years in

modeling of laser tracker error sources, estimation of uncertainty, improvement of

accuracy, design of laser trackers and performance evaluation methods [33, 39].

Because of this, the applicability of laser trackers has increased over time. The

laser tracker is now an attractive measurement tool for a number of applications.

Typical examples include: robot metrology; manufacture and assembly of large

components such as aircraft wings or structures of a ship; development of machine

tools; providing reference measurements for large volume laser scanners and dis-

tributed metrology systems (such as indoor positioning systems, i.e., indoor GPS);

alignment of large optics and structures for astronomy; and the nuclear industry

[40, 41]. Furthermore, laser trackers can be used not only for part inspection but

also for monitoring the condition of a tool or a manufactured part over time. If a

fault is found during the monitoring period, this can prevent other tools or parts

from being manufactured that could, in general, lead to faulty equipment (parts

might not suit one another if faulty) [38].
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Figure 1.5. An example of a reflector [43]

A laser tracker is a portable coordinate measuring system. It measures a three-

dimensional coordinate position of a target such as a spherically mounted retrore-

flector. In other words, the device records the distance to the target (say, d) along

with two angles, providing position data in a spherical coordinate system. With

this information, Cartesian (X, Y, Z) coordinates of the reference target can also

be calculated [39, 40, 42]. The distance between the laser tracker and the reflector

is usually denoted by d, and the inclication angle and azimuthal angle (rotation of

the laser tracker) are denoted by θ and ϕ, respectively. An example of a reflector

is presented in Figure 1.5.

The distance d can be measured by an interferometer or an absolute distance

measurement technique [34]. An interferometer is a combination of two or more

sources of light that create an interference pattern. This can then be measured

and analysed. However, there is a huge issue with using an interferometer to cal-

culate d: an interferometer can be used only when the beam is not interrupted

(from the laser tracker to the reflector) [38, 44]. For example, the beam may

get interrupted when experiments or calculations take place outdoors, or due to

space-borne satellites in orbit, etc. However, this issue can be overcome by using

the absolute distance measurement, which can provide the distance d even if the

beam is interrupted. Examples of absolute distance measurement principles include

time-of-flight measurement, multi-wavelength interferometry, wavelength scanning

interferometry and intensity or frequency modulation. Although the absolute dis-

tance measurement is suitable when the beam gets interrupted, the interferometer

10



Figure 1.6. The working principle of the laser tracker.

measurement is faster with more accurate measurements of distance d [38, 44].

The inclination angle θ and azimuthal angle ϕ are measured by two angular en-

coders [34, 42]. Figure 1.6 displays the basic functionality idea of the laser tracker.

The arrow from the laser tracker to the reflector denotes the beam with distance

d. The basic idea is that the laser tracker sends out the laser beam to the reflector,

then the reflector returns the laser beam. If the beam is detected to be off-course,

then this causes movement of the laser tracker. This is done so that the beam is

incident on or perpendicular to the optical center of the reflector [34], which means

that the laser tracker continually monitors the position of the reflector.

However, there are some limitations to the laser tracker [41]. For example,

air temperature, pressure and humidity can affect measurements. Also, the laser

tracker is an expensive, relatively large and heavy instrument, which can make it

unsuitable for some applications.

Consider the simple example displayed in Figure 1.7 so that we can better

understand the capabilities of a laser tracker. We assume here a few things for

the hypothetical aircraft in Figure 1.7: the aircraft is stationary, the parts of the

aircraft are manufactured (e.g., the parts of the aircraft are denoted by the green

lines are intersections in Figure 1.7) but have yet to be put together or built. In a

case like this, the laser trackers are mostly used to inspect the parts of the aircraft
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(for things like alignment, stability and portability).

We now assume that the aircraft is put together. One of the main tasks for

the engineering team is to inspect the aircraft for all instabilities, misalignments

of parts and the symmetry of the aircraft. This can also be done by using laser

trackers (they are especially used for inspecting the wings of the aircraft). It is

a must for an aircraft to be built with as little error as possible (in the interests

of important qualities such as stability and balance). Note that multiple laser

trackers are usually combined to get a single target location in the aircraft industry

(although the same concept applies to many industries or applications). The reason

for doing this is that a single laser tracker can have errors and using multiple laser

trackers to target a single target location can reduce that error.

Figure 1.7. An example of an aircraft with target locations to be determined by
the laser tracker.

1.4 Summary of Thesis

Chapter 2 contains the main mathematical background material for this thesis,

where we introduce the method of the active subspace with theory, a practical al-

gorithm and examples. In Chapter 3 we discuss the background theory of networks.
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In particular, we present a new analytical derivation for the gradient of Katz cen-

trality in § 3.3 (Lemma 3). In Chapter 4, we apply the theory of networks and the

ideas of the active subspace method, and perform a number of experiments. It is

important to note that, as far as we are aware, this is the first time the active sub-

space method has been used in network science. After illustrating some ideas on

synthetic networks, we consider two important more realistic networks in § 4.4 and

§ 4.5, which have been previously studied by network science researchers, namely,

Zachary’s Karate Club network and a protein-protein interaction (PPI) network.

The results we obtained using the active subspace method generally match those

published in the research literature and also add further insights. In Chapter 5, we

consider Sobol indices and make comparisons with the active subspace method.

Despite the fact that the Sobol method is far more popular, the active subspace

method is found to offer some advantages. In Chapter 6, we introduce the idea of

design of experiments, and apply the active subspace method to some examples

that are of interest to NPL. This includes a “black-box” example, where the ex-

perimental processs is partly known. The input parameters and output quantity of

interest are supplied but unknown. The thesis is then concluded with a summary

of the work presented and some remarks on possible future work.
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Chapter 2

The Method of Active Subspaces

2.1 Introduction

As we have seen in Chapter 1, for a complicated physical model that has multiple

input parameters, standard methods (e.g., uncertainty quantification, optimisa-

tion, integration, etc) are usually not practical for parameter studies due to the

limited computational budget. The active subspace method offers an appealing

approach to deal with this problem. In other words, if the underlying model is

computationally expensive, the method of active subspaces can be used to deal

with the curse of dimensionality. The method helps us to understand the impor-

tance of parameters in a given problem (in similar way to the PCA method). The

active subspace method discovers a linear combination (or combinations) of

important parameters instead of just identifying how important each individual

parameter is to the model. These linear combinations of parameters are usually

referred to as a set of important directions of the inputs. Once a set of important

directions has been identified, it is then possible to use that information to perform

parameter studies (e.g., response surfaces, inversion) based on a smaller number

of parameters. The main reference for this chapter is [8].

There are a number of points that need to be considered in order to use an

active subspace method. In this chapter we illustrate how to generate an active

subspace for a general problem. To set notation, let x represent a vector of input

parameters (or model parameters) sampled from a distribution with a probability

density function, say ρ, and a function f : Rm → R be a map from (normalised)

inputs to the simulation’s quantity of interest. Consequently, f(x) is a scalar

quantity that depends on the input parameters x. Furthermore, input parameters
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need to be normalised, i.e. centred around 0 with equal ranges. It is important

to note that we will assume a certain degree of smoothness for f in this thesis

(notably that its gradient exists).

2.2 Background Theory

Suppose we have an m × 1 vector x containing the m input parameters, and a

function f as defined in § 2.1, so that f(x) is a scalar. We begin by introducing a

matrix C, which is the mean (with respect to the probability density function ρ

[45]) of the outer product of the gradient of the function f , denoted by ∇xf , with

itself, that is,

C =

∫
(∇xf)(∇xf)Tρdx. (2.1)

The density function is usually chosen to be uniform or Gaussian, because these

density functions are easy to implement and work with. Each entry of C is therefore

the average of a product of partial derivatives

Cij =

∫ (
∂f

∂xi

)(
∂f

∂xj

)
ρdx,

where Cij is the (i, j) element of C and xi is the ith entry of the vector x. For

now, we assume that partial derivatives of f are easily available (that is, gradients

or approximation of the gradients). Here C is an m×m matrix. Furthermore, the

matrix C is symmetric and positive semi-definite [8, Equation (3.4)], which implies

that it has a real eigenvalue decomposition. We may therefore write

C = WΛWT , Λ = diag(λ1, ..., λm), (2.2)

where W is the m × m orthogonal matrix whose columns {w1, ...,wm} are the

eigenvectors of C.We will assume without loss of generality that λ1 ≥ ... ≥ λm ≥ 0.

We now give a lemma that quantifies the relationship between the gradient of

f and the eigenvalue decomposition of matrix C ([8], pp. 23).

Lemma 2.2.1. The mean-squared directional derivative of f with respect to the

eigenvector wi is equal to the corresponding eigenvalue, that is,

∫
((∇xf)Twi)

2ρdx = λi, i = 1, ...,m.
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Proof. Since the matrix C has the real eigenvalue decomposition given in (2.2),

λi = wT
i Cwi = wT

i

(∫
(∇xf)(∇xf)Tρdx

)
wi =

∫
((∇xf)Twi)

2ρdx.

By inspecting Lemma 2.2.1, we see that on average the change in f along eigen-

vector wi is proportional to the size of eigenvalue λi. For example, if the smallest

eigenvalue λm is zero, then the change in f along the eigenvector wm is zero, which

means that the directional derivative (∇xf)Twm is zero.

Based on this information, we now separate the eigenvalues and eigenvectors

of C into two sets, where perturbations in the first set change f more compared

with perturbations in the second set, on average. That is, we write

Λ =

Λ1

Λ2

 , W = [W1 W2],

where Λ1 = diag(λ1, ..., λn) with the first n < m eigenvalues and W1 contains the

first n eigenvectors. From Lemma 2.2.1, the first n eigenvalues and eigenvectors (in

Λ1,W1) should have more impact on f than the remaining m−n eigenvalues and

eigenvectors (in Λ2,W2). Strategies for choosing n will be discussed in § 2.5. By

separating eigenvectors and eigenvalues in this way, we can define new variables y

and z as

y = WT
1 x ∈ Rn, z = WT

2 x ∈ Rm−n,

where changes in the y variables impact f more on average than changes in z

variables. Note that y and z are linear combinations of the original parameters in

x. It is also worth noting that x can be expressed directly in terms of y and z as

x = I x = WWTx = W1W
T
1 x + W2W

T
2 x = W1y + W2z,

⇒ f(x) = f(W1y + W2z),

where I is the identity matrix. By using the chain rule,

∇yf(x) = ∇yf(W1y + W2z) = WT
1∇xf(W1y + W2z) = WT

1∇xf(x),

∇zf(x) = ∇zf(W1y + W2z) = WT
2∇xf(W1y + W2z) = WT

2∇xf(x).
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We can see that the active subspace is defined to be the range of the eigenvectors

in W1 and the inactive subspace is defined to be the range of eigenvectors in

W2. The equalities above tell us that the changes in y variables are associated

with the active subspace (the span of the eigenvectors in W1). The changes in z

variables are associated with the inactive subspace (the span of the eigenvectors

in W2). Having this information, the result in Lemma 2.2.1 with respect to the

new variables y and z can be shown as follows ([8], pp. 24).

Lemma 2.2.2. The mean-squared gradients of f with respect to y and z satisfy

∫
(∇yf)T (∇yf)ρdx = λ1 + ...+ λn,

∫
(∇zf)T (∇zf)ρdx = λn+1 + ...+ λm.

Proof. Using the linearity of the trace,∫
(∇yf)T (∇yf)ρdx =

∫
trace

(
(∇yf)(∇yf)T

)
ρdx

= trace

(∫
(∇yf)(∇yf)Tρdx

)
= trace

(
WT

1

(∫
(∇yf)(∇yf)Tρdx

)
W1

)
= trace

(
WT

1 CW1

)
= trace (Λ1)

= λ1 + . . .+ λn.

The result for the z components can be derived in a similar way.

Lemma 2.2.2 tells us that perturbations in the active variables y change f more

than perturbations in inactive variables z, on average. This is a similar observation

to Lemma 2.2.1 and it is a particularly important remark for the active subspace

method. From Lemma 2.2.2, we can see that the sum of eigenvalues which corre-

spond to W2 is related to changes in z. Moreover, the sum of eigenvalues which

correspond to W1 is related to changes in y. Note that, if λn+1 = ... = λm = 0,

the gradient with respect to z is zero everywhere. Studying λ1, ..., λn instead of

λ1, ..., λm is the essential idea of the active subspaces method.
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The main aim of the active subspace method is to find a linear combination

of parameters that can be used to approximate f by a function of n < m vari-

ables in order to enable parameter studies. In the context of the active subspace

method, a linear combination of parameters gives the variables y = WT
1 x. As

mentioned before, this linear combination of parameters can be used to plot a suf-

ficient summary plot (of the quantity of interest f(x) against the active variable

y). The purpose of plotting a sufficient summary plot is to see if there exists a

low-dimensional structure in the original problem.

In § 2.3, we discuss a practical algorithm to obtain an active subspace. But

before we do that, there is a very important matter of the active subspace method

which needs to be discussed. We have already considered the fact that given a

smooth function f and a vector of input parameters x, the calculation of the

quantity of interest f(x) and ∇xf(x) is straightforward. However, the calcula-

tion of these quantities are usually expensive. To perform a parameter study (e.g.

response surfaces, integration, etc), it is essential to have as few calls of the sim-

ulation as possible. This is the reason we are interested in the active subspace

method. The method produces a structure, which can be exploited efficiently in

the parameter studies. By reducing the dimension of the underlying problem, we

can focus on only the most important parameters, therefore saving computational

time. In other words, we focus on the active variables to get faster results. In order

to do that we may construct a function h = h(y), which depends on the n < m

(components of y) so that

f(x) ≈ h(y) = h(WT
1 x), (2.3)

where WT
1 x is a linear combination of the important eigenvectors in W1 (columns

of WT
1 ) and the input parameters x. Thus, we need to construct a model so that h

approximately represents f but with fewer simulation calls. In this thesis, we focus

our attention on the calculation of the active subspace and its application. A dis-

cussion of exploitation of the active subspace (building a model so that parameter

studies are feasible) can be found in [8, Chapter 4].

2.3 Practical Algorithm

The previous section of this chapter described the theory behind generating an

active subspace. In this section we consider implementing these ideas to obtain a
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practical algorithm. It is based on constructing an approximation to the matrix C

in (2.1), which lies at the core of defining an active subspace. The general algorithm

is presented in Algorithm 1.

Step 1: Draw M independent samples {xi}, i = 1, . . . ,M according to the

sampling density ρ.

Step 2: For each sample xi, compute the gradient ∇xfi = ∇f(xi) and the

quantity of interest f(xi).

Step 3: Compute the matrix Ĉ and its associated eigenvalue

decomposition,

Ĉ =
1

M

M∑
i=1

∇xfi∇xf
T
i = ŴΛ̂ŴT , (2.4)

where Ŵ is the matrix of eigenvectors, and Λ̂ = diag(λ̂1, ...λ̂m) is the

diagonal matrix of eigenvalues ordered in decreasing manner.

Algorithm 1. The general algorithm for calculating active subspaces.

The m × m matrix Ĉ is a Monte Carlo approximation to the matrix C in

(2.1), which is the average of the outer product of the gradient with itself. Step

1 of the algorithm focuses on drawing M independent samples. The choice of M

will affect the accuracy of the approximation: clearly, taking M large will improve

the approximation quality, but it will make the computation more expensive. The

recommended value in [8] is M = ak logm, where a is the oversampling factor, k

is the largest dimension we are interested in and m is the number of input param-

eters. It is possible to fit a linear model with m+ 1 evaluations of the quantity of

interest. However, random sampling algorithms in the literature suggest to use an

oversampling factor of a ∈ [2, 10]. The largest dimension k corresponds to the fact

that we can inspect k eigenvalues instead of m. Suppose that before we apply the

active subspace method to a problem, we suspect that we have a 3-dimensional

active subspace, and so you would choose k = n + 1 = 4. This way you can save

computational time, however, if you are wrong about your prediction, you will

need to increase k ∈ [1,m+ 1].
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Imagine having a large computational budget, then the model can be run with-

out performing a dimension reduction technique. However, this is rarely the case

when working on real-world problems. With a limited computational budget, it is

usually essential to decide on M in order to obtain efficient results. The number of

Monte Carlo samples M is usually chosen to be large (e.g., 104) [46]. The reason

for choosing M much larger than ak logm is that the numerical examples we are

studying are computationally inexpensive and we wish to evaluate the method in

the absence of this extra source of error.

The focal point of Step 2 of the algorithm is computing the gradient∇f(xi) and

the quantity of interest f(xi) for each sample xi. Note here that f(xi) is necessary

here only for calculating ∇f(xi). Having this information, we can compute gradi-

ent samples ∇xf(x). Gradient samples simply depend on the input parameters x,

a smooth function f(x), the number of samples and the density of sampling (de-

scribed earlier). However, gradient samples are not always available. To overcome

this problem, where necessary we use finite differences in this thesis to obtain an

approximation of the gradient. Step 3 focuses on the computation of the matrix

Ĉ and its eigenvalue decomposition. In § 2.5, we will use examples to show how

the algorithm works.

It is important to note that analysing n < m eigenvalues and eigenvectors

will cause subspace errors to occur. The source of that error will be discussed in

§ 2.5. Assume that we have true eigenvalues and eigenvectors obtained from (2.1),

and that we have estimated eigenvalues and eigenvectors obtained from (2.4).

Essentially, the subspace error is found by comparing W with Ŵ. In other words,

we can quantify this error by finding the distance between the subspace defined by

the range of W1 (true) and the subspace defined by the range of Ŵ1 (estimated).

The subspace error formula is

dist(ran(W1), ran(Ŵ1)) = ‖W1Ŵ
T
1 − Ŵ1Ŵ

T
1 ‖ = ‖WT

1 Ŵ2‖, (2.5)

where ran(X) is shorthand for the range of the columns of the matrix X, Ŵ2 is

the estimated inactive subspace of the eigenvectors as defined in § 2.2 and the L2

norm is used as in [8, 47]. An example of the subspace error is presented in § 2.5.2.
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2.4 Monte Carlo and Bootstrapping Methods

Two techniques which are very commonly used for large problems involving lots

of data are Monte Carlo and bootstrapping methods.

The Monte Carlo method is a numerical method that uses random samples to

tackle integration problems for which an analytical solution is not known or is not

practical to compute. Although it is known that the simulation of random sam-

ples is computationally expensive, as technology has advanced, the Monte Carlo

method has become more attractive [48]. The Monte Carlo method is a simulation

technique that mainly relies on two things: repeated random sampling and statisti-

cal analysis. The first key ingredient is a probability distribution ρ (or probability

distributions), which is used as the basis distribution for the input parameters x.

Random samples xi, i = 1, . . . ,M , are then drawn from the probability distribu-

tion ρ. For each xi, we calculate the quantity of interest f(xi). Each output or a

quantity of interest is a single outcome scenario in the simulation. In a way, we are

approximating the quantity of interest f(x). The output values are then collected

in order to perform a certain statistical analysis [49]. The three main steps of the

Monte Carlo method are summarised in Figure 2.2.

Monte Carlo simulation

1. Identify the quantity
of interest and generate

random samples xi
according to a chosen

probability distribution

2. Evaluate
f(xi) for each xi

3. Analyse
process
output

Figure 2.1. The Monte Carlo simulation: basic process.

Suppose we have a random variable x with unknown expected value E(x) = a

and variance V ar(x) = b. We are interested in computing an approximation to a

(and possibly b) by taking independent samples of x and using a pseudo-random

number generator. If x1,x2, . . . ,xM are independent random variables with the

same distribution as x, then we expect
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aM =
1

M

M∑
i=1

xi

to be a good approximation to a. The variance of x is approximated by the sample

variance

b2
M =

1

M − 1

M∑
i=1

(xi − aM)2.

This leads us to the basic Monte Carlo method for approximating a. We com-

pute M independent samples and form aM . In order to monitor the error, we also

compute the variance approximation b2
M . Having bM allows us to compute the 95%

confidence interval [50]:[
aM −

1.96× bM√
M

,aM +
1.96× bM√

M

]
.

In Figure 2.2 we consider a result from a Monte Carlo simulation of E(eZ),

where Z ∼ N(0, 1). Analytically, this results in

E(eZ) =

∫ ∞
−∞

ez
1

2π
e−z

2/2dz

=

∫ ∞
−∞

1

2π
e−(z2−2z)/2dz

=

∫ ∞
−∞

1

2π
e−(z2−2z+1)/2e1/2dz

= e1/2

∫ ∞
−∞

1

2π
e−(z−1)2/2︸ ︷︷ ︸
N(−1,1)

dz

= e1/2

=
√
e.

We used 15 different sample sizes, M = 23, 24, 25, 26, . . . , 217. We then computed

aM and the corresponding 95% confidence interval for each sample. By inspection,

we see that as M increases the computed mean becomes more accurate and the

confidence interval shrinks.

The accuracy of a Monte Carlo simulation is not deterministic. To deal with

this issue, we can post-process the Monte Carlo results using a bootstrapping

method. The main property of bootstrapping is that, unlike Monte Carlo, the

method does not require information about the distribution of input parameters.
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Figure 2.2. Monte Carlo approximation to E(eZ), where Z ∼ N(0, 1). Crosses are
the approximations, vertical line are 95% confidence intervals. Horizontal line is
at height

√
e.

The main idea of bootstrapping is that it samples with replacement and extracts

more information from a fixed data set. In other words, we draw a large number

of resamples xi from the original sample x (usually between 102 to 104 resamples)

with replacement. For example, consider a sample x, where

x = (x1, x2, x3, . . . , xm).

The main step of the bootstrapping method is to generate a bootstrap sample,

xb = (x1,x2,x3, . . . ,xb).

Bootstrap samples in xb have the same dimension or length as x and bootstrap

samples in xb are randomly drawn from x. Moreover, a bootstrap sample could

include original input parameters more than once and some of the input parameters

might not be included. For example, consider x = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10), then

one of the bootstrap samples could be x1 = (1, 1, 1, 5, 4, 9, 9, 10, 3, 2). Having this
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information, we can calculate f(xb) for each bootstrap sample in xb. Since the

bootstrap samples in xb vary slightly from x, the statistic or a quantity of interest

f(xb) will also vary [51]. Note that the Monte Carlo method can provide confidence

intervals without bootstrapping. However, the method of bootstrapping gives us

a better efficiency for a given set of data (see Chapter 3). For more details about

bootstrapping, review a short but very informative paper [52].

2.5 Numerical Examples

Following [8], we present two numerical examples in this section to illustrate key

ideas of the active subspace method. The first example considers a comparison

between the active subspace method from § 2.3 which needs gradients, and an

active subspace method using a linear model. This gives a deeper understanding

of the active subspace method and the approximation algorithm. The second ex-

ample considers a quadratic model, where eigenvalues and eigenvectors are known

analytically, so some error analysis can be carried out.

2.5.1 Comparison with a Global Linear Model

Consider the smooth function

f(x1, x2) = sin (4πx1) + 4x2,

with input parameters x = (x1, x2)T , gradients∇f(x1) = 4π cos (4πx1) and∇f(x2) =

4. The first task of the method is to choose the number of samples and the density

function. For this particular example, we use M = 208 samples as in [8] that are

uniformly distributed between −1 and 1. For the active subspace method as de-

scribed in § 2.3, we follow the steps in Algorithm 1 and calculate gradient samples

∇f(xi) and the quantities of interest f(xi) for each sample xi, i = 1, . . . ,M , and

compute an eigenvalue decomposition to find estimated eigenvalues and eigenvec-

tors.

We now compare this method with an active subspace method which uses a

linear model. For a global linear model, we have the same number of samples,

sampling density and the same function. However, in this case we compute only

the quantity of interest qi = f(xi) for each sample xi instead of also computing

sample gradients. We then fit a global linear model
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qi = c+ bTxi, i = 1, ...,M, (2.6)

using a least squares method to compute c and b. The method of least squares is

a standard approach in regression analysis to approximate solution of overdeter-

mined systems [53, 54]. The normalised gradient is then

ŵ =
b

‖b‖
. (2.7)

It is worth noting that this least squares approach gives us only one direction,

which is ŵ. The reason why this is important will become clear later.

Since we have the leading eigenvector, ŵ (the direction ŵ for the second exam-

ple), random samples xi and quantities of interest qi for both cases, we can now

construct sufficient summary plots. Figure 2.3 shows sufficient summary plots for

Figure 2.3. Left: Sufficient summary plot for the active subspace estimation with
gradients for the function f(x1, x2) = sin (4πx1) + 4x2. Right: Sufficient summary
plot for the active subspace estimation with a global linear model.

the active subspace estimation with gradients (left) and for the active subspace

estimation with a global linear model (right). The first plot was produced by us-

ing the first (leading) eigenvector w1 and the second plot was produced by using

the direction ŵ in (2.7). By looking at the plots it seems that the linear model

identifies the dimension reduction space better than the method with gradients

(one plot has scattered points whereas the other has a pattern). The gradient-

based method fails here because we have a low-dimensional monotonic function,
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i.e., fails to identify the underlying behaviour of the function. If the function is

not monotonic, that is, if the sign of the partial derivatives changes over the input

space, then the global linear model is not able to determine the dimension reduc-

tion space [47]. We illustrate this by using the same method above with a different

function that is not monotonic:

f(x1, x2) =
1

2
(0.7x1 + 0.3x2)2.

All the calculations are done in the same way as described earlier and the suf-

ficient summary plots for this case are presented in Figure 2.4. The plot shows

Figure 2.4. Left: Sufficient summary plot for the active subspace estimation with

gradients for the function f(x1, x2) =
1

2
(0.7x1 +0.3x2)2. Right: Sufficient summary

plot for the active subspace estimation with a global linear model.

that the global linear model for the function f(x1, x2) =
1

2
(0.7x1 + 0.3x2)2 fails

to identify the dimension reduction space (a scatter plot) whereas the gradient-

based method appears to identify the dimension reduction space. In other words,

the active subspace method identified the underlying behaviour of the function

(quadratic shape). Constantine in [8] also mentions that many ‘engineering quan-

tities of interest’ are mononotic and that he has not yet encountered non-monotonic

‘engineering quantities of interest’ cases in practice.

2.5.2 A Quadratic Model

We now consider an example where we know true eigenvalues and eigenvectors.

Here we first define the function f(x) to be a smooth quadratic function in 10
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variables as

f(x) =
1

2
xTAx,

where A is a 10 × 10 symmetric positive definite matrix, x is a 10 × 1 vector

and the entries of x are uniformly distributed on the interval (0, 1). Note that

for this example, we can calculate the gradient directly as ∇xf(x) = Ax. We

now choose the number of samples and the density function. In this case we will

work again with a uniform distribution and M = 28 samples of 10 uniformly

distributed numbers between −1 and 1. The number of independent samples is

M = ak log(m) = 28, where a = 2, k = 6 and m = 10 as in [8]. By using Equation

(2.1), we get that

C = A

(∫
xxTρdx

)
AT =

1

3
A2,

where

(∫
xxTρdx

)
=

1

3
I. We see that the eigenvalues of C are the squared

eigenvalues of A divided by 3 and that the eigenvectors of C are the eigenvectors

of A.

In order to illustrate the method, we use three different 10× 10 matrices. Each

matrix has the same eigenvectors, but the eigenvalues are different. Plots of the

eigenvalues of three cases are presented in Figure 2.5. In the first case, there is

no considerable separation between the eigenvalues. In the second case, there is a

visible a gap between the first and second eigenvalues. In the third case, there is

a separation between the third and fourth eigenvalues. A Monte Carlo algorithm

Figure 2.5. Three choices of eigenvalues for matrix A.

was used to find estimated eigenvalues and eigenvectors for all three cases. Then

a bootstrap method (iterating for 100 times and randomly choosing 28 samples)
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was used to find bootstrap (confidence) intervals. In other words, the bootstrap

intervals are used to measure the variability of the method or to see how well it

performs. A description of the Monte Carlo method and bootstrapping was given

in § 2.4.

Figure 2.6 represents three cases of true and estimated eigenvalues with boot-

strapping for matrix A. Notice that the plots contain only the first 6 eigenvalues

instead of 10 eigenvalues. In the first plot in Figure 2.6 a gap or a considerable

Figure 2.6. True and estimated eigenvalues along with the bootstrap intervals.

separation is not present between the eigenvalues. The most important property

of the second plot can be seen by looking at the first two eigenvalues. It is obvi-

ous that there is a significant separation between the first and second eigenvalues.

Moreover, bootstrap intervals tell us that the first two estimated eigenvalues are

evaluated more accurately than the other eigenvalues (bootstrap intervals are nar-

row between the first and second eigenvalues). This means that we may use a

one-dimensional active subspace. If there was a considerable separation between

the second and the third eigenvalues, then we would use a two-dimensional active

subspace. In this case we have that examining a one-dimensional active subspace

can be considered a more efficient approach than examining all the dimensions.

For the third case, there is a considerable separation between the third and the

fourth eigenvalues. This means that a three-dimensional active subspace may be

used. The formula for the distance between subspaces given in Equation (2.7) al-

lows us to quantify subspace errors using eigenvectors. The results can be observed

in Figure 2.7. In the first plot of Figure 2.7, the subspace error is similar in all 6

dimensions. On the other hand, in the last two plots of Figure 2.7, the subspace

error is smaller when we have a gap before the remaining eigenvalues. In other

words, a large eigenvalue gap indicates a good place to define the active subspace

dimension.

28



Figure 2.7. Estimated subspace error along with bootstrap intervals.

2.6 Summary

In this chapter, we introduced the method of active subspaces. In § 2.2 we discussed

the underlying theory of the method. A practical algorithm for implementing the

active subspace method then followed in § 2.3. We then discussed the basic princi-

ples of the Monte Carlo and Bootstrapping methods in § 2.4. Finally, we presented

two numerical examples in § 2.5. The first example was a comparison between the

active subspace method with gradients available and the active subspace method

with a global linear model (gradients unavailable). We gave reasons why the ac-

tive subspace method with gradients is superior to the method with a global linear

model. The chapter finished with second example, where eigenvalues and eigen-

vectors were known analytically, so we could calculate errors to see whether the

method performs well or not. It was found that larger eigenvalue gaps give us much

smaller errors, which means that a good approximation is available if we have a

gap between the eigenvalues.
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Chapter 3

Background Theory on Networks

3.1 Introduction to Network Theory

Networks are everywhere. Intuitive examples are family and friends networks, the

internet, airline networks, social networks, the banking network, telephone net-

works, train networks, etc. Networks allow us to share information and resources,

which can be used to save valuable time or money, create income and so on [55].

Networks are also known as graphs. They consist of entities or nodes (or ac-

tors) with interactions or connections between the nodes. The nodes may be indi-

viduals, groups, organisations, societies, etc. Edges or links may represent social

relationships between individuals, communication connections (talking or sharing

information with one another), distribution routes, urban streets, airline routes,

protein-protein interactions and so on [56]. A network with nodes and edges can

represent a complex system, which enables us to do analysis.

Let’s consider the social network created by Facebook. Figure 3.1 displays

the friendship connections between 500 million people using Facebook in 2010

[57]. This is an example of a complex network, which can be analysed to answer

questions of interest. For example, we might want to know which two cities had

the most friendships or relationships between them. We might also wish to find the

most influential or authoritative accounts. In order to try and answer questions like

these, we need to introduce mathematical terminology and definitions of networks.
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Figure 3.1. Facebook network in 2010.

We begin with a formal definition of a network.

Definition 3.1.1. A network, G, is a pair (V,E), where V is called the vertex set

of G and E is called the edge set of G.

The elements of set V are vertices or nodes of G and the elements of E are pairs of

nodes. It is important to note that edges can be directed or undirected, weighted

or unweighted. Examples of these cases will be shown later in this section. It is

also worth mentioning that if edges or links between the nodes are symmetric (see

Figure 3.2), then G is an undirected network. If the edges are nonsymmetric, then

G is a directed network (see Figure 3.3). A graph that is both edge and vertex-

transitive is called a symmetric graph [58]. In this thesis we simply say that a

graph is symmetric if it is undirected and nonsymmetric if it is directed.

Before we start illustrating and analysing examples of adjacency matrices, we

need to introduce a few more general but rather important concepts from graph

theory. Namely, the definition of a walk in a graph, a closed walk, a path, the

shortest path, a cycle, a simple graph, and a loop. A walk on a graph G is a sequence

of vertices connected by edges. A walk can repeat vertices and edges, which means

that a walk may move forward or backward through the graph multiple times. A

closed walk is a walk when node i is the starting and finishing node. A path is a

walk with no repeated vertices or edges. A loop is an edge from node i to itself.

A shortest path from one vertex to another uses the least number of edges or the

least total weight. A simple graph is a graph with no multiple, unweighted edges or

loops. A cycle is a walk in which the only repeated nodes are the first and the last
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[59]. Definition 3.1.2 helps us to establish a useful mathematical representation of

a network. If node i is connected to node j, then the connection between these two

nodes is represented by 1 in the adjacency matrix, otherwise the entry is 0.

Definition 3.1.2. Let G = (V,E) be a simple network (that is, a network with a

simple graph) where V = {1, . . . , N} is a finite set of vertices. For 1 ≤ i, j ≤ N

define

ai,j =

1, (i, j) ∈ E,

0, (i, j) /∈ E.

Then the square matrix A = (ai,j) is called the adjacency matrix of G.

Every network can be represented as an adjacency matrix. We now demonstrate

this concept with some small graphs. Figure 3.2 represents a graph with 4 nodes

and 5 edges (or 10 edges if we consider the graph to be symmetric). Here we have

a symmetric graph and a symmetric adjacency matrix.

A =


0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0



Figure 3.2. A simple symmetric graph (left) and its adjacency matrix (right).

Figure 3.3 represents a directed graph with 4 nodes and 8 edges. Here, the ad-

jacency matrix A is nonsymmetric. Figure 3.4 represents a weighted symmetric

graph with 4 nodes and 5 edges. We chose the weights by sampling from a uniform

distribution on the interval (0, 1). We only consider positive weights on the edges

throughout this thesis for simplicity. However, there are cases when considering
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A =


0 1 0 0

1 0 1 0

1 1 0 1

0 1 1 0



Figure 3.3. A directed graph (left) and its adjacency matrix (right).

negative weights is beneficial. One possible example of a negative weight on the

edge is transferring money from one account into another. Futhermore, consider

a social network such as Facebook, and say John likes Erica: this could be repre-

sented with a positive edge weight. If John dislikes Erica, this could be represented

with a negative edge weight in a graph. On the other hand, assigning weights on

these edges could be tricky since it is not easy to determine the level of relation-

ship intensity between people. For more information about negative weights on

the edges, see [60].

Continuing with Figure 3.4, the adjacency matrix A is the same as in Figure 3.2

but with weights. In our context, weights will be assigned at random. Consider a

sample x = (x1, x2, x3, . . . , xm) drawn from U(0, 1) with m input parameters or

weights. The number of weights m matches the number of edges between the nodes.

Moreover, we transfer the vector of weights x into the adjacency matrix and replace

ones with the corresponding weights. For example, Figure 3.2 has an adjacency

matrix with ones and zeros. Since the graph is symmetric, we only require m = 5

random weights and replace ones in the adjacency with x = (0.8, 0.9, 0.3, 0.7, 0.5)

row-wise. In other words, an edge a1,2 is assigned a weight of x1 = 0.8 since it is the

first nonzero entry of the adjacency matrix in Figure 3.2, an edge a1,3 is assigned a

weight of x2 = 0.9 since it is the second nonzero entry of the adjacency matrix in

Figure 3.2 and so on. Additionally, ai,j = aj,i in the adjacency matrix due to the
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A =


0 0.8 9 0

0.8 0 0.3 0.7

0.9 0.3 0 0.5

0 0.7 0.5 0



Figure 3.4. A weighted symmetric graph (left) and its adjacency matrix (right).

fact that the graph is symmetric. This means that when a1,2 is assigned a weight

x1, a2,1 is also assigned a weight of x1.

Note that weighted graphs can also be nonsymmetric, if different weights are

allocated to each directed edge between two nodes (see Figure 3.5). Figure 3.5

A =


0 0.9 0.9 0

0.4 0 0.1 0.1

0.1 0.8 0 0.4

0 0.4 0.2 0



Figure 3.5. A weighted nonsymmetric graph (left) and its adjacency matrix
(right).

represents a case when a graph is symmetric in structure but not symmetric by

inspecting edges and its weights.
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3.2 Centrality Measures

In this section, we discuss centrality measures, which are used to identify impor-

tant nodes. The main reference for this section is [61].

Networks have been a field of interest for a long time and centrality is a key

ingredient that offers access to useful information. For example, displaying the

Facebook network in Figure 3.1 gives us no obvious information about the network.

However, centrality can reveal certain characteristics of the network, such as which

person is more communicative or has more “important” relationships compared to

other people. In other words, centrality measures the importance of each node [62].

Centrality can be thought of as a way of describing the potential for communication

with other nodes. In this thesis, we will consider three popular centrality measures:

degree centrality, eigenvector centrality and Katz centrality [63]. These centrality

measures are widely used and have certain similarities. However, before we explain

how they are related, we first need to define these centrality measures.

3.2.1 Degree Centrality

Degree centrality simply corresponds to the degree of a node. The degree of a node

is defined as the number of connections the node has (that is, the number of edges

involving the node). If we have an undirected network G and its N ×N adjacency

matrix A, then the degree of node i is defined as

di =
N∑
j=1

ai,j = (1TA)i = (A1)i, (3.1)

where 1 is N × 1 column vector of ones. If di > dj, then node i is more degree

central than node j. Moreover, max(di) gives us the most central node in the net-

work. Equation (3.1) is valid if and only if A = AT . For an undirected network, the

expression (1TA)i in (3.1) corresponds to the in-degree centrality. The expression

(A1)i in (3.1) corresponds to the out-degree centrality. Both are degree centralities,

however, they measure different features. The calculation of the in-degree central-

ity simply relies on summing column-wise whereas out-degree centrality relies on

summing row-wise. By definition, the in-degree centrality counts the number of

links or connections that are “coming in” to node i whereas out-degree central-

ity counts the number of links or connections that are “going out” from node

i. In other words, in-degree and out-degree centralities correspond to “receiving”

35



information and “broadcasting” information, respectively.

3.2.2 Katz Centrality

Katz centrality may be viewed as an extended version of degree centrality. This is

due to the fact that it takes account of all walks from node i to any other node in

the network whereas degree centrality only counts the number of edges involving

node i. The Katz centrality measure [61] is defined as

Ki = ((α0A0 + αA+ α2A2 + . . .+ αdAd + . . .)1)i =

(
∞∑
d=0

(αdAd)1

)
i

. (3.2)

Here, the parameter α is known as the attenuation factor. If the attenuation factor

is too large (i.e., greater than the reciprocal of the spectral radius ρ(A) of A), then

the infinite sum in Equation (3.2) doesn’t converge. If the attenuation factor is

less than the reciprocal of the spectral radius ρ(A) of A, then the geometric series

converges [61, pp. 116-117]. In other words, if α < 1/ρ(A) then

Ki =
(
(I − αA)−11

)
i
. (3.3)

Equation (3.3) represents “broadcasting” out information. The other case for “re-

ceiving” information is

Ki =
(
1T (I − αA)−1

)
i
. (3.4)

As mentioned before, Katz centrality of a node i counts all walks beginning at

node i such that the longer walks are penalized through the attenuation factor

α. We also note that Ad counts walks of length d. The immediate neighbours,

i.e. walks of length 1, are given the value α1, whereas the farther neighbours, i.e.

walks of length d, are assigned αd value. Thus, the farther the neighbours from

the node in consideration are, the lesser influence they have [64]. Note that, as the

“broadcasting” and “receiving” values in Equations (3.3) and (3.4) represent the

sum of entries in row i and column i, respectively, these will be equal if matrix A

is symmetric. It is also worth mentioning that Equation (3.3) can be written as

Ki =
(
(I − αA)−11

)
i

= eTi (I − αA)−11,

where ei is the ith column of N ×N identity matrix I.
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3.2.3 Eigenvector Centrality

Another similar centrality measure to degree is eigenvector centrality [59, 63, 65,

66]. In degree centrality, all node connections are credited with equal importance.

However, each node may differ in importance. For instance, a node which is con-

nected to highly important nodes is itself an important node. Eigenvector centrality

assigns a relative score to each node depending on the type of nodes it is connected

to [64].

If G is a simple undirected graph, then the corresponding adjacency matrix A is

symmetric with zeros on the diagonal. By the Perron-Frobenius theorem [67, 68],

we can guarantee that the largest eigenvalue of the adjacency matrix A is real.

Furthermore, if we let the eigenvalues of A be λ1 > λ2 ≥ λ3 ≥ . . . ≥ λn, then,

if graph G is connected, λ1 > λ2 (again by the Perron-Frobenius theorem). If the

matrix A is symmetric, then the decomposition of matrix A can be obtained as

A = QΛQT ,

where Λ = diag(λ1, λ2, . . . , λn) are eigenvalues in decreasing order and Q =

(q1,q2, . . . ,qn) is orthogonal with each column eigenvector corresponding to the

ordered eigenvalue [59]. In other words, the biggest or the leading eigenvalue λ1

corresponds to the dominant eigenvector q1 (with q1 ≥ 0 by the Perron-Frobenius

theorem). The eigenvector centrality measure is then defined as

Cev(i) = eTi q1 = q1(i), (3.5)

where q1 is the dominant eigenvector of A that corresponds to the leading eigen-

value λ1 [59].

Bonacich and Lloyd showed in [66] that when α → 1

λ1

in (3.3), we have that

Katz centrality converges to eigenvector centrality [59, pp. 17-18]. Estrada and

Knight also give a proof in [61, pp. 158-160]. On the other hand, when α→ 0, we

have that degree centrality is a limiting case of Katz centrality.

In summary, we arrive at the following relationship between degree, Katz and

eigenvector centralities. When the attenuation factor α is close to the inverse of

spectral radius of A, Equation (3.3) represents a limiting case for the eigenvector

centrality. When α is close to 0, Equation (3.3) represents a limiting case for the
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degree centrality. In this sense, Katz centrality interpolates between degree and

eigenvector centralities.

3.2.4 Edge Betweenness Centrality

The last centrality measure that we consider in this thesis is edge betweenness

centrality. This is defined as the number of the shortest paths that go through an

edge in a graph or a network [69]. Each edge in the network can be associated with

an edge betweenness centrality value, with an edge with a high edge betweenness

centrality score representing a bridge-like connector between two parts of a net-

work, the removal of which may affect the communication between many pairs of

nodes through the shortest paths between them. The edge betweenness centrality

can therefore be thought of as representing the information flow being propagated

through a particular link in a complex network.

More precisely, let G = (V,E) be a connected undirected graph, with vi and vj

representing two nodes in G, respectively. The betweenness centrality of an edge

e ∈ E is then defined as

EB(e) =
∑
vi∈V

∑
vj∈V

σvivj(e)

σvivj
, (3.6)

where σvivj is the total number of shortest paths from node vi to node vj and

σvivj(e) is the number of those paths that pass through an edge e.

We will apply the edge betweenness centrality in some of our examples in

Chapter 4. The code used to calculate the edge betweenness centrality in these

examples was taken from [70].

3.3 Gradient of Katz Centrality

The reason why we are studying network theory along with centrality measures is

that we want to apply the active subspace method to networks. We use centrality

measures to determine which nodes are the most central or important to a certain

network. We then use the active subspace method to determine the combination

(or combinations) of edges that has the most influence.
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As discussed in Chapter 2, the method of active subspaces requires the gradient

of the quantity of interest f(x) or an approximation of the gradient. In practice,

the gradient is rarely available, which means we usually need to approximate the

gradient. In order to use the active subspace method in our network setting, we

need the gradient of Katz centrality. We could use finite differences, as said before.

However, we can in fact find an analytic expression for the gradient of Katz cen-

trality in (3.3). As far as we are aware, this analytic derivative has not previously

been found.

Lemma 3.3.3. Given a matrix A and a parameter α (with 0 < α < 1/ρ(A)), the

Katz centrality Ki =
(
(I − αA)−1 1

)
i

can be analytically differentiated with respect

to each ai,j as

∂Ki

∂ai,j
=
(
(I − αA)−1 αEi,j (I − αA)−1 1

)
i
, (3.7)

where Ei,j is the zero matrix except for a 1 in position (i, j).

Proof. We have Ki =
(
(I − αA)−1 1

)
i
, where I is the identity matrix, A is a

weighted adjacency matrix, 1 is a vector of ones, and α lies between 0 and 1/ρ(A).

By definition

∂Ki

∂ai,j
= lim

ε→0

((I − α(A+ εEi,j))
−11)i − ((I − αA)−11)i
ε

. (3.8)

We now expand the first term in the expression in the right-hand side of this

equation, (((I − α(A+ εEi,j))
−11)i), in terms of powers of ε. First we note that

(I − α (A+ εEi,j))
−1 = (I − αA− εαEi,j)−1 =

(
(I − αA)

(
I − ε(I − αA)−1αEi,j

))−1
.

Since (XY )−1 = Y −1X−1, we obtain

(I − α (A+ εEi,j))
−1 =

(
I − ε (I − αA)−1 αEi,j

)−1
(I − αA)−1 .

We now observe that for a small h and given matrix B [71, pp. 58-59],

(I + hB)−1 = I − hB +O(h2).

Applying this result to our expression gives

(I − α (A+ εEi,j))
−1 =

(
I + ε (I − αA)−1 αEi,j +O(ε2)

)
(I − αA)−1 .
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Hence,

(I − α (A+ εEi,j))
−1 = (I − αA)−1 + ε (I − αA)−1 αEi,j (I − αA)−1 +O(ε2).

Substituting this into the expression for the derivative in (3.8) gives

∂Ki

∂ai,j
= lim

ε→0

((
(I − αA)−1 1

)
i
+
(
ε (I − αA)−1 αEi,j (I − αA)−1 1

)
i
+O(ε2)−

(
(I − αA)−1 1

)
i

ε

)
.

If we simplify and take the limit as ε goes to zero, we obtain the final result

∂Ki

∂ai,j
=
(
(I − αA)−1 αEi,j (I − αA)−1 1

)
i

as required.

We will use this result in the next chapter when applying the active subspace

method to networks using Katz centrality. As part of our numerical study, we will

investigate the effect of using finite differences as compared to using the exact

expression for the derivative of Katz centrality in (3.7) to obtain gradient samples.

40



Chapter 4

Active Subspaces in Network

Science

4.1 Overview

In Chapter 2 we described the method of active subspaces, and in Chapter 3 we in-

troduced some basic concepts involved in the mathematical modelling of networks.

In this chapter, we combine these ideas by applying the active subspace method

to a problem in network theory. Specifically, we use a centrality measure as the

smooth function f and weights on network edges as parameters x in the active sub-

space method. Note that f must be chosen in such a way that we obtain a scalar

quantity of interest f(x) so that it is suitable for the active subspace method.

Candidates for f(x) are therefore a) the centrality of a particular node of interest,

b) some norm of the centrality vector, describing the overall level of centrality and

c) the ratio of centralities between a pair of nodes of interest, describing their rela-

tive importance. For a given graph, we will use the Katz centrality of a particular

node of interest to be f(x) (the quantity of interest). Also, as the aim of applying

the active subspace method is to discover a combination of edges that strongly

influences the quantity of interest, we will also consider the edge betweenness cen-

trality, which also focuses on identifying important edges. These experiments will

give some insight into the question “which interactions are important in terms of

centrality?”. Addressing this question adds value to the existing network centrality

literature.

We now describe our application of the active subspace method to networks

in more detail. The graphs we consider are always undirected and unweighted at
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first, such as the graph in Figure 3.2 which is symmetric and undirected (each

undirected edge is regarded as a pair of directed edges), with an adjacency matrix

A consisting of ones and zeros. To apply the active subspace method, we construct

a parameter vector x whose entries correspond to weights on the graph edges. To do

this, we generate x with entries drawn independently from a uniform distribution

on (0, 1). Treating this as a vector of weights leads to a weighted version of the

graph, as illustrated in Figure 4.1. We can also use the weight vector x to create

the adjacency matrix A as shown in Chapter 3 (Figure 3.2 and Figure 3.3). This

procedure can be repeated using as many random samples (weight vectors), M

say, as required.

A =


0 0.9 0.9 0

0.4 0 0.1 0.1

0.1 0.8 0 0.4

0 0.4 0.2 0



Figure 4.1. Left: A weighted graph with 4 nodes and 10 edges. Right: A weighted
adjacency matrix.

Note that in [8], Constantine normalises the input parameters x to be centered

around 0 with equal ranges. This is done to ensure that large values in x do not

affect the analysis. If we normalise the parameters or a weight vector such that x

is centered around 0 with equal ranges, this means that some input parameters

are assigned negative weights, which does not make sense in the context of our

network analysis. In this thesis, we therefore use positive weights only.

In order to apply the active subspace method in a network setting, as well as

a parameter or weight vector x we require a smooth function f and a scalar f(x)

for our quantity of interest. Consider the smooth Katz centrality as defined in

Equation (3.3), which we restate here for convenience:
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Ki = ((I − αA)−11)i, (4.1)

where I is the N ×N identity matrix and A is weighted or unweighted adjacency

matrix. This gives us a centrality index for each node (the importance of each node

in the graph). Recall that we are interested here in edges and how much each edge

or connection can affect the centrality of a node of interest. In order to proceed,

we need to choose a node that we are interested in. Having defined x and f(x)

we then proceed with the active subspace method, which allows us to determine

important edges that affect Ki for a given i (discussed in the following sections).

4.2 Finite Difference Method Comparison with

Exact Derivative

Before we present our experiments illustrating the effectiveness of the active sub-

space method for networks, we recall that as part of the active subspace method,

we also require the gradient of the quantity of interest. Although this can be cal-

culated using a finite difference approach, here we have an exact expression for the

derivative of the Katz centrality at a given node, namely, the result in Chapter 3,

§ 3.3 (Lemma 3.3.3). This gives us the opportunity to check how accurate a simple

finite difference approximation is in this setting.

We consider the simple network displayed in Figure 4.2. Let A be a weighted

adjacency matrix for this graph with weights ai,j on the edges drawn from a uni-

form distribution between 0 and 1. To fix ideas, we will consider i = 1 and let

j = 2 (so that we are looking at the edge from node 1 to node 2). We set the

parameter α in the Katz centrality to be α = 1/5, which satisfies the restriction

that α must be less than
1

ρ(A)
= 0.3536.

With these values, the expression (3.7) in Lemma 3.3.3 becomes

∂K1

∂a1,2

=

((
I − 1

5
· A
)−1

· 1

5
· E1,2

(
I − 1

5
· A
)−1

· 1

)
1

. (4.2)

To construct a finite difference approximation to
∂K1

∂a1,2

, we therefore need to

calculate
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Figure 4.2. A simple network with 15 nodes and 14 edges.

∆K1(a1,2) =

(
(I − α (A+ hE1,2))−1 1

)
1
−
(
(I − αA)−1 1

)
1

h

for some step size h. In this example, we consider five different step sizes: 10−5, . . . , 10−1.

From Taylor’s theorem

f(x+ h)− f(x)

h
= f ′(x) +

h

2
f ′′(x) + · · · ,

If we move f ′(x) to the left hand side, we get that

f(x+ h)− f(x)

h
− f ′(x) =

h

2
f ′′(x) + · · · ,

which shows that the difference between the finite difference approximation and

the exact derivative should be proportional to h (step size) for small h.

We define the error ε to be the absolute value of the difference between the

finite difference approximation and the exact derivative, namely

ε =

∣∣∣∣∆K1(a1,2)− ∂K1

∂a1,2

∣∣∣∣ . (4.3)

The values of this error for five difference step sizes are shown in Table 4.1.

We can see that decreasing the step size h improves the accuracy of the finite

difference approximation, with the approximate value approaching the value of
∂K1

∂a1,2

= 0.290515. The error is also plotted in Figure 4.3, which provides us with
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h 10−1 10−2 10−3 10−4 10−5

∆K1(a1,2) 0.291711 0.290634 0.290527 0.290516 0.290515

ε/h 0.119627 0.119185 0.119141 0.119137 0.119124

Table 4.1. Comparison of finite differences against exact derivative to 6 decimal
places.

confirmation that the error decreases as we decrease the step size. A reference

line with linear slope is also shown in the figure to illustrate that the error is

proportional to h as expected.

Figure 4.3. Difference between exact derivative and finite difference approxima-
tion.

4.3 Examples of Synthetic Networks

We are now ready to illustrate the effectiveness of the active subspace method

applied to some examples of synthetic networks. These synthetic networks have

been chosen to have clearly-defined structures, allowing us to judge the results.

Applications to real-world networks will be considered later in the chapter.
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As mentioned in previous sections, given a complex network, a key task is to

determine the most important nodes or edges. Typically, the importance of each

node is determined by using a centrality measure, such as the Katz centrality de-

scribed in § 3.2, § 3.3, § 4.1 and § 4.2. By using random weights for a network’s

edges, the active subspace method will help us determine which edges are impor-

tant in the network and which edges impact the quantity of interest the most (i.e.

f(x)). The method can discover a linear combination or combinations of impor-

tant edges (parameters). In our first example, we consider the graph in Figure 4.2

but now with directed edges (see Figure 4.4). We examine this simple graph to

illustrate the steps needed to apply the active subspace method to a network.

Figure 4.4. A synthetic network with 15 nodes and 28 edges.

This network has 15 nodes and 28 edges: note that certain edges are topologically

equivalent (e.g., 1 → 2, 1 → 6, etc). The network has two qualities, which we

can see by inspection: the first is that two nodes are highly connected to other

nodes (nodes 1 and 9) and, secondly, there is one node that acts as a link between

the important nodes (node 8). Our task is to use the active subspace method to

determine the most important edges, or combination(s) of edges, that impact our

quantity of interest f(x) the most. The key point here is that we want to see

whether the results agree with our intuition. For example, if we look at node 1,

we expect that the most important edges for this node are the surrounding edges

with node 8 being the most important neighbour.
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For our quantity of interest f(x), we consider the Katz centrality of a given

node (4.1) with α = 0.2 (which satisfies the condition 0 < α < 1/ρ(A)). Table 4.2

shows the centralities of the unweighted version of graph in Figure 4.4. The choice

of α depends on the inverse of the spectral radius, i.e., 1/ρ(A) of matrix A, which

is 0.3536 in this case.

Node 1 2 3 4 5 6 7 8 9 10

Centrality 3.5294 1.7059 1.7059 1.7059 1.7059 1.7059 1.7059 2.4118 3.5294 1.7059

Node 11 12 13 14 15

Centrality 1.7059 1.7059 1.7059 1.7059 1.7059

Table 4.2. Katz centralities for the network in Figure 4.4 with all edge weights
equal to 1.

Looking at Table 4.2, we can see that nodes 1, 8, 9 are rated as the most central

nodes of this network (as expected). Nodes 1 and 9 are the most central nodes

largely because they have more connections compared with other nodes. However,

a certain node can have a fairly high centrality with few connections. The reason is

that being connected to a few important nodes make a node more central (node 8).

To consider sensitivity, we now allow the edges to be weighted. The zeros in

matrix A are symmetric, however, we will allow the weights on the edges to be

different for each edge. For example, an edge 1 → 2 and an edge 2 → 1 can have

different weights. In this example, our weights x ∼ U(0, 1). It is also important to

note that x ∈ R28. The reason for this is that we have 28 edges in the graph and

so we have 28 parameters.

To proceed with an active subspace method, we need to choose the number of

samples M we want to work with and a scalar quantity of interest f(x). We choose

M to be large since the problems we are studying are computationally cheap and

so we can work with at least M = 103 samples in most cases. However, it is not

an easy task to decide on the number of samples to use or if a given problem is

computationally expensive, it is advisable to use a systematic rule of thumb that

calculates the number of samples needed to get efficient results (this is discussed

in § 2.3). It is also advisable to repeat the experiment with a larger M and check

that the results are consistent.

We now let the Katz centrality of node 1 be the quantity of interest f(x) with

input parameters x, so that
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f(x) = K1 =
(
(I − αA (x))−1 1

)
1
. (4.4)

Again, we note here that we want to find which edges or linear combination(s)

of edges impact f(x) the most. Once we describe our quantity of interest f(x),

parameters x and the number of samples M , we then calculate (or approximate)

partial derivatives with respect to Equation (4.4). Note that an analytical dif-

ferentiation of Katz centrality equation is performed in the previous chapter to

calculate gradients. However, before we use an analytical expression of Katz cen-

trality (see Equation (3.7)) in Lemma 3.3.3, we need to calculate our quantity of

interest M = 103 times (calculating f(x) for each sample).

Using the active subspace method we then apply Monte Carlo to generate an

eigenvalue decomposition (discussed in Chapter 2, Algorithm 1) in order to obtain

eigenvectors and eigenvalues. A plot of eigenvalues is presented in Figure 4.5.

Figure 4.5. The eigenvalues obtained by the active subspace method for the
network in Figure 4.4.

A gap between the first and second eigenvalues is present, which suggests that

there is a 1-dimensional active subspace (Algorithm 1). Since x ∈ R28, we have

28 eigenvector components (each component of the eigenvector represents the con-

tribution of each edge) of matrix C (see Algorithm 1). The components of the

eigenvector are shown in Figure 4.6 and the ordering of the components is pre-

sented in Table 4.3.
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Figure 4.6. The leading eigenvector for the network in Figure 4.4.

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Edge 2→ 1 3→ 1 4→ 1 5→ 1 6→ 1 7→ 1 8→ 1 1→ 2 1→ 3 1→ 4 1→ 5 1→ 6 1→ 7 1→ 8

Index 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Edge 9→ 8 8→ 9 10→ 9 11→ 9 12→ 9 13→ 9 14→ 9 15→ 9 9→ 10 9→ 11 9→ 12 9→ 13 9→ 14 9→ 15

Table 4.3. Ordering of the edges in Figure 4.6.

Recall that the magnitudes of the eigenvector components tell us how sen-

sitive the quantity of interest is to those parameters. The largest component in

Figure 4.6 corresponds to a connection between the first and eighth nodes, which

is not a surprise since our quantity of interest is the Katz centrality of node 1

and we are explicitly searching for edges that have the most impact on f(x). This

means that any changes to this edge impact f(x) the most, on average. The other

6 edges that seem to be fairly important to our quantity of interest are the edges

surrounding node 1 (1→2, 1→3, 1→4, 1→5, 1→6, 1→7). It is important to note

that all the edges that are important to node 1 are outgoing edges (’sending out’

information). This is not surprising due to the fact that Katz centrality is based

on broadcasting information out. The values of the remaining edges are close to

zero. This represents the fact that these edges do not have as much impact on f(x)

as the other edges in the network.

As mentioned before, there seems to be a 1-dimensional active subspace since

there is a gap between the first and second eigenvalues. This has the implication

that there is a univariate trend. Sufficient summary plots are a useful way to inspect
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such cases. In Chapter 2 we explained that a sufficient summary plot helps us to

identify a low-dimensional structure. It is a plot of the quantity of interest against

a linear combination or combinations of the input parameters. In this particular

case, it is a plot of f(x) against a linear combination of parameters ŵT
1 x, where

ŵ1 is an m = 28 vector (the first eigenvector) and x is a sample vector of size

m. Since we have M = 103 samples, we have M = 103 quantities of interest f(x)

and M = 103 values of ŵT
1 x. The result is shown in Figure 4.7. The sufficient

Figure 4.7. Sufficient summary plot of f(x) (Katz centrality of node 1 for each
sample) against the active variable (ŵT

1 x).

summary plot in Figure 4.7 shows that there is a univariate trend. The main point

of this is that parameter studies can be performed (see Chapter 2) knowing this

information. In other words, f(x) can be approximated with a simpler function,

say

f(x) ≈ h(Ŵ
T

1 x),

which depends on the linear combination or combinations of the inputs (Ŵ
T

1 repre-

sents the span of the first k eigenvectors mentioned in Chapter 2). In this particular

example, k = 1 and f(x) is computationally cheap. We denoted the linear com-

bination of parameters by ŵT
1 x instead of ŴT

1 x simply because we identified a

one-dimensional active subspace, which involves only 1 eigenvector. However, real-

world problems/networks are often more complex and computationally expensive.

Finding important directions in the parameter space of a given problem and using

that information to build a model around those directions can reduce the compu-
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tational costs significantly. In this way, the active subspace method attempts to

deal with the curse of dimensionality.

As a second example, we consider another network shown in Figure 4.8, which

is similar to Figure 4.4. However, this time we have more nodes, and the edges

between the nodes are undirected. We want to illustrate how the centralities vary

and how the active subspace method performs in this case. By looking at Figure 4.8,

Figure 4.8. A network with 20 nodes and 19 edges.

we can see that there are 20 nodes and 19 undirected edges. We note that five nodes

are highly connected to other nodes (namely, 1, 8, 9, 17, 18). The Katz centralities

(Equation (4.1)) for the network in Figure 4.8 are presented in Table 4.4 (with

α = 0.2). Looking at Table 4.4 we can see that nodes 1, 8, 9, 17 and 18 are

Centrality number 1 2 3 4 5 6 7 8 9 10

Centralities 3.0454 1.5270 1.5270 1.5270 1.5270 1.5270 1.5270 2.8588 2.1745 1.3763

Centrality number 11 12 13 14 15 16 17 18 19 20

Centralities 1.3763 1.3763 1.4231 1.4231 1.4231 1.4231 2.4451 1.9212 1.3324 1.3324

Table 4.4. Katz centralities for the network in Figure 4.8.

the most central nodes of this network. Node 1 is the most central node largely

because it has more connections compared to other nodes. For this example we

let the Katz centrality of node 1 be the quantity of interest, that is, Equation

51



(4.4). We again choose weights x to follow a uniform distribution on the interval

(0, 1). We then choose M = 103 samples and finite differences. Using the active

subspace method we then obtain eigenvalues and eigenvectors. The components of

the leading eigenvector are shown in Figure 4.9 and the ordering of the components

is presented in Table 4.5. By looking at the leading eigenvector, it was found that

Figure 4.9. The leading eigenvector for the network in Figure 4.8.

17 edges (7 edges, in particular, see Figure 4.9 and Table 4.5) between nodes

were more important than the others and they are highlighted in Figure 4.10.

Namely, edges with an index 1− 8, 20− 26, 16 and 17. The network in Figure 4.8

is symmetric and undirected, which means that edges such as 1 → 2 and 2 → 1

are equivalent (equal weights). We can also see that these edges are not equally

important to the quantity of interest. We note here again that the Katz centrality

is based on broadcasting information out, which causes the differences between

equivalent edges seen in Figure 4.9.

Index 1 2 3 4 5 6 7 8 9 10 11 12 13

Edge 1→ 2 1→ 3 1→ 4 1→ 5 1→ 6 1→ 7 1→ 8 8→ 9 9→ 10 9→ 11 9→ 12 17→ 13 17→ 14

Index 14 15 16 17 18 19 20 21 22 23 24 25 26

Edge 17→ 15 17→ 16 8→ 17 8→ 18 18→ 19 18→ 20 2→ 1 3→ 1 4→ 1 5→ 1 6→ 1 7→ 1 8→ 1

Index 27 28 29 30 31 32 33 34 35 36 37 38

Edge 9→ 8 10→ 9 11→ 9 12→ 9 13→ 17 14→ 17 15→ 17 16→ 17 17→ 8 18→ 8 19→ 18 20→ 18

Table 4.5. Ordering of the edges in Figure 4.9.
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Figure 4.10. Highlighted dominant edges.

Consider the next synthetic network shown in Figure 4.11. This is a similar

network to the network in the previous example. However, here we have removed

node 1 and its edges from the network in order to illustrate what happens to the

rest of the network.

Figure 4.11. A network with 13 nodes and 12 edges.

The Katz centralities for the network in Figure 4.11 are given in Table 4.6. Note

that the centralities in Table 4.6 are calculated using an unweighted adjacency
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matrix A. Looking at Table 4.6 we can see that nodes 8, 9, 17, 18 have the highest

centralities. Again, we choose our weights on edges to follow a uniform distribution

on (0, 1), the number of samples to be M = 103 and use finite differences for the

approximation of partial derivatives.

Centrality number 8 9 10 11 12 13 14 15 16 17 18 19 20

Centralities 2.4367 2.3774 1.4768 1.4768 1.4768 1.5476 1.5476 1.5476 1.5476 2.7304 2.0553 1.4122 1.4122

Table 4.6. Katz centralities for the network in Figure 4.11.

We also let our quantity of interest be

f(x) =
(
(I − αA (x))−1 1

)
18
. (4.5)

Equation (4.5) represents a quantity of interest, which is the Katz centrality of

node 18, in this case. Following the procedure of the active subspace method as

in previous examples, we examine the leading eigenvector, which corresponds to

the biggest eigenvalue. The components of the leading eigenvector are shown in

Figure 4.12 and the ordering of the components is presented in Table 4.7.

Figure 4.12. The leading eigenvector for the network in Figure 4.11.
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Index 1 2 3 4 5 6 7 8 9 10 11 12

Edge 18→ 19 18→ 20 18→ 8 8→ 9 9→ 10 9→ 11 9→ 12 8→ 17 17→ 13 17→ 14 17→ 15 17→ 16

Index 13 14 15 16 17 18 19 20 21 22 23 24

Edge 19→ 18 20→ 18 8→ 18 9→ 8 10→ 9 11→ 9 12→ 9 17→ 8 13→ 17 14→ 17 15→ 17 16→ 17

Table 4.7. Ordering of the edges in Figure 4.12.

By looking at the components of the leading eigenvector, it was found that the

edges between nodes (18, 19), (18, 20), (18, 8) and (8, 17) are the most important

edges in this case. Note that the edge between nodes 8 and 9 is not as important

as in the previous examples since node 8 lost an important node from the previous

case (i.e., node 1). If we investigate edges with an index 1− 3 and 13− 15 further

using Figure 4.12 and Table 4.7, we can see that these are equivalent edges. How-

ever, they are clearly not equally important to the quantity of interest due to the

nature of Katz centrality.

We now consider a final network, taken from [72]. Unlike our previous examples,

this network (shown in Figure 4.13) does not have a tree structure. As before, we

Figure 4.13. A network with 20 nodes and 59 edges.

choose weights on the edges to follow a uniform distribution on (0, 1), the number
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of samples to be M = 103 and use finite differences for the approximation of partial

derivatives. We also let our quantity of interest be

f(x) =
(
(I − αA (x))−1 1

)
19
, (4.6)

that is the Katz centrality of node 19. We have chosen this node because, looking

at Figure 4.13 we see that there are four connections to node 19, namely, nodes 18,

3, 4 and 5. We therefore expect the active subspace method to identify the links

between these connections as important.

Following the procedure of the active subspace method, we examine the leading

eigenvector, which corresponds to the biggest eigenvalue. The components of the

leading eigenvector are shown in Figure 4.14. The components corresponding to

Figure 4.14. The leading eigenvector for the network in Figure 4.13.

the edges (19, 3), (19, 4), (19, 5) and (19, 18), which are components 27, 37, 58, 107,

respectively, have again been identified by the active subspace method. This pro-

vides some evidence that we can also apply the active subspace method successfully

to non-tree networks.
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In § 3.2.4 we briefly discussed edge betweenness centrality. We use an un-

weighted and undirected Figure 4.13 network, and calculate the edge betweenness

centralities in order to compare the results against the active subspace method.

This is done to see whether there are any similarities and/or differences between

our method and the edge betweenness centrality. We note, however, that the ac-

tive subspace method and the edge betweenness centrality are answering different

questions: we use the active subspace method to find important edges with respect

to the quantity of interest (i.e., the centrality of a node of interest) whereas the

edge betweenness centrality identifies the most sensitive edges that affect the com-

munication the most in the network.

Edge (1, 17), (17, 1) (5, 7), (7, 5) (5, 10), (10, 5) (5, 13), (13, 5) (5,11), (11, 5)

EB Centrality 19 19 19 12.3 11

Table 4.8. Ten largest edge betweenness centralities for the network in Figure 4.13.

The ten largest edge betweenness centralities for the network in Figure 4.13

(calculated using code taken from [70]) are shown in Table 4.8. These results are

quite different than the results obtained above using the active subspace method:

this is because we used the active subspace method to identify important edges

with respect to Katz centrality of node 19, whereas the edge betweenness centrality

indicates the most sensitive edges that affect the communication the most in the

whole network. We can also produce a single plot with results obtained by both

methods to better understand the differences (see Figure 4.15). We can clearly see

that the edges identified as important by the active subspace method differ from

the edges identified as important by the edge betweenness centrality. To make a

Centrality number 1 2 3 4 5 6 7 8 9 10

Centralities 3.2946 3.0662 3.1203 3.9279 4.2908 2.3340 1.3433 1.9211 1.9028 1.3433

Centrality number 11 12 13 14 15 16 17 18 19 20

Centralities 1.6575 2.5794 1.7915 2.2341 1.8120 3.1564 1.2636 2.4825 2.1057 2.8748

Table 4.9. Katz centralities for the network in Figure 4.13.

better comparison, we now use the active subspace method with respect to the

node with the largest Katz centrality in the network. A list of Katz centralities

can be seen in Table 4.9 and we see that node 5 has the largest Katz centrality.
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Figure 4.15. Comparison of the results from the active subspace method with
respect to node 19 and edge betweenness centrality for the network in Figure 4.13.

We use the active subspace method with respect to Katz centrality of node 5 and

apply symmetric weights on the edges in order to further reduce the bias between

the two methods (we use edge betweenness centrality on an unweighted symmetric

network). We showcase the results of both methods in a single plot. In Figure 4.16,

we now see that there is some correlation in the results of both methods. The least

important edges identified by the active subspace method are also identified by

edge betweenness centrality. We also see that the important edges with respect

to the active subspace method overlap with the important edges identified by the

edge betweenness centrality. However, there are some edges that were identified

as important by the edge betweenness centrality but not by the active subspace

method, namely, edges (1, 17), (17, 1), (4, 11), (11, 4), (4, 15), (15, 4). We note that

these edges do not involve node 5, which was the focus of the active subspace

method.

When comparing the results of the active subspace method and edge between-

ness centrality, there was no evidence to suggest that, in general, there are similar-

ities in the results of the two methods. However, given the correct setting (focusing

on the most Katz-central node and using symmetric weights on the edges for the

active subspace method), we find some similarities in the results of the two meth-

ods.
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Figure 4.16. Comparison of the results from the active subspace method with
respect to node 5 and edge betweenness centrality for the network in Figure 4.13.

4.4 Zachary’s Karate Club Network

In this section, we consider a social network model of relationships in Zachary’s

Karate Club, which is a well-known example in the literature of social networks

[73]. Its origins can be summarised as follows.

Zachary’s Karate Club was a club with 34 members and 78 pairwise links be-

tween members who interacted outside the club (Figure 4.17a). The karate club

was studied from 1970 till 1972 and towards the beginning of the study there was

a conflict between the club president (say, John A) and the karate instructor (say,

Mr. Hi) [73]. The disagreement between the two main figures in the club arose due

to the price of karate lessons. Mr. Hi wanted to raise the price of lessons and set his

own fees but the club president (John A) did not approve (he had the authority

to set the fees). As time went by, the club became divided because of the disagree-

ment between Mr. Hi and John A. The instructor attempted to raise the fees for

lessons without permission and was fired by the club president. After these events,

two groups formed: people who supported Mr. Hi and people who supported John

A. This situation is represented in Figure 4.17b (club after fission), where Node 1

represents Mr. Hi and Node 34 represents John A.
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The Karate Club data set has been widely studied because of the availability

of additional information, which allows the results of clustering or centrality algo-

rithms to be judged and compared.
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(a) Zachary’s Karate Club with 34 members.

(b) Zachary’s Karate Club after fission.

Figure 4.17. Graphical representation of Zachary’s Karate Club.

By looking at Figure 4.17a, we can immediately see that Nodes 34 and 1 (and

possibly node 33) are the most dominant ones. Our task is to determine which

edges (links) have the most influence on these nodes (i.e., which connections are

the most important to John A and Mr. Hi). Since we have 34 nodes, we have a
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34×34 adjacency matrix. As before, we will add weights on the edges, which follow

a uniform distribution between 0 and 1. The matrix A is symmetric in nonzero

structure but not symmetric in general. This means that if node 1 is connected to

node 2, then node 2 is connected to node 1 and so on. However, the weights on the

edges are different. In this case, we have 156 links with different weights. We will

consider two quantities of interest: Katz centrality of Node 34 and Katz centrality

of Node 1.

To use the active subspace method, we need to calculate partial derivatives. In

order for us to use expression (3.7) in Lemma 3.3.3, we need to have a fixed α. The

examples in previous sections consider a value α < 1/||Aadj||2 (or α < 1/ρ(Aadj)),

where Aadj is the adjacency matrix of A and || · ||2 is the Euclidean norm. And so

we fix α = 1/8 which satisfies the condition α < 1/||Aadj||2 = 0.1487.

Once we define our quantities of interest, fix α, choose the number of samples

M (say, M = 103) and form weighted matrices A, we are then able to obtain the

eigenvalue decomposition (see Algorithm 1) and find the leading eigenvector with

respect to each quantity of interest. These two eigenvectors are plotted against

each other in Figure 4.18. Each eigenvector corresponds to a quantity of interest

(Katz centralities of Node 1 and Node 34). The entries of the eigenvectors indicate

the importance of each edge to each quantity of interest.

In Figure 4.18 the x-axis is represented by John A (Node 34) and y-axis is

represented by Mr. Hi (Node 1). We have also divided the scatter-plot points into

categories. We define group A as the group of people who joined Mr. Hi after fis-

sion and we define group B as the group of people who joined John A after fission.

We emphasize that the algorithm did not use this information.

If a node from group A is connected to a node from group A, then that con-

nection (edge or link) is plotted with a blue colour. If a node from group A is

connected to a node from group B, then that connection is plotted with a red

colour. If a node from group B is connected to a node from the same group, then

that link is plotted with a green colour. The reason for doing this is that we want

to judge how well the active subspace method can determine the most important

links and how well it can explain the grouping of members after fission. We also

draw green and blue dashed lines to separate five highest values from either group

A or group B. These represent the edges 1→ 3, 1→ 2, 1→ 9, 1→ 14, 1→ 4 (Mr.
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Hi) and 34→ 33, 34→ 32, 34→ 31, 34→ 24, 34→ 16 (John A).

Figure 4.18. Two leading eigenvectors arising from quantities of interest based
on the centrality of Node 34 (John A) and Node 1 (Mr. Hi).

The scatter-plot in Figure 4.18 indicates that there are quite a few strong links

to John A and there are quite a few strong links to Mr. Hi (which lie outside

separated with dashed lines). The other connections closer to the origin represent

weak links to John A, Mr. Hi or links between other karate members. The green

points further along the x-axis are the links of people with the club president that

supported him and joined his side after the fission. Similarly, the blue points fur-

ther on the y-axis are the links of people with the karate instructor that supported

him and joined his side after the fission. Consequently, these links have the most

influence for either Node 34 or Node 1. In other words, this means that these

connections affect our quantities of interest the most (either the Katz centrality

of Node 34 or the Katz centrality of node 1). The red points furthest on the right

on the x-axis and furthest up on the y-axis are “outliers”. We call these points

“outliers” here because they appear to be important to both Node 1 and Node 34.

In addition to this, the red points furthest on the right on the x-axis seem to be

important links to Node 34, however, these links represent the people that joined

Mr. Hi after the fission. The outlying red point on the y-axis can be interpreted in

a similar manner. Nevertheless, this might represent the fact that these links were

important to either John A or Mr. Hi in building their separate clubs and that
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these connections could have been deciding factors for some other members of the

karate club (i.e., the ones that were undecided who to join).
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Figure 4.19. The first five important links to either Node 34 (five green links) or
Node 1 (five blue links) for Zachary’s Karate Club network.

Figure 4.19 illustrates the most important links (the first five influential links

from Figure 4.18 are highlighted) to Node 34 (John A) and Node 1 (Mr. Hi). The

edges which are important to both leaders as identified by active subspace analysis

are coloured in red. We emphasize the fact that nodes 9 and 14 have important

connections to either Node 1 or 34. This means that we are not able to predict

with confidence whether these club members are joining Mr Hi (Node 1) or John

A (Node 34).

Zachary used the Netflow computer language program [73] to carry out the

maximum flow-minimum cut labeling procedure [74] in order to predict if a mem-

ber of a karate club would join either Mr. Hi or John A after fission. He managed

to predict correctly each person except for one, i.e., node 9 (see Figure 4.17b).

Our active subspace algorithm has highlighted important links to the key players

(Nodes 1 and 34) that generally match the results obtained by Zachary. The dif-
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ference in results is due to the fact that we are trying to answer a slightly different

question. Zachary specifically carried out a prediction procedure to find out which

club members are joining either Mr Hi or John A. On the other hand, we use

the active subspace method to find the most important or impactful connections

between the club members.

It is sensible to assume that the most important connections (green points fur-

ther on the x-axis and blue points further on the y-axis) could have influenced

other people to join either Mr. Hi or John A after the fission. The active subspace

method has allowed us to find important parameters (links in this case) or rather a

combination of parameters. In this example we established that five links to either

Node 34 or Node 1 are the most important links.

We also use the Zachary’s Karate Club network and calculate the edge be-

tweenness centralities to make a comparison with the active subspace method.

The twenty largest edge betweenness centralities for Figure 4.17a are shown in

Table 4.10.

Edge (1, 32), (32, 1) (1, 6), (6, 1) (1, 7), (7,1) (1, 3), (3, 1) (1, 9), (9, 1)

EB Centrality 71.4 43.8 43.8 43.6 41.7

Edge (3, 33), (33, 3) (14, 34), (34, 14) (20, 34), (34, 20) (27, 34), (34, 27) (32, 34), (34, 32)

EB Centrality 38.7 38.1 33.3 30.1 30

Table 4.10. Twenty largest edge betweenness centralities for the network in Fig-
ure 4.17a.

We will use the active subspace method with respect to both quantities of in-

terest, i.e., Katz centrality of node 34 and Katz centrality of node 1. Also, we will

use symmetric weights on the edges to reduce the bias in our analysis. Figure 4.20

shows the results obtained by the active subspace method with respect to Katz

centrality of node 34 and edge betweenness centrality. We see a relationship in the

results emerge, i.e., the important edges identified by the active subspace method

are also identified by edge betweenness centrality. However, we also see that there

are some edges that were identified as important by edge betweenness centrality

but not by the active subspace method, namely, edges (1, 32) and (32, 1). On the

other hand, we see that there are some edges that were identified as important by

the active subspace method but not by edge betweenness centrality, namely, edges
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(33, 34) and (34, 33).

Figure 4.20. Zachary’s Karate Club network: comparison of the results from the
active subspace method with respect to node 34 and edge betweenness centrality
for the network in Figure 4.17a.

Figure 4.21 shows the results obtained by the active subspace method with

respect to Katz centrality of node 1 and edge betweenness centrality. We can see

there is an stronger relationship in the results than in Figure 4.20. In other words,

we see that the edges identified as important by the active subspace method are also

identified by edge betweenness centrality. The reason why we see such differences

in the results in Figure 4.20 and Figure 4.21 is because of the way we choose our

quantity of interest for the active subspace and because both methods are trying

to answer slightly different questions.
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Figure 4.21. Zachary’s Karate Club network: comparison of the results from the
active subspace method with respect to node 1 and edge betweenness centrality
for the network in Figure 4.17a.

4.5 Background on PPI Networks

Research on large-scale biological data sets has been evolving and progressing over

the years [75]. It comes to no surprise that biological problems have been studied

by computational scientists. In this section we focus on a protein-protein interac-

tion (PPI) network. It is important to note that such networks usually do not do

justice to biological reality. However, it has been found that focusing on a very

high-level interaction network can lead to useful insights [75, 76, 77]. Nodes repre-

sent proteins and edges represent the experimental observation that two proteins

can physically connect. In many biological cases, a PPI network has thousands of

nodes and edges. Any network can be represented as a graph. It is then possible

to represent the graph using an adjacency matrix A ∈ RN×N , where aij = aji = 1

if proteins i and j have an interaction and aij = aji = 0 if proteins i and j do

not have an interaction. In this thesis, we discuss the interaction network of yeast

shown in Figure 4.22 [78].

In Figure 4.23 we show the adjacency matrix of the data set that will be used

later. A nonzero in the matrix is represented as a dot in the figure. PPI data

sets are available in the public domain. However, some experience is required to
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handle the data and draw out appropriate information [76], [77]. In the following

subsection we will use such data to extract information using an active subspace

method.

Figure 4.22. The complete protein interaction network of yeast showing essential
proteins in red and non-essential ones in blue, yellow circles correspond to proteins
with unknown essentiality [78].

Figure 4.23. Adjacency matrix of a PPI network.
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4.5.1 PPI Network and the Active Subspace Method

Our PPI network of interest has 2224 nodes with 13218 egdes. We also have addi-

tional information about the individual proteins. The nodes (proteins) are repre-

sented as either important (essential) or not (non-essential). The difference between

essential and non-essential proteins is that non-essential proteins (or amino acids

that combine to form proteins) are made by the body, while essential proteins

can only be obtained through foods (e.g., beans, nuts, dairy, cottage cheese, fish,

turkey) [79]. The active subspace method will be used to determine which connec-

tions have the most influence on the quantity of interest. In this particular case, we

choose our quantity of interest to be the sum of 30 highest Katz centrality values

of the network. The active subspace method was used with M = 100, i.e. we have

100 samples of size 13218 (number of edges). Samples follow a uniform distribu-

tion between 0 and 1. The method produces 2224 eigenvectors that correspond to

eigenvalues and we analyse the leading eigenvector with the highest eigenvalue. It

is important to note that the leading eigenvector gives us the order of importance

of edges. The procedure then often is to plot the leading eigenvector and inspect

which edges or a combination of edges are the most influential. However, that is

hard to determine in this case due to the fact that we have 13218 entries in the

eigenvector.

One way to get past this problem is to use information we were given before-

hand about this PPI network: we know which nodes (proteins) are either essential

or non-essential. We can now form three groups or types of connections using this

information. Let Type 1 represent a connection between an essential node that

is connected to another essential node, Type 2 is for an essential node that is

connected to a non-essential node and Type 3 is for a non-essential node that is

connected to another non-essential node.

We are mainly interested in how well the active subspace method picks up Type

1 edges or connections between nodes. Since our leading eigenvector is ordered from

the most important edge to the least important edge, we calculate the proportion

of how many edges are Type 1, Type 2 or Type 3 (looking at each entry of the

eigenvector and summing over) against the total number of Type 1, Type 2, Type

3 edges, respectively. Note that information about which proteins are essential is

incomplete and inaccurate. Hence a method which can uncover information using

only the interaction data is likely to be biologically useful.
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We first consider randomly permuting the edges of the eigenvector and look

at the proportion plots. We expect straight lines for all three cases, which are

presented in Figure 4.24.

Figure 4.24. Proportions of three types of edges after permuting the eigenvector.

The reason for doing this is to understand how well the active subspace method

is performing in comparison with a method that chooses links at random. Func-

tion “randperm” was used to permute the entries of the leading eigenvector and

this was done 100 times in order to get satisfactory confidence intervals (or “en-

velopes”).

Permuting an eigenvector 100 times requires us to calculate the proportion in

the same way as described before. However, this time we get 100 values for each of

13218 times we calculate the proportion. Each time we pick the smallest and the

highest of 100 permutations for all types of edges, which gives us lower and upper

bounds. These are illustrated as dashed lines and can be observed in Figure 4.25.

As expected, the dashed lines that represent confidence intervals for permuting

the eigenvector are straight lines. This allows to say something about the active
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Figure 4.25. Proportions of three types of edges with confidence intervals (or
“envelopes”).

subspace method that was used for this particular problem. The first plot in

Figure 4.25 has the solid line (the proportion of essential-essential protein con-

nections) above the confidence interval, which suggests that the active subspaces

method is doing well and that it picks up type 1 edges faster than the other types.

The solid line in the second plot (the proportion of non-essential-essential protein

connections) is close to the confidence interval which indicates the fact that type

2 edges are not impactful or important to our quantity of interest. The last plot

in Figure 4.25 (the proportion of non-essential and non-essential protein connec-

tions) has the solid line below the confidence interval. This shows that the active

subspace method picks up type 3 edges the slowest and specifies type 3 edges as

the least important edges.
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4.6 Summary

In this chapter, we studied the underlying theory of networks and centrality mea-

sures. The Katz centrality measure was studied in more detail compared with

other centrality measures. This was done due to the fact that Katz centrality is a

convenient and widely-used measure. Furthermore, we discussed gradient approx-

imation when gradients are not available. Namely, we derived an exact derivative

expression for Katz centrality in Chapter 3 and made a comparison with finite

difference method in this chapter. In an example in § 4.2, it was shown and con-

firmed that the smaller step size h we have for the finite difference approximation,

the closer we get to the true derivative. In practice we used the finite difference

approximation because it was sufficiently accurate for our purposes.

Furthermore, we presented a number of numerical examples. The examples

discussed in § 4.3 were illustrated in order to see if the active subspace method is

applicable to synthetic networks. It was found that the active subspace method on

networks was able to find important edge(s) or connections in a graph. In § 4.4 we

analysed the famous Zachary’s Karate Club network. It was found that the active

subspace method correctly identified important links between club members. The

results were consistent with the results obtained by Zachary. We also used the

edge betweenness centrality on one of our synthetic networks and the Zachary’s

Karate Club network to see any similarities or differences between the results

obtained using the active subspace method. We also saw that the results using

the edge betweenness centrality on two of our test networks had some similarities

with the active subspace results, but were not identical - this is explained by the

fact that the two methods are addressing different questions. The last network we

considered was a protein-protein interaction network. It was established that the

connections or links between essential proteins were picked up faster by the active

subspace method compared to non-essential connections or connections between

essential and non-essential. This suggests that the active subspace approach is

able to extract useful information about which proteins are essential using only

topological information. Such information may be useful, for example, in the study

of organisms where little is known about which proteins are essential.
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Chapter 5

Comparison with Sobol Indices

5.1 Background Theory on Sobol Indices

The Sobol method or the use of Sobol indices (also known as variance-based sen-

sitivity analysis) is a form of global sensitivity analysis [3, 4, 6, 15, 16, 17, 18, 80].

The idea of this method is that it decomposes the variance of the output of the

model into fractions which can be assigned to inputs or sets of inputs. For example,

given a model with two inputs and one output, one might find that 70% of the

output variance is caused by the variance in the first input, 20% by the variance in

the second, and 10% due to interactions between the two. These percentages can

then be directly interpreted as measures of sensitivity. The Sobol method takes

account of sensitivity across the whole input space (i.e., it is a global method).

It can deal with nonlinear responses and it can measure the effect of interactions

between the inputs [6, 81]. The purpose of the Sobol method is to determine the

most important input parameter, or combination of parameters (i.e., interaction

between parameters), that affects the output. The main idea of the method is to

analyse the effect of varying one model input variable at a time while keeping

all other variables fixed. Moreover, we then inspect variables that can have high

influence on the output [81, 82]. One drawback of the method is that it is compu-

tationally expensive [7]. Nonetheless, it is a powerful tool for performing sensitivy

analysis.

In this chapter we give a mathematical explanation of the Sobol method. We

then apply the Sobol method to a number of synthetic examples in order to show-

case the method. Finally, we apply the Sobol method to some of the examples

considered in Chapter 4 with the active subspace method. We can then directly
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compare the results obtained from the Sobol method and the active subspace

method.

5.2 Introduction to Variance-Based Methods

The idea of the variance-based methods is to quantify the amount of variance that

each input parameter Xi contributes to the variance of the output V (Y ). The main

references for this section are [16, 17, 18, 83].

Suppose we have a model

Y = f(X), (5.1)

where X = [X1, . . . , XN ]T is a vector of inputs that follow a known probability

distribution, N is the number of input parameters, Y is a scalar output and f is

a “black-box”. We want to rank the input parameters according to the amount of

variance with respect to the output Y . We say that V (Y |Xi = xi) is the conditional

variance of Y given Xi = xi: it is obtained by taking the variance over all factors

but Xi. However, we rarely know the value xi for each Xi. This is why the average

of this conditional variance for all possible values xi of Xi is used, i.e., E[V (Y |Xi)],

which is the expectation value over the whole variation interval of the input Xi.

Having the unconditional variance of the output V (Y ), assuming that Xi are

independent and by using the property of total variance that

V (Y ) = V [E(Y |Xi)] + E[V (Y |Xi)], (5.2)

we obtain the variance of the conditional expectation Vi = V (E[Y |Xi]). This mea-

sure is sometimes called ‘main effect‘ and is used as an indicator of the importance

of Xi on the variance of Y . Normalising the main effect Vi by the unconditional

variance of the output we obtain:

Si =
V [E(Y |Xi)]

V (Y )
. (5.3)

The ratio Si was named the first order sensitivity index by Sobol [16, 17, 18, 83].

Various other names for this ratio can be found in the literature: ‘importance mea-

sure’, ‘correlation ratio’ and ‘first order effect’.

The first order sensitivity index measures only the main effect contribution of
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each input parameter Xi on the output variance. It doesn’t take into account the

interactions between input factors. Two factors are said to interact if their total

effect on the output isn’t the sum of their first order effects. The effect of the

interaction between two orthogonal factors Xi and Xj on the output Y , in terms

of conditional variances, is

Vij = V (E[Y |Xi, Xj])− V (E[Y |Xi])− V (E[Y |Xj]). (5.4)

Here V (E[Y |Xi, Xj]) describes the joint effect of the pair (Xi, Xj) on Y . This

effect is known as the second-order effect. Higher-order effects are expressed in a

similar way. The total order sensitivity index STi is defined as the sum of all indices

relating to Xi (first and higher order).

Examples of variance-based methods include Sobol indices, Jansen’s Winding

Stairs technique, the Fourier Amplitude Sensitivity Test (FAST) and the Extended

Fourier Amplitude Sensitivity Test (EFAST) [83]. In this thesis, we will consider

only the Sobol indices in more detail. However, before we do that, we need to

highlight a few assumptions.

The input factor space N is assumed to be the N -dimensional unit hypercube

[83]:

ΩN = (X|0 ≤ Xi ≤ 1; i = 1, . . . , N). (5.5)

The input factors are also assumed to be independent and orthogonal to each other,

thus no correlation structure can be induced on the input factors. The expected

value of the output E(Y ) can be evaluated by the N -dimensional integral:

E(Y ) =

∫
ΩN

f(X)ρ(X)dX =

∫
ΩN

f(X)dX,

where ρ(X) is the joint probability density function, assumed to be uniform, for

each input parameter.

5.3 Calculating Sobol Indices

Sobol [16, 17, 18, 83] decomposed the model function f into summands of increas-

ing dimensionality as
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f(X) = f0 +
N∑
i=1

fi(xi) +
N∑
l=1

N∑
j=i+1

fij(xi, xj) + · · ·+ f12...N(x1, x2, . . . , xN). (5.6)

This representation of f(X) holds if f0 (which is the mean or the expectation of

the output E(Y )) is a constant and the integrals of every summand in Equation

(5.6) are orthogonal, i.e.,∫ 1

0

fis(Xi1 , . . . , Xis)dXiN = 0, 1 ≤ N ≤ s. (5.7)

The total variance V (Y ) is defined as

V (Y ) =

∫
ΩN

f 2(X)dX− f 2
0 (5.8)

and the partial variances are computed from each of the terms in Equation (5.6)

such that

Vi1...is =

∫ 1

0

· · ·
∫ 1

0

f 2
i1...is

(Xi1 , . . . , Xis)dXi1 . . . dXis , (5.9)

where 1 ≤ i1 < · · · < is ≤ N and s = 1, . . . , N . The sensitivity indices are then

obtained from

Si1...is =
Vi1...is
V

.

The integrals in Equations (5.8) and (5.9) can be computed with a Monte Carlo

method. For a given sample size M , the Monte Carlo estimate of f0 is

f̂0 =
1

M

M∑
m=1

f(Xm), (5.10)

where Xm is a sampled point in the input space ΩN (sample matrix X is of size

M ×N). The Monte Carlo estimate of the output variance V (Y ) is then

V̂ (Y ) =
1

M

M∑
m=1

f 2(Xm)− f̂ 2
0 . (5.11)

The main effect of input factor Xi is then estimated as

V̂i =
1

M

M∑
m=1

f(X
(H1)
m∼i , X

(H1)
mi )f(X

(H2)
m∼i , X

(H1)
mi )− f̂ 2

0 .

We use two sampling matrices here, X(H1) and X(H2), both of size M × N : note
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that X
(H1)
m∼i means the full set of samples from X(H1) except the ith one. Matrix

X(H1) is usually called the data base matrix while X(H2) is called the resampling

matrix [83]. And so, the first order sensitivity indices can be evaluated as

Ŝi =
V̂i

V̂ (Y )
.

The Monte Carlo evaluation of the second order terms Vij is shown in [84] to

be

V̂ij =
1

M

M∑
m=1

f(X
(H1)
m∼i∼j, X

(H1)
mi , X

(H1)
mj )f(X

(H2)
m∼i∼j, X

(H1)
mi , X

(H1)
mj )− V̂i − V̂j − f̂ 2

0 .

This means that the second order sensitivity indices can be evaluated as

Ŝij =
V̂ij

V̂ (Y )
.

Higher order sensitivity indices can be derived in a similar fashion.

We can also calculate total order sensitivity indices which take into account

first, second and higher order effects as in [12, 81, 82, 83, 84]:

T̂i = 1− V̂ci

V̂ (Y )
, (5.12)

where V̂ci is the ‘complementary effect’ of V̂i and is calculated via

V̂ci =
1

M

M∑
m=1

f(X
(H1)
m∼i , X

(H1)
mi )f(X

(H1)
m∼i , X

(H2)
mi )− f̂ 2

0 . (5.13)

In simpler terms, Equation (5.13) means that we calculate the ‘complementary

index’ of Xi in order to obtain the total order sensitivity index in Equation (5.12).

5.4 Examples Using Sobol Indices

The Sobol method and the active subspace method can be used to tackle similar

problems. Our aim here is to study and compare the two approaches. We will

illustrate the Sobol method on examples from previous chapters where the active

subspace method was used, and we will also compare both methods on some new

problems. However, we will start with some simple cases in order to give a feel for

how the Sobol method works.
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5.4.1 Example 1: A Simple Function f

For the first simple example, we set

y = f(X) = f(X1, X2, X3) = X1 + 5X2X
2
3 . (5.14)

Intuitively, we expect X2 and X3 to have higher first order sensitivity indices

compared to variable X1. We would also expect X3 to have the highest first order

sensitivity index due to its exponent of 2. As the first variable does not interact with

any other variables, we expect that X1 should have a total order sensitivity index

which is the same as its first order sensitivity index. Figure 5.1 shows the results

Figure 5.1. The importance of parameters to the output Y or contribution of
each parameter to the variance of Y .

of the Sobol method for (5.14) with 3 input parameters and M = 104 samples on

a uniform distribution (0, 1). The same data is presented in Table 5.1. The results

indicate that parameters X2 and X3 are the most important parameters and that

they are contributing the most to the output variance Y . Notice that total T̂i ≥ Ŝi

(i.e., the total sensitivity index is greater or equal to first order sensitivity index) for

each variable and T̂1 = Ŝ1. This matches our intuitive predictions above. Figure 5.2

illustrates the second order sensitivity indices. The second order sensitivity indices

are computed to be Ŝ1,2 = 0.0115, Ŝ1,3 = 0.0115, Ŝ2,3 = 0.1970. This is consistent

with the definition of f in (5.14), where we see X2 and X3 interact in a pairwise

manner. It is worth mentioning that one of the properties of Sobol indices with

respect to this example is that 1 = S1 + S2 + S3 + S1,2 + S1,3 + S2,3 + S1,2,3. The
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Sensitivity index Ŝ1 Ŝ2 Ŝ3 T̂1 T̂2 T̂3

Value 0.0726 0.2262 0.5127 0.0726 0.4147 0.7012

Table 5.1. Approximate first and total order sensitivity indices for (5.14), as in
Figure 5.1.

Figure 5.2. Second order sensitivity indices Ŝ1,2, Ŝ1,3, Ŝ2,3.

explanation of this equation is in [7, 82] and the proof is in [82]. This identity

emphasizes that when we calculate first order indices, those indices usually do not

sum up to one, as there are usually some higher-order interactions between the

variables. Moreover, the total order sensitivity index should be higher than or equal

to the first order sensitivity indices. For example, consider another Sobol indices

property T1 = S1+S1,2+S1,3+S1,2,3 (we stop at 3 because there are only 3 variables)

[82]. This corresponds to the total order index with respect to variable X1 (first

order index with interactions that involve parameter X1) . It is the sum of the first

order index S1 and interactions involving variable X1. Intuitively, this means that

T1 has to be greater than or equal to S1. The only time T1 can be equal to S1 is

when we have no interactions with other variables, as in this example. However,

in the later examples, we have cases when Ŝi > T̂i for the computational results.

This is due to the fact that we are using Monte Carlo approximations. Further

computation using more samples confirmed that the discrepancy is due to Monte

Carlo error.
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5.4.2 Example 2: Sobol G-function

In order to further demonstrate the Sobol method we consider a number of exam-

ples in this chapter. Consider the Sobol G-function

Y =
N∏
i=1

|4Xi − 2|+ ai
1 + ai

, (5.15)

where ai = (0, 1, 4.5, 9, 99, 99, 99, 99) are the parameters that control the sensitivity

of each variable Xi, i = 1, . . . , 8. It is a well-known example in global sensitivity

analysis algorithms [81]. In particular, exact values are known for the first order

sensitivities (see Table 5.3). The importance of each input Xi is represented by the

control parameters ai. The smaller each control parameter ai, the more impactful

each variable Xi is. This is intuitive because when we have a1 = 0, the scalar

value of Y ranges between 0 and 2 if the variables of interest follow the uniform

distribution on the interval (0, 1). Similarly, when we have a8 = 99, the scalar

value of Y ranges between 0.99 and 1.02.

Figure 5.3. The importance of parameters: approximate first and total order
sensitivity indices for Sobol G-function in (5.15).

As discussed in § 5.1, the total sensitivity indices for variables Xi are greater or

equal to the first order sensitivity indices. This can be observed in Figure 5.3 and

Table 5.2. Parameters X1 and X2 appear to have the most influence or contribute

the most variance to the output Y , as expected. Figure 5.3 was obtained using 104

Monte Carlo samples. Figure 5.4 considers variable X1 with 102, 103, 104, 105 and
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Index i 1 2 3 4 5 6 7 8

Ŝi 0.7223 0.1784 0.0276 0.0063 0.0002 0.0001 0.0005 0.0006

T̂i 0.7836 0.2324 0.0387 0.0078 0.0002 -0.0001 0.0006 0.0008

Table 5.2. Approximate first and total order sensitivity indices for (5.15).

106 samples. The reason for doing this is that we want to see how the accuracy

changes when we increase the number of samples. Moreover, we compare these

results with true analytical values of Sobol G-function, which are given in Table

5.3 and in [82], namely, the explicit formulas for Vi and V are

Vi =
1

3(1 + ai)2
, V (Y ) =

N∏
i=1

(1 + Vi).

Figure 5.4 shows the error between analytical and estimated X1 values for different

number of samples, namely,

Error = |S1 − Ŝ1|.

As expected, the difference or the error decreases when we increase the number of

samples (see Figure 5.4). The reference line in Figure 5.4 is proportional to 1/
√
M ,

Figure 5.4. Difference between analytical and estimated values with Sobol
method for S1 on (5.15).

which indicates that the error is approximately proportional to 1/
√
M [85].
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It is also worth mentioning that confidence intervals or bootstrap confidence

intervals can be calculated if needed. The 95% confidence interval can be calculated

as

Ŝi ±Hi = Ŝi ± 1.96

[
σ̂Ŝi√
M

]
,

where σ̂Ŝi
=

√
Ŝi and Hi is the half-width of the confidence interval. In [7], it is

recommended that if the half-width of the confidence interval is greater than 10%

of the dominant parameter, the number of samples M needs to be increased. In

other words, increase the number of samples M if

Hi

Ŝi
> 10% =⇒ Hi > 0.1Ŝi.

For example, the dominant variable X1 of the Sobol G-function (5.15) has a first

order sensitivity index of 0.7046 and the 95% confidence interval is (0.5937, 0.8155)

when M = 102. Also, Hi = 0.1109 which is greater than 0.1Ŝ1. This suggests that

we need to increase the number of samples M to get reasonable estimates of Sobol

indices. When M = 104 we find Ŝ1 = 0.7223 and the 95% confidence interval is

(0.7110, 0.7336). In this case, the half-width of the confidence interval Hi = 0.0113

is less than 0.1Ŝ1 = 0.0722. This suggests that we do not need to increase the

number of samples M for this example.

5.4.3 Gaussian Test Function

For the next example, we will consider the Gaussian test function:

Y =
N∏
i=1

1.2 exp

(
−(Xi − bi)2

ci

)
, (5.16)

where Xi, i = 1, . . . , 20 are the variables of interest, and

bi = (0.4, 0.3, 0.2, 0.1, 0.4, 0.3, 0.2, 0.1, 0.4, 0.3, 0.2, 0.1, 0.4, 0.3, 0.2, 0.1),

ci = (0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 2.5, 2.5, 2.5, 2.5, 3, 3, 3, 3, 5, 5, 5, 5)

are the control parameters [85]. These parameters control the importance of each

variable Xi in a similar manner to the parameters ai in the Sobol G-function (5.15).

The control parameters ci are set up in increasing order whereas bi is a repeat of

the vector (0.4, 0.3, 0.2, 0.1)T five times. Intuitively, this means that the first four

variables of interest Xi will be more important for the quantity of interest Y .
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Figure 5.5 illustrates first and total sensitivity indices for the Gaussian test

function with M = 104 samples. We can see that parameters X3 and X4 have

the highest first and total sensitivity indices as expected. Moreover, it seems that

there is a pattern, i.e., every four indices there is an increase and a drop in values

due to the way control parameters bi and ci were set up.

Figure 5.5. Approximate first and total order sensitivity indices for (5.16).

5.5 Comparison of the Sobol Method with

Active Subspaces

Previous sections of this chapter defined and illustrated the Sobol method. Now

we consider a number of examples where we compare the results of applying the

Sobol method to identify important variables with those obtained from using the

active subspace method.

5.5.1 Comparison of the Active Subspace Method with

Sobol Method on the Sobol G-function

For the first comparison, we return to the Sobol G-function (5.15) and use the

active subspace method instead of the Sobol method to determine influencial pa-

rameters. Figure 5.6 displays a plot of the eigenvalues and the leading eigenvector

that corresponds to the dominant eigenvalue. Note that the calculations were done
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using M = 103 samples and a finite difference method. An exact derivative of the

Sobol G-function is available, however, we want to test with finite differences as

this is more realistic (i.e., we rarely have analytical expressions). We produce eigen-

values and a leading eigenvector in Figure 5.6. The plot on the right of Figure 5.6

indicates that parameter X1 is the most important and influencial to the quantity

of interest. This is consistent with the result obtained in Figure 5.3 in § 5.4.2.

Figure 5.6. The active subspace method on Sobol G-function with finite difference
method.

Table 5.3 and Table 5.4 present the results of the Sobol method and the active

subspace method for a problem where Y is the Sobol-G function (5.15). Note that

we are not comparing values of the results between the Sobol method and the

active subspace method. If we compare approximated first order Sobol sensitivity

indices with the analytical values, we can see that we get closer to the true values

of first order indices when we increase the number of samples.

The Sobol Method

# of samples M M = 102 M = 103 M = 104 Analytical values of Sobol G-function

X1 0.6566 0.7712 0.7252 0.7162

X2 0.0237 0.1456 0.1882 0.1790

X3 0.0453 0.0532 0.0284 0.0237

X4 0.0111 0.0231 0.0159 0.0072

X5 0.0027 0.0179 0.0023 0.0001

X6 0.0010 0.0176 0.0015 0.0001

X7 0.0035 0.0205 0.0021 0.0001

X8 0.0004 0.0184 0.0023 0.0001

Table 5.3. The results of Sobol method on Sobol G-function in (5.15).
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The Active Subspace Method

# of samples M M = 102 M = 103 M = 104

X1 0.9791 0.9987 0.9999

X2 0.1996 0.0501 0.0053

X3 0.0326 0.0052 0.0003

X4 0.0197 0.0016 0.0003

X5 0.0012 0.0004 0.0001

X6 0.0016 0.0003 0.0001

X7 0.0013 0.0002 0.0001

X8 0.0012 0.0008 0.0001

Table 5.4. The results of the active subspace method on Sobol G-function in
(5.15).

Note that when the number of samples is M = 102, the Sobol method identifies

X1, X3 and X2 as the most important parameters (in order). The active subspace

method identifies X1, X2 and X3 as the most important parameters in order. The

reason for this difference is that the Sobol method needs a considerable number

of samples to get reasonable results. In other words, M = 102 is not enough for

Sobol method to get reasonable results. We can calculate and check the size of

confidence intervals to verify if the ordering of sensitivities is correct (as discussed

in § 5.4.2). When we use the Sobol method with 102 to 103 samples, we often

find that first order indices are higher than the total order indices, which is not

feasible as discussed earlier in the chapter. The Sobol method usually needs a large

number of samples to get sensible results, e.g., 104 or more. On the other hand, the

active subspace method provides sensible results with only 102 samples. In other

words, the active subspace method is more efficient at revealing the most important

parameters in terms of the number of randomly generated samples required.

5.5.2 Comparison of Two Methods on a Synthetic

Network

The next example we consider in order to compare the active subspace method

against the Sobol method is the simple network we studied in Chapter 4, Figure 4.4

(a directed network with 15 nodes and 28 edges). For convenience, we reproduce

Figure 4.4 here as Figure 5.7. We consider f(X) to be the Katz centrality of node

1,

K1 = ((I − αA)−11)1,
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Figure 5.7. A simple network with 15 nodes and 28 edges.

where X represents the weights on the edges (as discussed in § 4.3). For the net-

work in Figure 4.4, we have seen the results with the active subspace method and

the leading eigenvector (recall Figure 4.6 and Table 4.3).

Now we use the Sobol method and calculate first and total order sensitivity

indices with M = 104 samples. Inspecting the results in Figure 5.8, we can see

Figure 5.8. Simple synthetic network with 15 nodes and 28 edges using Sobol
method.

that there are 7 parameters (edges) that impact the quantity of interest the most
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(refer back to Table 4.3 for the ordering of the edges in Figure 5.8). The “S”

in the legend of Figure 5.8 represents approximate first order sensitivity indices

whereas “TSI” represents approximate total order sensitivity indices. The results

agree closely with those obtained by the active subspace method. We reproduce

Figure 4.6 (used M = 103 samples) here as Figure 5.9 but with M = 104 sam-

ples to make the results obtained by both methods comparable. By inspecting the

plots, it is clear that both methods produce similar results and identify the most

important variables or edges for the quantity of interest f(X) (the Katz centrality

of node 1) consistently.

Figure 5.9. The leading eigenvector obtained by using the active subspace method
with M = 104 samples.

We can also combine the results obtained by both methods into one simple

visualisation. We note here that we are not comparing absolute values between

the two methods. Instead, we are comparing trends. The x-axis in Figure 5.10

represents the edge sensitivities obtained by the active subspace method and the

y-axis represents the edge sensitivities obtained by using the Sobol method for the

network in Figure 5.7. By inspection, we can see that there are clusters of points.

The reference line (least-squares fit to data) in Figure 5.10 indicates that there is

a trend between the results of the active subspace method and the Sobol method.

This suggests that both methods are producing similar results.
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Figure 5.10. A combination of Figure 5.9 and the first order sensitivity indices
in Figure 5.8.

5.5.3 Sobol Method and Zachary’s Karate Club Network

We now return to Zachary’s Karate Club network, which was considered in detail

in § 4.4, and use the Sobol method to identify important parameters.

Note that for the active subspace method case we used M = 103 samples on

Zachary’s Karate Club network (§ 4.4), while here we use M = 104 samples for the

Sobol method. From our observations in § 5.5.2, we are required to use (at least)

M = 104 samples to calculate first and total order sensitivity indices in order to

get reasonable results (we could also apply the condition about the confidence in-

terval from § 5.4.2). If we use M = 102 to M = 103 samples, we get the first order

sensitivity indices with higher values than the total sensitivity indices. The solu-

tion is simply to increase the number of samples at the expense of computational

cost.

As for previous examples, we plot first and total order sensitivity indices (Fig-

ure 5.11). In this case, we have two plots for first and total order sensitivity indices

due to the fact that we have two quantities of interest f(X): Katz centrality of

Node 1 and Katz centrality of Node 34 (as defined in § 4.3). Figure 5.11 shows

that the Sobol method is able to capture important parameters to our quantity of

interest (either Katz centrality of Node 1 or Katz centrality of Node 34). In order

to compare these results directly with the active subspace method, we produce
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(a) f(X) = Katz centrality of Node 1 (b) f(X) = Katz centrality of Node 34

Figure 5.11. The Sobol method for Zachary’s Karate Club network.

a similar plot to Figure 4.18 for the Sobol method, namely Figure 5.12(a). We

reproduce Figure 4.18 here as Figure 5.12(b) to make a direct comparison easier.

Note that we compare the results of the active subspace method (Figure 5.12(b))

(a) Using Sobol Method. (b) A.S. method (as in Figure 4.18).

Figure 5.12. Results from the Sobol method and the active subspace method on
Zachary’s Karate Club network.

with only first order sensitivity indices (Figure 5.12(a)). Figure 5.12 allows us to

compare the two methods. We also note here again that we are not comparing val-

ues of the results between the Sobol method and the active subspace method (the

shapes differ in both plots due to the differences in the methods). As mentioned

in § 4.4, the x-axis is represented by John A and y-axis is illustrated by Mr. Hi

(two people of interest who had a disagreement). We defined group A as people

who joined Mr. Hi after fission and we defined group B as people who joined John
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A after fission.

The scatter-plot points fall into three categories. If a node from group A is

connected to a node from group A, then we draw that connection (edge or link)

with a blue colour. If a node from group A is connected to a node from group B,

then we draw that connection with a red colour (and vice-versa). If a node from

group B is connected to a node from the same group, then we draw that link with

a green colour. The reason for doing this is that we want to know how well both

methods can determine the most important links and in terms of how well they

reflect the grouping of members after fission. It is important to note that both

methods are using only information from before the fission.

As with the active subspaces method, we can see that the Sobol method high-

lights a few strong links to John A and there are a few strong links to Mr. Hi.

Moreover, we have that the other connections closer to the origin represent weak

links to John A, Mr. Hi or links between other karate club members. We note that,

for the Sobol method, there are a number of parameters associated with negative

values. As discussed earlier in this chapter, this is the consequence of the Monte

Carlo approximation and is related to the number of samples M used. In practice,

the negative values produced are fairly small in magnitude and so these values

can be treated as 0 with little or no impact on our quantity of interest. If we use

M = 105 or M = 106 samples for the Sobol method on this example, the number of

first order sensitivity indices, which are negative, decreases considerably. However,

the computation time increases greatly.

In both cases in Figure 5.12, the green points further on the x-axis represent

the connections between people with the club president that supported him and

joined his side after the fission. Blue points can be explained in a similar manner

(the explanation of red points and more are discussed in § 4.4). These points have

the most influence for either Katz centrality of Node 1 or Katz centrality of Node

34. Moreover, the points that are beyond the synthetic threshold are the most

important. The synthetic threshold is set in a way that we consider only five im-

portant links or connections for both methods. On the other hand, we will discuss

other connections or links that can have valuable information inside the threshold.

To further compare the results of the active subspace method and the Sobol

method, we list the five most important links identified in each case in Table 5.5.
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Quantity of interest f(x) f(x) = Katz centrality of Node 1 (Mr. Hi) f(x) = Katz centrality of Node 34 (John A)

Active subspace method 1→ 3, 1→ 2, 1→ 9, 1→ 14, 1→ 4 34→ 33, 34→ 32, 34→ 31, 34→ 24, 34→ 16

Sobol method 1→ 3, 1→ 4, 1→ 9, 1→ 2, 1→ 7 34→ 33, 34→ 32, 34→ 24, 34→ 31, 34→ 16

Table 5.5. Five most important links or connections identified as important by
either the active subspace method or the Sobol method.

The second column of Table 5.5 shows the results with respect to Katz centrality

of Node 1. We can see that four of the five most important connections or links

between the Zachary’s club members are identified by both methods. However, the

active subspace method identified 1→ 14 connection as important whereas Sobol

method identified 1 → 7 as important (blue points in Figure 5.12). On the other

hand, when we look at the third column of Table 5.5, we can see all five important

connections are identified by both methods (green points in Figure 5.12). However,

the connections 1 → 14 and 1 → 7 can appear in the top 10 or 20 lists for either

method. When we look at 10 most important links identified as important by either

method, we find that eight connections overlap with respect to the Katz centrality

of Node 1. Top 20 lists for either method have 15 overlaps. The connections 1→ 7

and 1 → 14 overlap when we analyse more edges of interest. As we inspect how

well both methods perform, we see that more and more unimportant connections

are not overlapped.

On the other hand, the top 10 connections with respect to the Katz centrality

of Node 34 have 8 overlaps between the two methods. Even though Table 5.5 tells

us that the first 5 links overlap, the next 5 links have only 3 overlaps. Top 20 lists

for either method have 16 overlaps.

In the last two sections we discuss key differences and similarities we found so

far between Sobol method and the active subspace method. Moreover, we discuss

which method is superior for a given problem.

5.6 The Active Subspace Method vs The Sobol

Method

The active subspace and Sobol methods are sensitivity analysis methods, which

attempt to find the most influential input parameters on a given quantity of in-

terest. Both methods are able to rank the inputs of a given function in terms of

their output importance.
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The examples comparing the active subspace method and the Sobol method

in § 5.5 tell us that the methods are similar, in that both methods can determine

how important a single parameter is to the quantity of interest. However, the Sobol

method seems to do well and produce accurate results only when we consider suf-

ficiently many Monte Carlo evaluations (e.g., at least M = 104 samples in our

examples). The active subspace method seems to work well with fewer samples,

e.g., M = 103 or less in some cases. The biggest difference between the two meth-

ods is that the Sobol method is capable of calculating sensitivities for interactions

between individual combinations of variables (as discussed in § 5.4). The active

subspace method seeks to approximate a function of many variables or parameters

by a new function of a few linear combinations (important directions in the

input space) of the variables (recall (2.3) in Chapter 2).

The Sobol method deals with single, multiple parameter sensitivities to the

quantity of interest. The active subspace method can also be used to determine

which parameters are important. However, the main point of an active subspace

method is that it gives us linear combinations of parameters which can be used

to approximate a new function. In this thesis, we are mainly interested in finding

linear combinations of parameters.

5.7 Summary

In this chapter, we studied the underlying theory of the Sobol method. Further-

more, we introduced and solved a number of synthetic and real problems using

the Sobol method. We showcased and explained the main properties of the Sobol

method along with first, second, total order sensitivity indices.

In order to compare the active subspace method and the Sobol method (both

global sensitivity methods), we considered several examples where both the Sobol

and the active subspace methods were applied. It was found that both methods

resulted in similar findings. However, it was discussed that the Sobol method needs

a considerable number of samples to get reasonable results whereas the active sub-

space method performed well, in some cases with only M = 102 samples.

In § 5.5.3 we considered Zachary’s Karate Club network using the Sobol method.

We made calculations and compared them with the results obtained by using the
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active subspace method (as discussed in § 4.4). Figure 5.12 and Table 5.5 showed

that the results obtained by both methods were relatively similar. It was shown

that both methods can determine how important a single parameter is to the quan-

tity of interest. However, the active subspace method seems to do well with fewer

samples than the number required by the Sobol method.
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Chapter 6

Applying the Active Subspace

Method to the Design of

Experiments

6.1 Introduction

The National Physical Laboratory (NPL) is the UK’s national metrology institute

and is concerned with all aspects of measurement science, including the statistical

analysis of measurement data and the design of experiments. In this chapter we

consider problems that are of interest to NPL. We note that NPL does not cur-

rently use the active subspace method. In this chapter, we show how the method

could be useful for NPL scientists in the future by using the method on problems

of interest to NPL in order to determine the most important parameters or mea-

surements in a given setting.

Design of Experiments (DOE) is a branch of applied statistics used for analysing

a system, process or product, where input variables are manipulated in order to

investigate a particular quantity of interest. DOE is used for planning, conduct-

ing, analysing and interpreting experimental results [86]. In addition to this, DOE

tries to design an experiment so that observations or measurements are obtained

to answer the question of interest in a valid and efficent way. DOE is used in a

wide range of disciplines, such as engineering, administration, marketing, hospi-

tals, pharmaceutical [87], food industry [88], energy and architecture [89, 90]. It is

known that DOE can be applied to computer simulation models as well as physical
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processes [91].

The main task of DOE is the identification of important input variables and

deciding how important they are to the response variable or response function. The

most common DOE types are variable screening (i.e., selecting important input

factors of a system), system optimisation (i.e., optimal setting of the input vari-

ables) and robust design (i.e., reduction of variance in the system) [86, 92]. The

aim of this chapter is to investigate the potential for the active subspace method

to be used in a DOE setting of interest to NPL.

The general steps for planning and conducting DOE [86] may be summarised as

follows.

1. Objectives: Determine the problems to be investigated.

2. Response variable definition: Define the response function or the outcome

of the experiment. In our active subspace terminology, this is the “quantity of

interest”.

3. Experimental design: Decide on the experimental design to use, i.e., screen-

ing design, optimisation design, robust design, etc.

4. Perform an experiment. Generate data involving the quantity of interest.

5. Data analysis and conclusions: Using statistical methods, analyse the data

and give conclusions along with graphical representation of the results.

In this thesis we consider a DOE problem proposed by NPL researchers aris-

ing in dimensional metrology, the measurement of the geometry of artefacts. A

laser tracker is a portable measuring instrument and measures the location of a

target in 3d in spherical coordinates. The distance measurement is provided by a

laser interferometric system while the angle measurements are supplied by angle

encoders [32, 33, 93]. Laser trackers are subject to geometric and misalignment

errors associated with the rotating axes systems and have to be calibrated to ac-

count for these errors (see Chapter 1 for more information about laser trackers).

This chapter is concerned with designing experiments to perform this calibration.
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6.2 The Design of a Calibration Experiment

The beam steering mechanism and angular encoders within the laser tracker are

subject to misalignments, offsets and eccentricities that lead to errors in the mea-

sured coordinates. For this reason, all laser tracker manufacturers provide online

correction of these systematic effects, usually by software running in the laser

tracker control system. The correction software relies on a model that describes

the beam steering mechanism and its errors. The parameters of the model are usu-

ally derived from a combination of calibrations performed at the factory during

manufacture and simple procedures performed by the user on the shop floor, prior

to using the instrument [54, 94, 95]. In this section, we discuss the procedure of

how to design an experiment to calibrate a laser tracker.

In design of experiments and measurement science we often need to calibrate

instruments or parameters to get reasonable measurements. Having a design with

“proper” characteristics increases the chances of the actual measuring instruments

performing as expected. The purpose of calibration is to sustain the quality of

measurement and to ensure the proper functionality of a particular instrument

[96].

In executing a calibration experiment we need to decide i) how many targets

to use and where to place them, and ii) how many positions and what positions to

use for the tracker. Increasing the numbers of targets and positions will increase

the time and resources required to complete the calibration. In practice, there will

be a limit on resources and we wish to design an experiment that maximises the

information gain for the resources available. Here, we concentrate on the problem

of determining which targets to use from a set of potential targets, assuming that

station positions have already been fixed [54]. We describe some experiments NPL

has done and then apply the active subspace method in § 6.3.

6.2.1 Least Squares Problem and Aggregate Measures of

Uncertainty

We discuss the mathematics first for designing an experiment to calibrate a laser

tracker before we look at some examples. The main references for this section are

[54, 96, 97, 98].
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Suppose we have an m× n observation matrix C and an m× 1 data vector y

generated according to

y = Cα+ ε, ε ∈ N(0, I), (6.1)

where α = (α1, . . . , αn) are the parameters of the model to be fitted or estimated

from the observations, ε represents an independent random effect and I is an

n × n identity matrix. Then the least squares estimate a of α is the solution of

the problem

min
α

(y − Cα)T (y − Cα).

Using a QR decomposition on C we can write

C = Q1R1,

where Q1 is an m×n matrix with orthonormal columns and R1 is an n×n upper

triangular matrix. From this we can rewrite the least squares solution as

a = (CTC)−1CTy = R−1
1 QT

1 y.

The corresponding model approximant is then

ŷ = Ca = C(CTC)−1CTy = Q1Q
T
1 y.

If the diagonal variance matrix associated with y is Vy, then the variance matrix

associated with a is

Va = (R−1
1 QT

1 )Vy(R−1
1 QT

1 )T .

In the case when Vy = I, then

Va = V = (R−1
1 QT

1 )I(R−1
1 QT

1 )T = (R−1
1 QT

1 )(R−1
1 QT

1 )T = (RT
1R1)−1 = (CTC)−1.

The last equality is true due to the fact that Q1 is orthogonal, so QT
1Q1 = Q−1

1 Q1 =

I.

When Vy is not simply an identity matrix, we have a weighted least squares

problem. For example, suppose Vy is a diagonal matrix with diagonal entries vi =
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u2
i , and W is a diagonal weight matrix with diagonal entries wi =

1

u2
i

, so that

Vy = W−1. If we perform the same calculations as above, we get that

Va = (CTWC)−1. (6.2)

We now look at some of the main aggregate measures of uncertainty with

respect to Vy. Let Va be an n×n variance matrix with eigenvalues λj, j = 1, . . . , n.

Also, let b = Ba, where B is n × n and has full rank, so that b can be regarded

as an alternative parametrisation of the problem. We have

Vb = BVaB
T .

The following are aggregate measures of uncertainty associated with Vy or

simply V .

• A-measure

The first aggregate measure of uncertainty we consider is known as the A-

measure:

trace(Va) =
n∑
j=1

λj, (6.3)

where trace(X) is shorthand for the trace of some square matrix X. In

general,

trace(Vb) = trace(BVaB
T ) = trace(BTBVa) = trace(VaB

TB) 6= trace(Va).

This means that the way we paramaterise b is important. In other words,

the A-measure is sensitive to the choice of parametrisation.

• D-measure

The second aggregate measure of uncertainty we consider is known as the

D-measure:
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|Va| =
n∏
j=1

λj. (6.4)

We then have that

|Vb| =
∣∣BVaBT

∣∣ = |B|2 |Va| .

This tells us that unlike measure A, measure D is invariant in terms of the

parametrisation.

• E-measure

A third aggregate measure of uncertainty is the E-measure:

max
j
λj. (6.5)

It can be shown that this measure is similar to the A-measure in the sense

that it is sensitive to parametrisation.

• G-measure

The last aggregate measure of uncertainty we consider is the G-measure:

trace(DVaD
T ), (6.6)

where D is a r × n matrix (r ≥ n), for example, used to provide model

predictions z = Da. More information on this measure can be found in [54].

6.3 NPL Approach to Designing a Calibration

Experiment

In this section, we describe an NPL experiment, which will be used for comparison

when we apply the active subspace method on the same problem in § 6.4. The

main reference for this section is [54].

We consider a measure of the goodness of design given by the quantity
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f = trace(DVaD
T ), (6.7)

where Va is the variance matrix associated with the least squares estimate a of α

as in § 6.2.1. The matrix D is constructed so that f is related to the uncertain-

ties of a set of measurements undertaken by a calibrated tracker. The better the

design, the more accurately the tracker is able to measure these targets through

minimising the uncertainties associated with the estimated geometric errors α.

One approach is to fix the number of targets n, based on the resources available,

and try to solve the optimisation problem

min
{ξj}

f, ξj ∈ R3, (6.8)

where ξj represents the location of the jth target [54]. This problem tends to be

ill-posed and diffcult to solve, but can be implemented for small n. A second ap-

proach is to limit the ξk to a finite set of points in R3, j = 1, . . . ,m,m > n, and

then choose the subset of n targets that minimises f over all subsets. For m much

bigger than n, this approach becomes computationally expensive as there are

(
m

n

)
cases to consider.

The selection problem can be posed in terms of determining optimal weights

wj ∈ {0, 1}, where wj = 1 if the jth target is used and wj = 0, otherwise,

j = 1, . . . ,m. A convex relaxation of the problem is to determine optimal weights

0 ≤ wj,
∑

j wj = m where the jth target is given weight wj. The general approach

is as follows. Suppose m experiments could be performed with the jth experiment

generating data according to

yj = Cjα+ εj, εj ∈ N(0, I), j = 1, . . . ,m, (6.9)

where Cj is the m×n observation matrix associated with the jth experiment. Let

C =


C1

C2

...

Cm

 , y =


y1

y2

...

ym

 (6.10)

and W = W (w) be the diagonal weighting matrix with wjI in the jth set of
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diagonal elements, where I is the m×m identity matrix. The least squares solution

a of α and its associated variance matrix Va of the weighted least squares problem

is then given by

a = a(w) = (CTWC)−1CTWy, Va = Va(w) = (CTWC)−1.

Non-negativity and cost constraints can be imposed in the form

mj∑
i=1

γjwj ≤ Γ, wj ≥ 0, j = 1, . . . ,m, (6.11)

where Γ is the number of target locations, the coeffcients γj are chosen to reflect

the fact that some experiments may use more resources than others, i.e., they are

computationally more expensive. Given D, the G-optimal weighting solves

min
w

trace(DVa(w)DT ), (6.12)

subject to constraints in (6.11).

A simple example of this approach is the optimal design for fitting a straight

line y = a+ bx to data (xj, yj), where L ≤ xj ≤ U (lower and upper bounds), and

each yj is regarded as a separate experiment so that Cj is the 1×2 matrix [1 xj].

The optimal design places the weights at the two extreme values for xj and all

other weights zero. This is intuitive because we require 2 points to determine the

slope and the intercept of a straight line and the further these points are apart,

the better the slope is determined.

6.4 Applying the Active Subspace Method

The main aim of this chapter is to use the active subspace method to find the most

influential measurements in a particular experimental design setting. That is, we

are not interested in allocating appropriate weights to get optimal measurements:

our main focus is on finding which measurements affect the quantity of interest

the most. This will be shown in the examples later in this section.

To use the active subspace method, we need to identify a quantity of interest

f(x) with respect to the general measurement problem. We first recall Algorithm

1 with a slight modification, for application in this new setting. The only difference

between Algorithm 1 in Chapter 2 and Algorithm 2 here is that we have an extra
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step (Step 2). This is because of the form of the weights. In previous chapters, the

weights we considered were simply uniform. The reason behind the change in the

definition of weights is to match Forbes [54, 99, 100]. This means that the way

Step 2 is set up is the consequence of the examples we are about to consider. Step

2 of Algorithm 2 is discussed more in § 6.2.

Step 1: Draw M independent samples {xi}, i = 1, . . . ,M (vector x has m

entries) according to the sampling density ρ.

Step 2: Compute wi = e(−xi/2) (here we assume the sampling density ρ

for the {xi} to follow a uniform distribution).

Step 3: For each sample wi, compute the gradient ∇wfi = ∇f(wi) and

the quantity of interest f(wi).

Step 4: Compute the matrix Ĉ and its associated eigenvalue

decomposition,

Ĉ =
1

M

M∑
i=1

∇wfi∇wf
T
i = ŴΛ̂ŴT , (6.13)

where Ŵ is the matrix of eigenvectors, and Λ̂ = diag(λ̂1, ...λ̂m) is the

diagonal matrix of eigenvalues ordered in decreasing manner.

Algorithm 2. The active subspace algorithm for experimental design.

The quantity of interest we consider in this chapter is the D-measure from

§ 6.2.1 with a slight modification:

f(w) = log |CTW (w)C|. (6.14)

We note here that exponentially perturbed weights w are used to row-scale

matrix C (as in Equation (6.14)). We also need to note that in [99], W (w) is used

to multiply blocks of the observation matrix C, where each block in C represents

measurements from each sensor. In other words, a block or blocks of measurements

from each sensor are multiplied with a particular weight. In the active subspace

approach and in our examples, we choose to apply row-scaling to the observation

matrix C instead of block-scaling. The reason for this is that we are more interested

in finding which individual measurements have more leverage on the quantity of

interest than studying a block of measurements. We could, however, easily adapt
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our procedure to find an important block or blocks of measurements (instead of

assigning weights to each measurement, assign one weight to each block of mea-

surements).

6.4.1 Example: Fitting a Straight Line to Given Data

Imagine we want to fit a straight line yj = α1 + α2xj + εj to some data (xj, yj),

where εj ∈ N(0, σ2) (drawn from a Gaussian distribution). Let’s suppose that

we have one sensor or an instrument that records m co-ordinate measurements

(xj, yj), j = 1, . . . ,m, and α = (α1, α2)T contains the parameters to be fitted (the

intercept and the slope of the line). Using the information from (6.9) we obtain

y1 = α1 + α2x1 + ε1

y2 = α1 + α2x2 + ε2
...

ym = α1 + α2xm + εm

⇒


1 x1

1 x2

...
...

1 xm


 α1

α2

+


ε1

ε2
...

εm

 =


y1

y2

...

ym

 . (6.15)

Suppose we now want to know which measurements (xj, yj)
T have the most

leverage or influence on a given quantity of interest by using the active subspace

method. To illustrate this, let x = [1, . . . , 10], α1 represent the slope of a straight

line and α2 represent the intercept, so that

C =


1 1

1 2
...

...

1 10

 . (6.16)

The matrix C in the matrix in (6.16) is called the observation matrix. The

main task is then to find which measurements impact or have more leverage on

f(w). Recall that the quantity of interest is

f(w) = log |CTW (w)C|.

In order to calculate our quantity of interest f(w) for this example, we let

m = 10 (the number of input parameters or the rows of matrix C) and w be
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the vector of weights, where each entry of vector w corresponds to a particular

measurement. The idea now is to find which measurements (xj, yj) affect f(w) the

most.

For the active subspace approach, we also require gradient samples. As in previ-

ous chapters, we use finite differences to obtain an approximation to the derivative

of f . Let M = 100 be the number of samples so that we generate wi, i = 1, . . . ,M

vector samples, where wi = e(−xi/2) (exponentially perturbed weights) and xi fol-

lows a uniform distribution on the interval (0, 1). Then we take each sample and

calculate f(wi). The next standard procedure of the active subspace method is to

use finite differences to get an approximated version of gradient samples. It is then

followed by performing an eigenvalue decomposition and analysing the dominant

eigenvector that corresponds to the leading eigenvalue (see Algorithm 2). Compo-

nents of the dominant eigenvector are shown in Figure 6.1. The computation shows

Figure 6.1. The dominant eigenvector with respect to the model in (6.15) and
(6.16).

that the first 3 or 4 measurements and the last measurement are the most impor-

tant, which makes sense since these measurements affect the slope and intercept

the most. When fitting a straight line to data, the first point or the first few points

heavily impact the intercept and the slope whereas the last point heavily impacts

only the slope. In other words, these measurements have the most leverage on the

variance of α1 and α2.
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We now consider a very similar example to (6.16), but we let x = [−4.5, . . . , 4.5]

so that our data points are now symmetric about (0, 0). The new observation

matrix is given by

C =


1 −4.5

1 −4
...

...

1 4.5

 . (6.17)

Using the same procedure as before we obtain the dominant eigenvector shown

in Figure 6.2. Figure 6.2 indicates that the most important measurements are the

Figure 6.2. The dominant eigenvector with respect to the observation matrix in
(6.17).

first few and the last few. For x = [1, . . . , 10], the measurements near 1 have

much more leverage in determining the intercept compared to the points near 10,

while points near 1 and near 10 have equal leverage in determining the slope. For

x = [−4.5, . . . , 4.5], the points at either end have the same leverage for determining

both the intercept and the slope. The aggregate measure of uncertainty depends

on the uncertainty contributions from both parameters and the active subspace

approach differentiates between the two designs appropriately.

104



6.4.2 Example: Fitting a Straight Line to Data with

Extra Information

The next test problem is slightly different from the two problems we just encoun-

tered in § 6.4.1. The distinction is that we add a third column to the observation

matrix C:

C =


1 −4.5 0

1 −4 0
...

...
...

1 4.5 1

 . (6.18)

Recall that in the first two examples we wanted to fit a straight line yj = α1 +

α2xj + εj to some data (xj, yj), where εj ∈ N(0, σ2), j = 1, . . . ,m, α = (α1, α2)T

(the intercept and the slope of the line) and cTj = (1, xj)
T . The observation matrix

in (6.18) represents the fact that we want to fit a straight line yj = α1 + α2xj + εj

to some data (xj, yj), where j = 1, . . . ,m− 1 and

ym = α1 + α2xm + e+ εm. (6.19)

The difference here is that when measuring ym we supppose that we are, for exam-

ple, using a different instrument in (6.18), namely, we have an additional factor e

(along with α1 and α2), which we call an ’offset’. This represents a situation where

the instrument associated with (6.19) is not calibrated and can have a significant

effect on experiments. We expect the active subspace method to tell us that the

last measurement has the most leverage on the quantity of interest. The reason for

this is that the last entry of the third column of matrix C in (6.18) is a non-zero.

If we don’t perform the last measurement, then we don’t have any information

on what e is and the variance associated with e will be infinite. In a problem like

this, we have to include the last measurement if we want to reduce the variance

associated with fitted parameters (α1, α2, e). Moreover, we want to know how e

can affect the quantity of interest. By performing standard measurements and the

measurement involving an ’offset’, we want to see how well the active subspace

method picks up this last important measurement. Following the procedure shown

in § 6.4.1, we obtain the dominant eigenvector of this problem, which is shown in

Figure 6.3.
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Figure 6.3. The dominant eigenvector with respect to the matrix in (6.18).

As expected, we can see in Figure 6.3 that the added information had a consid-

erable impact on the problem. We can see that the first few measurements are not

as important as in the previous examples (see Figures 6.1 and 6.2, however, these

measurements are still important for determining the slope and the intercept (α1

and α2, respectively). The reason for the points increasing in Figure 6.3 is that,

the measurements get more and more important at determining what e (offset) is.

Clearly, the last measurement is the most important at determining e by observing

Figure 6.3.

6.4.3 Laser Tracker Calibration Experiment

For the last example of this chapter, we have a laser tracker calibration experiment.

This is a realistic problem supplied by NPL. We have 18 targets that are being

measured by five laser trackers. The main aim is to find the targets that are most

important in the minimisation problem

min
w

trace(DVa(w)DT ).

Simply put, we want to find the optimal weighting discussed in § 6.3 for targets

so that we minimise the aggregate measure of uncertainty in (6.20).

The results of optimal weighting supplied by Forbes [100] indicate that all

but three of the weights are zero [54]. Specifically, his results indicate that mea-
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surements of targets 10, 12 and 16 are sufficient to estimate all the parameters.

Moreover, it is more efficient (in terms of reducing the aggregated estimate of un-

certainty) to re-measure these targets rather than measuring other targets. On the

basis of the optimal weighting, he also concludes that if the design is constrained

such that at most 18 target measurements are made, then a good strategy is to

measure target 10 six times, target 12 four times and target 16 eight times. It is

important to note that only three targets need to be measured, which means that

the time required to set up and perform the experiments is significantly reduced

[54].

So, the task now is to try and verify this result with the active subspace method.

The only information provided by NPL was a code for calculating f(w), making

this a “black-box” problem where the details of the function were unknown. The

usual procedure for identifying important parameters (m = 18 input parameters)

is to calculate f(wi) for each sample, i = 1, . . . ,M , apply the finite difference

method to get an approximation of the gradient samples and perform an eigen-

value decomposition in order to examine the leading eigenvector (see Algorithm 1).

Using M = 103 samples and Algorithm 1, this calculation leads us to Figure 6.4,

which represents the leading eigenvector that corresponds to the leading eigenvalue.

Figure 6.4. The leading eigenvector of a black-box problem obtained by the active
subspace method.

It was found that parameters w10, w12, w14 and w16 are the most influential or
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have more leverage than other parameters on our unknown quantity of interest

f(w). These results are consistent with the results obtained by Forbes with three

important measurements (w10, w12 and w16) matched. It was also found by Forbes

that the steepest reduction in the quantity of interest from a unit weighting is

achieved by increasing the weights associated with targets 10, 12, 14 and 16 [54]

(and matches the result obtained by using the active subspace method). It is

possible that the active subspace method is identifying important targets but the

optimisation is selecting from the important targets the set of three that is most

important. The optimisation and the active subspace method are asking slightly

different questions and the answers are consequently slightly different. However,

the active subspace method has identified important information that is consistent

with the results obtained by Forbes [54].

6.5 Conclusion

In this chapter, we have introduced some ideas from design of experiments and

measurement science, which are topics of interest to the National Physical Labora-

tory. We considered a general measurement model that can be used for linear cases

such as fitting a straight line to data or the more general problem of calibrating a

measurement instrument using a linear model. We then used the active subspace

method to identify which measurements (xj, yj) affect the quantity of interest the

most. The fact that we have an easy access to the quantity of interest means that

we can comfortably employ the active subspace method.

We examined which measurements affect our slope and the intercept the most

(straight line tests). In the first two examples we studied, we obtained sensible

results. In other words, we identified measurements which were predicted to be

important by our knowledge of the underlying problem. The last example we con-

sidered was a laser tracker calibration experiment, where the results of the active

subspace are consistent with the results obtained previously by NPL. The two

examples, fitting a straight line to data, and calibration of a laser tracker, showed

that the active subspace method can be used to determine which of a set of poten-

tial measurements are most influential in determining the calibration parameters,

even for complex design of experiment problems.
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Chapter 7

Conclusion

7.1 Thesis Achievements

The introductory chapter of this thesis discussed the basics of sensitivity analysis

and its examples (e.g., PCA, Sobol method, etc). Chapter 2 was devoted to the

main mathematical background material of this thesis, where we introduced the

method of the active subspace, and provided a practical algorithm with examples.

In Chapter 3 we discussed the background theory of networks. We presented a new

analytical derivation for the gradient of Katz centrality in § 3.3 (Lemma 3.3.3). In

Chapter 4, we applied the theory of networks and the ideas of the active subspace

method, and performed a number of experiments. Again, it is important to note

that, as far as we are aware, this is the first time the active subspace method has

been used in network science. After illustrating some ideas on synthetic networks,

we considered two realistic networks in § 4.4 and § 4.5, which have been previously

studied by network science researchers, namely, Zachary’s Karate Club network

and a protein-protein interaction (PPI) network. The results we obtained using the

active subspace method generally match those published in the research literature.

In Chapter 5, we considered Sobol indices and made comparisons with the active

subspace method. Despite the fact that the Sobol method is far more popular, the

active subspace method did well in comparison. In fact, the active subspace method

was better in some situations. In Chapter 6, we introduced the idea of design of

experiments, and applied the active subspace method to some examples that are

of interest to NPL. This included a “black-box” example, where the experimental

processs was partly known. The input parameters and output quantity of interest

were supplied. In this case, we found that the active subspace method has identified

important information that is consistent with the results obtained by NPL.
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7.2 Future Work

The active subspace method is a fairly new application with many possibilities.

Constantine in [8] mentions a number of applications where the active subspace

method could be used and exploited further (e.g., pressurised water reactors, pho-

tovoltaic (PV) solar cells, turbine efficiency function, wind plant power, Onera-M6

fixed wing shape optimisation, etc). As far as we know, this is the first time the

active subspace method is used in network and measurement sciences. Therefore,

further research is required to examine the relevance and applicability of the active

subspace method in comparison with other sensitivity analysis tools.
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